Criterion for Identifying Vortices in High-Pressure Flows
NASA Technical Reports Server (NTRS)
Bellan, Josette; Okong'o, Nora
2007-01-01
A study of four previously published computational criteria for identifying vortices in high-pressure flows has led to the selection of one of them as the best. This development can be expected to contribute to understanding of high-pressure flows, which occur in diverse settings, including diesel, gas turbine, and rocket engines and the atmospheres of Jupiter and other large gaseous planets. Information on the atmospheres of gaseous planets consists mainly of visual and thermal images of the flows over the planets. Also, validation of recently proposed computational models of high-pressure flows entails comparison with measurements, which are mainly of visual nature. Heretofore, the interpretation of images of high-pressure flows to identify vortices has been based on experience with low-pressure flows. However, high-pressure flows have features distinct from those of low-pressure flows, particularly in regions of high pressure gradient magnitude caused by dynamic turbulent effects and by thermodynamic mixing of chemical species. Therefore, interpretations based on low-pressure behavior may lead to misidentification of vortices and other flow structures in high-pressure flows. The study reported here was performed in recognition of the need for one or more quantitative criteria for identifying coherent flow structures - especially vortices - from previously generated flow-field data, to complement or supersede the determination of flow structures by visual inspection of instantaneous fields or flow animations. The focus in the study was on correlating visible images of flow features with various quantities computed from flow-field data.
Chang, Angela T; Palmer, Kerry R; McNaught, Jessie; Thomas, Peter J
2010-08-01
This study investigated the effect of flow rates and spirometer type on chest wall motion in healthy individuals. Twenty-one healthy volunteers completed breathing trials to either two times tidal volume (2xV(T)) or inspiratory capacity (IC) at high, low, or natural flow rates, using a volume- or flow-oriented spirometer. The proportions of rib cage movement to tidal volume (%RC/V(T)), chest wall diameters, and perceived level of exertion (RPE) were compared. Low and natural flow rates resulted in significantly lower %RC/V(T) compared to high flow rate trials (p=0.001) at 2xV(T). Low flow trials also resulted in significantly less chest wall motion in the upper anteroposterior direction than high and natural flow rates (p<0.001). At IC, significantly greater movement occurred in the abdominal lateral direction during low flow compared to high and natural flow trials (both p<0.003). RPE was lower for the low flow trials compared to high flow trials at IC and 2xV(T) (p<0.01). In healthy individuals, inspiratory flow (not device type) during incentive spirometry determines the resultant breathing pattern. High flow rates result in greater chest wall motion than low flow rates.
NASA Technical Reports Server (NTRS)
Bar-Cohen, Yoseph (Inventor); Sherrit, Stewart (Inventor); Badescu, Mircea (Inventor); Bao, Xiaoqi (Inventor)
2017-01-01
Apparatus, systems and methods for implementing flow cages and flow cage assemblies in association with high pressure fluid flows and fluid valves are provided. Flow cages and flow assemblies are provided to dissipate the energy of a fluid flow, such as by reducing fluid flow pressure and/or fluid flow velocity. In some embodiments the dissipation of the fluid flow energy is adapted to reduce erosion, such as from high-pressure jet flows, to reduce cavitation, such as by controllably increasing the flow area, and/or to reduce valve noise associated with pressure surge.
NASA Technical Reports Server (NTRS)
Sammy, Mo
2010-01-01
Active flow control is often used to manipulate flow instabilities to achieve a desired goal (e.g. prevent separation, enhance mixing, reduce noise, etc.). Instability frequencies normally scale with flow velocity scale and inversely with flow length scale (U/l). In a laboratory setting for such flow experiments, U is high, but l is low, resulting in high instability frequency. In addition, high momentum and high background noise & turbulence in the flow necessitate high amplitude actuation. Developing a high amplitude and high frequency actuator is a major challenge. Ironically, these requirements ease up in application (but other issues arise).
Base-flow data in the Arnold Air Force Base area, Tennessee, June and October 2002
Robinson, John A.; Haugh, Connor J.
2004-01-01
Arnold Air Force Base (AAFB) occupies about 40,000 acres in Coffee and Franklin Counties, Tennessee. The primary mission of AAFB is to support the development of aerospace systems. This mission is accomplished through test facilities at Arnold Engineering Development Center (AEDC), which occupies about 4,000 acres in the center of AAFB. Base-flow data including discharge, temperature, and specific conductance were collected for basins in and near AAFB during high base-flow and low base-flow conditions. Data representing high base-flow conditions from 109 sites were collected on June 3 through 5, 2002, when discharge measurements at sites with flow ranged from 0.005 to 46.4 ft3/s. Data representing low base-flow conditions from 109 sites were collected on October 22 and 23, 2002, when discharge measurements at sites with flow ranged from 0.02 to 44.6 ft3/s. Discharge from the basin was greater during high base-flow conditions than during low base-flow conditions. In general, major tributaries on the north side and southeastern side of the study area (Duck River and Bradley Creek, respectively) had the highest flows during the study. Discharge data were used to categorize stream reaches and sub-basins. Stream reaches were categorized as gaining, losing, wet, dry, or unobserved for each base-flow measurement period. Gaining stream reaches were more common during the high base-flow period than during the low base-flow period. Dry stream reaches were more common during the low base-flow period than during the high base-flow period. Losing reaches were more predominant in Bradley Creek and Crumpton Creek. Values of flow per square mile for the study area of 0.55 and 0.37 (ft3/s)/mi2 were calculated using discharge data collected on June 3 through 5, 2002, and October 22 and 23, 2002, respectively. Sub-basin areas with surplus or deficient flow were defined within the basin. Drainage areas for each stream measurement site were delineated and measured from topographic maps. Change in flow per square mile for each sub-basin was calculated using data from each base-flow measurement period. The calculated values were used to define the areas of surplus or deficient flow for high and low base-flow conditions. Many areas of deficient flow were present throughout the study area under high and low base-flow conditions. Most areas of deficient flow were in the headwater basins. Fewer areas of surplus flow were present under low base-flow conditions than during the high base-flow conditions. The flow per square mile for each major tributary basin in the study area also was calculated. The values of flow per square mile for the Dry Creek, Spring Creek, and Wiley Creek basins were greatest under both high and low base-flow conditions.
Effort of breathing in children receiving high-flow nasal cannula.
Rubin, Sarah; Ghuman, Anoopindar; Deakers, Timothy; Khemani, Robinder; Ross, Patrick; Newth, Christopher J
2014-01-01
High-flow humidified nasal cannula is often used to provide noninvasive respiratory support in children. The effect of high-flow humidified nasal cannula on effort of breathing in children has not been objectively studied, and the mechanism by which respiratory support is provided remains unclear. This study uses an objective measure of effort of breathing (Pressure. Rate Product) to evaluate high-flow humidified nasal cannula in critically ill children. Prospective cohort study. Quaternary care free-standing academic children's hospital. ICU patients younger than 18 years receiving high-flow humidified nasal cannula or whom the medical team planned to extubate to high-flow humidified nasal cannula within 72 hours of enrollment. An esophageal pressure monitoring catheter was placed to measure pleural pressures via a Bicore CP-100 pulmonary mechanics monitor. Change in pleural pressure (ΔPes) and respiratory rate were measured on high-flow humidified nasal cannula at 2, 5, and 8 L/min. ΔPes and respiratory rate were multiplied to generate the Pressure.Rate Product, a well-established objective measure of effort of breathing. Baseline Pes, defined as pleural pressure at end exhalation during tidal breathing, reflected the positive pressure generated on each level of respiratory support. Twenty-five patients had measurements on high-flow humidified nasal cannula. Median age was 6.5 months (interquartile range, 1.3-15.5 mo). Median Pressure,Rate Product was lower on high-flow humidified nasal cannula 8 L/min (median, 329 cm H2O·min; interquartile range, 195-402) compared with high-flow humidified nasal cannula 5 L/min (median, 341; interquartile range, 232-475; p = 0.007) or high-flow humidified nasal cannula 2 L/min (median, 421; interquartile range, 233-621; p < 0.0001) and was lower on high-flow humidified nasal cannula 5 L/min compared with high-flow humidified nasal cannula 2 L/min (p = 0.01). Baseline Pes was higher on high-flow humidified nasal cannula 8 L/min than on high-flow humidified nasal cannula 2 L/min (p = 0.03). Increasing flow rates of high-flow humidified nasal cannula decreased effort of breathing in children, with the most significant impact seen from high-flow humidified nasal cannula 2 to 8 L/min. There are likely multiple mechanisms for this clinical effect, including generation of positive pressure and washout of airway dead space.
Syn, C.K.; Lesuer, D.R.
1995-07-04
A laminated metal composite of low flow stress layers and high flow stress layers is described which is formed using flow constraining elements, preferably in the shape of rings, individually placed around each of the low flow stress layers while pressure is applied to the stack to bond the layers of the composite together, to thereby restrain the flow of the low flow stress layers from the stack during the bonding. The laminated metal composite of the invention is made by the steps of forming a stack of alternate layers of low flow stress layers and high flow stress layers with each layer of low flow stress material surrounded by an individual flow constraining element, such as a ring, and then applying pressure to the top and bottom surfaces of the resulting stack to bond the dissimilar layers together, for example, by compression rolling the stack. In a preferred embodiment, the individual flow constraining elements surrounding the layers of low flow stress material are formed of a material which may either be the same material as the material comprising the high flow stress layers, or have similar flow stress characteristics to the material comprising the high flow stress layers. Additional sacrificial layers may be added to the top and bottom of the stack to avoid damage to the stack during the bonding step; and these additional layers may then be removed after the bonding step. 5 figs.
Syn, Chol K.; Lesuer, Donald R.
1995-01-01
A laminated metal composite of low flow stress layers and high flow stress layers is described which is formed using flow constraining elements, preferably in the shape of rings, individually placed around each of the low flow stress layers while pressure is applied to the stack to bond the layers of the composite together, to thereby restrain the flow of the low flow stress layers from the stack during the bonding. The laminated metal composite of the invention is made by the steps of forming a stack of alternate layers of low flow stress layers and high flow stress layers with each layer of low flow stress material surrounded by an individual flow constraining element, such as a ring, and then applying pressure to the top and bottom surfaces of the resulting stack to bond the dissimilar layers together, for example, by compression rolling the stack. In a preferred embodiment, the individual flow constraining elements surrounding the layers of low flow stress material are formed of a material which may either be the same material as the material comprising the high flow stress layers, or have similar flow stress characteristics to the material comprising the high flow stress layers. Additional sacrificial layers may be added to the top and bottom of the stack to avoid damage to the stack during the bonding step; and these additional layers may then be removed after the bonding step.
The effects of flow on airway pressure during nasal high-flow oxygen therapy.
Parke, Rachael L; Eccleston, Michelle L; McGuinness, Shay P
2011-08-01
Nasal high-flow oxygen therapy increases the mean nasopharyngeal airway pressure in adults, but the relationship between flow and pressure is not well defined. To determine the relationship between flow and pressure with the Optiflow nasal high-flow oxygen therapy system. We invited patients scheduled for elective cardiac surgery to participate. Measurements were performed with nasal high-flow oxygen at flows of 30, 40, and 50 L/min, with the patient's mouth both open and closed. Pressures were recorded over one minute of breathing, and average flows were calculated via simple averaging. With the mouth closed, the mean ± SD airway pressures at 30, 40, and 50 L/min were 1.93 ± 1.25 cm H(2)O, 2.58 ± 1.54 cm H(2)O, and 3.31 ± 1.05 cm H(2)O, respectively. There was a positive linear relationship between flow and pressure. The mean nasopharyngeal pressure during nasal high-flow oxygen increases as flow increases. Australian Clinical Trials Registry http://www.adhb.govt.nz/achicu/hot_2_airway_pressure.htm.
Ethylene Trace-gas Techniques for High-speed Flows
NASA Technical Reports Server (NTRS)
Davis, David O.; Reichert, Bruce A.
1994-01-01
Three applications of the ethylene trace-gas technique to high-speed flows are described: flow-field tracking, air-to-air mixing, and bleed mass-flow measurement. The technique involves injecting a non-reacting gas (ethylene) into the flow field and measuring the concentration distribution in a downstream plane. From the distributions, information about flow development, mixing, and mass-flow rates can be dtermined. The trace-gas apparatus and special considerations for use in high-speed flow are discussed. A description of each application, including uncertainty estimates is followed by a demonstrative example.
Streamflow characteristics and trends in New Jersey, water years 1897-2003
Watson, Kara M.; Reiser, Robert G.; Nieswand, Steven P.; Schopp, Robert D.
2005-01-01
Streamflow statistics were computed for 111 continuous-record streamflow-gaging stations with 20 or more years of continuous record and for 500 low-flow partial-record stations, including 66 gaging stations with less than 20 years of continuous record. Daily mean streamflow data from water year 1897 through water year 2001 were used for the computations at the gaging stations. (The water year is the 12-month period, October 1 through September 30, designated by the calendar year in which it ends). The characteristics presented for the long-term continuous-record stations are daily streamflow, harmonic mean flow, flow frequency, daily flow durations, trend analysis, and streamflow variability. Low-flow statistics for gaging stations with less than 20 years of record and for partial-record stations were estimated by correlating base-flow measurements with daily mean flows at long-term (more than 20 years) continuous-record stations. Instantaneous streamflow measurements through water year 2003 were used to estimate low-flow statistics at the partial-record stations. The characteristics presented for partial-record stations are mean annual flow; harmonic mean flow; and annual and winter low-flow frequency. The annual 1-, 7-, and 30-day low- and high-flow data sets were tested for trends. The results of trend tests for high flows indicate relations between upward trends for high flows and stream regulation, and high flows and development in the basin. The relation between development and low-flow trends does not appear to be as strong as for development and high-flow trends. Monthly, seasonal, and annual precipitation data for selected long-term meteorological stations also were tested for trends to analyze the effects of climate. A significant upward trend in precipitation in northern New Jersey, Climate Division 1 was identified. For Climate Division 2, no general increase in average precipitation was observed. Trend test results indicate that high flows at undeveloped, unregulated sites have not been affected by the increase in average precipitation. The ratio of instantaneous peak flow to 3-day mean flow, ratios of flow duration, ratios of high-flow/low-flow frequency, and coefficient of variation were used to define streamflow variability. Streamflow variability was significantly greater among the group of gaging stations located outside the Coastal Plain than among the group of gaging stations located in the Coastal Plain.
Bayes to the Rescue: Continuous Positive Airway Pressure Has Less Mortality Than High-Flow Oxygen.
Modesto I Alapont, Vicent; Khemani, Robinder G; Medina, Alberto; Del Villar Guerra, Pablo; Molina Cambra, Alfred
2017-02-01
The merits of high-flow nasal cannula oxygen versus bubble continuous positive airway pressure are debated in children with pneumonia, with suggestions that randomized controlled trials are needed. In light of a previous randomized controlled trial showing a trend for lower mortality with bubble continuous positive airway pressure, we sought to determine the probability that a new randomized controlled trial would find high-flow nasal cannula oxygen superior to bubble continuous positive airway pressure through a "robust" Bayesian analysis. Sample data were extracted from the trial by Chisti et al, and requisite to "robust" Bayesian analysis, we specified three prior distributions to represent clinically meaningful assumptions. These priors (reference, pessimistic, and optimistic) were used to generate three scenarios to represent the range of possible hypotheses. 1) "Reference": we believe bubble continuous positive airway pressure and high-flow nasal cannula oxygen are equally effective with the same uninformative reference priors; 2) "Sceptic on high-flow nasal cannula oxygen": we believe that bubble continuous positive airway pressure is better than high-flow nasal cannula oxygen (bubble continuous positive airway pressure has an optimistic prior and high-flow nasal cannula oxygen has a pessimistic prior); and 3) "Enthusiastic on high-flow nasal cannula oxygen": we believe that high-flow nasal cannula oxygen is better than bubble continuous positive airway pressure (high-flow nasal cannula oxygen has an optimistic prior and bubble continuous positive airway pressure has a pessimistic prior). Finally, posterior empiric Bayesian distributions were obtained through 100,000 Markov Chain Monte Carlo simulations. In all three scenarios, there was a high probability for more death from high-flow nasal cannula oxygen compared with bubble continuous positive airway pressure (reference, 0.98; sceptic on high-flow nasal cannula oxygen, 0.982; enthusiastic on high-flow nasal cannula oxygen, 0.742). The posterior 95% credible interval on the difference in mortality identified a future randomized controlled trial would be extremely unlikely to find a mortality benefit for high-flow nasal cannula oxygen over bubble continuous positive airway pressure, regardless of the scenario. Interpreting these findings using the "range of practical equivalence" framework would recommend rejecting the hypothesis that high-flow nasal cannula oxygen is superior to bubble continuous positive airway pressure for these children. For children younger than 5 years with pneumonia, high-flow nasal cannula oxygen has higher mortality than bubble continuous positive airway pressure. A future randomized controlled trial in this population is unlikely to find high-flow nasal cannula oxygen superior to bubble continuous positive airway pressure.
Multinode acoustic focusing for parallel flow cytometry
Piyasena, Menake E.; Suthanthiraraj, Pearlson P. Austin; Applegate, Robert W.; Goumas, Andrew M.; Woods, Travis A.; López, Gabriel P.; Graves, Steven W.
2012-01-01
Flow cytometry can simultaneously measure and analyze multiple properties of single cells or particles with high sensitivity and precision. Yet, conventional flow cytometers have fundamental limitations with regards to analyzing particles larger than about 70 microns, analyzing at flow rates greater than a few hundred microliters per minute, and providing analysis rates greater than 50,000 per second. To overcome these limits, we have developed multi-node acoustic focusing flow cells that can position particles (as small as a red blood cell and as large as 107 microns in diameter) into as many as 37 parallel flow streams. We demonstrate the potential of such flow cells for the development of high throughput, parallel flow cytometers by precision focusing of flow cytometry alignment microspheres, red blood cells, and the analysis of CD4+ cellular immunophenotyping assay. This approach will have significant impact towards the creation of high throughput flow cytometers for rare cell detection applications (e.g. circulating tumor cells), applications requiring large particle analysis, and high volume flow cytometry. PMID:22239072
Development of an Active Flow Control Technique for an Airplane High-Lift Configuration
NASA Technical Reports Server (NTRS)
Shmilovich, Arvin; Yadlin, Yoram; Dickey, Eric D.; Hartwich, Peter M.; Khodadoust, Abdi
2017-01-01
This study focuses on Active Flow Control methods used in conjunction with airplane high-lift systems. The project is motivated by the simplified high-lift system, which offers enhanced airplane performance compared to conventional high-lift systems. Computational simulations are used to guide the implementation of preferred flow control methods, which require a fluidic supply. It is first demonstrated that flow control applied to a high-lift configuration that consists of simple hinge flaps is capable of attaining the performance of the conventional high-lift counterpart. A set of flow control techniques has been subsequently considered to identify promising candidates, where the central requirement is that the mass flow for actuation has to be within available resources onboard. The flow control methods are based on constant blowing, fluidic oscillators, and traverse actuation. The simulations indicate that the traverse actuation offers a substantial reduction in required mass flow, and it is especially effective when the frequency of actuation is consistent with the characteristic time scale of the flow.
Simple microfluidic stagnation point flow geometries
Dockx, Greet; Verwijlen, Tom; Sempels, Wouter; Nagel, Mathias; Moldenaers, Paula; Hofkens, Johan; Vermant, Jan
2016-01-01
A geometrically simple flow cell is proposed to generate different types of stagnation flows, using a separation flow and small variations of the geometric parameters. Flows with high local deformation rates can be changed from purely rotational, over simple shear flow, to extensional flow in a region surrounding a stagnation point. Computational fluid dynamic calculations are used to analyse how variations of the geometrical parameters affect the flow field. These numerical calculations are compared to the experimentally obtained streamlines of different designs, which have been determined by high speed confocal microscopy. As the flow type is dictated predominantly by the geometrical parameters, such simple separating flow devices may alleviate the requirements for flow control, while offering good stability for a wide variety of flow types. PMID:27462382
Identifying High-Rate Flows Based on Sequential Sampling
NASA Astrophysics Data System (ADS)
Zhang, Yu; Fang, Binxing; Luo, Hao
We consider the problem of fast identification of high-rate flows in backbone links with possibly millions of flows. Accurate identification of high-rate flows is important for active queue management, traffic measurement and network security such as detection of distributed denial of service attacks. It is difficult to directly identify high-rate flows in backbone links because tracking the possible millions of flows needs correspondingly large high speed memories. To reduce the measurement overhead, the deterministic 1-out-of-k sampling technique is adopted which is also implemented in Cisco routers (NetFlow). Ideally, a high-rate flow identification method should have short identification time, low memory cost and processing cost. Most importantly, it should be able to specify the identification accuracy. We develop two such methods. The first method is based on fixed sample size test (FSST) which is able to identify high-rate flows with user-specified identification accuracy. However, since FSST has to record every sampled flow during the measurement period, it is not memory efficient. Therefore the second novel method based on truncated sequential probability ratio test (TSPRT) is proposed. Through sequential sampling, TSPRT is able to remove the low-rate flows and identify the high-rate flows at the early stage which can reduce the memory cost and identification time respectively. According to the way to determine the parameters in TSPRT, two versions of TSPRT are proposed: TSPRT-M which is suitable when low memory cost is preferred and TSPRT-T which is suitable when short identification time is preferred. The experimental results show that TSPRT requires less memory and identification time in identifying high-rate flows while satisfying the accuracy requirement as compared to previously proposed methods.
High flow ceramic pot filters.
van Halem, D; van der Laan, H; Soppe, A I A; Heijman, S G J
2017-11-01
Ceramic pot filters are considered safe, robust and appropriate technologies, but there is a general consensus that water revenues are limited due to clogging of the ceramic element. The objective of this study was to investigate the potential of high flow ceramic pot filters to produce more water without sacrificing their microbial removal efficacy. High flow pot filters, produced by increasing the rice husk content, had a higher initial flow rate (6-19 L h -1 ), but initial LRVs for E. coli of high flow filters was slightly lower than for regular ceramic pot filters. This disadvantage was, however, only temporarily as the clogging in high flow filters had a positive effect on the LRV for E. coli (from below 1 to 2-3 after clogging). Therefore, it can be carefully concluded that regular ceramic pot filters perform better initially, but after clogging, the high flow filters have a higher flow rate as well as a higher LRV for E. coli. To improve the initial performance of new high flow filters, it is recommended to further utilize residence time of the water in the receptacle, since additional E. coli inactivation was observed during overnight storage. Although a relationship was observed between flow rate and LRV of MS2 bacteriophages, both regular and high flow filters were unable to reach over 2 LRV. Copyright © 2017 Elsevier Ltd. All rights reserved.
van der Hoop, Julie M; Byron, Margaret L; Ozolina, Karlina; Miller, David L; Johansen, Jacob L; Domenici, Paolo; Steffensen, John F
2018-06-12
Fish swimming energetics are often measured in laboratory environments which attempt to minimize turbulence, though turbulent flows are common in the natural environment. To test whether the swimming energetics and kinematics of shiner perch, Cymatogaster aggregata (a labriform swimmer), were affected by turbulence, two flow conditions were constructed in a swim-tunnel respirometer. A low-turbulence flow was created using a common swim-tunnel respirometry setup with a flow straightener and fine-mesh grid to minimize velocity fluctuations. A high-turbulence flow condition was created by allowing large velocity fluctuations to persist without a flow straightener or fine grid. The two conditions were tested with particle image velocimetry to confirm significantly different turbulence properties throughout a range of mean flow speeds. Oxygen consumption rate of the swimming fish increased with swimming speed and pectoral fin beat frequency in both flow conditions. Higher turbulence also caused a greater positional variability in swimming individuals (versus low-turbulence flow) at medium and high speeds. Surprisingly, fish used less oxygen in high-turbulence compared with low-turbulence flow at medium and high swimming speeds. Simultaneous measurements of swimming kinematics indicated that these reductions in oxygen consumption could not be explained by specific known flow-adaptive behaviours such as Kármán gaiting or entraining. Therefore, fish in high-turbulence flow may take advantage of the high variability in turbulent energy through time. These results suggest that swimming behaviour and energetics measured in the lab in straightened flow, typical of standard swimming respirometers, might differ from that of more turbulent, semi-natural flow conditions. © 2018. Published by The Company of Biologists Ltd.
NASA Astrophysics Data System (ADS)
Kursakov, I. A.; Kazhan, E. V.; Lysenkov, A. V.; Savelyev, A. A.
2016-10-01
Paper describes the optimization procedure for low cruise drag inlet of high-bypass ratio turbofan engine (HBRE). The critical cross-flow velocity when the flow separation on the lee side of the inlet channel occurs is determined. The effciency of different flow control devices used to improve the flow parameters at inlet section cross flow regime is analyzed. Boundary layer suction, bypass slot and vortex generators are considered. It is shown that flow control devices enlarge the stability range of inlet performance at cross flow regimes.
Multiphase flow calculation software
Fincke, James R.
2003-04-15
Multiphase flow calculation software and computer-readable media carrying computer executable instructions for calculating liquid and gas phase mass flow rates of high void fraction multiphase flows. The multiphase flow calculation software employs various given, or experimentally determined, parameters in conjunction with a plurality of pressure differentials of a multiphase flow, preferably supplied by a differential pressure flowmeter or the like, to determine liquid and gas phase mass flow rates of the high void fraction multiphase flows. Embodiments of the multiphase flow calculation software are suitable for use in a variety of applications, including real-time management and control of an object system.
Flow “Fine” Synthesis: High Yielding and Selective Organic Synthesis by Flow Methods
2015-01-01
Abstract The concept of flow “fine” synthesis, that is, high yielding and selective organic synthesis by flow methods, is described. Some examples of flow “fine” synthesis of natural products and APIs are discussed. Flow methods have several advantages over batch methods in terms of environmental compatibility, efficiency, and safety. However, synthesis by flow methods is more difficult than synthesis by batch methods. Indeed, it has been considered that synthesis by flow methods can be applicable for the production of simple gasses but that it is difficult to apply to the synthesis of complex molecules such as natural products and APIs. Therefore, organic synthesis of such complex molecules has been conducted by batch methods. On the other hand, syntheses and reactions that attain high yields and high selectivities by flow methods are increasingly reported. Flow methods are leading candidates for the next generation of manufacturing methods that can mitigate environmental concerns toward sustainable society. PMID:26337828
A mesh regeneration method using quadrilateral and triangular elements for compressible flows
NASA Technical Reports Server (NTRS)
Vemaganti, G. R.; Thornton, E. A.
1989-01-01
An adaptive remeshing method using both triangular and quadrilateral elements suitable for high-speed viscous flows is presented. For inviscid flows, the method generates completely unstructured meshes. For viscous flows, structured meshes are generated for boundary layers, and unstructured meshes are generated for inviscid flow regions. Examples of inviscid and viscous adaptations for high-speed flows are presented.
Analysis of cash flow in academic medical centers in the United States.
McCue, Michael J; Thompson, Jon M
2011-09-01
To examine cash flow margins in academic medical centers (AMCs; i.e., teaching hospitals) in an effort both to determine any significant differences in a set of operational and financial factors known to influence cash flow for high- and low-cash-flow AMCs and to discuss how these findings affect AMC operations. The authors sampled the Medicare cost report data of 103 AMCs for fiscal years 2005, 2006, and 2007, and then they applied the t test to test for significant mean differences between the two cash flow groups across operational and financial variables (e.g., case mix, operating margin). Compared with low-cash-flow AMCs, high-cash-flow AMCs were larger-bed-size facilities, treated cases of greater complexity, generated higher net patient revenue per adjusted discharge, served a significantly lower percentage of Medicaid patients, had significantly higher average operating profit margins and cash flow margin ratios, possessed a higher number of days of cash on hand, and collected their receivables more quickly. Study findings imply that high-cash-flow AMCs were earning higher cash flow returns than low-cash-flow AMCs, which may be because high-cash-flow AMCs generate higher patient revenues while serving fewer lower-paying Medicaid patients.
Cole, P.D.; Calder, E.S.; Druitt, T.H.; Hoblitt, R.; Robertson, R.; Sparks, R.S.J.; Young, S.R.
1998-01-01
Numerous pyroclastic flows were produced during 1996-97 by collapse of the growing andesitic lava dome at Soufriere Hills Volcano, Montserrat. Measured deposit volumes from these flows range from 0.2 to 9 ?? 106 m3. Flows range from discrete, single pulse events to sustained large scale dome collapse events. Flows entered the sea on the eastern and southern coasts, depositing large fans of material at the coast. Small runout distance (<1 km) flows had average flow front velocities in the order of 3-10 m/s while flow fronts of the larger runout distance flows (up to 6.5 km) advanced in the order of 15-30 m/s. Many flows were locally highly erosive. Field relations show that development of the fine grained ash cloud surge component was enhanced during the larger sustained events. Periods of elevated pyroclastic flow productivity and sustained dome collapse events are linked to pulses of high magma extrusion rates.Numerous pyroclastic flows were produced during 1996-97 by collapse of the growing andesitic lava dome at Soufriere Hills Volcano, Montserrat. Measured deposit volumes from these flows range from 0.2 to 9??106 m3. Flows range from discrete, single pulse events to sustained large scale dome collapse events. Flows entered the sea on the eastern and southern coasts, depositing large fans of material at the coast. Small runout distance (<1 km) flows had average flow front velocities in the order of 3-10 m/s while flow fronts of the larger runout distance flows (up to 6.5 km) advanced in the order of 15-30 m/s. Many flows were locally highly erosive. Field relations show that development of the fine grained ash cloud surge component was enhanced during the larger sustained events. Periods of elevated dome pyroclastic flow productivity and sustained collapse events are linked to pulses of high magma extrusion rates.
Adapting high-level language programs for parallel processing using data flow
NASA Technical Reports Server (NTRS)
Standley, Hilda M.
1988-01-01
EASY-FLOW, a very high-level data flow language, is introduced for the purpose of adapting programs written in a conventional high-level language to a parallel environment. The level of parallelism provided is of the large-grained variety in which parallel activities take place between subprograms or processes. A program written in EASY-FLOW is a set of subprogram calls as units, structured by iteration, branching, and distribution constructs. A data flow graph may be deduced from an EASY-FLOW program.
NASA Astrophysics Data System (ADS)
Rice, Anthony; Allerman, Andrew; Crawford, Mary; Beechem, Thomas; Ohta, Taisuke; Spataru, Catalin; Figiel, Jeffrey; Smith, Michael
2018-03-01
The use of metal-organic chemical vapor deposition at high temperature is investigated as a means to produce epitaxial hexagonal boron nitride (hBN) at the wafer scale. Several categories of hBN films were found to exist based upon precursor flows and deposition temperature. Low, intermediate, and high NH3 flow regimes were found to lead to fundamentally different deposition behaviors. The low NH3 flow regimes yielded discolored films of boron sub-nitride. The intermediate NH3 flow regime yielded stoichiometric films that could be deposited as thick films. The high NH3 flow regime yielded self-limited deposition with thicknesses limited to a few mono-layers. A Langmuir-Hinshelwood mechanism is proposed to explain the onset of self-limited behavior for the high NH3 flow regime. Photoluminescence characterization determined that the intermediate and high NH3 flow regimes could be further divided into low and high temperature behaviors with a boundary at 1500 °C. Films deposited with both high NH3 flow and high temperature exhibited room temperature free exciton emission at 210 nm and 215.9 nm.
High-speed flow visualization in hypersonic, transonic, and shock tube flows
NASA Astrophysics Data System (ADS)
Kleine, H.; Olivier, H.
2017-02-01
High-speed flow visualisation has played an important role in the investigations conducted at the Stoßwellenlabor of the RWTH Aachen University for many decades. In addition to applying the techniques of high-speed imaging, this laboratory has been actively developing new or enhanced visualisation techniques and approaches such as various schlieren methods or time-resolved Mach-Zehnder interferometry. The investigated high-speed flows are inherently highly transient, with flow Mach numbers ranging from about M = 0.7 to M = 8. The availability of modern high-speed cameras has allowed us to expand the investigations into problems where reduced reproducibility had so far limited the amount of information that could be extracted from a limited number of flow visualisation records. Following a brief historical overview, some examples of recent studies are given, which represent the breadth of applications in which high-speed imaging has been an essential diagnostic tool to uncover the physics of high-speed flows. Applications include the stability of hypersonic corner flows, the establishment of shock wave systems in transonic airfoil flow, and the complexities of the interactions of shock waves with obstacles of various shapes.
Investigation of Flow Separation in a Transonic-fan Linear Cascade Using Visualization Methods
NASA Technical Reports Server (NTRS)
Lepicovsky, Jan; Chima, Rodrick V.; Jett, Thomas A.; Bencic, Timothy J.; Weiland, Kenneth E.
2000-01-01
An extensive study into the nature of the separated flows on the suction side of modem transonic fan airfoils at high incidence is described in the paper. Suction surface.flow separation is an important flow characteristic that may significantly contribute to stall flutter in transonic fans. Flutter in axial turbomachines is a highly undesirable and dangerous self-excited mode of blade oscillations that can result in high cycle fatigue blade failure. The study basically focused on two visualization techniques: surface flow visualization using dye oils, and schlieren (and shadowgraph) flow visualization. The following key observations were made during the study. For subsonic inlet flow, the flow on the suction side of the blade is separated over a large portion of the blade, and the separated area increases with increasing inlet Mach number. For the supersonic inlet flow condition, the flow is attached from the leading edge up to the point where a bow shock from the upper neighboring blade hits the blade surface. Low cascade solidity, for the subsonic inlet flow, results in an increased area of separated flow. For supersonic flow conditions, a low solidity results in an improvement in flow over the suction surface. Finally, computational results modeling the transonic cascade flowfield illustrate our ability to simulate these flows numerically.
High speed digital holographic interferometry for hypersonic flow visualization
NASA Astrophysics Data System (ADS)
Hegde, G. M.; Jagdeesh, G.; Reddy, K. P. J.
2013-06-01
Optical imaging techniques have played a major role in understanding the flow dynamics of varieties of fluid flows, particularly in the study of hypersonic flows. Schlieren and shadowgraph techniques have been the flow diagnostic tools for the investigation of compressible flows since more than a century. However these techniques provide only the qualitative information about the flow field. Other optical techniques such as holographic interferometry and laser induced fluorescence (LIF) have been used extensively for extracting quantitative information about the high speed flows. In this paper we present the application of digital holographic interferometry (DHI) technique integrated with short duration hypersonic shock tunnel facility having 1 ms test time, for quantitative flow visualization. Dynamics of the flow fields in hypersonic/supersonic speeds around different test models is visualized with DHI using a high-speed digital camera (0.2 million fps). These visualization results are compared with schlieren visualization and CFD simulation results. Fringe analysis is carried out to estimate the density of the flow field.
Sediment dynamics in the lower Mekong River: Transition from tidal river to estuary
NASA Astrophysics Data System (ADS)
Nowacki, Daniel J.; Ogston, Andrea S.; Nittrouer, Charles A.; Fricke, Aaron T.; Van, Pham Dang Tri
2015-09-01
A better understanding of flow and sediment dynamics in the lowermost portions of large-tropical rivers is essential to constraining estimates of worldwide sediment delivery to the ocean. Flow velocity, salinity, and suspended-sediment concentration were measured for 25 h at three cross sections in the tidal Song Hau distributary of the Mekong River, Vietnam. Two campaigns took place during comparatively high-seasonal and low-seasonal discharge, and estuarine conditions varied dramatically between them. The system transitioned from a tidal river with ephemeral presence of a salt wedge during high flow to a partially mixed estuary during low flow. The changing freshwater input, sediment sources, and estuarine characteristics resulted in seaward sediment export during high flow and landward import during low flow. The Dinh An channel of the Song Hau distributary exported sediment to the coast at a rate of about 1 t s-1 during high flow and imported sediment in a spatially varying manner at approximately 0.3 t s-1 during low flow. Scaling these values results in a yearly Mekong sediment discharge estimate about 65% smaller than a generally accepted estimate of 110 Mt yr-1, although the limited temporal and spatial nature of this study implies a relatively high degree of uncertainty for the new estimate. Fluvial advection of sediment was primarily responsible for the high-flow sediment export. Exchange-flow and tidal processes, including local resuspension, were principally responsible for the low-flow import. The resulting bed-sediment grain size was coarser and more variable during high flow and finer during low, and the residual flow patterns support the maintenance of mid-channel islands. This article was corrected on 7 OCT 2015. See the end of the full text for details.
Preferential flow occurs in unsaturated conditions
Nimmo, John R.
2012-01-01
Because it commonly generates high-speed, high-volume flow with minimal exposure to solid earth materials, preferential flow in the unsaturated zone is a dominant influence in many problems of infiltration, recharge, contaminant transport, and ecohydrology. By definition, preferential flow occurs in a portion of a medium – that is, a preferred part, whether a pathway, pore, or macroscopic subvolume. There are many possible classification schemes, but usual consideration of preferential flow includes macropore or fracture flow, funneled flow determined by macroscale heterogeneities, and fingered flow determined by hydraulic instability rather than intrinsic heterogeneity. That preferential flow is spatially concentrated associates it with other characteristics that are typical, although not defining: it tends to be unusually fast, to transport high fluxes, and to occur with hydraulic disequilibrium within the medium. It also has a tendency to occur in association with large conduits and high water content, although these are less universal than is commonly assumed. Predictive unsaturated-zone flow models in common use employ several different criteria for when and where preferential flow occurs, almost always requiring a nearly saturated medium. A threshold to be exceeded may be specified in terms of the following (i) water content; (ii) matric potential, typically a value high enough to cause capillary filling in a macropore of minimum size; (iii) infiltration capacity or other indication of incipient surface ponding; or (iv) other conditions related to total filling of certain pores. Yet preferential flow does occur without meeting these criteria. My purpose in this commentary is to point out important exceptions and implications of ignoring them. Some of these pertain mainly to macropore flow, others to fingered or funneled flow, and others to combined or undifferentiated flow modes.
Nordgaard, Håvard; Swillens, Abigail; Nordhaug, Dag; Kirkeby-Garstad, Idar; Van Loo, Denis; Vitale, Nicola; Segers, Patrick; Haaverstad, Rune; Lovstakken, Lasse
2010-12-01
Competitive flow from native coronary vessels is considered a major factor in the failure of coronary bypass grafts. However, the pathophysiological effects are not fully understood. Low and oscillatory wall shear stress (WSS) is known to induce endothelial dysfunction and vascular disease, like atherosclerosis and intimal hyperplasia. The aim was to investigate the impact of competitive flow on WSS in mammary artery bypass grafts. Using computational fluid dynamics, WSS was calculated in a left internal mammary artery (LIMA) graft to the left anterior descending artery in a three-dimensional in vivo porcine coronary artery bypass graft model. The following conditions were investigated: high competitive flow (non-significant coronary lesion), partial competitive flow (significant coronary lesion), and no competitive flow (totally occluded coronary vessel). Time-averaged WSS of LIMA at high, partial, and no competitive flow were 0.3-0.6, 0.6-3.0, and 0.9-3.0 Pa, respectively. Further, oscillatory WSS quantified as the oscillatory shear index (OSI) ranged from (maximum OSI = 0.5 equals zero net WSS) 0.15 to 0.35, <0.05, and <0.05, respectively. Thus, high competitive flow resulted in substantial oscillatory and low WSS. Moderate competitive flow resulted in WSS and OSI similar to the no competitive flow condition. Graft flow is highly dependent on the degree of competitive flow. High competitive flow was found to produce unfavourable WSS consistent with endothelial dysfunction and subsequent graft narrowing and failure. Partial competitive flow, however, may be better tolerated as it was found to be similar to the ideal condition of no competitive flow.
Numerical Simulation of a High-Lift Configuration Embedded with High Momentum Fluidic Actuators
NASA Technical Reports Server (NTRS)
Vatsa, Veer N.; Duda, Benjamin; Fares, Ehab; Lin, John C.
2016-01-01
Numerical simulations have been performed for a vertical tail configuration with deflected rudder. The suction surface of the main element of this configuration, just upstream of the hinge line, is embedded with an array of 32 fluidic actuators that produce oscillating sweeping jets. Such oscillating jets have been found to be very effective for flow control applications in the past. In the current paper, a high-fidelity computational fluid dynamics (CFD) code known as the PowerFLOW R code is used to simulate the entire flow field associated with this configuration, including the flow inside the actuators. A fully compressible version of the PowerFLOW R code valid for high speed flows is used for the present simulations to accurately represent the transonic flow regimes encountered in the flow field due to the actuators operating at higher mass flow (momentum) rates required to mitigate reverse flow regions on a highly-deflected rudder surface. The computed results for the surface pressure and integrated forces compare favorably with measured data. In addition, numerical solutions predict the correct trends in forces with active flow control compared to the no control case. The effect of varying the rudder deflection angle on integrated forces and surface pressures is also presented.
Auble, Gregor T.; Bowen, Zachary H.
2008-01-01
In June 2006, an opportunistic high-flow release was made from Tiber Dam on the Marias River in Mont., to investigate possible alternatives for partially restoring the river's natural flow pattern and variability. At two sites along the river, we measured channel geometry before and after the high-flow release to evaluate channel change and alteration of physical habitat. Streamflow downstream from Tiber Dam has been stabilized by reduction of high flows and augmentation of low flows. This has produced flood-control benefits as well as some possible adverse environmental effects downstream from the dam. The 2006 high-flow release resulted in a downstream hydrograph with high flows of above-average magnitude in the post-dam flow regime of the Marias River. Timing of the peak and the declining limb of the release hydrograph were very similar to a historical, unregulated hydrograph of the Marias River. Furthermore, the high flow produced many of the qualitative elements of ecologically important physical processes that can be diminished or lost due to flow stabilization downstream from a dam. Typically dry back channels were occupied by flowing water. Islands were inundated, resulting in vegetation removal and sediment accretion that produced new disturbance patches of bare, moist substrate. Cut banks were eroded, and large woody debris was added to the river and redistributed. Flood-plain surfaces were inundated, producing substantial increases in wetted perimeter and spatially distinctive patterns of deposition associated with natural levee formation. The scale of the 2006 high flow - in terms of peak magnitude and the lateral extent of bottomland influenced by inundation or lateral channel movement - was roughly an order of magnitude smaller than the scale of an infrequent high flow in the pre-dam regime. Overall extent and composition of riparian vegetation will continue to change under a scaled-down, post-dam flow regime. For example, the importance of the non-native Russian-olive (Elaeagnus angustifolia) will likely increase. Reestablishing a more natural pattern of flows, however, should promote the increase of native cottonwood and willow (Salix spp.) in the new-albeit smaller-post-dam riparian ecosystem. A more natural flow regime will also likely provide improved habitat for native fish in the Marias River. Response of fish communities to such flows is the subject of current fisheries studies being conducted in cooperation with Bureau of Reclamation.
Crocker, J.B.; Bank, M.S.; Loftin, C.S.; Jung Brown, R.E.
2007-01-01
We investigated effects of observers and stream flow on Northern Two-Lined Salamander (Eurycea bislineata bislineata) counts in streams in Acadia (ANP) and Shenandoah National Parks (SNP). We counted salamanders in 22 ANP streams during high flow (May to June 2002) and during low flow (July 2002). We also counted salamanders in SNP in nine streams during high flow (summer 2003) and 11 streams during low flow (summers 2001?02, 2004). In 2002, we used a modified cover-controlled active search method with a first and second observer. In succession, observers turned over 100 rocks along five 1-m belt transects across the streambed. The difference between observers in total salamander counts was not significant. We counted fewer E. b. bislineata during high flow conditions, confirming that detection of this species is reduced during high flow periods and that assessment of stream salamander relative abundance is likely more reliable during low or base flow conditions.
Estimating Preferential Flow in Karstic Aquifers Using Statistical Mixed Models
Anaya, Angel A.; Padilla, Ingrid; Macchiavelli, Raul; Vesper, Dorothy J.; Meeker, John D.; Alshawabkeh, Akram N.
2013-01-01
Karst aquifers are highly productive groundwater systems often associated with conduit flow. These systems can be highly vulnerable to contamination, resulting in a high potential for contaminant exposure to humans and ecosystems. This work develops statistical models to spatially characterize flow and transport patterns in karstified limestone and determines the effect of aquifer flow rates on these patterns. A laboratory-scale Geo-HydroBed model is used to simulate flow and transport processes in a karstic limestone unit. The model consists of stainless-steel tanks containing a karstified limestone block collected from a karst aquifer formation in northern Puerto Rico. Experimental work involves making a series of flow and tracer injections, while monitoring hydraulic and tracer response spatially and temporally. Statistical mixed models are applied to hydraulic data to determine likely pathways of preferential flow in the limestone units. The models indicate a highly heterogeneous system with dominant, flow-dependent preferential flow regions. Results indicate that regions of preferential flow tend to expand at higher groundwater flow rates, suggesting a greater volume of the system being flushed by flowing water at higher rates. Spatial and temporal distribution of tracer concentrations indicates the presence of conduit-like and diffuse flow transport in the system, supporting the notion of both combined transport mechanisms in the limestone unit. The temporal response of tracer concentrations at different locations in the model coincide with, and confirms the preferential flow distribution generated with the statistical mixed models used in the study. PMID:23802921
Estimating preferential flow in karstic aquifers using statistical mixed models.
Anaya, Angel A; Padilla, Ingrid; Macchiavelli, Raul; Vesper, Dorothy J; Meeker, John D; Alshawabkeh, Akram N
2014-01-01
Karst aquifers are highly productive groundwater systems often associated with conduit flow. These systems can be highly vulnerable to contamination, resulting in a high potential for contaminant exposure to humans and ecosystems. This work develops statistical models to spatially characterize flow and transport patterns in karstified limestone and determines the effect of aquifer flow rates on these patterns. A laboratory-scale Geo-HydroBed model is used to simulate flow and transport processes in a karstic limestone unit. The model consists of stainless steel tanks containing a karstified limestone block collected from a karst aquifer formation in northern Puerto Rico. Experimental work involves making a series of flow and tracer injections, while monitoring hydraulic and tracer response spatially and temporally. Statistical mixed models (SMMs) are applied to hydraulic data to determine likely pathways of preferential flow in the limestone units. The models indicate a highly heterogeneous system with dominant, flow-dependent preferential flow regions. Results indicate that regions of preferential flow tend to expand at higher groundwater flow rates, suggesting a greater volume of the system being flushed by flowing water at higher rates. Spatial and temporal distribution of tracer concentrations indicates the presence of conduit-like and diffuse flow transport in the system, supporting the notion of both combined transport mechanisms in the limestone unit. The temporal response of tracer concentrations at different locations in the model coincide with, and confirms the preferential flow distribution generated with the SMMs used in the study. © 2013, National Ground Water Association.
NASA Astrophysics Data System (ADS)
Li, Hao; Sun, Baojiang; Guo, Yanli; Gao, Yonghai; Zhao, Xinxin
2018-02-01
The air-water flow characteristics under pressure in the range of 1-6 MPa in a vertical annulus were evaluated in this report. Time-resolved bubble rising velocity and void fraction were also measured using an electrical void fraction meter. The results showed that the pressure has remarkable effect on the density, bubble size and rise velocity of the gas. Four flow patterns (bubble, cap-bubble, cap-slug, and churn) were also observed instead of Taylor bubble at high pressure. Additionally, the transition process from bubble to cap-bubble was investigated at atmospheric and high pressures, respectively. The results revealed that the flow regime transition criteria for atmospheric pressure do not work at high pressure, hence a new flow regime transition model for annular flow channel geometry was developed to predict the flow regime transition, which thereafter exhibited high accuracy at high pressure condition.
Study on casing treatment and stator matching on multistage fan
NASA Astrophysics Data System (ADS)
Wu, Chuangliang; Yuan, Wei; Deng, Zhe
2017-10-01
Casing treatments are required for expanding the stall margin of multi-stage high-load turbofans designed with high blade-tip Mach numbers and high leakage flow. In the case of a low mass flow, the casing treatment effectively reduces the blockages caused by the leakage flow and enlarges the stall margin. However, in the case of a high mass flow, the casing treatment affects the overall flow capacity of the fan, the thrust when operating at the high speeds usually required by design-point specifications. Herein, we study a two-stage high-load fan with three-dimensional numerical simulations. We use the simulation results to propose a scheme that enlarges the stall margin of multistage high-load fans without sacrificing the flow capacity when operating with a large mass flow. Furthermore, a circumferential groove casing treatment is used and adjustments are made to the upstream stator angle to match the casing treatment. The stall margin is thus increased to 16.3%, with no reduction in the maximum mass flow rate or the design thrust performance.
Internal Flow of Contra-Rotating Small Hydroturbine at Off- Design Flow Rates
NASA Astrophysics Data System (ADS)
SHIGEMITSU, Toru; TAKESHIMA, Yasutoshi; OGAWA, Yuya; FUKUTOMI, Junichiro
2016-11-01
Small hydropower generation is one of important alternative energy, and enormous potential lie in the small hydropower. However, efficiency of small hydroturbines is lower than that of large one. Then, there are demands for small hydroturbines to keep high performance in wide flow rate range. Therefore, we adopted contra-rotating rotors, which can be expected to achieve high performance. In this research, performance of the contra-rotating small hydroturbine with 60mm casing diameter was investigated by an experiment and numerical analysis. Efficiency of the contra-rotating small hydroturbine was high in pico-hydroturbine and high efficiency could be kept in wide flow rate range, however the performance of a rear rotor decreased significantly in partial flow rates. Then, internal flow condition, which was difficult to measure experimentally, was investigated by the numerical flow analysis. Then, a relation between the performance and internal flow condition was considered by the numerical analysis result.
Aeroacoustic Characteristics of Model Jet Test Facility Flow Conditioners
NASA Technical Reports Server (NTRS)
Kinzie, Kevin W.; Henderson, Brenda S.; Haskin, Harry H.
2005-01-01
An experimental investigation of flow conditioning devices used to suppress internal rig noise in high speed, high temperature experimental jet facilities is discussed. The aerodynamic and acoustic characteristics of a number of devices including pressure loss and extraneous noise generation are measured. Both aerodynamic and acoustic characteristics are strongly dependent on the porosity of the flow conditioner and the closure ratio of the duct system. For unchoked flow conditioners, the pressure loss follows conventional incompressible flow models. However, for choked flow conditioners, a compressible flow model where the duct and flow conditioner system is modeled as a convergent-divergent nozzle can be used to estimate pressure loss. Choked flow conditioners generate significantly more noise than unchoked conditioners. In addition, flow conditioners with small hole diameters or sintered metal felt material generate less self-noise noise compared to flow conditioners with larger holes.
Fincke, James R.
2003-09-23
Oil field management systems and methods for managing operation of one or more wells producing a high void fraction multiphase flow. The system includes a differential pressure flow meter which samples pressure readings at various points of interest throughout the system and uses pressure differentials derived from the pressure readings to determine gas and liquid phase mass flow rates of the high void fraction multiphase flow. One or both of the gas and liquid phase mass flow rates are then compared with predetermined criteria. In the event such mass flow rates satisfy the predetermined criteria, a well control system implements a correlating adjustment action respecting the multiphase flow. In this way, various parameters regarding the high void fraction multiphase flow are used as control inputs to the well control system and thus facilitate management of well operations.
Simulation of interior ballistics flows in a shock tube
NASA Astrophysics Data System (ADS)
Seiler, F.
1983-07-01
The flow in front of and behind a projectile was investigated in a interior ballistics shock tube simulator. Flow patterns and heat flow were examined for flows with and without gas leakage. The boundary layers behind the piston can clearly be shown by differential interferograms. The dependence of the heat flow into the measuring tube wall on the base form is smaller than the signal perturbations. Flow patterns show no appreciable effect of gas leakage on the flow behind the piston; strong flow effects arise in front of the piston. The same effects are shown by heat flow measurements. In case of gas leakage heat flows into the tube wall before the piston reaches the wall. In the slit between piston and wall a maximum heat flow is found. High temperature gradients, due to the fact that hot gases come closer to the tube wall than in the boundary layer flow behind the piston, lead to high thermal loading of the wall materials which can cause cracks.
Solid rocket booster internal flow analysis by highly accurate adaptive computational methods
NASA Technical Reports Server (NTRS)
Huang, C. Y.; Tworzydlo, W.; Oden, J. T.; Bass, J. M.; Cullen, C.; Vadaketh, S.
1991-01-01
The primary objective of this project was to develop an adaptive finite element flow solver for simulating internal flows in the solid rocket booster. Described here is a unique flow simulator code for analyzing highly complex flow phenomena in the solid rocket booster. New methodologies and features incorporated into this analysis tool are described.
Braided river flow and invasive vegetation dynamics in the Southern Alps, New Zealand.
Caruso, Brian S; Edmondson, Laura; Pithie, Callum
2013-07-01
In mountain braided rivers, extreme flow variability, floods and high flow pulses are fundamental elements of natural flow regimes and drivers of floodplain processes, understanding of which is essential for management and restoration. This study evaluated flow dynamics and invasive vegetation characteristics and changes in the Ahuriri River, a free-flowing braided, gravel-bed river in the Southern Alps of New Zealand's South Island. Sixty-seven flow metrics based on indicators of hydrologic alteration and environmental flow components (extreme low flows, low flows, high flow pulses, small floods and large floods) were analyzed using a 48-year flow record. Changes in the areal cover of floodplain and invasive vegetation classes and patch characteristics over 20 years (1991-2011) were quantified using five sets of aerial photographs, and the correlation between flow metrics and cover changes were evaluated. The river exhibits considerable hydrologic variability characteristic of mountain braided rivers, with large variation in floods and other flow regime metrics. The flow regime, including flood and high flow pulses, has variable effects on floodplain invasive vegetation, and creates dynamic patch mosaics that demonstrate the concepts of a shifting mosaic steady state and biogeomorphic succession. As much as 25 % of the vegetation cover was removed by the largest flood on record (570 m(3)/s, ~50-year return period), with preferential removal of lupin and less removal of willow. However, most of the vegetation regenerated and spread relatively quickly after floods. Some flow metrics analyzed were highly correlated with vegetation cover, and key metrics included the peak magnitude of the largest flood, flood frequency, and time since the last flood in the interval between photos. These metrics provided a simple multiple regression model of invasive vegetation cover in the aerial photos evaluated. Our analysis of relationships among flow regimes and invasive vegetation cover has implications for braided rivers impacted by hydroelectric power production, where increases in invasive vegetation cover are typically greater than in unimpacted rivers.
Percutaneous Direct Puncture Embolization with N-butyl-cyanoacrylate for High-flow Priapism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tokue, Hiroyuki, E-mail: tokue@s2.dion.ne.jp; Shibuya, Kei; Ueno, Hiroyuki
There are many treatment options in high-flow priapism. Those mentioned most often are watchful waiting, Doppler-guided compression, endovascular highly selective embolization, and surgery. We present a case of high-flow priapism in a 57-year-old man treated by percutaneous direct puncture embolization of a post-traumatic left cavernosal arteriovenous fistula using N-butyl-cyanoacrylate. Erectile function was preserved during a 12-month follow-up. No patients with percutaneous direct puncture embolization for high-flow priapism have been reported previously. Percutaneous direct puncture embolization is a potentially useful and safe method for management of high-flow priapism.
3-D High-Lift Flow-Physics Experiment - Transition Measurements
NASA Technical Reports Server (NTRS)
McGinley, Catherine B.; Jenkins, Luther N.; Watson, Ralph D.; Bertelrud, Arild
2005-01-01
An analysis of the flow state on a trapezoidal wing model from the NASA 3-D High Lift Flow Physics Experiment is presented. The objective of the experiment was to characterize the flow over a non-proprietary semi-span three-element high-lift configuration to aid in assessing the state of the art in the computation of three-dimensional high-lift flows. Surface pressures and hot-film sensors are used to determine the flow conditions on the slat, main, and flap. The locations of the attachments lines and the values of the attachment line Reynolds number are estimated based on the model surface pressures. Data from the hot-films are used to determine if the flow is laminar, transitional, or turbulent by examining the hot-film time histories, statistics, and frequency spectra.
Environmental flows in the context of unconventional natural gas development in the Marcellus Shale
Buchanan, Brian P.; Auerbach, Daniel A.; McManamay, Ryan A.; ...
2017-01-04
Quantitative flow-ecology relationships are needed to evaluate how water withdrawals for unconventional natural gas development may impact aquatic ecosystems. Addressing this need, we studied current patterns of hydrologic alteration in the Marcellus Shale region and related the estimated flow alteration to fish community measures. We then used these empirical flow-ecology relationships to evaluate alternative surface water withdrawals and environmental flow rules. Reduced high-flow magnitude, dampened rates of change, and increased low-flow magnitudes were apparent regionally, but changes in many of the flow metrics likely to be sensitive to withdrawals also showed substantial regional variation. Fish community measures were significantly relatedmore » to flow alteration, including declines in species richness with diminished annual runoff, winter low-flow, and summer median-flow. In addition, the relative abundance of intolerant taxa decreased with reduced winter high-flow and increased flow constancy, while fluvial specialist species decreased with reduced winter and annual flows. Stream size strongly mediated both the impact of withdrawal scenarios and the protection afforded by environmental flow standards. Under the most intense withdrawal scenario, 75% of reference headwaters and creeks (drainage areas <99 km 2) experienced at least 78% reduction in summer flow, whereas little change was predicted for larger rivers. Moreover, the least intense withdrawal scenario still reduced summer flows by at least 21% for 50% of headwaters and creeks. The observed 90th quantile flow-ecology relationships indicate that such alteration could reduce species richness by 23% or more. Seasonally varying environmental flow standards and high fixed minimum flows protected the most streams from hydrologic alteration, but common minimum flow standards left numerous locations vulnerable to substantial flow alteration. This study clarifies how additional water demands in the region may adversely affect freshwater biological integrity. Furthermore, the results make clear that policies to limit or prevent water withdrawals from smaller streams can reduce the risk of ecosystem impairment.« less
Environmental flows in the context of unconventional natural gas development in the Marcellus Shale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buchanan, Brian P.; Auerbach, Daniel A.; McManamay, Ryan A.
Quantitative flow-ecology relationships are needed to evaluate how water withdrawals for unconventional natural gas development may impact aquatic ecosystems. Addressing this need, we studied current patterns of hydrologic alteration in the Marcellus Shale region and related the estimated flow alteration to fish community measures. We then used these empirical flow-ecology relationships to evaluate alternative surface water withdrawals and environmental flow rules. Reduced high-flow magnitude, dampened rates of change, and increased low-flow magnitudes were apparent regionally, but changes in many of the flow metrics likely to be sensitive to withdrawals also showed substantial regional variation. Fish community measures were significantly relatedmore » to flow alteration, including declines in species richness with diminished annual runoff, winter low-flow, and summer median-flow. In addition, the relative abundance of intolerant taxa decreased with reduced winter high-flow and increased flow constancy, while fluvial specialist species decreased with reduced winter and annual flows. Stream size strongly mediated both the impact of withdrawal scenarios and the protection afforded by environmental flow standards. Under the most intense withdrawal scenario, 75% of reference headwaters and creeks (drainage areas <99 km 2) experienced at least 78% reduction in summer flow, whereas little change was predicted for larger rivers. Moreover, the least intense withdrawal scenario still reduced summer flows by at least 21% for 50% of headwaters and creeks. The observed 90th quantile flow-ecology relationships indicate that such alteration could reduce species richness by 23% or more. Seasonally varying environmental flow standards and high fixed minimum flows protected the most streams from hydrologic alteration, but common minimum flow standards left numerous locations vulnerable to substantial flow alteration. This study clarifies how additional water demands in the region may adversely affect freshwater biological integrity. Furthermore, the results make clear that policies to limit or prevent water withdrawals from smaller streams can reduce the risk of ecosystem impairment.« less
Non-axisymmetric flow characteristics in centrifugal compressor
NASA Astrophysics Data System (ADS)
Wang, Leilei; Lao, Dazhong; Liu, Yixiong; Yang, Ce
2015-06-01
The flow field distribution in centrifugal compressor is significantly affected by the non-axisymmetric geometry structure of the volute. The experimental and numerical simulation methods were adopted in this work to study the compressor flow field distribution with different flow conditions. The results show that the pressure distributionin volute is characterized by the circumferential non-uniform phenomenon and the pressure fluctuation on the high static pressure zone propagates reversely to upstream, which results in the non-axisymmetric flow inside the compressor. The non-uniform level of pressure distribution in large flow condition is higher than that in small flow condition, its effect on the upstream flow field is also stronger. Additionally, the non-uniform circumferential pressure distribution in volute brings the non-axisymmetric flow at impeller outlet. In different flow conditions,the circumferential variation of the absolute flow angle at impeller outlet is also different. Meanwhile, the non-axisymmetric flow characteristics in internal impeller can be also reflected by the distribution of the mass flow. The high static pressure region of the volute corresponds to the decrease of mass flow in upstream blade channel, while the low static pressure zone of the volute corresponds to the increase of the mass flow. In small flow condition, the mass flow difference in the blade channel is bigger than that in the large flow condition.
Fundamental Structure of High-Speed Reacting Flows: Supersonic Combustion and Detonation
2016-04-30
AFRL-AFOSR-VA-TR-2016-0195 Fundamental Structure of High-Speed Reacting Flows: Supersonic Combustion and Detonation Kenneth Yu MARYLAND UNIV COLLEGE...MARCH 2016 4. TITLE AND SUBTITLE FUNDAMENTAL STRUCTURE OF HIGH-SPEED REACTING FLOWS: SUPERSONIC COMBUSTION AND DETONATION 5a. CONTRACT NUMBER...public release. Final Report on Fundamental Structure of High-Speed Reacting Flows: Supersonic Combustion and Detonation Grant
An experimental investigation on fluid dynamics of an automotive torque converter
NASA Astrophysics Data System (ADS)
Dong, Yu
The objective of the automotive torque converter fluid dynamics experimental investigation is to understand the flow field inside the torque converter, improve the performance, and increase the fuel economy of vehicles. A high-frequency response five-hole probe was developed for the unsteady flow measurement. The dynamic performance of this probe was examined, and the corresponding data processing technique was also developed. The accuracy of this probe unsteady flow measurement was assessed using a hot-film sensor and a high-frequency response total pressure Pitot probe. The pump passage relative flow field was measured by a rotating five-hole probe system at three chord-wise locations. The rotating probe system is designed and developed for both pump and turbine flow measurement, and it was proved to be accurate and successful. A strong secondary flow is observed to dominate the flow structure at the pump mid-chord. At the pump 3/4 chord, the flow concentration on the pressure side is clearly observed. The secondary flow is found to change direction of rotation between the 3/4 chord and the 4/4 chord. High losses are found in the core-suction corner "wake" flow. The pump exit and turbine exit unsteady flow fields were measured by a high-frequency response five-hole probe in the stationary frame. At the pump exit, the flow is concentrated on the pressure side due to the strong secondary flow in the pump passage. A strong secondary flow is observed. At the turbine exit, a fully developed flow is found caused by the turbulent mixing. The stator exit steady flow was measured by a conventional five-hole probe. A strong secondary flow is found due to the inlet vorticity and axial velocity deficit near the core. The radially inward velocity and the secondary flow produce a large radial transport of mass flow in the stator passage. The stator passage flow is found to be turbulent at the normal operating condition by the measurement using the surface hot-film sensors mounted on the stator blade surface. Based on the experimental data and analysis, recommendations are proposed for the hydraulic design and the fluid dynamics research of the torque converter.
Flow Experience in Design Thinking and Practical Synergies with Lego Serious Play
ERIC Educational Resources Information Center
Primus, Dirk J.; Sonnenburg, Stephan
2018-01-01
The flow experience can be an important precursor to high levels of creativity and innovation. Prior work has identified and conceptualized the key elements of the flow experience in cocreative activities as individual flow corridor, individual flow feeling, and group flow. Surprisingly, the flow experience is underrepresented in theory and…
Purely-elastic flow instabilities and elastic turbulence in microfluidic cross-slot devices
Sousa, P. C.; Pinho, F. T.
2018-01-01
We experimentally investigate the dynamics of viscoelastic fluid flows in cross-slot microgeometries under creeping flow conditions. We focus on the unsteady flow regime observed at high Weissenberg numbers (Wi) with the purpose of understanding the underlying flow signature of elastic turbulence. The effects of the device aspect ratio and fluid rheology on the unsteady flow state are investigated. Visualization of the flow patterns and time-resolved micro-particle image velocimetry were carried out to study the fluid flow behavior for a wide range of Weissenberg numbers. A periodic flow behavior is observed at low Weissenberg numbers followed by a more complex dynamics as Wi increases, eventually leading to the onset of elastic turbulence for very high Weissenberg numbers. PMID:29376533
Forget, Nathalie L; Kim Juniper, S
2013-01-01
We systematically studied free-living bacterial diversity within aggregations of the vestimentiferan tubeworm Ridgeia piscesae sampled from two contrasting flow regimes (High Flow and Low Flow) in the Endeavour Hydrothermal Vents Marine Protected Area (MPA) on the Juan de Fuca Ridge (Northeast Pacific). Eight samples of particulate detritus were recovered from paired tubeworm grabs from four vent sites. Most sequences (454 tag and Sanger methods) were affiliated to the Epsilonproteobacteria, and the sulfur-oxidizing genus Sulfurovum was dominant in all samples. Gammaproteobacteria were also detected, mainly in Low Flow sequence libraries, and were affiliated with known methanotrophs and decomposers. The cooccurrence of sulfur reducers from the Deltaproteobacteria and the Epsilonproteobacteria suggests internal sulfur cycling within these habitats. Other phyla detected included Bacteroidetes, Actinobacteria, Chloroflexi, Firmicutes, Planctomycetes, Verrucomicrobia, and Deinococcus–Thermus. Statistically significant relationships between sequence library composition and habitat type suggest a predictable pattern for High Flow and Low Flow environments. Most sequences significantly more represented in High Flow libraries were related to sulfur and hydrogen oxidizers, while mainly heterotrophic groups were more represented in Low Flow libraries. Differences in temperature, available energy for metabolism, and stability between High Flow and Low Flow habitats potentially explain their distinct bacterial communities. PMID:23401293
High-flow oxygen therapy: pressure analysis in a pediatric airway model.
Urbano, Javier; del Castillo, Jimena; López-Herce, Jesús; Gallardo, José A; Solana, María J; Carrillo, Ángel
2012-05-01
The mechanism of high-flow oxygen therapy and the pressures reached in the airway have not been defined. We hypothesized that the flow would generate a low continuous positive pressure, and that elevated flow rates in this model could produce moderate pressures. The objective of this study was to analyze the pressure generated by a high-flow oxygen therapy system in an experimental model of the pediatric airway. An experimental in vitro study was performed. A high-flow oxygen therapy system was connected to 3 types of interface (nasal cannulae, nasal mask, and oronasal mask) and applied to 2 types of pediatric manikin (infant and neonatal). The pressures generated in the circuit, in the airway, and in the pharynx were measured at different flow rates (5, 10, 15, and 20 L/min). The experiment was conducted with and without a leak (mouth sealed and unsealed). Linear regression analyses were performed for each set of measurements. The pressures generated with the different interfaces were very similar. The maximum pressure recorded was 4 cm H(2)O with a flow of 20 L/min via nasal cannulae or nasal mask. When the mouth of the manikin was held open, the pressures reached in the airway and pharynxes were undetectable. Linear regression analyses showed a similar linear relationship between flow and pressures measured in the pharynx (pressure = -0.375 + 0.138 × flow) and in the airway (pressure = -0.375 + 0.158 × flow) with the closed mouth condition. According to our hypothesis, high-flow oxygen therapy systems produced a low-level CPAP in an experimental pediatric model, even with the use of very high flow rates. Linear regression analyses showed similar linear relationships between flow and pressures measured in the pharynx and in the airway. This finding suggests that, at least in part, the effects may be due to other mechanisms.
The Dynamics of Rapidly Emplaced Terrestrial Lava Flows and Implications for Planetary Volcanism
NASA Technical Reports Server (NTRS)
Baloga, Stephen; Spudis, Paul D.; Guest, John E.
1995-01-01
The Kaupulehu 1800-1801 lava flow of Hualalai volcano and the 1823 Keaiwa flow from the Great Crack of the Kilauea southwest rift zone had certain unusual and possibly unique properties for terrestrial basaltic lava flows. Both flows apparently had very low viscosities, high effusion rates, and uncommonly rapid rates of advance. Ultramafic xenolith nodules in the 1801 flow form stacks of cobbles with lava rinds of only millimeter thicknesses. The velocity of the lava stream in the 1801 flow was extremely high, at least 10 m/s (more than 40 km/h). Observations and geological evidence suggest similarly high velocities for the 1823 flow. The unusual eruption conditions that produced these lava flows suggest a floodlike mode of emplacement unlike that of most other present-day flows. Although considerable effort has gone into understanding the viscous fluid dynamics and thermal processes that often occur in basaltic flows, the unusual conditions prevalent for the Kaupulehu and Keaiwa flows necessitate different modeling considerations. We propose an elementary flood model for this type of lava emplacement and show that it produces consistent agreement with the overall dimensions of the flow, channel sizes, and other supporting field evidence. The reconstructed dynamics of these rapidly emplaced terrestrial lava flows provide significant insights about the nature of these eruptions and their analogs in planetary volcanism.
Experimental Results of Performance Tests on a Four-Port Wave Rotor
NASA Technical Reports Server (NTRS)
Wilson, John; Welch, Gerard E.; Paxson, Daniel E.
2007-01-01
A series of tests has been performed on a four-port wave rotor suitable for use as a topping stage on a gas turbine engine, to measure the overall pressure ratio obtainable as a function of temperature ratio, inlet mass flow, loop flow ratio, and rotor speed. The wave rotor employed an open high pressure loop that is the high pressure inlet flow was not the air exhausted from the high pressure outlet, but was obtained from a separate heated source, although the mass flow rates of the two flows were balanced. This permitted the choice of a range of loop-flow ratios (i.e., ratio of high pressure flow to low pressure flow), as well as the possibility of examining the effect of mass flow imbalance. Imbalance could occur as a result of leakage or deliberate bleeding for cooling air. Measurements of the pressure drop in the high pressure loop were also obtained. A pressure ratio of 1.17 was obtained at a temperature ratio of 2.0, with an inlet mass flow of 0.6 lb/s. Earlier tests had given a pressure ratio of less than 1.12. The improvement was due to improved sealing between the high pressure and low pressure loops, and a modification to the movable end-wall which is provided to allow for rotor expansion.
NASA Astrophysics Data System (ADS)
Kalumba, Mulenga; Nyirenda, Edwin
2017-12-01
The Government of the Republic Zambia (GRZ) will install a new hydropower station Kafue Gorge Lower downstream of the existing Kafue Gorge Station (KGS) and plans to start operating the Itezhi-Tezhi (ITT) hydropower facility in the Kafue Basin. The Basin has significant biodiversity hot spots such as the Luangwa National park and Kafue Flats. It is described as a Man-Biosphere reserve and the National Park is a designated World Heritage Site hosting a variety of wildlife species. All these natural reserves demand special protection, and environmental flow requirements (e-flows) have been identified as a necessary need to preserve these ecosystems. Implementation of e-flows is therefore a priority as Zambia considers to install more hydropower facilities. However before allocation of e-flows, it is necessary to first assess the river flow available for allocation at existing hydropower stations in the Kafue Basin. The river flow availability in the basin was checked by assessing the variability in low and high flows since the timing, frequency and duration of extreme droughts and floods (caused by low and high flows) are all important hydrological characteristics of a flow regime that affects e-flows. The river flows for a 41 year monthly time series data (1973-2014) were used to extract independent low and high flows using the Water Engineering Time Series Processing Tool (WETSPRO). The low and high flows were used to construct cumulative frequency distribution curves that were compared and analysed to show their variation over a long period. A water balance of each hydropower station was used to check the river flow allocation aspect by comparing the calculated water balance outflow (river flow) with the observed river flow, the hydropower and consumptive water rights downstream of each hydropower station. In drought periods about 50-100 m3/s of riverflow is available or discharged at both ITT and KGS stations while as in extreme flood events about 1300-1500 m3/s of riverflow is available. There is river flow available in the wet and dry seasons for e-flow allocation at ITT. On average per month 25 m3/s is allocated for e-flows at ITT for downstream purposes. On the other hand, it may be impossible to implement e-flows at KGS with the limited available outflow (river flow). The available river flow from ITT plays a very vital role in satisfying the current hydropower generating capacity at KGS. Therefore, the operations of KGS heavily depends on the available outflow (river flow) from ITT.
NASA Astrophysics Data System (ADS)
Gurer, M.; Sullivan, S.; Masteller, C.
2016-12-01
Bedload is a regime of sediment transport that occurs when particles roll, hop, or bounce downstream. This mode of transport represents an important portion of the sediment load in a gravel river. Despite numerous studies focused on bedload transport, it still remains difficult to predict accurately due to the complex arrangement of riverbed particles. The formation of gravel clusters, stones being imbricated, or streamlined, and other interlocked arrangements, as well as grains armoring the bed, all tend to stabilize gravel channels and decrease bed mobility. Typically, the development of bed structure usually occurs as sediment moves downstream. However, it is unclear that gravel bed structure can be developed during weaker flows that do not generate significant sediment transport. We examine how individual sediment grains reorient themselves during low flow conditions, in the absence of sediment transport, and during high flow conditions, as bedload transport occurs. We then perform flume experiments where we expose a gravel bed to varying durations of low flow and raise the water level, simulating a flood and transporting sediment. We also compare the long-axis orientations of grains before and after each low flow period and transport. We find that sediment grains reorient themselves differently during low and high flows. During low flow, grains appear to reorient themselves with the long-axes towards cross-stream direction, or perpendicular to the flow, with longer duration flows resulting in more pronounced cross-stream orientation. During high flow, grains orient themselves with their long-axes facing downstream or parallel to the flow, similar to imbricated grains observed in the sedimentary record. Further, when transport occurs, we find that median grain orientation is strongly correlated with bedload transport rates (R^2 = 0.98). We also observe that median grain orientations more perpendicular to downstream flow result in reduced transport rates. This new result suggests that the low flow reorientation of grains perpendicular to downstream flow drives observed differences in bedload transport during high flows. We conclude that low flow periods are important for the creation of bed structure and the stabilization of gravel river channels.
Kubicka, Zuzanna J; Limauro, Joseph; Darnall, Robert A
2008-01-01
The goal was to estimate the level of delivered continuous positive airway pressure by measuring oral cavity pressure with the mouth closed in infants of various weights and ages treated with heated, humidified high-flow nasal cannula at flow rates of 1-5 L/minute. We hypothesized that clinically relevant levels of continuous positive airway pressure would not be achieved if a nasal leak is maintained. After performing bench measurements and demonstrating that oral cavity pressure closely approximated levels of traditionally applied nasal continuous positive airway pressure, we successfully measured oral cavity pressure during heated, humidified, high-flow nasal cannula treatment in 27 infants. Small (outer diameter: 0.2 cm) cannulae were used for all infants, and flow rates were left as ordered by providers. Bench measurements showed that, for any given leak size, there was a nearly linear relationship between flow rate and pressure. The highest pressure achieved was 4.5 cmH2O (flow rate: 8 L/minute; leak: 3 mm). In our study infants (postmenstrual age: 29.1-44.7 weeks; weight: 835-3735 g; flow rate: 1-5 L/minute), no pressure was generated with the mouth open at any flow rate. With the mouth closed, the oral cavity pressure was related to both flow rate and weight. For infants of < or = 1500 g, there was a linear relationship between flow rate and oral cavity pressure. Oral cavity pressure can estimate the level of continuous positive airway pressure. Continuous positive airway pressure generated with heated, humidified, high-flow nasal cannula treatment depends on the flow rate and weight. Only in the smallest infants with the highest flow rates, with the mouth fully closed, can clinically significant but unpredictable levels of continuous positive airway pressure be achieved. We conclude that heated, humidified high-flow nasal cannula should not be used as a replacement for delivering continuous positive airway pressure.
Dynamic PIV measurement of a compressible flow issuing from an airbag inflator nozzle
NASA Astrophysics Data System (ADS)
Lee, Sang Joon; Jang, Young Gil; Kim, Seok; Kim, Chang Soo
2006-12-01
Among many equipment for passenger safety, the air bag system is the most fundamental and effective device for an automobile. The inflator housing is a main part of the curtain-type air bag system, which supplies high-pressure gases in pumping up the air bag-curtain which is increasingly being adapted in deluxe cars for protecting passengers from the danger of side clash. However, flow information on the inflator housing is very limited. In this study, we measure the instantaneous velocity fields of a high-speed compressible flow issuing from the exit nozzle of an inflator housing using a dynamic PIV system. From the velocity field data measured at a high frame-rate, we evaluate the variation of the mass flow rate with time. The dynamic PIV system consists of a high-repetition Nd:YLF laser, a high-speed CMOS camera, and a delay generator. The flow images are taken at 4000 fps with synchronization of the trigger signal for inflator ignition. From the instantaneous velocity field data of flow ejecting from the airbag inflator housing at the initial stage, we can see a flow pattern of broken shock wave front and its downward propagation. The flow ejecting from the inflator housing is found to have very high velocity fluctuations, with the maximum velocity at about 700 m/s. The time duration of the high-speed flow is very short, and there is no perceptible flow after 100 ms.
Ischemia-reperfusion injury in the isolated rat lung. Role of flow and endogenous leukocytes.
Seibert, A F; Haynes, J; Taylor, A
1993-02-01
Microvascular lung injury caused by ischemia-reperfusion (IR) may occur via leukocyte-dependent and leukocyte-independent pathways. Leukocyte-endothelial adhesion may be a rate-limiting step in IR lung injury. Leukocyte adhesion to microvascular endothelium occurs when the attractant forces between leukocyte and endothelium are greater than the kinetic energy of the leukocyte and the vascular wall shear rate. We hypothesized (1) that isolated, buffer-perfused rat lungs are not free of endogenous leukocytes, (2) that endogenous leukocytes contribute to IR-induced microvascular injury as measured by the capillary filtration coefficient (Kfc), and (3) that a reduction of perfusate flow rate would potentiate leukocyte-dependent IR injury. Sixty lungs were divided into four groups: (1) low-flow controls, (2) high-flow controls, (3) low-flow IR, and (4) high-flow IR. Microvascular injury was linearly related to baseline perfusate leukocyte concentrations at both low (r = 0.78) and high (r = 0.82) flow rates. Kfc in the high-flow IR group (0.58 +/- 0.03 ml/min/cm H2O/100 g) was less (p < 0.05) than Kfc in the low-flow IR group (0.82 +/- 0.07), and in both groups Kfc values were significantly greater than low-flow (0.34 +/- 0.03) and high-flow (0.31 +/- 0.01) control Kfc values after 75 min. Retention of leukocytes in the lung, evaluated by a tissue myeloperoxidase assay, was greatest in the low-flow IR group. We conclude (1) that isolated, buffer-perfused rat lungs contain significant quantities of leukocytes and that these leukocytes contribute to IR lung injury, and (2) that IR-induced microvascular injury is potentiated by low flow.
High-Flow Jet Exit Rig Designed and Fabricated
NASA Technical Reports Server (NTRS)
Buehrle, Robert J.; Trimarchi, Paul A.
2003-01-01
The High-Flow Jet Exit Rig at the NASA Glenn Research Center is designed to test single flow jet nozzles and to measure the appropriate thrust and noise levels. The rig has been designed for the maximum hot condition of 16 lbm/sec of combustion air at 1960 R (maximum) and to produce a maximum thrust of 2000 lb. It was designed for cold flow of 29.1 lbm/sec of air at 530 R. In addition, it can test dual-flow nozzles (nozzles with bypass flow in addition to core flow) with independent control of each flow. The High- Flow Jet Exit Rig was successfully fabricated in late 2001 and is being readied for checkout tests. The rig will be installed in Glenn's Aeroacoustic Propulsion Laboratory. The High-Flow Jet Exit Rig consists of the following major components: a single component force balance, the natural-gas-fueled J-79 combustor assembly, the plenum and manifold assembly, an acoustic/instrumentation/seeding (A/I/S) section, a table, and the research nozzles. The rig will be unique in that it is designed to operate uncooled. The structure survives the 1960 R test condition because it uses carefully selected high temperature alloy materials such as Hastelloy-X. The lower plenum assembly was designed to operate at pressures to 450 psig at 1960 R, in accordance with the ASME B31.3 piping code. The natural gas-fueled combustor fires directly into the lower manifold. The hot air is directed through eight 1-1/2-in. supply pipes that supply the upper plenum. The flow is conditioned in the upper plenum prior to flowing to the research nozzle. The 1-1/2-in. supply lines are arranged in a U-shaped design to provide for a flexible piping system. The combustor assembly checkout was successfully conducted in Glenn's Engine Component Research Laboratory in the spring of 2001. The combustor is a low-smoke version of the J79 combustor used to power the F4 Phantom military aircraft. The natural gas-fueled combustor demonstrated high-efficiency combustion over a wide range of operating conditions. This wide operating envelope is required to support the testing of both single- and dual-flow nozzles. Key research goals include providing simultaneous, highly accurate acoustic, flow, and thrust measurements on jet nozzle models in realistic flight conditions, as well as providing scaleable acoustic results. The High-Flow Jet Exit Rig is a second-generation high-flow test rig. Improvements include cleaner flow with reduced levels of particulate, soot, and odor. Choked-flow metering is required with plus or minus 0.25-percent accuracy. Thrust measurements from 0 to 2000 lbf are required with plus or minus 0.25-percent accuracy. Improved acoustics will be achieved by minimizing noise through large pipe bend radii, lower internal flow velocities, and microdrilled choke plates with thousands of 0.040-in.- diameter holes.
Cas, Ray A.F.; Wright, Heather M.; Folkes, Christopher B.; Lesti, Chiara; Porreca, Massimiliano; Giordano, Guido; Viramonte, Jose G.
2011-01-01
The 2.08-Ma Cerro Galán Ignimbrite (CGI) represents a >630-km3 dense rock equivalent (VEI 8) eruption from the long-lived Cerro Galán magma system (∼6 Ma). It is a crystal-rich (35–60%), pumice (<10% generally) and lithic-poor (<5% generally) rhyodacitic ignimbrite, lacking a preceding plinian fallout deposit. The CGI is preserved up to 80 km from the structural margins of the caldera, but almost certainly was deposited up to 100 km from the caldera in some places. Only one emplacement unit is preserved in proximal to medial settings and in most distal settings, suggesting constant flow conditions, but where the pyroclastic flow moved into a palaeotopography of substantial valleys and ridges, it interacted with valley walls, resulting in flow instabilities that generated multiple depositional units, often separated by pyroclastic surge deposits. The CGI preserves a widespread sub-horizontal fabric, defined by aligned elongate pumice and lithic clasts, and minerals (e.g. biotite). A sub-horizontal anisotropy of magnetic susceptibility fabric is defined by minute magnetic minerals in all localities where it has been analysed. The CGI is poor in both vent-derived (‘accessory’) lithics and locally derived lithics from the ground surface (‘accidental’) lithics. Locally derived lithics are small (<20 cm) and were not transported far from source points. All data suggest that the pyroclastic flow system producing the CGI was characterised throughout by high sedimentation rates, resulting from high particle concentration and suppressed turbulence at the depositional boundary layer, despite being a low aspect ratio ignimbrite. Based on these features, we question whether high velocity and momentum are necessary to account for extensive flow mobility. It is proposed that the CGI was deposited by a pyroclastic flow system that developed a substantial, high particle concentration granular under-flow, which flowed with suppressed turbulence. High particle concentration and fine-ash content hindered gas loss and maintained flow mobility. In order to explain the contemporaneous maintenance of high particle concentration, high sedimentation rate at the depositional boundary layer and a high level of mobility, it is also proposed that the flow(s) was continuously supplied at a high mass feeding rate. It is also proposed that internal gas pressure within the flow, directed downwards onto the substrate over which the flow was passing, reduced the friction between the flow and the substrate and also enhanced its mobility. The pervasive sub-horizontal fabric of aligned pumice, lithic and even biotite crystals indicates a consistent horizontal shear force existed during transport and deposition in the basal granular flow, consistent with the existence of a laminar, shearing, granular flow regime during the final stages of transport and deposition.
Active combustion flow modulation valve
Hensel, John Peter; Black, Nathaniel; Thorton, Jimmy Dean; Vipperman, Jeffrey Stuart; Lambeth, David N; Clark, William W
2013-09-24
A flow modulation valve has a slidably translating hollow armature with at least one energizable coil wound around and fixably attached to the hollow armature. The energizable coil or coils are influenced by at least one permanent magnet surrounding the hollow armature and supported by an outer casing. Lorentz forces on the energizable coils which are translated to the hollow armature, increase or decrease the flow area to provide flow throttling action. The extent of hollow armature translation depends on the value of current supplied and the direction of translation depends on the direction of current flow. The compact nature of the flow modulation valve combined with the high forces afforded by the actuator design provide a flow modulation valve which is highly responsive to high-rate input control signals.
Morton, D.M.; Alvarez, R.M.; Ruppert, K.R.; Goforth, B.
2008-01-01
Debris flows are widespread and common in many steeply sloping areas of southern California. The San Bernardino Mountains community of Forest Falls is probably subject to the most frequently documented debris flows in southern California. Debris flows at Forest Falls are generated during short-duration high-intensity rains that mobilize surface material. Except for debris flows on two consecutive days in November 1965, all the documented historic debris flows have occurred during high-intensity summer rainfall, locally referred to as 'monsoon' or 'cloudburst' rains. Velocities of the moving debris range from about 5??km/h to about 90??km/h. Velocity of a moving flow appears to be essentially a function of the water content of the flow. Low velocity debris flows are characterized by steep snouts that, when stopped, have only small amounts of water draining from the flow. In marked contrast are high-velocity debris flows whose deposits more resemble fluvial deposits. In the Forest Falls area two adjacent drainage basins, Snow Creek and Rattlesnake Creek, have considerably different histories of debris flows. Snow Creek basin, with an area about three times as large as Rattlesnake Creek basin, has a well developed debris flow channel with broad levees. Most of the debris flows in Snow Creek have greater water content and attain higher velocities than those of Rattlesnake Creek. Most debris flows are in relative equilibrium with the geometry of the channel morphology. Exceptionally high-velocity flows, however, overshoot the channel walls at particularly tight channel curves. After overshooting the channel, the flows degrade the adjacent levee surface and remove trees and structures in the immediate path, before spreading out with decreasing velocity. As the velocity decreases the clasts in the debris flows pulverize the up-slope side of the trees and often imbed clasts in them. Debris flows in Rattlesnake Creek are relatively slow moving and commonly stop in the channel. After the channel is blocked, subsequent debris flows cut a new channel upstream from the blockage that results in the deposition of new debris-flow deposits on the lower part of the fan. Shifting the location of debris flows on the Rattlesnake Creek fan tends to prevent trees from becoming mature. Dense growths of conifer seedlings sprout in the spring on the late summer debris flow deposits. This repeated process results in stands of even-aged trees whose age records the age of the debris flows. ?? 2007.
Sinuous Flow in Cutting of Metals
NASA Astrophysics Data System (ADS)
Yeung, Ho; Viswanathan, Koushik; Udupa, Anirudh; Mahato, Anirban; Chandrasekar, Srinivasan
2017-11-01
Using in situ high-speed imaging, we unveil details of a highly unsteady plastic flow mode in the cutting of annealed and highly strain-hardening metals. This mesoscopic flow mode, termed sinuous flow, is characterized by repeated material folding, large rotation, and energy dissipation. Sinuous flow effects a very large shape transformation, with local strains of ten or more, and results in a characteristic mushroomlike surface morphology that is quite distinct from the well-known morphologies of metal-cutting chips. Importantly, the attributes of this unsteady flow are also fundamentally different from other well-established unsteady plastic flows in large-strain deformation, like adiabatic shear bands. The nucleation and development of sinuous flow, its dependence on material properties, and its manifestation across material systems are demonstrated. Plastic buckling and grain-scale heterogeneity are found to play key roles in triggering this flow at surfaces. Implications for modeling and understanding flow stability in large-strain plastic deformation, surface quality, and preparation of near-strain-free surfaces by cutting are discussed. The results point to the inadequacy of the widely used shear-zone models, even for ductile metals.
Turboprop engine and method of operating the same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klees, G.W.; Johnson, P.E.
1986-02-11
This patent describes a turboprop engine consisting of: 1.) A compressor; 2.) A turbine; 3.) A combustion section; 4.) A variable pitch propeller; 5.) A speed reducing transmission; 6.) An air inlet; 7.) An air inlet bypass; 8.) An air outlet bypass duct; 9.) A flow control operatively positioned to receive air flow from the air inlet bypass and air flow from the low pressure compressor component. To direct the air flow to the air outlet bypass duct, and the air flow to the high pressure compressor component, the flow control has a first position where the air flow ismore » from. The high and low pressure compressor components and is directed to the air outlet bypass duct. The flow control has a second position for the air flow from the air inlet bypass duct to the air outlet bypass duct and air from the low pressure compressor component is directed to the high pressure compressor component. A method of operating a turboprop engine.« less
Flow in cerebral aneurysms: 4D Flow MRI measurements and CFD models
NASA Astrophysics Data System (ADS)
Rayz, Vitaliy; Schnell, Susanne
2017-11-01
4D Flow MRI is capable of measuring blood flow in vivo, providing time-resolved velocity fields in 3D. The dynamic range of the 4D Flow MRI is determined by a velocity sensitivity parameter (venc), set above the expected maximum velocity, which can result in noisy data for slow flow regions. A dual-venc 4D flow MRI technique, where both low- and high-venc data are acquired, can improve velocity-to-noise ratio and, therefore, quantification of clinically-relevant hemodynamic metrics. In this study, patient-specific CFD simulations were used to evaluate the advantages of the dual-venc approach for assessment of the flow in cerebral aneurysms. The flow in 2 cerebral aneurysms was measured in vivo with dual-venc 4D Flow MRI and simulated with CFD, using the MRI data to prescribe flow boundary conditions. The flow fields obtained with computations were compared to those measured with a single- and dual-venc 4D Flow MRI. The numerical models resolved small flow structures near the aneurysmal wall, that were not detected with a single-venc acquisition. Comparison of the numerical and imaging results shows that the dual-venc approach can improve the accuracy of the 4D Flow MRI measurements in regions characterized by high-velocity jets and slow recirculating flows.
NASA Astrophysics Data System (ADS)
Kim, Jinyong; Luo, Gang; Wang, Chao-Yang
2017-10-01
3D fine-mesh flow-fields recently developed by Toyota Mirai improved water management and mass transport in proton exchange membrane (PEM) fuel cell stacks, suggesting their potential value for robust and high-power PEM fuel cell stack performance. In such complex flow-fields, Forchheimer's inertial effect is dominant at high current density. In this work, a two-phase flow model of 3D complex flow-fields of PEMFCs is developed by accounting for Forchheimer's inertial effect, for the first time, to elucidate the underlying mechanism of liquid water behavior and mass transport inside 3D complex flow-fields and their adjacent gas diffusion layers (GDL). It is found that Forchheimer's inertial effect enhances liquid water removal from flow-fields and adds additional flow resistance around baffles, which improves interfacial liquid water and mass transport. As a result, substantial improvements in high current density cell performance and operational stability are expected in PEMFCs with 3D complex flow-fields, compared to PEMFCs with conventional flow-fields. Higher current density operation required to further reduce PEMFC stack cost per kW in the future will necessitate optimizing complex flow-field designs using the present model, in order to efficiently remove a large amount of product water and hence minimize the mass transport voltage loss.
Pulsating electrolyte flow in a full vanadium redox battery
NASA Astrophysics Data System (ADS)
Ling, C. Y.; Cao, H.; Chng, M. L.; Han, M.; Birgersson, E.
2015-10-01
Proper management of electrolyte flow in a vanadium redox battery (VRB) is crucial to achieve high overall system efficiency. On one hand, constant flow reduces concentration polarization and by extension, energy efficiency; on the other hand, it results in higher auxiliary pumping costs, which can consume around 10% of the discharge power. This work seeks to reduce the pumping cost by adopting a novel pulsing electrolyte flow strategy while retaining high energy efficiency. The results indicate that adopting a short flow period, followed by a long flow termination period, results in high energy efficiencies of 80.5% with a pumping cost reduction of over 50%.
Williams-Sether, Tara; Gross, Tara A.
2016-02-09
Seasonal mean daily flow data from 119 U.S. Geological Survey streamflow-gaging stations in North Dakota; the surrounding states of Montana, Minnesota, and South Dakota; and the Canadian provinces of Manitoba and Saskatchewan with 10 or more years of unregulated flow record were used to develop regression equations for flow duration, n-day high flow and n-day low flow using ordinary least-squares and Tobit regression techniques. Regression equations were developed for seasonal flow durations at the 10th, 25th, 50th, 75th, and 90th percent exceedances; the 1-, 7-, and 30-day seasonal mean high flows for the 10-, 25-, and 50-year recurrence intervals; and the 1-, 7-, and 30-day seasonal mean low flows for the 2-, 5-, and 10-year recurrence intervals. Basin and climatic characteristics determined to be significant explanatory variables in one or more regression equations included drainage area, percentage of basin drainage area that drains to isolated lakes and ponds, ruggedness number, stream length, basin compactness ratio, minimum basin elevation, precipitation, slope ratio, stream slope, and soil permeability. The adjusted coefficient of determination for the n-day high-flow regression equations ranged from 55.87 to 94.53 percent. The Chi2 values for the duration regression equations ranged from 13.49 to 117.94, whereas the Chi2 values for the n-day low-flow regression equations ranged from 4.20 to 49.68.
Can, Fulva Kamit; Anil, Ayse Berna; Anil, Murat; Zengin, Neslihan; Bal, Alkan; Bicilioglu, Yuksel; Gokalp, Gamze; Durak, Fatih; Ince, Gulberat
2017-10-15
To analyze the change in quality indicators due to the use of high-flow nasal cannula therapy as a non-invasive ventilation method in children with respiratory distress/failure in a non-invasive ventilation device-free pediatric intensive care unit. Retrospective chart review of children with respiratory distress/failure admitted 1 year before (period before high-flow nasal cannula therapy) and 1 year after (period after high-flow nasal cannula therapy) the introduction of high-flow nasal cannula therapy. We compared quality indicators as rate of mechanical ventilation, total duration of mechanical ventilation, rate of re-intubation, pediatric intensive care unit length of stay, and mortality rate between these periods. Between November 2012 and November 2014, 272 patients: 141 before and 131 after high-flow nasal cannula therapy were reviewed (median age was 20.5 mo). Of the patients in the severe respiratory distress/failure subgroup, the rate of intubation was significantly lower in period after than in period before high-flow nasal cannula therapy group (58.1% vs. 76.1%; P <0.05). The median pediatric intensive care unit length of stay was significantly shorter in patients who did not require mechanical ventilation in the period after than in the period before high-flow nasal cannula therapy group (3d vs. 4d; P<0,05). Implementation of high-flow nasal cannula therapy in pediatric intensive care unit significantly improves the quality of therapy and its outcomes.
High-speed Particle Image Velocimetry Near Surfaces
Lu, Louise; Sick, Volker
2013-01-01
Multi-dimensional and transient flows play a key role in many areas of science, engineering, and health sciences but are often not well understood. The complex nature of these flows may be studied using particle image velocimetry (PIV), a laser-based imaging technique for optically accessible flows. Though many forms of PIV exist that extend the technique beyond the original planar two-component velocity measurement capabilities, the basic PIV system consists of a light source (laser), a camera, tracer particles, and analysis algorithms. The imaging and recording parameters, the light source, and the algorithms are adjusted to optimize the recording for the flow of interest and obtain valid velocity data. Common PIV investigations measure two-component velocities in a plane at a few frames per second. However, recent developments in instrumentation have facilitated high-frame rate (> 1 kHz) measurements capable of resolving transient flows with high temporal resolution. Therefore, high-frame rate measurements have enabled investigations on the evolution of the structure and dynamics of highly transient flows. These investigations play a critical role in understanding the fundamental physics of complex flows. A detailed description for performing high-resolution, high-speed planar PIV to study a transient flow near the surface of a flat plate is presented here. Details for adjusting the parameter constraints such as image and recording properties, the laser sheet properties, and processing algorithms to adapt PIV for any flow of interest are included. PMID:23851899
Cool-down flow-rate limits imposed by thermal stresses in LNG pipelines
NASA Astrophysics Data System (ADS)
Novak, J. K.; Edeskuty, F. J.; Bartlit, J. R.
Warm cryogenic pipelines are usually cooled to operating temperature by a small, steady flow of the liquid cryogen. If this flow rate is too high or too low, undesirable stresses will be produced. Low flow-rate limits based on avoidance of stratified two-phase flow were calculated for pipelines cooled with liquid hydrogen or nitrogen. High flow-rate limits for stainless steel and aluminum pipelines cooled by liquid hydrogen or nitrogen were determined by calculating thermal stress in thick components vs flow rate and then selecting some reasonable stress limits. The present work extends these calculations to pipelines made of AISI 304 stainless steel, 6061 aluminum, or ASTM A420 9% nickel steel cooled by liquid methane or a typical natural gas. Results indicate that aluminum and 9% nickel steel components can tolerate very high cool-down flow rates, based on not exceeding the material yield strength.
NASA Astrophysics Data System (ADS)
Jaatinen, Ahti; Grönman, Aki; Turunen-Saaresti, Teemu; Backman, Jari
2011-06-01
Three vaned diffusers, designed to have high negative incidence (-8°) at the design operating point, are studied experimentally. The overall performance (efficiency and pressure ratio) are measured at three rotational speeds, and flow angles before and after the diffuser are measured at the design rotational speed and with three mass flow rates. The results are compared to corresponding results of the original vaneless diffuser design. Attention is paid to the performance at lower mass flows than the design mass flow. The results show that it is possible to improve the performance at mass flows lower than the design mass flow with a vaned diffuser designed with high negative incidence. However, with the vaned diffusers, the compressor still stalls at higher mass flow rates than with the vaneless one. The flow angle distributions after the diffuser are more uniform with the vaned diffusers.
Two-stage preconcentrator for vapor/particle detection
Linker, Kevin L.; Brusseau, Charles A.
2002-01-01
A device for concentrating particles from a high volume gas stream and delivering the particles for detection in a low volume gas stream includes first and second preconcentrators. The first preconcentrator has a first structure for retaining particles in a first gas flow path through which a first gas flows at a relatively high volume, valves for selectively stopping the first gas flow; and a second gas flow path through which gas flows at an intermediate flow volume for moving particles from the first structure. The second preconcentrator includes a second structure for retaining particles in the second gas flow path; a valve for selectively stopping the second gas flow; and a third gas flow path through which gas flows at a low volume for moving particles from the second structure to a detector. Each of the particle retaining structures is preferably a metal screen that may be resistively heated by application of an electric potential to release the particles.
Antecedent flow conditions and nitrate concentrations in the Mississippi River basin
Murphy, Jennifer C.; Hirsch, Robert M.; Sprague, Lori A.
2014-01-01
The relationship between antecedent flow conditions and nitrate concentrations was explored at eight sites in the 2.9 million square kilometers (km2) Mississippi River basin, USA. Antecedent flow conditions were quantified as the ratio between the mean daily flow of the previous year and the mean daily flow from the period of record (Qratio), and the Qratio was statistically related to nitrate anomalies (the unexplained variability in nitrate concentration after filtering out season, long-term trend, and contemporaneous flow effects) at each site. Nitrate anomaly and Qratio were negatively related at three of the four major tributary sites and upstream in the Mississippi River, indicating that when mean daily streamflow during the previous year was lower than average, nitrate concentrations were higher than expected. The strength of these relationships increased when data were subdivided by contemporaneous flow conditions. Five of the eight sites had significant negative relationships (p ≤ 0.05) at high or moderately high contemporaneous flows, suggesting nitrate that accumulates in these basins during a drought is flushed during subsequent high flows. At half of the sites, when mean daily flow during the previous year was 50 percent lower than average, nitrate concentration can be from 9 to 27 percent higher than nitrate concentrations that follow a year with average mean daily flow. Conversely, nitrate concentration can be from 8 to 21 percent lower than expected when flow during the previous year was 50 percent higher than average. Previously documented for small, relatively homogenous basins, our results suggest that relationships between antecedent flows and nitrate concentrations are also observable at a regional scale. Relationships were not observed (using all contemporaneous flow data together) for basins larger than 1 million km2, suggesting that above this limit the overall size and diversity within these basins may necessitate the use of more complicated statistical approaches or that there may be no discernible basin-wide relationship with antecedent flow. The relationships between nitrate concentration and Qratio identified in this study serve as the basis for future studies that can better define specific hydrologic processes occurring during and after a drought (or high flow period) which influence nitrate concentration, such as the duration or magnitude of low flows, and the timing of low and high flows.
NASA Astrophysics Data System (ADS)
Hardie, Marcus; Lisson, Shaun; Doyle, Richard; Cotching, William
2013-01-01
Preferential flow in agricultural soils has been demonstrated to result in agrochemical mobilisation to shallow ground water. Land managers and environmental regulators need simple cost effective techniques for identifying soil - land use combinations in which preferential flow occurs. Existing techniques for identifying preferential flow have a range of limitations including; often being destructive, non in situ, small sampling volumes, or are subject to artificial boundary conditions. This study demonstrated that high frequency soil moisture monitoring using a multi-sensory capacitance probe mounted within a vertically rammed access tube, was able to determine the occurrence, depth, and wetting front velocity of preferential flow events following rainfall. Occurrence of preferential flow was not related to either rainfall intensity or rainfall amount, rather preferential flow occurred when antecedent soil moisture content was below 226 mm soil moisture storage (0-70 cm). Results indicate that high temporal frequency soil moisture monitoring may be used to identify soil type - land use combinations in which the presence of preferential flow increases the risk of shallow groundwater contamination by rapid transport of agrochemicals through the soil profile. However use of high frequency based soil moisture monitoring to determine agrochemical mobilisation risk may be limited by, inability to determine the volume of preferential flow, difficulty observing macropore flow at high antecedent soil moisture content, and creation of artificial voids during installation of access tubes in stony soils.
A case of atherosclerotic inferior mesenteric artery aneurysm secondary to high flow state.
Troisi, Nicola; Esposito, Giovanni; Cefalì, Pietro; Setti, Marco
2011-07-01
Inferior mesenteric artery aneurysms are very rare and they are among the rarest of visceral artery aneurysms. Sometimes, the distribution of the blood flow due to chronic atherosclerotic occlusion of some arteries can establish an increased flow into a particular supplying district (high flow state). A high flow state in a stenotic inferior mesenteric artery in compensation for a mesenteric occlusive disease can produce a rare form of aneurysm. We report the case of an atherosclerotic inferior mesenteric aneurysm secondary to high flow state (association with occlusion of the celiac trunk and severe stenosis of the superior mesenteric artery), treated by open surgical approach. Copyright © 2011 Society for Vascular Surgery. Published by Mosby, Inc. All rights reserved.
Wiley, Jeffrey B.; Curran, Janet H.
2003-01-01
Methods for estimating daily mean flow-duration statistics for seven regions in Alaska and low-flow frequencies for one region, southeastern Alaska, were developed from daily mean discharges for streamflow-gaging stations in Alaska and conterminous basins in Canada. The 15-, 10-, 9-, 8-, 7-, 6-, 5-, 4-, 3-, 2-, and 1-percent duration flows were computed for the October-through-September water year for 222 stations in Alaska and conterminous basins in Canada. The 98-, 95-, 90-, 85-, 80-, 70-, 60-, and 50-percent duration flows were computed for the individual months of July, August, and September for 226 stations in Alaska and conterminous basins in Canada. The 98-, 95-, 90-, 85-, 80-, 70-, 60-, and 50-percent duration flows were computed for the season July-through-September for 65 stations in southeastern Alaska. The 7-day, 10-year and 7-day, 2-year low-flow frequencies for the season July-through-September were computed for 65 stations for most of southeastern Alaska. Low-flow analyses were limited to particular months or seasons in order to omit winter low flows, when ice effects reduce the quality of the records and validity of statistical assumptions. Regression equations for estimating the selected high-flow and low-flow statistics for the selected months and seasons for ungaged sites were developed from an ordinary-least-squares regression model using basin characteristics as independent variables. Drainage area and precipitation were significant explanatory variables for high flows, and drainage area, precipitation, mean basin elevation, and area of glaciers were significant explanatory variables for low flows. The estimating equations can be used at ungaged sites in Alaska and conterminous basins in Canada where streamflow regulation, streamflow diversion, urbanization, and natural damming and releasing of water do not affect the streamflow data for the given month or season. Standard errors of estimate ranged from 15 to 56 percent for high-duration flow statistics, 25 to greater than 500 percent for monthly low-duration flow statistics, 32 to 66 percent for seasonal low-duration flow statistics, and 53 to 64 percent for low-flow frequency statistics.
Stankovich, Joseph J; Gritti, Fabrice; Stevenson, Paul G; Beaver, Lois A; Guiochon, Georges
2014-01-17
Five methods for controlling the mobile phase flow rate for gradient elution analyses using very high pressure liquid chromatography (VHPLC) were tested to determine thermal stability of the column during rapid gradient separations. To obtain rapid separations, instruments are operated at high flow rates and high inlet pressure leading to uneven thermal effects across columns and additional time needed to restore thermal equilibrium between successive analyses. The purpose of this study is to investigate means to minimize thermal instability and obtain reliable results by measuring the reproducibility of the results of six replicate gradient separations of a nine component RPLC standard mixture under various experimental conditions with no post-run times. Gradient separations under different conditions were performed: constant flow rates, two sets of constant pressure operation, programmed flow constant pressure operation, and conditions which theoretically should yield a constant net heat loss at the column's wall. The results show that using constant flow rates, programmed flow constant pressures, and constant heat loss at the column's wall all provide reproducible separations. However, performing separations using a high constant pressure with programmed flow reduces the analysis time by 16% compared to constant flow rate methods. For the constant flow rate, programmed flow constant pressure, and constant wall heat experiments no equilibration time (post-run time) was required to obtain highly reproducible data. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhou, Xi-Guo; Jin, Ning-De; Wang, Zhen-Ya; Zhang, Wen-Yin
2009-11-01
The dynamic image information of typical gas-liquid two-phase flow patterns in vertical upward pipe is captured by a highspeed dynamic camera. The texture spectrum descriptor is used to describe the texture characteristics of the processed images whose content is represented in the form of texture spectrum histogram, and four time-varying characteristic parameter indexes which represent image texture structure of different flow patterns are extracted. The study results show that the amplitude fluctuation of texture characteristic parameter indexes of bubble flow is lowest and shows very random complex dynamic behavior; the amplitude fluctuation of slug flow is higher and shows intermittent motion behavior between gas slug and liquid slug, and the amplitude fluctuation of churn flow is the highest and shows better periodicity; the amplitude fluctuation of bubble-slug flow is from low to high and oscillating frequence is higher than that of slug flow, and includes the features of both slug flow and bubble flow; the slug-churn flow loses the periodicity of slug flow and churn flow, and the amplitude fluctuation is high. The results indicate that the image texture characteristic parameter indexes of different flow pattern can reflect the flow characteristics of gas-liquid two-phase flow, which provides a new approach to understand the temporal and spatial evolution of flow pattern dynamics.
An electrohydrodynamic flow in ac electrowetting.
Lee, Horim; Yun, Sungchan; Ko, Sung Hee; Kang, Kwan Hyoung
2009-12-17
In ac electrowetting, hydrodynamic flows occur within a droplet. Two distinct flow patterns were observed, depending on the frequency of the applied electrical signal. The flow at low-frequency range was explained in terms of shape oscillation and a steady streaming process in conjunction with contact line oscillation. The origin of the flow at high-frequency range has not yet been explained. We suggest that the high-frequency flow originated mainly from the electrothermal effect, in which electrical charge is generated due to the gradient of electrical conductivity and permittivity, which is induced by the Joule heating of fluid medium. To support our argument, we analyzed the flow field numerically while considering the electrical body force generated by the electrothermal effect. We visualized the flow pattern and measured the flow velocity inside the droplet. The numerical results show qualitative agreement with experimental results with respect to electric field and frequency dependence of flow velocity. The effects of induced-charge electro-osmosis, natural convection, and the Marangoni flow are discussed.
Exceptional mobility of an advancing rhyolitic obsidian flow at Cordón Caulle volcano in Chile.
Tuffen, Hugh; James, Mike R; Castro, Jonathan M; Schipper, C Ian
2013-01-01
The emplacement mechanisms of rhyolitic lava flows are enigmatic and, despite high lava viscosities and low inferred effusion rates, can result in remarkably, laterally extensive (>30 km) flow fields. Here we present the first observations of an active, extensive rhyolitic lava flow field from the 2011-2012 eruption at Cordón Caulle, Chile. We combine high-resolution four-dimensional flow front models, created using automated photo reconstruction techniques, with sequential satellite imagery. Late-stage evolution greatly extended the compound lava flow field, with localized extrusion from stalled, ~35 m-thick flow margins creating >80 breakout lobes. In January 2013, flow front advance continued ~3.6 km from the vent, despite detectable lava supply ceasing 6-8 months earlier. This illustrates how efficient thermal insulation by the lava carapace promotes prolonged within-flow horizontal lava transport, boosting the extent of the flow. The unexpected similarities with compound basaltic lava flow fields point towards a unifying model of lava emplacement.
Topological transitions in unidirectional flow of nematic liquid crystal
NASA Astrophysics Data System (ADS)
Cummings, Linda; Anderson, Thomas; Mema, Ensela; Kondic, Lou
2015-11-01
Recent experiments by Sengupta et al. (Phys. Rev. Lett. 2013) revealed interesting transitions that can occur in flow of nematic liquid crystal under carefully controlled conditions within a long microfluidic channel of rectangular cross-section, with homeotropic anchoring at the walls. At low flow rates the director field of the nematic adopts a configuration that is dominated by the surface anchoring, being nearly parallel to the channel height direction over most of the cross-section; but at high flow rates there is a transition to a flow-dominated state, where the director configuration at the channel centerline is aligned with the flow (perpendicular to the channel height direction). We analyze simple channel-flow solutions to the Leslie-Ericksen model for nematics. We demonstrate that two solutions exist, at all flow rates, but that there is a transition between the elastic free energies of these solutions: the anchoring-dominated solution has the lowest energy at low flow rates, and the flow-dominated solution has lowest energy at high flow rates. NSF DMS 1211713.
Water flow modulates the response of coral reef communities to ocean acidification
NASA Astrophysics Data System (ADS)
Comeau, S.; Edmunds, P. J.; Lantz, C. A.; Carpenter, R. C.
2014-10-01
By the end of the century coral reefs likely will be affected negatively by ocean acidification (OA), but both the effects of OA on coral communities and the crossed effects of OA with other physical environmental variables are lacking. One of the least considered physical parameters is water flow, which is surprising considering its strong role in modulating the physiology of reef organisms and communities. In the present study, the effects of flow were tested on coral reef communities maintained in outdoor flumes under ambient pCO2 and high pCO2 (1300 μatm). Net calcification of coral communities, including sediments, was affected by both flow and pCO2 with calcification correlated positively with flow under both pCO2 treatments. The effect of flow was less evident for sediments where dissolution exceeded precipitation of calcium carbonate under all flow speeds at high pCO2. For corals and calcifying algae there was a strong flow effect, particularly at high pCO2 where positive net calcification was maintained at night in the high flow treatment. Our results demonstrate the importance of water flow in modulating the coral reef community response to OA and highlight the need to consider this parameter when assessing the effects of OA on coral reefs.
Water flow modulates the response of coral reef communities to ocean acidification.
Comeau, S; Edmunds, P J; Lantz, C A; Carpenter, R C
2014-10-20
By the end of the century coral reefs likely will be affected negatively by ocean acidification (OA), but both the effects of OA on coral communities and the crossed effects of OA with other physical environmental variables are lacking. One of the least considered physical parameters is water flow, which is surprising considering its strong role in modulating the physiology of reef organisms and communities. In the present study, the effects of flow were tested on coral reef communities maintained in outdoor flumes under ambient pCO2 and high pCO2 (1300 μatm). Net calcification of coral communities, including sediments, was affected by both flow and pCO2 with calcification correlated positively with flow under both pCO2 treatments. The effect of flow was less evident for sediments where dissolution exceeded precipitation of calcium carbonate under all flow speeds at high pCO2. For corals and calcifying algae there was a strong flow effect, particularly at high pCO2 where positive net calcification was maintained at night in the high flow treatment. Our results demonstrate the importance of water flow in modulating the coral reef community response to OA and highlight the need to consider this parameter when assessing the effects of OA on coral reefs.
Multi-Component, Multi-Point Interferometric Rayleigh/Mie Doppler Velocimeter
NASA Technical Reports Server (NTRS)
Danehy, Paul M.; Lee, Joseph W.; Bivolaru, Daniel
2012-01-01
An interferometric Rayleigh scattering system was developed to enable the measurement of multiple, orthogonal velocity components at several points within very-high-speed or high-temperature flows. The velocity of a gaseous flow can be optically measured by sending laser light into the gas flow, and then measuring the scattered light signal that is returned from matter within the flow. Scattering can arise from either gas molecules within the flow itself, known as Rayleigh scattering, or from particles within the flow, known as Mie scattering. Measuring Mie scattering is the basis of all commercial laser Doppler and particle imaging velocimetry systems, but particle seeding is problematic when measuring high-speed and high-temperature flows. The velocimeter is designed to measure the Doppler shift from only Rayleigh scattering, and does not require, but can also measure, particles within the flow. The system combines a direct-view, large-optic interferometric setup that calculates the Doppler shift from fringe patterns collected with a digital camera, and a subsystem to capture and re-circulate scattered light to maximize signal density. By measuring two orthogonal components of the velocity at multiple positions in the flow volume, the accuracy and usefulness of the flow measurement increase significantly over single or nonorthogonal component approaches.
An analytical model for highly seperated flow on airfoils at low speeds
NASA Technical Reports Server (NTRS)
Zunnalt, G. W.; Naik, S. N.
1977-01-01
A computer program was developed to solve the low speed flow around airfoils with highly separated flow. A new flow model included all of the major physical features in the separated region. Flow visualization tests also were made which gave substantiation to the validity of the model. The computation involves the matching of the potential flow, boundary layer and flows in the separated regions. Head's entrainment theory was used for boundary layer calculations and Korst's jet mixing analysis was used in the separated regions. A free stagnation point aft of the airfoil and a standing vortex in the separated region were modelled and computed.
NASA Technical Reports Server (NTRS)
Chung, S.
1973-01-01
Heat transfer phenomena of rarefied gas flows is discussed based on a literature survey of analytical and experimental rarefied gas dynamics. Subsonic flows are emphasized for the purposes of meteorological thermometry in the high atmosphere. The heat transfer coefficients for three basic geometries are given in the regimes of free molecular flow, transition flow, slip flow, and continuum flow. Different types of heat phenomena, and the analysis of theoretical and experimental data are presented. The uncertainties calculated from the interpolation rule compared with the available experimental data are discussed. The recovery factor for each geometry in subsonic rarefied flows is also given.
NASA Technical Reports Server (NTRS)
Chambers, J. R.; Grafton, S. B.; Lutze, F. H.
1981-01-01
Dynamic stability derivatives are evaluated on the basis of rolling-flow, curved-flow and snaking tests. Attention is given to the hardware associated with curved-flow, rolling-flow and oscillatory pure-yawing wind-tunnel tests. It is found that the snaking technique, when combined with linear- and forced-oscillation methods, yields an important method for evaluating beta derivatives for current configurations at high angles of attack. Since the rolling flow model is fixed during testing, forced oscillations may be imparted to the model, permitting the measurement of damping and cross-derivatives. These results, when coupled with basic rolling-flow or rotary-balance data, yield a highly accurate mathematical model for studies of incipient spin and spin entry.
Key Topics for High-Lift Research: A Joint Wind Tunnel/Flight Test Approach
NASA Technical Reports Server (NTRS)
Fisher, David; Thomas, Flint O.; Nelson, Robert C.
1996-01-01
Future high-lift systems must achieve improved aerodynamic performance with simpler designs that involve fewer elements and reduced maintenance costs. To expeditiously achieve this, reliable CFD design tools are required. The development of useful CFD-based design tools for high lift systems requires increased attention to unresolved flow physics issues. The complex flow field over any multi-element airfoil may be broken down into certain generic component flows which are termed high-lift building block flows. In this report a broad spectrum of key flow field physics issues relevant to the design of improved high lift systems are considered. It is demonstrated that in-flight experiments utilizing the NASA Dryden Flight Test Fixture (which is essentially an instrumented ventral fin) carried on an F-15B support aircraft can provide a novel and cost effective method by which both Reynolds and Mach number effects associated with specific high lift building block flows can be investigated. These in-flight high lift building block flow experiments are most effective when performed in conjunction with coordinated ground based wind tunnel experiments in low speed facilities. For illustrative purposes three specific examples of in-flight high lift building block flow experiments capable of yielding a high payoff are described. The report concludes with a description of a joint wind tunnel/flight test approach to high lift aerodynamics research.
Conversion of Low-Flow Priapism to High-Flow State Using T-Shunt with Tunneling.
Mistry, Neil A; Tadros, Nicholas N; Hedges, Jason C
2017-01-01
Introduction . The three types of priapism are stuttering, arterial (high-flow, nonischemic), and venoocclusive (low-flow, ischemic). These are usually distinct entities and rarely occur in the same patient. T-shunts and other distal shunts are frequently combined with tunneling, but a seldom recognized potential complication is conversion to a high-flow state. Case Presentation . We describe 2 cases of men who presented with low-flow priapism episodes that were treated using T-shunts with tunneling that resulted with both men having recurrent erections shortly after surgery that were found to be consistent with high-flow states. Case 1 was a 33-year-old male with sickle cell anemia and case 2 was a 24-year-old male with idiopathic thrombocytopenic purpura. In both cases the men were observed over several weeks and both men returned to normal erectile function. Conclusions . Historically, proximal shunts were performed only in cases when distal shunts failed and carry a higher risk of serious complications. T-shunts and other distal shunts combined with tunneling are being used more frequently in place of proximal shunts. These cases illustrate how postoperative erections after T-shunts with tunneling can signify a conversion from low-flow to high-flow states and could potentially be misdiagnosed as an operative failure.
NASA Astrophysics Data System (ADS)
Williams, J. H.; Johnson, C. D.; Paillet, F. L.
2004-05-01
In the past, flow logging was largely restricted to the application of spinner flowmeters to determine flow-zone contributions in large-diameter production wells screened in highly transmissive aquifers. Development and refinement of tool-measurement technology, field methods, and analysis techniques has greatly extended and enhanced flow logging to include the hydraulic characterization of boreholes and aquifer flow zones at contaminated bedrock sites. State-of-the-art in flow logging will be reviewed, and its application to bedrock-contamination investigations will be presented. In open bedrock boreholes, vertical flows are measured with high-resolution flowmeters equipped with flexible rubber-disk diverters fitted to the nominal borehole diameters to concentrate flow through the measurement throat of the tools. Heat-pulse flowmeters measure flows in the range of 0.05 to 5 liters per minute, and electromagnetic flowmeters measure flows in the range of 0.3 to 30 liters per minute. Under ambient and low-rate stressed (either extraction or injection) conditions, stationary flowmeter measurements are collected in competent sections of the borehole between fracture zones identified on borehole-wall images. Continuous flow, fluid-resistivity, and temperature logs are collected under both sets of conditions while trolling with a combination electromagnetic flowmeter and fluid tool. Electromagnetic flowmeters are used with underfit diverters to measure flow rates greater than 30 liters per minute and suppress effects of diameter variations while trolling. A series of corrections are applied to the flow-log data to account for the zero-flow response, bypass, trolling, and borehole-diameter biases and effects. The flow logs are quantitatively analyzed by matching simulated flows computed with a numerical model to measured flows by varying the hydraulic properties (transmissivity and hydraulic head) of the flow zones. Several case studies will be presented that demonstrate the integration of flow logging in site-characterization activities framework; 2) evaluate cross-connection effects and determine flow-zone contributions to water-quality samples from open boreholes; and 3) design discrete-zone hydraulic tests and monitoring-well completions.
Dynamic MRI for distinguishing high-flow from low-flow peripheral vascular malformations.
Ohgiya, Yoshimitsu; Hashimoto, Toshi; Gokan, Takehiko; Watanabe, Shouji; Kuroda, Masayoshi; Hirose, Masanori; Matsui, Seishi; Nobusawa, Hiroshi; Kitanosono, Takashi; Munechika, Hirotsugu
2005-11-01
The purpose of our study was to assess the usefulness of dynamic MRI in distinguishing high-flow vascular malformations from low-flow vascular malformations, which do not need angiography for treatment. Between September 2001 and January 2003, 16 patients who underwent conventional and dynamic MRI had peripheral vascular malformations (six high- and 10 low-flow). The temporal resolution of dynamic MRI was 5 sec. Time intervals between beginning of enhancement of an arterial branch in the vicinity of a lesion in the same slice and the onset of enhancement in the lesion were calculated. We defined these time intervals as "artery-lesion enhancement time." Time intervals between the onset of enhancement in the lesion and the time of the maximal percentage of enhancement above baseline of the lesion within 120 sec were measured. We defined these time intervals as "contrast rise time" of the lesion. Diagnosis of the peripheral vascular malformations was based on angiographic or venographic findings. The mean artery-lesion enhancement time of the high-flow vascular malformations (3.3 sec [range, 0-5 sec]) was significantly shorter than that of the low-flow vascular malformations (8.8 sec [range, 0-20 sec]) (Mann-Whitney test, p < 0.05). The mean maximal lesion enhancement time of the high-flow vascular malformations (5.8 sec [range, 5-10 sec]) was significantly shorter than that of the low-flow vascular malformations (88.4 sec [range, 50-100 sec]) (Mann-Whitney test, p < 0.01). Dynamic MRI is useful for distinguishing high-flow from low-flow vascular malformations, especially when the contrast rise time of the lesion is measured.
Large eddy simulations and direct numerical simulations of high speed turbulent reacting flows
NASA Technical Reports Server (NTRS)
Givi, Peyman; Madnia, Cyrus K.; Steinberger, Craig J.
1990-01-01
This research is involved with the implementation of advanced computational schemes based on large eddy simulations (LES) and direct numerical simulations (DNS) to study the phenomenon of mixing and its coupling with chemical reactions in compressible turbulent flows. In the efforts related to LES, a research program to extend the present capabilities of this method was initiated for the treatment of chemically reacting flows. In the DNS efforts, the focus is on detailed investigations of the effects of compressibility, heat release, and non-equilibrium kinetics modelings in high speed reacting flows. Emphasis was on the simulations of simple flows, namely homogeneous compressible flows, and temporally developing high speed mixing layers.
STAR FORMATION IN TURBULENT MOLECULAR CLOUDS WITH COLLIDING FLOW
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsumoto, Tomoaki; Dobashi, Kazuhito; Shimoikura, Tomomi, E-mail: matsu@hosei.ac.jp
2015-03-10
Using self-gravitational hydrodynamical numerical simulations, we investigated the evolution of high-density turbulent molecular clouds swept by a colliding flow. The interaction of shock waves due to turbulence produces networks of thin filamentary clouds with a sub-parsec width. The colliding flow accumulates the filamentary clouds into a sheet cloud and promotes active star formation for initially high-density clouds. Clouds with a colliding flow exhibit a finer filamentary network than clouds without a colliding flow. The probability distribution functions (PDFs) for the density and column density can be fitted by lognormal functions for clouds without colliding flow. When the initial turbulence ismore » weak, the column density PDF has a power-law wing at high column densities. The colliding flow considerably deforms the PDF, such that the PDF exhibits a double peak. The stellar mass distributions reproduced here are consistent with the classical initial mass function with a power-law index of –1.35 when the initial clouds have a high density. The distribution of stellar velocities agrees with the gas velocity distribution, which can be fitted by Gaussian functions for clouds without colliding flow. For clouds with colliding flow, the velocity dispersion of gas tends to be larger than the stellar velocity dispersion. The signatures of colliding flows and turbulence appear in channel maps reconstructed from the simulation data. Clouds without colliding flow exhibit a cloud-scale velocity shear due to the turbulence. In contrast, clouds with colliding flow show a prominent anti-correlated distribution of thin filaments between the different velocity channels, suggesting collisions between the filamentary clouds.« less
Impact of Climate Change and Human Intervention on River Flow Regimes
NASA Astrophysics Data System (ADS)
Singh, Rajendra; Mittal, Neha; Mishra, Ashok
2017-04-01
Climate change and human interventions like dam construction bring freshwater ecosystem under stress by changing flow regime. It is important to analyse their impact at a regional scale along with changes in the extremes of temperature and precipitation which further modify the flow regime components such as magnitude, timing, frequency, duration, and rate of change of flow. In this study, the Kangsabati river is chosen to analyse the hydrological alterations in its flow regime caused by dam, climate change and their combined impact using Soil and Water Assessment Tool (SWAT) and the Indicators of Hydrologic Alteration (IHA) program based on the Range of Variability Approach (RVA). Results show that flow variability is significantly reduced due to dam construction with high flows getting absorbed and pre-monsoon low flows being augmented by the reservoir. Climate change alone reduces the high peaks whereas a combination of dam and climate change significantly reduces variability by affecting both high and low flows, thereby further disrupting the functioning of riverine ecosystems. Analysis shows that in the Kangsabati basin, influence of dam is greater than that of the climate change, thereby emphasising the significance of direct human intervention. Keywords: Climate change, human impact, flow regime, Kangsabati river, SWAT, IHA, RVA.
Study on the flow nonuniformity in a high capacity Stirling pulse tube cryocooler
NASA Astrophysics Data System (ADS)
You, X.; Zhi, X.; Duan, C.; Jiang, X.; Qiu, L.; Li, J.
2017-12-01
High capacity Stirling-type pulse tube cryocoolers (SPTC) have promising applications in high temperature superconductive motor and gas liquefaction. However, with the increase of cooling capacity, its performance deviates from well-accepted one-dimensional model simulation, such as Sage and Regen, mainly due to the strong field nonuniformity. In this study, several flow straighteners placed at both ends of the pulse tube are investigated to improve the flow distribution. A two-dimensional model of the pulse tube based on the computational fluid dynamics (CFD) method has been built to study the flow distribution of the pulse tube with different flow straighteners including copper screens, copper slots, taper transition and taper stainless slot. A SPTC set-up which has more than one hundred Watts cooling power at 80 K has been built and tested. The flow straighteners mentioned above have been applied and tested. The results show that with the best flow straightener the cooling performance of the SPTC can be significantly improved. Both CFD simulation and experiment show that the straighteners have impacts on the flow distribution and the performance of the high capacity SPTC.
NASA Astrophysics Data System (ADS)
ten Veldhuis, Marie-Claire; Schleiss, Marc
2017-04-01
In this study, we introduced an alternative approach for analysis of hydrological flow time series, using an adaptive sampling framework based on inter-amount times (IATs). The main difference with conventional flow time series is the rate at which low and high flows are sampled: the unit of analysis for IATs is a fixed flow amount, instead of a fixed time window. We analysed statistical distributions of flows and IATs across a wide range of sampling scales to investigate sensitivity of statistical properties such as quantiles, variance, skewness, scaling parameters and flashiness indicators to the sampling scale. We did this based on streamflow time series for 17 (semi)urbanised basins in North Carolina, US, ranging from 13 km2 to 238 km2 in size. Results showed that adaptive sampling of flow time series based on inter-amounts leads to a more balanced representation of low flow and peak flow values in the statistical distribution. While conventional sampling gives a lot of weight to low flows, as these are most ubiquitous in flow time series, IAT sampling gives relatively more weight to high flow values, when given flow amounts are accumulated in shorter time. As a consequence, IAT sampling gives more information about the tail of the distribution associated with high flows, while conventional sampling gives relatively more information about low flow periods. We will present results of statistical analyses across a range of subdaily to seasonal scales and will highlight some interesting insights that can be derived from IAT statistics with respect to basin flashiness and impact urbanisation on hydrological response.
The numerical simulation of a high-speed axial flow compressor
NASA Technical Reports Server (NTRS)
Mulac, Richard A.; Adamczyk, John J.
1991-01-01
The advancement of high-speed axial-flow multistage compressors is impeded by a lack of detailed flow-field information. Recent development in compressor flow modeling and numerical simulation have the potential to provide needed information in a timely manner. The development of a computer program is described to solve the viscous form of the average-passage equation system for multistage turbomachinery. Programming issues such as in-core versus out-of-core data storage and CPU utilization (parallelization, vectorization, and chaining) are addressed. Code performance is evaluated through the simulation of the first four stages of a five-stage, high-speed, axial-flow compressor. The second part addresses the flow physics which can be obtained from the numerical simulation. In particular, an examination of the endwall flow structure is made, and its impact on blockage distribution assessed.
Ultrasensitive SERS Flow Detector Using Hydrodynamic Focusing
Negri, Pierre; Jacobs, Kevin T.; Dada, Oluwatosin O.; Schultz, Zachary D.
2013-01-01
Label-free, chemical specific detection in flow is important for high throughput characterization of analytes in applications such as flow injection analysis, electrophoresis, and chromatography. We have developed a surface-enhanced Raman scattering (SERS) flow detector capable of ultrasensitive optical detection on the millisecond time scale. The device employs hydrodynamic focusing to improve SERS detection in a flow channel where a sheath flow confines analyte molecules eluted from a fused silica capillary over a planar SERS-active substrate. Increased analyte interactions with the SERS substrate significantly improve detection sensitivity. The performance of this flow detector was investigated using a combination of finite element simulations, fluorescence imaging, and Raman experiments. Computational fluid dynamics based on finite element analysis was used to optimize the flow conditions. The modeling indicates that a number of factors, such as the capillary dimensions and the ratio of the sheath flow to analyte flow rates, are critical for obtaining optimal results. Sample confinement resulting from the flow dynamics was confirmed using wide-field fluorescence imaging of rhodamine 6G (R6G). Raman experiments at different sheath flow rates showed increased sensitivity compared with the modeling predictions, suggesting increased adsorption. Using a 50-millisecond acquisitions, a sheath flow rate of 180 μL/min, and a sample flow rate of 5 μL/min, a linear dynamic range from nanomolar to micromolar concentrations of R6G with a LOD of 1 nM is observed. At low analyte concentrations, rapid analyte desorption is observed, enabling repeated and high-throughput SERS detection. The flow detector offers substantial advantages over conventional SERS-based assays such as minimal sample volumes and high detection efficiency. PMID:24074461
High Latitude Meridional Flow on the Sun May Explain North-South Polar Field Asymmetry
NASA Technical Reports Server (NTRS)
Kosak, Katie; Upton, Lisa; Hathaway, David
2012-01-01
We measured the flows of magnetic elements on the Sun at very high latitudes by analyzing magnetic images from the Helioseismic and Magnetic Imager (HMI) on the NASA Solar Dynamics Observatory (SDO) Mission. Magnetic maps constructed using a fixed, and north-south symmetric, meridional flow profile give weaker than observed polar fields in the North and stronger than observed polar fields in the South during the decline of Cycle 23 and rise of Cycle 24. Our measurements of the meridional flow at high latitudes indicate systematic north-south differences. There was a strong flow in the North while the flow in the South was weaker. With these results, we have a possible solution to the polar field asymmetry. The weaker flow in the South should keep the polar fields from becoming too strong while the stronger flow in the North should strengthen the field there. In order to gain a better understanding of the Solar Cycle and magnetic flux transport on the Sun, we need further observations and analyses of the Sun's polar regions in general and the polar meridonal flow in particular.
High Latitude Meridional Flow on the Sun May Explain North-South Polar Field Asymmetry
NASA Technical Reports Server (NTRS)
Kosak, Katie; Upton, Lisa; Hathaway, David
2012-01-01
We measured the flows of magnetic elements on the Sun at very high latitudes by analyzing magnetic images from the Helioseismic and Magnetic Imager (HMI) on the NASA Solar Dynamics Observatory (SDO) Mission. Magnetic maps constructed using a fixed, and north ]south symmetric, meridional flow profile give weaker than observed polar fields in the North and stronger than observed polar fields in the South during the decline of Cycle 23 and rise of Cycle 24. Our measurements of the meridional flow at high latitudes indicate systematic north ]south differences. There was a strong flow in the North while the flow in the South was weaker. With these results, we have a possible solution to the polar field asymmetry. The weaker flow in the South should keep the polar fields from becoming too strong while the stronger flow in the North should strengthen the field there. In order to gain a better understanding of the Solar Cycle and magnetic flux transport on the Sun, we need further observations and analyses of the Sun fs polar regions in general and the polar meridional flow in particular
From "E-flows" to "Sed-flows": Managing the Problem of Sediment in High Altitude Hydropower Systems
NASA Astrophysics Data System (ADS)
Gabbud, C.; Lane, S. N.
2017-12-01
The connections between stream hydraulics, geomorphology and ecosystems in mountain rivers have been substantially perturbed by humans, for example through flow regulation related to hydropower activities. It is well known that the ecosystem impacts downstream of hydropower dams may be managed by a properly designed compensation release or environmental flows ("e-flows"), and such flows may also include sediment considerations (e.g. to break up bed armor). However, there has been much less attention given to the ecosystem impacts of water intakes (where water is extracted and transferred for storage and/or power production), even though in many mountain systems such intakes may be prevalent. Flow intakes tend to be smaller than dams and because they fill quickly in the presence of sediment delivery, they often need to be flushed, many times within a day in Alpine glaciated catchments with high sediment yields. The associated short duration "flood" flow is characterised by very high sediment concentrations, which may drastically modify downstream habitat, both during the floods but also due to subsequent accumulation of "legacy" sediment. The impacts on flora and fauna of these systems have not been well studied. In addition, there are no guidelines established that might allow the design of "e-flows" that also treat this sediment problem, something we call "sed-flows". Through an Alpine field example, we quantify the hydrological, geomorphological, and ecosystem impacts of Alpine water transfer systems. The high sediment concentrations of these flushing flows lead to very high rates of channel disturbance downstream, superimposed upon long-term and progressive bed sediment accumulation. Monthly macroinvertebrate surveys over almost a two-year period showed that reductions in the flushing rate reduced rates of disturbance substantially, and led to rapid macroinvertebrate recovery, even in the seasons (autumn and winter) when biological activity should be reduced. The results suggest the need to redesign e-flows to take into account these sediment impacts if the objectives of e-flows are to be realised.
Orita, Erika; Murai, Yasuo; Sekine, Tetsuro; Takagi, Ryo; Amano, Yasuo; Ando, Takahiro; Iwata, Kotomi; Obara, Makoto; Kumita, Shinichiro
2018-05-11
The hemodynamic changes that occur after high-flow (extracranial-intracranial) EC-IC bypass surgery with internal carotid artery (ICA) ligation are not well known. To assess blood flow changes after high-flow EC-IC bypass with ICA ligation by time-resolved 3-dimensional phase-contrast (4D Flow) magnetic resonance imaging (MRI). We enrolled 11 patients who underwent high-flow EC-IC bypass. 4D Flow MRI was performed before and after surgery to quantify the blood flow volume (BFV) of the ipsilateral ICA (BFViICA), bypass artery (BFVbypass), contralateral ICA (BFVcICA), and basilar artery (BFVBA). Subsequently, we calculated the total BFV (BFVtotal = BFViICA + BFVcICA + BFVBA [before surgery], BFVcICA + BFVBA + BFVbypass [after surgery]). The BFV changes after bypass was statistically analyzed. BFVbypass was slightly lower than BFViICA, but the difference was not statistically significant (3.84 ± 0.94 vs 4.42 ± 1.38 mL/s). The BFVcICA and BFVBA significantly increased after bypass surgery (BFVcICA 5.89 ± 1.44 vs 7.22 ± 1.37 mL/s [P = .0018], BFVBA 3.06 ± 0.41 vs 4.12 ± 0.38 mL/s [P < .001]). The BFVtotal significantly increased after surgery (13.37 ± 2.58 vs 15.18 ± 1.77 mL/s [P = .015]). There was no evidence of hyperperfusion syndrome in any cases. After high-flow EC-IC bypass with permanent ICA ligation, the bypass artery could partially compensate for the loss of BFV of the sacrificed ICA. The increased flow of the contralateral ICA and BA supply collateral blood flow. Clinically irrelevant hyperperfusion was observed.
Chen, Jian; Xue, Chengcheng; Zhao, Yang; Chen, Deyong; Wu, Min-Hsien; Wang, Junbo
2015-01-01
This article reviews recent developments in microfluidic impedance flow cytometry for high-throughput electrical property characterization of single cells. Four major perspectives of microfluidic impedance flow cytometry for single-cell characterization are included in this review: (1) early developments of microfluidic impedance flow cytometry for single-cell electrical property characterization; (2) microfluidic impedance flow cytometry with enhanced sensitivity; (3) microfluidic impedance and optical flow cytometry for single-cell analysis and (4) integrated point of care system based on microfluidic impedance flow cytometry. We examine the advantages and limitations of each technique and discuss future research opportunities from the perspectives of both technical innovation and clinical applications. PMID:25938973
Dendritic Growth with Fluid Flow for Pure Materials
NASA Technical Reports Server (NTRS)
Jeong, Jun-Ho; Dantzig, Jonathan A.; Goldenfeld, Nigel
2003-01-01
We have developed a three-dimensional, adaptive, parallel finite element code to examine solidification of pure materials under conditions of forced flow. We have examined the effect of undercooling, surface tension anisotropy and imposed flow velocity on the growth. The flow significantly alters the growth process, producing dendrites that grow faster, and with greater tip curvature, into the flow. The selection constant decreases slightly with flow velocity in our calculations. The results of the calculations agree well with the transport solution of Saville and Beaghton at high undercooling and high anisotropy. At low undercooling, significant deviations are found. We attribute this difference to the influence of other parts of the dendrite, removed from the tip, on the flow field.
NASA Astrophysics Data System (ADS)
McGuire, Luke A.; Rengers, Francis K.; Kean, Jason W.; Staley, Dennis M.
2017-07-01
Postwildfire debris flows are frequently triggered by runoff following high-intensity rainfall, but the physical mechanisms by which water-dominated flows transition to debris flows are poorly understood relative to debris flow initiation from shallow landslides. In this study, we combined a numerical model with high-resolution hydrologic and geomorphic data sets to test two different hypotheses for debris flow initiation during a rainfall event that produced numerous debris flows within a recently burned drainage basin. Based on simulations, large volumes of sediment eroded from the hillslopes were redeposited within the channel network throughout the storm, leading to the initiation of numerous debris flows as a result of the mass failure of sediment dams that built up within the channel. More generally, results provide a quantitative framework for assessing the potential of runoff-generated debris flows based on sediment supply and hydrologic conditions.
McGuire, Luke; Rengers, Francis K.; Kean, Jason W.; Staley, Dennis M.
2017-01-01
Postwildfire debris flows are frequently triggered by runoff following high-intensity rainfall, but the physical mechanisms by which water-dominated flows transition to debris flows are poorly understood relative to debris flow initiation from shallow landslides. In this study, we combined a numerical model with high-resolution hydrologic and geomorphic data sets to test two different hypotheses for debris flow initiation during a rainfall event that produced numerous debris flows within a recently burned drainage basin. Based on simulations, large volumes of sediment eroded from the hillslopes were redeposited within the channel network throughout the storm, leading to the initiation of numerous debris flows as a result of the mass failure of sediment dams that built up within the channel. More generally, results provide a quantitative framework for assessing the potential of runoff-generated debris flows based on sediment supply and hydrologic conditions.
Hernández, Gonzalo; Vaquero, Concepción; Colinas, Laura; Cuena, Rafael; González, Paloma; Canabal, Alfonso; Sanchez, Susana; Rodriguez, Maria Luisa; Villasclaras, Ana; Fernández, Rafael
2016-10-18
High-flow conditioned oxygen therapy delivered through nasal cannulae and noninvasive mechanical ventilation (NIV) may reduce the need for reintubation. Among the advantages of high-flow oxygen therapy are comfort, availability, lower costs, and additional physiopathological mechanisms. To test if high-flow conditioned oxygen therapy is noninferior to NIV for preventing postextubation respiratory failure and reintubation in patients at high risk of reintubation. Multicenter randomized clinical trial in 3 intensive care units in Spain (September 2012-October 2014) including critically ill patients ready for planned extubation with at least 1 of the following high-risk factors for reintubation: older than 65 years; Acute Physiology and Chronic Health Evaluation II score higher than 12 points on extubation day; body mass index higher than 30; inadequate secretions management; difficult or prolonged weaning; more than 1 comorbidity; heart failure as primary indication for mechanical ventilation; moderate to severe chronic obstructive pulmonary disease; airway patency problems; or prolonged mechanical ventilation. Patients were randomized to undergo either high-flow conditioned oxygen therapy or NIV for 24 hours after extubation. Primary outcomes were reintubation and postextubation respiratory failure within 72 hours. Noninferiority margin was 10 percentage points. Secondary outcomes included respiratory infection, sepsis, and multiple organ failure, length of stay and mortality; adverse events; and time to reintubation. Of 604 patients (mean age, 65 [SD, 16] years; 388 [64%] men), 314 received NIV and 290 high-flow oxygen. Sixty-six patients (22.8%) in the high-flow group vs 60 (19.1%) in the NIV group were reintubation (absolute difference, -3.7%; 95% CI, -9.1% to ∞); 78 patients (26.9%) in the high-flow group vs 125 (39.8%) in the NIV group experienced postextubation respiratory failure (risk difference, 12.9%; 95% CI, 6.6% to ∞) [corrected]. Median time to reintubation did not significantly differ: 26.5 hours (IQR, 14-39 hours) in the high-flow group vs 21.5 hours (IQR, 10-47 hours) in the NIV group (absolute difference, -5 hours; 95% CI, -34 to 24 hours). Median postrandomization ICU length of stay was lower in the high-flow group, 3 days (IQR, 2-7) vs 4 days (IQR, 2-9; P=.048). Other secondary outcomes were similar in the 2 groups. Adverse effects requiring withdrawal of the therapy were observed in none of patients in the high-flow group vs 42.9% patients in the NIV group (P < .001). Among high-risk adults who have undergone extubation, high-flow conditioned oxygen therapy was not inferior to NIV for preventing reintubation and postextubation respiratory failure. High-flow conditioned oxygen therapy may offer advantages for these patients. clinicaltrials.gov Identifier: NCT01191489.
A High Pressure Flowing Oil Switch For Gigawatt, Repetitive Applications
2005-06-01
for testing the high pressure switch concept under repetitive pulse conditions is a 4.8 Ω, 70 ns water pulse forming line (PFL). The water PFL is...Cox Instruments. A pair of Hedland variable area flow sensors monitored relative flow rates in the two oil lines that fed the high pressure switch . High... pressure switch was tested under both single shot and repetitive conditions over a range of pressures, flow rates and temperatures. The primary
Numerical Study of Unsteady Flow in Centrifugal Cold Compressor
NASA Astrophysics Data System (ADS)
Zhang, Ning; Zhang, Peng; Wu, Jihao; Li, Qing
In helium refrigeration system, high-speed centrifugal cold compressor is utilized to pumped gaseous helium from saturated liquid helium tank at low temperature and low pressure for producing superfluid helium or sub-cooled helium. Stall and surge are common unsteady flow phenomena in centrifugal cold compressors which severely limit operation range and impact efficiency reliability. In order to obtain the installed range of cold compressor, unsteady flow in the case of low mass flow or high pressure ratio is investigated by the CFD. From the results of the numerical analysis, it can be deduced that the pressure ratio increases with the decrease in reduced mass flow. With the decrease of the reduced mass flow, backflow and vortex are intensified near the shroud of impeller. The unsteady flow will not only increase the flow loss, but also damage the compressor. It provided a numerical foundation of analyzing the effect of unsteady flow field and reducing the flow loss, and it is helpful for the further study and able to instruct the designing.
Development of braided fiber seals for engine applications
NASA Technical Reports Server (NTRS)
Cai, Zhong; Mutharasan, Rajakkannu; Ko, Frank K.; Du, Guang-Wu; Steinetz, Bruce M.
1993-01-01
A new type of braided fiber seal was developed for high temperature engine applications. Development work performed includes seal design, fabrication, leakage flow testing, and flow resistance modeling. This new type of seal utilizes the high flow resistance of tightly packed fibers and the conformability of textile structures. The seal contains a core part with aligned fibers, and a sheath with braided fiber layers. Seal samples are made by using the conventional braiding process. Leakage flow measurements are then performed. Mass flow rate versus the simulated engine pressure and preload pressure is recorded. The flow resistance of the seal is analyzed using the Ergun equation for flow through porous media, including both laminar and turbulent effects. The two constants in the Ergun equation are evaluated for the seal structures. Leakage flow of the seal under the test condition is found to be in the transition flow region. The analysis is used to predict the leakage flow performance of the seal with the determined design parameters.
The influence of underlying topography on lava channel networks and flow behavior (Invited)
NASA Astrophysics Data System (ADS)
Dietterich, H. R.; Cashman, K. V.; Rust, A.
2013-12-01
New high resolution mapping of historical lava flows in Hawai';i reveals complex topographically controlled channel networks. Network morphologies range from distributary systems dominated by branching around local obstacles, to tributary systems constricted by topographic confinement. Because channel networks govern the distribution of lava within the flow, they can dramatically alter the effective volumetric flux, which affects both flow length and advance rate. The influence of flow bifurcations is evidenced by (1) channelized flows from Pu';u ';O';o episodes 1-20 at Kilauea Volcano, where flow front velocities decreased by approximately half each time a flow split, and (2) the length of confined flows, such as the Mauna Loa 1859 flow, which traveled twice as far as the distributary Mauna Loa 1984 flow, despite similar effusion rates and durations. To study the underlying controls on flow bifurcations, we have undertaken a series of analogue experiments with golden syrup (a Newtonian fluid) to better understand the physics of obstacle interaction and its influence on flow behavior and morphology. Controlling the effusion rate and surface slope, we extrude flows onto a surface with a cylindrical or V-shaped obstacle of variable angle. When the flow is sufficiently fast, a stationary wave forms upslope of the obstacle; if the stationary wave is sufficiently high, the flow can overtop, rather than split around, the obstacle. The stationary wave height increases with flow velocity and with the effective obstacle width. Evidence for stationary waves in Hawaiian lava flows comes from both photographs of active flows and waveforms frozen into solidified flows. We have also performed a preliminary set of similar experiments with molten basalt to identify the effect of cooling and investigate flow merging. In these experiments, a stationary wave develops upslope of the obstacle, which allows the surface to cool and thicken. After splitting, the syrup experiments show minimal impact of the split on flow advance, except in cases where the flow is very thin, and surface tension controls the flow behavior. In contrast, the experiments with molten basalt slow markedly, as measured by both flow front and surface velocities. This difference demonstrates the effect of cooling and crust formation on flowing lava. Crust formation also controls the ability of split flows to merge below an obstacle, such that flows can converge only at high flow rates, which limits time for crust formation, and at narrow obstacle angles, which limits the lateral spreading required for convergence. Our experiments qualitatively support theoretical descriptions of crustal controls on flow spreading and levee development, but our poor knowledge of the appropriate parameter values, particularly that of the strength of the viscoelastic crust, prevents a quantitative comparison. These experiments, and our observations from natural systems, have significant implications for predicting lava flow behavior and inform efforts to mitigate flow hazards with diversion barriers.
Glow Discharge Plasma Demonstrated for Separation Control in the Low-Pressure Turbine
NASA Technical Reports Server (NTRS)
Ashpis, David e.; Hultgren, Lennart S.
2004-01-01
Flow separation in the low-pressure turbine (LPT) is a major barrier that limits further improvements of aerodynamic designs of turbine airfoils. The separation is responsible for performance degradation, and it prevents the design of highly loaded airfoils. The separation can be delayed, reduced, or eliminated completely if flow control techniques are used. Successful flow control technology will enable breakthrough improvements in gas turbine performance and design. The focus of this research project was the development and experimental demonstration of active separation control using glow discharge plasma (GDP) actuators in flow conditions simulating the LPT. The separation delay was shown to be successful, laying the foundation for further development of the technologies to practical application in the LPT. In a fluid mechanics context, the term "flow control" means a technology by which a very small input results in a very large effect on the flow. In this project, the interest is to eliminate or delay flow separation on LPT airfoils by using an active flow control approach, in which disturbances are dynamically inserted into the flow, they interact with the flow, and they delay separation. The disturbances can be inserted using a localized, externally powered, actuating device, examples are acoustic, pneumatic, or mechanical devices that generate vibrations, flow oscillations, or pulses. A variety of flow control devices have been demonstrated in recent years in the context of the external aerodynamics of aircraft wings and airframes, where the incoming flow is quiescent or of a very low turbulence level. However, the flow conditions in the LPT are significantly different because there are high levels of disturbances in the incoming flow that are characterized by high free-stream turbulence intensity. In addition, the Reynolds number, which characterizes the viscous forces in the flow and is related to the flow speed, is very low in the LPT passages.
Large eddy simulations and direct numerical simulations of high speed turbulent reacting flows
NASA Technical Reports Server (NTRS)
Givi, P.; Madnia, C. K.; Steinberger, C. J.; Frankel, S. H.
1992-01-01
The basic objective of this research is to extend the capabilities of Large Eddy Simulations (LES) and Direct Numerical Simulations (DNS) for the computational analyses of high speed reacting flows. In the efforts related to LES, we were primarily involved with assessing the performance of the various modern methods based on the Probability Density Function (PDF) methods for providing closures for treating the subgrid fluctuation correlations of scalar quantities in reacting turbulent flows. In the work on DNS, we concentrated on understanding some of the relevant physics of compressible reacting flows by means of statistical analysis of the data generated by DNS of such flows. In the research conducted in the second year of this program, our efforts focused on the modeling of homogeneous compressible turbulent flows by PDF methods, and on DNS of non-equilibrium reacting high speed mixing layers. Some preliminary work is also in progress on PDF modeling of shear flows, and also on LES of such flows.
Highly simplified lateral flow-based nucleic acid sample preparation and passive fluid flow control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cary, Robert E.
2015-12-08
Highly simplified lateral flow chromatographic nucleic acid sample preparation methods, devices, and integrated systems are provided for the efficient concentration of trace samples and the removal of nucleic acid amplification inhibitors. Methods for capturing and reducing inhibitors of nucleic acid amplification reactions, such as humic acid, using polyvinylpyrrolidone treated elements of the lateral flow device are also provided. Further provided are passive fluid control methods and systems for use in lateral flow assays.
Highly simplified lateral flow-based nucleic acid sample preparation and passive fluid flow control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cary, Robert B.
Highly simplified lateral flow chromatographic nucleic acid sample preparation methods, devices, and integrated systems are provided for the efficient concentration of trace samples and the removal of nucleic acid amplification inhibitors. Methods for capturing and reducing inhibitors of nucleic acid amplification reactions, such as humic acid, using polyvinylpyrrolidone treated elements of the lateral flow device are also provided. Further provided are passive fluid control methods and systems for use in lateral flow assays.
NASA Astrophysics Data System (ADS)
Guest, John E.; Stofan, Ellen R.
2005-04-01
Slab-crusted flows on Mount Etna, Sicily are defined here as those whose crust has ridden on the flow core without significant disruption or deformation and have a high length to width ratio. They typically erupt from ephemeral boccas as late-stage products on dominantly aa flow fields, such as that of the 1983 eruption on Mount Etna. Slab-crusted flows tend to inflate mainly as they approach and after they reach the maximum length of slab-crust formation, the flow interior acting as a preferential pathway for injecting lava under a stable crust. Coalescence of vesicles under successive crusts causes separation between core and crust giving a new cooling surface within the flow, on which ropy surfaces (and occasionally aa textures) of limited areal extent may develop. Slab-crusted flows tend to form at ephemeral boccas together with other surface textural types including toes, ropy pahoehoe sheets and aa flows. This suggests that, on Etna, slab-crusted flows form from lava of the same rheological properties as both aa and pahoehoe textured flows. They do not represent a transition between aa and pahoehoe as argued for toothpaste flows in Hawaii. We conclude that slab-crusted flows on Etna owe their morphology to a relatively high critical ratio of effusion rate to advance rate, related to vent cross-sectional area and the slope over which the flow forms.
Characteristics of ion flow in the quiet state of the inner plasma sheet
NASA Technical Reports Server (NTRS)
Angelopoulos, V.; Kennel, C. F.; Coroniti, F. V.; Pellat, R.; Spence, H. E.; Kivelson, M. G.; Walker, R. J.; Baumjohann, W.; Feldman, W. C.; Gosling, J. T.
1993-01-01
We use AMPTE/IRM and ISEE 2 data to study the properties of the high beta plasma sheet, the inner plasma sheet (IPS). Bursty bulk flows (BBFs) are excised from the two databases, and the average flow pattern in the non-BBF (quiet) IPS is constructed. At local midnight this ensemble-average flow is predominantly duskward; closer to the flanks it is mostly earthward. The flow pattern agrees qualitatively with calculations based on the Tsyganenko (1987) model (T87), where the earthward flow is due to the ensemble-average cross tail electric field and the duskward flow is the diamagnetic drift due to an inward pressure gradient. The IPS is on the average in pressure equilibrium with the lobes. Because of its large variance the average flow does not represent the instantaneous flow field. Case studies also show that the non-BBF flow is highly irregular and inherently unsteady, a reason why earthward convection can avoid a pressure balance inconsistency with the lobes. The ensemble distribution of velocities is a fundamental observable of the quiet plasma sheet flow field.
Onset of turbulence in accelerated high-Reynolds-number flow
NASA Astrophysics Data System (ADS)
Zhou, Ye; Robey, Harry F.; Buckingham, Alfred C.
2003-05-01
A new criterion, flow drive time, is identified here as a necessary condition for transition to turbulence in accelerated, unsteady flows. Compressible, high-Reynolds-number flows initiated, for example, in shock tubes, supersonic wind tunnels with practical limitations on dimensions or reservoir capacity, and high energy density pulsed laser target vaporization experimental facilities may not provide flow duration adequate for turbulence development. In addition, for critical periods of the overall flow development, the driving background flow is often unsteady in the experiments as well as in the physical flow situations they are designed to mimic. In these situations transition to fully developed turbulence may not be realized despite achievement of flow Reynolds numbers associated with or exceeding stationary flow transitional criteria. Basically our transitional criterion and prediction procedure extends to accelerated, unsteady background flow situations the remarkably universal mixing transition criterion proposed by Dimotakis [P. E. Dimotakis, J. Fluid Mech. 409, 69 (2000)] for stationary flows. This provides a basis for the requisite space and time scaling. The emphasis here is placed on variable density flow instabilities initiated by constant acceleration Rayleigh-Taylor instability (RTI) or impulsive (shock) acceleration Richtmyer-Meshkov instability (RMI) or combinations of both. The significant influences of compressibility on these developing transitional flows are discussed with their implications on the procedural model development. A fresh perspective for predictive modeling and design of experiments for the instability growth and turbulent mixing transitional interval is provided using an analogy between the well-established buoyancy-drag model with applications of a hierarchy of single point turbulent transport closure models. Experimental comparisons with the procedural results are presented where use is made of three distinctly different types of acceleration driven instability experiments: (1) classical, relatively low speed, constant acceleration RTI experiments; (2) shock tube, shockwave driven RMI flow mixing experiments; (3) laser target vaporization RTI and RMI mixing experiments driven at very high energy density. These last named experiments are of special interest as they provide scaleable flow conditions simulating those of astrophysical magnitude such as shock-driven hydrodynamic mixing in supernova evolution research.
Oxygen and carbon dioxide transport in time-dependent blood flow past fiber rectangular arrays
NASA Astrophysics Data System (ADS)
Zierenberg, Jennifer R.; Fujioka, Hideki; Hirschl, Ronald B.; Bartlett, Robert H.; Grotberg, James B.
2009-03-01
The influence of time-dependent flows on oxygen and carbon dioxide transport for blood flow past fiber arrays arranged in in-line and staggered configurations was computationally investigated as a model for an artificial lung. Both a pulsatile flow, which mimics the flow leaving the right heart and passing through a compliance chamber before entering the artificial lung, and a right ventricular flow, which mimics flow leaving the right heart and directly entering the artificial lung, were considered in addition to a steady flow. The pulsatile flow was modeled as a sinusoidal perturbation superimposed on a steady flow while the right ventricular flow was modeled to accurately depict the period of flow acceleration (increasing flow) and deceleration (decreasing flow) during systole followed by zero flow during diastole. It was observed that the pulsatile flow yielded similar gas transport as compared to the steady flow, while the right ventricular flow resulted in smaller gas transport, with the decrease increasing with Re. The pressure drop across the fiber array (a measure of the resistance), work (an indicator of the work required of the right heart), and shear stress (a measure of potential blood cell activation and damage) are lowest for steady flow, followed by pulsatile flow, and then right ventricular flow. The pressure drop, work, shear stress, and Sherwood numbers (a measure of the gas transport efficiency) decrease with increasing porosity and are smaller for AR <1 as compared to AR >1 (AR is the distance between fibers in the flow direction/distance between fibers in direction perpendicular to flow), although for small porosities the Sherwood numbers are of similar magnitude. In general, for any fiber array geometry, high pressure drop, work, and shear stresses correlate with high Sherwood numbers, and low pressure drop, work, and shear stresses correlate with low Sherwood numbers creating a need for a compromise between pressure drop/work/shear stresses and gas transport.
Pressure-flow reducer for aerosol focusing devices
Gard, Eric; Riot, Vincent; Coffee, Keith; Woods, Bruce; Tobias, Herbert; Birch, Jim; Weisgraber, Todd
2008-04-22
A pressure-flow reducer, and an aerosol focusing system incorporating such a pressure-flow reducer, for performing high-flow, atmosphere-pressure sampling while delivering a tightly focused particle beam in vacuum via an aerodynamic focusing lens stack. The pressure-flow reducer has an inlet nozzle for adjusting the sampling flow rate, a pressure-flow reduction region with a skimmer and pumping ports for reducing the pressure and flow to enable interfacing with low pressure, low flow aerosol focusing devices, and a relaxation chamber for slowing or stopping aerosol particles. In this manner, the pressure-flow reducer decouples pressure from flow, and enables aerosol sampling at atmospheric pressure and at rates greater than 1 liter per minute.
NASA Technical Reports Server (NTRS)
Vijgen, P. M. H. W.; Hardin, J. D.; Yip, L. P.
1992-01-01
Accurate prediction of surface-pressure distributions, merging boundary-layers, and separated-flow regions over multi-element high-lift airfoils is required to design advanced high-lift systems for efficient subsonic transport aircraft. The availability of detailed measurements of pressure distributions and both averaged and time-dependent boundary-layer flow parameters at flight Reynolds numbers is critical to evaluate computational methods and to model the turbulence structure for closure of the flow equations. Several detailed wind-tunnel measurements at subscale Reynolds numbers were conducted to obtain detailed flow information including the Reynolds-stress component. As part of a subsonic-transport high-lift research program, flight experiments are conducted using the NASA-Langley B737-100 research aircraft to obtain detailed flow characteristics for support of computational and wind-tunnel efforts. Planned flight measurements include pressure distributions at several spanwise locations, boundary-layer transition and separation locations, surface skin friction, as well as boundary-layer profiles and Reynolds stresses in adverse pressure-gradient flow.
Probe measures gas and liquid mass flux in high mass flow ratio two-phase flows
NASA Technical Reports Server (NTRS)
Burick, R. J.
1972-01-01
Deceleration probe constructed of two concentric tubes with separator inlet operates successfully in flow fields where ratio of droplet flow rate to gas flow rate ranges from 1.0 to 20, and eliminates problems of local flow field disturbances and flooding. Probe is effective tool for characterization of liquid droplet/gas spray fields.
NASA Astrophysics Data System (ADS)
Deschamps, A.; Van Vliet-Lanoe, B.; Soule, S. A.; Allemand, P.; Le Saout, M.; Delacourt, C.
2013-12-01
The summit of the East Pacific Rise (EPR), 16°N, is investigated based -among others- on high-resolution bathymetry acquired using the AUV Aster-X, and photos and videos collected using the submersible Nautile (Ifremer). HR bathymetry reveals submarine tumuli and inflated smooth lava flows at the summit of the ridge, emplaced on sub-horizontal terrains. They are primarily composed of jumbled and lobate flows with occurrences of sheet flows, and pillows close to the flow margins. They are 5 to 15 meters -high, and their surface ranges 0.2 to 1.5 km2. Their surface is either planar or depressed, likely due to lava topographic downdraining during eruption. At their margins, planar slabs of lava, few meters wide, slope down from the top of the flow, at angles ranging 40 to 80°. A series of cracks, 0,5 to 1.5 m deep, separate the horizontal surface of the flow from their inclined flanks. These cracks parallel the sinuous edges of the flows, suggesting the flow flanks tilted outward. Tumuli are also observed. Some of these smooth flows form 80 to 750 m -long sinuous ridges, suggesting the existence of lava tubes. Their morphology indicates that these flows experienced inflationary emplacement styles, but at a much larger scale than Pahoehoe lavas in Hawaii and La Réunion Islands. In these two islands, indeed, inflation structures are typically less than 2 meters high and only several tens of meters in length at maximum, suggesting that their mechanism of emplacement and inflation is significantly different. Conversely, we observe comparable inflation flows in Iceland and in Idaho and Oregon, also emplaced onto sub-horizontal terrains. We use high-resolution aerial photographs and lidar data to investigate their morphology. In the Eastern Snake River Plain (ESRP), quaternary basaltic plains volcanism produced monogenetic coalescent shields, and phreatomagmatic basaltic eruptions that are directly related to proximity of magmatism to the Snake River or Pleistocene lakes. For example, the Hells Half Acres Holocene lava flows, Idaho, display similar morphology as EPR flows, with sheet lavas, flow lobes 5-8 m high and approximately 100 m wide, and pressure ridges. Similar flows are observed in the ESRP: Craters of the Moon, Wapi, and Cerro Grande lava flows for example. In Oregon, Potholes, Devils Garden, Diamond Craters, Deschute River, Owyhee River, Jordan Crater flows are also strictly comparable. In Iceland, Lake Mytvan lava flows, for example, were emplaced in sublacustrine environments, and Budahraun flows in Snaefellness were emplaced at the coast below the sea level. The common point of these presently "aerial" lava flow is their emplacement in lakes, paleo-lakes and river beds, thus in "wet" environment, often controlled by rivers and their tributaries. A more efficient cooling of the lava lobes in wet environment probably triggers the development of strong and plastic margins due to cooling, which resists continued movement of the flow, whereas a thinner margin developing in aerial environment may favor lobe break out when internal pressure rises above the tensile strength of the crust. We propose a theoretical model for these lava flow emplacement on sub-horizontal basement.
Parametric Characterization of Flow Inside Cererbal Aneurysms Treated with Flow-Diverting Stents
NASA Astrophysics Data System (ADS)
Barbour, Michael; Levitt, Michael; Geindreau, Christian; Johnson, Luke; Chivukula, Keshav; Aliseda, Alberto
2017-11-01
Cerebral aneurysms are often treated with a flow-diverting stent (FDS) to reduce blood flow into the aneurysm sac, promoting the development of a stable thrombus. Successful treatment is highly dependent on the degree of flow reduction and the altered hemodynamics inside the aneurysm sac following treatment. Establishing a causal connection between hemodynamic metrics of FDS-treated CAs and long-term clinical outcomes requires a rigorous parametric characterization of this flow environment. We use 3D particle image velocimetry (PIV) to measure the flow inside idealized aneurysm models treated with FDS. Physiologically realistic Reynolds numbers and increasing levels of parent vessel curvature are analyzed to understand the effect of inertia on flow development. The flow velocity into the aneurysm and the topology of the flow inside the sac is shown to be highly dependent on parent vessel Dean number (De). The role of flow pulsatility is then added to the study via time-dependent waveforms. Velocity measurements at 2 values of parent vessel Womersley number (Wo) allow us to parameterize flow inside of CAs treated with FDS as a function of De, Re and Wo, improving the fundamental understanding of how FDS alter CA hemodynamics and aiding in the development of new treatments.
In-flight flow visualization results from the X-29A aircraft at high angles of attack
NASA Technical Reports Server (NTRS)
Delfrate, John H.; Saltzman, John A.
1992-01-01
Flow visualization techniques were used on the X-29A aircraft at high angles of attack to study the vortical flow off the forebody and the surface flow on the wing and tail. The forebody vortex system was studied because asymmetries in the vortex system were suspected of inducing uncommanded yawing moments at zero sideslip. Smoke enabled visualization of the vortex system and correlation of its orientation with flight yawing moment data. Good agreement was found between vortex system asymmetries and the occurrence of yawing moments. Surface flow on the forward-swept wing of the X-29A was studied using tufts and flow cones. As angle of attack increased, separated flow initiated at the root and spread outboard encompassing the full wing by 30 deg angle of attack. In general, the progression of the separated flow correlated well with subscale model lift data. Surface flow on the vertical tail was also studied using tufts and flow cones. As angle of attack increased, separated flow initiated at the root and spread upward. The area of separated flow on the vertical tail at angles of attack greater than 20 deg correlated well with the marked decrease in aircraft directional stability.
NASA Astrophysics Data System (ADS)
Ofuchi, C. Y.; Morales, R. E. M.; Arruda, L. V. R.; Neves, F., Jr.; Dorini, L.; do Amaral, C. E. F.; da Silva, M. J.
2012-03-01
Gas-liquid flows occur in a broad range of industrial applications, for instance in chemical, petrochemical and nuclear industries. Correct understating of flow behavior is crucial for safe and optimized operation of equipments and processes. Thus, measurement of gas-liquid flow plays an important role. Many techniques have been proposed and applied to analyze two-phase flows so far. In this experimental research, data from a wire-mesh sensor, an ultrasound technique and high-speed camera are used to study two-phase slug flows in horizontal pipes. The experiments were performed in an experimental two-phase flow loop which comprises a horizontal acrylic pipe of 26 mm internal diameter and 9 m length. Water and air were used to produce the two-phase flow and their flow rates are separately controlled to produce different flow conditions. As a parameter of choice, translational velocity of air bubbles was determined by each of the techniques and comparatively evaluated along with a mechanistic flow model. Results obtained show good agreement among all techniques. The visualization of flow obtained by the different techniques is also presented.
Julian, Colleen Glyde; Wilson, Megan J.; Lopez, Miriam; Yamashiro, Henry; Tellez, Wilma; Rodriguez, Armando; Bigham, Abigail W.; Shriver, Mark D.; Rodriguez, Carmelo; Vargas, Enrique; Moore, Lorna G.
2009-01-01
The effect of high altitude on reducing birth weight is markedly less in populations of high- (e.g., Andeans) relative to low-altitude origin (e.g., Europeans). Uterine artery (UA) blood flow is greater during pregnancy in Andeans than Europeans at high altitude; however, it is not clear whether such blood flow differences play a causal role in ancestry-associated variations in fetal growth. We tested the hypothesis that greater UA blood flow contributes to the protection of fetal growth afforded by Andean ancestry by comparing UA blood flow and fetal growth throughout pregnancy in 137 Andean or European residents of low (400 m; European n = 28, Andean n = 23) or high (3,100–4,100 m; European n = 51, Andean n = 35) altitude in Bolivia. Blood flow and fetal biometry were assessed by Doppler ultrasound, and maternal ancestry was confirmed, using a panel of 100 ancestry-informative genetic markers (AIMs). At low altitude, there were no ancestry-related differences in the pregnancy-associated rise in UA blood flow, fetal biometry, or birth weight. At high altitude, Andean infants weighed 253 g more than European infants after controlling for gestational age and other known influences. UA blood flow and O2 delivery were twofold greater at 20 wk in Andean than European women at high altitude, and were paralleled by greater fetal size. Moreover, variation in the proportion of Indigenous American ancestry among individual women was positively associated with UA diameter, blood flow, O2 delivery, and fetal head circumference. We concluded that greater UA blood flow protects against hypoxia-associated reductions in fetal growth, consistent with the hypothesis that genetic factors enabled Andeans to achieve a greater pregnancy-associated rise in UA blood flow and O2 delivery than European women at high altitude. PMID:19244584
High Fidelity Simulations for Unsteady Flow Through the Orbiter LH2 Feedline Flowliner
NASA Technical Reports Server (NTRS)
Kiris, Cetin C.; Kwak, Dochan; Chan, William; Housman, Jeffrey
2005-01-01
High fidelity computations were carried out to analyze the orbiter M2 feedline flowliner. Various computational models were used to characterize the unsteady flow features in the turbopump, including the orbiter Low-Pressure-Fuel-Turbopump (LPFTP) inducer, the orbiter manifold and a test article used to represent the manifold. Unsteady flow originating from the orbiter LPFTP inducer is one of the major contributors to the high frequency cyclic loading that results in high cycle fatigue damage to the gimbal flowliners just upstream of the LPFTP. The flow fields for the orbiter manifold and representative test article are computed and analyzed for similarities and differences. An incompressible Navier-Stokes flow solver INS3D, based on the artificial compressibility method, was used to compute the flow of liquid hydrogen in each test article.
Estimating bridge scour in New York from historical U.S. geological survey streamflow measurements
Butch, Gerard K.; ,
1993-01-01
Historical streamflow measurements by the U.S. Geological Survey an bridge-inspection reports by the New York State Department of Transportation are being used to estimate scour at 31 bridges in New York State. Streamflow measurements that were made before, during, or after high flows are used to estimate scour and to define hydraulic properties associated with floods. Clear-water scour is common at most sites; local scour holes that formed during high flows did not refill after subsequent high flows. The 31 streambeds are armored by gravel; median particle size ranges form 22 to 68 millimeters. Streambed elevations measured after a high flow are assumed to represent the elevations during peak flow. Measurements at several bridges indicate scour by multiple high flows, severe floods, and debris. Three high flows at State Route 23 over the Otselic River in Cortland County produced 6.1 feet of local scour and partly exposed concrete pilings below the footing. Although the recurrence interval of each flow was less than 10 years, a 30-degree angle between the flow and the pier increased the tendency of the streambed to scour. State Route 427 over the Chemung River in Chemung County survived the 1972 flood ( recurrence interval greater than 100 years) because pilings supported the undermined piers. The maximum local scour during the 1972 flood was estimated to be 5.4 feet. A local-scour hole, 2.4 feet deep before the flood, was deepened to 7.8 feet.
Water flow in high-speed handpieces.
Cavalcanti, Bruno Neves; Serairdarian, Paulo Isaías; Rode, Sigmar Mello
2005-05-01
This study measured the water flow commonly used in high-speed handpieces to evaluate the water flow's influence on temperature generation. Different flow speeds were evaluated between turbines that had different numbers of cooling apertures. Two water samples were collected from each high-speed handpiece at private practices and at the School of Dentistry at São José dos Campos. The first sample was collected at the customary flow and the second was collected with the terminal opened for maximum flow. The two samples were collected into weighed glass receptacles after 15 seconds of turbine operation. The glass receptacles were reweighed and the difference between weights was recorded to calculate the water flow in mL/min and for further statistical analysis. The average water flow for 137 samples was 29.48 mL/min. The flow speeds obtained were 42.38 mL/min for turbines with one coolant aperture; 34.31 mL/min for turbines with two coolant apertures; and 30.44 mL/min for turbines with three coolant apertures. There were statistical differences between turbines with one and three coolant apertures (Tukey-Kramer multiple comparisons test with P < .05). Turbine handpieces with one cooling aperture distributed more water for the burs than high-speed handpieces with more than one aperture.
NASA Astrophysics Data System (ADS)
Zhang, P.; Fu, X.
2009-10-01
Application of liquid nitrogen to cooling is widely employed in many fields, such as cooling of the high temperature superconducting devices, cryosurgery and so on, in which liquid nitrogen is generally forced to flow inside very small passages to maintain good thermal performance and stability. In order to have a full understanding of the flow and heat transfer characteristics of liquid nitrogen in micro-tube, high-speed digital photography was employed to acquire the typical two-phase flow patterns of liquid nitrogen in vertically upward micro-tubes of 0.531 and 1.042 mm inner diameters. It was found from the experimental results that the flow patterns were mainly bubbly flow, slug flow, churn flow and annular flow. And the confined bubble flow, mist flow, bubble condensation and flow oscillation were also observed. These flow patterns were characterized in different types of flow regime maps. The surface tension force and the size of the diameter were revealed to be the major factors affecting the flow pattern transitions. It was found that the transition boundaries of the slug/churn flow and churn/annular flow of the present experiment shifted to lower superficial vapor velocity; while the transition boundary of the bubbly/slug flow shifted to higher superficial vapor velocity compared to the results of the room-temperature fluids in the tubes with the similar hydraulic diameters. The corresponding transition boundaries moved to lower superficial velocity when reducing the inner diameter of the micro-tubes. Time-averaged void fraction and heat transfer characteristics for individual flow patterns were presented and special attention was paid to the effect of the diameter on the variation of void fraction.
Murdoch, Peter S; Shanley, James B
2006-09-01
Two new methods for assessing temporal trends in stream-solute concentrations at specific streamflow ranges were applied to long (40 to 50-year) but sparse (bi-weekly to quarterly sampling) stream-water quality data collected at three forested mesoscale basins along an atmospheric deposition gradient in the northeastern United States (one in north-central Pennsylvania, one in southeastern New York, and one in eastern Maine). The three data sets span the period since the implementation of the Clean Air Act in 1970 and its subsequent amendments. Declining sulfate (O4(2-)) trends since the mid 1960s were identified for all 3 rivers by one or more of the 4 methods of trend detection used. Flow-specific trends were assessed by segmenting the data sets into 3-year and 6-year blocks, then determining concentration-discharge relationships for each block. Declining sulfate (O4(2-)) trends at median flow were similar to trends determined using a Seasonal Kendall Tau test and Sen slope estimator. The trend of declining O4(2-) concentrations differed at high, median and low flow since the mid 1980s at YWC and NR, and at high and low flow at WR, but the trends leveled or reversed at high flow from 1999 through 2002. Trends for the period of record at high flows were similar to medium- and low-flow trends for Ca2++ Mg2+ concentrations at WR, non-significant at YWC, and were more negative at low flow than at high flow at NR; trends in nitrate (NO3-), and alkalinity (ALK) concentrations were different at different flow conditions, and in ways that are consistent with the hydrology and deposition history at each watershed. Quarterly sampling is adequate for assessing average-flow trends in the chemical parameters assessed over long time periods (approximately decades). However, with even a modest effort at sampling a range of flow conditions within each year, trends at specified flows for constituents with strong concentration-discharge relationships can be evaluated and may allow early detection of ecosystem response to climate change and pollution management strategies.
Flowing gas, non-nuclear experiments on the gas core reactor
NASA Technical Reports Server (NTRS)
Kunze, J. F.; Suckling, D. H.; Copper, C. G.
1972-01-01
Flow tests were conducted on models of the gas core (cavity) reactor. Variations in cavity wall and injection configurations were aimed at establishing flow patterns that give a maximum of the nuclear criticality eigenvalue. Correlation with the nuclear effect was made using multigroup diffusion theory normalized by previous benchmark critical experiments. Air was used to simulate the hydrogen propellant in the flow tests, and smoked air, argon, or freon to simulate the central nuclear fuel gas. All tests were run in the down-firing direction so that gravitational effects simulated the acceleration effect of a rocket. Results show that acceptable flow patterns with high volume fraction for the simulated nuclear fuel gas and high flow rate ratios of propellant to fuel can be obtained. Using a point injector for the fuel, good flow patterns are obtained by directing the outer gas at high velocity along the cavity wall, using louvered or oblique-angle-honeycomb injection schemes.
Zhao, Jisong
2018-05-17
Wall shear stress is an important quantity in fluid mechanics, but its measurement is a challenging task. An approach to measure wall shear stress vector distribution using shear-sensitive liquid crystal coating (SSLCC) is described. The wall shear stress distribution on the test surface beneath high speed jet flow is measured while using the proposed technique. The flow structures inside the jet flow are captured and the results agree well with the streakline pattern that was visualized using the oil-flow technique. In addition, the shock diamonds inside the supersonic jet flow are visualized clearly using SSLCC and the results are compared with the velocity contour that was measured using the particle image velocimetry (PIV) technique. The work of this paper demonstrates the application of SSLCC in the measurement/visualization of wall shear stress in high speed flow.
Measurement of Wall Shear Stress in High Speed Air Flow Using Shear-Sensitive Liquid Crystal Coating
Zhao, Jisong
2018-01-01
Wall shear stress is an important quantity in fluid mechanics, but its measurement is a challenging task. An approach to measure wall shear stress vector distribution using shear-sensitive liquid crystal coating (SSLCC) is described. The wall shear stress distribution on the test surface beneath high speed jet flow is measured while using the proposed technique. The flow structures inside the jet flow are captured and the results agree well with the streakline pattern that was visualized using the oil-flow technique. In addition, the shock diamonds inside the supersonic jet flow are visualized clearly using SSLCC and the results are compared with the velocity contour that was measured using the particle image velocimetry (PIV) technique. The work of this paper demonstrates the application of SSLCC in the measurement/visualization of wall shear stress in high speed flow. PMID:29772822
NASA Astrophysics Data System (ADS)
Valentine, Greg A.; Sweeney, Matthew R.
2018-02-01
Many geological flows are sourced by falling gas-particle mixtures, such as during collapse of lava domes, and impulsive eruptive jets, and sustained columns, and rock falls. The transition from vertical to lateral flow is complex due to the range of coupling between particles of different sizes and densities and the carrier gas, and due to the potential for compressible flow phenomena. We use multiphase modeling to explore these dynamics. In mixtures with small particles, and with subsonic speeds, particles follow the gas such that outgoing lateral flows have similar particle concentration and speed as the vertical flows. Large particles concentrate immediately upon impact and move laterally away as granular flows overridden by a high-speed jet of expelled gas. When a falling flow is supersonic, a bow shock develops above the impact zone, and this produces a zone of high pressure from which lateral flows emerge as overpressured wall jets. The jets form complex structures as the mixtures expand and accelerate and then recompress through a recompression zone that mimics a Mach disk shock in ideal gas jets. In mixtures with moderate to high ratios of fine to coarse particles, the latter tend to follow fine particles through the expansion-recompression flow fields because of particle-particle drag. Expansion within the flow fields can lead to locally reduced gas pressure that could enhance substrate erosion in natural flows. The recompression zones form at distances, and have peak pressures, that are roughly proportional to the Mach numbers of impacting flows.
Craven, S.W.; Peterson, J.T.; Freeman, Mary C.; Kwak, T.J.; Irwin, E.
2010-01-01
Modifications to stream hydrologic regimes can have a profound influence on the dynamics of their fish populations. Using hierarchical linear models, we examined the relations between flow regime and young-of-year fish density using fish sampling and discharge data from three different warmwater streams in Illinois, Alabama, and Georgia. We used an information theoretic approach to evaluate the relative support for models describing hypothesized influences of five flow regime components representing: short-term high and low flows; short-term flow stability; and long-term mean flows and flow stability on fish reproductive success during fish spawning and rearing periods. We also evaluated the influence of ten fish species traits on fish reproductive success. Species traits included spawning duration, reproductive strategy, egg incubation rate, swimming locomotion morphology, general habitat preference, and food habits. Model selection results indicated that young-of-year fish density was positively related to short-term high flows during the spawning period and negatively related to flow variability during the rearing period. However, the effect of the flow regime components varied substantially among species, but was related to species traits. The effect of short-term high flows on the reproductive success was lower for species that broadcast their eggs during spawning. Species with cruiser swimming locomotion morphologies (e.g., Micropterus) also were more vulnerable to variable flows during the rearing period. Our models provide insight into the conditions and timing of flows that influence the reproductive success of warmwater stream fishes and may guide decisions related to stream regulation and management. ?? 2010 US Government.
Unified approach for incompressible flows
NASA Astrophysics Data System (ADS)
Chang, Tyne-Hsien
1995-07-01
A unified approach for solving incompressible flows has been investigated in this study. The numerical CTVD (Centered Total Variation Diminishing) scheme used in this study was successfully developed by Sanders and Li for compressible flows, especially for the high speed. The CTVD scheme possesses better mathematical properties to damp out the spurious oscillations while providing high-order accuracy for high speed flows. It leads us to believe that the CTVD scheme can equally well apply to solve incompressible flows. Because of the mathematical difference between the governing equations for incompressible and compressible flows, the scheme can not directly apply to the incompressible flows. However, if one can modify the continuity equation for incompressible flows by introducing pseudo-compressibility, the governing equations for incompressible flows would have the same mathematical characters as compressible flows. The application of the algorithm to incompressible flows thus becomes feasible. In this study, the governing equations for incompressible flows comprise continuity equation and momentum equations. The continuity equation is modified by adding a time-derivative of the pressure term containing the artificial compressibility. The modified continuity equation together with the unsteady momentum equations forms a hyperbolic-parabolic type of time-dependent system of equations. Thus, the CTVD schemes can be implemented. In addition, the physical and numerical boundary conditions are properly implemented by the characteristic boundary conditions. Accordingly, a CFD code has been developed for this research and is currently under testing. Flow past a circular cylinder was chosen for numerical experiments to determine the accuracy and efficiency of the code. The code has shown some promising results.
Unified approach for incompressible flows
NASA Technical Reports Server (NTRS)
Chang, Tyne-Hsien
1995-01-01
A unified approach for solving incompressible flows has been investigated in this study. The numerical CTVD (Centered Total Variation Diminishing) scheme used in this study was successfully developed by Sanders and Li for compressible flows, especially for the high speed. The CTVD scheme possesses better mathematical properties to damp out the spurious oscillations while providing high-order accuracy for high speed flows. It leads us to believe that the CTVD scheme can equally well apply to solve incompressible flows. Because of the mathematical difference between the governing equations for incompressible and compressible flows, the scheme can not directly apply to the incompressible flows. However, if one can modify the continuity equation for incompressible flows by introducing pseudo-compressibility, the governing equations for incompressible flows would have the same mathematical characters as compressible flows. The application of the algorithm to incompressible flows thus becomes feasible. In this study, the governing equations for incompressible flows comprise continuity equation and momentum equations. The continuity equation is modified by adding a time-derivative of the pressure term containing the artificial compressibility. The modified continuity equation together with the unsteady momentum equations forms a hyperbolic-parabolic type of time-dependent system of equations. Thus, the CTVD schemes can be implemented. In addition, the physical and numerical boundary conditions are properly implemented by the characteristic boundary conditions. Accordingly, a CFD code has been developed for this research and is currently under testing. Flow past a circular cylinder was chosen for numerical experiments to determine the accuracy and efficiency of the code. The code has shown some promising results.
Flow visualization for investigating stator losses in a multistage axial compressor
NASA Astrophysics Data System (ADS)
Smith, Natalie R.; Key, Nicole L.
2015-05-01
The methodology and implementation of a powder-paint-based flow visualization technique along with the illuminated flow physics are presented in detail for application in a three-stage axial compressor. While flow visualization often accompanies detailed studies, the turbomachinery literature lacks a comprehensive study which both utilizes flow visualization to interrupt the flow field and explains the intricacies of execution. Lessons learned for obtaining high-quality images of surface flow patterns are discussed in this study. Fluorescent paint is used to provide clear, high-contrast pictures of the recirculation regions on shrouded vane rows. An edge-finding image processing procedure is implemented to provide a quantitative measure of vane-to-vane variability in flow separation, which is approximately 7 % of the suction surface length for Stator 1. Results include images of vane suction side corner separations from all three stages at three loading conditions. Additionally, streakline patterns obtained experimentally are compared with those calculated from computational models. Flow physics associated with vane clocking and increased rotor tip clearance and their implications to stator loss are also investigated with this flow visualization technique. With increased rotor tip clearance, the vane surface flow patterns show a shift to larger separations and more radial flow at the tip. Finally, the effects of instrumentation on the flow field are highlighted.
Sensing and Active Flow Control for Advanced BWB Propulsion-Airframe Integration Concepts
NASA Technical Reports Server (NTRS)
Fleming, John; Anderson, Jason; Ng, Wing; Harrison, Neal
2005-01-01
In order to realize the substantial performance benefits of serpentine boundary layer ingesting diffusers, this study investigated the use of enabling flow control methods to reduce engine-face flow distortion. Computational methods and novel flow control modeling techniques were utilized that allowed for rapid, accurate analysis of flow control geometries. Results were validated experimentally using the Techsburg Ejector-based wind tunnel facility; this facility is capable of simulating the high-altitude, high subsonic Mach number conditions representative of BWB cruise conditions.
Performance of high flow rate samplers for respirable particle collection.
Lee, Taekhee; Kim, Seung Won; Chisholm, William P; Slaven, James; Harper, Martin
2010-08-01
The American Conference of Governmental Industrial hygienists (ACGIH) lowered the threshold limit value (TLV) for respirable crystalline silica (RCS) exposure from 0.05 to 0.025 mg m(-3) in 2006. For a working environment with an airborne dust concentration near this lowered TLV, the sample collected with current standard respirable aerosol samplers might not provide enough RCS for quantitative analysis. Adopting high flow rate sampling devices for respirable dust containing silica may provide a sufficient amount of RCS to be above the limit of quantification even for samples collected for less than full shift. The performances of three high flow rate respirable samplers (CIP10-R, GK2.69, and FSP10) have been evaluated in this study. Eleven different sizes of monodisperse aerosols of ammonium fluorescein were generated with a vibrating orifice aerosol generator in a calm air chamber in order to determine the sampling efficiency of each sampler. Aluminum oxide particles generated by a fluidized bed aerosol generator were used to test (i) the uniformity of a modified calm air chamber, (ii) the effect of loading on the sampling efficiency, and (iii) the performance of dust collection compared to lower flow rate cyclones in common use in the USA (10-mm nylon and Higgins-Dewell cyclones). The coefficient of variation for eight simultaneous samples in the modified calm air chamber ranged from 1.9 to 6.1% for triplicate measures of three different aerosols. The 50% cutoff size ((50)d(ae)) of the high flow rate samplers operated at the flow rates recommended by manufacturers were determined as 4.7, 4.1, and 4.8 microm for CIP10-R, GK2.69, and FSP10, respectively. The mass concentration ratio of the high flow rate samplers to the low flow rate cyclones decreased with decreasing mass median aerodynamic diameter (MMAD) and high flow rate samplers collected more dust than low flow rate samplers by a range of 2-11 times based on gravimetric analysis. Dust loading inside the high flow rate samplers does not appear to affect the particle separation in either FSP10 or GK2.69. The high flow rate samplers overestimated compared to the International Standards Organization/Comité Européen de Normalisation/ACGIH respirable convention [up to 40% at large MMAD (27.5 microm)] and could provide overestimated exposure data with the current flow rates. However, both cyclones appeared to be able to provide relatively unbiased assessments of RCS when their flow rates were adjusted.
Performance of High Flow Rate Samplers for Respirable Particle Collection
Lee, Taekhee; Kim, Seung Won; Chisholm, William P.; Slaven, James; Harper, Martin
2010-01-01
The American Conference of Governmental Industrial hygienists (ACGIH) lowered the threshold limit value (TLV) for respirable crystalline silica (RCS) exposure from 0.05 to 0.025 mg m−3 in 2006. For a working environment with an airborne dust concentration near this lowered TLV, the sample collected with current standard respirable aerosol samplers might not provide enough RCS for quantitative analysis. Adopting high flow rate sampling devices for respirable dust containing silica may provide a sufficient amount of RCS to be above the limit of quantification even for samples collected for less than full shift. The performances of three high flow rate respirable samplers (CIP10-R, GK2.69, and FSP10) have been evaluated in this study. Eleven different sizes of monodisperse aerosols of ammonium fluorescein were generated with a vibrating orifice aerosol generator in a calm air chamber in order to determine the sampling efficiency of each sampler. Aluminum oxide particles generated by a fluidized bed aerosol generator were used to test (i) the uniformity of a modified calm air chamber, (ii) the effect of loading on the sampling efficiency, and (iii) the performance of dust collection compared to lower flow rate cyclones in common use in the USA (10-mm nylon and Higgins–Dewell cyclones). The coefficient of variation for eight simultaneous samples in the modified calm air chamber ranged from 1.9 to 6.1% for triplicate measures of three different aerosols. The 50% cutoff size (50dae) of the high flow rate samplers operated at the flow rates recommended by manufacturers were determined as 4.7, 4.1, and 4.8 μm for CIP10-R, GK2.69, and FSP10, respectively. The mass concentration ratio of the high flow rate samplers to the low flow rate cyclones decreased with decreasing mass median aerodynamic diameter (MMAD) and high flow rate samplers collected more dust than low flow rate samplers by a range of 2–11 times based on gravimetric analysis. Dust loading inside the high flow rate samplers does not appear to affect the particle separation in either FSP10 or GK2.69. The high flow rate samplers overestimated compared to the International Standards Organization/Comité Européen de Normalisation/ACGIH respirable convention [up to 40% at large MMAD (27.5 μm)] and could provide overestimated exposure data with the current flow rates. However, both cyclones appeared to be able to provide relatively unbiased assessments of RCS when their flow rates were adjusted. PMID:20660144
NASA Astrophysics Data System (ADS)
Lirer, L.; Vinci, A.; Alberico, I.; Gifuni, T.; Bellucci, F.; Petrosino, P.; Tinterri, R.
2001-02-01
In the period between AD 79 and AD 472 eruptions, inter-eruption debris flow and hyperconcentrated-flood-flow deposits were deposited in the Somma-Vesuvio areas. These deposits, forming cliffs at the Torre Bassano and Torre Annunziata, were generated by highly erosive floods, whose erosive capacity was enhanced by acceleration due to the steepness of the volcano slopes. In this type of deposits were distinguished five depositional facies (from A to E) outcropping well at Torre Bassano where they are stacked in three fining-upward (FU) sequences, probably representing three forestepping — backstepping episodes in the emplacement area of gravity flows. These five facies from coarse to fine are interpreted to represent the downcurrent evolution of particular composite sediment gravity flows characterized by horizontal segregation of the main grain-size population. The blocking of these highly concentrated composite parent flows would first produce the deposition of the coarse front part to form facies A and then the overriding of this deposit by the bipartite flow, which constitutes the body of the flow. This flow is composed of a highly concentrated basal inertia carpet responsible for the deposition of facies B, C and D and an upper hyperconcentrated flood flow that forms facies E, through traction plus fallout processes, respectively. Finally, the occurrence of "lahar" type events at Somma-Vesuvio region even at present times is discussed.
Coggins, Marie A; Healy, Catherine B; Lee, Taekhee; Harper, Martin
2014-01-01
Restoration stone work regularly involves work with high-silica-content materials (e.g., sandstone), but low-silica-content materials (<2 % quartz) such as limestone and lime mortar are also used. A combination of short sample duration and low silica content makes the quantification of worker exposure to respirable crystalline silica (RCS) difficult. This problem will be further compounded by the introduction of lower occupational exposure standards for RCS. The objective of this work was to determine whether higher-flow samplers might be an effective tool in characterizing lower RCS concentrations. A short study was performed to evaluate the performance of three high-flow samplers (FSP10, CIP10-R, and GK2.69) using side-by-side sampling with low-flow samplers (SIMPEDS and 10-mm nylon cyclones) for RCS exposure measurement at a restoration stonemasonry field site. A total of 19 side-by-side sample replicates for each high-flow and low-flow sampler pair were collected from work tasks involving limestone and sandstone. Most of the RCS (quartz) masses collected with the high-flow-rate samplers were above the limit of detection (62 % to 84 %) relative to the low-flow-rate samplers (58 % to 78 %). The average of the respirable mass concentration ratios for CIP10-R/SIMPEDS, GK2.69/10-mm nylon, FSP10/SIMPEDS, and FSP10/10-mm nylon pairs and the range of the quartz concentration ratios for the CIP10-R/SIMPEDS, CIP10-R/10-mm nylon, GK2.69/10-mm nylon, FSP10/SIMPEDS, and FSP10/10-mm nylon pairs included unity with an average close to unity, indicating no likely difference between the reported values for each sampler. Workers reported problems related to the weight of the sampling pumps for the high-flow-rate samplers. Respirable mass concentration data suggest that the high-flow-rate samplers evaluated would be appropriate for sampling respirable dust concentrations during restoration stone work. Results from the comparison of average quartz concentration ratios between high-and low-flow samplers suggest that the higher mass collected by the high-flow-rate samplers did not interfere with the quartz measurement. A sig-nificant portion of the data collected with the high-flow-rate samplers (>82 %) were greater than the limit of detection, which indicates that these samplers are suitable for quantifying exposures, even with low-quartz materials.
Cunningham, K.J.; Renken, R.A.; Wacker, M.A.; Zygnerski, M.R.; Robinson, E.; Shapiro, A.M.; Wingard, G.L.
2006-01-01
Combined analyses of cores, borehole geophysical logs, and cyclostratigraphy produced a new conceptual hydrogeologic framework for the triple-porosity (matrix, touching-vug, and conduit porosity) karst limestone of the Biscayne aquifer in a 0.65 km2 study area, SE Florida. Vertical lithofacies successions, which have recurrent stacking patterns, fit within high-frequency cycles. We define three ideal high-frequency cycles as: (1) upward-shallowing subtidal cycles, (2) upward-shallowing paralic cycles, and (3) aggradational subtidal cycles. Digital optical borehole images, tracers, and flow meters indicate that there is a predictable vertical pattern of porosity and permeability within the three ideal cycles, because the distribution of porosity and permeability is related to lithofacies. Stratiform zones of high permeability commonly occur just above flooding surfaces in the lower part of upward-shallowing subtidal and paralic cycles, forming preferential groundwater flow zones. Aggradational subtidal cycles are either mostly high-permeability zones or leaky, low-permeability units. In the study area, groundwater flow within stratiform high-permeability zones is through a secondary pore system of touching-vug porosity principally related to molds of burrows and pelecypods and to interburrow vugs. Movement of a dye-tracer pulse observed using a borehole fluid-temperature tool during a conservative tracer test indicates heterogeneous permeability. Advective movement of the tracer appears to be most concentrated within a thin stratiform flow zone contained within the lower part of a high-frequency cycle, indicating a distinctly high relative permeability for this zone. Borehole flow-meter measurements corroborate the relatively high permeability of the flow zone. Identification and mapping of such high-permeability flow zones is crucial to conceptualization of karst groundwater flow within a cyclostratigraphic framework. Many karst aquifers are included in cyclic platform carbonates. Clearly, a cyclostratigraphic approach that translates carbonate aquifer heterogeneity into a consistent framework of correlative units will improve simulation of karst groundwater flow. ?? 2006 Geological Society of America.
Unsteady Flow Simulation of a Sweeping Jet Actuator Using a Lattice-Boltzmann Method
NASA Technical Reports Server (NTRS)
Duda, B.; Wessels, M.; Fares, E.; Vatsa, V.
2016-01-01
Active flow control technology is increasingly used in aerospace applications to control flow separation and to improve aerodynamic performance. In this paper, PowerFLOW is used to simulate the flow through a sweeping jet actuator at two different pressure ratios. The lower pressure ratio leads to a high subsonic flow, whereas the high pressure ratio produces a choked flow condition. Comparison of numerical results with experimental data is shown, which includes qualitatively good agreement of pressure histories and spectra. PIV measurements are also available but the simulation overestimates mean and fluctuation quantities outside the actuator. If supply pressure is matched at one point inside the mixing chamber a good qualitative agreement is achieved at all other monitor points.
Branched hybrid vessel: in vitro loaded hydrodynamic forces influence the tissue architecture.
Kobashi, T; Matsuda, T
2000-01-01
This study was conducted to investigate how a continuous load of hydrodynamic stresses influences the tissue architecture of a branched hybrid vessel in vitro. Tubular hybrid medial tissue of small (3 mm) and large (6 mm) diameters, prepared by thermal gelation of a cold mixed solution of bovine smooth muscle cells (SMCs) and type I collagen in glass molds, was assembled into a branched hybrid medial tissue by end-to-side anastomosis. After a 2-week culture period, bovine endothelial cells (ECs) were seeded onto the luminal surface. The branched hybrid vessel was connected to a mock circulatory loop system and tested for two modes of flow: 1) low flow rate for 24 h, 2) high flow rate for 24 or 72 h. After exposure to a low flow rate for 24 h, cobblestone appearance of the ECs was dominant. After exposure to a high flow rate, EC alignment in the direction of flow was observed in the branch region, except at the region of predicted flow separation where ECs retained their polygonal configuration. Elongation of SMCs with no preferential orientation was observed in the case of vessels exposed to a high flow rate for 24 h, and circumferential orientation was prominent in those exposed to a high flow rate for 72 h. On the other hand, collagen fibrils exhibited no preferential orientation in either case. After injection of Evans blue-albumin conjugate into the circulating medium, the luminal surface of the hybrid vessel exposed to a high flow rate for 24 h was examined by confocal laser scanning microscopy. The fluorescence intensity was low at the high shear zone in the branch region, while at the flow separation region it was very high, indicating the increased albumin permeability at the latter region. These findings reflect region-specific tissue architecture in the branch region, in response to the local flow pattern, and may provide an in vitro atherosclerosis model as well as a fundamental basis for the development of functional branched hybrid grafts.
Documentation of a Conduit Flow Process (CFP) for MODFLOW-2005
Shoemaker, W. Barclay; Kuniansky, Eve L.; Birk, Steffen; Bauer, Sebastian; Swain, Eric D.
2007-01-01
This report documents the Conduit Flow Process (CFP) for the modular finite-difference ground-water flow model, MODFLOW-2005. The CFP has the ability to simulate turbulent ground-water flow conditions by: (1) coupling the traditional ground-water flow equation with formulations for a discrete network of cylindrical pipes (Mode 1), (2) inserting a high-conductivity flow layer that can switch between laminar and turbulent flow (Mode 2), or (3) simultaneously coupling a discrete pipe network while inserting a high-conductivity flow layer that can switch between laminar and turbulent flow (Mode 3). Conduit flow pipes (Mode 1) may represent dissolution or biological burrowing features in carbonate aquifers, voids in fractured rock, and (or) lava tubes in basaltic aquifers and can be fully or partially saturated under laminar or turbulent flow conditions. Preferential flow layers (Mode 2) may represent: (1) a porous media where turbulent flow is suspected to occur under the observed hydraulic gradients; (2) a single secondary porosity subsurface feature, such as a well-defined laterally extensive underground cave; or (3) a horizontal preferential flow layer consisting of many interconnected voids. In this second case, the input data are effective parameters, such as a very high hydraulic conductivity, representing multiple features. Data preparation is more complex for CFP Mode 1 (CFPM1) than for CFP Mode 2 (CFPM2). Specifically for CFPM1, conduit pipe locations, lengths, diameters, tortuosity, internal roughness, critical Reynolds numbers (NRe), and exchange conductances are required. CFPM1, however, solves the pipe network equations in a matrix that is independent of the porous media equation matrix, which may mitigate numerical instability associated with solution of dual flow components within the same matrix. CFPM2 requires less hydraulic information and knowledge about the specific location and hydraulic properties of conduits, and turbulent flow is approximated by modifying horizontal conductances assembled by the Block-Centered Flow (BCF), Layer-Property Flow (LPF), or Hydrogeologic-Unit Flow Packages (HUF) of MODFLOW-2005. For both conduit flow pipes (CFPM1) and preferential flow layers (CFPM2), critical Reynolds numbers are used to determine if flow is laminar or turbulent. Due to conservation of momentum, flow in a laminar state tends to remain laminar and flow in a turbulent state tends to remain turbulent. This delayed transition between laminar and turbulent flow is introduced in the CFP, which provides an additional benefit of facilitating convergence of the computer algorithm during iterations of transient simulations. Specifically, the user can specify a higher critical Reynolds number to determine when laminar flow within a pipe converts to turbulent flow, and a lower critical Reynolds number for determining when a pipe with turbulent flow switches to laminar flow. With CFPM1, the Hagen-Poiseuille equation is used for laminar flow conditions and the Darcy-Weisbach equation is applied to turbulent flow conditions. With CFPM2, turbulent flow is approximated by reducing the laminar hydraulic conductivity by a nonlinear function of the Reynolds number, once the critical head difference is exceeded. This adjustment approximates the reductions in mean velocity under turbulent ground-water flow conditions.
Igarashi, M; Nakae, Y; Ichimiya, N; Watanabe, H; Iwasaki, H; Namiki, A
1993-02-01
Many anesthesiologists are now interested in low flow, closed circuit anesthesia from an economical and environmental point of view. In order to evaluate clinically a newly developed electronically controlled anesthesia machine Engström's ELSA, we compared low flow, closed circuit anesthesia on 38 ASA I-II patients using ELSA, with high flow anesthesia on 12 ASA I-II patients using a conventional anesthesia machine. The results were as follows; 1. We could perform safe and economical low flow, closed circuit anesthesia using ELSA's injection vaporizer and accurate monitoring devices for O2, N2O, CO2 and concentrations of various volatile anesthetic agents. 2. Under low flow anesthesia, isoflurane consumption was 5.3 +/- 1.1 ml.h-1 x Vol.%-1 (mean +/- SE) with ELSA, which is about one fourth of the high flow anesthesia consumption (22.6 +/- 2.1 ml.h-1 x Vol.%-1 (mean +/- SE). 3. Low flow closed circuit anesthesia could maintain significantly higher temperature and humidity compared with high flow anesthesia. 4. Under low flow anesthesia of more than 7hrs, color of soda lime becomes blue, but this does not affect FIO2 nor PaCO2, and the method is clinically safe for patients.
Reversing flow causes passive shark scale actuation in a separating turbulent boundary layer
NASA Astrophysics Data System (ADS)
Lang, Amy; Gemmell, Bradford; Motta, Phil; Habegger, Laura; Du Clos, Kevin; Devey, Sean; Stanley, Caleb; Santos, Leo
2017-11-01
Control of flow separation by shortfin mako skin in experiments has been demonstrated, but the mechanism is still poorly understood yet must be to some extent Re independent. The hypothesized mechanisms inherent in the shark skin for controlling flow separation are: (1) the scales, which are capable of being bristled only by reversing flow, inhibit flow reversal events from further development into larger-scale separation and (2) the cavities formed when scales bristle induces mixing of high momentum flow towards the wall thus energizing the flow close to the surface. Two studies were carried out to measure passive scale actuation caused by reversing flow. A small flow channel induced an unsteady, wake flow over the scales prompting reversing flow events and scale actuation. To resolve the flow and scale movements simultaneously we used specialized optics at high magnification (1 mm field of view) at 50,000 fps. In another study, 3D printed models of shark scales, or microflaps (bristling capability up to 50 degrees), were set into a flat plate. Using a tripped, turbulent boundary layer grown over the long flat plate and a localized adverse pressure gradient, a separation bubble was generated within which the microflaps were placed. Passive flow actuation of both shark scales and microflaps by reversing flow was observed. Funding from Army Research Office and NSF REU site Grant.
Flow Visualization Techniques in Wind Tunnel Tests of a Full-Scale F/A-18 Aircraft
NASA Technical Reports Server (NTRS)
Lanser, Wendy R.; Botha, Gavin J.; James, Kevin D.; Bennett, Mark; Crowder, James P.; Cooper, Don; Olson, Lawrence (Technical Monitor)
1994-01-01
The proposed paper presents flow visualization performed during experiments conducted on a full-scale F/A-18 aircraft in the 80- by 120-Foot Wind-Tunnel at NASA Ames Research Center. The purpose of the flow-visualization experiments was to document the forebody and leading edge extension (LEX) vortex interaction along with the wing flow patterns at high angles of attack and low speed high Reynolds number conditions. This investigation used surface pressures in addition to both surface and off-surface flow visualization techniques to examine the flow field on the forebody, canopy, LEXS, and wings. The various techniques used to visualize the flow field were fluorescent tufts, flow cones treated with reflective material, smoke in combination with a laser light sheet, and a video imaging system for three-dimension vortex tracking. The flow visualization experiments were conducted over an angle of attack range from 20 deg to 45 deg and over a sideslip range from -10 deg to 10 deg. The various visualization techniques as well as the pressure distributions were used to understand the flow field structure. The results show regions of attached and separated flow on the forebody, canopy, and wings as well as the vortical flow over the leading-edge extensions. This paper will also present flow visualization comparisons with the F-18 HARV flight vehicle and small-scale oil flows on the F-18.
NASA Astrophysics Data System (ADS)
Liu, Weixin; Jin, Ningde; Han, Yunfeng; Ma, Jing
2018-06-01
In the present study, multi-scale entropy algorithm was used to characterise the complex flow phenomena of turbulent droplets in high water-cut oil-water two-phase flow. First, we compared multi-scale weighted permutation entropy (MWPE), multi-scale approximate entropy (MAE), multi-scale sample entropy (MSE) and multi-scale complexity measure (MCM) for typical nonlinear systems. The results show that MWPE presents satisfied variability with scale and anti-noise ability. Accordingly, we conducted an experiment of vertical upward oil-water two-phase flow with high water-cut and collected the signals of a high-resolution microwave resonant sensor, based on which two indexes, the entropy rate and mean value of MWPE, were extracted. Besides, the effects of total flow rate and water-cut on these two indexes were analysed. Our researches show that MWPE is an effective method to uncover the dynamic instability of oil-water two-phase flow with high water-cut.
Spahr, Norman E.; Dubrovsky, Neil M.; Gronberg, JoAnn M.; Franke, O. Lehn; Wolock, David M.
2010-01-01
Hydrograph separation was used to determine the base-flow component of streamflow for 148 sites sampled as part of the National Water-Quality Assessment program. Sites in the Southwest and the Northwest tend to have base-flow index values greater than 0.5. Sites in the Midwest and the eastern portion of the Southern Plains generally have values less than 0.5. Base-flow index values for sites in the Southeast and Northeast are mixed with values less than and greater than 0.5. Hypothesized flow paths based on relative scaling of soil and bedrock permeability explain some of the differences found in base-flow index. Sites in areas with impermeable soils and bedrock (areas where overland flow may be the primary hydrologic flow path) tend to have lower base-flow index values than sites in areas with either permeable bedrock or permeable soils (areas where deep groundwater flow paths or shallow groundwater flow paths may occur). The percentage of nitrate load contributed by base flow was determined using total flow and base flow nitrate load models. These regression-based models were calibrated using available nitrate samples and total streamflow or base-flow nitrate samples and the base-flow component of total streamflow. Many streams in the country have a large proportion of nitrate load contributed by base flow: 40 percent of sites have more than 50 percent of the total nitrate load contributed by base flow. Sites in the Midwest and eastern portion of the Southern Plains generally have less than 50 percent of the total nitrate load contributed by base flow. Sites in the Northern Plains and Northwest have nitrate load ratios that generally are greater than 50 percent. Nitrate load ratios for sites in the Southeast and Northeast are mixed with values less than and greater than 50 percent. Significantly lower contributions of nitrate from base flow were found at sites in areas with impermeable soils and impermeable bedrock. These areas could be most responsive to nutrient management practices designed to reduce nutrient transport to streams by runoff. Conversely, sites with potential for shallow or deep groundwater contribution (some combination of permeable soils or permeable bedrock) had significantly greater contributions of nitrate from base flow. Effective nutrient management strategies would consider groundwater nitrate contributions in these areas. Mean annual base-flow nitrate concentrations were compared to shallow-groundwater nitrate concentrations for 27 sites. Concentrations in groundwater tended to be greater than base-flow concentrations for this group of sites. Sites where groundwater concentrations were much greater than base-flow concentrations were found in areas of high infiltration and oxic groundwater conditions. The lack of correspondingly high concentrations in the base flow of the paired surface-water sites may have multiple causes. In some settings, there has not been sufficient time for enough high-nitrate shallow groundwater to migrate to the nearby stream. In these cases, the stream nitrate concentrations lag behind those in the shallow groundwater, and concentrations may increase in the future as more high-nitrate groundwater reaches the stream. Alternatively, some of these sites may have processes that rapidly remove nitrate as water moves from the aquifer into the stream channel. Partitioning streamflow and nitrate load between the quick-flow and base-flow portions of the hydrograph coupled with relative scales of soil permeability can infer the importance of surface water compared to groundwater nitrate sources. Study of the relation of nitrate concentrations to base-flow index and the comparison of groundwater nitrate concentrations to stream nitrate concentrations during times when base-flow index is high can provide evidence of potential nitrate transport mechanisms. Accounting for the surface-water and groundwater contributions of nitrate is crucial to effective management and remediat
Space-Time Variability in River Flow Regimes of Northeast Turkey
NASA Astrophysics Data System (ADS)
Saris, F.; Hannah, D. M.; Eastwood, W. J.
2011-12-01
The northeast region of Turkey is characterised by relatively high annual precipitation totals and river flow. It is a mountainous region with high ecological status and also it is of prime interest to the energy sector. These characteristics make this region an important area for a hydroclimatology research in terms of future availability and management of water resources. However, there is not any previous research identifying hydroclimatological variability across the region. This study provides first comprehensive and detailed information on river flow regimes of northeast Turkey which is delimited by two major river basins namely East Black Sea (EBS) and Çoruh River (ÇRB) basins. A novel river flow classification is used that yields a large-scale perspective on hydroclimatology patterns of the region and allows interpretations regarding the controlling factors on river flow variability. River flow regimes are classified (with respect to timing and magnitude of flow) to examine spatial variability based on long-term average regimes, and also by grouping annual regimes for each station-year to identify temporal (between-year) variability. Results indicate that rivers in northeast Turkey are characterised by marked seasonal flow variation with an April-May-June maximum flow period. Spatial variability in flow regime seasonality is dependent largely on the topography of the study area. The EBS Basin, for which the North Anatolian Mountains cover the eastern part, is characterised by a May-June peak; whereas the ÇRB is defined by an April-May flow peak. The timing of river flows indicates that snowmelt is an important process and contributor of river flow maxima for both basins. The low flow season is January and February. Intermediate and low regime magnitude classes dominate in ÇRB and EBS basins, respectively, while high flow magnitude class is observed for one station only across the region. Result of regime stability analysis (year-to-year variation) shows that April-May and May-June peak shape classes together with low and intermediate magnitude classes are the most frequent and persistent flow regimes. This research has advanced understanding of hydroclimatological processes in northeast Turkey by identifying river flow regimes and together with explanations regarding the controlling factors on river flow variability.
NASA Astrophysics Data System (ADS)
Yu, Chenghai; Ma, Ning; Wang, Kai; Du, Juan; Van den Braembussche, R. A.; Lin, Feng
2014-04-01
A similitude method to model the tip clearance flow in a high-speed compressor with a low-speed model is presented in this paper. The first step of this method is the derivation of similarity criteria for tip clearance flow, on the basis of an inviscid model of tip clearance flow. The aerodynamic parameters needed for the model design are then obtained from a numerical simulation of the target high-speed compressor rotor. According to the aerodynamic and geometric parameters of the target compressor rotor, a large-scale low-speed rotor blade is designed with an inverse blade design program. In order to validate the similitude method, the features of tip clearance flow in the low-speed model compressor are compared with the ones in the high-speed compressor at both design and small flow rate points. It is found that not only the trajectory of the tip leakage vortex but also the interface between the tip leakage flow and the incoming main flow in the high-speed compressor match well with that of its low speed model. These results validate the effectiveness of the similitude method for the tip clearance flow proposed in this paper.
NASA Astrophysics Data System (ADS)
Noffz, Torsten; Kordilla, Jannes; Dentz, Marco; Sauter, Martin
2017-04-01
Flow in unsaturated fracture networks constitutes a high potential for rapid mass transport and can therefore possibly contributes to the vulnerability of aquifer systems. Numerical models are generally used to predict flow and transport and have to reproduce various complex effects of gravity-driven flow dynamics. However, many classical volume-effective modelling approaches often do not grasp the non-linear free surface flow dynamics and partitioning behaviour at fracture intersections in unsaturated fracture networks. Better process understanding can be obtained by laboratory experiments, that isolate single aspects of the mass partitioning process, which influence travel time distributions and allow possible cross-scale applications. We present a series of percolation experiments investigating partitioning dynamics of unsaturated multiphase flow at an individual horizontal fracture intersection. A high precision multichannel dispenser is used to establish gravity-driven free surface flow on a smooth and vertical PMMA (poly(methyl methacrylate)) surface at rates ranging from 1.5 to 4.5 mL/min to obtain various flow modes (droplets; rivulets). Cubes with dimensions 20 x 20 x 20 cm are used to create a set of simple geometries. A digital balance provides continuous real-time cumulative mass bypassing the network. The influence of variable flow rate, atmospheric pressure and temperature on the stability of flow modes is shown in single-inlet experiments. Droplet and rivulet flow are delineated and a transition zone exhibiting mixed flow modes can be determined. Furthermore, multi-inlet setups with constant total inflow rates are used to reduce variance and the effect of erratic free-surface flow dynamics. Investigated parameters include: variable aperture widths df, horizontal offsets dv of the vertical fracture surface and alternating injection methods for both droplet and rivulet flow. Repetitive structures with several horizontal fractures extend arrival times but also complexity and variance. Finally, impacts of variable geometric features and flow modes on partitioning dynamics are highlighted by normalized fracture inflow rates. For higher flow rates, i.e. rivulet flows dominates, the effectiveness of filling horizontal fractures strongly increases. We demonstrate that the filling can be described by plug flow, which transitions into a Washburn-type flow at later times, and derive an analytical solution for the case of rivulet flows. Droplet flow dominated flow experiments exhibit a high bypass efficiency, which cannot be described by plug-flow, however, they also transition into a Washburn stage.
Large Eddy Simulation of Crashback in Marine Propulsors
NASA Astrophysics Data System (ADS)
Jang, Hyunchul
Crashback is an operating condition to quickly stop a propelled vehicle, where the propeller is rotated in the reverse direction to yield negative thrust. The crashback condition is dominated by the interaction of the free stream flow with the strong reverse flow. This interaction forms a highly unsteady vortex ring, which is a very prominent feature of crashback. Crashback causes highly unsteady loads and flow separation on the blade surface. The unsteady loads can cause propulsor blade damage, and also affect vehicle maneuverability. Crashback is therefore well known as one of the most challenging propeller states to analyze. This dissertation uses Large-Eddy Simulation (LES) to predict the highly unsteady flow field in crashback. A non-dissipative and robust finite volume method developed by Mahesh et al. (2004) for unstructured grids is applied to flow around marine propulsors. The LES equations are written in a rotating frame of reference. The objectives of this dissertation are: (1) to understand the flow physics of crashback in marine propulsors with and without a duct, (2) to develop a finite volume method for highly skewed meshes which usually occur in complex propulsor geometries, and (3) to develop a sliding interface method for simulations of rotor-stator propulsor on parallel platforms. LES is performed for an open propulsor in crashback and validated against experiments performed by Jessup et al. (2004). The LES results show good agreement with experiments. Effective pressures for thrust and side-force are introduced to more clearly understand the physical sources of thrust and side-force. Both thrust and side-force are seen to be mainly generated from the leading edge of the suction side of the propeller. This implies that thrust and side-force have the same source---the highly unsteady leading edge separation. Conditional averaging is performed to obtain quantitative information about the complex flow physics of high- or low-amplitude events. The events for thrust and side force show the same tendency. The conditional averages show that during high amplitude events, the vortex ring core is closer to the propeller blades, the reverse flow induced by the propeller rotation is lower, the forward flow is higher at the root of the blades, and leading and trailing edge flow separations are larger. The instantaneous flow field shows that during low amplitude events, the vortex ring is more axisymmetric and the stronger reverse flow induced by the vortex ring suppresses the forward flow so that flow separation on the blades is smaller. During high amplitude events, the vortex ring is less coherent and the weaker reverse flow cannot overcome the forward flow. The stronger forward flow makes flow separation on the blades larger. The effect of a duct on crashback is studied with LES. Thrust mostly arises from the blade surface, but most of side-force is generated from the duct surface. Both mean and RMS of pressure are much higher on inner surface of duct, especially near blade tips. This implies that side-force on the ducted propulsor is caused by the blade-duct interaction. Strong tip leakage flow is observed behind the suction side at the tip gap. The physical source of the tip leakage flow is seen to be the large pressure difference between pressure and suction sides. The conditional average for high amplitude event shows consistent results; the tip leakage flow and pressure difference are significantly higher when thrust and side-force are higher. A sliding interface method is developed to allow simulations of rotor-stator propulsor in crashback. The method allows relative rotations between different parts of the computational grid. Search algorithm for sliding elements, data structures for message passing, and accurate interpolation scheme at the sliding interface are developed for arbitrary shaped unstructured grids on parallel computing platforms. Preliminary simulations of open propulsor in crashback show reasonable performance.
Microfluidic proportional flow controller
Prentice-Mott, Harrison; Toner, Mehmet; Irimia, Daniel
2011-01-01
Precise flow control in microfluidic chips is important for many biochemical assays and experiments at microscale. While several technologies for controlling fluid flow have been implemented either on- or off-chip, these can provide either high-speed or high-precision control, but seldom could accomplish both at the same time. Here we describe a new on-chip, pneumatically activated flow controller that allows for fast and precise control of the flow rate through a microfluidic channel. Experimental results show that the new proportional flow controllers exhibited a response time of approximately 250 ms, while our numerical simulations suggest that faster actuation down to approximately 50 ms could be achieved with alternative actuation schemes. PMID:21874096
Catalytic cartridge SO.sub.3 decomposer
Galloway, Terry R.
1982-01-01
A catalytic cartridge internally heated is utilized as a SO.sub.3 decomposer for thermochemical hydrogen production. The cartridge has two embodiments, a cross-flow cartridge and an axial flow cartridge. In the cross-flow cartridge, SO.sub.3 gas is flowed through a chamber and incident normally to a catalyst coated tube extending through the chamber, the catalyst coated tube being internally heated. In the axial-flow cartridge, SO.sub.3 gas is flowed through the annular space between concentric inner and outer cylindrical walls, the inner cylindrical wall being coated by a catalyst and being internally heated. The modular cartridge decomposer provides high thermal efficiency, high conversion efficiency, and increased safety.
Application of full field optical studies for pulsatile flow in a carotid artery phantom
Nemati, M.; Loozen, G. B.; van der Wekken, N.; van de Belt, G.; Urbach, H. P.; Bhattacharya, N.; Kenjeres, S.
2015-01-01
A preliminary comparative measurement between particle imaging velocimetry (PIV) and laser speckle contrast analysis (LASCA) to study pulsatile flow using ventricular assist device in a patient-specific carotid artery phantom is reported. These full-field optical techniques have both been used to study flow and extract complementary parameters. We use the high spatial resolution of PIV to generate a full velocity map of the flow field and the high temporal resolution of LASCA to extract the detailed frequency spectrum of the fluid pulses. Using this combination of techniques a complete study of complex pulsatile flow in an intricate flow network can be studied. PMID:26504652
Thermal Flow Sensors for Harsh Environments.
Balakrishnan, Vivekananthan; Phan, Hoang-Phuong; Dinh, Toan; Dao, Dzung Viet; Nguyen, Nam-Trung
2017-09-08
Flow sensing in hostile environments is of increasing interest for applications in the automotive, aerospace, and chemical and resource industries. There are thermal and non-thermal approaches for high-temperature flow measurement. Compared to their non-thermal counterparts, thermal flow sensors have recently attracted a great deal of interest due to the ease of fabrication, lack of moving parts and higher sensitivity. In recent years, various thermal flow sensors have been developed to operate at temperatures above 500 °C. Microelectronic technologies such as silicon-on-insulator (SOI), and complementary metal-oxide semiconductor (CMOS) have been used to make thermal flow sensors. Thermal sensors with various heating and sensing materials such as metals, semiconductors, polymers and ceramics can be selected according to the targeted working temperature. The performance of these thermal flow sensors is evaluated based on parameters such as thermal response time, flow sensitivity. The data from thermal flow sensors reviewed in this paper indicate that the sensing principle is suitable for the operation under harsh environments. Finally, the paper discusses the packaging of the sensor, which is the most important aspect of any high-temperature sensing application. Other than the conventional wire-bonding, various novel packaging techniques have been developed for high-temperature application.
Thermal Flow Sensors for Harsh Environments
Dinh, Toan; Dao, Dzung Viet
2017-01-01
Flow sensing in hostile environments is of increasing interest for applications in the automotive, aerospace, and chemical and resource industries. There are thermal and non-thermal approaches for high-temperature flow measurement. Compared to their non-thermal counterparts, thermal flow sensors have recently attracted a great deal of interest due to the ease of fabrication, lack of moving parts and higher sensitivity. In recent years, various thermal flow sensors have been developed to operate at temperatures above 500 °C. Microelectronic technologies such as silicon-on-insulator (SOI), and complementary metal-oxide semiconductor (CMOS) have been used to make thermal flow sensors. Thermal sensors with various heating and sensing materials such as metals, semiconductors, polymers and ceramics can be selected according to the targeted working temperature. The performance of these thermal flow sensors is evaluated based on parameters such as thermal response time, flow sensitivity. The data from thermal flow sensors reviewed in this paper indicate that the sensing principle is suitable for the operation under harsh environments. Finally, the paper discusses the packaging of the sensor, which is the most important aspect of any high-temperature sensing application. Other than the conventional wire-bonding, various novel packaging techniques have been developed for high-temperature application. PMID:28885595
High speed flow cytometric separation of viable cells
Sasaki, D.T.; Van den Engh, G.J.; Buckie, A.M.
1995-11-14
Hematopoietic cell populations are separated to provide cell sets and subsets as viable cells with high purity and high yields, based on the number of original cells present in the mixture. High-speed flow cytometry is employed using light characteristics of the cells to separate the cells, where high flow speeds are used to reduce the sorting time.
High speed flow cytometric separation of viable cells
Sasaki, Dennis T.; Van den Engh, Gerrit J.; Buckie, Anne-Marie
1995-01-01
Hematopoietic cell populations are separated to provide cell sets and subsets as viable cells with high purity and high yields, based on the number of original cells present in the mixture. High-speed flow cytometry is employed using light characteristics of the cells to separate the cells, where high flow speeds are used to reduce the sorting time.
NASA Astrophysics Data System (ADS)
Gao, Y.; Lin, Q.; Bijeljic, B.; Blunt, M. J.
2017-12-01
To observe intermittency in consolidated rock, we image a steady state flow of brine and decane in Bentheimer sandstone. We devise an experimental method based on X-ray differential imaging method to examine how changes in flow rate impact the pore-scale distribution of fluids during co-injection flow under dynamic flow conditions at steady state. This helps us elucidate the diverse flow regimes (connected, intermittent break-up, or continual break-up of the non-wetting phase pathways) for two capillary numbers. Also, relative permeability curves under both capillary and viscous limited conditions could be measured. We have performed imbibition sample floods using oil-brine and measured steady state relative permeability on a sandstone rock core in order to fully characterize the flow behaviour at low and high Ca. Two sets of experiments at high and low flow rates are provided to explore the time-evolution of the non-wetting phase clusters distribution under different flow conditions. The high flow rate is 0.5 mL/min, whose corresponding capillary number is 7.7×10-6. The low flow rate is 0.02 mL/min, whose capillary number is 3.1×10-7. A procedure based on using high-salinity brine as the contrast phase and applying differential imaging between the dry scan and that of the sample saturation with a 30 wt% Potassium iodide (KI) doped brine help to make sure there is no non-wetting phase in micro-pores. Then the intermittent phase in multiphase flow image at high Ca can be quantified by obtaining the differential image between the 30 wt% KI brine image and the scans that taken at each fixed fractional flow. By using the grey scale histogram distribution of the raw images at each condition, the oil proportion in the intermittent phase can be calculated. The pressure drops at each fractional flow at low and high Ca can be measured by high-precision pressure differential sensors and utilized to calculate to the relative permeability at pore scale. The relative permeability data and fw-Sw relationship obtained by our experiment at pore scale are compared with the data collected from experiments which were conducted at core scale, and they match well.
System for measuring multiphase flow using multiple pressure differentials
Fincke, James R.
2003-01-01
An improved method and system for measuring a multi-phase flow in a pressure flow meter. An extended throat venturi is used and pressure of the multi-phase flow is measured at three or more positions in the venturi, which define two or more pressure differentials in the flow conduit. The differential pressures are then used to calculate the mass flow of the gas phase, the total mass flow, and the liquid phase. The system for determining the mass flow of the high void fraction fluid flow and the gas flow includes taking into account a pressure drop experienced by the gas phase due to work performed by the gas phase in accelerating the liquid phase.
Structure and shale gas production patterns from eastern Kentucky field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shumaker, R.C.
Computer-derived subsurface structure, isopach, and gas-flow maps, based on 4000 drillers logs, have been generated for eastern Kentucky under a project sponsored by the Gas Research Institute. Structure maps show low-relief flextures related to basement structure. Some structures have been mapped at the surface, others have not. Highest final open-flow (fof) of shale gas from wells in Martin County follow a structural low between (basement) anticlines. From there, elevated gas flows (fof) extend westward along the Warfield monocline to Floyd County where the high flow (fof) trend extends southward along the Floyd County channel. In Knott County, the number ofmore » wells with high gas flow (fof) decreases abruptly. The center of highest gas flow (fof) in Floyd County spreads eastward to Pike County, forming a triangular shaped area of high production (fof). The center of highest gas flow (fof) is in an area where possible (basement) structure trends intersect and where low-relief surface folds (probably detached structure) were mapped and shown on the 1922 version of the Floyd County structure map. Modern regional maps, based on geophysical logs from widely spaced wells, do not define the low-relief structures that have been useful in predicting gas flow trends. Detailed maps based on drillers logs can be misleading unless carefully edited. Comparative analysis of high gas flows (fof) and 10-year cumulative production figures in a small area confirms that there is a relationship between gas flow (fof) values and long-term cumulative production.« less
Estimation of natural historical flows for the Manitowish River near Manitowish Waters, Wisconsin
Juckem, Paul F.; Reneau, Paul C.; Robertson, Dale M.
2012-01-01
The Wisconsin Department of Natural Resources is charged with oversight of dam operations throughout Wisconsin and is considering modifications to the operating orders for the Rest Lake Dam in Vilas County, Wisconsin. State law requires that the operation orders be tied to natural low flows at the dam. Because the presence of the dam confounds measurement of natural flows, the U.S. Geological Survey, in cooperation with the Wisconsin Department of Natural Resources, installed streamflow-gaging stations and developed two statistical methods to improve estimates of natural flows at the Rest Lake Dam. Two independent methods were used to estimate daily natural flow for the Manitowish River approximately 1 mile downstream of the Rest Lake Dam. The first method was an adjusted drainage-area ratio method, which used a regression analysis that related measured water yield (flow divided by watershed area) from short-term (2009–11) gaging stations upstream of the Manitowish Chain of Lakes to the water yield from two nearby long-term gaging stations in order to extend the flow record (1991–2011). In this approach, the computed flows into the Chain of Lakes at the upstream gaging stations were multiplied by a coefficient to account for the monthly hydrologic contributions (precipitation, evaporation, groundwater, and runoff) associated with the additional watershed area between the upstream gaging stations and the dam at the outlet of the Chain of Lakes (Rest Lake Dam). The second method used to estimate daily natural flow at the Rest Lake Dam was a water-budget approach, which used lake stage and dam outflow data provided by the dam operator. A water-budget model was constructed and then calibrated with an automated parameter-estimation program by matching simulated flow-duration statistics with measured flow-duration statistics at the upstream gaging stations. After calibration of the water-budget model, the model was used to compute natural flow at the dam from 1973 to 2011. Daily natural flows at the dam, as computed by the adjusted drainage-area ratio method and the water-budget method, were used to compute monthly flow-duration values for the period of historical data available for each method. Monthly flow-durations provide a means for evaluating the frequency and range in flows that have been observed for each month over the course of many years. Both methods described the pattern and timing of measured high-flow and low-flow events at the upstream gaging stations. The adjusted drainage-area ratio method generally had smaller residual errors across the full range of observed flows and had smaller monthly biases than the water-budget method. Although it is not possible to evaluate which method may be more "correct" for estimating monthly natural flows at the dam, comparisons between the results of each method indicate that the adjusted drainage-area ratio method may be susceptible to biases at high flows due to isolated storms outside of the Manitowish River watershed. Conversely, it appears that the water-budget method may be susceptible to biases at low flows because of its sensitivity to the accuracy of reported lake stage and outflows, as well as effects of upstream diversions that could not be fully compensated for with this method. Results from both methods are useful for understanding the natural flow patterns at the dam. Flows for both methods have similar patterns, with high median flows in spring and low median flows in late summer. Similarly, the range from monthly high-flow durations to low-flow durations increases during spring, decreases during summer, and increases again during fall. These seasonal patterns illustrate a challenge with interpreting a single value of natural low flow. That is, a natural low flow computed for September is not representative of a natural low flow in April. Moreover, alteration of natural flows caused by storing water in the Chain of Lakes during spring and releasing it in fall causes a change in the timing of high and low flows compared with natural conditions. That is, the lowest reported dam outflows occurred in spring and highest reported outflows occurred in fall, which is opposite the natural patterns.
Influence of the nuclear symmetry energy on the collective flows of charged pions
NASA Astrophysics Data System (ADS)
Gao, Yuan; Yong, Gao-Chan; Zhang, Lei; Zuo, Wei
2018-01-01
Based on the isospin-dependent Boltzmann-Uehling-Uhlenbeck (IBUU) transport model, we studied charged pion transverse and elliptic flows in semicentral 197Au+197Au collisions at 600 MeV/nucleon. It is found that π+-π- differential transverse flow and the difference of π+ and π- transverse flows almost show no effects of the symmetry energy. Their corresponding elliptic flows are largely affected by the symmetry energy, especially at high transverse momenta. The isospin-dependent pion elliptic flow at high transverse momenta thus provides a promising way to probe the high-density behavior of the symmetry energy in heavy-ion collisions at the Facility for Antiproton and Ion Research (FAIR) at GSI, Darmstadt or at the Cooling Storage Ring (CSR) at HIRFL, Lanzhou.
2001-08-30
Body with Thermo-Chemical destribution of Heat-Protected System . In: Physical and Gasdynamic Phenomena in Supersonic Flows Over Bodies. Edit. By...Final Report on ISTC Contract # 1809p Parametric Study of Advanced Mixing of Fuel/Oxidant System in High Speed Gaseous Flows and Experimental...of Advanced Mixing of Fuel/Oxidant System in High Speed Gaseous Flows and Experimental Validation Planning 5c. PROGRAM ELEMENT NUMBER 5d. PROJECT
High Fidelity Simulations of Unsteady Flow through Turbopumps and Flowliners
NASA Technical Reports Server (NTRS)
Kiris, Cetin C.; Kwak, dochan; Chan, William; Housman, Jeff
2006-01-01
High fidelity computations were carried out to analyze the orbiter LH2 feedline flowliner. Computations were performed on the Columbia platform which is a 10,240-processor supercluster consisting of 20 Altix nodes with 512 processor each. Various computational models were used to characterize the unsteady flow features in the turbopump, including the orbiter Low-Pressure-Fuel-Turbopump (LPFTP) inducer, the orbiter manifold and a test article used to represent the manifold. Unsteady flow originating from the orbiter LPFTP inducer is one of the major contributors to the high frequency cyclic loading that results in high cycle fatigue damage to the gimbal flowliners just upstream of the LPFTP. The flow fields for the orbiter manifold and representative test article are computed and analyzed for similarities and differences. The incompressible Navier-Stokes flow solver INS3D, based on the artificial compressibility method, was used to compute the flow of liquid hydrogen in each test article.
Mach 4 and Mach 8 axisymmetric nozzles for a shock tunnel
NASA Technical Reports Server (NTRS)
Jacobs, P. A.; Stalker, R. J.
1991-01-01
The performance of two axisymmetric nozzles which were designed to produce uniform, parallel flow with nominal Mach numbers of 4 and 8 is examined. A free-piston-driven shock tube was used to supply the nozzle with high-temperature, high-pressure test gas. The inviscid design procedure treated the nozzle expansion in two stages. Close to the nozzle throat, the nozzle wall was specified as conical and the gas flow was treated as a quasi-one-dimensional chemically-reacting flow. At the end of the conical expansion, the gas was assumed to be calorically perfect, and a contoured wall was designed (using method of characteristics) to convert the source flow into a uniform and parallel flow at the end of the nozzle. Performance was assessed by measuring Pitot pressures across the exit plane of the nozzles and, over the range of operating conditions examined, the nozzles produced satisfactory test flows. However, there were flow disturbances in the Mach 8 nozzle flow that persisted for significant times after flow initiation.
Rapid granular flows on a rough incline: phase diagram, gas transition, and effects of air drag.
Börzsönyi, Tamás; Ecke, Robert E
2006-12-01
We report experiments on the overall phase diagram of granular flows on an incline with emphasis on high inclination angles where the mean layer velocity approaches the terminal velocity of a single particle free falling in air. The granular flow was characterized by measurements of the surface velocity, the average layer height, and the mean density of the layer as functions of the hopper opening, the plane inclination angle, and the downstream distance x of the flow. At high inclination angles the flow does not reach an x -invariant steady state over the length of the inclined plane. For low volume flow rates, a transition was detected between dense and very dilute (gas) flow regimes. We show using a vacuum flow channel that air did not qualitatively change the phase diagram and did not quantitatively modify mean flow velocities of the granular layer except for small changes in the very dilute gaslike phase.
Blood Flow in Stenotic Carotid Bifurcation
NASA Astrophysics Data System (ADS)
Rayz, Vitaliy L.; Williamson, Shobha Devi; Berger, Stanley A.; Saloner, David
2004-11-01
Mechanical forces induced by blood flow on an arterial wall play an important role in the development and growth of atherosclerotic plaque. To assess vulnerability of a plaque it is important to model the flow in a realistic, patient-specific geometry. Three-dimensional models of stenotic carotid bifurcations were obtained from MR images and grids were generated for the flow domains. The unsteady, incompressible Navier-Stokes equations were solved numerically using physiological boundary conditions. The results obtained by computations were compared with in-vivo ultrasound measurements and flow visualization experiments carried out for the same geometry. The simulations show a high velocity jet forming at the stenotic throat and a strong recirculation zone downstream of the stenosis. The jet grows rapidly during the systolic part of the pulse. During diastole the flow is more stagnant. The flow is highly three-dimensional and unsteady which is clearly demonstrated by the flow streamlines. These unsteady flows cause rapid temporal and spatial changes of the forces acting on the atherosclerotic plaque, which has important effects on its growth and stability.
A methodology to reduce uncertainties in the high-flow portion of a rating curve
USDA-ARS?s Scientific Manuscript database
Flow monitoring at watershed scale relies on the establishment of a rating curve that describes the relationship between stage and flow and is developed from actual flow measurements at various stages. Measurement errors increase with out-of-bank flow conditions because of safety concerns and diffic...
Recent bright gully deposits on Mars: Wet or dry flow?
Pelletier, J.D.; Kolb, K.J.; McEwen, A.S.; Kirk, R.L.
2008-01-01
Bright gully sediments attributed to liquid water flow have been deposited on Mars within the past several years. To test the liquid water flow hypothesis, we constructed a high-resolution (1 m/pixel) photogrammetric digital elevation model of a crater in the Centauri Montes region, where a bright gully deposit formed between 2001 and 2005. We conducted one-dimensional (1-D) and 2-D numerical flow modeling to test whether the deposit morphology is most consistent with liquid water or dry granular How. Liquid water flow models that incorporate freezing can match the runout distance of the flow for certain freezing rates but fail to reconstruct the distributary lobe morphology of the distal end of the deposit. Dry granular flow models can match both the observed runout distance and the distal morphology. Wet debris flows with high sediment concentrations are also consistent with the observed morphology because their rheologies are often similar to that of dry granular flows. As such, the presence of liquid water in this flow event cannot be ruled out, but the available evidence is consistent with dry landsliding. ?? 2008 The Geological Society of America.
Pulsed photoacoustic flow imaging with a handheld system
NASA Astrophysics Data System (ADS)
van den Berg, Pim J.; Daoudi, Khalid; Steenbergen, Wiendelt
2016-02-01
Flow imaging is an important technique in a range of disease areas, but estimating low flow speeds, especially near the walls of blood vessels, remains challenging. Pulsed photoacoustic flow imaging can be an alternative since there is little signal contamination from background tissue with photoacoustic imaging. We propose flow imaging using a clinical photoacoustic system that is both handheld and portable. The system integrates a linear array with 7.5 MHz central frequency in combination with a high-repetition-rate diode laser to allow high-speed photoacoustic imaging-ideal for this application. This work shows the flow imaging performance of the system in vitro using microparticles. Both two-dimensional (2-D) flow images and quantitative flow velocities from 12 to 75 mm/s were obtained. In a transparent bulk medium, flow estimation showed standard errors of ˜7% the estimated speed; in the presence of tissue-realistic optical scattering, the error increased to 40% due to limited signal-to-noise ratio. In the future, photoacoustic flow imaging can potentially be performed in vivo using fluorophore-filled vesicles or with an improved setup on whole blood.
Viscous-shock-layer analysis of hypersonic flows over long slender vehicles. Ph.D. Thesis, 1988
NASA Technical Reports Server (NTRS)
Lee, Kam-Pui; Gupta, Roop N.
1992-01-01
An efficient and accurate method for solving the viscous shock layer equations for hypersonic flows over long slender bodies is presented. The two first order equations, continuity and normal momentum, are solved simultaneously as a coupled set. The flow conditions included are from high Reynolds numbers at low altitudes to low Reynolds numbers at high altitudes. For high Reynolds number flows, both chemical nonequilibrium and perfect gas cases are analyzed with surface catalytic effects and different turbulence models, respectively. At low Reynolds number flow conditions, corrected slip models are implemented with perfect gas case. Detailed comparisons are included with other predictions and experimental data.
NASA Astrophysics Data System (ADS)
Bhattacharya, R.; Osburn, C. L.
2017-12-01
Dissolved organic matter (DOM) exported from river catchments can influence the biogeochemical processes in coastal environments with implications for water quality and carbon budget. High flow conditions are responsible for most DOM export ("pulses") from watersheds, and these events reduce DOM transformation and production by "shunting" DOM from river networks into coastal waters: the Pulse-Shunt Concept (PSC). Subsequently, the source and quality of DOM is also expected to change as a function of river flow. Here, we used stream dissolved organic carbon concentrations ([DOC]) along with DOM optical properties, such as absorbance at 350 nm (a350) and fluorescence excitation and emission matrices modeled by parallel factor analysis (PARAFAC), to characterize DOM source, quality and fluxes under variable flow conditions for the Neuse River, a coastal river system in the southeastern US. Observations were made at a flow gauged station above head of tide periodically between Aug 2011 and Feb 2013, which captured low flow periods in summer and several high flow events including Hurricane Irene. [DOC] and a350 were correlated and varied positively with river flow, implying that a large portion of the DOM was colored, humic and flow-mobilized. During high flow conditions, PARAFAC results demonstrated the higher influx of terrestrial humic DOM, and lower in-stream phytoplankton production or microbial degradation. However, during low flow, DOM transformation and production increased in response to higher residence times and elevated productivity. Further, 70% of the DOC was exported by above average flows, where 3-4 fold increases in DOC fluxes were observed during episodic events, consistent with PSC. These results imply that storms dramatically affects DOM export to coastal waters, whereby high river flow caused by episodic events primarily shunt terrestrial DOM to coastal waters, whereas low flow promotes in-stream DOM transformation and amendment with microbial DOM.
High throughput analysis of samples in flowing liquid
Ambrose, W. Patrick; Grace, W. Kevin; Goodwin, Peter M.; Jett, James H.; Orden, Alan Van; Keller, Richard A.
2001-01-01
Apparatus and method enable imaging multiple fluorescent sample particles in a single flow channel. A flow channel defines a flow direction for samples in a flow stream and has a viewing plane perpendicular to the flow direction. A laser beam is formed as a ribbon having a width effective to cover the viewing plane. Imaging optics are arranged to view the viewing plane to form an image of the fluorescent sample particles in the flow stream, and a camera records the image formed by the imaging optics.
A prediction of 3-D viscous flow and performance of the NASA Low-Speed Centrifugal Compressor
NASA Technical Reports Server (NTRS)
Moore, John; Moore, Joan G.
1990-01-01
A prediction of the three-dimensional turbulent flow in the NASA Low-Speed Centrifugal Compressor Impeller has been made. The calculation was made for the compressor design conditions with the specified uniform tip clearance gap. The predicted performance is significantly worse than that predicted in the NASA design study. This is explained by the high tip leakage flow in the present calculation and by the different model adopted for tip leakage flow mixing. The calculation gives an accumulation of high losses in the shroud/pressure-side quadrant near the exit of the impeller. It also predicts a region of meridional backflow near the shroud wall. Both of these flow features should be extensive enough in the NASA impeller to allow detailed flow measurements, leading to improved flow modeling. Recommendations are made for future flow studies in the NASA impeller.
A prediction of 3-D viscous flow and performance of the NASA low-speed centrifugal compressor
NASA Technical Reports Server (NTRS)
Moore, John; Moore, Joan G.
1989-01-01
A prediction of the 3-D turbulent flow in the NASA Low-Speed Centrifugal Compressor Impeller has been made. The calculation was made for the compressor design conditions with the specified uniform tip clearance gap. The predicted performance is significantly worse than that predicted in the NASA design study. This is explained by the high tip leakage flow in the present calculation and by the different model adopted for tip leakage flow mixing. The calculation gives an accumulation for high losses in the shroud/pressure-side quadrant near the exit of the impeller. It also predicts a region of meridional backflow near the shroud wall. Both of these flow features should be extensive enough in the NASA impeller to allow detailed flow measurements, leading to improved flow modelling. Recommendations are made for future flow studies in the NASA impeller.
Embedded function methods for compressible high speed turbulent flow
NASA Technical Reports Server (NTRS)
Walker, J. D. A.
1989-01-01
Fundamental issues relating to compressible turbulent flow are addressed. The focus has been on developing methods and testing concepts for attached flows rather than trying to force a conventional law of the wall into a zone of backflow. Although the dynamics of the near-wall flow in an attached turbulent boundary layer are relatively well documented, the dynamical features of a zone of reversed turbulent flow are not, nor are they well understood. Incompressibility introduces effects and issues that have been dealt with only marginally in the literature, therefore, the present work has been focussed on attached high-speed flows. The wall function method has been extended up through the supersonic to hypersonic speeds. Algorithms have been successfully introduced into the code that calculates the flow all the way to the wall, and testing is being carried out for progressively more complex flow situations.
Flow Diode and Method for Controlling Fluid Flow Origin of the Invention
NASA Technical Reports Server (NTRS)
Dyson, Rodger W (Inventor)
2015-01-01
A flow diode configured to permit fluid flow in a first direction while preventing fluid flow in a second direction opposite the first direction is disclosed. The flow diode prevents fluid flow without use of mechanical closures or moving parts. The flow diode utilizes a bypass flowline whereby all fluid flow in the second direction moves into the bypass flowline having a plurality of tortuous portions providing high fluidic resistance. The portions decrease in diameter such that debris in the fluid is trapped. As fluid only travels in one direction through the portions, the debris remains trapped in the portions.
Effect of flow field on the performance of an all-vanadium redox flow battery
NASA Astrophysics Data System (ADS)
Kumar, S.; Jayanti, S.
2016-03-01
A comparative study of the electrochemical energy conversion performance of a single-cell all-vanadium redox flow battery (VRFB) fitted with three flow fields has been carried out experimentally. The charge-discharge, polarization curve, Coulombic, voltage and round-trip efficiencies of a 100 cm2 active area VRFB fitted with serpentine, interdigitated and conventional flow fields have been obtained under nearly identical experimental conditions. The effect of electrolyte circulation rate has also been investigated for each flow field. Stable performance has been obtained for each flow field for at least 40 charge/discharge cycles. Ex-situ measurements of pressure drop have been carried out using water over a range of Reynolds numbers. Together, the results show that the cell fitted with the serpentine flow field gives the highest energy efficiency, primarily due to high voltaic efficiency and also the lowest pressure drop. The electrolyte flow rate is seen to have considerable effect on the performance; a high round-trip energy efficiency of about 80% has been obtained at the highest flow rate with the serpentine flow field. The data offer interesting insights into the effect of electrolyte circulation on the performance of VRFB.
Lee, C H; Sapuan, S M; Lee, J H; Hassan, M R
2016-01-01
A study of the melt volume flow rate (MVR) and the melt flow rate (MFR) of kenaf fibre (KF) reinforced Floreon (FLO) and magnesium hydroxide (MH) biocomposites under different temperatures (160-180 °C) and weight loadings (2.16, 5, 10 kg) is presented in this paper. FLO has the lowest values of MFR and MVR. The increment of the melt flow properties (MVR and MFR) has been found for KF or MH insertion due to the hydrolytic degradation of the polylactic acid in FLO. Deterioration of the entanglement density at high temperature, shear thinning and wall slip velocity were the possible causes for the higher melt flow properties. Increasing the KF loadings caused the higher melt flow properties while the higher MH contents created stronger bonding for higher macromolecular chain flow resistance, hence lower melt flow properties were recorded. However, the complicated melt flow behaviour of the KF reinforced FLO/MH biocomposites was found in this study. The high probability of KF-KF and KF-MH collisions was expected and there were more collisions for higher fibre and filler loading causing lower melt flow properties.
A theoretical study of resin flows for thermosetting materials during prepreg processing
NASA Technical Reports Server (NTRS)
Hou, T. H.
1984-01-01
A flow model which describes the process of resin consolidation during prepreg lamination was developed. The salient features of model predictions were explored. It is assumed that resin flows in all directions originate from squeezing action between two approaching adjacent fiber/fabric layers. In the horizontal direction, a squeezing flow between two nonporous parallel plates is analyzed, while in the vertical direction a poiseuille type pressure flow through porous media is assumed. Proper force and mass balance was established for the whole system which is composed of these two types of flow. A flow parameter, CF, shows to be a measure of processibility for the curing resin. For a given external load-F the responses of resin flow during prepreg lamination, as measured by CF, are categorized into three regions: (1) the low CF region where resin flows are inhibited by the high chemoviscosity during initial curing stages; (2) the median CF region where resin flows are properly controllable; and (3) the high CF region where resin flows are ceased due to fiber/fabric compression effects. Resin losses in both directions are calculated. Potential uses of this model and quality control of incoming prepreg material are discussed.
Wind Effects on Flow Patterns and Net Fluxes in Density-Driven High-Latitude Channel Flow
NASA Astrophysics Data System (ADS)
Huntley, Helga S.; Ryan, Patricia
2018-01-01
A semianalytic two-dimensional model is used to analyze the interplay between the different forces acting on density-driven flow in high-latitude channels. In particular, the balance between wind stress, viscous forces, baroclinicity, and sea surface slope adjustments under specified flux conditions is examined. Weak winds are found not to change flow patterns appreciably, with minimal (<7%) adjustments to horizontal velocity maxima. In low-viscosity regimes, strong winds change the flow significantly, especially at the surface, by either strengthening the dual-jet pattern, established without wind, by a factor of 2-3 or initiating return flow at the surface. A nonzero flux does not result in the addition of a uniform velocity throughout the channel cross section, but modifies both along-channel and cross-channel velocities to become more symmetric, dominated by a down-channel jet centered in the domain and counter-clockwise lateral flow. We also consider formulations of the model that allow adjustments of the net flux in response to the wind. Flow patterns change, beyond uniform intensification or weakening, only for strong winds and high Ekman number. Comparisons of the model results to observational data collected in Nares Strait in the Canadian Archipelago in the summer of 2007 show rough agreement, but the model misses the upstream surface jet on the east side of the strait and propagates bathymetric effects too strongly in the vertical for this moderately high eddy viscosity. Nonetheless, the broad strokes of the observed high-latitude flow are reproduced.
Depressurization and two-phase flow of water containing high levels of dissolved nitrogen gas
NASA Technical Reports Server (NTRS)
Simoneau, R. J.
1981-01-01
Depressurization of water containing various concentrations of dissolved nitrogen gas was studied. In a nonflow depressurization experiment, water with very high nitrogen content was depressurized at rates from 0.09 to 0.50 MPa per second and a metastable behavior which was a strong function of the depressurization rate was observed. Flow experiments were performed in an axisymmetric, converging diverging nozzle, a two dimensional, converging nozzle with glass sidewalls, and a sharp edge orifice. The converging diverging nozzle exhibited choked flow behavior even at nitrogen concentration levels as low as 4 percent of the saturation level. The flow rates were independent of concentration level. Flow in the two dimensional, converging, visual nozzle appeared to have a sufficient pressure drop at the throat to cause nitrogen to come out of solution, but choking occurred further downstream. The orifice flow motion pictures showed considerable oscillation downstream of the orifice and parallel to the flow. Nitrogen bubbles appeared in the flow at back pressures as high as 3.28 MPa, and the level at which bubbles were no longer visible was a function of nitrogen concentration.
Smith, L.W.; Birkeland, C.
2007-01-01
Corals inhabiting shallow back reef habitats are often simultaneously exposed to elevated seawater temperatures and high irradiance levels, conditions known to cause coral bleaching. Water flow in many tropical back reef systems is tidally influenced, resulting in semi-diurnal or diurnal flow patterns. Controlled experiments were conducted to test effects of semi-diurnally intermittent water flow on photoinhibition and bleaching of the corals Porites lobata and P. cylindrica kept at elevated seawater temperatures and different irradiance levels. All coral colonies were collected from a shallow back reef pool on Ofu Island, American Samoa. In the high irradiance experiments, photoinhibition and bleaching were less for both species in the intermittent high-low flow treatment than in the constant low flow treatment. In the low irradiance experiments, there were no differences in photoinhibition or bleaching for either species between the flow treatments, despite continuously elevated seawater temperatures. These results suggest that intermittent flow associated with semi-diurnal tides, and low irradiances caused by turbidity or shading, may reduce photoinhibition and bleaching of back reef corals during warming events. ?? 2006 Elsevier B.V. All rights reserved.
Active Fail-Safe Micro-Array Flow Control for Advanced Embedded Propulsion Systems
NASA Technical Reports Server (NTRS)
Anderson, Bernhard H.; Mace, James L.; Mani, Mori
2009-01-01
The primary objective of this research effort was to develop and analytically demonstrate enhanced first generation active "fail-safe" hybrid flow-control techniques to simultaneously manage the boundary layer on the vehicle fore-body and to control the secondary flow generated within modern serpentine or embedded inlet S-duct configurations. The enhanced first-generation technique focused on both micro-vanes and micro-ramps highly-integrated with micro -jets to provide nonlinear augmentation for the "strength' or effectiveness of highly-integrated flow control systems. The study focused on the micro -jet mass flow ratio (Wjet/Waip) range from 0.10 to 0.30 percent and jet total pressure ratios (Pjet/Po) from 1.0 to 3.0. The engine bleed airflow range under study represents about a 10 fold decrease in micro -jet airflow than previously required. Therefore, by pre-conditioning, or injecting a very small amount of high-pressure jet flow into the vortex generated by the micro-vane and/or micro-ramp, active flow control is achieved and substantial augmentation of the controlling flow is realized.
Visualization of Secondary Flow Development in High Aspect Ratio Channels with Curvature
NASA Technical Reports Server (NTRS)
Meyer, Michael L.; Giuliani, James E.
1994-01-01
The results of an experimental project to visually examine the secondary flow structure that develops in curved, high aspect-ratio rectangular channels are presented. The results provide insight into the fluid dynamics within high aspect ratio channels. A water flow test rig constructed out of plexiglass, with an adjustable aspect ratio, was used for these experiments. Results were obtained for a channel geometry with a hydraulic diameter of 10.6 mm (0.417 in.), an aspect ratio of 5.0, and a hydraulic radius to curvature radius ratio of 0.0417. Flow conditions were varied to achieve Reynolds numbers up to 5,100. A new particle imaging velocimetry technique was developed which could resolve velocity information from particles entering and leaving the field of view. Time averaged secondary flow velocity vectors, obtained using this velocimetry technique, are presented for 30 degrees, 60 degrees, and 90 degrees into a 180 degrees bend and at a Reynolds number of 5,100. The secondary flow results suggest the coexistence of both the classical curvature induced vortex pair flow structure and the eddies seen in straight turbulent channel flow.
NASA Technical Reports Server (NTRS)
Saus, Joseph R.; Chang, Clarence T.; DeLaat, John C.; Vrnak, Daniel R.
2010-01-01
A test rig was designed and developed at the NASA Glenn Research Center (GRC) for the purpose of characterizing high bandwidth liquid fuel flow modulator candidates to determine their suitability for combustion instability control research. The test rig is capable of testing flow modulators at up to 600 psia supply pressure and flows of up to 2 gpm. The rig is designed to provide a quiescent flow into the test section in order to isolate the dynamic flow modulations produced by the test article. Both the fuel injector orifice downstream of the test article and the combustor are emulated. The effect of fuel delivery line lengths on modulator dynamic performance can be observed and modified to replicate actual fuel delivery systems. For simplicity, water is currently used as the working fluid, although future plans are to use jet fuel. The rig is instrumented for dynamic pressures and flows and a high-speed data system is used for dynamic data acquisition. Preliminary results have been obtained for one candidate flow modulator.
Flow range enhancement by secondary flow effect in low solidity circular cascade diffusers
NASA Astrophysics Data System (ADS)
Sakaguchi, Daisaku; Tun, Min Thaw; Mizokoshi, Kanata; Kishikawa, Daiki
2014-08-01
High-pressure ratio and wide operating range are highly required for compressors and blowers. The technical issue of the design is achievement of suppression of flow separation at small flow rate without deteriorating the efficiency at design flow rate. A numerical simulation is very effective in design procedure, however, cost of the numerical simulation is generally high during the practical design process, and it is difficult to confirm the optimal design which is combined with many parameters. A multi-objective optimization technique is the idea that has been proposed for solving the problem in practical design process. In this study, a Low Solidity circular cascade Diffuser (LSD) in a centrifugal blower is successfully designed by means of multi-objective optimization technique. An optimization code with a meta-model assisted evolutionary algorithm is used with a commercial CFD code ANSYS-CFX. The optimization is aiming at improving the static pressure coefficient at design point and at low flow rate condition while constraining the slope of the lift coefficient curve. Moreover, a small tip clearance of the LSD blade was applied in order to activate and to stabilize the secondary flow effect at small flow rate condition. The optimized LSD blade has an extended operating range of 114 % towards smaller flow rate as compared to the baseline design without deteriorating the diffuser pressure recovery at design point. The diffuser pressure rise and operating flow range of the optimized LSD blade are experimentally verified by overall performance test. The detailed flow in the diffuser is also confirmed by means of a Particle Image Velocimeter. Secondary flow is clearly captured by PIV and it spreads to the whole area of LSD blade pitch. It is found that the optimized LSD blade shows good improvement of the blade loading in the whole operating range, while at small flow rate the flow separation on the LSD blade has been successfully suppressed by the secondary flow effect.
Variations and controls on crustal thermal regimes in Southeastern Australia
NASA Astrophysics Data System (ADS)
Mather, Ben; McLaren, Sandra; Taylor, David; Roy, Sukanta; Moresi, Louis
2018-01-01
The surface heat flow field in Australia has for many years been poorly constrained compared to continental regions elsewhere. 182 recent heat flow determinations and 66 new heat production measurements for Southeastern Australia significantly increase our understanding of local and regional lithospheric thermal regimes and allow for detailed thermal modelling. The new data give a mean surface heat flow for Victoria of 71 ± 15 mW m- 2 which fits within the 61-77 mW m- 2 range reported for Phanerozoic-aged crust globally. These data reveal three new thermally and compositionally distinct heat flow sub-provinces within the previously defined Eastern Heat Flow Province: the Delamerian heat flow sub-province (average surface heat flow 60 ± 9 mW m- 2); the Lachlan heat flow sub-province (average surface heat flow 74 ± 13 mW m- 2); and the Newer Volcanics heat flow sub-province (average surface heat flow 72 ± 16 mW m- 2) which includes extreme values that locally exceed 100 mW m- 2. Inversions of reduced heat flow and crustal differentiation find that the Delamerian sub-province has experienced significant crustal reworking compared to the Lachlan and Newer Volcanics sub-provinces. The latter has experienced volcanism within the last 8 Ma and the degree of variability observed in surface heat flow points (up to 8 mW m- 2 per kilometre laterally) cannot be replicated with steady-state thermal models through this sub-province. In the absence of a strong palaeoclimate signal, aquifer disturbances, or highly enriched granites, we suggest that this high variability arises from localised transient perturbations to the upper crust associated with recent intraplate volcanism. This is supported by a strong spatial correlation of high surface heat flow and known eruption points within the Newer Volcanics heat flow sub-province.
NASA Astrophysics Data System (ADS)
Lewis, Q. W.; Rhoads, B. L.
2017-12-01
The merging of rivers at confluences results in complex three-dimensional flow patterns that influence sediment transport, bed morphology, downstream mixing, and physical habitat conditions. The capacity to characterize comprehensively flow at confluences using traditional sensors, such as acoustic Doppler velocimeters and profiles, is limited by the restricted spatial resolution of these sensors and difficulties in measuring velocities simultaneously at many locations within a confluence. This study assesses two-dimensional surficial patterns of flow structure at a small stream confluence in Illinois, USA, using large scale particle image velocimetry (LSPIV) derived from videos captured by unmanned aerial systems (UAS). The method captures surface velocity patterns at high spatial and temporal resolution over multiple scales, ranging from the entire confluence to details of flow within the confluence mixing interface. Flow patterns at high momentum ratio are compared to flow patterns when the two incoming flows have nearly equal momentum flux. Mean surface flow patterns during the two types of events provide details on mean patterns of surface flow in different hydrodynamic regions of the confluence and on changes in these patterns with changing momentum flux ratio. LSPIV data derived from the highest resolution imagery also reveal general characteristics of large-scale vortices that form along the shear layer between the flows during the high-momentum ratio event. The results indicate that the use of LSPIV and UAS is well-suited for capturing in detail mean surface patterns of flow at small confluences, but that characterization of evolving turbulent structures is limited by scale considerations related to structure size, image resolution, and camera instability. Complementary methods, including camera platforms mounted at fixed positions close to the water surface, provide opportunities to accurately characterize evolving turbulent flow structures in confluences.
Kean, Jason W.; McCoy, Scott W.; Tucker, Gregory E.; Staley, Dennis M.; Coe, Jeffrey A.
2013-01-01
Runoff during intense rainstorms plays a major role in generating debris flows in many alpine areas and burned steeplands. Yet compared to debris flow initiation from shallow landslides, the mechanics by which runoff generates a debris flow are less understood. To better understand debris flow initiation by surface water runoff, we monitored flow stage and rainfall associated with debris flows in the headwaters of two small catchments: a bedrock-dominated alpine basin in central Colorado (0.06 km2) and a recently burned area in southern California (0.01 km2). We also obtained video footage of debris flow initiation and flow dynamics from three cameras at the Colorado site. Stage observations at both sites display distinct patterns in debris flow surge characteristics relative to rainfall intensity (I). We observe small, quasiperiodic surges at low I; large, quasiperiodic surges at intermediate I; and a single large surge followed by small-amplitude fluctuations about a more steady high flow at high I. Video observations of surge formation lead us to the hypothesis that these flow patterns are controlled by upstream variations in channel slope, in which low-gradient sections act as “sediment capacitors,” temporarily storing incoming bed load transported by water flow and periodically releasing the accumulated sediment as a debris flow surge. To explore this hypothesis, we develop a simple one-dimensional morphodynamic model of a sediment capacitor that consists of a system of coupled equations for water flow, bed load transport, slope stability, and mass flow. This model reproduces the essential patterns in surge magnitude and frequency with rainfall intensity observed at the two field sites and provides a new framework for predicting the runoff threshold for debris flow initiation in a burned or alpine setting.
A new method for calculating ecological flow: Distribution flow method
NASA Astrophysics Data System (ADS)
Tan, Guangming; Yi, Ran; Chang, Jianbo; Shu, Caiwen; Yin, Zhi; Han, Shasha; Feng, Zhiyong; Lyu, Yiwei
2018-04-01
A distribution flow method (DFM) and its ecological flow index and evaluation grade standard are proposed to study the ecological flow of rivers based on broadening kernel density estimation. The proposed DFM and its ecological flow index and evaluation grade standard are applied into the calculation of ecological flow in the middle reaches of the Yangtze River and compared with traditional calculation method of hydrological ecological flow, method of flow evaluation, and calculation result of fish ecological flow. Results show that the DFM considers the intra- and inter-annual variations in natural runoff, thereby reducing the influence of extreme flow and uneven flow distributions during the year. This method also satisfies the actual runoff demand of river ecosystems, demonstrates superiority over the traditional hydrological methods, and shows a high space-time applicability and application value.
NASA Astrophysics Data System (ADS)
Thouret, Jean-Claude; Gupta, Avijit; Liew, Soo Chin; Lube, Gert; Cronin, Shane J.; Surono, Dr
2010-05-01
On 16 June 2006 an overpass of IKONOS coincided with the emplacement of an active block-and-ash flow fed by a lava dome collapse event at Merapi Volcano (Java, Indonesia). This was the first satellite image recorded for a moving pyroclastic flow. The very high-spatial resolution data displayed the extent and impact of the pyroclastic deposits emplaced during and prior to, the day of image acquisition. This allowed a number of features associated with high-hazard block-and-ash flows emplaced in narrow, deep gorges to be mapped, interpreted and understood. The block-and-ash flow and surge deposits recognized in the Ikonos images include: (1) several channel-confined flow lobes and tongues in the box-shaped valley; (2) thin ash-cloud surge deposit and knocked-down trees in constricted areas on both slopes of the gorge; (3) fan-like over bank deposits on the Gendol-Tlogo interfluves from which flows were re-routed in the Tlogo secondary valley; (4) massive over bank lobes on the right bank from which flows devastated the village of Kaliadem 0.5 km from the main channel, a small part of this flow being re-channeled in the Opak secondary valley. The high-resolution IKONOS images also helped us to identify geomorphic obstacles that enabled flows to ramp and spill out from the sinuous channel, a process called flow avulsion. Importantly, the avulsion redirected flows to unexpected areas away from the main channel. In the case of Merapi we see that the presence of valley fill by previous deposits, bends and man-made dams influence the otherwise valley-guided course of the flows. Sadly, Sabo dams (built to ameliorate the effect of high sediment load streams) can actually cause block-and-ash flows to jump out of their containing channel and advance into sensitive areas. Very-high-spatial resolution satellite images are very useful for mapping and interpreting the distribution of freshly erupted volcanic deposits. IKONOS-type images with 1-m resolution provide opportunities to study and map the meter-scale detail of volcanic deposits. When such high-spatial-resolution satellite remote sensing data are combined with in situ field work, geomorphic analyses can be applied that allow us to more fully understand the dynamics and hazards of eruptions. In the case given here, IKONOS imagery allowed two qualitative hazard assessments for block-and-ash flow activity in drainages around Merapi. Firstly, the interpretation of IKONOS images provides insights in factors that control the propagation of secondary flows as the avulsion of the main flows is driven by longitudinal change in channel capacity due to increased sinuosity in the valley and decreased containment space. Secondly, the sinuosity and obstacles (including Sabo dams) may create over bank flows over adjacent low relief, allowing them to reach unexpectedly vulnerable areas distant from an active dome and away from the volcanically active valleys. Hazard assessment should therefore consider the geometry of secondary channels outside the principal valleys.
A High-Temperature MEMS Surface Fence for Wall-Shear-Stress Measurement in Scramjet Flow
Ma, Binghe; Deng, Jinjun; Yuan, Weizheng; Zhou, Zitong; Zhang, Han
2017-01-01
A new variant of MEMS surface fence is proposed for shear-stress estimation under high-speed, high-temperature flow conditions. Investigation of high-temperature resistance including heat-resistant mechanism and process, in conjunction with high-temperature packaging design, enable the sensor to be used in environment up to 400 °C. The packaged sensor is calibrated over a range of ~65 Pa and then used to examine the development of the transient flow of the scramjet ignition process (Mach 2 airflow, stagnation pressure, and a temperature of 0.8 MPa and 950 K, respectively). The results show that the sensor is able to detect the transient flow conditions of the scramjet ignition process including shock impact, flow correction, steady state, and hydrogen off. PMID:29065498
A High-Temperature MEMS Surface Fence for Wall-Shear-Stress Measurement in Scramjet Flow.
Ma, Chengyu; Ma, Binghe; Deng, Jinjun; Yuan, Weizheng; Zhou, Zitong; Zhang, Han
2017-10-22
A new variant of MEMS surface fence is proposed for shear-stress estimation under high-speed, high-temperature flow conditions. Investigation of high-temperature resistance including heat-resistant mechanism and process, in conjunction with high-temperature packaging design, enable the sensor to be used in environment up to 400 °C. The packaged sensor is calibrated over a range of ~65 Pa and then used to examine the development of the transient flow of the scramjet ignition process (Mach 2 airflow, stagnation pressure, and a temperature of 0.8 MPa and 950 K, respectively). The results show that the sensor is able to detect the transient flow conditions of the scramjet ignition process including shock impact, flow correction, steady state, and hydrogen off.
A Low-Power Thermal-Based Sensor System for Low Air Flow Detection
Arifuzzman, AKM; Haider, Mohammad Rafiqul; Allison, David B.
2016-01-01
Being able to rapidly detect a low air flow rate with high accuracy is essential for various applications in the automotive and biomedical industries. We have developed a thermal-based low air flow sensor with a low-power sensor readout for biomedical applications. The thermal-based air flow sensor comprises a heater and three pairs of temperature sensors that sense temperature differences due to laminar air flow. The thermal-based flow sensor was designed and simulated by using laminar flow, heat transfer in solids and fluids physics in COMSOL MultiPhysics software. The proposed sensor can detect air flow as low as 0.0064 m/sec. The readout circuit is based on a current- controlled ring oscillator in which the output frequency of the ring oscillator is proportional to the temperature differences of the sensors. The entire readout circuit was designed and simulated by using a 130-nm standard CMOS process. The sensor circuit features a small area and low-power consumption of about 22.6 µW with an 800 mV power supply. In the simulation, the output frequency of the ring oscillator and the change in thermistor resistance showed a high linearity with an R2 value of 0.9987. The low-power dissipation, high linearity and small dimensions of the proposed flow sensor and circuit make the system highly suitable for biomedical applications. PMID:28435186
Co-Flow Hollow Cathode Technology
NASA Technical Reports Server (NTRS)
Hofer, Richard R.; Goebel, Dan M.
2011-01-01
Hall thrusters utilize identical hollow cathode technology as ion thrusters, yet must operate at much higher mass flow rates in order to efficiently couple to the bulk plasma discharge. Higher flow rates are necessary in order to provide enough neutral collisions to transport electrons across magnetic fields so that they can reach the discharge. This higher flow rate, however, has potential life-limiting implications for the operation of the cathode. A solution to the problem involves splitting the mass flow into the hollow cathode into two streams, the internal and external flows. The internal flow is fixed and set such that the neutral pressure in the cathode allows for a high utilization of the emitter surface area. The external flow is variable depending on the flow rate through the anode of the Hall thruster, but also has a minimum in order to suppress high-energy ion generation. In the co-flow hollow cathode, the cathode assembly is mounted on thruster centerline, inside the inner magnetic core of the thruster. An annular gas plenum is placed at the base of the cathode and propellant is fed throughout to produce an azimuthally symmetric flow of gas that evenly expands around the cathode keeper. This configuration maximizes propellant utilization and is not subject to erosion processes. External gas feeds have been considered in the past for ion thruster applications, but usually in the context of eliminating high energy ion production. This approach is adapted specifically for the Hall thruster and exploits the geometry of a Hall thruster to feed and focus the external flow without introducing significant new complexity to the thruster design.
Haj, Adel E.; Christiansen, Daniel E.; Viger, Roland J.
2014-01-01
In 2011 the Missouri River Mainstem Reservoir System (Reservoir System) experienced the largest volume of flood waters since the initiation of record-keeping in the nineteenth century. The high levels of runoff from both snowpack and rainfall stressed the Reservoir System’s capacity to control flood waters and caused massive damage and disruption along the river. The flooding and resulting damage along the Missouri River brought increased public attention to the U.S. Army Corps of Engineers (USACE) operation of the Reservoir System. To help understand the effects of Reservoir System operation on the 2011 Missouri River flood flows, the U.S. Geological Survey Precipitation-Runoff Modeling System was used to construct a model of the Missouri River Basin to simulate flows at streamgages and dam locations with the effects of Reservoir System operation (regulation) on flow removed. Statistical tests indicate that the Missouri River Precipitation-Runoff Modeling System model is a good fit for high-flow monthly and annual stream flow estimation. A comparison of simulated unregulated flows and measured regulated flows show that regulation greatly reduced spring peak flow events, consolidated two summer peak flow events to one with a markedly decreased magnitude, and maintained higher than normal base flow beyond the end of water year 2011. Further comparison of results indicate that without regulation, flows greater than those measured would have occurred and been sustained for much longer, frequently in excess of 30 days, and flooding associated with high-flow events would have been more severe.
NASA Astrophysics Data System (ADS)
Carlsohn, Matthias F.; Kemmling, André; Petersen, Arne; Wietzke, Lennart
2016-04-01
Cerebral aneurysms require endovascular treatment to eliminate potentially lethal hemorrhagic rupture by hemostasis of blood flow within the aneurysm. Devices (e.g. coils and flow diverters) promote homeostasis, however, measurement of blood flow within an aneurysm or cerebral vessel before and after device placement on a microscopic level has not been possible so far. This would allow better individualized treatment planning and improve manufacture design of devices. For experimental analysis, direct measurement of real-time microscopic cerebrovascular flow in micro-structures may be an alternative to computed flow simulations. An application of microscopic aneurysm flow measurement on a regular basis to empirically assess a high number of different anatomic shapes and the corresponding effect of different devices would require a fast and reliable method at low cost with high throughout assessment. Transparent three dimensional 3D models of brain vessels and aneurysms may be used for microscopic flow measurements by particle image velocimetry (PIV), however, up to now the size of structures has set the limits for conventional 3D-imaging camera set-ups. On line flow assessment requires additional computational power to cope with the processing large amounts of data generated by sequences of multi-view stereo images, e.g. generated by a light field camera capturing the 3D information by plenoptic imaging of complex flow processes. Recently, a fast and low cost workflow for producing patient specific three dimensional models of cerebral arteries has been established by stereo-lithographic (SLA) 3D printing. These 3D arterial models are transparent an exhibit a replication precision within a submillimeter range required for accurate flow measurements under physiological conditions. We therefore test the feasibility of microscopic flow measurements by PIV analysis using a plenoptic camera system capturing light field image sequences. Averaging across a sequence of single double or triple shots of flashed images enables reconstruction of the real-time corpuscular flow through the vessel system before and after device placement. This approach could enable 3D-insight of microscopic flow within blood vessels and aneurysms at submillimeter resolution. We present an approach that allows real-time assessment of 3D particle flow by high-speed light field image analysis including a solution that addresses high computational load by image processing. The imaging set-up accomplishes fast and reliable PIV analysis in transparent 3D models of brain aneurysms at low cost. High throughput microscopic flow assessment of different shapes of brain aneurysms may therefore be possibly required for patient specific device designs.
Transient shear banding in the nematic dumbbell model of liquid crystalline polymers
NASA Astrophysics Data System (ADS)
Adams, J. M.; Corbett, D.
2018-05-01
In the shear flow of liquid crystalline polymers (LCPs) the nematic director orientation can align with the flow direction for some materials but continuously tumble in others. The nematic dumbbell (ND) model was originally developed to describe the rheology of flow-aligning semiflexible LCPs, and flow-aligning LCPs are the focus in this paper. In the shear flow of monodomain LCPs, it is usually assumed that the spatial distribution of the velocity is uniform. This is in contrast to polymer solutions, where highly nonuniform spatial velocity profiles have been observed in experiments. We analyze the ND model, with an additional gradient term in the constitutive model, using a linear stability analysis. We investigate the separate cases of constant applied shear stress and constant applied shear rate. We find that the ND model has a transient flow instability to the formation of a spatially inhomogeneous flow velocity for certain starting orientations of the director. We calculate the spatially resolved flow profile in both constant applied stress and constant applied shear rate in start up from rest, using a model with one spatial dimension to illustrate the flow behavior of the fluid. For low shear rates flow reversal can be seen as the director realigns with the flow direction, whereas for high shear rates the director reorientation occurs simultaneously across the gap. Experimentally, this inhomogeneous flow is predicted to be observed in flow reversal experiments in LCPs.
Robust-mode analysis of hydrodynamic flows
NASA Astrophysics Data System (ADS)
Roy, Sukesh; Gord, James R.; Hua, Jia-Chen; Gunaratne, Gemunu H.
2017-04-01
The emergence of techniques to extract high-frequency high-resolution data introduces a new avenue for modal decomposition to assess the underlying dynamics, especially of complex flows. However, this task requires the differentiation of robust, repeatable flow constituents from noise and other irregular features of a flow. Traditional approaches involving low-pass filtering and principle components analysis have shortcomings. The approach outlined here, referred to as robust-mode analysis, is based on Koopman decomposition. Three applications to (a) a counter-rotating cellular flame state, (b) variations in financial markets, and (c) turbulent injector flows are provided.
Fundamentals of microfluidics for high school students with no prior knowledge of fluid mechanics.
Tandon, Vishal; Peck, Walter
2013-01-01
Three microfluidics-based laboratory exercises were developed and implemented in a high school science classroom setting. The first exercise demonstrated ways in which flows are characterized, including viscosity, turbulence, shear stress, reversibility, compressibility, and hydrodynamic resistance. Students characterized flows in poly(dimethylsiloxane) microfluidic devices in the other two exercises, where they observed the mixing characteristics of laminar flows, and conservation of volumetric flow rate for incompressible flows. In surveys, the students self-reported increased knowledge of microfluidics, and an improved attitude toward science and nanotechnology.
Low exchange element for nuclear reactor
Brogli, Rudolf H.; Shamasunder, Bangalore I.; Seth, Shivaji S.
1985-01-01
A flow exchange element is presented which lowers temperature gradients in fuel elements and reduces maximum local temperature within high temperature gas-cooled reactors. The flow exchange element is inserted within a column of fuel elements where it serves to redirect coolant flow. Coolant which has been flowing in a hotter region of the column is redirected to a cooler region, and coolant which has been flowing in the cooler region of the column is redirected to the hotter region. The safety, efficiency, and longevity of the high temperature gas-cooled reactor is thereby enhanced.
NASA Astrophysics Data System (ADS)
Di, Yue; Jin, Yi; Jiang, Hong-liang; Zhai, Chao
2013-09-01
Due to the particularity of the high-speed flow, in order to accurately obtain its' temperature, the measurement system should has some characteristics of not interfereing with the flow, non-contact measurement and high time resolution. The traditional measurement method cannot meet the above requirements, however the measurement method based on tunable diode laser absorption spectroscopy (TDLAS) technology can meet the requirements for high-speed flow temperature measurement. When the near-infared light of a specific frequency is through the media to be measured, it will be absorbed by the water vapor molecules and then the transmission light intensity is detected by the detector. The temperature of the water vapor which is also the high-speed flow temperature, can be accurately obtained by the Beer-Lambert law. This paper focused on the research of absorption spectrum method for high speed flow temperature measurement with the scope of 250K-500K. Firstly, spectral line selection method for low temperature measurement of high-speed flow is discussed. Selected absorption lines should be isolated and have a high peak absorption within the range of 250-500K, at the same time the interference of the other lines should be avoided, so that a high measurement accuracy can be obtained. According to the near-infrared absorption spectra characteristics of water vapor, four absorption lines at the near 1395 nm and 1409 nm are selected. Secondly, a system for the temperature measurement of the water vapor in the high-speed flow is established. Room temperature are measured through two methods, direct absorption spectroscopy (DAS) and wavelength modulation spectroscopy (WMS) ,the results show that this system can realize on-line measurement of the temperature and the measurement error is about 3%. Finally, the system will be used for temperature measurement of the high-speed flow in the shock tunnel, its feasibility of measurement is analyzed.
True color blood flow imaging using a high-speed laser photography system
NASA Astrophysics Data System (ADS)
Liu, Chien-Sheng; Lin, Cheng-Hsien; Sun, Yung-Nien; Ho, Chung-Liang; Hsu, Chung-Chi
2012-10-01
Physiological changes in the retinal vasculature are commonly indicative of such disorders as diabetic retinopathy, glaucoma, and age-related macular degeneration. Thus, various methods have been developed for noninvasive clinical evaluation of ocular hemodynamics. However, to the best of our knowledge, current ophthalmic instruments do not provide a true color blood flow imaging capability. Accordingly, we propose a new method for the true color imaging of blood flow using a high-speed pulsed laser photography system. In the proposed approach, monochromatic images of the blood flow are acquired using a system of three cameras and three color lasers (red, green, and blue). A high-quality true color image of the blood flow is obtained by assembling the monochromatic images by means of image realignment and color calibration processes. The effectiveness of the proposed approach is demonstrated by imaging the flow of mouse blood within a microfluidic channel device. The experimental results confirm the proposed system provides a high-quality true color blood flow imaging capability, and therefore has potential for noninvasive clinical evaluation of ocular hemodynamics.
Large-Amplitude, High-Rate Roll Oscillations of a 65 deg Delta Wing at High Incidence
NASA Technical Reports Server (NTRS)
Chaderjian, Neal M.; Schiff, Lewis B.
2000-01-01
The IAR/WL 65 deg delta wing experimental results provide both detail pressure measurements and a wide range of flow conditions covering from simple attached flow, through fully developed vortex and vortex burst flow, up to fully-stalled flow at very high incidence. Thus, the Computational Unsteady Aerodynamics researchers can use it at different level of validating the corresponding code. In this section a range of CFD results are provided for the 65 deg delta wing at selected flow conditions. The time-dependent, three-dimensional, Reynolds-averaged, Navier-Stokes (RANS) equations are used to numerically simulate the unsteady vertical flow. Two sting angles and two large- amplitude, high-rate, forced-roll motions and a damped free-to-roll motion are presented. The free-to-roll motion is computed by coupling the time-dependent RANS equations to the flight dynamic equation of motion. The computed results are compared with experimental pressures, forces, moments and roll angle time history. In addition, surface and off-surface flow particle streaks are also presented.
A nonintrusive laser interferometer method for measurement of skin friction
NASA Technical Reports Server (NTRS)
Monson, D. J.
1982-01-01
A method is described for monitoring the changing thickness of a thin oil film subject to an aerodynamic shear stress using two focused laser beams. The measurement is then simply analyzed in terms of the surface skin friction of the flow. The analysis includes the effects of arbitrarily large pressure and skin friction gradients, gravity, and time varying oil temperature. It may also be applied to three dimensional flows with unknown direction. Applications are presented for a variety of flows including two dimensional flows, three dimensional swirling flows, separated flow, supersonic high Reynolds number flows, and delta wing vortical flows.
Visualization study of flow in axial flow inducer.
NASA Technical Reports Server (NTRS)
Lakshminarayana, B.
1972-01-01
A visualization study of the flow through a three ft dia model of a four bladed inducer, which is operated in air at a flow coefficient of 0.065, is reported in this paper. The flow near the blade surfaces, inside the rotating passages, downstream and upstream of the inducer is visualized by means of smoke, tufts, ammonia filament, and lampblack techniques. Flow is found to be highly three dimensional, with appreciable radial velocity throughout the entire passage. The secondary flows observed near the hub and annulus walls agree with qualitative predictions obtained from the inviscid secondary flow theory.
Ide, Momo; Saruta, Juri; To, Masahiro; Yamamoto, Yuko; Sugimoto, Masahiro; Fuchida, Shinya; Yokoyama, Mina; Kimoto, Shigenari; Tsukinoki, Keiichi
2016-10-01
The antimicrobial substances in saliva contribute to the maintenance of both oral health and overall health of the body. Therefore, the associations among immunoglobulin A (IgA), lactoferrin and lysozyme flow rates in the saliva of children, and their relationships with the physical attributes and lifestyle factors of children, were examined. Saliva was collected from 90 children who visited the Kanagawa Dental University Hospital Pediatric Dentistry, and questionnaires were completed by guardians. IgA, lactoferrin and lysozyme concentrations were measured in the saliva samples using enzyme-linked immunosorbent assays (ELISAs). The IgA flow rate in saliva increased as age, height and weight increased. A correlation was found between lactoferrin and lysozyme flow rates. When the antimicrobial substance flow rates in the saliva were divided into two groups of 22 children each based on the highest and lowest quartiles, children with either a low or high IgA flow rate also had a high or low lactoferrin flow rate, respectively. The same pattern was observed for lactoferrin and lysozyme flow rates. There is a high probability that the IgA flow rate in the saliva of children reflects and corresponds to the developmental status of immune function as the child ages and increases in height and weight. The flow rates of lactoferrin and lysozyme were correlated in children. In addition, regarding lifestyle factors, the duration of sleep and lactoferrin flow rate were also related.
Numerical aspects in modeling high Deborah number flow and elastic instability
NASA Astrophysics Data System (ADS)
Kwon, Youngdon
2014-05-01
Investigating highly nonlinear viscoelastic flow in 2D domain, we explore problem as well as property possibly inherent in the streamline upwinding technique (SUPG) and then present various results of elastic instability. The mathematically stable Leonov model written in tensor-logarithmic formulation is employed in the framework of finite element method for spatial discretization of several representative problem domains. For enhancement of computation speed, decoupled integration scheme is applied for shear thinning and Boger-type fluids. From the analysis of 4:1 contraction flow at low and moderate values of the Deborah number (De) the solution with SUPG method does not show noticeable difference from the one by the computation without upwinding. On the other hand, in the flow regime of high De, especially in the state of elastic instability the SUPG significantly distorts the flow field and the result differs considerably from the solution acquired straightforwardly. When the strength of elastic flow and thus the nonlinearity further increase, the computational scheme with upwinding fails to converge and evolutionary solution does not become available any more. All this result suggests that extreme care has to be taken on occasions where upwinding is applied, and one has to first of all prove validity of this algorithm in the case of high nonlinearity. On the contrary, the straightforward computation with no upwinding can efficiently model representative phenomena of elastic instability in such benchmark problems as 4:1 contraction flow, flow over a circular cylinder and flow over asymmetric array of cylinders. Asymmetry of the flow field occurring in the symmetric domain, enhanced spatial and temporal fluctuation of dynamic variables and flow effects caused by extension hardening are properly described in this study.
NASA Technical Reports Server (NTRS)
VanZante, Dale E.; Podboy, Gary G.; Miller, Christopher J.; Thorp, Scott A.
2009-01-01
A 1/5 scale model rotor representative of a current technology, high bypass ratio, turbofan engine was installed and tested in the W8 single-stage, high-speed, compressor test facility at NASA Glenn Research Center (GRC). The same fan rotor was tested previously in the GRC 9x15 Low Speed Wind Tunnel as a fan module consisting of the rotor and outlet guide vanes mounted in a flight-like nacelle. The W8 test verified that the aerodynamic performance and detailed flow field of the rotor as installed in W8 were representative of the wind tunnel fan module installation. Modifications to W8 were necessary to ensure that this internal flow facility would have a flow field at the test package that is representative of flow conditions in the wind tunnel installation. Inlet flow conditioning was designed and installed in W8 to lower the fan face turbulence intensity to less than 1.0 percent in order to better match the wind tunnel operating environment. Also, inlet bleed was added to thin the casing boundary layer to be more representative of a flight nacelle boundary layer. On the 100 percent speed operating line the fan pressure rise and mass flow rate agreed with the wind tunnel data to within 1 percent. Detailed hot film surveys of the inlet flow, inlet boundary layer and fan exit flow were compared to results from the wind tunnel. The effect of inlet casing boundary layer thickness on fan performance was quantified. Challenges and lessons learned from testing this high flow, low static pressure rise fan in an internal flow facility are discussed.
Ultrafast Ultrasound Imaging of Ocular Anatomy and Blood Flow
Urs, Raksha; Ketterling, Jeffrey A.; Silverman, Ronald H.
2016-01-01
Purpose Ophthalmic ultrasound imaging is currently performed with mechanically scanned single-element probes. These probes have limited capabilities overall and lack the ability to image blood flow. Linear-array systems are able to detect blood flow, but these systems exceed ophthalmic acoustic intensity safety guidelines. Our aim was to implement and evaluate a new linear-array–based technology, compound coherent plane-wave ultrasound, which offers ultrafast imaging and depiction of blood flow at safe acoustic intensity levels. Methods We compared acoustic intensity generated by a 128-element, 18-MHz linear array operated in conventionally focused and plane-wave modes and characterized signal-to-noise ratio (SNR) and lateral resolution. We developed plane-wave B-mode, real-time color-flow, and high-resolution depiction of slow flow in postprocessed data collected continuously at a rate of 20,000 frames/s. We acquired in vivo images of the posterior pole of the eye by compounding plane-wave images acquired over ±10° and produced images depicting orbital and choroidal blood flow. Results With the array operated conventionally, Doppler modes exceeded Food and Drug Administration safety guidelines, but plane-wave modalities were well within guidelines. Plane-wave data allowed generation of high-quality compound B-mode images, with SNR increasing with the number of compounded frames. Real-time color-flow Doppler readily visualized orbital blood flow. Postprocessing of continuously acquired data blocks of 1.6-second duration allowed high-resolution depiction of orbital and choroidal flow over the cardiac cycle. Conclusions Newly developed high-frequency linear arrays in combination with plane-wave techniques present opportunities for the evaluation of ocular anatomy and blood flow, as well as visualization and analysis of other transient phenomena such as vessel wall motion over the cardiac cycle and saccade-induced vitreous motion. PMID:27428169
Convection flow structure in the central polar cap
NASA Astrophysics Data System (ADS)
Bristow, W. A.
2017-12-01
A previous study of spatially averaged flow velocity in the central polar cap [Bristow et al., 2015] observed under steady IMF conditions found that it was extremely rare for the average to exceed 850 m/s (less than 0.2 % of the time). Anecdotally, however it is not uncommon to observe line-of-sight velocities in excess of 100 m/s in the McMurdo radar field of view directly over the magnetic pole. This discrepancy motivated this study, which examines the conditions under which high-velocity flows are observed at latitudes greater than 80° magnetic latitude. It was found that highly structured flows are common in the central polar cap, which leads to the flow within regions to have significant deviation from the average. In addition, the high-speed flow regions are usually directed away from the earth-sun line. No specific set of driving conditions was identified to be associated with high-speed flows. The study did conclude that 1)Polar cap velocities are generally highly structured. 2)Flow patterns typically illustrate narrow channels, vortical flow regions, and propagating features. 3) Persistent waves are a regular occurrence. 3)Features are observed to propagate from day side to night side, and from night side to day side.. 4)Convection often exhibits significant difference between the two hemispheres. And 5)About 10% of the time the velocity somewhere in the cap exceeds 1 Km/s The presentation will conclude with a discussion of the physical reasons for the flow structure. Bristow, W. A., E. Amata, J. Spaleta, and M. F. Marcucci (2015), Observations of the relationship between ionospheric central polar cap and dayside throat convection velocities, and solar wind/IMF driving, J. Geophys. Res. Space Physics, 120, doi:10.1002/2015JA021199.
Uterine artery blood flow, fetal hypoxia and fetal growth
Browne, Vaughn A.; Julian, Colleen G.; Toledo-Jaldin, Lillian; Cioffi-Ragan, Darleen; Vargas, Enrique; Moore, Lorna G.
2015-01-01
Evolutionary trade-offs required for bipedalism and brain expansion influence the pregnancy rise in uterine artery (UtA) blood flow and, in turn, reproductive success. We consider the importance of UtA blood flow by reviewing its determinants and presenting data from 191 normotensive (normal, n = 125) or hypertensive (preeclampsia (PE) or gestational hypertension (GH), n = 29) Andean residents of very high (4100–4300 m) or low altitude (400 m, n = 37). Prior studies show that UtA blood flow is reduced in pregnancies with intrauterine growth restriction (IUGR) but whether the IUGR is due to resultant fetal hypoxia is unclear. We found higher UtA blood flow and Doppler indices of fetal hypoxia in normotensive women at high versus low altitude but similar fetal growth. UtA blood flow was markedly lower in early-onset PE versus normal high-altitude women, and their fetuses more hypoxic as indicated by lower fetal heart rate, Doppler indices and greater IUGR. We concluded that, despite greater fetal hypoxia, fetal growth was well defended by higher UtA blood flows in normal Andeans at high altitude but when compounded by lower UtA blood flow in early-onset PE, exaggerated fetal hypoxia caused the fetus to respond by decreasing cardiac output and redistributing blood flow to help maintain brain development at the expense of growth elsewhere. We speculate that UtA blood flow is not only an important supply line but also a trigger for stimulating the metabolic and other processes regulating feto-placental metabolism and growth. Studies using the natural laboratory of high altitude are valuable for identifying the physiological and genetic mechanisms involved in human reproductive success. PMID:25602072
USDA-ARS?s Scientific Manuscript database
Flow monitoring at watershed scale relies on the establishment of a rating curve that describes the relationship between stage and flow and is developed from actual flow measurements at various stages. Measurement errors increase with out-of-bank flow conditions because of safety concerns and diffic...
Hasegawa, Hirotaka; Inoue, Tomohiro; Tamura, Akira; Saito, Isamu
2016-10-01
Direct clipping of giant partially thrombosed intracranial internal carotid artery (ICA) aneurysms is challenging, especially when important perforating arteries are involved. Proximal occlusion with bypass represents a possible alternative approach. An 80-year-old female presented with worsening visual acuity and severe headache caused by partially thrombosed giant (38 mm in diameter) aneurysms of the right ICA, suggestive of impending rupture. Direct clipping in conjunction with temporary occlusion of the lesion involving the anterior choroidal artery (AChA) was considered too risky. Thus, we sequestrated the ipsilateral ICA flow into a low-flow and a high-flow system using two external carotid artery (ECA)-ICA bypasses and one in situ bypass with cervical ICA ligation. As a result, the low-flow system by the superficial temporal artery-middle cerebral artery (MCA) bypass perfused mainly the proximal MCA lesions and aneurysm, whereas the high-flow system by ECA-radial artery-M2 bypass exclusively supplied the residual distal MCA area. This tailored flow sequestration successfully interrupted intra-aneurysmal flow and accelerated near-complete thrombosis of the aneurysm while preserving the AChA and avoiding any significant neurological deterioration. We conclude that this method is effective for the management of giant partially thrombosed aneurysms of the ICA, especially when direct clipping is difficult.
Use of Blade Lean in Turbomachinery Redesign
NASA Technical Reports Server (NTRS)
Moore, John; Moore, Joan G.; Lupi, Alex
1993-01-01
Blade lean is used to improve the uniformity of exit flow distributions from turbomachinery blading. In turbines, it has been used to control secondary flows by tailoring blade turning to reduce flow overturning and underturning and to create more uniform loss distributions from hub to shroud. In the present study, the Pump Consortium centrifugal impeller has been redesigned using blade lean. The flow at the exit of the baseline impeller had large blade-to-blade variations, creating a highly unsteady flow for the downstream diffuser. Blade lean is used to redesign the flow to move the high loss fluid from the suction side to the hub, significantly reducing blade-toblade variations at the exit.
Investigating lava flows at Quizapu Volcano, on the ground and in the air
NASA Astrophysics Data System (ADS)
Lev, E.; Ruprecht, P.; Moon, R. S.
2017-12-01
The emplacement of silicic and intermediate lava flows is not often witnessed directly, and thus quantitative assessment of existing flows is a critical step in the interpretation of flow dynamics and eruption conditions. Two key parameters - lava rheology and effusion rate - are both difficult to assess many years after the eruption ended. Yet both are reflected in observables such as flow morphology (including roughness, folding and inflation structures), and micro-texture (including vesicularity, crystallinity, and microlite content). Therefore, it is important to collect data sets of high spatial resolution of both samples and topography of a target flow. We present a case study from Quizapu volcano (Chile), where an 1846 effusive eruption emplaced a suite of large lava flows, spanning composition from silicis andesitic to dacite. We focus on two major flow lobes, which, despite originating from the same eruption, and traversing similar topography, exhibit different large-scale structure: The southern flow (SF) has a uniform, smooth, almost straight geometry, while the northern flow (NF) has undulating boundaries and irregular width and thickness. We collected and utilized two sets of data: 1) thousands of aerial photos collected during 12 UAV flights, and 2) 68 hand samples which covered both the main channels and the levees of both flows in a systematic grid pattern. We present outcomes from analysis of samples for 3D structure, crystallinity, and vesicularity using X-ray microtomography, for micrstructure using thin sections and SEM, and for major and trace element composition using XRF. The aerial photographs were used to construct high-resolution (few cm) digital elevation models (DEMs) of several segments of each flow. From the DEMs we extracted along- and across-flow profiles which reveal morphological differences between NF and SF, with pressure ridges at NF wider and taller than those of SF. However, both flows share a common trend line in the relationship between the height and width of surface pressure ridges, suggesting a shared controlling process. Our results highlight the importance of collecting high-resolution data sets. In particular, we demonstrate the capability of UAVs to collect, at a low cost, the high-quality topography data critical for volcanology and geoscience in general.
Ullrich, Tim Leon; Czernik, Christoph; Bührer, Christoph; Schmalisch, Gerd; Fischer, Hendrik Stefan
2018-06-01
Heated humidification is paramount during neonatal high-flow nasal cannula (HFNC) therapy. However, there is little knowledge about the influence of flow rate and mouth leak on oropharyngeal humidification and temperature. The effect of the Optiflow HFNC on oropharyngeal gas conditioning was investigated at flow rates of 4, 6 and 8 L min -1 with and without mouth leak in a bench model simulating physiological oropharyngeal air conditions during spontaneous breathing. Temperature and absolute humidity (AH) were measured using a digital thermo-hygrosensor. Without mouth leak, oropharyngeal temperature and AH increased significantly with increasing flow (P < 0.001). Mouth leak did not affect this increase up to 6 L min -1 , but at 8 L min -1 , temperature and AH plateaued, and the effect of mouth leak became statistically significant (P < 0.001). Mouth leak during HFNC had a negative impact on oropharyngeal gas conditioning when high flows were applied. However, temperature and AH always remained clinically acceptable.
Kay, Matthew; Swift, Luther; Martell, Brian; Arutunyan, Ara; Sarvazyan, Narine
2008-05-01
We studied the origins of ectopic beats during low-flow reperfusion after acute regional ischemia in excised rat hearts. The left anterior descending coronary artery was cannulated. Perfusate was delivered to the cannula using an high-performance liquid chromatography pump. This provided not only precise control of flow rate but also avoided mechanical artifacts associated with vessel occlusion and deocclusion. Optical mapping of epicardial transmembrane potential served to identify activation wavefronts. Imaging of NADH fluorescence was used to quantify local ischemia. Our experiments suggest that low-flow reperfusion of ischemic myocardium leads to a highly heterogeneous ischemic substrate and that the degree of ischemia between adjacent patches of tissue changes in time. In contrast to transient ectopic activity observed during full-flow reperfusion, persistent ectopic arrhythmias were observed during low-flow reperfusion. The origins of ectopic beats were traceable to areas of high spatial gradients of changes in NADH fluorescence caused by low-flow reperfusion.
Decorrelation Times of Photospheric Fields and Flows
NASA Technical Reports Server (NTRS)
Welsch, B. T.; Kusano, K.; Yamamoto, T. T.; Muglach, K.
2012-01-01
We use autocorrelation to investigate evolution in flow fields inferred by applying Fourier Local Correlation Tracking (FLCT) to a sequence of high-resolution (0.3 "), high-cadence (approx = 2 min) line-of-sight magnetograms of NOAA active region (AR) 10930 recorded by the Narrowband Filter Imager (NFI) of the Solar Optical Telescope (SOT) aboard the Hinode satellite over 12 - 13 December 2006. To baseline the timescales of flow evolution, we also autocorrelated the magnetograms, at several spatial binnings, to characterize the lifetimes of active region magnetic structures versus spatial scale. Autocorrelation of flow maps can be used to optimize tracking parameters, to understand tracking algorithms f susceptibility to noise, and to estimate flow lifetimes. Tracking parameters varied include: time interval Delta t between magnetogram pairs tracked, spatial binning applied to the magnetograms, and windowing parameter sigma used in FLCT. Flow structures vary over a range of spatial and temporal scales (including unresolved scales), so tracked flows represent a local average of the flow over a particular range of space and time. We define flow lifetime to be the flow decorrelation time, tau . For Delta t > tau, tracking results represent the average velocity over one or more flow lifetimes. We analyze lifetimes of flow components, divergences, and curls as functions of magnetic field strength and spatial scale. We find a significant trend of increasing lifetimes of flow components, divergences, and curls with field strength, consistent with Lorentz forces partially governing flows in the active photosphere, as well as strong trends of increasing flow lifetime and decreasing magnitudes with increases in both spatial scale and Delta t.
Numerical Simulation of High-Speed Turbulent Reacting Flows
NASA Technical Reports Server (NTRS)
Givi, P.; Taulbee, D. B.; Madnia, C. K.; Jaberi, F. A.; Colucci, P. J.; Gicquel, L. Y. M.; Adumitroaie, V.; James, S.
1999-01-01
The objectives of this research are: (1) to develop and implement a new methodology for large eddy simulation of (LES) of high-speed reacting turbulent flows. (2) To develop algebraic turbulence closures for statistical description of chemically reacting turbulent flows.
From Signature-Based Towards Behaviour-Based Anomaly Detection (Extended Abstract)
2010-11-01
data acquisition can serve as sensors. De- facto standard for IP flow monitoring is NetFlow format. Although NetFlow was originally developed by Cisco...packets with some common properties that pass through a network device. These collected flows are exported to an external device, the NetFlow ...Thanks to the network-based approach using NetFlow data, the detection algorithm is host independent and highly scalable. Deep Packet Inspection
NASA Astrophysics Data System (ADS)
Ke, Xinyou; Prahl, Joseph M.; Alexander, J. Iwan D.; Savinell, Robert F.
2018-04-01
Redox flow batteries with flow field designs have been demonstrated to boost their capacities to deliver high current density and power density in medium and large-scale energy storage applications. Nevertheless, the fundamental mechanisms involved with improved current density in flow batteries with serpentine flow field designs have been not fully understood. Here we report a three-dimensional model of a serpentine flow field over a porous carbon electrode to examine the distributions of pressure driven electrolyte flow penetrations into the porous carbon electrodes. We also estimate the maximum current densities associated with stoichiometric availability of electrolyte reactant flow penetrations through the porous carbon electrodes. The results predict reasonably well observed experimental data without using any adjustable parameters. This fundamental work on electrolyte flow distributions of limiting reactant availability will contribute to a better understanding of limits on electrochemical performance in flow batteries with serpentine flow field designs and should be helpful to optimizing flow batteries.
Murdoch, Peter S.; Shanley, J.B.
2006-01-01
Two new methods for assessing temporal trends in stream-solute concentrations at specific streamflow ranges were applied to long (40 to 50-year) but sparse (bi-weekly to quarterly sampling) stream-water quality data collected at three forested mesoscale basins along an atmospheric deposition gradient in the northeastern United States (one in north-central Pennsylvania, one in southeastern New York, and one in eastern Maine). The three data sets span the period since the implementation of the Clean Air Act in 1970 and its subsequent amendments. Declining sulfate (SO2-4) trends since the mid 1960s were identified for all 3 rivers by one or more of the 4 methods of trend detection used. Flow-specific trends were assessed by segmenting the data sets into 3-year and 6-year blocks, then determining concentration-discharge relationships for each block. Declining sulfate (SO2-4) trends at median flow were similar to trends determined using a Seasonal Kendall Tau test and Sen slope estimator. The trend of declining SO2-4 concentrations differed at high, median and low flow since the mid 1980s at YWC and NR, and at high and low flow at WR, but the trends leveled or reversed at high flow from 1999 through 2002. Trends for the period of record at high flows were similar to medium- and low-flow trends for Ca2+ + Mg2+ concentrations at WR, non-significant at YWC, and were more negative at low flow than at high flow at NR; trends in nitrate (NO-3), and alkalinity (ALK) concentrations were different at different flow conditions, and in ways that are consistent with the hydrology and deposition history at each watershed. Quarterly sampling is adequate for assessing average-flow trends in the chemical parameters assessed over long time periods (???decades). However, with even a modest effort at sampling a range of flow conditions within each year, trends at specified flows for constituents with strong concentration-discharge relationships can be evaluated and may allow early detection of ecosystem response to climate change and pollution management strategies. ?? Springer Science+Business Media, B.V. 2006.
Piacentini, Enrique; López-Aguilar, Josefina; García-Martín, Carolina; Villagrá, Ana; Saenz-Valiente, Alicia; Murias, Gastón; Fernández-Segoviano, Pilar; Hotchkiss, John R; Blanch, Lluis
2008-07-01
High vascular flow aggravates lung damage in animal models of ventilator-induced lung injury. Positive end-expiratory pressure (PEEP) can attenuate ventilator-induced lung injury, but its continued effectiveness in the setting of antecedent lung injury is unclear. The objective of the present study was to evaluate whether the application of PEEP diminishes lung injury induced by concurrent high vascular flow and high alveolar pressures in normal lungs and in a preinjury lung model. Two series of experiments were performed. Fifteen sets of isolated rabbit lungs were randomized into three groups (n = 5): low vascular flow/low PEEP; high vascular flow/low PEEP, and high vascular flow/high PEEP. Subsequently, the same protocol was applied in an additional 15 sets of isolated rabbit lungs in which oleic acid was added to the vascular perfusate to produce mild to moderate lung injury. All lungs were ventilated with peak airway pressure of 30 cm H2O for 30 minutes. Outcome measures included frequency of gross structural failure, pulmonary hemorrhage, edema formation, changes in static compliance, pulmonary vascular resistance, and pulmonary ultrafiltration coefficient. In the context of high vascular flow, application of a moderate level of PEEP reduced pulmonary rupture, edema formation, and lung hemorrhage. The protective effects of PEEP were not observed in lungs concurrently injured with oleic acid. Under these experimental conditions, PEEP attenuates lung injury in the setting of high vascular flow. The protective effect of PEEP is lost in a two-hit model of lung injury.
Li, Zhi-Yong; Tan, Felicia P P; Soloperto, Giulia; Wood, Nigel B; Xu, Xiao Y; Gillard, Jonathan H
2015-08-01
The aim of this study is to investigate the blood flow pattern in carotid bifurcation with a high degree of luminal stenosis, combining in vivo magnetic resonance imaging (MRI) and computational fluid dynamics (CFD). A newly developed two-equation transitional model was employed to evaluate wall shear stress (WSS) distribution and pressure drop across the stenosis, which are closely related to plaque vulnerability. A patient with an 80% left carotid stenosis was imaged using high resolution MRI, from which a patient-specific geometry was reconstructed and flow boundary conditions were acquired for CFD simulation. A transitional model was implemented to investigate the flow velocity and WSS distribution in the patient-specific model. The peak time-averaged WSS value of approximately 73 Pa was predicted by the transitional flow model, and the regions of high WSS occurred at the throat of the stenosis. High oscillatory shear index values up to 0.50 were present in a helical flow pattern from the outer wall of the internal carotid artery immediately after the throat. This study shows the potential suitability of a transitional turbulent flow model in capturing the flow phenomena in severely stenosed carotid arteries using patient-specific MRI data and provides the basis for further investigation of the links between haemodynamic variables and plaque vulnerability. It may be useful in the future for risk assessment of patients with carotid disease.
Minnowbrook VI: 2009 Workshop on Flow Physics and Control for Internal and External Aerodynamics
NASA Technical Reports Server (NTRS)
LaGraff, John E.; Povinelli, Louis A.; Gostelow, J. Paul; Glauser, Mark
2010-01-01
Topics covered include: Flow Physics and control for Internal and External Aerodynamics (not in TOC...starts on pg13); Breaking CFD Bottlenecks in Gas-Turbine Flow-Path Design; Streamwise Vortices on the Convex Surfaces of Circular Cylinders and Turbomachinery Blading; DNS and Embedded DNS as Tools for Investigating Unsteady Heat Transfer Phenomena in Turbines; Cavitation, Flow Structure and Turbulence in the Tip Region of a Rotor Blade; Development and Application of Plasma Actuators for Active Control of High-Speed and High Reynolds Number Flows; Active Flow Control of Lifting Surface With Flap-Current Activities and Future Directions; Closed-Loop Control of Vortex Formation in Separated Flows; Global Instability on Laminar Separation Bubbles-Revisited; Very Large-Scale Motions in Smooth and Rough Wall Boundary Layers; Instability of a Supersonic Boundary-Layer With Localized Roughness; Active Control of Open Cavities; Amplitude Scaling of Active Separation Control; U.S. Air Force Research Laboratory's Need for Flow Physics and Control With Applications Involving Aero-Optics and Weapon Bay Cavities; Some Issues Related to Integrating Active Flow Control With Flight Control; Active Flow Control Strategies Using Surface Pressure Measurements; Reduction of Unsteady Forcing in a Vaned, Contra-Rotating Transonic Turbine Configuration; Active Flow Control Stator With Coanda Surface; Controlling Separation in Turbomachines; Flow Control on Low-Pressure Turbine Airfoils Using Vortex Generator Jets; Reduced Order Modeling Incompressible Flows; Study and Control of Flow Past Disk, and Circular and Rectangular Cylinders Aligned in the Flow; Periodic Forcing of a Turbulent Axisymmetric Wake; Control of Vortex Breakdown in Critical Swirl Regime Using Azimuthal Forcing; External and Turbomachinery Flow Control Working Group; Boundary Layers, Transitions and Separation; Efficiency Considerations in Low Pressure Turbines; Summary of Conference; and Final Plenary Session Transcript.
Gendaszek, Andrew S.; Magirl, Christopher S.; Czuba, Christiana R.
2012-01-01
Decadal- to annual-scale analyses of changes to the fluvial form and processes of the Cedar River in Washington State, USA, reveal the effects of flow regulation, bank stabilization, and log-jam removal on a gravel-bedded river in a temperate climate. During the twentieth century, revetments were built along ~ 60% of the lower Cedar River's length and the 2-year return period flow decreased by 47% following flow regulation beginning in 1914. The formerly wide, anastomosing channel narrowed by over 50% from an average of 47 m in 1936 to 23 m in 1989 and became progressively single threaded. Subsequent high flows and localized revetment removal contributed to an increase in mean channel width to about 34 m by 2011. Channel migration rates between 1936 and 2011 were up to 8 m/year in reaches not confined by revetments or valley walls and less than analysis uncertainty throughout most of the Cedar River's length where bank armoring restricted channel movement. In unconfined reaches where large wood and sediment can be recruited, contemporary high flows, though smaller in magnitude than preregulation high flows, form and maintain geomorphic features such as pools, gravel bars, and side channels. Reaches confined by revetments remain mostly unmodified in the regulated flow regime. While high flows are important for maintaining channel dynamics in the Cedar River, their effectiveness is currently reduced by revetments, limited sediment supply, the lack of large wood available for recruitment to the channel, and decreased magnitude since flow regulation.
ten Brink, Fia; Duke, Trevor; Evans, Janine
2013-09-01
The aim of this study was to compare the use of high-flow nasal prong oxygen therapy to nasopharyngeal continuous positive airway pressure in a PICU at a tertiary hospital; to understand the safety and effectiveness of high-flow nasal prong therapy; in particular, what proportion of children require escalation of therapy, whether any bedside monitoring data predict stability or need for escalation, and complications of the therapies. This was a prospective observational study of the first 6 months after the introduction of high-flow nasal prong oxygen therapy at the Royal Children's Hospital in Melbourne. Data were collected on all children who were managed with either high-flow nasal prong oxygen therapy or nasopharyngeal continuous positive airway pressure. The mode of respiratory support was determined by the treating medical staff. Data were collected on each patient before the use of high-flow nasal prong or nasopharyngeal continuous positive airway pressure, at 2 hours after starting the therapy, and the children were monitored and data collected until discharge from the ICU. Therapy was considered to be escalated if children on high-flow nasal prong required a more invasive form or higher level of respiratory support, including nasopharyngeal continuous positive airway pressure or mask bilevel positive airway pressure or endotracheal intubation and mechanical ventilation. Therapy was considered to be escalated if children on nasopharyngeal continuous positive airway pressure required bilevel positive airway pressure or intubation and mechanical ventilation. As the first mode of respiratory support, 72 children received high-flow nasal prong therapy and 37 received nasopharyngeal continuous positive airway pressure. Forty-four patients (61%) who received high-flow nasal prong first were weaned to low-flow oxygen or to room air and 21 (29%) required escalation of respiratory support, compared with children on nasopharyngeal continuous positive airway pressure: 21 (57%) weaned successfully and 9 (24%) required escalation. Repeated treatment and crossover were common in this cohort. Throughout the study duration, escalation to a higher level of respiratory support was needed in 26 of 100 high-flow nasal prong treatment episodes (26%) and in 10 of 55 continuous positive airway pressure episodes (18%; p = 0.27). The need for escalation could be predicted by two of failure of normalization of heart rate and respiratory rate, and if the FIO2 did not fall to lower than 0.5, 2 hours after starting high-flow nasal prong therapy. Nasopharyngeal continuous positive airway pressure was required for significantly longer periods than high-flow nasal prong (median 48 and 18 hours, respectively; p ≤ 0.001). High-flow nasal prong therapy is a safe form of respiratory support for children with moderate-to-severe respiratory distress, across a large range of diagnoses, whose increased work of breathing or hypoxemia is not relieved by standard oxygen therapy. About one quarter of all children will require escalation to another form of respiratory support. This can be predicted by simple bedside observations.
NASA Astrophysics Data System (ADS)
Sugano, K.; Nakata, A.; Tsuchiya, T.; Tabata, O.
2015-08-01
In this study, we propose a mixing method using alternate pulsed flows from three inlets with flow direction control. In conventional pulsed mixing, a residual flow near the sidewalls inhibits the rapid mixing of two solutions at high switching frequency. In this study, we addressed this issue in order to perform rapid mixing in a short distance with a low Reynolds number. We fabricated a microfluidic mixing device consisting of a cross-shaped mixing channel with three inlet microchannels and three valveless micropumps. In conventional T-shaped or Y-shaped mixing channels, a residual flow is observed because of the incomplete switching of solutions. The three inlet configuration enabled us to split the residual flow at a switching frequency of pumping of up to 200 Hz, thus resulting in rapid mixing. Furthermore, by controlling the flow direction at the confluent area using the reverse flow of the micropump, the mixing speed was dramatically increased because of the complete switching of the two solutions. As a result, we achieved the mixing time of 3.6 ms and the mixing length of 20.7 µm, which were necessary to achieve a 90% mixing ratio at a high micropump switching frequency of 400 Hz and reverse flow ratio of 1/4.
Trend of heat flow in france: relation with deep structures
NASA Astrophysics Data System (ADS)
Vasseur, Guy; Nouri, Yamina; Groupe Fluxchaf
1980-06-01
The trend of heat flow over France is discussed using both direct measurements at equilibrium in boreholes and file data. The two types of data are found to be in agreement. They exhibit high heat flow values over the Massif Central and the Vosges. An E-W cross section across the Massif Central allows us to observe the relationship between the high heat flow values, the thinning of the crust and the uprising of the asthenosphere deduced from seismic and gravity measurements. High heat flow values could be explained using a cinematic model where upward convection occurs in the upper mantle for a period of 40 m.y. with a vertical velocity reaching 5 mm/y.
Comparison of Tomo-PIV Versus Dual Plane PIV on a Synthetic Jet Flow
NASA Technical Reports Server (NTRS)
Wernet, Mark P.
2017-01-01
Particle Imaging Velocimetry (PIV) is a planar velocity measurement technique that has found widespread use across a wide class of engineering disciplines. Tomographic PIV (tomoPIV) is an extension of the traditional PIV technique whereby the velocity across a volume of fluid is measured. TomoPIV provides additional fluid mechanical properties of the flow due to the adjacent planes of velocity information that are extracted. Dual Plane PIV is another approach for providing cross-plane flow field properties. Dual Plane PIV and tomoPIV provide all of the same flow properties, albeit through very different routes with significantly different levels of effort, hence a comparison of their application and performance would prove beneficial in a well-known, highly three dimensional flow field. A synthetic jet flow which has a wide range of flow field features including high velocity gradients and regions of high vorticity was used as a rigorous test bed to determine the capabilities limitations of the Dual Plane PIV and tomoPIV techniques. The results show that compressing 3D particle field information down to a limited number of views does not permit the accurate reconstruction of the flow field. The traditional thin sheet techniques are the best approach for accurate flow field measurements.
NASA Astrophysics Data System (ADS)
Zheng, Qiong; Xing, Feng; Li, Xianfeng; Ning, Guiling; Zhang, Huamin
2016-08-01
Vanadium flow battery holds great promise for use in large scale energy storage applications. However, the power density is relatively low, leading to significant increase in the system cost. Apart from the kinetic and electronic conductivity improvement, the mass transport enhancement is also necessary to further increase the power density and reduce the system cost. To better understand the mass transport limitations, in the research, the space-varying and time-varying characteristic of the mass transport polarization is investigated based on the analysis of the flow velocity and reactant concentration in the bulk electrolyte by modeling. The result demonstrates that the varying characteristic of mass transport polarization is more obvious at high SoC or high current densities. To soften the adverse impact of the mass transport polarization, a new rectangular plug flow battery with a plug flow and short flow path is designed and optimized based on the mass transport polarization regulation (reducing the mass transport polarization and improving its uniformity of distribution). The regulation strategy of mass transport polarization is practical for the performance improvement in VFBs, especially for high power density VFBs. The findings in the research are also applicable for other flow batteries and instructive for practical use.
Bouillot, Pierre; Brina, Olivier; Ouared, Rafik; Lovblad, Karl-Olof; Farhat, Mohamed; Pereira, Vitor Mendes
2014-01-01
We investigated the flow modifications induced by a large panel of commercial-off-the-shelf (COTS) intracranial stents in an idealized sidewall intracranial aneurysm (IA). Flow velocities in IA silicone model were assessed with and without stent implantation using particle imaging velocimetry (PIV). The use of the recently developed multi-time-lag method has allowed for uniform and precise measurements of both high and low velocities at IA neck and dome, respectively. Flow modification analysis of both regular (RSs) and flow diverter stents (FDSs) was subsequently correlated with relevant geometrical stent parameters. Flow reduction was found to be highly sensitive to stent porosity variations for regular stents RSs and moderately sensitive for FDSs. Consequently, two distinct IA flow change trends, with velocity reductions up to 50% and 90%, were identified for high-porosity RS and low-porosity FDS, respectively. The intermediate porosity (88%) regular braided stent provided the limit at which the transition in flow change trend occurred with a flow reduction of 84%. This transition occurred with decreasing stent porosity, as the driving force in IA neck changed from shear stress to differential pressure. Therefore, these results suggest that stents with intermediate porosities could possibly provide similar flow change patterns to FDS, favourable to curative thrombogenesis in IAs.
Scalable clustering algorithms for continuous environmental flow cytometry.
Hyrkas, Jeremy; Clayton, Sophie; Ribalet, Francois; Halperin, Daniel; Armbrust, E Virginia; Howe, Bill
2016-02-01
Recent technological innovations in flow cytometry now allow oceanographers to collect high-frequency flow cytometry data from particles in aquatic environments on a scale far surpassing conventional flow cytometers. The SeaFlow cytometer continuously profiles microbial phytoplankton populations across thousands of kilometers of the surface ocean. The data streams produced by instruments such as SeaFlow challenge the traditional sample-by-sample approach in cytometric analysis and highlight the need for scalable clustering algorithms to extract population information from these large-scale, high-frequency flow cytometers. We explore how available algorithms commonly used for medical applications perform at classification of such a large-scale, environmental flow cytometry data. We apply large-scale Gaussian mixture models to massive datasets using Hadoop. This approach outperforms current state-of-the-art cytometry classification algorithms in accuracy and can be coupled with manual or automatic partitioning of data into homogeneous sections for further classification gains. We propose the Gaussian mixture model with partitioning approach for classification of large-scale, high-frequency flow cytometry data. Source code available for download at https://github.com/jhyrkas/seaflow_cluster, implemented in Java for use with Hadoop. hyrkas@cs.washington.edu Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Wilcox, Andrew C.; Wohl, Ellen E.
2006-01-01
Flow resistance dynamics in step‐pool channels were investigated through physical modeling using a laboratory flume. Variables contributing to flow resistance in step‐pool channels were manipulated in order to measure the effects of various large woody debris (LWD) configurations, steps, grains, discharge, and slope on total flow resistance. This entailed nearly 400 flume runs, organized into a series of factorial experiments. Factorial analyses of variance indicated significant two‐way and three‐way interaction effects between steps, grains, and LWD, illustrating the complexity of flow resistance in these channels. Interactions between steps and LWD resulted in substantially greater flow resistance for steps with LWD than for steps lacking LWD. LWD position contributed to these interactions, whereby LWD pieces located near the lip of steps, analogous to step‐forming debris in natural channels, increased the effective height of steps and created substantially higher flow resistance than pieces located farther upstream on step treads. Step geometry and LWD density and orientation also had highly significant effects on flow resistance. Flow resistance dynamics and the resistance effect of bed roughness configurations were strongly discharge‐dependent; discharge had both highly significant main effects on resistance and highly significant interactions with all other variables.
High Latitude Meridional Flow on the Sun May Explain North-South Polar Field Asymmetry
NASA Technical Reports Server (NTRS)
Kosak, Katie; Upton, Lisa; Hathaway, David
2012-01-01
We measured the flows of magnetic elements on the Sun at very high latitudes by analyzing magnetic images from the Helioseismic and Magnetic Imager (HMI) on the NASA Solar Dynamics Observatory (SDO) Mission. Magnetic maps constructed using a fixed, and north-south symmetric, meridional flow profile give weaker than observed polar fields in the North and stronger than observed polar fields in the South during the decline of Cycle 23 and rise of Cycle 24. Our measurements of the meridional flow at high latitudes indicate systematic north-south differences. In the fall of 2010 (when the North Pole was most visible), there was a strong flow in the North while in the spring of 2011 (when the South Pole was most visible) the flow there was weaker. With these results, we have a possible solution to this polar field asymmetry. The weaker flow in the South should keep the polar fields from becoming too strong while the stronger flow in the North should strengthen the field there. In order to gain a better understanding of the Solar Cycle and magnetic flux transport on the Sun, we need further observations and analyses of the Sun s polar regions in general and the polar meridional flow in particular.
Development and application of computational aerothermodynamics flowfield computer codes
NASA Technical Reports Server (NTRS)
Venkatapathy, Ethiraj
1994-01-01
Research was performed in the area of computational modeling and application of hypersonic, high-enthalpy, thermo-chemical nonequilibrium flow (Aerothermodynamics) problems. A number of computational fluid dynamic (CFD) codes were developed and applied to simulate high altitude rocket-plume, the Aeroassist Flight Experiment (AFE), hypersonic base flow for planetary probes, the single expansion ramp model (SERN) connected with the National Aerospace Plane, hypersonic drag devices, hypersonic ramp flows, ballistic range models, shock tunnel facility nozzles, transient and steady flows in the shock tunnel facility, arc-jet flows, thermochemical nonequilibrium flows around simple and complex bodies, axisymmetric ionized flows of interest to re-entry, unsteady shock induced combustion phenomena, high enthalpy pulsed facility simulations, and unsteady shock boundary layer interactions in shock tunnels. Computational modeling involved developing appropriate numerical schemes for the flows on interest and developing, applying, and validating appropriate thermochemical processes. As part of improving the accuracy of the numerical predictions, adaptive grid algorithms were explored, and a user-friendly, self-adaptive code (SAGE) was developed. Aerothermodynamic flows of interest included energy transfer due to strong radiation, and a significant level of effort was spent in developing computational codes for calculating radiation and radiation modeling. In addition, computational tools were developed and applied to predict the radiative heat flux and spectra that reach the model surface.
Implicit preconditioned WENO scheme for steady viscous flow computation
NASA Astrophysics Data System (ADS)
Huang, Juan-Chen; Lin, Herng; Yang, Jaw-Yen
2009-02-01
A class of lower-upper symmetric Gauss-Seidel implicit weighted essentially nonoscillatory (WENO) schemes is developed for solving the preconditioned Navier-Stokes equations of primitive variables with Spalart-Allmaras one-equation turbulence model. The numerical flux of the present preconditioned WENO schemes consists of a first-order part and high-order part. For first-order part, we adopt the preconditioned Roe scheme and for the high-order part, we employ preconditioned WENO methods. For comparison purpose, a preconditioned TVD scheme is also given and tested. A time-derivative preconditioning algorithm is devised and a discriminant is devised for adjusting the preconditioning parameters at low Mach numbers and turning off the preconditioning at intermediate or high Mach numbers. The computations are performed for the two-dimensional lid driven cavity flow, low subsonic viscous flow over S809 airfoil, three-dimensional low speed viscous flow over 6:1 prolate spheroid, transonic flow over ONERA-M6 wing and hypersonic flow over HB-2 model. The solutions of the present algorithms are in good agreement with the experimental data. The application of the preconditioned WENO schemes to viscous flows at all speeds not only enhances the accuracy and robustness of resolving shock and discontinuities for supersonic flows, but also improves the accuracy of low Mach number flow with complicated smooth solution structures.
On the influence of wall roughness in particle-laden flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milici, Barbara; De Marchis, Mauro
2015-03-10
The distribution of inertial particles in turbulent flows is highly nonuniform and is governed by the local dynamics of the turbulent structures of the underlying carrier flow field. In wall-bounded flows, wall roughness strongly affects the turbulent flow field, nevertheless its effects on the particle transport in two-phase turbulent flows has been still poorly investigated. The issue is discussed here by addressing direct numerical simulations of a dilute dispersion of heavy particles in a turbulent channel flow, bounded by irregular two-dimensional rough surfaces, in the one-way coupling regime.
4D spiral imaging of flows in stenotic phantoms and subjects with aortic stenosis.
Negahdar, M J; Kadbi, Mo; Kendrick, Michael; Stoddard, Marcus F; Amini, Amir A
2016-03-01
The utility of four-dimensional (4D) spiral flow in imaging of stenotic flows in both phantoms and human subjects with aortic stenosis is investigated. The method performs 4D flow acquisitions through a stack of interleaved spiral k-space readouts. Relative to conventional 4D flow, which performs Cartesian readout, the method has reduced echo time. Thus, reduced flow artifacts are observed when imaging high-speed stenotic flows. Four-dimensional spiral flow also provides significant savings in scan times relative to conventional 4D flow. In vitro experiments were performed under both steady and pulsatile flows in a phantom model of severe stenosis (one inch diameter at the inlet, with 87% area reduction at the throat of the stenosis) while imaging a 6-cm axial extent of the phantom, which included the Gaussian-shaped stenotic narrowing. In all cases, gradient strength and slew rate for standard clinical acquisitions, and identical field of view and resolution were used. For low steady flow rates, quantitative and qualitative results showed a similar level of accuracy between 4D spiral flow (echo time [TE] = 2 ms, scan time = 40 s) and conventional 4D flow (TE = 3.6 ms, scan time = 1:01 min). However, in the case of high steady flow rates, 4D spiral flow (TE = 1.57 ms, scan time = 38 s) showed better visualization and accuracy as compared to conventional 4D flow (TE = 3.2 ms, scan time = 51 s). At low pulsatile flow rates, a good agreement was observed between 4D spiral flow (TE = 2 ms, scan time = 10:26 min) and conventional 4D flow (TE = 3.6 ms, scan time = 14:20 min). However, in the case of high flow-rate pulsatile flows, 4D spiral flow (TE = 1.57 ms, scan time = 10:26 min) demonstrated better visualization as compared to conventional 4D flow (TE = 3.2 ms, scan time = 14:20 min). The feasibility of 4D spiral flow was also investigated in five normal volunteers and four subjects with mild-to-moderate aortic stenosis. The approach achieved TE = 1.68 ms and scan time = 3:44 min. The conventional sequence achieved TE = 2.9 ms and scan time = 5:23 min. In subjects with aortic stenosis, we also compared both MRI methods with Doppler ultrasound (US) in the measurement of peak velocity, time to peak systolic velocity, and eject time. Bland-Altman analysis revealed that, when comparing peak velocities, the discrepancy between Doppler US and 4D spiral flow was significantly less than the discrepancy between Doppler and 4D Cartesian flow (2.75 cm/s vs. 10.25 cm/s), whereas the two MR methods were comparable (-5.75 s vs. -6 s) for time to peak. However, for the estimation of eject time, relative to Doppler US, the discrepancy for 4D conventional flow was smaller than that of 4D spiral flow (-16.25 s vs. -20 s). Relative to conventional 4D flow, 4D spiral flow achieves substantial reductions in both the TE and scan times; therefore, utility for it should be sought in a variety of in vivo and complex flow imaging applications. © 2015 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Nakamura, S.; Scott, J. N.
1993-01-01
A two-dimensional model to solve compressible Navier-Stokes equations for the flow through stator and rotor blades of a turbine is developed. The flow domains for the stator and rotor blades are coupled by the Chimera method that makes grid generation easy and enhances accuracy because the area of the grid that have high turning of grid lines or high skewness can be eliminated from the computational domain after the grids are generated. The results of flow computations show various important features of unsteady flows including the acoustic waves interacting with boundary layers, Karman vortex shedding from the trailing edge of the stator blades, pulsating incoming flow to a rotor blade from passing stator blades, and flow separation from both suction and pressure sides of the rotor blades.
Melis, Theodre S.; Webb, Robert H.; ,
1993-01-01
Debris flows are recurrent sediment-transport processes in 525 tributaries of the Colorado River in Grand Canyon. Arizona. Initiated by slope failures in bedrock and (or) colluvium during intense rainfall, Grand Canyon debris flows are high-magnitude, short-duration floods. Debris flows in these tributaries transport very large boulders into the river where they accumulate on debris fans and form rapids. The frequency of debris flows range from less than 1 per century to 10 or more per century in these tributaries. Before regulation by Glen Canyon Dam in 1963, high-magnitude floods on the Colorado River reworked debris fans by eroding all particles except large boulders. Because flow regulation has substantially decreased the river's competence, debris flows occurring after 1963 have increased accumulation of finer-grained sediments on debris fans and in rapids.
Thompson, Ronald E.; Hoffman, Scott A.
2006-01-01
A suite of 28 streamflow statistics, ranging from extreme low to high flows, was computed for 17 continuous-record streamflow-gaging stations and predicted for 20 partial-record stations in Monroe County and contiguous counties in north-eastern Pennsylvania. The predicted statistics for the partial-record stations were based on regression analyses relating inter-mittent flow measurements made at the partial-record stations indexed to concurrent daily mean flows at continuous-record stations during base-flow conditions. The same statistics also were predicted for 134 ungaged stream locations in Monroe County on the basis of regression analyses relating the statistics to GIS-determined basin characteristics for the continuous-record station drainage areas. The prediction methodology for developing the regression equations used to estimate statistics was developed for estimating low-flow frequencies. This study and a companion study found that the methodology also has application potential for predicting intermediate- and high-flow statistics. The statistics included mean monthly flows, mean annual flow, 7-day low flows for three recurrence intervals, nine flow durations, mean annual base flow, and annual mean base flows for two recurrence intervals. Low standard errors of prediction and high coefficients of determination (R2) indicated good results in using the regression equations to predict the statistics. Regression equations for the larger flow statistics tended to have lower standard errors of prediction and higher coefficients of determination (R2) than equations for the smaller flow statistics. The report discusses the methodologies used in determining the statistics and the limitations of the statistics and the equations used to predict the statistics. Caution is indicated in using the predicted statistics for small drainage area situations. Study results constitute input needed by water-resource managers in Monroe County for planning purposes and evaluation of water-resources availability.
Superselective Embolization with Coils in High-Flow Priapism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kress, Oliver; Heidenreich, A.; Klose, Klaus Jochen
2002-08-15
Priapism can be divided into 'low-flow' veno-occlusive priapism and, especially in children, rare 'high-flow' arterial priapism. We report a 5-year-old boy who developed arterial priapism after blunt perineal trauma that was successfully treated by superselective embolization with microcoils.
NASA Astrophysics Data System (ADS)
Grams, P. E.; Schmeeckle, M. W.; Mueller, E. R.; Buscombe, D.; Kasprak, A.; Leary, K. P.
2016-12-01
The connections between stream hydraulics, geomorphology and ecosystems in mountain rivers have been substantially perturbed by humans, for example through flow regulation related to hydropower activities. It is well known that the ecosystem impacts downstream of hydropower dams may be managed by a properly designed compensation release or environmental flows ("e-flows"), and such flows may also include sediment considerations (e.g. to break up bed armor). However, there has been much less attention given to the ecosystem impacts of water intakes (where water is extracted and transferred for storage and/or power production), even though in many mountain systems such intakes may be prevalent. Flow intakes tend to be smaller than dams and because they fill quickly in the presence of sediment delivery, they often need to be flushed, many times within a day in Alpine glaciated catchments with high sediment yields. The associated short duration "flood" flow is characterised by very high sediment concentrations, which may drastically modify downstream habitat, both during the floods but also due to subsequent accumulation of "legacy" sediment. The impacts on flora and fauna of these systems have not been well studied. In addition, there are no guidelines established that might allow the design of "e-flows" that also treat this sediment problem, something we call "sed-flows". Through an Alpine field example, we quantify the hydrological, geomorphological, and ecosystem impacts of Alpine water transfer systems. The high sediment concentrations of these flushing flows lead to very high rates of channel disturbance downstream, superimposed upon long-term and progressive bed sediment accumulation. Monthly macroinvertebrate surveys over almost a two-year period showed that reductions in the flushing rate reduced rates of disturbance substantially, and led to rapid macroinvertebrate recovery, even in the seasons (autumn and winter) when biological activity should be reduced. The results suggest the need to redesign e-flows to take into account these sediment impacts if the objectives of e-flows are to be realised.
Feasibility Study for a Practical High Rotor Tip Clearance Turbine.
GAS TURBINE BLADES ), (* TURBINE BLADES , TOLERANCES(MECHANICS)), (* TURBOFAN ENGINES , GAS TURBINES , AXIAL FLOW TURBINES , AXIAL FLOW TURBINE ROTORS...AERODYNAMIC CONFIGURATIONS, LEAKAGE(FLUID), MEASUREMENT, TEST METHODS, PERFORMANCE( ENGINEERING ), MATHEMATICAL PREDICTION, REDUCTION, PRESSURE, PREDICTIONS, NOZZLE GAS FLOW, COMBUSTION CHAMBER GASES, GAS FLOW.
NASA Astrophysics Data System (ADS)
Oskarsson, B. V.; Riishuus, M. S.
2012-12-01
Tholeiites comprise 50-70% of the Neogene lava piles of eastern Iceland and have been described largely as flood basalts erupted from fissures (Walker, 1958). This study incorporates lava piles found in the Greater Reydarfjördur area and emprises the large-scale architecture of selected flows and flow groups, their internal structure and textures with the intention of assessing their mode of emplacement. A range of lava morphologies have been described and include: simple (tabular) flows with a'a and rubbly flow tops, simple flows with pahoehoe crust and compound pahoehoe flows, with simple flows being most common. Special attention is given here to the still poorly understood simple flows, which are characterized by extensive sheet lobes with individual sheet lengths frequently exceeding 2 km and reaching thicknesses of ~40 m (common aspect ratios <0.01). The sheets in individual flow fields are emplaced side by side with an overlapping contact and are free of tubes. Their internal structure generally constitutes an upper vesicular crust with no or minor occurrences of horizontal vesicle zones, a poorly vesicular core and a thin basal vesicular zone. The normalized core/crust thickness ratios resemble modern compound pahoehoe flows in many instances (0.4-0.7), but with the thicker flows reaching ratios of 0.9. Flow crusts are either pahoehoe, rubbly or scoriaceous with torn and partially welded scoria and clinker. Frequently, any given flow morphology is repeated in sequences of three to four flows with direct contacts. Preliminary assessments suggest that simple flows are the product of high and sustained effusion rates from seemingly short-lived fissures. Simple flows with a'a flow tops may comprise the annealed emplacement mode of sheet flows and channeled a'a, in which the flow propagated as a single unit, whereas the brecciated flow top formed by continuous tearing and brecciation as occurs in channeled lava flowing at high velocity. The absence of a clinkery basal zone supports a fast moving flow front that inhibited the accumulation of clinker at the base as well as formation of a rigid crust. Pahoehoe crust and contrasting morphologies within simple flows may represent variation of flowage within the sheets controlled by conditions at the vent or topography. With one eruption soon followed by the next, the lack of tubes in the existing lava field and high effusion rates may have favored stacking of sheets instead of reactivation of the previous lava flow field. This has implications in evaluating the size and environmental impact of these eruptions. Eruptions of this kind have not yet been observed in modern times, and thus are significant for models of crustal accretion in Iceland and other flood basalt provinces. Reference: Walker, G. P. L., 1958, Geology of the Reydarfjördur area, Eastern Iceland, Quarterly Journal of the Geological Society, 114, 367-391.
Harvey, Judson W.; Noe, Gregory B.; Larsen, Laurel G.; Crimaldi, John P.
2009-01-01
Transport of particulate organic material can impact watershed sediment and nutrient budgets and can alter the geomorphologic evolution of shallow aquatic environments. Prediction of organic aggregate (“floc”) transport in these environments requires knowledge of how hydraulics and biota affect the entrainment, settling, and aggregation of particles. This study evaluated the aggregation and field transport dynamics of organic floc from a low‐gradient floodplain wetland with flow‐parallel ridges and sloughs in the Florida Everglades. Floc dynamics were evaluated in a rotating annular flume and in situ in the field. Under present managed conditions in the Everglades, floc is not entrained by mean flows but is suspended via biological production in the water column and bioturbation. Aggregation was a significant process affecting Everglades floc at high flume flow velocities (7.0 cm s−1) and during recovery from high flow; disaggregation was not significant for the tested flows. During moderate flows when floc dynamics are hydrodynamically controlled, it is possible to model floc transport using a single “operative floc diameter” that accurately predicts fluxes downstream and to the bed. In contrast, during high flows and recovery from high flows, aggregation dynamics should be simulated. When entrained by flow in open‐water sloughs, Everglades floc will be transported downstream in multiple deposition and reentrainment events but will undergo net settling when transported onto ridges of emergent vegetation. We hypothesize that net transport of material from open to vegetated areas during high flows is critical for forming and maintaining distinctive topographic patterning in the Everglades and other low‐gradient floodplains.
Yurimoto, Terumi; Hara, Shintaro; Isoyama, Takashi; Saito, Itsuro; Ono, Toshiya; Abe, Yusuke
2016-09-01
Estimation of pressure and flow has been an important subject for developing implantable artificial hearts. To realize real-time viscosity-adjusted estimation of pressure head and pump flow for a total artificial heart, we propose the table estimation method with quasi-pulsatile modulation of rotary blood pump in which systolic high flow and diastolic low flow phased are generated. The table estimation method utilizes three kinds of tables: viscosity, pressure and flow tables. Viscosity is estimated from the characteristic that differential value in motor speed between systolic and diastolic phases varies depending on viscosity. Potential of this estimation method was investigated using mock circulation system. Glycerin solution diluted with salty water was used to adjust viscosity of fluid. In verification of this method using continuous flow data, fairly good estimation could be possible when differential pulse width modulation (PWM) value of the motor between systolic and diastolic phases was high. In estimation under quasi-pulsatile condition, inertia correction was provided and fairly good estimation was possible when the differential PWM value was high, which was not different from the verification results using continuous flow data. In the experiment of real-time estimation applying moving average method to the estimated viscosity, fair estimation could be possible when the differential PWM value was high, showing that real-time viscosity-adjusted estimation of pressure head and pump flow would be possible with this novel estimation method when the differential PWM value would be set high.
System for pressure letdown of abrasive slurries
Kasper, Stanley
1991-01-01
A system and method for releasing erosive slurries from containment at high pressure without subjecting valves to highly erosive slurry flow. The system includes a pressure letdown tank disposed below the high-pressure tank, the two tanks being connected by a valved line communicating the gas phases and a line having a valve and choke for a transfer of liquid into the letdown tank. The letdown tank has a valved gas vent and a valved outlet line for release of liquid. In operation, the gas transfer line is opened to equalize pressure between tanks so that a low level of liquid flow occurs. The letdown tank is then vented, creating a high-pressure differential between the tanks. At this point, flow between tanks is controlled by the choke. High-velocity, erosive flow through a high-pressure outlet valve is prevented by equalizing the start up pressure and thereafter limiting flow with the choke.
Modeling the hydrodynamic and electrochemical efficiency of semi-solid flow batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brunini, VE; Chiang, YM; Carter, WC
2012-05-01
A mathematical model of flow cell operation incorporating hydrodynamic and electrochemical effects in three dimensions is developed. The model and resulting simulations apply to recently demonstrated high energy-density semi-solid flow cells. In particular, state of charge gradients that develop during low flow rate operation and their effects on the spatial non-uniformity of current density within flow cells are quantified. A one-dimensional scaling model is also developed and compared to the full three-dimensional simulation. The models are used to demonstrate the impact of the choice of electrochemical couple on flow cell performance. For semi-solid flow electrodes, which can use solid activemore » materials with a wide variety of voltage-capacity responses, we find that cell efficiency is maximized for electrochemical couples that have a relatively flat voltage vs. capacity curve, operated under slow flow conditions. For example, in flow electrodes limited by macroscopic charge transport, an LiFePO4-based system requires one-third the polarization to reach the same cycling rate as an LiCoO2-based system, all else being equal. Our conclusions are generally applicable to high energy density flow battery systems, in which flow rates can be comparatively low for a given required power. (C) 2012 Elsevier Ltd. All rights reserved.« less
Haward, Simon J; McKinley, Gareth H
2012-03-01
We employ the techniques of microparticle image velocimetry and full-field birefringence microscopy combined with mechanical measurements of the pressure drop to perform a detailed characterization of the extensional rheology and elastic flow instabilities observed for a range of wormlike micellar solutions flowing through a microfluidic cross-slot device. As the flow rate through the device is increased, the flow first bifurcates from a steady symmetric to a steady asymmetric configuration characterized by a birefringent strand of highly aligned micellar chains oriented along the shear-free centerline of the flow field. At higher flow rates the flow becomes three dimensional and time dependent and is characterized by aperiodic spatiotemporal fluctuations of the birefringent strand. The extensional properties and critical conditions for the onset of flow instabilities in the fluids are highly dependent on the fluid formulation (surfactant concentration and ionic strength) and the resulting changes in the linear viscoelasticity and nonlinear shear rheology of the fluids. By combining the measurements of critical conditions for the flow transitions with the viscometric material properties and the degree of shear-thinning characterizing each test fluid, it is possible to construct a stability diagram for viscoelastic flow of complex fluids in the cross-slot geometry.
Diamond, Kelly M; Schoenfuss, Heiko L; Walker, Jeffrey A; Blob, Richard W
2016-10-01
Experimental measurements of escape performance in fishes have typically been conducted in still water; however, many fishes inhabit environments with flow that could impact escape behavior. We examined the influences of flow and predator attack direction on the escape behavior of fish, using juveniles of the amphidromous Hawaiian goby Sicyopterus stimpsoni In nature, these fish must escape ambush predation while moving through streams with high-velocity flow. We measured the escape performance of juvenile gobies while exposing them to a range of water velocities encountered in natural streams and stimulating fish from three different directions. Frequency of response across treatments indicated strong effects of flow conditions and attack direction. Juvenile S. stimpsoni had uniformly high response rates for attacks from a caudal direction (opposite flow); however, response rates for attacks from a cranial direction (matching flow) decreased dramatically as flow speed increased. Mechanical stimuli produced by predators attacking in the same direction as flow might be masked by the flow environment, impairing the ability of prey to detect attacks. Thus, the likelihood of successful escape performance in fishes can depend critically on environmental context. © 2016. Published by The Company of Biologists Ltd.
Unsteady Flow Interactions Between the LH2 Feed Line and SSME LPFP Inducer
NASA Technical Reports Server (NTRS)
Dorney, Dan; Griffin, Lisa; Marcu, Bogdan; Williams, Morgan
2006-01-01
An extensive computational effort has been performed in order to investigate the nature of unsteady flow in the fuel line supplying the three Space Shuttle Main Engines during flight. Evidence of high cycle fatigue (HCF) in the flow liner one diameter upstream of the Low Pressure Fuel Pump inducer has been observed in several locations. The analysis presented in this report has the objective of determining the driving mechanisms inducing HCF and the associated fluid flow phenomena. The simulations have been performed using two different computational codes, the NASA MSFC PHANTOM code and the Pratt and Whitney Rocketdyne ENIGMA code. The fuel flow through the flow liner and the pump inducer have been modeled in full three-dimensional geometry, and the results of the computations compared with test data taken during hot fire tests at NASA Stennis Space Center, and cold-flow water flow test data obtained at NASA MSFC. The numerical results indicate that unsteady pressure fluctuations at specific frequencies develop in the duct at the flow-liner location. Detailed frequency analysis of the flow disturbances is presented. The unsteadiness is believed to be an important source for fluctuating pressures generating high cycle fatigue.
Diverting lava flows in the lab
Dietterich, Hannah; Cashman, Katharine V.; Rust, Alison C.; Lev, Einat
2015-01-01
Recent volcanic eruptions in Hawai'i, Iceland and Cape Verde highlight the challenges of mitigating hazards when lava flows threaten infrastructure. Diversion barriers are the most common form of intervention, but historical attempts to divert lava flows have met with mixed success and there has been little systematic analysis of optimal barrier design. We examine the interaction of viscous flows of syrup and molten basalt with barriers in the laboratory. We find that flows thicken immediately upslope of an obstacle, forming a localized bow wave that can overtop barriers. Larger bow waves are generated by faster flows and by obstacles oriented at a high angle to the flow direction. The geometry of barriers also influences flow behaviour. Barriers designed to split or dam flows will slow flow advance, but cause the flow to widen, whereas oblique barriers can effectively divert flows, but may also accelerate flow advance. We argue that to be successful, mitigation of lava-flow hazards must incorporate the dynamics of lava flow–obstacle interactions into barrier design. The same generalizations apply to the effect of natural topographic features on flow geometry and advance rates.
1976-10-01
aerodynamic flow field pertaining to the design point is defined on twenty-one stream surfaces, and radial and meridional distributions of significant...full radial equilibrium analysis of the compressor flow field using the streamline curvature solution technique. Through a series of iterations, it...one can assume the blade geometry, solving for the equilibriwn flow field using specified relative flow aigles as input to the aerodynamic program. In
Heat and mass transfer and hydrodynamics in swirling flows (review)
NASA Astrophysics Data System (ADS)
Leont'ev, A. I.; Kuzma-Kichta, Yu. A.; Popov, I. A.
2017-02-01
Research results of Russian and foreign scientists of heat and mass transfer in whirling flows, swirling effect, superficial vortex generators, thermodynamics and hydrodynamics at micro- and nanoscales, burning at swirl of the flow, and technologies and apparatuses with the use of whirling currents for industry and power generation were presented and discussed at the "Heat and Mass Transfer in Whirling Currents" 5th International Conference. The choice of rational forms of the equipment flow parts when using whirling and swirling flows to increase efficiency of the heat-power equipment and of flow regimes and burning on the basis of deep study of the flow and heat transfer local parameters was set as the main research prospect. In this regard, there is noticeable progress in research methods of whirling and swirling flows. The number of computational treatments of swirling flows' local parameters has been increased. Development and advancement of the up to date computing models and national productivity software are very important for this process. All experimental works are carried out with up to date research methods of the local thermoshydraulic parameters, which enable one to reveal physical mechanisms of processes: PIV and LIV visualization techniques, high-speed and infrared photography, high speed registration of parameters of high-speed processes, etc. There is a problem of improvement of researchers' professional skills in the field of fluid mechanics to set adequately mathematics and physics problems of aerohydrodynamics for whirling and swirling flows and numerical and pilot investigations. It has been pointed out that issues of improvement of the cooling system and thermal protection effectiveness of heat-power and heat-transfer equipment units are still actual. It can be solved successfully using whirling and swirling flows as simple low power consumption exposing on the flow method and heat transfer augmentation.
Determining the effects of dams on subdaily variation in river flows at a whole-basin scale
Zimmerman, J.K.H.; Letcher, B.H.; Nislow, K.H.; Lutz, K.A.; Magilligan, F.J.
2010-01-01
River regulation can alter the frequency and magnitude of subdaily flow variations causing major impacts on ecological structure and function. We developed an approach to quantify subdaily flow variation for multiple sites across a large watershed to assess the potential impacts of different dam operations (flood control, run-of-river hydropower and peaking hydropower) on natural communities. We used hourly flow data over a 9-year period from 30 stream gages throughout the Connecticut River basin to calculate four metrics of subdaily flow variation and to compare sites downstream of dams with unregulated sites. Our objectives were to (1) determine the temporal scale of data needed to characterize subdaily variability; (2) compare the frequency of days with high subdaily flow variation downstream of dams and unregulated sites; (3) analyse the magnitude of subdaily variation at all sites and (4) identify individual sites that had subdaily variation significantly higher than unregulated locations. We found that estimates of flow variability based on daily mean flow data were not sufficient to characterize subdaily flow patterns. Alteration of subdaily flows was evident in the number of days natural ranges of variability were exceeded, rather than in the magnitude of subdaily variation, suggesting that all rivers may exhibit highly variable subdaily flows, but altered rivers exhibit this variability more frequently. Peaking hydropower facilities had the most highly altered subdaily flows; however, we observed significantly altered ranges of subdaily variability downstream of some flood-control and run-of-river hydropower dams. Our analysis can be used to identify situations where dam operating procedures could be modified to reduce the level of hydrologic alteration. ?? 2009 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
Hubler, Matthias; Souders, Jennifer E.; Shade, Erin D.; Polissar, Nayak L.; Bleyl, Jorg U.; Hlastala, Michael P.
2002-01-01
OBJECTIVE: To test the hypothesis that treatment with vaporized perfluorocarbon affects the relative pulmonary blood flow distribution in an animal model of surfactant-depleted acute lung injury. DESIGN: Prospective, randomized, controlled trial. SETTING: A university research laboratory. SUBJECTS: Fourteen New Zealand White rabbits (weighing 3.0-4.5 kg). INTERVENTIONS: The animals were ventilated with an FIO(2) of 1.0 before induction of acute lung injury. Acute lung injury was induced by repeated saline lung lavages. Eight rabbits were randomized to 60 mins of treatment with an inspiratory perfluorohexane vapor concentration of 0.2 in oxygen. To compensate for the reduced FIO(2) during perfluorohexane treatment, FIO(2) was reduced to 0.8 in control animals. Change in relative pulmonary blood flow distribution was assessed by using fluorescent-labeled microspheres. MEASUREMENTS AND MAIN RESULTS: Microsphere data showed a redistribution of relative pulmonary blood flow attributable to depletion of surfactant. Relative pulmonary blood flow shifted from areas that were initially high-flow to areas that were initially low-flow. During the study period, relative pulmonary blood flow of high-flow areas decreased further in the control group, whereas it increased in the treatment group. This difference was statistically significant between the groups (p =.02) as well as in the treatment group compared with the initial injury (p =.03). Shunt increased in both groups over time (control group, 30% +/- 10% to 63% +/- 20%; treatment group, 37% +/- 20% to 49% +/- 23%), but the changes compared with injury were significantly less in the treatment group (p =.03). CONCLUSION: Short treatment with perfluorohexane vapor partially reversed the shift of relative pulmonary blood flow from high-flow to low-flow areas attributable to surfactant depletion.
NASA Astrophysics Data System (ADS)
Faizien Haza, Zainul
2018-03-01
Debris flows of lahar flows occurred in post mount eruption is a phenomenon in which large quantities of water, mud, and gravel flow down a stream at a high velocity. It is a second stage of danger after the first danger of lava flows, pyroclastic, and toxic gases. The debris flow of lahar flows has a high density and also high velocity; therefore it has potential detrimental consequences against homes, bridges, and infrastructures, as well as loss of life along its pathway. The collision event between lahar flows and pier of a bridge is observed. The condition is numerically simulated using commercial software of computational fluid dynamic (CFD). The work is also conducted in order to investigate drag force generated during collision. Rheological data of lahar is observed through laboratory test of lahar model as density and viscosity. These data were used as the input data of the CFD simulation. The numerical model is involving two types of fluid: mud and water, therefore multiphase model is adopted in the current CFD simulation. The problem formulation is referring to the constitutive equations of mass and momentum conservation for incompressible and viscous fluid, which in perspective of two dimension (2D). The simulation models describe the situation of the collision event between lahar flows and pier of a bridge. It provides sequential view images of lahar flow impaction and the propagation trend line of the drag force coefficient values. Lahar flow analysis used non-dimensional parameter of Reynolds number. According to the results of numerical simulations, the drag force coefficients are in range 1.23 to 1.48 those are generated by value of flow velocity in range 11.11 m/s to 16.67 m/s.
Parke, Rachael L; Bloch, Andreas; McGuinness, Shay P
2015-10-01
Previous research has demonstrated a positive linear correlation between flow delivered and airway pressure generated by high-flow nasal therapy. Current practice is to use flows over a range of 30-60 L/min; however, it is technically possible to apply higher flows. In this study, airway pressure measurements and electrical impedance tomography were used to assess the relationship between flows of up to 100 L/min and changes in lung physiology. Fifteen healthy volunteers were enrolled into this study. A high-flow nasal system capable of delivering a flow of 100 L/min was purpose-built using 2 Optiflow systems. Airway pressure was measured via the nasopharynx, and cumulative changes in end-expiratory lung impedance were recorded using the PulmoVista 500 system at gas flows of 30-100 L/min in increments of 10 L/min. The mean age of study participants was 31 (range 22-44) y, the mean ± SD height was 171.8 ± 7.5 cm, the mean ± SD weight was 69.7 ± 10 kg, and 47% were males. Flows ranged from 30 to 100 L/min with resulting mean ± SD airway pressures of 2.7 ± 0.7 to 11.9 ± 2.7 cm H2O. A cumulative and linear increase in end-expiratory lung impedance was observed with increasing flows, as well as a decrease in breathing frequency. Measured airway pressure and lung impedance increased linearly with increased gas flow. Observed airway pressures were in the range used clinically with face-mask noninvasive ventilation. Developments in delivery systems may result in this therapy being an acceptable alternative to face-mask noninvasive ventilation. Copyright © 2015 by Daedalus Enterprises.
Belmar, Oscar; Velasco, Josefa; Martinez-Capel, Francisco
2011-05-01
Hydrological classification constitutes the first step of a new holistic framework for developing regional environmental flow criteria: the "Ecological Limits of Hydrologic Alteration (ELOHA)". The aim of this study was to develop a classification for 390 stream sections of the Segura River Basin based on 73 hydrological indices that characterize their natural flow regimes. The hydrological indices were calculated with 25 years of natural monthly flows (1980/81-2005/06) derived from a rainfall-runoff model developed by the Spanish Ministry of Environment and Public Works. These indices included, at a monthly or annual basis, measures of duration of droughts and central tendency and dispersion of flow magnitude (average, low and high flow conditions). Principal Component Analysis (PCA) indicated high redundancy among most hydrological indices, as well as two gradients: flow magnitude for mainstream rivers and temporal variability for tributary streams. A classification with eight flow-regime classes was chosen as the most easily interpretable in the Segura River Basin, which was supported by ANOSIM analyses. These classes can be simplified in 4 broader groups, with different seasonal discharge pattern: large rivers, perennial stable streams, perennial seasonal streams and intermittent and ephemeral streams. They showed a high degree of spatial cohesion, following a gradient associated with climatic aridity from NW to SE, and were well defined in terms of the fundamental variables in Mediterranean streams: magnitude and temporal variability of flows. Therefore, this classification is a fundamental tool to support water management and planning in the Segura River Basin. Future research will allow us to study the flow alteration-ecological response relationship for each river type, and set the basis to design scientifically credible environmental flows following the ELOHA framework.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duan, Wentao; Vemuri, Rama S.; Hu, Dehong
Redox flow batteries have been considered as one of the most promising stationary energy storage solutions for improving the reliability of the power grid and deployment of renewable energy technologies. Among the many flow battery chemistries, nonaqueous flow batteries have the potential to achieve high energy density because of the broad voltage windows of nonaqueous electrolytes. However, significant technical hurdles exist currently limiting nonaqueous flow batteries to demonstrate their full potential, such as low redox concentrations, low operating currents, under-explored battery status monitoring, etc. In an attempt to address these limitations, we report a nonaqueous flow battery based on amore » highly soluble, redox-active organic nitronyl nitroxide radical compound, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO). This redox materials exhibits an ambipolar electrochemical property with two reversible redox pairs that are moderately separated by a voltage gap of ~1.7 V. Therefore, PTIO can serve as both anolyte and catholyte redox materials to form a symmetric flow battery chemistry, which affords the advantages such as high effective redox concentrations and low irreversible redox material crossover. The PTIO flow battery shows decent electrochemical cyclability under cyclic voltammetry and flow cell conditions; an improved redox concentration of 0.5 M PTIO and operational current density of 20 mA cm-2 were achieved in flow cell tests. Moreover, we show that Fourier transform infrared (FTIR) spectroscopy could measure the PTIO concentrations during the PTIO flow battery cycling and offer reasonably accurate detection of the battery state of charge (SOC) as cross-validated by electron spin resonance measurements. This study suggests FTIR can be used as a reliable online SOC sensor to monitor flow battery status and ensure battery operations stringently in a safe SOC range.« less
Analysis of TCE Fate and Transport in Karst Groundwater Systems Using Statistical Mixed Models
NASA Astrophysics Data System (ADS)
Anaya, A. A.; Padilla, I. Y.
2012-12-01
Karst groundwater systems are highly productive and provide an important fresh water resource for human development and ecological integrity. Their high productivity is often associated with conduit flow and high matrix permeability. The same characteristics that make these aquifers productive also make them highly vulnerable to contamination and a likely for contaminant exposure. Of particular interest are trichloroethylene, (TCE) and Di-(2-Ethylhexyl) phthalate (DEHP). These chemicals have been identified as potential precursors of pre-term birth, a leading cause of neonatal complications with a significant health and societal cost. Both of these contaminants have been found in the karst groundwater formations in this area of the island. The general objectives of this work are to: (1) develop fundamental knowledge and determine the processes controlling the release, mobility, persistence, and possible pathways of contaminants in karst groundwater systems, and (2) characterize transport processes in conduit and diffusion-dominated flow under base flow and storm flow conditions. The work presented herein focuses on the use of geo-hydro statistical tools to characterize flow and transport processes under different flow regimes, and their application in the analysis of fate and transport of TCE. Multidimensional, laboratory-scale Geo-Hydrobed models (GHM) were used for this purpose. The models consist of stainless-steel tanks containing karstified limestone blocks collected from the karst aquifer formation of northern Puerto Rico. The models integrates a network of sampling wells to monitor flow, pressure, and solute concentrations temporally and spatially. Experimental work entails injecting dissolved CaCl2 tracers and TCE in the upstream boundary of the GHM while monitoring TCE and tracer concentrations spatially and temporally in the limestone under different groundwater flow regimes. Analysis of the temporal and spatial concentration distributions of solutes indicates a highly heterogeneous system resulting in large preferential flow components. The distributions are highly correlated with statistically-developed spatial flow models. High degree of tailing in breakthrough curves indicate significant amount of mass limitations, particularly in diffuse flow regions. Higher flow rates in the system result in increasing preferential flow region volumes, but lower mass transfer limitations. Future work will involve experiments with non-aqueous phase liquid TCE, DEHP, and a mixture of these, and geo-temporal statistical modeling. This work is supported by the U.S. Department of Energy, Savannah River (Grant Award No. DE-FG09-07SR22571), and the National Institute of Environmental Health Sciences (NIEHS, Grant Award No. P42ES017198).
A nonintrusive laser interferometer method for measurement of skin friction
NASA Technical Reports Server (NTRS)
Monson, D. J.
1983-01-01
A method is described for monitoring the changing thickness of a thin oil film subject to an aerodynamic shear stress using two focused laser beams. The measurement is then simply analyzed in terms of the surface skin friction of the flow. The analysis includes the effects of arbitrarily large pressure and skin friction gradients, gravity, and time varying oil temperature. It may also be applied to three dimensional flows with unknown direction. Applications are presented for a variety of flows, including two dimensional flows, three dimensional swirling flows, separated flow, supersonic high Reynolds number flows, and delta wing vortical flows. Previously announced in STAR as N83-12393
Separation control in adverse pressure gradients using high-speed microjets
NASA Astrophysics Data System (ADS)
Kumar, Vikas
Inlets to aircraft propulsion systems must supply flow to the compressor with minimal pressure loss, flow distortion or unsteadiness. Flow separation in internal flows such as inlets and ducts in aircraft propulsion systems and external flows such as over aircraft wings, is undesirable as it reduces the overall system performance. The objective of present study is to understand the nature of separation and more importantly, to explore the applicability of high-speed microjets to actively control this flow separation. The geometry used for this experimental study was a generic backward facing "Stratford Ramp" equipped with arrays of high-speed microjets. The incoming flow was examined over a freestream velocity range of 10-65m/s and at ramp angle in range of 0-10°. It was observed that the flow separates at 30m/s and beyond for all angle of attack. The magnitude and extent of separation bubble increases with increasing adverse pressure gradients and/or increase in free-stream velocity. The separated flow for all the examined conditions was completely attached using suitable array of high-speed microjets. The most notable fact was that elimination of reverse velocity regions was accompanied by a reduction in flow unsteadiness and increased two-dimensionality in the flow. In particular, these gains were achieved with a minimal mass flux, less than 0.2% of the primary flow based on 30% Boundary Layer Ingesting duct. Detailed measurements were obtained to understand the flow control dynamics. The control effectiveness was found to be dependent on the actuation location with respect to separation, jet to cross-flow momentum ratio and the angle at which microjets supply the momentum. It was also determined that the control effect of the microjets, in part, is due to creation of strong stream-wise vortices which enhance the mixing between low-momentum fluid closer to the surface and high-momentum fluid further away from the surface. The penetration depth of microjets was found to be much higher than that of a jet exiting in to uniform cross-flow and correlations were developed to predict this. Subsequently, means for identification of the flow conditions were sought to develop a simple, robust, complete control strategy. It was observed that the flow conditions were very well represented in unsteady surface pressure measurements. The unsteady surface pressure and velocity field were correlated to develop a simple scheme to predict the peak unsteadiness location over the surface. The results from this model and knowledge of microjet in cross flow was used to provide guidelines for an active control strategy. A case study was then undertaken to validate the results obtained using the model. The results show that the model is a good first step towards developing a simple, robust, active-adaptive separation control strategy using microjets.
Robust optical flow using adaptive Lorentzian filter for image reconstruction under noisy condition
NASA Astrophysics Data System (ADS)
Kesrarat, Darun; Patanavijit, Vorapoj
2017-02-01
In optical flow for motion allocation, the efficient result in Motion Vector (MV) is an important issue. Several noisy conditions may cause the unreliable result in optical flow algorithms. We discover that many classical optical flows algorithms perform better result under noisy condition when combined with modern optimized model. This paper introduces effective robust models of optical flow by using Robust high reliability spatial based optical flow algorithms using the adaptive Lorentzian norm influence function in computation on simple spatial temporal optical flows algorithm. Experiment on our proposed models confirm better noise tolerance in optical flow's MV under noisy condition when they are applied over simple spatial temporal optical flow algorithms as a filtering model in simple frame-to-frame correlation technique. We illustrate the performance of our models by performing an experiment on several typical sequences with differences in movement speed of foreground and background where the experiment sequences are contaminated by the additive white Gaussian noise (AWGN) at different noise decibels (dB). This paper shows very high effectiveness of noise tolerance models that they are indicated by peak signal to noise ratio (PSNR).
NASA Technical Reports Server (NTRS)
Davino, R.; Lakshminarayana, B.
1982-01-01
The experiment was performed using the rotating hot-wire technique within the rotor blade passage and the stationary hot-wire technique for the exitflow of the rotor blade passage. The measurements reveal the effect of rotation and subsequent flow interactions upon the rotor blade flowfield and wake development in the annulus-wall region. The flow near the rotor blade tips is found to be highly complex due to the interaction of the annulus-wall boundary layer, the blade boundary layers, the tip leakage flow, and the secondary flow. Within the blade passage, this interaction results in an appreciable radial inward flow as well as a defect in the mainstream velocity near the mid-passage. Turbulence levels within this region are very high. This indicates a considerable extent of flow mixing due to the viscous flow interactions. The size and strength of this loss core is found to grow with axial distance from the blade trailing edge. The nature of the rotor blade exit-flow was dominated by the wake development.
Trench-parallel flow beneath the nazca plate from seismic anisotropy.
Russo, R M; Silver, P G
1994-02-25
Shear-wave splitting of S and SKS phases reveals the anisotropy and strain field of the mantle beneath the subducting Nazca plate, Cocos plate, and the Caribbean region. These observations can be used to test models of mantle flow. Two-dimensional entrained mantle flow beneath the subducting Nazca slab is not consistent with the data. Rather, there is evidence for horizontal trench-parallel flow in the mantle beneath the Nazca plate along much of the Andean subduction zone. Trench-parallel flow is attributale utable to retrograde motion of the slab, the decoupling of the slab and underlying mantle, and a partial barrier to flow at depth, resulting in lateral mantle flow beneath the slab. Such flow facilitates the transfer of material from the shrinking mantle reservoir beneath the Pacific basin to the growing mantle reservoir beneath the Atlantic basin. Trenchparallel flow may explain the eastward motions of the Caribbean and Scotia sea plates, the anomalously shallow bathymetry of the eastern Nazca plate, the long-wavelength geoid high over western South America, and it may contribute to the high elevation and intense deformation of the central Andes.
Vortical Flow Prediction Using an Adaptive Unstructured Grid Method
NASA Technical Reports Server (NTRS)
Pirzadeh, Shahyar Z.
2001-01-01
A computational fluid dynamics (CFD) method has been employed to compute vortical flows around slender wing/body configurations. The emphasis of the paper is on the effectiveness of an adaptive grid procedure in "capturing" concentrated vortices generated at sharp edges or flow separation lines of lifting surfaces flying at high angles of attack. The method is based on a tetrahedral unstructured grid technology developed at the NASA Langley Research Center. Two steady-state, subsonic, inviscid and Navier-Stokes flow test cases are presented to demonstrate the applicability of the method for solving practical vortical flow problems. The first test case concerns vortex flow over a simple 65deg delta wing with different values of leading-edge bluntness, and the second case is that of a more complex fighter configuration. The superiority of the adapted solutions in capturing the vortex flow structure over the conventional unadapted results is demonstrated by comparisons with the windtunnel experimental data. The study shows that numerical prediction of vortical flows is highly sensitive to the local grid resolution and that the implementation of grid adaptation is essential when applying CFD methods to such complicated flow problems.
Flow dynamics analyses of pathophysiological liver lobules using porous media theory
NASA Astrophysics Data System (ADS)
Hu, Jinrong; Lü, Shouqin; Feng, Shiliang; Long, Mian
2017-08-01
Blood flow inside the liver plays a key role in hepatic functions, and abnormal hemodynamics are highly correlated with liver diseases. To date, the flow field in an elementary building block of the organ, the liver lobule, is difficult to determine experimentally in humans due to its complicated structure, with radially branched microvasculature and the technical difficulties that derive from its geometric constraints. Here we established a set of 3D computational models for a liver lobule using porous media theory and analyzed its flow dynamics in normal, fibrotic, and cirrhotic lobules. Our simulations indicated that those approximations of ordinary flow in portal tracts (PTs) and the central vein, and of porous media flow in the sinusoidal network, were reasonable only for normal or fibrotic lobules. Models modified with high resistance in PTs and collateral vessels inside sinusoids were able to describe the flow features in cirrhotic lobules. Pressures, average velocities, and volume flow rates were profiled and the predictions compared well with experimental data. This study furthered our understanding of the flow dynamics features of liver lobules and the differences among normal, fibrotic, and cirrhotic lobules.
Influence of fast advective flows on pattern formation of Dictyostelium discoideum
Bae, Albert; Zykov, Vladimir; Bodenschatz, Eberhard
2018-01-01
We report experimental and numerical results on pattern formation of self-organizing Dictyostelium discoideum cells in a microfluidic setup under a constant buffer flow. The external flow advects the signaling molecule cyclic adenosine monophosphate (cAMP) downstream, while the chemotactic cells attached to the solid substrate are not transported with the flow. At high flow velocities, elongated cAMP waves are formed that cover the whole length of the channel and propagate both parallel and perpendicular to the flow direction. While the wave period and transverse propagation velocity are constant, parallel wave velocity and the wave width increase linearly with the imposed flow. We also observe that the acquired wave shape is highly dependent on the wave generation site and the strength of the imposed flow. We compared the wave shape and velocity with numerical simulations performed using a reaction-diffusion model and found excellent agreement. These results are expected to play an important role in understanding the process of pattern formation and aggregation of D. discoideum that may experience fluid flows in its natural habitat. PMID:29590179
Microfluidic rheology of active particle suspensions: Kinetic theory
NASA Astrophysics Data System (ADS)
Alonso-Matilla, Roberto; Ezhilan, Barath; Saintillan, David
2016-11-01
We analyze the effective rheology of a dilute suspension of self-propelled slender particles between two infinite parallel plates in a pressure-driven flow. We use a continuum kinetic model to study the dynamics and transport of particles, where hydrodynamic interactions induced by the swimmers are taken into account. Using finite volume simulations we study how the activity of the swimmer and the external flow modify the rheological properties of the system. Results indicate that at low flow rates, activity decreases the value of the viscosity for pushers and increases its value for pullers. Both effects become weaker with increasing the flow strength due to the alignment of the particles with the flow. In the case of puller particles, shear thinning is observed over the entire range of flow rates. Pusher particles exhibit shear thickening at intermediate flow rates, where passive stresses start dominating over active stresses, reaching a viscosity greater than that of the Newtonian fluid. Finally shear thinning is observed at high flow rates. Both pushers and pullers exhibit a Newtonian plateau at very high flow rates. We demonstrate a good agreement between numerical results and experiments.
Boundary Layer Theory. Part 2; Turbulent Flows
NASA Technical Reports Server (NTRS)
Schlichting, H.
1949-01-01
The flow laws of the actual flows at high Reynolds numbers differ considerably from those of the laminar flows treated in the preceding part. These actual flows show a special characteristic, denoted as turbulence. The character of a turbulent flow is most easily understood the case of the pipe flow. Consider the flow through a straight pipe of circular cross section and with a smooth wall. For laminar flow each fluid particle moves with uniform velocity along a rectilinear path. Because of viscosity, the velocity of the particles near the wall is smaller than that of the particles at the center. i% order to maintain the motion, a pressure decrease is required which, for laminar flow, is proportional to the first power of the mean flow velocity. Actually, however, one oberves that, for larger Reynolds numbers, the pressure drop increases almost with the square of the velocity and is very much larger then that given by the Hagen Poiseuille law. One may conclude that the actual flow is very different from that of the Poiseuille flow.
Unsteady Analysis of Turbine Main Flow Coupled with Secondary Air Flow
NASA Technical Reports Server (NTRS)
Hah, Chunill
2006-01-01
Two numerical approaches are used to model the interaction between the turbine main gas flow and the wheelspace cavity seal flow. The 3-D, unsteady Reynolds-averaged Navier-Stokes equations are solved with a CFD code based on a structured grid to study the interaction between the turbine main gas flow and the wheelspace cavity seal flow. A CFD code based on an unstructured grid is used to solve detailed flow feature in the cavity seal which has a complex geometry. The numerical results confirm various observations from earlier experimental studies under similar flow conditions. When the flow rate through the rim cavity seal is increased, the ingestion of the main turbine flow into the rim seal area decreases drastically. However, a small amount of main gas flow is ingested to the rim seal area even with very high level of seal flow rate. This is due to the complex nature of 3-D, unsteady flow interaction near the hub of the turbine stage.
Correia, Rodolfo Patussi; Bento, Laiz Cameirão; Bortolucci, Ana Carolina Apelle; Alexandre, Anderson Marega; Vaz, Andressa da Costa; Schimidell, Daniela; Pedro, Eduardo de Carvalho; Perin, Fabricio Simões; Nozawa, Sonia Tsukasa; Mendes, Cláudio Ernesto Albers; Barroso, Rodrigo de Souza; Bacal, Nydia Strachman
2016-01-01
ABSTRACT Objective: To discuss the implementation of technical advances in laboratory diagnosis and monitoring of paroxysmal nocturnal hemoglobinuria for validation of high-sensitivity flow cytometry protocols. Methods: A retrospective study based on analysis of laboratory data from 745 patient samples submitted to flow cytometry for diagnosis and/or monitoring of paroxysmal nocturnal hemoglobinuria. Results: Implementation of technical advances reduced test costs and improved flow cytometry resolution for paroxysmal nocturnal hemoglobinuria clone detection. Conclusion: High-sensitivity flow cytometry allowed more sensitive determination of paroxysmal nocturnal hemoglobinuria clone type and size, particularly in samples with small clones. PMID:27759825
A 3-D Coupled CFD-DSMC Solution Method With Application to the Mars Sample Return Orbiter
NASA Technical Reports Server (NTRS)
Glass, Christopher E.; Gnoffo, Peter A.
2000-01-01
A method to obtain coupled Computational Fluid Dynamics-Direct Simulation Monte Carlo (CFD-DSMC), 3-D flow field solutions for highly blunt bodies at low incidence is presented and applied to one concept of the Mars Sample Return Orbiter vehicle as a demonstration of the technique. CFD is used to solve the high-density blunt forebody flow defining an inflow boundary condition for a DSMC solution of the afterbody wake flow. By combining the two techniques in flow regions where most applicable, the entire mixed flow field is modeled in an appropriate manner.
Dynamics of polymers in elongational flow studied by the neutron spin-echo technique
NASA Astrophysics Data System (ADS)
Rheinstädter, Maikel C.; Sattler, Rainer; Häußler, Wolfgang; Wagner, Christian
2010-09-01
The nanoscale fluctuation dynamics of semidilute high molecular weight polymer solutions of polyethylenoxide (PEO) in D 2O under non-equilibrium flow conditions were studied by the neutron spin-echo technique. The sample cell was in contraction flow geometry and provided a pressure driven flow with a high elongational component that stretched the polymers most efficiently. Neutron scattering experiments in dilute polymer solutions are challenging because of the low polymer concentration and corresponding small quasi-elastic signals. A relaxation process with relaxation times of about 10 ps was observed, which shows anisotropic dynamics with applied flow.
Investigation of the jet-wake flow of a highly loaded centrifugal compressor impeller
NASA Technical Reports Server (NTRS)
Eckardt, D.
1978-01-01
Investigations, aimed at developing a better understanding of the complex flow field in high performance centrifugal compressors were performed. Newly developed measuring techniques for unsteady static and total pressures as well as flow directions, and a digital data analysis system for fluctuating signals were thoroughly tested. The loss-affected mixing process of the distorted impeller discharge flow was investigated in detail, in the absolute and relative system, at impeller tip speeds up to 380 m/s. A theoretical analysis proved good coincidence of the test results with the DEAN-SENOO theory, which was extended to compressible flows.
Pressure-flow specificity of inspiratory muscle training.
Tzelepis, G E; Vega, D L; Cohen, M E; Fulambarker, A M; Patel, K K; McCool, F D
1994-08-01
The inspiratory muscles (IM) can be trained by having a subject breathe through inspiratory resistive loads or by use of unloaded hyperpnea. These disparate training protocols are characterized by high inspiratory pressure (force) or high inspiratory flow (velocity), respectively. We tested the hypothesis that the posttraining improvements in IM pressure or flow performance are specific to training protocols in a way that is similar to force-velocity specificity of skeletal muscle training. IM training was accomplished in 15 normal subjects by use of three protocols: high inspiratory pressure-no flow (group A, n = 5), low inspiratory pressure-high flow (group B, n = 5), and intermediate inspiratory pressure and flow (group C, n = 5). A control group (n = 4) did no training. Before and after training, we measured esophageal pressure (Pes) and inspiratory flow (VI) during single maximal inspiratory efforts against a range of external resistances including an occluded airway. Efforts originated below relaxation volume (Vrel), and peak Pes and VI were measured at Vrel. Isovolume maximal Pes-VI plots were constructed to assess maximal inspiratory pressure-flow performance. Group A (pressure training) performed 30 maximal static inspiratory maneuvers at Vrel daily, group B (flow training) performed 30 sets of three maximal inspiratory maneuvers with no added external resistance daily, and group C (intermediate training) performed 30 maximal inspiratory efforts on a midrange external resistance (7 mm ID) daily. Subjects trained 5 days/wk for 6 wk. Data analysis included comparison of posttraining Pes-VI slopes among training groups.(ABSTRACT TRUNCATED AT 250 WORDS)
Can hydraulic-modelled rating curves reduce uncertainty in high flow data?
NASA Astrophysics Data System (ADS)
Westerberg, Ida; Lam, Norris; Lyon, Steve W.
2017-04-01
Flood risk assessments rely on accurate discharge data records. Establishing a reliable rating curve for calculating discharge from stage at a gauging station normally takes years of data collection efforts. Estimation of high flows is particularly difficult as high flows occur rarely and are often practically difficult to gauge. Hydraulically-modelled rating curves can be derived based on as few as two concurrent stage-discharge and water-surface slope measurements at different flow conditions. This means that a reliable rating curve can, potentially, be derived much faster than a traditional rating curve based on numerous stage-discharge gaugings. In this study we compared the uncertainty in discharge data that resulted from these two rating curve modelling approaches. We applied both methods to a Swedish catchment, accounting for uncertainties in the stage-discharge gauging and water-surface slope data for the hydraulic model and in the stage-discharge gauging data and rating-curve parameters for the traditional method. We focused our analyses on high-flow uncertainty and the factors that could reduce this uncertainty. In particular, we investigated which data uncertainties were most important, and at what flow conditions the gaugings should preferably be taken. First results show that the hydraulically-modelled rating curves were more sensitive to uncertainties in the calibration measurements of discharge than water surface slope. The uncertainty of the hydraulically-modelled rating curves were lowest within the range of the three calibration stage-discharge gaugings (i.e. between median and two-times median flow) whereas uncertainties were higher outside of this range. For instance, at the highest observed stage of the 24-year stage record, the 90% uncertainty band was -15% to +40% of the official rating curve. Additional gaugings at high flows (i.e. four to five times median flow) would likely substantially reduce those uncertainties. These first results show the potential of the hydraulically-modelled curves, particularly where the calibration gaugings are of high quality and cover a wide range of flow conditions.
Simulation of Vortex Structure in Supersonic Free Shear Layer Using Pse Method
NASA Astrophysics Data System (ADS)
Guo, Xin; Wang, Qiang
The method of parabolized stability equations (PSE) are applied in the analysis of nonlinear stability and the simulation of flow structure in supersonic free shear layer. High accuracy numerical techniques including self-similar basic flow, high order differential method, appropriate transformation and decomposition of nonlinear terms are adopted and developed to solve the PSE effectively for free shear layer. The spatial evolving unstable waves which dominate the flow structure are investigated through nonlinear coupling spatial marching methods. The nonlinear interactions between harmonic waves are further analyzed and instantaneous flow field are obtained by adding the harmonic waves into basic flow. Relevant data agree well with that of DNS. The results demonstrate that T-S wave does not keeping growing exponential as the linear evolution, the energy transfer to high order harmonic modes and finally all harmonic modes get saturation due to the nonlinear interaction; Mean flow distortion is produced by the nonlinear interaction between the harmonic and its conjugate harmonic, makes great change to the average flow and increases the thickness of shear layer; PSE methods can well capture the large scale nonlinear flow structure in the supersonic free shear layer such as vortex roll-up, vortex pairing and nonlinear saturation.
Arismendi, Ivan; Safeeq, Mohammad; Johnson, Sherri L.; Dunham, Jason B.; Haggerty, Roy
2013-01-01
Flow and temperature are strongly linked environmental factors driving ecosystem processes in streams. Stream temperature maxima (Tmax_w) and stream flow minima (Qmin) can create periods of stress for aquatic organisms. In mountainous areas, such as western North America, recent shifts toward an earlier spring peak flow and decreases in low flow during summer/fall have been reported. We hypothesized that an earlier peak flow could be shifting the timing of low flow and leading to a decrease in the interval between Tmax_w and Qmin. We also examined if years with extreme low Qmin were associated with years of extreme high Tmax_w. We tested these hypotheses using long32 term data from 22 minimally human-influenced streams for the period 1950-2010. We found trends toward a shorter time lag between Tmax_w and Qmin over time and a strong negative association between their magnitudes. Our findings show that aquatic biota may be increasingly experiencing narrower time windows to recover or adapt between these extreme events of low flow and high temperature. This study highlights the importance of evaluating multiple environmental drivers to better gauge the effects of the recent climate variability in freshwaters.
Initial Observations of Lunar Impact Melts and Ejecta Flows with the Mini-RF Radar
NASA Technical Reports Server (NTRS)
Carter, Lynn M.; Neish, Catherine D.; Bussey, D. B. J.; Spudis, Paul D.; Patterson, G. Wesley; Cahill, Joshua T.; Raney, R. Keith
2011-01-01
The Mini-RF radar on the Lunar Reconnaissance Orbiter's spacecraft has revealed a great variety of crater ejecta flow and impact melt deposits, some of which were not observed in prior radar imaging. The craters Tycho and Glushko have long melt flows that exhibit variations in radar backscatter and circular polarization ratio along the flow. Comparison with optical imaging reveals that these changes are caused by features commonly seen in terrestrial lava flows, such as rafted plates, pressure ridges, and ponding. Small (less than 20 km) sized craters also show a large variety of features, including melt flows and ponds. Two craters have flow features that may be ejecta flows caused by entrained debris flowing across the surface rather than by melted rock. The circular polarization ratios (CPRs) of the impact melt flows are typically very high; even ponded areas have CPR values between 0.7-1.0. This high CPR suggests that deposits that appear smooth in optical imagery may be rough at centimeter- and decimeter- scales. In some places, ponds and flows are visible with no easily discernable source crater. These melt deposits may have come from oblique impacts that are capable of ejecting melted material farther downrange. They may also be associated with older, nearby craters that no longer have a radar-bright proximal ejecta blanket. The observed morphology of the lunar crater flows has implications for similar features observed on Venus. In particular, changes in backscatter along many of the ejecta flows are probably caused by features typical of lava flows.
NASA Astrophysics Data System (ADS)
Cao, Linlin; Watanabe, Satoshi; Imanishi, Toshiki; Yoshimura, Hiroaki; Furukawa, Akinori
2013-08-01
As a high specific speed pump, the contra-rotating axial flow pump distinguishes itself in a rear rotor rotating in the opposite direction of the front rotor, which remarkably contributes to the energy conversion, the reduction of the pump size, better hydraulic and cavitation performances. However, with two rotors rotating reversely, the significant interaction between blade rows was observed in our prototype contra-rotating rotors, which highly affected the pump performance compared with the conventional axial flow pumps. Consequently, a new type of rear rotor was designed by the rotational speed optimization methodology with some additional considerations, aiming at better cavitation performance, the reduction of blade rows interaction and the secondary flow suppression. The new rear rotor showed a satisfactory performance at the design flow rate but an unfavorable positive slope of the head — flow rate curve in the partial flow rate range less than 40% of the design flow rate, which should be avoided for the reliability of pump-pipe systems. In the present research, to understand the internal flow field of new rear rotor and its relation to the performances at the partial flow rates, the velocity distributions at the inlets and outlets of the rotors are firstly investigated. Then, the boundary layer flows on rotor surfaces, which clearly reflect the secondary flow inside the rotors, are analyzed through the limiting streamline observations using the multi-color oil-film method. Finally, the unsteady numerical simulations are carried out to understand the complicated internal flow structures in the rotors.
Simulation of thermal transpiration flow using a high-order moment method
NASA Astrophysics Data System (ADS)
Sheng, Qiang; Tang, Gui-Hua; Gu, Xiao-Jun; Emerson, David R.; Zhang, Yong-Hao
2014-04-01
Nonequilibrium thermal transpiration flow is numerically analyzed by an extended thermodynamic approach, a high-order moment method. The captured velocity profiles of temperature-driven flow in a parallel microchannel and in a micro-chamber are compared with available kinetic data or direct simulation Monte Carlo (DSMC) results. The advantages of the high-order moment method are shown as a combination of more accuracy than the Navier-Stokes-Fourier (NSF) equations and less computation cost than the DSMC method. In addition, the high-order moment method is also employed to simulate the thermal transpiration flow in complex geometries in two types of Knudsen pumps. One is based on micro-mechanized channels, where the effect of different wall temperature distributions on thermal transpiration flow is studied. The other relies on porous structures, where the variation of flow rate with a changing porosity or pore surface area ratio is investigated. These simulations can help to optimize the design of a real Knudsen pump.
Design of an FPGA-based electronic flow regulator (EFR) for spacecraft propulsion system
NASA Astrophysics Data System (ADS)
Manikandan, J.; Jayaraman, M.; Jayachandran, M.
2011-02-01
This paper describes a scheme for electronically regulating the flow of propellant to the thruster from a high-pressure storage tank used in spacecraft application. Precise flow delivery of propellant to thrusters ensures propulsion system operation at best efficiency by maximizing the propellant and power utilization for the mission. The proposed field programmable gate array (FPGA) based electronic flow regulator (EFR) is used to ensure precise flow of propellant to the thrusters from a high-pressure storage tank used in spacecraft application. This paper presents hardware and software design of electronic flow regulator and implementation of the regulation logic onto an FPGA.Motivation for proposed FPGA-based electronic flow regulation is on the disadvantages of conventional approach of using analog circuits. Digital flow regulation overcomes the analog equivalent as digital circuits are highly flexible, are not much affected due to noise, accurate performance is repeatable, interface is easier to computers, storing facilities are possible and finally failure rate of digital circuits is less. FPGA has certain advantages over ASIC and microprocessor/micro-controller that motivated us to opt for FPGA-based electronic flow regulator. Also the control algorithm being software, it is well modifiable without changing the hardware. This scheme is simple enough to adopt for a wide range of applications, where the flow is to be regulated for efficient operation.The proposed scheme is based on a space-qualified re-configurable field programmable gate arrays (FPGA) and hybrid micro circuit (HMC). A graphical user interface (GUI) based application software is also developed for debugging, monitoring and controlling the electronic flow regulator from PC COM port.
Díaz-Lobato, Salvador; Folgado, Miguel Angel; Chapa, Angel; Mayoralas Alises, Sagrario
2013-12-01
The treatment of choice for patients with respiratory failure of neuromuscular origin, especially in patients with hypercapnic respiratory acidosis, is noninvasive ventilation (NIV). Endotracheal intubation and invasive ventilation are indicated for patients with severe respiratory compromise or failure of NIV. In recent years, high-flow oxygen therapy and active humidification devices have been introduced, and emerging evidence suggests that high-flow oxygen may be effective in various clinical settings, such as acute respiratory failure, after cardiac surgery, during sedation and analgesia, in acute heart failure, in hypoxemic respiratory distress, in do-not-intubate patients, in patients with chronic cough and copious secretions, pulmonary fibrosis, or cancer, in critical areas and the emergency department. We report on a patient with amyotrophic lateral sclerosis who arrived at the emergency department with acute hypercapnic respiratory failure. She did not tolerate NIV and refused intubation, but was treated successfully with heated, humidified oxygen via high-flow nasal cannula. Arterial blood analysis after an hour on high-flow nasal cannula showed improved pH, P(aCO2), and awareness. The respiratory acidosis was corrected, and she was discharged after 5 days of hospitalization. Her response to high-flow nasal cannula was similar to that expected with NIV. We discuss the mechanisms of action of heated, humidified high-flow oxygen therapy.
Multi-point optimization of recirculation flow type casing treatment in centrifugal compressors
NASA Astrophysics Data System (ADS)
Tun, Min Thaw; Sakaguchi, Daisaku
2016-06-01
High-pressure ratio and wide operating range are highly required for a turbocharger in diesel engines. A recirculation flow type casing treatment is effective for flow range enhancement of centrifugal compressors. Two ring grooves on a suction pipe and a shroud casing wall are connected by means of an annular passage and stable recirculation flow is formed at small flow rates from the downstream groove toward the upstream groove through the annular bypass. The shape of baseline recirculation flow type casing is modified and optimized by using a multi-point optimization code with a metamodel assisted evolutionary algorithm embedding a commercial CFD code CFX from ANSYS. The numerical optimization results give the optimized design of casing with improving adiabatic efficiency in wide operating flow rate range. Sensitivity analysis of design parameters as a function of efficiency has been performed. It is found that the optimized casing design provides optimized recirculation flow rate, in which an increment of entropy rise is minimized at grooves and passages of the rotating impeller.
NASA Technical Reports Server (NTRS)
Delfrate, John H.; Fisher, David F.; Zuniga, Fanny A.
1990-01-01
In-flight results from surface and off-surface flow visualizations and from extensive pressure distributions document the vortical flow on the leading edge extensions (LEX) and forebody of the NASA F-18 high alpha research vehicle for low speeds and angles of attack up to 50 degs. Surface flow visualization data, obtained using the emitted fluid technique, were used to define separation lines and laminar separation bubbles. Off-surface flow visualization data, obtained by smoke injection, were used to document both the path of the vortex cores and the location of vortex core breakdown. The location of vortex core breakdown correlated well with the loss of suction pressure on the LEX and with the flow visualization results from ground facilities. Surface flow separation lines on the LEX and forebody corresponded well with the end of pressure recovery under the vortical flows. Correlation of the pressures with wind tunnel results show fair to good correlation.
A water tunnel flow visualization study of the F-15
NASA Technical Reports Server (NTRS)
Lorincz, D. J.
1978-01-01
Water tunnel studies were performed to qualitatively define the flow field of the F-15 aircraft. Two lengthened forebodies, one with a modified cross-sectional shape, were tested in addition to the basic forebody. Particular emphasis was placed on defining vortex flows generated at high angles of attack. The flow visualization tests were conducted in the Northrop diagnostic water tunnel using a 1/48-scale model of the F-15. Flow visualization pictures were obtained over an angle-of-attack range to 55 deg and sideslip angles up to 10 deg. The basic aircraft configuration was investigated in detail to determine the vortex flow field development, vortex path, and vortex breakdown characteristics as a function of angle of attack and sideslip. Additional tests showed that the wing upper surface vortex flow fields were sensitive to variations in inlet mass flow ratio and inlet cowl deflection angle. Asymmetries in the vortex systems generated by each of the three forebodies were observed in the water tunnel at zero sideslip and high angles of attack.
Rengers, Francis K.; McGuire, Luke; Coe, Jeffrey A.; Kean, Jason W.; Baum, Rex L.; Staley, Dennis M.; Godt, Jonathan W.
2016-01-01
We explored regional influences on debris-flow initiation throughout the Colorado Front Range (Colorado, USA) by exploiting a unique data set of more than 1100 debris flows that initiated during a 5 day rainstorm in 2013. Using geospatial data, we examined the influence of rain, hillslope angle, hillslope aspect, and vegetation density on debris-flow initiation. In particular we used a greenness index to differentiate areas of high tree density from grass and bare soil. The data demonstrated an overwhelming propensity for debris-flow initiation on south-facing hillslopes. However, when the debris-flow density was analyzed with respect to total rainfall and greenness we found that most debris flows occurred in areas of high rainfall and low tree density, regardless of hillslope aspect. These results indicate that present-day tree density exerts a stronger influence on debris-flow initiation locations than aspect-driven variations in soil and bedrock properties that developed over longer time scales.
Comparison of a 3-D CFD-DSMC Solution Methodology With a Wind Tunnel Experiment
NASA Technical Reports Server (NTRS)
Glass, Christopher E.; Horvath, Thomas J.
2002-01-01
A solution method for problems that contain both continuum and rarefied flow regions is presented. The methodology is applied to flow about the 3-D Mars Sample Return Orbiter (MSRO) that has a highly compressed forebody flow, a shear layer where the flow separates from a forebody lip, and a low density wake. Because blunt body flow fields contain such disparate regions, employing a single numerical technique to solve the entire 3-D flow field is often impractical, or the technique does not apply. Direct simulation Monte Carlo (DSMC) could be employed to solve the entire flow field; however, the technique requires inordinate computational resources for continuum and near-continuum regions, and is best suited for the wake region. Computational fluid dynamics (CFD) will solve the high-density forebody flow, but continuum assumptions do not apply in the rarefied wake region. The CFD-DSMC approach presented herein may be a suitable way to obtain a higher fidelity solution.
Aeropropulsion Technology (APT). Task 23 - Stator Seal Cavity Flow Investigation
NASA Technical Reports Server (NTRS)
Heidegger, N. J.; Hall, E. J.; Delaney, R. A.
1996-01-01
The focus of NASA Contract NAS3-25950 Task 23 was to numerically investigate the flow through an axial compressor inner-banded stator seal cavity. The Allison/NASA developed ADPAC code was used to obtain all flow predictions. Flow through a labyrinth stator seal cavity of a high-speed compressor was modeled by coupling the cavity flow path and the main flow path of the compressor. A grid resolution study was performed to guarantee adequate grid spacing was used. Both unsteady rotor-stator-rotor interactions and steady-state isolated blade calculations were performed with and without the seal cavity present. A parameterized seal cavity study of the high-speed stator seal cavity collected a series of solutions for geometric variations. The parameter list included seal tooth gap, cavity depth, wheel speed, radial mismatch of hub flowpath, axial trench gap, hub corner treatments, and land edge treatments. Solution data presented includes radial and pitchwise distributions of flow variables and particle traces describing the flow character.
Study Of Flow About A Helicopter Rotor
NASA Technical Reports Server (NTRS)
Tauber, Michael E.; Owen, F. Kevin
1989-01-01
Noninvasive instrument verifies computer program predicting velocities. Laser velocimeter measurements confirm predictions of transonic flow field around tip of helicopter-rotor blade. Report discusses measurements, which yield high-resolution orthogonal velocity components of flow field at rotor-tip. Mach numbers from 0.85 to 0.95, and use of measurements in verifying ability of computer program ROT22 to predict transonic flow field, including occurrences, strengths, and locations of shock waves causing high drag and noise.
Prediction of Flows about Forebodies at High-Angle-of-Attack Dynamic Conditions
NASA Technical Reports Server (NTRS)
Fremaux, C. M.; vanDam, C. P.; Saephan, S.; DalBello, T.
2003-01-01
A Reynolds-average Navier Stokes method developed for rotorcraft type of flow problems is applied for predicting the forces and moments of forebody models at high-angle-of-attack dynamic conditions and for providing insight into the flow characteristics at these conditions. Wind-tunnel results from rotary testing on generic forebody models conducted by NASA Langley and DERA are used for comparison. This paper focuses on the steady-state flow problem.
Numerical Modeling of Active Flow Control in a Boundary Layer Ingesting Offset Inlet
NASA Technical Reports Server (NTRS)
Allan, Brian G.; Owens, Lewis R.; Berrier, Bobby L.
2004-01-01
This investigation evaluates the numerical prediction of flow distortion and pressure recovery for a boundary layer ingesting offset inlet with active flow control devices. The numerical simulations are computed using a Reynolds averaged Navier-Stokes code developed at NASA. The numerical results are validated by comparison to experimental wind tunnel tests conducted at NASA Langley Research Center at both low and high Mach numbers. Baseline comparisons showed good agreement between numerical and experimental results. Numerical simulations for the inlet with passive and active flow control also showed good agreement at low Mach numbers where experimental data has already been acquired. Numerical simulations of the inlet at high Mach numbers with flow control jets showed an improvement of the flow distortion. Studies on the location of the jet actuators, for the high Mach number case, were conducted to provide guidance for the design of a future experimental wind tunnel test.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Xiaoliang; Duan, Wentao; Huang, Jinhua
Nonaqueous redox flow batteries are promising in pursuit of high-energy storage systems owing to the broad voltage window, but currently are facing key challenges such as poor cycling stability and lack of suitable membranes. Here we report a new nonaqueous all-organic flow chemistry that demonstrates an outstanding cell cycling stability primarily because of high chemical persistency of the organic radical redox species and their good compatibility with the supporting electrolyte. A feasibility study shows that Daramic® and Celgard® porous separators can lead to high cell conductivity in flow cells thus producing remarkable cell efficiency and material utilization even at highmore » current operations. This result suggests that the thickness and pore size are the key performance-determining factors for porous separators. With the greatly improved flow cell performance, this new flow system largely addresses the above mentioned challenges and the findings may greatly expedite the development of durable nonaqueous flow batteries.« less
NASA Technical Reports Server (NTRS)
Kumar, A.
1984-01-01
A computer program NASCRIN has been developed for analyzing two-dimensional flow fields in high-speed inlets. It solves the two-dimensional Euler or Navier-Stokes equations in conservation form by an explicit, two-step finite-difference method. An explicit-implicit method can also be used at the user's discretion for viscous flow calculations. For turbulent flow, an algebraic, two-layer eddy-viscosity model is used. The code is operational on the CDC CYBER 203 computer system and is highly vectorized to take full advantage of the vector-processing capability of the system. It is highly user oriented and is structured in such a way that for most supersonic flow problems, the user has to make only a few changes. Although the code is primarily written for supersonic internal flow, it can be used with suitable changes in the boundary conditions for a variety of other problems.
October 2005 Debris Flows at Panabaj, Guatemala:Hazard Assessment
NASA Astrophysics Data System (ADS)
Sheridan, M. F.; Connor, C.; Connor, L.; Stinton, A.; Galacia, O. R.; Barrios, G.
2007-05-01
In October, 2005, tropical storm Stan caused heavy precipitation throughout much of Guatemala. In the community of Panabaj, Santiago Atitlán, a landslide of pyroclastic material originating high on the slopes of Tolimán volcano buried much of the community, leaving approximately 400 people dead. Current estimates by the Coordinadora Nacional para la Reducción de Desastres (CONRED) suggest that at least 2,600 people from the community of Panabaj, Santiago Atitlán have been displaced by the debris flows. Because the temporary housing for people displaced by the debris flows is located in an area that is geologically and morphologically similar to the area inundated by flows in October, 2005, this area may be potentially inundated by debris flows as well. In addition to the thousands of people living in temporary shelters, many hundreds of people are currently reoccupying land adjacent to or on the October, 2005 debris flows. Thus a large fraction of the surviving Panabaj community appears to remain at risk from future debris flows. We used differential GPS (Global Positioning System) to outline the boundaries of the debris flows, to estimate variation in flow thicknesses, and to determine their volumes. Mass movement on Tolimán volcano resulted in the generation of a moderate size debris flow (360,000 m3 of sediment plus water) that descended the volcano rapidly, bifurcated into two stream valleys high on the flanks of the volcano, and continued to descend both channels until these flows reached the alluvial fan near the shores of Lago de Atitlán. After bifurcating into two flows high on the flanks of the volcano, about 65% of the flow (by volume) descended the western channel, forming the Western flow. Approximately one kilometer above the alluvial fan, this channel descends steep topography, with a slope of 11.5°. This average slope gradually decreases down the channel, reaching only 5.3° just above the alluvial fan. In contrast, average slopes on the Eastern channel are up to 16.7°. Also, this channel thalweg steepens dramatically to 12.8° just above the alluvial fan. Flow velocities in channelized sections were estimated by superelevation at bends at two locations for each of the two flow branches. In measured cross sectional areas between 144 and 160 m2 the calculated velocities ranged from 8.3-10.6 ms-1 yielding fluxes between 1280 and 1680 m3s- 1. The fluxes for the two flows are surprisingly similar. The planimetric area inundated by the Western flow is approximately 180,000 m2 and the area inundated by the Eastern debris flow is 77,000 m2. On reaching the gently-sloping (2.8°) depositional fan where the village of Panabaj is located, the flows thinned to 0.5-3.0 m and spread laterally as a broad sheet flow bounded by distinct flow fronts of 0.30-0.6 m height. Although thin, the flows had sufficient power to sweep away most of the concrete block houses in their paths. Based on observations of high water marks preserved on buildings, up to 40% of the flow by volume consisted of water and fine grained sediments that have been dewatered from the deposit during and since deposition.
Water Flow Test at Launch Complex 39B
2017-12-20
Water flowed during a test at Launch Complex 39B at NASA’s Kennedy Space Center in Florida. About 450,000 gallons of water flowed at high speed from a holding tank through new and modified piping and valves, the flame trench, flame deflector nozzles and mobile launcher interface risers during a wet flow test at Launch Complex 39B. At peak flow, the water reached about 100 feet in the air above the pad surface. The test was a milestone to confirm and baseline the performance of the Ignition Overpressure/Sound Suppression system. During launch of NASA's Space Launch System rocket and Orion spacecraft, the high-speed water flow will help protect the vehicle from the extreme acoustic and temperature environment during ignition and liftoff.
Deployable Emergency Shutoff Device Blocks High-Velocity Fluid Flows
NASA Technical Reports Server (NTRS)
Nabors, Sammy A.
2015-01-01
NASA's Marshall Space Flight Center has developed a device and method for blocking the flow of fluid from an open pipe. Motivated by the sea-bed oil-drilling catastrophe in the Gulf of Mexico in 2010, NASA innovators designed the device to plug, control, and meter the flow of gases and liquids. Anchored with friction fittings, spikes, or explosively activated fasteners, the device is well-suited for harsh environments and high fluid velocities and pressures. With the addition of instrumentation, it can also be used as a variable area flow metering valve that can be set based upon flow conditions. With robotic additions, this patent-pending innovation can be configured to crawl into a pipe then anchor and activate itself to block or control fluid flow.
Catalytic cartridge SO.sub.3 decomposer
Galloway, Terry R.
1982-01-01
A catalytic cartridge surrounding a heat pipe driven by a heat source is utilized as a SO.sub.3 decomposer for thermochemical hydrogen production. The cartridge has two embodiments, a cross-flow cartridge and an axial flow cartridge. In the cross-flow cartridge, SO.sub.3 gas is flowed through a chamber and incident normally to a catalyst coated tube extending through the chamber, the catalyst coated tube surrounding the heat pipe. In the axial-flow cartridge, SO.sub.3 gas is flowed through the annular space between concentric inner and outer cylindrical walls, the inner cylindrical wall being coated by a catalyst and surrounding the heat pipe. The modular cartridge decomposer provides high thermal efficiency, high conversion efficiency, and increased safety.
Large eddy simulations and direct numerical simulations of high speed turbulent reacting flows
NASA Technical Reports Server (NTRS)
Givi, Peyman; Madnia, C. K.; Steinberger, C. J.; Tsai, A.
1991-01-01
This research is involved with the implementations of advanced computational schemes based on large eddy simulations (LES) and direct numerical simulations (DNS) to study the phenomenon of mixing and its coupling with chemical reactions in compressible turbulent flows. In the efforts related to LES, a research program was initiated to extend the present capabilities of this method for the treatment of chemically reacting flows, whereas in the DNS efforts, focus was on detailed investigations of the effects of compressibility, heat release, and nonequilibrium kinetics modeling in high speed reacting flows. The efforts to date were primarily focussed on simulations of simple flows, namely, homogeneous compressible flows and temporally developing hign speed mixing layers. A summary of the accomplishments is provided.
Systematic characterization of degas-driven flow for poly(dimethylsiloxane) microfluidic devices
Liang, David Y.; Tentori, Augusto M.; Dimov, Ivan K.; ...
2011-01-01
Degas-driven flow is a novel phenomenon used to propel fluids in poly(dimethylsiloxane) (PDMS)-based microfluidic devices without requiring any external power. This method takes advantage of the inherently high porosity and air solubility of PDMS by removing air molecules from the bulk PDMS before initiating the flow. The dynamics of degas-driven flow are dependent on the channel and device geometries and are highly sensitive to temporal parameters. These dependencies have not been fully characterized, hindering broad use of degas-driven flow as a microfluidic pumping mechanism. Here, we characterize, for the first time, the effect of various parameters on the dynamics ofmore » degas-driven flow, including channel geometry, PDMS thickness, PDMS exposure area, vacuum degassing time, and idle time at atmospheric pressure before loading. We investigate the effect of these parameters on flow velocity as well as channel fill time for the degas-driven flow process. Using our devices, we achieved reproducible flow with a standard deviation of less than 8% for flow velocity, as well as maximum flow rates of up to 3 nL/s and mean flow rates of approximately 1-1.5 nL/s. Parameters such as channel surface area and PDMS chip exposure area were found to have negligible impact on degas-driven flow dynamics, whereas channel cross-sectional area, degas time, PDMS thickness, and idle time were found to have a larger impact. In addition, we develop a physical model that can predict mean flow velocities within 6% of experimental values and can be used as a tool for future design of PDMS-based microfluidic devices that utilize degas-driven flow.« less
The Characteristics of Turbulence in Curved Pipes under Highly Pulsatile Flow Conditions
NASA Astrophysics Data System (ADS)
Kalpakli, A.; Örlü, R.; Tillmark, N.; Alfredsson, P. Henrik
High speed stereoscopic particle image velocimetry has been employed to provide unique data from a steady and highly pulsatile turbulent flow at the exit of a 90 degree pipe bend. Both the unsteady behaviour of the Dean cells under steady conditions, the so called "swirl switching" phenomenon, as well as the secondary flow under pulsations have been reconstructed through proper orthogonal decomposition. The present data set constitutes - to the authors' knowledge - the first detailed investigation of a turbulent, pulsatile flow through a pipe bend.
Three-dimensional interactions and vortical flows with emphasis on high speeds
NASA Technical Reports Server (NTRS)
Peake, D. J.; Tobak, M.
1980-01-01
Diverse kinds of three-dimensional regions of separation in laminar and turbulent boundary layers are discussed that exist on lifting aerodynamic configurations immersed in flows from subsonic to hypersonic speeds. In all cases of three dimensional flow separation, the assumption of continuous vector fields of skin-friction lines and external-flow streamlines, coupled with simple topology laws, provides a flow grammar whose elemental constituents are the singular points: nodes, foci, and saddles. Adopting these notions enables one to create sequences of plausible flow structures, to deduce mean flow characteristics, expose flow mechanisms, and to aid theory and experiment where lack of resolution in numerical calculations or wind tunnel observation causes imprecision in diagnosing the three dimensional flow features.
Does prolonged semi-erection in prepubertal high flow priapism result in increased penile size?
Awwad, Ziad M
2005-03-01
High flow priapism is a rare pathology resulting mainly from trauma to the perineum leading to arterial-lacunar fistula. Management includes arterial embolization using absorbable material, as well as conservative approach. In this case, the effect of prolonged semi-erection in prepubertal high flow priapism on increased penile size is discussed.
Poppenga, Sandra K.; Worstell, Bruce B.; Stoker, Jason M.; Greenlee, Susan K.
2010-01-01
Digital elevation data commonly are used to extract surface flow features. One source for high-resolution elevation data is light detection and ranging (lidar). Lidar can capture a vast amount of topographic detail because of its fine-scale ability to digitally capture the surface of the earth. Because elevation is a key factor in extracting surface flow features, high-resolution lidar-derived digital elevation models (DEMs) provide the detail needed to consistently integrate hydrography with elevation, land cover, structures, and other geospatial features. The U.S. Geological Survey has developed selective drainage methods to extract continuous surface flow from high-resolution lidar-derived digital elevation data. The lidar-derived continuous surface flow network contains valuable information for water resource management involving flood hazard mapping, flood inundation, and coastal erosion. DEMs used in hydrologic applications typically are processed to remove depressions by filling them. High-resolution DEMs derived from lidar can capture much more detail of the land surface than courser elevation data. Therefore, high-resolution DEMs contain more depressions because of obstructions such as roads, railroads, and other elevated structures. The filling of these depressions can significantly affect the DEM-derived surface flow routing and terrain characteristics in an adverse way. In this report, selective draining methods that modify the elevation surface to drain a depression through an obstruction are presented. If such obstructions are not removed from the elevation data, the filling of depressions to create continuous surface flow can cause the flow to spill over an obstruction in the wrong location. Using this modified elevation surface improves the quality of derived surface flow and retains more of the true surface characteristics by correcting large filled depressions. A reliable flow surface is necessary for deriving a consistently connected drainage network, which is important in understanding surface water movement and developing applications for surface water runoff, flood inundation, and erosion. Improved methods are needed to extract continuous surface flow features from high-resolution elevation data based on lidar.
Pahoehoe and aa in Hawaii: volumetric flow rate controls the lava structure
NASA Astrophysics Data System (ADS)
Rowland, Scott K.; Walker, George Pl
1990-11-01
The historical records of Kilauea and Mauna Loa volcanoes reveal that the rough-surfaced variety of basalt lava called aa forms when lava flows at a high volumetric rate (>5 10 m3/s), and the smooth-surfaced variety called pahoehoe forms at a low volumetric rate (<5 10 m3/s). This relationship is well illustrated by the 1983 1990 and 1969 1974 eruptions of Kilauea and the recent eruptions of Mauna Loa. It is also illustrated by the eruptions that produced the remarkable paired flows of Mauna Loa, in which aa formed during an initial short period of high discharge rate (associated with high fountaining) and was followed by the eruption of pahoehoe over a sustained period at a low discharge rate (with little or no fountaining). The finest examples of paired lava flows are those of 1859 and 1880 1881. We attribute aa formation to rapid and concentrated flow in open channels. There, rapid heat loss causes an increase in viscosity to a threshold value (that varies depending on the actual flow velocity) at which, when surface crust is torn by differential flow, the underlying lava is unable to move sufficiently fast to heal the tear. We attribute pahoehoe formation to the flowage of lava at a low volumetric rate, commonly in tubes that minimize heat loss. Flow units of pahoehoe are small (usually <1 m thick), move slowly, develop a chilled skin, and become virtually static before the viscosity has risen, to the threshold value. We infer that the high-discharge-rate eruptions that generate aa flows result from the rapid emptying of major or subsidiary magma chambers. Rapid near-surface vesiculation of gas-rich magma leads to eruptions with high discharge rates, high lava fountains, and fast-moving channelized flows. We also infer that long periods of sustained flow at a low discharge rate, which favor pahoehoe, result from the development of a free and unimpeded pathway from the deep plumbing system of the volcano and the separation of gases from the magma before eruption. Achievement of this condition requires one or more episodes of rapid magma excursion through the rift zone to establish a stable magma pathway.
Micro- and macro-behaviour of fluid flow through rock fractures: an experimental study
NASA Astrophysics Data System (ADS)
Zhang, Zhenyu; Nemcik, Jan; Ma, Shuqi
2013-12-01
Microscopic and macroscopic behaviour of fluid flow through rough-walled rock fractures was experimentally investigated. Advanced microfluidic technology was introduced to examine the microscopic viscous and inertial effects of water flow through rock fractures in the vicinity of voids under different flow velocities, while the macroscopic behaviour of fracture flow was investigated by carrying out triaxial flow tests through fractured sandstone under confining stresses ranging from 0.5 to 3.0 MPa. The flow tests show that the microscopic inertial forces increase with the flow velocity with significant effects on the local flow pattern near the voids. With the increase in flow velocity, the deviation of the flow trajectories is reduced but small eddies appear inside the cavities. The results of the macroscopic flow tests show that the linear Darcy flow occurs for mated rock fractures due to small aperture, while a nonlinear deviation of the flow occurs at relatively high Reynolds numbers in non-mated rock fracture (Re > 32). The microscopic experiments suggest that the pressure loss consumed by the eddies inside cavities could contribute to the nonlinear fluid flow behaviour through rock joints. It is found that such nonlinear flow behaviour is best matched with the quadratic-termed Forchheimer equation.
Flow-gated radial phase-contrast imaging in the presence of weak flow.
Peng, Hsu-Hsia; Huang, Teng-Yi; Wang, Fu-Nien; Chung, Hsiao-Wen
2013-01-01
To implement a flow-gating method to acquire phase-contrast (PC) images of carotid arteries without use of an electrocardiography (ECG) signal to synchronize the acquisition of imaging data with pulsatile arterial flow. The flow-gating method was realized through radial scanning and sophisticated post-processing methods including downsampling, complex difference, and correlation analysis to improve the evaluation of flow-gating times in radial phase-contrast scans. Quantitatively comparable results (R = 0.92-0.96, n = 9) of flow-related parameters, including mean velocity, mean flow rate, and flow volume, with conventional ECG-gated imaging demonstrated that the proposed method is highly feasible. The radial flow-gating PC imaging method is applicable in carotid arteries. The proposed flow-gating method can potentially avoid the setting up of ECG-related equipment for brain imaging. This technique has potential use in patients with arrhythmia or weak ECG signals.
Corner flow control in high through-flow axial commercial fan/booster using blade 3-D optimization
NASA Astrophysics Data System (ADS)
Zhu, Fang; Jin, Donghai; Gui, Xingmin
2012-02-01
This study is aimed at using blade 3-D optimization to control corner flows in the high through-flow fan/booster of a high bypass ratio commercial turbofan engine. Two kinds of blade 3-D optimization, end-bending and bow, are focused on. On account of the respective operation mode and environment, the approach to 3-D aerodynamic modeling of rotor blades is different from stator vanes. Based on the understanding of the mechanism of the corner flow and the consideration of intensity problem for rotors, this paper uses a variety of blade 3-D optimization approaches, such as loading distribution optimization, perturbation of departure angles and stacking-axis manipulation, which are suitable for rotors and stators respectively. The obtained 3-D blades and vanes can improve the corner flow features by end-bending and bow effects. The results of this study show that flows in corners of the fan/booster, such as the fan hub region, the tip and hub of the vanes of the booster, are very complex and dominated by 3-D effects. The secondary flows there are found to have a strong detrimental effect on the compressor performance. The effects of both end-bending and bow can improve the flow separation in corners, but the specific ways they work and application scope are somewhat different. Redesigning the blades via blade 3-D optimization to control the corner flow has effectively reduced the loss generation and improved the stall margin by a large amount.
Observations of hydrotectonic stress/strain events at a basement high at the Nicoya outer rise
NASA Astrophysics Data System (ADS)
Tryon, M. D.; Brown, K. M.
2005-12-01
There is substantial and growing evidence from heat flow and coring investigations that the oceanic plate off Costa Rica is highly hydrologically active and that this activity is responsible for one of the most anomalously cold thermal environments encountered in the oceanic environment. Recent work by Fisher, et al. has identified limited regions above certain topographic highs with extremely high heat flows. Pore water profiles from cores above these thinly sedimented basement highs suggest upward flow on the order of ~1 cm/yr. These highs may be the principal regions of out-flow from the basement in this region and, thus, can potentially be used to constrain the general level of hydrologic activity. The nine Chemical and Aqueous Transport (CAT) meters we deployed at one of the highest heatflow sites provide a temporal record of both in-flow and out-flow of aqueous fluids at rates as low as 0.1 mm/yr. Our objective was to provide a direct measurement of long term flow rates to address the following questions: (1) What are the characteristic fluid fluxes at basement highs of the low heat flow region of the northern Costa Rican incoming plate, and (2) is this flow temporally variable? The results of the instrument deployments agree quite closely in general with the coring results in that the background rates are on the order of 1 cm/yr or less. There is, however, considerable detail in the temporal records which suggest small scale tectonic stress transients causing temporary increases in flow rate. While this is certainly not an area of major tectonic activity, the site is located at the top of the outer rise where one would expect bending-related stress and fault reactivation to occur. The CAT meters are capable of detecting minute strain events in the underlying sediments and therefore may be detecting small localized strain events. Two periods of increased flow lasting a few weeks each occur during the 5 month deployment and are indicated on all of the instruments. A few indicate downflow while the others show upflow. This sort of response would be expected during a stress event causing regions of compression and dilation. These results suggest that ridge flank basement highs may be good sites to monitor stress/strain events as well as basement hydrology.
Effect of seabed roughness on tidal current turbines
NASA Astrophysics Data System (ADS)
Gupta, Vikrant; Wan, Minping
2017-11-01
Tidal current turbines are shown to have potential to generate clean energy for a negligible environmental impact. These devices, however, operate in high to moderate current regions where the flow is highly turbulent. It has been shown in flume tank experiments at IFREMER in Boulogne-Sur-Mer (France) and NAFL in the University of Minnesota (US) that the level of turbulence and boundary layer profile affect a turbine's power output and wake characteristics. A major factor that determines these marine flow characteristics is the seabed roughness. Experiments, however, cannot simulate the high Reynolds number conditions of real marine flows. For that, we rely on numerical simulations. High accuracy numerical methods, such as DNS, of wall-bounded flows are very expensive, where the number of grid-points needed to resolve the flow varies as (Re) 9 / 4 (where Re is the flow Reynolds number). While numerically affordable RANS methods compromise on accuracy. Wall-modelled LES methods, which provide both accuracy and affordability, have been improved tremendously in the recent years. We discuss the application of such numerical methods for studying the effect of seabed roughness on marine flow features and their impact on turbine power output and wake characteristics. NSFC, Project Number 11672123.
Fluid dynamic mechanisms and interactions within separated flows
NASA Astrophysics Data System (ADS)
Dutton, J. C.; Addy, A. L.
1990-02-01
The significant results of a joint research effort investigating the fundamental fluid dynamic mechanisms and interactions within high-speed separated flows are presented in detail. The results have obtained through analytical and numerical approaches, but with primary emphasis on experimental investigations of missile and projectile base flow-related configurations. The objectives of the research program focus on understanding the component mechanisms and interactions which establish and maintain high-speed separated flow regions. The analytical and numerical efforts have centered on unsteady plume-wall interactions in rocket launch tubes and on predictions of the effects of base bleed on transonic and supersonic base flowfields. The experimental efforts have considered the development and use of a state-of-the-art two component laser Doppler velocimeter (LDV) system for experiments with planar, two-dimensional, small-scale models in supersonic flows. The LDV experiments have yielded high quality, well documented mean and turbulence velocity data for a variety of high-speed separated flows including initial shear layer development, recompression/reattachment processes for two supersonic shear layers, oblique shock wave/turbulent boundary layer interactions in a compression corner, and two-stream, supersonic, near-wake flow behind a finite-thickness base.
Flow Enhancement due to Elastic Turbulence in Channel Flows of Shear Thinning Fluids
NASA Astrophysics Data System (ADS)
Bodiguel, Hugues; Beaumont, Julien; Machado, Anaïs; Martinie, Laetitia; Kellay, Hamid; Colin, Annie
2015-01-01
We explore the flow of highly shear thinning polymer solutions in straight geometry. The strong variations of the normal forces close to the wall give rise to an elastic instability. We evidence a periodic motion close the onset of the instability, which then evolves towards a turbulentlike flow at higher flow rates. Strikingly, we point out that this instability induces genuine drag reduction due to the homogenization of the viscosity profile by the turbulent flow.
Flow enhancement due to elastic turbulence in channel flows of shear thinning fluids.
Bodiguel, Hugues; Beaumont, Julien; Machado, Anaïs; Martinie, Laetitia; Kellay, Hamid; Colin, Annie
2015-01-16
We explore the flow of highly shear thinning polymer solutions in straight geometry. The strong variations of the normal forces close to the wall give rise to an elastic instability. We evidence a periodic motion close the onset of the instability, which then evolves towards a turbulentlike flow at higher flow rates. Strikingly, we point out that this instability induces genuine drag reduction due to the homogenization of the viscosity profile by the turbulent flow.
A visual study of radial inward choked flow of liquid nitrogen
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Simoneau, R. J.; Hsu, Y. Y.
1973-01-01
A visual study of the radial inward choked flow of liquid nitrogen was conducted. Data and high speed moving pictures were obtained. The study indicated the following: (1) steady radial inward choked flow seems equivalent to steady choked flow through axisymmetric nozzles, (2) transient choked flows through the radial gap are not uniform and the discharge pattern appears as nonuniform impinging jets, and (3) the critical mass flow rate data for the transient case appear different from those of the steady case.
NASA Technical Reports Server (NTRS)
Dybbs, Alexander (Editor); Ghorashi, Bahman (Editor)
1991-01-01
The papers presented in this volume provide an overview of the latest advances in laser anemometry and optical flow diagnostics. Topics discussed include turbulence, jets, and chaos; novel optical techniques for velocity measurements; chemical reactions and combusting flows; and LDA/CFD interface. Attention is also given to particle image velocimetry, high speed flows and aerodynamic flows, internal flows, particle sizing, optics and signal processing, two-phase flows, and general fluid mechanics applications.
Hyperspectral imaging flow cytometer
Sinclair, Michael B.; Jones, Howland D. T.
2017-10-25
A hyperspectral imaging flow cytometer can acquire high-resolution hyperspectral images of particles, such as biological cells, flowing through a microfluidic system. The hyperspectral imaging flow cytometer can provide detailed spatial maps of multiple emitting species, cell morphology information, and state of health. An optimized system can image about 20 cells per second. The hyperspectral imaging flow cytometer enables many thousands of cells to be characterized in a single session.
Vortex shedding flow meter performance at high flow velocities
NASA Technical Reports Server (NTRS)
Siegwarth, J. D.
1986-01-01
In some of the ducts of the Space Shuttle Main Engine (SSME), the maximum liquid oxygen flow velocities approach 10 times those at which liquid flow measurements are normally made. The hydrogen gas flow velocities in other ducts exceed the maximum for gas flow measurement by more than a factor of 3. The results presented here show from water flow tests that vortex shedding flow meters of the appropriate design can measure water flow to velocities in excess of 55 m/s, which is a Reynolds number of about 2 million. Air flow tests have shown that the same meter can measure flow to a Reynolds number of at least 22 million. Vortex shedding meters were installed in two of the SSME ducts and tested with water flow. Narrow spectrum lines were obtained and the meter output frequencies were proportional to flow to + or - 0.5% or better over the test range with no flow conditioning, even though the ducts had multiple bends preceeding the meter location. Meters with the shedding elements only partially spanning the pipe and some meters with ring shaped shedding elements were also tested.
High Skin Temperature and Hypohydration Impair Aerobic Performance
2012-01-01
hypohydration) in impairing submaximal aerobic performance. Hot skin is associated with high skin blood flow requirements and hypohydration is...the aerobic performance impairment (-1.5% for each l°C skin temperature). We conclude that hot skin ( high skin blood flow requirements from narrow...associated with high skin blood flow requirements and hypohydration is associated with reduced cardiac filling, both of which act to reduce aerobic
Flow properties of suspensions rich in solids
NASA Technical Reports Server (NTRS)
Armstrong, W. P.; Gay, E. C.; Nelson, P. A.
1969-01-01
Mathematical evaluation of flow properties of fluids carrying high concentrations of solids in suspension relates suspension viscosity to physical properties of the solids and liquids, and provides a means for predicting flow behavior. A technique for calculating a suspensions flow rates is applicable to the design of pipelines.
Rapid expulsion of microswimmers by a vortical flow
Sokolov, Andrey; Aranson, Igor S.
2016-03-23
Interactions of microswimmers with their fluid environment are exceptionally complex. Macroscopic shear flow alters swimming trajectories in a highly nontrivial way and results in dramatic reduction of viscosity and heterogeneous bacterial distributions. Here we report on experimental and theoretical studies of rapid expulsion of microswimmers, such as motile bacteria, by a vortical flow created by a rotating microparticle. We observe a formation of a macroscopic depletion area in a high-shear region, in the vicinity of a microparticle. The rapid migration of bacteria from the shear-rich area is caused by a vortical structure of the flow rather than intrinsic random fluctuationsmore » of bacteria orientations, in stark contrast to planar shear flow. Our mathematical model reveals that expulsion is a combined effect of motility and alignment by a vortical flow. Our findings offer a novel approach for manipulation of motile microorganisms and shed light on bacteria-flow interactions.« less
Interpretation of lunar heat flow data. [for estimating bulk uranium abundance
NASA Technical Reports Server (NTRS)
Conel, J. E.; Morton, J. B.
1975-01-01
Lunar heat flow observations at the Apollo 15 and 17 sites can be interpreted to imply bulk U concentrations for the moon of 5 to 8 times those of normal chondrites and 2 to 4 times terrestrial values inferred from the earth's heat flow and the assumption of thermal steady state between surface heat flow and heat production. A simple model of nearsurface structure that takes into account the large difference in (highly insulating) regolith thickness between mare and highland provinces is considered. This model predicts atypically high local values of heat flow near the margins of mare regions - possibly a factor of 10 or so higher than the global average. A test of the proposed model using multifrequency microwave techniques appears possible wherein heat flow traverse measurements are made across mare-highland contacts. The theoretical considerations discussed here urge caution in attributing global significance to point heat-flow measurements on the moon.
NASA Technical Reports Server (NTRS)
Larson, T. J.
1984-01-01
The measurement performance of a hemispherical flow-angularity probe and a fuselage-mounted pitot-static probe was evaluated at high flow angles as part of a test program on an F-14 airplane. These evaluations were performed using a calibrated pitot-static noseboom equipped with vanes for reference flow direction measurements, and another probe incorporating vanes but mounted on a pod under the fuselage nose. Data are presented for angles of attack up to 63, angles of sideslip from -22 deg to 22 deg, and for Mach numbers from approximately 0.3 to 1.3. During maneuvering flight, the hemispherical flow-angularity probe exhibited flow angle errors that exceeded 2 deg. Pressure measurements with the pitot-static probe resulted in very inaccurate data above a Mach number of 0.87 and exhibited large sensitivities with flow angle.
Measuring Flow Rate in Crystalline Bedrock Wells Using the Dissolved Oxygen Alteration Method.
Vitale, Sarah A; Robbins, Gary A
2017-07-01
Determination of vertical flow rates in a fractured bedrock well can aid in planning and implementing hydraulic tests, water quality sampling, and improving interpretations of water quality data. Although flowmeters are highly accurate in flow rate measurement, the high cost and logistics may be limiting. In this study the dissolved oxygen alteration method (DOAM) is expanded upon as a low-cost alternative to determine vertical flow rates in crystalline bedrock wells. The method entails altering the dissolved oxygen content in the wellbore through bubbler aeration, and monitoring the vertical advective movement of the dissolved oxygen over time. Measurements were taken for upward and downward flows, and under ambient and pumping conditions. Vertical flow rates from 0.06 to 2.30 Lpm were measured. To validate the method, flow rates determined with the DOAM were compared to pump discharge rates and found to be in agreement within 2.5%. © 2017, National Ground Water Association.
Johnson, Timothy J; Ross, David; Locascio, Laurie E
2002-01-01
A preformed T-microchannel imprinted in polycarbonate was postmodified with a pulsed UV excimer laser (KrF, 248 nm) to create a series of slanted wells at the junction. The presence of the wells leads to a high degree of lateral transport within the channel and rapid mixing of two confluent streams undergoing electroosmotic flow. Several mixer designs were fabricated and investigated. All designs were relatively successful at low flow rates (0.06 cm/s, > or = 75% mixing), but had varying degrees of success at high flow rates (0.81 cm/s, 45-80% mixing). For example, one design operating at high flow rates was able to split an incoming fluorescent stream into two streams of varying concentrations depending on the number of slanted wells present. The final mixer design was able to overcome stream splitting at high flow rates, and it was shown that the two incoming streams were 80% mixed within 443 microm of the T-junction for a flow rate of 0.81 cm/s. Without the presence of the mixer and at the same high flow rate, a channel length of 2.3 cm would be required to achieve the same extent of mixing when relying upon molecular diffusion entirely, while 6.9 cm would be required for 99% mixing.
Dense Pyroclastic Flows of the 16 -17 August 2006 Eruption of Tungurahua Volcano, Ecuador
NASA Astrophysics Data System (ADS)
Hall, M. L.; Mothes, P. A.; Ramon, P.; Arellano, S.; Barba, D.; Palacios, P.
2007-05-01
The 16-17 August 2006 eruption of Tungurahua volcano in central Ecuador was preceded by 7 years of threatening activity and finally a VEI=2 eruption on 14-15 July 2006. The larger August eruption witnessed tens of pyroclastic flows that descended 17 different channels up to 8.5 km to the volcano's base on the NW, N, W, and SW sides. Tungurahua (5023m) is a steep-sided, low SiO2 andesitic volcano with 2600 to 3200m of relief. The initial, small nuee ardentes began around 1700hr (local time), the larger flows occurred between 2147hr and 0100hr (17 Aug.), and a total of 31 events were indicated by seismic signals. The deposits of three distinct flow cycles are recognized at the NW base of the cone. On the Los Pajaros depositional fan, deposits of flows 1 and 2 are widespread laterally (<600m) and have low-aspect morphologies with low snouts and without levees. Their outer surfaces are covered with accessory > juvenile clasts that mainly range from 15 to 25cm in diameter, conversely their interiors are comprised of 40-42% clasts of 1-25cm size and a matrix (58-60%) of sand-size grains. The earlier flow 1 was accompanied by an ash cloud surge that leveled, but did not scorch, all trees, brush, even metal antenna posts, leaving a 1-10cm thick sandy ash layer upon flow 1's deposit. On the fan as well as in gullies on the upper flanks, flow 3 deposits form long narrow lobes with 1-2m high frontal snouts that are followed by empty flow channels, 5-15m wide, bounded by parallel levees 1-1.5m high. Within these channels subsequent flow lobes are found as remnant pulses. Unlike flows 1 and 2, flow 3 lobes are covered with 0.5-3m cauliflower-shaped, slightly vesiculated bombs that are rarely abraded; the deposit's interior has a 45% sandy matrix. During the climatic eruptive phase continuous lava fountaining, 500-700m high, and crater spilling likely fed a continual stream of fragmented lava onto the cone's upper steep flanks, from which dense pyroclastic mass flows were initiated by gravity. Flows 1 and 2 were more fluidized (due to entrained air and fines), faster, and had wider lateral extents. Flow 3 was poorly fluidized, highly channelized, and behaved more like an inertial granular flow that formed as a continuous avalanche stream that separated into consecutive pulses along the runout channel.
Bedforms formed by experimental supercritical density flows
NASA Astrophysics Data System (ADS)
Naruse, Hajime; Izumi, Norihiro; Yokokawa, Miwa; Muto, Tetsuji
2014-05-01
This study reveals characteristics and formative conditions of bedforms produced by saline density flows in supercritical flow conditions, especially focusing on the mechanism of the formation of plane bed. The motion of sediment particles forming bedforms was resolved by high-speed cameras (1/1000 frame/seconds). Experimental density flows were produced by mixtures of salt water (1.01-1.04 in density) and plastic particles (1.5 in specific density, 140 or 240 mm in diameter). Salt water and plastic particles are analogue materials of muddy water and sand particles in turbidity currents respectively. Acrylic flume (4.0 m long, 2.0 cm wide and 0.5 m deep) was submerged in an experimental tank (6.0 m long, 1.8 m wide and 1.2 m deep) that was filled by clear water. Features of bedforms were observed when the bed state in the flume reached equilibrium condition. The experimental conditions range 1.5-4.2 in densimetric Froude number and 0.2-0.8 in Shields dimensionless stress. We report the two major discoveries as a result of the flume experiments: (1) Plane bed under Froude-supercritical flows and (2) Geometrical characteristics of cyclic steps formed by density flows. (1) Plane bed was formed under the condition of supercritical flow regime. In previous studies, plane bed has been known to be formed by subcritical unidirectional flows (ca. 0.8 in Froude number). However, this study implies that plane bed can also be formed by supercritical conditions with high Shields dimensionless stress (>0.4) and very high Froude number (> 4.0). This discovery may suggest that previous estimations of paleo-hydraulic conditions of parallel lamination in turbidites should be reconsidered. The previous experimental studies and data from high-speed camera suggest that the region of plane bed formation coincides with the region of the sheet flow developments. The particle transport in sheet flow (thick bedload layer) induces transform of profile of flow shear stress, which may be related with the formation of the plane bed. (2) This study also revealed geometrical characteristics of cyclic steps. Cyclic step is a type of bedform that is frequently observed in flanks of submarine levees. This study proved that cyclic steps of density flows show different geometry to those formed by open channel flows. Cyclic steps formed by open channel flows have generally asymmetrical geometry in which lee side is short, whereas cyclic steps formed by density flows are relatively symmetrical and varies their morphology remarkably depending on flow conditions.
Turbulent behaviour of non-cohesive sediment gravity flows at unexpectedly high flow density
NASA Astrophysics Data System (ADS)
Baker, Megan; Baas, Jaco H.; Malarkey, Jonathan; Kane, Ian
2016-04-01
Experimental lock exchange-type turbidity currents laden with non-cohesive silica-flour were found to be highly dynamic at remarkably high suspended sediment concentrations. These experiments were conducted to produce sediment gravity flows of volumetric concentrations ranging from 1% to 52%, to study how changes in suspended sediment concentration affects the head velocities and run-out distances of these flows, in natural seawater. Increasing the volumetric concentration of suspended silica-flour, C, up to C = 46%, within the flows led to a progressive increase in the maximum head velocity. This relationship suggests that suspended sediment concentration intensifies the density difference between the turbulent suspension and the ambient water, which drives the flow, even if almost half of the available space is occupied by sediment particles. However, from C = 46% to C = 52% a rapid reduction in the maximum head velocity was measured. It is inferred that at C = 46%, friction from grain-to-grain interactions begins to attenuate turbulence within the flows. At C > 46%, the frictional stresses become progressively more dominant over the turbulent forces and excess density, thus producing lower maximum head velocities. This grain interaction process started to rapidly reduce the run-out distance of the silica-flour flows at equally high concentrations of C ≥ 47%. All flows with C < 47% reflected off the end of the 5-m long tank, but the head velocities gradually reduced along the tank. Bagnold (1954, 1963) estimated that, for sand flows, grain-to-grain interactions start to become important in modulating turbulence at C > 9%. Yet, the critical flow concentration at which turbulence modulation commenced for these silica-flour laden flows appeared to be much higher. We suggest that Bagnold's 9% criterion cannot be applied to flows that carry fine-grained sediment, because turbulent forces are more important than dispersive forces, and frictional forces start to affect the flows only at concentrations just below the cubic packing density of spheres of C = 52%. These experimental results also imply that natural flows may be able to transport vast volumes of non-cohesive sediment with relative ease, especially considering that the experimental flows moved on a horizontal slope. References Bagnold, R. A. (1954). Experiments on a Gravity-Free Dispersion of Large Solid Spheres in Newtonian Fluid under Shear. Proceedings of the Royal Society series A: Mathematical, Physical and Engineering Sciences, 225(1160), 49-63. Bagnold, R. A. (1963). Beach and nearshore processes: Part 1. Mechanics of marine sedimentation. In: Hill, M. N. (Ed.) The Earth Beneath the Sea, vol. 3. Wiley-Interscience, London, 507-533.
Wind-Flow Patterns in the Grand Canyon as Revealed by Doppler Lidar.
NASA Astrophysics Data System (ADS)
Banta, Robert M.; Darby, Lisa S.; Kaufmann, Pirmin; Levinson, David H.; Zhu, Cui-Juan
1999-08-01
Many interesting flow patterns were found in the Grand Canyon by a scanning Doppler lidar deployed to the south rim during the 1990 Wintertime Visibility Study. Three are analyzed in this study: 1) flow reversal in the canyon, where the flow in the canyon was in the opposite direction from the flow above the canyon rim; 2) under strong, gusty flow from the southwest, the flow inside and above the canyon was from a similar direction and coupled; and 3) under light large-scale ambient flow, the lidar found evidence of local, thermally forced up- and down-canyon winds in the bottom of the canyon.On the days with flow reversal in the canyon, the strongest in-canyon flow response was found for days with northwesterly flow and a strong inversion at the canyon rim. The aerosol backscatter profiles were well mixed within the canyon but poorly mixed across the rim because of the inversion. The gusty southwest flow days showed strong evidence of vertical mixing across the rim both in the momentum and in the aerosol backscatter profiles, as one would expect in turbulent flow. The days with light ambient flow showed poor vertical mixing even inside the canyon, where the jet of down-canyon flow in the bottom of the canyon at night was often either cleaner or dirtier than the air in the upper portions of the canyon. In a case study presented, the light ambient flow regime ended with an intrusion of polluted, gusty, southwesterly flow. The polluted, high-backscatter air took several hours to mix into the upper parts of the canyon. An example is also given of high-backscatter air in the upper portions of the canyon being mixed rapidly down into a jet of cleaner air in the bottom of the canyon in just a few minutes.
NASA Astrophysics Data System (ADS)
Becker, Maik; Bredemeyer, Niels; Tenhumberg, Nils; Turek, Thomas
2016-03-01
Potential probes are applied to vanadium redox-flow batteries for determination of effective felt resistance and current density distribution. During the measurement of polarization curves in 100 cm2 cells with different carbon felt compression rates, alternating potential steps at cell voltages between 0.6 V and 2.0 V are applied. Polarization curves are recorded at different flow rates and states of charge of the battery. Increasing compression rates lead to lower effective felt resistances and a more uniform resistance distribution. Low flow rates at high or low state of charge result in non-linear current density distribution with high gradients, while high flow rates give rise to a nearly linear behavior.
Radiant energy absorption studies for laser propulsion. [gas dynamics
NASA Technical Reports Server (NTRS)
Caledonia, G. E.; Wu, P. K. S.; Pirri, A. N.
1975-01-01
A study of the energy absorption mechanisms and fluid dynamic considerations for efficient conversion of high power laser radiation into a high velocity flow is presented. The objectives of the study are: (1) to determine the most effective absorption mechanisms for converting laser radiation into translational energy, and (2) to examine the requirements for transfer of the absorbed energy into a steady flow which is stable to disturbances in the absorption zone. A review of inverse Bremsstrahlung, molecular and particulate absorption mechanisms is considered and the steady flow and stability considerations for conversion of the laser power to a high velocity flow in a nozzle configuration is calculated. A quasi-one-dimensional flow through a nozzle was formulated under the assumptions of perfect gas.
A Green's function formulation for a nonlinear potential flow solution applicable to transonic flow
NASA Technical Reports Server (NTRS)
Baker, A. J.; Fox, C. H., Jr.
1977-01-01
Routine determination of inviscid subsonic flow fields about wing-body-tail configurations employing a Green's function approach for numerical solution of the perturbation velocity potential equation is successfully extended into the high subsonic subcritical flow regime and into the shock-free supersonic flow regime. A modified Green's function formulation, valid throughout a range of Mach numbers including transonic, that takes an explicit accounting of the intrinsic nonlinearity in the parent governing partial differential equations is developed. Some considerations pertinent to flow field predictions in the transonic flow regime are discussed.
Ecohydrological Index, Native Fish, and Climate Trends and Relationships in the Kansas River Basin.
Sinnathamby, Sumathy; Douglas-Mankin, Kyle R; Muche, Muluken E; Hutchinson, Stacy L; Anandhi, Aavudai
2018-01-01
This study quantified climatological and hydrological trends and relationships to presence and distribution of two native aquatic species in the Kansas River Basin over the past half-century. Trend analyses were applied to indicators of hydrologic alteration (IHAs) at 34 streamgages over a 50-year period (1962-2012). Results showed a significant negative trend in annual streamflow for 10 of 12 western streamgages (up to -7.65 mm/50 yr) and smaller negative trends for most other streamgages. Significant negative trends in western Basin streamflow were more widespread in summer (12 stations) than winter or spring (6 stations). The negative-trend magnitude and significance decreased from west to east for maximum-flow IHAs. Minimum- flow IHAs, however, significantly decreased at High Plains streamgages but significantly increased at Central Great Plains streamgages. Number of zero-flow days showed positive trends in the High Plains. Most streamgages showed negative trends in low- and high-flow pulse frequency and high-flow pulse duration, and positive trends in low-flow pulse duration. These results were consistent with increasing occurrence of drought. Shift in occurrence from present (1860-1950) to absent (2000-2012) was significantly related (p<0.10) to negative trends of 1-day maximum flows (both species) and indices associated with reduced spawning-season flows for Plains Minnow and shifting annual-flow timing and increased flow intermittency for Common Shiner. Both species were absent for all western Basin sites and had different responses to hydrological index trends at eastern Basin sites. These results demonstrate ecohydrological index changes impact distributions of native fish and suggest target factors for assessment or restoration activities.
NASA Astrophysics Data System (ADS)
Fréville, K.; Sizaret, S.
2017-12-01
Exploitation of the geothermal energy is a prime target to future energy supply. Understanding the nature and the flow of geothermal fluids is a key objective for describe the functioning of current hydrothermal systems. Located in the French Massif Central, the Limagne basin is a tertiary hemi-graben characterized by a high thermal gradient with numerous occurrences of CO2-rich thermo-mineral waters. This basin has potential for high-temperature geothermal energy, expressed by numerous natural high temperature water sources, as well as at Royat and Vichy were the surface temperature of the water can reach 33°C and 27°C, respectively. In order to better localize this potential, the geological evolution has to be deciphered. In this aim we study the flow processes of the paleo-fluids and estimate the direction and the velocity of the hydrothermal flow from the studies of the growth bands of comb quartz grain localized in vein. In a second time, the studies fluids inclusions within the quartz grain are used to characterize the nature of the fluids involved. Preliminary results show that the flow is discontinuous over the time with changes in velocities and directions during the growth of a single quartz grain. Two main flows were identified, i) a relatively fast upward flow at 10-6,-5 m.s-1; ii) a downward flow at about 10-5,-4 m.s-1. The results allow: (i) to discuss the processes controlling the fluids flow in the Limagne basin; and (ii) to suggest to delimitate the areas with high geothermal potential which integrate the flow variation in time.
Experimental Investigation of the Behavior of Sub-Grid Scale Motions in Turbulent Shear Flow
NASA Technical Reports Server (NTRS)
Cantwell, Brian
1992-01-01
Experiments have been carried out on a vertical jet of helium issuing into a co-flow of air at a fixed exit velocity ratio of 2.0. At all the experimental conditions studied, the flow exhibits a strong self excited periodicity. The natural frequency behavior of the jet, the underlying fine-scale flow structure, and the transition to turbulence have been studied over a wide range of flow conditions. The experiments were conducted in a variable pressure facility which made it possible to vary the Reynolds number and Richardson number independently. A stroboscopic schlieren system was used for flow visualization and single-component Laser Doppler Anemometry was used to measure the axial component of velocity. The flow exhibits several interesting features. The presence of co-flow eliminates the random meandering typical of buoyant plumes in a quiescent environment and the periodicity of the helium jet under high Richardson number conditions is striking. Under these conditions transition to turbulence consists of a rapid but highly structured and repeatable breakdown and intermingling of jet and freestream fluid. At Ri = 1.6 the three-dimensional structure of the flow is seen to repeat from cycle to cycle. The point of transition moves closer to the jet exit as either the Reynolds number or the Richardson number increases. The wavelength of the longitudinal instability increases with Richardson number. At low Richardson numbers, the natural frequency scales on an inertial time scale. At high Richardson number the natural frequency scales on a buoyancy time scale. The transition from one flow regime to another occurs over a narrow range of Richardson numbers from 0.7 to 1. A buoyancy Strouhal number is used to correlate the high Richardson number frequency behavior.
Viscous investigation of a flapping foil propulsor
NASA Astrophysics Data System (ADS)
Posri, Attapol; Phoemsapthawee, Surasak; Thaweewat, Nonthipat
2018-01-01
Inspired by how fishes propel themselves, a flapping-foil device is invented as an alternative propulsion system for ships and boats. The performance of such propulsor has been formerly investigated using a potential flow code. The simulation results have shown that the device has high propulsive efficiency over a wide range of operation. However, the potential flow gives good results only when flow separation is not present. In case of high flapping frequency, the flow separation can occur over a short instant due to fluid viscosity and high angle of attack. This may cause a reduction of propulsive efficiency. A commercial CFD code based on Lattice Boltzmann Method, XFlow, is then employed in order to investigate the viscous effect over the propulsive performance of the flapping foil. The viscous results agree well with the potential flow results, confirming the high efficiency of the propulsor. As expected, viscous results show lower efficiency in high flapping frequency zone.
Effects of pulsed, high-velocity water flow on larval robust redhorse and V-lip redhorse
Weyers, R.S.; Jennings, C.A.; Freeman, Mary C.
2003-01-01
The pulsed, high-velocity water flow characteristic of water-flow patterns downstream from hydropower-generating dams has been implicated in the declining abundance of both aquatic insects and fishes in dam-regulated rivers. This study examined the effects of 0, 4, and 12 h per day of pulsed, high-velocity water flow on the egg mortality, hatch length, final length, and survival of larval robust redhorse Moxostoma robusturn, a presumedly extinct species that was rediscovered in the 1990s, and V-lip redhorse M. collapsum (previously synonomized with the silver redhorse M. anisurum) over a 3-5 week period in three separate experiments. Twelve 38.0-L aquaria (four per treatment) were modified to simulate pulsed, high-velocity water flow (>35 cm/s) and stable, low-velocity water flow (<10 cm/s). Temperature, dissolved oxygen, zooplankton density, and water quality variables were kept the same across treatments. Fertilized eggs were placed in gravel nests in each aquarium. Hatch success was estimated visually at greater than 90%, and the mean larval length at 24 h posthatch was similar in each experiment. After emergence from the gravel nest, larvae exposed to 4 and 12 h of pulsed, high-velocity water flow grew significantly more slowly and had lower survival than those in the 0-h treatment. These results demonstrate that the altered water-flow patterns that typically occur when water is released during hydropower generation can have negative effects on the growth and survival of larval catostomid suckers.
Unsteady RANS/DES analysis of flow around helicopter rotor blades at forword flight conditions
NASA Astrophysics Data System (ADS)
Zhang, Zhenyu; Qian, Yaoru
2018-05-01
In this paper, the complex flows around forward-flying helicopter blades are numerically investigated. Both the Reynolds-averaged Navier-Stokes (RANS) and the Detached Eddy Simulation (DES) methods are used for the analysis of characteristics like local dynamic flow separation, effects of radial sweeping and reversed flow. The flow was solved by a highly efficient finite volume solver with multi-block structured grids. Focusing upon the complexity of the advance ratio effects, above properties are fully recognized. The current results showed significant agreements between both RANS and DES methods at phases with attached flow phases. Detailed information of separating flow near the withdrawal phases are given by DES results. The flow analysis of these blades under reversed flow reveals a significant interaction between the reversed flow and the span-wise sweeping.
NASA Astrophysics Data System (ADS)
Carr, B. B.; Clarke, A. B.; Arrowsmith, R.; Vanderkluysen, L.
2015-12-01
Sinabung is a 2460 m high andesitic stratovolcano in North Sumatra, Indonesia. Its ongoing eruption has produced a 2.9 km long lava flow with two active summit lobes and frequent pyroclastic flows (≤ 5 km long) with associated plumes over 5 km high. Large viscous lava flows of this type are common at volcanoes around the world, but are rarely observed while active. This eruption therefore provides a special opportunity to observe and study the mechanisms of emplacement and growth of an active lava flow. In September 2014, we conducted a field campaign to collect ground-based photographs to analyze with Structure-from-Motion photogrammetric techniques. We built multiple 3D models from which we estimate the volume of the lava flow and identify areas where the flow was most active. Thermal infrared and visual satellite images provide information on the effusive eruption from its initiation in December 2013 to the present and allow us to estimate the eruption rate, advance rate and rheological characteristics of the flow. According to our DEMs the flow volume as of September 2014 was 100 Mm3, providing an average flow rate of 4.5 m3/s, while comparison of two DEMs from that month suggests that most growth occurred at the SE nose of the flow. Flow advancement was initially controlled by the yield strength of the flow crust while eruption and flow advance rates were at their highest in January-March 2014. A period of slow front advancement and inflation from March - October 2014 suggests that the flow's interior had cooled and that propagation was limited by the interior yield strength. This interpretation is supported by the simultaneous generation of pyroclastic flows due to collapse of the upper portion of the lava flow and consequent lava breakout and creation of new flow lobes originating from the upper reaches in October 2014 and June 2015. Both lobes remain active as of August 2015 and present a significant hazard for collapse and generation of pyroclastic flows. We use a pre-eruption DEM of Sinabung provided by the Badan Informasi Geospasial (Indonesia) to identify over 20 older lava flows at Sinabung. The active flow appears to represent a typical eruption of Sinabung, with its length and area similar to previous flows.
Otero, Cassi L.
2007-01-01
The U.S. Geological Survey, in cooperation with the San Antonio Water System, conducted a 4-year study during 2002?06 to identify major flow paths in the Edwards aquifer in northeastern Bexar and southern Comal Counties (study area). In the study area, faulting directs ground water into three hypothesized flow paths that move water, generally, from the southwest to the northeast. These flow paths are identified as the southern Comal flow path, the central Comal flow path, and the northern Comal flow path. Statistical correlations between water levels for six observation wells and between the water levels and discharges from Comal Springs and Hueco Springs yielded evidence for the hypothesized flow paths. Strong linear correlations were evident between the datasets from wells and springs within the same flow path and the datasets from wells in areas where flow between flow paths was suspected. Geochemical data (major ions, stable isotopes, sulfur hexafluoride, and tritium and helium) were used in graphical analyses to obtain evidence of the flow path from which wells or springs derive water. Major-ion geochemistry in samples from selected wells and springs showed relatively little variation. Samples from the southern Comal flow path were characterized by relatively high sulfate and chloride concentrations, possibly indicating that the water in the flow path was mixing with small amounts of saline water from the freshwater/saline-water transition zone. Samples from the central Comal flow path yielded the most varied major-ion geochemistry of the three hypothesized flow paths. Central Comal flow path samples were characterized, in general, by high calcium concentrations and low magnesium concentrations. Samples from the northern Comal flow path were characterized by relatively low sulfate and chloride concentrations and high magnesium concentrations. The high magnesium concentrations characteristic of northern Comal flow path samples from the recharge zone in Comal County might indicate that water from the Trinity aquifer is entering the Edwards aquifer in the subsurface. A graph of the relation between the stable isotopes deuterium and delta-18 oxygen showed that, except for samples collected following an unusually intense rain storm, there was not much variation in stable isotope values among the flow paths. In the study area deuterium ranged from -36.00 to -20.89 per mil and delta-18 oxygen ranged from -6.03 to -3.70 per mil. Excluding samples collected following the intense rain storm, the deuterium range in the study area was -33.00 to -20.89 per mil and the delta-18 oxygen range was -4.60 to -3.70 per mil. Two ground-water age-dating techniques, sulfur hexafluoride concentrations and tritium/helium-3 isotope ratios, were used to compute apparent ages (time since recharge occurred) of water samples collected in the study area. In general, the apparent ages computed by the two methods do not seem to indicate direction of flow. Apparent ages computed for water samples in northeastern Bexar and southern Comal Counties do not vary greatly except for some very young water in the recharge zone in central Comal County.
Spiral Flow Phantom for Ultrasound Flow Imaging Experimentation.
Yiu, Billy Y S; Yu, Alfred C H
2017-12-01
As new ultrasound flow imaging methods are being developed, there is a growing need to devise appropriate flow phantoms that can holistically assess the accuracy of the derived flow estimates. In this paper, we present a novel spiral flow phantom design whose Archimedean spiral lumen naturally gives rise to multi-directional flow over all possible angles (i.e., from 0° to 360°). Developed using lost-core casting principles, the phantom geometry comprised a three-loop spiral (4-mm diameter and 5-mm pitch), and it was set to operate in steady flow mode (3 mL/s flow rate). After characterizing the flow pattern within the spiral vessel using computational fluid dynamics (CFD) simulations, the phantom was applied to evaluate the performance of color flow imaging (CFI) and high-frame-rate vector flow imaging. Significant spurious coloring artifacts were found when using CFI to visualize flow in the spiral phantom. In contrast, using vector flow imaging (least-squares multi-angle Doppler based on a three-transmit and three-receive configuration), we observed consistent depiction of flow velocity magnitude and direction within the spiral vessel lumen. The spiral flow phantom was also found to be a useful tool in facilitating demonstration of dynamic flow visualization based on vector projectile imaging. Overall, these results demonstrate the spiral flow phantom's practical value in analyzing the efficacy of ultrasound flow estimation methods.
Schaap, Bryan D.; Savoca, Mark E.; Turco, Michael J.
2003-01-01
In general, once high ground-water levels occur, either because of high Cedar River water Abstract levels or above normal local precipitation or both, ground-water in the central part of the study area along Highway 218 flows toward the south rather than following shorter flow paths to the Cedar River. Intermittent streams in the study area discharge substantial amounts of water from the ground-water flow system.
A High Performance Pulsatile Pump for Aortic Flow Experiments in 3-Dimensional Models.
Chaudhury, Rafeed A; Atlasman, Victor; Pathangey, Girish; Pracht, Nicholas; Adrian, Ronald J; Frakes, David H
2016-06-01
Aortic pathologies such as coarctation, dissection, and aneurysm represent a particularly emergent class of cardiovascular diseases. Computational simulations of aortic flows are growing increasingly important as tools for gaining understanding of these pathologies, as well as for planning their surgical repair. In vitro experiments are required to validate the simulations against real world data, and the experiments require a pulsatile flow pump system that can provide physiologic flow conditions characteristic of the aorta. We designed a newly capable piston-based pulsatile flow pump system that can generate high volume flow rates (850 mL/s), replicate physiologic waveforms, and pump high viscosity fluids against large impedances. The system is also compatible with a broad range of fluid types, and is operable in magnetic resonance imaging environments. Performance of the system was validated using image processing-based analysis of piston motion as well as particle image velocimetry. The new system represents a more capable pumping solution for aortic flow experiments than other available designs, and can be manufactured at a relatively low cost.
Plasma motion in the Venus ionosphere: Transition to supersonic flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitten, R.C.; Barnes, A.; McCormick, P.T.
1991-07-01
A remarkable feature of the ionosphere of Venus is the presence of nightward supersonic flows at high altitude near the terminator. In general the steady flow of an ideal gas admits a subsonic-supersonic transition only in the presence of special conditions, such as a convergence of the flow followed by divergence, or external forces. In this paper, the authors show that the relatively high pressure dayside plasma wells up slowly, and at high altitude it is accelerated horizontally through a relatively constricted region near the terminator toward the low-density nightside. In effect, the plasma flows through a nozzle that ismore » first converging, then diverging, permitting the transition to supersonic flow. Analysis of results from previously published models of the plasma flow in the upper ionosphere of Venus shows how such a nozzle is formed. The model plasma does indeed accelerate to supersonic speeds, reaching sonic speed just behind the terminator. The computed speeds prove to be close to those observed by the Pioneer Venus orbiter, and the ion transport rates are sufficient to produce and maintain the nightside ionosphere.« less
NASA Astrophysics Data System (ADS)
Guasto, Jeffrey; Juarez, Gabriel; Stocker, Roman
2012-11-01
A wide variety of plants and animals reproduce sexually by releasing motile sperm that seek out a conspecific egg, for example in the reproductive tract for mammals or in the water column for externally fertilizing organisms. Sperm are aided in their quest by chemical cues, but must also contend with hydrodynamic forces, resulting from laminar flows in reproductive tracts or turbulence in aquatic habitats. To understand how velocity gradients affect motility, we subjected swimming sperm to a range of highly-controlled straining flows using a cross-flow microfluidic device. The motion of the cell body and flagellum were captured through high-speed video microscopy. The effects of flow on swimming are twofold. For moderate velocity gradients, flow simply advects and reorients cells, quenching their ability to cross streamlines. For high velocity gradients, fluid stresses hinder the internal bending of the flagellum, directly inhibiting motility. The transition between the two regimes is governed by the Sperm number, which compares the external viscous stresses with the internal elastic stresses. Ultimately, unraveling the role of flow in sperm motility will lead to a better understanding of population dynamics among aquatic organisms and infertility problems in humans.
DIRECT NUMERICAL SIMULATION OF TRANSITIONAL FLOW IN A STENOSED CAROTID BIFURCATION
Lee, Seung E.; Lee, Sang-Wook; Fischer, Paul F.; Bassiouny, Hisham S.; Loth, Francis
2008-01-01
The blood flow dynamics of a stenosed, subject-specific, carotid bifurcation were numerically simulated using the spectral element method. Pulsatile inlet conditions were based on in vivo color Doppler ultrasound measurements of blood velocity. The results demonstrated the transitional or weakly turbulent state of the blood flow, which featured rapid velocity and pressure fluctuations in the post-stenotic region of the internal carotid artery during systole and laminar flow during diastole. High-frequency vortex shedding was greatest downstream of the stenosis during the deceleration phase of systole. Velocity fluctuations had a frequency within the audible range of 100–300 Hz. Instantaneous wall shear stress within the stenosis was relatively high during systole (~25-45 Pa) compared to that in a healthy carotid. In addition, high spatial gradients of wall shear stress were present due to flow separation on the inner wall. Oscillatory flow reversal and low pressure were observed distal to the stenosis in the internal carotid artery. This study predicts the complex flow field, the turbulence levels and the distribution of the biomechanical stresses present in vivo within a stenosed carotid artery. PMID:18656199
Drag Reduction Effect of BSA Monodispersed Solution in Microtube Flow
NASA Astrophysics Data System (ADS)
Kanda, Kensuke; Yang, Ming
In recent biological and chemical analyses, microchips have attracted attention because of advantages such as high efficiency, small heat capacity, and high-speed reaction. Biochemical reagents and samples flow into the chips with the wall surface biologically or chemically modified. The mechanisms of the complex flow are not well-known. In this paper, the mechanisms are investigated using pressure drop measurements of the flow of BSA-(bovine serum albumin, protein generally used in analytical fields) dispersed solutions in microtubes with three kinds of surfaces: glass, PEEK (polyetheretherketone) and Hirec-X1 (a highly water-repellent agent, NTT-AT Co.), which have different properties. In the cases in which BSA solution flows on the Hirec-X1 and on the PEEK surface, results show reductions in the friction factor. On the other hand, in the case in which non BSA solution flow on any surface, results agree well with the Hagen-Poiseuille equation. Furthermore, reduction ratio in the friction factor depends on the concentration of BSA. These results imply that the interaction between the wall and the bio-molecules influences the behavior of the flow in microtubes.
Lee, Pil Hyong; Hwang, Sang Soon
2009-01-01
In fuel cells flow configuration and operating conditions such as cell temperature, humidity at each electrode and stoichiometric number are very crucial for improving performance. Too many flow channels could enhance the performance but result in high parasite loss. Therefore a trade-off between pressure drop and efficiency of a fuel cell should be considered for optimum design. This work focused on numerical simulation of the effects of operating conditions, especially cathode humidity, with simple micro parallel flow channels. It is known that the humidity at the cathode flow channel becomes very important for enhancing the ion conductivity of polymer membrane because fully humidified condition was normally set at anode. To investigate the effect of humidity on the performance of a fuel cell, in this study humidification was set to 100% at the anode flow channel and was changed by 0–100% at the cathode flow channel. Results showed that the maximum power density could be obtained under 60% humidified condition at the cathode where oxygen concentration was moderately high while maintaining high ion conductivity at a membrane. PMID:22291556
Lee, Pil Hyong; Hwang, Sang Soon
2009-01-01
In fuel cells flow configuration and operating conditions such as cell temperature, humidity at each electrode and stoichiometric number are very crucial for improving performance. Too many flow channels could enhance the performance but result in high parasite loss. Therefore a trade-off between pressure drop and efficiency of a fuel cell should be considered for optimum design. This work focused on numerical simulation of the effects of operating conditions, especially cathode humidity, with simple micro parallel flow channels. It is known that the humidity at the cathode flow channel becomes very important for enhancing the ion conductivity of polymer membrane because fully humidified condition was normally set at anode. To investigate the effect of humidity on the performance of a fuel cell, in this study humidification was set to 100% at the anode flow channel and was changed by 0-100% at the cathode flow channel. Results showed that the maximum power density could be obtained under 60% humidified condition at the cathode where oxygen concentration was moderately high while maintaining high ion conductivity at a membrane.
High order spectral difference lattice Boltzmann method for incompressible hydrodynamics
NASA Astrophysics Data System (ADS)
Li, Weidong
2017-09-01
This work presents a lattice Boltzmann equation (LBE) based high order spectral difference method for incompressible flows. In the present method, the spectral difference (SD) method is adopted to discretize the convection and collision term of the LBE to obtain high order (≥3) accuracy. Because the SD scheme represents the solution as cell local polynomials and the solution polynomials have good tensor-product property, the present spectral difference lattice Boltzmann method (SD-LBM) can be implemented on arbitrary unstructured quadrilateral meshes for effective and efficient treatment of complex geometries. Thanks to only first oder PDEs involved in the LBE, no special techniques, such as hybridizable discontinuous Galerkin method (HDG), local discontinuous Galerkin method (LDG) and so on, are needed to discrete diffusion term, and thus, it simplifies the algorithm and implementation of the high order spectral difference method for simulating viscous flows. The proposed SD-LBM is validated with four incompressible flow benchmarks in two-dimensions: (a) the Poiseuille flow driven by a constant body force; (b) the lid-driven cavity flow without singularity at the two top corners-Burggraf flow; and (c) the unsteady Taylor-Green vortex flow; (d) the Blasius boundary-layer flow past a flat plate. Computational results are compared with analytical solutions of these cases and convergence studies of these cases are also given. The designed accuracy of the proposed SD-LBM is clearly verified.
Johnson, G.C.
1996-01-01
A seepage investigation was conducted of an area surrounding the Oak Ridge National Laboratory from March through August 1993. The project was divided into three phases: a reconnaissance to inventory and map seeps, springs, and stream-measurement sites; a high base flow seepage investigation; and a low base flow seepage investigation. The reconnaissance consisted of following each tributary to its source to inventory each site where water was issuing from the ground. Stream- measurement sites were also located along stream reaches at 500-foot intervals. A total of 822 sites were identified. A global positioning system was used to locate 483 sites to within 3- to 5-meter accuracy. The high base flow seepage investigation was conducted from April 29 through May 3, 1993, and from May 7 through May 10, 1993. During the high base flow seepage investigation, sites identified during the reconnaissance were revisited. At almost all sites with flowing water, discharge, pH, specific conductance, and temperature were recorded. Two hundred and fourteen sites were dry. The low base flow seepage investigation was conducted from August 8 through August 10, 1993, and consisted of revisiting the seeps and springs that were flowing during the high base flow seepage investigation. Stream- measurement sites were not revisited. One hundred and forty-one sites were dry.
Waveguide detection of right-angle-scattered light in flow cytometry
Mariella, Jr., Raymond P.
2000-01-01
A transparent flow cell is used as an index-guided optical waveguide. A detector for the flow cell but not the liquid stream detects the Right-Angle-Scattered (RAS) Light exiting from one end of the flow cell. The detector(s) could view the trapped RAS light from the flow cell either directly or through intermediate optical light guides. If the light exits one end of the flow cell, then the other end of the flow cell can be given a high-reflectivity coating to approximately double the amount of light collected. This system is more robust in its alignment than the traditional flow cytometry systems which use imaging optics, such as microscope objectives.
Viscous liquid film flow on dune slopes of Mars
NASA Astrophysics Data System (ADS)
Möhlmann, Diedrich; Kereszturi, Akos
2010-06-01
It is shown that viscous liquid film flow (VLF-flow) on the surfaces of slopes of martian dunes can be a low-temperature rheological phenomenon active today on high latitudes. A quantitative model indicates that the VLF-flows are consistent with the flow of liquid brines similar to that observed by imaging at the Phoenix landing site. VLF-flows depend on the viscosity, dynamics, and energetics of temporary darkened liquid brines. The darkening of the flowing brine is possibly, at least partially, attributed to non-volatile ingredients of the liquid brines. Evidence of previous VLF-flows can also be seen on the dunes, suggesting that it is an ongoing process that also occurred in the recent past.
A visual study of radial inward choked flow of liquid nitrogen.
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Simoneau, R. J.; Hsu, Y. Y.
1973-01-01
Data and high speed movies were acquired on pressurized subcooled liquid nitrogen flowing radially inward through a 0.0076 cm gap. The stagnation pressure ranged from 0.7 to 4 MN/sq m. Steady radial inward choked flow appears equivalent to steady choked flow through axisymmetric nozzles. Transient choked flows through the radial gap are not uniform and the discharge pattern appears as nonuniform impinging jets. The critical mass flow rate data for the transient case appear different from those for the steady case. On the mass flow rate vs pressure map, the slope and separation of the isotherms appear to be less for transient than for steady radial choked flow.
Nonlinear aerodynamic effects on bodies in supersonic flow
NASA Technical Reports Server (NTRS)
Pittman, J. L.; Siclari, M. J.
1984-01-01
The supersonic flow about generic bodies was analyzed to identify the elments of the nonlinear flow and to determine the influence of geometry and flow conditions on the magnitude of these nonlinearities. The nonlinear effects were attributed to separated-flow nonlinearities and attached-flow nonlinearities. The nonlinear attached-flow contribution was further broken down into large-disturbance effects and entropy effects. Conical, attached-flow bundaries were developed to illustrate the flow regimes where the nonlinear effects are significant, and the use of these boundaries for angle of attack and three-dimensional geometries was indicated. Normal-force and pressure comparisons showed that the large-disturbance and separated-flow effects were the dominant nonlinear effects at low supersonic Mach numbers and that the entropy effects were dominant for high supersonic Mach number flow. The magnitude of all the nonlinear effects increased with increasing angle of attack. A full-potential method, NCOREL, which includes an approximate entropy correction, was shown to provide accurate attached-flow pressure estimates from Mach 1.6 through 4.6.
Characteristics of Evaporator with a Lipuid-Vapor Separator
NASA Astrophysics Data System (ADS)
Ikeguchi, Masaki; Tanaka, Naoki; Yumikura, Tsuneo
Flow pattern of refrigerant in a heat exchanger tube changes depending on vapor quality, tube diameter, refrigerant flow rate and refrigerant properties. High flow rate causes mist flow where the quality is from 0.8 to 1.0. 1n this flow pattern, the liquid film detaches from the tube wall so that the heat flow is intervened. The heat transfer coefficient generally increases with the flow rate. But the pressure drop of refrigerant flow simultaneously increases and the region of the mist flow enlarges. In order to reduce the pressure drop and suppress the mist flow, we have developped a small liquid-vapor separator that removes the vapor from the evaporating refrigerant flow. This separator is equipped in the middle of the evaporator where the flow pattern is annular. The experiments to evaluate the effect of this separator were carried out and the following conclutions were obtained. (1) Average heat transfer coefficient increases by 30-60 %. (2) Pressure drop reduces by 20-30 %. (3) Cooling Capacity increases by 2-9 %.
NASA Astrophysics Data System (ADS)
Kawai, T.
Among the topics discussed are the application of FEM to nonlinear free surface flow, Navier-Stokes shallow water wave equations, incompressible viscous flows and weather prediction, the mathematical analysis and characteristics of FEM, penalty function FEM, convective, viscous, and high Reynolds number FEM analyses, the solution of time-dependent, three-dimensional and incompressible Navier-Stokes equations, turbulent boundary layer flow, FEM modeling of environmental problems over complex terrain, and FEM's application to thermal convection problems and to the flow of polymeric materials in injection molding processes. Also covered are FEMs for compressible flows, including boundary layer flows and transonic flows, hybrid element approaches for wave hydrodynamic loadings, FEM acoustic field analyses, and FEM treatment of free surface flow, shallow water flow, seepage flow, and sediment transport. Boundary element methods and FEM computational technique topics are also discussed. For individual items see A84-25834 to A84-25896
Eccentricity Fluctuations Make Flow Measurable in High Multiplicity p-p Collisions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casalderrey-Solana, Jorge; Wiedemann, Urs Achim
2010-03-12
Elliptic flow is a hallmark of collectivity in hadronic collisions. Its measurement relies on analysis techniques which require high event multiplicity and so far can only be applied to heavy ion collisions. Here, we delineate the conditions under which elliptic flow becomes measurable in the samples of high-multiplicity (dN{sub ch}/dy>=50) p-p collisions, which will soon be collected at the LHC. We observe that fluctuations in the p-p interaction region can result in a sizable spatial eccentricity even for the most central p-p collisions. Under relatively mild assumptions on the nature of such fluctuations and on the eccentricity scaling of ellipticmore » flow, we find that the resulting elliptic flow signal in high-multiplicity p-p collisions at the LHC becomes measurable with standard techniques.« less
NASA Astrophysics Data System (ADS)
Tripathi, Anurag; Prasad, Mahesh; Kumar, Puneet
2017-11-01
The saturation of the effective friction coefficient for granular flows at high inertial numbers has been assumed widely by researchers, despite little simulation/experimental evidence. In contrast, a recent simulation study of plane shear flows by Mandal and Khakhar, suggests that the effective friction coefficient becomes maximum and then starts to decrease with increase in the inertial number for I > 0.5 . In order to investigate whether such a dip at higher inertial numbers is indeed a feature of granular rheology, we perform DEM simulations of chute flow of highly inelastic disks. We show that steady, fully developed flows are possible at inclinations much higher than those normally reported in literature. At such high inclinations, the flow is characterised by a significant slip at the base; the height of the layer increases by more than 300 % and kinetic energy of the layer increases by nearly 5 orders of magnitude. We observe, for the first time, steady chute flows at inertial number I 2 and show that the dip at higher inertial numbers can be observed in case of chute flow as well. The predictions of modified μ - I rheology, however, seem to remain valid in the bulk of the layer for packing fractions as low as 0.2. AT acknowledges the funding obtained from IIT Kanpur through the initiation Grant for this study.
Flow of GE90 Turbofan Engine Simulated
NASA Technical Reports Server (NTRS)
Veres, Joseph P.
1999-01-01
The objective of this task was to create and validate a three-dimensional model of the GE90 turbofan engine (General Electric) using the APNASA (average passage) flow code. This was a joint effort between GE Aircraft Engines and the NASA Lewis Research Center. The goal was to perform an aerodynamic analysis of the engine primary flow path, in under 24 hours of CPU time, on a parallel distributed workstation system. Enhancements were made to the APNASA Navier-Stokes code to make it faster and more robust and to allow for the analysis of more arbitrary geometry. The resulting simulation exploited the use of parallel computations by using two levels of parallelism, with extremely high efficiency.The primary flow path of the GE90 turbofan consists of a nacelle and inlet, 49 blade rows of turbomachinery, and an exhaust nozzle. Secondary flows entering and exiting the primary flow path-such as bleed, purge, and cooling flows-were modeled macroscopically as source terms to accurately simulate the engine. The information on these source terms came from detailed descriptions of the cooling flow and from thermodynamic cycle system simulations. These provided boundary condition data to the three-dimensional analysis. A simplified combustor was used to feed boundary conditions to the turbomachinery. Flow simulations of the fan, high-pressure compressor, and high- and low-pressure turbines were completed with the APNASA code.
Lim, Chun Ping; Mai, Phuong Nguyen Quoc; Roizman Sade, Dan; Lam, Yee Cheong; Cohen, Yehuda
2016-01-01
Life of bacteria is governed by the physical dimensions of life in microscales, which is dominated by fast diffusion and flow at low Reynolds numbers. Microbial biofilms are structurally and functionally heterogeneous and their development is suggested to be interactively related to their microenvironments. In this study, we were guided by the challenging requirements of precise tools and engineered procedures to achieve reproducible experiments at high spatial and temporal resolutions. Here, we developed a robust precise engineering approach allowing for the quantification of real-time, high-content imaging of biofilm behaviour under well-controlled flow conditions. Through the merging of engineering and microbial ecology, we present a rigorous methodology to quantify biofilm development at resolutions of single micrometre and single minute, using a newly developed flow cell. We designed and fabricated a high-precision flow cell to create defined and reproducible flow conditions. We applied high-content confocal laser scanning microscopy and developed image quantification using a model biofilm of a defined opportunistic strain, Pseudomonas putida OUS82. We observed complex patterns in the early events of biofilm formation, which were followed by total dispersal. These patterns were closely related to the flow conditions. These biofilm behavioural phenomena were found to be highly reproducible, despite the heterogeneous nature of biofilm. PMID:28721252
What are the Causes of the Formation of the Sub-Alfvenic Flows at the High Latitude Magnetopause
NASA Technical Reports Server (NTRS)
Avanov, L. A.; Chandler, M. O.; Simov, V. N.; Vaisberg, O. L.
2003-01-01
We study magnetopause crossings made by the Interball Tail spacecraft at high latitudes under various interplanetary conditions. When the IMF mostly northward the Interball Tail observes quasi steady state reconnection signatures at the high latitude magnetopause, which include a well-defined de Hoffman-Teller frame, satisfaction of stress balance (Walen relations) and D-shaped ion velocity distributions. Under variable or southward IMF the high latitude magnetopause is a tangentional discontinuity. However, in certain conditions, just after the magnetopause crossing, irrespective of the IMF orientation, decelerate magnetosheath flows are observed in the magnetosheath region adjacent to the high latitude magnetopause. This leads to formation of the region where the sub-Alfvenic flow at high latitudes exists. We suggest that in some cases the dipole tilt plays an important role in the formation of the sub-Alfvenic flows, although in some cases formation the depletion layer is responsible for observation of the sub-Alfvenic flows at the high latitude magnetopause.
NASA Astrophysics Data System (ADS)
Kordilla, J.; Bresinsky, L. T.; Shigorina, E.; Noffz, T.; Dentz, M.; Sauter, M.; Tartakovsky, A. M.
2017-12-01
Preferential flow dynamics in unsaturated fractures remain a challenging topic on various scales. On pore- and fracture-scales the highly erratic gravity-driven flow dynamics often provoke a strong deviation from classical volume-effective approaches. Against the common notion that flow in fractures (or macropores) can only occur under equilibrium conditions, i.e., if the surrounding porous matrix is fully saturated and capillary pressures are high enough to allow filling of the fracture void space, arrival times suggest the existence of rapid preferential flow along fractures, fracture networks, and fault zones, even if the matrix is not fully saturated. Modeling such flows requires efficient numerical techniques to cover various flow-relevant physics, such as surface tension, static and dynamic contact angles, free-surface (multi-phase) interface dynamics, and formation of singularities. Here we demonstrate the importance of such flow modes on the partitioning dynamics at simple fracture intersections, with a combination of laboratory experiments, analytical solutions and numerical simulations using our newly developed massively parallel smoothed particle hydrodynamics (SPH) code. Flow modes heavily influence the "bypass" behavior of water flowing along a fracture junction. Flows favoring the formation of droplets exhibit a much stronger bypass capacity compared to rivulet flows, where nearly the whole fluid mass is initially stored within the horizontal fracture. This behavior is demonstrated for a multi-inlet laboratory setup where the inlet-specific flow rate is chosen so that either a droplet or rivulet flow persists. The effect of fluid buffering within the horizontal fracture is presented in terms of dimensionless fracture inflow so that characteristic scaling regimes can be recovered. For both cases (rivulets and droplets), flow within the horizontal fracture transitions into a Washburn regime until a critical threshold is reached and the bypass efficiency increases. For rivulet flows, the initial filling of the horizontal fracture is described by classical plug flow. Meanwhile, for droplet flows, a size-dependent partitioning behavior is observed, and the filling of the fracture takes longer.
ADAPTIVE-GRID SIMULATION OF GROUNDWATER FLOW IN HETEROGENEOUS AQUIFERS. (R825689C068)
The prediction of contaminant transport in porous media requires the computation of the flow velocity. This work presents a methodology for high-accuracy computation of flow in a heterogeneous isotropic formation, employing a dual-flow formulation and adaptive...
Flow design and simulation of a gas compression system for hydrogen fusion energy production
NASA Astrophysics Data System (ADS)
Avital, E. J.; Salvatore, E.; Munjiza, A.; Suponitsky, V.; Plant, D.; Laberge, M.
2017-08-01
An innovative gas compression system is proposed and computationally researched to achieve a short time response as needed in engineering applications such as hydrogen fusion energy reactors and high speed hammers. The system consists of a reservoir containing high pressure gas connected to a straight tube which in turn is connected to a spherical duct, where at the sphere’s centre plasma resides in the case of a fusion reactor. Diaphragm located inside the straight tube separates the reservoir’s high pressure gas from the rest of the plenum. Once the diaphragm is breached the high pressure gas enters the plenum to drive pistons located on the inner wall of the spherical duct that will eventually end compressing the plasma. Quasi-1D and axisymmetric flow formulations are used to design and analyse the flow dynamics. A spike is designed for the interface between the straight tube and the spherical duct to provide a smooth geometry transition for the flow. Flow simulations show high supersonic flow hitting the end of the spherical duct, generating a return shock wave propagating upstream and raising the pressure above the reservoir pressure as in the hammer wave problem, potentially giving temporary pressure boost to the pistons. Good agreement is revealed between the two flow formulations pointing to the usefulness of the quasi-1D formulation as a rapid solver. Nevertheless, a mild time delay in the axisymmetric flow simulation occurred due to moderate two-dimensionality effects. The compression system is settled down in a few milliseconds for a spherical duct of 0.8 m diameter using Helium gas and a uniform duct cross-section area. Various system geometries are analysed using instantaneous and time history flow plots.
Unloading work of breathing during high-frequency oscillatory ventilation: a bench study
van Heerde, Marc; Roubik, Karel; Kopelent, Vitek; Plötz, Frans B; Markhorst, Dick G
2006-01-01
Introduction With the 3100B high-frequency oscillatory ventilator (SensorMedics, Yorba Linda, CA, USA), patients' spontaneous breathing efforts result in a high level of imposed work of breathing (WOB). Therefore, spontaneous breathing often has to be suppressed during high-frequency oscillatory ventilation (HFOV). A demand-flow system was designed to reduce imposed WOB. Methods An external gas flow controller (demand-flow system) accommodates the ventilator fresh gas flow during spontaneous breathing simulation. A control algorithm detects breathing effort and regulates the demand-flow valve. The effectiveness of this system has been evaluated in a bench test. The Campbell diagram and pressure time product (PTP) are used to quantify the imposed workload. Results Using the demand-flow system, imposed WOB is considerably reduced. The demand-flow system reduces inspiratory imposed WOB by 30% to 56% and inspiratory imposed PTP by 38% to 59% compared to continuous fresh gas flow. Expiratory imposed WOB was decreased as well by 12% to 49%. In simulations of shallow to normal breathing for an adult, imposed WOB is 0.5 J l-1 at maximum. Fluctuations in mean airway pressure on account of spontaneous breathing are markedly reduced. Conclusion The use of the demand-flow system during HFOV results in a reduction of both imposed WOB and fluctuation in mean airway pressure. The level of imposed WOB was reduced to the physiological range of WOB. Potentially, this makes maintenance of spontaneous breathing during HFOV possible and easier in a clinical setting. Early initiation of HFOV seems more possible with this system and the possibility of weaning of patients directly on a high-frequency oscillatory ventilator is not excluded either. PMID:16848915
Nishizaki, Michael T; Carrington, Emily
2014-06-15
In aquatic systems, physiological processes such as respiration, photosynthesis and calcification are potentially limited by the exchange of dissolved materials between organisms and their environment. The nature and extent of physiological limitation is, therefore, likely to be dependent on environmental conditions. Here, we assessed the metabolic sensitivity of barnacles under a range of water temperatures and velocities, two factors that influence their distribution. Respiration rates increased in response to changes in temperature and flow, with an interaction where flow had less influence on respiration at low temperatures, and a much larger effect at high temperatures. Model analysis suggested that respiration is mass transfer limited under conditions of low velocity (<7.5 cm (-1)) and high temperature (20-25°C). In contrast, limitation by uptake reaction kinetics, when the biotic capacity of barnacles to absorb and process oxygen is slower than its physical delivery by mass transport, prevailed at high flows (40-150 cm s(-1)) and low temperatures (5-15°C). Moreover, there are intermediate flow-temperature conditions where both mass transfer and kinetic limitation are important. Behavioral monitoring revealed that barnacles fully extend their cirral appendages at low flows and display abbreviated 'testing' behaviors at high flows, suggesting some form of mechanical limitation. In low flow-high temperature treatments, however, barnacles displayed distinct 'pumping' behaviors that may serve to increase ventilation. Our results suggest that in slow-moving waters, respiration may become mass transfer limited as temperatures rise, whereas faster flows may serve to ameliorate the effects of elevated temperatures. Moreover, these results underscore the necessity for approaches that evaluate the combined effects of multiple environmental factors when examining physiological and behavioral performance. © 2014. Published by The Company of Biologists Ltd.
NASA Astrophysics Data System (ADS)
Dibike, Y. B.; Eum, H. I.; Prowse, T. D.
2017-12-01
Flows originating from alpine dominated cold region watersheds typically experience extended winter low flows followed by spring snowmelt and summer rainfall driven high flows. In a warmer climate, there will be temperature- induced shift in precipitation from snow towards rain as well as changes in snowmelt timing affecting the frequency of extreme high and low flow events which could significantly alter ecosystem services. This study examines the potential changes in the frequency and severity of hydrologic extremes in the Athabasca River watershed in Alberta, Canada based on the Variable Infiltration Capacity (VIC) hydrologic model and selected and statistically downscaled climate change scenario data from the latest Coupled Model Intercomparison Project (CMIP5). The sensitivity of these projected changes is also examined by applying different extreme flow analysis methods. The hydrological model projections show an overall increase in mean annual streamflow in the watershed and a corresponding shift in the freshet timing to earlier period. Most of the streams are projected to experience increases during the winter and spring seasons and decreases during the summer and early fall seasons, with an overall projected increases in extreme high flows, especially for low frequency events. While the middle and lower parts of the watershed are characterised by projected increases in extreme high flows, the high elevation alpine region is mainly characterised by corresponding decreases in extreme low flow events. However, the magnitude of projected changes in extreme flow varies over a wide range, especially for low frequent events, depending on the climate scenario and period of analysis, and sometimes in a nonlinear way. Nonetheless, the sensitivity of the projected changes to the statistical method of analysis is found to be relatively small compared to the inter-model variability.
Investigation on the Core Bypass Flow in a Very High Temperature Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hassan, Yassin
2013-10-22
Uncertainties associated with the core bypass flow are some of the key issues that directly influence the coolant mass flow distribution and magnitude, and thus the operational core temperature profiles, in the very high-temperature reactor (VHTR). Designers will attempt to configure the core geometry so the core cooling flow rate magnitude and distribution conform to the design values. The objective of this project is to study the bypass flow both experimentally and computationally. Researchers will develop experimental data using state-of-the-art particle image velocimetry in a small test facility. The team will attempt to obtain full field temperature distribution using racksmore » of thermocouples. The experimental data are intended to benchmark computational fluid dynamics (CFD) codes by providing detailed information. These experimental data are urgently needed for validation of the CFD codes. The following are the project tasks: • Construct a small-scale bench-top experiment to resemble the bypass flow between the graphite blocks, varying parameters to address their impact on bypass flow. Wall roughness of the graphite block walls, spacing between the blocks, and temperature of the blocks are some of the parameters to be tested. • Perform CFD to evaluate pre- and post-test calculations and turbulence models, including sensitivity studies to achieve high accuracy. • Develop the state-of-the art large eddy simulation (LES) using appropriate subgrid modeling. • Develop models to be used in systems thermal hydraulics codes to account and estimate the bypass flows. These computer programs include, among others, RELAP3D, MELCOR, GAMMA, and GAS-NET. Actual core bypass flow rate may vary considerably from the design value. Although the uncertainty of the bypass flow rate is not known, some sources have stated that the bypass flow rates in the Fort St. Vrain reactor were between 8 and 25 percent of the total reactor mass flow rate. If bypass flow rates are on the high side, the quantity of cooling flow through the core may be considerably less than the nominal design value, causing some regions of the core to operate at temperatures in excess of the design values. These effects are postulated to lead to localized hot regions in the core that must be considered when evaluating the VHTR operational and accident scenarios.« less
Sheared bioconvection in a horizontal tube
NASA Astrophysics Data System (ADS)
Croze, O. A.; Ashraf, E. E.; Bees, M. A.
2010-12-01
The recent interest in using microorganisms for biofuels is motivation enough to study bioconvection and cell dispersion in tubes subject to imposed flow. To optimize light and nutrient uptake, many microorganisms swim in directions biased by environmental cues (e.g. phototaxis in algae and chemotaxis in bacteria). Such taxes inevitably lead to accumulations of cells, which, as many microorganisms have a density different to the fluid, can induce hydrodynamic instabilites. The large-scale fluid flow and spectacular patterns that arise are termed bioconvection. However, the extent to which bioconvection is affected or suppressed by an imposed fluid flow and how bioconvection influences the mean flow profile and cell transport are open questions. This experimental study is the first to address these issues by quantifying the patterns due to suspensions of the gravitactic and gyrotactic green biflagellate alga Chlamydomonas in horizontal tubes subject to an imposed flow. With no flow, the dependence of the dominant pattern wavelength at pattern onset on cell concentration is established for three different tube diameters. For small imposed flows, the vertical plumes of cells are observed merely to bow in the direction of flow. For sufficiently high flow rates, the plumes progressively fragment into piecewise linear diagonal plumes, unexpectedly inclined at constant angles and translating at fixed speeds. The pattern wavelength generally grows with flow rate, with transitions at critical rates that depend on concentration. Even at high imposed flow rates, bioconvection is not wholly suppressed and perturbs the flow field.
Coherent flow structures and heat transfer in a duct with electromagnetic forcing
NASA Astrophysics Data System (ADS)
Himo, Rawad; Habchi, Charbel
2018-04-01
Coherent vortices are generated electromagnetically in a square duct flow. The vortices are induced by a Lorentz force applied in a small section near the entrance of the duct. The flow structure complexity increases with the electromagnetic forcing since the primary vortices propagating along the duct detach to generate secondary smaller streamwise vortices and hairpin-like structures. The Reynolds number based on the mean flow velocity and hydraulic diameter is 500, and five cases were studied by varying the electromagnetic forcing. Even though this Reynolds number is relatively low, a periodic sequence of hairpin-like structure flow was observed for the high forcing cases. This mechanism enhances the mixing process between the different flow regions resulting in an increase in the thermal performances which reaches 66% relative to the duct flow without forcing. In addition to the flow complexity, lower forcing cases remained steady, unlike high Lorentz forces that induced periodic instabilities with a Strouhal number around 0.59 for the transient eddies. The effect of the flow structure on the heat transfer is analyzed qualitatively and quantitatively using numerical simulations based on the finite volume method. Moreover, proper orthogonal decomposition (POD) analysis was performed on the flow structures to evaluate the most energetic modes contributing in the flow. It is found from the POD analysis that the primary streamwise vortices and hairpin legs are the flow structures that are the most contributing to the heat transfer process.
The perfect debris flow? Aggregated results from 28 large-scale experiments
Iverson, Richard M.; Logan, Matthew; LaHusen, Richard G.; Berti, Matteo
2010-01-01
Aggregation of data collected in 28 controlled experiments reveals reproducible debris-flow behavior that provides a clear target for model tests. In each experiment ∼10 m3 of unsorted, water-saturated sediment composed mostly of sand and gravel discharged from behind a gate, descended a steep, 95-m flume, and formed a deposit on a nearly horizontal runout surface. Experiment subsets were distinguished by differing basal boundary conditions (1 versus 16 mm roughness heights) and sediment mud contents (1 versus 7 percent dry weight). Sensor measurements of evolving flow thicknesses, basal normal stresses, and basal pore fluid pressures demonstrate that debris flows in all subsets developed dilated, coarse-grained, high-friction snouts, followed by bodies of nearly liquefied, finer-grained debris. Mud enhanced flow mobility by maintaining high pore pressures in flow bodies, and bed roughness reduced flow speeds but not distances of flow runout. Roughness had these effects because it promoted debris agitation and grain-size segregation, and thereby aided growth of lateral levees that channelized flow. Grain-size segregation also contributed to development of ubiquitous roll waves, which had diverse amplitudes exhibiting fractal number-size distributions. Despite the influence of these waves and other sources of dispersion, the aggregated data have well-defined patterns that help constrain individual terms in a depth-averaged debris-flow model. The patterns imply that local flow resistance evolved together with global flow dynamics, contradicting the hypothesis that any consistent rheology applied. We infer that new evolution equations, not new rheologies, are needed to explain how characteristic debris-flow behavior emerges from the interactions of debris constituents.
Usage of CO2 microbubbles as flow-tracing contrast media in X-ray dynamic imaging of blood flows.
Lee, Sang Joon; Park, Han Wook; Jung, Sung Yong
2014-09-01
X-ray imaging techniques have been employed to visualize various biofluid flow phenomena in a non-destructive manner. X-ray particle image velocimetry (PIV) was developed to measure velocity fields of blood flows to obtain hemodynamic information. A time-resolved X-ray PIV technique that is capable of measuring the velocity fields of blood flows under real physiological conditions was recently developed. However, technical limitations still remained in the measurement of blood flows with high image contrast and sufficient biocapability. In this study, CO2 microbubbles as flow-tracing contrast media for X-ray PIV measurements of biofluid flows was developed. Human serum albumin and CO2 gas were mechanically agitated to fabricate CO2 microbubbles. The optimal fabricating conditions of CO2 microbubbles were found by comparing the size and amount of microbubbles fabricated under various operating conditions. The average size and quantity of CO2 microbubbles were measured by using a synchrotron X-ray imaging technique with a high spatial resolution. The quantity and size of the fabricated microbubbles decrease with increasing speed and operation time of the mechanical agitation. The feasibility of CO2 microbubbles as a flow-tracing contrast media was checked for a 40% hematocrit blood flow. Particle images of the blood flow were consecutively captured by the time-resolved X-ray PIV system to obtain velocity field information of the flow. The experimental results were compared with a theoretically amassed velocity profile. Results show that the CO2 microbubbles can be used as effective flow-tracing contrast media in X-ray PIV experiments.
Saeid Khalafvand, Seyed; Han, Hai-Chao
2015-06-01
It has been shown that arteries may buckle into tortuous shapes under lumen pressure, which in turn could alter blood flow. However, the mechanisms of artery instability under pulsatile flow have not been fully understood. The objective of this study was to simulate the buckling and post-buckling behaviors of the carotid artery under pulsatile flow using a fully coupled fluid-structure interaction (FSI) method. The artery wall was modeled as a nonlinear material with a two-fiber strain-energy function. FSI simulations were performed under steady-state flow and pulsatile flow conditions with a prescribed flow velocity profile at the inlet and different pressures at the outlet to determine the critical buckling pressure. Simulations were performed for normal (160 ml/min) and high (350 ml/min) flow rates and normal (1.5) and reduced (1.3) axial stretch ratios to determine the effects of flow rate and axial tension on stability. The results showed that an artery buckled when the lumen pressure exceeded a critical value. The critical mean buckling pressure at pulsatile flow was 17-23% smaller than at steady-state flow. For both steady-state and pulsatile flow, the high flow rate had very little effect (<5%) on the critical buckling pressure. The fluid and wall stresses were drastically altered at the location with maximum deflection. The maximum lumen shear stress occurred at the inner side of the bend and maximum tensile wall stresses occurred at the outer side. These findings improve our understanding of artery instability in vivo.
Saeid Khalafvand, Seyed; Han, Hai-Chao
2015-01-01
It has been shown that arteries may buckle into tortuous shapes under lumen pressure, which in turn could alter blood flow. However, the mechanisms of artery instability under pulsatile flow have not been fully understood. The objective of this study was to simulate the buckling and post-buckling behaviors of the carotid artery under pulsatile flow using a fully coupled fluid–structure interaction (FSI) method. The artery wall was modeled as a nonlinear material with a two-fiber strain-energy function. FSI simulations were performed under steady-state flow and pulsatile flow conditions with a prescribed flow velocity profile at the inlet and different pressures at the outlet to determine the critical buckling pressure. Simulations were performed for normal (160 ml/min) and high (350 ml/min) flow rates and normal (1.5) and reduced (1.3) axial stretch ratios to determine the effects of flow rate and axial tension on stability. The results showed that an artery buckled when the lumen pressure exceeded a critical value. The critical mean buckling pressure at pulsatile flow was 17–23% smaller than at steady-state flow. For both steady-state and pulsatile flow, the high flow rate had very little effect (<5%) on the critical buckling pressure. The fluid and wall stresses were drastically altered at the location with maximum deflection. The maximum lumen shear stress occurred at the inner side of the bend and maximum tensile wall stresses occurred at the outer side. These findings improve our understanding of artery instability in vivo. PMID:25761257
Flow Control Research at NASA Langley in Support of High-Lift Augmentation
NASA Technical Reports Server (NTRS)
Sellers, William L., III; Jones, Gregory S.; Moore, Mark D.
2002-01-01
The paper describes the efforts at NASA Langley to apply active and passive flow control techniques for improved high-lift systems, and advanced vehicle concepts utilizing powered high-lift techniques. The development of simplified high-lift systems utilizing active flow control is shown to provide significant weight and drag reduction benefits based on system studies. Active flow control that focuses on separation, and the development of advanced circulation control wings (CCW) utilizing unsteady excitation techniques will be discussed. The advanced CCW airfoils can provide multifunctional controls throughout the flight envelope. Computational and experimental data are shown to illustrate the benefits and issues with implementation of the technology.
NASA Astrophysics Data System (ADS)
Valentin Rodriguez, Francisco Ivan
High pressure/high temperature forced and natural convection experiments have been conducted in support of the development of a Very High Temperature Reactor (VHTR) with a prismatic core. VHTRs are designed with the capability to withstand accidents by preventing nuclear fuel meltdown, using passive safety mechanisms; a product of advanced reactor designs including the implementation of inert gases like helium as coolants. The present experiments utilize a high temperature/high pressure gas flow test facility constructed for forced and natural circulation experiments. This work examines fundamental aspects of high temperature gas heat transfer applied to VHTR operational and accident scenarios. Two different types of experiments, forced convection and natural circulation, were conducted under high pressure and high temperature conditions using three different gases: air, nitrogen and helium. The experimental data were analyzed to obtain heat transfer coefficient data in the form of Nusselt numbers as a function of Reynolds, Grashof and Prandtl numbers. This work also examines the flow laminarization phenomenon (turbulent flows displaying much lower heat transfer parameters than expected due to intense heating conditions) in detail for a full range of Reynolds numbers including: laminar, transition and turbulent flows under forced convection and its impact on heat transfer. This phenomenon could give rise to deterioration in convection heat transfer and occurrence of hot spots in the reactor core. Forced and mixed convection data analyzed indicated the occurrence of flow laminarization phenomenon due to the buoyancy and acceleration effects induced by strong heating. Turbulence parameters were also measured using a hot wire anemometer in forced convection experiments to confirm the existence of the flow laminarization phenomenon. In particular, these results demonstrated the influence of pressure on delayed transition between laminar and turbulent flow. The heat dissipating capabilities of helium flow, due to natural circulation in the system at both high and low pressure, were also examined. These experimental results are useful for the development and validation of VHTR design and safety analysis codes. Numerical simulations were performed using a Multiphysics computer code, COMSOL, displaying less than 5% error between the measured graphite temperatures in both the heated and cooled channels. Finally, new correlations have been proposed describing the thermal-hydraulic phenomena in buoyancy driven flows in both heated and cooled channels.
Effect of secondary flows on dispersion in finite-length channels at high Peclet numbers
NASA Astrophysics Data System (ADS)
Adrover, Alessandra
2013-09-01
We investigate the effects of secondary (transverse) flows on convection-dominated dispersion of pressure driven, open column laminar flow in a conduit with rectangular cross-section. We show that secondary flows significantly reduce dispersion (enhancing transverse diffusion) in Taylor-Aris regime [H. Zhao and H. H. Bau, "Effect of secondary flows on Taylor-Aris dispersion," Anal. Chem. 79, 7792-7798 (2007)], as well as in convection-controlled regime. In the convection-controlled dispersion regime (i.e., laminar dispersion in finite-length channel with axial flow at high Peclet numbers) the properties of the dispersion boundary layer and the values of the scaling exponents controlling the dependence of the moment hierarchy on the Peclet number m^{(n)}_out ˜ Pe_eff^{θ _n} are determined by the local near-wall behaviour of the axial velocity. The presence of transverse flows strongly modify the localization properties of the dispersion boundary layer and consequently the moment scaling exponents. Different secondary flows, electrokinetically induced and independent of the primary axial flow are considered. A complete scaling theory is presented for the nth order moment of the outlet chromatogram as a function of the axial Peclet number, the secondary flow's pattern and intensity. We show that some secondary flows (the corotating and the counter-rotating cavity flows) significantly reduce dispersion and m^{(n)}_out ˜ Pe_eff^{(n-1)/3}. No significant dispersion reduction is obtained with the cavity cross-flow m^{(n)}_out ˜ Pe_eff^{(n-1)/2}. The best result is obtained with the two full-motion counter-rotating cross-flows because m^{(n)}_out saturates towards a constant value. Theoretical results from scaling theory are strongly supported by numerical results obtained by Finite Element Method.
2017-07-31
Report: High-Energy, High-Pulse-Rate Light Sources for Enhanced Time -Resolved Tomographic PIV of Unsteady & Turbulent Flows The views, opinions and/or...reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching...High-Energy, High-Pulse-Rate Light Sources for Enhanced Time -Resolved Tomographic PIV of Unsteady & Turbulent Flows Report Term: 0-Other Email
NASA Astrophysics Data System (ADS)
Li, Zhanling; Li, Zhanjie; Li, Chengcheng
2014-05-01
Probability modeling of hydrological extremes is one of the major research areas in hydrological science. Most basins in humid and semi-humid south and east of China are concerned for probability modeling analysis of high flow extremes. While, for the inland river basin which occupies about 35% of the country area, there is a limited presence of such studies partly due to the limited data availability and a relatively low mean annual flow. The objective of this study is to carry out probability modeling of high flow extremes in the upper reach of Heihe River basin, the second largest inland river basin in China, by using the peak over threshold (POT) method and Generalized Pareto Distribution (GPD), in which the selection of threshold and inherent assumptions for POT series are elaborated in details. For comparison, other widely used probability distributions including generalized extreme value (GEV), Lognormal, Log-logistic and Gamma are employed as well. Maximum likelihood estimate is used for parameter estimations. Daily flow data at Yingluoxia station from 1978 to 2008 are used. Results show that, synthesizing the approaches of mean excess plot, stability features of model parameters, return level plot and the inherent independence assumption of POT series, an optimum threshold of 340m3/s is finally determined for high flow extremes in Yingluoxia watershed. The resulting POT series is proved to be stationary and independent based on Mann-Kendall test, Pettitt test and autocorrelation test. In terms of Kolmogorov-Smirnov test, Anderson-Darling test and several graphical diagnostics such as quantile and cumulative density function plots, GPD provides the best fit to high flow extremes in the study area. The estimated high flows for long return periods demonstrate that, as the return period increasing, the return level estimates are probably more uncertain. The frequency of high flow extremes exhibits a very slight but not significant decreasing trend from 1978 to 2008, while the intensity of such flow extremes is comparatively increasing especially for the higher return levels.
Bartoli, Carlo R.; Rogers, Benjamin D.; Ionan, Constantine E.; Koenig, Steven C.; Pantalos, George M.
2013-01-01
OBJECTIVE Counterpulsation with an intraaortic balloon pump (IABP) has not achieved the same successes or clinical use in pediatric patients as in adults. In a pediatric animal model, IABP efficacy was investigated to determine whether IABP timing with a high-fidelity blood pressure signal may improve counterpulsation therapy versus a low-fidelity signal. METHODS In Yorkshire piglets (n=19, 13.0±0.5 kg) with coronary ligation-induced acute ischemic left ventricular failure, pediatric IABPs (5 or 7cc) were placed in the descending thoracic aorta. Inflation and deflation were timed with traditional criteria from low-fidelity (fluid-filled) and high-fidelity (micromanometer) blood pressure signals during 1:1 support. Aortic, carotid, and coronary hemodynamics were measured with pressure and flow transducers. Myocardial oxygen consumption was calculated from coronary sinus and arterial blood samples. Left ventricular myocardial blood flow and end-organ blood flow were measured with microspheres. RESULTS Despite significant suprasystolic diastolic augmentation and afterload reduction at heart rates of 105±3bmp, left ventricular myocardial blood flow, myocardial oxygen consumption, the myocardial oxygen supply/demand relationship, cardiac output, and end-organ blood flow did not change. Statistically significant end-diastolic coronary, carotid, and aortic flow reversal occurred with IABP deflation. Inflation and deflation timed with a high-fidelity versus low-fidelity signal did not attenuate systemic flow reversal or improve the myocardial oxygen supply/demand relationship. CONCLUSIONS Systemic end-diastolic flow reversal limited counterpulsation efficacy in a pediatric model of acute left ventricular failure. Adjustment of IABP inflation and deflation timing with traditional criteria and a high-fidelity blood pressure waveform did not improve IABP efficacy or attenuate flow reversal. End-diastolic flow reversal may limit the efficacy of IABP counterpulsation therapy in pediatric patients with traditional timing criteria. Investigation of alternative deflation timing strategies is warranted. PMID:24139614
Bartoli, Carlo R; Rogers, Benjamin D; Ionan, Constantine E; Pantalos, George M
2014-05-01
Counterpulsation with an intra-aortic balloon pump (IABP) has not achieved the same success or clinical use in pediatric patients as in adults. In a pediatric animal model, IABP efficacy was investigated to determine whether IABP timing with a high-fidelity blood pressure signal may improve counterpulsation therapy versus a low-fidelity signal. In Yorkshire piglets (n = 19; weight, 13.0 ± 0.5 kg) with coronary ligation-induced acute ischemic left ventricular failure, pediatric IABPs (5 or 7 mL) were placed in the descending thoracic aorta. Inflation and deflation were timed with traditional criteria from low-fidelity (fluid-filled) and high-fidelity (micromanometer) blood pressure signals during 1:1 support. Aortic, carotid, and coronary hemodynamics were measured with pressure and flow transducers. Myocardial oxygen consumption was calculated from coronary sinus and arterial blood samples. Left ventricular myocardial blood flow and end-organ blood flow were measured with microspheres. Despite significant suprasystolic diastolic augmentation and afterload reduction at heart rates of 105 ± 3 beats per minute, left ventricular myocardial blood flow, myocardial oxygen consumption, the myocardial oxygen supply/demand relationship, cardiac output, and end-organ blood flow did not change. Statistically significant end-diastolic coronary, carotid, and aortic flow reversal occurred with IABP deflation. Inflation and deflation timed with a high-fidelity versus low-fidelity signal did not attenuate systemic flow reversal or improve the myocardial oxygen supply/demand relationship. Systemic end-diastolic flow reversal limited counterpulsation efficacy in a pediatric model of acute left ventricular failure. Adjustment of IABP inflation and deflation timing with traditional criteria and a high-fidelity blood pressure waveform did not improve IABP efficacy or attenuate flow reversal. End-diastolic flow reversal may limit the efficacy of IABP counterpulsation therapy in pediatric patients with traditional timing criteria. Investigation of alternative deflation timing strategies is warranted. Copyright © 2014 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.
Lin, Hui-Ling; Harwood, Robert J; Fink, James B; Goodfellow, Lynda T; Ari, Arzu
2015-09-01
Aerosol drug delivery to infants and small children is influenced by many factors, such as types of interface, gas flows, and the designs of face masks. The purpose of this in vitro study was to evaluate aerosol delivery during administration of gas flows across the range used clinically with high-flow humidity systems using 2 aerosol masks. A spontaneous lung model was used to simulate an infant/young toddler up to 2 y of age and pediatric breathing patterns. Nebulized salbutamol by a vibrating mesh nebulizer positioned at the inlet of a high-flow humidification system at gas flows of 3, 6, and 12 L/min was delivered via pediatric face masks to a pediatric face mannequin attached to a filter. Aerosol particle size distribution exiting the vibrating mesh nebulizer and at the mask position distal to the heated humidifier with 3 flows was measured with a cascade impactor. Eluted drug from the filters and the impactor was analyzed with a spectrophotometer (n = 3). Statistical analysis was performed by analysis of variance with a significant level of P < .05. The inhaled mass was between 2.8% and 8.1% among all settings and was significantly lower at 12 L/min (P = .004) in the pediatric model. Drug delivery with pediatric breathing was greater than with infant breathing (P = .004). The particle size distribution of aerosol emitted from the nebulizer was larger than the heated humidified aerosol exiting the tubing (P = .002), with no difference between the 3 flows (P = .10). The flows of gas entering the mask and breathing patterns influence aerosol delivery, independent of the face mask used. Aerosol delivery through a high-flow humidification system via mask could be effective with both infant and pediatric breathing patterns. Copyright © 2015 by Daedalus Enterprises.
Engel, Frank; Rhoads, Bruce L.
2016-01-01
Compound meander bends with multiple lobes of maximum curvature are common in actively evolving lowland rivers. Interaction among spatial patterns of mean flow, turbulence, bed morphology, bank failures and channel migration in compound bends is poorly understood. In this paper, acoustic Doppler current profiler (ADCP) measurements of the three-dimensional (3D) flow velocities in a compound bend are examined to evaluate the influence of channel curvature and hydrologic variability on the structure of flow within the bend. Flow structure at various flow stages is related to changes in bed morphology over the study timeframe. Increases in local curvature within the upstream lobe of the bend reduce outer bank velocities at morphologically significant flows, creating a region that protects the bank from high momentum flow and high bed shear stresses. The dimensionless radius of curvature in the upstream lobe is one-third less than that of the downstream lobe, with average bank erosion rates less than half of the erosion rates for the downstream lobe. Higher bank erosion rates within the downstream lobe correspond to the shift in a core of high velocity and bed shear stresses toward the outer bank as flow moves through the two lobes. These erosion patterns provide a mechanism for continued migration of the downstream lobe in the near future. Bed material size distributions within the bend correspond to spatial patterns of bed shear stress magnitudes, indicating that bed material sorting within the bend is governed by bed shear stress. Results suggest that patterns of flow, sediment entrainment, and planform evolution in compound meander bends are more complex than in simple meander bends. Moreover, interactions among local influences on the flow, such as woody debris, local topographic steering, and locally high curvature, tend to cause compound bends to evolve toward increasing planform complexity over time rather than stable configurations.
Chaotic behaviour of high Mach number flows
NASA Technical Reports Server (NTRS)
Varvoglis, H.; Ghosh, S.
1985-01-01
The stability of the super-Alfvenic flow of a two-fluid plasma model with respect to the Mach number and the angle between the flow direction and the magnetic field is investigated. It is found that, in general, a large scale chaotic region develops around the initial equilibrium of the laminar flow when the Mach number exceeds a certain threshold value. After reaching a maximum the size of this region begins shrinking and goes to zero as the Mach number tends to infinity. As a result high Mach number flows in time independent astrophysical plasmas may lead to the formation of 'quasi-shocks' in the presence of little or no dissipation.
Jenke, Christoph; Pallejà Rubio, Jaume; Kibler, Sebastian; Häfner, Johannes; Richter, Martin; Kutter, Christoph
2017-01-01
With the combination of micropumps and flow sensors, highly accurate and secure closed-loop controlled micro dosing systems for liquids are possible. Implementing a single stroke based control mode with piezoelectrically driven micro diaphragm pumps can provide a solution for dosing of volumes down to nanoliters or variable average flow rates in the range of nL/min to μL/min. However, sensor technologies feature a yet undetermined accuracy for measuring highly pulsatile micropump flow. Two miniaturizable in-line sensor types providing electrical readout—differential pressure based flow sensors and thermal calorimetric flow sensors—are evaluated for their suitability of combining them with mircopumps. Single stroke based calibration of the sensors was carried out with a new method, comparing displacement volumes and sensor flow volumes. Limitations of accuracy and performance for single stroke based flow control are described. Results showed that besides particle robustness of sensors, controlling resistive and capacitive damping are key aspects for setting up reproducible and reliable liquid dosing systems. Depending on the required average flow or defined volume, dosing systems with an accuracy of better than 5% for the differential pressure based sensor and better than 6.5% for the thermal calorimeter were achieved. PMID:28368344
NASA Astrophysics Data System (ADS)
Kean, J. W.; McCoy, S. W.; Staley, D. M.; Coe, J.; Leeper, R.; Tucker, G. E.
2012-12-01
Direct measurements of natural debris flows provide valuable insights into debris-flow processes and hazards. Yet debris flows are difficult to "catch" because they live in rugged terrain, appear infrequently, and have an appetite for destroying monitoring equipment. We present an overview of some successful (and failed) techniques we have used over the past four years to obtain direct measurements of 40+ debris flows in Colorado and southern California. Following the "MacGyver" theme of the session, we focus on the improvised equipment and methods we use in our hunt for quality data. These include an inexpensive erosion sensor to measure rates of debris-flow entrainment, a custom load cell enclosure for measuring debris-flow normal force, tracer rocks implanted with passive integrated transponders, basic pressure transducers to measure debris-flow timing, and standard digital cameras adapted to obtain high-resolution (1936 x 1288 pixels) video footage of debris flows. These techniques are also suitable for catching data on elusive flash floods. In addition, we also share some practical solutions to the logistical problems associated with installing monitoring equipment in rugged debris-flow terrain, such as suspension of non-contact stage gages high above channels.
Lovcić, Vesna; Kes, Petar; Zeljko, Reiner; Kusec, Vesna
2006-06-01
The aim of the study was to determine the effects of high-flow and low-flow hemodialysis (HD), with simultaneous treatment with folic acid and vitamin B12, on total homocysteine (tHcy) concentration in plasma of dialyzed patients. The planned clinical observation included 46 patients of both sexes, aged 21-82, treated with bicarbonate dialysis for a mean of 4.7 years. The patients were divided into group A, subsequently dialyzed by use of high-flow polysulphonic membrane (AN 69ST, Nephral 300), and group B that continued to be dialyzed by use of low-flow diacetate membrane (Diacepal 14 and 16). The subjects in both groups received 30 mg of folic acid at the end of each dialysis (3 times a week), and 500 g of vitamin B12 at the end of every other dialysis. The method of stable isotopic dilution mass spectrometry was used to measure tHcy. Folic acid was determined by the test based on ion capture technology. Vitamin B12 was determined by MEIA. An increase in the concentration of tHcy was observed in 39/46 (85%) patients with a mean concentration of 24.76 +/- 11.04 micromol/L. The mean concentration of folic acid and vitamin B12 was within the normal limits. In the group dialyzed by high-flow dialyzer, the values of tHcy and folic acid decreased (18.74 +/- 2.95 micromol/L and 13.90 +/- 6.78 pmol/L) after hemodialysis, which was significant compared to the initial value (p<0.01 and p<0.05, respectively). At four weeks of treatment, tHcy concentration before HD showed a significant decrease both in the group dialyzed by high-flow dialyzer (15.10 +/- 4.26 mmol/L, p<0.01) and in the group dialyzed by low-flow dialyzer (12.54 +/- 3.87 micromol/L, p<0.01) compared to the measure before HD and before the treatment. There was no statistically significant difference (z -0.40, p>0.68) in the percentage of tHcy change between the group treated by high-flow dialyzer and the group treated by low-flow dialyzer in the measurements before HD and before the treatment with folic acid and vitamin B12, and after the treatment. There is a literature report on the concentration increase by 26 micromol/L, which is very similar to our result. The absence of long-term effect on predialysis concentration of tHcy in HD by high-flow membrane has also been described, because the decrease of tHcy is mantained until the uremic toxins, enzyme inhibitors that are necessary for the process of remethylation of Hcy, accumulated again. During high-flow HD, the folic acid concentration decreased by 23.05% on an average, consistent with other literature reports. Some reports support our observation that the dosage of folic acid required for tHcy decrease is 15-30 mg, and that the dosage higher than 60 mg does not significantly decrease tHcy concentration. Our study confirmed the reported observations that treatment with folic acid and vitamin B12 rather than high-flow dialyzer contributes to tHcy decrease. The study confirmed the high prevalence of hyperhomocysteinemia in patients on dialysis. The treatment with folic acid and vitamin B12 results in a significant decrease of tHcy. After individual HD by high-flow dialyzer, there is a significant, but temporary decrease of tHcy concentration in plasma. There is no significant difference in the efficiency on pre-dialysis tHcy concentration between the high-flow and low-flow dialyzer membrane. Because of the atherogenic effect of hyperhomocysteinemia, the treatment with folic acid and vitamin B12 should be accepted as an options to lower the risk factors for the rapid atherosclerosis in patients on dialysis, thus reducing the occurrence and fatality of cardiovascular diseases.
Catalytic cartridge SO/sub 3/ decomposer
Galloway, T.R.
1980-11-18
A catalytic cartridge surrounding a heat pipe driven by a heat source is utilized as a SO/sub 3/ decomposer for thermochemical hydrogen production. The cartridge has two embodiments, a cross-flow cartridge and an axial flow cartridge. In the cross-flow cartridge, SO/sub 3/ gas is flowed through a chamber and incident normally to a catalyst coated tube extending through the chamber, the catalyst coated tube surrounding the heat pipe. In the axial-flow cartridge, SO/sub 3/ gas is flowed through the annular space between concentric inner and outer cylindrical walls, the inner cylindrical wall being coated by a catalyst and surrounding the heat pipe. The modular cartridge decomposer provides high thermal efficiency, high conversion efficiency, and increased safety. A fusion reactor may be used as the heat source.
Dancing with the Muses: dissociation and flow.
Thomson, Paula; Jaque, S Victoria
2012-01-01
This study investigated dissociative psychological processes and flow (dispositional and state) in a group of professional and pre-professional dancers (n=74). In this study, high scores for global (Mdn=4.14) and autotelic (Mdn=4.50) flow suggest that dancing was inherently integrating and rewarding, although 17.6% of the dancers were identified as possibly having clinical levels of dissociation (Dissociative Experiences Scale-Taxon cutoff score≥20). The results of the multivariate analysis of variance indicated that subjects with high levels of dissociation had significantly lower levels of global flow (p<.05). Stepwise linear regression analyses demonstrated that dispositional flow negatively predicted the dissociative constructs of depersonalization and taxon (p<.05) but did not significantly predict the variance in absorption/imagination (p>.05). As hypothesized, dissociation and flow seem to operate as different mental processes.
Interactions between bedforms, turbulence and pore flow
NASA Astrophysics Data System (ADS)
Blois, G.; Best, J.; Sambrook Smith, G.; Hardy, R. J.; Lead, J.
2010-12-01
A widespread occurrence of flow-form interaction in rivers is represented by subaqueous bedforms such as dunes. Many models have been proposed to explain how bedform generation and evolution are driven by turbulent flow structures that control the incipient motion of cohesionless sediments and later bedform development. However, most of these models have assumed such bedforms to be migrating over an impermeable bed, and that any surface-subsurface flow interaction is negligible. However, for some gravel-bed rivers the porosity can be high, up to 43%, which may result in significant flow both through the permeable bed (hyporheic flow) and across the surface-subsurface interface. The mass and momentum exchange occurring at the interface may have a strong impact on the structure of turbulent flow in the near-bed region. In the case of a dune, its topography induces a local pressure gradient that enhances flow across the interface. This results in a flow structure that may be radically different from that commonly proposed by past work. This paper presents results from a simplified laboratory model akin to a fine-grained bedform generated on top of a coarser sediment bed. Particle imaging velocimetry (PIV) measurements were conducted in order to characterise flow both over and underneath an idealised 2-dimensional dune (0.41 m long, 0.056 m high and having a leeside angle of 27°) overlaying a packed bed of uniform size spheres (D = 0.04 m diameter). Experiments were conducted in free surface flow conditions (Froude number = 0.1; Reynolds number = 25,000) for one bedform height: flow depth ratio (0.31). The flow above the dune was measured using a standard PIV technique while a novel endoscopic PIV (EPIV) system allowed collection of flow data within the pore spaces beneath the dune. The results show that topographically-induced subsurface flow significantly modifies the structure of flow in the leeside of the dune, resulting in a flow field that is radically different to traditional concepts of leeside flow. The pressure gradient across the bedform controls the direction and intensity of flow within the bed and across the interface. Specifically, the low pressure region induced by flow separation at the dune crest causes a pulsating jet flow from the bed into the free flow downstream of the dune. Fluid upwelling is particularly intense at the toe of the leeside and gradually decreases downstream. The interaction between the free-flow and hyporheic flow is significant; in the leeside, flow reattachment is entirely absent, and recirculation in the separation zone is replaced by a mechanism of asymmetric alternate vortex shedding. Hyporheic flow thus controls the dynamics of flow in the leeside and near-wake region. The paper discusses the implications of these results for the morphodynamics of coarse-sediment bedforms.
Kalb, Daniel M; Fencl, Frank A; Woods, Travis A; Swanson, August; Maestas, Gian C; Juárez, Jaime J; Edwards, Bruce S; Shreve, Andrew P; Graves, Steven W
2017-09-19
Flow cytometry provides highly sensitive multiparameter analysis of cells and particles but has been largely limited to the use of a single focused sample stream. This limits the analytical rate to ∼50K particles/s and the volumetric rate to ∼250 μL/min. Despite the analytical prowess of flow cytometry, there are applications where these rates are insufficient, such as rare cell analysis in high cellular backgrounds (e.g., circulating tumor cells and fetal cells in maternal blood), detection of cells/particles in large dilute samples (e.g., water quality, urine analysis), or high-throughput screening applications. Here we report a highly parallel acoustic flow cytometer that uses an acoustic standing wave to focus particles into 16 parallel analysis points across a 2.3 mm wide optical flow cell. A line-focused laser and wide-field collection optics are used to excite and collect the fluorescence emission of these parallel streams onto a high-speed camera for analysis. With this instrument format and fluorescent microsphere standards, we obtain analysis rates of 100K/s and flow rates of 10 mL/min, while maintaining optical performance comparable to that of a commercial flow cytometer. The results with our initial prototype instrument demonstrate that the integration of key parallelizable components, including the line-focused laser, particle focusing using multinode acoustic standing waves, and a spatially arrayed detector, can increase analytical and volumetric throughputs by orders of magnitude in a compact, simple, and cost-effective platform. Such instruments will be of great value to applications in need of high-throughput yet sensitive flow cytometry analysis.
Sedell, Edwin R; Gresswell, Bob; McMahon, Thomas E.
2015-01-01
Habitat fragmentation and degradation and invasion of nonnative species have restricted the distribution of native trout. Many trout populations are limited to headwater streams where negative effects of predicted climate change, including reduced stream flow and increased risk of catastrophic fires, may further jeopardize their persistence. Headwater streams in steep terrain are especially susceptible to disturbance associated with postfire debris flows, which have led to local extirpation of trout populations in some systems. We conducted a reach-scale spatial analysis of debris-flow risk among 11 high-elevation watersheds of the Colorado Rocky Mountains occupied by isolated populations of Colorado River Cutthroat Trout (Oncorhynchus clarkii pleuriticus). Stream reaches at high risk of disturbance by postfire debris flow were identified with the aid of a qualitative model based on 4 primary initiating and transport factors (hillslope gradient, flow accumulation pathways, channel gradient, and valley confinement). This model was coupled with a spatially continuous survey of trout distributions in these stream networks to assess the predicted extent of trout population disturbances related to debris flows. In the study systems, debris-flow potential was highest in the lower and middle reaches of most watersheds. Colorado River Cutthroat Trout occurred in areas of high postfire debris-flow risk, but they were never restricted to those areas. Postfire debris flows could extirpate trout from local reaches in these watersheds, but trout populations occupy refugia that should allow recolonization of interconnected, downstream reaches. Specific results of our study may not be universally applicable, but our risk assessment approach can be applied to assess postfire debris-flow risk for stream reaches in other watersheds.
Landers, Mark N.; Ankcorn, Paul D.
2008-01-01
The influence of onsite septic wastewater-treatment systems (OWTS) on base-flow quantity needs to be understood to evaluate consumptive use of surface-water resources by OWTS. If the influence of OWTS on stream base flow can be measured and if the inflow to OWTS is known from water-use data, then water-budget approaches can be used to evaluate consumptive use. This report presents a method to evaluate the influence of OWTS on ground-water recharge and base-flow quantity. Base flow was measured in Gwinnett County, Georgia, during an extreme drought in October 2007 in 12 watersheds that have low densities of OWTS (22 to 96 per square mile) and 12 watersheds that have high densities (229 to 965 per square mile) of OWTS. Mean base-flow yield in the high-density OWTS watersheds is 90 percent greater than in the low-density OWTS watersheds. The density of OWTS is statistically significant (p-value less than 0.01) in relation to base-flow yield as well as specific conductance. Specific conductance of base flow increases with OWTS density, which may indicate influence from treated wastewater. The study results indicate considerable unexplained variation in measured base-flow yield for reasons that may include: unmeasured processes, a limited dataset, and measurement errors. Ground-water recharge from a high density of OWTS is assumed to be steady state from year to year so that the annual amount of increase in base flow from OWTS is expected to be constant. In dry years, however, OWTS contributions represent a larger percentage of natural base flow than in wet years. The approach of this study could be combined with water-use data and analyses to estimate consumptive use of OWTS.
Development and numerical analysis of low specific speed mixed-flow pump
NASA Astrophysics Data System (ADS)
Li, H. F.; Huo, Y. W.; Pan, Z. B.; Zhou, W. C.; He, M. H.
2012-11-01
With the development of the city, the market of the mixed flow pump with large flux and high head is prospect. The KSB Shanghai Pump Co., LTD decided to develop low speed specific speed mixed flow pump to meet the market requirements. Based on the centrifugal pump and axial flow pump model, aiming at the characteristics of large flux and high head, a new type of guide vane mixed flow pump was designed. The computational fluid dynamics method was adopted to analyze the internal flow of the new type model and predict its performances. The time-averaged Navier-Stokes equations were closed by SST k-ω turbulent model to adapt internal flow of guide vane with larger curvatures. The multi-reference frame(MRF) method was used to deal with the coupling of rotating impeller and static guide vane, and the SIMPLEC method was adopted to achieve the coupling solution of velocity and pressure. The computational results shows that there is great flow impact on the head of vanes at different working conditions, and there is great flow separation at the tailing of the guide vanes at different working conditions, and all will affect the performance of pump. Based on the computational results, optimizations were carried out to decrease the impact on the head of vanes and flow separation at the tailing of the guide vanes. The optimized model was simulated and its performance was predicted. The computational results show that the impact on the head of vanes and the separation at the tailing of the guide vanes disappeared. The high efficiency of the optimized pump is wide, and it fit the original design destination. The newly designed mixed flow pump is now in modeling and its experimental performance will be getting soon.
An important erosion process on steep burnt hillslopes
NASA Astrophysics Data System (ADS)
Langhans, Christoph; Nyman, Petter; Noske, Philip; Lane, Patrick; Sheridan, Gary
2016-04-01
Steep forested hillslopes often display a high degree of armouring where diffusive erosion processes preferentially remove the fine fraction of the surface soil. High infiltration capacities, hydraulic resistance to overland flow and physical anchoring by cover plants and litter mean that even the most extreme rainfall events usually do not erode the armouring substantially. We argue that fire (wild or planned) is essential to the mobilization and transport of the armouring by increasing the rates of overland flow and decreasing trapping opportunities. We present evidence of the types of erosion that lead to the stripping of the surface armouring using post-event surveys and high-rate overland flow experiments. The type of erosion depends on the relative abundance of non-cohesive surface material to overland flow, but we found that a particular type of transport dominates that has no representation in current erosion models: On steep slopes overland flow can lead to incipient motion of individual stones that transfer their momentum to other stones leading to a rapid mobilization of the whole non-cohesive, armoured surface layer. Once in motion, the layer quickly separates out into a granular flow front and liquefied body, akin to debris flows in channels. Depending on the size of the event, these hillslope debris flows (HDF) either get trapped or enter into the channel, stripping the hillslope of most armouring on their way. They provide channels with the material and shear stress needed to erode into the channel bed, increasing the risk of channel debris flows. We present a simple physical model of HDF initiation, movement, and possible re-mobilization on hillslopes that was derived from debris flow theory. Understanding this process, its frequency, and magnitude are important for assessing the role of fire in landscape evolution and risk to humans through debris flow impacts.
NASA Astrophysics Data System (ADS)
Vinsard, G.; Dufour, S.; Saatdjian, E.; Mota, J. P. B.
2016-03-01
Chaotic advection can effectively enhance the heat transfer rate between a boundary and fluids with high Prandtl number. These fluids are usually highly viscous and thus turbulent agitation is not a viable solution since the energy required to mix the fluid would be prohibitive. Here, we analyze previously obtained results on chaotic advection and heat transfer in two similar 2-D periodic flows and on their corresponding 3-D periodic flows when an axial velocity component is superposed. The two flows studied are the flow between eccentric rotating cylinders and the flow between confocal ellipses. For both of these flows the analysis is simplified because the Stokes equations can be solved analytically to obtain a closed form solution. For both 2-D periodic flows, we show that chaotic heat transfer is enhanced by the displacement of the saddle point location during one period. Furthermore, the enhancement by chaotic advection in the elliptical geometry is approximately double that obtained in the cylindrical geometry because there are two saddle points instead of one. We also explain why, for high eccentricity ratios, there is no heat transfer enhancement in the cylindrical geometry. When an axial velocity component is added to both of these flows so that they become 3-D, previous work has shown that there is an optimum modulation frequency for which chaotic advection and heat transfer enhancement is a maximum. Here we show that the optimum modulation frequency can be derived from results without an axial flow. We also explain by physical arguments other previously unanswered questions in the published data.
NASA Astrophysics Data System (ADS)
Kang, Jinbum; Jang, Won Seuk; Yoo, Yangmo
2018-02-01
Ultrafast compound Doppler imaging based on plane-wave excitation (UCDI) can be used to evaluate cardiovascular diseases using high frame rates. In particular, it provides a fully quantifiable flow analysis over a large region of interest with high spatio-temporal resolution. However, the pulse-repetition frequency (PRF) in the UCDI method is limited for high-velocity flow imaging since it has a tradeoff between the number of plane-wave angles (N) and acquisition time. In this paper, we present high PRF ultrafast sliding compound Doppler imaging method (HUSDI) to improve quantitative flow analysis. With the HUSDI method, full scanline images (i.e. each tilted plane wave data) in a Doppler frame buffer are consecutively summed using a sliding window to create high-quality ensemble data so that there is no reduction in frame rate and flow sensitivity. In addition, by updating a new compounding set with a certain time difference (i.e. sliding window step size or L), the HUSDI method allows various Doppler PRFs with the same acquisition data to enable a fully qualitative, retrospective flow assessment. To evaluate the performance of the proposed HUSDI method, simulation, in vitro and in vivo studies were conducted under diverse flow circumstances. In the simulation and in vitro studies, the HUSDI method showed improved hemodynamic representations without reducing either temporal resolution or sensitivity compared to the UCDI method. For the quantitative analysis, the root mean squared velocity error (RMSVE) was measured using 9 angles (-12° to 12°) with L of 1-9, and the results were found to be comparable to those of the UCDI method (L = N = 9), i.e. ⩽0.24 cm s-1, for all L values. For the in vivo study, the flow data acquired from a full cardiac cycle of the femoral vessels of a healthy volunteer were analyzed using a PW spectrogram, and arterial and venous flows were successfully assessed with high Doppler PRF (e.g. 5 kHz at L = 4). These results indicate that the proposed HUSDI method can improve flow visualization and quantification with a higher frame rate, PRF and flow sensitivity in cardiovascular imaging.
Kang, Jinbum; Jang, Won Seuk; Yoo, Yangmo
2018-02-09
Ultrafast compound Doppler imaging based on plane-wave excitation (UCDI) can be used to evaluate cardiovascular diseases using high frame rates. In particular, it provides a fully quantifiable flow analysis over a large region of interest with high spatio-temporal resolution. However, the pulse-repetition frequency (PRF) in the UCDI method is limited for high-velocity flow imaging since it has a tradeoff between the number of plane-wave angles (N) and acquisition time. In this paper, we present high PRF ultrafast sliding compound Doppler imaging method (HUSDI) to improve quantitative flow analysis. With the HUSDI method, full scanline images (i.e. each tilted plane wave data) in a Doppler frame buffer are consecutively summed using a sliding window to create high-quality ensemble data so that there is no reduction in frame rate and flow sensitivity. In addition, by updating a new compounding set with a certain time difference (i.e. sliding window step size or L), the HUSDI method allows various Doppler PRFs with the same acquisition data to enable a fully qualitative, retrospective flow assessment. To evaluate the performance of the proposed HUSDI method, simulation, in vitro and in vivo studies were conducted under diverse flow circumstances. In the simulation and in vitro studies, the HUSDI method showed improved hemodynamic representations without reducing either temporal resolution or sensitivity compared to the UCDI method. For the quantitative analysis, the root mean squared velocity error (RMSVE) was measured using 9 angles (-12° to 12°) with L of 1-9, and the results were found to be comparable to those of the UCDI method (L = N = 9), i.e. ⩽0.24 cm s -1 , for all L values. For the in vivo study, the flow data acquired from a full cardiac cycle of the femoral vessels of a healthy volunteer were analyzed using a PW spectrogram, and arterial and venous flows were successfully assessed with high Doppler PRF (e.g. 5 kHz at L = 4). These results indicate that the proposed HUSDI method can improve flow visualization and quantification with a higher frame rate, PRF and flow sensitivity in cardiovascular imaging.
Study of vortex generator influence on the flow in the wake of high-lift system wing
NASA Astrophysics Data System (ADS)
Bragin, N. N.; Ryabov, D. I.; Skomorokhov, S. I.; Slitinskaya, A. Yu.
2016-10-01
Passive vortex generators (VG) are known as one of the ways to improve the flow of the wings and other surfaces in the presence of flow separation. In particular, the VG are installed on the wings and nacelles of many foreign airplanes, including the most recent ones (for example, Boeing 787, Airbus A-350). The principle of the passive VG effects on flow is to transfer the kinetic energy of the external flow separation region by the vortices system arising from the flow VG themselves. For example, by increasing the angle of attack of the wing separation it is highly three-dimensional picture of the flow and sufficiently sensitive to external influences. Thus separated flow can be controlled when using the VG destroy large separation vortices. The VG effectiveness depends on many parameters. This is primarily the relative position of the second harmonic and the separation region on the wing and their size and position relative to each other, the orientation of the second harmonic relative to the local flow direction of the external flow, etc. Obviously, the VG effect will depend essentially on the intensity ratio of the second harmonic vortexes and nature of flow separation in the separation area. In the presence of intense flow separation the effect of conventional VG may be reduced or not occur at all. Until recently, investigations and selection of position of conventional VG were made only experimentally. Currently, the possibilities of calculation methods allow estimating the VG effect on the flow in the separation area. However, due to the phenomenon complexity the accuracy of these calculations is low. The experimental data are required to validate the computational methods, including information not only about the total impact, but also about the flow structure in the separation area. To obtain such information is the subject of this paper. In the test model of high-lift devices swept wing with modern supercritical profile the parametric studies were performed on the VG effects on the flow in the intensive separation zone on flaps. A number of VG types is considered that differ by configuration, size, location in relation to the area of flow separation on the flap, as well as the orientation relative to the incoming flow. The major part of standard of VG positions is investigated. The VG influence on head velocity loss and the characteristics of the amplitude-frequency spectra of pressure fluctuations in the wake of the wing are obtained, as well as the flow spectra are obtained by means of fluorescent mini-tufts.
An investigation of multitasking information behavior and the influence of working memory and flow
NASA Astrophysics Data System (ADS)
Alexopoulou, Peggy; Hepworth, Mark; Morris, Anne
2015-02-01
This study explored the multitasking information behaviour of Web users and how this is influenced by working memory, flow and Personal, Artefact and Task characteristics, as described in the PAT model. The research was exploratory using a pragmatic, mixed method approach. Thirty University students participated; 10 psychologists, 10 accountants and 10 mechanical engineers. The data collection tools used were: pre and post questionnaires, a working memory test, a flow state scale test, audio-visual data, web search logs, think aloud data, observation, and the critical decision method. All participants searched information on the Web for four topics: two for which they had prior knowledge and two more without prior knowledge. Perception of task complexity was found to be related to working memory. People with low working memory reported a significant increase in task complexity after they had completed information searching tasks for which they had no prior knowledge, this was not the case for tasks with prior knowledge. Regarding flow and task complexity, the results confirmed the suggestion of the PAT model (Finneran and Zhang, 2003), which proposed that a complex task can lead to anxiety and low flow levels as well as to perceived challenge and high flow levels. However, the results did not confirm the suggestion of the PAT model regarding the characteristics of web search systems and especially perceived vividness. All participants experienced high vividness. According to the PAT model, however, only people with high flow should experience high levels of vividness. Flow affected the degree of change of knowledge of the participants. People with high flow gained more knowledge for tasks without prior knowledge rather than people with low flow. Furthermore, accountants felt that tasks without prior knowledge were less complex at the end of the web seeking procedure than psychologists and mechanical engineers. Finally, the three disciplines appeared to differ regarding the multitasking information behaviour characteristics such as queries, web search sessions and opened tabs/windows.
NASA Astrophysics Data System (ADS)
Hensley, R. T.; Cohen, M. J.; Spangler, M.; Gooseff, M. N.
2017-12-01
The lower Santa Fe River is a large, karst river of north Florida, fed by numerous artesian springs and also containing multiple sink-rise systems. We performed repeated longitudinal profiles collecting very high frequency measurements of multiple stream parameters including temperature, dissolved oxygen, carbon dioxide, pH, dissolved organic matter, nitrate, ammonium, phosphate and turbidity. This high frequency dataset provided a spatially explicit understanding of solute sources and coupled biogeochemical processing rates along the 25 km study reach. We noted marked changes in river profiles as the river transitioned from low to high flow during the onset of the wet season. The role of lateral inflow from springs as the primary solute source was greatly reduced under high flow conditions. Effects of sink-rise systems, which under low flow conditions allow the majority of flow to bypass several kilometer long sections of the main channel, virtually disappeared under high flow conditions. Impeded light transmittance at high flow reduced primary production and by extension assimilatory nutrient uptake. This study demonstrates how high frequency longitudinal profiling can be used to observe how hydrologic conditions can alter groundwater-surface water interactions and modulate the sourcing, transport and biogeochemical processing of stream solutes.
Measuring flow velocity and flow direction by spatial and temporal analysis of flow fluctuations.
Chagnaud, Boris P; Brücker, Christoph; Hofmann, Michael H; Bleckmann, Horst
2008-04-23
If exposed to bulk water flow, fish lateral line afferents respond only to flow fluctuations (AC) and not to the steady (DC) component of the flow. Consequently, a single lateral line afferent can encode neither bulk flow direction nor velocity. It is possible, however, for a fish to obtain bulk flow information using multiple afferents that respond only to flow fluctuations. We show by means of particle image velocimetry that, if a flow contains fluctuations, these fluctuations propagate with the flow. A cross-correlation of water motion measured at an upstream point with that at a downstream point can then provide information about flow velocity and flow direction. In this study, we recorded from pairs of primary lateral line afferents while a fish was exposed to either bulk water flow, or to the water motion caused by a moving object. We confirm that lateral line afferents responded to the flow fluctuations and not to the DC component of the flow, and that responses of many fiber pairs were highly correlated, if they were time-shifted to correct for gross flow velocity and gross flow direction. To prove that a cross-correlation mechanism can be used to retrieve the information about gross flow velocity and direction, we measured the flow-induced bending motions of two flexible micropillars separated in a downstream direction. A cross-correlation of the bending motions of these micropillars did indeed produce an accurate estimate of the velocity vector along the direction of the micropillars.
NASA Astrophysics Data System (ADS)
Alqefl, Mahmood Hasan
In many regions of the high-pressure gas turbine, film cooling flows are used to protect the turbine components from the combustor exit hot gases. Endwalls are challenging to cool because of the complex system of secondary flows that disturb surface film coolant coverage. The secondary flow vortices wash the film coolant from the surface into the mainstream significantly decreasing cooling effectiveness. In addition to being effected by secondary flow structures, film cooling flow can also affect these structures by virtue of their momentum exchange. In addition, many studies in the literature have shown that endwall contouring affects the strength of passage secondary flows. Therefore, to develop better endwall cooling schemes, a good understanding of passage aerodynamics and heat transfer as affected by interactions of film cooling flows with secondary flows is required. This experimental and computational study presents results from a linear, stationary, two-passage cascade representing the first stage nozzle guide vane of a high-pressure gas turbine with an axisymmetrically contoured endwall. The sources of film cooling flows are upstream combustor liner coolant and endwall slot film coolant injected immediately upstream of the cascade passage inlet. The operating conditions simulate combustor exit flow features, with a high Reynolds number of 390,000 and approach flow turbulence intensity of 11% with an integral length scale of 21% of the chord length. Measurements are performed with varying slot film cooling mass flow to mainstream flow rate ratios (MFR). Aerodynamic effects are documented with five-hole probe measurements at the exit plane. Heat transfer is documented through recovery temperature measurements with a thermocouple. General secondary flow features are observed. Total pressure loss measurements show that varying the slot film cooling MFR has some effects on passage loss. Velocity vectors and vorticity distributions show a very thin, yet intense, cross-pitch flow on the contoured endwall side. Endwall adiabatic effectiveness values and coolant distribution thermal fields show minimal effects of varying slot film coolant MFR. This suggests the dominant effects of combustor liner coolant. show dominant effects of combustor liner coolant on cooling the endwall. A coolant vorticity correlation presenting the advective mixing of the coolant due to secondary flow vorticity at the exit plane is also discussed.
Rosqvist, N H; Dollar, L H; Fourie, A B
2005-08-01
In this paper, we study and quantify pollutant concentrations after long-term leaching at relatively low flow rates and residual concentrations after heavy flushing of a 0.14 m3 municipal solid waste sample. Moreover, water flow and solute transport through preferential flow paths are studied by model interpretation of experimental break-through curves (BTCs), generated by tracer tests. In the study it was found that high concentrations of chloride remain after several pore volumes of water have percolated through the waste sample. The residual concentration was found to be considerably higher than can be predicted by degradation models. For model interpretations of the experimental BTCs, two probabilistic model approaches were applied, the transfer function model and the Lagrangian transport formulation. The experimental BTCs indicated the presence of preferential flow through the waste mass and the model interpretation of the BTCs suggested that between 19 and 41% of the total water content participated in the transport of solute through preferential flow paths. In the study, the occurrence of preferential flow was found to be dependent on the flow rate in the sense that a high flow rate enhances the preferential flow. However, to fully quantify the possible dependence between flow rate and preferential flow, experiments on a broader range of experimental conditions are suggested. The chloride washout curve obtained over the 4-year study period shows that as a consequence of the water flow in favoured flow paths, bypassing other parts of the solid waste body, the leachate quality may reflect only the flow paths and their surroundings. The results in this study thus show that in order to improve long-term prediction of the leachate quality and quantity the magnitude of the preferential water flow through a landfill must be taken into account.
Stability of surface plastic flow in large strain deformation of metals
NASA Astrophysics Data System (ADS)
Viswanathan, Koushik; Udapa, Anirduh; Sagapuram, Dinakar; Mann, James; Chandrasekar, Srinivasan
We examine large-strain unconstrained simple shear deformation in metals using a model two-dimensional cutting system and high-speed in situ imaging. The nature of the deformation mode is shown to be a function of the initial microstructure state of the metal and the deformation geometry. For annealed metals, which exhibit large ductility and strain hardening capacity, the commonly assumed laminar flow mode is inherently unstable. Instead, the imposed shear is accommodated by a highly rotational flow-sinuous flow-with vortex-like components and large-amplitude folding on the mesoscale. Sinuous flow is triggered by a plastic instability on the material surface ahead of the primary region of shear. On the other hand, when the material is extensively strain-hardened prior to shear, laminar flow again becomes unstable giving way to shear banding. The existence of these flow modes is established by stability analysis of laminar flow. The role of the initial microstructure state in determining the change in stability from laminar to sinuous / shear-banded flows in metals is elucidated. The implications for cutting, forming and wear processes for metals, and to surface plasticity phenomena such as mechanochemical Rehbinder effects are discussed.
Stone, M.A.J.; Mann, Larry J.; Kjelstrom, L.C.
1993-01-01
Statistical summaries and graphs of streamflow data were prepared for 13 gaging stations with 5 or more years of continuous record on and near the Idaho National Engineering Laboratory. Statistical summaries of streamflow data for the Big and Little Lost Rivers and Birch Creek were analyzed as a requisite for a comprehensive evaluation of the potential for flooding of facilities at the Idaho National Engineering Laboratory. The type of statistical analyses performed depended on the length of streamflow record for a gaging station. Streamflow statistics generated for stations with 5 to 9 years of record were: (1) magnitudes of monthly and annual flows; (2) duration of daily mean flows; and (3) maximum, median, and minimum daily mean flows. Streamflow statistics generated for stations with 10 or more years of record were: (1) magnitudes of monthly and annual flows; (2) magnitudes and frequencies of daily low, high, instantaneous peak (flood frequency), and annual mean flows; (3) duration of daily mean flows; (4) exceedance probabilities of annual low, high, instantaneous peak, and mean annual flows; (5) maximum, median, and minimum daily mean flows; and (6) annual mean and mean annual flows.
Analytical data from phases I and II of the Willamette River basin water quality study, Oregon
Harrison, Howard E.; Anderson, Chauncey W.; Rinella, Frank A.; Gasser, Timothy M.; Pogue, Ted R.
1995-01-01
The data were collected at 50 sites, representing runoff from agricultural, forested, and urbanized subbasins. In Phase I, water samples were collected during high and low flows in 1992 and 1993 to represent a wide range of hydrologic conditions. Bed-sediment samples were collected during low flows in 1993. In Phase II, water samples were collected in the spring of 1994 after the first high-flow event following the application of agricultural fertilizers and pesticides and in the fall during the first high-flow events following the conclusion of the agricultural season.
How is flow experienced and by whom? Testing flow among occupations.
Llorens, Susana; Salanova, Marisa; Rodríguez, Alma M
2013-04-01
The aims of this paper are to test (1) the factorial structure of the frequency of flow experience at work; (2) the flow analysis model in work settings by differentiating the frequency of flow and the frequency of its prerequisites; and (3) whether there are significant differences in the frequency of flow experience depending on the occupation. A retrospective study among 957 employees (474 tile workers and 483 secondary school teachers) using multigroup confirmatory factorial analyses and multiple analyses of variance suggested that on the basis of the flow analysis model in work settings, (1) the frequency of flow experience has a two-factor structure (enjoyment and absorption); (2) the frequency of flow experience at work is produced when both challenge and skills are high and balanced; and (3) secondary school teachers experience flow more frequently than tile workers. Copyright © 2012 John Wiley & Sons, Ltd.
Unsteady flow motions in the supraglottal region during phonation
NASA Astrophysics Data System (ADS)
Luo, Haoxiang; Dai, Hu
2008-11-01
The highly unsteady flow motions in the larynx are not only responsible for producing the fundamental frequency tone in phonation, but also have a significant contribution to the broadband noise in the human voice. In this work, the laryngeal flow is modeled either as an incompressible pulsatile jet confined in a two-dimensional channel, or a pressure-driven flow modulated by a pair of viscoelastic vocal folds through the flow--structure interaction. The flow in the supraglottal region is found to be dominated by large-scale vortices whose unsteady motions significantly deflect the glottal jet. In the flow--structure interaction, a hybrid model based on the immersed-boundary method is developed to simulate the flow-induced vocal fold vibration, which involves a three-dimensional vocal fold prototype and a two-dimensional viscous flow. Both the flow behavior and the vibratory characteristics of the vocal folds will be presented.
1989-01-01
intervals over a 60 minute period at flow rates of 100, 250, 500, 750, and 1,000 ml/hr. Analysis of variance showed a highly significant group effect with a...significant difference between all groups except Group 3 and Group 4. Analysis of - .riance aiso showed a highly significant flow rate effect on...as effective as the conventional method of delivering warmed fluids. Also, within the range of flow rates studied, faster flow rates tended to yield a
Turbulent convective flows in a cubic cavity at high Prandtl number
NASA Astrophysics Data System (ADS)
Vasiliev, A.; Sukhanovskii, A.; Frick, P.
2016-10-01
Characteristics of turbulent convective flows in a cubic cell is studied experimentally for high values of Prandtl number. The first set was carriied out with propylene glycol (Pr = 64 and the second one with 25% water solution of propylene glycol (Pr = 24). It was found that increasing of Pr from 6.1 to 24 leads only to the slight change of intensity of the flow but during the next increasing of Pr from 24 to 64 the flow changes its structure.
Gross, Elad; Shu, Xing-Zhong; Alayoglu, Selim; Bechtel, Hans A; Martin, Michael C; Toste, F Dean; Somorjai, Gabor A
2014-03-05
Analysis of catalytic organic transformations in flow reactors and detection of short-lived intermediates are essential for optimization of these complex reactions. In this study, spectral mapping of a multistep catalytic reaction in a flow microreactor was performed with a spatial resolution of 15 μm, employing micrometer-sized synchrotron-based IR and X-ray beams. Two nanometer sized Au nanoclusters were supported on mesoporous SiO2, packed in a flow microreactor, and activated toward the cascade reaction of pyran formation. High catalytic conversion and tunable products selectivity were achieved under continuous flow conditions. In situ synchrotron-sourced IR microspectroscopy detected the evolution of the reactant, vinyl ether, into the primary product, allenic aldehyde, which then catalytically transformed into acetal, the secondary product. By tuning the residence time of the reactants in a flow microreactor a detailed analysis of the reaction kinetics was performed. An in situ micrometer X-ray absorption spectroscopy scan along the flow reactor correlated locally enhanced catalytic conversion, as detected by IR microspectroscopy, to areas with high concentration of Au(III), the catalytically active species. These results demonstrate the fundamental understanding of the mechanism of catalytic reactions which can be achieved by the detailed mapping of organic transformations in flow reactors.
ZaP-HD: High Energy Density Z-Pinch Plasmas using Sheared Flow Stabilization
NASA Astrophysics Data System (ADS)
Golingo, R. P.; Shumlak, U.; Nelson, B. A.; Claveau, E. L.; Doty, S. A.; Forbes, E. G.; Hughes, M. C.; Kim, B.; Ross, M. P.; Weed, J. R.
2015-11-01
The ZaP-HD flow Z-pinch project investigates scaling the flow Z-pinch to High Energy Density Plasma, HEDP, conditions by using sheared flow stabilization. ZaP used a single power supply to produce 100 cm long Z-pinches that were quiescent for many radial Alfven times and axial flow-through times. The flow Z-pinch concept provides an approach to achieve HED plasmas, which are dimensionally large and persist for extended durations. The ZaP-HD device replaces the single power supply from ZaP with two separate power supplies to independently control the plasma flow and current in the Z-pinch. Equilibrium is determined by diagnostic measurements of the density with interferometry and digital holography, the plasma flow and temperature with passive spectroscopy, the magnetic field with surface magnetic probes, and plasma emission with optical imaging. The diagnostics fully characterize the plasma from its initiation in the coaxial accelerator, through the pinch, and exhaust from the assembly region. The plasma evolution is modeled with high resolution codes: Mach2, WARPX, and NIMROD. Experimental results and scaling analyses are presented. This work is supported by grants from the U.S. Department of Energy and the U.S. National Nuclear Security Administration.
NASA Astrophysics Data System (ADS)
Termini, Donatella; Di Leonardo, Alice
2016-04-01
High flow conditions, which are generally characterized by high sediment concentrations, do not permit the use of traditional measurement equipment. Traditional techniques usually are based on the intrusive measure of the vertical profile of flow velocity and on the linking of water depth with the discharge through the rating curve. The major disadvantage of these measurement techniques is that they are difficult to use and not safe for operators especially in high flow conditions. The point is that, as literature shows (see as an example Moramarco and Termini, 2015), especially in such conditions, the measurement of surface velocity distribution is important to evaluate the mean flow velocity and, thus, the flow discharge. In the last decade, image-based techniques have been increasingly used for surface velocity measurements (among others Joeau et al., 2008). Experimental program has been recently conducted at the Hydraulic laboratory of the Department of Civil, Environmental, Aerospatial and of Materials Engineering (DICAM) - University of Palermo (Italy) in order to analyze the propagation phenomenon of hyper-concentrated flow in a defense channel. The experimental apparatus includes a high-precision camera and a system allowing the images recording. This paper investigates the utility and the efficiency of the digital image-technique for remote monitoring of surface velocity in hyper-concentrated flow by the aid of data collected during experiments conducted in the laboratory flume. In particular the present paper attention is focused on the estimation procedure of the velocity vectors and on their sensitivity with parameters (number of images, spatial resolution of interrogation area,) of the images processing procedure. References Jodeau M., A. Hauet, A. Paquier, Le Coz J., Dramais G., Application and evaluation of LS-PIV technique for the monitoring of river surface in high flow conditions, Flow Measurements and Instrumentation, Vol.19, No.2, 2008, pp.117-127. Moramarco T., Termini D., Entropic approach to estimate the mean flow velocity: experimental investigation in laboratory flumes, Environmental Fluid mechanics, Vol. 15, No.1, 2015.
NASA Astrophysics Data System (ADS)
Kordilla, J.; Noffz, T.; Dentz, M.; Sauter, M.
2017-12-01
To assess the vulnerability of an aquifer system it is of utmost importance to recognize the high potential for a rapid mass transport offered by ow through unsaturated fracture networks. Numerical models have to reproduce complex effects of gravity-driven flow dynamics to generate accurate predictions of flow and transport. However, the non-linear characteristics of free surface flow dynamics and partitioning behaviour at unsaturated fracture intersections often exceed the capacity of classical volume-effective modelling approaches. Laboratory experiments that manage to isolate single aspects of the mass partitioning process can enhance the understanding of underlying dynamics, which ultimately influence travel time distributions on multiple scales. Our analogue fracture network consists of synthetic cubes with dimensions of 20 x 20 x 20 cm creating simple geometries of a single or a cascade of consecutive horizontal fractures. Gravity-driven free surface flow (droplets; rivulets) is established via a high precision multichannel dispenser at flow rates ranging from 1.5 to 4.5 ml/min. Single-inlet experiments show the influence of variable flow rate, atmospheric pressure and temperature on the stability of flow modes and allow to delineate a droplet and rivulet regime. The transition between these regimes exhibits mixed flow characteristics. In addition, multi-inlet setups with constant total infow rates decrease the variance induced by erratic free-surface flow dynamics. We investigate the impacts of variable aperture widths, horizontal offsets of vertical fracture surfaces, and alternating injection methods for both flow regimes. Normalized fracture inflow rates allow to demonstrate and compare the effects of variable geometric features. Firstly, the fracture filling can be described by plug flow. At later stages it transitions into a Washburn-type flow, which we compare to an analytical solution for the case of rivulet flow. Observations show a considerably higher bypass effciency of droplet flow. This behaviour may not be recovered by plug flow but also transitions into a Washburn stage. Furthermore, we study the effect of additional cubes, i.e. increasing amount of horizontal fractures, on the bulk arrival times and associated importance of flow mode dependent partitioning processes.
NASA Astrophysics Data System (ADS)
Rassi, Erik M.; Codd, Sarah L.; Seymour, Joseph D.
2011-01-01
Flow in porous media and the resultant hydrodynamics are important in fields including but not limited to the hydrology, chemical, medical and petroleum industries. The observation and understanding of the hydrodynamics in porous media are critical to the design and optimal utilization of porous media, such as those seen in trickle-bed reactors, medical filters, subsurface flows and carbon sequestration. Magnetic resonance (MR) provides for a non-invasive technique that can probe the hydrodynamics on pore and bulk scale lengths; many previous works have characterized fully saturated porous media, while rapid MR imaging (MRI) methods in particular have previously been applied to partially saturated flows. We present time- and ensemble-averaged MR measurements to observe the effects on a bead pack partially saturated with air under flowing water conditions. The 10 mm internal diameter bead pack was filled with 100 μm borosilicate glass beads. Air was injected into the bead pack as water flowed simultaneously through the sample at 25 ml h-1. The initial partially saturated state was characterized with MRI density maps, free induction decay (FID) experiments, propagators and velocity maps before the water flow rate was increased incrementally from 25 to 500 ml h-1. After the maximum flow rate of 500 ml h-1, the MRI density maps, FID experiments, propagators and velocity maps were repeated and compared to the data taken before the maximum flow rate. This work shows that a partially saturated single-phase flow has global flow dynamics that return to characteristic flow statistics once a steady-state high flow rate has been reached. This high flow rate pushed out a significant amount of the air in the bead pack and caused the return of a preferential flow pattern. Velocity maps indicated that local flow statistics were not the same for the before and after blow out conditions. It has been suggested and shown previously that a flow pattern can return to similar statistics if the preceding flow history is similar.
Heat flow in eastern Egypt - The thermal signature of a continental breakup
NASA Technical Reports Server (NTRS)
Morgan, P.; Boulos, F. K.; Hennin, S. F.; El-Sherif, A. A.; El-Sayed, A. A.
1985-01-01
It is noted that the Red Sea is a modern example of continental fragmentation and incipient ocean formation. A consistent pattern of high heat flow in the Red Sea margins and coastal zone, including Precambrian terrane up to at least 30 km from the Red Sea, has emerged from the existing data. It is noted that this pattern has important implications for the mode and mechanism of Red Sea opening. High heat flow in the Red Sea shelf requires either a high extension of the crust in this zone (probably with major basic magmatic activity) or young oceanic crust beneath this zone. High heat flow in the coastal thermal anomaly zone may be caused by lateral conduction from the offshore lithosphere and/or from high mantle heat flow. It is suggested that new oceanic crust and highly extended continental crust would be essentially indistinguishable with the available data in the Red Sea margins, and are for many purposes essentially identical.
NASA Astrophysics Data System (ADS)
Korman, Josh
2010-05-01
The abundance of adult fish populations is controlled by the growth and survival rates of early life stages. Evaluating the effects of flow regimes on early life stages is therefore critical to determine how these regimes affect the abundance of adult populations. Experimental high flow releases from Glen Canyon Dam, primarily intended to conserve fine sediment and improve habitat conditions for native fish in the Colorado River in Grand Canyon, AZ, have been conducted in 1996, 2004, and 2008. These flows potentially affect the Lee's Ferry reach rainbow trout population, located immediately downstream of the dam, which supports a highly valued fishery and likely influences the abundance of rainbow trout in Grand Canyon. Due to concerns about negative effects of high trout abundance on endangered native fish, hourly variation in flow from Glen Canyon Dam was experimentally increased between 2003 and 2005 to reduce trout abundance. This study reports on the effects of experimental high flow releases and fluctuating flows on early life stages of rainbow trout in the Lee's Ferry reach based on monthly sampling of redds (egg nests) and the abundance and growth of age-0 trout between 2003 and 2009. Data on spawn timing, spawning elevations, and intergravel temperatures were integrated in a model to estimate the magnitude and seasonal trend in incubation mortality resulting from redd dewatering due to fluctuations in flow. Experimental fluctuations from January through March promoted spawning at higher elevations where the duration of dewatering was longer and intergravel temperatures exceeded lethal thresholds. Flow-dependent incubation mortality rates were 24% (2003) and 50% (2004) in years with higher flow fluctuations, compared to 5-11% under normal operations (2006-2009). Spatial and temporal predictions of mortality were consistent with direct observations of egg mortality determined from the excavation of 125 redds. The amount of variation in backcalculated hatch date distributions predicted by flow-independent (84-93%) and flow-dependent (82-91%) incubation loss models were similar. Age-0 abundance was generally independent of viable egg deposition, except in one year when egg deposition was 10-fold lower due to reduced spawning activity. There was no evidence from the hatch date or stock-recruitment analysis that flow-dependent incubation losses, although large in experimental years, affected the abundance of the age-0 population. The data indicate that strong compensation in survival rates shortly after emergence mitigated the impact of flow-dependent losses. Multiple lines of evidence demonstrated that the March 2008 high flow experiment (HFE) resulted in a large increase in early survival rates (fertilization to ~1-2 months from emergence) of age-0 trout due an improvement in habitat conditions. A stock-recruitment analysis indicated that age-0 abundance in July 2008 was over four-fold higher than expected given the number of viable redds that produced these fish. A hatch date analysis indicated that early survival rates were much higher for cohorts that emerged about two months after the HFE. These cohorts, which were fertilized after the HFE, were not exposed to high flows and emerged into better quality habitat. Inter annual differences in growth of age-0 trout based on otolith microstructure support this hypothesis. Growth rates in the summer and fall of 2008 (0.44 mm·day-1) were virtually the same as in 2006 (0.46 mm·day-1), the highest recorded over six years, even though abundance was eight-fold greater in 2008. I speculate that high flows in 2008 increased interstitial spaces in the substrate and food availability or quality, leading to higher early survival of recently emerged trout and better growth during summer and fall. Abundance in 2009 was over two-fold higher than expected, possibly indicating that the effect of the HFE on early life stages was somewhat persistent.
Simulations of the flow past a cylinder using an unsteady double wake model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramos-García, N.; Sarlak, H.; Andersen, S. J.
2016-06-08
In the present work, the in-house UnSteady Double Wake Model (USDWM) is used to simulate flows past a cylinder at subcritical, supercritical, and transcritical Reynolds numbers. The flow model is a two-dimensional panel method which uses the unsteady double wake technique to model flow separation and its dynamics. In the present work the separation location is obtained from experimental data and fixed in time. The highly unsteady flow field behind the cylinder is analyzed in detail, comparing the vortex shedding charactericts under the different flow conditions.
Computed Flow Through An Artificial Heart Valve
NASA Technical Reports Server (NTRS)
Rogers, Stewart E.; Kwak, Dochan; Kiris, Cetin; Chang, I-Dee
1994-01-01
Report discusses computations of blood flow through prosthetic tilting disk valve. Computational procedure developed in simulation used to design better artificial hearts and valves by reducing or eliminating following adverse flow characteristics: large pressure losses, which prevent hearts from working efficiently; separated and secondary flows, which causes clotting; and high turbulent shear stresses, which damages red blood cells. Report reiterates and expands upon part of NASA technical memorandum "Computed Flow Through an Artificial Heart and Valve" (ARC-12983). Also based partly on research described in "Numerical Simulation of Flow Through an Artificial Heart" (ARC-12478).
Modified Beer-Lambert law for blood flow.
Baker, Wesley B; Parthasarathy, Ashwin B; Busch, David R; Mesquita, Rickson C; Greenberg, Joel H; Yodh, A G
2014-11-01
We develop and validate a Modified Beer-Lambert law for blood flow based on diffuse correlation spectroscopy (DCS) measurements. The new formulation enables blood flow monitoring from temporal intensity autocorrelation function data taken at single or multiple delay-times. Consequentially, the speed of the optical blood flow measurement can be substantially increased. The scheme facilitates blood flow monitoring of highly scattering tissues in geometries wherein light propagation is diffusive or non-diffusive, and it is particularly well-suited for utilization with pressure measurement paradigms that employ differential flow signals to reduce contributions of superficial tissues.
Modeling of heavy-gas effects on airfoil flows
NASA Technical Reports Server (NTRS)
Drela, Mark
1992-01-01
Thermodynamic models were constructed for a calorically imperfect gas and for a non-ideal gas. These were incorporated into a quasi one dimensional flow solver to develop an understanding of the differences in flow behavior between the new models and the perfect gas model. The models were also incorporated into a two dimensional flow solver to investigate their effects on transonic airfoil flows. Specifically, the calculations simulated airfoil testing in a proposed high Reynolds number heavy gas test facility. The results indicate that the non-idealities caused significant differences in the flow field, but that matching of an appropriate non-dimensional parameter led to flows similar to those in air.
Highlights of the high-temperature falling particle receiver project: 2012 - 2016
NASA Astrophysics Data System (ADS)
Ho, C. K.; Christian, J.; Yellowhair, J.; Jeter, S.; Golob, M.; Nguyen, C.; Repole, K.; Abdel-Khalik, S.; Siegel, N.; Al-Ansary, H.; El-Leathy, A.; Gobereit, B.
2017-06-01
A 1 MWt continuously recirculating falling particle receiver has been demonstrated at Sandia National Laboratories. Free-fall and obstructed-flow receiver designs were tested with particle mass flow rates of ˜1 - 7 kg/s and average irradiances up to 1,000 suns. Average particle outlet temperatures exceeded 700 °C for the free-fall tests and reached nearly 800 °C for the obstructed-flow tests, with peak particle temperatures exceeding 900 °C. High particle heating rates of ˜50 to 200 °C per meter of illuminated drop length were achieved for the free-fall tests with mass flow rates ranging from 1 - 7 kg/s and for average irradiances up to ˜ 700 kW/m2. Higher temperatures were achieved at the lower particle mass flow rates due to less shading. The obstructed-flow design yielded particle heating rates over 300 °C per meter of illuminated drop length for mass flow rates of 1 - 3 kg/s for irradiances up to ˜1,000 kW/m2. The thermal efficiency was determined to be ˜60 - 70% for the free-falling particle tests and up to ˜80% for the obstructed-flow tests. Challenges encountered during the tests include particle attrition and particle loss through the aperture, reduced particle mass flow rates at high temperatures due to slot aperture narrowing and increased friction, and deterioration of the obstructed-flow structures due to wear and oxidation. Computational models were validated using the test data and will be used in future studies to design receiver configurations that can increase the thermal efficiency.
Mallik, Tanuja; Aneja, S; Tope, R; Muralidhar, V
2012-01-01
Background: In the administration of minimal flow anesthesia, traditionally a fixed time period of high flow has been used before changing over to minimal flow. However, newer studies have used “equilibration time” of a volatile anesthetic agent as the change-over point. Materials and Methods: A randomized prospective study was conducted on 60 patients, who were divided into two groups of 30 patients each. Two volatile inhalational anesthetic agents were compared. Group I received desflurane (n = 30) and group II isoflurane (n = 30). Both the groups received an initial high flow till equilibration between inspired (Fi) and expired (Fe) agent concentration were achieved, which was defined as Fe/Fi = 0.8. The mean (SD) equilibration time was obtained for both the agent. Then, a drift in end-tidal agent concentration during the minimal flow anesthesia and recovery profile was noted. Results: The mean equilibration time obtained for desflurane and isoflurane were 4.96 ± 1.60 and 16.96 ± 9.64 min (P < 0.001). The drift in end-tidal agent concentration over time was minimal in the desflurane group (P = 0.065). Recovery time was 5.70 ± 2.78 min in the desflurane group and 8.06 ± 31 min in the isoflurane group (P = 0.004). Conclusion: Use of equilibration time of the volatile anesthetic agent as a change-over point, from high flow to minimal flow, can help us use minimal flow anesthesia, in a more efficient way. PMID:23225926
NASA Astrophysics Data System (ADS)
Tsujimura, Maki; Watanabe, Yasuto; Ikeda, Koichi; Yano, Shinjiro; Abe, Yutaka
2016-04-01
Headwater catchments in mountainous region are the most important recharge area for surface and subsurface waters, additionally time information of the water is principal to understand hydrological processes in the catchments. However, there have been few researches to evaluate variation of residence time of subsurface water in time and space at the mountainous headwaters especially with steep slope. We investigated the temporal variation of the residence time of the spring and groundwater with tracing of hydrological flow processes in mountainous catchments underlain by granite, Yamanashi Prefecture, central Japan. We conducted intensive hydrological monitoring and water sampling of spring, stream and ground waters in high-flow and low-flow seasons from 2008 through 2013 in River Jingu Watershed underlain by granite, with an area of approximately 15 km2 and elevation ranging from 950 m to 2000 m. The CFCs, stable isotopic ratios of oxygen-18 and deuterium, inorganic solute constituent concentrations were determined on all water samples. Also, a numerical simulation was conducted to reproduce of the average residence times of the spring and groundwater. The residence time of the spring water estimated by the CFCs concentration ranged from 10 years to 60 years in space within the watershed, and it was higher (older) during the low flow season and lower (younger) during the high flow season. We tried to reproduce the seasonal change of the residence time in the spring water by numerical simulation, and the calculated residence time of the spring water and discharge of the stream agreed well with the observed values. The groundwater level was higher during the high flow season and the groundwater dominantly flowed through the weathered granite with higher permeability, whereas that was lower during the low flow season and that flowed dominantly through the fresh granite with lower permeability. This caused the seasonal variation of the residence time of the spring water, older in low flow season and younger in the high flow season in the watershed. As a result, the numerical model simulated successfully the dynamics of the groundwater flow and residence time in the spring water.
Bed topography and sand transport responses to a step change in discharge and water depth
USDA-ARS?s Scientific Manuscript database
Ephemeral streams with sand and gravel beds may inherit bed topography caused by previous flow events, resulting in bed topography that is not in equilibrium with flow conditions, complicating the modeling of flow and sediment transport. Major flow events, resulting from rainfall with high intensity...
Analysis of HRCT-derived xylem network reveals reverse flow in some vessels
USDA-ARS?s Scientific Manuscript database
Flow in xylem vessels is modeled based on constructions of three dimensional xylem networks derived from High Resolution Computed Tomography (HRCT) images of grapevine (Vitis vinifera) stems. Flow in 6-14% of the vessels was found to be oriented in the opposite direction to the bulk flow under norma...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qaisrani, M. Hasnain; Xian, Yubin, E-mail: yubin.xian@hotmail.com; Li, Congyun
2016-06-15
In this paper, first, steady state of the plasma jet at different operating conditions is investigated through Schlieren photography with and without applying shielding gas. Second, the dynamic process for the plasma impacting on the gas flow field is studied. When the discharge is ignited, reduction in laminar flow occurs. However, when the gas flow rate is too low or too high, this phenomenon is not obvious. What is more, both frequency and voltage have significant impact on the effect of plasma on the gas flow, but the former is more significant. Shielding gas provides a curtain for plasma tomore » propagate further. High speed camera along with Schlieren photography is utilized to study the impact of plasma on the gas flow when plasma is switched on and off. The transition of the gas flow from laminar to turbulent or vice versa happens right after the turbulent front. It is concluded that appearance and propagation of turbulence front is responsible for the transition of the flow state.« less
Koga, Hirotaka; Namba, Naoko; Takahashi, Tsukasa; Nogi, Masaya; Nishina, Yuta
2017-06-22
Continuous-flow nanocatalysis based on metal nanoparticle catalyst-anchored flow reactors has recently provided an excellent platform for effective chemical manufacturing. However, there has been limited progress in porous structure design and recycling systems for metal nanoparticle-anchored flow reactors to create more efficient and sustainable catalytic processes. In this study, traditional paper is used for a highly efficient, recyclable, and even renewable flow reactor by tailoring the ultrastructures of wood pulp. The "paper reactor" offers hierarchically interconnected micro- and nanoscale pores, which can act as convective-flow and rapid-diffusion channels, respectively, for efficient access of reactants to metal nanoparticle catalysts. In continuous-flow, aqueous, room-temperature catalytic reduction of 4-nitrophenol to 4-aminophenol, a gold nanoparticle (AuNP)-anchored paper reactor with hierarchical micro/nanopores provided higher reaction efficiency than state-of-the-art AuNP-anchored flow reactors. Inspired by traditional paper materials, successful recycling and renewal of AuNP-anchored paper reactors were also demonstrated while high reaction efficiency was maintained. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Namba, Naoko; Takahashi, Tsukasa; Nogi, Masaya; Nishina, Yuta
2017-01-01
Abstract Continuous‐flow nanocatalysis based on metal nanoparticle catalyst‐anchored flow reactors has recently provided an excellent platform for effective chemical manufacturing. However, there has been limited progress in porous structure design and recycling systems for metal nanoparticle‐anchored flow reactors to create more efficient and sustainable catalytic processes. In this study, traditional paper is used for a highly efficient, recyclable, and even renewable flow reactor by tailoring the ultrastructures of wood pulp. The “paper reactor” offers hierarchically interconnected micro‐ and nanoscale pores, which can act as convective‐flow and rapid‐diffusion channels, respectively, for efficient access of reactants to metal nanoparticle catalysts. In continuous‐flow, aqueous, room‐temperature catalytic reduction of 4‐nitrophenol to 4‐aminophenol, a gold nanoparticle (AuNP)‐anchored paper reactor with hierarchical micro/nanopores provided higher reaction efficiency than state‐of‐the‐art AuNP‐anchored flow reactors. Inspired by traditional paper materials, successful recycling and renewal of AuNP‐anchored paper reactors were also demonstrated while high reaction efficiency was maintained. PMID:28394501
Advanced flow MRI: emerging techniques and applications
Markl, M.; Schnell, S.; Wu, C.; Bollache, E.; Jarvis, K.; Barker, A. J.; Robinson, J. D.; Rigsby, C. K.
2016-01-01
Magnetic resonance imaging (MRI) techniques provide non-invasive and non-ionising methods for the highly accurate anatomical depiction of the heart and vessels throughout the cardiac cycle. In addition, the intrinsic sensitivity of MRI to motion offers the unique ability to acquire spatially registered blood flow simultaneously with the morphological data, within a single measurement. In clinical routine, flow MRI is typically accomplished using methods that resolve two spatial dimensions in individual planes and encode the time-resolved velocity in one principal direction, typically oriented perpendicular to the two-dimensional (2D) section. This review describes recently developed advanced MRI flow techniques, which allow for more comprehensive evaluation of blood flow characteristics, such as real-time flow imaging, 2D multiple-venc phase contrast MRI, four-dimensional (4D) flow MRI, quantification of complex haemodynamic properties, and highly accelerated flow imaging. Emerging techniques and novel applications are explored. In addition, applications of these new techniques for the improved evaluation of cardiovascular (aorta, pulmonary arteries, congenital heart disease, atrial fibrillation, coronary arteries) as well as cerebrovascular disease (intra-cranial arteries and veins) are presented. PMID:26944696
A mechanistic model of heat transfer for gas-liquid flow in vertical wellbore annuli.
Yin, Bang-Tang; Li, Xiang-Fang; Liu, Gang
2018-01-01
The most prominent aspect of multiphase flow is the variation in the physical distribution of the phases in the flow conduit known as the flow pattern. Several different flow patterns can exist under different flow conditions which have significant effects on liquid holdup, pressure gradient and heat transfer. Gas-liquid two-phase flow in an annulus can be found in a variety of practical situations. In high rate oil and gas production, it may be beneficial to flow fluids vertically through the annulus configuration between well tubing and casing. The flow patterns in annuli are different from pipe flow. There are both casing and tubing liquid films in slug flow and annular flow in the annulus. Multiphase heat transfer depends on the hydrodynamic behavior of the flow. There are very limited research results that can be found in the open literature for multiphase heat transfer in wellbore annuli. A mechanistic model of multiphase heat transfer is developed for different flow patterns of upward gas-liquid flow in vertical annuli. The required local flow parameters are predicted by use of the hydraulic model of steady-state multiphase flow in wellbore annuli recently developed by Yin et al. The modified heat-transfer model for single gas or liquid flow is verified by comparison with Manabe's experimental results. For different flow patterns, it is compared with modified unified Zhang et al. model based on representative diameters.
NASA Astrophysics Data System (ADS)
Zhang, Ruiying; Yao, Junjie; Maslov, Konstantin I.; Wang, Lihong V.
2013-08-01
We propose a method for photoacoustic flow measurement based on the Doppler effect from a flowing homogeneous medium. Excited by spatially modulated laser pulses, the flowing medium induces a Doppler frequency shift in the received photoacoustic signals. The frequency shift is proportional to the component of the flow speed projected onto the acoustic beam axis, and the sign of the shift reflects the flow direction. Unlike conventional flowmetry, this method does not rely on particle heterogeneity in the medium; thus, it can tolerate extremely high particle density. A red-ink phantom flowing in a tube immersed in water was used to validate the method in both the frequency and time domains. The phantom flow immersed in an intralipid solution was also measured.
Cross-flow shearing effects on the trajectory of highly buoyant bent-over plumes
NASA Astrophysics Data System (ADS)
Tohidi, Ali; Kaye, Nigel Berkeley; Gollner, Michael J.
2017-11-01
The dynamics of highly buoyant plumes in cross-flow is ubiquitous throughout both industrial and environmental phenomena. The rise of smoke from a chimney, wastewater discharge into river currents, and dispersion of wildfire plumes are only a few instances. There have been many previous studies investigating the behavior of jets and highly buoyant plumes in cross-flow. So far, however, very little attention has been paid to the role of shearing effects in the boundary layer on the plume trajectory, particularly on the rise height. Numerical simulations and dimensional analysis are conducted to characterize the near- and far-field behavior of a highly buoyant plume in a boundary layer cross-flow. The results show that shear in the cross-flow leads to large differences in the rise height of the plume in relation to a uniform cross-flow, especially at far-field. This material is based upon work supported by the National Science Foundation under Grant No.1200560. Any opinions, findings, and conclusions or recommendations expressed in the material are of the authors and do not necessarily reflect the views of NSF.
Mao, Yanhui; Roberts, Scott; Pagliaro, Stefano; Csikszentmihalyi, Mihaly; Bonaiuto, Marino
2016-01-01
Eudaimonistic identity theory posits a link between activity and identity, where a self-defining activity promotes the strength of a person's identity. An activity engaged in with high enjoyment, full involvement, and high concentration can facilitate the subjective experience of flow. In the present paper, we hypothesized in accordance with the theory of psychological selection that beyond the promotion of individual development and complexity at the personal level, the relationship between flow and identity at the social level is also positive through participation in self-defining activities. Three different samples (i.e., American, Chinese, and Spanish) filled in measures for flow and social identity, with reference to four previously self-reported activities, characterized by four different combinations of skills (low vs. high) and challenges (low vs. high). Findings indicated that flow was positively associated with social identity across each of the above samples, regardless of participants' gender and age. The results have implications for increasing social identity via participation in self-defining group activities that could facilitate flow.
Handheld Fluorescence Microscopy based Flow Analyzer.
Saxena, Manish; Jayakumar, Nitin; Gorthi, Sai Siva
2016-03-01
Fluorescence microscopy has the intrinsic advantages of favourable contrast characteristics and high degree of specificity. Consequently, it has been a mainstay in modern biological inquiry and clinical diagnostics. Despite its reliable nature, fluorescence based clinical microscopy and diagnostics is a manual, labour intensive and time consuming procedure. The article outlines a cost-effective, high throughput alternative to conventional fluorescence imaging techniques. With system level integration of custom-designed microfluidics and optics, we demonstrate fluorescence microscopy based imaging flow analyzer. Using this system we have imaged more than 2900 FITC labeled fluorescent beads per minute. This demonstrates high-throughput characteristics of our flow analyzer in comparison to conventional fluorescence microscopy. The issue of motion blur at high flow rates limits the achievable throughput in image based flow analyzers. Here we address the issue by computationally deblurring the images and show that this restores the morphological features otherwise affected by motion blur. By further optimizing concentration of the sample solution and flow speeds, along with imaging multiple channels simultaneously, the system is capable of providing throughput of about 480 beads per second.
Mao, Yanhui; Roberts, Scott; Pagliaro, Stefano; Csikszentmihalyi, Mihaly; Bonaiuto, Marino
2016-01-01
Eudaimonistic identity theory posits a link between activity and identity, where a self-defining activity promotes the strength of a person’s identity. An activity engaged in with high enjoyment, full involvement, and high concentration can facilitate the subjective experience of flow. In the present paper, we hypothesized in accordance with the theory of psychological selection that beyond the promotion of individual development and complexity at the personal level, the relationship between flow and identity at the social level is also positive through participation in self-defining activities. Three different samples (i.e., American, Chinese, and Spanish) filled in measures for flow and social identity, with reference to four previously self-reported activities, characterized by four different combinations of skills (low vs. high) and challenges (low vs. high). Findings indicated that flow was positively associated with social identity across each of the above samples, regardless of participants’ gender and age. The results have implications for increasing social identity via participation in self-defining group activities that could facilitate flow. PMID:26924995
High-performance, low-voltage electroosmotic pumps with molecularly thin silicon nanomembranes
Snyder, Jessica L.; Getpreecharsawas, Jirachai; Fang, David Z.; Gaborski, Thomas R.; Striemer, Christopher C.; Fauchet, Philippe M.; Borkholder, David A.; McGrath, James L.
2013-01-01
We have developed electroosmotic pumps (EOPs) fabricated from 15-nm-thick porous nanocrystalline silicon (pnc-Si) membranes. Ultrathin pnc-Si membranes enable high electroosmotic flow per unit voltage. We demonstrate that electroosmosis theory compares well with the observed pnc-Si flow rates. We attribute the high flow rates to high electrical fields present across the 15-nm span of the membrane. Surface modifications, such as plasma oxidation or silanization, can influence the electroosmotic flow rates through pnc-Si membranes by alteration of the zeta potential of the material. A prototype EOP that uses pnc-Si membranes and Ag/AgCl electrodes was shown to pump microliter per minute-range flow through a 0.5-mm-diameter capillary tubing with as low as 250 mV of applied voltage. This silicon-based platform enables straightforward integration of low-voltage, on-chip EOPs into portable microfluidic devices with low back pressures. PMID:24167263
Some predictions of the attached eddy model for a high Reynolds number boundary layer.
Nickels, T B; Marusic, I; Hafez, S; Hutchins, N; Chong, M S
2007-03-15
Many flows of practical interest occur at high Reynolds number, at which the flow in most of the boundary layer is turbulent, showing apparently random fluctuations in velocity across a wide range of scales. The range of scales over which these fluctuations occur increases with the Reynolds number and hence high Reynolds number flows are difficult to compute or predict. In this paper, we discuss the structure of these flows and describe a physical model, based on the attached eddy hypothesis, which makes predictions for the statistical properties of these flows and their variation with Reynolds number. The predictions are shown to compare well with the results from recent experiments in a new purpose-built high Reynolds number facility. The model is also shown to provide a clear physical explanation for the trends in the data. The limits of applicability of the model are also discussed.
NASA Technical Reports Server (NTRS)
Fisher, David F.; Delfrate, John H.; Richwine, David M.
1991-01-01
Surface and off-surface flow visualization techniques were used to visualize the 3-D separated flows on the NASA F-18 high alpha research vehicle at high angles of attack. Results near the alpha = 25 to 26 deg and alpha = 45 to 49 deg are presented. Both the forebody and leading edge extension (LEX) vortex cores and breakdown locations were visualized using smoke. Forebody and LEX vortex separation lines on the surface were defined using an emitted fluid technique. A laminar separation bubble was also detected on the nose cone using the emitted fluid technique and was similar to that observed in the wind tunnel test, but not as extensive. Regions of attached, separated, and vortical flow were noted on the wing and the leading edge flap using tufts and flow cones, and compared well with limited wind tunnel results.
Dibble, Kimberly L.; Yackulic, Charles B.; Kennedy, Theodore A.; Budy, Phaedra E.
2015-01-01
The mean lengths of adult rainbow and brown trout were influenced by similar flow and catch metrics. Length in both species was positively correlated with high annual flow but declined in tailwaters with high daily fluctuations in flow, high catch rates of conspecifics, and when large cohorts recruited to adult size. Whereas brown trout did not respond to the proportion of water allocated between seasons, rainbow trout length increased in rivers that released more water during winter than in spring. Rainbow trout length was primarily related to high catch rates of conspecifics, whereas brown trout length was mainly related to large cohorts recruiting to the adult size class. Species-specific responses to flow management are likely attributable to differences in seasonal timing of key life history events such as spawning, egg hatching, and fry emergence.
Validity of Molecular Tagging Velocimetry in a Cavitating Flow for Turbopump Analysis
NASA Astrophysics Data System (ADS)
Kuzmich, Kayla; Bohl, Doug
2012-11-01
This research establishes multi-phase molecular tagging velocimetry (MTV) use and explores its limitations. The flow conditions and geometry in the inducer of an upper stage liquid Oxygen (LOX)/LH2 engine frequently cause cavitation which decreases turbopump performance. Complications arise in performing experiments in liquid hydrogen and oxygen due to high costs, high pressures, extremely low fluid temperatures, the presence of cavitation, and associated safety risks. Due to the complex geometry and hazardous nature of the fluids, a simplified throat geometry with water as a simulant fluid is used. Flow characteristics are measured using MTV, a noninvasive flow diagnostic technique. MTV is found to be an applicable tool in cases of low cavitation. Highly cavitating flows reflect and scatter most of the laser beam disallowing penetration into the cavitation cloud. However, data can be obtained in high cavitation cases near the cloud boundary layer. Distribution A: Public Release, Public Affairs Clearance Number: 12654
NASA Astrophysics Data System (ADS)
Shivamoggi, B. K.
This book is concerned with a discussion of the dynamical behavior of a fluid, and is addressed primarily to graduate students and researchers in theoretical physics and applied mathematics. A review of basic concepts and equations of fluid dynamics is presented, taking into account a fluid model of systems, the objective of fluid dynamics, the fluid state, description of the flow field, volume forces and surface forces, relative motion near a point, stress-strain relation, equations of fluid flows, surface tension, and a program for analysis of the governing equations. The dynamics of incompressible fluid flows is considered along with the dynamics of compressible fluid flows, the dynamics of viscous fluid flows, hydrodynamic stability, and dynamics of turbulence. Attention is given to the complex-variable method, three-dimensional irrotational flows, vortex flows, rotating flows, water waves, applications to aerodynamics, shock waves, potential flows, the hodograph method, flows at low and high Reynolds numbers, the Jeffrey-Hamel flow, and the capillary instability of a liquid jet.
NASA Astrophysics Data System (ADS)
Applegarth, L. J.; Pinkerton, H.; James, M. R.
2009-04-01
The general processes associated with the formation and activity of ephemeral boccas in lava flow fields are well documented (e.g. Pinkerton & Sparks 1976; Polacci & Papale 1997). The importance of studying such behaviour is illustrated by observations of the emplacement of a basaltic andesite flow at Parícutin during the 1940s. Following a pause in advance of one month, this 8 km long flow was reactivated by the resumption of supply from the vent, which forced the rapid drainage of stagnant material in the flow front region. The material extruded during drainage was in a highly plastic state (Krauskopf 1948), and its displacement allowed hot fluid lava from the vent to be transported in a tube to the original flow front, from where it covered an area of 350,000 m2 in one night (Luhr & Simkin 1993). Determining when a flow has stopped advancing, and cannot be drained in such a manner, is therefore highly important in hazard assessment and flow modelling, and our ability to do this may be improved through the examination of relatively small-scale secondary extrusions and boccas. The 2001 flank eruption of Mt. Etna, Sicily, resulted in the emplacement of a 7 km long compound `a`ā flow field over a period of 23 days. During emplacement, many ephemeral boccas were observed in the flow field, which were active for between two and at least nine days. The longer-lived examples initially fed well-established flows that channelled fresh material from the main vent. With time, as activity waned, the nature of the extruded material changed. The latest stages of development of all boccas involved the very slow extrusion of material that was either draining from higher parts of the flow or being forced out of the flow interior as changing local flow conditions pressurised parts of the flow that had been stagnant for some time. Here we describe this late-stage activity of the ephemeral boccas, which resulted in the formation of ‘squeeze-ups' of lava with a markedly different texture to that of the surrounding `a`ā flow surface. The appearance of the squeeze-up material in this flow is similar to that of the plastic lava forcibly drained from the front of the Parícutin flow. The squeeze-up features demonstrate marked morphological variation, which was found to reflect the rheology of the material being extruded, the volume of material being extruded, the extrusion rate and the geometry of the source bocca. We describe the final morphology of squeeze-ups from the 2001 flow field, which ranges from relatively fluid flows to extrusions of high-strength material that accumulated above the source bocca, forming features more akin to tumuli. Although tumulus-like in overall shape and dimensions, the morphology and inferred growth mechanisms for these structures leads to them being dubbed ‘exogenous tumuli', to distinguish them from the more familiar tumuli resulting from inflation processes, which are described elsewhere (e.g. Macdonald 1972; Walker 1991; Duncan et al. 2004). The morphological data are then used together with observations of lava surface textures and squeeze-up locations to build up a picture of flow structure and flow dynamics at the time of squeeze-up formation. The structure of the crust underlying the clinker cover can be elucidated by examining the locations in which squeeze-ups occur, as extrusions exploit zones of crustal weakness. It is found that the flow crust plays an increasingly important role in determining the locus of squeeze-ups as the flow evolves. Squeeze-ups that clearly had a high strength upon extrusion formed as a result of high overpressures in the flow interior. The extrusion of such material may represent the latter stages of activity of a long-lived bocca, or the new development of a bocca in a part of the flow that had been stagnant for some time. Examination of squeeze-up textures may help determine whether the material was transported to the extrusion site in an open or closed system, or if it was stored for a significant length of time before extrusion. Information may also be gleaned concerning the maximum crystallinity at which lava can flow, which is an important parameter in flow modelling. Evidence for a mechanism by which sufficient overpressure can be generated to extrude such material is presented.
NASA Astrophysics Data System (ADS)
Yilmaz, M. T.; Alp, E.; Aras, M.; Özaltın, A. M.; Sarıcan, Y.; Afsar, M.; Bulut, B.; Ersoy, E. N.; Karasu, İ. G.; Onen, A.
2017-12-01
Allocation of the river flow for ecosystems is very critical for sustainable management of ecosystems containing aquatic habitats in need of more water than other environments. Availability and allocation of water over such locations becomes more stressed as a result of the influence of human interventions (e.g., increased water use for irrigation) and the expected change in climate. This study investigates the current and future (until 2100) low-flow requirements over 10 subcatchments in a Mediterranean Watershed, in Turkey, using Tennant and hydrological low-flow methods. The future river flows are estimated using HBV model forced by climate projections obtained by HADGEM2, MPI-ESM-MR, and CNRM-CM5.1 models coupled with RegCM4.3 under RCP 4.5 and RCP 8.5 emission scenarios. Critical flows (i.e., Q10, Q25, Q50) are calculated using the best fit to commonly used distributions for the river flow data, while the decision between the selection of Q10, Q25, Q50 critical levels are made depending on the level of human interference made over the catchment. Total three low-flow requirement estimations are obtained over each subcatchment using the Tennant (two estimates for the low and high flow seasons for environmentally good conditions) and the hydrological low-flow methods. The highest estimate among these three methods is selected as the low-flow requirement of the subcatchment. The river flows over these 10 subcatchments range between 197hm3 and 1534hm3 while the drainage areas changing between 936 and 4505 km2. The final low-flow estimation (i.e., the highest among the three estimate) for the current conditions range between 94 hm3 and 715 hm3. The low-flow projection values between 2075 and 2099 are on average 39% lower than the 2016 values, while the steepest decline is expected between 2050 and 2074. The low flow and high flow season Tennant estimates dropped 22-25% while the hydrological method low-flow estimates dropped 32% from 2016 to 2075-2099 average, where Tennant estimates are sensitive to the precipitation projections while hydrological flow estimates are sensitive to the degree that the subcatchment flows are regulated/intervened. On the other hand, the combined low-flow estimate, the highest of three methods, dropped around 39%, reflecting combined impact of human intervention and climate change.
Wells, Ray E.; Simpson, R.W.; Bentley, R.D.; Beeson, Melvin H.; Mangan, Margaret T.; Wright, Thomas L.
1989-01-01
Nearly twenty flows of the Columbia River Basalt Group (CRBG) can be paleomagnetically and chemically correlated westward as far as 500 km from the Columbia Plateau in Washington, through the Columbia Gorge, to the Coast Range of Oregon and Washington. In the Coast Range near Cathlamet, Washington, the CRBG flow stratigraphy includes 10 flows of Grande Ronde Basalt (1 low-MgO R2 flow, 6 low-MgO N2 flows, 3 high-MgO N2 flows), 2 flows of Wanapum Basalt (both flows of Sand Hollow from the Frenchman Springs Member), and the Pomona Member of the Saddle Mountains Basalt. Elsewhere in the Coast Range, additional Grande Ronde Basalt flows, including flows of Winterwater or Umtanum, and additional Wanapum flows, including the flows of Ginkgo, have been reported. Thus at least 18 to 20 CRBG flows reached the coast region. Several of these distal flows have distinctive chemical and magnetic characteristics that are shared by nearby isolated intrusions in Coast Range sedimentary rocks, thus strongly supporting recent suggestions that these intrusions are invasive bodies fed by CRBG flows. Magnetization directions from several flows indicate 16 to 30° of clockwise rotation of the coast with respect to the plateau since middle Miocene time.
NASA Astrophysics Data System (ADS)
Anaya, A. A.; Padilla, I. Y.; Macchiavelli, R. E.
2011-12-01
Karst groundwater systems are highly productive and provide an important fresh water resource for human development and ecological integrity. Their high productivity is often associated with conduit flow and high matrix permeability. The same characteristics that make these aquifers productive also make them highly vulnerable to contamination and a likely for contaminant exposure. Of particular interest are chlorinated organic contaminants and phthalates derived from industrial solvents and plastic by-products. These chemicals have been identified as potential precursors of pre-term birth, a leading cause of neonatal complications with a significant health and societal cost. The general objectives of this work are to: (1) develop fundamental knowledge and determine the processes controlling the release, mobility, persistence, and possible pathways of contaminants in karst groundwater systems, and (2) characterize transport processes in conduit and diffusion-dominated flow under base flow and storm flow conditions. The work presented herein focuses on the development of geo-hydro statistical tools to characterize flow and transport processes under different flow regimes. Multidimensional, laboratory-scale Geo-Hydrobed models were developed and tested for this purpose. The models consist of stainless-steel tanks containing karstified limestone blocks collected from the karst aquifer formation of northern Puerto Rico. The models a network of sampling wells to monitor flow, pressure, and solute concentrations temporally and spatially. Experimental work entailed making a series of point injections in wells while monitoring the hydraulic response in other wells. Statistical mixed models were applied to spatial probabilities of hydraulic response and weighted injected volume data, and were used to determinate the best spatial correlation structure to represent paths of preferential flow in the limestone units under different groundwater flow regimes. Preliminary testing of the karstified models show that the system can be used to represent the variable transport regime characterized by conduit and diffuses flow in the karst systems. Initial hydraulic characterization indicates a highly heterogeneous system resulting in large preferential flow components. Future works involve characterization of dual porosity system using conservative tracers, fate and transport experiments using phthalates and chlorinated solvents, geo-temporal statistical modeling, and the testing of "green" remediation technologies in karst groundwater. This work is supported by the U.S. Department of Energy, Savannah River (Grant Award No. DE-FG09-07SR22571), and the National Institute of Environmental Health Sciences (NIEHS, Grant Award No. P42ES017198).
NASA Astrophysics Data System (ADS)
Izumi, Mattashi; Yamamoto, Yasuyuki; Yataya, Kenichi; Kamiyama, Kohhei
Swimming experiments were conducted on wild fishes in a natural guidance system stamina tunnel (cylindrical pipe) installed in a fishway of a local river under high-velocity flow conditions (tunnel flow velocity : 211 to 279 cm·s-1). In this study, the swimming characteristics of fishes were observed. The results show that (1) the swimming speeds of Tribolodon hakonensis (Japanese dace), Phoxinus lagowshi steindachneri (Japanese fat-minnow), Plecoglossus altivelis (Ayu), and Zacco platypus (Pale chub) were in proportion to their body length under identical water flow velocity conditions; (2) the maximum burst speed of Japanese dace and Japanese fat-minnow (measuring 4 to 6 cm in length) was 262 to 319 cm·s-1 under high flow velocity conditions (225 to 230 cm·s-1), while the maximum burst speed of Ayu and Pale chub (measuring 5 cm to 12 cm in length) was 308 to 355 cm·s-1 under high flow velocity conditions (264 to 273 cm·s-1) ; (3) the 50cm-maximum swimming speed of swimming fishes was 1.07 times faster than the pipe-swimming speed; (4) the faster the flow velocity, the shorter the swimming distance became.
NASA Technical Reports Server (NTRS)
Erickson, G. E.; Gilbert, W. P.
1983-01-01
An experimental investigation was conducted to assess the vortex flow-field interactions on an advanced, twin-jet fighter aircraft configuration at high angles of attack. Flow-field surveys were conducted on a small-scale model in the Northrop 0.41 - by 0.60-meter water tunnel and, where appropriate, the qualitative observations were correlated with low-speed wind tunnel data trends obtained on a large-scale model of the advanced fighter in the NASA Langley Research Center 30- by 60-foot (9.1- by 18.3-meter) facility. Emphasis was placed on understanding the interactions of the forebody and LEX-wing vortical flows, defining the effects on rolling moment variation with sideslip, and identifying modifications to control or regulate the vortex interactions at high angles of attack. The water tunnel flow visualization results and wind tunnel data trend analysis revealed the potential for strong interactions between the forebody and LEX vortices at high angles of attack. In particular, the forebody flow development near the nose could be controlled by means of carefully-positioned radome strakes. The resultant strake-induced flow-field changes were amplified downstream by the more powerful LEX vortical motions with subsequent large effects on wing flow separation characteristics.
Yeow, Siang Lin; Leo, Hwa Liang
2016-01-01
This study investigates the effect of a novel flow remodeling stent graft (FRSG) on the hemodynamic characteristics in highly angulated abdominal aortic aneurysm based on computational fluid dynamics (CFD) approach. An idealized aortic aneurysm with varying aortic neck angulations was constructed and CFD simulations were performed on nonstented models and stented models with FRSG. The influence of FRSG intervention on the hemodynamic performance is analyzed and compared in terms of flow patterns, wall shear stress (WSS), and pressure distribution in the aneurysm. The findings showed that aortic neck angulations significantly influence the velocity flow field in nonstented models, with larger angulations shifting the mainstream blood flow towards the center of the aorta. By introducing FRSG treatment into the aneurysm, erratic flow recirculation pattern in the aneurysm sac diminishes while the average velocity magnitude in the aneurysm sac was reduced in the range of 39% to 53%. FRSG intervention protects the aneurysm against the impacts of high velocity concentrated flow and decreases wall shear stress by more than 50%. The simulation results highlighted that FRSG may effectively treat aneurysm with high aortic neck angulations via the mechanism of promoting thrombus formation and subsequently led to the resorption of the aneurysm. PMID:27247612
Tan, Anna C S; Dansingani, Kunal K; Yannuzzi, Lawrence A; Sarraf, David; Freund, K Bailey
2017-02-01
To study the cross-sectional and en face optical coherence tomography angiography (OCTA) findings in Type 3 neovascularization (NV). Optical coherence tomography angiography imaging of 27 eyes of 23 patients with Type 3 NV was analyzed with 9 eyes having consecutive follow-up OCTA studies. Type 3 NV appeared as a linear high-flow structure on cross-sectional OCTA corresponding to a high-flow tuft of vessels seen on en face OCTA. Cross-sectional OCTA seemed to enable the distinction between vascular and nonvascular intraretinal hyperreflective foci. Two patterns of flow were observed; Pattern 1 (11%): a flow signal confined to the neurosensory retina and Pattern 2 (74%): a flow signal extending through the retinal pigment epithelium. No definitive retinal-choroidal anastomosis was observed; however, projection artifacts confounded the interpretation of deeper structures. An increase in the intensity of the high-flow tuft was seen during the progression or recurrence of Type 3 NV. Intravitreal anti-vascular endothelial growth factor therapy caused a reduction in the intensity of the high-flow tuft which was not sustained. Compared with conventional imaging, OCTA may improve detection and delineation of vascular changes occurring in Type 3 NV. Cross-sectional and en face OCTA may prove useful in studying the pathogenesis and guiding the management of these lesions.
NASA Astrophysics Data System (ADS)
Thorpe, S. J.; Quinlan, N.; Ainsworth, R. W.
2000-10-01
Doppler Global Velocimetry (DGV) is a whole-field measurement technique which has attracted significant interest from the fluid-flow research community since its introduction in 1991. Practical implementations of the methodology have focused on two principal laser light sources: the argon ion laser, applied to steady state or slowly varying flows; and the pulsed neodymium YAG laser for the measurement of instantaneous velocity fields. However, the emphasis in the published literature has been very much on research using the argon laser. This paper reports the application of a Q-switched, injection-seeded neodymium YAG laser to the proven Oxford DGV system, and the use of this combination in a short duration unsteady high-speed flow. The pertinent characteristics of the apparatus are described, and the impact of these on the integrity of the resulting velocity measurements is presented. Adaptations to the commercial laser system that make it suitable for application to the measurement of transient high-speed flows are described. Finally, the application of this system to a short duration unsteady flow is described. This application is based on the flow found in a new type of transdermal drug delivery device, where particles of the drug material are projected at high speed through the skin. Whole-field velocities are recorded, and values as high as 800 m/ s are evident.
Wei, Guoguang; Mangal, Sharad; Denman, John; Gengenbach, Thomas; Lee Bonar, Kevin; Khan, Rubayat I; Qu, Li; Li, Tonglei; Zhou, Qi Tony
2017-10-01
This study has investigated the surface coating efficiency and powder flow improvement of a model cohesive acetaminophen powder by high-shear processing with pharmaceutical lubricants through 2 common equipment, conical comil and high-shear mixer. Effects of coating materials and processing parameters on powder flow and surface coating coverage were evaluated. Both Carr's index and shear cell data indicated that processing with the lubricants using comil or high-shear mixer substantially improved the flow of the cohesive acetaminophen powder. Flow improvement was most pronounced for those processed with 1% wt/wt magnesium stearate, from "cohesive" for the V-blended sample to "easy flowing" for the optimally coated sample. Qualitative and quantitative characterizations demonstrated a greater degree of surface coverage for high-shear mixing compared with comilling; nevertheless, flow properties of the samples at the corresponding optimized conditions were comparable between 2 techniques. Scanning electron microscopy images demonstrated different coating mechanisms with magnesium stearate or l-leucine (magnesium stearate forms a coating layer and leucine coating increases surface roughness). Furthermore, surface coating with hydrophobic magnesium stearate did not retard the dissolution kinetics of acetaminophen. Future studies are warranted to evaluate tableting behavior of such dry-coated pharmaceutical powders. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
The high Reynolds number flow through an axial-flow pump
NASA Astrophysics Data System (ADS)
Zierke, W. C.; Straka, W. A.; Taylor, P. D.
1993-11-01
The high Reynolds number pump (HIREP) facility at ARL Penn State has been used to perform a low-speed, large-scale experiment of the incompressible flow of water through a two-blade-row turbomachine. HIREP can involve blade chord Reynolds numbers as high as 6,000,000 and can accommodate a variety of instrumentation in both a stationary and a rotating frame of reference. The objectives of this experiment were as follows: to provide a database for comparison with three-dimensional, viscous (turbulent) flow computations; to evaluate the engineering models; and to improve our physical understanding of many of the phenomena involved in this complex flow field. The experimental results include a large quantity of data acquired throughout HIREP. A five-hole probe survey of the inlet flow 37.0 percent chord upstream of the inlet guide vane (IGV) leading edge is sufficient to give information for the inflow boundary conditions, while some static-pressure information is available to help establish an outflow boundary condition.
Quantitative Image Analysis Techniques with High-Speed Schlieren Photography
NASA Technical Reports Server (NTRS)
Pollard, Victoria J.; Herron, Andrew J.
2017-01-01
Optical flow visualization techniques such as schlieren and shadowgraph photography are essential to understanding fluid flow when interpreting acquired wind tunnel test data. Output of the standard implementations of these visualization techniques in test facilities are often limited only to qualitative interpretation of the resulting images. Although various quantitative optical techniques have been developed, these techniques often require special equipment or are focused on obtaining very precise and accurate data about the visualized flow. These systems are not practical in small, production wind tunnel test facilities. However, high-speed photography capability has become a common upgrade to many test facilities in order to better capture images of unsteady flow phenomena such as oscillating shocks and flow separation. This paper describes novel techniques utilized by the authors to analyze captured high-speed schlieren and shadowgraph imagery from wind tunnel testing for quantification of observed unsteady flow frequency content. Such techniques have applications in parametric geometry studies and in small facilities where more specialized equipment may not be available.
Study of high viscous multiphase phase flow in a horizontal pipe
NASA Astrophysics Data System (ADS)
Baba, Yahaya D.; Aliyu, Aliyu M.; Archibong, Archibong-Eso; Almabrok, Almabrok A.; Igbafe, A. I.
2018-03-01
Heavy oil accounts for a major portion of the world's total oil reserves. Its production and transportation through pipelines is beset with great challenges due to its highly viscous nature. This paper studies the effects of high viscosity on heavy oil two-phase flow characteristics such as pressure gradient, liquid holdup, slug liquid holdup, slug frequency and slug liquid holdup using an advanced instrumentation (i.e. Electrical Capacitance Tomography). Experiments were conducted in a horizontal flow loop with a pipe internal diameter (ID) of 0.0762 m; larger than most reported in the open literature for heavy oil flow. Mineral oil of 1.0-5.0 Pa.s viscosity range and compressed air were used as the liquid and gas phases respectively. Pressure gradient (measured by means differential pressure transducers) and mean liquid holdup was observed to increase as viscosity of oil is increased. Obtained results also revealed that increase in liquid viscosity has significant effects on flow pattern and slug flow features.
Forecasting the short-term passenger flow on high-speed railway with neural networks.
Xie, Mei-Quan; Li, Xia-Miao; Zhou, Wen-Liang; Fu, Yan-Bing
2014-01-01
Short-term passenger flow forecasting is an important component of transportation systems. The forecasting result can be applied to support transportation system operation and management such as operation planning and revenue management. In this paper, a divide-and-conquer method based on neural network and origin-destination (OD) matrix estimation is developed to forecast the short-term passenger flow in high-speed railway system. There are three steps in the forecasting method. Firstly, the numbers of passengers who arrive at each station or depart from each station are obtained from historical passenger flow data, which are OD matrices in this paper. Secondly, short-term passenger flow forecasting of the numbers of passengers who arrive at each station or depart from each station based on neural network is realized. At last, the OD matrices in short-term time are obtained with an OD matrix estimation method. The experimental results indicate that the proposed divide-and-conquer method performs well in forecasting the short-term passenger flow on high-speed railway.
Time-resolved Fast Neutron Radiography of Air-water Two-phase Flows
NASA Astrophysics Data System (ADS)
Zboray, Robert; Dangendorf, Volker; Mor, Ilan; Tittelmeier, Kai; Bromberger, Benjamin; Prasser, Horst-Michael
Neutron imaging, in general, is a useful technique for visualizing low-Z materials (such as water or plastics) obscured by high-Z materials. However, when significant amounts of both materials are present and full-bodied samples have to be examined, cold and thermal neutrons rapidly reach their applicability limit as the samples become opaque. In such cases one can benefit from the high penetrating power of fast neutrons. In this work we demonstrate the feasibility of time-resolved, fast neutron radiography of generic air-water two-phase flows in a 1.5 cm thick flow channel with Aluminum walls and rectangular cross section. The experiments have been carried out at the high-intensity, white-beam facility of the Physikalisch-Technische Bundesanstalt, Germany. Exposure times down to 3.33 ms have been achieved at reasonable image quality and acceptable motion artifacts. Different two-phase flow regimes such as bubbly slug and churn flows have been examined. Two-phase flow parameters like the volumetric gas fraction, bubble size and bubble velocities have been measured.
Full-Field Measurements of Self-Excited Oscillations in Momentum-Dominated Helium Jets
NASA Technical Reports Server (NTRS)
Yildirim, B. S.; Agrawal, A. K.
2005-01-01
Flow structure of momentum-dominated helium jets discharged vertically into ambient air was investigated using a high-speed rainbow schlieren deflectometry (RSD) apparatus operated at up to 2000 Hz. The operating parameters, i.e., Reynolds number and Richardson number were varied independently to examine the self-excited, flow oscillatory behavior over a range of experimental conditions. Measurements revealed highly periodic oscillations in the laminar region at a unique frequency as well as high regularity in the flow transition and initial turbulent regions. The buoyancy was shown to affect the oscillation frequency and the distance from the jet exit to the flow transition plane. Instantaneous helium concentration contours across the field of view revealed changes in the jet flow structure and the evolution of the vortical structures during an oscillation cycle. A cross-correlation technique was applied to track the vortices and to find their convection velocity. Time-traces of helium concentration at different axial locations provided detailed information about the oscillating flow.
Extension of sonic anemometry to high subsonic Mach number flows
NASA Astrophysics Data System (ADS)
Otero, R.; Lowe, K. T.; Ng, W. F.
2017-03-01
In the literature, the application of sonic anemometry has been limited to low subsonic Mach number, near-incompressible flow conditions. To the best of the authors’ knowledge, this paper represents the first time a sonic anemometry approach has been used to characterize flow velocity beyond Mach 0.3. Using a high speed jet, flow velocity was measured using a modified sonic anemometry technique in flow conditions up to Mach 0.83. A numerical study was conducted to identify the effects of microphone placement on the accuracy of the measured velocity. Based on estimated error strictly due to uncertainty in time-of-acoustic flight, a random error of +/- 4 m s-1 was identified for the configuration used in this experiment. Comparison with measurements from a Pitot probe indicated a velocity RMS error of +/- 9 m s-1. The discrepancy in error is attributed to a systematic error which may be calibrated out in future work. Overall, the experimental results from this preliminary study support the use of acoustics for high subsonic flow characterization.
Suppression of the sonic heat transfer limit in high-temperature heat pipes
NASA Astrophysics Data System (ADS)
Dobran, Flavio
1989-08-01
The design of high-performance heat pipes requires optimization of heat transfer surfaces and liquid and vapor flow channels to suppress the heat transfer operating limits. In the paper an analytical model of the vapor flow in high-temperature heat pipes is presented, showing that the axial heat transport capacity limited by the sonic heat transfer limit depends on the working fluid, vapor flow area, manner of liquid evaporation into the vapor core of the evaporator, and lengths of the evaporator and adiabatic regions. Limited comparisons of the model predictions with data of the sonic heat transfer limits are shown to be very reasonable, giving credibility to the proposed analytical approach to determine the effect of various parameters on the axial heat transport capacity. Large axial heat transfer rates can be achieved with large vapor flow cross-sectional areas, small lengths of evaporator and adiabatic regions or a vapor flow area increase in these regions, and liquid evaporation in the evaporator normal to the main flow.
NASA Astrophysics Data System (ADS)
Iverson, Richard M.
1997-08-01
Recent advances in theory and experimentation motivate a thorough reassessment of the physics of debris flows. Analyses of flows of dry, granular solids and solid-fluid mixtures provide a foundation for a comprehensive debris flow theory, and experiments provide data that reveal the strengths and limitations of theoretical models. Both debris flow materials and dry granular materials can sustain shear stresses while remaining static; both can deform in a slow, tranquil mode characterized by enduring, frictional grain contacts; and both can flow in a more rapid, agitated mode characterized by brief, inelastic grain collisions. In debris flows, however, pore fluid that is highly viscous and nearly incompressible, composed of water with suspended silt and clay, can strongly mediate intergranular friction and collisions. Grain friction, grain collisions, and viscous fluid flow may transfer significant momentum simultaneously. Both the vibrational kinetic energy of solid grains (measured by a quantity termed the granular temperature) and the pressure of the intervening pore fluid facilitate motion of grains past one another, thereby enhancing debris flow mobility. Granular temperature arises from conversion of flow translational energy to grain vibrational energy, a process that depends on shear rates, grain properties, boundary conditions, and the ambient fluid viscosity and pressure. Pore fluid pressures that exceed static equilibrium pressures result from local or global debris contraction. Like larger, natural debris flows, experimental debris flows of ˜10 m³ of poorly sorted, water-saturated sediment invariably move as an unsteady surge or series of surges. Measurements at the base of experimental flows show that coarse-grained surge fronts have little or no pore fluid pressure. In contrast, finer-grained, thoroughly saturated debris behind surge fronts is nearly liquefied by high pore pressure, which persists owing to the great compressibility and moderate permeability of the debris. Realistic models of debris flows therefore require equations that simulate inertial motion of surges in which high-resistance fronts dominated by solid forces impede the motion of low-resistance tails more strongly influenced by fluid forces. Furthermore, because debris flows characteristically originate as nearly rigid sediment masses, transform at least partly to liquefied flows, and then transform again to nearly rigid deposits, acceptable models must simulate an evolution of material behavior without invoking preternatural changes in material properties. A simple model that satisfies most of these criteria uses depth-averaged equations of motion patterned after those of the Savage-Hutter theory for gravity-driven flow of dry granular masses but generalized to include the effects of viscous pore fluid with varying pressure. These equations can describe a spectrum of debris flow behaviors intermediate between those of wet rock avalanches and sediment-laden water floods. With appropriate pore pressure distributions the equations yield numerical solutions that successfully predict unsteady, nonuniform motion of experimental debris flows.
Iverson, R.M.
1997-01-01
Recent advances in theory and experimentation motivate a thorough reassessment of the physics of debris flows. Analyses of flows of dry, granular solids and solid-fluid mixtures provide a foundation for a comprehensive debris flow theory, and experiments provide data that reveal the strengths and limitations of theoretical models. Both debris flow materials and dry granular materials can sustain shear stresses while remaining static; both can deform in a slow, tranquil mode characterized by enduring, frictional grain contacts; and both can flow in a more rapid, agitated mode characterized by brief, inelastic grain collisions. In debris flows, however, pore fluid that is highly viscous and nearly incompressible, composed of water with suspended silt and clay, can strongly mediate intergranular friction and collisions. Grain friction, grain collisions, and viscous fluid flow may transfer significant momentum simultaneously. Both the vibrational kinetic energy of solid grains (measured by a quantity termed the granular temperature) and the pressure of the intervening pore fluid facilitate motion of grains past one another, thereby enhancing debris flow mobility. Granular temperature arises from conversion of flow translational energy to grain vibrational energy, a process that depends on shear rates, grain properties, boundary conditions, and the ambient fluid viscosity and pressure. Pore fluid pressures that exceed static equilibrium pressures result from local or global debris contraction. Like larger, natural debris flows, experimental debris flows of ???10 m3 of poorly sorted, water-saturated sediment invariably move as an unsteady surge or series of surges. Measurements at the base of experimental flows show that coarse-grained surge fronts have little or no pore fluid pressure. In contrast, finer-grained, thoroughly saturated debris behind surge fronts is nearly liquefied by high pore pressure, which persists owing to the great compressibility and moderate permeability of the debris. Realistic models of debris flows therefore require equations that simulate inertial motion of surges in which high-resistance fronts dominated by solid forces impede the motion of low-resistance tails more strongly influenced by fluid forces. Furthermore, because debris flows characteristically originate as nearly rigid sediment masses, transform at least partly to liquefied flows, and then transform again to nearly rigid deposits, acceptable models must simulate an evolution of material behavior without invoking preternatural changes in material properties. A simple model that satisfies most of these criteria uses depth-averaged equations of motion patterned after those of the Savage-Hutter theory for gravity-driven flow of dry granular masses but generalized to include the effects of viscous pore fluid with varying pressure. These equations can describe a spectrum of debris flow behaviors intermediate between those of wet rock avalanches and sediment-laden water floods. With appropriate pore pressure distributions the equations yield numerical solutions that successfully predict unsteady, nonuniform motion of experimental debris flows.
THEORY OF SOLAR MERIDIONAL CIRCULATION AT HIGH LATITUDES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dikpati, Mausumi; Gilman, Peter A., E-mail: dikpati@ucar.edu, E-mail: gilman@ucar.edu
2012-02-10
We build a hydrodynamic model for computing and understanding the Sun's large-scale high-latitude flows, including Coriolis forces, turbulent diffusion of momentum, and gyroscopic pumping. Side boundaries of the spherical 'polar cap', our computational domain, are located at latitudes {>=} 60 Degree-Sign . Implementing observed low-latitude flows as side boundary conditions, we solve the flow equations for a Cartesian analog of the polar cap. The key parameter that determines whether there are nodes in the high-latitude meridional flow is {epsilon} = 2{Omega}n{pi}H{sup 2}/{nu}, where {Omega} is the interior rotation rate, n is the radial wavenumber of the meridional flow, H ismore » the depth of the convection zone, and {nu} is the turbulent viscosity. The smaller the {epsilon} (larger turbulent viscosity), the fewer the number of nodes in high latitudes. For all latitudes within the polar cap, we find three nodes for {nu} = 10{sup 12} cm{sup 2} s{sup -1}, two for 10{sup 13}, and one or none for 10{sup 15} or higher. For {nu} near 10{sup 14} our model exhibits 'node merging': as the meridional flow speed is increased, two nodes cancel each other, leaving no nodes. On the other hand, for fixed flow speed at the boundary, as {nu} is increased the poleward-most node migrates to the pole and disappears, ultimately for high enough {nu} leaving no nodes. These results suggest that primary poleward surface meridional flow can extend from 60 Degree-Sign to the pole either by node merging or by node migration and disappearance.« less
Holography as a highly efficient renormalization group flow. I. Rephrasing gravity
NASA Astrophysics Data System (ADS)
Behr, Nicolas; Kuperstein, Stanislav; Mukhopadhyay, Ayan
2016-07-01
We investigate how the holographic correspondence can be reformulated as a generalization of Wilsonian renormalization group (RG) flow in a strongly interacting large-N quantum field theory. We first define a highly efficient RG flow as one in which the Ward identities related to local conservation of energy, momentum and charges preserve the same form at each scale. To achieve this, it is necessary to redefine the background metric and external sources at each scale as functionals of the effective single-trace operators. These redefinitions also absorb the contributions of the multitrace operators to these effective Ward identities. Thus, the background metric and external sources become effectively dynamical, reproducing the dual classical gravity equations in one higher dimension. Here, we focus on reconstructing the pure gravity sector as a highly efficient RG flow of the energy-momentum tensor operator, leaving the explicit constructive field theory approach for generating such RG flows to the second part of the work. We show that special symmetries of the highly efficient RG flows carry information through which we can decode the gauge fixing of bulk diffeomorphisms in the corresponding gravity equations. We also show that the highly efficient RG flow which reproduces a given classical gravity theory in a given gauge is unique provided the endpoint can be transformed to a nonrelativistic fixed point with a finite number of parameters under a universal rescaling. The results obtained here are used in the second part of this work, where we do an explicit field-theoretic construction of the RG flow and obtain the dual classical gravity theory.
TEMPO-based catholyte for high-energy density nonaqueous redox flow batteries.
Wei, Xiaoliang; Xu, Wu; Vijayakumar, Murugesan; Cosimbescu, Lelia; Liu, Tianbiao; Sprenkle, Vincent; Wang, Wei
2014-12-03
A TEMPO-based non-aqueous electrolyte with the TEMPO concentration as high as 2.0 m is demonstrated as a high-energy-density catholyte for redox flow battery applications. With a hybrid anode, Li|TEMPO flow cells using this electrolyte deliver an energy efficiency of ca. 70% and an impressively high energy density of 126 W h L(-1) . © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rygg, Alex D.; Cox, Jonathan P. L.; Abel, Richard; Webb, Andrew G.; Smith, Nadine B.; Craven, Brent A.
2013-01-01
The hammerhead shark possesses a unique head morphology that is thought to facilitate enhanced olfactory performance. The olfactory chambers, located at the distal ends of the cephalofoil, contain numerous lamellae that increase the surface area for olfaction. Functionally, for the shark to detect chemical stimuli, water-borne odors must reach the olfactory sensory epithelium that lines these lamellae. Thus, odorant transport from the aquatic environment to the sensory epithelium is the first critical step in olfaction. Here we investigate the hydrodynamics of olfaction in Sphyrna tudes based on an anatomically-accurate reconstruction of the head and olfactory chamber from high-resolution micro-CT and MRI scans of a cadaver specimen. Computational fluid dynamics simulations of water flow in the reconstructed model reveal the external and internal hydrodynamics of olfaction during swimming. Computed external flow patterns elucidate the occurrence of flow phenomena that result in high and low pressures at the incurrent and excurrent nostrils, respectively, which induces flow through the olfactory chamber. The major (prenarial) nasal groove along the cephalofoil is shown to facilitate sampling of a large spatial extent (i.e., an extended hydrodynamic “reach”) by directing oncoming flow towards the incurrent nostril. Further, both the major and minor nasal grooves redirect some flow away from the incurrent nostril, thereby limiting the amount of fluid that enters the olfactory chamber. Internal hydrodynamic flow patterns are also revealed, where we show that flow rates within the sensory channels between olfactory lamellae are passively regulated by the apical gap, which functions as a partial bypass for flow in the olfactory chamber. Consequently, the hammerhead shark appears to utilize external (major and minor nasal grooves) and internal (apical gap) flow regulation mechanisms to limit water flow between the olfactory lamellae, thus protecting these delicate structures from otherwise high flow rates incurred by sampling a larger area. PMID:23555780
Percy, Andrew J; Chambers, Andrew G; Yang, Juncong; Domanski, Dominik; Borchers, Christoph H
2012-09-01
The analytical performance of a standard-flow ultra-high-performance liquid chromatography (UHPLC) and a nano-flow high-performance liquid chromatography (HPLC) system, interfaced to the same state-of-the-art triple-quadrupole mass spectrometer, were compared for the multiple reaction monitoring (MRM)-mass spectrometry (MS)-based quantitation of a panel of 48 high-to-moderate-abundance cardiovascular disease-related plasma proteins. After optimization of the MRM transitions for sensitivity and testing for chemical interference, the optimum sensitivity, loading capacity, gradient, and retention-time reproducibilities were determined. We previously demonstrated the increased robustness of the standard-flow platform, but we expected that the standard-flow platform would have an overall lower sensitivity. This study was designed to determine if this decreased sensitivity could be compensated for by increased sample loading. Significantly fewer interferences with the MRM transitions were found for the standard-flow platform than for the nano-flow platform (2 out of 103 transitions compared with 42 out of 103 transitions, respectively), which demonstrates the importance of interference-testing when nano-flow systems are used. Using only interference-free transitions, 36 replicate LC/MRM-MS analyses resulted in equal signal reproducibilities between the two platforms (9.3 % coefficient of variation (CV) for 88 peptide targets), with superior retention-time precision for the standard-flow platform (0.13 vs. 6.1 % CV). Surprisingly, for 41 of the 81 proteotypic peptides in the final assay, the standard-flow platform was more sensitive while for 9 of 81 the nano-flow platform was more sensitive. For these 81 peptides, there was a good correlation between the two sets of results (R(2) = 0.98, slope = 0.97). Overall, the standard-flow platform had superior performance metrics for most peptides, and is a good choice if sufficient sample is available.
NASA Technical Reports Server (NTRS)
Macrossan, M. N.
1995-01-01
The direct simulation Monte Carlo (DSMC) method is the established technique for the simulation of rarefied gas flows. In some flows of engineering interest, such as occur for aero-braking spacecraft in the upper atmosphere, DSMC can become prohibitively expensive in CPU time because some regions of the flow, particularly on the windward side of blunt bodies, become collision dominated. As an alternative to using a hybrid DSMC and continuum gas solver (Euler or Navier-Stokes solver) this work is aimed at making the particle simulation method efficient in the high density regions of the flow. A high density, infinite collision rate limit of DSMC, the Equilibrium Particle Simulation method (EPSM) was proposed some 15 years ago. EPSM is developed here for the flow of a gas consisting of many different species of molecules and is shown to be computationally efficient (compared to DSMC) for high collision rate flows. It thus offers great potential as part of a hybrid DSMC/EPSM code which could handle flows in the transition regime between rarefied gas flows and fully continuum flows. As a first step towards this goal a pure EPSM code is described. The next step of combining DSMC and EPSM is not attempted here but should be straightforward. EPSM and DSMC are applied to Taylor-Couette flow with Kn = 0.02 and 0.0133 and S(omega) = 3). Toroidal vortices develop for both methods but some differences are found, as might be expected for the given flow conditions. EPSM appears to be less sensitive to the sequence of random numbers used in the simulation than is DSMC and may also be more dissipative. The question of the origin and the magnitude of the dissipation in EPSM is addressed. It is suggested that this analysis is also relevant to DSMC when the usual accuracy requirements on the cell size and decoupling time step are relaxed in the interests of computational efficiency.
Heller, Katharina; Bullerjahn, Claudia; von Georgi, Richard
2015-01-01
Most of the existing studies on musical practice are concerned with instrumentalists only. Since singers are seldom considered in research, the present study is based on an online-sample of amateur vocal students (N = 120; 92 female, 28 male). The study investigated the correlations between personality traits, flow-experience and several aspects of practice characteristics. Personality was represented by the three personality dimensions extraversion, neuroticism and psychoticism, assessed by Eysenck’s Personality Profiler as well as the trait form of the Positive and Negative Affect Schedule. ‘Flow-experience,’ ‘self-congruence’ and ‘fear of losing control over concentration,’ assessed by the Practice Flow Inventory, served as variables for flow-experience. The practice motivation was measured by the Practice Motivation Questionnaire in four categories (‘self,’ ‘group,’ ‘audience,’ ‘teacher’). In addition, the Practice Behavior Questionnaire was used to provide an insight into the practice situation and behavior of singing students. The results show significant correlations: participants with high extraversion-scores experience significantly more flow than less extraverted persons, whereas lesser flow-experience seems to be related to high neuroticism-scores. Nevertheless, there is no influence in flow-experience concerning singing style (‘classical’ or ‘popular’). The longer the practicing time, the more likely students are to achieve flow-experience. However, older singers tend to have less flow-experience. Consequently, singers seem to differ in their personality and practice behavior compared to other musicians. Most of the findings show that having control over one’s instrument is decisive for achieving a performance of high quality, especially for singers. On the other hand, certainty in handling an instrument is essential to arouse a flow-feeling. However, flow-experience seems to be common mainly with amateur singers. In conclusion, this offers a starting point for new research on the psychology of vocalists in greater depth. PMID:26733904
Heller, Katharina; Bullerjahn, Claudia; von Georgi, Richard
2015-01-01
Most of the existing studies on musical practice are concerned with instrumentalists only. Since singers are seldom considered in research, the present study is based on an online-sample of amateur vocal students (N = 120; 92 female, 28 male). The study investigated the correlations between personality traits, flow-experience and several aspects of practice characteristics. Personality was represented by the three personality dimensions extraversion, neuroticism and psychoticism, assessed by Eysenck's Personality Profiler as well as the trait form of the Positive and Negative Affect Schedule. 'Flow-experience,' 'self-congruence' and 'fear of losing control over concentration,' assessed by the Practice Flow Inventory, served as variables for flow-experience. The practice motivation was measured by the Practice Motivation Questionnaire in four categories ('self,' 'group,' 'audience,' 'teacher'). In addition, the Practice Behavior Questionnaire was used to provide an insight into the practice situation and behavior of singing students. The results show significant correlations: participants with high extraversion-scores experience significantly more flow than less extraverted persons, whereas lesser flow-experience seems to be related to high neuroticism-scores. Nevertheless, there is no influence in flow-experience concerning singing style ('classical' or 'popular'). The longer the practicing time, the more likely students are to achieve flow-experience. However, older singers tend to have less flow-experience. Consequently, singers seem to differ in their personality and practice behavior compared to other musicians. Most of the findings show that having control over one's instrument is decisive for achieving a performance of high quality, especially for singers. On the other hand, certainty in handling an instrument is essential to arouse a flow-feeling. However, flow-experience seems to be common mainly with amateur singers. In conclusion, this offers a starting point for new research on the psychology of vocalists in greater depth.
Computational Challenges of Viscous Incompressible Flows
NASA Technical Reports Server (NTRS)
Kwak, Dochan; Kiris, Cetin; Kim, Chang Sung
2004-01-01
Over the past thirty years, numerical methods and simulation tools for incompressible flows have been advanced as a subset of the computational fluid dynamics (CFD) discipline. Although incompressible flows are encountered in many areas of engineering, simulation of compressible flow has been the major driver for developing computational algorithms and tools. This is probably due to the rather stringent requirements for predicting aerodynamic performance characteristics of flight vehicles, while flow devices involving low-speed or incompressible flow could be reasonably well designed without resorting to accurate numerical simulations. As flow devices are required to be more sophisticated and highly efficient CFD took become increasingly important in fluid engineering for incompressible and low-speed flow. This paper reviews some of the successes made possible by advances in computational technologies during the same period, and discusses some of the current challenges faced in computing incompressible flows.
Numerical Simulation of Non-Rotating and Rotating Coolant Channel Flow Fields. Part 1
NASA Technical Reports Server (NTRS)
Rigby, David L.
2000-01-01
Future generations of ultra high bypass-ratio jet engines will require far higher pressure ratios and operating temperatures than those of current engines. For the foreseeable future, engine materials will not be able to withstand the high temperatures without some form of cooling. In particular the turbine blades, which are under high thermal as well as mechanical loads, must be cooled. Cooling of turbine blades is achieved by bleeding air from the compressor stage of the engine through complicated internal passages in the turbine blades (internal cooling, including jet-impingement cooling) and by bleeding small amounts of air into the boundary layer of the external flow through small discrete holes on the surface of the blade (film cooling and transpiration cooling). The cooling must be done using a minimum amount of air or any increases in efficiency gained through higher operating temperature will be lost due to added load on the compressor stage. Turbine cooling schemes have traditionally been based on extensive empirical data bases, quasi-one-dimensional computational fluid dynamics (CFD) analysis, and trial and error. With improved capabilities of CFD, these traditional methods can be augmented by full three-dimensional simulations of the coolant flow to predict in detail the heat transfer and metal temperatures. Several aspects of turbine coolant flows make such application of CFD difficult, thus a highly effective CFD methodology must be used. First, high resolution of the flow field is required to attain the needed accuracy for heat transfer predictions, making highly efficient flow solvers essential for such computations. Second, the geometries of the flow passages are complicated but must be modeled accurately in order to capture all important details of the flow. This makes grid generation and grid quality important issues. Finally, since coolant flows are turbulent and separated the effects of turbulence must be modeled with a low Reynolds number turbulence model to accurately predict details of heat transfer.
Ono, Hideaki; Inoue, Tomohiro; Tanishima, Takeo; Tamura, Akira; Saito, Isamu; Saito, Nobuhito
2018-04-01
High-flow bypass followed by ligation of the internal carotid artery (ICA) is an effective treatment, but the impact of abrupt occlusion of the ICA is unpredictable, especially on postoperative cognitive function. The present study evaluated the clinical results as well as cognitive performances after high-flow bypass using radial artery graft (RAG) with supportive superficial temporal artery (STA)-middle cerebral artery (MCA) bypass, followed by ICA ligation. Ten consecutive patients underwent high-flow bypass surgery for large or giant ICA aneurysms of cavernous or cervical portion. Demographics, clinical information, magnetic resonance (MR) imaging, computed tomography, digital subtraction angiography (DSA), intraoperative somatosensory evoked potentials, neuropsychological examinations including the Wechsler Adult Intelligence Scale-Third Edition and the Wechsler Memory Scale-Revised (WMS-R), and follow-up data were analyzed. The aneurysm was located on the cavernous segment in eight cases and cervical segment in two cases, and mean aneurysm size was 27.9 mm. Postoperative DSA demonstrated robust bypass flow from the external carotid artery to MCA via the RAG, and no anterograde flow into the aneurysm. No patient showed new symptoms after the operation. Follow-up clinical study and MR imaging were performed in nine patients and showed no additional ischemic lesion compared with preoperative imaging. Seven patients completed neuropsychological examinations before and after surgery. All postoperative scores except WMS-R composite memory score slightly improved. High-flow bypass followed by ICA ligation can achieve good clinical outcomes. Successful high-flow bypass using RAG with supportive STA-MCA bypass and ICA ligation does not adversely affect postoperative cognitive function.
Kim, Se Hyung; Lee, Jeong Min; Kim, Young Jun; Lee, Jae Young; Han, Joon Koo; Choi, Byung Ihn
2008-10-01
The purpose of this study was to introduce a new high-definition flow (HDF) Doppler technique and to compare its performance with those of color Doppler ultrasonography (CDU) and power Doppler ultrasonography (PDU) for assessment of hepatic vasculature in native and transplanted livers. High-definition flow was invented as a high-resolution bidirectional PDU technique. We obtained CDU, PDU, and HDF images of the hepatic artery (HA), portal vein (PV), and hepatic vein from 60 patients. They were divided into 2 groups: a liver transplantation group (group 1, n = 10) and a native liver group (group 2, n = 50). Two radiologists independently reviewed the cine images and graded them using a 4-point scale in terms of the clarity of the vessel margin and degree of depiction of the HA, flow filling, and flash artifacts. The degree of differentiation between the HA and PV was also evaluated. Flow directionality was recorded, and interobserver agreement was finally analyzed. Moderate to almost perfect agreement was achieved between radiologists for all parameters of each ultrasonographic technique. High-definition flow was significantly superior to both CDU and PDU with respect to all analyzed items except the degree of flash artifacts (P < .05). With regard to flash artifacts, CDU was significantly better than either PDU or HDF. High-definition flow provided directional information, as did CDU. The HDF technique provides better resolution for depicting hepatic vessels as well as their margins with less blooming compared with conventional Doppler ultrasonography in both native and transplanted liver. It also provides solid directional flow information. One point of concern, however, is the frequency of flash artifacts compared with that on CDU.
High-resolution mapping of the 1998 lava flows at Axial Seamount
NASA Astrophysics Data System (ADS)
Chadwick, B.; Clague, D. A.; Embley, R. W.; Caress, D. W.; Paduan, J. B.; Sasnett, P.
2011-12-01
Axial Seamount (an active hotspot volcano on the Juan de Fuca Ridge) last erupted in 1998 and produced two lava flows (a "northern" and a "southern" flow) along the upper south rift zone separated by a distance of 4 km. Geologic mapping of the 1998 lava flows has been carried out with a combination of visual observations from multiple submersible dives since 1998, and with high-resolution bathymetry, most recently collected with the MBARI mapping AUV (the D. Allan B.) since 2007. The new mapping results revise and update the previous preliminary flow outlines, areas, and volumes. The high-resolution bathymetry (1-m grid cell size) allows eruptive fissures fine-scale morphologic features to be resolved with new and remarkable clarity. The morphology of both lava flows can be interpreted as a consequence of a specific sequence of events during their emplacement. The northern sheet flow is long (4.6 km) and narrow (500 m), and erupted in the SE part of Axial caldera, where it temporarily ponded and inflated on relatively flat terrain before draining out southward toward steeper slopes. The inflation and drain-out of this sheet flow by ~ 3.5 m over 2.5 hours was previously documented by a monitoring instrument that was caught in the lava flow. Our geologic mapping shows that the morphology of the northern sheet flow varies along its length primarily due to gradients in the underlying slope and processes active during flow emplacement. The original morphology of the sheet flow where it ponded is lobate, with pillows near the margins, whereas the central axis of drain-out and collapse is floored with lineated, ropy, and jumbled lava morphologies. The southern lava flow, in contrast, is mostly pillow lava where it cascaded down the steep slope on the east flank of the south rift zone, but also has a major area of collapse where lava ponded temporarily near the rift axis. These results show that submarine lava flows have more subsurface hydraulic connectivity than has previously been supposed. For example, a common morphologic feature at the downslope ends of the 1998 lava flows (and on many older flows at Axial) is large lobes covered with pillows that are 200-500-m in diameter, 10-20-m thick, and are capped with centered, dendritic collapse areas 5-10 m deep. These large lobes show clear evidence of inflation and drain-out, and are often arranged in a shingle-like fashion, implying progressive emplacement at decreasing distance from the eruptive vent with time. Such features are impossible to discern from visual observations alone and are only revealed by high-resolution bathymetry.
Chen, He; Ma, Lekuan; Guo, Wei; Yang, Ying; Guo, Tong; Feng, Cheng
2013-01-01
Most rivers worldwide are highly regulated by anthropogenic activities through flow regulation and water pollution. Environmental flow regulation is used to reduce the effects of anthropogenic activities on aquatic ecosystems. Formulating flow alteration-ecological response relationships is a key factor in environmental flow assessment. Traditional environmental flow models are characterized by natural relationships between flow regimes and ecosystem factors. However, food webs are often altered from natural states, which disturb environmental flow assessment in such ecosystems. In ecosystems deteriorated by heavy anthropogenic activities, the effects of environmental flow regulation on species are difficult to assess with current modeling approaches. Environmental flow management compels the development of tools that link flow regimes and food webs in an ecosystem. Food web approaches are more suitable for the task because they are more adaptive for disordered multiple species in a food web deteriorated by anthropogenic activities. This paper presents a global method of environmental flow assessment in deteriorated aquatic ecosystems. Linkages between flow regimes and food web dynamics are modeled by incorporating multiple species into an ecosystem to explore ecosystem-based environmental flow management. The approach allows scientists and water resources managers to analyze environmental flows in deteriorated ecosystems in an ecosystem-based way.
Interpretations of the impact of cross-field drifts on divertor flows in DIII-D with UEDGE
Jaervinen, Aaro E.; Allen, Steve L.; Groth, Mathias; ...
2017-01-27
Simulations using the multi-fluid code UEDGE indicates that, in low confinement (Lmode) plasmas in DIII-D, recycling driven flows dominate poloidal particle flows in the divertor, whereas E×B drift flows dominate the radial particle flows. In contrast, in high confinement (H-mode) conditions E×B drift flows dominate both poloidal and radial particle flows in the divertor. UEDGE indicates that the toroidal C 2+ flow velocities in the divertor plasma are entrained within 30% to the background deuterium flow in both Land H-mode plasmas in the plasma region where the CIII 465 nm emission is measured. Therefore, UEDGE indicates that the Carbon Dopplermore » Coherence Imaging System (CIS), measuring the toroidal velocity of the C 2+ ions, can provide insight to the deuterium flows in the divertor. Parallel-to-B velocity dominates the toroidal divertor flow; direct drift impact being less than 1%. Toroidal divertor flow is predicted to reverse when the magnetic field is reversed. This is explained by the parallel-B flow towards the nearest divertor plate corresponding to opposite toroidal directions in opposite toroidal field configurations. Due to strong poloidal E×B flows in H-mode, net poloidal particle transport can be in opposite direction than the poloidal component of the parallel-B plasma flow.« less
Effects of dynamically variable saturation and matrix-conduit coupling of flow in karst aquifers
Reimann, T.; Geyer, T.; Shoemaker, W.B.; Liedl, R.; Sauter, M.
2011-01-01
Well-developed karst aquifers consist of highly conductive conduits and a relatively low permeability fractured and/or porous rock matrix and therefore behave as a dual-hydraulic system. Groundwater flow within highly permeable strata is rapid and transient and depends on local flow conditions, i.e., pressurized or nonpressurized flow. The characterization of karst aquifers is a necessary and challenging task because information about hydraulic and spatial conduit properties is poorly defined or unknown. To investigate karst aquifers, hydraulic stresses such as large recharge events can be simulated with hybrid (coupled discrete continuum) models. Since existing hybrid models are simplifications of the system dynamics, a new karst model (ModBraC) is presented that accounts for unsteady and nonuniform discrete flow in variably saturated conduits employing the Saint-Venant equations. Model performance tests indicate that ModBraC is able to simulate (1) unsteady and nonuniform flow in variably filled conduits, (2) draining and refilling of conduits with stable transition between free-surface and pressurized flow and correct storage representation, (3) water exchange between matrix and variably filled conduits, and (4) discharge routing through branched and intermeshed conduit networks. Subsequently, ModBraC is applied to an idealized catchment to investigate the significance of free-surface flow representation. A parameter study is conducted with two different initial conditions: (1) pressurized flow and (2) free-surface flow. If free-surface flow prevails, the systems is characterized by (1) a time lag for signal transmission, (2) a typical spring discharge pattern representing the transition from pressurized to free-surface flow, and (3) a reduced conduit-matrix interaction during free-surface flow. Copyright 2011 by the American Geophysical Union.
Unified approach for incompressible flows
NASA Astrophysics Data System (ADS)
Chang, Tyne-Hsien
1993-12-01
An unified approach for solving both compressible and incompressible flows was investigated in this study. The difference in CFD code development between incompressible and compressible flows is due to the mathematical characteristics. However, if one can modify the continuity equation for incompressible flows by introducing pseudocompressibility, the governing equations for incompressible flows would have the same mathematical characters as compressible flows. The application of a compressible flow code to solve incompressible flows becomes feasible. Among numerical algorithms developed for compressible flows, the Centered Total Variation Diminishing (CTVD) schemes possess better mathematical properties to damp out the spurious oscillations while providing high-order accuracy for high speed flows. It leads us to believe that CTVD schemes can equally well solve incompressible flows. In this study, the governing equations for incompressible flows include the continuity equation and momentum equations. The continuity equation is modified by adding a time-derivative of the pressure term containing the artificial compressibility. The modified continuity equation together with the unsteady momentum equations forms a hyperbolic-parabolic type of time-dependent system of equations. The continuity equation is modified by adding a time-derivative of the pressure term containing the artificial compressibility. The modified continuity equation together with the unsteady momentum equations forms a hyperbolic-parabolic type of time-dependent system of equations. Thus, the CTVD schemes can be implemented. In addition, the boundary conditions including physical and numerical boundary conditions must be properly specified to obtain accurate solution. The CFD code for this research is currently in progress. Flow past a circular cylinder will be used for numerical experiments to determine the accuracy and efficiency of the code before applying this code to more specific applications.