Science.gov

Sample records for flt3 ligand targeted

  1. Eradication of acute myeloid leukemia with FLT3 ligand-targeted miR-150 nanoparticles

    PubMed Central

    Jiang, Xi; Bugno, Jason; Hu, Chao; Yang, Yang; Herold, Tobias; Qi, Jun; Chen, Ping; Gurbuxani, Sandeep; Arnovitz, Stephen; Strong, Jennifer; Ferchen, Kyle; Ulrich, Bryan; Weng, Hengyou; Wang, Yungui; Huang, Hao; Li, Shenglai; Neilly, Mary Beth; Larson, Richard A.; Le Beau, Michelle M.; Bohlander, Stefan K.; Jin, Jie; Li, Zejuan; Bradner, James E.; Hong, Seungpyo; Chen, Jianjun

    2016-01-01

    Acute myeloid leukemia (AML) is a common and fatal form of hematopoietic malignancy. Overexpression and/or mutations of FLT3 have been shown to occur in the majority cases of AML. Our analysis of a large-scale AML patient cohort (n=562) indicates that FLT3 is particularly highly expressed in some subtypes of AML such as AML with t(11q23)/MLL-rearrangements or FLT3-ITD. Such AML subtypes are known to be associated with unfavorable prognosis. To treat FLT3-overexpressing AML, we developed a novel targeted nanoparticle system: FLT3 ligand (FLT3L)-conjugated G7 poly(amidoamine) (PAMAM) nanosized dendriplex encapsulating miR-150, a pivotal tumor-suppressor and negative regulator of FLT3. We show that the FLT3L-guided miR-150 nanoparticles selectively and efficiently target FLT3-overexpressing AML cells, and significantly inhibit viability/growth and promote apoptosis of the AML cells. Our proof-of-concept animal model studies demonstrate that the FLT3L-guided miR-150 nanoparticles tend to concentrate in bone marrow, and significantly inhibit progression of FLT3-overexpressing AML in vivo, while exhibiting no obvious side effects on normal hematopoiesis. Collectively, we have developed a novel targeted therapeutic strategy, using FLT3L-guided miR-150-based nanoparticles, to treat FLT3-overexpressing AML with high efficacy and minimal side effects. PMID:27280396

  2. FLT3 ligand impedes the efficacy of FLT3 inhibitors in vitro and in vivo

    PubMed Central

    Sato, Takashi; Yang, Xiaochuan; Knapper, Steven; White, Paul; Smith, B. Douglas; Galkin, Steven; Small, Donald; Burnett, Alan

    2011-01-01

    We examined in vivo FLT3 inhibition in acute myeloid leukemia patients treated with chemotherapy followed by the FLT3 inhibitor lestaurtinib, comparing newly diagnosed acute myeloid leukemia patients with relapsed patients. Because we noted that in vivo FLT3 inhibition by lestaurtinib was less effective in the relapsed patients compared with the newly diagnosed patients, we investigated whether plasma FLT3 ligand (FL) levels could influence the efficacy of FLT3 inhibition in these patients. After intensive chemotherapy, FL levels rose to a mean of 488 pg/mL on day 15 of induction therapy for newly diagnosed patients, whereas they rose to a mean of 1148 pg/mL in the relapsed patients. FL levels rose even higher with successive courses of chemotherapy, to a mean of 3251 pg/mL after the fourth course. In vitro, exogenous FL at concentrations similar to those observed in patients mitigated FLT3 inhibition and cytotoxicity for each of 5 different FLT3 inhibitors (lestaurtinib, midostaurin, sorafenib, KW-2449, and AC220). The dramatic increase in FL level after chemotherapy represents a possible obstacle to inhibiting FLT3 in this clinical setting. These findings could have important implications regarding the design and outcome of trials of FLT3 inhibitors and furthermore suggest a rationale for targeting FL as a therapeutic strategy. PMID:21263155

  3. The Cytokine Flt3-Ligand in Normal and Malignant Hematopoiesis

    PubMed Central

    Tsapogas, Panagiotis; Mooney, Ciaran James; Brown, Geoffrey; Rolink, Antonius

    2017-01-01

    The cytokine Fms-like tyrosine kinase 3 ligand (FL) is an important regulator of hematopoiesis. Its receptor, Flt3, is expressed on myeloid, lymphoid and dendritic cell progenitors and is considered an important growth and differentiation factor for several hematopoietic lineages. Activating mutations of Flt3 are frequently found in acute myeloid leukemia (AML) patients and associated with a poor clinical prognosis. In the present review we provide an overview of our current knowledge on the role of FL in the generation of blood cell lineages. We examine recent studies on Flt3 expression by hematopoietic stem cells and its potential instructive action at early stages of hematopoiesis. In addition, we review current findings on the role of mutated FLT3 in leukemia and the development of FLT3 inhibitors for therapeutic use to treat AML. The importance of mouse models in elucidating the role of Flt3-ligand in normal and malignant hematopoiesis is discussed. PMID:28538663

  4. Dual inhibition of AKT/FLT3-ITD by A674563 overcomes FLT3 ligand-induced drug resistance in FLT3-ITD positive AML

    PubMed Central

    Wang, Wenchao; Yu, Kailin; Liu, Xiaochuan; Zou, Fengming; Zhao, Zheng; Wu, Jiaxin; Liu, Juan; Liu, Feiyang; Wang, Li; Stone, Richard M.; Galinksy, Ilene A.; Griffin, James D.; Zhang, Shanchun; Weisberg, Ellen L.; Liu, Jing; Liu, Qingsong

    2016-01-01

    The FLT3-ITD mutation is one of the most prevalent oncogenic mutations in AML. Several FLT3 kinase inhibitors have shown impressive activity in clinical evaluation, however clinical responses are usually transient and clinical effects are rapidly lost due to drug resistance. One of the resistance mechanisms in the AML refractory patients involves FLT3-ligand induced reactivation of AKT and/or ERK signaling via FLT3 wt kinase. Via a screen of numerous AKT kinase inhibitors, we identified the well-established orally available AKT inhibitor, A674563, as a dual suppressor of AKT and FLT3-ITD. A674563 suppressed FLT3-ITD positive AML both in vitro and in vivo. More importantly, compared to other FLT3 inhibitors, A674563 is able to overcome FLT3 ligand-induced drug resistance through simultaneous inhibition of FLT3-ITD- and AKT-mediated signaling. Our findings suggest that A674563 might be a potential drug candidate for overcoming FLT3 ligand-mediated drug resistance in FLT3-ITD positive AML. PMID:27074558

  5. FLT3-regulated antigens as targets for leukemia-reactive cytotoxic T lymphocytes

    PubMed Central

    Brackertz, B; Conrad, H; Daniel, J; Kast, B; Krönig, H; Busch, D H; Adamski, J; Peschel, C; Bernhard, H

    2011-01-01

    The FMS-like tyrosine kinase 3 (FLT3) is highly expressed in acute myeloid leukemia (AML). Internal tandem duplications (ITD) of the juxtamembrane domain lead to the constitutive activation of the FLT3 kinase inducing the activation of multiple genes, which may result in the expression of leukemia-associated antigens (LAAs). We analyzed the regulation of LAA in FLT3-wild-type (WT)- and FLT3-ITD+ myeloid cells to identify potential targets for antigen-specific immunotherapy for AML patients. Antigens, such as PR-3, RHAMM, Survivin, WT-1 and PRAME, were upregulated by constitutively active FLT3-ITD as well as FLT3-WT activated by FLT3 ligand (FL). Cytotoxic T-cell (CTL) clones against PR-3, RHAMM, Survivin and an AML-directed CTL clone recognized AML cell lines and primary AML blasts expressing FLT3-ITD, as well as FLT3-WT+ myeloid dendritic cells in the presence of FL. Downregulation of FLT3 led to the abolishment of CTL recognition. Comparing our findings concerning LAA upregulation by the FLT3 kinase with those already made for the Bcr-Abl kinase, we found analogies in the LAA expression pattern. Antigens upregulated by both FLT3 and Bcr-Abl may be promising targets for the development of immunotherapeutical approaches against myeloid leukemia of different origin. PMID:22829124

  6. FLT3-regulated antigens as targets for leukemia-reactive cytotoxic T lymphocytes.

    PubMed

    Brackertz, B; Conrad, H; Daniel, J; Kast, B; Krönig, H; Busch, D H; Adamski, J; Peschel, C; Bernhard, H

    2011-03-01

    The FMS-like tyrosine kinase 3 (FLT3) is highly expressed in acute myeloid leukemia (AML). Internal tandem duplications (ITD) of the juxtamembrane domain lead to the constitutive activation of the FLT3 kinase inducing the activation of multiple genes, which may result in the expression of leukemia-associated antigens (LAAs). We analyzed the regulation of LAA in FLT3-wild-type (WT)- and FLT3-ITD(+) myeloid cells to identify potential targets for antigen-specific immunotherapy for AML patients. Antigens, such as PR-3, RHAMM, Survivin, WT-1 and PRAME, were upregulated by constitutively active FLT3-ITD as well as FLT3-WT activated by FLT3 ligand (FL). Cytotoxic T-cell (CTL) clones against PR-3, RHAMM, Survivin and an AML-directed CTL clone recognized AML cell lines and primary AML blasts expressing FLT3-ITD, as well as FLT3-WT(+) myeloid dendritic cells in the presence of FL. Downregulation of FLT3 led to the abolishment of CTL recognition. Comparing our findings concerning LAA upregulation by the FLT3 kinase with those already made for the Bcr-Abl kinase, we found analogies in the LAA expression pattern. Antigens upregulated by both FLT3 and Bcr-Abl may be promising targets for the development of immunotherapeutical approaches against myeloid leukemia of different origin.

  7. The nasal dendritic cell-targeting Flt3 ligand as a safe adjuvant elicits effective protection against fatal pneumococcal pneumonia.

    PubMed

    Kataoka, Kosuke; Fujihashi, Kohtaro; Oma, Keita; Fukuyama, Yoshiko; Hollingshead, Susan K; Sekine, Shinichi; Kawabata, Shigetada; Ito, Hiro-O; Briles, David E; Oishi, Kazunori

    2011-07-01

    We have previously shown that a pneumococcal surface protein A (PspA)-based vaccine containing DNA plasmid encoding the Flt3 ligand (FL) gene (pFL) as a nasal adjuvant prevented nasal carriage of Streptococcus pneumoniae. In this study, we further investigated the safety and efficacy of this nasal vaccine for the induction of PspA-specific antibody (Ab) responses against lung infection with S. pneumoniae. C57BL/6 mice were nasally immunized with recombinant PspA/Rx1 (rPspA) plus pFL three times at weekly intervals. When dynamic translocation of pFL was initially examined, nasal pFL was taken up by nasal dendritic cells (DCs) and epithelial cells (nECs) but not in the central nervous systems, including olfactory nerve and epithelium. Of importance, nasal pFL induced FL protein synthesis with minimum levels of inflammatory cytokines in the nasal washes (NWs) and bronchoalveolar lavage fluid (BALF). NWs and BALF as well as plasma of mice given nasal rPspA plus pFL contained increased levels of rPspA-specific secretory IgA and IgG Ab responses that were correlated with elevated numbers of CD8(+) and CD11b(+) DCs and interleukin 2 (IL-2)- and IL-4-producing CD4(+) T cells in the nasal mucosa-associated lymphoid tissues (NALT) and cervical lymph nodes (CLNs). The in vivo protection by rPspA-specific Abs was evident in markedly reduced numbers of CFU in the lungs, airway secretions, and blood when mice were nasally challenged with Streptococcus pneumoniae WU2. Our findings show that nasal pFL is a safe and effective mucosal adjuvant for the enhancement of bacterial antigen (Ag) (rPspA)-specific protective immunity through DC-induced Th2-type and IL-2 cytokine responses.

  8. Computer aided drug discovery of highly ligand efficient, low molecular weight imidazopyridine analogs as FLT3 inhibitors

    PubMed Central

    Frett, Brendan; McConnell, Nick; Smith, Catherine C.; Wang, Yuanxiang; Shah, Neil P.; Li, Hong-yu

    2015-01-01

    The FLT3 kinase represents an attractive target to effectively treat AML. Unfortunately, no FLT3 targeted therapeutic is currently approved. In line with our continued interests in treating kinase related disease for anti-FLT3 mutant activity, we utilized pioneering synthetic methodology in combination with computer aided drug discovery and identified low molecular weight, highly ligand efficient, FLT3 kinase inhibitors. Compounds were analyzed for biochemical inhibition, their ability to selectively inhibit cell proliferation, for FLT3 mutant activity, and preliminary aqueous solubility. Validated hits were discovered that can serve as starting platforms for lead candidates. PMID:25765758

  9. HIV gag protein is efficiently cross-presented when targeted with an antibody towards the DEC-205 receptor in Flt3 ligand-mobilized murine dendritic cells

    PubMed Central

    Bozzacco, Leonia; Trumpfheller, Christine; Huang, Yaoxing; Longhi, Maria Paula; Shimeliovich, Irina; Schauer, Joseph D.; Park, Chae Gyu; Steinman, Ralph M.

    2010-01-01

    Summary Dendritic cells present exogenous proteins to MHC class I restricted CD8+ T cells. This function does not require endogenous antigen synthesis within DC, providing the potential to elicit CD8+ T cell responses to immune complexes, inactivated microbes, dying cells and proteins like ovalbumin. In mice, the CD8+ or DEC-205+ DC are specialized for cross-presentation, and this subset can be increased 10 fold in numbers following Flt3L treatment in vivo. Therefore we studied cross-presentation by abundant Flt3L DC using HIV gag protein. When enriched by positive selection with anti-CD11c beads, cells from Flt3L mice are not only more abundant but are more highly enriched in CD11c high DC, particularly the DEC-205+ subset. DC cross-present HIV gag to primed CD8+ T cells, but when the antigen is delivered within an antibody to DEC-205 receptor, cross-presentation becomes 100 fold more efficient than non-targeted antigen. This finding requires gag to be engineered into anti-DEC antibody, not just mixed with antibody. Flt3L DC are a valuable tool to study cross-presentation, since their use overcomes the obstacle posed by the low number of cross-presenting DC in the steady state. These findings support future experiments to use Flt3L to enhance presentation of DC-targeted vaccines. PMID:19830741

  10. Flt3 Ligand Regulates the Development of Innate Lymphoid Cells in Fetal and Adult Mice.

    PubMed

    Baerenwaldt, Anne; von Burg, Nicole; Kreuzaler, Matthias; Sitte, Selina; Horvath, Edit; Peter, Annick; Voehringer, David; Rolink, Antonius G; Finke, Daniela

    2016-03-15

    Flt3 ligand (Flt3L) promotes survival of lymphoid progenitors in the bone marrow and differentiation of dendritic cells (DCs), but its role in regulating innate lymphoid cells (ILCs) during fetal and adult life is not understood. By using Flt3L knockout and transgenic mice, we demonstrate that Flt3L controls ILC numbers by regulating the pool of α4β7(-) and α4β7(+) lymphoid tissue inducer cell progenitors in the fetal liver and common lymphoid progenitors in the bone marrow. Deletion of flt3l severely reduced the number of fetal liver progenitors and lymphoid tissue inducer cells in the neonatal intestine, resulting in impaired development of Peyer's patches. In the adult intestine, NK cells and group 2 and 3 ILCs were severely reduced. This effect occurred independently of DCs as ILC numbers were normal in mice in which DCs were constitutively deleted. Finally, we could show that administration of Flt3L increased the number of NKp46(-) group 3 ILCs in wild-type and even in Il7(-/-) mice, which generally have reduced numbers of ILCs. Taken together, Flt3L significantly contributes to ILC and Peyer's patches development by targeting lymphoid progenitor cells during fetal and adult life. Copyright © 2016 by The American Association of Immunologists, Inc.

  11. Ectodomain shedding of FLT3 ligand is mediated by TACE 1

    PubMed Central

    Horiuchi, Keisuke; Morioka, Hideo; Takaishi, Hironari; Akiyama, Haruhiko; Blobel, Carl P.; Toyama, Yoshiaki

    2010-01-01

    FLT3 ligand (FLT3L) has diverse roles in the hematopoietic system, which include stimulating proliferation of hematopoietic precursors and development of natural killer cells and dendritic cells. FLT3L is initially synthesized as a membrane-bound protein, which must be cleaved to become a soluble growth factor. However, little is known about the enzyme involved in the proteolytic release of FLT3L. In the current study, we show that shedding of FLT3L is metalloprotease-dependent, and that this proteolytic activity was abolished in fibroblasts lacking TNFα converting enzyme (TACE) and could be rescued by reintroducing wildtype TACE in these cells. Moreover, we found that cells derived from the thymus of conditional TACE-deficient mice produce less FLT3L, and that serum FLT3L levels in these TACE mutant mice are significantly lower, both after LPS treatment and in the absence of such a challenge, further corroborating the relevance of TACE as FLT3L sheddase in vivo. Considering the involvements of FLT3 and FLT3L in hematopoietic malignancies and stem cell mobilization, the identification of the enzyme involved in FLT3L shedding may have important clinical implications. PMID:19494263

  12. FLT3 inhibition: a moving and evolving target in acute myeloid leukaemia.

    PubMed

    Leung, A Y H; Man, C-H; Kwong, Y-L

    2013-02-01

    Internal tandem duplication (ITD) of the fms-like tyrosine kinase 3 (FLT3) gene is a gain-of-function mutation common in acute myeloid leukaemia (AML). It is associated with inferior prognosis and response to chemotherapy. Single base mutations at the FLT3 tyrosine kinase domain (TKD) also leads to a gain of function, although its prognostic significance is less well defined because of its rarity. The clinical benefits of FLT3 inhibition are generally limited to AML with FLT3-ITD. However, responses are transient and leukaemia progression invariably occurs. There is compelling evidence that leukaemia clones carrying both ITD and TKD mutations appear when resistance to FLT3 inhibitors occurs. Interestingly, the emergence of double ITD and TKD mutants can be recapitulated in vitro when FLT3-ITD+ leukaemia cell lines are treated with mutagens and FLT3 inhibitors. Furthermore, murine xenotransplantation models also suggest that, in some cases, the FTL3-ITD and TKD double mutants actually exist in minute amounts before treatment with FLT3 inhibitors, expand under the selection pressure of FLT3 inhibition and become the predominant resistant clone(s) during the drug-refractory phase. On the basis of this model of clonal evolution, a multipronged strategy using more potent FLT3 inhibitors, and a combinatorial approach targeting both FLT3-dependent and FLT3-independent pathways, will be needed to improve outcome.

  13. Barley as a green factory for the production of functional Flt3 ligand.

    PubMed

    Erlendsson, Lýdur S; Muench, Marcus O; Hellman, Ulf; Hrafnkelsdóttir, Soffía M; Jonsson, Anders; Balmer, Yves; Mäntylä, Einar; Orvar, Björn L

    2010-02-01

    Biologically active recombinant human Flt3 ligand was expressed and isolated from transgenic barley seeds. Its expression is controlled by a tissue specific promoter that confines accumulation of the recombinant protein to the endosperm tissue of the seed. The recombinant Flt3 ligand variant expressed in the seeds contains an HQ-tag for affinity purification on immobilized metal ion affinity chromatography (IMAC) resin. The tagged protein was purified from seed extracts to near homogeneity using sequential chromatography on IMAC affinity resin and cation exchange resin. We also show that the recombinant Flt3 ligand protein undergoes posttranslational modifications: it is a glycoprotein containing alpha-1,3-fucose and alpha-1,2-xylose. The HQ-tagged Flt3 ligand variant exhibits comparable biological activity to commercial Flt3 ligand. This is the first report showing expression and accumulation of recombinant human growth factor in barley seeds with a yield of active protein similar to a bacterial expression system. The present results demonstrate that plant molecular farming is a viable approach for the bioproduction of human-derived growth factors.

  14. Using combination therapy to override stromal-mediated chemoresistance in mutant FLT3-positive AML: Synergism between FLT3 inhibitors, dasatinib/multi-targeted inhibitors, and JAK inhibitors

    PubMed Central

    Weisberg, Ellen; Liu, Qingsong; Nelson, Erik; Kung, Andrew L.; Christie, Amanda L.; Bronson, Rod; Sattler, Martin; Sanda, Takaomi; Zhao, Zheng; Hur, Wooyoung; Mitsiades, Constantine; Smith, Robert; Daley, John F.; Stone, Richard; Galinsky, Ilene; Griffin, James D.; Gray, Nathanael

    2014-01-01

    Acute myeloid leukemia (AML) progenitors are frequently characterized by activating mutations in the receptor tyrosine kinase FLT3. Protein tyrosine kinases are integral components of signaling cascades that play a role in both FLT3-mediated transformation as well as viability pathways that are advantageous to leukemic cell survival. The bone marrow microenvironment can diminish AML sensitivity to tyrosine kinase inhibitors (TKIs). We hypothesized that inhibition of protein kinases in addition to FLT3 may be effective in overriding drug resistance in AML. We used a cell-based model mimicking stromal protection as part of an unbiased high-throughput chemical screen to identify kinase inhibitors with the potential to override microenvironment-mediated drug resistance in mutant FLT3-positive AML. Several related multi-targeted kinase inhibitors, including dasatinib, with the capability of reversing microenvironment-induced resistance to FLT3 inhibition were identified and validated. We validated synergy in vitro and demonstrated effective combination potential in vivo. In particular Janus kinase (JAK) inhibitors were effective in overriding stromal protection and potentiating FLT3 inhibition in primary AML and cell lines. These results hint at a novel concept of using combination therapy to override drug resistance in mutant FLT3-positive AML in the bone marrow niche and suppress or eradicate residual disease. PMID:22469781

  15. Tyrosine kinase inhibitors targeting FLT3 in the treatment of acute myeloid leukemia

    PubMed Central

    Chen, Yun; Pan, Yihang; Guo, Yao; Zhao, Wanke; Ho, Wanting Tina; Wang, Jianlong; Xu, Mingjiang; Yang, Feng-Chun

    2017-01-01

    Acute myeloid leukemia (AML) is a cancer of the myeloid lineage of blood cells. Although significant progress has been made in treating many types of cancers during recent years, AML remains a deadly disease with survival rate lagging behind other blood cancers. A combination of toxic chemotherapies has been the standard AML treatment for more than 40 years. With intensive efforts to define the pathogenesis of AML, novel therapeutic drugs targeting key molecular defects in AML are being developed. Mutated in nearly 30% of AML, FMS-like tyrosine kinase 3 (FLT3) represents one of the most attractive targets. FLT3 mutants resulted from either internal tandem duplication (ITD) or point mutations possess enhanced kinase activity and cause constitutive activation of signaling. To date, several small molecule inhibitors of FLT3 have been developed but their clinical efficacy is limited due to a lack of potency and the generation of drug resistance. Therefore, next-generation FLT3 inhibitors overcoming these limitations are urgently in need. This review focuses on the pathological role of mutant FLT3 in the development of AML, the current status of FLT3 inhibitor development, and mechanisms underlining the development of resistance to existing FLT3 inhibitors. PMID:28607922

  16. FLT3 Ligand as a Molecular Adjuvant for Naked RNA Vaccines.

    PubMed

    Kreiter, Sebastian; Diken, Mustafa; Selmi, Abderraouf; Petschenka, Jutta; Türeci, Özlem; Sahin, Ugur

    2016-01-01

    Intranodal immunization with antigen-encoding naked mRNA has proven to be an efficacious and safe approach to induce antitumor immunity. Thanks to its unique characteristics, mRNA can act not only as a source for antigen but also as an adjuvant for activation of the immune system. The search for additional adjuvants that can be combined with mRNA to further improve the potency of the immunization revealed Fms-like tyrosine kinase 3 (FLT3ligand as a potent candidate. Systemic administration of the dendritic cell-activating FLT3 ligand prior to or along with mRNA immunization-enhanced priming and expansion of antigen-specific CD8(+) T cells in lymphoid organs, T-cell homing into melanoma tumors, and therapeutic activity of the intranodally administered mRNA. Both compounds demonstrate a successful combination in terms of boosting the immune response. This chapter describes methods for intranodal immunization with naked mRNA by co-administration of FLT3 ligand, which leads to strong synergistic effects.

  17. Flt3L is a novel regulator of skeletal myogenesis

    PubMed Central

    Ge, Yejing; Waldemer, Rachel J.; Nalluri, Ramakrishna; Nuzzi, Paul D.; Chen, Jie

    2013-01-01

    Summary Various cues initiate multiple signaling pathways to regulate the highly coordinated process of skeletal myogenesis. Myoblast differentiation comprises a series of ordered events starting with cell cycle withdrawal and ending with myocyte fusion, with each step probably controlled by multiple extracellular signals and intracellular signaling pathways. Here we report the identification of Fms-like tyrokine kinase 3 ligand (Flt3L) signaling as a novel regulator of skeletal myogenesis. Flt3L is a multifunctional cytokine in immune cells, but its involvement in skeletal muscle formation has not been reported. We found that Flt3L is expressed in C2C12 myoblasts, with levels increasing throughout differentiation. Knockdown of Flt3L, or its receptor Flt3, suppresses myoblast differentiation, which is rescued by recombinant Flt3L or Flt3, respectively. Differentiation is not rescued, however, by recombinant ligand when the receptor is knocked down, or vice versa, suggesting that Flt3L and Flt3 function together. Flt3L knockdown also inhibits differentiation in mouse primary myoblasts. Both Flt3L and Flt3 are highly expressed in nascent myofibers during muscle regeneration in vivo, and Flt3L siRNA impairs muscle regeneration, validating the physiological significance of Flt3L function in myogenesis. We have identified a cellular mechanism for the myogenic function of Flt3L, as we show that Flt3L promotes cell cycle exit that is necessary for myogenic differentiation. Furthermore, we identify Erk as a relevant target of Flt3L signaling during myogenesis, and demonstrate that Flt3L suppresses Erk signaling through p120RasGAP. In summary, our work reveals an unexpected role for an immunoregulatory cytokine in skeletal myogenesis and a new myogenic pathway. PMID:23704355

  18. Targeting FLT3-ITD signaling mediates ceramide-dependent mitophagy and attenuates drug resistance in AML.

    PubMed

    Dany, Mohammed; Gencer, Salih; Nganga, Rose; Thomas, Raquela J; Oleinik, Natalia; Baron, Kyla D; Szulc, Zdzislaw M; Ruvolo, Peter; Kornblau, Steven; Andreeff, Michael; Ogretmen, Besim

    2016-10-13

    Signaling pathways regulated by mutant Fms-like tyrosine kinase 3 (FLT3)-internal tandem duplication (ITD), which mediate resistance to acute myeloid leukemia (AML) cell death, are poorly understood. Here, we reveal that pro-cell death lipid ceramide generation is suppressed by FLT3-ITD signaling. Molecular or pharmacologic inhibition of FLT3-ITD reactivated ceramide synthesis, selectively inducing mitophagy and AML cell death. Mechanistically, FLT3-ITD targeting induced ceramide accumulation on the outer mitochondrial membrane, which then directly bound autophagy-inducing light chain 3 (LC3), involving its I35 and F52 residues, to recruit autophagosomes for execution of lethal mitophagy. Short hairpin RNA (shRNA)-mediated knockdown of LC3 prevented AML cell death in response to FLT3-ITD inhibition by crenolanib, which was restored by wild-type (WT)-LC3, but not mutants of LC3 with altered ceramide binding (I35A-LC3 or F52A-LC3). Mitochondrial ceramide accumulation and lethal mitophagy induction in response to FLT3-ITD targeting was mediated by dynamin-related protein 1 (Drp1) activation via inhibition of protein kinase A-regulated S637 phosphorylation, resulting in mitochondrial fission. Inhibition of Drp1 prevented ceramide-dependent lethal mitophagy, and reconstitution of WT-Drp1 or phospho-null S637A-Drp1 but not its inactive phospho-mimic mutant (S637D-Drp1), restored mitochondrial fission and mitophagy in response to crenolanib in FLT3-ITD(+) AML cells expressing stable shRNA against endogenous Drp1. Moreover, activating FLT3-ITD signaling in crenolanib-resistant AML cells suppressed ceramide-dependent mitophagy and prevented cell death. FLT3-ITD(+) AML drug resistance is attenuated by LCL-461, a mitochondria-targeted ceramide analog drug, in vivo, which also induced lethal mitophagy in human AML blasts with clinically relevant FLT3 mutations. Thus, these data reveal a novel mechanism which regulates AML cell death by ceramide-dependent mitophagy in response

  19. Flt3 is a target of coumestrol in protecting against UVB-induced skin photoaging.

    PubMed

    Park, Gaeun; Baek, Sohee; Kim, Jong-Eun; Lim, Tae-gyu; Lee, Charles C; Yang, Hee; Kang, Young-Gyu; Park, Jun Seong; Augustin, Martin; Mrosek, Michael; Lee, Chang Yong; Dong, Zigang; Huber, Robert; Lee, Ki Won

    2015-12-01

    While skin aging is a naturally occurring process by senescence, exposure to ultraviolet (UV) radiation accelerates wrinkle formation and sagging of skin. UV induces skin aging by degrading collagen via activating matrix metalloproteinases (MMPs). In this study, we show that coumestrol, a metabolite of the soybean isoflavone daidzein, has a preventive effect on skin photoaging in three-dimensional human skin equivalent model. Coumestrol inhibited UVB-induced MMP-1 expression and activity. Whole human kinase profiling assay identified FLT3 kinase as a novel target protein of coumestrol in UVB-induced signaling pathway in skin. Coumestrol suppresses FLT3 kinase activity, and subsequently, Ras/MEK/ERK and Akt/p70 ribosomal S6 kinase pathway. This suppresses AP-1 activity and in turn, diminishes MMP-1 gene transcription. Using X-ray crystallography, the binding of coumestrol to FLT3 was defined and implied ATP-competitive inhibition. Residues Lys644 and Phe830 showed local changes to accommodate coumestrol in the ATP-binding pocket. 4-APIA, a pharmacological inhibitor of FLT3, inhibited MMP-1 expression and induced signal transduction changes similar to coumestrol. Taken together, coumestrol inhibits UVB-induced MMP-1 expression by suppressing FLT3 kinase activity. These findings suggest that coumestrol is a novel dietary compound with potential application in preventing and improving UVB-associated skin aging.

  20. A type I IFN–Flt3 ligand axis augments plasmacytoid dendritic cell development from common lymphoid progenitors

    PubMed Central

    Chen, Yi-Ling; Chen, Ting-Ting; Pai, Li-Mei; Wesoly, Joanna; Bluyssen, Hans A.R.

    2013-01-01

    During infections and inflammation, plasmacytoid dendritic cells (pDCs) are the most potent type I interferon (IFN-I)–producing cells. However, the developmental origin of pDCs and the signals dictating pDC generation remain incompletely understood. Here, we report a synergistic role for IFN-I and Flt3 ligand (FL) in pDC development from common lymphoid progenitors (CLPs). Both conventional DCs (cDCs) and pDCs were generated from CLPs in response to FL, whereas pDC generation required higher concentrations of FL and concurrent IFN-I signaling. An absence of IFN-I receptor, impairment of IFN-I signaling, or neutralization of IFN-I significantly impeded pDC development from CLPs. Furthermore, FL induced IFN-I expression in CLPs, which in turn induced Flt3 up-regulation that facilitated survival and proliferation of CLPs, as well as their differentiation into pDCs. Collectively, these results define a critical role for the FL/IFN-I/Flt3 axis in pDC differentiation from CLPs. PMID:24145513

  1. Ligand-independent FLT3 activation does not cooperate with MLL-AF4 to immortalize/transform cord blood CD34+ cells.

    PubMed

    Montes, R; Ayllón, V; Prieto, C; Bursen, A; Prelle, C; Romero-Moya, D; Real, P J; Navarro-Montero, O; Chillón, C; Marschalek, R; Bueno, C; Menendez, P

    2014-03-01

    MLL-AF4 fusion is hallmark in high-risk infant pro-B-acute lymphoblastic leukemia (pro-B-ALL). Our limited understanding of MLL-AF4-mediated transformation reflects the absence of human models reproducing this leukemia. Hematopoietic stem/progenitor cells (HSPCs) constitute likely targets for transformation. We previously reported that MLL-AF4 enhanced hematopoietic engraftment and clonogenic potential in cord blood (CB)-derived CD34+ HSPCs but was not sufficient for leukemogenesis, suggesting that additional oncogenic lesions are required for MLL-AF4-mediated transformation. MLL-AF4+ pro-B-ALL display enormous levels of FLT3, and occasionally FLT3-activating mutations, thus representing a candidate cooperating event in MLL-AF4+ pro-B-ALL. We have explored whether FLT3.TKD (tyrosine kinase domain) mutation or increased expression of FLT3.WT (wild type) cooperates with MLL-AF4 to immortalize/transform CB-CD34+ HSPCs. In vivo, FLT3.TKD/FLT3.WT alone, or in combination with MLL-AF4, enhances hematopoietic repopulating function of CB-CD34+ HSPCs without impairing migration or hematopoietic differentiation. None of the animals transplanted with MLL-AF4+FLT3.TKD/WT-CD34+ HSPCs showed any sign of disease after 16 weeks. In vitro, enforced expression of FLT3.TKD/FLT3.WT conveys a transient overexpansion of MLL-AF4-expressing CD34+ HSPCs associated to higher proportion of cycling cells coupled to lower apoptotic levels, but does not augment clonogenic potential nor confer stable replating. Together, FLT3 activation does not suffice to immortalize/transform MLL-AF4-expressing CB-CD34+ HSPCs, suggesting the need of alternative (epi)-genetic cooperating oncogenic lesions.

  2. Effect of small interfering RNA targeting wild-type FLT3 in acute myeloid leukaemia cells in vitro and in vivo.

    PubMed

    Wang, C-M; Sheng, G-Y; Lu, J; Xie, L; Bai, S-T; Xu, X-J; Liu, Y-F

    2011-01-01

    This study investigated the effect of using small interfering RNA (siRNA) to silence the wild-type FMS-like tyrosine kinase 3 (FLT3) gene in acute myeloid leukaemia (AML) cells, in vitro and in vivo. FLT3 siRNA was introduced into the human AML cell line, THP1, and into a THP1 xenograft tumour model in BALB/c nude mice. FLT3 siRNA effectively reduced both the mRNA and the protein levels of FLT3, arrested cells in G(0)/G(1) phase, inhibited THP1 cell proliferation and increased apoptosis. Intraperitoneal injection of FLT3 siRNA suppressed tumour growth in BALB/c nude mice. FLT3 siRNA treatment also reduced cyclin D1 and Bcl-2 protein levels, and increased the nuclear level of silencing mediator for retinoic acid and thyroid hormone receptors protein both in vitro and in vivo. These data suggest that FLT3 siRNA is a strong inhibitor of FLT3 expression in vitro and in vivo, and may provide a new therapeutic target for AML.

  3. Flt3 ligand improves the innate response to respiratory syncytial virus and limits lung disease upon RSV reexposure in neonate mice.

    PubMed

    Remot, Aude; Descamps, Delphyne; Jouneau, Luc; Laubreton, Daphné; Dubuquoy, Catherine; Bouet, Stephan; Lecardonnel, Jérôme; Rebours, Emmanuelle; Petit-Camurdan, Agnès; Riffault, Sabine

    2016-04-01

    Respiratory syncytial virus (RSV) causes severe bronchiolitis in infants worldwide. The immunological factors responsible for RSV susceptibility in infants are poorly understood. Here, we used the BALB/c mouse model of neonatal RSV infection to study the mechanisms leading to severe disease upon reexposure to the virus when adults. Two major deficiencies in neonatal lung innate responses were found: a poor DCs mobilization, and a weak engagement of the IFNI pathway. The administration of Flt3 ligand (Flt3-L), a growth factor that stimulates the proliferation of hematopoietic cells, to neonates before RSV-infection, resulted in increased lung DC number, and reconditioned the IFNI pathway upon RSV neonatal infection. Besides, neonates treated with Flt3-L were protected against exacerbated airway disease upon adult reexposure to RSV. This was associated with a reorientation of RSV-specific responses toward Th1-mediated immunity. Thus, the poor lung DCs and IFNI responses to RSV in neonates may be partly responsible for the deleterious long-term consequences revealed upon adult reexposure to RSV, which could be prevented by Flt3-L treatment. These results open new perspectives for developing neonatal immuno-modulating strategies to reduce the burden of bronchiolitis.

  4. Activation of protein phosphatase 2A in FLT3+ acute myeloid leukemia cells enhances the cytotoxicity of FLT3 tyrosine kinase inhibitors

    PubMed Central

    Lee, Erwin M.; Harrison, Celeste; Kahl, Richard; Flanagan, Hayley; Panicker, Nikita; Mashkani, Baratali; Don, Anthony S.; Morris, Jonathan; Toop, Hamish; Lock, Richard B.; Powell, Jason A.; Thomas, Daniel; Guthridge, Mark A.; Moore, Andrew; Ashman, Leonie K.; Skelding, Kathryn A.; Enjeti, Anoop; Verrills, Nicole M.

    2016-01-01

    Constitutive activation of the receptor tyrosine kinase Fms-like tyrosine kinase 3 (FLT3), via co-expression of its ligand or by genetic mutation, is common in acute myeloid leukemia (AML). In this study we show that FLT3 activation inhibits the activity of the tumor suppressor, protein phosphatase 2A (PP2A). Using BaF3 cells transduced with wildtype or mutant FLT3, we show that FLT3-induced PP2A inhibition sensitizes cells to the pharmacological PP2A activators, FTY720 and AAL(S). FTY720 and AAL(S) induced cell death and inhibited colony formation of FLT3 activated cells. Furthermore, PP2A activators reduced the phosphorylation of ERK and AKT, downstream targets shared by both FLT3 and PP2A, in FLT3/ITD+ BaF3 and MV4-11 cell lines. PP2A activity was lower in primary human bone marrow derived AML blasts compared to normal bone marrow, with blasts from FLT3-ITD patients displaying lower PP2A activity than WT-FLT3 blasts. Reduced PP2A activity was associated with hyperphosphorylation of the PP2A catalytic subunit, and reduced expression of PP2A structural and regulatory subunits. AML patient blasts were also sensitive to cell death induced by FTY720 and AAL(S), but these compounds had minimal effect on normal CD34+ bone marrow derived monocytes. Finally, PP2A activating compounds displayed synergistic effects when used in combination with tyrosine kinase inhibitors in FLT3-ITD+ cells. A combination of Sorafenib and FTY720 was also synergistic in the presence of a protective stromal microenvironment. Thus combining a PP2A activating compound and a FLT3 inhibitor may be a novel therapeutic approach for treating AML. PMID:27329844

  5. DOCK2 interacts with FLT3 and modulates the survival of FLT3-expressing leukemia cells.

    PubMed

    Wu, M; Hamaker, M; Li, L; Small, D; Duffield, A S

    2017-03-01

    The FMS-like tyrosine kinase-3 (FLT3) gene is the most commonly mutated gene in acute myeloid leukemia (AML), and patients carrying internal tandem duplication (ITD) mutations have a poor prognosis. Long-term inhibition of FLT3 activity in these patients has been elusive. To provide a more complete understanding of FLT3 biology, a mass spectroscopy-based screen was performed to search for FLT3-interacting proteins. The screen identified dedicator of cytokinesis 2 (DOCK2), which is a guanine nucleotide exchange factor for Rho GTPases, and its expression is limited to hematolymphoid cells. We show that DOCK2 is expressed in leukemia cell lines and primary AML samples, and DOCK2 co-immunoprecipitates with wild-type FLT3 and FLT3/ITD. Knockdown (KD) of DOCK2 by shRNA selectively reduced cell proliferation and colony formation in leukemia cell lines with increased FLT3 activity, and greatly sensitized these cells to cytarabine treatment, alone and in combination with FLT3 tyrosine kinase inhibitors. DOCK2 KD in an FLT3/ITD-positive leukemia cell line also significantly prolonged survival in a mouse xenograft model. These findings suggest that DOCK2 is a potential therapeutic target for novel AML treatments, as this protein regulates the survival of leukemia cells with elevated FLT3 activity and sensitizes FLT3/ITD leukemic cells to conventional antileukemic agents.

  6. Flt3 ligand expands CD103+ dendritic cells, FoxP3+ T regulatory cells and attenuates Crohn’s-like murine ileitis

    PubMed Central

    Collins, Colm B.; Aherne, Carol M.; McNamee, Eóin N.; Lebsack, Matthew D. P.; Eltzschig, Holger; Jedlicka, Paul; Rivera-Nieves, Jesús

    2013-01-01

    Background Imprinting an effector or regulatory phenotype on naïve T cells requires education at induction sites by dendritic cells (DC). In the current studies we analyzed the effect of inflammation on the frequency of mononuclear phagocytes (MP) and the effect of altering their frequency by administration of Flt3-L in chronic ileitis. Design Using a TNF-driven model of ileitis (i.e. TNFΔARE) that recapitulates many features of Crohn’s disease (CD), we assessed dynamic changes in the frequency and functional state of MP within the inflamed ileum by flow cytometry, immunofluorescence and real-time reverse-transcription polymerase chain reaction and by generating CX3CR1 GFP-reporter TNFΔARE mice. Finally, we assessed the effect of Flt3-L supplementation on the severity of ileitis, the frequency of CD103+ DC and of FoxP3+ Tregs in TNFΔARE mice. Results CD11cHi/MHCII+ MP accumulated in inflamed ilea, predominantly mediated by expansion of the CX3CR1+ MP subpopulation. This coincided with a decreased pro-regulatory CD103+ DC. The phenotype of these MP was that of activated cells, as they expressed increased CD80 and CD86 on their surface. Flt3-ligand administration resulted in a preferential expansion of CD103+ DC that attenuated the severity of ileitis in 20-week-old TNFΔARE mice, mediated by increased CD4+/CD25+/FoxP3+ Tregs. Conclusions Our findings support a role for Flt3-L as a potential therapeutic in Crohn’s-like ileitis. PMID:22068168

  7. NOTCH2 and FLT3 gene mis-splicings are common events in patients with acute myeloid leukemia (AML): new potential targets in AML

    PubMed Central

    Bar-Natan, Michal; Haibe-Kains, Benjamin; Pilarski, Patrick M.; Bach, Christian; Pevzner, Samuel; Calimeri, Teresa; Avet-Loiseau, Herve; Lode, Laurence; Verselis, Sigitas; Fox, Edward A.; Galinsky, Ilene; Mathews, Steven; Dagogo-Jack, Ibiayi; Wadleigh, Martha; Steensma, David P.; Motyckova, Gabriela; Deangelo, Daniel J.; Quackenbush, John; Tenen, Daniel G.; Stone, Richard M.; Griffin, James D.

    2014-01-01

    Our previous studies revealed an increase in alternative splicing of multiple RNAs in cells from patients with acute myeloid leukemia (AML) compared with CD34+ bone marrow cells from normal donors. Aberrantly spliced genes included a number of oncogenes, tumor suppressor genes, and genes involved in regulation of apoptosis, cell cycle, and cell differentiation. Among the most commonly mis-spliced genes (>70% of AML patients) were 2, NOTCH2 and FLT3, that encode myeloid cell surface proteins. The splice variants of NOTCH2 and FLT3 resulted from complete or partial exon skipping and utilization of cryptic splice sites. Longitudinal analyses suggested that NOTCH2 and FLT3 aberrant splicing correlated with disease status. Correlation analyses between splice variants of these genes and clinical features of patients showed an association between NOTCH2-Va splice variant and overall survival of patients. Our results suggest that NOTCH2 and FLT3 mis-splicing is a common characteristic of AML and has the potential to generate transcripts encoding proteins with altered function. Thus, splice variants of these genes might provide disease markers and targets for novel therapeutics. PMID:24574459

  8. Prolonged exposure to FLT3 inhibitors leads to resistance via activation of parallel signaling pathways

    PubMed Central

    Piloto, Obdulio; Wright, Melissa; Brown, Patrick; Kim, Kyu-Tae; Levis, Mark; Small, Donald

    2007-01-01

    Continuous treatment of malignancies with tyrosine kinase inhibitors (TKIs) may select for resistant clones (ie, imatinib mesylate). To study resistance to TKIs targeting FLT3, a receptor tyrosine kinase that is frequently mutated in acute myelogenous leukemia (AML), we developed resistant human cell lines through prolonged coculture with FLT3 TKIs. FLT3 TKI-resistant cell lines and primary samples still exhibit inhibition of FLT3 phosphorylation on FLT3 TKI treatment. However, FLT3 TKI-resistant cell lines and primary samples often show continued activation of downstream PI3K/Akt and/or Ras/MEK/MAPK signaling pathways as well as continued expression of genes involved in FLT3-mediated cellular transformation. Inhibition of these signaling pathways restores partial sensitivity to FLT3 TKIs. Mutational screening of FLT3 TKI-resistant cell lines revealed activating N-Ras mutations in 2 cell lines that were not present in the parental FLT3 TKI-sensitive cell line. Taken together, these data indicate that FLT3 TKI-resistant cells most frequently become FLT3 independent because of activation of parallel signaling pathways that provide compensatory survival/proliferation signals when FLT3 is inhibited. Anti-FLT3 mAb treatment was still cytotoxic to FLT3 TKI-resistant clones. An approach combining FLT3 TKIs with anti-FLT3 antibodies and/or inhibitors of important pathways downstream of FLT3 may reduce the chances of developing resistance. PMID:17047150

  9. An autologous in situ tumor vaccination approach for hepatocellular carcinoma. 2. Tumor-specific immunity and cure after radio-inducible suicide gene therapy and systemic CD40-ligand and Flt3-ligand gene therapy in an orthotopic tumor model.

    PubMed

    Kawashita, Yujo; Deb, Niloy J; Garg, Madhur K; Kabarriti, Rafi; Fan, Zuoheng; Alfieri, Alan A; Roy-Chowdhury, Jayanta; Guha, Chandan

    2014-08-01

    Diffuse hepatocellular carcinoma (HCC) is a lethal disease that radiation therapy (RT) currently has a limited role in treating because of the potential for developing fatal radiation-induced liver disease. However, recently diffuse HCC, "radio-inducible suicide gene therapy" has been shown to enhance local tumor control and residual microscopic disease within the liver for diffuse HCC, by using a combination of chemoactivation and molecular radiosensitization. We have demonstrated that the addition of recombinant adenovirus-expressing human Flt3 ligand (Adeno-Flt3L) after radio-inducible suicide gene therapy induced a Th1-biased, immune response and enhanced tumor control in an ectopic model of HCC. We hypothesized that sequential administration of recombinant adenovirus-expressing CD40L (Adeno-CD40L) could further potentiate the efficacy of our trimodal therapy with RT + HSV-TK + Adeno-Flt3L. We examined our hypothesis in an orthotopic model of diffuse HCC using BNL1ME A.7R.1 (BNL) cells in Balb/c mice. BNL murine hepatoma cells (5 × 10(4)) transfected with an expression vector of HSV-TK under the control of a radiation-inducible promoter were injected intraportally into BALB/cJ mice. Fourteen days after the HCC injection, mice were treated with a 25 Gy dose of radiation to the whole liver, followed by ganciclovir (GCV) treatment and systemic adenoviral cytokine gene therapy (Flt3L or CD40L or both). Untreated mice died in 27 ± 4 days. Radiation therapy alone had a marginal effect on survival (median = 35 ± 7 days) and the addition of HSV-TK/GCV gene therapy improved the median survival to 47 ± 6 days. However, the addition of Adeno-Flt3L to radiation therapy and HSV-TK/GCV therapy significantly (P = 0.0005) increased survival to a median of 63 ± 20 days with 44% (7/16) of the animals still alive 116 days after tumor implantation. The curative effect of Flt3L was completely abolished when using immunodeficient nude mice or mice depleted for CD4, CD8 and

  10. Pim kinases modulate resistance to FLT3 tyrosine kinase inhibitors in FLT3-ITD acute myeloid leukemia

    PubMed Central

    Green, Alexa S.; Maciel, Thiago T.; Hospital, Marie-Anne; Yin, Chae; Mazed, Fetta; Townsend, Elizabeth C.; Pilorge, Sylvain; Lambert, Mireille; Paubelle, Etienne; Jacquel, Arnaud; Zylbersztejn, Florence; Decroocq, Justine; Poulain, Laury; Sujobert, Pierre; Jacque, Nathalie; Adam, Kevin; So, Jason C. C.; Kosmider, Olivier; Auberger, Patrick; Hermine, Olivier; Weinstock, David M.; Lacombe, Catherine; Mayeux, Patrick; Vanasse, Gary J.; Leung, Anskar Y.; Moura, Ivan C.; Bouscary, Didier; Tamburini, Jerome

    2015-01-01

    ABSTRACT Fms-like tyrosine kinase 3 internal tandem duplication (FLT3-ITD) is frequently detected in acute myeloid leukemia (AML) patients and is associated with a dismal long-term prognosis. FLT3 tyrosine kinase inhibitors provide short-term disease control, but relapse invariably occurs within months. Pim protein kinases are oncogenic FLT3-ITD targets expressed in AML cells. We show that increased Pim kinase expression is found in relapse samples from AML patients treated with FLT3 inhibitors. Ectopic Pim-2 expression induces resistance to FLT3 inhibition in both FLT3-ITD–induced myeloproliferative neoplasm and AML models in mice. Strikingly, we found that Pim kinases govern FLT3-ITD signaling and that their pharmacological or genetic inhibition restores cell sensitivity to FLT3 inhibitors. Finally, dual inhibition of FLT3 and Pim kinases eradicates FLT3-ITD+ cells including primary AML cells. Concomitant Pim and FLT3 inhibition represents a promising new avenue for AML therapy. PMID:26601252

  11. Gilteritinib, a FLT3/AXL inhibitor, shows antileukemic activity in mouse models of FLT3 mutated acute myeloid leukemia.

    PubMed

    Mori, Masamichi; Kaneko, Naoki; Ueno, Yoko; Yamada, Masaki; Tanaka, Ruriko; Saito, Rika; Shimada, Itsuro; Mori, Kenichi; Kuromitsu, Sadao

    2017-05-17

    Advances in the understanding of the molecular basis for acute myeloid leukemia (AML) have generated new potential targets for treatment. Fms-like tyrosine kinase 3 (FLT3) is one of the most frequently mutated genes in AML and mutations in this gene are associated with poor overall survival. AXL plays a role in the activation of FLT3 and has been implicated in the pathogenesis of AML. The studies reported here evaluated the ability of a novel FLT3/AXL inhibitor, gilteritinib, to block mutated FLT3 in cellular and animal models of AML. Initial kinase studies showed that gilteritinib, a type I tyrosine kinase inhibitor, was highly selective for both FLT3 and AXL while having weak activity against c-KIT. Gilteritinib demonstrated potent inhibitory activity against the internal tandem duplication (FLT3-ITD) and FLT3-D835Y point mutations in cellular assays using MV4-11 and MOLM-13 cells as well as Ba/F3 cells expressing mutated FLT3. Gilteritinib also inhibited FLT3-F691 mutations, although to a lesser degree, in these assays. Furthermore, gilteritinib decreased the phosphorylation levels of FLT3 and its downstream targets in both cellular and animal models. In vivo, gilteritinib was distributed at high levels in xenografted tumors after oral administration. The decreased FLT3 activity and high intratumor distribution of gilteritinib translated to tumor regression and improved survival in xenograft and intra-bone marrow transplantation models of FLT3-driven AML. No overt toxicity was seen in mouse models treated with gilteritinib. These results indicate that gilteritinib may be an important next-generation FLT3 inhibitor for use in the treatment of FLT3 mutation-positive AML.

  12. Optimization of retroviral gene transduction of mobilized primitive hematopoietic progenitors by using thrombopoietin, Flt3, and Kit ligands and RetroNectin culture.

    PubMed

    Murray, L; Luens, K; Tushinski, R; Jin, L; Burton, M; Chen, J; Forestell, S; Hill, B

    1999-07-20

    We have investigated the ability of several cytokine combinations to improve retrovirus-mediated transduction of human primitive hematopoietic progenitors (PHPs) from mobilized peripheral blood (MPB). Retroviral infection of CD34+ cells was performed by culture on fibronectin fragment CH-296 (RetroNectin, RN), using the truncated human nerve growth factor receptor (NGFR) as the transgene reporter. Transgene expression among progeny of PHPs was assayed by FACS analysis after long-term stromal culture (LTC). Transgene delivery to PHPs was assessed by PCR of individual stromal culture-derived methylcellulose colonies (LTC-CFCs). Compared with interleukin 3 (IL-3), IL-6, and leukemia inhibitory factor (LIF), the combination of thrombopoietin (TPO), Flt3 ligand (FL), and Kit ligand (KL) effected a 73-fold increase in NGFR expression among CD34+ cells (to 14%) and a 14-fold increase in NGFR expression among total cells (to 10%) after LTC. In addition, a 2.4-fold increase in neo gene marking of LTC-CFCs was observed. A preclinical study comparing the effect of high-speed centrifugation ("spinoculation") or culture on RN during exposure to retroviral particles in teflon cell culture bags showed no difference in the efficiency of transduction of PHPs between these two methods.

  13. Revisiting emergency anti-apoptotic cytokinotherapy: erythropoietin synergizes with stem cell factor, FLT-3 ligand, trombopoietin and interleukin-3 to rescue lethally-irradiated mice.

    PubMed

    Drouet, Michel; Grenier, Nancy; Hérodin, Francis

    2012-06-01

    We have re-evaluated the benefit of using erythropoietin (Epo) as a pleiotropic cytokine to counteract hematological and extra-hematological toxicity following lethal irradiation. B6D2F1 mice were exposed to a dose of 9 Gy gamma radiation resulting in 90% mortality at 30 days, and then injected with stem cell factor, FLT-3 ligand, thrombopoietin and interleukin-3 [i.e. SFT3] at two and 24 hours with or without Epo (1,000 IU/kg) at 2 hours and day 8. As controls, two groups of irradiated mice were given only Epo or Phosphate-buffered saline. Epo synergized with SFT3 to rescue lethally-irradiated mice from radiation-induced death (survival: 60%, 95% and 5% respectively for SFT3, SFT3+Epo and controls at 30 days, p<0.05), whereas Epo alone exhibited no protective effect. Hematopoietic parameters did not differ significantly between SFT3 and SFT3+Epo groups during the animal death period. Some beneficial effects on gastro-intestinal toxicity were noticed following administration of Epo, although lung, liver and kidney were not protected. Further studies are necessary to understand fully the mechanisms involved in these effects of Epo in order to optimize treatment with cytokines following high-dose irradiation.

  14. Irreversible pan-ERBB inhibitor canertinib elicits anti-leukaemic effects and induces the regression of FLT3-ITD transformed cells in mice.

    PubMed

    Nordigården, Amanda; Zetterblad, Jenny; Trinks, Cecilia; Gréen, Henrik; Eliasson, Pernilla; Druid, Pia; Lotfi, Kourosh; Rönnstrand, Lars; Walz, Thomas M; Jönsson, Jan-Ingvar

    2011-10-01

    Recent findings have indicated that tyrosine kinase inhibitors (TKIs) targeting the ERBB receptor family display anti-leukaemic effects, despite the lack of receptor expression on human leukaemic cells. The occurrence of activating mutations in the gene encoding FMS-like tyrosine kinase 3 (FLT3) in patients with acute myeloid leukaemia (AML) has rendered inhibition of this receptor a promising therapeutic target. Due to possibility of cross-reactivity, we investigated the effect of the irreversible pan-ERBB inhibitor canertinib (CI-1033) on leukaemic cells expressing FLT3. The drug had anti-proliferative and apoptotic effects on primary AML cells and human leukaemic cell lines expressing mutated FLT3. In several AML patient samples, a blast cell population expressing FLT3-internal tandem duplication (ITD) was eradicated by canertinib. Canertinib inhibited receptor autophosphorylation and kinase activity of both mutated and FLT3 ligand stimulated wildtype FLT3, leading to inhibition of the PI3-kinase and MAP kinase pathways. Apoptotic induction was dependent on pro-apoptotic BH3-only protein BCL2L11/BIM because siRNA silencing attenuated apoptosis. Moreover, the drug induced regression of cells expressing FLT3-ITD in a murine in vivo-transplantation model at previously described tolerated doses. These results indicate that canertinib, as an irreversible TKI, could constitute a novel treatment regimen in patients with mutated or overexpressed FLT3. © 2011 Blackwell Publishing Ltd.

  15. FLT3 inhibitors: clinical potential in acute myeloid leukemia

    PubMed Central

    Hospital, Marie-Anne; Green, Alexa S; Maciel, Thiago T; Moura, Ivan C; Leung, Anskar Y; Bouscary, Didier; Tamburini, Jerome

    2017-01-01

    Acute myeloid leukemia (AML) is an aggressive hematopoietic malignancy that is cured in as few as 15%–40% of cases. Tremendous improvements in AML prognostication arose from a comprehensive analysis of leukemia cell genomes. Among normal karyotype AML cases, mutations in the FLT3 gene are the ones most commonly detected as having a deleterious prognostic impact. FLT3 is a transmembrane tyrosine kinase receptor, and alterations of the FLT3 gene such as internal tandem duplications (FLT3-ITD) deregulate FLT3 downstream signaling pathways in favor of increased cell proliferation and survival. FLT3 tyrosine kinase inhibitors (TKI) emerged as a new therapeutic option in FLT3-ITD AML, and clinical trials are ongoing with a variety of TKI either alone, combined with chemotherapy, or even as maintenance after allogenic stem cell transplantation. However, a wide range of molecular resistance mechanisms are activated upon TKI therapy, thus limiting their clinical impact. Massive research efforts are now ongoing to develop more efficient FLT3 TKI and/or new therapies targeting these resistance mechanisms to improve the prognosis of FLT3-ITD AML patients in the future. PMID:28223820

  16. RUNX1 cooperates with FLT3-ITD to induce leukemia

    PubMed Central

    Maul, Katrin; Tekin, Nilgün; Indenbirken, Daniela; Prassolov, Vladimir; Serve, Hubert; Cammenga, Jörg

    2017-01-01

    Acute myeloid leukemia (AML) is induced by the cooperative action of deregulated genes that perturb self-renewal, proliferation, and differentiation. Internal tandem duplications (ITDs) in the FLT3 receptor tyrosine kinase are common mutations in AML, confer poor prognosis, and stimulate myeloproliferation. AML patient samples with FLT3-ITD express high levels of RUNX1, a transcription factor with known tumor-suppressor function. In this study, to understand this paradox, we investigated the impact of RUNX1 and FLT3-ITD coexpression. FLT3-ITD directly impacts on RUNX1 activity, whereby up-regulated and phosphorylated RUNX1 cooperates with FLT3-ITD to induce AML. Inactivating RUNX1 in tumors releases the differentiation block and down-regulates genes controlling ribosome biogenesis. We identified Hhex as a direct target of RUNX1 and FLT3-ITD stimulation and confirmed high HHEX expression in FLT3-ITD AMLs. HHEX could replace RUNX1 in cooperating with FLT3-ITD to induce AML. These results establish and elucidate the unanticipated oncogenic function of RUNX1 in AML. We predict that blocking RUNX1 activity will greatly enhance current therapeutic approaches using FLT3 inhibitors. PMID:28213513

  17. Incorporating FLT3 inhibitors into acute myeloid leukemia treatment regimens

    PubMed Central

    Pratz, Keith; Levis, Mark

    2011-01-01

    FMS-Like-Tyrosine kinase-3 (FLT3) mutations are found in about 30% of cases of acute myeloid leukemia and confer an increased relapse rate and reduced overall survival. Targeting of this tyrosine kinase by direction inhibition is the focus of both preclinical and clinical research in AML. Several molecules in clinical development inhibit FLT3 with varying degrees of specificity. Preclinical models suggest that these compounds enhance the cytotoxicity of conventional chemotherapeutics against FLT3 mutant leukemia cells. The pharmacodynamic interactions between FLT3 inhibitors and chemotherapy appear to be sequence dependent. When the FLT3 inhibitor is used prior to chemotherapy, antagonism is displayed, while if FLT3 inhibition is instituted after to exposure to chemotherapy, synergistic cytotoxicity is seen. The combination of FLT3 inhibitors with chemotherapy is also complicated by potential pharmacokinetic obstacles, such as plasma protein binding and p-glycoprotein interactions. Ongoing and future studies are aimed at incorporating FLT3 inhibitors into conventional induction and consolidation therapy specifically for patients with FLT3 mutant AML. PMID:18452067

  18. RUNX1 cooperates with FLT3-ITD to induce leukemia.

    PubMed

    Behrens, Kira; Maul, Katrin; Tekin, Nilgün; Kriebitzsch, Neele; Indenbirken, Daniela; Prassolov, Vladimir; Müller, Ursula; Serve, Hubert; Cammenga, Jörg; Stocking, Carol

    2017-03-06

    Acute myeloid leukemia (AML) is induced by the cooperative action of deregulated genes that perturb self-renewal, proliferation, and differentiation. Internal tandem duplications (ITDs) in the FLT3 receptor tyrosine kinase are common mutations in AML, confer poor prognosis, and stimulate myeloproliferation. AML patient samples with FLT3-ITD express high levels of RUNX1, a transcription factor with known tumor-suppressor function. In this study, to understand this paradox, we investigated the impact of RUNX1 and FLT3-ITD coexpression. FLT3-ITD directly impacts on RUNX1 activity, whereby up-regulated and phosphorylated RUNX1 cooperates with FLT3-ITD to induce AML. Inactivating RUNX1 in tumors releases the differentiation block and down-regulates genes controlling ribosome biogenesis. We identified Hhex as a direct target of RUNX1 and FLT3-ITD stimulation and confirmed high HHEX expression in FLT3-ITD AMLs. HHEX could replace RUNX1 in cooperating with FLT3-ITD to induce AML. These results establish and elucidate the unanticipated oncogenic function of RUNX1 in AML. We predict that blocking RUNX1 activity will greatly enhance current therapeutic approaches using FLT3 inhibitors. © 2017 Behrens et al.

  19. Adaptor protein Lnk binds to and inhibits normal and leukemic FLT3

    PubMed Central

    Yin, Tong; Koren-Michowitz, Maya; Ding, Ling-Wen; Gueller, Saskia; Gery, Sigal; Tabayashi, Takayuki; Bergholz, Ulla; Kazi, Julhash U.; Rönnstrand, Lars; Stocking, Carol; Koeffler, H. Phillip

    2012-01-01

    Fms-like tyrosine kinase 3 (FLT3) is a receptor tyrosine kinase with important roles in hematopoietic progenitor cell survival and proliferation. It is mutated in approximately one-third of AML patients, mostly by internal tandem duplications (ITDs). Adaptor protein Lnk is a negative regulator of hematopoietic cytokine signaling. In the present study, we show that Lnk interacts physically with both wild-type FLT3 (FLT3-WT) and FLT3-ITD through the SH2 domains. We have identified the tyrosine residues 572, 591, and 919 of FLT3 as phosphorylation sites involved in direct binding to Lnk. Lnk itself was tyrosine phosphorylated by both FLT3 ligand (FL)–activated FLT3-WT and constitutively activated FLT3-ITD. Both shRNA-mediated depletion and forced overexpression of Lnk demonstrated that activation signals emanating from both forms of FLT3 are under negative regulation by Lnk. Moreover, Lnk inhibited 32D cell proliferation driven by different FLT3 variants. Analysis of primary BM cells from Lnk-knockout mice showed that Lnk suppresses the expansion of FL-stimulated hematopoietic progenitors, including lymphoid-primed multipotent progenitors. The results of the present study show that through direct binding to FLT3, Lnk suppresses FLT3-WT/ITD–dependent signaling pathways involved in the proliferation of hematopoietic cells. Therefore, modulation of Lnk expression levels may provide a unique therapeutic approach for FLT3-ITD–associated hematopoietic disease. PMID:22942183

  20. FLT-3 Expression and Function on Microglia in Multiple Sclerosis

    PubMed Central

    DeBoy, Cynthia A.; Rus, Horea; Tegla, Cosmin; Cudrici, Cornelia; Jones, Melina V.; Pardo, Carlos A.; Small, Donald; Whartenby, Katharine A.; Calabresi, Peter A.

    2010-01-01

    Inflammatory cell infiltration and resident microglial activation within the central nervous system (CNS) are pathological events in multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). While MS therapies target the peripheral immune system, no treatment is currently known to also modulate microglia. FMS-like tyrosine-3 (FLT-3) is expressed on hematopoietic and dendritic cells. We reported that FLT-3 inhibition ameliorates early actively induced EAE by predominantly modulating dendritic cell function as compared to microglia. We demonstrate in this report that FLT-3 is expressed in perivascular cuffs, brain parenchyma and in non-lesioned gray and white matter within MS brain but not in these regions within control brain. Furthermore, we demonstrate that FLT-3 is expressed on two populations of cells within MS brain; one which expresses the dendritic cell marker CD209, and the other which does not, suggesting that FLT-3 within MS brain is expressed on infiltrating dendritic cells and a non-dendritic cell such as microglia. Additionally, we report that FLT-3 inhibition in murine microglia blocks, in a dose dependent manner, IFN-γ-induced expression of MHC class II and CD86, and LPS-induced secretion of IL-6. These data suggest that FLT-3 is involved in microglial cell’s capacity to respond to environmental cues to function as antigen presenting cells and mediate CNS inflammation. Furthermore these data suggest that FLT-3 may be a therapeutic target on microglia to mitigate CNS inflammation. PMID:20566414

  1. The role of FLT3 inhibitors in the treatment of FLT3-mutated acute myeloid leukemia.

    PubMed

    Fathi, Amir T; Chen, Yi-Bin

    2017-04-01

    FLT3 mutations are present in about one-third of patients with acute myeloid leukemia (AML). Several FLT3 inhibitors have been used in clinical trials, and these include midostaurin, sorafenib, quizartinib, crenolanib, and gilteritinib. Monotherapy with early tyrosine kinase inhibitors (TKIs) did not have much success; however, later generation agents have shown more promising results. Combination with conventional chemotherapy may have benefit as evidenced by recently presented results, and data from ongoing trials are eagerly awaited. Several trials are also evaluating TKI given after HSCT, and a large international randomized trial is planned. We may be close to an era of targeted therapy where the standard of care for this biologically defined subset will involve incorporation of a FLT3 TKI during induction chemotherapy and after HSCT. It is important that our community continues to collaborate to conduct well-designed clinical trials to properly define the role of FLT3 TKIs in therapy for FLT3-mutant AML. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. All-trans retinoic acid synergizes with FLT3 inhibition to eliminate FLT3/ITD+ leukemia stem cells in vitro and in vivo

    PubMed Central

    Ma, Hayley S.; Greenblatt, Sarah M.; Shirley, Courtney M.; Duffield, Amy S.; Bruner, J. Kyle; Li, Li; Nguyen, Bao; Jung, Eric; Aplan, Peter D.; Ghiaur, Gabriel; Jones, Richard J.

    2016-01-01

    FMS-like tyrosine kinase 3 (FLT3)-mutant acute myeloid leukemia (AML) portends a poor prognosis, and ineffective targeting of the leukemic stem cell (LSC) population remains one of several obstacles in treating this disease. All-trans retinoic acid (ATRA) has been used in several clinical trials for the treatment of nonpromyelocytic AML with limited clinical activity observed. FLT3 tyrosine kinase inhibitors (TKIs) used as monotherapy also achieve limited clinical responses and are thus far unable to affect cure rates in AML patients. We explored the efficacy of combining ATRA and FLT3 TKIs to eliminate FLT3/internal tandem duplication (ITD)+ LSCs. Our studies reveal highly synergistic drug activity, preferentially inducing apoptosis in FLT3/ITD+ cell lines and patient samples. Colony-forming unit assays further demonstrate decreased clonogenicity of FLT3/ITD+ cells upon treatment with ATRA and TKI. Most importantly, the drug combination depletes FLT3/ITD+ LSCs in a genetic mouse model of AML, and prolongs survival of leukemic mice. Furthermore, engraftment of primary FLT3/ITD+ patient samples is reduced in mice following treatment with FLT3 TKI and ATRA in combination, with evidence of cellular differentiation occurring in vivo. Mechanistically, we provide evidence that the synergism of ATRA and FLT3 TKIs is at least in part due to the observation that FLT3 TKI treatment upregulates the antiapoptotic protein Bcl6, limiting the drug’s apoptotic effect. However, cotreatment with ATRA reduces Bcl6 expression to baseline levels through suppression of interleukin-6 receptor signaling. These studies provide evidence of the potential of this drug combination to eliminate FLT3/ITD+ LSCs and reduce the rate of relapse in AML patients with FLT3 mutations. PMID:27103744

  3. The new and recurrent FLT3 juxtamembrane deletion mutation shows a dominant negative effect on the wild-type FLT3 receptor

    PubMed Central

    Sandhöfer, Nadine; Bauer, Julia; Reiter, Katrin; Dufour, Annika; Rothenberg, Maja; Konstandin, Nikola P.; Zellmeier, Evelyn; Tizazu, Belay; Greif, Philipp A.; Metzeler, Klaus H.; Hiddemann, Wolfgang; Polzer, Harald; Spiekermann, Karsten

    2016-01-01

    In acute myeloid leukemia (AML), the Fms-like tyrosine kinase 3 (FLT3) is one of the most frequently mutated genes. Recently, a new and recurrent juxtamembrane deletion mutation (p.Q569Vfs*2) resulting in a truncated receptor was identified. The mutated receptor is expressed on the cell surface and still binds its ligand but loses the ability to activate ERK signaling. FLT3 p.Q569fs-expressing Ba/F3 cells show no proliferation after ligand stimulation. Furthermore, coexpressed with the FLT3 wild-type (WT) receptor, the truncated receptor suppresses stimulation and activation of the WT receptor. Thus, FLT3 p.Q569Vfs*2, to our knowledge, is the first FLT3 mutation with a dominant negative effect on the WT receptor. PMID:27346558

  4. The MERTK/FLT3 inhibitor MRX-2843 overcomes resistance-conferring FLT3 mutations in acute myeloid leukemia.

    PubMed

    Minson, Katherine A; Smith, Catherine C; DeRyckere, Deborah; Libbrecht, Clara; Lee-Sherick, Alisa B; Huey, Madeline G; Lasater, Elisabeth A; Kirkpatrick, Gregory D; Stashko, Michael A; Zhang, Weihe; Jordan, Craig T; Kireev, Dmitri; Wang, Xiaodong; Frye, Stephen V; Earp, H Shelton; Shah, Neil P; Graham, Douglas K

    2016-03-01

    FMS-like tyrosine kinase 3-targeted (FLT3-targeted) therapies have shown initial promise for the treatment of acute myeloid leukemia (AML) expressing FLT3-activating mutations; however, resistance emerges rapidly. Furthermore, limited options exist for the treatment of FLT3-independent AML, demonstrating the need for novel therapies that reduce toxicity and improve survival. MERTK receptor tyrosine kinase is overexpressed in 80% to 90% of AMLs and contributes to leukemogenesis. Here, we describe MRX-2843, a type 1 small-molecule tyrosine kinase inhibitor that abrogates activation of both MERTK and FLT3 and their downstream effectors. MRX-2843 treatment induces apoptosis and inhibits colony formation in AML cell lines and primary patient samples expressing MERTK and/or FLT3-ITD, with a wide therapeutic window compared with that of normal human cord blood cells. In murine orthotopic xenograft models, once-daily oral therapy prolonged survival 2- to 3-fold over that of vehicle-treated controls. Additionally, MRX-2843 retained activity against quizartinib-resistant FLT3-ITD-mutant proteins with clinically relevant alterations at the D835 or F691 loci and prolonged survival in xenograft models of quizartinib-resistant AML. Together, these observations validate MRX-2843 as a translational agent and support its clinical development for the treatment of AML.

  5. The MERTK/FLT3 inhibitor MRX-2843 overcomes resistance-conferring FLT3 mutations in acute myeloid leukemia

    PubMed Central

    Minson, Katherine A.; Smith, Catherine C.; Libbrecht, Clara; Lee-Sherick, Alisa B.; Huey, Madeline G.; Lasater, Elisabeth A.; Kirkpatrick, Gregory D.; Stashko, Michael A.; Zhang, Weihe; Jordan, Craig T.; Kireev, Dmitri; Wang, Xiaodong; Frye, Stephen V.; Earp, H. Shelton; Shah, Neil P.; Graham, Douglas K.

    2016-01-01

    FMS-like tyrosine kinase 3–targeted (FLT3-targeted) therapies have shown initial promise for the treatment of acute myeloid leukemia (AML) expressing FLT3-activating mutations; however, resistance emerges rapidly. Furthermore, limited options exist for the treatment of FLT3-independent AML, demonstrating the need for novel therapies that reduce toxicity and improve survival. MERTK receptor tyrosine kinase is overexpressed in 80% to 90% of AMLs and contributes to leukemogenesis. Here, we describe MRX-2843, a type 1 small-molecule tyrosine kinase inhibitor that abrogates activation of both MERTK and FLT3 and their downstream effectors. MRX-2843 treatment induces apoptosis and inhibits colony formation in AML cell lines and primary patient samples expressing MERTK and/or FLT3-ITD, with a wide therapeutic window compared with that of normal human cord blood cells. In murine orthotopic xenograft models, once-daily oral therapy prolonged survival 2- to 3-fold over that of vehicle-treated controls. Additionally, MRX-2843 retained activity against quizartinib-resistant FLT3-ITD–mutant proteins with clinically relevant alterations at the D835 or F691 loci and prolonged survival in xenograft models of quizartinib-resistant AML. Together, these observations validate MRX-2843 as a translational agent and support its clinical development for the treatment of AML. PMID:27158668

  6. Development and Characterization of FLT3-Specific Curcumin-Loaded Polymeric Micelles as a Drug Delivery System for Treating FLT3-Overexpressing Leukemic Cells

    PubMed Central

    Tima, Singkome; Okonogi, Siriporn; Ampasavate, Chadarat; Pickens, Chad; Berkland, Cory; Anuchapreeda, Songyot

    2016-01-01

    This study aimed to develop a curcumin (CM) nanoparticle targeted to Feline McDonough Sarcoma (FMS)-like tyrosine kinase 3 (FLT3) protein on the surface of leukemic cells and to evaluate their properties, specificity, cytotoxicity, and inhibitory effect on FLT3 protein level in FLT3 overexpressing leukemic cells, EoL-1 and MV-4-11 cells. FLT3-specific peptides were conjugated onto modified poloxamer 407 (P407) using the copper-catalyzed azide-alkyne cycloaddition reaction (CuAAC). The thin film hydration method was performed for FLT3-specific CM-loaded polymeric micelles (FLT3-CM-micelles) preparation. Flow cytometry and fluorescence microscopy were used to determine rate of cellular uptake. 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay was used to test the cytotoxicity of the micelles on leukemic cells. FLT3-CM-micelles demonstrated a mean particle size less than 50 nm, high entrapment efficiency, and high rate of CM uptake by leukemic cells. The intracellular CM fluorescence is related to FLT3 protein levels on the leukemic cell surfaces. Moreover, FLT3-CM-micelles demonstrated an excellent cytotoxic effect and decreased FLT3 protein expression in the leukemic cells. The FLT3-CM-micelles could enhance both solubility and cytotoxicity of CM on FLT3 overexpressing leukemic cells. These promising nanoparticles may be used for enhancing anti-leukemic activity of CM and developed as a targeted drug delivery system in the future. PMID:27751588

  7. FLT3-ITD and its current role in acute myeloid leukaemia.

    PubMed

    Lagunas-Rangel, Francisco Alejandro; Chávez-Valencia, Venice

    2017-06-01

    FMS-like tyrosine kinase 3 (FLT3) is a proto-oncogene involved in crucial steps of haematopoiesis such as proliferation, differentiation and survival. In recent years, FLT3 has been an important marker in different haematological malignancies, highlighting in acute myeloid leukaemia, where FLT3 mutations have been associated with the clinical prognosis, treatment and survival of patients. The most common form of FLT3 mutation is an internal tandem duplication (ITD) that promotes ligand-independent auto-phosphorylation and constitutive activation of the receptor. FLT3-ITD has been strongly associated with a bad prognosis, leukocytosis, high blast counts, increased risk of relapse and shorter overall survival. In order to improve the clinical condition of FLT3-ITD-positive patients, several FLT3 inhibitors have been developed showing variable results. Currently, the main challenges to be overcome are the different forms of resistance to FLT3 inhibitors. Thus, the purpose of this review is to present, in a general way, the current role that FLT3-ITD mutation plays in patients with AML, with a particular emphasis on the molecular mechanisms associated with clinical prognosis, treatment, and survival of patients.

  8. Palbociclib treatment of FLT3-ITD+ AML cells uncovers a kinase-dependent transcriptional regulation of FLT3 and PIM1 by CDK6

    PubMed Central

    Uras, Iris Z.; Walter, Gina J.; Scheicher, Ruth; Bellutti, Florian; Prchal-Murphy, Michaela; Tigan, Anca S.; Valent, Peter; Heidel, Florian H.; Kubicek, Stefan; Scholl, Claudia; Fröhling, Stefan

    2016-01-01

    Up to 30% of patients with acute myeloid leukemia have constitutively activating internal tandem duplications (ITDs) of the FLT3 receptor tyrosine kinase. Such mutations are associated with a poor prognosis and a high propensity to relapse after remission. FLT3 inhibitors are being developed as targeted therapy for FLT3-ITD+ acute myeloid leukemia; however, their use is complicated by rapid development of resistance, which illustrates the need for additional therapeutic targets. We show that the US Food and Drug Administration–approved CDK4/6 kinase inhibitor palbociclib induces apoptosis of FLT3-ITD leukemic cells. The effect is specific for FLT3-mutant cells and is ascribed to the transcriptional activity of CDK6: CDK6 but not its functional homolog CDK4 is found at the promoters of the FLT3 and PIM1 genes, another important leukemogenic driver. There CDK6 regulates transcription in a kinase-dependent manner. Of potential clinical relevance, combined treatment with palbociclib and FLT3 inhibitors results in synergistic cytotoxicity. Simultaneously targeting two critical signaling nodes in leukemogenesis could represent a therapeutic breakthrough, leading to complete remission and overcoming resistance to FLT3 inhibitors. PMID:27099147

  9. FLT3-ITD drives Ara-C resistance in leukemic cells via the induction of RUNX3.

    PubMed

    Damdinsuren, Anar; Matsushita, Hiromichi; Ito, Masatoshi; Tanaka, Masayuki; Jin, Guilan; Tsukamoto, Hideo; Asai, Satomi; Ando, Kiyoshi; Miyachi, Hayato

    2015-12-01

    Internal tandem duplication (ITD) mutations of the FLT3 gene (FLT3-ITD) are well known to correlate with a poor prognosis in acute myeloid leukemia (AML). We previously reported that FLT3-ITD confers resistance to cytosine arabinoside (Ara-C), a key cytotoxic agent in AML treatments. In order to elucidate the detailed molecular mechanisms underlying the Ara-C resistance induced by FLT3-ITD, we performed a microarray gene expression analysis of the human leukemic cell line K562 transduced with FLT3-ITD (K562/FLT3-ITD) and identified RUNX3 as a downstream target of FLT3-ITD. The transcriptional induction of the RUNX3 expression by FLT3-ITD was noted on a Luciferase assay. The knockdown of the RUNX3 expression in the K562/FLT3-ITD cells increased the sensitivity to Ara-C, and the exogenous expression of RUNX3 per se resulted in the enhancement of Ara-C resistance in the K562 cells. A relationship between the FLT3-ITD-induced RUNX3 expression and Ara-C resistance was also observed in AML cells with an endogenous FLT3-ITD expression. Collectively, these findings demonstrate that RUNX3 is a prerequisite for Ara-C resistance via FLT3-ITD signaling.

  10. A pharmacodynamic study of the FLT3 inhibitor KW-2449 yields insight into the basis for clinical response.

    PubMed

    Pratz, Keith W; Cortes, Jorge; Roboz, Gail J; Rao, Niranjan; Arowojolu, Omotayo; Stine, Adam; Shiotsu, Yukimasa; Shudo, Aiko; Akinaga, Shiro; Small, Donald; Karp, Judith E; Levis, Mark

    2009-04-23

    Internal tandem duplication mutations of FLT3 (FLT3/ITD mutations) are common in acute myeloid leukemia (AML) and confer a poor prognosis. This would suggest that FLT3 is an ideal therapeutic target, but FLT3 targeted therapy has produced only modest benefits in clinical trials. Due to technical obstacles, the assessment of target inhibition in patients treated with FLT3 inhibitors has been limited and generally only qualitative. KW-2449 is a novel multitargeted kinase inhibitor that induces cytotoxicity in Molm14 cells (which harbor an FLT3/ITD mutation). The cytotoxic effect occurs primarily at concentrations sufficient to inhibit FLT3 autophosphorylation to less than 20% of its baseline. We report here correlative data from a phase 1 trial of KW-2449, a trial in which typical transient reductions in the peripheral blast counts were observed. Using quantitative measurement of FLT3 inhibition over time in these patients, we confirmed that FLT3 was inhibited, but only transiently to less than 20% of baseline. Our results suggest that the failure to fully inhibit FLT3 in sustained fashion may be an underlying reason for the minimal success of FLT3 inhibitors to date, and stress the importance of confirming in vivo target inhibition when taking a targeted agent into the clinical setting.

  11. G-749, a novel FLT3 kinase inhibitor, can overcome drug resistance for the treatment of acute myeloid leukemia

    PubMed Central

    Lee, Hee Kyu; Kim, Hong Woo; Lee, In Yong; Lee, Jungmi; Lee, Jaekyoo; Jung, Dong Sik; Lee, Sang Yeop; Park, Sung Ho; Hwang, Haejun; Choi, Jang-Sik; Kim, Jung-Ho; Kim, Se Won; Kim, Jung Keun; Cools, Jan; Koh, Jong Sung

    2014-01-01

    Aberrant activations of Fms-like tyrosine receptor kinase (FLT) 3 are implicated in the pathogenesis of 20% to 30% of patients with acute myeloid leukemia (AML). G-749 is a novel FLT3 inhibitor that showed potent and sustained inhibition of the FLT3 wild type and mutants including FLT3-ITD, FLT3-D835Y, FLT3-ITD/N676D, and FLT3-ITD/F691L in cellular assays. G-749 retained its inhibitory potency in various drug-resistance milieus such as patient plasma, FLT3 ligand surge, and stromal protection. Furthermore, it displayed potent antileukemic activity in bone marrow blasts from AML patients regardless of FLT3 mutation status, including those with little or only minor responses to AC220 or PKC412. Oral administration of G-749 yielded complete tumor regression and increased life span in animal models. Thus, G-749 appears to be a promising next-generation drug candidate for the treatment of relapsed and refractory AML patients with various FLT3-ITD/FLT3-TKD mutants and further shows the ability to overcome drug resistance. PMID:24532805

  12. Inhibition of MEK5 by BIX02188 induces apoptosis in cells expressing the oncogenic mutant FLT3-ITD

    SciTech Connect

    Razumovskaya, Elena; Sun, Jianmin; Roennstrand, Lars

    2011-08-26

    Highlights: {yields} In this study we have demonstrated that FLT3 activation leads to activation of ERK5. {yields} We have demonstrated that ERK5 is involved in activation of AKT downstream of FLT3. {yields} (BIX02188) blocks activation of ERK5 and induces apoptosis in FLT3 Ba/F3 cells. {yields} (BIX02188) induce apoptosis in the two leukemic cell lines MV4-11 and MOLM-13. -- Abstract: Fms-like tyrosine kinase-3 (FLT3) is a growth factor receptor normally expressed on hematopoietic progenitor cells. Approximately one third of all patients with AML carry an activating mutation in FLT3 that drives proliferation and survival of the leukemic cells. The most common activating mutation is the so-called internal tandem duplication (ITD), which involves an in-frame duplication of a segment of varying length in the region of the FLT3 gene that encodes the juxtamembrane domain. The pathways downstream of FLT3-ITD are partially known but further knowledge regarding the downstream signal transduction molecules is important in order to develop alternative strategies for pharmacological intervention. In this paper we have studied the role of MEK/ERK5 in FLT3-ITD mediated transformation. We have found that both wild-type FLT3 and FLT3-ITD activate MEK5 leading to the activation of ERK5. By use of the selective inhibitor of MEK5, (BIX02188), we have shown that activation of AKT downstream of FLT3 is partially dependent on ERK5. Furthermore, inhibition of MEK5/ERK5 induces apoptosis of both FLT3-ITD transfected Ba/F3 cells as well as the FLT3-ITD carrying leukemic cell lines MV4-11 and MOLM-13. These results suggest that MEK5/ERK5 is important for FLT3-ITD induced hematopoietic transformation and may thus represent an alternative therapeutic target in the treatment of FLT3-ITD positive leukemia.

  13. Flt3 ligand-generated murine plasmacytoid and conventional dendritic cells differ in their capacity to prime naive CD8 T cells and to generate memory cells in vivo.

    PubMed

    Angelov, Georgi S; Tomkowiak, Martine; Marçais, Antoine; Leverrier, Yann; Marvel, Jacqueline

    2005-07-01

    Mature dendritic cells (DCs) have the capacity to induce efficient primary T cell response and effector cell differentiation. Thus, these cells are a major tool in the design of various immunotherapeutic protocols. We have tested the capacity of different subsets of matured DCs pulsed with a peptide to induce the differentiation of naive CD8 T cells into memory cells in vivo. Flt3 ligand (FL) induces the differentiation of conventional DCs (cDCs) and plasmacytoid DCs (PDCs) from murine bone marrow precursors in vitro. After maturation, both subsets become strong stimulators of Ag-specific T cell responses in vitro. However, the in vivo T cell stimulatory capacity of these DC subsets has not been studied in detail. In the present study, we demonstrate that mature FL-generated DCs induce efficient peptide-specific CD8 T cell response and memory cell differentiation in vivo. This is mainly due to the cDC subset because the PDC subset induced only a negligible primary CD8 response without detectable levels of memory CD8 T cell differentiation. Thus, in vitro FL-generated mature cDCs, but not PDCs, are potent stimulators of peptide-specific CD8 T cell responses and memory generation in vivo.

  14. FLT3 tyrosine kinase inhibitors in acute myeloid leukemia: clinical implications and limitations

    PubMed Central

    Kayser, Sabine; Levis, Mark J.

    2015-01-01

    Internal tandem duplications of the FMS-like tyrosine kinase 3 (FLT3) gene are one of the most frequent gene mutations in acute myeloid leukemia (AML) and are associated with poor clinical outcome. The remission rate is high with intensive chemotherapy, but most patients eventually relapse. During the last decade, FLT3 mutations have emerged as an attractive target for a molecularly specific treatment strategy. Targeting FLT3 receptor tyrosine kinases in AML has shown encouraging results in the treatment of FLT3 mutated AML, but in most patients responses are incomplete and not sustained. Newer, more specific compounds seem to have a higher potency and selectivity against FLT3. During therapy with FLT3 tyrosine kinase inhibitors (TKIs) the induction of acquired resistance has emerged as a clinical problem. Therefore, optimization of the targeted therapy and potential treatment options to overcome resistance is currently the focus of clinical research. In this review we discuss the use and limitations of TKIs as a therapeutic strategy for the treatment of FLT3 mutated AML, including mechanisms of resistance to TKIs as well as possible novel strategies to improve FLT3 inhibitor therapy. PMID:23631653

  15. [Analysis of Flt-3 expression and Flt-3/ITD mutation in acute myeloid leukemia cells].

    PubMed

    Wang, Ya-Lun; Wang, Tong; Xu, Feng; Gang, Yan; Wang, Jie

    2006-06-01

    This study was aimed to explore the relationship between Flt-3 expression, Flt-3/ITD mutation in acute leukemia (AL) cell line and pathogenesis of AL, especially AML. The Flt-3 expression and Flt-3/ITD mutation were detected by RT-PCR and sequencing method in 82 leukemia cell lines including 20 AML, 57 ALL and 5 CML cell lines. The results indicated that positive results of Flt-3 expression were obtained in 48 out of 77 AL cell line, the positive rate was 62%; 12 cell lines were positive in 20 AML cell lines, the positive rate was 60%; 33 cell lines was positive in 57 ALL cell lines, the positive rate was 58%; 3 cell lines were positive in 5 CML cell lines, the positive rate was 60%. There was abnormal gene product in 1 AMOL cell line out of 12 AML cell lines with Flt-3 positive expression (positive rate 8.3%). DNA sequencing of abnormal gene product showed two coding duplication sequence with 29 bp long. The positive rate of Flt-3 expression in undifferentiated cell line was prominently higher than that in mature B cell ALL (P < 0.05). It is concluded that the Flt-3 expression is different in various leukemia cells. Flt-3/ITD duplication was found in one AML cell line. The detection of Flt-3 gene and Flt-3/ITD mutation may contribute to the diagnosis of ALL, especially to AML.

  16. The stromal cell-derived factor-1alpha dependent migration of human cord blood CD34 haematopoietic stem and progenitor cells switches from protein kinase C (PKC)-alpha dependence to PKC-alpha independence upon prolonged culture in the presence of Flt3-ligand and interleukin-6.

    PubMed

    Kasenda, Benjamin; Kassmer, Susannah H; Niggemann, Bernd; Schiermeier, Sven; Hatzmann, Wolfgang; Zänker, Kurt S; Dittmar, Thomas

    2008-09-01

    Addition of the inflammatory cytokine interleukin (IL)-6 to the culture medium of human cord blood haematopoietic stem and progenitor cells (HSPCs) has been shown to lead to an altered stromal cell-derived factor-1alpha-dependent migratory phenotype. This study investigated whether this effect was attributed to a differential engagement of protein kinase C (PKC) isotypes. The migratory activity of both Flt3-ligand and Flt3-ligand/IL-6 cultured cord blood HSPCs was PKC-alpha dependent on day 1, but PKC-alpha independent after 5 d of cultivation. PKC-alpha expression was not down-regulated in cells cultured for 5 d indicating a switch of signalling molecules directing cell migration.

  17. EphrinA1-EphA2 interaction-mediated apoptosis and Flt3L-induced immunotherapy inhibits tumor growth in a breast cancer mouse model

    PubMed Central

    Tandon, Manish; Vemula, Sai V.; Sharma, Anurag; Ahi, Yadvinder S.; Mittal, Shalini; Bangari, Dinesh S.; Mittal, Suresh K.

    2014-01-01

    Background The receptor tyrosine kinase EphA2 is overexpressed in several types of cancers and is currently being pursued as a target for breast cancer therapeutics. The EphA2 ligand EphrinA1 induces EphA2 phosphorylation and intracellular internalization and degradation, thus inhibiting tumor progression. The hematopoietic growth factor, FMS-like tyrosine kinase receptor ligand (Flt3L), promotes expansion and mobilization of functional dendritic cells. Methods We tested the EphrinA1-EphA2 interaction in MDA-MB-231 breast cancer cells focusing on the receptor-ligand-mediated apoptosis of breast cancer cells. In order to determine whether the EphrinA1-EphA2 interaction-associated apoptosis and Flt3L-mediated immunotherapy would have an additive effect in inhibiting tumor growth, we used an immunocompetent mouse model of breast cancer to evaluate intratumoral (i.t.) inoculation strategies with human adenovirus (HAd) vectors expressing either EphrinA1 (HAd-EphrinA1-Fc), Flt3L (HAd-Flt3L) or a combination of EphrinA1-Fc + Flt3L (HAd-EphrinA1-Fc + HAd-Flt3L). Results In vitro analysis demonstrated that an EphrinA1-EphA2 interaction led to apoptosis-related changes in breast cancer cells. In vivo, three i.t. inoculations of HAd-EphrinA1-Fc showed potent inhibition of tumor growth. Furthermore, increased inhibition in tumor growth was observed with the combination of HAd-EphrinA1-Fc and HAd-Flt3L accompanied by the generation of an anti-tumor adaptive immune response. Conclusions The results indicating induction of apoptosis and inhibition of mammary tumor growth show the potential therapeutic benefits of HAd-EphrinA1-Fc. In combination with HAd-Flt3L, this represents a promising strategy to effectively induce mammary tumor regression by HAd vector-based therapy. PMID:22228563

  18. Fetal and neonatal hematopoietic progenitors are functionally and transcriptionally resistant to Flt3-ITD mutations

    PubMed Central

    Porter, Shaina N; Cluster, Andrew S; Yang, Wei; Busken, Kelsey A; Patel, Riddhi M; Ryoo, Jiyeon; Magee, Jeffrey A

    2016-01-01

    The FLT3 Internal Tandem Duplication (FLT3ITD) mutation is common in adult acute myeloid leukemia (AML) but rare in early childhood AML. It is not clear why this difference occurs. Here we show that Flt3ITD and cooperating Flt3ITD/Runx1 mutations cause hematopoietic stem cell depletion and myeloid progenitor expansion during adult but not fetal stages of murine development. In adult progenitors, FLT3ITD simultaneously induces self-renewal and myeloid commitment programs via STAT5-dependent and STAT5-independent mechanisms, respectively. While FLT3ITD can activate STAT5 signal transduction prior to birth, this signaling does not alter gene expression until hematopoietic progenitors transition from fetal to adult transcriptional states. Cooperative interactions between Flt3ITD and Runx1 mutations are also blunted in fetal/neonatal progenitors. Fetal/neonatal progenitors may therefore be protected from leukemic transformation because they are not competent to express FLT3ITD target genes. Changes in the transcriptional states of developing hematopoietic progenitors may generally shape the mutation spectra of human leukemias. DOI: http://dx.doi.org/10.7554/eLife.18882.001 PMID:27879203

  19. Protective effect of Flt3L on organ structure during advanced multiorgan dysfunction syndrome in mice

    PubMed Central

    TIAN, GUANG; LU, JIANGYANG; GUO, HUIQIN; LIU, QIAN; WANG, HONGWEI

    2015-01-01

    The present study aimed to examine whether fms-related tyrosine kinase 3 ligand (Flt3L) protects the organs of mice with multiorgan dysfunction syndrome (MODS). Male C57BL/6 mice were randomly assigned to normal control, MODS and Flt3L treatment groups. The mouse models of MODS were established using intraperitoneal zymosan injections, followed by normal saline injections. The treatment group received 5 μg/kg Flt3L for seven days, beginning on day five following zymosan injection. On day 12, the mortality rates of the Flt3L treatment and the MODS groups were 7 and 18%, respectively. Marked pathological changes were observed in the liver, lungs, kidneys and heart of the mice with MODS, including degeneration and focal necrosis of parenchyma cells. Mild pathological changes were observed in different organs of the Flt3L-treated mice. In the MODS group, the number of CD4+ T lymphocytes was significantly reduced, whereas the number of CD8+ T lymphocytes was significantly increased compared with that in the normal control group; thus, the CD4+/CD8+ ratio was reduced. In the Flt3L treatment group, the average number of CD4+ T lymphocytes was not significantly different to the average number of CD4+ T lymphocytes in the normal group. In conclusion, Flt3L administration improved the immune status and alleviated the organ damage in mice with late-phase MODS. PMID:25672780

  20. FLT3-ITDs Instruct a Myeloid Differentiation and Transformation Bias in Lymphomyeloid Multipotent Progenitors

    PubMed Central

    Mead, Adam J.; Kharazi, Shabnam; Atkinson, Deborah; Macaulay, Iain; Pecquet, Christian; Loughran, Stephen; Lutteropp, Michael; Woll, Petter; Chowdhury, Onima; Luc, Sidinh; Buza-Vidas, Natalija; Ferry, Helen; Clark, Sally-Ann; Goardon, Nicolas; Vyas, Paresh; Constantinescu, Stefan N.; Sitnicka, Ewa; Nerlov, Claus; Jacobsen, Sten Eirik W.

    2013-01-01

    Summary Whether signals mediated via growth factor receptors (GFRs) might influence lineage fate in multipotent progenitors (MPPs) is unclear. We explored this issue in a mouse knockin model of gain-of-function Flt3-ITD mutation because FLT3-ITDs are paradoxically restricted to acute myeloid leukemia even though Flt3 primarily promotes lymphoid development during normal hematopoiesis. When expressed in MPPs, Flt3-ITD collaborated with Runx1 mutation to induce high-penetrance aggressive leukemias that were exclusively of the myeloid phenotype. Flt3-ITDs preferentially expanded MPPs with reduced lymphoid and increased myeloid transcriptional priming while compromising early B and T lymphopoiesis. Flt3-ITD-induced myeloid lineage bias involved upregulation of the transcription factor Pu.1, which is a direct target gene of Stat3, an aberrantly activated target of Flt3-ITDs, further establishing how lineage bias can be inflicted on MPPs through aberrant GFR signaling. Collectively, these findings provide new insights into how oncogenic mutations might subvert the normal process of lineage commitment and dictate the phenotype of resulting malignancies. PMID:23727242

  1. Integration of Hedgehog and mutant FLT3 signaling in myeloid leukemia

    PubMed Central

    Lim, Yiting; Gondek, Lukasz; Li, Li; Wang, Qiuju; Ma, Haley; Chang, Emily; Huso, David L.; Foerster, Sarah; Marchionni, Luigi; McGovern, Karen; Watkins, D. Neil; Peacock, Craig D.; Levis, Mark; Smith, B. Douglas; Merchant, Akil A.; Small, Donald; Matsui, William

    2015-01-01

    FLT3 internal tandem duplication (ITD) mutations resulting in constitutive kinase activity are common in acute myeloid leukemia (AML) and carry a poor prognosis. Several agents targeting FLT3 have been developed, but their limited clinical activity suggests that the inhibition of other factors contributing to the malignant phenotype is required. We examined gene expression data sets as well as primary specimens and found that the expression of GLI2, a major effector of the Hedgehog (Hh) signaling pathway, was increased in FLT3-ITD compared to wild type FLT3 AML. To examine the functional role of the Hh pathway, we studied mice in which Flt3-ITD expression results in an indolent myeloproliferative state and found that constitutive Hh signaling accelerated the development of AML by enhancing STAT5 signaling and the proliferation of bone marrow myeloid progenitors. Furthermore, combined FLT3 and Hh pathway inhibition limited leukemic growth in vitro and in vivo, and this approach may serve as a therapeutic strategy for FLT3-ITD AML. PMID:26062848

  2. How I treat FLT3-mutated AML

    PubMed Central

    Pratz, Keith W.

    2017-01-01

    FLT3-mutated acute myeloid leukemia (AML), despite not being recognized as a distinct entity in the World Health Organization (WHO) classification system, is readily recognized as a particular challenge by clinical specialists who treat acute leukemia. This is especially true with regards to the patients harboring the most common type of FLT3 mutation, the internal tandem duplication (FLT3-ITD) mutation. Here we present 4 patient cases from our institution and discuss how our management reflects what we have learned about this subtype of the disease. We also reflect on how we anticipate the management might change in the near future, with the emergence of clinically useful tyrosine kinase inhibitors. PMID:27872057

  3. Single cell analysis exposes intratumor heterogeneity and suggests that FLT3-ITD is a late event in leukemogenesis.

    PubMed

    Shouval, Roni; Shlush, Liran I; Yehudai-Resheff, Shlomit; Ali, Shahnaz; Pery, Neta; Shapiro, Ehud; Tzukerman, Maty; Rowe, Jacob M; Zuckerman, Tsila

    2014-06-01

    FMS-like tyrosine kinase 3 receptor-internal tandem duplication (FLT3-ITD) commonly occurs in acute myeloid leukemia and is considered rare in acute lymphocytic leukemia. Acute leukemia has poor prognosis, mainly due to relapse. Standard FLT3-ITD diagnostic techniques are based on genomic polymerase chain reaction and have recently incorporated GeneScan (Applied Biosystems, Foster City, CA) to identify variations of the FLT3 gene. As this is an average-based assay utilized in a heterogeneous leukemic cell population, we hypothesized that cells of acute leukemia, considered FLT3-ITD-negative by standard methods, could possess a fraction of FLT3-ITD-positive cells. The present study employed single cell mutation analysis to evaluate the FLT3-ITD status in newly diagnosed acute myeloid leukemia (n = 5) and acute lymphocytic leukemia (n = 3) patients. A total of 541 single leukemic cells and 36 mononuclear cells from healthy volunteers were analyzed. Seven patients, considered FLT3-ITD-negative according to bulk DNA analysis, appeared to possess a small fraction of FLT3-ITD-positive cells based on single cell analysis. Moreover, this approach revealed the heterogeneity of the tumor as evident by different FLT3-ITD mutations present in the same patient. The presence of a minor clone carrying FLT3-ITD in almost all patients tested provides evidence that this lesion is a common late event in leukemogenesis. Additionally, 3 relapsed patients demonstrated loss of heterozygosity of the normal allele, affecting 25%-100% of the cells found to be FLT3-ITD-positive. Though further clinical testing is warranted, these findings may have implications on the prognostic significance of FLT3-ITD and the use of targeted therapy. Copyright © 2014 ISEH - Society for Hematology and Stem Cells. Published by Elsevier Inc. All rights reserved.

  4. ATM/G6PD-driven redox metabolism promotes FLT3 inhibitor resistance in acute myeloid leukemia

    PubMed Central

    D’Alessandro, Angelo; Alvarez-Calderon, Francesca; Kim, Jihye; Nemkov, Travis; Adane, Biniam; Rozhok, Andrii I.; Kumar, Amit; Kumar, Vijay; Pollyea, Daniel A.; Wempe, Michael F.; Jordan, Craig T.; Serkova, Natalie J.; Tan, Aik Choon; Hansen, Kirk C.; DeGregori, James

    2016-01-01

    Activating mutations in FMS-like tyrosine kinase 3 (FLT3) are common in acute myeloid leukemia (AML) and drive leukemic cell growth and survival. Although FLT3 inhibitors have shown considerable promise for the treatment of AML, they ultimately fail to achieve long-term remissions as monotherapy. To identify genetic targets that can sensitize AML cells to killing by FLT3 inhibitors, we performed a genome-wide RNA interference (RNAi)-based screen that identified ATM (ataxia telangiectasia mutated) as being synthetic lethal with FLT3 inhibitor therapy. We found that inactivating ATM or its downstream effector glucose 6-phosphate dehydrogenase (G6PD) sensitizes AML cells to FLT3 inhibitor induced apoptosis. Examination of the cellular metabolome showed that FLT3 inhibition by itself causes profound alterations in central carbon metabolism, resulting in impaired production of the antioxidant factor glutathione, which was further impaired by ATM or G6PD inactivation. Moreover, FLT3 inhibition elicited severe mitochondrial oxidative stress that is causative in apoptosis and is exacerbated by ATM/G6PD inhibition. The use of an agent that intensifies mitochondrial oxidative stress in combination with a FLT3 inhibitor augmented elimination of AML cells in vitro and in vivo, revealing a therapeutic strategy for the improved treatment of FLT3 mutated AML. PMID:27791036

  5. Oncogenic roles of PRL-3 in FLT3-ITD induced acute myeloid leukaemia.

    PubMed

    Park, Jung Eun; Yuen, Hiu Fung; Zhou, Jian Biao; Al-Aidaroos, Abdul Qader O; Guo, Ke; Valk, Peter J; Zhang, Shu Dong; Chng, Wee Joo; Hong, Cheng William; Mills, Ken; Zeng, Qi

    2013-09-01

    FLT3-ITD mutations are prevalent mutations in acute myeloid leukaemia (AML). PRL-3, a metastasis-associated phosphatase, is a downstream target of FLT3-ITD. This study investigates the regulation and function of PRL-3 in leukaemia cell lines and AML patients associated with FLT3-ITD mutations. PRL-3 expression is upregulated by the FLT3-STAT5 signalling pathway in leukaemia cells, leading an activation of AP-1 transcription factors via ERK and JNK pathways. PRL-3-depleted AML cells showed a significant decrease in cell growth. Clinically, high PRL-3 mRNA expression was associated with FLT3-ITD mutations in four independent AML datasets with 1158 patients. Multivariable Cox-regression analysis on our Cohort 1 with 221 patients identified PRL-3 as a novel prognostic marker independent of other clinical parameters. Kaplan-Meier analysis showed high PRL-3 mRNA expression was significantly associated with poorer survival among 491 patients with normal karyotype. Targeting PRL-3 reversed the oncogenic effects in FLT3-ITD AML models in vitro and in vivo. Herein, we suggest that PRL-3 could serve as a prognostic marker to predict poorer survival and as a promising novel therapeutic target for AML patients.

  6. Oncogenic roles of PRL-3 in FLT3-ITD induced acute myeloid leukaemia

    PubMed Central

    Park, Jung Eun; Yuen, Hiu Fung; Zhou, Jian Biao; Al-aidaroos, Abdul Qader O; Guo, Ke; Valk, Peter J; Zhang, Shu Dong; Chng, Wee Joo; Hong, Cheng William; Mills, Ken; Zeng, Qi

    2013-01-01

    FLT3-ITD mutations are prevalent mutations in acute myeloid leukaemia (AML). PRL-3, a metastasis-associated phosphatase, is a downstream target of FLT3-ITD. This study investigates the regulation and function of PRL-3 in leukaemia cell lines and AML patients associated with FLT3-ITD mutations. PRL-3 expression is upregulated by the FLT3-STAT5 signalling pathway in leukaemia cells, leading an activation of AP-1 transcription factors via ERK and JNK pathways. PRL-3-depleted AML cells showed a significant decrease in cell growth. Clinically, high PRL-3 mRNA expression was associated with FLT3-ITD mutations in four independent AML datasets with 1158 patients. Multivariable Cox-regression analysis on our Cohort 1 with 221 patients identified PRL-3 as a novel prognostic marker independent of other clinical parameters. Kaplan–Meier analysis showed high PRL-3 mRNA expression was significantly associated with poorer survival among 491 patients with normal karyotype. Targeting PRL-3 reversed the oncogenic effects in FLT3-ITD AML models in vitro and in vivo. Herein, we suggest that PRL-3 could serve as a prognostic marker to predict poorer survival and as a promising novel therapeutic target for AML patients. PMID:23929599

  7. Profiling of somatic mutations in acute myeloid leukemia with FLT3-ITD at diagnosis and relapse.

    PubMed

    Garg, Manoj; Nagata, Yasunobu; Kanojia, Deepika; Mayakonda, Anand; Yoshida, Kenichi; Haridas Keloth, Sreya; Zang, Zhi Jiang; Okuno, Yusuke; Shiraishi, Yuichi; Chiba, Kenichi; Tanaka, Hiroko; Miyano, Satoru; Ding, Ling-Wen; Alpermann, Tamara; Sun, Qiao-Yang; Lin, De-Chen; Chien, Wenwen; Madan, Vikas; Liu, Li-Zhen; Tan, Kar-Tong; Sampath, Abhishek; Venkatesan, Subhashree; Inokuchi, Koiti; Wakita, Satoshi; Yamaguchi, Hiroki; Chng, Wee Joo; Kham, Shirley-Kow Yin; Yeoh, Allen Eng-Juh; Sanada, Masashi; Schiller, Joanna; Kreuzer, Karl-Anton; Kornblau, Steven M; Kantarjian, Hagop M; Haferlach, Torsten; Lill, Michael; Kuo, Ming-Chung; Shih, Lee-Yung; Blau, Igor-Wolfgang; Blau, Olga; Yang, Henry; Ogawa, Seishi; Koeffler, H Phillip

    2015-11-26

    Acute myeloid leukemia (AML) with an FLT3 internal tandem duplication (FLT3-ITD) mutation is an aggressive hematologic malignancy with a grave prognosis. To identify the mutational spectrum associated with relapse, whole-exome sequencing was performed on 13 matched diagnosis, relapse, and remission trios followed by targeted sequencing of 299 genes in 67 FLT3-ITD patients. The FLT3-ITD genome has an average of 13 mutations per sample, similar to other AML subtypes, which is a low mutation rate compared with that in solid tumors. Recurrent mutations occur in genes related to DNA methylation, chromatin, histone methylation, myeloid transcription factors, signaling, adhesion, cohesin complex, and the spliceosome. Their pattern of mutual exclusivity and cooperation among mutated genes suggests that these genes have a strong biological relationship. In addition, we identified mutations in previously unappreciated genes such as MLL3, NSD1, FAT1, FAT4, and IDH3B. Mutations in 9 genes were observed in the relapse-specific phase. DNMT3A mutations are the most stable mutations, and this DNMT3A-transformed clone can be present even in morphologic complete remissions. Of note, all AML matched trio samples shared at least 1 genomic alteration at diagnosis and relapse, suggesting common ancestral clones. Two types of clonal evolution occur at relapse: either the founder clone recurs or a subclone of the founder clone escapes from induction chemotherapy and expands at relapse by acquiring new mutations. Relapse-specific mutations displayed an increase in transversions. Functional assays demonstrated that both MLL3 and FAT1 exert tumor-suppressor activity in the FLT3-ITD subtype. An inhibitor of XPO1 synergized with standard AML induction chemotherapy to inhibit FLT3-ITD growth. This study clearly shows that FLT3-ITD AML requires additional driver genetic alterations in addition to FLT3-ITD alone. © 2015 by The American Society of Hematology.

  8. Profiling of somatic mutations in acute myeloid leukemia with FLT3-ITD at diagnosis and relapse

    PubMed Central

    Nagata, Yasunobu; Kanojia, Deepika; Mayakonda, Anand; Yoshida, Kenichi; Haridas Keloth, Sreya; Zang, Zhi Jiang; Okuno, Yusuke; Shiraishi, Yuichi; Chiba, Kenichi; Tanaka, Hiroko; Miyano, Satoru; Ding, Ling-Wen; Alpermann, Tamara; Sun, Qiao-Yang; Lin, De-Chen; Chien, Wenwen; Madan, Vikas; Liu, Li-Zhen; Tan, Kar-Tong; Sampath, Abhishek; Venkatesan, Subhashree; Inokuchi, Koiti; Wakita, Satoshi; Yamaguchi, Hiroki; Chng, Wee Joo; Kham, Shirley-Kow Yin; Yeoh, Allen Eng-Juh; Sanada, Masashi; Schiller, Joanna; Kreuzer, Karl-Anton; Kornblau, Steven M.; Kantarjian, Hagop M.; Haferlach, Torsten; Lill, Michael; Kuo, Ming-Chung; Shih, Lee-Yung; Blau, Igor-Wolfgang; Blau, Olga; Yang, Henry; Ogawa, Seishi; Koeffler, H. Phillip

    2015-01-01

    Acute myeloid leukemia (AML) with an FLT3 internal tandem duplication (FLT3-ITD) mutation is an aggressive hematologic malignancy with a grave prognosis. To identify the mutational spectrum associated with relapse, whole-exome sequencing was performed on 13 matched diagnosis, relapse, and remission trios followed by targeted sequencing of 299 genes in 67 FLT3-ITD patients. The FLT3-ITD genome has an average of 13 mutations per sample, similar to other AML subtypes, which is a low mutation rate compared with that in solid tumors. Recurrent mutations occur in genes related to DNA methylation, chromatin, histone methylation, myeloid transcription factors, signaling, adhesion, cohesin complex, and the spliceosome. Their pattern of mutual exclusivity and cooperation among mutated genes suggests that these genes have a strong biological relationship. In addition, we identified mutations in previously unappreciated genes such as MLL3, NSD1, FAT1, FAT4, and IDH3B. Mutations in 9 genes were observed in the relapse-specific phase. DNMT3A mutations are the most stable mutations, and this DNMT3A-transformed clone can be present even in morphologic complete remissions. Of note, all AML matched trio samples shared at least 1 genomic alteration at diagnosis and relapse, suggesting common ancestral clones. Two types of clonal evolution occur at relapse: either the founder clone recurs or a subclone of the founder clone escapes from induction chemotherapy and expands at relapse by acquiring new mutations. Relapse-specific mutations displayed an increase in transversions. Functional assays demonstrated that both MLL3 and FAT1 exert tumor-suppressor activity in the FLT3-ITD subtype. An inhibitor of XPO1 synergized with standard AML induction chemotherapy to inhibit FLT3-ITD growth. This study clearly shows that FLT3-ITD AML requires additional driver genetic alterations in addition to FLT3-ITD alone. PMID:26438511

  9. Glutaminase inhibition improves FLT3 inhibitor therapy for acute myeloid leukemia.

    PubMed

    Gregory, Mark A; Nemkov, Travis; Reisz, Julie A; Zaberezhnyy, Vadym; Hansen, Kirk C; D'Alessandro, Angelo; DeGregori, James

    2017-09-22

    Acute myeloid leukemia (AML) is a blood cancer that is poorly responsive to conventional cytotoxic chemotherapy and a diagnosis of AML is usually fatal. More effective and better-tolerated therapies for AML are desperately needed. Activating mutations in FMS-like tyrosine kinase 3 (FLT3) are one of the most frequently observed genetic defects in AML. FLT3 tyrosine kinase inhibitors have shown impressive anti-leukemic activity in clinical trials, however, sustained remissions using these inhibitors as monotherapy have not been achieved. Our previous studies have implicated impaired glutamine metabolism in response to FLT3 inhibitors as a dominant factor causing AML cell death. In this study, we have employed metabolic flux analysis to examine the effects of FLT3 inhibition on glutamine utilization in FLT3-mutated AML cells using stable isotope tracers. We found that the FLT3 inhibitor AC220 profoundly inhibited glutamine flux into the antioxidant factor glutathione, due to defective glutamine import. Additionally, we found that the glutaminase inhibitor, CB-839, similarly impaired glutathione production by effectively blocking flux of glutamine into glutamate. Moreover, the combination of AC220 with CB-839 synergized to deplete glutathione, induce mitochondrial reactive oxygen species (ROS), and cause loss of viability through apoptotic cell death. In vivo, glutaminase inhibition with CB-839 facilitated leukemic cell elimination by AC220 and significantly improved survival in a patient-derived xenograft AML mouse model. Thus, targeting glutaminase in combination with FLT3 may represent an effective therapeutic strategy for improving treatment of FLT3-mutated AML. Copyright © 2017. Published by Elsevier Inc.

  10. An essential pathway links FLT3-ITD, HCK and CDK6 in acute myeloid leukemia

    PubMed Central

    Lopez, Sophie; Voisset, Edwige; Tisserand, Julie C.; Mosca, Cyndie; Prebet, Thomas; Santamaria, David; Dubreuil, Patrice; Sepulveda, Paulo De

    2016-01-01

    CDK4/CDK6 and RB proteins drive the progression through the G1 phase of the cell cycle. In acute myeloid leukemia (AML), the activity of the CDK/Cyclin D complex is increased. The mechanism involved is unknown, as are the respective roles played by CDK4 or CDK6 in this process. Here, we report that AML cells carrying FLT3-ITD mutations are dependent on CDK6 for cell proliferation while CDK4 is not essential. We showed that FLT3-ITD signaling is responsible for CDK6 overexpression, through a pathway involving the SRC-family kinase HCK. Accordingly, FLT3-ITD failed to transform primary hematopoietic progenitor cells from Cdk6−/− mice. Our results demonstrate that CDK6 is the primary target of CDK4/CDK6 inhibitors in FLT3-ITD positive AML. Furthermore, we delineate an essential protein kinase pathway -FLT3/HCK/CDK6- in the context of AML with FLT3-ITD mutations. PMID:27323399

  11. Efficacy of a Mer and Flt3 tyrosine kinase small molecule inhibitor, UNC1666, in acute myeloid leukemia

    PubMed Central

    Lee-Sherick, Alisa B.; Zhang, Weihe; Menachof, Kelly K.; Hill, Amanda A.; Rinella, Sean; Kirkpatrick, Gregory; Page, Lauren S.; Stashko, Michael A.; Jordan, Craig T.; Wei, Qi; Liu, Jing; Zhang, Dehui; DeRyckere, Deborah; Wang, Xiaodong; Frye, Stephen; Earp, H. Shelton; Graham, Douglas K.

    2015-01-01

    Mer and Flt3 receptor tyrosine kinases have been implicated as therapeutic targets in acute myeloid leukemia (AML). In this manuscript we describe UNC1666, a novel ATP-competitive small molecule tyrosine kinase inhibitor, which potently diminishes Mer and Flt3 phosphorylation in AML. Treatment with UNC1666 mediated biochemical and functional effects in AML cell lines expressing Mer or Flt3 internal tandem duplication (ITD), including decreased phosphorylation of Mer, Flt3 and downstream effectors Stat, Akt and Erk, induction of apoptosis in up to 98% of cells, and reduction of colony formation by greater than 90%, compared to treatment with vehicle. These effects were dose-dependent, with inhibition of downstream signaling and functional effects correlating with the degree of Mer or Flt3 kinase inhibition. Treatment of primary AML patient samples expressing Mer and/or Flt3-ITD with UNC1666 also inhibited Mer and Flt3 intracellular signaling, induced apoptosis, and inhibited colony formation. In summary, UNC1666 is a novel potent small molecule tyrosine kinase inhibitor that decreases oncogenic signaling and myeloblast survival, thereby validating dual Mer/Flt3 inhibition as an attractive treatment strategy for AML. PMID:25762638

  12. Pharmacological targeting of miR-155 via the NEDD8-activating enzyme inhibitor MLN4924 (Pevonedistat) in FLT3-ITD acute myeloid leukemia

    PubMed Central

    Khalife, J; Radomska, HS; Santhanam, R; Huang, X; Neviani, P; Saultz, J; Wang, H; Wu, Y-Z; Alachkar, H; Anghelina, M; Dorrance, A; Curfman, J; Bloomfield, CD; Medeiros, BC; Perrotti, D; Lee, LJ; Lee, RJ; Caligiuri, MA; Pichiorri, F; Croce, CM; Garzon, R; Guzman, ML; Mendler, JH; Marcucci, G

    2016-01-01

    High levels of microRNA-155 (miR-155) are associated with poor outcome in acute myeloid leukemia (AML). In AML, miR-155 is regulated by NF-κB, the activity of which is, in part, controlled by the NEDD8-dependent ubiquitin ligases. We demonstrate that MLN4924, an inhibitor of NEDD8-activating enzyme presently being evaluated in clinical trials, decreases binding of NF-κB to the miR-155 promoter and downregulates miR-155 in AML cells. This results in the upregulation of the miR-155 targets SHIP1, an inhibitor of the PI3K/Akt pathway, and PU.1, a transcription factor important for myeloid differentiation, leading to monocytic differentiation and apoptosis. Consistent with these results, overexpression of miR-155 diminishes MLN4924-induced antileukemic effects. In vivo, MLN4924 reduces miR-155 expression and prolongs the survival of mice engrafted with leukemic cells. Our study demonstrates the potential of miR-155 as a novel therapeutic target in AML via pharmacologic interference with NF-κB-dependent regulatory mechanisms. We show the targeting of this oncogenic microRNA with MLN4924, a compound presently being evaluatedin clinical trials in AML. As high miR-155 levels have been consistently associated with aggressive clinical phenotypes, our work opens new avenues for microRNA-targeting therapeutic approaches to leukemia and cancer patients. PMID:25971362

  13. Pharmacological targeting of miR-155 via the NEDD8-activating enzyme inhibitor MLN4924 (Pevonedistat) in FLT3-ITD acute myeloid leukemia.

    PubMed

    Khalife, J; Radomska, H S; Santhanam, R; Huang, X; Neviani, P; Saultz, J; Wang, H; Wu, Y-Z; Alachkar, H; Anghelina, M; Dorrance, A; Curfman, J; Bloomfield, C D; Medeiros, B C; Perrotti, D; Lee, L J; Lee, R J; Caligiuri, M A; Pichiorri, F; Croce, C M; Garzon, R; Guzman, M L; Mendler, J H; Marcucci, G

    2015-10-01

    High levels of microRNA-155 (miR-155) are associated with poor outcome in acute myeloid leukemia (AML). In AML, miR-155 is regulated by NF-κB, the activity of which is, in part, controlled by the NEDD8-dependent ubiquitin ligases. We demonstrate that MLN4924, an inhibitor of NEDD8-activating enzyme presently being evaluated in clinical trials, decreases binding of NF-κB to the miR-155 promoter and downregulates miR-155 in AML cells. This results in the upregulation of the miR-155 targets SHIP1, an inhibitor of the PI3K/Akt pathway, and PU.1, a transcription factor important for myeloid differentiation, leading to monocytic differentiation and apoptosis. Consistent with these results, overexpression of miR-155 diminishes MLN4924-induced antileukemic effects. In vivo, MLN4924 reduces miR-155 expression and prolongs the survival of mice engrafted with leukemic cells. Our study demonstrates the potential of miR-155 as a novel therapeutic target in AML via pharmacologic interference with NF-κB-dependent regulatory mechanisms. We show the targeting of this oncogenic microRNA with MLN4924, a compound presently being evaluated in clinical trials in AML. As high miR-155 levels have been consistently associated with aggressive clinical phenotypes, our work opens new avenues for microRNA-targeting therapeutic approaches to leukemia and cancer patients.

  14. FLT3LG — EDRN Public Portal

    Cancer.gov

    From NCBI Gene: Dendritic cells (DCs) provide the key link between innate and adaptive immunity by recognizing pathogens and priming pathogen-specific immune responses. FLT3LG controls the development of DCs and is particularly important for plasmacytoid DCs and CD8 (see MIM 186910)-positive classical DCs and their CD103 (ITGAE; MIM 604682)-positive tissue counterparts (summary by Sathaliyawala et al., 2010 [PubMed 20933441]).[supplied by OMIM, Jan 2011

  15. FLT3 kinase inhibitor TTT-3002 overcomes both activating and drug resistance mutations in FLT3 in acute myeloid leukemia

    PubMed Central

    Ma, Hayley S.; Nguyen, Bao; Duffield, Amy S.; Li, Li; Galanis, Allison; Williams, Allen B.; Brown, Patrick A.; Levis, Mark J.; Leahy, Daniel J.; Small, Donald

    2014-01-01

    There have been a number of clinical trials testing the efficacy of FLT3 tyrosine kinase inhibitors (TKIs) in acute myeloid leukemia (AML). patients harboring a constitutively activating mutation in FLT3 However, there has been limited efficacy, most often due to inadequate achievement of FLT3 inhibition through a variety of mechanisms In a previous study, TTT-3002 was identified as a novel FLT3 inhibitor with the most potent activity to date against FLT3 internal tandem duplication (FLT3/ITD) mutations Here the activity of TTT-3002 is demonstrated against a broad spectrum of FLT3 activating point mutations (FLT3/PMs), including the most frequently occurring D835 mutations The compound is also active against a number of point mutations selected for in FLT3/ITD alleles that confer resistance to other TKIs, including the F691L gatekeeper mutation TTT-3002 maintains activity against relapsed AML patient samples that are resistant to sorafenib and AC220 Studies utilizing human plasma samples from healthy donors and AML patients indicate that TTT-3002 is only moderately protein bound compared to several other TKIs currently in clinical trials Tumor burden of mice in a FLT3 TKI-resistant transplant model is significantly improved by oral dosing of TTT-3002 Therefore, TTT-3002 has demonstrated preclinical potential as a promising new FLT3 TKI that may overcome some of the limitations of other TKIs in the treatment of FLT3-mutant AML PMID:25060518

  16. Microenvironmental hypoxia regulates FLT3 expression and biology in AML.

    PubMed

    Sironi, Silvia; Wagner, Michaela; Kuett, Alexander; Drolle, Heidrun; Polzer, Harald; Spiekermann, Karsten; Rieger, Christina; Fiegl, Michael

    2015-11-30

    Fms-like tyrosine kinase 3 (FLT3) is a receptor tyrosine kinase constitutively expressed by acute myeloid leukaemia (AML) blasts. In addition, 25% of AML patients harbour a FLT3-ITD mutation, associated with inferior outcome due to increased relapse rate. Relapse might be propagated by interactions between AML blasts and the bone marrow microenvironment. Besides cellular elements of the microenvironment (e.g. mesenchymal stromal cells), bone marrow hypoxia has emerged as an additional crucial component. Hence, effects of hypoxia on FLT3 expression and biology could provide novel insight into AML biology. Here we show that 25% of AML patients down-regulate FLT3 expression on blasts in response to in vitro hypoxia (1% O2), which was independent of its mutational state. While virtually no AML cell lines regulate FLT3 in response to hypoxia, the down-regulation could be observed in Ba/F3 cells stably transfected with different FLT3 mutants. Hypoxia-mediated down-regulation was specific for FLT3, reversible and proteasome-dependent; with FLT3 half-life being significantly shorter at hypoxia. Also, PI-3K inhibition could partially abrogate down-regulation of FLT3. Hypoxia-mediated down-regulation of FLT3 conferred resistance against cytarabine in vitro. In conclusion, FLT3 expression in AML is dependent on the oxygen partial pressure, but response to hypoxia differs.

  17. The Protein Tyrosine Phosphatase, Shp2, Positively Contributes to FLT3-ITD-Induced Hematopoietic Progenitor Hyperproliferation and Malignant Disease In Vivo

    PubMed Central

    Nabinger, Sarah C.; Li, XingJun; Ramdas, Baskar; He, Yantao; Zhang, Xian; Zeng, Lifan; Richine, Briana; Bowling, Joshua D.; Fukuda, Seiji; Goenka, Shreevrat; Liu, Ziyue; Feng, Gen-Sheng; Yu, Menggang; Sandusky, George E.; Boswell, H. Scott; Zhang, Zhong-Yin; Kapur, Reuben; Chan, Rebecca J.

    2014-01-01

    Internal tandem duplications in the fms-like tyrosine kinase receptor (FLT3-ITDs) confer a poor prognosis in acute myeloid leukemia. We hypothesized that increased recruitment of the protein tyrosine phosphatase, Shp2, to FLT3-ITDs contributes to FLT3 ligand (FL)-independent hyperproliferation and STAT5 activation. Co-immunoprecipitation demonstrated constitutive association of Shp2 with the FLT3-ITD, N51-FLT3, as well as with STAT5. Knock-down of Shp2 in Baf3/N51-FLT3 cells significantly reduced proliferation while having little effect on WT-FLT3-expressing cells. Consistently, mutation of N51-FLT3 tyrosine 599 to phenylalanine or genetic disruption of Shp2 in N51-FLT3-expressing bone marrow low density mononuclear cells reduced proliferation and STAT5 activation. In transplants, genetic disruption of Shp2 in vivo yielded increased latency to and reduced severity of FLT3-ITD-induced malignancy. Mechanistically, Shp2 co-localizes with nuclear phospho-STAT5, is present at functional interferon-γ activation sites (GAS) within the BCL2L1 promoter, and positively activates the human BCL2L1 promoter, suggesting that Shp2 works with STAT5 to promote pro-leukemogenic gene expression. Further, using a small molecule Shp2 inhibitor, the proliferation of N51-FLT3-expressing bone marrow progenitors and primary AML samples was reduced in a dose-dependent manner. These findings demonstrate that Shp2 positively contributes to FLT3-ITD-induced leukemia and suggest that Shp2 inhibition may provide a novel therapeutic approach to acute myeloid leukemia. PMID:23103841

  18. SKLB-677, an FLT3 and Wnt/β-catenin signaling inhibitor, displays potent activity in models of FLT3-driven AML

    PubMed Central

    Ma, Shuang; Yang, Ling-Ling; Niu, Ting; Cheng, Chuan; Zhong, Lei; Zheng, Ming-Wu; Xiong, Yu; Li, Lin-Li; Xiang, Rong; Chen, Li-Juan; Zhou, Qiao; Wei, Yu-Quan; Yang, Sheng-Yong

    2015-01-01

    FLT3 has been identified as a valid target for the treatment of acute myeloid leukemia (AML), and some FLT3 inhibitors have shown very good efficacy in treating AML in clinical trials. Nevertheless, recent studies indicated that relapse and drug resistance are still difficult to avoid, and leukemia stem cells (LSCs) are considered one of the most important contributors. Here, we report the characterization of SKLB-677, a new FLT3 inhibitor developed by us recently. SKLB-677 exhibits low nanomolar potency in biochemical and cellular assays. It is efficacious in animal models at doses as low as 1mg/kg when administrated orally once daily. In particular, SKLB-677 but not first-generation and second-generation FLT3 inhibitors in clinical trials has the ability to inhibit Wnt/β-catenin signaling; Wnt/β-catenin signaling is required for the development of LSCs, but not necessary for the development of adult hematopoietic stem cells (HSCs). This compound indeed showed considerable suppression effects on leukemia stem-like cells in in vitro functional assays, but had no influence on normal HSCs. Collectively, SKLB-677 is an interesting lead compound for the treatment of AML, and deserves further investigations. PMID:26497577

  19. Evolution of a FLT3-TKD mutated subclone at meningeal relapse in acute promyelocytic leukemia

    PubMed Central

    Bochtler, Tilmann; Fröhling, Stefan; Weichert, Wilko; Endris, Volker; Thiede, Christian; Hutter, Barbara; Hundemer, Michael; Ho, Anthony D.; Krämer, Alwin

    2016-01-01

    Here, we report the case of an acute promyelocytic leukemia (APL) patient who—although negative for FLT3 mutations at diagnosis—developed isolated FLT3 tyrosine kinase II domain (FLT3-TKD)-positive meningeal relapse, which, in retrospect, could be traced back to a minute bone marrow subclone present at first diagnosis. Initially, the 48-yr-old female diagnosed with high-risk APL had achieved complete molecular remission after standard treatment with all-trans retinoic acid (ATRA) and chemotherapy according to the AIDA (ATRA plus idarubicin) protocol. Thirteen months after the start of ATRA maintenance, the patient suffered clinically overt meningeal relapse along with minute molecular traces of PML/RARA (promyelocytic leukemia/retinoic acid receptor alpha) in the bone marrow. Following treatment with arsenic trioxide and ATRA in combination with intrathecal cytarabine and methotrexate, the patient achieved a complete molecular remission in both cerebrospinal fluid (CSF) and bone marrow, which currently lasts for 2 yr after completion of therapy. Whole-exome sequencing and subsequent ultradeep targeted resequencing revealed a heterozygous FLT3-TKD mutation in CSF leukemic cells (p.D835Y, c.2503G>T, 1000/1961 reads [51%]), which was undetectable in the concurrent bone marrow sample. Interestingly, the FLT3-TKD mutated meningeal clone originated from a small bone marrow subclone present in a variant allele frequency of 0.4% (6/1553 reads) at initial diagnosis. This case highlights the concept of clonal evolution with a subclone harboring an additional mutation being selected as the “fittest” and leading to meningeal relapse. It also further supports earlier suggestions that FLT3 mutations may play a role for migration and clonal expansion in the CSF sanctuary site. PMID:27626069

  20. FLT3 mutational status is an independent risk factor for adverse outcomes after allogeneic transplantation in AML

    PubMed Central

    Li, Yumeng; Braun, Thomas; Chang, Lawrence; Bixby, Dale; Hanauer, David A.; Chughtai, Komal A.; Gatza, Erin; Couriel, Daniel; Goldstein, Steven; Pawarode, Attaphol; Reddy, Pavan; Riwes, Mary; Connelly, James; Harris, Andrew; Kitko, Carrie; Levine, John; Yanik, Greg

    2015-01-01

    Allogeneic HCT has been increasingly used in the setting of FLT3 mutated AML. However, its role in conferring durable relapse-free intervals remains in question. Herein, we sought to investigate FLT3 mutational status on transplant outcomes. We conducted a retrospective cohort study of 262 consecutive AML patients who underwent first-time allogeneic HCT (2008-2014), of whom 171 had undergone FLT3-ITD mutational testing. FLT3 mutated AML was associated with nearly twice the relapse risk (RR) compared with those without FLT3 mutation 3 years post-HCT (63% vs. 37%, P<0.001), and with a shorter median time to relapse (100 vs. 121 days). FLT3 mutational status remained significantly associated with this outcome after controlling for patient, disease, and transplant-related risk factors (P<0.05). Multivariate analysis showed a significant association of FLT3 mutation with increased 3-year RR (HR 3.63, 95% CI: 2.13, 6.19, P<0.001), and inferior disease-free survival (HR 2.05, 95% CI: 1.29, 3.27, P<0.01) and overall survival (HR 1.92, 95% CI: 1.14, 3.24, P<0.05). These data demonstrate high risk of early relapse after allogeneic HCT for FLT3 mutated AML that translates into adverse disease-free and overall survival outcomes. Additional targeted and coordinated interventions are needed to maintain durable remission after allogeneic HCT in this high-risk population. PMID:26191952

  1. Inhibition of FLT3 in AML: a focus on sorafenib.

    PubMed

    Antar, A; Otrock, Z K; El-Cheikh, J; Kharfan-Dabaja, M A; Battipaglia, G; Mahfouz, R; Mohty, M; Bazarbachi, A

    2017-03-01

    FMS-like tyrosine kinase 3 (FLT3) is one of the most commonly mutated genes in AML. FLT3 is mutated in ~30% of patients with AML, either by internal tandem duplications (FLT3-ITD) of the juxta-membrane domain or by a point mutation, usually involving the tyrosine kinase domain. Several FLT3 tyrosine kinase inhibitors are being evaluated in multiple studies aiming at improving outcomes. The most widely used is sorafenib, a potent multikinase inhibitor approved for hepatocellular carcinoma and renal cell carcinoma. Sorafenib monotherapy or in combination with conventional chemotherapy, has been evaluated in various settings in AML, including front-line, relapsed or refractory disease including post-allograft failures and, more recently, as post-transplant maintenance therapy. Encouraging data have emerged with several other agents like lestaurtinib, midostaurin, crenolanib, gilteritinib and quizartinib. Although transient responses to FLT3 inhibitors are often observed in case of disease relapse, the most promising approach is the use of FLT3 inhibitors either in combination with induction chemotherapy or as consolidation/maintenance therapy after allogeneic hematopoietic cell transplantation. In this review, we summarize the clinical data on sorafenib and other FLT3 inhibitors in AML.

  2. Selective FLT3 inhibition of FLT3-ITD+ acute myeloid leukaemia resulting in secondary D835Y mutation: a model for emerging clinical resistance patterns.

    PubMed

    Moore, A S; Faisal, A; Gonzalez de Castro, D; Bavetsias, V; Sun, C; Atrash, B; Valenti, M; de Haven Brandon, A; Avery, S; Mair, D; Mirabella, F; Swansbury, J; Pearson, A D J; Workman, P; Blagg, J; Raynaud, F I; Eccles, S A; Linardopoulos, S

    2012-07-01

    Acquired resistance to selective FLT3 inhibitors is an emerging clinical problem in the treatment of FLT3-ITD(+) acute myeloid leukaemia (AML). The paucity of valid pre-clinical models has restricted investigations to determine the mechanism of acquired therapeutic resistance, thereby limiting the development of effective treatments. We generated selective FLT3 inhibitor-resistant cells by treating the FLT3-ITD(+) human AML cell line MOLM-13 in vitro with the FLT3-selective inhibitor MLN518, and validated the resistant phenotype in vivo and in vitro. The resistant cells, MOLM-13-RES, harboured a new D835Y tyrosine kinase domain (TKD) mutation on the FLT3-ITD(+) allele. Acquired TKD mutations, including D835Y, have recently been identified in FLT3-ITD(+) patients relapsing after treatment with the novel FLT3 inhibitor, AC220. Consistent with this clinical pattern of resistance, MOLM-13-RES cells displayed high relative resistance to AC220 and Sorafenib. Furthermore, treatment of MOLM-13-RES cells with AC220 lead to loss of the FLT3 wild-type allele and the duplication of the FLT3-ITD-D835Y allele. Our FLT3-Aurora kinase inhibitor, CCT137690, successfully inhibited growth of FLT3-ITD-D835Y cells in vitro and in vivo, suggesting that dual FLT3-Aurora inhibition may overcome selective FLT3 inhibitor resistance, in part due to inhibition of Aurora kinase, and may benefit patients with FLT3-mutated AML.

  3. Arsenic trioxide and all-trans-retinoic acid selectively exert synergistic cytotoxicity against FLT3-ITD AML cells via co-inhibition of FLT3 signaling pathways.

    PubMed

    Wang, Li-Na; Tang, Yan-Lai; Zhang, Yin-Chuan; Zhang, Zu-Han; Liu, Xiao-Jian; Ke, Zhi-Yong; Li, Yu; Tan, Hui-Zhen; Huang, Li-Bin; Luo, Xue-Qun

    2017-03-09

    FLT3-ITD mutations occur in approximately 30% of acute myeloid leukemia (AML) and are associated with a poor outcome. Currently available FLT3 inhibitors have in vitro but limited clinical activity in FLT3-ITD AML. Reports have shown that an arsenic trioxide (ATO)/all-trans-retinoic acid (ATRA) combination improves prognosis in acute promyelocytic leukemia, especially with FLT3-ITD, and ATO or ATRA alone enhances apoptosis in FLT3-ITD AML cells treated with FLT3 inhibitors, providing a rationale to investigate the role of ATO/ATRA in FLT3-ITD AML. Here, we demonstrate that an ATO/ATRA combination selectively exerts synergistic cytotoxicity against FLT3-ITD AML cell lines (MV4;11/MOLM-13). The signaling pathways affected by ATO/ATRA include FLT3/STAT5/MYC, FLT3/STAT5/E2F1, FLT3/ERK/ATF5 and FLT3/AKT/ATF5.ATF5 may function as an oncogene in FLT3-ITD AML. Our findings provide experimental evidence that supports further exploration of ATO/ATRA in FLT3-ITD AML in vivo and warrants a clinical evaluation of regimens comprising an ATO/ATRA combination.

  4. TALENs-mediated gene disruption of FLT3 in leukemia cells: Using genome-editing approach for exploring the molecular basis of gene abnormality.

    PubMed

    Wang, Jue; Li, Tongjuan; Zhou, Mi; Hu, Zheng; Zhou, Xiaoxi; Zhou, Shiqiu; Wang, Na; Huang, Liang; Zhao, Lei; Cao, Yang; Xiao, Min; Ma, Ding; Zhou, Pengfei; Shang, Zhen; Zhou, Jianfeng

    2015-12-16

    Novel analytic tools are needed to elucidate the molecular basis of leukemia-relevant gene mutations in the post-genome era. We generated isogenic leukemia cell clones in which the FLT3 gene was disrupted in a single allele using TALENs. Isogenic clones with mono-allelic disrupted FLT3 were compared to an isogenic wild-type control clone and parental leukemia cells for transcriptional expression, downstream FLT3 signaling and proliferation capacity. The global gene expression profiles of mutant K562 clones and corresponding wild-type controls were compared using RNA-seq. The transcriptional levels and the ligand-dependent autophosphorylation of FLT3 were decreased in the mutant clones. TALENs-mediated FLT3 haplo-insufficiency impaired cell proliferation and colony formation in vitro. These inhibitory effects were maintained in vivo, improving the survival of NOD/SCID mice transplanted with mutant K562 clones. Cluster analysis revealed that the gene expression pattern of isogenic clones was determined by the FLT3 mutant status rather than the deviation among individual isogenic clones. Differentially expressed genes between the mutant and wild-type clones revealed an activation of nonsense-mediated decay pathway in mutant K562 clones as well as an inhibited FLT3 signaling. Our data support that this genome-editing approach is a robust and generally applicable platform to explore the molecular bases of gene mutations.

  5. PML/RARα and FLT3-ITD induce an APL-like disease in a mouse model

    PubMed Central

    Kelly, Louise M.; Kutok, Jeffrey L.; Williams, Ifor R.; Boulton, Christina L.; Amaral, Sonia M.; Curley, David P.; Ley, Timothy J.; Gilliland, D. Gary

    2002-01-01

    Acute promyelocytic leukemia (APL) cells invariably express aberrant fusion proteins involving the retinoic acid receptor α (RARα). The most common fusion partner is promyelocytic leukemia protein (PML), which is fused to RARα in the balanced reciprocal chromosomal translocation, t(15;17)(q22:q11). Expression of PML/RARα from the cathepsin G promoter in transgenic mice causes a nonfatal myeloproliferative syndrome in all mice; about 15% go on to develop APL after a long latent period, suggesting that additional mutations are required for the development of APL. A candidate target gene for a second mutation is FLT3, because it is mutated in approximately 40% of human APL cases. Activating mutations in FLT3, including internal tandem duplication (ITD) in the juxtamembrane domain, transform hematopoietic cell lines to factor independent growth. FLT3-ITDs also induce a myeloproliferative disease in a murine bone marrow transplant model, but are not sufficient to cause AML. Here, we test the hypothesis that PML/RARα can cooperate with FLT3-ITD to induce an APL-like disease in the mouse. Retroviral transduction of FLT3-ITD into bone marrow cells obtained from PML/RARα transgenic mice results in a short latency APL-like disease with complete penetrance. This disease resembles the APL-like disease that occurs with long latency in the PML/RARα transgenics, suggesting that activating mutations in FLT3 can functionally substitute for the additional mutations that occur during mouse APL progression. The leukemia is transplantable to secondary recipients and is ATRA responsive. These observations document cooperation between PML/RARα and FLT3-ITD in development of the murine APL phenotype. PMID:12060771

  6. Ligand-Targeted Drug Delivery.

    PubMed

    Srinivasarao, Madduri; Low, Philip S

    2017-09-12

    Safety and efficacy constitute the major criteria governing regulatory approval of any new drug. The best method to maximize safety and efficacy is to deliver a proven therapeutic agent with a targeting ligand that exhibits little affinity for healthy cells but high affinity for pathologic cells. The probability of regulatory approval can conceivably be further enhanced by exploiting the same targeting ligand, conjugated to an imaging agent, to select patients whose diseased tissues display sufficient targeted receptors for therapeutic efficacy. The focus of this Review is to summarize criteria that must be met during design of ligand-targeted drugs (LTDs) to achieve the required therapeutic potency with minimal toxicity. Because most LTDs are composed of a targeting ligand (e.g., organic molecule, aptamer, protein scaffold, or antibody), spacer, cleavable linker, and therapeutic warhead, criteria for successful design of each component will be described. Moreover, because obstacles to successful drug design can differ among human pathologies, limitations to drug delivery imposed by the unique characteristics of different diseases will be considered. With the explosion of genomic and transcriptomic data providing an ever-expanding selection of disease-specific targets, and with tools for high-throughput chemistry offering an escalating diversity of warheads, opportunities for innovating safe and effective LTDs has never been greater.

  7. Adaptation of the plasma inhibitory activity assay to detect Aurora, ABL and FLT3 kinase inhibition by AT9283 in pediatric leukemia.

    PubMed

    Podesta, Jennifer E; Sugar, Richard; Squires, Matt; Linardopoulos, Spiros; Pearson, Andrew D J; Moore, Andrew S

    2011-09-01

    Non-invasive assessment of biomarker modulation is important for evaluating targeted therapeutics, particularly in pediatrics. The plasma inhibitory activity (PIA) assay is used clinically to assess FLT3 inhibition ex vivo and guide dosing. AT9283 is a novel Aurora kinase inhibitor with secondary activity against FLT3 and ABL. We adapted the PIA assay to simultaneously detect inhibition of Aurora and FLT3 in AML, and Aurora and ABL in CML by AT9283. Furthermore, we optimized the assay for children, where limited blood volumes are available for pharmacodynamic studies. Simultaneously detecting multiple kinase inhibition may identify important mechanisms of action for novel anti-leukemic drugs.

  8. Internal Tandem Duplication Mutations in FLT3 Gene Augment Chemotaxis to Cxcl12 Protein by Blocking the Down-regulation of the Rho-associated Kinase via the Cxcl12/Cxcr4 Signaling Axis*

    PubMed Central

    Onish, Chie; Mori-Kimachi, Satomi; Hirade, Tomohiro; Abe, Mariko; Taketani, Takeshi; Suzumiya, Junji; Sugimoto, Toshitsugu; Yamaguchi, Seiji; Kapur, Reuben; Fukuda, Seiji

    2014-01-01

    Internal tandem duplication mutations in the Flt3 gene (ITD-FLT3) enhance cell migration toward the chemokine Cxcl12, which is highly expressed in the therapy-protective bone marrow niche, providing a potential mechanism underlying the poor prognosis of ITD-FLT3+ acute myeloid leukemia. We aimed to investigate the mechanisms linking ITD-FLT3 to increased cell migration toward Cxcl12. Classification of the expression of Cxcl12-regulated genes in ITD-FLT3+ cells demonstrated that the enhanced migration of ITD-FLT3+ cells toward Cxcl12 was associated with the differential expression of genes downstream of Cxcl12/Cxcr4, which are functionally distinct from those expressed in ITD-FLT3− cells but are independent of the Cxcr4 expression levels. Among these differentially regulated genes, the expression of Rock1 in the ITD-FLT3+ cells that migrated toward Cxcl12 was significantly higher than in ITD-FLT3− cells that migrated toward Cxcl12. In ITD-FLT3− cells, Rock1 expression and Mypt1 phosphorylation were transiently up-regulated but were subsequently down-regulated by Cxcl12. In contrast, the presence of ITD-FLT3 blocked the Cxcl12-induced down-regulation of Rock1 and early Mypt1 dephosphorylation. Likewise, the FLT3 ligand counteracted the Cxcl12-induced down-regulation of Rock1 in ITD-FLT3− cells, which coincided with enhanced cell migration toward Cxcl12. Rock1 antagonists or Rock1 shRNA abolished the enhanced migration of ITD-FLT3+ cells toward Cxcl12. Our findings demonstrate that ITD-FLT3 increases cell migration toward Cxcl12 by antagonizing the down-regulation of Rock1 expression. These findings suggest that the aberrant modulation of Rock1 expression and activity induced by ITD-FLT3 may enhance acute myeloid leukemia cell chemotaxis to the therapy-protective bone marrow niche, where Cxcl12 is abundantly expressed. PMID:25237195

  9. The AML1-ETO fusion gene and the FLT3 length mutation collaborate in inducing acute leukemia in mice

    PubMed Central

    Schessl, Christina; Rawat, Vijay P.S.; Cusan, Monica; Deshpande, Aniruddha; Kohl, Tobias M.; Rosten, Patricia M.; Spiekermann, Karsten; Humphries, R. Keith; Schnittger, Susanne; Kern, Wolfgang; Hiddemann, Wolfgang; Quintanilla-Martinez, Leticia; Bohlander, Stefan K.; Feuring-Buske, Michaela; Buske, Christian

    2005-01-01

    The molecular characterization of leukemia has demonstrated that genetic alterations in the leukemic clone frequently fall into 2 classes, those affecting transcription factors (e.g., AML1-ETO) and mutations affecting genes involved in signal transduction (e.g., activating mutations of FLT3 and KIT). This finding has favored a model of leukemogenesis in which the collaboration of these 2 classes of genetic alterations is necessary for the malignant transformation of hematopoietic progenitor cells. The model is supported by experimental data indicating that AML1-ETO and FLT3 length mutation (FLT3-LM), 2 of the most frequent genetic alterations in AML, are both insufficient on their own to cause leukemia in animal models. Here we report that AML1-ETO collaborates with FLT3-LM in inducing acute leukemia in a murine BM transplantation model. Moreover, in a series of 135 patients with AML1-ETO–positive AML, the most frequently identified class of additional mutations affected genes involved in signal transduction pathways including FLT3-LM or mutations of KIT and NRAS. These data support the concept of oncogenic cooperation between AML1-ETO and a class of activating mutations, recurrently found in patients with t(8;21), and provide a rationale for therapies targeting signal transduction pathways in AML1-ETO–positive leukemias. PMID:16025155

  10. Cabozantinib is selectively cytotoxic in acute myeloid leukemia cells with FLT3-internal tandem duplication (FLT3-ITD).

    PubMed

    Lu, Jeng-Wei; Wang, An-Ni; Liao, Heng-An; Chen, Chien-Yuan; Hou, Hsin-An; Hu, Chung-Yi; Tien, Hwei-Fan; Ou, Da-Liang; Lin, Liang-In

    2016-07-01

    Cabozantinib is an oral multikinase inhibitor that exhibits anti-tumor activity in several cancers. We found that cabozantinib was significantly cytotoxic to MV4-11 and Molm-13 cells that harbored FLT3-ITD, resulting in IC50 values of 2.4 nM and 2.0 nM, respectively. However, K562, OCI-AML3 and THP-1 (leukemia cell lines lacking FLT3-ITD) were resistant to cabozantinib, showing IC50 values in the micromolar range. Cabozantinib arrested MV4-11 cell growth at the G0/G1 phase within 24 h, which was associated with decreased phosphorylation of FLT3, STAT5, AKT and ERK. Additionally, cabozantinib induced MV4-11 cell apoptosis in a dose-dependent manner (as indicated by annexin V staining and high levels of cleaved caspase 3 and PARP-1), down-regulated the anti-apoptotic protein survivin and up-regulated the pro-apoptotic protein Bak. Thus, cabozantinib is selectively cytotoxic to leukemia cells with FLT3-ITD, causing cell-cycle arrest and apoptosis. In mouse xenograft model, cabozantinib significantly inhibited MV4-11 and Molm-13 tumor growth at a dosage of 10 mg/kg and showed longer survival rate. Clinical trials evaluating the efficacy of cabozantinib in acute myeloid leukemia (AML) with FLT3-ITD are warranted. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. MuLV-related endogenous retroviral elements and Flt3 participate in aberrant end-joining events that promote B-cell leukemogenesis.

    PubMed

    Johnson, Radia M; Papp, Eniko; Grandal, Ildiko; Kowalski, Paul E; Nutter, Lauryl; Wong, Raymond C C; Joseph-George, Ann M; Danska, Jayne S; Guidos, Cynthia J

    2014-06-01

    During V(D)J recombination of immunoglobulin genes, p53 and nonhomologous end-joining (NHEJ) suppress aberrant rejoining of DNA double-strand breaks induced by recombinase-activating genes (Rags)-1/2, thus maintaining genomic stability and limiting malignant transformation during B-cell development. However, Rag deficiency does not prevent B-cell leukemogenesis in p53/NHEJ mutant mice, revealing that p53 and NHEJ also suppress Rag-independent mechanisms of B-cell leukemogenesis. Using several cytogenomic approaches, we identified a novel class of activating mutations in Fms-like tyrosine kinase 3 (Flt3), a receptor tyrosine kinase important for normal hematopoiesis in Rag/p53/NHEJ triple-mutant (TM) B-cell leukemias. These mutant Flt3 alleles were created by complex genomic rearrangements with Moloney leukemia virus (MuLV)-related endogenous retroviral (ERV) elements, generating ERV-Flt3 fusion genes encoding an N-terminally truncated mutant form of Flt3 (trFlt3) that was transcribed from ERV long terminal repeats. trFlt3 protein lacked most of the Flt3 extracellular domain and induced ligand-independent STAT5 phosphorylation and proliferation of hematopoietic progenitor cells. Furthermore, expression of trFlt3 in p53/NHEJ mutant hematopoietic progenitor cells promoted development of clinically aggressive B-cell leukemia. Thus, repetitive MuLV-related ERV sequences can participate in aberrant end-joining events that promote development of aggressive B-cell leukemia. © 2014 Johnson et al.; Published by Cold Spring Harbor Laboratory Press.

  12. Tumor Targeting via Integrin Ligands

    PubMed Central

    Marelli, Udaya Kiran; Rechenmacher, Florian; Sobahi, Tariq Rashad Ali; Mas-Moruno, Carlos; Kessler, Horst

    2013-01-01

    Selective and targeted delivery of drugs to tumors is a major challenge for an effective cancer therapy and also to overcome the side-effects associated with current treatments. Overexpression of various receptors on tumor cells is a characteristic structural and biochemical aspect of tumors and distinguishes them from physiologically normal cells. This abnormal feature is therefore suitable for selectively directing anticancer molecules to tumors by using ligands that can preferentially recognize such receptors. Several subtypes of integrin receptors that are crucial for cell adhesion, cell signaling, cell viability, and motility have been shown to have an upregulated expression on cancer cells. Thus, ligands that recognize specific integrin subtypes represent excellent candidates to be conjugated to drugs or drug carrier systems and be targeted to tumors. In this regard, integrins recognizing the RGD cell adhesive sequence have been extensively targeted for tumor-specific drug delivery. Here we review key recent examples on the presentation of RGD-based integrin ligands by means of distinct drug-delivery systems, and discuss the prospects of such therapies to specifically target tumor cells. PMID:24010121

  13. Rat bone marrow-derived dendritic cells generated with GM-CSF/IL-4 or FLT3L exhibit distinct phenotypical and functional characteristics.

    PubMed

    N'diaye, Marie; Warnecke, Andreas; Flytzani, Sevasti; Abdelmagid, Nada; Ruhrmann, Sabrina; Olsson, Tomas; Jagodic, Maja; Harris, Robert A; Guerreiro-Cacais, Andre Ortlieb

    2016-03-01

    Dendritic cells are professional APCs that play a central role in the initiation of immune responses. The limited ex vivo availability of dendritic cells inspires the widespread use of bone marrow-derived dendritic cells as an alternative in research. However, the functional characteristics of bone marrow-derived dendritic cells are incompletely understood. Therefore, we compared functional and phenotypic characteristics of rat bone marrow-derived dendritic cells generated with GM-CSF/IL-4 or FLT3 ligand bone marrow-derived dendritic cells. A comparison of surface markers revealed that FLT3 ligand-bone marrow-derived dendritic cells expressed signal regulatory protein α, CD103, and CD4 and baseline levels of MHC class II, CD40, and CD86, which were highly up-regulated upon stimulation. Conversely, GM-CSF/IL-4-bone marrow-derived dendritic cells constitutively expressed signal regulatory protein α, CD11c, and CD11b but only mildly up-regulated MHC class II, CD40, or CD86 following stimulation. Expression of dendritic cell-associated core transcripts was restricted to FLT3 ligand-bone marrow-derived dendritic cells . GM-CSF/IL-4-bone marrow-derived dendritic cells were superior at phagocytosis but were outperformed by FLT3 ligand-bone marrow-derived dendritic cells at antigen presentation and T cell stimulation in vitro. Stimulated GM-CSF/IL-4-bone marrow-derived dendritic cells secreted more TNF, CCL5, CCL20, and NO, whereas FLT3 ligand-bone marrow-derived dendritic cells secreted more IL-6 and IL-12. Finally, whereas GM-CSF/IL-4-bone marrow-derived dendritic cell culture supernatants added to resting T cell cultures promoted forkhead box p3(+) regulatory T cell populations, FLT3 ligand-bone marrow-derived dendritic cell culture supernatants drove Th17 differentiation. We conclude that rat GM-CSF/IL-4-bone marrow-derived dendritic cells and FLT3 ligand-bone marrow-derived dendritic cells are functionally distinct. Our data support the current rationale that FLT3

  14. Synthesis and biological evaluation of novel thieno[2,3-d]pyrimidine-based FLT3 inhibitors as anti-leukemic agents.

    PubMed

    Yang, Jee Sun; Park, Chun-Ho; Lee, Chulho; Kim, Hwan; Oh, Changmok; Choi, Yejoo; Kang, Jong Soon; Yun, Jieun; Jeong, Jin-Hyun; Kim, Myung-Hwa; Han, Gyoonhee

    2014-10-06

    The most common mutations in acute myeloid leukemia (AML) are those that cause the activation of FMS-like tyrosine kinase 3 (FLT3). Therefore, FLT3 is regarded as a potential target for the treatment of AML. A novel series of thieno[2,3-d]pyrimidine-based analogs was designed and synthesized as FLT3 inhibitors. All synthesized compounds were assayed for the tyrosine kinase activity of FLT3 and growth inhibitory activity in four human leukemia cell lines (THP1, MV4-11, K562, and HL-60). Among these compounds, compound 17a, which possesses relatively short and simple substituents at the C6 position of thieno[2,3-d]pyrimidine, emerged as the most promising anti-leukemic agent. Compound 17a exhibited potent inhibition of FLT3-positive leukemic cell growth and of the FLT3 D835Y kinase; such inhibition is required for the successful treatment of AML. The data supports the further investigation of this class of compounds as potential anti-leukemic agents. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  15. Expression of caveolin-1 and podocalyxin in rat lungs challenged with 2-kDa macrophage-activating lipopeptide and Flt3L.

    PubMed

    Tschernig, T; Pabst, R; Kasper, M; El-Hadi, Mustafa; Singh, B

    2014-04-01

    Caveolin-1 is one of the important regulators of vascular permeability in inflamed lungs. Podocalyxin is a CD34 protein expressed on vascular endothelium and has a role in podocyte development in the kidney. Few data are available on the expression of caveolin-1 and podocalyxin in lungs challenged with Toll-like receptor 2 (TLR2) agonists such as mycoplasma-derived macrophage activating lipopeptide or with immune modulators such as Fms-like tyrosine kinase receptor-3 ligand (Flt3L), which expands dendritic cell populations in the lung. Because of the significance of pathogen-derived molecules that act through TLR2 and of the role of immune modulators in lung physiology, we examine the immunohistochemical expression of caveolin-1 and podocalyxin in lungs from rats challenged with a 2-kDa macrophage-activating lipopeptide (MALP-2) and Flt3L. Normal rat lungs expressed caveolin-1 in alveolar septa, vascular endothelium and airway epithelium, especially along the lateral borders of epithelial cells but not in alveolar macrophages. MALP-2 and Flt3L decreased and increased, respectively, the expression of caveolin-1. Caveolin-1 expression seemed to increase in microvessels in bronchiole-associated lymphoid tissue (BALT) in Flt3L-challenged lungs but not in normal or MALP-2-treated lungs. Podocalyxin was absent in the epithelium and alveolar macrophages but was present in the vasculature of control, Flt3L- and MALP-2-treated rats. Compared with control and MALP-2-treated rats, Flt3L-treated lungs showed greater expression of podocalyxin in BALT vasculature and at the interface of monocytes and the endothelium. These immunohistochemical data describing the altered expression of caveolin-1 and podocalyxin in lungs treated with MALP-2 or Flt3L encourage further mechanistic studies on the role of podocalyxin and caveolin-1 in lung inflammation.

  16. Human Flt3L generates dendritic cells from canine peripheral blood precursors: implications for a dog glioma clinical trial.

    PubMed

    Xiong, Weidong; Candolfi, Marianela; Liu, Chunyan; Muhammad, A K M Ghulam; Yagiz, Kader; Puntel, Mariana; Moore, Peter F; Avalos, Julie; Young, John D; Khan, Dorothy; Donelson, Randy; Pluhar, G Elizabeth; Ohlfest, John R; Wawrowsky, Kolja; Lowenstein, Pedro R; Castro, Maria G

    2010-06-11

    Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults and carries a dismal prognosis. We have developed a conditional cytotoxic/immunotherapeutic approach using adenoviral vectors (Ads) encoding the immunostimulatory cytokine, human soluble fms-like tyrosine kinase 3 ligand (hsFlt3L) and the conditional cytotoxic molecule, i.e., Herpes Simplex Type 1- thymide kinase (TK). This therapy triggers an anti-tumor immune response that leads to tumor regression and anti-tumor immunological memory in intracranial rodent cancer models. We aim to test the efficacy of this immunotherapy in dogs bearing spontaneous GBM. In view of the controversy regarding the effect of human cytokines on dog immune cells, and considering that the efficacy of this treatment depends on hsFlt3L-stimulated dendritic cells (DCs), in the present work we tested the ability of Ad-encoded hsFlt3L to generate DCs from dog peripheral blood and compared its effects with canine IL-4 and GM-CSF. Our results demonstrate that hsFlT3L expressed form an Ad vector, generated DCs from peripheral blood cultures with very similar morphological and phenotypic characteristics to canine IL-4 and GM-CSF-cultured DCs. These include phagocytic activity and expression of CD11c, MHCII, CD80 and CD14. Maturation of DCs cultured under both conditions resulted in increased secretion of IL-6, TNF-alpha and IFN-gamma. Importantly, hsFlt3L-derived antigen presenting cells showed allostimulatory potential highlighting their ability to present antigen to T cells and elicit their proliferation. These results demonstrate that hsFlt3L induces the proliferation of canine DCs and support its use in upcoming clinical trials for canine GBM. Our data further support the translation of hsFlt3L to be used for dendritic cells' vaccination and gene therapeutic approaches from rodent models to canine patients and its future implementation in human clinical trials.

  17. Human Flt3L Generates Dendritic Cells from Canine Peripheral Blood Precursors: Implications for a Dog Glioma Clinical Trial

    PubMed Central

    Liu, Chunyan; Muhammad, A. K. M. Ghulam; Yagiz, Kader; Puntel, Mariana; Moore, Peter F.; Avalos, Julie; Young, John D.; Khan, Dorothy; Donelson, Randy; Pluhar, G. Elizabeth; Ohlfest, John R.; Wawrowsky, Kolja; Lowenstein, Pedro R.; Castro, Maria G.

    2010-01-01

    Background Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults and carries a dismal prognosis. We have developed a conditional cytotoxic/immunotherapeutic approach using adenoviral vectors (Ads) encoding the immunostimulatory cytokine, human soluble fms-like tyrosine kinase 3 ligand (hsFlt3L) and the conditional cytotoxic molecule, i.e., Herpes Simplex Type 1- thymide kinase (TK). This therapy triggers an anti-tumor immune response that leads to tumor regression and anti-tumor immunological memory in intracranial rodent cancer models. We aim to test the efficacy of this immunotherapy in dogs bearing spontaneous GBM. In view of the controversy regarding the effect of human cytokines on dog immune cells, and considering that the efficacy of this treatment depends on hsFlt3L-stimulated dendritic cells (DCs), in the present work we tested the ability of Ad-encoded hsFlt3L to generate DCs from dog peripheral blood and compared its effects with canine IL-4 and GM-CSF. Methodology/Principal Findings Our results demonstrate that hsFlT3L expressed form an Ad vector, generated DCs from peripheral blood cultures with very similar morphological and phenotypic characteristics to canine IL-4 and GM-CSF-cultured DCs. These include phagocytic activity and expression of CD11c, MHCII, CD80 and CD14. Maturation of DCs cultured under both conditions resulted in increased secretion of IL-6, TNF-α and IFN-γ. Importantly, hsFlt3L-derived antigen presenting cells showed allostimulatory potential highlighting their ability to present antigen to T cells and elicit their proliferation. Conclusions/Significance These results demonstrate that hsFlt3L induces the proliferation of canine DCs and support its use in upcoming clinical trials for canine GBM. Our data further support the translation of hsFlt3L to be used for dendritic cells' vaccination and gene therapeutic approaches from rodent models to canine patients and its future implementation in human clinical

  18. NKG2D ligands as therapeutic targets

    PubMed Central

    Spear, Paul; Wu, Ming-Ru; Sentman, Marie-Louise; Sentman, Charles L.

    2013-01-01

    The Natural Killer Group 2D (NKG2D) receptor plays an important role in protecting the host from infections and cancer. By recognizing ligands induced on infected or tumor cells, NKG2D modulates lymphocyte activation and promotes immunity to eliminate ligand-expressing cells. Because these ligands are not widely expressed on healthy adult tissue, NKG2D ligands may present a useful target for immunotherapeutic approaches in cancer. Novel therapies targeting NKG2D ligands for the treatment of cancer have shown preclinical success and are poised to enter into clinical trials. In this review, the NKG2D receptor and its ligands are discussed in the context of cancer, infection, and autoimmunity. In addition, therapies targeting NKG2D ligands in cancer are also reviewed. PMID:23833565

  19. FLT3 Mutations in Early T-Cell Precursor ALL Characterize a Stem Cell Like Leukemia and Imply the Clinical Use of Tyrosine Kinase Inhibitors

    PubMed Central

    Neumann, Martin; Coskun, Ebru; Fransecky, Lars; Mochmann, Liliana H.; Bartram, Isabelle; Farhadi Sartangi, Nasrin; Heesch, Sandra; Gökbuget, Nicola; Schwartz, Stefan; Brandts, Christian; Schlee, Cornelia; Haas, Rainer; Dührsen, Ulrich; Griesshammer, Martin; Döhner, Hartmut; Ehninger, Gerhard; Burmeister, Thomas; Blau, Olga; Thiel, Eckhard; Hoelzer, Dieter; Hofmann, Wolf-Karsten; Baldus, Claudia D.

    2013-01-01

    Early T-cell precursor acute lymphoblastic leukemia (ETP-ALL) has been identified as high-risk subgroup of acute T-lymphoblastic leukemia (T-ALL) with a high rate of FLT3-mutations in adults. To unravel the underlying pathomechanisms and the clinical course we assessed molecular alterations and clinical characteristics in a large cohort of ETP-ALL (n = 68) in comparison to non-ETP T-ALL adult patients. Interestingly, we found a high rate of FLT3-mutations in ETP-ALL samples (n = 24, 35%). Furthermore, FLT3 mutated ETP-ALL was characterized by a specific immunophenotype (CD2+/CD5-/CD13+/CD33-), a distinct gene expression pattern (aberrant expression of IGFBP7, WT1, GATA3) and mutational status (absence of NOTCH1 mutations and a low frequency, 21%, of clonal TCR rearrangements). The observed low GATA3 expression and high WT1 expression in combination with lack of NOTCH1 mutations and a low rate of TCR rearrangements point to a leukemic transformation at the pluripotent prothymocyte stage in FLT3 mutated ETP-ALL. The clinical outcome in ETP-ALL patients was poor, but encouraging in those patients with allogeneic stem cell transplantation (3-year OS: 74%). To further explore the efficacy of targeted therapies, we demonstrate that T-ALL cell lines transfected with FLT3 expression constructs were particularly sensitive to tyrosine kinase inhibitors. In conclusion, FLT3 mutated ETP-ALL defines a molecular distinct stem cell like leukemic subtype. These data warrant clinical studies with the implementation of FLT3 inhibitors in addition to early allogeneic stem cell transplantation for this high risk subgroup. PMID:23359050

  20. Sorafenib induces paradoxical phosphorylation of the extracellular signal-regulated kinase pathway in acute myeloid leukemia cells lacking FLT3-ITD mutation

    PubMed Central

    Fouladi, Fariba; Jehn, Lutz B.; Metzelder, Stephan K.; Hub, Florian; Henkenius, Katharina; Burchert, Andreas; Brendel, Cornelia; Stiewe, Thorsten; Neubauer, Andreas

    2015-01-01

    Gain-of-function mutations in the RAS and FLT3 genes are frequently found in cells of acute myeloid leukemia (AML), leading to constitutive activation of signaling pathways that regulate fundamental cellular processes, and are therefore attractive targets for AML therapy. The multi-targeted kinase inhibitor sorafenib is efficacious in AML with FLT3-internal tandem duplication (ITD), but resistance to therapy is an important clinical problem. It is unclear whether AML lacking FLT3-ITD responds to sorafenib. Using AML cell lines, we have shown that a low concentration of sorafenib induces opposing effects depending on the oncogenic background. In FLT3-ITD positive cells sorafenib blocks Erk activity and cell proliferation, and triggers apoptosis. However, in cells lacking FLT3-ITD, sorafenib paradoxically activates Erk2, and stimulates cellular proliferation and metabolic activity. Thus, depending on the genetic context, sorafenib is a beneficial inhibitor or paradoxical activator of mitogenic signaling pathways in AML. These results harbor important consequences in planning clinical trials in AML. PMID:25665465

  1. PRL-3, a metastasis associated tyrosine phosphatase, is involved in FLT3-ITD signaling and implicated in anti-AML therapy.

    PubMed

    Zhou, Jianbiao; Bi, Chonglei; Chng, Wee-Joo; Cheong, Lip-Lee; Liu, Shaw-Cheng; Mahara, Sylvia; Tay, Kian-Ghee; Zeng, Qi; Li, Jie; Guo, Ke; Tan, Cheng Peow Bobby; Yu, Hanry; Albert, Daniel H; Chen, Chien-Shing

    2011-05-12

    Combination with other small molecule drugs represents a promising strategy to improve therapeutic efficacy of FLT3 inhibitors in the clinic. We demonstrated that combining ABT-869, a FLT3 inhibitor, with SAHA, a HDAC inhibitor, led to synergistic killing of the AML cells with FLT3 mutations and suppression of colony formation. We identified a core gene signature that is uniquely induced by the combination treatment in 2 different leukemia cell lines. Among these, we showed that downregulation of PTP4A3 (PRL-3) played a role in this synergism. PRL-3 is downstream of FLT3 signaling and ectopic expression of PRL-3 conferred therapeutic resistance through upregulation of STAT (signal transducers and activators of transcription) pathway activity and anti-apoptotic Mcl-1 protein. PRL-3 interacts with HDAC4 and SAHA downregulates PRL-3 via a proteasome dependent pathway. In addition, PRL-3 protein was identified in 47% of AML cases, but was absent in myeloid cells in normal bone marrows. Our results suggest such combination therapies may significantly improve the therapeutic efficacy of FLT3 inhibitors. PRL-3 plays a potential pathological role in AML and it might be a useful therapeutic target in AML, and warrant clinical investigation.

  2. Temporal Changes in FLT3-ITD Regulation of Stem Cell Self-Renewal and Leukemogenesis

    DTIC Science & Technology

    2015-09-01

    pediatric and adult acute myeloid leukemia (AML). Genetic differences between pediatric and adult AML may underlie differences in outcomes and...products can suppress leukemogenesis. Reprogramming therapies may offer a novel approach for treating AML. 15. SUBJECT TERMS FLT3-ITD, leukemia ...project is to understand why FLT3-Internal Tandem Duplication (FLT3-ITD) mutations cause acute myeloid leukemia (AML) more frequently in adults than in

  3. DNA repair contributes to the drug-resistant phenotype of primary acute myeloid leukaemia cells with FLT3 internal tandem duplications and is reversed by the FLT3 inhibitor PKC412.

    PubMed

    Seedhouse, C H; Hunter, H M; Lloyd-Lewis, B; Massip, A-M; Pallis, M; Carter, G I; Grundy, M; Shang, S; Russell, N H

    2006-12-01

    The presence of internal tandem duplications (ITD) mutations in the FMS-like tyrosine kinase 3 (FLT3) receptor influences the risk of relapse in acute myeloid leukaemia (AML). We have investigated DNA repair in FLT3-ITD and wild-type (WT) cells. Using the comet assay, we have demonstrated that the FLT3 inhibitor PKC412 significantly inhibits repair of DNA damage in the MV4-11-FLT3-ITD cell line and FLT3-ITD patient samples but not in the HL-60-FLT3-WT cell line or FLT3-WT patient samples. Following the discovery that transcript levels of the DNA repair gene RAD51 are significantly correlated with FLT3 transcript levels in FLT3-ITD patients, we further investigated the role of RAD51 in FLT3-ITD-AML. The reduction in DNA repair in PKC412-treated FLT3-ITD cells was shown to be associated with downregulation of RAD51 mRNA and protein expression and correlates with the maintenance of phosphorylated H2AX levels, implying that PKC412 inhibits the homologous recombination double-strand break repair pathway in FLT3-ITD cells. Using FLT3-short interfering RNA (siRNA), we also demonstrated that genetic silencing of FLT3 results in RAD51 downregulation in FLT3-ITD cells but not in FLT3-WT cells. This work suggests that the use of FLT3 inhibitors such as PKC412 may reverse the drug-resistant phenotype of FLT3-ITD-AML cells by inhibiting repair of chemotherapy-induced genotoxic damage and thereby reduce the risk of disease relapse.

  4. Flt3 does not play a critical role in murine myeloid leukemias induced by MLL fusion genes.

    PubMed

    Albouhair, Stéphanie; Morgado, Ester; Lavau, Catherine

    2013-01-01

    Leukemias harboring MLL translocations are frequent in children and adults, and respond poorly to therapies. The receptor tyrosine kinase FLT3 is highly expressed in these leukemias. In vitro studies have shown that pediatric MLL-rearranged ALL cells are sensitive to FLT3 inhibitors and clinical trials are ongoing to measure their therapeutic efficacy. We sought to determine the contribution of Flt3 in the pathogenesis of MLL-rearranged leukemias using a myeloid leukemia mouse model. Bone marrow from Flt3 null mice transduced with MLL-ENL or MLL-CBP was transplanted into host mice and Flt3 (-/-) leukemias were compared to their Flt3 wild type counterparts. Flt3 deficiency did not delay disease onset and had minimal impact on leukemia characteristics. To determine the anti-leukemic effect of FLT3 inhibition we studied the sensitivity of MLL-ENL leukemia cells to the FLT3 inhibitor PKC412 ex vivo. As previously reported for human MLL-rearranged leukemias, murine MLL-ENL leukemia cells with higher Flt3 levels were more sensitive to the cytotoxicity of PKC412. Interestingly, Flt3 deficient leukemia samples also displayed some sensitivity to PKC412. Our findings demonstrate that myeloid leukemias induced by MLL-rearranged genes are not dependent upon Flt3 signaling. They also highlight the discrepancy between the sensitivity of cells to Flt3 inhibition in vitro and the lack of contribution of Flt3 to the pathogenesis of MLL-rearranged leukemias in vivo.

  5. Specific detection of Flt3 point mutations by highly sensitive real-time polymerase chain reaction in acute myeloid leukemia.

    PubMed

    Scholl, Sebastian; Krause, Claudia; Loncarevic, Ivan F; Müller, Rouven; Kunert, Christa; Wedding, Ulrich; Sayer, Herbert G; Clement, Joachim H; Höffken, Klaus

    2005-06-01

    Among activating class III receptor tyrosine kinase (Flt3) mutations, internal tandem duplications of Flt3 (Flt3-ITD) are detected in about 25% of patients with acute myeloid leukemia (AML). In contrast, mutations within the tyrosine kinase domain of Flt3 (Flt3-TKD mutations) are less frequent (approximately 7%), and there are only limited data on the frequency of recently demonstrated activating Flt3 point mutation at codon 592 (Flt3-V592A mutation). We evaluated a new approach for rapid screening of Flt3-TKD and Flt3-V592A mutations using the fluorescence resonance energy transfer (FRET) principle in a group of 122 patients. Based on individual Flt3-TKD mutations, we designed patient-specific primers to perform a highly sensitive polymerase chain reaction (PCR) assay for rapid detection of minimal residual disease (MRD). We also used a model system with MonoMac-6 cells carrying the Flt3-V592A mutation to establish a mutation-specific real-time PCR approach also for this molecular aberration. We identified 9 cases (8%) of Flt3-TKD mutations (5 cases of mutation D835Y, 3 cases of mutation D835H, and 1 case of mutation Del836), and no cases of Flt3-V592A mutation. Screening for Flt3-TKD mutations with fluorescent probes is equivalent to conventional screening using standard PCR followed by EcoRV restriction. We present a real-time PCR protocol that can be used for MRD analyses based on individual Flt3-TKD mutations. Examples of MRD analyses are presented for all 3 subtypes of Flt3-TKD mutation identified in this study. In summary, we demonstrate new methodological approaches for rapid screening of Flt3 point mutations and for detection of MRD based on patient-specific Flt3-TKD mutations.

  6. Crystal structure of the FLT3 kinase domain bound to the inhibitor quizartinib (AC220)

    DOE PAGES

    Zorn, Julie A.; Wang, Qi; Fujimura, Eric; ...

    2015-04-02

    More than 30% of acute myeloid leukemia (AML) patients possess activating mutations in the receptor tyrosine kinase FMS-like tyrosine kinase 3 or FLT3. A small-molecule inhibitor of FLT3 (known as quizartinib or AC220) that is currently in clinical trials appears promising for the treatment of AML. Here, we report the co-crystal structure of the kinase domain of FLT3 in complex with quizartinib. FLT3 with quizartinib bound adopts an “Abl-like” inactive conformation with the activation loop stabilized in the “DFG-out” orientation and folded back onto the kinase domain. This conformation is similar to that observed for the uncomplexed intracellular domain ofmore » FLT3 as well as for related receptor tyrosine kinases, except for a localized induced fit in the activation loop. The co-crystal structure reveals the interactions between quizartinib and the active site of FLT3 that are key for achieving its high potency against both wild-type FLT3 as well as a FLT3 variant observed in many AML patients. This co-complex further provides a structural rationale for quizartinib-resistance mutations.« less

  7. Crystal structure of the FLT3 kinase domain bound to the inhibitor quizartinib (AC220)

    SciTech Connect

    Zorn, Julie A.; Wang, Qi; Fujimura, Eric; Barros, Tiago; Kuriyan, John; Boggon, Titus J.

    2015-04-02

    More than 30% of acute myeloid leukemia (AML) patients possess activating mutations in the receptor tyrosine kinase FMS-like tyrosine kinase 3 or FLT3. A small-molecule inhibitor of FLT3 (known as quizartinib or AC220) that is currently in clinical trials appears promising for the treatment of AML. Here, we report the co-crystal structure of the kinase domain of FLT3 in complex with quizartinib. FLT3 with quizartinib bound adopts an “Abl-like” inactive conformation with the activation loop stabilized in the “DFG-out” orientation and folded back onto the kinase domain. This conformation is similar to that observed for the uncomplexed intracellular domain of FLT3 as well as for related receptor tyrosine kinases, except for a localized induced fit in the activation loop. The co-crystal structure reveals the interactions between quizartinib and the active site of FLT3 that are key for achieving its high potency against both wild-type FLT3 as well as a FLT3 variant observed in many AML patients. This co-complex further provides a structural rationale for quizartinib-resistance mutations.

  8. Repression of Flt3 by Pax5 is crucial for B-cell lineage commitment

    PubMed Central

    Holmes, Melissa L.; Carotta, Sebastian; Corcoran, Lynn M.; Nutt, Stephen L.

    2006-01-01

    Early B-lymphopoiesis requires the growth-factor receptors, IL-7R and Flt3, and the activity of a number of transcription factors. One factor, Pax5, is required for commitment to the B-cell lineage, although the molecular mechanism by which this occurs is unknown. We demonstrate here that an important function of Pax5 is to repress Flt3 transcription in B-cell progenitors, as Pax5-deficient pro-B cells express abundant Flt3 that is rapidly silenced upon the reintroduction of Pax5, whereas enforced expression of Flt3 in wild-type progenitors significantly impairs B-cell development. These findings demonstrate that the repression of Flt3 by Pax5 is essential for normal B-lymphopoiesis. PMID:16618805

  9. Spontaneous Remission in an Older Patient with Relapsed FLT3 ITD Mutant AML

    PubMed Central

    Mendler, Jason H.; Evans, Andrew; Deeb, George; Starostik, Petr; Wallace, Paul K.; Wang, Eunice S.

    2016-01-01

    Spontaneous remission (SR) of acute myeloid leukemia (AML) is a very rare phenomenon. AML characterized by FLT3 internal tandem duplication (FLT3 ITD) is typically associated with an aggressive clinical course with rapid progression, relapse, and short overall survival in the absence of transplantation. We report here the first case of SR of FLT3 ITD mutant AML in the literature. Our patient was an elderly woman with relapsed NPM1 and FLT3 ITD mutant AML whose disease underwent SR for a brief duration without precipitating cause. We review the potential immune mechanisms underlying SR in AML and discuss the implications for novel immunotherapeutic approaches for FLT3 mutant AML. PMID:28127477

  10. UNC2025, a Potent and Orally Bioavailable MER/FLT3 Dual Inhibitor

    PubMed Central

    2015-01-01

    We previously reported a potent small molecule Mer tyrosine kinase inhibitor UNC1062. However, its poor PK properties prevented further assessment in vivo. We report here the sequential modification of UNC1062 to address DMPK properties and yield a new potent and highly orally bioavailable Mer inhibitor, 11, capable of inhibiting Mer phosphorylation in vivo, following oral dosing as demonstrated by pharmaco-dynamic (PD) studies examining phospho-Mer in leukemic blasts from mouse bone marrow. Kinome profiling versus more than 300 kinases in vitro and cellular selectivity assessments demonstrate that 11 has similar subnanomolar activity against Flt3, an additional important target in acute myelogenous leukemia (AML), with pharmacologically useful selectivity versus other kinases examined. PMID:25068800

  11. UNC2025, a potent and orally bioavailable MER/FLT3 dual inhibitor.

    PubMed

    Zhang, Weihe; DeRyckere, Deborah; Hunter, Debra; Liu, Jing; Stashko, Michael A; Minson, Katherine A; Cummings, Christopher T; Lee, Minjung; Glaros, Trevor G; Newton, Dianne L; Sather, Susan; Zhang, Dehui; Kireev, Dmitri; Janzen, William P; Earp, H Shelton; Graham, Douglas K; Frye, Stephen V; Wang, Xiaodong

    2014-08-28

    We previously reported a potent small molecule Mer tyrosine kinase inhibitor UNC1062. However, its poor PK properties prevented further assessment in vivo. We report here the sequential modification of UNC1062 to address DMPK properties and yield a new potent and highly orally bioavailable Mer inhibitor, 11, capable of inhibiting Mer phosphorylation in vivo, following oral dosing as demonstrated by pharmaco-dynamic (PD) studies examining phospho-Mer in leukemic blasts from mouse bone marrow. Kinome profiling versus more than 300 kinases in vitro and cellular selectivity assessments demonstrate that 11 has similar subnanomolar activity against Flt3, an additional important target in acute myelogenous leukemia (AML), with pharmacologically useful selectivity versus other kinases examined.

  12. Midostaurin and Decitabine in Treating Older Patients With Newly Diagnosed Acute Myeloid Leukemia and FLT3 Mutation

    ClinicalTrials.gov

    2016-10-10

    Acute Myeloid Leukemia With FLT3/ITD Mutation; Acute Myeloid Leukemia With Gene Mutations; FLT3 Tyrosine Kinase Domain Point Mutation; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  13. Improved FLT3/ITD PCR assay predicts outcome following allogeneic transplant for AML

    PubMed Central

    Grunwald, Michael R.; Tseng, Li-Hui; Lin, Ming-Tseh; Pratz, Keith W.; Eshleman, James R.; Levis, Mark J.; Gocke, Christopher D.

    2014-01-01

    Acute myeloid leukemia (AML) patients harboring internal tandem duplication (ITD) mutations of the FMS-like tyrosine kinase 3 (FLT3) gene carry a poor prognosis. While allogeneic transplantation may improve outcomes, relapse occurs frequently. The FLT3/ITD mutation has been deemed an unsuitable minimal residual disease (MRD) marker because it is unstable and because the standard assay for the mutation is relatively insensitive. The FLT3 mutation is undetectable by polymerase chain reaction (PCR) at pre- or post-transplant time points in many FLT3/ITD AML patients who subsequently relapse following transplant. We report the application of a new technique, tandem duplication PCR (TD-PCR), for detecting MRD in FLT3/ITD AML patients. Between October 2004 and January 2012, 54 FLT3/ITD AML patients in remission underwent transplantation at our institution. Of 37 patients with available Day 60 marrow samples, 28 (76%) were evaluable for MRD detection. In seven (25%) of the 28 patients, the FLT3/ITD mutation was detectable by TD-PCR, but not by standard PCR, on day 60. Six out of the seven patients (86%) with MRD by TD-PCR have relapsed to date compared with only 2 of 21 (10%) patients who were negative for MRD (p = 0.0003). The ability to detect MRD by this sensitive technique may provide an opportunity for early clinical intervention. PMID:25240816

  14. IMC-EB10, an anti-FLT3 monoclonal antibody, prolongs survival and reduces nonobese diabetic/severe combined immunodeficient engraftment of some acute lymphoblastic leukemia cell lines and primary leukemic samples.

    PubMed

    Piloto, Obdulio; Nguyen, Bao; Huso, David; Kim, Kyu-Tae; Li, Yiwen; Witte, Larry; Hicklin, Daniel J; Brown, Patrick; Small, Donald

    2006-05-01

    The class III receptor tyrosine kinase FLT3 is expressed on the blasts of >90% of patients with B-lineage acute lymphoblastic leukemias (ALL). In addition, it is expressed at extremely high levels in ALL patients with mixed lineage leukemia rearrangements or hyperdiploidy and is sometimes mutated in these same patients. In this report, we investigate the effects of treating ALL cell lines and primary samples with human anti-FLT3 monoclonal antibodies (mAb) capable of preventing binding of FLT3 ligand. In vitro studies, examining the ability of two anti-FLT3 mAbs (IMC-EB10 and IMC-NC7) to affect FLT3 activation and downstream signaling in ALL cell lines and primary blasts, yielded variable results. FLT3 phosphorylation was consistently inhibited by IMC-NC7 treatment, but in some cell lines, IMC-EB10 actually stimulated FLT3 activation, possibly as a result of antibody-mediated receptor dimerization. Through antibody-dependent, cell-mediated cytotoxicity, such an antibody could still prove efficacious against leukemia cells in vivo. In fact, IMC-EB10 treatment significantly prolonged survival and/or reduced engraftment of several ALL cell lines and primary ALL samples in nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice. This occurred even when IMC-EB10 treatment resulted in FLT3 activation in vitro. Moreover, fluorescence-activated cell sorting and PCR analysis of IMC-EB10-treated NOD/SCID mice surviving 150 days post-leukemic cell injection revealed that FLT3 immunotherapy reduced leukemic engraftment below the level of detection in these assays (<0.001%). Furthermore, in vivo IMC-EB10 treatment did not select for resistant cells, because cells surviving IMC-EB10 treatment remain sensitive to IMC-EB10 cytotoxicity upon retransplantation. In vivo studies involving either partial depletion or activation of natural killer (NK) cells show that most of the cytotoxic effect of IMC-EB10 is mediated through NK cells. Therefore, such an antibody, either

  15. Discovery of a Diaminopyrimidine FLT3 Inhibitor Active against Acute Myeloid Leukemia

    PubMed Central

    2017-01-01

    Profiling of the kinase-binding capabilities of an aminopyrimidine analogue detected in a cellular screen of the St. Jude small-molecule collection led to the identification of a novel series of FMS-like tyrosine kinase 3 (FLT3) inhibitors. Structure–activity relationship studies led to the development of compounds exhibiting good potency against MV4-11 and MOLM13 acute myelogenous leukemia cells driven by FLT3, regardless of their FLT3 mutation status. In vitro pharmacological profiling demonstrated that compound 5e shows characteristics suitable for further preclinical development. PMID:28580438

  16. FLT3 mutations in acute myeloid leukemia: what is the best approach in 2013?

    PubMed Central

    Levis, Mark

    2016-01-01

    Patients with acute myeloid leukemia who harbor an FMS-like tyrosine kinase 3 (FLT3) mutation present several dilemmas for the clinician. The results of an FLT3 mutation test, which can be influenced by several variables, need to be interpreted according to the clinical setting and there is a need for internationally standardized FLT3 mutation assays. Because of the lack of prospective studies, the role of allogeneic transplantation as consolidation therapy is still somewhat controversial, but the preponderance of evidence suggests that transplantation in first remission, if possible, is probably the best option. Clinically useful FLT3 inhibitors are hopefully on the near horizon and are being studied in the context of current treatment paradigms. PMID:24319184

  17. Differential requirement for wild-type Flt3 in leukemia-initiation among mouse models of human leukemia

    PubMed Central

    Kamezaki, Kenjiro; Luchsinger, Larry; Snoeck, Hans-Willem

    2014-01-01

    FLT3 is one of the most frequently mutated genes in acute leukemias. However, the role in leukemogenesis of wt Flt3, which is highly expressed in many hematological malignancies, is unclear. We show here that in mouse models established by retroviral transduction of leukemic fusion proteins deletion of Flt3 strongly inhibits MLL-ENL and to lesser extent p210BCR-ABL-induced leukemogenesis, but has no effect in MLL-AF9 or AML1-ETO9a models. Flt3 acts at the level of leukemic stem cells (LSCs), as a fraction of LSCs in MLL-ENL, but not in MLL-AF9-induced leukemia, expressed Flt3 in vivo, and Flt3 expression on LSCs was associated with leukemia development in this model. Furthermore, efficiency of MLL-ENL, but not of MLL-AF9-induced leukemia induction was significantly enhanced after transduction of Flt3+ compared to Flt3− wt myeloid progenitors. However, Flt3 is not required for immortalization of bone marrow cells in vitro by MLL-ENL and does not affect colony-formation by MLL-ENL LSCs in vitro, suggesting that in vitro models do not reflect the in vivo biology of MLL-ENL leukemia with respect to Flt3 requirement. We conclude that wt Flt3 plays a role in leukemia initiation in vivo, which is, however, not universal. PMID:24269847

  18. Flt3 Does Not Play a Critical Role in Murine Myeloid Leukemias Induced by MLL Fusion Genes

    PubMed Central

    Albouhair, Stéphanie; Morgado, Ester; Lavau, Catherine

    2013-01-01

    Leukemias harboring MLL translocations are frequent in children and adults, and respond poorly to therapies. The receptor tyrosine kinase FLT3 is highly expressed in these leukemias. In vitro studies have shown that pediatric MLL-rearranged ALL cells are sensitive to FLT3 inhibitors and clinical trials are ongoing to measure their therapeutic efficacy. We sought to determine the contribution of Flt3 in the pathogenesis of MLL-rearranged leukemias using a myeloid leukemia mouse model. Bone marrow from Flt3 null mice transduced with MLL-ENL or MLL-CBP was transplanted into host mice and Flt3−/− leukemias were compared to their Flt3 wild type counterparts. Flt3 deficiency did not delay disease onset and had minimal impact on leukemia characteristics. To determine the anti-leukemic effect of FLT3 inhibition we studied the sensitivity of MLL-ENL leukemia cells to the FLT3 inhibitor PKC412 ex vivo. As previously reported for human MLL-rearranged leukemias, murine MLL-ENL leukemia cells with higher Flt3 levels were more sensitive to the cytotoxicity of PKC412. Interestingly, Flt3 deficient leukemia samples also displayed some sensitivity to PKC412. Our findings demonstrate that myeloid leukemias induced by MLL-rearranged genes are not dependent upon Flt3 signaling. They also highlight the discrepancy between the sensitivity of cells to Flt3 inhibition in vitro and the lack of contribution of Flt3 to the pathogenesis of MLL-rearranged leukemias in vivo. PMID:23977266

  19. Regulation of the Flt3 Gene in Haematopoietic Stem and Early Progenitor Cells

    PubMed Central

    Volpe, Giacomo; Walton, David Scott; Vegiopoulos, Alexandros; Del Pozzo, Walter; O’Neill, Laura Patricia; Frampton, Jonathan; Dumon, Stéphanie

    2015-01-01

    The MYB transcription factor plays critical roles in normal and malignant haematopoiesis. We previously showed that MYB was a direct activator of FLT3 expression within the context of acute myeloid leukaemia. During normal haematopoiesis, increasing levels of FLT3 expression determine a strict hierarchy within the haematopoietic stem and early progenitor compartment, which associates with lymphoid and myeloid commitment potential. We use the conditional deletion of the Myb gene to investigate the influence of MYB in Flt3 transcriptional regulation within the haematopoietic stem cell (HSC) hierarchy. In accordance with previous report, in vivo deletion of Myb resulted in rapid biased differentiation of HSC with concomitant loss of proliferation capacity. We find that loss of MYB activity also coincided with decreased FLT3 expression. At the chromatin level, the Flt3 promoter is primed in immature HSC, but occupancy of further intronic elements determines expression. Binding to these locations, MYB and C/EBPα need functional cooperation to activate transcription of the locus. This cooperation is cell context dependent and indicates that MYB and C/EBPα activities are inter-dependent in controlling Flt3 expression to influence lineage commitment of multipotential progenitors. PMID:26382271

  20. Quantitative trait mapping reveals a regulatory axis involving peroxisome proliferator-activated receptors, PRDM16, transforming growth factor-β2 and FLT3 in hematopoiesis

    PubMed Central

    Avagyan, Serine; Aguilo, Francesca; Kamezaki, Kenjiro

    2011-01-01

    Hematopoiesis is the process whereby BM HSCs renew to maintain their number or to differentiate into committed progenitors to generate all blood cells. One approach to gain mechanistic insight into this complex process is the investigation of quantitative genetic variation in hematopoietic function among inbred mouse strains. We previously showed that TGF-β2 is a genetically determined positive regulator of hematopoiesis. In the presence of unknown nonprotein serum factors TGF-β2, but not TGF-β1 or -β3, enhances progenitor proliferation in vitro, an effect that is subject to mouse strain-dependent variation mapping to a locus on chr.4, Tb2r1. TGF-β2–deficient mice show hematopoietic defects, demonstrating the physiologic role of this cytokine. Here, we show that TGF-β2 specifically and predominantly cell autonomously enhances signaling by FLT3 in vitro and in vivo. A coding polymorphism in Prdm16 (PR-domain-containing 16) underlies Tb2r1 and differentially regulates transcriptional activity of peroxisome proliferator-activated receptor-γ (PPARγ), identifying lipid PPAR ligands as the serum factors required for regulation of FLT3 signaling by TGF-β2. We furthermore show that PPARγ agonists play a FLT3-dependent role in stress responses of progenitor cells. These observations identify a novel regulatory axis that includes PPARs, Prdm16, and TGF-β2 in hematopoiesis. PMID:21967974

  1. Quantitative trait mapping reveals a regulatory axis involving peroxisome proliferator-activated receptors, PRDM16, transforming growth factor-β2 and FLT3 in hematopoiesis.

    PubMed

    Avagyan, Serine; Aguilo, Francesca; Kamezaki, Kenjiro; Snoeck, Hans-Willem

    2011-12-01

    Hematopoiesis is the process whereby BM HSCs renew to maintain their number or to differentiate into committed progenitors to generate all blood cells. One approach to gain mechanistic insight into this complex process is the investigation of quantitative genetic variation in hematopoietic function among inbred mouse strains. We previously showed that TGF-β2 is a genetically determined positive regulator of hematopoiesis. In the presence of unknown nonprotein serum factors TGF-β2, but not TGF-β1 or -β3, enhances progenitor proliferation in vitro, an effect that is subject to mouse strain-dependent variation mapping to a locus on chr.4, Tb2r1. TGF-β2-deficient mice show hematopoietic defects, demonstrating the physiologic role of this cytokine. Here, we show that TGF-β2 specifically and predominantly cell autonomously enhances signaling by FLT3 in vitro and in vivo. A coding polymorphism in Prdm16 (PR-domain-containing 16) underlies Tb2r1 and differentially regulates transcriptional activity of peroxisome proliferator-activated receptor-γ (PPARγ), identifying lipid PPAR ligands as the serum factors required for regulation of FLT3 signaling by TGF-β2. We furthermore show that PPARγ agonists play a FLT3-dependent role in stress responses of progenitor cells. These observations identify a novel regulatory axis that includes PPARs, Prdm16, and TGF-β2 in hematopoiesis.

  2. Deletion and deletion/insertion mutations in the juxtamembrane domain of the FLT3 gene in adult acute myeloid leukemia

    PubMed Central

    Deeb, Kristin K.; Smonskey, Matthew T.; DeFedericis, HanChun; Deeb, George; Sait, Sheila N.J.; Wetzler, Meir; Wang, Eunice S.; Starostik, Petr

    2014-01-01

    In contrast to FLT3 ITD mutations, in-frame deletions in the FLT3 gene have rarely been described in adult acute leukemia. We report two cases of AML with uncommon in-frame mutations in the juxtamembrane domain of the FLT3 gene: a 3-bp (c.1770_1774delCTACGinsGT; p.F590_V592delinsLF) deletion/insertion and a 12-bp (c.1780_1791delTTCAGAGAATAT; p.F594_Y597del) deletion. We verified by sequencing that the reading frame of the FLT3 gene was preserved and by cDNA analysis that the mRNA of the mutant allele was expressed in both cases. Given the recent development of FLT3 inhibitors, our findings may be of therapeutic value for AML patients harboring similar FLT3 mutations. PMID:25379410

  3. FLT3-ITD Mutations in Acute Myeloid Leukemia Patients in Northeast Thailand.

    PubMed

    Kumsaen, Piyawan; Fucharoen, Goonnapa; Sirijerachai, Chittima; Chainansamit, Su-On; Wisanuyothin, Nittaya; Kuwatjanakul, Pichayanan; Wiangnon, Surapon

    2016-01-01

    The FLT3-ITD mutation is one of the most frequent genetic abnormalities in acute myeloid leukemia (AML) where it is associated with a poor prognosis. The FLT3-ITD mutation could, therefore, be a potential molecular prognostic marker important for risk-stratified treatment options. We amplified the FLT3 gene at exon 14 and 15 in 52 AML patients (aged between 2 months and 74 years) from 4 referral centers (a university hospital and 3 regional hospitals in Northeast Thailand), using a simple PCR method. FLT3-ITD mutations were found in 10 patients (19.2%), being more common in adults than in children (21.1% vs. 14.3%) and more prevalent in patients with acute promyelocytic leukemia (AML-M3) than AML-non M3 (4 of 10 AML-M3 vs. 6 of 42 AML- non M3 patients). Duplication sequences varied in size-between 27 and 171 nucleotides (median=63.5) and in their location. FLT3-ITD mutations with common duplication sequences accounted for a significant percentage in AML patients in northeastern Thailand. This simple PCR method is feasible for routine laboratory practice and these data could help tailor use of the national protocol for AML.

  4. Structure-based design of oxygen-linked macrocyclic kinase inhibitors: discovery of SB1518 and SB1578, potent inhibitors of Janus kinase 2 (JAK2) and Fms-like tyrosine kinase-3 (FLT3)

    NASA Astrophysics Data System (ADS)

    Poulsen, Anders; William, Anthony; Blanchard, Stéphanie; Lee, Angeline; Nagaraj, Harish; Wang, Haishan; Teo, Eeling; Tan, Evelyn; Goh, Kee Chuan; Dymock, Brian

    2012-04-01

    Macrocycles from our Aurora project were screened in a kinase panel and were found to be active on other kinase targets, mainly JAKs, FLT3 and CDKs. Subsequently these compounds became leads in our JAK2 project. Macrocycles with a basic nitrogen in the linker form a salt bridge with Asp86 in CDK2 and Asp698 in FLT3. This residue is conserved in most CDKs resulting in potent pan CDK inhibition. One of the main project objectives was to achieve JAK2 potency with 100-fold selectivity against CDKs. Macrocycles with an ether linker have potent JAK2 activity with the ether oxygen forming a hydrogen bond to Ser936. A hydrogen bond to the equivalent residues of JAK3 and most CDKs cannot be formed resulting in good selectivity for JAK2 over JAK3 and CDKs. Further optimization of the macrocyclic linker and side chain increased JAK2 and FLT3 activity as well as improving DMPK properties. The selective JAK2/FLT3 inhibitor 11 (Pacritinib, SB1518) has successfully finished phase 2 clinical trials for myelofibrosis and lymphoma. Another selective JAK2/FLT3 inhibitor, 33 (SB1578), has entered phase 1 clinical development for the non-oncology indication rheumatoid arthritis.

  5. Ligand-targeted particulate nanomedicines undergoing clinical evaluation: current status.

    PubMed

    van der Meel, Roy; Vehmeijer, Laurens J C; Kok, Robbert J; Storm, Gert; van Gaal, Ethlinn V B

    2013-10-01

    Since the introduction of Doxil® on the market nearly 20years ago, a number of nanomedicines have become part of treatment regimens in the clinic. With the exception of antibody-drug conjugates, these nanomedicines are all devoid of targeting ligands and rely solely on their physicochemical properties and the (patho)physiological processes in the body for their biodistribution and targeting capability. At the same time, many preclinical studies have reported on nanomedicines exposing targeting ligands, or ligand-targeted nanomedicines, yet none of these have been approved at this moment. In the present review, we provide a concise overview of 13 ligand-targeted particulate nanomedicines (ligand-targeted PNMs) that have progressed into clinical trials. The progress of each ligand-targeted PNM is discussed based on available (pre)clinical data. Main conclusions of these analyses are that (a) ligand-targeted PNMs have proven to be safe and efficacious in preclinical models; (b) the vast majority of ligand-targeted PNMs is generated for the treatment of cancer; (c) contribution of targeting ligands to the PNM efficacy is not unambiguously proven; and (d) targeting ligands do not cause localization of the PNM within the target tissue, but rather provide benefits in terms of target cell internalization and target tissue retention once the PNM has arrived at the target site. Increased understanding of the in vivo fate and interactions of the ligand-targeted PNMs with proteins and cells in the human body is mandatory to rationally advance the clinical translation of ligand-targeted PNMs. Future perspectives for ligand-targeted PNM approaches include the delivery of drugs that are unable or inefficient in passing cellular membranes, treatment of drug resistant tumors, targeting of the tumor blood supply, the generation of targeted vaccines and nanomedicines that are able to cross the blood-brain barrier.

  6. FLT3 is implicated in cytarabine transport by human equilibrative nucleoside transporter 1 in pediatric acute leukemia

    PubMed Central

    Català, Albert; Pastor-Anglada, Marçal; Caviedes-Cárdenas, Liska; Malatesta, Roberta; Rives, Susana; Vega-García, Nerea

    2016-01-01

    FLT3 abnormalities are negative prognostic markers in acute leukemia. Infant leukemias are a subgroup with frequent MLL (KMT2A) rearrangements, FLT3 overexpression and high sensitivity to cytarabine, but dismal prognosis. Cytarabine is transported into cells by Human Equilibrative Nucleoside Transporter-1 (hENT1, SLC29A1), but the mechanisms that regulate hENT1 in acute leukemia have been scarcely studied. We explored the expression and functional link between FLT3 and main cytarabine transporters in 50 pediatric patients diagnosed with acute lymphoblastic leukemia and MLL rearrangement (ALL-MLL+) and other subtypes of leukemia, and in leukemia cell lines. A significant positive correlation was found between FLT3 and hENT1 expression in patients. Cytarabine uptake into cells was mediated mainly by hENT1, hENT2 and hCNT1. hENT1-mediated uptake of cytarabine was transiently abolished by the FLT3 inhibitor PKC412, and this effect was associated with decreased hENT1 mRNA and protein levels. Noticeably, the cytotoxicity of cytarabine was lower when cells were first exposed to FLT3 inhibitors (PKC412 or AC220), probably due to decreased hENT1 activity, but we observed a higher cytotoxic effect if FLT3 inhibitors were administered after cytarabine. FLT3 regulates hENT1 activity and thereby affects cytarabine cytotoxicity. The sequence of administration of cytarabine and FLT3 inhibitors is important to maintain their efficacy. PMID:27391351

  7. Niche-mediated depletion of the normal hematopoietic stem cell reservoir by Flt3-ITD–induced myeloproliferation

    PubMed Central

    Matsuoka, Sahoko; Thongjuea, Supat; Jamieson, Lauren; Atkinson, Deborah; Kharazi, Shabnam; Suda, Toshio

    2017-01-01

    Although previous studies suggested that the expression of FMS-like tyrosine kinase 3 (Flt3) initiates downstream of mouse hematopoietic stem cells (HSCs), FLT3 internal tandem duplications (FLT3 ITDs) have recently been suggested to intrinsically suppress HSCs. Herein, single-cell interrogation found Flt3 mRNA expression to be absent in the large majority of phenotypic HSCs, with a strong negative correlation between Flt3 and HSC-associated gene expression. Flt3-ITD knock-in mice showed reduced numbers of phenotypic HSCs, with an even more severe loss of long-term repopulating HSCs, likely reflecting the presence of non-HSCs within the phenotypic HSC compartment. Competitive transplantation experiments established that Flt3-ITD compromises HSCs through an extrinsically mediated mechanism of disrupting HSC-supporting bone marrow stromal cells, with reduced numbers of endothelial and mesenchymal stromal cells showing increased inflammation-associated gene expression. Tumor necrosis factor (TNF), a cell-extrinsic potent negative regulator of HSCs, was overexpressed in bone marrow niche cells from FLT3-ITD mice, and anti-TNF treatment partially rescued the HSC phenotype. These findings, which establish that Flt3-ITD–driven myeloproliferation results in cell-extrinsic suppression of the normal HSC reservoir, are of relevance for several aspects of acute myeloid leukemia biology. PMID:28637883

  8. Differential requirement for wild-type Flt3 in leukemia initiation among mouse models of human leukemia.

    PubMed

    Kamezaki, Kenjiro; Luchsinger, Larry L; Snoeck, Hans-Willem

    2014-03-01

    FLT3 is one of the most frequently mutated genes in acute leukemias. However, the role in leukemogenesis of wild-type (wt) FLT3, which is highly expressed in many hematologic malignancies, is unclear. We show here that in mouse models established by retroviral transduction of leukemic fusion proteins, deletion of Flt3 strongly inhibits MLL-ENL and to lesser extent p210(BCR-ABL)-induced leukemogenesis, but has no effect in MLL-AF9 or AML1-ETO9a models. Flt3 acts at the level of leukemic stem cells (LSCs), as a fraction of LSCs in MLL-ENL, but not in MLL-AF9-induced leukemia, expressed Flt3 in vivo, and Flt3 expression on LSCs was associated with leukemia development in this model. Furthermore, efficiency of MLL-ENL, but not of MLL-AF9-induced leukemia induction was significantly enhanced after transduction of Flt3(+) compared to Flt3(-) wt myeloid progenitors. However, Flt3 is not required for immortalization of bone marrow cells in vitro by MLL-ENL and does not affect colony formation by MLL-ENL LSCs in vitro, suggesting that in vitro models do not reflect the in vivo biology of MLL-ENL leukemia with respect to Flt3 requirement. We conclude that wt Flt3 plays a role in leukemia initiation in vivo, which is, however, not universal. Copyright © 2014 ISEH - Society for Hematology and Stem Cells. Published by Elsevier Inc. All rights reserved.

  9. [Applications of microchip electrophoresis and capillary electrophoresis for screening FLT3-ITD gene mutation in acute myeloid leukemia].

    PubMed

    Leng, Xin; Li, Ling-Di; Li, Jin-Lan; Huang, Xiao-Jun; Ruan, Guo-Rui

    2014-02-01

    The purpose of the present study was to compare the reliability of microchip electrophoresis and capillary electrophoresis for screening FLT3-ITD gene mutation in acute myeloid leukemia. The FLT3-ITD mutation in the genomic DNA samples from 214 untreated AML patients were separately detected by PCR-microchip electrophoresis and PCR-capillary electrophoresis, then the DNA direct sequencing analysis was carried out. The results from PCR-microchip electrophoresis showed that there were 151 FLT3-ITD mutation negative, 58 FLT3-ITD mutation positive (58/214, 27.1%) and 5 FLT3-ITD mutation doubtful positive (5/214, 2.3%), while the outcomes from PCR-capillary electrophoresis displayed that there were 147 FLT3-ITD mutation negative and 67 FLT3-ITD mutation positive (67/214, 31.3%) without doubtful positive. In the 67 FLT3-ITD mutation positive samples detected by using PCR-capillary electrophoresis, 4 samples were detected as the negative while 5 samples were measured as the doubtful positive by using PCR-microchip electrophoresis. The followed sequencing analysis demonstrated that the above 9 samples were all FLT3-ITD mutation positive, indicating that PCR-capillary electrophoresis was more accurate and sensitive in screening the FLT3-ITD mutation, although statistic analysis showed that there were no significant differences in the detected results between PCR-microchip electrophoresis and PCR-capillary electrophoresis groups (Pearson Chi-squared Test, P > 0.05). It is concluded that both PCR-microchip electrophoresis and PCR-capillary electrophoresis were convenient and fast for screening FLT3-ITD mutation, but the accuracy of PCR-microchip electrophoresis awaits further improvement.

  10. The Flt3 Internal Tandem Duplication Alters Chemotherapy Response In Vitro and In Vivo in a p53-Dependent Manner

    PubMed Central

    Pardee, Timothy S.; Zuber, Johannes; Lowe, Scott W.

    2011-01-01

    Objective The FLT3 internal tandem duplication (Flt3-ITD) confers a worse prognosis for patients with acute myeloid leukemia (AML); however, the mechanisms involved are unknown. As AML is treated with cytarabine (Ara-C) and an anthracycline we sought to determine the effects of the Flt3-ITD on response to these agents. Methods A genetically defined mouse model of AML was used to examine the effects of the Flt3-ITD on response to cytarabine and doxorubicin in vitro and in vivo. Results In vitro, the Flt3-ITD conferred resistance to doxorubicin and doxorubicin plus Ara-C, but sensitivity to Ara-C alone. This resistance was reversible by the Flt3-ITD inhibitor sorafenib. The Flt3-ITD did not affect DNA damage levels following treatment but was associated with increased levels of p53. The p53 response was critical to the observed changes as the Flt3-ITD had no effect on chemotherapy response in the setting of p53 null AML. In vivo, the Flt3-ITD accelerated engraftment that was partially reversible by Ara-C but not doxorubicin. Additionally, Ara-C provided a significant reduction in disease burden and a survival advantage that was not increased by the addition of doxorubicin. Doxorubicin alone lead to only minimal disease reduction and no survival benefit. Conclusions These data demonstrate that the Flt3-ITD confers sensitivity to cytarabine, but resistance to doxorubicin in a manner that depends on p53. Thus, patients with Flt3-ITD positive AML may not benefit from treatment with an anthracycline. PMID:21288478

  11. Selective inhibition of FLT3 by gilteritinib in relapsed or refractory acute myeloid leukaemia: a multicentre, first-in-human, open-label, phase 1-2 study.

    PubMed

    Perl, Alexander E; Altman, Jessica K; Cortes, Jorge; Smith, Catherine; Litzow, Mark; Baer, Maria R; Claxton, David; Erba, Harry P; Gill, Stan; Goldberg, Stuart; Jurcic, Joseph G; Larson, Richard A; Liu, Chaofeng; Ritchie, Ellen; Schiller, Gary; Spira, Alexander I; Strickland, Stephen A; Tibes, Raoul; Ustun, Celalettin; Wang, Eunice S; Stuart, Robert; Röllig, Christoph; Neubauer, Andreas; Martinelli, Giovanni; Bahceci, Erkut; Levis, Mark

    2017-08-01

    patients receiving a daily dose of 80 mg or higher. 100 (40%) of 249 patients in the full analysis set achieved a response, with 19 (8%) achieving complete remission, ten (4%) complete remission with incomplete platelet recovery, 46 (18%) complete remission with incomplete haematological recovery, and 25 (10%) partial remission INTERPRETATION: Gilteritinib had a favourable safety profile and showed consistent FLT3 inhibition in patients with relapsed or refractory acute myeloid leukaemia. These findings confirm that FLT3 is a high-value target for treatment of relapsed or refractory acute myeloid leukaemia; based on activity data, gilteritinib at 120 mg/day is being tested in phase 3 trials. Astellas Pharma, National Cancer Institute (Leukemia Specialized Program of Research Excellence grant), Associazione Italiana Ricerca sul Cancro. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Selective FLT3 inhibitor FI-700 neutralizes Mcl-1 and enhances p53-mediated apoptosis in AML cells with activating mutations of FLT3 through Mcl-1/Noxa axis.

    PubMed

    Kojima, K; Konopleva, M; Tsao, T; Andreeff, M; Ishida, H; Shiotsu, Y; Jin, L; Tabe, Y; Nakakuma, H

    2010-01-01

    Treatment using Fms-like tyrosine kinase-3 (FLT3) inhibitors is a promising approach to overcome the dismal prognosis of acute myeloid leukemia (AML) with activating FLT3 mutations. Current trials are combining FLT3 inhibitors with p53-activating conventional chemotherapy. The mechanisms of cytotoxicity of FLT3 inhibitors are poorly understood. We investigated the interaction of FLT3 and p53 pathways after their simultaneous blockade using the selective FLT3 inhibitor FI-700 and the MDM2 inhibitor Nutlin-3 in AML. We found that FI-700 immediately reduced antiapoptotic Mcl-1 levels and enhanced Nutlin-induced p53-mediated mitochondrial apoptosis in FLT3/internal tandem duplication cells through the Mcl-1/Noxa axis. FI-700 induced proteasome-mediated degradation of Mcl-1, resulting in the reduced ability of Mcl-1 to sequester proapoptotic Bim. Nutlin-3 induced Noxa, which displaced Bim from Mcl-1. The FI-700/Nutlin-3 combination profoundly activated Bax and induced apoptosis. Our findings suggest that FI-700 actively enhances p53 signaling toward mitochondrial apoptosis and that a combination strategy aimed at inhibiting FLT3 and activating p53 signaling could potentially be effective in AML.

  13. Novel anticancer compound [trifluoromethyl-substituted pyrazole N-nucleoside] inhibits FLT3 activity to induce differentiation in acute myeloid leukemia cells.

    PubMed

    Saleh, Ayman M; Taha, Mutasem O; Aziz, Mohammad A; Al-Qudah, Mahmoud A; AbuTayeh, Reem F; Rizvi, Syed A

    2016-06-01

    Anticancer properties of chemically synthesized compounds have continuously been optimized for better efficacy and selectivity. Derivatives of heterocyclic compounds are well known to have selective antiproliferative effect against many types of cancer. In this study, we investigated the ability of an indigenously synthesized anticancer molecule, G-11 [1-(2",3",4",6"-Tetra-O-acetyl-β-D-glucopyranosyl)-4-(3'-trifluoromethylphenylhydrazono)-3-trifluoromethyl-1,4-dihydropyrazol-5-one], to cause selective cytotoxicity and induce differentiation in the acute myeloid leukemia HL-60 cells. G-11 was able to exert cytotoxic effect on hematological (Jurkat, U937, K562, HL-60, CCRF-SB) and solid tumor (MCF-7, HepG2, HeLa, Caco-2) cell lines, with IC50 values significantly lower than noncancerous cells (HEK-293, BJ and Vero) and normal peripheral blood mononuclear cells. G-11 induced differentiation of HL-60 cells to granulocytes and monocytes/macrophages by inhibiting the activation of FLT3 (CD135 tyrosine kinase). ITD-FLT3 mutation found in many acute myeloid leukemia patients could also be targeted by G-11 as exhibited by its inhibitory effect on MOLM-13 and MV4-11 cell lines. Molecular docking studies suggest the involvement of Leu616, Asp698, Cys694 and Cys828 residues in binding of G-11 to FLT3. The ability of G-11 to cause selective cytotoxicity and induce differentiation in cancer cells could be clinically relevant for therapeutic gains.

  14. Plasma inhibitory activity (PIA): a pharmacodynamic assay reveals insights into the basis for cytotoxic response to FLT3 inhibitors

    PubMed Central

    Levis, Mark; Brown, Patrick; Smith, B. Douglas; Stine, Adam; Pham, Rosalyn; Stone, Richard; DeAngelo, Daniel; Galinsky, Ilene; Giles, Frank; Estey, Elihu; Kantarjian, Hagop; Cohen, Pamela; Wang, Yanfeng; Roesel, Johannes; Karp, Judith E.; Small, Donald

    2006-01-01

    We have developed a useful surrogate assay for monitoring the efficacy of FLT3 inhibition in patients treated with oral FLT3 inhibitors. The plasma inhibitory activity (PIA) for FLT3 correlates with clinical activity in patients treated with CEP-701 and PKC412. Using the PIA assay, along with in vitro phosphorylation and cytotoxicity assays in leukemia cells, we compared PKC412 and its metabolite, CGP52421, with CEP-701. While both drugs could effectively inhibit FLT3 in vitro, CEP-701 was more cytotoxic to primary samples at comparable levels of FLT3 inhibition. PKC412 appears to be more selective than CEP-701 and therefore less effective at inducing cytotoxicity in primary acute myeloid leukemia (AML) samples in vitro. However, the PKC412 metabolite CGP52421 is less selective than its parent compound, PKC412, and is more cytotoxic against primary blast samples at comparable levels of FLT3 inhibition. The plasma inhibitory activity assay represents a useful correlative tool in the development of small-molecule inhibitors. Our application of this assay has revealed that the metabolite CGP52421 may contribute a significant portion of the antileukemia activity observed in patients receiving oral PKC412. Additionally, our results suggest that nonselectivity may constitute an important component of the cytotoxic effect of FLT3 inhibitors in FLT3-mutant AML. PMID:16857987

  15. Design of ligand-targeted nanoparticles for enhanced cancer targeting

    NASA Astrophysics Data System (ADS)

    Stefanick, Jared F.

    Ligand-targeted nanoparticles are increasingly used as drug delivery vehicles for cancer therapy, yet have not consistently produced successful clinical outcomes. Although these inconsistencies may arise from differences in disease models and target receptors, nanoparticle design parameters can significantly influence therapeutic efficacy. By employing a multifaceted synthetic strategy to prepare peptide-targeted nanoparticles with high purity, reproducibility, and precisely controlled stoichiometry of functionalities, this work evaluates the roles of polyethylene glycol (PEG) coating, ethylene glycol (EG) peptide-linker length, peptide hydrophilicity, peptide density, and nanoparticle size on tumor targeting in a systematic manner. These parameters were analyzed in multiple disease models by targeting human epidermal growth factor receptor 2 (HER2) in breast cancer and very late antigen-4 (VLA-4) in multiple myeloma to demonstrate the widespread applicability of this approach. By increasing the hydrophilicity of the targeting peptide sequence and simultaneously optimizing the EG peptide-linker length, the in vitro cellular uptake of targeted liposomes was significantly enhanced. Specifically, including a short oligolysine chain adjacent to the targeting peptide sequence effectively increased cellular uptake ~80-fold using an EG6 peptide-linker compared to ~10-fold using an EG45 linker. In vivo, targeted liposomes prepared in a traditional manner lacking the oligolysine chain demonstrated similar biodistribution and tumor uptake to non-targeted liposomes. However, by including the oligolysine chain, targeted liposomes using an EG45 linker significantly improved tumor uptake ~8-fold over non-targeted liposomes, while the use of an EG6 linker decreased tumor accumulation and uptake, owing to differences in cellular uptake kinetics, clearance mechanisms, and binding site barrier effects. To further improve tumor targeting and enhance the selectivity of targeted

  16. Chronic FLT3-ITD Signaling in Acute Myeloid Leukemia Is Connected to a Specific Chromatin Signature

    PubMed Central

    Cauchy, Pierre; James, Sally R.; Zacarias-Cabeza, Joaquin; Ptasinska, Anetta; Imperato, Maria Rosaria; Assi, Salam A.; Piper, Jason; Canestraro, Martina; Hoogenkamp, Maarten; Raghavan, Manoj; Loke, Justin; Akiki, Susanna; Clokie, Samuel J.; Richards, Stephen J.; Westhead, David R.; Griffiths, Michael J.; Ott, Sascha; Bonifer, Constanze; Cockerill, Peter N.

    2015-01-01

    Summary Acute myeloid leukemia (AML) is characterized by recurrent mutations that affect the epigenetic regulatory machinery and signaling molecules, leading to a block in hematopoietic differentiation. Constitutive signaling from mutated growth factor receptors is a major driver of leukemic growth, but how aberrant signaling affects the epigenome in AML is less understood. Furthermore, AML cells undergo extensive clonal evolution, and the mutations in signaling genes are often secondary events. To elucidate how chronic growth factor signaling alters the transcriptional network in AML, we performed a system-wide multi-omics study of primary cells from patients suffering from AML with internal tandem duplications in the FLT3 transmembrane domain (FLT3-ITD). This strategy revealed cooperation between the MAP kinase (MAPK) inducible transcription factor AP-1 and RUNX1 as a major driver of a common, FLT3-ITD-specific gene expression and chromatin signature, demonstrating a major impact of MAPK signaling pathways in shaping the epigenome of FLT3-ITD AML. PMID:26212328

  17. FLT3 and NPM-1 mutations in a cohort of acute promyelocytic leukemia patients from India

    PubMed Central

    Swaminathan, Suchitra; Garg, Swati; Madkaikar, Manisha; Gupta, Maya; Jijina, Farah; Ghosh, Kanjaksha

    2014-01-01

    Background: Acute promyelocytic leukemia (APL) with t (15;17) is a distinct category of acute myeloid leukemia (AML) and is reported to show better response to anthracyclin based chemotherapy. A favorable overall prognosis over other subtypes of AML has been reported for APL patients but still about 15% patients relapse. Methods: This study evaluated the presence of Famus like tyrosine kinase-3 (FLT3) and nucleophosmin-1 (NPM1) gene mutations in a cohort of 40 APL patients. Bone marrow/peripheral blood samples from patients at the time of diagnosis and follow-up were processed for immunophenotyping, cytogenetic markers and isolation of DNA and RNA. Samples were screened for the presence of mutations in FLT3 and NPM1 genes using polymerase chain reaction followed by sequencing. Results: Frequency of FLT3/internal tandem duplication and FLT3/tyrosine kinase domain was found to be 25% and 7% respectively. We observed a high frequency of NPM1 mutation (45%) in the present population of APL patients. PMID:25400345

  18. Facile identification of dual FLT3-Aurora A inhibitors: a computer-guided drug design approach.

    PubMed

    Chang Hsu, Yung; Ke, Yi-Yu; Shiao, Hui-Yi; Lee, Chieh-Chien; Lin, Wen-Hsing; Chen, Chun-Hwa; Yen, Kuei-Jung; Hsu, John T-A; Chang, Chungming; Hsieh, Hsing-Pang

    2014-05-01

    Computer-guided drug design is a powerful tool for drug discovery. Herein we disclose the use of this approach for the discovery of dual FMS-like receptor tyrosine kinase-3 (FLT3)-Aurora A inhibitors against cancer. An Aurora hit compound was selected as a starting point, from which 288 virtual molecules were screened. Subsequently, some of these were synthesized and evaluated for their capacity to inhibit FLT3 and Aurora kinase A. To further enhance FLT3 inhibition, structure-activity relationship studies of the lead compound were conducted through a simplification strategy and bioisosteric replacement, followed by the use of computer-guided drug design to prioritize molecules bearing a variety of different terminal groups in terms of favorable binding energy. Selected compounds were then synthesized, and their bioactivity was evaluated. Of these, one novel inhibitor was found to exhibit excellent inhibition of FLT3 and Aurora kinase A and exert a dramatic antiproliferative effect on MOLM-13 and MV4-11 cells, with an IC50 value of 7 nM. Accordingly, it is considered a highly promising candidate for further development.

  19. A Novel Tandem Duplication Assay to Detect Minimal Residual Disease in FLT3/ITD AML

    PubMed Central

    Lin, Ming-Tseh; Tseng, Li-Hui; Dudley, Jonathan C.; Riel, Stacey; Tsai, Harrison; Zheng, Gang; Pratz, Keith W.; Levis, Mark J.; Gocke, Christopher D.

    2015-01-01

    Background Internal tandem duplication (ITD) of the FLT3 gene is associated with poor prognosis in acute myeloid leukemia (AML) patients with a normal karyotype. The current standard PCR assay for FLT3/ITD detection is not sufficiently sensitive to monitor minimal residual disease (MRD). Clone-specific assays may have sufficient sensitivity but are not practical to implement, since each clone-specific primer/probe requires clinical validation. Objective To develop an assay for clinical molecular diagnostics laboratories to monitor MRD in FLT3/ITD AMLs. Methods We designed a simple novel assay, tandem duplication PCR (TD-PCR), and tested its sensitivity, specificity and clinical utility in FLT3/ITD AML patients. Results TD-PCR was capable of detecting a single ITD molecule and was applicable to 75% of ITD mutants tested. TD-PCR detected MRD in bone marrow prior to patient relapse. TD-PCR also identified low level ITD mutants not only in FLT3/ITD AMLs but also in initial diagnostic specimens reportedly negative by the standard assay in patients who progressed with the same ITDs detected by the TD-PCR assay. Conclusion Detection of MRD by TD-PCR may guide patient selection for early clinical intervention. In contrast to clone-specific approaches, TD-PCR assay can be more easily validated for MRD detection in clinical laboratories due to standardized primers and a universal positive control. In addition, our results on multi-clonality and low-level ITDs suggest that further studies are warranted to elucidate their clinical/biological significance. PMID:26446915

  20. Functional Pathway Analysis Using SCNP of FLT3 Receptor Pathway Deregulation in AML Provides Prognostic Information Independent from Mutational Status

    PubMed Central

    Cesano, Alessandra; Putta, Santosh; Rosen, David B.; Cohen, Aileen C.; Gayko, Urte; Mathi, Kavita; Woronicz, John; Hawtin, Rachael E.; Cripe, Larry; Sun, Zhuoxin; Tallman, Martin S.; Paietta, Elisabeth

    2013-01-01

    FMS-like tyrosine kinase 3 receptor (FLT3) internal tandem duplication (ITD) mutations result in constitutive activation of this receptor and have been shown to increase the risk of relapse in patients with acute myeloid leukemia (AML); however, substantial heterogeneity in clinical outcomes still exists within both the ITD mutated and unmutated AML subgroups, suggesting alternative mechanisms of disease relapse not accounted by FLT3 mutational status. Single cell network profiling (SCNP) is a multiparametric flow cytometry based assay that simultaneously measures, in a quantitative fashion and at the single cell level, both extracellular surface marker levels and changes in intracellular signaling proteins in response to extracellular modulators. We previously reported an initial characterization of FLT3 ITD-mediated signaling using SCNP. Herein SCNP was applied sequentially to two separate cohorts of samples collected from elderly AML patients at diagnosis. In the first (training) study, AML samples carrying unmutated, wild-type FLT3 (FLT3 WT) displayed a wide range of induced signaling, with a fraction having signaling profiles comparable to FLT3 ITD AML samples. Conversely, the FLT3 ITD AML samples displayed more homogeneous induced signaling, with the exception of patients with low (<40%) mutational load, which had profiles comparable to FLT3 WT AML samples. This observation was then confirmed in an independent (verification) cohort. Data from the second cohort were also used to assess the association between SCNP data and disease-free survival (DFS) in the context of FLT3 and nucleophosmin (NPM1) mutational status among patients who achieved complete remission (CR) to induction chemotherapy. The combination of SCNP read outs together with FLT3 and NPM1 molecular status improved the DFS prediction accuracy of the latter. Taken together, these results emphasize the value of comprehensive functional assessment of biologically relevant signaling pathways in AML

  1. Knock-in of an internal tandem duplication mutation into murine FLT3 confers myeloproliferative disease in a mouse model

    PubMed Central

    Li, Li; Piloto, Obdulio; Nguyen, Ho Bao; Greenberg, Kathleen; Takamiya, Kogo; Racke, Frederick; Huso, David; Small, Donald

    2008-01-01

    Constitutive activation of FMS-like tyrosine kinase 3 (FLT3) by internal tandem duplication (ITD) mutations is one of the most common molecular alterations known in acute myeloid leukemia (AML). To investigate the role FLT3/ITD mutations play in the development of leukemia, we generated a FLT3/ITD knock-in mouse model by inserting an ITD mutation into the juxtamembrane domain of murine Flt3. FLT3wt/ITD mice developed myeloproliferative disease, characterized by splenomegaly, leukocytosis, and myeloid hypercellularity, which progressed to mortality by 6 to 20 months. Bone marrow (BM) and spleen from FLT3wt/ITD mice had an increased fraction of granulocytes/monocytes and dendritic cells, and a decreased fraction of B-lymphocytes. No sign of acute leukemia was observed over the lifetime of these mice. BM from FLT3wt/ITD mice showed enhanced potential to generate myeloid colonies in vitro. BM from FLT3wt/ITD mice also produced more spleen colonies in the in vivo colony-forming unit (CFU)–spleen assay. In the long-term competitive repopulation assay, BM cells from FLT3wt/ITD mice outgrew the wild-type competitor cells and showed increased myeloid and reduced lymphoid expansion activity. In summary, our data indicate that expression of FLT3/ITD mutations alone is capable of conferring normal hematopoietic stem/progenitor cells (HSPCs) with enhanced myeloid expansion. It also appears to suppress B lymphoid maturation. Additional cooperative events appear to be required to progress to acute leukemia. PMID:18245664

  2. Internal tandem duplication and tyrosine kinase domain mutations in FLT3 alter the response to daunorubicin in Ba/F3 cells.

    PubMed

    Takahashi, Shinichiro; Shirahama, Kumi

    2016-01-01

    Internal tandem duplication (ITD) and activating point mutations, mainly at aspartic acid 835 in the tyrosine kinase domain (TKD), are frequently identified in the Fms-related tyrosine kinase 3 (FLT3) receptor gene in acute myeloid leukemia. The ITD in FLT3 (FLT3-ITD) confers resistance to several chemotherapeutic drugs; however, the relative effects of FLT3-ITD and FLT3-TKD mutations on the efficacy of these drugs have not been reported. In the present study, ITD or TKD mutant forms of FLT3 in Ba/F3 cells were expressed, as in the absence of interleukin-3 (IL-3) the growth of these cells is completely dependent on FLT3 oncogenic signals. As a result, the 50% effective dose for daunorubicin was significantly higher in both Ba/F3-FLT3-ITD clones, and also in one of the two Ba/F3-FLT3-TKD clones when cells were cultured without IL-3. This phenomenon was not observed for cytarabine in either Ba/F3-FLT3-ITD or Ba/F3-FLT3-TKD cells. Collectively, these results indicate that ITD and TKD mutations in FLT3 may confer daunorubicin resistance in Ba/F3 cells.

  3. Characterisation and Clinical Significance of FLT3-ITD and non-ITD in Acute Myeloid Leukaemia Patients in Kelantan, Northeast Peninsular Malaysia.

    PubMed

    Yunus, Noraini Mat; Johan, Muhammad Farid; Ali Nagi Al-Jamal, Hamid; Husin, Azlan; Hussein, Abdul Rahim; Hassan, Rosline

    2015-01-01

    Mutations of the FMS-like tyrosine kinase-3 (FLT3) receptor gene may promote proliferation via activation of multiple signaling pathways. FLT3-internal tandem duplication (FLT3-ITD) is the most common gene alteration found in patients diagnosed with acute myeloid leukaemia (AML) and has been associated with poor prognosis. We performed mutational analysis of exons 14-15 and 20 of the FLT3 gene in 54 AML patients using PCR-CSGE (conformational sensitive gel electrophoresis) followed by sequencing analysis to characterise FLT3 mutations in adult patients diagnosed with AML at Hospital USM, Kelantan, Northeast Peninsular Malaysia. FLT3 exon 14-15 mutations were identified in 7 of 54 patients (13%) whereas no mutation was found in FLT3 exon 20. Six ITDs and one non-ITD mutation were found in exon 14 of the juxtamembrane (JM) domain of FLT3. FLT3-ITD mutations were associated with a significantly higher blast percentage (p-value=0.008) and white blood cell count (p-value=0.023) but there was no significant difference in median overall survival time for FLT3-ITD+/FLT3-ITD- within 2 years (p-value=0.374). The incidence of FLT3-ITD in AML patients in this particular region of Malaysia is low compared to the Western world and has a significant association with WBC and blast percentage.

  4. ABT-869, a multitargeted receptor tyrosine kinase inhibitor: inhibition of FLT3 phosphorylation and signaling in acute myeloid leukemia

    PubMed Central

    Shankar, Deepa B.; Li, Junling; Tapang, Paul; Owen McCall, J.; Pease, Lori J.; Dai, Yujia; Wei, Ru-Qi; Albert, Daniel H.; Bouska, Jennifer J.; Osterling, Donald J.; Guo, Jun; Marcotte, Patrick A.; Johnson, Eric F.; Soni, Niru; Hartandi, Kresna; Michaelides, Michael R.; Davidsen, Steven K.; Priceman, Saul J.; Chang, Jenny C.; Rhodes, Katrin; Shah, Neil; Moore, Theodore B.; Sakamoto, Kathleen M.

    2007-01-01

    In 15% to 30% of patients with acute myeloid leukemia (AML), aberrant proliferation is a consequence of a juxtamembrane mutation in the FLT3 gene (FMS-like tyrosine kinase 3–internal tandem duplication [FLT3-ITD]), causing constitutive kinase activity. ABT-869 (a multitargeted receptor tyrosine kinase inhibitor) inhibited the phosphorylation of FLT3, STAT5, and ERK, as well as Pim-1 expression in MV-4-11 and MOLM-13 cells (IC50 approximately 1-10 nM) harboring the FLT3-ITD. ABT-869 inhibited the proliferation of these cells (IC50 = 4 and 6 nM, respectively) through the induction of apoptosis (increased sub-G0/G1 phase, caspase activation, and PARP cleavage), whereas cells harboring wild-type (wt)–FLT3 were less sensitive. In normal human blood spiked with AML cells, ABT-869 inhibited phosphorylation of FLT3 (IC50 approximately 100 nM), STAT5, and ERK, and decreased Pim-1 expression. In methylcellulose-based colony-forming assays, ABT-869 had no significant effect up to 1000 nM on normal hematopoietic progenitor cells, whereas in AML patient samples harboring both FLT3-ITD and wt-FLT3, ABT-869 inhibited colony formation (IC50 = 100 and 1000 nM, respectively). ABT-869 dose-dependently inhibited MV-4-11 and MOLM-13 flank tumor growth, prevented tumor formation, regressed established MV-4-11 xenografts, and increased survival by 20 weeks in an MV-4-11 engraftment model. In tumors, ABT-869 inhibited FLT3 phosphorylation, induced apoptosis (transferase-mediated dUTP nick-end labeling [TUNEL]) and decreased proliferation (Ki67). ABT-869 is under clinical development for AML. PMID:17209055

  5. ABT-869, a multitargeted receptor tyrosine kinase inhibitor: inhibition of FLT3 phosphorylation and signaling in acute myeloid leukemia.

    PubMed

    Shankar, Deepa B; Li, Junling; Tapang, Paul; Owen McCall, J; Pease, Lori J; Dai, Yujia; Wei, Ru-Qi; Albert, Daniel H; Bouska, Jennifer J; Osterling, Donald J; Guo, Jun; Marcotte, Patrick A; Johnson, Eric F; Soni, Niru; Hartandi, Kresna; Michaelides, Michael R; Davidsen, Steven K; Priceman, Saul J; Chang, Jenny C; Rhodes, Katrin; Shah, Neil; Moore, Theodore B; Sakamoto, Kathleen M; Glaser, Keith B

    2007-04-15

    In 15% to 30% of patients with acute myeloid leukemia (AML), aberrant proliferation is a consequence of a juxtamembrane mutation in the FLT3 gene (FMS-like tyrosine kinase 3-internal tandem duplication [FLT3-ITD]), causing constitutive kinase activity. ABT-869 (a multitargeted receptor tyrosine kinase inhibitor) inhibited the phosphorylation of FLT3, STAT5, and ERK, as well as Pim-1 expression in MV-4-11 and MOLM-13 cells (IC(50) approximately 1-10 nM) harboring the FLT3-ITD. ABT-869 inhibited the proliferation of these cells (IC(50) = 4 and 6 nM, respectively) through the induction of apoptosis (increased sub-G(0)/G(1) phase, caspase activation, and PARP cleavage), whereas cells harboring wild-type (wt)-FLT3 were less sensitive. In normal human blood spiked with AML cells, ABT-869 inhibited phosphorylation of FLT3 (IC(50) approximately 100 nM), STAT5, and ERK, and decreased Pim-1 expression. In methylcellulose-based colony-forming assays, ABT-869 had no significant effect up to 1000 nM on normal hematopoietic progenitor cells, whereas in AML patient samples harboring both FLT3-ITD and wt-FLT3, ABT-869 inhibited colony formation (IC(50) = 100 and 1000 nM, respectively). ABT-869 dose-dependently inhibited MV-4-11 and MOLM-13 flank tumor growth, prevented tumor formation, regressed established MV-4-11 xenografts, and increased survival by 20 weeks in an MV-4-11 engraftment model. In tumors, ABT-869 inhibited FLT3 phosphorylation, induced apoptosis (transferase-mediated dUTP nick-end labeling [TUNEL]) and decreased proliferation (Ki67). ABT-869 is under clinical development for AML.

  6. Design of targeting ligands in medicinal inorganic chemistry.

    PubMed

    Storr, Tim; Thompson, Katherine H; Orvig, Chris

    2006-06-01

    This tutorial review will highlight recent advances in medicinal inorganic chemistry pertaining to the use of multifunctional ligands for enhanced effect. Ligands that adequately bind metal ions and also include specific targeting features are gaining in popularity due to their ability to enhance the efficacy of less complicated metal-based agents. Moving beyond the traditional view of ligands modifying reactivity, stabilizing specific oxidation states, and contributing to substitution inertness, we will discuss recent work involving metal complexes with multifunctional ligands that target specific tissues, membrane receptors, or endogenous molecules, including enzymes.

  7. Potent Activity of Ponatinib (AP24534) in Models of FLT3-Driven Acute Myeloid Leukemia and Other Hematologic Malignancies

    PubMed Central

    Gozgit, Joseph M.; Wong, Matthew J.; Wardwell, Scott; Tyner, Jeffrey W.; Loriaux, Marc M.; Mohemmad, Qurish K.; Narasimhan, Narayana I.; Shakespeare, William C.; Wang, Frank; Druker, Brian J.; Clackson, Tim; Rivera, Victor M.

    2011-01-01

    Ponatinib (AP24534) is a novel multitargeted kinase inhibitor that potently inhibits native and mutant BCR-ABL at clinically achievable drug levels. Ponatinib also has in vitro inhibitory activity against a discrete set of kinases implicated in the pathogenesis of other hematologic malignancies, including FLT3, KIT, fibroblast growth factor receptor 1 (FGFR1), and platelet derived growth factor receptor α (PDGFRα). Here, using leukemic cell lines containing activated forms of each of these receptors, we show that ponatinib potently inhibits receptor phosphorylation and cellular proliferation with IC50 values comparable to those required for inhibition of BCR-ABL (0.3 to 20 nmol/L). The activity of ponatinib against the FLT3-ITD mutant, found in up to 30% of acute myeloid leukemia (AML) patients, was particularly notable. In MV4-11 (FLT3-ITD+/+) but not RS4;11 (FLT3-ITD−/−) AML cells, ponatinib inhibited FLT3 signaling and induced apoptosis at concentrations of less than 10 nmol/L. In an MV4-11 mouse xenograft model, once daily oral dosing of ponatinib led to a dose-dependent inhibition of signaling and tumor regression. Ponatinib inhibited viability of primary leukemic blasts from a FLT3-ITD positive AML patient (IC50 4 nmol/L) but not those isolated from 3 patients with AML expressing native FLT3. Overall, these results support the investigation of ponatinib in patients with FLT3-ITD–driven AML and other hematologic malignancies driven by KIT, FGFR1, or PDGFRα. PMID:21482694

  8. Mll partial tandem duplication and Flt3 internal tandem duplication in a double knock-in mouse recapitulates features of counterpart human acute myeloid leukemias

    PubMed Central

    Zorko, Nicholas A.; Bernot, Kelsie M.; Whitman, Susan P.; Siebenaler, Ronald F.; Ahmed, Elshafa H.; Marcucci, Gabriele G.; Yanes, Daniel A.; McConnell, Kathleen K.; Mao, Charlene; Kalu, Chidimma; Zhang, Xiaoli; Jarjoura, David; Dorrance, Adrienne M.; Heerema, Nyla A.; Lee, Benjamin H.; Huang, Gang; Marcucci, Guido

    2012-01-01

    The MLL-partial tandem duplication (PTD) associates with high-risk cytogenetically normal acute myeloid leukemia (AML). Concurrent presence of FLT3-internal tandem duplication (ITD) is observed in 25% of patients with MLL-PTD AML. However, mice expressing either Mll-PTD or Flt3-ITD do not develop AML, suggesting that 2 mutations are necessary for the AML phenotype. Thus, we generated a mouse expressing both Mll-PTD and Flt3-ITD. MllPTD/WT:Flt3ITD/WT mice developed acute leukemia with 100% penetrance, at a median of 49 weeks. As in human MLL-PTD and/or the FLT3-ITD AML, mouse blasts exhibited normal cytogenetics, decreased Mll-WT-to-Mll-PTD ratio, loss of the Flt3-WT allele, and increased total Flt3. Highlighting the adverse impact of FLT3-ITD dosage on patient survival, mice with homozygous Flt3-ITD alleles, MllPTD/WT:Flt3ITD/ITD, demonstrated a nearly 30-week reduction in latency to overt AML. Here we demonstrate, for the first time, that Mll-PTD contributes to leukemogenesis as a gain-of-function mutation and describe a novel murine model closely recapitulating human AML. PMID:22674806

  9. Synergistic cell death in FLT3-ITD positive acute myeloid leukemia by combined treatment with metformin and 6-benzylthioinosine.

    PubMed

    Sabnis, Himalee S; Bradley, Heath L; Tripathi, Shweta; Yu, Wen-Mei; Tse, William; Qu, Cheng-Kui; Bunting, Kevin D

    2016-11-01

    Current therapy for acute myeloid leukemia (AML) primarily includes high-dose cytotoxic chemotherapy with or without allogeneic stem cell transplantation. Targeting unique cellular metabolism of cancer cells is a potentially less toxic approach. Monotherapy with mitochondrial inhibitors like metformin have met with limited success since escape mechanisms such as increased glycolytic ATP production, especially in hyperglycemia, can overcome the metabolic blockade. As an alternative strategy for metformin therapy, we hypothesized that the combination of 6-benzylthioinosine (6-BT), a broad-spectrum metabolic inhibitor, and metformin could block this drug resistance mechanism. Metformin treatment alone resulted in significant suppression of ROS and mitochondrial respiration with increased glycolysis accompanied by modest cytotoxicity (10-25%). In contrast, 6-BT monotherapy resulted in inhibition of glucose uptake, decreased glycolysis, and decreased ATP with minimal changes in ROS and mitochondrial respiration. The combination of 6-BT with metformin resulted in significant cytotoxicity (60-70%) in monocytic AML cell lines and was associated with inhibition of FLT3-ITD activated STAT5 and reduced c-Myc and GLUT-1 expression. Therefore, although the anti-tumor and metabolic effects of metformin have been limited by the metabolic reprogramming within cells, the novel combination of 6-BT and metformin targets this bypass mechanism resulting in reduced glycolysis, STAT5 inhibition, and increased cell death. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. NPM1, FLT3 and CEBPA mutations in pediatric patients with AML from Argentina: incidence and prognostic value.

    PubMed

    Rubio, Patricia; Campos, B; Digiorge, J A; Gallego, M S; Medina, A; Rossi, J G; Felice, M S; Alonso, C N

    2016-11-01

    Mutations in NPM1, FLT3 and CEBPA genes are found in 25-35 % of adult acute myeloblastic leukemia (AML) cases and correlate with prognosis. To date, there have been no reports about these mutations in pediatric AML from Argentina. The aims of the present study were to describe the incidence of NPM1, FLT3 and CEBPA mutations and to analyze their prognostic impact in this population. The incidences of these mutations within a population of 216 pediatric AML cases were: NPM1-mutated 4.2 %, CEBPA-mutated 1.9 %, FLT3-ITD 10.2 % and FLT3-TKD 7.9 %. Among 33 patients with normal karyotype, we found significantly higher frequencies for NPM1-mutated 24.2 % and CEBPA-mutated 12.1 %. Overall survival (pOS) for the 163 eligible non-acute promyelocytic leukemia cases was 46.2 ± 4.3 %, while leukemia-free survival probability was 51.0 ± 4.4 % (n = 135). The NPM1-mutated/FLT3-ITD-negative genotype showed better outcome than any other combined NPM1/FLT3 genotype; this difference was statistically significant within the group of high-risk patients (pOS ± SE 83.3 ± 15.2 % versus 33.1 ± 4.7 %; p = 0.0251). This is the first report of the frequencies of these mutations in Argentina. Despite the limited number of patients, a favorable prognosis of AML with genotype NPM1-mutated/FLT3-ITD-negative was confirmed. This is especially relevant within the high-risk group of patients, as it may contribute to the detection of patients with better prognosis, and thus avoid unnecessary treatment intensification.

  11. A randomized assessment of adding the kinase inhibitor lestaurtinib to first-line chemotherapy for FLT3-mutated AML.

    PubMed

    Knapper, Steven; Russell, Nigel; Gilkes, Amanda; Hills, Robert K; Gale, Rosemary E; Cavenagh, James D; Jones, Gail; Kjeldsen, Lars; Grunwald, Michael R; Thomas, Ian; Konig, Heiko; Levis, Mark J; Burnett, Alan K

    2017-03-02

    The clinical benefit of adding FMS-like tyrosine kinase-3 (FLT3)-directed small molecule therapy to standard first-line treatment of acute myeloid leukemia (AML) has not yet been established. As part of the UK AML15 and AML17 trials, patients with previously untreated AML and confirmed FLT3-activating mutations, mostly younger than 60 years, were randomly assigned either to receive oral lestaurtinib (CEP701) or not after each of 4 cycles of induction and consolidation chemotherapy. Lestaurtinib was commenced 2 days after completing chemotherapy and administered in cycles of up to 28 days. The trials ran consecutively. Primary endpoints were overall survival in AML15 and relapse-free survival in AML17; outcome data were meta-analyzed. Five hundred patients were randomly assigned between lestaurtinib and control: 74% had FLT3-internal tandem duplication mutations, 23% FLT3-tyrosine kinase domain point mutations, and 2% both types. No significant differences were seen in either 5-year overall survival (lestaurtinib 46% vs control 45%; hazard ratio, 0.90; 95% CI 0.70-1.15; P = .3) or 5-year relapse-free survival (40% vs 36%; hazard ratio, 0.88; 95% CI 0.69-1.12; P = .3). Exploratory subgroup analysis suggested survival benefit with lestaurtinib in patients receiving concomitant azole antifungal prophylaxis and gemtuzumab ozogamicin with the first course of chemotherapy. Correlative studies included analysis of in vivo FLT3 inhibition by plasma inhibitory activity assay and indicated improved overall survival and significantly reduced rates of relapse in lestaurtinib-treated patients who achieved sustained greater than 85% FLT3 inhibition. In conclusion, combining lestaurtinib with intensive chemotherapy proved feasible in younger patients with newly diagnosed FLT3-mutated AML, but yielded no overall clinical benefit. The improved clinical outcomes seen in patients achieving sustained FLT3 inhibition encourage continued evaluation of FLT3-directed therapy alongside

  12. Targeting Ligand Dependent and Ligand Independent Androgen Receptor Signaling in Prostate Cancer

    DTIC Science & Technology

    2014-10-01

    or replace the effect of a natural peptide. A classic example is the human analogue of insulin , admin- istered to patients with insulin - dependent ... diabetes . Initially purified from bovine and porcine (44), insulin is now routinely manufactured via recombinant methods as pro- insulin (45). However...2014 4. TITLE AND SUBTITLE Targeting Ligand Dependent and Ligand Independent Androgen Receptor Signaling in Prostate Cancer 5a. CONTRACT NUMBER

  13. Arsenic trioxide in front-line therapy of acute promyelocytic leukemia (C9710): prognostic significance of FLT3 mutations and complex karyotype.

    PubMed

    Poiré, Xavier; Moser, Barry K; Gallagher, Robert E; Laumann, Kristina; Bloomfield, Clara D; Powell, Bayard L; Koval, Gregory; Gulati, Kabir; Holowka, Nicholas; Larson, Richard A; Tallman, Martin S; Appelbaum, Frederick R; Sher, Dorie; Willman, Cheryl; Paietta, Elisabeth; Stock, Wendy

    2014-07-01

    The addition of arsenic trioxide (ATO) to frontline therapy of acute promyelocytic leukemia (APL) has been shown to result in significant improvements in disease-free survival (DFS). FLT3 mutations are frequently observed in APL, but its prognostic significance remains unclear. We analyzed 245 newly diagnosed adult patients with APL treated on intergroup trial C9710 and evaluated previously defined biological and prognostic factors and their relationship to FLT3 mutations and to additional karyotypic abnormalities. FLT3 mutations were found in 48% of patients, including 31% with an internal tandem duplication (FLT3-ITD), 14% with a point mutation (FLT3-D835) and 2% with both mutations. The FLT3-ITD mutant level was uniformly low, < 0.5. Neither FLT3 mutation had an impact on remission rate, induction death rate, DFS or overall survival (OS). The addition of ATO consolidation improved outcomes regardless of FLT3 mutation type or level, initial white blood cell count, PML-RARA isoform type or transcript level. The presence of a complex karyotype was strongly associated with an inferior OS independently of post-remission treatment. In conclusion, the addition of ATO to frontline therapy overcomes the impact of previously described adverse prognostic factors including FLT3 mutations. However, complex karyotype is strongly associated with an inferior OS despite ATO therapy.

  14. Arsenic trioxide in front-line therapy of acute promyelocytic leukemia (C9710): prognostic significance of FLT3 mutations and complex karyotype

    PubMed Central

    Poiré, Xavier; Moser, Barry K.; Gallagher, Robert E.; Laumann, Kristina; Bloomfield, Clara D.; Powell, Bayard L.; Koval, Gregory; Gulati, Kabir; Holowka, Nicholas; Larson, Richard A.; Tallman, Martin S.; Appelbaum, Frederick R.; Sher, Dorie; Willman, Cheryl; Paietta, Elisabeth; Stock, Wendy

    2014-01-01

    The addition of arsenic trioxide (ATO) to frontline therapy of acute promyelocytic leukemia (APL) has been shown to result in significant improvements in disease-free survival (DFS). FLT3 mutations are frequently observed in APL, but its prognostic significance remains unclear. We analyzed 245 newly diagnosed adult patients with APL treated on intergroup trial C9710 and evaluated previously defined biological and prognostic factors and their relationship to FLT3 mutations and to additional karyotypic abnormalities. FLT3 mutations were found in 48% of patients, including 31% with an internal tandem duplication (FLT3-ITD), 14% with a point mutation (FLT3-D835) and 2% with both mutations. The FLT3-ITD mutant level was uniformly low, <0.5. Neither FLT3 mutation had an impact on remission rate, induction death rate, DFS or overall survival (OS). The addition of ATO consolidation improved outcomes regardless of FLT3 mutation type or level, initial white blood cell count, PML–RARA isoform type or transcript level. The presence of a complex karyotype was strongly associated with an inferior OS independently of post-remission treatment. In conclusion, the addition of ATO to frontline therapy overcomes the impact of previously described adverse prognostic factors including FLT3 mutations. However, complex karyotype is strongly associated with an inferior OS despite ATO therapy. PMID:24160850

  15. Prognostic significance of FLT3 mutational status and expression levels in MLL-AF4+ and MLL-germline acute lymphoblastic leukemia.

    PubMed

    Chillón, M C; Gómez-Casares, M T; López-Jorge, C E; Rodriguez-Medina, C; Molines, A; Sarasquete, M E; Alcoceba, M; Miguel, J D G-S; Bueno, C; Montes, R; Ramos, F; Rodríguez, J N; Giraldo, P; Ramírez, M; García-Delgado, R; Fuster, J L; González-Díaz, M; Menendez, P

    2012-11-01

    There is barely any information about the prognostic significance of FLT3 expression and mutational status in cytogenetically distinct subgroups of acute lymphoblastic leukemia (ALL). We analyzed the presence of FLT3-tyrosine kinase domain (TKD) and FLT3-internal tandem duplication (ITD) mutations as well as FLT3 expression levels in 54 newly diagnosed patients with B-ALL (n=49) or T-ALL (n=5). All B/T-ALL samples tested negative for the presence of FLT3-TKD or FLT3-ITD. None of the T-ALL and E2A-PBX1+ B-ALL overexpressed FLT3. In contrast, mainly MLL-AF4+ B-ALL but also ETV6-RUNX1+, BCR-ABL+ or B-ALL displaying normal cytogenetics exhibited significantly higher FLT3 expression levels than normal bone marrow, supporting that aberrantly increased transcription of FLT3, rather than activating FLT3 mutations, contributes to the pathogenesis of these B-ALL. Using the median FLT3 expression as cut-off value we found that high-level FLT3 expression is associated with an extremely poor 1-year overall survival (OS; 0 vs 71%; P=0.002) and disease-free survival (DFS; 0 vs 43%; P=0.03) in MLL-AF4+ B-ALL but not in MLL-germline B-ALL. Cox regression analysis with OS/DFS as end points showed that age>14 years and high-level FLT3 expression were independent prognostic factors when all ALL patients were analyzed together. Importantly, when the MLL-AF4+ B-ALL subgroup was analyzed separately, high-level FLT3 expression was the only independent prognostic factor for OS and treatment outcome. These findings indicate that high FLT3 expression identifies MLL-AF4+ ALL patients at very high risk of treatment failure and poor survival, emphasizing the value of ongoing/future clinical trials for FLT3 inhibitors.

  16. DNMT3A Haploinsufficiency Transforms FLT3ITD Myeloproliferative Disease into a Rapid, Spontaneous, and Fully Penetrant Acute Myeloid Leukemia.

    PubMed

    Meyer, Sara E; Qin, Tingting; Muench, David E; Masuda, Kohei; Venkatasubramanian, Meenakshi; Orr, Emily; Suarez, Lauren; Gore, Steven D; Delwel, Ruud; Paietta, Elisabeth; Tallman, Martin S; Fernandez, Hugo; Melnick, Ari; Le Beau, Michelle M; Kogan, Scott; Salomonis, Nathan; Figueroa, Maria E; Grimes, H Leighton

    2016-05-01

    Cytogenetically normal acute myeloid leukemia (CN-AML) represents nearly 50% of human AML. Co-occurring mutations in the de novo DNA methyltransferase DNMT3A and the FMS related tyrosine kinase 3 (FLT3) are common in CN-AML and confer a poorer prognosis. We demonstrate that mice with Flt3-internal tandem duplication (Flt3(ITD)) and inducible deletion of Dnmt3a spontaneously develop a rapidly lethal, completely penetrant, and transplantable AML of normal karyotype. AML cells retain a single Dnmt3a floxed allele, revealing the oncogenic potential of Dnmt3a haploinsufficiency. FLT3(ITD)/DNMT3A-mutant primary human and murine AML exhibit a similar pattern of global DNA methylation associated with changes in the expression of nearby genes. In the murine model, rescuing Dnmt3a expression was accompanied by DNA remethylation and loss of clonogenic potential, suggesting that Dnmt3a-mutant oncogenic effects are reversible. Dissection of the cellular architecture of the AML model using single-cell assays, including single-cell RNA sequencing, identified clonogenic subpopulations that express genes sensitive to the methylation of nearby genomic loci and responsive to DNMT3A levels. Thus, Dnmt3a haploinsufficiency transforms Flt3(ITD) myeloproliferative disease by modulating methylation-sensitive gene expression within a clonogenic AML subpopulation. DNMT3A haploinsufficiency results in reversible epigenetic alterations that transform FLT3(ITD)-mutant myeloproliferative neoplasm into AML. Cancer Discov; 6(5); 501-15. ©2016 AACR.This article is highlighted in the In This Issue feature, p. 461. ©2016 American Association for Cancer Research.

  17. Ligand-targeted theranostic nanomedicines against cancer

    DOE PAGES

    Yao, Virginia J.; D'Angelo, Sara; Butler, Kimberly S.; ...

    2016-01-06

    Nanomedicines have significant potential for cancer treatment. Although the majority of nanomedicines currently tested in clinical trials utilize simple, biocompatible liposome-based nanocarriers, their widespread use is limited by non-specificity and low target site concentration and thus, do not provide a substantial clinical advantage over conventional, systemic chemotherapy. In the past 20 years, we have identified specific receptors expressed on the surfaces of tumor endothelial and perivascular cells, tumor cells, the extracellular matrix and stromal cells using combinatorial peptide libraries displayed on bacteriophage. These studies corroborate the notion that unique receptor proteins such as IL-11Rα, GRP78, EphA5, among others, are differentiallymore » overexpressed in tumors and present opportunities to deliver tumor-specific therapeutic drugs. By using peptides that bind to tumor-specific cell-surface receptors, therapeutic agents such as apoptotic peptides, suicide genes, imaging dyes or chemotherapeutics can be precisely and systemically delivered to reduce tumor growth in vivo, without harming healthy cells. Given the clinical applicability of peptide-based therapeutics, targeted delivery of nanocarriers loaded with therapeutic cargos seems plausible. We propose a modular design of a functionalized protocell in which a tumor-targeting moiety, such as a peptide or recombinant human antibody single chain variable fragment (scFv), is conjugated to a lipid bilayer surrounding a silica-based nanocarrier core containing a protected therapeutic cargo. The functionalized protocell can be tailored to a specific cancer subtype and treatment regimen by exchanging the tumor-targeting moiety and/or therapeutic cargo or used in combination to create unique, theranostic agents. In this review, we summarize the identification of tumor-specific receptors through combinatorial phage display technology and the use of antibody display selection to identify recombinant

  18. Single-cell mass cytometry reveals intracellular survival/proliferative signaling in FLT3-ITD-mutated AML stem/progenitor cells.

    PubMed

    Han, Lina; Qiu, Peng; Zeng, Zhihong; Jorgensen, Jeffrey L; Mak, Duncan H; Burks, Jared K; Schober, Wendy; McQueen, Teresa J; Cortes, Jorge; Tanner, Scott D; Roboz, Gail J; Kantarjian, Hagop M; Kornblau, Steven M; Guzman, Monica L; Andreeff, Michael; Konopleva, Marina

    2015-04-01

    Understanding the unique phenotypes and complex signaling pathways of leukemia stem cells (LSCs) will provide insights and druggable targets that can be used to eradicate acute myeloid leukemia (AML). Current work on AML LSCs is limited by the number of parameters that conventional flow cytometry (FCM) can analyze because of cell autofluorescence and fluorescent dye spectral overlap. Single-cell mass cytometry (CyTOF) substitutes rare earth elements for fluorophores to label antibodies, which allows measurements of up to 120 parameters in single cells without correction for spectral overlap. The aim of this study was the evaluation of intracellular signaling in antigen-defined stem/progenitor cell subsets in primary AML. CyTOF and conventional FCM yielded comparable results on LSC phenotypes defined by CD45, CD34, CD38, CD123, and CD99. Intracellular phosphoprotein responses to ex vivo cell signaling inhibitors and cytokine stimulation were assessed in myeloid leukemia cell lines and one primary AML sample. CyTOF and conventional FCM results were confirmed by western blotting. In the primary AML sample, we investigated the cell responses to ex vivo stimulation with stem cell factor and BEZ235-induced inhibition of PI3K and identified activation patterns in multiple PI3K downstream signaling pathways including p-4EBP1, p-AKT, and p-S6, particularly in CD34(+) subsets. We evaluated multiple signaling pathways in antigen-defined subpopulations in primary AML cells with FLT3-ITD mutations. The data demonstrated the heterogeneity of cell phenotype distribution and distinct patterns of signaling activation across AML samples and between AML and normal samples. The mTOR targets p-4EBP1 and p-S6 were exclusively found in FLT3-ITD stem/progenitor cells, but not in their normal counterparts, suggesting both as novel targets in FLT3 mutated AML. Our data suggest that CyTOF can identify functional signaling pathways in antigen-defined subpopulations in primary AML, which may

  19. From toxins targeting ligand gated ion channels to therapeutic molecules.

    PubMed

    Nasiripourdori, Adak; Taly, Valérie; Grutter, Thomas; Taly, Antoine

    2011-03-01

    Ligand-gated ion channels (LGIC) play a central role in inter-cellular communication. This key function has two consequences: (i) these receptor channels are major targets for drug discovery because of their potential involvement in numerous human brain diseases; (ii) they are often found to be the target of plant and animal toxins. Together this makes toxin/receptor interactions important to drug discovery projects. Therefore, toxins acting on LGIC are presented and their current/potential therapeutic uses highlighted.

  20. The STAT5 Inhibitor Pimozide Displays Efficacy in Models of Acute Myelogenous Leukemia Driven by FLT3 Mutations

    PubMed Central

    Nelson, Erik A.; Walker, Sarah R.; Xiang, Michael; Weisberg, Ellen; Bar-Natan, Michal; Barrett, Rosemary; Liu, Suiyang; Kharbanda, Surender; Christie, Amanda L.; Nicolais, Maria; Griffin, James D.; Stone, Richard M.; Kung, Andrew L.

    2012-01-01

    Activation of the transcription factor STAT5 is essential for the pathogenesis of acute myelogenous leukemia (AML) containing the FLT3 internal tandem duplication (ITD) mutation. FLT3 ITD is a constitutively active tyrosine kinase that drives the activation of STAT5, leading to the growth and survival of AML cells. Although there has been some success in identifying tyrosine kinase inhibitors that block the function of FLT3 ITD, there remains a continued need for effective treatment of this disease. We have identified the psychotropic drug pimozide as an effective inhibitor of STAT5 function. Pimozide inhibits the tyrosine phosphorylation of STAT5, leading to the death of AML cells through the induction of apoptosis. Pimozide shows a combinatorial effect with the tyrosine kinase inhibitors midostaurin (PKC412) and sunitinib in the inhibition of STAT5 tyrosine phosphorylation and the induction of apoptosis. Significantly, pimozide reduces the tumor burden in a mouse model of FLT3-driven AML. Therefore, identifying STAT5 inhibitors may provide a new avenue for the treatment of AML, and these may be effective alone or in combination with tyrosine kinase inhibitors. PMID:23264850

  1. MOST: most-similar ligand based approach to target prediction.

    PubMed

    Huang, Tao; Mi, Hong; Lin, Cheng-Yuan; Zhao, Ling; Zhong, Linda L D; Liu, Feng-Bin; Zhang, Ge; Lu, Ai-Ping; Bian, Zhao-Xiang

    2017-03-11

    Many computational approaches have been used for target prediction, including machine learning, reverse docking, bioactivity spectra analysis, and chemical similarity searching. Recent studies have suggested that chemical similarity searching may be driven by the most-similar ligand. However, the extent of bioactivity of most-similar ligands has been oversimplified or even neglected in these studies, and this has impaired the prediction power. Here we propose the MOst-Similar ligand-based Target inference approach, namely MOST, which uses fingerprint similarity and explicit bioactivity of the most-similar ligands to predict targets of the query compound. Performance of MOST was evaluated by using combinations of different fingerprint schemes, machine learning methods, and bioactivity representations. In sevenfold cross-validation with a benchmark Ki dataset from CHEMBL release 19 containing 61,937 bioactivity data of 173 human targets, MOST achieved high average prediction accuracy (0.95 for pKi ≥ 5, and 0.87 for pKi ≥ 6). Morgan fingerprint was shown to be slightly better than FP2. Logistic Regression and Random Forest methods performed better than Naïve Bayes. In a temporal validation, the Ki dataset from CHEMBL19 were used to train models and predict the bioactivity of newly deposited ligands in CHEMBL20. MOST also performed well with high accuracy (0.90 for pKi ≥ 5, and 0.76 for pKi ≥ 6), when Logistic Regression and Morgan fingerprint were employed. Furthermore, the p values associated with explicit bioactivity were found be a robust index for removing false positive predictions. Implicit bioactivity did not offer this capability. Finally, p values generated with Logistic Regression, Morgan fingerprint and explicit activity were integrated with a false discovery rate (FDR) control procedure to reduce false positives in multiple-target prediction scenario, and the success of this strategy it was demonstrated with a case of fluanisone

  2. Phase I Trial of Maintenance Sorafenib after Allogeneic Hematopoietic Stem Cell Transplantation for FLT3-ITD AML

    PubMed Central

    Chen, Yi-Bin; Li, Shuli; Lane, Andrew A.; Connolly, Christine; Del Rio, Candice; Valles, Betsy; Curtis, Morgan; Ballen, Karen; Cutler, Corey; Dey, Bimalangshu R.; El-Jawahri, Areej; Fathi, Amir T.; Ho, Vincent T.; Joyce, Amy; McAfee, Steven; Rudek, Michelle; Rajkhowa, Trivikram; Verselis, Sigitas; Antin, Joseph H.; Spitzer, Thomas R.; Levis, Mark; Soiffer, Robert

    2014-01-01

    The FLT3-ITD mutation is associated with a high relapse rate for patients with AML even after allogeneic hematopoietic stem cell transplantation (HSCT). Sorafenib is a tyrosine kinase inhibitor which inhibits the FLT3 tyrosine kinase and has shown encouraging activity in FLT3-ITD AML. We conducted a phase I trial of maintenance sorafenib after HSCT in patients with FLT3-ITD AML (ClinicalTrials.gov NCT01398501). Patients received a variety of conditioning regimens and graft sources. A dose escalation 3+3 cohort design was used to define the maximum tolerated dose (MTD) with an additional 10 patients treated at the MTD. Sorafenib was initiated between days 45 and 120 after HSCT continued for twelve 28-day cycles. Twenty-two patients were enrolled (status at HSCT: CR1=16, CR2=3, refractory=3). The MTD was established at 400 mg BID with one DLT observed (pericardial effusion). Two patients died of transplant-related causes, both unrelated to sorafenib. Two patients stopped sorafenib after relapse and 5 stopped due to attributable toxicities after the DLT period. Median follow-up for surviving patients is 16.7 months after HSCT (range, 8.1–35.0). There was one case of grade II acute GVHD after starting sorafenib and the 12-month cumulative incidence of chronic GVHD was 38% (90% CI, 21%–56%). For all patients, one-year progression-free survival (PFS) is 85% (90% CI, 66%–94%) and one-year overall survival (OS) is 95% (90% CI, 79%–99%) after HSCT. For patients in CR1 / CR2 prior to HSCT (n=19), one-year PFS is 95% (90% CI, 76%–99%) and one-year OS is 100% with only one patient who has relapsed. Sorafenib is safe after HSCT for FLT3-ITD AML and merits further investigation for the prevention of relapse. PMID:25239228

  3. Prognostic value of FLT3 mutations in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and anthracycline monochemotherapy

    PubMed Central

    Barragán, Eva; Montesinos, Pau; Camos, Mireia; González, Marcos; Calasanz, Maria J.; Román-Gómez, José; Gómez-Casares, Maria T.; Ayala, Rosa; López, Javier; Fuster, Óscar; Colomer, Dolors; Chillón, Carmen; Larrayoz, María J.; Sánchez-Godoy, Pedro; González-Campos, José; Manso, Félix; Amador, Maria L.; Vellenga, Edo; Lowenberg, Bob; Sanz, Miguel A.

    2011-01-01

    Background Fms-like tyrosine kinase-3 (FLT3) gene mutations are frequent in acute promyelocytic leukemia but their prognostic value is not well established. Design and Methods We evaluated FLT3-internal tandem duplication and FLT3-D835 mutations in patients treated with all-trans retinoic acid and anthracycline-based chemotherapy enrolled in two subsequent trials of the Programa de Estudio y Tratamiento de las Hemopatías Malignas (PETHEMA) and Hemato-Oncologie voor Volwassenen Nederland (HOVON) groups between 1996 and 2005. Results FLT3-internal tandem duplication and FLT3-D835 mutation status was available for 306 (41%) and 213 (29%) patients, respectively. Sixty-eight (22%) and 20 (9%) patients had internal tandem duplication and D835 mutations, respectively. Internal tandem duplication was correlated with higher white blood cell and blast counts, lactate dehydrogenase, relapse-risk score, fever, hemorrhage, coagulopathy, BCR3 isoform, M3 variant subtype, and expression of CD2, CD34, human leukocyte antigen-DR, and CD11b surface antigens. The FLT3-D835 mutation was not significantly associated with any clinical or biological characteristic. Univariate analysis showed higher relapse and lower survival rates in patients with a FLT3-internal tandem duplication, while no impact was observed in relation to FLT3-D835. The prognostic value of the FLT3-internal tandem duplication was not retained in the multivariate analysis. Conclusions FLT3-internal tandem duplication mutations are associated with several hematologic features in acute promyelocytic leukemia, in particular with high white blood cell counts, but we were unable to demonstrate an independent prognostic value in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and anthracycline-based regimens. PMID:21685470

  4. FLT3-ITD and MLL-PTD influence the expression of MDR-1, MRP-1, and BCRP mRNA but not LRP mRNA assessed with RQ-PCR method in adult acute myeloid leukemia.

    PubMed

    Nasilowska-Adamska, Barbara; Solarska, Iwona; Paluszewska, Monika; Malinowska, Iwona; Jedrzejczak, Wieslaw W; Warzocha, Krzysztof

    2014-04-01

    Fms-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD) and mixed-lineage leukemia gene-partial tandem duplication (MLL-PTD) are aberrations associated with leukemia which indicate unsatisfactory prognosis. Downstream regulatory targets of FLT3-ITD and MLL-PTD are not well defined. We have analyzed the expression of MDR-1, multidrug resistant protein-1 (MRP-1), breast cancer resistance protein (BCRP), and lung resistance protein (LRP) messenger RNA (mRNA) in relation to the mutational status of FLT3-ITD and MLL-PTD in 185 acute myeloid leukemia (AML) adult patients. The real-time quantitative polymerase chain reaction method was performed to assess the expression of the MDR-1, MRP-1, BCRP, and LRP mRNA, and the results were presented as coefficients calculated using an intermediate method according to Pfaffl's rule. Significantly higher expressions of MDR-1 mRNA were found in patients who did not harbor FLT3-ITD (0.20 vs. 0.05; p = 0.0001) and MRP-1 mRNA in patients with this mutation (0.96 vs. 0.70; p = 0.002) and of BCRP mRNA in patients with MLL-PTD (0.61 vs. 0.38; p = 0.03). In univariate analysis, the high expression of MDR-1 mRNA (≥0.1317) negatively influenced the outcome of induction therapy (p = 0.05), whereas the high expression of BCRP mRNA (≥1.1487) was associated with a high relapse rate (RR) (p = 0.013). We found that the high expression of MDR-1 (≥0.1317), MRP-1 (≥0.8409), and BCRP mRNA (≥1.1487) significantly influenced disease-free survival (DFS; p = 0.059, 0.032, and 0.009, respectively) and overall survival (0.048, 0.014, and 0.059, respectively). Moreover, a high expression of BCRP mRNA (≥1.1487) proved to be an independent prognostic factor for RR (p = 0.01) and DFS (p = 0.002) in multivariate analysis. The significant correlation between the expression of MDR-1, MRP-1, and BCRP mRNA and FLT3-ITD or MLL-PTD in AML patients requires further investigation.

  5. From Toxins Targeting Ligand Gated Ion Channels to Therapeutic Molecules

    PubMed Central

    Nasiripourdori, Adak; Taly, Valérie; Grutter, Thomas; Taly, Antoine

    2011-01-01

    Ligand-gated ion channels (LGIC) play a central role in inter-cellular communication. This key function has two consequences: (i) these receptor channels are major targets for drug discovery because of their potential involvement in numerous human brain diseases; (ii) they are often found to be the target of plant and animal toxins. Together this makes toxin/receptor interactions important to drug discovery projects. Therefore, toxins acting on LGIC are presented and their current/potential therapeutic uses highlighted. PMID:22069709

  6. How reliable are ligand-centric methods for Target Fishing?

    NASA Astrophysics Data System (ADS)

    Peon, Antonio; Dang, Cuong; Ballester, Pedro

    2016-04-01

    Computational methods for Target Fishing (TF), also known as Target Prediction or Polypharmacology Prediction, can be used to discover new targets for small-molecule drugs. This may result in repositioning the drug in a new indication or improving our current understanding of its efficacy and side effects. While there is a substantial body of research on TF methods, there is still a need to improve their validation, which is often limited to a small part of the available targets and not easily interpretable by the user. Here we discuss how target-centric TF methods are inherently limited by the number of targets that can possibly predict (this number is by construction much larger in ligand-centric techniques). We also propose a new benchmark to validate TF methods, which is particularly suited to analyse how predictive performance varies with the query molecule. On average over approved drugs, we estimate that only five predicted targets will have to be tested to find two true targets with submicromolar potency (a strong variability in performance is however observed). In addition, we find that an approved drug has currently an average of eight known targets, which reinforces the notion that polypharmacology is a common and strong event. Furthermore, with the assistance of a control group of randomly-selected molecules, we show that the targets of approved drugs are generally harder to predict.

  7. Detectable FLT3-ITD or RAS mutation at the time of transformation from MDS to AML predicts for very poor outcomes

    PubMed Central

    Badar, Talha; Patel, Keyur P; Thompson, Philip A; DiNardo, Courtney; Takahashi, Koichi; Cabrero, Monica; Borthakur, Gautam; Cortes, Jorge; Konopleva, Marina; Kadia, Tapan; Bohannan, Zach; Pierce, Sherry; Jabbour, Elias J; Ravandi, Farhad; Daver, Naval; Luthra, Raja; Kantarjian, Hagop; Garcia-Manero, Guillermo

    2016-01-01

    Background The molecular events that drive the transformation from myelodysplastic syndromes (MDS) to acute myeloid leukemia (AML) have yet to be fully characterized. We hypothesized that detection of these mutations at the time of transformation from MDS to AML may lead to poorer outcomes. Methods We analyzed 102 MDS patients who were admitted to our institution between 2004 and 2013, had wild-type (wt) FLT3-ITD and RAS at diagnosis, progressed to AML, and had serial mutation testing at both the MDS and AML stages. Results We detected FLT3-ITD and/or RAS mutations in twenty-seven (26%) patients at the time of transformation to AML. Twenty-two patients (81%) had RAS mutations and five (19%) had FLT3-ITD mutations. The median survival after leukemia transformation in patients who had detectable RAS and/or FLT3-ITD mutations was 2·4 months compared to 7·5 months in patients who retained wt RAS and FLT3-ITD (hazard ratio [HR]: 3·08, 95% confidence interval [CI]: 1·9–5·0, p < 0·0001). In multivariate analysis, FLT3-ITD and RAS mutations had independent prognostic significance for poor outcome. Conclusions We conclude that 26% of patients had detectable FLT3-ITD or RAS mutation at transformation to AML, and these mutations were associated with very poor outcome. PMID:26547258

  8. The prevalence and clinical profiles of FLT3-ITD, FLT3-TKD, NPM1, C-KIT, DNMT3A, and CEBPA mutations in a cohort of patients with de novo acute myeloid leukemia from southwest China.

    PubMed

    Gou, Haimei; Zhou, Juan; Ye, Yuanxin; Hu, Xuejiao; Shang, Mengqiao; Zhang, Jingya; Zhao, Zhenzhen; Peng, Wu; Zhou, Yanhong; Zhou, Yi; Song, Xingbo; Lu, Xiaojun; Ying, Binwu

    2016-06-01

    While a substantial amount of data on gene mutations related to acute myeloid leukemia (AML) prognosis from western and other populations have been reported, these studies largely describe one or two genes. Additionally, in southwest China, only insufficient data exist regarding FLT3-ITD, FLT3-TKD, NPM1, C-KIT, DNMT3A, and CEBPA mutations have been widely used in clinical settings. Therefore, a comprehensive study about these mutations of clinical importance in the prognosis of AML in western China is necessary. In a cohort of 255 patients with de novo AML, we retrospectively analyzed the prevalence of the six gene mutations, and then we assessed the results in conjunction with clinical characteristics and treatment responses. As for the frequencies of these mutations, the NPM1 mutation occurred most frequently (17.7 %; 42/237), followed by the CEBPA mutation (15.0 %; 19/127) and the FLT3-ITD mutation (10.2 %; 25/244). The frequencies of the FLT3-TKD, DNMT3A, and C-KIT mutations were 3.7 % (9/234), 4.0 % (9/225) and 4.2 % (10/238), respectively. These mutations were closely related to clinical characteristics including FAB classification, gender and age, hemogram, blasts (%), fusion genes, and immunophenotypes. Additionally, a higher complete remission (CR) rate was found in NPM1-mutated patients. The occurrence of these mutations is variable among different countries and regions worldwide, which may provide clues to the etiology of AML. Besides, we identified new clinical characteristics that advance our understanding of these mutations and further clarify the involvement of these mutations in the development of leukemia.

  9. Expression of protein-tyrosine phosphatases in Acute Myeloid Leukemia cells: FLT3 ITD sustains high levels of DUSP6 expression

    PubMed Central

    2012-01-01

    Protein-tyrosine phosphatases (PTPs) are important regulators of cellular signaling and changes in PTP activity can contribute to cell transformation. Little is known about the role of PTPs in Acute Myeloid Leukemia (AML). The aim of this study was therefore to establish a PTP expression profile in AML cells and to explore the possible role of FLT3 ITD (Fms-like tyrosine kinase 3 with internal tandem duplication), an important oncoprotein in AML for PTP gene expression. PTP mRNA expression was analyzed in AML cells from patients and in cell lines using a RT-qPCR platform for detection of transcripts of 92 PTP genes. PTP mRNA expression was also analyzed based on a public microarray data set for AML patients. Highly expressed PTPs in AML belong to all PTP subfamilies. Very abundantly expressed PTP genes include PTPRC, PTPN2, PTPN6, PTPN22, DUSP1, DUSP6, DUSP10, PTP4A1, PTP4A2, PTEN, and ACP1. PTP expression was further correlated with the presence of FLT3 ITD, focusing on a set of highly expressed dual-specificity phosphatases (DUSPs). Elevated expression of DUSP6 in patients harboring FLT3 ITD was detected in this analysis. The mechanism and functional role of FLT3 ITD-mediated upregulation of DUSP6 was then explored using pharmacological inhibitors of FLT3 ITD signal transduction and si/shRNA technology in human and murine cell lines. High DUSP6 expression was causally associated with the presence of FLT3 ITD and dependent on FLT3 ITD kinase activity and ERK signaling. DUSP6 depletion moderately increased ERK1/2 activity but attenuated FLT3 ITD-dependent cell proliferation of 32D cells. In conclusion, DUSP6 may play a contributing role to FLT3 ITD-mediated cell transformation. PMID:22784513

  10. Cancer therapy using natural ligands that target estrogen receptor beta.

    PubMed

    Sareddy, Gangadhara R; Vadlamudi, Ratna K

    2015-11-01

    Estrogen receptor beta (ERβ) is one of the two key receptors (ERα, ERβ) that facilitate biological actions of 17β-estradiol (E2). ERβ is widely expressed in many tissues, and its expression is reduced or lost during progression of many tumors. ERβ facilitates estrogen signaling by both genomic (classical and non-classical) and extra-nuclear signaling. Emerging evidence suggests that ERβ functions as a tissue-specific tumor suppressor with anti-proliferative actions. Recent studies have identified a number of naturally available selective ERβ agonists. Targeting ERβ using its naturally available ligands is an attractive approach for treating and preventing cancers. This review presents the beneficial actions of ERβ signaling and clinical utility of several natural ERβ ligands as potential cancer therapy. Copyright © 2015 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  11. Programmed death-1 & its ligands: promising targets for cancer immunotherapy.

    PubMed

    Shrimali, Rajeev K; Janik, John E; Abu-Eid, Rasha; Mkrtichyan, Mikayel; Khleif, Samir N

    2015-01-01

    Novel strategies for cancer treatment involving blockade of immune inhibitors have shown significant progress toward understanding the molecular mechanism of tumor immune evasion. The preclinical findings and clinical responses associated with programmed death-1 (PD-1) and PD-ligand pathway blockade seem promising, making these targets highly sought for cancer immunotherapy. In fact, the anti-PD-1 antibodies, pembrolizumab and nivolumab, were recently approved by the US FDA for the treatment of unresectable and metastatic melanoma resistant to anticytotoxic T-lymphocyte antigen-4 antibody (ipilimumab) and BRAF inhibitor. Here, we discuss strategies of combining PD-1/PD-ligand interaction inhibitors with other immune checkpoint modulators and standard-of-care therapy to break immune tolerance and induce a potent antitumor activity, which is currently a research area of key scientific pursuit.

  12. Cancer therapy using natural ligands that target estrogen receptor beta

    PubMed Central

    Sareddy, Gangadhara R; Vadlamudi, Ratna K.

    2016-01-01

    Estrogen receptor beta (ERβ) is one of the two key receptors (ERα, ERβ) that facilitate biological actions of 17β-estradiol (E2). ERβ is widely expressed in many tissues, and its expression is reduced or lost during progression of many tumors. ERβ facilitates estrogen signaling by both genomic (classical and non-classical) and extra-nuclear signaling. Emerging evidence suggests that ERβ functions as a tissue-specific tumor suppressor with anti-proliferative actions. Recent studies have identified a number of naturally available selective ERβ agonists. Targeting ERβ using its naturally available ligands is an attractive approach for treating and preventing cancers. This review presents the beneficial actions of ERβ signaling and clinical utility of several natural ERβ ligands as potential cancer therapy. PMID:26614454

  13. Silvestrol exhibits significant in vivo and in vitro antileukemic activities and inhibits FLT3 and miR-155 expressions in acute myeloid leukemia

    PubMed Central

    2013-01-01

    Background Activating mutations [internal tandem duplication (ITD)] or overexpression of the FMS-like tyrosine kinase receptor-3 (FLT3) gene are associated with poor outcome in acute myeloid leukemia (AML) patients, underscoring the need for novel therapeutic approaches. The natural product silvestrol has potent antitumor activity in several malignancies, but its therapeutic impact on distinct molecular high-risk AML subsets remains to be fully investigated. We examined here the preclinical activity of silvestrol in FLT3-ITD and FLT3 wild-type (wt) AML. Methods Silvestrol in vitro anti-leukemic activity was examined by colorimetric cell viability assay, colony-forming and flow cytometry assays assessing growth inhibition and apoptosis, respectively. Pharmacological activity of silvestrol on FLT3 mRNA translation, mRNA and protein expression was determined by RNA-immunoprecipitation, qRT-PCR and immunoblot analyses, respectively. Silvestrol in vivo efficacy was investigated using MV4-11 leukemia-engrafted mice. Results Silvestrol shows antileukemia activity at nanomolar concentrations both in FLT3-wt overexpressing (THP-1) and FLT3-ITD (MV4-11) expressing AML cell lines (IC50 = 3.8 and 2.7 nM, respectively) and patients’ primary blasts [IC50 = ~12 nM (FLT3-wt) and ~5 nM (FLT3-ITD)]. Silvestrol increased apoptosis (~4fold, P = 0.0001), and inhibited colony-formation (100%, P < 0.0001) in primary blasts. Silvestrol efficiently inhibited FLT3 translation reducing FLT3 protein expression by 80–90% and decreased miR-155 levels (~60%), a frequently co-regulated onco-miR in FLT3-ITD-positive AML. The median survival of silvestrol-treated vs vehicle-treated mice was 63 vs 29 days post-engraftment, respectively (P < 0.0001). Conclusions Silvestrol exhibits significant in vivo and in vitro antileukemic activities in AML through a novel mechanism resulting in inhibition of FLT3 and miR-155 expression. These encouraging results warrant a rapid

  14. Role of allogeneic transplantation for FLT3/ITD acute myeloid leukemia: Outcomes from 133 consecutive newly-diagnosed patients from a single institution

    PubMed Central

    DeZern, Amy E.; Sung, Anthony; Kim, Sharon; Smith, B. Douglas; Karp, Judith E.; Gore, Steven D.; Jones, Richard J; Fuchs, Ephraim; Luznik, Leo; McDevitt, Michael; Levis, Mark

    2011-01-01

    AML patients with FLT3/ITD mutations have an inferior survival compared to AML patients with wild-type (WT) FLT3, primarily due to an increased relapse rate. Allogeneic transplant represents a post-remission therapy that is effective at reducing the risk of relapse for many cases of poor-risk AML. Whether or not allogeneic transplant in first complete remission (CR) can improve outcomes for patients with FLT3/ITD AML remains controversial. Our institution has adopted a policy of pursuing allogeneic transplant, including the use of alternate donors, for FLT3/ITD AML patients in remission. As part of an IRB-approved study, we performed a review of the clinical data from November 1, 2004 to October 31, 2008 on all adult patients under the age of 60 presenting in consecutive fashion to the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins with newly diagnosed non-M3 AML. We followed their outcomes through August 1, 2010. During the study period, 133 previously untreated AML patients between the ages of 20 and 59 were diagnosed and received induction and consolidation therapy at our institution. Of these 133 patients, 31 (23%) harbored a FLT3/ITD mutation at diagnosis. The median OS (overall survival) from the time of diagnosis for the FLT3/ITD AML patients was compared to the OS of the entire cohort and found to be comparable (19.3 months versus 15.5 months p=0.56.) Historically, OS for FLT3/ITD AML patients is significantly worse than for AML patients lacking this mutation. However, the OS for the 31 FLT3/ITD patients reported here was comparable to the 102 patients with WT FLT3 over the same 4 year time period. One difference that might have contributed to the surprising outcomes for the FLT3/ITD group is our aggressive pursuit of allogeneic BMT in CR1 within this group (60% of FLT3/ITD vs. 17% with WT). Our single institution study of consecutively treated AML patients supports the hypothesis that allogeneic transplant in early CR1 improves the long term

  15. Role of allogeneic transplantation for FLT3/ITD acute myeloid leukemia: outcomes from 133 consecutive newly diagnosed patients from a single institution.

    PubMed

    DeZern, Amy E; Sung, Anthony; Kim, Sharon; Smith, B Douglas; Karp, Judith E; Gore, Steven D; Jones, Richard J; Fuchs, Ephraim; Luznik, Leo; McDevitt, Michael; Levis, Mark

    2011-09-01

    Acute myelogenous leukemia (AML) patients with FLT3/ITD mutations have an inferior survival compared to AML patients with wild-type (WT) FLT3, primarily because of an increased relapse rate. Allogeneic transplantation represents a postremission therapy that is effective at reducing the risk of relapse for many cases of poor-risk AML. Whether or not allogeneic transplantation in first complete remission (CR) can improve outcomes for patients with FLT3/ITD AML remains controversial. Our institution has adopted a policy of pursuing allogeneic transplantation, including the use of alternate donors, for FLT3/ITD AML patients in remission. As part of an instituional review board-approved study, we performed a review of the clinical data from November 1, 2004, to October 31, 2008, on all adult patients under the age of 60 presenting in consecutive fashion to the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins with newly diagnosed non-M3 AML. We followed their outcomes through August 1, 2010. During the study period, 133 previously untreated AML patients between the ages of 20 and 59 were diagnosed and received induction and consolidation therapy at our institution. Of these 133 patients, 31 (23%) harbored an FLT3/ITD mutation at diagnosis. The median overall survival (OS) from the time of diagnosis for the FLT3/ITD AML patients was compared to the OS of the entire cohort and found to be comparable (19.3 months versus 15.5 months, P = .56). Historically, OS for FLT3/ITD AML patients is significantly worse than for AML patients lacking this mutation. However, the OS for the 31 FLT3/ITD patients reported here was comparable to the 102 patients with WT FLT3 over the same 4-year time period. One difference that might have contributed to the surprising outcomes for the FLT3/ITD group is our aggressive pursuit of allogeneic bone marrow transplant (BMT) in CR1 within this group (60% of FLT3/ITD versus 17% with WT). Our single-institution study of consecutively treated

  16. FLT3-internal tandem duplication in a pediatric patient with t(8;21) acute myeloid leukemia.

    PubMed

    Kawamura, Machiko; Kaku, Hidefumi; Ito, Tateki; Funata, Nobuaki; Taki, Tomohiko; Shimada, Akira; Hayashi, Yasuhide

    2010-12-01

    Patients diagnosed with t(8;21)-acute myeloid leukemia (AML) are currently considered to have good prognoses, but about half of these patients relapse. FLT3-internal tandem duplication (ITD) is generally thought to be strongly associated with poor prognosis in AML, but is rarely reported in patients with t(8;21)-AML. Expression of the neural cell-adhesion molecule (CD56) is also associated with a significantly shorter complete remission duration and survival in patients with t(8;21)-AML. Patients with t(8;21)-AML expressing CD56 have been reported to exhibit a higher incidence of granulocytic sarcoma (GS), and t(8;21)-AML with GS results in a less favorable prognosis than AML with this translocation alone. Here, we report on a 15-year-old girl with t(8;21)-AML having both CD56 expression and FLT3-ITD. This patient underwent unrelated donor bone marrow transplantation and achieved complete remission, but thereafter presented with obstructive jaundice caused by GS compression of the common bile duct without bone marrow invasion at relapse. Autopsy revealed multiple nodules of the stomach membrane and invasion into the head of the pancreas. For earlier detection of relapse, we suggest that it would be useful to examine existence of GS in CD56-positive t(8;21)-AML patients at diagnosis and hematologic remission. Even though t(8;21)-AML is less likely to co-occur with FLT3-ITD in pediatric patients, this report suggests that prognostic factors, including FLT3 and KIT genes and the surface marker CD56, should be analyzed in these patients. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. How Reliable Are Ligand-Centric Methods for Target Fishing?

    PubMed Central

    Peón, Antonio; Dang, Cuong C.; Ballester, Pedro J.

    2016-01-01

    Computational methods for Target Fishing (TF), also known as Target Prediction or Polypharmacology Prediction, can be used to discover new targets for small-molecule drugs. This may result in repositioning the drug in a new indication or improving our current understanding of its efficacy and side effects. While there is a substantial body of research on TF methods, there is still a need to improve their validation, which is often limited to a small part of the available targets and not easily interpretable by the user. Here we discuss how target-centric TF methods are inherently limited by the number of targets that can possibly predict (this number is by construction much larger in ligand-centric techniques). We also propose a new benchmark to validate TF methods, which is particularly suited to analyse how predictive performance varies with the query molecule. On average over approved drugs, we estimate that only five predicted targets will have to be tested to find two true targets with submicromolar potency (a strong variability in performance is however observed). In addition, we find that an approved drug has currently an average of eight known targets, which reinforces the notion that polypharmacology is a common and strong event. Furthermore, with the assistance of a control group of randomly-selected molecules, we show that the targets of approved drugs are generally harder to predict. The benchmark and a simple target prediction method to use as a performance baseline are available at http://ballester.marseille.inserm.fr/TF-benchmark.tar.gz. PMID:27148522

  18. Allogeneic Stem Cell Transplantation Improves Survival in Patients with Acute Myeloid Leukemia Characterized by a High Allelic Ratio of Mutant FLT3-ITD.

    PubMed

    Ho, Anthony D; Schetelig, Johannes; Bochtler, Tilmann; Schaich, Markus; Schäfer-Eckart, Kerstin; Hänel, Mathias; Rösler, Wolf; Einsele, Hermann; Kaufmann, Martin; Serve, Hubert; Berdel, Wolfgang E; Stelljes, Matthias; Mayer, Jiri; Reichle, Albrecht; Baldus, Claudia D; Schmitz, Norbert; Kramer, Michael; Röllig, Christoph; Bornhäuser, Martin; Thiede, Christian; Ehninger, Gerhard

    2016-03-01

    Allogeneic hematopoietic cell transplantation (alloHCT) as a postremission therapy in patients with FLT3-ITD-positive intermediate-risk acute myeloid leukemia (AML) remains controversial. FLT3-ITD mutations are heterogeneous with respect to allelic ratio, location, and length of the insertion, with a high mutant-to-wild-type ratio consistently associated with inferior prognosis. We retrospectively analyzed the role of alloHCT in first remission in relationship to the allelic ratio and presence or absence of nucleophosmin 1 mutations (NPM1) in the Study Alliance Leukemia AML2003 trial. FLT3-ITD mutations were detected in 209 patients and concomitant NPM1 mutations in 148 patients. Applying a predefined cutoff ratio of .8, AML was grouped into high- and low-ratio FLT3-ITD AML (HR(FLT3-ITD) and LR(FLT3-ITD)). Sixty-one patients (29%) were transplanted in first remission. Overall survival (OS) (HR, .3; 95% CI, .16 to .7; P = .004) and event-free survival (EFS) (HR, .4; 95% CI, .16 to .9; P = .02) were significantly increased in patients with HR(FLT3-ITD) AML who received alloHCT as consolidation treatment compared with patients who received consolidation chemotherapy. Patients with LR(FLT3-ITD) AML and wild-type NPM1 who received alloHCT in first remission had increased OS (HR, .3; 95% CI, .1 to .8; P = .02) and EFS (HR, .2; 95% CI, .1 to .8; P = .02), whereas alloHCT in first remission did not have a significant impact on OS and EFS in patients with LR(FLT3-ITD) AML and concomitant NPM1 mutation. In conclusion, our results provide additional evidence that alloHCT in first remission improves EFS and OS in patients with HR(FLT3-ITD) AML and in patients with LR(FLT3-ITD) AML and wild-type NPM1. Copyright © 2016 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  19. Effect of ligand density, receptor density, and nanoparticle size on cell targeting

    PubMed Central

    Elias, Drew R.; Poloukhtine, Andrei; Popik, Vladimir; Tsourkas, Andrew

    2012-01-01

    It is generally accepted that the presentation of multiple ligands on a nanoparticle surface can improve cell targeting; however, little work has been done to determine whether an optimal ligand density exists. We have recently developed a site-specific bioconjugation strategy that allows for distinct control of ligand density on a nanoparticle through the combined utilization of expressed protein ligation (EPL) and copper-free click chemistry. This EPL-Click conjugation strategy was applied to create superparamagnetic iron oxide (SPIO) nanoparticles labeled with HER2/neu targeting affibodies at differing ligand densities. It was discovered that an intermediate ligand density provided statistically significant improvements in cell binding compared with higher and lower ligand densities. This intermediate optimal ligand density was conserved across nanoparticles with differing hydrodynamic diameters, different HER2/neu targeting ligands and also to cells with lower receptor densities. Additionally, an intermediate optimal ligand density was also evident when nanoparticles were labeled with folic acid. PMID:22687896

  20. Long FLT3 internal tandem duplications and reduced PML-RARα expression at diagnosis characterize a high-risk subgroup of acute promyelocytic leukemia patients

    PubMed Central

    Chillón, María Carmen; Santamaría, Carlos; García-Sanz, Ramón; Balanzategui, Ana; María Eugenia, Sarasquete; Alcoceba, Miguel; Marín, Luis; Caballero, María Dolores; Vidriales, María Belén; Ramos, Fernando; Bernal, Teresa; Díaz-Mediavilla, Joaquín; de Coca, Alfonso García; Peñarrubia, María Jesús; Queizán, José Antonio; Giraldo, Pilar; San Miguel, Jesús F.; González, Marcos

    2010-01-01

    Background Internal tandem duplications of the FLT3 gene (FLT3-ITDs) are frequent in patients with acute promyelocytic leukemia (APL), however its clinical impact remains controversial. Design and Methods We analyzed the prognostic significance of FLT3-ITD mutant level and size, as well as FLT3-D835 point mutations, PML-RARα expression and other predictive factors in 129 APL patients at diagnosis enrolled on the Spanish LPA96 (n=43) or LPA99 (n=86) PETHEMA trials. Results FLT3-ITDs and D835 mutations were detected in 21% and 9% of patients, respectively. Patients with increased ITD mutant/wild-type ratio or longer ITD size displayed shorter 5-year relapse-free survival (RFS) (P=0.048 and P<0.0001, respectively). However, patients with D835 mutations did not show differences in RFS or overall survival (OS). Moreover, patients with initial normalized copy number (NCN) of PML-RARα transcripts less than the 25th percentile had adverse clinical features and shorter 5-year RFS (P<0.0001) and OS (P=0.004) compared to patients with higher NCN. Patients with low NCN showed increased incidence of ITDs (P=0.001), with higher ratios (P<0.0001) and/or longer sizes (P=0.007). Multivariate analysis showed that long FLT3-ITD (P=0.001), low PML-RARα levels (P=0.004) and elevated WBC counts (>10×109/L) (P=0.018) were independent predictors for shorter RFS. We identified a subgroup of patients with high WBC, long FLT3-ITD and low NCN of transcripts that showed an extremely bad prognosis (5-year RFS 23.4%, P<0.0001). Conclusions In conclusion, FLT3-ITD size and PML-RARα transcript levels at diagnosis could contribute to improve the risk stratification in APL. PMID:20133893

  1. Revealing very small FLT3 ITD mutated clones by ultra-deep sequencing analysis has important clinical implications in AML patients

    PubMed Central

    Zuffa, Elisa; Franchini, Eugenia; Papayannidis, Cristina; Baldazzi, Carmen; Simonetti, Giorgia; Testoni, Nicoletta; Abbenante, Maria Chiara; Paolini, Stefania; Sartor, Chiara; Parisi, Sarah; Marconi, Giovanni; Cattina, Federica; Bochicchio, Maria Teresa; Venturi, Claudia; Ottaviani, Emanuela; Cavo, Michele; Martinelli, Giovanni

    2015-01-01

    FLT3 internal tandem duplication (ITD), one of the most frequent mutations in Acute Myeloid Leukemia (AML), is reported to be an unstable marker, as it can evolve from FLT3 ITD- to ITD+ during the disease course. A single-gene sensitive mutational screening approach may be helpful for better clarifying the exact timing of mutation occurrence, especially when FLT3 ITD appears to occur late, at disease progression. We developed an amplicon-based ultra-deep-sequencing (UDS) approach for FLT3 mutational screening. We exploited this highly sensitive technology for the retrospective screening of diagnosis, relapse and follow-up samples of 5 out of 256 cytogenetically normal (CN-) AML who were FLT3 wild-type at presentation, but tested ITD+ at relapse or disease progression. Our study revealed that all patients carried a small ITD+ clone at diagnosis, which was undetectable by routine analysis (0,2–2% abundance). The dynamics of ITD+ clones from diagnosis to disease progression, assessed by UDS, reflected clonal evolution under treatment pressure. UDS appears as a valuable tool for FLT3 mutational screening and for the assessment of minimal residual disease (MRD) during follow-up, by detecting small ITD+ clones that may survive chemotherapy, evolve over time and definitely worsen the prognosis of CN-AML patients. PMID:26384303

  2. Establishment of xenotransplantation model of human CN-AML with FLT3-ITD (mut) /NPM1 (-) in NOD/SCID mice.

    PubMed

    Shang, Zhen; Wang, Jue; Wang, Di; Xiao, Min; Li, Tong-juan; Wang, Na; Huang, Liang; Zhou, Jian-feng

    2013-06-01

    Patients with FLT3-ITD (mut) /NPM1 (-) cytogenetically normal acute myeloid leukemia (CN-AML), as high-risk molecular group in CN-AML, are associated with a worse prognosis than other CN-AML patients. It is beneficial to generate xenotransplantation model of FLT3-ITD (mut) /NPM1 (-) CN-AML to better understand the pathogenesis and therapeutic strategies of such AML subtype. The purpose of present study was to establish the xenotransplantation model in NOD/SCID mice with FLT3-ITD (mut) /NPM1 (-) CN-AML primary cells. The FLT3-ITD (mut) /NPM1 (-) CN-AML primary cells from 3 of 7 cases were successfully transplanted into NOD/SCID mice, and human CD45 positive cells were detected in the peripheral blood, spleen and bone marrow of mice by using flow cytometry. Infiltration of human leukemia cells in various organs of mice was observed by using immunohistochemistry. Gene analysis confirmed sustained FLT3/ITD mutation without NPM1 mutation in mice. By performing serial transplantation, it was found that characteristics of the leukemia cells in secondary and tertiary generation models remained unchanged. Moreover, in vivo cytarabine administration could extend survival of NOD/SCID mice, which was consistent with clinical observation. In conclusion, we successfully established xenotransplantation model of human FLT3-ITD (mut) /NPM1 (-) CN-AML in NOD/SCID mice. The model was able to present primary disease and suitable to evaluate the curative effects of new drugs or therapy strategies.

  3. A stabilized peptide ligand for multifunctional glioma targeted drug delivery.

    PubMed

    Ying, Man; Shen, Qing; Zhan, Changyou; Wei, Xiaoli; Gao, Jie; Xie, Cao; Yao, Bingxin; Lu, Weiyue

    2016-12-10

    Peptide ligands consisting of l-amino acids are subject to proteolysis in vivo. When modified on the surface of nanocarriers, those peptide ligands would readily degrade and the targeting efficacy is significantly attenuated. It has received increasing scrutiny to design stable peptide ligands for targeted drug delivery. Here, we present the design of a stable peptide ligand by the formation of a head-to-tail amide bond as an example. Even though the linear l-peptide A7R (termed (L)A7R) can bind specifically to vascular endothelial growth factor receptor 2 (VEGFR2) and neuropilin-1 (NRP-1) that are overexpressed on glioma cells, neovasculature and glioma vasculogenic mimicry (VM), the tumor-homing capacity of (L)A7R is greatly impaired in vivo due to proteolysis (e.g. in the serum). A cyclic A7R (cA7R) peptide was identified by computer-aided peptide design and synthesized with high yield by combining solid phase peptide synthesis and native chemical ligation. The binding of cA7R to both receptors was theoretically and experimentally assessed. In our simulated model hydrophobic and ionic interactions dominated the binding of (L)A7R to receptors. It is very interesting that cA7R adopting a different structure from (L)A7R retained high binding affinities to receptors without affecting the hydrophobic and ionic interactions. After head-to-tail cyclization by the formation of an amide bond, cA7R exhibited exceptional stability in mouse serum. Either cA7R or (L)A7R was conjugated on the surface of doxorubicin (DOX) loaded liposomes (cA7R-LS/DOX or (L)A7R-LS/DOX). The results of in vitro cellular assays indicated that cA7R-LS/DOX not only displayed stronger anti-proliferative effect against glioma cells, but also demonstrated to be more efficient in destruction of VM and HUVEC tubes in comparison to (L)A7R-LS/DOX and plain liposomes (LS/DOX, without peptide conjugation). cA7R conjugation could achieve significantly higher accumulation of liposomes in glioma than did (L

  4. Ligands located within a cholesterol domain enhance gene delivery to the target tissue

    PubMed Central

    Xu, Long; Betker, Jamie; Yin, Hao; Anchordoquy, Thomas J.

    2012-01-01

    Targeted gene delivery provides enormous potential for clinical treatment of many incurable diseases. Liposomes formulated with targeting ligands have been tested extensively both in vitro and in vivo, and many studies have strived to identify more efficacious ligands. However, the environment of the ligand within the delivery vehicle is generally not considered, and this study assesses the effect of ligand micoenvironment by utilizing a lipoplex possessing a cholesterol domain. Our recent work has shown that the presence of the targeting ligand within the cholesterol domain promotes more productive transfection in cultured cells. In the present study, lipoplexes having the identical lipid composition were formulated with different conjugates of the folate ligand such that the ligand was included in, or excluded from, the cholesterol domain. The effect of locating the ligand within the cholesterol domain was then tested in a xenograft tumor model in mice. Lipoplexes that included the ligand within the cholesterol domain showed significantly higher luciferase expression and plasmid accumulation in tumors as compared to lipoplexes in which the ligand was excluded from the domain. These results demonstrate that the microenvironment of the ligand can affect gene delivery to tumors, and show that ligand-mediated delivery can be enhanced by locating targeting ligands within a cholesterol domain. PMID:22440429

  5. Rule of five in 2015 and beyond: Target and ligand structural limitations, ligand chemistry structure and drug discovery project decisions.

    PubMed

    Lipinski, Christopher A

    2016-06-01

    The rule of five (Ro5), based on physicochemical profiles of phase II drugs, is consistent with structural limitations in protein targets and the drug target ligands. Three of four parameters in Ro5 are fundamental to the structure of both target and drug binding sites. The chemical structure of the drug ligand depends on the ligand chemistry and design philosophy. Two extremes of chemical structure and design philosophy exist; ligands constructed in the medicinal chemistry synthesis laboratory without input from natural selection and natural product (NP) metabolites biosynthesized based on evolutionary selection. Exceptions to Ro5 are found mostly among NPs. Chemistry chameleon-like behavior of some NPs due to intra-molecular hydrogen bonding as exemplified by cyclosporine A is a strong contributor to NP Ro5 outliers. The fragment derived, drug Navitoclax is an example of the extensive expertise, resources, time and key decisions required for the rare discovery of a non-NP Ro5 outlier.

  6. Favorable outcome of patients with acute myeloid leukemia harboring a low-allelic burden FLT3-ITD mutation and concomitant NPM1 mutation: relevance to post-remission therapy.

    PubMed

    Pratcorona, Marta; Brunet, Salut; Nomdedéu, Josep; Ribera, Josep Maria; Tormo, Mar; Duarte, Rafael; Escoda, Lourdes; Guàrdia, Ramon; Queipo de Llano, M Paz; Salamero, Olga; Bargay, Joan; Pedro, Carmen; Martí, Josep Maria; Torrebadell, Montserrat; Díaz-Beyá, Marina; Camós, Mireia; Colomer, Dolors; Hoyos, Montserrat; Sierra, Jorge; Esteve, Jordi

    2013-04-04

    Risk associated to FLT3 internal tandem duplication (FLT3-ITD) in patients with acute myeloid leukemia (AML) may depend on mutational burden and its interaction with other mutations. We analyzed the effect of FLT3-ITD/FLT3 wild-type (FLT3wt) ratio depending on NPM1 mutation (NPM1mut) in 303 patients with intermediate-risk cytogenetics AML treated with intensive chemotherapy. Among NPM1mut patients, FLT3wt and low ratio (<0.5) subgroups showed similar overall survival, relapse risk, and leukemia-free survival, whereas high ratio (≥0.5) patients had a worse outcome. In NPM1wt AML, FLT3-ITD subgroups showed a comparable outcome, with higher risk of relapse and shortened overall survival than FLT3wt patients. Allogeneic stem cell transplantation in CR1 was associated with a reduced relapse risk in all molecular subgroups with the exception of NPM1mut AML with absent or low ratio FLT3-ITD. In conclusion, effect of FLT3 burden is modulated by NPM1 mutation, especially in patients with a low ratio.

  7. Flt3-L gene therapy enhances immunocytokine-mediated antitumor effects and induces long-term memory.

    PubMed

    Neal, Zane C; Sondel, Paul M; Bates, Mary Kay; Gillies, Stephen D; Herweijer, Hans

    2007-11-01

    Therapeutic treatment with hu14.18-IL-2 immunocytokine (IC) or Flt3-L (FL) protein is initially effective at resolving established intradermal NXS2 neuroblastoma tumors in mice. However, many treated animals develop recurrent disease. We previously found that tumors recurring following natural killer (NK) mediated IC treatment show augmented MHC class I expression, while the tumors that recurred following T cell dependent Flt3-L treatment exhibited decreased MHC class I expression. We hypothesized that this divergent MHC modulation on recurrent tumors was due to therapy-specific immunoediting. We further postulated that combining IC and Flt3-L treatments might decrease the likelihood of recurrent disease by preventing MHC modulation as a mechanism for immune escape. We now report that combinatorial treatment of FL plus hu14.18-IL-2 IC provides greater antitumor benefit than treatment with either alone, suppressing development of recurrent disease. We administered FL by gene therapy using a clinically relevant approach: hydrodynamic limb vein (HLV) delivery of DNA for transgene expression by myofibers. Delivery of FL DNA by HLV injection in mice resulted in systemic expression of >10 ng/ml of FL in blood at day 3, and promoted up to a fourfold and tenfold increase in splenic NK and dendritic cells (DCs), respectively. Furthermore, the combination of FL gene therapy plus suboptimal IC treatment induced a greater expansion in the absolute number of splenic NK and DCs than achieved by individual component treatments. Mice that received combined FL gene therapy plus IC exhibited complete and durable resolution of established NXS2 tumors, and demonstrated protection from subsequent rechallenge with NXS2 tumor.

  8. Characterization of children with FLT3-ITD acute myeloid leukemia: a report from the AIEOP AML-2002 study group.

    PubMed

    Manara, E; Basso, G; Zampini, M; Buldini, B; Tregnago, C; Rondelli, R; Masetti, R; Bisio, V; Frison, M; Polato, K; Cazzaniga, G; Menna, G; Fagioli, F; Merli, P; Biondi, A; Pession, A; Locatelli, F; Pigazzi, M

    2017-01-01

    Recurrent molecular markers have been routinely used in acute myeloid leukemia (AML) for risk assessment at diagnosis, whereas their post-induction monitoring still represents a debated issue. We evaluated the prognostic value and biological impact of minimal residual disease (MRD) and of the allelic ratio (AR) of FLT3-internal-tandem duplication (ITD) in childhood AML. We retrospectively screened 494 children with de novo AML for FLT3-ITD mutation, identifying 54 harboring the mutation; 51% of them presented high ITD-AR at diagnosis and had worse event-free survival (EFS, 19.2 versus 63.5% for low ITD-AR, <0.05). Forty-one percent of children with high levels of MRD after the 1st induction course, measured by a patient-specific real-time-PCR, had worse EFS (22.2 versus 59.4% in low-MRD patients, P<0.05). Next, we correlated these parameters with gene expression, showing that patients with high ITD-AR or persistent MRD had characteristic expression profiles with deregulated genes involved in methylation and acetylation. Moreover, patients with high CyclinA1 expression presented an unfavorable EFS (20.3 versus 51.2% in low CyclinA1 group, P<0.01). Our results suggest that ITD-AR levels and molecular MRD should be considered in planning clinical management of FLT3-ITD patients. Different transcriptional activation of epigenetic and oncogenic profiles may explain variability in outcome among these patients, for whom novel therapeutic approaches are desirable.

  9. Targeting Ligand-Dependent and Ligand-Independent Androgen Receptor Signaling in Prostate Cancer

    DTIC Science & Technology

    2013-10-01

    sub 10nM range efficacy. Our primary objective was to establish a series of compounds blocking the AR ligand-dependent and ligand-independent gene ...of AR driven genes to be more comprehensive and more in line with what is currently known about AR-driven signaling in prostate cancer. We have...developed a robust panel of genes for AR signaling that is reflective of the clinical findings in both ligand dependent and ligand-independent androgen

  10. A Leukemia-Associated CD34/CD123/CD25/CD99+ Immunophenotype Identifies FLT3-Mutated Clones in Acute Myeloid Leukemia.

    PubMed

    Angelini, Daniela F; Ottone, Tiziana; Guerrera, Gisella; Lavorgna, Serena; Cittadini, Michela; Buccisano, Francesco; De Bardi, Marco; Gargano, Francesca; Maurillo, Luca; Divona, Mariadomenica; Noguera, Nélida I; Consalvo, Maria Irno; Borsellino, Giovanna; Bernardi, Giorgio; Amadori, Sergio; Venditti, Adriano; Battistini, Luca; Lo-Coco, Francesco

    2015-09-01

    We evaluated leukemia-associated immunophenotypes (LAIP) and their correlation with fms-like tyrosine kinase 3 (FLT3) and nucleophosmin (NPM1) gene mutational status in order to contribute a better identification of patients at highest risk of relapse in acute myeloid leukemia (AML). Bone marrow samples from 132 patients with AML were analyzed by nine-color multiparametric flow cytometry. We confirmed the presence of the mutation in diagnostic samples and in sorted cells by conventional RT-PCR and by patient-specific RQ-PCR. Within the CD34(+) cell fraction, we identified a discrete population expressing high levels of the IL3 receptor α-chain (CD123) and MIC-2 (CD99) in combination with the IL2 receptor α-chain (CD25). The presence of this population positively correlated with the internal tandem duplications (ITD) mutation in the FLT3 gene (r = 0.71). Receiver operating characteristics showed that, within the CD34(+) cell fraction a percentage of CD123/CD99/CD25(+) cells ≥11.7% predicted FLT3-ITD mutations with a specificity and sensitivity of >90%. CD34/CD123/CD99/CD25(+) clones were also detectable at presentation in 3 patients with FLT3 wild-type/NPM1(+) AML who relapsed with FLT3-ITD/NPM1(+) AML. Quantitative real-time PCR designed at relapse for each FLT3-ITD in these three cases confirmed the presence of low copy numbers of the mutation in diagnostic samples. Our results suggest that the CD34/CD25/CD123/CD99(+) LAIP is strictly associated with FLT3-ITD-positive cells. ©2015 American Association for Cancer Research.

  11. Does FLT3 mutation impact survival after hematopoietic stem cell transplantation for acute myeloid leukemia? A Center for International Blood and Marrow Transplant Research (CIBMTR) analysis.

    PubMed

    Deol, Abhinav; Sengsayadeth, Salyka; Ahn, Kwang Woo; Wang, Hai-Lin; Aljurf, Mahmoud; Antin, Joseph Harry; Battiwalla, Minoo; Bornhauser, Martin; Cahn, Jean-Yves; Camitta, Bruce; Chen, Yi-Bin; Cutler, Corey S; Gale, Robert Peter; Ganguly, Siddhartha; Hamadani, Mehdi; Inamoto, Yoshihiro; Jagasia, Madan; Kamble, Rammurti; Koreth, John; Lazarus, Hillard M; Liesveld, Jane; Litzow, Mark R; Marks, David I; Nishihori, Taiga; Olsson, Richard F; Reshef, Ran; Rowe, Jacob M; Saad, Ayman A; Sabloff, Mitchell; Schouten, Harry C; Shea, Thomas C; Soiffer, Robert J; Uy, Geoffrey L; Waller, Edmond K; Wiernik, Peter H; Wirk, Baldeep; Woolfrey, Ann E; Bunjes, Donald; Devine, Steven; de Lima, Marcos; Sandmaier, Brenda M; Weisdorf, Dan; Khoury, Hanna Jean; Saber, Wael

    2016-10-01

    Patients with FMS like tyrosine kinase 3 (FLT3)-mutated acute myeloid leukemia (AML) have a poor prognosis and are referred for early allogeneic hematopoietic stem cell transplantation (HCT). Data from the Center for International Blood and Marrow Transplant Research (CIBMTR) were used to evaluate 511 adult patients with de novo AML who underwent HCT during 2008 through 2011 to determine whether FLT3 mutations had an impact on HCT outcomes. In total, 158 patients (31%) had FLT3 mutations. Univariate and multivariate analyses revealed an increased risk of relapse at 3 years in the FLT3 mutated group compared with the wild-type (WT) group (38% [95% confidence interval (CI), 30%-45%] vs 28% [95% CI, 24%-33%]; P = .04; relative risk, 1.60 [95% CI, 1.15-2.22]; P = .0048). However, FLT3 mutation status was not significantly associated with nonrelapse mortality, leukemia-free survival, or overall survival. Although more patients in the FLT3 mutated group died from relapsed primary disease compared with those in the WT group (60% vs 46%), the 3-year overall survival rate was comparable for the 2 groups (mutated group: 49%; 95% CI, 40%-57%; WT group: 55%, 95% CI, 50%-60%; P = .20). The current data indicate that FLT3 mutation status did not adversely impact overall survival after HCT, and about 50% of patients with this mutation who underwent HCT were long-term survivors. Cancer 2016;122:3005-3014. © 2016 American Cancer Society. © 2016 American Cancer Society.

  12. Dnmt3a haploinsufficiency transforms Flt3-ITD myeloproliferative disease into a rapid, spontaneous, and fully-penetrant acute myeloid leukemia

    PubMed Central

    Meyer, Sara E.; Qin, Tingting; Muench, David E.; Masuda, Kohei; Venkatasubramanian, Meenakshi; Orr, Emily; Suarez, Lauren; Gore, Steven D.; Delwel, Ruud; Paietta, Elisabeth; Tallman, Martin S.; Fernandez, Hugo; Melnick, Ari; Le Beau, Michelle M.; Kogan, Scott; Salomonis, Nathan; Figueroa, Maria E.; Grimes, H. Leighton

    2016-01-01

    Cytogenetically normal acute myeloid leukemia (CN-AML) represents nearly 50% of human AML. Co-occurring mutations in the de novo DNA methyltransferase DNMT3A and the FMS related tyrosine kinase 3 FLT3 are common in CN-AML and confer a poorer prognosis. We demonstrate that mice with Flt3-internal-tandem duplication (Flt3ITD) and inducible deletion of Dnmt3a spontaneously develop a rapidly-lethal, completely-penetrant, and transplantable AML of normal karyotype. AML cells retain a single Dnmt3a floxed allele, revealing the oncogenic potential of Dnmt3a haploinsufficiency. FLT3-ITD/DNMT3A-mutant primary human and murine AML exhibit a similar pattern of global DNA methylation associated with changes in the expression of nearby genes. In the murine model, rescuing DNMT3A expression was accompanied by DNA re-methylation and loss of clonogenic potential, suggesting that Dnmt3a-mutant oncogenic effects are reversible. Dissection of the cellular architecture of the AML model using single-cell assays identified clonogenic subpopulations that express genes sensitive to the methylation of nearby genomic loci, and responsive to Dnmt3a levels. Thus, Dnmt3a haploinsufficiency transforms Flt3ITD myeloproliferative disease by modulating methylation-sensitive gene expression within a clonogenic AML subpopulation. PMID:27016502

  13. MiR-424 and miR-155 deregulated expression in cytogenetically normal acute myeloid leukaemia: correlation with NPM1 and FLT3 mutation status

    PubMed Central

    2012-01-01

    Background MicroRNA have a central role in normal haematopoiesis and are deregulated in acute myeloid leukaemia (AML). The purpose of the study was to investigate by qRT-PCR the expression of miRNAs involved in myeloid differentiation (miR-424, miR-155, miR-223, miR-17-5p) in 48 patients with cytogenetically normal AML well characterized for NPM1 and/or FLT3 mutations. Three types of normalization were used for the data validation. Findings We found that miR-424 was down-modulated in AMLs with NPM1mutA regardless of FLT3 status. On the contrary, miR-155 showed up-regulation in patients with FLT3 internal tandem duplications (ITD) with or without NPM1 mutations. No significant associations were found by analyzing miR-223 and miR-17-5p in relation to FLT3 and NPM1 status. Conclusions This study supports the view that major genetic subsets of CN-AML are associated with distinct miRNA signatures and suggests that miR-424 and miR-155 deregulation is involved in the pathogenesis of CN-AML with NPM1 and FLT3-ITD mutations, respectively. PMID:22681934

  14. Optimization of imidazo[4,5-b]pyridine-based kinase inhibitors: identification of a dual FLT3/Aurora kinase inhibitor as an orally bioavailable preclinical development candidate for the treatment of acute myeloid leukemia.

    PubMed

    Bavetsias, Vassilios; Crumpler, Simon; Sun, Chongbo; Avery, Sian; Atrash, Butrus; Faisal, Amir; Moore, Andrew S; Kosmopoulou, Magda; Brown, Nathan; Sheldrake, Peter W; Bush, Katherine; Henley, Alan; Box, Gary; Valenti, Melanie; de Haven Brandon, Alexis; Raynaud, Florence I; Workman, Paul; Eccles, Suzanne A; Bayliss, Richard; Linardopoulos, Spiros; Blagg, Julian

    2012-10-25

    Optimization of the imidazo[4,5-b]pyridine-based series of Aurora kinase inhibitors led to the identification of 6-chloro-7-(4-(4-chlorobenzyl)piperazin-1-yl)-2-(1,3-dimethyl-1H-pyrazol-4-yl)-3H-imidazo[4,5-b]pyridine (27e), a potent inhibitor of Aurora kinases (Aurora-A K(d) = 7.5 nM, Aurora-B K(d) = 48 nM), FLT3 kinase (K(d) = 6.2 nM), and FLT3 mutants including FLT3-ITD (K(d) = 38 nM) and FLT3(D835Y) (K(d) = 14 nM). FLT3-ITD causes constitutive FLT3 kinase activation and is detected in 20-35% of adults and 15% of children with acute myeloid leukemia (AML), conferring a poor prognosis in both age groups. In an in vivo setting, 27e strongly inhibited the growth of a FLT3-ITD-positive AML human tumor xenograft (MV4-11) following oral administration, with in vivo biomarker modulation and plasma free drug exposures consistent with dual FLT3 and Aurora kinase inhibition. Compound 27e, an orally bioavailable dual FLT3 and Aurora kinase inhibitor, was selected as a preclinical development candidate for the treatment of human malignancies, in particular AML, in adults and children.

  15. Optimization of Imidazo[4,5-b]pyridine-Based Kinase Inhibitors: Identification of a Dual FLT3/Aurora Kinase Inhibitor as an Orally Bioavailable Preclinical Development Candidate for the Treatment of Acute Myeloid Leukemia

    PubMed Central

    2012-01-01

    Optimization of the imidazo[4,5-b]pyridine-based series of Aurora kinase inhibitors led to the identification of 6-chloro-7-(4-(4-chlorobenzyl)piperazin-1-yl)-2-(1,3-dimethyl-1H-pyrazol-4-yl)-3H-imidazo[4,5-b]pyridine (27e), a potent inhibitor of Aurora kinases (Aurora-A Kd = 7.5 nM, Aurora-B Kd = 48 nM), FLT3 kinase (Kd = 6.2 nM), and FLT3 mutants including FLT3-ITD (Kd = 38 nM) and FLT3(D835Y) (Kd = 14 nM). FLT3-ITD causes constitutive FLT3 kinase activation and is detected in 20–35% of adults and 15% of children with acute myeloid leukemia (AML), conferring a poor prognosis in both age groups. In an in vivo setting, 27e strongly inhibited the growth of a FLT3-ITD-positive AML human tumor xenograft (MV4–11) following oral administration, with in vivo biomarker modulation and plasma free drug exposures consistent with dual FLT3 and Aurora kinase inhibition. Compound 27e, an orally bioavailable dual FLT3 and Aurora kinase inhibitor, was selected as a preclinical development candidate for the treatment of human malignancies, in particular AML, in adults and children. PMID:23043539

  16. Assessing potential peptide targeting ligands by quantification of cellular adhesion of model nanoparticles under flow conditions.

    PubMed

    Broda, Ellen; Mickler, Frauke Martina; Lächelt, Ulrich; Morys, Stephan; Wagner, Ernst; Bräuchle, Christoph

    2015-09-10

    Sophisticated drug delivery systems are coated with targeting ligands to improve the specific adhesion to surface receptors on diseased cells. In our study, we developed a method with which we assessed the potential of peptide ligands to specifically bind to receptor overexpressing target cells. Therefore, a microfluidic setup was used where the cellular adhesion of nanoparticles with ligand and of control nanoparticles was observed in parallel under the same experimental conditions. The effect of the ligand on cellular binding was quantified by counting the number of adhered nanoparticles with ligand and differently labeled control nanoparticles on single cells after incubation under flow conditions. To provide easy-to-synthesize, stable and reproducible nanoparticles which mimic the surface characteristics of drug delivery systems and meet the requirements for quantitative analysis, latex beads based on amine-modified polystyrene were used as model nanoparticles. Two short peptides were tested to serve as targeting ligand on the beads by increasing the specific binding to HuH7 cells. The c-Met binding peptide cMBP2 was used for hepatocyte growth factor receptor (c-Met) targeting and the peptide B6 for transferrin receptor (TfR) targeting. The impact of the targeting peptide on binding was investigated by comparing the beads with ligand to different internal control beads: 1) without ligand and tailored surface charge (electrostatic control) and 2) with scrambled peptide and similar surface charge, but a different amino acid sequence (specificity control). Our results demonstrate that the method is very useful to select suitable targeting ligands for specific nanoparticle binding to receptor overexpressing tumor cells. We show that the cMBP2 ligand specifically enhances nanoparticle adhesion to target cells, whereas the B6 peptide mediates binding to tumor cells mainly by nonspecific interactions. All together, we suggest that cMBP2 is a suitable choice for

  17. Cell targeting peptides as smart ligands for targeting of therapeutic or diagnostic agents: a systematic review.

    PubMed

    Mousavizadeh, Ali; Jabbari, Ali; Akrami, Mohammad; Bardania, Hassan

    2017-07-13

    Cell targeting peptides (CTP) are small peptides which have high affinity and specificity to a cell or tissue targets. They are typically identified by using phage display and chemical synthetic peptide library methods. CTPs have attracted considerable attention as a new class of ligands to delivery specifically therapeutic and diagnostic agents, because of the fact they have several advantages including easy synthesis, smaller physical sizes, lower immunogenicity and cytotoxicity and their simple and better conjugation to nano-carriers and therapeutic or diagnostic agents compared to conventional antibodies. In this systematic review, we will focus on the basic concepts concerning the use of cell-targeting peptides (CTPs), following the approaches of selecting them from peptide libraries. We discuss several developed strategies for cell-specific delivery of different cargos by CTPs, which are designed for drug delivery and diagnostic applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. qPCR in gastrointestinal stromal tumors: Evaluation of reference genes and expression analysis of KIT and the alternative receptor tyrosine kinases FLT3, CSF1-R, PDGFRB, MET and AXL

    PubMed Central

    2010-01-01

    Background Gastrointestinal stromal tumors (GIST) represent the most common mesenchymal tumors of the gastrointestinal tract. About 85% carry an activating mutation in the KIT or PDGFRA gene. Approximately 10% of GIST are so-called wild type GIST (wt-GIST) without mutations in the hot spots. In the present study we evaluated appropriate reference genes for the expression analysis of formalin-fixed, paraffin-embedded and fresh frozen samples from gastrointestinal stromal tumors. We evaluated the gene expression of KIT as well as of the alternative receptor tyrosine kinase genes FLT3, CSF1-R, PDGFRB, AXL and MET by qPCR. wt-GIST were compared to samples with mutations in KIT exon 9 and 11 and PDGFRA exon 18 in order to evaluate whether overexpression of these alternative RTK might contribute to the pathogenesis of wt-GIST. Results Gene expression variability of the pooled cDNA samples is much lower than the single reverse transcription cDNA synthesis. By combining the lowest variability values of fixed and fresh tissue, the genes POLR2A, PPIA, RPLPO and TFRC were chosen for further analysis of the GIST samples. Overexpression of KIT compared to the corresponding normal tissue was detected in each GIST subgroup except in GIST with PDGFRA exon 18 mutation. Comparing our sample groups, no significant differences in the gene expression levels of FLT3, CSF1R and AXL were determined. An exception was the sample group with KIT exon 9 mutation. A significantly reduced expression of CSF1R, FLT3 and PDGFRB compared to the normal tissue was detected. GIST with mutations in KIT exon 9 and 11 and in PDGFRA exon 18 showed a significant PDGFRB downregulation. Conclusions As the variability of expression levels for the reference genes is very high comparing fresh frozen and formalin-fixed tissue there is a strong need for validation in each tissue type. None of the alternative receptor tyrosine kinases analyzed is associated with the pathogenesis of wild-type or mutated GIST. It

  19. Ligands targeting the excitatory amino acid transporters (EAATs).

    PubMed

    Dunlop, John; Butera, John A

    2006-01-01

    This review provides an overview of ligands for the excitatory amino acid transporters (EAATs), a family of high-affinity glutamate transporters localized to the plasma membrane of neurons and astroglial cells. Ligand development from the perspective of identifying novel and more selective tools for elucidating transporter subtype function, and the potential of transporter ligands in a therapeutic setting are discussed. Acute pharmacological modulation of EAAT activity in the form of linear and conformationally restricted glutamate and aspartate analogs is presented, in addition to recent strategies aimed more toward modulating transporter expression levels, the latter of particular significance to the development of transporter based therapeutics.

  20. Label-free integrative pharmacology on-target of opioid ligands at the opioid receptor family

    PubMed Central

    2013-01-01

    Background In vitro pharmacology of ligands is typically assessed using a variety of molecular assays based on predetermined molecular events in living cells. Many ligands including opioid ligands pose the ability to bind more than one receptor, and can also provide distinct operational bias to activate a specific receptor. Generating an integrative overview of the binding and functional selectivity of ligands for a receptor family is a critical but difficult step in drug discovery and development. Here we applied a newly developed label-free integrative pharmacology on-target (iPOT) approach to systematically survey the selectivity of a library of fifty-five opioid ligands against the opioid receptor family. All ligands were interrogated using dynamic mass redistribution (DMR) assays in both recombinant and native cell lines that express specific opioid receptor(s). The cells were modified with a set of probe molecules to manifest the binding and functional selectivity of ligands. DMR profiles were collected and translated to numerical coordinates that was subject to similarity analysis. A specific set of opioid ligands were then selected for quantitative pharmacology determination. Results Results showed that among fifty-five opioid ligands examined most ligands displayed agonist activity in at least one opioid receptor expressing cell line under different conditions. Further, many ligands exhibited pathway biased agonism. Conclusion We demonstrate that the iPOT effectively sorts the ligands into distinct clusters based on their binding and functional selectivity at the opioid receptor family. PMID:23497702

  1. FLT3L and Plerixafor Combination Increases Hematopoietic Stem Cell Mobilization and Leads to Improved Transplantation Outcome

    PubMed Central

    He, Shun; Chu, Jianhong; Vasu, Sumithira; Deng, Youcai; Yuan, Shunzong; Zhang, Jianying; Fan, Zhijin; Hofmeister, Craig C.; He, Xiaoming; Marsh, Henry C.; Devine, Steven M.; Yu, Jianhua

    2014-01-01

    Hematopoietic stem cell (HSC) transplantation has curative potential for patients with hematological malignancies. Clinically, HSCs derived from mobilized peripheral blood are used more frequently than bone marrow. However, current standard mobilizing agents yield grafts that may not contain sufficient HSCs. Here, using murine models, we discovered that FLT3L synergized with Plerixafor to mobilize phenotypically defined HSCs, and their combination (FP) was superior to G-CSF alone or in combination with Plerixafor (GP). Additionally, FP mobilized more Treg cells, NK cells, and plasmacytoid dendritic cells compared with G-CSF alone or GP. Both syngeneic and allogeneic grafts mobilized by FP led to long-term survival in transplanted mice. Collectively, FP represents a promising novel and potent mobilization regimen with potential clinical application in both the autologous and allogeneic transplantation settings. PMID:24365795

  2. Flt3L-mobilized dendritic cells bearing H2-Kbm1 apoptotic cells do not induce cross-tolerance to CD8+ T cells across a class I MHC mismatched barrier.

    PubMed

    del Rio, Maria-Luisa; Cote-Sierra, Javier; Rodriguez-Barbosa, Jose-Ignacio

    2011-05-01

    Tolerization of allogeneic CD8(+) T cells is still a pending issue in the field of transplantation research to achieve long-term survival. To test whether dendritic cells (DC) bearing allogeneic major histocompatibility complex (MHC) class I mismatched apoptotic cells could induce cross-tolerance to alloreactive CD8(+) T cells, the following experimental strategy was devised. Rag2/γ(c) KO B6 mice were treated with Fms-like tyrosine kinase 3 ligand (Flt3L)-transduced B16 melanoma cells to drive a rapid expansion and mobilization of DC in vivo. Of all DC populations expanded, splenic CD11c(+) CD103(+) CD8α(+) DC were selectively involved in the process of antigen clearance of X-ray irradiated apoptotic thymocytes in vivo. Considering that CD11c(+) CD103(+) CD8α(+) DC selectively take up apoptotic cells and that they are highly specialized in cross-presenting antigen to CD8(+) T cells, we investigated whether B6 mice adoptively transferred with Flt3L-derived DC loaded with donor-derived apoptotic thymocytes could induce tolerance to bm1 skin allografts. Our findings on host anti-donor alloresponse, as revealed by skin allograft survival and cytotoxic T lymphocyte assays, indicated that the administration of syngeneic DC presenting K(bm1) donor-derived allopeptides through the indirect pathway of antigen presentation was not sufficient to induce cross-tolerance to alloreactive CD8(+) T cells responding to bm1 alloantigens in a murine model of skin allograft transplantation across an MHC class I mismatched barrier.

  3. Visualization of bone marrow monocyte mobilization using Cx3cr1gfp/+Flt3L−/− reporter mouse by multiphoton intravital microscopy

    PubMed Central

    Evrard, Maximilien; Chong, Shu Zhen; Devi, Sapna; Chew, Weng Keong; Lee, Bernett; Poidinger, Michael; Ginhoux, Florent; Tan, Suet Mien; Ng, Lai Guan

    2015-01-01

    Monocytes are innate immune cells that play critical roles in inflammation and immune defense. A better comprehension of how monocytes are mobilized and recruited is fundamental to understand their biologic role in disease and steady state. The BM represents a major “checkpoint” for monocyte homeostasis, as it is the primary site for their production and release. Our study determined that the Cx3cr1gfp/+ mouse strain is currently the most ideal model for the visualization of monocyte behavior in the BM by multiphoton intravital microscopy. However, we observed that DCs are also labeled with high levels of GFP and thus, interfere with the accuracy of monocyte tracking in vivo. Hence, we generated a Cx3cr1gfp/+Flt3L−/− reporter mouse and showed that whereas monocyte numbers were not affected, DC numbers were reduced significantly, as DCs but not monocytes depend on Flt3 signaling for their development. We thus verified that mobilization of monocytes from the BM in Cx3cr1gfp/+Flt3L−/− mice is intact in response to LPS. Collectively, our study demonstrates that the Cx3cr1gfp/+Flt3L−/− reporter mouse model represents a powerful tool to visualize monocyte activities in BM and illustrates the potential of a Cx3cr1gfp/+-based, multifunctionality fluorescence reporter approach to dissect monocyte function in vivo. PMID:25516753

  4. The value of molecular stratification for CEBPA(DM) and NPM1(MUT) FLT3(WT) genotypes in older patients with acute myeloid leukaemia.

    PubMed

    Dickson, Glenda J; Bustraan, Sophia; Hills, Robert K; Ali, Akbar; Goldstone, Anthony H; Burnett, Alan K; Linch, David C; Gale, Rosemary E

    2016-02-01

    Older adult patients (≥60 years) with acute myeloid leukaemia (AML) are generally considered to be poor-risk and there is limited information available regarding risk stratification based on molecular characterization in this age group, particularly for the double-mutant CEBPA (CEBPA(DM) ) genotype. To investigate whether a molecular favourable-risk genotype can be identified, we investigated CEBPA, NPM1 and FLT3 status and prognostic impact in a cohort of 301 patients aged 60 years or more with intermediate-risk cytogenetics, all treated intensively. Overall survival (OS) at 1 year was highest in the 12 patients (4%) that were CEBPA(DM) compared to the 76 (28%) with a mutant NPM1 and wild-type FLT3 (NPM1(MUT) FLT3(WT) ) genotype or all other patients (75%, 54%, 33% respectively), with median survival 15·2, 13·6 and 6·6 months, although the benefit was short-term (OS at 3 years 17%, 29%, 12% respectively). Combination of the CEBPA(DM) and NPM1(MUT) FLT3(WT) genotype patients defined a molecular group with favourable prognosis (P < 0·0001 in multivariate analysis), with 57% of patients alive at 1 year compared to 33% for all other patients. Knowledge of genotype in older cytogenetically intermediate-risk patients might influence therapy decisions.

  5. Targeting protein-protein interactions with trimeric ligands: high affinity inhibitors of the MAGUK protein family.

    PubMed

    Nissen, Klaus B; Haugaard-Kedström, Linda M; Wilbek, Theis S; Nielsen, Line S; Åberg, Emma; Kristensen, Anders S; Bach, Anders; Jemth, Per; Strømgaard, Kristian

    2015-01-01

    PDZ domains in general, and those of PSD-95 in particular, are emerging as promising drug targets for diseases such as ischemic stroke. We have previously shown that dimeric ligands that simultaneously target PDZ1 and PDZ2 of PSD-95 are highly potent inhibitors of PSD-95. However, PSD-95 and the related MAGUK proteins contain three consecutive PDZ domains, hence we envisioned that targeting all three PDZ domains simultaneously would lead to more potent and potentially more specific interactions with the MAGUK proteins. Here we describe the design, synthesis and characterization of a series of trimeric ligands targeting all three PDZ domains of PSD-95 and the related MAGUK proteins, PSD-93, SAP-97 and SAP-102. Using our dimeric ligands targeting the PDZ1-2 tandem as starting point, we designed novel trimeric ligands by introducing a PDZ3-binding peptide moiety via a cysteine-derivatized NPEG linker. The trimeric ligands generally displayed increased affinities compared to the dimeric ligands in fluorescence polarization binding experiments and optimized trimeric ligands showed low nanomolar inhibition towards the four MAGUK proteins, thus being the most potent inhibitors described. Kinetic experiments using stopped-flow spectrometry showed that the increase in affinity is caused by a decrease in the dissociation rate of the trimeric ligand as compared to the dimeric ligands, likely reflecting the lower probability of simultaneous dissociation of all three PDZ ligands. Thus, we have provided novel inhibitors of the MAGUK proteins with exceptionally high affinity, which can be used to further elucidate the therapeutic potential of these proteins.

  6. Targeting Protein-Protein Interactions with Trimeric Ligands: High Affinity Inhibitors of the MAGUK Protein Family

    PubMed Central

    Nissen, Klaus B.; Haugaard-Kedström, Linda M.; Wilbek, Theis S.; Nielsen, Line S.; Åberg, Emma; Kristensen, Anders S.; Bach, Anders; Jemth, Per; Strømgaard, Kristian

    2015-01-01

    PDZ domains in general, and those of PSD-95 in particular, are emerging as promising drug targets for diseases such as ischemic stroke. We have previously shown that dimeric ligands that simultaneously target PDZ1 and PDZ2 of PSD-95 are highly potent inhibitors of PSD-95. However, PSD-95 and the related MAGUK proteins contain three consecutive PDZ domains, hence we envisioned that targeting all three PDZ domains simultaneously would lead to more potent and potentially more specific interactions with the MAGUK proteins. Here we describe the design, synthesis and characterization of a series of trimeric ligands targeting all three PDZ domains of PSD-95 and the related MAGUK proteins, PSD-93, SAP-97 and SAP-102. Using our dimeric ligands targeting the PDZ1-2 tandem as starting point, we designed novel trimeric ligands by introducing a PDZ3-binding peptide moiety via a cysteine-derivatized NPEG linker. The trimeric ligands generally displayed increased affinities compared to the dimeric ligands in fluorescence polarization binding experiments and optimized trimeric ligands showed low nanomolar inhibition towards the four MAGUK proteins, thus being the most potent inhibitors described. Kinetic experiments using stopped-flow spectrometry showed that the increase in affinity is caused by a decrease in the dissociation rate of the trimeric ligand as compared to the dimeric ligands, likely reflecting the lower probability of simultaneous dissociation of all three PDZ ligands. Thus, we have provided novel inhibitors of the MAGUK proteins with exceptionally high affinity, which can be used to further elucidate the therapeutic potential of these proteins. PMID:25658767

  7. Selective Akt Inhibitors Synergize with Tyrosine Kinase Inhibitors and Effectively Override Stroma-Associated Cytoprotection of Mutant FLT3-Positive AML Cells

    PubMed Central

    Zhang, Xin; Nelson, Erik; Sattler, Martin; Liu, Feiyang; Nicolais, Maria; Zhang, Jianming; Mitsiades, Constantine; Smith, Robert W.; Stone, Richard; Galinsky, Ilene; Nonami, Atsushi; Griffin, James D.; Gray, Nathanael

    2013-01-01

    Objectives Tyrosine kinase inhibitor (TKI)-treated acute myeloid leukemia (AML) patients commonly show rapid and significant peripheral blood blast cell reduction, however a marginal decrease in bone marrow blasts. This suggests a protective environment and highlights the demand for a better understanding of stromal:leukemia cell communication. As a strategy to improve clinical efficacy, we searched for novel agents capable of potentiating the stroma-diminished effects of TKI treatment of mutant FLT3-expressing cells. Methods We designed a combinatorial high throughput drug screen using well-characterized kinase inhibitor-focused libraries to identify novel kinase inhibitors capable of overriding stromal-mediated resistance to TKIs, such as PKC412 and AC220. Standard liquid culture proliferation assays, cell cycle and apoptosis analysis, and immunoblotting were carried out with cell lines or primary AML to validate putative candidates from the screen and characterize the mechanism(s) underlying observed synergy. Results and Conclusions Our study led to the observation of synergy between selective Akt inhibitors and FLT3 inhibitors against mutant FLT3-positive AML in either the absence or presence of stroma. Our findings are consistent with evidence that Akt activation is characteristic of mutant FLT3-transformed cells, as well as observed residual Akt activity following FLT3 inhibitor treatment. In conclusion, our study highlights the potential importance of Akt as a signaling factor in leukemia survival, and supports the use of the co-culture chemical screen to identify agents able to potentiate TKI anti-leukemia activity in a cytoprotective microenvironment. PMID:23437141

  8. Development of a successive targeting liposome with multi-ligand for efficient targeting gene delivery

    PubMed Central

    Ma, Kun; Shen, Haijun; Shen, Song; Xie, Men; Mao, Chuanbin; Qiu, Liyan; Jin, Yi

    2012-01-01

    Background A successful gene delivery system needs to breakthrough several barriers to allow efficient transgenic expression. In the present study, successive targeting liposomes (STL) were constructed by integrating various targeting groups into a nanoparticle to address this issue. Methods Polyethylenimine (PEI) 1800-triamcinolone acetonide (TA) with nuclear targeting capability was synthesized by a two-step reaction. Lactobionic acid was connected with cholesterol to obtain a compound of [(2-lactoylamido) ethylamino]formic acid cholesterol ester (CHEDLA) with hepatocyte-targeting capability. The liposome was modified with PEI 1800-TA and CHEDLA to prepare successive targeting liposome (STL). Its physicochemical properties and transfection efficiency were investigated both in vitro and in vivo. Results The diameter of STL was approximately 100 nm with 20 mV of potential. The confocal microscopy observation and potential assay verified that lipid bilayer of STL was decorated with PEI 1800-TA. Cytotoxicity of STL was significantly lower than that of PEI 1800-TA and PEI 25K. The transfection efficiency of 10% CHEDLA STL in HepG2 cells was the higher than of the latter two with serum. Its transfection efficiency was greatly reduced with excessive free galactose, indicating that STL was absorbed via galactose receptor-mediated endocytosis. The in vivo study in mice showed that 10% CHEDLA STL had better transgenic expression in liver than the other carriers. Conclusions STL with multi-ligand was able to overcome the various barriers to target nucleus and special cells and present distinctive transgenic expression. Therefore, it has a great potential for gene therapy as a nonviral carrier. PMID:21574214

  9. Measurement of Ligand-Target Residence Times by (1)H Relaxation Dispersion NMR Spectroscopy.

    PubMed

    Moschen, Thomas; Grutsch, Sarina; Juen, Michael A; Wunderlich, Christoph H; Kreutz, Christoph; Tollinger, Martin

    2016-12-08

    A ligand-observed (1)H NMR relaxation experiment is introduced for measuring the binding kinetics of low-molecular-weight compounds to their biomolecular targets. We show that this approach, which does not require any isotope labeling, is applicable to ligand-target systems involving proteins and nucleic acids of variable molecular size. The experiment is particularly useful for the systematic investigation of low affinity molecules with residence times in the micro- to millisecond time regime.

  10. Theranostic nanoparticles carrying doxorubicin attenuate targeting ligand specific antibody responses following systemic delivery.

    PubMed

    Yang, Emmy; Qian, Weiping; Cao, Zehong; Wang, Liya; Bozeman, Erica N; Ward, Christina; Yang, Bin; Selvaraj, Periasamy; Lipowska, Malgorzata; Wang, Y Andrew; Mao, Hui; Yang, Lily

    2015-01-01

    Understanding the effects of immune responses on targeted delivery of nanoparticles is important for clinical translations of new cancer imaging and therapeutic nanoparticles. In this study, we found that repeated administrations of magnetic iron oxide nanoparticles (IONPs) conjugated with mouse or human derived targeting ligands induced high levels of ligand specific antibody responses in normal and tumor bearing mice while injections of unconjugated mouse ligands were weakly immunogenic and induced a very low level of antibody response in mice. Mice that received intravenous injections of targeted and polyethylene glycol (PEG)-coated IONPs further increased the ligand specific antibody production due to differential uptake of PEG-coated nanoparticles by macrophages and dendritic cells. However, the production of ligand specific antibodies was markedly inhibited following systemic delivery of theranostic nanoparticles carrying a chemotherapy drug, doxorubicin. Targeted imaging and histological analysis revealed that lack of the ligand specific antibodies led to an increase in intratumoral delivery of targeted nanoparticles. Results of this study support the potential of further development of targeted theranostic nanoparticles for the treatment of human cancers.

  11. Theranostic Nanoparticles Carrying Doxorubicin Attenuate Targeting Ligand Specific Antibody Responses Following Systemic Delivery

    PubMed Central

    Yang, Emmy; Qian, Weiping; Cao, Zehong; Wang, Liya; Bozeman, Erica N.; Ward, Christina; Yang, Bin; Selvaraj, Periasamy; Lipowska, Malgorzata; Wang, Y. Andrew; Mao, Hui; Yang, Lily

    2015-01-01

    Understanding the effects of immune responses on targeted delivery of nanoparticles is important for clinical translations of new cancer imaging and therapeutic nanoparticles. In this study, we found that repeated administrations of magnetic iron oxide nanoparticles (IONPs) conjugated with mouse or human derived targeting ligands induced high levels of ligand specific antibody responses in normal and tumor bearing mice while injections of unconjugated mouse ligands were weakly immunogenic and induced a very low level of antibody response in mice. Mice that received intravenous injections of targeted and polyethylene glycol (PEG)-coated IONPs further increased the ligand specific antibody production due to differential uptake of PEG-coated nanoparticles by macrophages and dendritic cells. However, the production of ligand specific antibodies was markedly inhibited following systemic delivery of theranostic nanoparticles carrying a chemotherapy drug, doxorubicin. Targeted imaging and histological analysis revealed that lack of the ligand specific antibodies led to an increase in intratumoral delivery of targeted nanoparticles. Results of this study support the potential of further development of targeted theranostic nanoparticles for the treatment of human cancers. PMID:25553097

  12. Death ligands designed to kill: development and application of targeted cancer therapeutics based on proapoptotic TNF family ligands.

    PubMed

    Gerspach, Jeannette; Wajant, Harald; Pfizenmaier, Klaus

    2009-01-01

    The identification of molecular markers associated with cancer development or progression, opened a new era in the development of therapeutics. The successful introduction of a few low molecular weight chemicals and recombinant protein therapeutics with targeted actions into clinical practice have raised great expectations to broadly improve cancer therapy with respect to both overall clinical responses and tolerability. Targeting the apoptotic machinery of malignant cells is an attractive concept to combat cancer, which is currently exploited for the proapoptotic members of the TNF ligand family at various stages of preclinical and clinical development. This review summarizes recent progress in this rapidly progressing field of "biologic" therapies targeting the death receptors of TNF, CD95L, and TRAIL by means of its cognate protein ligands, receptor specific antibodies, and gene therapeutic approaches. Preclinical data on newly derived variants and fusion proteins based on these death ligands, designed to act in a tumor restricted manner, thereby preventing a systemic, potentially harmful action, will also be discussed.

  13. NALDB: nucleic acid ligand database for small molecules targeting nucleic acid.

    PubMed

    Kumar Mishra, Subodh; Kumar, Amit

    2016-01-01

    Nucleic acid ligand database (NALDB) is a unique database that provides detailed information about the experimental data of small molecules that were reported to target several types of nucleic acid structures. NALDB is the first ligand database that contains ligand information for all type of nucleic acid. NALDB contains more than 3500 ligand entries with detailed pharmacokinetic and pharmacodynamic information such as target name, target sequence, ligand 2D/3D structure, SMILES, molecular formula, molecular weight, net-formal charge, AlogP, number of rings, number of hydrogen bond donor and acceptor, potential energy along with their Ki, Kd, IC50 values. All these details at single platform would be helpful for the development and betterment of novel ligands targeting nucleic acids that could serve as a potential target in different diseases including cancers and neurological disorders. With maximum 255 conformers for each ligand entry, our database is a multi-conformer database and can facilitate the virtual screening process. NALDB provides powerful web-based search tools that make database searching efficient and simplified using option for text as well as for structure query. NALDB also provides multi-dimensional advanced search tool which can screen the database molecules on the basis of molecular properties of ligand provided by database users. A 3D structure visualization tool has also been included for 3D structure representation of ligands. NALDB offers an inclusive pharmacological information and the structurally flexible set of small molecules with their three-dimensional conformers that can accelerate the virtual screening and other modeling processes and eventually complement the nucleic acid-based drug discovery research. NALDB can be routinely updated and freely available on bsbe.iiti.ac.in/bsbe/naldb/HOME.php. Database URL: http://bsbe.iiti.ac.in/bsbe/naldb/HOME.php.

  14. NALDB: nucleic acid ligand database for small molecules targeting nucleic acid

    PubMed Central

    Kumar Mishra, Subodh; Kumar, Amit

    2016-01-01

    Nucleic acid ligand database (NALDB) is a unique database that provides detailed information about the experimental data of small molecules that were reported to target several types of nucleic acid structures. NALDB is the first ligand database that contains ligand information for all type of nucleic acid. NALDB contains more than 3500 ligand entries with detailed pharmacokinetic and pharmacodynamic information such as target name, target sequence, ligand 2D/3D structure, SMILES, molecular formula, molecular weight, net-formal charge, AlogP, number of rings, number of hydrogen bond donor and acceptor, potential energy along with their Ki, Kd, IC50 values. All these details at single platform would be helpful for the development and betterment of novel ligands targeting nucleic acids that could serve as a potential target in different diseases including cancers and neurological disorders. With maximum 255 conformers for each ligand entry, our database is a multi-conformer database and can facilitate the virtual screening process. NALDB provides powerful web-based search tools that make database searching efficient and simplified using option for text as well as for structure query. NALDB also provides multi-dimensional advanced search tool which can screen the database molecules on the basis of molecular properties of ligand provided by database users. A 3D structure visualization tool has also been included for 3D structure representation of ligands. NALDB offers an inclusive pharmacological information and the structurally flexible set of small molecules with their three-dimensional conformers that can accelerate the virtual screening and other modeling processes and eventually complement the nucleic acid-based drug discovery research. NALDB can be routinely updated and freely available on bsbe.iiti.ac.in/bsbe/naldb/HOME.php. Database URL: http://bsbe.iiti.ac.in/bsbe/naldb/HOME.php PMID:26896846

  15. PPAR Ligands Function as Suppressors That Target Biological Actions of HMGB1

    PubMed Central

    Chen, Tianhui

    2016-01-01

    High mobility group box 1 (HMGB1), which has become one of the most intriguing molecules in inflammatory disorders and cancers and with which ligand-activated peroxisome proliferator-activated receptors (PPARs) are highly associated, is considered as a therapeutic target. Of particular interest is the fact that certain PPAR ligands have demonstrated their potent anti-inflammatory activities and potential anticancer effects. In this review article we summarize recent experimental evidence that PPAR ligands function as suppressors that target biological actions of HMGB1, including intracellular expression, receptor signaling cascades, and extracellular secretion of HMGB1 in cell lines and/or animal models. We also propose the possible mechanisms underlying PPAR involvement in inflammatory disorders and discuss the future therapeutic value of PPAR ligands targeting HMGB1 molecule for cancer prevention and treatment. PMID:27563308

  16. Key Targets for Multi-Target Ligands Designed to Combat Neurodegeneration

    PubMed Central

    Ramsay, Rona R.; Majekova, Magdalena; Medina, Milagros; Valoti, Massimo

    2016-01-01

    HIGHLIGHTS Compounds that interact with multiple targets but minimally with the cytochrome P450 system (CYP) address the many factors leading to neurodegeneration.Acetyl- and Butyryl-cholineEsterases (AChE, BChE) and Monoamine Oxidases A/B (MAO A, MAO B) are targets for Multi-Target Designed Ligands (MTDL).ASS234 is an irreversible inhibitor of MAO A >MAO B and has micromolar potency against the cholinesterases.ASS234 is a poor CYP substrate in human liver, yielding the depropargylated metabolite.SMe1EC2, a stobadine derivative, showed high radical scavenging property, in vitro and in vivo giving protection in head trauma and diabetic damage of endothelium.Control of mitochondrial function and morphology by manipulating fission and fusion is emerging as a target area for therapeutic strategies to decrease the pathological outcome of neurodegenerative diseases. Growing evidence supports the view that neurodegenerative diseases have multiple and common mechanisms in their aetiologies. These multifactorial aspects have changed the broadly common assumption that selective drugs are superior to “dirty drugs” for use in therapy. This drives the research in studies of novel compounds that might have multiple action mechanisms. In neurodegeneration, loss of neuronal signaling is a major cause of the symptoms, so preservation of neurotransmitters by inhibiting the breakdown enzymes is a first approach. Acetylcholinesterase (AChE) inhibitors are the drugs preferentially used in AD and that one of these, rivastigmine, is licensed also for PD. Several studies have shown that monoamine oxidase (MAO) B, located mainly in glial cells, increases with age and is elevated in Alzheimer (AD) and Parkinson's Disease's (PD). Deprenyl, a MAO B inhibitor, significantly delays the initiation of levodopa treatment in PD patients. These indications underline that AChE and MAO are considered a necessary part of multi-target designed ligands (MTDL). However, both of these targets are

  17. Evaluation of the novel algorithm of flexible ligand docking with moveable target-protein atoms.

    PubMed

    Sulimov, Alexey V; Zheltkov, Dmitry A; Oferkin, Igor V; Kutov, Danil C; Katkova, Ekaterina V; Tyrtyshnikov, Eugene E; Sulimov, Vladimir B

    2017-01-01

    We present the novel docking algorithm based on the Tensor Train decomposition and the TT-Cross global optimization. The algorithm is applied to the docking problem with flexible ligand and moveable protein atoms. The energy of the protein-ligand complex is calculated in the frame of the MMFF94 force field in vacuum. The grid of precalculated energy potentials of probe ligand atoms in the field of the target protein atoms is not used. The energy of the protein-ligand complex for any given configuration is computed directly with the MMFF94 force field without any fitting parameters. The conformation space of the system coordinates is formed by translations and rotations of the ligand as a whole, by the ligand torsions and also by Cartesian coordinates of the selected target protein atoms. Mobility of protein and ligand atoms is taken into account in the docking process simultaneously and equally. The algorithm is realized in the novel parallel docking SOL-P program and results of its performance for a set of 30 protein-ligand complexes are presented. Dependence of the docking positioning accuracy is investigated as a function of parameters of the docking algorithm and the number of protein moveable atoms. It is shown that mobility of the protein atoms improves docking positioning accuracy. The SOL-P program is able to perform docking of a flexible ligand into the active site of the target protein with several dozens of protein moveable atoms: the native crystallized ligand pose is correctly found as the global energy minimum in the search space with 157 dimensions using 4700 CPU ∗ h at the Lomonosov supercomputer.

  18. Rational and modular design of potent ligands targeting the RNA that causes myotonic dystrophy 2.

    PubMed

    Lee, Melissa M; Pushechnikov, Alexei; Disney, Matthew D

    2009-05-15

    Most ligands targeting RNA are identified through screening a therapeutic target for binding members of a ligand library. A potential alternative way to construct RNA binders is through rational design using information about the RNA motifs ligands prefer to bind. Herein, we describe such an approach to design modularly assembled ligands targeting the RNA that causes myotonic dystrophy type 2 (DM2), a currently untreatable disease. A previous study identified that 6'-N-5-hexynoate kanamycin A (1) prefers to bind 2x2 nucleotide, pyrimidine-rich RNA internal loops. Multiple copies of such loops are found in the RNA hairpin that causes DM2. The 1 ligand was then modularly displayed on a peptoid scaffold with varied number and spacing to target several internal loops simultaneously. Modularly assembled ligands were tested for binding to a series of RNAs and for inhibiting the formation of the toxic DM2 RNA-muscleblind protein (MBNL-1) interaction. The most potent ligand displays three 1 modules, each separated by four spacing submonomers, and inhibits the formation of the RNA-protein complex with an IC(50) of 25 nM. This ligand has higher affinity and is more specific for binding the DM2 RNA than MBNL-1. It binds the DM2 RNA at least 30 times more tightly than related RNAs and 15-fold more tightly than MBNL-1. A related control peptoid displaying 6'-N-5-hexynoate neamine (2) is >100-fold less potent at inhibiting the RNA-protein interaction and binds to DM2 RNA >125-fold more weakly. Uptake studies into a mouse myoblast cell line also show that the most potent ligand is cell permeable.

  19. Tandem duplication PCR: an ultra-sensitive assay for the detection of internal tandem duplications of the FLT3 gene

    PubMed Central

    Lin, Ming-Tseh; Tseng, Li-Hui; Beierl, Katie; Hsieh, Antony; Thiess, Michele; Chase, Nadine; Stafford, Amanda; Levis, Mark J.; Eshleman, James R.; Gocke, Christopher D.

    2013-01-01

    Internal tandem duplication (ITD) mutations of the FLT3 gene have been associated with a poor prognosis in acute myeloid leukemia (AML). Detection of ITD-positive minor clones at the initial diagnosis and during the minimal residual disease (MRD) stage may be essential. We previously designed a delta-PCR strategy to improve the sensitivity to 0.1% ITD-positive leukemia cells and showed that minor mutants with an allele burden of less than 1% can be clinically significant. In this study, we report on tandem duplication PCR (TD-PCR), a modified inverse PCR assay, and demonstrate a limit of detection of a few molecules of ITD mutants. The TD-PCR was initially designed to confirm ITD mutation of an amplicon which was undetectable by capillary electrophoresis and was incidentally isolated by a molecular fraction collecting tool. Subsequently, TD-PCR detected ITD mutation in 2 of 77 patients previously reported as negative for ITD mutation by a standard PCR assay. TD-PCR can also potentially be applied to monitor MRD with high analytic sensitivity in a portion of ITD-positive AML patients. Further studies using TD-PCR to detect ITD mutants at diagnosis may clarify the clinical significance of those ITD mutants with extremely low allele burden. PMID:23846441

  20. Novel ligands that target the mitochondrial membrane protein mitoNEET.

    PubMed

    Bieganski, Robert M; Yarmush, Martin L

    2011-06-01

    Ligands of the thiazolidinedione (TZD) class of compounds, pioglitazone (Actos™) and rosiglitazone (Avandia™) are currently approved for treatment of type 2 diabetes and are known to bind to the PPAR-γ nuclear receptor subtype. Recent evidence suggesting PPAR-γ independent action of the TZDs led to the discovery of a novel integral outer mitochondrial membrane protein, mitoNEET. In spite of the several reported X-ray crystal structures of the unbound form of mitoNEET, the location and nature of the mitoNEET ligand binding sites (LBS) remain unknown. In this study, a molecular blind docking (BD) method was used to discover potential mitoNEET LBS and novel ligands, utilizing the program AutoDock Vina (v 1.0.2). Validation of BD was performed on the PPAR-γ receptor (PDB ID: 1ZGY) with the test compound rosiglitazone, demonstrating that the binding conformation of rosiglitazone determined by AutoDock Vina matches well with that of the cocrystallized ligand (root mean square deviation of the heavy atoms 1.45Å). The locations and a general ligand binding interaction model for the LBS were determined, leading to the discovery of novel mitoNEET ligands. An in vitro fluorescence binding assay utilizing purified recombinant mitoNEET protein was used to determine the binding affinity of a predicted mitoNEET ligand, and the data obtained is in good agreement with AutoDock Vina results. The discovery of potential mitoNEET ligand binding sites and novel ligands, opens up the possibility for detailed structural studies of mitoNEET-ligand complexes, as well as rational design of novel ligands specifically targeted for mitoNEET.

  1. AKT1 induces caspase-mediated cleavage of the CDK inhibitor p27Kip1 during cell cycle progression in leukemia cells transformed by FLT3-ITD

    PubMed Central

    Yang, Xinping; Liu, Suiyang; Kharbanda, Surender; Stone, Richard M

    2011-01-01

    p27Kip1 cleavage and caspase-3 regulate cell cycle in human myeloma cells and B cells however regulation of p27Kip1 cleavage during the cell cycle is not known. In BaF3-FLT3-ITD cells, p27Kip1 undergoes C-terminal cleavage. Inhibition of the PI3K/AKT pathway is associated with decreased cleavage of p27Kip1 and G1 phase arrest. The caspase-3 inhibitor reduces p27Kip1 cleavage and inhibits cell proliferation. Knockdown shRNA against AKT1 reduces cleavage of p27Kip1, inhibits caspase-3 activation, and is associated with a delay in cell cycle progression. Taken together, these findings indicate that AKT1 induces caspase-mediated cleavage of p27Kip1, required for G1-S progression in FLT3-ITD cells. PMID:22142798

  2. PML-RARα kinetics and impact of FLT3-ITD mutations in newly diagnosed acute promyelocytic leukaemia treated with ATRA and ATO or ATRA and chemotherapy.

    PubMed

    Cicconi, L; Divona, M; Ciardi, C; Ottone, T; Ferrantini, A; Lavorgna, S; Alfonso, V; Paoloni, F; Piciocchi, A; Avvisati, G; Ferrara, F; Di Bona, E; Albano, F; Breccia, M; Cerqui, E; Sborgia, M; Kropp, M G; Santoro, A; Levis, A; Sica, S; Amadori, S; Voso, M T; Mandelli, F; Lo-Coco, F

    2016-10-01

    The APL0406 study showed that arsenic trioxide (ATO) and all-trans retinoic acid (ATRA) are not inferior to standard ATRA and chemotherapy (CHT) in newly diagnosed, low-intermediaterisk acute promyelocytic leukaemia (APL). We analysed the kinetics of promyelocytic leukaemia-retinoic acid receptor-α (PML-RARα) transcripts by real-time quantitative PCR (RQ-PCR) in bone marrow samples from 184 patients and assessed the prognostic impact of fms-related tyrosine kinase 3-internal tandem duplication (FLT3-ITD) in 159 patients enrolled in this trial in Italy. After induction therapy, the reduction of PML-RARα transcripts was significantly greater in patients receiving ATRA-CHT as compared with those treated with ATRA-ATO (3.4 vs 2.9 logs; P=0.0182). Conversely, at the end of consolidation, a greater log reduction of PML-RARα transcripts was detected in the ATRA-ATO as compared with the ATRA-CHT group (6.3 vs 5.3 logs; P=0.0024). FLT3-ITD mutations had no significant impact on either event-free survival (EFS) or cumulative incidence of relapse in patients receiving ATRA-ATO, whereas a trend for inferior EFS was observed in FLT3-ITD-positive patients receiving ATRA-CHT. Our study shows at the molecular level that ATRA-ATO exerts at least equal and probably superior antileukaemic efficacy compared with ATRA-CHT in low-intermediaterisk APL. The data also suggest that ATRA-ATO may abrogate the negative prognostic impact of FLT3-ITD.

  3. Allogeneic Hematopoietic Cell Transplantation in Intermediate Risk Acute Myeloid Leukemia negative for FLT3-ITD, NPM1- or biallelic CEBPA Mutations.

    PubMed

    Heidrich, K; Thiede, C; Schäfer-Eckart, K; Schmitz, N; Aulitzky, W E; Krämer, A; Rösler, W; Hänel, M; Einsele, H; Baldus, C D; Trappe, R U; Stölzel, F; Middeke, J M; Röllig, C; Taube, F; Kramer, M; Serve, H; Berdel, W E; Ehninger, G; Bornhäuser, M; Schetelig, J

    2017-09-01

    The value of allogeneic hematopoietic cell transplantation (alloHCT) as post-remission treatment is not well defined for patients with intermediate-risk acute myeloid leukemia (AML) without FLT3 -ITD, biallelic CEBPA -, or NPM1 mutations (here referred to as NPM1 mut-neg / CEBPA dm-neg / FLT3 -ITD neg AML) in first complete remission (CR1). We addressed this question using data from two prospective randomized controlled trials on intensive induction- and risk-stratified post-remission therapy The NPM1 mut-neg / CEBPA dm-neg / FLT3 -ITD neg AML subgroup comprised 497 patients, aged 18-60 years. In donor versus no-donor analyses, patients with a matched related donor had a longer relapse-free survival (RFS) (HR 0.5; 95%-CI, 0.3 - 0.9, p =  .02) and a trend towards better overall survival (OS) (HR 0.6, 95%-CI, 0.3 - 1.1, p =  .08) compared to patients who received post-remission chemotherapy. Notably, only 58% of patients in the donor group were transplanted in CR1. We therefore complemented the donor versus no-donor analysis with multivariable Cox regression analyses, where alloHCT was tested as a time-dependent covariate: OS (HR 0.58, 95%-CI, 0.37 - 0.9, p =  .02) and RFS (HR 0.51; 95%-CI, 0.34 - 0.76; p =  .001) for patients who received alloHCT compared to chemotherapy in CR1 were significantly longer. Outside clinical trials, alloHCT should be the preferred post-remission treatment for patients with intermediate risk NPM1 mut-neg /CEBPA dm-neg /FLT3-ITD neg AML in CR1.

  4. High rate of hematological responses to sorafenib in FLT3-ITD acute myeloid leukemia relapsed after allogeneic hematopoietic stem cell transplantation.

    PubMed

    De Freitas, Tiago; Marktel, Sarah; Piemontese, Simona; Carrabba, Matteo G; Tresoldi, Cristina; Messina, Carlo; Lupo Stanghellini, Maria Teresa; Assanelli, Andrea; Corti, Consuelo; Bernardi, Massimo; Peccatori, Jacopo; Vago, Luca; Ciceri, Fabio

    2016-06-01

    Relapse represents the most significant cause of failure of allogeneic hematopoietic stem cell transplantation (HSCT) for FLT3-ITD-positive acute myeloid leukemia (AML), and available therapies are largely unsatisfactory. In this study, we retrospectively collected data on the off-label use of the tyrosine kinase inhibitor sorafenib, either alone or in association with hypomethylating agents and adoptive immunotherapy, in 13 patients with post-transplantation FLT3-ITD-positive AML relapses. Hematological response was documented in 12 of 13 patients (92%), and five of 13 (38%) achieved complete bone marrow remission. Treatment was overall manageable in the outpatient setting, although all patients experienced significant adverse events, especially severe cytopenias (requiring a donor stem cell boost in five patients) and typical hand-foot syndrome. None of the patients developed graft-vs.-host disease following sorafenib alone, whereas this was frequently observed when this was given in association with donor T-cell infusions. Six patients are alive and in remission at the last follow-up, and four could be bridged to a second allogeneic HSCT, configuring a 65 ± 14% overall survival at 100 d from relapse. Taken together, our data suggest that sorafenib might represent a valid treatment option for patients with FLT3-ITD-positive post-transplantation relapses, manageable also in combination with other therapeutic strategies.

  5. Characterizing and Overriding the Structural Mechanism of the Quizartinib-resistant FLT3 “Gatekeeper” F691L Mutation with PLX3397

    PubMed Central

    Smith, Catherine C.; Zhang, Chao; Lin, Kimberly; Lasater, Elisabeth A.; Zhang, Ying; Massi, Evan; Damon, Lauren E.; Pendleton, Matthew; Bashir, Ali; Sebra, Robert; Perl, Alexander; Kasarskis, Andrew; Shellooe, Rafe; Tsang, Garson; Carias, Heidi; Powell, Ben; Burton, Elizabeth A.; Matusow, Bernice; Zhang, Jiazhong; Spevak, Wayne; Ibrahim, Prabha N.; Le, Mai H.; Hsu, Henry H.; Habets, Gaston; West, Brian L.; Bollag, Gideon; Shah, Neil P.

    2015-01-01

    Tyrosine kinase domain mutations are a common cause of acquired clinical resistance to tyrosine kinase inhibitors (TKIs) used to treat cancer, including the FLT3 inhibitor quizartinib. Mutation of kinase “gatekeeper” residues, which control access to an allosteric pocket adjacent to the ATP-binding site, have been frequently implicated in TKI resistance. The molecular underpinnings of gatekeeper mutation-mediated resistance are incompletely understood. We report the first co-crystal structure of FLT3 with the TKI quizartinib, which demonstrates that quizartinib binding relies on essential edge-to-face aromatic interactions with the gatekeeper F691 residue, and F830 within the highly conserved DFG motif in the activation loop. This reliance makes quizartinib critically vulnerable to gatekeeper and activation loop substitutions while minimizing the impact of mutations elsewhere. Moreover, we identify PLX3397, a novel FLT3 inhibitor that retains activity against the F691L mutant due to a binding mode that depends less vitally on specific interactions with the gatekeeper position. PMID:25847190

  6. Functionalization of iron oxide magnetic nanoparticles with targeting ligands: their physicochemical properties and in vivo behavior.

    PubMed

    Fang, Chen; Veiseh, Omid; Kievit, Forrest; Bhattarai, Narayan; Wang, Freddy; Stephen, Zach; Li, Chun; Lee, Donghoon; Ellenbogen, Richard G; Zhang, Miqin

    2010-11-01

    To develop and evaluate two tumor-specific nanoprobes by functionalization of a polyethylene glycol-immobilized nanoparticle with arginine-glycine-aspartic acid (RGD) or chlorotoxin ligand that targets α(v)β(3) integrin and matrix metalloproteinase-2 receptors, respectively. The nanoprobes were made of iron oxide cores, biocompatible polymer coating, and surface-conjugated RGD or chlorotoxin peptide. The tumor-targeting specificity of the nanoprobes was evaluated both in vitro and in vivo. Both nanoprobes were highly dispersive and exhibited excellent long-term stability in cell culture media. The RGD-conjugated nanoprobe displayed a strong initial accumulation near neovasculatures in tumors followed by quick clearance. Conversely, the chlorotoxin-enabled nanoprobe exhibited sustained accumulation throughout the tumor. These findings revealed the influence of the targeting ligands on the intratumoral distribution of the ligand-enabled nanoprobes. With flexible surface chemistry, our nanoparticle platform can be used in a modular fashion to conjugate biomolecules for intended applications.

  7. Discovery of Key Physicochemical, Structural, and Spatial Properties of RNA-Targeted Bioactive Ligands.

    PubMed

    Morgan, Brittany S; Forte, Jordan E; Culver, Rebecca N; Zhang, Yuqi; Hargrove, Amanda E

    2017-10-16

    While a myriad non-coding RNAs are known to be essential in cellular processes and misregulated in diseases, the development of RNA-targeted small molecule probes has met with limited success. To elucidate the guiding principles for selective small molecule/RNA recognition, we analyzed cheminformatic and shape-based descriptors for 104 RNA-targeted ligands with demonstrated biological activity (RNA-targeted BIoactive ligaNd Database, R-BIND). We then compared R-BIND to both FDA-approved small molecule drugs and RNA ligands without reported bioactivity. Several striking trends emerged for bioactive RNA ligands, including: 1) Compliance to medicinal chemistry rules, 2) distinctive structural features, and 3) enrichment in rod-like shapes over others. This work provides unique insights that directly facilitate the selection and synthesis of RNA-targeted libraries with the goal of efficiently identifying selective small molecule ligands for therapeutically relevant RNAs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Aptamers: Active Targeting Ligands for Cancer Diagnosis and Therapy

    PubMed Central

    Wu, Xu; Chen, Jiao; Wu, Min; Zhao, Julia Xiaojun

    2015-01-01

    Aptamers, including DNA, RNA and peptide aptamers, are a group of promising recognition units that can specifically bind to target molecules and cells. Due to their excellent specificity and high affinity to targets, aptamers have attracted great attention in various fields in which selective recognition units are required. They have been used in biosensing, drug delivery, disease diagnosis and therapy (especially for cancer treatment). In this review, we summarized recent applications of DNA and RNA aptamers in cancer theranostics. The specific binding ability of aptamers to cancer-related markers and cancer cells ensured their high performance for early diagnosis of cancer. Meanwhile, the efficient targeting ability of aptamers to cancer cells and tissues provided a promising way to deliver imaging agents and drugs for cancer imaging and therapy. Furthermore, with the development of nanoscience and nanotechnology, the conjugation of aptamers with functional nanomaterials paved an exciting way for the fabrication of theranostic agents for different types of cancers, which might be a powerful tool for cancer treatment. PMID:25699094

  9. Aptamers: active targeting ligands for cancer diagnosis and therapy.

    PubMed

    Wu, Xu; Chen, Jiao; Wu, Min; Zhao, Julia Xiaojun

    2015-01-01

    Aptamers, including DNA, RNA and peptide aptamers, are a group of promising recognition units that can specifically bind to target molecules and cells. Due to their excellent specificity and high affinity to targets, aptamers have attracted great attention in various fields in which selective recognition units are required. They have been used in biosensing, drug delivery, disease diagnosis and therapy (especially for cancer treatment). In this review, we summarized recent applications of DNA and RNA aptamers in cancer theranostics. The specific binding ability of aptamers to cancer-related markers and cancer cells ensured their high performance for early diagnosis of cancer. Meanwhile, the efficient targeting ability of aptamers to cancer cells and tissues provided a promising way to deliver imaging agents and drugs for cancer imaging and therapy. Furthermore, with the development of nanoscience and nanotechnology, the conjugation of aptamers with functional nanomaterials paved an exciting way for the fabrication of theranostic agents for different types of cancers, which might be a powerful tool for cancer treatment.

  10. Chromodomain Ligand Optimization via Target-Class Directed Combinatorial Repurposing.

    PubMed

    Barnash, Kimberly D; Lamb, Kelsey N; Stuckey, Jacob I; Norris, Jacqueline L; Cholensky, Stephanie H; Kireev, Dmitri B; Frye, Stephen V; James, Lindsey I

    2016-09-16

    Efforts to develop strategies for small-molecule chemical probe discovery against the readers of the methyl-lysine (Kme) post-translational modification have been met with limited success. Targeted disruption of these protein-protein interactions via peptidomimetic inhibitor optimization is a promising alternative to small-molecule hit discovery; however, recognition of identical peptide motifs by multiple Kme reader proteins presents a unique challenge in the development of selective Kme reader chemical probes. These selectivity challenges are exemplified by the Polycomb repressive complex 1 (PRC1) chemical probe, UNC3866, which demonstrates submicromolar off-target affinity toward the non-PRC1 chromodomains CDYL2 and CDYL. Moreover, since peptidomimetics are challenging subjects for structure-activity relationship (SAR) studies, traditional optimization of UNC3866 would prove costly and time-consuming. Herein, we report a broadly applicable strategy for the affinity-based, target-class screening of chromodomains via the repurposing of UNC3866 in an efficient, combinatorial peptide library. A first-generation library yielded UNC4991, a UNC3866 analogue that exhibits a distinct selectivity profile while maintaining submicromolar affinity toward the CDYL chromodomains. Additionally, in vitro pull-down experiments from HeLa nuclear lysates further demonstrate the selectivity and utility of this compound for future elucidation of CDYL protein function.

  11. Ligand-based targeted therapy: a novel strategy for hepatocellular carcinoma

    PubMed Central

    Li, Min; Zhang, Weiyue; Wang, Birong; Gao, Yang; Song, Zifang; Zheng, Qi Chang

    2016-01-01

    Hepatocellular carcinoma (HCC) is the most common primary liver cancer with high morbidity and mortality worldwide. Chemotherapy is recommended to patients with intermediate or advanced stage cancer. However, the conventional chemotherapy yields low desired response rates due to multidrug resistance, fast clearance rate, nonspecific delivery, severe side effects, low drug concentration in cancer cells, and so on. Nanoparticle-mediated targeted drug delivery system can surmount the aforementioned obstacles through enhanced permeability and retention effect and active targeting as a novel approach of therapeutics for HCC in recent years. The active targeting is triggered by ligands on the delivery system, which recognize with and internalize into hepatoma cells with high specificity and efficiency. This review focuses on the latest targeted delivery systems for HCC and summarizes the ligands that can enhance the capacity of active targeting, to provide some insight into future research in nanomedicine for HCC. PMID:27920520

  12. Haematopoietic cell transplantation with and without sorafenib maintenance for patients with FLT3-ITD acute myeloid leukaemia in first complete remission.

    PubMed

    Brunner, Andrew M; Li, Shuli; Fathi, Amir T; Wadleigh, Martha; Ho, Vincent T; Collier, Kerry; Connolly, Christine; Ballen, Karen K; Cutler, Corey S; Dey, Bimalangshu R; El-Jawahri, Areej; Nikiforow, Sarah; McAfee, Steven L; Koreth, John; Deangelo, Daniel J; Alyea, Edwin P; Antin, Joseph H; Spitzer, Thomas R; Stone, Richard M; Soiffer, Robert J; Chen, Yi-Bin

    2016-11-01

    We performed a retrospective study analysing the effect of sorafenib, an oral fms-Like Tyrosine Kinase 3 (FLT3)/multikinase inhibitor, as post-transplant maintenance in adult patients with FLT3-internal tandem duplication (ITD) acute myeloid leukaemia (AML). We identified consecutive patients with FLT3-ITD AML diagnosed between 2008 and 2014 who received haematopoietic cell transplantation (HCT) in first complete remission (CR1). Post-HCT initiation of sorafenib (yes/no) was evaluated as a time-varying covariate in the overall survival/progression-free survival (OS/PFS) analysis and we performed a landmark analysis of controls alive without relapse at the median date of sorafenib initiation. We identified 26 sorafenib patients and 55 controls. Median follow-up was 27·2 months post-HCT for sorafenib survivors, and 38·4 months for controls (P = 0·021). The median time to initiating sorafenib was 68 days post-HCT; 43 controls were alive without relapse at this cut-off. Sorafenib patients had improved 2-year OS in the d+68 landmark analysis (81% vs. 62%, P = 0·029). Sorafenib was associated with improved 2-year PFS (82% vs. 53%, P = 0·0081) and lower 2-year cumulative incidence of relapse (8·2% vs. 37·7%, P = 0·0077). In multivariate analysis, sorafenib significantly improved OS [Hazard ratio (HR) 0·26, P = 0·021] and PFS (HR 0·25, P = 0·016). There was no difference in 2-year non-relapse mortality (9·8% vs. 9·3%, P = 0·82) or 1-year chronic graft-versus-host disease (55·5% vs. 37·2%, P = 0·28). These findings suggest potential benefit of post-HCT sorafenib in FLT3-ITD AML, and support further evaluation of post-HCT FLT3 inhibition. © 2016 John Wiley & Sons Ltd.

  13. Computational molecular biology approaches to ligand-target interactions

    PubMed Central

    Lupieri, Paola; Nguyen, Chuong Ha Hung; Bafghi, Zhaleh Ghaemi; Giorgetti, Alejandro; Carloni, Paolo

    2009-01-01

    Binding of small molecules to their targets triggers complex pathways. Computational approaches are keys for predictions of the molecular events involved in such cascades. Here we review current efforts at characterizing the molecular determinants in the largest membrane-bound receptor family, the G-protein-coupled receptors (GPCRs). We focus on odorant receptors, which constitute more than half GPCRs. The work presented in this review uncovers structural and energetic aspects of components of the cellular cascade. Finally, a computational approach in the context of radioactive boron-based antitumoral therapies is briefly described. PMID:20119480

  14. Intranasal M cell uptake of nanoparticles is independently influenced by targeting ligands and buffer ionic strength.

    PubMed

    Rajapaksa, Thejani E; Bennett, Kaila M; Hamer, Mary; Lytle, Christian; Rodgers, Victor G J; Lo, David D

    2010-07-30

    In mucosal tissues, epithelial M cells capture and transport microbes across the barrier to underlying immune cells. Previous studies suggested that high affinity ligands targeting M cells may be used to deliver mucosal vaccines; here, we show that particle composition and dispersion buffer ionic strength can independently influence their uptake in vivo. First, addition of a poloxamer 188 to nanoparticle formulations increased uptake of intranasally administered nanoparticles in vivo, but the effect was dependent on the presence of the M cell-targeting ligand. Second, solvent ionic strength is known to effect electrostatic interactions; accordingly, reduced ionic strength increased the electrostatic potential between the epithelium and the particles. Interestingly, below a critical ionic strength, intranasal particle uptake in vivo significantly was increased even when controlled for osmolarity. Similar results were obtained for uptake of bacterial particles. Surprisingly, at low ionic strength, the specific enhancement effect by the targeting peptide was negligible. Modeling of the electrostatic forces predicted that the enhancing effects of the M cell-targeting ligand only are enabled at high ionic strength, as particle electrostatic forces are reduced through Debye screening. Thus, electrostatic forces can have a dramatic effect on the in vivo M cell particle uptake independent of the action of targeting ligands. Examination of these forces will be helpful to optimizing mucosal vaccine and drug delivery.

  15. Identification of Pancreatic Cancer Specific Cell-Surface Markers for Development of Targeting Ligands

    PubMed Central

    Morse, David L.; Hostetter, Galen; Balagurunathan, Yoganand; Gillies, Robert J.; Han, Haiyong

    2014-01-01

    Pancreatic cancer is generally detected at later stages with a poor prognosis and a high-mortality rate. Development of theranostic imaging agents that non-invasively target pancreatic cancer by gene expression and deliver therapies directly to malignant cells could greatly improve therapeutic outcomes. Small-peptide ligands that bind cell-surface proteins and are conjugated to imaging moieties have demonstrated efficacy in cancer imaging. Identification of cancer specific targets is a major bottleneck in the development of such agents. Herein, a method is presented that uses DNA microarray expression profiling of large sets of normal and cancer tissues to identify targets expressed in cancer but not expressed in relevant normal tissues. Identified targets are subsequently validated for protein expression using tissue microarray. Further validations are performed by quantifying expression in pancreatic cancer cells by quantitative real-time reverse-transcription polymerase chain reaction (qRT-PCR), by immunocytochemistry and immunohistochemistry and by reviewing data and literature in public databases. Validated targets are selected for ligand development based on the existence of a known ligand or by known structure activity relationships useful for development of novel ligands. PMID:20217597

  16. Quantitative control of active targeting of nanocarriers to tumor cells through optimization of folate ligand density.

    PubMed

    Tang, Zhaomin; Li, Dan; Sun, Huili; Guo, Xing; Chen, Yuping; Zhou, Shaobing

    2014-09-01

    The active targeting delivery system has been widely studied in cancer therapy by utilizing folate (FA) ligands to generate specific interaction between nanocarriers and folate receptors (FRs) on tumor cell. However, there is little work that has been published to investigate the influence of the definite density of the FA ligands on the active targeting of nanocarriers. In this study, we have combined magnetic-guided iron oxide nanoparticles with FA ligands, adjusted the FA ligand density and then studied the resulting effects on the active targeting ability of this dual-targeting drug delivery system to tumor cells. We have also optimized the FA ligand density of the drug delivery system for their active targeting to FR-overexpressing tumor cells in vitro. Prussian blue staining, semi-thin section of cells observed with transmission electron microscopy (TEM) and inductively coupled plasma-atomic emission spectroscopy (ICP-AES) have shown that the optimal FA density is from 2.3 × 10(18) to 2.5 × 10(18) per gram nanoparticles ((g·NPs)(-1)). We have further tried to qualitatively and quantitatively control the active targeting and delivering of drugs to tumors on 4T1-bearing BALB/c mice. As expected, the in vivo experimental results have also demonstrated that the FA density of the magnetic nanoparticles (MNPs) could be optimized for a more easily binding to tumor cells via the multivalent linkages and more readily internalization through the FR-mediated endocytosis. Our study can provide a strategy to quantitatively control the active targeting of nanocarriers to tumor cells for cancer therapy.

  17. Decision Analysis of Postremission Therapy in Cytogenetically Intermediate-Risk Acute Myeloid Leukemia: The Impact of FLT3 Internal Tandem Duplication, Nucleophosmin, and CCAAT/Enhancer Binding Protein Alpha.

    PubMed

    Kurosawa, Saiko; Yamaguchi, Hiroki; Yamaguchi, Takuhiro; Fukunaga, Keiko; Yui, Shunsuke; Wakita, Satoshi; Kanamori, Heiwa; Usuki, Kensuke; Uoshima, Nobuhiko; Yanada, Masamitsu; Shono, Katsuhiro; Ueki, Toshimitsu; Mizuno, Ishikazu; Yano, Shingo; Takeuchi, Jin; Kanda, Junya; Okamura, Hiroshi; Inamoto, Yoshihiro; Inokuchi, Koiti; Fukuda, Takahiro

    2016-06-01

    We performed a decision analysis comparing allogeneic hematopoietic cell transplantation (allo-HCT) versus chemotherapy in first complete remission for patients with cytogenetically intermediate-risk acute myeloid leukemia, depending on the presence or absence of FLT3-internal tandem duplication (ITD), nucleophosmin (NPM1), and CCAAT/enhancer binding protein alpha (CEBPA) mutations. Adjusted means of the patient-reported EQ-5D index were used as quality-of-life (QOL) estimates. In 332 patients for which FLT3-ITD status was available, FLT3-ITD was present in 60. In 272 patients without FLT3-ITD, NPM1 mutations were present in 83. CEBPA biallelic mutations were detected in 53 patients. For patients harboring FLT3-ITD, allo-HCT improved life expectancy (LE) (52 versus 32 months during 10-year observation) and QOL-adjusted life expectancy (QALE, 36 versus 21). Monte-Carlo simulation identified allo-HCT as the favored strategy in 100% of simulations. In patients without FLT3-ITD, allo-HCT improved LE/QALE with or without NPM1 mutations. However, sensitivity analyses showed that the results were not robust enough. For patients harboring CEBPA biallelic mutations, chemotherapy was favored (LE, 53 versus 84; QALE, 37 versus 59), whereas, for patients with monoallelic mutations or wild-type CEBPA, allo-HCT was favored (LE, 68 versus 54; QALE, 48 versus 37). Sensitivity analyses did not change the results in either group. In conclusion, based on a Markov decision analysis, allo-HCT was a favored postremission strategy in patients with FLT3-ITD, and chemotherapy was favored in patients with biallelic CEBPA mutations. A prospective study is warranted to determine the value of allo-HCT, especially in FLT3-ITD-negative patients. Copyright © 2016 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  18. Targeting programmed cell death ligand 1 in osteosarcoma: an auto-commentary on therapeutic potential.

    PubMed

    Shen, Jacson K; Cote, Gregory M; Choy, Edwin; Hornicek, Francis J; Duan, Zhenfeng

    Programmed cell death ligand 1 (PDL1) expression was recently shown to correlate with tumor-infiltrating lymphocytes (TILs) in a subset of osteosarcoma patients. Among clinical factors evaluated across human osteosarcoma samples, a pulmonary origin of metastases correlated with high PDL1 expression and prominent TILs. Considering that multiple agents targeting PD-1/PDL1 are under development, targeting this immune checkpoint may be a novel immunotherapeutic route for osteosarcoma in future clinical trials.

  19. Identification of ligands that target the HCV-E2 binding site on CD81.

    PubMed

    Olaby, Reem Al; Azzazy, Hassan M; Harris, Rodney; Chromy, Brett; Vielmetter, Jost; Balhorn, Rod

    2013-04-01

    Hepatitis C is a global health problem. While many drug companies have active R&D efforts to develop new drugs for treating Hepatitis C virus (HCV), most target the viral enzymes. The HCV glycoprotein E2 has been shown to play an essential role in hepatocyte invasion by binding to CD81 and other cell surface receptors. This paper describes the use of AutoDock to identify ligand binding sites on the large extracellular loop of the open conformation of CD81 and to perform virtual screening runs to identify sets of small molecule ligands predicted to bind to two of these sites. The best sites selected by AutoLigand were located in regions identified by mutational studies to be the site of E2 binding. Thirty-six ligands predicted by AutoDock to bind to these sites were subsequently tested experimentally to determine if they bound to CD81-LEL. Binding assays conducted using surface Plasmon resonance revealed that 26 out of 36 (72 %) of the ligands bound in vitro to the recombinant CD81-LEL protein. Competition experiments performed using dual polarization interferometry showed that one of the ligands predicted to bind to the large cleft between the C and D helices was also effective in blocking E2 binding to CD81-LEL.

  20. Identification of ligands that target the HCV-E2 binding site on CD81

    NASA Astrophysics Data System (ADS)

    Olaby, Reem Al; Azzazy, Hassan M.; Harris, Rodney; Chromy, Brett; Vielmetter, Jost; Balhorn, Rod

    2013-04-01

    Hepatitis C is a global health problem. While many drug companies have active R&D efforts to develop new drugs for treating Hepatitis C virus (HCV), most target the viral enzymes. The HCV glycoprotein E2 has been shown to play an essential role in hepatocyte invasion by binding to CD81 and other cell surface receptors. This paper describes the use of AutoDock to identify ligand binding sites on the large extracellular loop of the open conformation of CD81 and to perform virtual screening runs to identify sets of small molecule ligands predicted to bind to two of these sites. The best sites selected by AutoLigand were located in regions identified by mutational studies to be the site of E2 binding. Thirty-six ligands predicted by AutoDock to bind to these sites were subsequently tested experimentally to determine if they bound to CD81-LEL. Binding assays conducted using surface Plasmon resonance revealed that 26 out of 36 (72 %) of the ligands bound in vitro to the recombinant CD81-LEL protein. Competition experiments performed using dual polarization interferometry showed that one of the ligands predicted to bind to the large cleft between the C and D helices was also effective in blocking E2 binding to CD81-LEL.

  1. Ligand-Based Peptide Design and Combinatorial Peptide Libraries to Target G Protein-Coupled Receptors

    PubMed Central

    Gruber, Christian W.; Muttenthaler, Markus; Freissmuth, Michael

    2016-01-01

    G protein-coupled receptors (GPCRs) are considered to represent the most promising drug targets; it has been repeatedly said that a large fraction of the currently marketed drugs elicit their actions by binding to GPCRs (with cited numbers varying from 30–50%). Closer scrutiny, however, shows that only a modest fraction of (~60) GPCRs are, in fact, exploited as drug targets, only ~20 of which are peptide-binding receptors. The vast majority of receptors in the humane genome have not yet been explored as sites of action for drugs. Given the drugability of this receptor class, it appears that opportunities for drug discovery abound. In addition, GPCRs provide for binding sites other than the ligand binding sites (referred to as the “orthosteric site”). These additional sites include (i) binding sites for ligands (referred to as “allosteric ligands”) that modulate the affinity and efficacy of orthosteric ligands, (ii) the interaction surface that recruits G proteins and arrestins, (iii) the interaction sites of additional proteins (GIPs, GPCR interacting proteins that regulate G protein signaling or give rise to G protein-independent signals). These sites can also be targeted by peptides. Combinatorial and natural peptide libraries are therefore likely to play a major role in identifying new GPCR ligands at each of these sites. In particular the diverse natural peptide libraries such as the venom peptides from marine cone-snails and plant cyclotides have been established as a rich source of drug leads. High-throughput screening and combinatorial chemistry approaches allow for progressing from these starting points to potential drug candidates. This will be illustrated by focusing on the ligand-based drug design of oxytocin (OT) and vasopressin (AVP) receptor ligands using natural peptide leads as starting points. PMID:20687879

  2. Estimation of affinities of ligands in mixtures via magnetic recovery of target-ligand complexes and chromatographic analyses: chemometrics and an experimental model

    PubMed Central

    2011-01-01

    Abstract Background The combinatorial library strategy of using multiple candidate ligands in mixtures as library members is ideal in terms of cost and efficiency, but needs special screening methods to estimate the affinities of candidate ligands in such mixtures. Herein, a new method to screen candidate ligands present in unknown molar quantities in mixtures was investigated. Results The proposed method involves preparing a processed-mixture-for-screening (PMFS) with each mixture sample and an exogenous reference ligand, initiating competitive binding among ligands from the PMFS to a target immobilized on magnetic particles, recovering target-ligand complexes in equilibrium by magnetic force, extracting and concentrating bound ligands, and analyzing ligands in the PMFS and the concentrated extract by chromatography. The relative affinity of each candidate ligand to its reference ligand is estimated via an approximation equation assuming (a) the candidate ligand and its reference ligand bind to the same site(s) on the target, (b) their chromatographic peak areas are over five times their intercepts of linear response but within their linear ranges, (c) their binding ratios are below 10%. These prerequisites are met by optimizing primarily the quantity of the target used and the PMFS composition ratio. The new method was tested using the competitive binding of biotin derivatives from mixtures to streptavidin immobilized on magnetic particles as a model. Each mixture sample containing a limited number of candidate biotin derivatives with moderate differences in their molar quantities were prepared via parallel-combinatorial-synthesis (PCS) without purification, or via the pooling of individual compounds. Some purified biotin derivatives were used as reference ligands. This method showed resistance to variations in chromatographic quantification sensitivity and concentration ratios; optimized conditions to validate the approximation equation could be applied to

  3. Ligand targeting of EphA2 enhances keratinocyte adhesion and differentiation via desmoglein 1.

    PubMed

    Lin, Samantha; Gordon, Kristin; Kaplan, Nihal; Getsios, Spiro

    2010-11-15

    EphA2 is a receptor tyrosine kinase that is engaged and activated by membrane-linked ephrin-A ligands residing on adjacent cell surfaces. Ligand targeting of EphA2 has been implicated in epithelial growth regulation by inhibiting the extracellular signal-regulated kinase 1/2 (Erk1/2)-mitogen activated protein kinase (MAPK) pathway. Although contact-dependent EphA2 activation was required for dampening Erk1/2-MAPK signaling after a calcium switch in primary human epidermal keratinocytes, the loss of this receptor did not prevent exit from the cell cycle. Incubating keratinocytes with a soluble ephrin-A1-Fc peptide mimetic to target EphA2 further increased receptor activation leading to its down-regulation. Moreover, soluble ligand targeting of EphA2 restricted the lateral expansion of epidermal cell colonies without limiting proliferation in these primary cultures. Rather, ephrin-A1-Fc peptide treatment promoted epidermal cell colony compaction and stratification in a manner that was associated with increased keratinocyte differentiation. The ligand-dependent increase in keratinocyte adhesion and differentiation relied largely upon the up-regulation of desmoglein 1, a desmosomal cadherin that maintains the integrity and differentiated state of suprabasal keratinocytes in the epidermis. These data suggest that keratinocytes expressing EphA2 in the basal layer may respond to ephrin-A1-based cues from their neighbors to facilitate entry into a terminal differentiation pathway.

  4. Ligand Targeting of EphA2 Enhances Keratinocyte Adhesion and Differentiation via Desmoglein 1

    PubMed Central

    Lin, Samantha; Gordon, Kristin; Kaplan, Nihal

    2010-01-01

    EphA2 is a receptor tyrosine kinase that is engaged and activated by membrane-linked ephrin-A ligands residing on adjacent cell surfaces. Ligand targeting of EphA2 has been implicated in epithelial growth regulation by inhibiting the extracellular signal-regulated kinase 1/2 (Erk1/2)-mitogen activated protein kinase (MAPK) pathway. Although contact-dependent EphA2 activation was required for dampening Erk1/2-MAPK signaling after a calcium switch in primary human epidermal keratinocytes, the loss of this receptor did not prevent exit from the cell cycle. Incubating keratinocytes with a soluble ephrin-A1-Fc peptide mimetic to target EphA2 further increased receptor activation leading to its down-regulation. Moreover, soluble ligand targeting of EphA2 restricted the lateral expansion of epidermal cell colonies without limiting proliferation in these primary cultures. Rather, ephrin-A1-Fc peptide treatment promoted epidermal cell colony compaction and stratification in a manner that was associated with increased keratinocyte differentiation. The ligand-dependent increase in keratinocyte adhesion and differentiation relied largely upon the up-regulation of desmoglein 1, a desmosomal cadherin that maintains the integrity and differentiated state of suprabasal keratinocytes in the epidermis. These data suggest that keratinocytes expressing EphA2 in the basal layer may respond to ephrin-A1–based cues from their neighbors to facilitate entry into a terminal differentiation pathway. PMID:20861311

  5. Structure-based DNA-targeting strategies with small molecule ligands for drug discovery.

    PubMed

    Sheng, Jia; Gan, Jianhua; Huang, Zhen

    2013-09-01

    Nucleic acids are the molecular targets of many clinical anticancer drugs. However, compared with proteins, nucleic acids have traditionally attracted much less attention as drug targets in structure-based drug design, partially because limited structural information of nucleic acids complexed with potential drugs is available. Over the past several years, enormous progresses in nucleic acid crystallization, heavy-atom derivatization, phasing, and structural biology have been made. Many complicated nucleic acid structures have been determined, providing new insights into the molecular functions and interactions of nucleic acids, especially DNAs complexed with small molecule ligands. Thus, opportunities have been created to further discover nucleic acid-targeting drugs for disease treatments. This review focuses on the structure studies of DNAs complexed with small molecule ligands for discovering lead compounds, drug candidates, and/or therapeutics. © 2013 Wiley Periodicals, Inc.

  6. Structure-Based DNA-Targeting Strategies with Small Molecule Ligands for Drug Discovery

    PubMed Central

    Sheng, Jia; Gan, Jianhua; Huang, Zhen

    2014-01-01

    Nucleic acids are the molecular targets of many clinical anticancer drugs. However, compared with proteins, nucleic acids have traditionally attracted much less attention as drug targets in structure-based drug design, partially because limited structural information of nucleic acids complexed with potential drugs is available. Over the past several years, enormous progresses in nucleic acid crystallization, heavy-atom derivatization, phasing, and structural biology have been made. Many complicated nucleic acid structures have been determined, providing new insights into the molecular functions and interactions of nucleic acids, especially DNAs complexed with small molecule ligands. Thus, opportunities have been created to further discover nucleic acid-targeting drugs for disease treatments. This review focuses on the structure studies of DNAs complexed with small molecule ligands for discovering lead compounds, drug candidates, and/or therapeutics. PMID:23633219

  7. Cancer targeting potential of some ligand-anchored poly(propylene imine) dendrimers: a comparison.

    PubMed

    Kesharwani, Prashant; Tekade, Rakesh K; Gajbhiye, Virendra; Jain, Keerti; Jain, Narendra K

    2011-06-01

    The present investigation was aimed at developing and comparing the cancer-targeting potential of ligand-anchored dendrimers. Folate-, dextran-, and galactose-anchored poly(propylene imine) dendrimers were synthesized and characterized. Dendritic formulations were evaluated for ex vivo cytotoxicity on HeLa and SiHa cell lines. Flow cytometry studies were performed on the HeLa cell line. An ex vivo MTT assay on HeLa cells indicated IC(50) values of 0.05, 0.2, 0.8, and 0.08 μM for folate, dextran, and galactose formulations, and for free paclitaxel (PTX), respectively. An analogous observation was carried out in SiHa cells, where IC(50) values of 0.6, 0.8, 10, and 6 μM were observed by folate, dextran, and galactose formulations, and free PTX, respectively. The outcome of the MTT assay and flow cytometry suggested the order of targeting potential of various ligands under investigation as folate > dextran > galactose. The outcome is deemed to be of scientific value and is believed to assist drug delivery scientists during selection of targeting ligands. The cancer targeting potential of folate, dextran and galactose functionalized polypropyleneimine (PPI) dendrimers was studied by this group of investigators, reporting the order of targeting potential as folate > dextran > galactose. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Cancer-specific uptake of a liganded protein nanocarrier targeting aggressive CXCR4(+) colorectal cancer models.

    PubMed

    Céspedes, María Virtudes; Unzueta, Ugutz; Álamo, Patricia; Gallardo, Alberto; Sala, Rita; Casanova, Isolda; Pavón, Miguel Angel; Mangues, María Antonia; Trías, Manuel; López-Pousa, Antonio; Villaverde, Antonio; Vázquez, Esther; Mangues, Ramon

    2016-10-01

    Unliganded drug-nanoconjugates accumulate passively in the tumor whereas liganded nanoconjugates promote drug internalization in tumor cells via endocytosis and increase antitumor efficacy. Whether or not tumor cell internalization associates with enhanced tumor uptake is still under debate. We here compared tumor uptake of T22-GFP-H6, a liganded protein carrier targeting the CXCR4 receptor, and the unliganded GFP-H6 carrier in subcutaneous and metastatic colorectal cancer models. T22-GFP-H6 had a higher tumor uptake in primary tumor and metastatic foci than GFP-H6, with no biodistribution or toxicity on normal tissues. T22-GFP-H6 was detected in target CXCR4(+) tumor cell cytosol whereas GFP-H6 was detected in tumor stroma. SDF1-α co-administration switched T22-GFP-H6 internalization from CXCR4(+) tumor epithelial cells to the stroma. Therefore, the incorporation of a targeting ligand promotes selective accumulation of the nanocarrier inside target tumor cells while increasing whole tumor uptake in a CXCR4-dependent manner, validating T22-GFP-H6 as a CXCR4-targeted drug carrier.

  9. Dual-Target Binding Ligands with Modulated Pharmacokinetics for Endoradiotherapy of Prostate Cancer.

    PubMed

    Kelly, James M; Amor-Coarasa, Alejandro; Nikolopoulou, Anastasia; Wüstemann, Till; Barelli, Peter; Kim, Dohyun; Williams, Clarence; Zheng, Xiwei; Bi, Cong; Hu, Bao; Warren, J David; Hage, David S; DiMagno, Stephen G; Babich, John W

    2017-09-01

    Prostate-specific membrane antigen (PSMA)-targeted radiotherapy of prostate cancer (PCa) has emerged recently as a promising approach to the treatment of disseminated disease. A small number of ligands have been evaluated in patients, and although early tumor response is encouraging, relapse rate is high and these compounds localize to the parotid, salivary, and lacrimal glands as well as to the kidney, leading to dose-limiting toxicities and adverse events affecting quality of life. We envision that dual-target binding ligands displaying high affinity for PSMA and appropriate affinity for human serum albumin (HSA) may demonstrate a higher therapeutic index and be suitable for treatment of PCa by targeted α-therapy. Methods: Six novel urea-based ligands with varying affinities for PSMA and HSA were synthesized, labeled with (131)I, and evaluated by in vitro binding and uptake assays in LNCaP cells. Four compounds were advanced for further evaluation in a preclinical model of PCa. The compounds were compared with MIP-1095, a PSMA ligand currently in clinical evaluation. Results: The compounds demonstrated affinity for PSMA on the order of 4-40 nM and affinity for HSA in the range of 1-53 μM. Compounds with relatively high affinity for HSA (≤2 μM) showed high and sustained blood-pool activity and reduced uptake in the kidneys. (131)I-RPS-027, with a 50% inhibitory concentration (PSMA) of 15 nM and a dissociation constant (HSA) of 11.2 μM, cleared from the blood over the course of 48 h and showed good tumor uptake (10 percentage injected dose per gram) and retention and a greater than 5-fold decrease in kidney uptake relative to MIP-1095. The tumor-to-kidney ratio of (131)I-RPS-027 was greater than 3:1 at 24 h after injection, increasing to 7:1 by 72 h. Conclusion: RPS-027 shows dual targeting to PSMA and albumin, resulting in a high tumor uptake, highly favorable tissue distribution, and promising therapeutic profile in a preclinical model of prostate cancer

  10. Gene expression profiling based identification of cell surface targets for developing multimeric ligands in pancreatic cancer

    PubMed Central

    Balagurunathan, Yoganand; Morse, David L.; Hostetter, Galen; Shanmugam, Vijayalakshmi; Stafford, Phillip; Shack, Sonsoles; Pearson, John; Trissal, Maria; Demeure, Michael J.; Von Hoff, Daniel D.; Hruby, Victor J.; Gillies, Robert J.; Han, Haiyong

    2008-01-01

    Multimeric ligands are ligands that contain multiple binding domains that simultaneously target multiple cell surface proteins. Due to cooperative binding, multimeric ligands can have high avidity for cells (tumor) expressing all targeting proteins and only show minimal binding to cells (normal tissues) expressing none or only some of the targets. Identifying combinations of targets that concurrently express in tumor cells, but not in normal cells is a challenging task. Here, we describe a novel approach for identifying such combinations using genome-wide gene expression profiling followed by immunohistochemistry. We first generated a database of mRNA gene expression profiles for 28 pancreatic cancer specimens and 103 normal tissue samples representing 28 unique tissue/cell types using DNA microarrays. The expression data for genes that encode proteins with cell surface epitopes were then extracted from the database and analyzed using a novel multivariate rule-based computational approach to identify gene combinations that are expressed at an efficient binding level in tumors, but not in normal tissues. These combinations were further ranked according to the proportion of tumor samples that expressed the sets at efficient levels. Protein expression of the genes contained in the top ranked combinations was confirmed using immunohistochemistry on a pancreatic tumor tissue and normal tissue microarrays. Co-expression of targets was further validated by their combined expression in pancreatic cancer cell lines using immunocytochemistry. These validated gene combinations thus encompass a list of cell surface targets that can be used to develop multimeric ligands for the imaging and treatment of pancreatic cancer. PMID:18765825

  11. Effects of surface displayed targeting ligand GE11 on liposome distribution and extravasation in tumor.

    PubMed

    Tang, Hailing; Chen, Xiaojing; Rui, Mengjie; Sun, Wenqiang; Chen, Jian; Peng, Jinliang; Xu, Yuhong

    2014-10-06

    Targeting ligands displayed on liposome surface had been used to mediate specific interactions and drug delivery to target cells. However, they also affect liposome distribution in vivo, as well as the tissue extravasation processes after IV injection. In this study, we incorporated an EGFR targeting peptide GE11 on liposome surfaces in addition to PEG at different densities and evaluated their targeting properties and antitumor effects. We found that the densities of surface ligand and PEG were critical to target cell binding in vitro as well as pharmacokinetic profiles in vivo. The inclusion of GE11-PEG-DSPE and PEG-DSPE at 2% and 4% mol ratios in the liposome formulation mediated a rapid accumulation of liposomes within 1 h after IV injection in the tumor tissues surrounding neovascular structures. This is in addition to the EPR effect that was most prominently described for surface PEG modified liposomes. Therefore, despite the fact that the distribution of liposomes into interior tumor tissues was still limited by diffusion, GE11 targeted doxorubicin loaded liposomes showed significantly better antitumor activity in tumor bearing mice as a result of the fast active-targeting efficiency. We anticipate these understandings can benefit further optimization of targeted drug delivery systems for improving efficacy in vivo.

  12. FLT3-ITD confers resistance to the PI3K/Akt pathway inhibitors by protecting the mTOR/4EBP1/Mcl-1 pathway through STAT5 activation in acute myeloid leukemia

    PubMed Central

    Nogami, Ayako; Oshikawa, Gaku; Okada, Keigo; Fukutake, Shusaku; Umezawa, Yoshihiro; Nagao, Toshikage; Kurosu, Tetsuya; Miura, Osamu

    2015-01-01

    FLT3-ITD and FLT3-TKD are the most frequent tyrosine kinase mutations in acute myeloid leukemia (AML), with the former associated with poor prognosis. Here, we show that the PI3K inhibitor GDC-0941 or the Akt inhibitor MK-2206 induced apoptosis through the mitochondria-mediated intrinsic pathway more efficiently in hematopoietic 32D cells driven by FLT3-TKD (32D/TKD) than FLT3-ITD (32D/ITD), which robustly activated STAT5. The resistance to GDC-0941 and MK-2206 was gained by expression of the constitutively activated STAT5 mutant STAT5A1*6 in 32D/TKD cells, while it was abrogated by the STAT5 inhibitor pimozide in 32D/ITD cells or FLT3-ITD-expressing human leukemic MV4–11 cells. GDC-0941 or MK-2206 induced dephosphorylation of 4EBP1 more conspicuously in 32D/TKD than in 32D/ITD, which was prevented or augmented by STAT5A1*6 or pimozide, respectively, and correlated with downregulation of the eIF4E/eIF4G complex formation and Mcl-1 expression. Furthermore, exogenous expression of Mcl-1 endowed resistance to GDC-0941 and MK-2206 on 32D/TKD cells. Finally, it was confirmed in primary AML cells with FLT3-ITD that pimozide enhanced 4EBP1 dephosphorylation and Mcl-1 downregulation to augment cytotoxicity of GDC-0941. These data suggest that the robust STAT5 activation by FLT3-ITD protects cells treated with the PI3K/Akt pathway inhibitors from apoptosis by maintaining Mcl-1 expression through the mTORC1/4EBP1/eIF4E pathway. PMID:25826077

  13. Targeted Delivery of Anti-coxsackievirus siRNAs Using Ligand-conjugated Packaging RNAs

    PubMed Central

    Zhang, Huifang M.; Su, Yue; Guo, Songchuan; Yuan, Ji; Lim, Travis; Liu, Jing; Guo, Peixuan; Yang, Decheng

    2013-01-01

    Coxsackievirus B3 (CVB3) is a common pathogen of myocarditis. We previously synthesized a siRNA targeting the CVB3 protease 2A (siRNA/2A) gene and achieved reduction of CVB3 replication by 92% in vitro. However, like other drugs under development, CVB3 siRNA faces a major challenge of targeted delivery. In this study, we investigated a novel approach to deliver CVB3 siRNAs to a specific cell population (e.g. HeLa cells containing folate receptor) using receptor ligand (folate)-linked packaging RNA (pRNA) from bacterial phage phi29. pRNA monomers can spontaneously form dimers and multimers under optimal conditions by base-pairing between their stem loops. By covalently linking a fluorescence-tag to folate, we delivered the conjugate specifically to HeLa cells without the need of transfection. We further demonstrated that pRNA covalently conjugated to siRNA/2A achieved an equivalent antiviral effect to that of the siRNA/2A alone. Finally, the drug targeted delivery was further evaluated by using pRNA monomers or dimers, which carried both the siRNA/2A and folate ligand and demonstrated that both of them strongly inhibited CVB3 replication. These data indicate that pRNA as a siRNA carrier can specifically deliver the drug to target cells via its ligand and specific receptor interaction and inhibit virus replication effectively. PMID:19616030

  14. Structure-Based Ligand Discovery Targeting Orthosteric and Allosteric Pockets of Dopamine Receptors

    PubMed Central

    Lane, J. Robert; Chubukov, Pavel; Liu, Wei; Canals, Meritxell; Cherezov, Vadim; Abagyan, Ruben; Stevens, Raymond C.

    2013-01-01

    Small molecules targeting allosteric pockets of G protein–coupled receptors (GPCRs) have a great therapeutic potential for the treatment of neurologic and other chronic disorders. Here we performed virtual screening for orthosteric and putative allosteric ligands of the human dopamine D3 receptor (D3R) using two optimized crystal-structure–based models: the receptor with an empty binding pocket (D3RAPO), and the receptor complex with dopamine (D3RDopa). Subsequent biochemical and functional characterization revealed 14 novel ligands with a binding affinity of better than 10 μM in the D3RAPO candidate list (56% hit rate), and 8 novel ligands in the D3RDopa list (32% hit rate). Most ligands in the D3RAPO model span both orthosteric and extended pockets and behave as antagonists at D3R, with compound 7 showing the highest potency of dopamine inhibition (IC50 = 7 nM). In contrast, compounds identified by the D3RDopa model are predicted to occupy an allosteric site at the extracellular extension of the pocket, and they all lack the anchoring amino group. Compounds targeting the allosteric site display a variety of functional activity profiles, where behavior of at least two compounds (23 and 26) is consistent with noncompetitive allosteric modulation of dopamine signaling in the extracellular signal-regulated kinase 1 and 2 phosphorylation and β-arrestin recruitment assays. The high affinity and ligand efficiency of the chemically diverse hits identified in this study suggest utility of structure-based screening targeting allosteric sites of GPCRs. PMID:24021214

  15. The targeting mechanism of DHA ligand and its conjugate with Gemcitabine for the enhanced tumor therapy

    PubMed Central

    Li, Siwen; Qin, Jingyi; Tian, Caiping; Cao, Jie; Fida, Guissi; Wang, Zhaohui; Chen, Haiyan; Qian, Zhiyu; Chen, Wei R; Gu, Yueqing

    2014-01-01

    Docosahexaenoic acid (DHA), an omega-3 C22 natural fatty acid serving as a precursor for metabolic and biochemical pathways, was reported as a targeting ligand of anticancer drugs. However, its tumor targeting ability and mechanism has not been claimed. Here we hypothesized that the uptake of DHA by tumor cells is related to the phosphatidylethanolamine (PE) contents in cell membranes. Thus, in this manuscript, the tumor-targeting ability of DHA was initially demonstrated in vitro and in vivo on different tumor cell lines by labeling DHA with fluorescence dyes. Subsequently, the tumor targeting ability was then correlated with the contents of PE in cell membranes to study the uptake mechanism. Further, DHA was conjugated with anticancer drug gemcitabine (DHA-GEM) for targeted tumor therapy. Our results demonstrated that DHA exhibited high tumor targeting ability and PE is the main mediator, which confirmed our hypothesis. The DHA-GEM displayed enhanced therapeutic efficacy than that of GEM itself, indicating that DHA is a promising ligand for tumor targeted therapy. PMID:25004114

  16. A General Synthetic Approach for Designing Epitope Targeted Macrocyclic Peptide Ligands.

    PubMed

    Das, Samir; Nag, Arundhati; Liang, JingXin; Bunck, David N; Umeda, Aiko; Farrow, Blake; Coppock, Matthew B; Sarkes, Deborah A; Finch, Amethist S; Agnew, Heather D; Pitram, Suresh; Lai, Bert; Yu, Mary Beth; Museth, A Katrine; Deyle, Kaycie M; Lepe, Bianca; Rodriguez-Rivera, Frances P; McCarthy, Amy; Alvarez-Villalonga, Belen; Chen, Ann; Heath, John; Stratis-Cullum, Dimitra N; Heath, James R

    2015-11-02

    We describe a general synthetic strategy for developing high-affinity peptide binders against specific epitopes of challenging protein biomarkers. The epitope of interest is synthesized as a polypeptide, with a detection biotin tag and a strategically placed azide (or alkyne) presenting amino acid. This synthetic epitope (SynEp) is incubated with a library of complementary alkyne or azide presenting peptides. Library elements that bind the SynEp in the correct orientation undergo the Huisgen cycloaddition, and are covalently linked to the SynEp. Hit peptides are tested against the full-length protein to identify the best binder. We describe development of epitope-targeted linear or macrocycle peptide ligands against 12 different diagnostic or therapeutic analytes. The general epitope targeting capability for these low molecular weight synthetic ligands enables a range of therapeutic and diagnostic applications, similar to those of monoclonal antibodies. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Digital One-Disc-One-Compound Method for High-Throughput Discovery of Prostate Cancer-Targeting Ligands

    DTIC Science & Technology

    2014-10-01

    countries. Up to now, chemotherapy is still the main treatment modality in prostate cancers10-11, however the efficacy of the therapy is limited...by severe toxic side effects induced by anticancer drugs on healthy tissues. Targeted chemotherapy which can be achieved by attaching a ligand for...peptide library targeted to α6 integrin receptors will be constructed by ODOC method with the aim of discovery of new ligand for targeted chemotherapy

  18. In Silico target fishing: addressing a "Big Data" problem by ligand-based similarity rankings with data fusion.

    PubMed

    Liu, Xian; Xu, Yuan; Li, Shanshan; Wang, Yulan; Peng, Jianlong; Luo, Cheng; Luo, Xiaomin; Zheng, Mingyue; Chen, Kaixian; Jiang, Hualiang

    2014-01-01

    Ligand-based in silico target fishing can be used to identify the potential interacting target of bioactive ligands, which is useful for understanding the polypharmacology and safety profile of existing drugs. The underlying principle of the approach is that known bioactive ligands can be used as reference to predict the targets for a new compound. We tested a pipeline enabling large-scale target fishing and drug repositioning, based on simple fingerprint similarity rankings with data fusion. A large library containing 533 drug relevant targets with 179,807 active ligands was compiled, where each target was defined by its ligand set. For a given query molecule, its target profile is generated by similarity searching against the ligand sets assigned to each target, for which individual searches utilizing multiple reference structures are then fused into a single ranking list representing the potential target interaction profile of the query compound. The proposed approach was validated by 10-fold cross validation and two external tests using data from DrugBank and Therapeutic Target Database (TTD). The use of the approach was further demonstrated with some examples concerning the drug repositioning and drug side-effects prediction. The promising results suggest that the proposed method is useful for not only finding promiscuous drugs for their new usages, but also predicting some important toxic liabilities. With the rapid increasing volume and diversity of data concerning drug related targets and their ligands, the simple ligand-based target fishing approach would play an important role in assisting future drug design and discovery.

  19. Rapid Exercise-Induced Mobilization of Dendritic Cells Is Potentially Mediated by a Flt3L- and MMP-9-Dependent Process in Multiple Sclerosis.

    PubMed

    Deckx, Nathalie; Wens, Inez; Nuyts, Amber H; Lee, Wai-Ping; Hens, Niel; Koppen, Gudrun; Goossens, Herman; Van Damme, Pierre; Berneman, Zwi N; Eijnde, Bert O; Cools, Nathalie

    2015-01-01

    In healthy individuals, one exercise bout induces a substantial increase in the number of circulating leukocytes, while their function is transiently suppressed. The effect of one exercise bout in multiple sclerosis (MS) is less studied. Since recent evidence suggests a role of dendritic cells (DC) in the pathogenesis of MS, we investigated the effect of one combined endurance/resistance exercise bout on the number and function of DC in MS patients and healthy controls. Our results show a rapid increase in the number of DC in response to physical exercise in both MS patients and controls. Further investigation revealed that in particular DC expressing the migratory molecules CCR5 and CD62L were increased upon acute physical activity. This may be mediated by Flt3L- and MMP-9-dependent mobilization of DC, as demonstrated by increased circulating levels of Flt3L and MMP-9 following one exercise bout. Circulating DC display reduced TLR responsiveness after acute exercise, as evidenced by a less pronounced upregulation of activation markers, HLA-DR and CD86, on plasmacytoid DC and conventional DC, respectively. Our results indicate mobilization of DC, which may be less prone to drive inflammatory processes, following exercise. This may present a negative feedback mechanism for exercise-induced tissue damage and inflammation.

  20. Interaction of retinal bZIP transcription factor NRL with Flt3-interacting zinc-finger protein Fiz1: possible role of Fiz1 as a transcriptional repressor.

    PubMed

    Mitton, Kenneth P; Swain, Prabodh K; Khanna, Hemant; Dowd, Mary; Apel, Ingrid J; Swaroop, Anand

    2003-02-15

    NRL (neural retina leucine zipper) is a basic motif leucine zipper transcription factor of the Maf-subfamily. Multiple phosphorylated isoforms of NRL are detected specifically in rod photoreceptors. NRL regulates the expression of several rod-specific genes, including rhodopsin and cGMP phosphodiesterase beta-subunit, in synergy with other transcription factors (e.g. the homeodomain protein CRX). Missense mutations in the human NRL gene are associated with autosomal dominant retinitis pigmentosa, whereas the loss of its function leads to rodless retina in Nrl-knockout mice that exhibit enhanced S-cone function. To further elucidate the molecular mechanism(s) underlying NRL-mediated transcriptional regulation, we used yeast two-hybrid screening to isolate NRL-interacting proteins in the retina and report the identification of Flt3-interacting zinc-finger protein, Fiz1. Interaction of Fiz1 and NRL-leucine zipper was validated by GST pulldown assays and co-immunoprecipitation from bovine retinal nuclear extracts. Fiz1 suppressed NRL- but not CRX-mediated transactivation of rhodopsin promoter activity in transiently transfected CV1 cells. The mRNA and the protein for both Fiz1 and its only other known interacting protein Flt3, a receptor tyrosine kinase, are expressed in the retina. Our results indicate potential cross-talk among signaling pathways in the retina and suggest that the function of NRL is modulated by its interaction with specific repressor proteins.

  1. Ligand-Target Prediction by Structural Network Biology Using nAnnoLyze

    PubMed Central

    Martínez-Jiménez, Francisco; Marti-Renom, Marc A.

    2015-01-01

    Target identification is essential for drug design, drug-drug interaction prediction, dosage adjustment and side effect anticipation. Specifically, the knowledge of structural details is essential for understanding the mode of action of a compound on a target protein. Here, we present nAnnoLyze, a method for target identification that relies on the hypothesis that structurally similar binding sites bind similar ligands. nAnnoLyze integrates structural information into a bipartite network of interactions and similarities to predict structurally detailed compound-protein interactions at proteome scale. The method was benchmarked on a dataset of 6,282 pairs of known interacting ligand-target pairs reaching a 0.96 of area under the Receiver Operating Characteristic curve (AUC) when using the drug names as an input feature for the classifier, and a 0.70 of AUC for “anonymous” compounds or compounds not present in the training set. nAnnoLyze resulted in higher accuracies than its predecessor, AnnoLyze. We applied the method to predict interactions for all the compounds in the DrugBank database with each human protein structure and provide examples of target identification for known drugs against human diseases. The accuracy and applicability of our method to any compound indicate that a comparative docking approach such as nAnnoLyze enables large-scale annotation and analysis of compound–protein interactions and thus may benefit drug development. PMID:25816344

  2. Covalent Ligand Discovery against Druggable Hotspots Targeted by Anti-cancer Natural Products.

    PubMed

    Grossman, Elizabeth A; Ward, Carl C; Spradlin, Jessica N; Bateman, Leslie A; Huffman, Tucker R; Miyamoto, David K; Kleinman, Jordan I; Nomura, Daniel K

    2017-09-11

    Many natural products that show therapeutic activities are often difficult to synthesize or isolate and have unknown targets, hindering their development as drugs. Identifying druggable hotspots targeted by covalently acting anti-cancer natural products can enable pharmacological interrogation of these sites with more synthetically tractable compounds. Here, we used chemoproteomic platforms to discover that the anti-cancer natural product withaferin A targets C377 on the regulatory subunit PPP2R1A of the tumor-suppressor protein phosphatase 2A (PP2A) complex leading to activation of PP2A activity, inactivation of AKT, and impaired breast cancer cell proliferation. We developed a more synthetically tractable cysteine-reactive covalent ligand, JNS 1-40, that selectively targets C377 of PPP2R1A to impair breast cancer signaling, proliferation, and in vivo tumor growth. Our study highlights the utility of using chemoproteomics to map druggable hotspots targeted by complex natural products and subsequently interrogating these sites with more synthetically tractable covalent ligands for cancer therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Exploration of Bivalent Ligands Targeting Putative Mu Opioid Receptor and Chemokine Receptor CCR5 Dimerization

    PubMed Central

    Arnatt, Christopher K.; Falls, Bethany A.; Yuan, Yunyun; Raborg, Thomas J.; Masvekar, Ruturaj R.; El-Hage, Nazira; Selley, Dana E.; Nicola, Anthony V.; Knapp, Pamela E.; Hauser, Kurt F.; Zhang, Yan

    2016-01-01

    Modern antiretroviral therapies have provided HIV-1 infected patients longer lifespans and better quality of life. However, several neurological complications are now being seen in these patients due to HIV-1 associated injury of neurons by infected microglia and astrocytes. In addition, these effects can be further exacerbated with opiate use and abuse. One possible mechanism for such potentiation effects of opiates is the interaction of the mu opioid receptor (MOR) with the chemokine receptor CCR5 (CCR5), a known HIV-1 co-receptor, to form MOR-CCR5 heterodimer. In an attempt to understand this putative interaction and its relevance to neuroAIDS, we designed and synthesized a series of bivalent ligands targeting the putative CCR5-MOR heterodimer. To understand how these bivalent ligands may interact with the heterodimer, biological studies including calcium mobilization inhibition, binding affinity, HIV-1 invasion, and cell fusion assays were applied. In particular, HIV-1 infection assays using human peripheral blood mononuclear cells, macrophages, and astrocytes revealed a notable synergy in activity for one particular bivalent ligand. Further, a molecular model of the putative CCR5-MOR heterodimer was constructed, docked with the bivalent ligand, and molecular dynamics simulations of the complex was performed in a membrane-water system to help understand the biological observation. PMID:27720326

  4. Ligand and Target Discovery by Fragment-Based Screening in Human Cells.

    PubMed

    Parker, Christopher G; Galmozzi, Andrea; Wang, Yujia; Correia, Bruno E; Sasaki, Kenji; Joslyn, Christopher M; Kim, Arthur S; Cavallaro, Cullen L; Lawrence, R Michael; Johnson, Stephen R; Narvaiza, Iñigo; Saez, Enrique; Cravatt, Benjamin F

    2017-01-26

    Advances in the synthesis and screening of small-molecule libraries have accelerated the discovery of chemical probes for studying biological processes. Still, only a small fraction of the human proteome has chemical ligands. Here, we describe a platform that marries fragment-based ligand discovery with quantitative chemical proteomics to map thousands of reversible small molecule-protein interactions directly in human cells, many of which can be site-specifically determined. We show that fragment hits can be advanced to furnish selective ligands that affect the activity of proteins heretofore lacking chemical probes. We further combine fragment-based chemical proteomics with phenotypic screening to identify small molecules that promote adipocyte differentiation by engaging the poorly characterized membrane protein PGRMC2. Fragment-based screening in human cells thus provides an extensive proteome-wide map of protein ligandability and facilitates the coordinated discovery of bioactive small molecules and their molecular targets. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Cannabinoid CB2 receptor ligand profiling reveals biased signalling and off-target activity

    PubMed Central

    Soethoudt, Marjolein; Grether, Uwe; Fingerle, Jürgen; Grim, Travis W.; Fezza, Filomena; de Petrocellis, Luciano; Ullmer, Christoph; Rothenhäusler, Benno; Perret, Camille; van Gils, Noortje; Finlay, David; MacDonald, Christa; Chicca, Andrea; Gens, Marianela Dalghi; Stuart, Jordyn; de Vries, Henk; Mastrangelo, Nicolina; Xia, Lizi; Alachouzos, Georgios; Baggelaar, Marc P.; Martella, Andrea; Mock, Elliot D.; Deng, Hui; Heitman, Laura H.; Connor, Mark; Di Marzo, Vincenzo; Gertsch, Jürg; Lichtman, Aron H.; Maccarrone, Mauro; Pacher, Pal; Glass, Michelle; van der Stelt, Mario

    2017-01-01

    The cannabinoid CB2 receptor (CB2R) represents a promising therapeutic target for various forms of tissue injury and inflammatory diseases. Although numerous compounds have been developed and widely used to target CB2R, their selectivity, molecular mode of action and pharmacokinetic properties have been poorly characterized. Here we report the most extensive characterization of the molecular pharmacology of the most widely used CB2R ligands to date. In a collaborative effort between multiple academic and industry laboratories, we identify marked differences in the ability of certain agonists to activate distinct signalling pathways and to cause off-target effects. We reach a consensus that HU910, HU308 and JWH133 are the recommended selective CB2R agonists to study the role of CB2R in biological and disease processes. We believe that our unique approach would be highly suitable for the characterization of other therapeutic targets in drug discovery research. PMID:28045021

  6. Cannabinoid CB2 receptor ligand profiling reveals biased signalling and off-target activity.

    PubMed

    Soethoudt, Marjolein; Grether, Uwe; Fingerle, Jürgen; Grim, Travis W; Fezza, Filomena; de Petrocellis, Luciano; Ullmer, Christoph; Rothenhäusler, Benno; Perret, Camille; van Gils, Noortje; Finlay, David; MacDonald, Christa; Chicca, Andrea; Gens, Marianela Dalghi; Stuart, Jordyn; de Vries, Henk; Mastrangelo, Nicolina; Xia, Lizi; Alachouzos, Georgios; Baggelaar, Marc P; Martella, Andrea; Mock, Elliot D; Deng, Hui; Heitman, Laura H; Connor, Mark; Di Marzo, Vincenzo; Gertsch, Jürg; Lichtman, Aron H; Maccarrone, Mauro; Pacher, Pal; Glass, Michelle; van der Stelt, Mario

    2017-01-03

    The cannabinoid CB2 receptor (CB2R) represents a promising therapeutic target for various forms of tissue injury and inflammatory diseases. Although numerous compounds have been developed and widely used to target CB2R, their selectivity, molecular mode of action and pharmacokinetic properties have been poorly characterized. Here we report the most extensive characterization of the molecular pharmacology of the most widely used CB2R ligands to date. In a collaborative effort between multiple academic and industry laboratories, we identify marked differences in the ability of certain agonists to activate distinct signalling pathways and to cause off-target effects. We reach a consensus that HU910, HU308 and JWH133 are the recommended selective CB2R agonists to study the role of CB2R in biological and disease processes. We believe that our unique approach would be highly suitable for the characterization of other therapeutic targets in drug discovery research.

  7. In silico target fishing for rationalized ligand discovery exemplified on constituents of Ruta graveolens.

    PubMed

    Rollinger, Judith M; Schuster, Daniela; Danzl, Birgit; Schwaiger, Stefan; Markt, Patrick; Schmidtke, Michaela; Gertsch, Jürg; Raduner, Stefan; Wolber, Gerhard; Langer, Thierry; Stuppner, Hermann

    2009-02-01

    The identification of targets whose interaction is likely to result in the successful treatment of a disease is of growing interest for natural product scientists. In the current study we performed an exemplary application of a virtual parallel screening approach to identify potential targets for 16 secondary metabolites isolated and identified from the aerial parts of the medicinal plant RUTA GRAVEOLENS L. Low energy conformers of the isolated constituents were simultaneously screened against a set of 2208 pharmacophore models generated in-house for the IN SILICO prediction of putative biological targets, i. e., target fishing. Based on the predicted ligand-target interactions, we focused on three biological targets, namely acetylcholinesterase (AChE), the human rhinovirus (HRV) coat protein and the cannabinoid receptor type-2 (CB (2)). For a critical evaluation of the applied parallel screening approach, virtual hits and non-hits were assayed on the respective targets. For AChE the highest scoring virtual hit, arborinine, showed the best inhibitory IN VITRO activity on AChE (IC (50) 34.7 muM). Determination of the anti-HRV-2 effect revealed 6,7,8-trimethoxycoumarin and arborinine to be the most active antiviral constituents with IC (50) values of 11.98 muM and 3.19 muM, respectively. Of these, arborinine was predicted virtually. Of all the molecules subjected to parallel screening, one virtual CB (2) ligand was obtained, i. e., rutamarin. Interestingly, in experimental studies only this compound showed a selective activity to the CB (2) receptor ( Ki of 7.4 muM) by using a radioligand displacement assay. The applied parallel screening paradigm with constituents of R. GRAVEOLENS on three different proteins has shown promise as an IN SILICO tool for rational target fishing and pharmacological profiling of extracts and single chemical entities in natural product research.

  8. Chemoproteomic Screening of Covalent Ligands Reveals UBA5 As a Novel Pancreatic Cancer Target.

    PubMed

    Roberts, Allison M; Miyamoto, David K; Huffman, Tucker R; Bateman, Leslie A; Ives, Ashley N; Akopian, David; Heslin, Martin J; Contreras, Carlo M; Rape, Michael; Skibola, Christine F; Nomura, Daniel K

    2017-04-21

    Chemical genetic screening of small-molecule libraries has been a promising strategy for discovering unique and novel therapeutic compounds. However, identifying the targets of lead molecules that arise from these screens has remained a major bottleneck in understanding the mechanism of action of these compounds. Here, we have coupled the screening of a cysteine-reactive fragment-based covalent ligand library with an isotopic tandem orthogonal proteolysis-enabled activity-based protein profiling (isoTOP-ABPP) chemoproteomic platform to rapidly couple the discovery of lead small molecules that impair pancreatic cancer pathogenicity with the identification of druggable hotspots for potential cancer therapy. Through this coupled approach, we have discovered a covalent ligand DKM 2-93 that impairs pancreatic cancer cell survival and in vivo tumor growth through covalently modifying the catalytic cysteine of the ubiquitin-like modifier activating enzyme 5 (UBA5), thereby inhibiting its activity as a protein that activates the ubiquitin-like protein UFM1 to UFMylate proteins. We show that UBA5 is a novel pancreatic cancer therapeutic target and show DKM 2-93 as a relatively selective lead inhibitor of UBA5. Our results underscore the utility of coupling the screening of covalent ligand libraries with isoTOP-ABPP platforms for mining the proteome for druggable hotspots for cancer therapy.

  9. Synthetic strategy for increasing solubility of potential FLT3 inhibitor thieno[2,3-d]pyrimidine derivatives through structural modifications at the C2 and C6 positions.

    PubMed

    Oh, Changmok; Kim, Hyuntae; Kang, Jong Soon; Yun, Jieun; Sim, Jaejun; Kim, Hwan-Mook; Han, Gyoonhee

    2017-02-01

    Acute myeloid leukemia (AML) is a clonal disorder of hematopoietic progenitor cell. In AML, a mutation in FLT3 is commonly occurs and is associated with poor prognosis. We have previously reported that thieno[2,3-d]pyrimidine derivative compound 1 exhibited better antiproliferative activity against MV4-11 cells which harbor mutant FLT3 than AC220, which is a well-known FLT3 inhibitor, and has good microsomal stability. However, compound 1 had poor solubility. We then carried out further structural modification at the C2 and the C6 positions of thieno[2,3-d]pyrimidine scaffold. Compound 13b, which possesses a thiazole moiety at the C2 position, exhibited better antiproliferative activity than compound 1 and showed increased solubility and moderate microsomal stability. These results indicate that compound 13b could be a promising potential FLT inhibitor for AML chemotherapy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. The synergistic effect of folate and RGD dual ligand of nanographene oxide on tumor targeting and photothermal therapy in vivo

    NASA Astrophysics Data System (ADS)

    Jang, Cheol; Lee, Jong Hyun; Sahu, Abhishek; Tae, Giyoong

    2015-11-01

    Effective delivery of nanoparticles to the target site is necessary for successful biomedical applications. Inefficient targeting is a major concern for nanomedicines in cancer therapy. Conjugation of multiple targeting ligands to the nanoparticle surface might further enhance the targeting efficiency by a co-operative effect of individual ligands. In this study, a dual ligand targeting nanographene oxide (nGO) was developed by non-covalent interaction with folate and cRGD functionalized pluronic, which allowed precise control of ligand number on the nGO surface and ensured stability under physiological conditions. The tumor targeting abilities of single and dual ligand decorated nGOs were evaluated in vitro by using KB cells, over-expressing folate and integrin αvβ3 receptors. In vitro cellular uptake analysis by flow cytometry and confocal laser scanning microscopy showed enhanced uptake of dual ligand modified nGO compared to any of the single ligand modified nGOs. The cellular uptake of dual targeted cRGD-FA-nGO was increased by 1.9 and 2.4 folds compared to single targeted cRGD-nGO or FA-nGO, respectively. The in vivo biodistribution experiment in a mouse xenograft model also confirmed the synergistic targeting effect of cRGD and folate dual functionalized nGO. A significantly higher tumor accumulation of cRGD-FA-nGO was observed compared to cRGD-nGO or FA-nGO. The higher tumor accumulation of dual targeted nGO resulted in complete ablation of tumor tissue through an enhanced photothermal effect by NIR laser irradiation. Therefore, co-functionalization of a nanoparticle by cRGD and folate is a potentially useful way to enhance the tumor targeting efficacy.Effective delivery of nanoparticles to the target site is necessary for successful biomedical applications. Inefficient targeting is a major concern for nanomedicines in cancer therapy. Conjugation of multiple targeting ligands to the nanoparticle surface might further enhance the targeting efficiency by a

  11. Prolonged signaling at the parathyroid hormone receptor by peptide ligands targeted to a specific receptor conformation

    PubMed Central

    Okazaki, Makoto; Ferrandon, Sebastien; Vilardaga, Jean-Pierre; Bouxsein, Mary L.; Potts, John T.; Gardella, Thomas J.

    2008-01-01

    The parathyroid hormone receptor (PTHR) is a class B G protein-coupled receptor that plays critical roles in bone and mineral ion metabolism. Ligand binding to the PTHR involves interactions to both the amino-terminal extracellular (N) domain, and transmembrane/extracellular loop, or juxtamembrane (J) regions of the receptor. Recently, we found that PTH(1–34), but not PTH-related protein, PTHrP(1–36), or M-PTH(1–14) (M = Ala/Aib1,Aib3,Gln10,Har11,Ala12,Trp14,Arg19), binds to the PTHR in a largely GTPγS-resistant fashion, suggesting selective binding to a novel, high-affinity conformation (R0), distinct from the GTPγS-sensitive conformation (RG). We examined the effects in vitro and in vivo of introducing the M substitutions, which enhance interaction to the J domain, into PTH analogs extended C-terminally to incorporate residues involved in the N domain interaction. As compared with PTH(1–34), M-PTH(1–28) and M-PTH(1–34) bound to R0 with higher affinity, produced more sustained cAMP responses in cells, formed more stable complexes with the PTHR in FRET and subcellular localization assays, and induced more prolonged calcemic and phosphate responses in mice. Moreover, after 2 weeks of daily injection in mice, M-PTH(1–34) induced larger increases in trabecular bone volume and greater increases in cortical bone turnover, than did PTH(1–34). Thus, the putative R0 PTHR conformation can form highly stable complexes with certain PTH ligand analogs and thereby mediate surprisingly prolonged signaling responses in bone and/or kidney PTH target cells. Controlling, via ligand analog design, the selectivity with which a PTH ligand binds to R0, versus RG, may be a strategy for optimizing signaling duration time, and hence therapeutic efficacy, of PTHR agonist ligands. PMID:18946036

  12. Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms.

    PubMed

    Akinc, Akin; Querbes, William; De, Soma; Qin, June; Frank-Kamenetsky, Maria; Jayaprakash, K Narayanannair; Jayaraman, Muthusamy; Rajeev, Kallanthottathil G; Cantley, William L; Dorkin, J Robert; Butler, James S; Qin, Liuliang; Racie, Timothy; Sprague, Andrew; Fava, Eugenio; Zeigerer, Anja; Hope, Michael J; Zerial, Marino; Sah, Dinah W Y; Fitzgerald, Kevin; Tracy, Mark A; Manoharan, Muthiah; Koteliansky, Victor; Fougerolles, Antonin de; Maier, Martin A

    2010-07-01

    Lipid nanoparticles (LNPs) have proven to be highly efficient carriers of short-interfering RNAs (siRNAs) to hepatocytes in vivo; however, the precise mechanism by which this efficient delivery occurs has yet to be elucidated. We found that apolipoprotein E (apoE), which plays a major role in the clearance and hepatocellular uptake of physiological lipoproteins, also acts as an endogenous targeting ligand for ionizable LNPs (iLNPs), but not cationic LNPs (cLNPs). The role of apoE was investigated using both in vitro studies employing recombinant apoE and in vivo studies in wild-type and apoE(-/-) mice. Receptor dependence was explored in vitro and in vivo using low-density lipoprotein receptor (LDLR(-/-))-deficient mice. As an alternative to endogenous apoE-based targeting, we developed a targeting approach using an exogenous ligand containing a multivalent N-acetylgalactosamine (GalNAc)-cluster, which binds with high affinity to the asialoglycoprotein receptor (ASGPR) expressed on hepatocytes. Both apoE-based endogenous and GalNAc-based exogenous targeting appear to be highly effective strategies for the delivery of iLNPs to liver.

  13. Unique motifs and hydrophobic interactions shape the binding of modified DNA ligands to protein targets

    PubMed Central

    Davies, Douglas R.; Gelinas, Amy D.; Zhang, Chi; Rohloff, John C.; Carter, Jeffrey D.; O’Connell, Daniel; Waugh, Sheela M.; Wolk, Steven K.; Mayfield, Wesley S.; Burgin, Alex B.; Edwards, Thomas E.; Stewart, Lance J.; Gold, Larry; Janjic, Nebojsa; Jarvis, Thale C.

    2012-01-01

    Selection of aptamers from nucleic acid libraries by in vitro evolution represents a powerful method of identifying high-affinity ligands for a broad range of molecular targets. Nevertheless, a sizeable fraction of proteins remain difficult targets due to inherently limited chemical diversity of nucleic acids. We have exploited synthetic nucleotide modifications that confer protein-like diversity on a nucleic acid scaffold, resulting in a new generation of binding reagents called SOMAmers (Slow Off-rate Modified Aptamers). Here we report a unique crystal structure of a SOMAmer bound to its target, platelet-derived growth factor B (PDGF-BB). The SOMAmer folds into a compact structure and exhibits a hydrophobic binding surface that mimics the interface between PDGF-BB and its receptor, contrasting sharply with mainly polar interactions seen in traditional protein-binding aptamers. The modified nucleotides circumvent the intrinsic diversity constraints of natural nucleic acids, thereby greatly expanding the structural vocabulary of nucleic acid ligands and considerably broadening the range of accessible protein targets. PMID:23139410

  14. Glycans as biofunctional ligands for gold nanorods: stability and targeting in protein-rich media.

    PubMed

    García, Isabel; Sánchez-Iglesias, Ana; Henriksen-Lacey, Malou; Grzelczak, Marek; Penadés, Soledad; Liz-Marzán, Luis M

    2015-03-18

    Poly(ethylene glycol) (PEG) has become the gold standard for stabilization of plasmonic nanoparticles (NPs) in biofluids, because it prevents aggregation while minimizing unspecific interactions with proteins. Application of Au NPs in biological environments requires the use of ligands that can target selected receptors, even in the presence of protein-rich media. We demonstrate here the stabilizing effect of low-molecular-weight glycans on both spherical and rod-like plasmonic NPs under physiological conditions, as bench-marked against the well-established PEG ligands. Glycan-coated NPs are resistant to adsorption of proteins from serum-containing media and avoid phagocytosis by macrophage-like cells, but retain selectivity toward carbohydrate-binding proteins in protein-rich biological media. These results open the way toward the design of efficient therapeutic/diagnostic glycan-decorated plasmonic nanotools for specific biological applications.

  15. Targeting the thyroid-stimulating hormone receptor with small molecule ligands and antibodies

    PubMed Central

    Davies, Terry F; Latif, Rauf

    2015-01-01

    Introduction The thyroid-stimulating hormone receptor (TSHR) is the essential molecule for thyroid growth and thyroid hormone production. Since it is also a key autoantigen in Graves’ disease and is involved in thyroid cancer pathophysiology, the targeting of the TSHR offers a logical model for disease control. Areas covered We review the structure and function of the TSHR and the progress in both small molecule ligands and TSHR antibodies for their therapeutic potential. Expert opinion Stabilization of a preferential conformation for the TSHR by allosteric ligands and TSHR antibodies with selective modulation of the signaling pathways is now possible. These tools may be the next generation of therapeutics for controlling the pathophysiological consequences mediated by the effects of the TSHR in the thyroid and other extrathyroidal tissues. PMID:25768836

  16. Targeted molecular-genetic imaging and ligand-directed therapy in aggressive variant prostate cancer.

    PubMed

    Ferrara, Fortunato; Staquicini, Daniela I; Driessen, Wouter H P; D'Angelo, Sara; Dobroff, Andrey S; Barry, Marc; Lomo, Lesley C; Staquicini, Fernanda I; Cardó-Vila, Marina; Soghomonyan, Suren; Alauddin, Mian M; Flores, Leo G; Arap, Marco A; Lauer, Richard C; Mathew, Paul; Efstathiou, Eleni; Aparicio, Ana M; Troncoso, Patricia; Navone, Nora M; Logothetis, Christopher J; Marchiò, Serena; Gelovani, Juri G; Sidman, Richard L; Pasqualini, Renata; Arap, Wadih

    2016-10-24

    Aggressive variant prostate cancers (AVPC) are a clinically defined group of tumors of heterogeneous morphologies, characterized by poor patient survival and for which limited diagnostic and treatment options are currently available. We show that the cell surface 78-kDa glucose-regulated protein (GRP78), a receptor that binds to phage-display-selected ligands, such as the SNTRVAP motif, is a candidate target in AVPC. We report the presence and accessibility of this receptor in clinical specimens from index patients. We also demonstrate that human AVPC cells displaying GRP78 on their surface could be effectively targeted both in vitro and in vivo by SNTRVAP, which also enabled specific delivery of siRNA species to tumor xenografts in mice. Finally, we evaluated ligand-directed strategies based on SNTRVAP-displaying adeno-associated virus/phage (AAVP) particles in mice bearing MDA-PCa-118b, a patient-derived xenograft (PDX) of castration-resistant prostate cancer bone metastasis that we exploited as a model of AVPC. For theranostic (a merging of the terms therapeutic and diagnostic) studies, GRP78-targeting AAVP particles served to deliver the human Herpes simplex virus thymidine kinase type-1 (HSVtk) gene, which has a dual function as a molecular-genetic sensor/reporter and a cell suicide-inducing transgene. We observed specific and simultaneous PET imaging and treatment of tumors in this preclinical model of AVPC. Our findings demonstrate the feasibility of GPR78-targeting, ligand-directed theranostics for translational applications in AVPC.

  17. Targeted molecular-genetic imaging and ligand-directed therapy in aggressive variant prostate cancer

    PubMed Central

    Ferrara, Fortunato; Staquicini, Daniela I.; Driessen, Wouter H. P.; D’Angelo, Sara; Dobroff, Andrey S.; Barry, Marc; Lomo, Lesley C.; Staquicini, Fernanda I.; Cardó-Vila, Marina; Soghomonyan, Suren; Alauddin, Mian M.; Flores, Leo G.; Arap, Marco A.; Lauer, Richard C.; Mathew, Paul; Efstathiou, Eleni; Aparicio, Ana M.; Troncoso, Patricia; Navone, Nora M.; Logothetis, Christopher J.; Marchiò, Serena; Gelovani, Juri G.; Sidman, Richard L.; Pasqualini, Renata; Arap, Wadih

    2016-01-01

    Aggressive variant prostate cancers (AVPC) are a clinically defined group of tumors of heterogeneous morphologies, characterized by poor patient survival and for which limited diagnostic and treatment options are currently available. We show that the cell surface 78-kDa glucose-regulated protein (GRP78), a receptor that binds to phage-display-selected ligands, such as the SNTRVAP motif, is a candidate target in AVPC. We report the presence and accessibility of this receptor in clinical specimens from index patients. We also demonstrate that human AVPC cells displaying GRP78 on their surface could be effectively targeted both in vitro and in vivo by SNTRVAP, which also enabled specific delivery of siRNA species to tumor xenografts in mice. Finally, we evaluated ligand-directed strategies based on SNTRVAP-displaying adeno-associated virus/phage (AAVP) particles in mice bearing MDA-PCa-118b, a patient-derived xenograft (PDX) of castration-resistant prostate cancer bone metastasis that we exploited as a model of AVPC. For theranostic (a merging of the terms therapeutic and diagnostic) studies, GRP78-targeting AAVP particles served to deliver the human Herpes simplex virus thymidine kinase type-1 (HSVtk) gene, which has a dual function as a molecular-genetic sensor/reporter and a cell suicide-inducing transgene. We observed specific and simultaneous PET imaging and treatment of tumors in this preclinical model of AVPC. Our findings demonstrate the feasibility of GPR78-targeting, ligand-directed theranostics for translational applications in AVPC. PMID:27791181

  18. Outcome of allogeneic hematopoietic stem cell transplantation for cytogenetically normal AML and identification of high-risk subgroup using WT1 expression in association with NPM1 and FLT3-ITD mutations.

    PubMed

    Yoon, Jae-Ho; Kim, Hee-Je; Jeon, Young-Woo; Lee, Sung-Eun; Cho, Byung-Sik; Eom, Ki-Seong; Kim, Yoo-Jin; Lee, Seok; Min, Chang-Ki; Cho, Seok-Goo; Kim, Dong-Wook; Lee, Jong-Wook; Min, Woo-Sung

    2015-06-06

    According to recent guidelines, cytogenetically normal acute myeloid leukemia (CN AML) is divided into four molecular subgroups based on nucleophosmin-1 (NPM1) and FMS-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD) mutations. All subgroups except for isolated NPM1mut are associated with poor prognosis. We retrospectively analyzed 223 patients with CN AML, 156 of whom were treated with standard chemotherapy. For postremission therapy, patients with available donors underwent allogeneic (allo) hematopoietic stem cell transplantation (HSCT) and the rest were treated with autologous HSCT or chemotherapy alone. We first compared the 4 conventional molecular subgroups, and then created another 4 subgroups based on WT1 expression: isolated NPM1mut, NPM1wt/FLT3-ITD-neg with low WT1 or high WT1, and FLT3-ITD-pos CN AML. We finally evaluated 89 patients who were treated with allo HSCT and achieved complete remission after standard chemotherapy. FLT3-ITD CN AML showed the worst outcome irrespective of NPM1mut, and isolated NPM1mut CN AML showed no significant differences compared with NPM1wt/FLT3-ITD-neg CN AML. In contrast, two newly stratified low-risk subgroups (NPM1wt/FLT3-ITD-neg with low WT1 and isolated NPM1mut CN AML) showed higher remission rates with superior overall survival (OS) compared with the other two high-risk subgroups, which showed a higher relapse rate even after allo HSCT. Further analysis showed that higher pre-HSCT expression of WT1 resulted in a higher relapse rate and poorer OS after allo HSCT. For CN AML, a risk-adapted approach using allo HSCT with novel agents should be evaluated with stratification specified by WT1. © 2015 Wiley Periodicals, Inc.

  19. Muscarinic receptors as model targets and antitargets for structure-based ligand discovery.

    PubMed

    Kruse, Andrew C; Weiss, Dahlia R; Rossi, Mario; Hu, Jianxin; Hu, Kelly; Eitel, Katrin; Gmeiner, Peter; Wess, Jürgen; Kobilka, Brian K; Shoichet, Brian K

    2013-10-01

    G protein-coupled receptors (GPCRs) regulate virtually all aspects of human physiology and represent an important class of therapeutic drug targets. Many GPCR-targeted drugs resemble endogenous agonists, often resulting in poor selectivity among receptor subtypes and restricted pharmacologic profiles. The muscarinic acetylcholine receptor family exemplifies these problems; thousands of ligands are known, but few are receptor subtype-selective and nearly all are cationic in nature. Using structure-based docking against the M2 and M3 muscarinic receptors, we screened 3.1 million molecules for ligands with new physical properties, chemotypes, and receptor subtype selectivities. Of 19 docking-prioritized molecules tested against the M2 subtype, 11 had substantial activity and 8 represented new chemotypes. Intriguingly, two were uncharged ligands with low micromolar to high nanomolar Ki values, an observation with few precedents among aminergic GPCRs. To exploit a single amino-acid substitution among the binding pockets between the M2 and M3 receptors, we selected molecules predicted by docking to bind to the M3 and but not the M2 receptor. Of 16 molecules tested, 8 bound to the M3 receptor. Whereas selectivity remained modest for most of these, one was a partial agonist at the M3 receptor without measurable M2 agonism. Consistent with this activity, this compound stimulated insulin release from a mouse β-cell line. These results support the ability of structure-based discovery to identify new ligands with unexplored chemotypes and physical properties, leading to new biologic functions, even in an area as heavily explored as muscarinic pharmacology.

  20. Clustered Integrin Ligands as a Novel Approach for the Targeting of Non-Viral Vectors

    NASA Astrophysics Data System (ADS)

    Ng, Quinn Kwan Tai

    Gene transfer or gene delivery is described as the process in which foreign DNA is introduced into cells. Over the years, gene delivery has gained the attention of many researchers and has been developed as powerful tools for use in biotechnology and medicine. With the completion of the Human Genome Project, such advances in technology allowed for the identification of diseases ranging from hereditary disorders to acquired ones (cancer) which were thought to be incurable. Gene therapy provides the means necessary to treat or eliminate genetic diseases from its origin, unlike traditional medicine which only treat symptoms. With ongoing clinical trials for gene therapy increasing, the greatest difficulty still lies in developing safe systems which can target cells of interest to provide efficient delivery. Nature, over millions of years of evolution, has provided an example of one of the most efficient delivery systems: viruses. Although the use of viruses for gene delivery has been well studied, the safety issues involving immunogenicity, insertional mutagenesis, high cost, and poor reproducibility has provided problems for their clinical application. From understanding viruses, we gain insight to designing new systems for non-viral gene delivery. One of these techniques utilized by adenoviruses is the clustering of ligands on its surface through the use of a protein called a penton base. Through the use of nanotechnology we can mimic this basic concept in non-viral gene delivery systems. This dissertation research is focused on developing and applying a novel system for displaying the integrin binding ligand (RGD) in a constrained manner to form a clustered integrin ligand binding platform to be used to enhance the targeting and efficiency of non-viral gene delivery vectors. Peptide mixed monolayer protected gold nanoparticles provides a suitable surface for ligand clustering. A relationship between the peptide ratios in the reaction solution used to form these

  1. A Quantitative Assessment of Nanoparticle Ligand Distributions: Implications for Targeted Drug and Imaging Delivery in Dendrimer Conjugates

    PubMed Central

    Mullen, Douglas G.; Fang, Ming; Desai, Ankur; Baker, James R.; Orr, Bradford G.; Banaszak Holl, Mark M.

    2010-01-01

    Functional nanoparticles often contain ligands including targeting molecules, fluorophores, and/or active moieties such as drugs. Characterizing the number of these ligands bound to each particle, and the distribution of nanoparticle-ligand species, is important for understanding the nanomaterial’s function. In this study, the amide coupling methods commonly used to conjugate ligands to poly(amidoamine) (PAMAM) dendrimers were examined. A skewed Poisson distribution was observed and quantified using HPLC for two sets of dendrimer-ligand samples prepared using the amine terminated form of the PAMAM dendrimer and a partially acetylated form of the PAMAM dendrimer that has been used for targeted in vivo drug delivery. The prepared samples had an average number of ligands per dendrimer ranging from 0.4 to 13. Distributions identified by HPLC are in excellent agreement with the mean ligand/dendrimer ratio, measured by 1H NMR, gel permeation chromatography (GPC), and potentiometric titration. These results provide insight into the heterogeneity of distributions that are obtained for many classes of nanomaterials to which ligands are conjugated and belie the use of simple cartoon models that present the “average” number of ligands bound as a physically meaningful representation for the material. PMID:20131876

  2. Double CEBPA mutations are prognostically favorable in non-M3 acute myeloid leukemia patients with wild-type NPM1 and FLT3-ITD.

    PubMed

    Wen, Xiang-Mei; Lin, Jiang; Yang, Jing; Yao, Dong-Ming; Deng, Zhao-Qun; Tang, Chun-Yan; Xiao, Gao-Fei; Yang, Lei; Ma, Ji-Chun; Hu, Jia-Bo; Qian, Wei; Qian, Jun

    2014-01-01

    This study is aimed to investigate the pattern of CEBPA mutations and its clinical significance in Chinese non-M3 acute myeloid leukemia (AML) patients. The entire coding region of CEBPA gene was amplified by PCR and then sequenced in samples from 233 non-M3 AML patients. Fifty mutations were identified in 37 (15.8%) patients with eleven (4.7%) double mutated CEBPA (dmCEBPA) and twenty-six (11.1%) single mutated CEBPA (smCEBPA). dmCEBPA was exclusively observed in M1 and M2 subtypes of FAB classification (P = 0.008), whereas smCEBPA occurred in almost all subtypes (P = 0.401). Patients with dmCEBPA had significantly younger age and higher WBC counts than those with wtCEBPA (P = 0.016 and 0.043, respectively). Both dmCEBPA and smCEBPA were mainly present in cytogenetically normal patients. Patients with dmCEBPA achieved higher rate of complete (CR) than wtCEBPA patients (88% vs. 51%, P = 0.037), whereas smCEBPA and wtCEBPA groups are similar (47% vs. 51%, P = 0.810). Patients with dmCEBPA had a superior overall survival (OS) compared with patients with wtCEBPA (P = 0.033), whereas patients with smCEBPA had a similar OS as patients with wtCEBPA (P = 0.976). dmCEBPA but not smCEBPA was also associated with favorable outcome in patients with wild-type NPM1 and FLT3-ITD (NPM1(wt)FLT3-ITD(wt) ). Our data confirm that dmCEBPA but not smCEBPA is prognostically favorable in NPM1(wt)FLT3-ITD(wt) AML, and suggest that the entity AML with mutated CEBPA should be definitely designated as AML with dmCEBPA in WHO classification and smCEBPA should be excluded from the favorable risk of molecular abnormalities.

  3. Ligand-decorated click polypeptide derived nanoparticles for targeted drug delivery applications.

    PubMed

    Quadir, Mohiuddin A; Morton, Stephen W; Mensah, Lawrence B; Shopsowitz, Kevin; Dobbelaar, Jeroen; Effenberger, Nicole; Hammond, Paula T

    2017-03-02

    A ligand decorated, synthetic polypeptide block copolymer platform with environment-responsive capabilities was designed. We evaluated the potential of this system to function as a polymersome for targeted-delivery of a systemic chemotherapy to tumors. Our system employed click chemistry to provide a pH-responsive polypeptide block that drives nanoparticle assembly, and a ligand (folic acid) conjugated PEG block that targets folate-receptor over-expressing cancer cells. These nanocarriers were found to encapsulate a high loading of conventional chemotherapeutics (e.g. doxorubicin at physiological pH) and release the active therapeutic at lysosomal pH upon cellular uptake. The presence of folic acid on the nanoparticle surface facilitated their active accumulation in folate-receptor-overexpressing cancer cells (KB), compared to untargeted carriers. Folate-targeted nanoparticles loaded with doxorubicin also showed enhanced tumor accumulation in folate-receptor positive KB xenografts, resulting in the suppression of tumor growth in an in vivo hind flank xenograft mouse model.

  4. Peptides in Cancer Nanomedicine: Drug Carriers, Targeting Ligands and Protease Substrates

    PubMed Central

    Zhang, Xiao-Xiang; Eden, Henry S.; Chen, Xiaoyuan

    2011-01-01

    Peptides are attracting increasing attention as therapeutic agents, as the technologies for peptide development and manufacture continue to mature. Concurrently, with booming researches in nanotechnology for biomedical applications, peptides have been studied as an important class of components in nanomedicine, and they have been used either alone or in combination with nanomaterials of every reported composition. Peptides possess many advantages, such as smallness, ease of synthesis and modification, and good biocompatibility. Their functions in cancer nanomedicine, discussed in this review, include serving as drug carriers; as targeting ligands; and as protease-responsive substrates for drug delivery. PMID:22056916

  5. Efficient Liver Targeting by Polyvalent Display of a Compact Ligand for the Asialoglycoprotein Receptor.

    PubMed

    Sanhueza, Carlos A; Baksh, Michael M; Thuma, Benjamin; Roy, Marc D; Dutta, Sanjay; Préville, Cathy; Chrunyk, Boris A; Beaumont, Kevin; Dullea, Robert; Ammirati, Mark; Liu, Shenping; Gebhard, David; Finley, James E; Salatto, Christopher T; King-Ahmad, Amanda; Stock, Ingrid; Atkinson, Karen; Reidich, Benjamin; Lin, Wen; Kumar, Rajesh; Tu, Meihua; Menhaji-Klotz, Elnaz; Price, David A; Liras, Spiros; Finn, M G; Mascitti, Vincent

    2017-03-08

    A compact and stable bicyclic bridged ketal was developed as a ligand for the asialoglycoprotein receptor (ASGPR). This compound showed excellent ligand efficiency, and the molecular details of binding were revealed by the first X-ray crystal structures of ligand-bound ASGPR. This analogue was used to make potent di- and trivalent binders of ASGPR. Extensive characterization of the function of these compounds showed rapid ASGPR-dependent cellular uptake in vitro and high levels of liver/plasma selectivity in vivo. Assessment of the biodistribution in rodents of a prototypical Alexa647-labeled trivalent conjugate showed selective hepatocyte targeting with no detectable distribution in nonparenchymal cells. This molecule also exhibited increased ASGPR-directed hepatocellular uptake and prolonged retention compared to a similar GalNAc derived trimer conjugate. Selective release in the liver of a passively permeable small-molecule cargo was achieved by retro-Diels-Alder cleavage of an oxanorbornadiene linkage, presumably upon encountering intracellular thiol. Therefore, the multicomponent construct described here represents a highly efficient delivery vehicle to hepatocytes.

  6. Rational Design and Generation of a Bimodal Bifunctional Ligand for Antibody-Targeted Radiation Cancer Therapy

    PubMed Central

    Chong, Hyun-Soon; Ma, Xiang; Le, Thien; Kwamena, Baidoo; Milenic, Diane E.; Brady, Erik D.; Song, Hyun A.; Brechbiel, Martin W.

    2008-01-01

    An antibody-targeted radiation therapy (radioimmunotherapy, RIT) employs a bifunctional ligand that can effectively hold a cytotoxic metal with clinically acceptable complexation kinetics and stability while being attached to a tumor-specific antibody. Clinical exploration of the therapeutic potential of RIT has been challenged by the absence of adequate ligand, a critical component for enhancing the efficacy of the cancer therapy. To address this deficiency, the bifunctional ligand C-NETA in a unique structural class possessing both a macrocyclic cavity and a flexible acyclic moiety was designed. The practical, reproducible, and readily scalable synthetic route to C-NETA was developed, and its potential as the chelator of 212Bi, 213Bi, and 177Lu for RIT was evaluated in vitro and in vivo. C-NETA rapidly binds both Lu(III) and Bi(III), and the respective metal complexes remain extremely stable in serum for 14 days. 177Lu—C-NETA and 205/6Bi—C-NETA possess an excellent or acceptable in vivo biodistribution profile. PMID:18062661

  7. Selective recognition and stabilization of new ligands targeting the potassium form of the human telomeric G-quadruplex DNA

    PubMed Central

    Lin, Yi-Hwa; Chuang, Show-Mei; Wu, Pei-Ching; Chen, Chun-Liang; Jeyachandran, Sivakamavalli; Lo, Shou-Chen; Huang, Hsu-Shan; Hou, Ming-Hon

    2016-01-01

    The development of a ligand that is capable of distinguishing among the wide variety of G-quadruplex structures and targeting telomeres to treat cancer is particularly challenging. In this study, the ability of two anthraquinone telomerase inhibitors (NSC749235 and NSC764638) to target telomeric G-quadruplex DNA was probed. We found that these ligands specifically target the potassium form of telomeric G-quadruplex DNA over the DNA counterpart. The characteristic interaction with the telomeric G-quadruplex DNA and the anticancer activities of these ligands were also explored. The results of this present work emphasize our understanding of the binding selectivity of anthraquinone derivatives to G-quadruplex DNA and assists in future drug development for G-quadruplex-specific ligands. PMID:27511133

  8. Selective recognition and stabilization of new ligands targeting the potassium form of the human telomeric G-quadruplex DNA

    NASA Astrophysics Data System (ADS)

    Lin, Yi-Hwa; Chuang, Show-Mei; Wu, Pei-Ching; Chen, Chun-Liang; Jeyachandran, Sivakamavalli; Lo, Shou-Chen; Huang, Hsu-Shan; Hou, Ming-Hon

    2016-08-01

    The development of a ligand that is capable of distinguishing among the wide variety of G-quadruplex structures and targeting telomeres to treat cancer is particularly challenging. In this study, the ability of two anthraquinone telomerase inhibitors (NSC749235 and NSC764638) to target telomeric G-quadruplex DNA was probed. We found that these ligands specifically target the potassium form of telomeric G-quadruplex DNA over the DNA counterpart. The characteristic interaction with the telomeric G-quadruplex DNA and the anticancer activities of these ligands were also explored. The results of this present work emphasize our understanding of the binding selectivity of anthraquinone derivatives to G-quadruplex DNA and assists in future drug development for G-quadruplex-specific ligands.

  9. Dual systemic tumor targeting with ligand-directed phage and Grp78 promoter induces tumor regression.

    PubMed

    Kia, Azadeh; Przystal, Justyna M; Nianiaris, Nastasia; Mazarakis, Nicholas D; Mintz, Paul J; Hajitou, Amin

    2012-12-01

    The tumor-specific Grp78 promoter is overexpressed in aggressive tumors. Cancer patients would benefit greatly from application of this promoter in gene therapy and molecular imaging; however, clinical benefit is limited by lack of strategies to target the systemic delivery of Grp78-driven transgenes to tumors. This study aims to assess the systemic efficacy of Grp78-guided expression of therapeutic and imaging transgenes relative to the standard cytomegalovirus (CMV) promoter. Combination of ligand and Grp78 transcriptional targeting into a single vector would facilitate systemic applications of the Grp78 promoter. We generated a dual tumor-targeted phage containing the arginine-glycine-aspartic acid tumor homing ligand and Grp78 promoter. Next, we combined flow cytometry, Western blot analysis, bioluminescence imaging of luciferase, and HSVtk/ganciclovir gene therapy and compared efficacy to conventional phage carrying the CMV promoter in vitro and in vivo in subcutaneous models of rat and human glioblastoma. We show that double-targeted phage provides persistent transgene expression in vitro and in tumors in vivo after systemic administration compared with conventional phage. Next, we showed significant tumor killing in vivo using the HSVtk/ganciclovir gene therapy and found a systemic antitumor effect of Grp78-driven HSVtk against therapy-resistant tumors. Finally, we uncovered a novel mechanism of Grp78 promoter activation whereby HSVtk/ganciclovir therapy upregulates Grp78 and transgene expression via the conserved unfolded protein response signaling cascade. These data validate the potential of Grp78 promoter in systemic cancer gene therapy and report the efficacy of a dual tumor targeting phage that may prove useful for translation into gene therapy and molecular imaging applications.

  10. Theranostic Value of Multimers: Lessons Learned from Trimerization of Neurotensin Receptor Ligands and Other Targeting Vectors

    PubMed Central

    Maschauer, Simone; Einsiedel, Jürgen; Reich, Dominik; Hübner, Harald; Gmeiner, Peter; Wester, Hans-Jürgen; Prante, Olaf; Notni, Johannes

    2017-01-01

    Neurotensin receptor 1 (NTS1) is overexpressed on a variety of cancer entities; for example, prostate cancer, ductal pancreatic adenocarcinoma, and breast cancer. Therefore, it represents an interesting target for the diagnosis of these cancers types by positron emission tomography (PET). The metabolically-stabilized neurotensin (NT) derivative peptide Nlys8-Lys9-Pro10-Tyr11-Tle12-Leu13-OH was elongated at the N-terminus with 6-azido norleucine and coupled with the 1,4,7-triazacyclononane-1,4,7-tris[(2-carboxyethyl)methylenephosphinic acid] (TRAP) chelator TRAP(alkyne)3 in order to synthesize a NT trimer with subnanomolar affinity and high stability. The 68Ga-labeled peptide [68Ga]Ga-TRAP(NT4)3 was characterized in vitro using the NTS1-expressing human colorectal adenocarcinoma cell line HT29. It displayed fast and high internalization rates of >90%, but also fast efflux rates of 50% over 15 min. In vivo, [68Ga]Ga-TRAP(NT4)3 showed moderate HT29 tumor uptake values of 1.7 %ID/g at 60 min post-injection (p.i.), but also high uptake and retention in the kidneys and liver. A comparison of data for trimer/monomer pairs of NT ligands and other targeting vectors (peptides and peptoids targeting integrins αvβ3, α5β1, and αvβ6, the PSMA-ligand DUPA (2-[3-(1,3-dicarboxypropyl)-ureido]pentanedioic acid), and nitroimidazoles targeting hypoxia) revealed that multimers always exhibit higher target affinities and tumor uptake, but not necessarily improved tumor-to-tissue ratios. Thus, although in vitro data are not suitable for prediction of in vivo performance, multimers are potentially superior to monomers, particularly for applications where high tumor accumulation is crucial. PMID:28287433

  11. Exploring avidity: understanding the potential gains in functional affinity and target residence time of bivalent and heterobivalent ligands

    PubMed Central

    Vauquelin, Georges; Charlton, Steven J

    2013-01-01

    Bivalent ligands are increasingly important therapeutic agents. Although the naturally occurring antibodies are predominant, it is becoming more common to combine different antibody fragments or even low molecular weight compounds to generate heterobivalent ligands. Such ligands exhibit markedly increased affinity (i.e. avidity) and target residence time when both pharmacophores can bind simultaneously to their target sites. This is because binding of one pharmacophore forces the second tethered one to stay close to its corresponding site. This ‘forced proximity’ favours its binding and rebinding (once dissociated) to that site. However, rebinding will also take place when the diffusion of freshly dissociated ligands is merely slowed down. The present differential equation-based simulations explore the way both situations affect ligand binding. Both delay the attainment of binding equilibrium (resulting in steep saturation curves) and also increase the target residence time. Competitive ligands are able to interfere in a concentration-dependent manner, although much higher concentrations are required in the ‘forced proximity’ situation. Also, it is only in that situation that the ligand shows increased affinity. These simulations shed light on two practical consequences. Depending on the pharmacokinetic half-life of the bivalent ligand in the body, it may not have sufficient time to achieve equilibrium with the target. This will result in lower potency than expected, although it would have significant advantages in terms of residence time. In in vitro experiments, the manifestation of steep saturation curves and of accelerated dissociation in the presence of competitive ligands could mistakenly be interpreted as evidence for non-competitive, allosteric interactions. PMID:23330947

  12. Tacrine-resveratrol fused hybrids as multi-target-directed ligands against Alzheimer's disease.

    PubMed

    Jeřábek, Jakub; Uliassi, Elisa; Guidotti, Laura; Korábečný, Jan; Soukup, Ondřej; Sepsova, Vendula; Hrabinova, Martina; Kuča, Kamil; Bartolini, Manuela; Peña-Altamira, Luis Emiliano; Petralla, Sabrina; Monti, Barbara; Roberti, Marinella; Bolognesi, Maria Laura

    2017-02-15

    Multi-target drug discovery is one of the most followed approaches in the active central nervous system (CNS) therapeutic area, especially in the search for new drugs against Alzheimer's disease (AD). This is because innovative multi-target-directed ligands (MTDLs) could more adequately address the complexity of this pathological condition. In a continuation of our efforts aimed at a new series of anti-AD MTDLs, we combined the structural features of the cholinesterase inhibitor drug tacrine with that of resveratrol, which is known for its purported antioxidant and anti-neuroinflammatory activities. The most interesting hybrid compounds (5, 8, 9 and 12) inhibited human acetylcholinesterase at micromolar concentrations and effectively modulated Aβ self-aggregation in vitro. In addition, 12 showed intriguing anti-inflammatory and immuno-modulatory properties in neuronal and glial AD cell models. Importantly, the MTDL profile is accompanied by high-predicted blood-brain barrier permeability, and low cytotoxicity on primary neurons.

  13. Targeting TGFβ superfamily ligand accessory proteins as novel therapeutics for chronic lung disorders.

    PubMed

    Budd, David C; Holmes, Alan M

    2012-09-01

    Dysregulation of the transforming growth factor β (TGFβ) pathway has been implicated to underlie a number of disease indications including chronic lung disorders such as asthma, chronic obstructive pulmonary disease (COPD), interstitial pneumonias, and pulmonary arterial hypertension (PAH). Consequently, the pharmaceutical industry has devoted significant resources in the pursuit of TGFβ pathway inhibitors that target the cognate type I and II receptors and respective ligands. The progress of these approaches has been painfully slow, due in part to dose-limiting safety issues that result from the antagonism of a pathway that is responsible for regulating many fundamental biological processes including immune surveillance and cardiovascular responses. These disappointments have led many in the field to conclude that modulating the TGFβ pathway for chronic indications with a sufficient safety window using conventional approaches may be extremely difficult to achieve. Here we review the rationale and limitations of the use of TGFβ pathway inhibitors in chronic lung disorders and the possibility of targeting TGFβ superfamily ligand accessory proteins to allow rheostatic regulation of signaling to achieve efficacy while maintaining a sufficient therapeutic index.

  14. Cell surface-engineering to embed targeting ligands or tracking agents on the cell membrane.

    PubMed

    Lim, Kwang Suk; Lee, Daniel Y; Valencia, Gabriel M; Won, Young-Wook; Bull, David A

    2017-01-22

    The key challenge to improve the efficacy of cell therapy is how to efficiently modify cells with a specific molecule or compound that can guide the cells to the target tissue. To address this, we have developed a cell surface engineering technology to non-invasively modify the cell surface. This technology can embed a wide variety of bioactive molecules on any cell surface and allow for the targeting of a wide range of tissues in a variety of disease states. Using our cell surface engineering technology, mesenchymal stem cells (MSC)s were modified with: 1) a homing peptide or a recombinant protein to facilitate the migration of the cells toward a specific molecular target; or 2) magnetic resonance imaging (MRI) contrast agents to allow for in vivo tracking of the cells. The incorporation of a homing peptide or a targeting ligand on MSCs facilitated the migration of the cells toward their molecular target. MRI contrast agents were successfully embedded on the cell surfaces without adverse effects to the cells and the contrast agent-labeled cells were detectable by MRI. Our technology is a promising method of cell surface engineering that is applicable to a broad range of cell therapies. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Optimization of a Novel Peptide Ligand Targeting Human Carbonic Anhydrase IX

    PubMed Central

    Rana, Shoaib; Nissen, Felix; Marr, Annabell; Markert, Annette; Altmann, Annette; Mier, Walter; Debus, Juergen; Haberkorn, Uwe; Askoxylakis, Vasileios

    2012-01-01

    Background Carbonic anhydrase IX (CA IX) is a hypoxia-regulated transmembrane protein over-expressed in various types of human cancer. Recently, a new peptide with affinity for human carbonic anhydrase IX (CaIX-P1) was identified using the phage display technology. Aim of the present study is to characterize the binding site in the sequence of CaIX-P1, in order to optimize the binding and metabolic properties and use it for targeting purposes. Methodology/Principal Findings Various fragments of CaIX-P1 were synthesized on solid support using Fmoc chemistry. Alanine scanning was performed for identification of the amino acids crucial for target binding. Derivatives with increased binding affinity were radiolabeled and in vitro studies were carried out on the CA IX positive human renal cell carcinoma cell line SKRC 52 and the CA IX negative human pancreatic carcinoma cell line BxPC3. Metabolic stability was investigated in cell culture medium and human serum. Organ distribution and planar scintigraphy studies were performed in Balb/c nu/nu mice carrying subcutaneously transplanted SKRC 52 tumors. The results of our studies clearly identified amino acids that are important for target binding. Among various fragments and derivatives the ligand CaIX-P1-4-10 (NHVPLSPy) was found to possess increased binding potential in SKRC 52 cells, whereas no binding capacity for BxPC3 cells was observed. Binding of radiolabeled CaIX-P1-4-10 on CA IX positive cells could be inhibited by both the unlabeled and the native CaIX-P1 peptide but not by control peptides. Stability experiments indicated the degradation site in the sequence of CaIX-P1-4-10. Biodistribution studies showed a higher in vivo accumulation in the tumor than in most healthy tissues. Conclusions Our data reveal modifications in the sequence of the CA IX affine ligand CaIX-P1 that might be favorable for improvement of target affinity and metabolic stability, which are necessary prior to the use of the ligand in

  16. A novel bicistronic high-capacity gutless adenovirus vector that drives constitutive expression of herpes simplex virus type 1 thymidine kinase and tet-inducible expression of Flt3L for glioma therapeutics.

    PubMed

    Puntel, Mariana; Muhammad, A K M G; Candolfi, Marianela; Salem, Alireza; Yagiz, Kader; Farrokhi, Catherine; Kroeger, Kurt M; Xiong, Weidong; Curtin, James F; Liu, Chunyan; Bondale, Niyati S; Lerner, Jonathan; Pechnick, Robert N; Palmer, Donna; Ng, Philip; Lowenstein, Pedro R; Castro, Maria G

    2010-06-01

    Glioblastoma multiforme (GBM) is a deadly primary brain tumor. Conditional cytotoxic/immune-stimulatory gene therapy (Ad-TK and Ad-Flt3L) elicits tumor regression and immunological memory in rodent GBM models. Since the majority of patients enrolled in clinical trials would exhibit adenovirus immunity, which could curtail transgene expression and therapeutic efficacy, we used high-capacity adenovirus vectors (HC-Ads) as a gene delivery platform. Herein, we describe for the first time a novel bicistronic HC-Ad driving constitutive expression of herpes simplex virus type 1 thymidine kinase (HSV1-TK) and inducible Tet-mediated expression of Flt3L within a single-vector platform. We achieved anti-GBM therapeutic efficacy with no overt toxicities using this bicistronic HC-Ad even in the presence of systemic Ad immunity. The bicistronic HC-Ad-TK/TetOn-Flt3L was delivered into intracranial gliomas in rats. Survival, vector biodistribution, neuropathology, systemic toxicity, and neurobehavioral deficits were assessed for up to 1 year posttreatment. Therapeutic efficacy was also assessed in animals preimmunized against Ads. We demonstrate therapeutic efficacy, with vector genomes being restricted to the brain injection site and an absence of overt toxicities. Importantly, antiadenoviral immunity did not inhibit therapeutic efficacy. These data represent the first report of a bicistronic vector platform driving the expression of two therapeutic transgenes, i.e., constitutive HSV1-TK and inducible Flt3L genes. Further, our data demonstrate no promoter interference and optimum gene delivery and expression from within this single-vector platform. Analysis of the efficacy, safety, and toxicity of this bicistronic HC-Ad vector in an animal model of GBM strongly supports further preclinical testing and downstream process development of HC-Ad-TK/TetOn-Flt3L for a future phase I clinical trial for GBM.

  17. Ligand-functionalized nanoparticles target endothelial cells in retinal capillaries after systemic application

    PubMed Central

    Pollinger, Klaus; Hennig, Robert; Ohlmann, Andreas; Fuchshofer, Rudolf; Wenzel, Rebecca; Breunig, Miriam; Tessmar, Joerg; Tamm, Ernst R.; Goepferich, Achim

    2013-01-01

    To date, diseases affecting vascular structures in the posterior eye are mostly treated by laser photocoagulation and multiple intraocular injections, procedures that destroy healthy tissue and can cause vision-threatening complications. To overcome these drawbacks, we investigate the feasibility of receptor-mediated nanoparticle targeting to capillary endothelial cells in the retina after i.v. application. Cell-binding studies using microvascular endothelial cells showed receptor-specific binding and cellular uptake of cyclo(RGDfC)-modified quantum dots via the αvβ3 integrin receptor. Conversely, Mueller cells and astrocytes, representing off-target cells located in the retina, revealed only negligible interaction with nanoparticles. In vivo experiments, using nude mice as the model organism, demonstrated a strong binding of the ligand-modified quantum dots in the choriocapillaris and intraretinal capillaries upon i.v. injection and 1-h circulation time. Nontargeted nanoparticles, in contrast, did not accumulate to a significant amount in the target tissue. The presented strategy of targeting integrin receptors in the retina could be of utmost value for future intervention in pathologies of the posterior eye, which are to date only accessible with difficulty. PMID:23530216

  18. Transferrin receptor ligand-targeted toxin conjugate (Tf-CRM107) for therapy of malignant gliomas.

    PubMed

    Weaver, Michael; Laske, Douglas W

    2003-10-01

    The authors review the preclinical and clinical results of the ligand-targeted toxin conjugate Transferrin-CRM107 (Tf-CRM107), for the treatment of malignant gliomas. Tf-CRM107 is a conjugate protein of diphtheria toxin with a point mutation (CRM107) linked by a thioester bond to human transferrin (Tf). This conjugate exhibits potent cytotoxicity in vitro against mammalian cells expressing the transferrin receptor with activity at picomolar concentrations. Phase I clinical trial results demonstrated that Tf-CRM107, delivered via a high-flow convection method utilizing stereotactically placed catheters, produced tumor response in patients with malignant brain tumors refractory to conventional therapy without severe neurologic or systemic toxicity. The results of a Phase II study are also summarized. Tf-CRM107 treatment results in complete and partial tumor response without severe toxicity in 35% of the evaluable patients. These data warrant a Phase III study as well as continued research in the field of targeted toxin therapy. Future directions of research include optimizing Tf-CRM107 delivery to targeted brain regions, and improving the treatment efficacy by combining with other toxin conjugates targeted to different receptors.

  19. The role of flexibility in the rational design of modularly assembled ligands targeting the RNAs that cause the myotonic dystrophies.

    PubMed

    Disney, Matthew D; Lee, Melissa M; Pushechnikov, Alexei; Childs-Disney, Jessica L

    2010-02-15

    Modularly assembled ligands were designed to target the RNAs that cause two currently untreatable neuromuscular disorders, myotonic dystrophy types 1 (DM1) and 2 (DM2). DM1 is caused by an expanded repeating sequence of CUG, and DM2 is caused by expanded CCUG repeats. Both are present in noncoding regions and fold into hairpins with either repeating 1x1 nucleotide UU (DM1) or 2x2 nucleotide 5'-CU/3'-UC (DM2) internal loops separated by two GC pairs. The repeats are toxic because they sequester the RNA splicing regulator muscleblind-like 1 protein (MBNL1). Rational design of ligands targeting these RNAs was enabled by a database of RNA motif-ligand partners compiled by using two-dimensional combinatorial screening (2DCS). One 2DCS study found that the 6''-azido-kanamycin A module binds internal loops similar to those found in DM1 and DM2. In order to further enhance affinity and specificity, the ligand was assembled on a peptoid backbone to precisely control valency and the distance between ligand modules. Designed compounds are more potent and specific binders to the toxic RNAs than MBNL1 and inhibit the formation of the RNA-protein complexes with nanomolar IC(50) values. This study shows that three important factors govern potent inhibition: 1) the surface area sequestered by the assembled ligands; 2) the spacing between ligand modules since a longer distance is required to target DM2 RNAs than DM1 RNAs; and 3) flexibility in the modular assembly scaffold used to display the RNA-binding module. These results have impacts on the general design of assembled ligands targeting RNAs present in genomic sequence.

  20. Next generation sequencing analysis of platinum refractory advanced germ cell tumor sensitive to Sunitinib (Sutent®) a VEGFR2/PDGFRβ/c-kit/ FLT3/RET/CSF1R inhibitor in a phase II trial.

    PubMed

    Subbiah, Vivek; Meric-Bernstam, Funda; Mills, Gordon B; Shaw, Kenna R Mills; Bailey, Ann Marie; Rao, Priya; Ward, John F; Pagliaro, Lance C

    2014-08-01

    Germ cell tumors (GCT) are the most common solid tumors in adolescent and young adult males (age 15 and 35 years) and remain one of the most curable of all solid malignancies. However a subset of patients will have tumors that are refractory to standard chemotherapy agents. The management of this refractory population remains challenging and approximately 400 patients continue to die every year of this refractory disease in the United States. Given the preclinical evidence implicating vascular endothelial growth factor (VEGF) signaling in the biology of germ cell tumors, we hypothesized that the vascular endothelial growth factor receptor (VEGFR) inhibitor sunitinib (Sutent) may possess important clinical activity in the treatment of this refractory disease. We proposed a Phase II efficacy study of sunitinib in seminomatous and non-seminomatous metastatic GCT's refractory to first line chemotherapy treatment (ClinicalTrials.gov Identifier: NCT00912912). Next generation targeted exome sequencing using HiSeq 2000 (Illumina Inc., San Diego, CA, USA) was performed on the tumor sample of the unusual responder. Five patients are enrolled into this Phase II study. Among them we report here the clinical course of a patient (Patient # 5) who had an exceptional response to sunitinib. Next generation sequencing to understand this patient's response to sunitinib revealed RET amplification, EGFR and KRAS amplification as relevant aberrations. Oncoscan MIP array were employed to validate the copy number analysis that confirmed RET gene amplification. Sunitinib conferred clinical benefit to this heavily pre-treated patient. Next generation sequencing of this 'exceptional responder' identified the first reported case of a RET amplification as a potential basis of sensitivity to sunitinib (VEGFR2/PDGFRβ/c-kit/ FLT3/RET/CSF1R inhibitor) in a patient with refractory germ cell tumor. Further characterization of GCT patients using biomarkers for clinical response and patient

  1. Training based on ligand efficiency improves prediction of bioactivities of ligands and drug target proteins in a machine learning approach.

    PubMed

    Sugaya, Nobuyoshi

    2013-10-28

    Machine learning methods based on ligand-protein interaction data in bioactivity databases are one of the current strategies for efficiently finding novel lead compounds as the first step in the drug discovery process. Although previous machine learning studies have succeeded in predicting novel ligand-protein interactions with high performance, all of the previous studies to date have been heavily dependent on the simple use of raw bioactivity data of ligand potencies measured by IC50, EC50, K(i), and K(d) deposited in databases. ChEMBL provides us with a unique opportunity to investigate whether a machine-learning-based classifier created by reflecting ligand efficiency other than the IC50, EC50, K(i), and Kd values can also offer high predictive performance. Here we report that classifiers created from training data based on ligand efficiency show higher performance than those from data based on IC50 or K(i) values. Utilizing GPCRSARfari and KinaseSARfari databases in ChEMBL, we created IC50- or K(i)-based training data and binding efficiency index (BEI) based training data then constructed classifiers using support vector machines (SVMs). The SVM classifiers from the BEI-based training data showed slightly higher area under curve (AUC), accuracy, sensitivity, and specificity in the cross-validation tests. Application of the classifiers to the validation data demonstrated that the AUCs and specificities of the BEI-based classifiers dramatically increased in comparison with the IC50- or K(i)-based classifiers. The improvement of the predictive power by the BEI-based classifiers can be attributed to (i) the more separated distributions of positives and negatives, (ii) the higher diversity of negatives in the BEI-based training data in a feature space of SVMs, and (iii) a more balanced number of positives and negatives in the BEI-based training data. These results strongly suggest that training data based on ligand efficiency as well as data based on classical IC50

  2. The prelude on novel receptor and ligand targets involved in the treatment of diabetes mellitus.

    PubMed

    Jonnalagadda, Venu Gopal; Ram Raju, Allam Venkata Sita; Pittala, Srinivas; Shaik, Afsar; Selkar, Nilakash Annaji

    2014-01-01

    Metabolic disorders are a group of disorders, due to the disruption of the normal metabolic process at a cellular level. Diabetes Mellitus and Tyrosinaemia are the majorly reported metabolic disorders. Among them, Diabetes Mellitus is a one of the leading metabolic syndrome, affecting 5 to 7 % of the population worldwide and mainly characterised by elevated levels of glucose and is associated with two types of physiological event disturbances such as impaired insulin secretion and insulin resistance. Up to now, various treatment strategies are like insulin, alphaglucosidase inhibitors, biguanides, incretins were being followed. Concurrently, various novel therapeutic strategies are required to advance the therapy of Diabetes mellitus. For the last few decades, there has been an extensive research in understanding the metabolic pathways involved in Diabetes Mellitus at the cellular level and having the profound knowledge on cell-growth, cell-cycle, and apoptosis at a molecular level provides new targets for the treatment of Diabetes Mellitus. Receptor signalling has been involved in these mechanisms, to translate the information coming from outside. To understand the various receptors involved in these pathways, we must have a sound knowledge on receptors and ligands involved in it. This review mainly summarises the receptors and ligands which are involved the Diabetes Mellitus. Finally, researchers have to develop the alternative chemical moieties that retain their affinity to receptors and efficacy. Diabetes Mellitus being a metabolic disorder due to the glucose surfeit, demands the need for regular exercise along with dietary changes.

  3. In silico identification of new ligands for GPR17: a promising therapeutic target for neurodegenerative diseases

    NASA Astrophysics Data System (ADS)

    Eberini, Ivano; Daniele, Simona; Parravicini, Chiara; Sensi, Cristina; Trincavelli, Maria L.; Martini, Claudia; Abbracchio, Maria P.

    2011-08-01

    GPR17, a previously orphan receptor responding to both uracil nucleotides and cysteinyl-leukotrienes, has been proposed as a novel promising target for human neurodegenerative diseases. Here, in order to specifically identify novel potent ligands of GPR17, we first modeled in silico the receptor by using a multiple template approach, in which extracellular loops of the receptor, quite complex to treat, were modeled making reference to the most similar parts of all the class-A GPCRs crystallized so far. A high-throughput virtual screening exploration of GPR17 binding site with more than 130,000 lead-like compounds was then applied, followed by the wet functional and pharmacological validation of the top-scoring chemical structures. This approach revealed successful for the proposed aim, and allowed us to identify five agonists or partial agonists with very diverse chemical structure. None of these compounds could have been expected `a priori' to act on a GPCR, and all of them behaved as much more potent ligands than GPR17 endogenous activators.

  4. The Prelude on Novel Receptor and Ligand Targets Involved in the Treatment of Diabetes Mellitus

    PubMed Central

    Jonnalagadda, Venu Gopal; Ram Raju, Allam Venkata Sita; Pittala, Srinivas; Shaik, Afsar; Selkar, Nilakash Annaji

    2014-01-01

    Metabolic disorders are a group of disorders, due to the disruption of the normal metabolic process at a cellular level. Diabetes Mellitus and Tyrosinaemia are the majorly reported metabolic disorders. Among them, Diabetes Mellitus is a one of the leading metabolic syndrome, affecting 5 to 7 % of the population worldwide and mainly characterised by elevated levels of glucose and is associated with two types of physiological event disturbances such as impaired insulin secretion and insulin resistance. Up to now, various treatment strategies are like insulin, alphaglucosidase inhibitors, biguanides, incretins were being followed. Concurrently, various novel therapeutic strategies are required to advance the therapy of Diabetes mellitus. For the last few decades, there has been an extensive research in understanding the metabolic pathways involved in Diabetes Mellitus at the cellular level and having the profound knowledge on cell-growth, cell-cycle, and apoptosis at a molecular level provides new targets for the treatment of Diabetes Mellitus. Receptor signalling has been involved in these mechanisms, to translate the information coming from outside. To understand the various receptors involved in these pathways, we must have a sound knowledge on receptors and ligands involved in it. This review mainly summarises the receptors and ligands which are involved the Diabetes Mellitus. Finally, researchers have to develop the alternative chemical moieties that retain their affinity to receptors and efficacy. Diabetes Mellitus being a metabolic disorder due to the glucose surfeit, demands the need for regular exercise along with dietary changes. PMID:24754003

  5. Remission of lymphoblastic leukaemia in an intravascular fluidic environment by pliable drug carrier with a sliding target ligand

    PubMed Central

    Jang, Donghyun; Lee, Yeong Mi; Lee, Jaehyun; Doh, Junsang; Kim, Won Jong

    2017-01-01

    A polyrotaxane-based nanoconstruct with pliable structure carrying a chemotherapeutic drug was developed for targeting circulating lymphoblastic leukaemia cells in a fluidic environment of blood vessels in vivo. By introducing lymphoblast targeting aptamer DNA through cyclodextrin, threaded in poly(ethylene glycol) as polyrotaxane, target aptamer slides along the long polymeric chain and actively search for target ligand, leading to active targeting in dynamic fluidic system which is enhanced by up to 6–fold compared with that of control carriers with non–sliding targeting ligands. Moreover, the drug carrier was made stimuli-responsive by employing i-motif DNA to selective releases of its payload at intracellular acidic condition. These combined features resulted in the effective remission of lymphoblastic leukaemia both in vitro and in dynamic blood vessels in vivo. PMID:28094326

  6. Methods for Identifying Ligands that Target Nucleic Acid Molecules and Nucleic Acid Structural Motifs

    NASA Technical Reports Server (NTRS)

    Disney, Matthew D. (Inventor); Childs-Disney, Jessica L. (Inventor)

    2017-01-01

    Disclosed are methods for identifying a nucleic acid (e.g., RNA, DNA, etc.) motif which interacts with a ligand. The method includes providing a plurality of ligands immobilized on a support, wherein each particular ligand is immobilized at a discrete location on the support; contacting the plurality of immobilized ligands with a nucleic acid motif library under conditions effective for one or more members of the nucleic acid motif library to bind with the immobilized ligands; and identifying members of the nucleic acid motif library that are bound to a particular immobilized ligand. Also disclosed are methods for selecting, from a plurality of candidate ligands, one or more ligands that have increased likelihood of binding to a nucleic acid molecule comprising a particular nucleic acid motif, as well as methods for identifying a nucleic acid which interacts with a ligand.

  7. Manipulating Antigenic Ligand Strength to Selectively Target Myelin-Reactive CD4+ T Cells in EAE

    PubMed Central

    Sabatino, Joseph J.; Rosenthal, Kristen M.

    2010-01-01

    The development of antigen-specific therapies for the selective tolerization of autoreactive T cells remains the Holy Grail for the treatment of T-cell-mediated autoimmune diseases such as multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE). This quest remains elusive, however, as the numerous antigen-specific strategies targeting myelin-specific T cells over the years have failed to result in clinical success. In this review, we revisit the antigen-based therapies used in the treatment of myelin-specific CD4+ T cells in the context of the functional avidity and the strength of signal of the encephalitogenic CD4+ T cell repertoire. In light of differences in activation thresholds, we propose that autoreactive T cells are not all equal, and therefore tolerance induction strategies must incorporate ligand strength in order to be successful in treating EAE and ultimately the human disease MS. PMID:19904613

  8. Activation and Molecular Targets of Peroxisome Proliferator-Activated Receptor-γ Ligands in Lung Cancer

    PubMed Central

    Nemenoff, Raphael A.; Weiser-Evans, Mary; Winn, Robert A.

    2008-01-01

    Lung cancer is the leading cause of cancer death, and five-year survival remains poor, raising the urgency for new treatment strategies. Activation of PPARγ represents a potential target for both the treatment and prevention of lung cancer. Numerous studies have examined the effect of thiazolidinediones such as rosiglitazone and pioglitazone on lung cancer cells in vitro and in xenograft models. These studies indicate that activation of PPARγ inhibits cancer cell proliferation as well as invasiveness and metastasis. While activation of PPARγ can occur by direct binding of pharmacological ligands to the molecule, emerging data indicate that PPARγ activation can occur through engagement of other signal transduction pathways, including Wnt signaling and prostaglandin production. Data, both from preclinical models and retrospective clinical studies, indicate that activation of PPARγ may represent an attractive chemopreventive strategy. This article reviews the existing biological and mechanistic experiments focusing on the role of PPARγ in lung cancer, focusing specifically on nonsmall cell lung cancer. PMID:18509496

  9. 'Partial' competition of heterobivalent ligand binding may be mistaken for allosteric interactions: a comparison of different target interaction models.

    PubMed

    Vauquelin, Georges; Hall, David; Charlton, Steven J

    2015-05-01

    Non-competitive drugs that confer allosteric modulation of orthosteric ligand binding are of increasing interest as therapeutic agents. Sought-after advantages include a ceiling level to drug effect and greater receptor-subtype selectivity. It is thus important to determine the mode of interaction of newly identified receptor ligands early in the drug discovery process and binding studies with labelled orthosteric ligands constitute a traditional approach for this. According to the general allosteric ternary complex model, allosteric ligands that exhibit negative cooperativity may generate distinctive 'competition' curves: they will not reach baseline levels and their nadir will increase in par with the orthosteric ligand concentration. This behaviour is often considered a key hallmark of allosteric interactions. The present study is based on differential equation-based simulations. The differential equation-based simulations revealed that the same 'competition binding' pattern was also obtained when a monovalent ligand binds to one of the target sites of a heterobivalent ligand, even if this process is exempt of allosteric interactions. This pattern was not strictly reciprocal when the binding of each of the ligands was recorded. The prominence of this phenomenon may vary from one heterobivalent ligand to another and we suggest that this phenomenon may take place with ligands that have been proposed to bind according to 'two-domain' and 'charnière' models. The present findings indicate a familiar experimental situation where bivalency may give rise to observations that could inadvertently be interpreted as allosteric binding. Yet, both mechanisms could be differentiated based on alternative experiments and structural considerations. © 2014 The British Pharmacological Society.

  10. Isozyme-Specific Ligands for O-acetylserine sulfhydrylase, a Novel Antibiotic Target

    PubMed Central

    Cozzini, Pietro; Campanini, Barbara; Salsi, Enea; Felici, Paolo; Raboni, Samanta; Benedetti, Paolo; Cruciani, Gabriele; Kellogg, Glen E.; Cook, Paul F.; Mozzarelli, Andrea

    2013-01-01

    The last step of cysteine biosynthesis in bacteria and plants is catalyzed by O-acetylserine sulfhydrylase. In bacteria, two isozymes, O-acetylserine sulfhydrylase-A and O-acetylserine sulfhydrylase-B, have been identified that share similar binding sites, although the respective specific functions are still debated. O-acetylserine sulfhydrylase plays a key role in the adaptation of bacteria to the host environment, in the defense mechanisms to oxidative stress and in antibiotic resistance. Because mammals synthesize cysteine from methionine and lack O-acetylserine sulfhydrylase, the enzyme is a potential target for antimicrobials. With this aim, we first identified potential inhibitors of the two isozymes via a ligand- and structure-based in silico screening of a subset of the ZINC library using FLAP. The binding affinities of the most promising candidates were measured in vitro on purified O-acetylserine sulfhydrylase-A and O-acetylserine sulfhydrylase-B from Salmonella typhimurium by a direct method that exploits the change in the cofactor fluorescence. Two molecules were identified with dissociation constants of 3.7 and 33 µM for O-acetylserine sulfhydrylase-A and O-acetylserine sulfhydrylase-B, respectively. Because GRID analysis of the two isoenzymes indicates the presence of a few common pharmacophoric features, cross binding titrations were carried out. It was found that the best binder for O-acetylserine sulfhydrylase-B exhibits a dissociation constant of 29 µM for O-acetylserine sulfhydrylase-A, thus displaying a limited selectivity, whereas the best binder for O-acetylserine sulfhydrylase-A exhibits a dissociation constant of 50 µM for O-acetylserine sulfhydrylase-B and is thus 8-fold selective towards the former isozyme. Therefore, isoform-specific and isoform-independent ligands allow to either selectively target the isozyme that predominantly supports bacteria during infection and long-term survival or to completely block bacterial cysteine

  11. A New Peptide Ligand for Targeting Human Carbonic Anhydrase IX, Identified through the Phage Display Technology

    PubMed Central

    Askoxylakis, Vasileios; Garcia-Boy, Regine; Rana, Shoaib; Krämer, Susanne; Hebling, Ulrike; Mier, Walter; Altmann, Annette; Markert, Annette; Debus, Jürgen; Haberkorn, Uwe

    2010-01-01

    Carbonic anhydrase IX (CAIX) is a transmembrane enzyme found to be overexpressed in various tumors and associated with tumor hypoxia. Ligands binding this target may be used to visualize hypoxia, tumor manifestation or treat tumors by endoradiotherapy. Methods Phage display was performed with a 12 amino acid phage display library by panning against a recombinant extracellular domain of human carbonic anhydrase IX. The identified peptide CaIX-P1 was chemically synthesized and tested in vitro on various cell lines and in vivo in Balb/c nu/nu mice carrying subcutaneously transplanted tumors. Binding, kinetic and competition studies were performed on the CAIX positive human renal cell carcinoma cell line SKRC 52, the CAIX negative human renal cell carcinoma cell line CaKi 2, the human colorectal carcinoma cell line HCT 116 and on human umbilical vein endothelial cells (HUVEC). Organ distribution studies were carried out in mice, carrying SKRC 52 tumors. RNA expression of CAIX in HCT 116 and HUVEC cells was investigated by quantitative real time PCR. Results In vitro binding experiments of 125I-labeled-CaIX-P1 revealed an increased uptake of the radioligand in the CAIX positive renal cell carcinoma cell line SKRC 52. Binding of the radioligand in the colorectal carcinoma cell line HCT 116 increased with increasing cell density and correlated with the mRNA expression of CAIX. Radioligand uptake was inhibited up to 90% by the unlabeled CaIX-P1 peptide, but not by the negative control peptide octreotide at the same concentration. No binding was demonstrated in CAIX negative CaKi 2 and HUVEC cells. Organ distribution studies revealed a higher accumulation in SKRC 52 tumors than in heart, spleen, liver, muscle, intestinum and brain, but a lower uptake compared to blood and kidney. Conclusions These data indicate that CaIX-P1 is a promising candidate for the development of new ligands targeting human carbonic anhydrase IX. PMID:21209841

  12. Ligand substitutions between ruthenium–cymene compounds can control protein versus DNA targeting and anticancer activity

    PubMed Central

    Adhireksan, Zenita; Davey, Gabriela E.; Campomanes, Pablo; Groessl, Michael; Clavel, Catherine M.; Yu, Haojie; Nazarov, Alexey A.; Yeo, Charmian Hui Fang; Ang, Wee Han; Dröge, Peter; Rothlisberger, Ursula; Dyson, Paul J.; Davey, Curt A.

    2014-01-01

    Ruthenium compounds have become promising alternatives to platinum drugs by displaying specific activities against different cancers and favourable toxicity and clearance properties. Nonetheless, their molecular targeting and mechanism of action are poorly understood. Here we study two prototypical ruthenium-arene agents—the cytotoxic antiprimary tumour compound [(η6-p-cymene)Ru(ethylene-diamine)Cl]PF6 and the relatively non-cytotoxic antimetastasis compound [(η6-p-cymene)Ru(1,3,5-triaza-7-phosphaadamantane)Cl2]—and discover that the former targets the DNA of chromatin, while the latter preferentially forms adducts on the histone proteins. Using a novel ‘atom-to-cell’ approach, we establish the basis for the surprisingly site-selective adduct formation behaviour and distinct cellular impact of these two chemically similar anticancer agents, which suggests that the cytotoxic effects arise largely from DNA lesions, whereas the protein adducts may be linked to the other therapeutic activities. Our study shows promise for developing new ruthenium drugs, via ligand-based modulation of DNA versus protein binding and thus cytotoxic potential, to target distinguishing epigenetic features of cancer cells. PMID:24637564

  13. Programmed Cell Death-1/Programmed Death-ligand 1 Pathway: A New Target for Sepsis.

    PubMed

    Liu, Qiang; Li, Chun-Sheng

    2017-04-20

    Sepsis remains a leading cause of death in many Intensive Care Units worldwide. Immunosuppression has been a primary focus of sepsis research as a key pathophysiological mechanism. Given the important role of the negative costimulatory molecules programmed cell death-1 (PD-1) and programmed death-ligand 1 (PD-L1) in the occurrence of immunosuppression during sepsis, we reviewed literatures related to the PD-1/PD-L1 pathway to examine its potential as a new target for sepsis treatment. Studies of the association between PD-1/PD-L1 and sepsis published up to January 31, 2017, were obtained by searching the PubMed database. English language studies, including those based on animal models, clinical research, and reviews, with data related to PD-1/PD-L1 and sepsis, were evaluated. Immunomodulatory therapeutics could reverse the deactivation of immune cells caused by sepsis and restore immune cell activation and function. Blockade of the PD-1/PD-L1 pathway could reduce the exhaustion of T-cells and enhance the proliferation and activation of T-cells. The anti-PD-1/PD-L1 pathway shows promise as a new target for sepsis treatment. This review provides a basis for clinical trials and future studies aimed at revaluating the efficacy and safety of this targeted approach.

  14. Ligand substitutions between ruthenium-cymene compounds can control protein versus DNA targeting and anticancer activity.

    PubMed

    Adhireksan, Zenita; Davey, Gabriela E; Campomanes, Pablo; Groessl, Michael; Clavel, Catherine M; Yu, Haojie; Nazarov, Alexey A; Yeo, Charmian Hui Fang; Ang, Wee Han; Dröge, Peter; Rothlisberger, Ursula; Dyson, Paul J; Davey, Curt A

    2014-03-18

    Ruthenium compounds have become promising alternatives to platinum drugs by displaying specific activities against different cancers and favourable toxicity and clearance properties. Nonetheless, their molecular targeting and mechanism of action are poorly understood. Here we study two prototypical ruthenium-arene agents-the cytotoxic antiprimary tumour compound [(η(6)-p-cymene)Ru(ethylene-diamine)Cl]PF6 and the relatively non-cytotoxic antimetastasis compound [(η(6)-p-cymene)Ru(1,3,5-triaza-7-phosphaadamantane)Cl2]-and discover that the former targets the DNA of chromatin, while the latter preferentially forms adducts on the histone proteins. Using a novel 'atom-to-cell' approach, we establish the basis for the surprisingly site-selective adduct formation behaviour and distinct cellular impact of these two chemically similar anticancer agents, which suggests that the cytotoxic effects arise largely from DNA lesions, whereas the protein adducts may be linked to the other therapeutic activities. Our study shows promise for developing new ruthenium drugs, via ligand-based modulation of DNA versus protein binding and thus cytotoxic potential, to target distinguishing epigenetic features of cancer cells.

  15. Multivalent display of quinic acid based ligands for targeting E-selectin expressing cells.

    PubMed

    Shamay, Yosi; Paulin, Denise; Ashkenasy, Gonen; David, Ayelet

    2009-10-08

    The site-specific expression of molecular markers on endothelial cells of blood vessels during inflammatory response and angiogenesis provides an opportunity to target drugs and imaging molecules to the vascular endothelium of diseased tissues. This paper describes an innovative strategy for selective delivery of polymer conjugates to E- and P-selectin expressing cells using a series of quinic acid (Qa) based non-carbohydrate analogues of the natural ligand sialyl Lewis(x) (sLe(x)) as targeting moieties. We demonstrate that such analogues antagonize the adhesion of sLe(x) expressing HL-60 cells to both E- and P-selectin. Significantly, the apparent avidity of polymer conjugates carrying multiple Qa copies has increased by 3 orders of magnitude relative to their monomeric forms. Furthermore, we found that the major mechanism of copolymer entry and delivery into E-selectin expressing cells is endocytosis. These selectin-targetable copolymers provide the foundation to support controlled delivery of anticancer drugs and imaging agents to tumor vasculature for therapeutic and diagnostic applications.

  16. Multi-ligand nanoparticles for targeted drug delivery to the injured vascular wall

    NASA Astrophysics Data System (ADS)

    Kona, Soujanya

    Pathological conditions like coronary artery disease, acute myocardial infarction, stroke, and peripheral artery diseases as well as cardiovascular interventions used in the treatment of coronary artery diseases such as angioplasty and stenting damage/injure the blood vessel wall, leading to inflamed or activated endothelial cells that have been implicated in events leading to thrombosis, inflammation, and restenosis. Oral administration of anti-coagulant and anti-inflammatory drugs causes systemic toxicity, bleeding, patient incompliance, and inadequate amounts of drugs at the injured area. Though drug-eluting stents have shown therapeutic benefits, complications such as in-stent restenosis and late thrombosis still remain and are a cause for concern. Rapid growth in the field of nanotechnology and nanoscience in recent years has paved the way for new targeted and controlled drug delivery strategies. In this perspective, the development of biodegradable nanoparticles for targeted intracellular drug delivery to the inflamed endothelial cells may offer an improved avenue for treatment of cardiovascular diseases. The major objective of this research was to develop "novel multi-ligand nanoparticles," as drug carriers that can efficiently target and deliver therapeutic agents to the injured/inflamed vascular cells under dynamic flow conditions. Our approach mimics the natural binding ability of platelets to injured/activated endothelial cells through glycoprotein Ib (GPIb) bound to P-selectin expressed on inflamed endothelial cells and to the subendothelium through GPIb binding to von Willebrand factor (vWF) deposited onto the injured vascular wall. Our design also exploits the natural cell membrane translocation ability of the internalizing cell peptide - trans-activating transcriptor (TAT) to enhance the nanoparticle uptake by the targeted cells. Our hypothesis is that these multi-ligand nanoparticles would show an increased accumulation at the injury site since GPIb

  17. Optimized hydrophobic interactions and hydrogen bonding at the target-ligand interface leads the pathways of drug-designing.

    PubMed

    Patil, Rohan; Das, Suranjana; Stanley, Ashley; Yadav, Lumbani; Sudhakar, Akulapalli; Varma, Ashok K

    2010-08-16

    Weak intermolecular interactions such as hydrogen bonding and hydrophobic interactions are key players in stabilizing energetically-favored ligands, in an open conformational environment of protein structures. However, it is still poorly understood how the binding parameters associated with these interactions facilitate a drug-lead to recognize a specific target and improve drugs efficacy. To understand this, comprehensive analysis of hydrophobic interactions, hydrogen bonding and binding affinity have been analyzed at the interface of c-Src and c-Abl kinases and 4-amino substituted 1H-pyrazolo [3, 4-d] pyrimidine compounds. In-silico docking studies were performed, using Discovery Studio software modules LigandFit, CDOCKER and ZDOCK, to investigate the role of ligand binding affinity at the hydrophobic pocket of c-Src and c-Abl kinase. Hydrophobic and hydrogen bonding interactions of docked molecules were compared using LigPlot program. Furthermore, 3D-QSAR and MFA calculations were scrutinized to quantify the role of weak interactions in binding affinity and drug efficacy. The in-silico method has enabled us to reveal that a multi-targeted small molecule binds with low affinity to its respective targets. But its binding affinity can be altered by integrating the conformationally favored functional groups at the active site of the ligand-target interface. Docking studies of 4-amino-substituted molecules at the bioactive cascade of the c-Src and c-Abl have concluded that 3D structural folding at the protein-ligand groove is also a hallmark for molecular recognition of multi-targeted compounds and for predicting their biological activity. The results presented here demonstrate that hydrogen bonding and optimized hydrophobic interactions both stabilize the ligands at the target site, and help alter binding affinity and drug efficacy.

  18. Toward a magic or imaginary bullet? Ligands for drug targeting to cancer cells: principles, hopes, and challenges

    PubMed Central

    Toporkiewicz, Monika; Meissner, Justyna; Matusewicz, Lucyna; Czogalla, Aleksander; Sikorski, Aleksander F

    2015-01-01

    There are many problems directly correlated with the systemic administration of drugs and how they reach their target site. Targeting promises to be a hopeful strategy as an improved means of drug delivery, with reduced toxicity and minimal adverse side effects. Targeting exploits the high affinity of cell-surface-targeted ligands, either directly or as carriers for a drug, for specific retention and uptake by the targeted diseased cells. One of the most important parameters which should be taken into consideration in the selection of an appropriate ligand for targeting is the binding affinity (KD). In this review we focus on the importance of binding affinities of monoclonal antibodies, antibody derivatives, peptides, aptamers, DARPins, and small targeting molecules in the process of selection of the most suitable ligand for targeting of nanoparticles. In order to provide a critical comparison between these various options, we have also assessed each technology format across a range of parameters such as molecular size, immunogenicity, costs of production, clinical profiles, and examples of the level of selectivity and toxicity of each. Wherever possible, we have also assessed how incorporating such a targeted approach compares with, or is superior to, original treatments. PMID:25733832

  19. Double-targeting Using A TrkC-Ligand Conjugated To BODIPY-based PDT Agent

    PubMed Central

    Kamkaew, Anyanee; Burgess, Kevin

    2013-01-01

    A molecule 1 (IY-IY-PDT) was designed to contain a fragment (IY-IY) that targets the TrkC receptor, and a photosensitizer that acts as an agent for photodynamic therapy (PDT). Molecule 1 had sub-micromolar photocytotoxicities to cells that were either engineered to stably express TrkC (NIH3T3-TrkC) or that naturally express high levels of TrkC (SY5Y neuroblastoma lines). Control experiments showed 1 is not cytotoxic in the dark, and has significantly less photocytotoxicity towards cells that do not express TrkC (NIH3T3-WT). Other controls featuring a similar agent 2 (YI-YI-PDT) which is identical and isomeric with 1 except that the targeting region is scrambled (a YI-YI motif, see text) showed 1 is considerably more photocytotoxic than 2 on TrkC+ cells. Imaging live TrkC+ cells after treatment with a fluorescent agent 1 (IY-IY-PDT) proved that 1 permeates into TrkC+ cells and localizes in the lysosomes. This observation indirectly indicates agent 1 enters the cells via the TrkC receptor. Consistent with this, the dose-dependent PDT effects of 1 can be competitively reduced by the natural TrkC ligand, neurotrophin NT3. PMID:24063347

  20. Novel Toll-like Receptor 2 Ligands for Targeted Pancreatic Cancer Imaging and Immunotherapy

    PubMed Central

    Huynh, Amanda Shanks; Chung, Woo Jin; Cho, Hyun-Il; Moberg, Valerie E.; Celis, Esteban; Morse, David L.; Vagner, Josef

    2013-01-01

    Toll-like receptor 2 (TLR2) is a target for immune system stimulation during cancer immunotherapy and a cell-surface marker for pancreatic cancer. To develop targeted agents for cancer imaging and therapy, we designed, synthesized and characterized thirteen novel, fully synthetic high affinity TLR2 agonists. Analog 10 had the highest agonist activity (NF-κB functional assay, EC50=20 nM) and binding affinity (competitive binding assay, Ki=25 nM). As an immune adjuvant, compound 10 stimulated the immune system in vivo by generation and persistence of antigen-specific CD8+ T cells indicating its potential use in cancer immunotherapy. After conjugation of near-infrared dye to 10, agonist activity (EC50=34 nM) and binding affinity (Ki =11 nM) were retained in 13. Fluorescence signal was present in TLR2 expressing pancreatic tumor xenografts 24 h post-injection of 13; while an excess of unlabeled ligand blocked 13 from binding to the tumor resulting in significantly decreased signal (p<0.001) demonstrating in vivo selectivity. PMID:23098072

  1. Chemically modified peptide scaffolds target the CFTR-associated ligand PDZ domain.

    PubMed

    Amacher, Jeanine F; Zhao, Ruizhi; Spaller, Mark R; Madden, Dean R

    2014-01-01

    PDZ domains are protein-protein interaction modules that coordinate multiple signaling and trafficking pathways in the cell and that include active therapeutic targets for diseases such as cancer, cystic fibrosis, and addiction. Our previous work characterized a PDZ interaction that restricts the apical membrane half-life of the cystic fibrosis transmembrane conductance regulator (CFTR). Using iterative cycles of peptide-array and solution-binding analysis, we targeted the PDZ domain of the CFTR-Associated Ligand (CAL), and showed that an engineered peptide inhibitor rescues cell-surface expression of the most common CFTR disease mutation ΔF508. Here, we present a series of scaffolds containing chemically modifiable side chains at all non-motif positions along the CAL PDZ domain binding cleft. Concordant equilibrium dissociation constants were determined in parallel by fluorescence polarization, isothermal titration calorimetry, and surface plasmon resonance techniques, confirming robust affinity for each scaffold and revealing an enthalpically driven mode of inhibitor binding. Structural studies demonstrate a conserved binding mode for each peptide, opening the possibility of combinatorial modification. Finally, we diversified one of our peptide scaffolds with halogenated substituents that yielded modest increases in binding affinity. Overall, this work validates our approach and provides a stereochemical foundation for further CAL inhibitor design and screening.

  2. Ligand efficiency-based support vector regression models for predicting bioactivities of ligands to drug target proteins.

    PubMed

    Sugaya, Nobuyoshi

    2014-10-27

    The concept of ligand efficiency (LE) indices is widely accepted throughout the drug design community and is frequently used in a retrospective manner in the process of drug development. For example, LE indices are used to investigate LE optimization processes of already-approved drugs and to re-evaluate hit compounds obtained from structure-based virtual screening methods and/or high-throughput experimental assays. However, LE indices could also be applied in a prospective manner to explore drug candidates. Here, we describe the construction of machine learning-based regression models in which LE indices are adopted as an end point and show that LE-based regression models can outperform regression models based on pIC50 values. In addition to pIC50 values traditionally used in machine learning studies based on chemogenomics data, three representative LE indices (ligand lipophilicity efficiency (LLE), binding efficiency index (BEI), and surface efficiency index (SEI)) were adopted, then used to create four types of training data. We constructed regression models by applying a support vector regression (SVR) method to the training data. In cross-validation tests of the SVR models, the LE-based SVR models showed higher correlations between the observed and predicted values than the pIC50-based models. Application tests to new data displayed that, generally, the predictive performance of SVR models follows the order SEI > BEI > LLE > pIC50. Close examination of the distributions of the activity values (pIC50, LLE, BEI, and SEI) in the training and validation data implied that the performance order of the SVR models may be ascribed to the much higher diversity of the LE-based training and validation data. In the application tests, the LE-based SVR models can offer better predictive performance of compound-protein pairs with a wider range of ligand potencies than the pIC50-based models. This finding strongly suggests that LE-based SVR models are better than pIC50-based

  3. The preimplantation mouse embryo is a target for cannabinoid ligand-receptor signaling.

    PubMed Central

    Paria, B C; Das, S K; Dey, S K

    1995-01-01

    Using a reverse transcription-coupled PCR, we demonstrated that both brain and spleen type cannabinoid receptor (CB1-R and CB2-R, respectively) mRNAs are expressed in the preimplantation mouse embryo. The CB1-R mRNA expression was coincident with the activation of the embryonic genome late in the two-cell stage, whereas the CB2-R mRNA was present from the one-cell through the blastocyst stages. The major psychoactive component of marijuana (-)-delta-9-tetrahydrocannabinol [(-)-THC] inhibited forskolin-stimulated cAMP generation in the blastocyst, and this inhibition was prevented by pertussis toxin. However, the inactive cannabinoid cannabidiol (CBD) failed to influence this response. These results suggest that cannabinoid receptors in the embryo are coupled to inhibitory guanine nucleotide binding proteins. Further, the oviduct and uterus exhibited the enzymatic capacity to synthesize the putative endogenous cannabinoid ligand arachidonylethanolamide (anandamide). Synthetic and natural cannabinoid agonists [WIN 55,212-2, CP 55,940, (-)-THC, and anandamide], but not CBD or arachidonic acid, arrested the development of two-cell embryos primarily between the four-cell and eight-cell stages in vitro in a dose-dependent manner. Anandamide also interfered with the development of eight-cell embryos to blastocysts in culture. The autoradiographic studies readily detected binding of [3H]anandamide in embryos at all stages of development. Positive signals were present in one-cell embryos and all blastomeres of two-cell through four-cell embryos. However, most of the binding sites in eight-cell embryos and morulae were present in the outer cells. In the blastocyst, these signals were primarily localized in the mural trophectoderm with low levels of signals in the polar trophectoderm, while little or no signals were noted in inner cell mass cells.These results establish that the preimplantation mouse embryo is a target for cannabinoid ligands. Consequently, many of the

  4. Targeting breast to brain metastatic tumours with death receptor ligand expressing therapeutic stem cells.

    PubMed

    Bagci-Onder, Tugba; Du, Wanlu; Figueiredo, Jose-Luiz; Martinez-Quintanilla, Jordi; Shah, Khalid

    2015-06-01

    Characterizing clinically relevant brain metastasis models and assessing the therapeutic efficacy in such models are fundamental for the development of novel therapies for metastatic brain cancers. In this study, we have developed an in vivo imageable breast-to-brain metastasis mouse model. Using real time in vivo imaging and subsequent composite fluorescence imaging, we show a widespread distribution of micro- and macro-metastasis in different stages of metastatic progression. We also show extravasation of tumour cells and the close association of tumour cells with blood vessels in the brain thus mimicking the multi-foci metastases observed in the clinics. Next, we explored the ability of engineered adult stem cells to track metastatic deposits in this model and show that engineered stem cells either implanted or injected via circulation efficiently home to metastatic tumour deposits in the brain. Based on the recent findings that metastatic tumour cells adopt unique mechanisms of evading apoptosis to successfully colonize in the brain, we reasoned that TNF receptor superfamily member 10A/10B apoptosis-inducing ligand (TRAIL) based pro-apoptotic therapies that induce death receptor signalling within the metastatic tumour cells might be a favourable therapeutic approach. We engineered stem cells to express a tumour selective, potent and secretable variant of a TRAIL, S-TRAIL, and show that these cells significantly suppressed metastatic tumour growth and prolonged the survival of mice bearing metastatic breast tumours. Furthermore, the incorporation of pro-drug converting enzyme, herpes simplex virus thymidine kinase, into therapeutic S-TRAIL secreting stem cells allowed their eradication post-tumour treatment. These studies are the first of their kind that provide insight into targeting brain metastasis with stem-cell mediated delivery of pro-apoptotic ligands and have important clinical implications. © The Author (2015). Published by Oxford University Press on

  5. Target-specific NMR detection of protein-ligand interactions with antibody-relayed (15)N-group selective STD.

    PubMed

    Hetényi, Anasztázia; Hegedűs, Zsófia; Fajka-Boja, Roberta; Monostori, Éva; Kövér, Katalin E; Martinek, Tamás A

    2016-12-01

    Fragment-based drug design has been successfully applied to challenging targets where the detection of the weak protein-ligand interactions is a key element. (1)H saturation transfer difference (STD) NMR spectroscopy is a powerful technique for this work but it requires pure homogeneous proteins as targets. Monoclonal antibody (mAb)-relayed (15)N-GS STD spectroscopy has been developed to resolve the problem of protein mixtures and impure proteins. A (15)N-labelled target-specific mAb is selectively irradiated and the saturation is relayed through the target to the ligand. Tests on the anti-Gal-1 mAb/Gal-1/lactose system showed that the approach is experimentally feasible in a reasonable time frame. This method allows detection and identification of binding molecules directly from a protein mixture in a multicomponent system.

  6. Successful treatment of post-transplant relapsed acute myeloid leukemia with FLT3 internal tandem duplication using the combination of induction chemotherapy, donor lymphocyte infusion, sorafenib and azacitidine. Report of three cases.

    PubMed

    Campregher, Paulo Vidal; Mattos, Vinicius Renan Pinto de; Salvino, Marco Aurélio; Santos, Fabio Pires de Souza; Hamerschlak, Nelson

    2017-07-24

    Acute myeloid leukemia is a hematopoietic stem cell neoplastic disease associated with high morbidity and mortality. The presence of FLT3 internal tandem duplication mutations leads to high rates of relapse and decreased overall survival. Patients with FLT3 internal tandem duplication are normally treated with hematopoietic stem cell transplantation in first complete remission. Nevertheless, the incidence of post-transplant relapse is considerable in this group of patients, and the management of this clinical condition is challenging. The report describes the outcomes of patients with FLT3 internal tandem duplication positive acute myeloid leukemia who relapsed after allogeneic hematopoietic stem cell transplantation and were treated with the combination of re-induction chemotherapy, donor lymphocyte infusion, sorafenib and azacitidine. Three cases are described and all patients achieved prolonged complete remission with the combined therapy. The combination of induction chemotherapy followed by donor lymphocyte infusion, and the maintenance with azacitidine and sorafenib can be effective approaches in the treatment of post-hematopoietic stem cell transplant and relapsed FLT3 internal tandem duplication positive acute myeloid leukemia patients. This strategy should be further explored in the context of clinical trials. RESUMO A leucemia mieloide aguda é uma doença neoplásica de células-tronco hematopoiéticas com alta morbimortalidade. A presença de mutações de duplicação em tandem de FLT3 leva a altas taxas de recorrência e a menor sobrevida global. Os pacientes com duplicação em tandem de FLT3 são normalmente tratados com transplante de células-tronco hematopoiéticas na primeira remissão completa. No entanto, a incidência de recidiva pós-transplante é considerável neste grupo de pacientes, e a conduta, nestes casos, é um desafio. O relato descreve os resultados do tratamento de pacientes com leucemia mieloide aguda positiva e duplicação em

  7. Exogenous fms-like tyrosine kinase 3 ligand overrides brain immune privilege and facilitates recognition of a neo-antigen without causing autoimmune neuropathology

    PubMed Central

    Larocque, Daniel; Sanderson, Nicholas S. R.; Bergeron, Josée; Curtin, James F.; Girton, Joe; Wibowo, Mia; Bondale, Niyati; Kroeger, Kurt M.; Yang, Jieping; Lacayo, Liliana M.; Reyes, Kevin C.; Farrokhi, Catherine; Pechnick, Robert N.; Castro, Maria G.; Lowenstein, Pedro R.

    2010-01-01

    Soluble antigens diffuse out of the brain and can thus stimulate a systemic immune response, whereas particulate antigens (from infectious agents or tumor cells) remain within brain tissue, thus failing to stimulate a systemic immune response. Immune privilege describes how the immune system responds to particulate antigens localized selectively within the brain parenchyma. We believe this immune privilege is caused by the absence of antigen presenting dendritic cells from the brain. We tested the prediction that expression of fms-like tyrosine kinase ligand 3 (Flt3L) in the brain will recruit dendritic cells and induce a systemic immune response against exogenous influenza hemagglutinin in BALB/c mice. Coexpression of Flt3L with HA in the brain parenchyma induced a robust systemic anti-HA immune response, and a small response against myelin basic protein and proteolipid protein epitopes. Depletion of CD4+CD25+ regulatory T cells (Tregs) enhanced both responses. To investigate the autoimmune impact of these immune responses, we characterized the neuropathological and behavioral consequences of intraparenchymal injections of Flt3L and HA in BALB/c and C57BL/6 mice. T cell infiltration in the forebrain was time and strain dependent, and increased in animals treated with Flt3L and depleted of Tregs; however, we failed to detect widespread defects in myelination throughout the forebrain or spinal cord. Results of behavioral tests were all normal. These results demonstrate that Flt3L overcomes the brain's immune privilege, and supports the clinical development of Flt3L as an adjuvant to stimulate clinically effective immune responses against brain neo-antigens, for example, those associated with brain tumors. PMID:20660723

  8. Meis1 programs transcription of FLT3 and cancer stem cell character, using a mechanism that requires interaction with Pbx and a novel function of the Meis1 C-terminus.

    PubMed

    Wang, Gang G; Pasillas, Martina P; Kamps, Mark P

    2005-07-01

    Meis1 is a homeodomain transcription factor coexpressed with Hoxa9 in most human acute myeloid leukemias (AMLs). In mouse models of leukemia produced by Hoxa9, Meis1 accelerates leukemogenesis. Because Hoxa9 immortalizes myeloid progenitors in the absence of Meis1 expression, the contribution of Meis1 toward leukemia remains unclear. Here, we describe a cultured progenitor model in which Meis1 programs leukemogenicity. Progenitors immortalized by Hoxa9 in culture are myeloid-lineage restricted and only infrequently caused leukemia after more than 250 days. Coexpressed Meis1 programmed rapid AML-initiating character, maintained multipotent progenitor potential, and induced expression of genes associated with short-term hematopoietic stem cells (HSCs), such as FLT3 and CD34, whose expression also characterizes the leukemia-initiating stem cells of human AML. Meis1 leukemogenesis functions required binding to Pbx, binding to DNA, and a conserved function of its C-terminal tail. We hypothesize that Meis1 is required for the homing and survival of leukemic progenitors within their hematopoietic niches, functions mediated by HSC-specific genes such as CD34 and Fms-like tyrosine kinase 3 (FLT3), respectively. This is the first example of a transcription factor oncoprotein (Meis1) that establishes expression of a tyrosine kinase oncoprotein (FLT3), and explains their coexpression in human leukemia. This cultured progenitor model will be useful to define the genetic basis of leukemogenesis involving Hoxa9 and Meis1.

  9. Ligand structural motifs can decouple glucocorticoid receptor transcriptional activation from target promoter occupancy.

    PubMed

    Blind, Raymond D; Pineda-Torra, Inés; Xu, Yong; Xu, H Eric; Garabedian, Michael J

    2012-04-20

    Glucocorticoid (GC) induction of the tyrosine aminotransferase (TAT) gene by the glucocorticoid receptor (GR) is a classic model used to investigate steroid-regulated gene expression. Classic studies analyzing GC-induction of the TAT gene demonstrated that despite having very high affinity for GR, some steroids cannot induce maximal TAT enzyme activity, but the molecular basis for this phenomenon is unknown. Here, we used RT-PCR and chromatin immunoprecipitation to determine TAT mRNA accumulation and GR recruitment to the TAT promoter (TAT-GRE) in rat hepatoma cells induced by seven GR ligands: dexamethasone (DEX), cortisol (CRT), corticosterone (CCS), 11-deoxycorticosterone (DOC), aldosterone (ALD), progesterone (PRG) and 17-hydroxyprogesterone (17P). As expected, DEX, CRT, CCS and ALD all induced both TAT mRNA and GR recruitment to the TAT-GRE, while PRG and 17P did not. However, while DOC could not induce significant TAT mRNA, it did induce robust GR occupancy of the TAT-GRE. DOC also induced recruitment of the histone acetyltransferase p300 to the TAT-GRE as efficiently as DEX. These DOC-induced effects recapitulated at another GR target gene (sulfonyltransferase 1A1), and DOC also failed to promote the multiple changes in gene expression required for glucocorticoid-dependent 3T3-L1 adipocyte differentiation. Structural simulations and protease sensitivity assays suggest that DOC and DEX induce different conformations in GR. Thus, although steroids that bind GR with high affinity can induce GR and p300 occupancy of target promoters, they may not induce a conformation of GR capable of activating transcription.

  10. Targeting the TAM Receptors in Leukemia

    PubMed Central

    Huey, Madeline G.; Minson, Katherine A.; Earp, H. Shelton; DeRyckere, Deborah; Graham, Douglas K.

    2016-01-01

    Targeted inhibition of members of the TAM (TYRO-3, AXL, MERTK) family of receptor tyrosine kinases has recently been investigated as a novel strategy for treatment of hematologic malignancies. The physiologic functions of the TAM receptors in innate immune control, natural killer (NK) cell differentiation, efferocytosis, clearance of apoptotic debris, and hemostasis have previously been described and more recent data implicate TAM kinases as important regulators of erythropoiesis and megakaryopoiesis. The TAM receptors are aberrantly or ectopically expressed in many hematologic malignancies including acute myeloid leukemia, B- and T-cell acute lymphoblastic leukemia, chronic lymphocytic leukemia, and multiple myeloma. TAM receptors contribute to leukemic phenotypes through activation of pro-survival signaling pathways and interplay with other oncogenic proteins such as FLT3, LYN, and FGFR3. The TAM receptors also contribute to resistance to both cytotoxic chemotherapeutics and targeted agents, making them attractive therapeutic targets. A number of translational strategies for TAM inhibition are in development, including small molecule inhibitors, ligand traps, and monoclonal antibodies. Emerging areas of research include modulation of TAM receptors to enhance anti-tumor immunity, potential roles for TYRO-3 in leukemogenesis, and the function of the bone marrow microenvironment in mediating resistance to TAM inhibition. PMID:27834816

  11. Identification of ligands for RNA targets via structure-based virtual screening: HIV-1 TAR

    NASA Astrophysics Data System (ADS)

    Filikov, Anton V.; Mohan, Venkatraman; Vickers, Timothy A.; Griffey, Richard H.; Cook, P. Dan; Abagyan, Ruben A.; James, Thomas L.

    2000-08-01

    Binding of the Tat protein to TAR RNA is necessary for viral replication of HIV-1. We screened the Available Chemicals Directory (ACD) to identify ligands to bind to a TAR RNA structure using a four-step docking procedure: rigid docking first, followed by three steps of flexible docking using a pseudobrownian Monte Carlo minimization in torsion angle space with progressively more detailed conformational sampling on a progressively smaller list of top-ranking compounds. To validate the procedure, we successfully docked ligands for five RNA complexes of known structure. For ranking ligands according to binding avidity, an empirical binding free energy function was developed which accounts, in particular, for solvation, isomerization free energy, and changes in conformational entropy. System-specific parameters for the function were derived on a training set of RNA/ligand complexes with known structure and affinity. To validate the free energy function, we screened the entire ACD for ligands for an RNA aptamer which binds l-arginine tightly. The native ligand ranked 17 out of ca. 153,000 compounds screened, i.e., the procedure is able to filter out >99.98% of the database and still retain the native ligand. Screening of the ACD for TAR ligands yielded a high rank for all known TAR ligands contained in the ACD and suggested several other potential TAR ligands. Eight of the highest ranking compounds not previously known to be ligands were assayed for inhibition of the Tat-TAR interaction, and two exhibited a CD50 of ca. 1 μM.

  12. Efficient identification of murine M2 macrophage peptide targeting ligands by phage display and next-generation sequencing

    PubMed Central

    Liu, Gary W.; Livesay, Brynn R.; Kacherovsky, Nataly A.; Cieslewicz, Maryelise; Lutz, Emi; Waalkes, Adam; Jensen, Michael C.; Salipante, Stephen J.; Pun, Suzie H.

    2015-01-01

    Peptide ligands are used to increase the specificity of drug carriers to their target cells and to facilitate intracellular delivery. One method to identify such peptide ligands, phage display, enables high-throughput screening of peptide libraries for ligands binding to therapeutic targets of interest. However, conventional methods for identifying target binders in a library by Sanger sequencing are low-throughput, labor-intensive, and provide a limited perspective (< 0.01%) of the complete sequence space. Moreover, the small sample space can be dominated by non-specific, preferentially amplifying “parasitic sequences” and plastic-binding sequences, which may lead to the identification of false positives or exclude the identification of target-binding sequences. To overcome these challenges, we employed next-generation Illumina sequencing to couple high-throughput screening and high-throughput sequencing, enabling more comprehensive access to the phage display library sequence space. In this work, we define the hallmarks of binding sequences in next-generation sequencing data, and develop a method that identifies several target-binding phage clones for murine, alternatively-activated (M2) macrophages with a high (100%) success rate: sequences and binding motifs were reproducibly present across biological replicates; binding motifs were identified across multiple unique sequences; and an unselected, amplified library accurately filtered out parasitic sequences. In addition, we validate the Multiple Em for Motif Elicitation tool as an efficient and principled means of discovering binding sequences. PMID:26161996

  13. Development of a receptor-targeted gene delivery system using CXCR4 ligand-conjugated cross-linking peptides.

    PubMed

    Egorova, Anna; Bogacheva, Maria; Shubina, Anastasia; Baranov, Vladislav; Kiselev, Anton

    2014-01-01

    Success in gene therapy greatly depends on the efficiency of nucleic acid delivery. Important features of the carriers for gene delivery should include an enhanced transfection ability, targeting of specific receptors and low toxicity. In the present study, we characterized CXCR4-targeted cross-linking peptides modified with an N-terminal fragment of chemokine stromal cell-derived factor-1α as carriers for gene delivery. We studied three variants of DNA/carrier complexes with different targeting ligand content. The physicochemical characteristics of the complexes, including their DNA-binding and protective ability, interaction with glycosaminoglycans and size, were determined. Transfection efficacy was studied in cell lines with different levels of CXCR4 expression (HeLa, A172, CHO, Е.А.hy926) and also in human mesenchymal stem cells (hMSCs). The influence of the ligand content on the efficacy of transfection was studied by means of chlorpromazine blockage of clathrin-mediated endocytosis, competition with CXCR4-antagonist AMD3100, and valproic acid treatment of hMSCs. CXCR4-targeted peptides were evaluated for their physicochemical properties and in vitro transfection capacities. Ligand-modified carriers were found to be 10- to 50-fold more effective than unmodified carriers in CXCR4-positive cells. By contrast, their transfection efficacy in CXCR4-negative cells was similar to unmodified carriers. Experiments with chlorpromazine demonstrated receptor-specific transfection in A172 cells. The transfection efficacy of CXCR4-targeted carriers in AMD3100-treated HeLa cells was reduced by two-fold compared to the untreated control. Valproic acid treatment resulted in a four- to 15-fold increase of transfection efficacy for ligand-modified carriers in hMSCs. CXCR4-targeted cross-linking peptides should be considered as useful tools for nonviral gene delivery into tumor and mesenchymal stem cells. Copyright © 2014 John Wiley & Sons, Ltd.

  14. Detection of minor clones with internal tandem duplication mutations of FLT3 gene in acute myeloid leukemia using delta-PCR.

    PubMed

    Beierl, Katie; Tseng, Li-Hui; Beierl, Russell; Haley, Lisa; Gocke, Christopher D; Eshleman, James R; Lin, Ming-Tseh

    2013-03-01

    Internal tandem duplication (ITD) mutations of the FLT3 gene have been associated with inferior prognosis of acute myeloid leukemia. Detection of minor clones or minimal residual clones with ITD mutations is desirable, but is challenging when the mutant signal determined by polymerase chain reaction (PCR) and capillary electrophoresis is weak. In this study, we applied delta-PCR, which is a triple-primer strategy, to ensure PCR specificity and improve the sensitivity to 0.1% leukemic cells with ITD mutation. We also applied a reference peak to calculate ITD allelic burdens of <2% threshold of technical limitation for evaluating the relative ratio of 2 signals by capillary electrophoresis. Delta-PCR was able to detect single or multiple ITD mutations with an allelic burden (peak height ratio of mutant allele and wild-type allele) ranging from 0.4% to >100% among all 31 cases with previous documented ITD mutations. In one of the 3 cases with previously reported negative ITD mutation in the initial diagnostic specimen and ITD-positive results in the follow-up specimens, an ITD of 0.04% allele burden was retrospectively detected in the initial diagnosis specimen using delta-PCR. We also demonstrated that minor ITD mutant clones with an allelic burden of <1% present at diagnosis may become a dominant clone at the later refractory status, suggesting that detection of leukemic clones with allelic burdens of <1% may be clinically significant. Delta-PCR can detect ITD mutations with improved sensitivity and specificity and may be useful for the detection of minimal residual leukemia.

  15. Stable curcumin-loaded polymeric micellar formulation for enhancing cellular uptake and cytotoxicity to FLT3 overexpressing EoL-1 leukemic cells.

    PubMed

    Tima, Singkome; Anuchapreeda, Songyot; Ampasavate, Chadarat; Berkland, Cory; Okonogi, Siriporn

    2017-05-01

    The present study aims to develop a stable polymeric micellar formulation of curcumin (CM) with improved solubility and stability, and that is suitable for clinical applications in leukemia patients. CM-loaded polymeric micelles (CM-micelles) were prepared using poloxamers. The chemical structure of the polymers influenced micellar properties. The best formulation of CM-micelles, namely CM-P407, was obtained from poloxamer 407 at drug to polymer ratio of 1:30 and rehydrated with phosphate buffer solution pH 7.4. CM-P407 exhibited the smallest size of 30.3±1.3nm and highest entrapment efficiency of 88.4±4.1%. When stored at -80°C for 60days, CM-P407 retained high protection of CM and had no significant size change. In comparison with CM solution in dimethyl sulfoxide (CM-DMSO), CM kinetic degradation in both formulations followed a pseudo-first-order reaction, but the half-life of CM in CM-P407 was approx. 200 times longer than in CM-DMSO. Regarding the activity against FLT3 overexpressing EoL-1 leukemic cells, CM-P407 showed higher cytotoxicity than CM-DMSO. Moreover, intracellular uptake to leukemic cells of CM-P407 was 2-3 times greater than that of CM-DMSO. These promising results for CM-P407 will be further investigated in rodents and in clinical studies for leukemia treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Multi-Target Directed Donepezil-Like Ligands for Alzheimer's Disease

    PubMed Central

    Unzeta, Mercedes; Esteban, Gerard; Bolea, Irene; Fogel, Wieslawa A.; Ramsay, Rona R.; Youdim, Moussa B. H.; Tipton, Keith F.; Marco-Contelles, José

    2016-01-01

    HIGHLIGHTS ASS234 is a MTDL compound containing a moiety from Donepezil and the propargyl group from the PF 9601N, a potent and selective MAO B inhibitor. This compound is the most advanced anti-Alzheimer agent for preclinical studies identified in our laboratory.Derived from ASS234 both multipotent donepezil-indolyl (MTDL-1) and donepezil-pyridyl hybrids (MTDL-2) were designed and evaluated as inhibitors of AChE/BuChE and both MAO isoforms. MTDL-2 showed more high affinity toward the four enzymes than MTDL-1.MTDL-3 and MTDL-4, were designed containing the N-benzylpiperidinium moiety from Donepezil, a metal- chelating 8-hydroxyquinoline group and linked to a N-propargyl core and they were pharmacologically evaluated.The presence of the cyano group in MTDL-3, enhanced binding to AChE, BuChE and MAO A. It showed antioxidant behavior and it was able to strongly complex Cu(II), Zn(II) and Fe(III).MTDL-4 showed higher affinity toward AChE, BuChE.MTDL-3 exhibited good brain penetration capacity (ADMET) and less toxicity than Donepezil. Memory deficits in scopolamine-lesioned animals were restored by MTDL-3.MTDL-3 particularly emerged as a ligand showing remarkable potential benefits for its use in AD therapy. Alzheimer's disease (AD), the most common form of adult onset dementia, is an age-related neurodegenerative disorder characterized by progressive memory loss, decline in language skills, and other cognitive impairments. Although its etiology is not completely known, several factors including deficits of acetylcholine, β-amyloid deposits, τ-protein phosphorylation, oxidative stress, and neuroinflammation are considered to play significant roles in the pathophysiology of this disease. For a long time, AD patients have been treated with acetylcholinesterase inhibitors such as donepezil (Aricept®) but with limited therapeutic success. This might be due to the complex multifactorial nature of AD, a fact that has prompted the design of new Multi-Target-Directed Ligands

  17. Secondary mutations as mediators of resistance to targeted therapy in leukemia

    PubMed Central

    Cortes, Jorge; Ravandi, Farhad; Patel, Keyur P.; Burger, Jan A.; Konopleva, Marina; Kantarjian, Hagop

    2015-01-01

    The advent of small molecule-based targeted therapy has improved the treatment of both acute and chronic leukemias. Resistance to small molecule inhibitors has emerged as a common theme. The most frequent mode of acquired resistance is the acquisition of point mutations in the kinase domain. FLT3 inhibitors have improved response rates in FLT3-mutated acute myeloid leukemia (AML). The occurrence of the ATP-binding site and activation loop mutations confers varying degrees of resistance to the individual FLT3 inhibitors. Second-generation FLT3 inhibitors such as crenolanib may overcome the resistance of these mutations. Furthermore, nonmutational mechanisms of resistance such as prosurvival pathways and bone marrow signaling may be upregulated in FLT3 inhibitor-resistant AML with secondary kinase domain mutations. More recently, point mutations conferring resistance to the Bruton tyrosine kinase inhibitor ibrutinib in chronic lymphocytic leukemia, arsenic trioxide in acute promyelocytic leukemia, and the BH3-mimetic ABT199 in lymphoma have been identified. In chronic myeloid leukemia, the emergence of tyrosine kinase domain mutations has historically been the dominant mechanism of resistance. The early identification of secondary point mutations and their downstream effects along with the development of second- or third-generation inhibitors and rationally designed small molecule combinations are potential strategies to overcome mutation-mediated resistance. PMID:25795921

  18. Identification of a novel peptide ligand targeting visceral adipose tissue via transdermal route by in vivo phage display.

    PubMed

    Lee, Nam Kyung; Kim, Hong Shin; Kim, Kyung Hyun; Kim, Eun-Bae; Cho, Chong Su; Kang, Sang Kee; Choi, Yun Jaie

    2011-11-01

    To find novel peptide ligands targeting visceral adipose tissue (visceral fat) via transdermal route, in vivo phage display screening was conducted by dermal administration of a phage-peptide library to rats and a peptide sequence, CGLHPAFQC (designated as TDA1), was identified as a targeting ligand to visceral adipose tissue through the consecutive transdermal biopannings. Adipocyte-specific affinity and transdermal activity of the TDA1 were validated in vitro and targeting ability of the dermally administered TDA1 to visceral adipose tissue was also confirmed in vivo. TDA1 was effectively translocated into systemic circulation after dermal administration and selectively targeted visceral adipose tissue without any preference to other organs tested. Fluorescent microscopic analysis revealed that the TDA1 could be specifically localized in the hair follicles of the skin, as well as in the visceral adipose tissue. Thus, we inferred that dermally administered TDA1 would first access systemic circulation via hair follicles as its transdermal route and then could target visceral fat effectively. The overall results suggest that the TDA1 peptide could be potentially applied as a homing moiety for delivery of anti-obesity therapeutics to visceral fat through the convenient transdermal pathway.

  19. Tumor targeting with RGD peptide ligands-design of new molecular conjugates for imaging and therapy of cancers.

    PubMed

    Garanger, Elisabeth; Boturyn, Didier; Dumy, Pascal

    2007-09-01

    Development of molecular devices endowed with tumor-targeting functions and carrying cytotoxic components should enable the specific delivery of chemotherapeutics to malignant tissues, thus increasing their local efficacy while limiting their peripheral toxicity. Such molecular vectors can pave the way for the development of new classes of therapeutics, fighting against protagonists of neoplastic development. In line with this concept, peptide ligands containing the Arginine-Glycine-Aspartate (RGD) triad, which display a strong affinity and selectivity to the alpha(V)beta(3) integrin, have been developed to target the tumor-associated cells expressing the alpha (V)beta (3) receptors. Among the validated ligands, the leader compound is the cyclic pentapeptide c[-RGDf(NMe)V-] (Cilengitide) developed by kessler et al. (J. Med. Chem., 1999, 42, 3033-3040). This compound has entered phase II clinical trials as an anti-angiogenic agent. Further studies have been directed to develop molecular conjugates of the parent c[-RGDfK-] with conventional chemotherapeutics or with labels for non-invasive imaging technologies. More recently, multimeric RGD containing compounds have been exploited to improve the targeting potential as well as cell-membrane breaching, through receptor-mediated endocytosis. The latter have been constructed on various scaffolds (polylysines or polyglutamates, liposomes, nanoparticles...). Our group has developed a chemical system combining all these properties where multivalent RGD targeting functions are associated with functional molecules through a cyclopeptide template. The latter represents a relevant non-viral vector for tumor targeting, imaging and therapy. This review describes the considerations for the design of the diverse RGD ligands developed so far and reports an overview of the main applications of these structures in cancer research.

  20. Synthesis, Biological Evaluation, and Utility of Fluorescent Ligands Targeting the μ-Opioid Receptor.

    PubMed

    Schembri, Luke S; Stoddart, Leigh A; Briddon, Stephen J; Kellam, Barrie; Canals, Meritxell; Graham, Bim; Scammells, Peter J

    2015-12-24

    Fluorescently labeled ligands are useful pharmacological research tools for studying receptor localization, trafficking, and signaling processes via fluorescence imaging. They are also employed in fluorescent binding assays. This study is centered on the design, synthesis, and pharmacological evaluation of fluorescent probes for the opioid receptors, for which relatively few non-peptidic fluorescent probes currently exist. The known μ-opioid receptor (MOR) partial agonist, buprenorphine, was structurally elaborated to include an amidoalkylamine linker moiety that was coupled with a range of fluorophores to afford new fluorescent probes. All compounds proved to be selective MOR antagonists. Confocal fluorescence microscopy studies revealed that the probe incorporating a sulfonated cyanine-5 fluorophore was the most appropriate for imaging studies. This ligand was subsequently employed in an automated fluorescence-based competition binding assay, allowing the pKi values of several well-known opioid ligands to be determined. Thus, this new probe will prove useful in future studies of MOR receptor pharmacology.

  1. Enhancement of cell recognition in vitro by dual-ligand cancer targeting gold naoparticles

    PubMed Central

    Li, Xi; Zhou, Hongyu; Yang, Lei; Du, Guoqing; Pai-Panandiker, Atmaram; Huang, Xuefei; Yan, Bing

    2011-01-01

    A dual-ligand gold nanoparticle (DLGNP) was designed and synthesized to explore the therapeutic benefits of multivalent interactions between gold nanoparticles (GNPs) and cancer cells. DLGNP was tested on human epidermal cancer cells (KB), which had high expression of folate receptor. The cellular uptake of DLGNP was increased by 3.9 and 12.7 folds compared with GNP-folate or GNP-glucose. The enhanced cell recognition was due to multivalent interactions between both ligands on GNPs and cancer cells as shown by the ligand competition experiments. Furthermore, the multivalent interactions increased contrast between cells with high and low expression of folate receptors. The enhanced cell recognition enabled DLGNP to kill KB cells under X-ray irradiation at a dose that was safe to folate receptor low-expression (such as normal) cells. Thus DLGP has the potential to be a cancer-specific nano-theranostic agent. PMID:21232787

  2. Purinergic P2X receptors: structural models and analysis of ligand-target interaction.

    PubMed

    Dal Ben, Diego; Buccioni, Michela; Lambertucci, Catia; Marucci, Gabriella; Thomas, Ajiroghene; Volpini, Rosaria

    2015-01-07

    The purinergic P2X receptors are ligand-gated cation channels activated by the endogenous ligand ATP. They assemble as homo- or heterotrimers from seven cloned subtypes (P2X1-7) and all trimer subunits present a common topology consisting in intracellular N- and C- termini, two transmembrane domains and a large extracellular domain. These membrane proteins are present in virtually all mammalian tissues and regulate a large variety of responses in physio- and pathological conditions. The development of ligands that selectively activate or block specific P2X receptor subtypes hence represents a promising strategy to obtain novel pharmacological tools for the treatment of pain, cancer, inflammation, and neurological, cardiovascular, and endocrine diseases. The publication of the crystal structures of zebrafish P2X4 receptor in inactive and ATP-bound active forms provided structural data for the analysis of the receptor structure, the interpretation of mutagenesis data, and the depiction of ligand binding and receptor activation mechanism. In addition, the availability of ATP-competitive ligands presenting selectivity for P2X receptor subtypes supports the design of new potent and selective ligands with possibly improved pharmacokinetic profiles, with the final aim to obtain new drugs. This study describes molecular modelling studies performed to develop structural models of the human and rat P2X receptors in inactive and active states. These models allowed to analyse the role of some non-conserved residues at ATP binding site and to study the receptor interaction with some non-specific or subtype selective agonists and antagonists.

  3. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands.

    PubMed

    Southan, Christopher; Sharman, Joanna L; Benson, Helen E; Faccenda, Elena; Pawson, Adam J; Alexander, Stephen P H; Buneman, O Peter; Davenport, Anthony P; McGrath, John C; Peters, John A; Spedding, Michael; Catterall, William A; Fabbro, Doriano; Davies, Jamie A

    2016-01-04

    The IUPHAR/BPS Guide to PHARMACOLOGY (GtoPdb, http://www.guidetopharmacology.org) provides expert-curated molecular interactions between successful and potential drugs and their targets in the human genome. Developed by the International Union of Basic and Clinical Pharmacology (IUPHAR) and the British Pharmacological Society (BPS), this resource, and its earlier incarnation as IUPHAR-DB, is described in our 2014 publication. This update incorporates changes over the intervening seven database releases. The unique model of content capture is based on established and new target class subcommittees collaborating with in-house curators. Most information comes from journal articles, but we now also index kinase cross-screening panels. Targets are specified by UniProtKB IDs. Small molecules are defined by PubChem Compound Identifiers (CIDs); ligand capture also includes peptides and clinical antibodies. We have extended the capture of ligands and targets linked via published quantitative binding data (e.g. Ki, IC50 or Kd). The resulting pharmacological relationship network now defines a data-supported druggable genome encompassing 7% of human proteins. The database also provides an expanded substrate for the biennially published compendium, the Concise Guide to PHARMACOLOGY. This article covers content increase, entity analysis, revised curation strategies, new website features and expanded download options. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands

    PubMed Central

    Southan, Christopher; Sharman, Joanna L.; Benson, Helen E.; Faccenda, Elena; Pawson, Adam J.; Alexander, Stephen P. H.; Buneman, O. Peter; Davenport, Anthony P.; McGrath, John C.; Peters, John A.; Spedding, Michael; Catterall, William A.; Fabbro, Doriano; Davies, Jamie A.

    2016-01-01

    The IUPHAR/BPS Guide to PHARMACOLOGY (GtoPdb, http://www.guidetopharmacology.org) provides expert-curated molecular interactions between successful and potential drugs and their targets in the human genome. Developed by the International Union of Basic and Clinical Pharmacology (IUPHAR) and the British Pharmacological Society (BPS), this resource, and its earlier incarnation as IUPHAR-DB, is described in our 2014 publication. This update incorporates changes over the intervening seven database releases. The unique model of content capture is based on established and new target class subcommittees collaborating with in-house curators. Most information comes from journal articles, but we now also index kinase cross-screening panels. Targets are specified by UniProtKB IDs. Small molecules are defined by PubChem Compound Identifiers (CIDs); ligand capture also includes peptides and clinical antibodies. We have extended the capture of ligands and targets linked via published quantitative binding data (e.g. Ki, IC50 or Kd). The resulting pharmacological relationship network now defines a data-supported druggable genome encompassing 7% of human proteins. The database also provides an expanded substrate for the biennially published compendium, the Concise Guide to PHARMACOLOGY. This article covers content increase, entity analysis, revised curation strategies, new website features and expanded download options. PMID:26464438

  5. IFPTarget: A Customized Virtual Target Identification Method Based on Protein-Ligand Interaction Fingerprinting Analyses.

    PubMed

    Li, Guo-Bo; Yu, Zhu-Jun; Liu, Sha; Huang, Lu-Yi; Yang, Ling-Ling; Lohans, Christopher T; Yang, Sheng-Yong

    2017-07-24

    Small-molecule target identification is an important and challenging task for chemical biology and drug discovery. Structure-based virtual target identification has been widely used, which infers and prioritizes potential protein targets for the molecule of interest (MOI) principally via a scoring function. However, current "universal" scoring functions may not always accurately identify targets to which the MOI binds from the retrieved target database, in part due to a lack of consideration of the important binding features for an individual target. Here, we present IFPTarget, a customized virtual target identification method, which uses an interaction fingerprinting (IFP) method for target-specific interaction analyses and a comprehensive index (Cvalue) for target ranking. Evaluation results indicate that the IFP method enables substantially improved binding pose prediction, and Cvalue has an excellent performance in target ranking for the test set. When applied to screen against our established target library that contains 11,863 protein structures covering 2842 unique targets, IFPTarget could retrieve known targets within the top-ranked list and identified new potential targets for chemically diverse drugs. IFPTarget prediction led to the identification of the metallo-β-lactamase VIM-2 as a target for quercetin as validated by enzymatic inhibition assays. This study provides a new in silico target identification tool and will aid future efforts to develop new target-customized methods for target identification.

  6. In silico studies on the interaction between bioactive ligands and ALK5, a biological target related to the cancer treatment.

    PubMed

    Almeida, Michell O; Trossini, Gustavo H G; Maltarollo, Vinícius G; Silva, Danielle da C; Honorio, Kathia M

    2016-09-01

    Studies have showed that there are many biological targets related to the cancer treatment, for example, TGF type I receptor (TGF-βRI or ALK5). The ALK5 inhibition is a strategy to treat some types of cancer, such as breast, lung, and pancreas. Here, we performed CoMFA and CoMSIA studies for 70 ligands with ALK5 inhibition. The internal validation for both models (q(2)LOO = 0.887 and 0.822, respectively) showed their robustness, while the external validations showed their predictive power (CoMFA: r(2)test = 0.998; CoMSIA: r(2)test = 0.975). After all validations, CoMFA and CoMSIA maps indicated physicochemical evidences on the main factors involved in the interaction between bioactive ligands and ALK5. Therefore, these results suggest molecular modifications to design new ALK5 inhibitors.

  7. The promise of recombinant BMP ligands and other approaches targeting BMPR-II in the treatment of pulmonary arterial hypertension

    PubMed Central

    Ormiston, Mark L.; Upton, Paul D.; Li, Wei; Morrell, Nicholas W.

    2015-01-01

    Human genetic discoveries offer a powerful method to implicate pathways of major importance to disease pathobiology and hence provide targets for pharmacological intervention. The genetics of pulmonary arterial hypertension (PAH) strongly implicates loss-of-function of the bone morphogenetic protein type II receptor (BMPR-II) signalling pathway and moreover implicates the endothelial cell as a central cell type involved in disease initiation. We and others have described several approaches to restore BMPR-II function in genetic and non-genetic forms of PAH. Of these, supplementation of endothelial BMP9/10 signalling with exogenous recombinant ligand has been shown to hold considerable promise as a novel large molecule biopharmaceutical therapy. Here, we describe the mechanism of action and discuss potential additional effects of BMP ligand therapy. PMID:26779522

  8. Targeting ligand-operated chaperone sigma-1 receptors in the treatment of neuropsychiatric disorders

    PubMed Central

    Teruo, Hayashi; Shang-Yi, Tsai; Tomohisa, Mori; Michiko, Fujimoto; Tsung-Ping, Su

    2011-01-01

    Introduction Current conventional therapeutic drugs for the treatment of psychiatric or neurodegenerative disorders have certain limitations of use. Psychotherapeutic drugs such as typical and atypical antipsychotics, tricyclic antidepressants, and selective monoamine reuptake inhibitors, aim to normalize the hyper- or hypo-neurotransmission of monoaminergic systems. Despite their great contribution to the outcomes of psychiatric patients, these agents often exert severe side effects and require chronic treatments to promote amelioration of symptoms. Furthermore, drugs available for the treatment of neurodegenerative disorders are severely limited. Areas covered This review discusses recent evidence that has shed light on sigma-1 receptor ligands, which may serve as a new class of antidepressants or neuroprotective agents. Sigma-1 receptors are novel ligand-operated molecular chaperones regulating a variety of signal transduction, ER stress, cellular redox, cellular survival, and synaptogenesis. Selective sigma-1 receptor ligands exert rapid antidepressant-like, anxiolytic, antinociceptive and robust neuroprotective actions in preclinical studies. The review also looks at recent studies which suggest that reactive oxygen species might play a crucial role as signal integrators at the downstream of Sig-1Rs Expert opinion The significant advances in sigma receptor research in the last decade have begun to elucidate the intracellular signal cascades upstream and downstream of sigma-1 receptors. The novel ligand-operated properties of the sigma-1 receptor chaperone may enable a variety of interventions by which stress-related cellular systems are pharmacologically controlled. PMID:21375464

  9. PU.1 is essential for CD11c expression in CD8(+)/CD8(-) lymphoid and monocyte-derived dendritic cells during GM-CSF or FLT3L-induced differentiation.

    PubMed

    Zhu, Xue-Jun; Yang, Zhong-Fa; Chen, Yaoyu; Wang, Junling; Rosmarin, Alan G

    2012-01-01

    Dendritic cells (DCs) regulate innate and acquired immunity through their roles as antigen-presenting cells. Specific subsets of mature DCs, including monocyte-derived and lymphoid-derived DCs, can be distinguished based on distinct immunophenotypes and functional properties. The leukocyte integrin, CD11c, is considered a specific marker for DCs and it is expressed by all DC subsets. We created a strain of mice in which DCs and their progenitors could be lineage traced based on activity of the CD11c proximal promoter. Surprisingly, we observed levels of CD11c promoter activity that were similar in DCs and in other mature leukocytes, including monocytes, granulocytes, and lymphocytes. We sought to identify DNA elements and transcription factors that regulate DC-associated expression of CD11c. The ets transcription factor, PU.1, is a key regulator of DC development, and expression of PU.1 varies in different DC subsets. GM-CSF increased monocyte-derived DCs in mice and from mouse bone marrow cultured in vitro, but it did not increase CD8(+) lymphoid-derived DCs or B220(+) plasmacytoid DCs. FLT3L increased both monocyte-derived DCs and lymphoid-derived DCs from mouse bone marrow cultured in vitro. GM-CSF increased the 5.3 Kb CD11c proximal promoter activity in monocyte-derived DCs and CD8(+) lymphoid-derived DCs, but not in B220(+) plasmacytoid DCs. In contrast, FLT3L increased the CD11c proximal promoter activity in both monocyte-derived DCs and B220(+) plasmacytoid DCs. We used shRNA gene knockdown and chromatin immunoprecipitation to demonstrate that PU.1 is required for the effects of GM-CSF or FLT3L on monocyte-derived DCs. We conclude that both GM-CSF and FLT3L act through PU.1 to activate the 5.3 Kb CD11c proximal promoter in DCs and to induce differentiation of monocyte-derived DCs. We also confirm that the CD11c proximal promoter is not sufficient to direct lineage specificity of CD11c expression, and that additional DNA elements are required for lineage

  10. PU.1 Is Essential for CD11c Expression in CD8+/CD8− Lymphoid and Monocyte-Derived Dendritic Cells during GM-CSF or FLT3L-Induced Differentiation

    PubMed Central

    Chen, Yaoyu; Wang, Junling; Rosmarin, Alan G.

    2012-01-01

    Dendritic cells (DCs) regulate innate and acquired immunity through their roles as antigen-presenting cells. Specific subsets of mature DCs, including monocyte-derived and lymphoid-derived DCs, can be distinguished based on distinct immunophenotypes and functional properties. The leukocyte integrin, CD11c, is considered a specific marker for DCs and it is expressed by all DC subsets. We created a strain of mice in which DCs and their progenitors could be lineage traced based on activity of the CD11c proximal promoter. Surprisingly, we observed levels of CD11c promoter activity that were similar in DCs and in other mature leukocytes, including monocytes, granulocytes, and lymphocytes. We sought to identify DNA elements and transcription factors that regulate DC-associated expression of CD11c. The ets transcription factor, PU.1, is a key regulator of DC development, and expression of PU.1 varies in different DC subsets. GM-CSF increased monocyte-derived DCs in mice and from mouse bone marrow cultured in vitro, but it did not increase CD8+ lymphoid-derived DCs or B220+ plasmacytoid DCs. FLT3L increased both monocyte-derived DCs and lymphoid-derived DCs from mouse bone marrow cultured in vitro. GM-CSF increased the 5.3 Kb CD11c proximal promoter activity in monocyte-derived DCs and CD8+ lymphoid-derived DCs, but not in B220+ plasmacytoid DCs. In contrast, FLT3L increased the CD11c proximal promoter activity in both monocyte-derived DCs and B220+ plasmacytoid DCs. We used shRNA gene knockdown and chromatin immunoprecipitation to demonstrate that PU.1 is required for the effects of GM-CSF or FLT3L on monocyte-derived DCs. We conclude that both GM-CSF and FLT3L act through PU.1 to activate the 5.3 Kb CD11c proximal promoter in DCs and to induce differentiation of monocyte-derived DCs. We also confirm that the CD11c proximal promoter is not sufficient to direct lineage specificity of CD11c expression, and that additional DNA elements are required for lineage-specific CD11c

  11. Molecularly targeted therapies for acute myeloid leukemia.

    PubMed

    Stein, Eytan M

    2015-01-01

    The past 15 years have seen major leaps in our understanding of the molecular genetic mutations that act as drivers of acute myeloid leukemia (AML). Clinical trials of agents against specific mutant proteins, such as FLT3-internal tandem duplications (ITDs) and isocitrate dehydrogenase mutations (IDHs) are ongoing. This review discusses agents in clinical trials that target specific gene mutations and/or epigenetic targets. © 2015 by The American Society of Hematology. All rights reserved.

  12. Comparative study of affinity and selectivity of ligands targeting abasic and mismatch sites in DNA using a fluorescence-melting assay.

    PubMed

    Kotera, Naoko; Granzhan, Anton; Teulade-Fichou, Marie-Paule

    2016-01-01

    Recently, several families of small-molecule ligands have been developed to selectively target DNA pairing defects, such as abasic sites and mismatched base pairs, with the aim to interfere with the DNA repair and the template function of the DNA. However, the affinity and selectivity (with respect to well-matched DNA) of these ligands has barely been evaluated in a systematic way. Herein, we report a comparative study of binding affinity and selectivity of a representative panel of 16 ligands targeting abasic sites and a T-T mismatch in DNA, using a fluorescence-monitored melting assay. We demonstrate that bisintercalator-type macrocyclic ligands are characterized by moderate affinity but exceptionally high selectivity with respect to well-matched DNA, whereas other reported ligands show either modest selectivity or rather low affinity in identical conditions.

  13. Targeting of adenovirus vectors to the LRP receptor family with the high-affinity ligand RAP via combined genetic and chemical modification of the pIX capsomere.

    PubMed

    Corjon, Stéphanie; Wortmann, Andreas; Engler, Tatjana; van Rooijen, Nico; Kochanek, Stefan; Kreppel, Florian

    2008-11-01

    Adenovirus (Ad) vector targeting requires presentation of specific ligands on the virion's surface. Geneti-chemical targeting is based on the genetic introduction of cysteine residues bearing reactive thiol groups into solvent-accessible capsomeres of the virion and subsequent chemical coupling of ligands. Here, we exploited this technology to modify the pIX capsomere with high-affinity ligands. Genetic introduction of C-terminal cysteines to pIX allowed for specific coupling of full-length proteins to the virion, while not affecting vector production. Direct comparison of the two high-affinity ligands receptor- associated protein (RAP) and transferrin (Tf) revealed that targeting after coupling of a high-affinity ligand to pIX presumably requires release of the ligand from its receptor after cell entry. In addition, data obtained by live cell imaging of labeled vector particles demonstrated that coupling of very large proteins to pIX can impair intracellular vector particle trafficking. Finally, we demonstrate that the geneti-chemical targeting technology is suitable for in vivo targeting to liver after intravenous injection. Our data provide significant insight into basic requirements for successful targeting of pIX-modified Ad vectors.

  14. MHC-I ligand discovery using targeted database searches of mass spectrometry data: Implications for T cell immunotherapies.

    PubMed

    Murphy, John Patrick; Konda, Prathyusha; Kowalewski, Daniel J; Schuster, Heiko; Clements, Derek; Kim, Youra; Cohen, Alejandro Martin; Sharif, Tanveer; Nielsen, Morten; Stevanović, Stefan; Lee, Patrick W; Gujar, Shashi

    2017-02-28

    Class I major histocompatibility complex I (MHC-I)-bound peptide ligands dictate the activation and specificity of CD8+ T-cells, and thus are important for devising T cell immunotherapies. In recent times, advances in mass spectrometry (MS) have enabled the precise identification of these MHC-I peptides wherein MS spectra are compared against a reference proteome. Unfortunately, matching these spectra to reference proteome databases is hindered by inflated search spaces attributed to a lack of enzyme restriction in the searches, limiting the efficiency with which MHC ligands are discovered. Here, we offer a solution to this problem whereby we developed a targeted database search approach, and accompanying tool SpectMHC, that is based on a priori-predicted MHC-I peptides. We first validated the approach using mass spectrometry data from 2 different allotype-specific mouse antibodies for the C57BL/6 mouse background. We then developed allotype-specific HLA databases to search previously published MS datasets of human peripheral blood mononuclear cells (PBMCs). Using this targeted search strategy improved peptide identifications for both mouse and human ligandomes by greater than two-fold and is superior to traditional "no enzyme" searches of reference proteomes. Our novel targeted database search promises to uncover otherwise missed novel T cell epitopes of therapeutic potential.

  15. Surface Ligand Density of Antibiotic-Nanoparticle Conjugates Enhances Target Avidity and Membrane Permeabilization of Vancomycin-Resistant Bacteria.

    PubMed

    Hassan, Marwa M; Ranzoni, Andrea; Phetsang, Wanida; Blaskovich, Mark A T; Cooper, Matthew A

    2017-02-15

    Many bacterial pathogens have now acquired resistance toward commonly used antibiotics, such as the glycopeptide antibiotic vancomycin. In this study, we show that immobilization of vancomycin onto a nanometer-scale solid surface with controlled local density can potentiate antibiotic action and increase target affinity of the drug. Magnetic nanoparticles were conjugated with vancomycin and used as a model system to investigate the relationship between surface density and drug potency. We showed remarkable improvement in minimum inhibitory concentration against vancomycin-resistant strains with values of 13-28 μg/mL for conjugated vancomycin compared to 250-4000 μg/mL for unconjugated vancomycin. Higher surface densities resulted in enhanced affinity toward the bacterial target compared to that of unconjugated vancomycin, as measured by a competition experiment using a surrogate ligand for bacterial Lipid II, N-Acetyl-l-Lys-d-Ala-d-Ala. High density vancomycin nanoparticles required >64 times molar excess of ligand (relative to the vancomycin surface density) to abrogate antibacterial activity compared to only 2 molar excess for unconjugated vancomycin. Further, the drug-nanoparticle conjugates caused rapid permeabilization of the bacterial cell wall within 2 h, whereas no effect was seen with unconjugated vancomycin, suggesting additional modes of action for the nanoparticle-conjugated drug. Hence, immobilization of readily available antibiotics on nanocarriers may present a general strategy for repotentiating drugs that act on bacterial membranes or membrane-bound targets but have lost effectiveness against resistant bacterial strains.

  16. Bivalent Ligands Targeting Chemokine Receptor Dimerization: Molecular Design and Functional Studies

    PubMed Central

    Arnatt, Christopher Kent; Zhang, Yan

    2015-01-01

    Increasing evidence has shown that chemokine receptors may form functional dimers with unique pharmacological profiles. A common practice to characterize such G protein-coupled receptor dimerization processes is to apply bivalent ligands as chemical probes which can interact with both receptors simultaneously. Currently, two chemokine receptor dimers have been studied by applying bivalent compounds: the CXCR4-CXCR4 homodimer and the CCR5-MOR heterodimer. These bivalent compounds have revealed how dimerization influences receptor function and may lead to novel therapeutics. Future design of bivalent ligands for chemokine receptor dimers may be aided with the recently available CXCR4 homodimer, and CCR5 monomer crystal structures by more accurately simulating chemokine receptors and their dimers. PMID:25159160

  17. Structure-based discovery of ligands targeted to the RNA double helix.

    PubMed

    Chen, Q; Shafer, R H; Kuntz, I D

    1997-09-23

    Ligands capable of specific recognition of RNA structures are of interest in terms of the principles of molecular recognition as well as potential chemotherapeutic applications. We have approached the problem of identifying small molecules with binding specificity for the RNA double helix through application of the DOCK program [Kuntz, I. D., Meng, E. C., and Shoichet, B. K. (1994) Acc. Chem. Res. 27, 117-123], a structure-based method for drug discovery. A series of lead compounds was generated through a database search for ligands with shape complementarity to the RNA deep major groove. Compounds were then evaluated with regard to their fit into the minor groove of B DNA. Those compounds predicted to have an optimal fit to the RNA groove and strong discrimination against DNA were examined experimentally. Of the 11 compounds tested, 3, all aminoglycosides, exhibited pronounced stabilization of RNA duplexes against thermal denaturation with only marginal effects on DNA duplexes. One compound, lividomycin, was examined further, and shown to facilitate the ethanol-induced B to A transition in calf thymus DNA. Fluorine NMR solvent isotope shift measurements on RNA duplexes containing 5-fluorouracil provided evidence that lividomycin binds in the RNA major groove. Taken together, these results indicate that lividomycin recognizes the general features of the A conformation of nucleic acids through deep groove binding, confirming the predictions of our DOCK analysis. This approach may be of general utility for identifying ligands possessing specificity for additional RNA structures as well as other nucleic acid structural motifs.

  18. Identification of Small Ligands Targeting Breast Cancer by In Vivo Screening of Peptide Libraries in Breast Cancer Patients

    DTIC Science & Technology

    2000-09-01

    DATES COVERED Annual ( 5 Aug 99-4 Aug 00) 4. TITLE AND SUBTITLE Identification of Small Ligands Targeting Breast Cancer by In Vivo Screening of...Peptide Libraries in Breast Cancer Patients 6. AUTHOR(S) David N. Krag, M.D. 5 . FUNDING NUMBERS DAMD17-99-1-9425 7. PERFORMING ORGANIZATION NAME(S...constructed in a fuse 5 system (Scott and Smith 1990). The original library displays nine amino acid peptides flanked by cysteine residues (CX9C). The

  19. Ligand-Directed Functional Selectivity at the Mu Opioid Receptor Revealed by Label-Free Integrative Pharmacology On-Target

    PubMed Central

    Morse, Megan; Tran, Elizabeth; Sun, Haiyan; Levenson, Robert; Fang, Ye

    2011-01-01

    Development of new opioid drugs that provide analgesia without producing dependence is important for pain treatment. Opioid agonist drugs exert their analgesia effects primarily by acting at the mu opioid receptor (MOR) sites. High-resolution differentiation of opioid ligands is crucial for the development of new lead drug candidates with better tolerance profiles. Here, we use a label-free integrative pharmacology on-target (iPOT) approach to characterize the functional selectivity of a library of known opioid ligands for the MOR. This approach is based on the ability to detect dynamic mass redistribution (DMR) arising from the activation of the MOR in living cells. DMR assays were performed in HEK-MOR cells with and without preconditioning with probe molecules using label-free resonant waveguide grating biosensors, wherein the probe molecules were used to modify the activity of specific signaling proteins downstream the MOR. DMR signals obtained were then translated into high resolution heat maps using similarity analysis based on a numerical matrix of DMR parameters. Our data indicate that the iPOT approach clearly differentiates functional selectivity for distinct MOR signaling pathways among different opioid ligands, thus opening new avenues to discover and quantify the functional selectivity of currently used and novel opioid receptor drugs. PMID:22003401

  20. Bivalent Approach for Homodimeric Estradiol Based Ligand: Synthesis and Evaluation for Targeted Theranosis of ER(+) Breast Carcinomas.

    PubMed

    Chauhan, Kanchan; Arun, Ashutosh; Singh, Saurabh; Manohar, Murli; Chuttani, Krishna; Konwar, Rituraj; Dwivedi, Anila; Soni, Ravi; Singh, Ajai Kumar; Mishra, Anil K; Datta, Anupama

    2016-04-20

    The synthesis of estradiol based bivalent ligand [(EST)2DT] is reported and its potential for targeted imaging and therapy of ER(+) tumors has been evaluated. For the purpose, ethinylestradiol was functionalized with an azidoethylamine moiety via click chemistry. The resultant derivative was reacted in a bivalent mode with DTPA-dianhydride to form the multicoordinate chelating agent, (EST)2DT which displayed capability to bind (99m)Tc. The radiolabeled complex, (99m)Tc-(EST)2DT was obtained in >99% radiochemical purity and 20-48 GBq/μmol of specific activity. RBA assay revealed ∼15% binding with estrogen receptor. Evaluation of ligand on ER(+)-cell line (MCF-7) suggested enhanced and ER-mediated uptake. In vivo assays displayed early tracer accumulation in MCF-7 xenografts with tumor to muscle ratio ∼6 in 2 h and negligible uptakes in nontargeted organs. MTT assay performed on ER(+) and ER(-) cell lines displayed selective inhibition of ER(+) cancer cell growth with IC50 = 14.3 μM which was comparable to tamoxifen. The anticancer activity of the ligand is possibly due to the increase in ERβ and suppression of ERα protein levels in gene transcription. The studies reveal the potential of (EST)2DT as diagnostic imaging agent with the additional benefits in therapy.

  1. Transplant outcomes of the triple-negative NPM1/FLT3-ITD/CEBPA mutation subgroup are equivalent to those of the favourable ELN risk group, but significantly better than the intermediate-I risk group after allogeneic transplant in normal-karyotype AML.

    PubMed

    Ahn, Jae-Sook; Kim, Hyeoung-Joon; Kim, Yeo-Kyeoung; Jung, Sung-Hoon; Yang, Deok-Hwan; Lee, Je-Jung; Kim, Nan Young; Choi, Seung Hyun; Jung, Chul Won; Jang, Jun-Ho; Kim, Hee Je; Moon, Joon Ho; Sohn, Sang Kyun; Won, Jong-Ho; Kim, Sung-Hyun; Kim, Dennis Dong Hwan

    2016-03-01

    The prognostic significance of molecular mutations (FLT3-ITD, NPM1, and CEBPA mutations) was examined in patients with normal-karyotype acute myeloid leukaemia (NK-AML) after allogeneic haematopoietic cell transplantation (HCT). In total, 115 patients received allogeneic HCT for NK-AML and were evaluated for FLT3-ITD, NPM1, and CEBPA mutations in diagnostic samples and for long-term outcomes following HCT, retrospectively. The prevalences of FLT3-ITD(pos), NPM1 (mut), and CEBPA (dm) (double mutations) were 32.2, 43.5, and 24.6 %, respectively. The triple-negative group (NPM1 (wild)/FLT3-ITD(neg)/non-CEBPA (dm)) showed a similar transplant outcome to those in the favourable European LeukemiaNet (ELN) risk group for overall survival (OS) (60.9 vs. 63.7 %; p = 0.810), but a more favourable OS than others in the intermediate-I risk group (40.0 %; p = 0.034). Also, the triple-negative group showed a similar relapse rate at 5 years compared with those in the favourable risk group (9.7 vs. 15.5 %; p = 0.499), but a lower rate of relapse than the others in the intermediate-I risk group (15.5 vs. 48.6 %; p = 0.004). The 5-year relapse incidences were 4.0 % (NPM1 (mut)/FLT3-ITD(neg)), 14.7 % (CEBPA (dm)), 15.5 % (NPM1 (wild)/FLT3-ITD(neg)/non-CEBPA (dm)), 39.1 % (NPM1 (mut)/FLT3-ITD(pos)/non-CEBPA (dm)), and 66.7 % (NPM1 (wild)/FLT3-ITD(pos)/non-CEBPA (dm)). Thus, the triple-negative (NPM1 (wild)/FLT3-ITD(neg)/non-CEBPA (dm)) group showed favourable long-term outcomes after allogeneic HCT in NK-AML, similar to those of the favourable risk group by the ELN risk classification.

  2. Docking to RNA via Root-Mean-Square-Deviation-Driven Energy Minimization with Flexible Ligands and Flexible Targets

    PubMed Central

    Guilbert, Christophe; James, Thomas L.

    2010-01-01

    Structure-based drug design is now well-established for proteins as a key first step in the lengthy process of developing new drugs. In many ways, RNA may be a better target to treat disease than a protein because it is upstream in the translation pathway, so inhibiting a single mRNA molecule could prevent the production of thousands of protein gene products. Virtual screening is often the starting point for structure-based drug design. However, computational docking of a small molecule to RNA seems to be more challenging than that to protein due to the higher intrinsic flexibility and highly charged structure of RNA. Previous attempts at docking to RNA showed the need for a new approach. We present here a novel algorithm using molecular simulation techniques to account for both nucleic acid and ligand flexibility. In this approach, with both the ligand and the receptor permitted some flexibility, they can bind one another via an induced fit, as the flexible ligand probes the surface of the receptor. A possible ligand can explore a low-energy path at the surface of the receptor by carrying out energy minimization with root-mean-square-distance constraints. Our procedure was tested on 57 RNA complexes (33 crystal and 24 NMR structures); this is the largest data set to date to reproduce experimental RNA binding poses. With our procedure, the lowest-energy conformations reproduced the experimental binding poses within an atomic root-mean-square deviation of 2.5 Å for 74% of tested complexes. PMID:18510306

  3. STK-1, the human homolog of Flk-2/Flt-3, is selectively expressed in CD34+ human bone marrow cells and is involved in the proliferation of early progenitor/stem cells.

    PubMed Central

    Small, D; Levenstein, M; Kim, E; Carow, C; Amin, S; Rockwell, P; Witte, L; Burrow, C; Ratajczak, M Z; Gewirtz, A M

    1994-01-01

    We cloned the cDNA for stem cell tyrosine kinase 1 (STK-1), the human homolog of murine Flk-2/Flt-3, from a CD34+ hematopoietic stem cell-enriched library and investigated its expression in subsets of normal human bone marrow. The cDNA encodes a protein of 993 aa with 85% identity and 92% similarity to Flk-2/Flt-3. STK-1 is a member of the type III receptor tyrosine kinase family that includes KIT (steel factor receptor), FMS (colony-stimulating factor 1R), and platelet-derived growth factor receptor. STK-1 expression in human blood and marrow is restricted to CD34+ cells, a population greatly enriched for stem/progenitor cells. Anti-STK-1 antiserum recognizes polypeptides of 160 and 130 kDa in several STK-1-expressing cell lines and in 3T3 cells transfected with a STK-1 expression vector. Antisense oligonucleotides directed against STK-1 sequences inhibited hematopoietic colony formation, most strongly in long-term bone marrow cultures. These data suggest that STK-1 may function as a growth factor receptor on hematopoietic stem and/or progenitor cells. Images Fig. 2 Fig. 3 Fig. 4 PMID:7507245

  4. Dual-Ligand Modified Polymer-Lipid Hybrid Nanoparticles for Docetaxel Targeting Delivery to Her2/neu Overexpressed Human Breast Cancer Cells.

    PubMed

    Yang, Zhe; Tang, Wenxin; Luo, Xingen; Zhang, Xiaofang; Zhang, Chao; Li, Hao; Gao, Di; Luo, Huiyan; Jiang, Qing; Liu, Jie

    2015-08-01

    In this study, a dual-ligand polymer-lipid hybrid nanoparticle drug delivery vehicle comprised of an anti-HER2/neu peptide (AHNP) mimic with a modified HIV-1 Tat (mTAT) was established for the targeted treatment of Her2/neu-overexpressing cells. The resultant dual-ligand hybrid nanoparticles (NPs) consisted of a poly(lactide-co-glycolide) core, a near 90% surface coverage of the lipid monolayer, and a 5.7 nm hydrated polyethylene glycol shell. Ligand density optimization study revealed that cellular uptake efficiency of the hybrid NPs could be manipulated by controlling the surface-ligand densities. Furthermore, the cell uptake kinetics and mechanism studies showed that the dual-ligand modifications of hybrid NPs altered the cellular uptake pathway from caveolae-mediated endocytosis (CvME) to the multiple endocytic pathways, which would significantly enhance the NP internalization. Upon the systemic investigation of the cellular uptake behavior of dual-ligand hybrid NPs, docetaxel (DTX), a hydrophobic anticancer drug, was successfully encapsulated into dual-ligand hybrid NPs with high drug loading for Her2/neu-overexpressing SK-BR-3 breast cancer cell treatment. The DTX-loaded dual-ligand hybrid NPs showed a decreased burst release and a more gradual sustained drug release property. Because of the synergistic effect of dual-ligand modification, DTX-loaded dual-ligand hybrid NPs exerted substantially better therapeutic potency against SK-BR-3 cancer cells than other NP formulations and free DTX drugs. These results demonstrate that the dual-ligand hybrid NPs could be a promising vehicle for targeted drug delivery to treat breast cancer.

  5. Discovery and Characterization of a Potent and Specific Peptide Ligand Targeting Endothelial Progenitor Cells and Endothelial Cells for Tissue Regeneration.

    PubMed

    Hao, Dake; Xiao, Wenwu; Liu, Ruiwu; Kumar, Priyadarsini; Li, Yuanpei; Zhou, Ping; Guo, Fuzheng; Farmer, Diana L; Lam, Kit S; Wang, Fengshan; Wang, Aijun

    2017-04-21

    Endothelial progenitor cells (EPCs) and endothelial cells (ECs) play a vital role in endothelialization and vascularization for tissue regeneration. Various EPC/EC targeting biomolecules have been investigated to improve tissue regeneration with limited success often due to their limited functional specificity and structural stability. One-bead one-compound (OBOC) combinatorial technology is an ultrahigh throughput chemical library synthesis and screening method suitable for ligand discovery against a wide range of biological targets, such as integrins. In this study, using primary human EPCs/ECs as living probes, we identified an αvβ3 integrin ligand LXW7 discovered by OBOC combinatorial technology as a potent and specific EPC/EC targeting ligand. LXW7 overcomes the major barriers of other functional biomolecules that have previously been used to improve vascularization for tissue regeneration and possesses optimal stability, EPC/EC specificity, and functionality. LXW7 is a disulfide cyclic octa-peptide (cGRGDdvc) containing unnatural amino acids flanking both sides of the main functional motif; therefore it will be more resistant to proteolysis and more stable in vivo compared to linear peptides and peptides consisting of only natural amino acids. Compared with the conventional αvβ3 integrin ligand GRGD peptide, LXW7 showed stronger binding affinity to primary EPCs/ECs but weaker binding to platelets and no binding to THP-1 monocytes. In addition, ECs bound to the LXW7 treated culture surface exhibited enhanced biological functions such as proliferation, likely due to increased phosphorylation of VEGF receptor 2 (VEGF-R2) and activation of mitogen-activated protein kinase (MAPK) ERK1/2. Surface modification of electrospun microfibrous PLLA/PCL biomaterial scaffolds with LXW7 via Click chemistry resulted in significantly improved endothelial coverage. LXW7 and its derivatives hold great promise for EPC/EC recruitment and delivery and can be widely applied to

  6. Selection and identification of ligand peptides targeting a model of castrate-resistant osteogenic prostate cancer and their receptors.

    PubMed

    Mandelin, Jami; Cardó-Vila, Marina; Driessen, Wouter H P; Mathew, Paul; Navone, Nora M; Lin, Sue-Hwa; Logothetis, Christopher J; Rietz, Anna Cecilia; Dobroff, Andrey S; Proneth, Bettina; Sidman, Richard L; Pasqualini, Renata; Arap, Wadih

    2015-03-24

    We performed combinatorial peptide library screening in vivo on a novel human prostate cancer xenograft that is androgen-independent and induces a robust osteoblastic reaction in bonelike matrix and soft tissue. We found two peptides, PKRGFQD and SNTRVAP, which were enriched in the tumors, targeted the cell surface of androgen-independent prostate cancer cells in vitro, and homed to androgen receptor-null prostate cancer in vivo. Purification of tumor homogenates by affinity chromatography on these peptides and subsequent mass spectrometry revealed a receptor for the peptide PKRGFQD, α-2-macroglobulin, and for SNTRVAP, 78-kDa glucose-regulated protein (GRP78). These results indicate that GRP78 and α-2-macroglobulin are highly active in osteoblastic, androgen-independent prostate cancer in vivo. These previously unidentified ligand-receptor systems should be considered for targeted drug development against human metastatic androgen-independent prostate cancer.

  7. Fms-like tyrosine kinase 3 ligand is required for thymic dendritic cell generation from bone marrow-derived CD117⁺ hematopoietic progenitor cells.

    PubMed

    Xu, Yunyun; Jiang, Dong; Hu, Yizhou; Li, Yiping; Zhang, Xueguang; Wang, Jian; Wang, Yong

    2015-11-01

    Thymic dendritic cells (TDCs) are a type of dendritic cell (DC) in the thymus, which can enhance the proliferation of thymic T lymphocytes, regulate negative selection and induce central tolerance through autoantigen presentation. However, further investigations using TDCs has been restricted due to insufficient numbers. Therefore, an effective expansion method for TDCs in vitro is urgently required to further examine their biological characteristics. In the present study, a novel system was established using fetal thymus organ culture (FTOC) and a hanging drop culture system in the presence of fms‑like tyrosine kinase 3 ligand (Flt3L), termed the Flt3L/FTOC system. TDCs were successfully generated and expanded from CD117+ bone marrow hematopoietic progenitor cells. Conventional DCs (cDCs; CD11c+B220‑ DCs) and plasmacytoid DCs (pDCs; CD11c+B220+ DCs) were found in the TDCs generated using the Flt3L/FTOC system. These cells exhibited the specific morphological features of DCs, which were confirmed using Giemsa staining. Furthermore, the cytokine and surface marker profiles were also analyzed. Higher expression levels of interferon‑α and interleukin‑12 were observed in the pDCs, compared with the cDCs, and higher expression levels of toll‑like receptor (TLR)7 and TLR9 were found in the pDCs than in the cDCs. In addition, the Flt3L/FTOC‑derived TDCs also exhibited the ability to stimulate the allogenic T cell response. In conclusion, a novel in vitro culture system of thymic cDCs and pDCs using Flt3L was established, and this may provide a methodological basis for understanding the properties of TDCs.

  8. The IUPHAR/BPS Guide to PHARMACOLOGY: an expert-driven knowledgebase of drug targets and their ligands

    PubMed Central

    Pawson, Adam J.; Sharman, Joanna L.; Benson, Helen E.; Faccenda, Elena; Alexander, Stephen P.H.; Buneman, O. Peter; Davenport, Anthony P.; McGrath, John C.; Peters, John A.; Southan, Christopher; Spedding, Michael; Yu, Wenyuan; Harmar, Anthony J.

    2014-01-01

    The International Union of Basic and Clinical Pharmacology/British Pharmacological Society (IUPHAR/BPS) Guide to PHARMACOLOGY (http://www.guidetopharmacology.org) is a new open access resource providing pharmacological, chemical, genetic, functional and pathophysiological data on the targets of approved and experimental drugs. Created under the auspices of the IUPHAR and the BPS, the portal provides concise, peer-reviewed overviews of the key properties of a wide range of established and potential drug targets, with in-depth information for a subset of important targets. The resource is the result of curation and integration of data from the IUPHAR Database (IUPHAR-DB) and the published BPS ‘Guide to Receptors and Channels’ (GRAC) compendium. The data are derived from a global network of expert contributors, and the information is extensively linked to relevant databases, including ChEMBL, DrugBank, Ensembl, PubChem, UniProt and PubMed. Each of the ∼6000 small molecule and peptide ligands is annotated with manually curated 2D chemical structures or amino acid sequences, nomenclature and database links. Future expansion of the resource will complete the coverage of all the targets of currently approved drugs and future candidate targets, alongside educational resources to guide scientists and students in pharmacological principles and techniques. PMID:24234439

  9. Bidentate ligands on osmium(VI) nitrido complexes control intracellular targeting and cell death pathways.

    PubMed

    Suntharalingam, Kogularamanan; Johnstone, Timothy C; Bruno, Peter M; Lin, Wei; Hemann, Michael T; Lippard, Stephen J

    2013-09-25

    The cellular response evoked by antiproliferating osmium(VI) nitrido compounds of general formula OsN(N^N)Cl3 (N^N = 2,2'-bipyridine 1, 1,10-phenanthroline 2, 3,4,7,8-tetramethyl-1,10-phenanthroline 3, or 4,7-diphenyl-1,10-phenanthroline 4) can be tuned by subtle ligand modifications. Complex 2 induces DNA damage, resulting in activation of the p53 pathway, cell cycle arrest at the G2/M phase, and caspase-dependent apoptotic cell death. In contrast, 4 evokes endoplasmic reticulum (ER) stress leading to the upregulation of proteins of the unfolded protein response pathway, increase in ER size, and p53-independent apoptotic cell death. To the best of our knowledge, 4 is the first osmium compound to induce ER stress in cancer cells.

  10. Receptor Crosslinking: A General Method to Trigger Internalization and Lysosomal Targeting of Therapeutic Receptor:Ligand Complexes

    PubMed Central

    Moody, Paul R; Sayers, Edward J; Magnusson, Johannes P; Alexander, Cameron; Borri, Paola; Watson, Peter; Jones, Arwyn T

    2015-01-01

    A major unmet clinical need is a universal method for subcellular targeting of bioactive molecules to lysosomes. Delivery to this organelle enables either degradation of oncogenic receptors that are overexpressed in cancers, or release of prodrugs from antibody–drug conjugates. Here, we describe a general method that uses receptor crosslinking to trigger endocytosis and subsequently redirect trafficking of receptor:cargo complexes from their expected route, to lysosomes. By incubation of plasma membrane receptors with biotinylated cargo and subsequent addition of streptavidin to crosslink receptor:cargo–biotin complexes, we achieved rapid and selective lysosomal targeting of transferrin, an anti-MHC class I antibody, and the clinically approved anti-Her2 antibody trastuzumab. These three protein ligands each target a receptor with a distinct cellular function and intracellular trafficking profile. Importantly, we confirmed that crosslinking of trastuzumab increased lysosomal degradation of its cognate oncogenic receptor Her2 in breast cancer cell lines SKBR3 and BT474. These data suggest that crosslinking could be exploited for a wide range of target receptors, for navigating therapeutics through the endolysosomal pathway, for significant therapeutic benefit. PMID:26412588

  11. DOCLASP - Docking ligands to target proteins using spatial and electrostatic congruence extracted from a known holoenzyme and applying simple geometrical transformations

    PubMed Central

    Chakraborty, Sandeep

    2016-01-01

    The ability to accurately and effectively predict the interaction between proteins and small drug-like compounds has long intrigued researchers for pedagogic, humanitarian and economic reasons. Protein docking methods (AutoDock, GOLD, DOCK, FlexX and Glide to name a few) rank a large number of possible conformations of protein-ligand complexes using fast algorithms. Previously, it has been shown that structural congruence leading to the same enzymatic function necessitates the congruence of electrostatic properties (CLASP). The current work presents a methodology for docking a ligand into a target protein, provided that there is at least one known holoenzyme with ligand bound - DOCLASP (Docking using CLASP). The contact points of the ligand in the holoenzyme defines a motif, which is used to query the target enzyme using CLASP. If there are significant matches, the holoenzyme and the target protein are superimposed based on congruent atoms. The same linear and rotational transformations are also applied to the ligand, thus creating a unified coordinate framework having the holoenzyme, the ligand and the target enzyme. In the current work, the dipeptidyl peptidase-IV inhibitor vildagliptin was docked to the PI-PLC structure complexed with myo-inositol using DOCLASP. Also, corroboration of the docking of phenylthiourea to the modelled structure of polyphenol oxidase (JrPPO1) from walnut is provided based on the subsequently solved structure of JrPPO1 (PDBid:5CE9). Analysis of the binding of the antitrypanosomial drug suramin to nine non-homologous proteins in the PDB database shows a diverse set of binding motifs, and multiple binding sites in the phospholipase A2-likeproteins from the Bothrops genus of pitvipers. The conformational changes in the suramin molecule on binding highlights the challenges in docking flexible ligands into an already ’plastic’ binding site. Thus, DOCLASP presents a method for ’soft docking’ ligands to proteins with low

  12. Ligand peptide-grafted PEGylated liposomes using HER2 targeted peptide-lipid derivatives for targeted delivery in breast cancer cells: The effect of serine-glycine repeated peptides as a spacer.

    PubMed

    Suga, Tadaharu; Fuchigami, Yuki; Hagimori, Masayori; Kawakami, Shigeru

    2017-02-22

    Ligand peptide-grafted PEGylated liposomes have been widely studied for targeted drug delivery systems. Because ligand peptides are commonly grafted using PEG as a spacer on the surface of PEGylated liposomes, the interaction between ligand peptides and their corresponding receptors can be interrupted by steric hindrance of the PEG layer. Therefore, we aimed to develop ligand peptide-lipid derivatives to enhance the targeting efficiency of ligand peptide-grafted PEGylated liposomes, and designed a new ligand peptide-lipid derivatives having serine-glycine repeats (SG)n as a spacer based on the peptide length calculated by PyMol (v0.99). We selected KCCYSL (KCC) as the ligand peptide for binding to human epidermal growth factor receptor-2 (HER2). We synthesized new KCC-(SG)n-lipid derivatives (n=3, 5, 7) and evaluated their cellular association in breast cancer cells. KCC-(SG)n/PEGylated liposomes dramatically increased cellular association on HER2-positive breast cancer cells. The results suggest that KCC can be grafted on the surface of KCC-(SG)n/PEGylated liposomes prepared from KCC-(SG)n-lipid derivatives (n=3, 5, 7). In summary, we succeeded in developing KCC-(SG)n-lipid derivatives for the preparation of ligand peptide-grafted PEGylated liposomes.

  13. Effect of single-chain antibody targeting of the ligand-binding domain in the anaplastic lymphoma kinase receptor

    PubMed Central

    Stylianou, DC; Auf der Maur, A; Kodack, DP; Henke, RT; Hohn, S; Toretsky, JA; Riegel, AT; Wellstein, A

    2013-01-01

    The tyrosine kinase receptor anaplastic lymphoma kinase (ALK) and its ligand, the growth factor pleiotrophin (PTN), are highly expressed during the development of the nervous system and have been implicated in the malignant progression of different tumor types. Here, we describe human single-chain variable fragment (scFv) antibodies that target the ligand-binding domain (LBD) in ALK and show the effect in vitro and in vivo. The ALK LBD was used as a bait in a yeast two-hybdrid system to select human scFv from a library with randomized complementarity-determining region 3 domains. Surface plasmon resonance showed high-affinity binding of the selected scFv. The anti-ALK scFv competed for binding of PTN to ALK in intact cells and inhibited PTN-dependent signal transduction through endogenous ALK. Invasion of an intact endothelial cell monolayer by U87MG human glioblastoma cells was inhibited by the anti-ALK scFv. In addition, the growth of established tumor xenografts in mice was reversed after the induction of the conditional expression of the anti-ALK scFv. In archival malignant brain tumors expression levels of ALK and PTN were found elevated and appear correlated with poor patient survival. This suggests a rate-limiting function of the PTN/ALK interaction that may be exploited therapeutically. PMID:19633684

  14. Peroxisome Proliferator-Activated Receptors target family landscape: A chemometrical approach to ligand selectivity based on protein binding site analysis

    NASA Astrophysics Data System (ADS)

    Pirard, Bernard

    2003-11-01

    The Peroxisome Proliferator-Activated Receptors (PPARs) are nuclear receptors which over the last couple of years have been the focus of considerable research efforts aiming to identify compounds with well-defined selectivity profiles for the treatment of metabolic diseases. The ligand binding domains (LBD) of the three known PPAR subtypes exhibit between 60 and 70% sequence identity. To gain insight into the structural determinants of selectivity for the PPAR subtypes, a set of 13 crystal structures of PPAR LBD were classified, using the GRID/CPCA approach. As a result, nearly all of the crystal structures of each different PPAR subtype were found clustered in different regions of the CPCA score plots, and hydrophobic as well as steric interactions were identified as the major determinants of PPAR subtypes selectivity. Furthermore, interpretation of the GRID/CPCA model in structural terms led to the identification of LBD regions which could be targeted to improve the selectivity for a given PPAR subtype. Our findings are consistent with published structure-activity relationships for PPAR ligands as well as with site-directed mutagenesis results.

  15. Bivalent ligands that target μ opioid (MOP) and cannabinoid1 (CB1) receptors are potent analgesics devoid of tolerance.

    PubMed

    Le Naour, Morgan; Akgün, Eyup; Yekkirala, Ajay; Lunzer, Mary M; Powers, Mike D; Kalyuzhny, Alexander E; Portoghese, Philip S

    2013-07-11

    Given that μ opioid (MOP) and canabinoid (CB1) receptors are colocalized in various regions of the central nervous system and have been reported to associate as heteromer (MOP-CB1) in cultured cells, the possibility of functional, endogenous MOP-CB1 in nociception and other pharmacologic effects has been raised. As a first step in investigating this possibility, we have synthesized a series of bivalent ligands 1-5 that contain both μ agonist and CB1 antagonist pharmacophores for use as tools to study the functional interaction between MOP and CB1 receptors in vivo. Immunofluorescent studies on HEK293 cells coexpressing both receptors suggested 5 (20-atom spacer) to be the only member of the series that bridges the protomers of the heteromer. Antinociceptive testing in mice revealed 5 to be the most potent member of the series. As neither a mixture of monovalent ligands 9 + 10 nor bivalents 2-5 produced tolerance in mice, MOR-CB1 apparently is not an important target for reducing tolerance.

  16. Ligand-specific targeting of microspheres to phagocytes by surface modification with poly(L-lysine)-grafted poly(ethylene glycol) conjugate.

    PubMed

    Faraasen, Sofia; Vörös, János; Csúcs, Gábor; Textor, Marcus; Merkle, Hans P; Walter, Elke

    2003-02-01

    The purpose of this study was to demonstrate specific receptor-mediated targeting of phagocytes by functional surface coatings of microparticles, shielding from nonspecific phagocytosis and allowing ligand-specific interactions via molecular recognition. Coatings of the comb polymer poly(L-lysine)-g-poly(ethylene glycol) (PLL-g-PEG) were investigated for potential to inhibit 1) nonspecific spreading of human blood-derived macrophages (MOs) and dendritic cells (DCs) on glass and 2) nonspecific phagocytosis of PLL-g-PEG-coated, carboxylated polystyrene (PS) or biodegradable poly(D,L-lactide-co-glycolide) (PLGA) microspheres. Coating was performed by adsorption of positively charged PLL-g-PEG on negatively charged microparticles or plasma-cleaned glass through electrostatic interaction. The feasibility of ligand-specific interactions was tested with a model ligand, RGD, conjugated to PEG chains of PLL-g-PEG to form PLL-g-PEG-RGD and compared with inactive ligand conjugate, PLL-g-PEG-RDG. Coatings with PLL-g-PEG largely impaired the adherence and spreading of MOs and DCs on glass. The repellent character of PLL-g-PEG coatings drastically reduced phagocytosis of coated PS and PLGA microparticles to 10% in presence of serum. With both MOs and DCs, we observed ligand-specific interactions with PLL-g-PEG-RGD coatings on glass and PS and PLGA microspheres. Ligand specificity was abolished when using inactive ligand conjugate PLL-g-PEG-RDG, whereas repellency of coating was maintained. Coatings of PLL-g-PEG-ligand conjugates provide a novel technology for ligand specific targeting of microspheres to MOs and DCs while reducing nonspecific phagocytosis.

  17. Dual-target screening of bioactive components from traditional Chinese medicines by hollow fiber-based ligand fishing combined with liquid chromatography-mass spectrometry.

    PubMed

    Chen, Liang; Wang, Xin; Liu, Youping; Di, Xin

    2017-09-05

    A novel strategy was developed for dual-target screening of bioactive components from traditional Chinese medicines (TCMs). This strategy was based on the use of low-cost microporous hollow fibers filled with target enzymes as baits to "fish out" the ligands in TCM extracts, followed by identification of the ligands dissociated from the target-ligand complexes by liquid chromatography-mass spectrometry. Ganjiang Huangqin Huanglian Renshen Decoction (GHHRD), a classical TCM prescription for diabetes treatment, was chosen as a model sample to evaluate the feasibility of the proposed strategy. Three bioactive components were successfully screened out from GHHRD. Coptisine was identified as the ligand of α-glucosidase and baicalin as the ligand of angiotensin-converting enzyme (ACE). Berberine was found to be a dual inhibitor of α-glucosidase and ACE. The results were further verified by enzyme inhibitory assay and molecular docking simulation. The study suggested that our developed strategy would be a powerful tool for screening bioactive components from multi-component and multi-target TCMs. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. ‘Partial’ competition of heterobivalent ligand binding may be mistaken for allosteric interactions: a comparison of different target interaction models

    PubMed Central

    Vauquelin, Georges; Hall, David; Charlton, Steven J

    2015-01-01

    Background and Purpose Non-competitive drugs that confer allosteric modulation of orthosteric ligand binding are of increasing interest as therapeutic agents. Sought-after advantages include a ceiling level to drug effect and greater receptor-subtype selectivity. It is thus important to determine the mode of interaction of newly identified receptor ligands early in the drug discovery process and binding studies with labelled orthosteric ligands constitute a traditional approach for this. According to the general allosteric ternary complex model, allosteric ligands that exhibit negative cooperativity may generate distinctive ‘competition’ curves: they will not reach baseline levels and their nadir will increase in par with the orthosteric ligand concentration. This behaviour is often considered a key hallmark of allosteric interactions. Experimental Approach The present study is based on differential equation-based simulations. Key Results The differential equation-based simulations revealed that the same ‘competition binding’ pattern was also obtained when a monovalent ligand binds to one of the target sites of a heterobivalent ligand, even if this process is exempt of allosteric interactions. This pattern was not strictly reciprocal when the binding of each of the ligands was recorded. The prominence of this phenomenon may vary from one heterobivalent ligand to another and we suggest that this phenomenon may take place with ligands that have been proposed to bind according to ‘two-domain’ and ‘charnière’ models. Conclusions and Implications The present findings indicate a familiar experimental situation where bivalency may give rise to observations that could inadvertently be interpreted as allosteric binding. Yet, both mechanisms could be differentiated based on alternative experiments and structural considerations. PMID:25537684

  19. Targeted delivery system for cancer cells consist of multiple ligands conjugated genetically modified CCMV capsid on doxorubicin GNPs complex.

    PubMed

    Barwal, Indu; Kumar, Rajiv; Kateriya, Suneel; Dinda, Amit Kumar; Yadav, Subhash Chandra

    2016-11-22

    Targeted nano-delivery vehicles were developed from genetically modified Cowpea chlorotic mottle virus (CCMV) capsid by ligands bioconjugation for efficient drug delivery in cancer cells. RNA binding (N 1-25aa) and β-hexamer forming (N 27-41aa) domain of capsid was selectively deleted by genetic engineering to achieve the efficient in vitro assembly without natural cargo. Two variants of capsids were generated by truncating 41 and 26 amino acid from N terminus (NΔ41 and NΔ26) designated as F1 and F2 respectively. These capsid were optimally self-assembled in 1:2 molar ratio (F1:F2) to form a monodisperse nano-scaffold of size 28 nm along with chemically conjugated modalities for visualization (fluorescent dye), targeting (folic acid, FA) and anticancer drug (doxorubicin). The cavity of the nano-scaffold was packed with doxorubicin conjugated gold nanoparticles (10 nm) to enhance the stability, drug loading and sustained release of drug. The chimeric system was stable at pH range of 4-8. This chimeric nano-scaffold system showed highly specific receptor mediated internalization (targeting) and ~300% more cytotoxicity (with respect to FA(-) delivery system) to folate receptor positive Michigan Cancer Foundation-7 (MCF7) cell lines. The present system may offer a programmable nano-scaffold based platform for developing chemotherapeutics for cancer.

  20. Targeted delivery system for cancer cells consist of multiple ligands conjugated genetically modified CCMV capsid on doxorubicin GNPs complex

    PubMed Central

    Barwal, Indu; Kumar, Rajiv; Kateriya, Suneel; Dinda, Amit Kumar; Yadav, Subhash Chandra

    2016-01-01

    Targeted nano-delivery vehicles were developed from genetically modified Cowpea chlorotic mottle virus (CCMV) capsid by ligands bioconjugation for efficient drug delivery in cancer cells. RNA binding (N 1-25aa) and β-hexamer forming (N 27-41aa) domain of capsid was selectively deleted by genetic engineering to achieve the efficient in vitro assembly without natural cargo. Two variants of capsids were generated by truncating 41 and 26 amino acid from N terminus (NΔ41 and NΔ26) designated as F1 and F2 respectively. These capsid were optimally self-assembled in 1:2 molar ratio (F1:F2) to form a monodisperse nano-scaffold of size 28 nm along with chemically conjugated modalities for visualization (fluorescent dye), targeting (folic acid, FA) and anticancer drug (doxorubicin). The cavity of the nano-scaffold was packed with doxorubicin conjugated gold nanoparticles (10 nm) to enhance the stability, drug loading and sustained release of drug. The chimeric system was stable at pH range of 4–8. This chimeric nano-scaffold system showed highly specific receptor mediated internalization (targeting) and ~300% more cytotoxicity (with respect to FA− delivery system) to folate receptor positive Michigan Cancer Foundation-7 (MCF7) cell lines. The present system may offer a programmable nano-scaffold based platform for developing chemotherapeutics for cancer. PMID:27872483

  1. Synergistic effect of sorafenib and cGvHD in patients with high-risk FLT3-ITD+AML allows long-term disease control after allogeneic transplantation.

    PubMed

    Tschan-Plessl, A; Halter, J P; Heim, D; Medinger, M; Passweg, J R; Gerull, S

    2015-11-01

    The multikinase inhibitor sorafenib has shown a strong anti-leukemic effect in FMS-like tyrosine kinase 3 (FLT3)-mutated acute myeloid leukemia (AML); however, remission is often transient. To better understand the role of sorafenib, we performed a retrospective analysis of all patients who received sorafenib in combination with allogeneic hematopoietic stem cell transplantation (HSCT) at our center. Seventeen patients with FLT3-ITD positive AML were treated with sorafenib in combination with allogeneic HSCT. Seven patients received sorafenib therapy pre- and posttransplant, and 10 patients were given sorafenib only posttransplant. Median duration of sorafenib treatment was 13 months (range 1-42); median dose was 600 mg (range 100-1200). Fourteen patients (82 %) achieved a complete remission (CR), while 5 patients (29 %) eventually developed progressive disease. Developing chronic graft-versus-host disease (GvHD) had a strong protective influence on the risk of sorafenib resistance (p = 0.028, HR 0.08, 95 % CI 0.01-0.76). In a total of 8 patients, sorafenib had to be stopped, paused or dose-reduced due to toxicity. In 5 patients with pronounced toxicity, we switched to an alternating dosing schedule with 1 month on/1 month off sorafenib. These patients subsequently remained in sustained complete molecular remission, with a median follow-up of 20 months. Our data indicate that sorafenib can achieve high rates of sustained remission in high-risk patients treated in combination with HSCT.

  2. Magnetic Ligand Fishing as a Targeting Tool for HPLC-HRMS-SPE-NMR: α-Glucosidase Inhibitory Ligands and Alkylresorcinol Glycosides from Eugenia catharinae

    PubMed Central

    Wubshet, Sileshi G.; Brighente, Inês M. C.; Moaddel, Ruin; Staerk, Dan

    2016-01-01

    A bioanalytical platform combining magnetic ligand fishing for α-glucosidase inhibition profiling and HPLC-HRMS-SPE-NMR for structural identification of α-glucosidase inhibitory ligands, both directly from crude plant extracts, is presented. Magnetic beads with N-terminus-coupled α-glucosidase were synthesized and characterized for their inherent catalytic activity. Ligand fishing with the immobilized enzyme was optimized using an artificial test mixture consisting of caffeine, ferulic acid, and luteolin before proof-of-concept with the crude extract of Eugenia catharinae. The combination of ligand fishing and HPLC-HRMS-SPE-NMR identified myricetin 3-O-α-l-rhamnopyranoside, myricetin, quercetin, and kaempferol as α-glucosidase inhibitory ligands in E. catharinae. Furthermore, HPLC-HRMS-SPE-NMR analysis led to identification of six new alkylresorcinol glycosides, i.e., 5-(2-oxopentyl)resorcinol 4-O-β-d-glucopyranoside, 5-propylresorcinol 4-O-β-d-glucopyranoside, 5-pentylresorcinol 4-O-[α-d-apiofuranosyl-(1→6)]-β-d-glucopyranoside, 5-pentylresorcinol 4-O-β-d-glucopyranoside, 4-hydroxy-3-O-methyl-5-pentylresorcinol 1-O-β-d-glucopyranoside, and 3-O-methyl-5-pentylresorcinol 1-O-[β-d-glucopyranosyl-(1→6)]-β-d-glucopyranoside. PMID:26496505

  3. Structural basis for small molecule targeting of the programmed death ligand 1 (PD-L1)

    PubMed Central

    Zak, Krzysztof M.; Grudnik, Przemyslaw; Guzik, Katarzyna; Zieba, Bartosz J.; Musielak, Bogdan; Dömling, Alexander; Dubin, Grzegorz; Holak, Tad A.

    2016-01-01

    Targeting the PD-1/PD-L1 immunologic checkpoint with monoclonal antibodies has provided unprecedented results in cancer treatment in the recent years. Development of chemical inhibitors for this pathway lags the antibody development because of insufficient structural information. The first nonpeptidic chemical inhibitors that target the PD-1/PD-L1 interaction have only been recently disclosed by Bristol-Myers Squibb. Here, we show that these small-molecule compounds bind directly to PD-L1 and that they potently block PD-1 binding. Structural studies reveal a dimeric protein complex with a single small molecule which stabilizes the dimer thus occluding the PD-1 interaction surface of PD-L1s. The small-molecule interaction “hot spots” on PD-L1 surfaces suggest approaches for the PD-1/PD-L1 antagonist drug discovery. PMID:27083005

  4. Identification of novel RHPS4-derivative ligands with improved toxicological profiles and telomere-targeting activities.

    PubMed

    Rizzo, Angela; Iachettini, Sara; Zizza, Pasquale; Cingolani, Chiara; Porru, Manuela; Artuso, Simona; Stevens, Malcolm; Hummersone, Marc; Biroccio, Annamaria; Salvati, Erica; Leonetti, Carlo

    2014-10-06

    The pentacyclic acridinium salt RHPS4 (3,11-difluoro-6,8,13-trimethyl-8H-quino [4,3,2-kl] acridinium methosulfate, compound 1) is one of the most interesting DNA G-quadruplex binding molecules due to its high efficacy in tumor cell growth inhibition both in in vitro models and in vivo against human tumor xenografts in combination with conventional chemotherapeutics. Despite compound 1 having desirable chemical and pharmaceutical properties, its potential as a therapeutic agent is compromised by off-target effects on cardiovascular physiology. In this paper we report a new series of structurally-related compounds which were developed in an attempt to minimize its off-target profile, but maintaining the same favorable chemical and pharmacological features of the lead compound. By performing a comparative analysis it was possible to identify which derivatives had the following properties: (i) to show a reduced capacity in respect to compound 1 to inhibit the hERG tail current tested in a patch clamp assay and/or to interact with the human recombinant β2 receptor; (ii) to maintain both a good G4-binding affinity and cancer cell selectivity; and (iii) to trigger DNA damage with specific telomere uncapping. These studies allowed us to identify a novel G4-stabilizing molecule, compound 8, being characterized by reduced off-target effects and potent telomere on-target properties compared to the prototypic compound 1. Moreover, compound 8 shares with compound 1 the same molecular mode of action and an anti-tumour activity specifically restricted to replicating cells, as evident with its particularly efficient activity in combination therapy with a topoisomerase I inhibitor. In conclusion, we have identified a new pentacyclic derivative 8 having suitable properties to be the focus of further investigations as a clinical candidate for cancer therapy.

  5. Digital One Disc One Compound Method for High Throughput Discovery of Prostate Cancer Targeting Ligands

    DTIC Science & Technology

    2016-12-01

    CA 95616-5294 Department of Biochemistry and Molecular Medicine , University of California, Davis 9. SPONSORING / MONITORING AGENCY NAME(S) AND...Combinatorial library method significantly accelerates molecular discovery and identification in many areas of biology and medicine . Current applied...and identification in many areas of biology and medicine , e.g., epitope mapping of antibodies, screening of cancer-targeting drugs and recognition of

  6. Tyroservatide-TPGS-paclitaxel liposomes: Tyroservatide as a targeting ligand for improving breast cancer treatment.

    PubMed

    Jin, Xin; Li, Mengying; Yin, Lifang; Zhou, Jianping; Zhang, Zhenhai; Lv, Huixia

    2017-04-01

    Tyroservatide (YSV) is a tripeptide that has been approved for clinical testing, as a new anticancer drug. In the current study, YSV-stearic acid (YSV-SA) was inserted into the surface of d-alpha-tocopheryl polyethylene glycol 1000 succinate monoester (TPGS)-modified paclitaxel (PTX) liposomes (TP-Lip) to form YSV-conjugated TP-Lip (TYP-Lip). Both in vivo imaging and in vitro cell uptake analysis indicated that these modifications could increase tumor-targeting and cell uptake of the liposomes. Optimal antitumor effects were achieved via tail vein injections of TYP-Lip in MB-231 tumor-bearing nude mice. Overall, the formed TYP-Lip not only achieved a synergistic anticancer effect through YSV and PTX, but also improved tumor-targeting and exhibited further antitumor capabilities. These results indicated that combining biological (YSV) and chemotherapeutic (PTX) agents is an efficient combinatorial delivery strategy for enhanced tumor targeting and synergistic antitumor effects. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Rapid Discovery of Functional Small Molecule Ligands against Proteomic Targets through Library-Against-Library Screening.

    PubMed

    Wu, Chun-Yi; Wang, Don-Hong; Wang, Xiaobing; Dixon, Seth M; Meng, Liping; Ahadi, Sara; Enter, Daniel H; Chen, Chao-Yu; Kato, Jason; Leon, Leonardo J; Ramirez, Laura M; Maeda, Yoshiko; Reis, Carolina F; Ribeiro, Brianna; Weems, Brittany; Kung, Hsing-Jien; Lam, Kit S

    2016-06-13

    Identifying "druggable" targets and their corresponding therapeutic agents are two fundamental challenges in drug discovery research. The one-bead-one-compound (OBOC) combinatorial library method has been developed to discover peptides or small molecules that bind to a specific target protein or elicit a specific cellular response. The phage display cDNA expression proteome library method has been employed to identify target proteins that interact with specific compounds. Here, we combined these two high-throughput approaches, efficiently interrogated approximately 10(13) possible molecular interactions, and identified 91 small molecule compound beads that interacted strongly with the phage library. Of 19 compounds resynthesized, 4 were cytotoxic against cancer cells; one of these compounds was found to interact with EIF5B and inhibit protein translation. As more binding pairs are confirmed and evaluated, the "library-against-library" screening approach and the resulting small molecule-protein domain interaction database may serve as a valuable tool for basic research and drug development.

  8. Rapid Discovery of Functional Small Molecule Ligands against Proteomic Targets through Library-Against-Library Screening

    PubMed Central

    2016-01-01

    Identifying “druggable” targets and their corresponding therapeutic agents are two fundamental challenges in drug discovery research. The one-bead-one-compound (OBOC) combinatorial library method has been developed to discover peptides or small molecules that bind to a specific target protein or elicit a specific cellular response. The phage display cDNA expression proteome library method has been employed to identify target proteins that interact with specific compounds. Here, we combined these two high-throughput approaches, efficiently interrogated approximately 1013 possible molecular interactions, and identified 91 small molecule compound beads that interacted strongly with the phage library. Of 19 compounds resynthesized, 4 were cytotoxic against cancer cells; one of these compounds was found to interact with EIF5B and inhibit protein translation. As more binding pairs are confirmed and evaluated, the “library-against-library” screening approach and the resulting small molecule–protein domain interaction database may serve as a valuable tool for basic research and drug development. PMID:27053324

  9. Rational design of ligands targeting triplet repeating transcripts that cause RNA dominant disease: application to myotonic muscular dystrophy type 1 and spinocerebellar ataxia type 3.

    PubMed

    Pushechnikov, Alexei; Lee, Melissa M; Childs-Disney, Jessica L; Sobczak, Krzysztof; French, Jonathan M; Thornton, Charles A; Disney, Matthew D

    2009-07-22

    Herein, we describe the design of high affinity ligands that bind expanded rCUG and rCAG repeat RNAs expressed in myotonic dystrophy type 1 (DM1) and spinocerebellar ataxia type 3. These ligands also inhibit, with nanomolar IC(50) values, the formation of RNA-protein complexes that are implicated in both disorders. The expanded rCUG and rCAG repeats form stable RNA hairpins with regularly repeating internal loops in the stem and have deleterious effects on cell function. The ligands that bind the repeats display a derivative of the bisbenzimidazole Hoechst 33258, which was identified by searching known RNA-ligand interactions for ligands that bind the internal loop displayed in these hairpins. A series of 13 modularly assembled ligands with defined valencies and distances between ligand modules was synthesized to target multiple motifs in these RNAs simultaneously. The most avid binder, a pentamer, binds the rCUG repeat hairpin with a K(d) of 13 nM. When compared to a series of related RNAs, the pentamer binds to rCUG repeats with 4.4- to >200-fold specificity. Furthermore, the affinity of binding to rCUG repeats shows incremental gains with increasing valency, while the background binding to genomic DNA is correspondingly reduced. Then, it was determined whether the modularly assembled ligands inhibit the recognition of RNA repeats by Muscleblind-like 1 (MBNL1) protein, the expanded-rCUG binding protein whose sequestration leads to splicing defects in DM1. Among several compounds with nanomolar IC(50) values, the most potent inhibitor is the pentamer, which also inhibits the formation of rCAG repeat-MBNL1 complexes. Comparison of the binding data for the designed synthetic ligands and MBNL1 to repeating RNAs shows that the synthetic ligand is 23-fold higher affinity and more specific to DM1 RNAs than MBNL1. Further studies show that the designed ligands are cell permeable to mouse myoblasts. Thus, cell permeable ligands that bind repetitive RNAs have been designed

  10. Dual-targeting organometallic ruthenium(II) anticancer complexes bearing EGFR-inhibiting 4-anilinoquinazoline ligands.

    PubMed

    Zhang, Yang; Zheng, Wei; Luo, Qun; Zhao, Yao; Zhang, Erlong; Liu, Suyan; Wang, Fuyi

    2015-08-07

    We have recently demonstrated that complexation with (η(6)-arene)Ru(II) fragments confers 4-anilinoquinazoline pharmacophores a higher potential for inducing cellular apoptosis while preserving the highly inhibitory activity of 4-anilinoquinazolines against EGFR and the reactivity of the ruthenium centre to 9-ethylguanine (Chem. Commun., 2013, 49, 10224-10226). Reported herein are the synthesis, characterisation and evaluation of the biological activity of a new series of ruthenium(ii) complexes of the type [(η(6)-arene)Ru(N,N-L)Cl]PF6 (arene = p-cymene, benzene, 2-phenylethanol or indane, L = 4-anilinoquinazolines). These organometallic ruthenium complexes undergo fast hydrolysis in aqueous solution. Intriguingly, the ligation of (arene)Ru(II) fragments with 4-anilinoquinazolines not only makes the target complexes excellent EGFR inhibitors, but also confers the complexes high affinity to bind to DNA minor grooves while maintaining their reactivity towards DNA bases, characterising them with dual-targeting properties. Molecular modelling studies reveal that the hydrolysis of these complexes is a favourable process which increases the affinity of the target complexes to bind to EGFR and DNA. In vitro biological activity assays show that most of this group of ruthenium complexes are selectively active inhibiting the EGF-stimulated growth of the HeLa cervical cancer cell line, and the most active complex [(η(6)-arene)Ru(N,N-L13)Cl]PF6 (, IC50 = 1.36 μM, = 4-(3'-chloro-4'-fluoroanilino)-6-(2-(2-aminoethyl)aminoethoxy)-7-methoxyquinazoline) is 29-fold more active than its analogue, [(η(6)-arene)Ru(N,N-ethylenediamine)Cl]PF6, and 21-fold more active than gefitinib, a well-known EGFR inhibitor in use clinically. These results highlight the strong promise to develop highly active ruthenium anticancer complexes by ligation of cytotoxic ruthenium pharmacophores with bioactive organic molecules.

  11. Atorvastatin-loaded micelles with bone-targeted ligand for the treatment of osteoporosis.

    PubMed

    Xie, Yonghui; Tan, Xueying; Huang, Jian; Huang, Hongwei; Zou, Ping; Hu, Jingbo

    2017-11-01

    Osteoporosis is a common bone disorder where the declined bone mass is far more than normal physiological status and usually associated with enhanced fracture risk, reduced bone strength and even deteriorated quality of life. Recent studies showed that statins could exert beneficial effects on bones via promoting osteoblastic activity mediated by increased expression of bone morphogenetic protein 2 and also by suppressing osteoclast proliferation. In this study, we developed atorvastatin-loaded tetracycline-poly (ethylene glycol)-poly(lactic-co-glycolic acid) (TC-PEG-PLGA/ATO) micelles for the targeted treatment of osteoporosis. The TC-PEG-PLGA was synthesized under the action of coupling reagents and then ATO was encapsulated through solvent diffusion method with encapsulation efficiency and drug loading of 89.32 ± 2.48% and 8.20 ± 0.53%, respectively. The release of ATO from micelles could be maintained for more than 48 h in pH 7.4 PBS. Pharmacokinetic results further demonstrated that TC-PEG-PLGA micelles could effectively shield ATO leakage from micelles and prolong their circulation time. Benefiting from TC specifically binding to hydroxyapatite (HAp), TC-PEG-PLGA/ATO micelles exerted good bone-targeted ability, as demonstrated by in vitro HAp affinity assay and biodistribution. Pharmacodynamic studies showed that TC-PEG-PLGA/ATO micelles could effectively improve bone mineral density and bone mechanical strength in osteoporotic rats. These results suggest that TC-PEG-PLGA/ATO micelles hold significant promise for the targeted treatment of osteoporosis.

  12. ‘Living’ PEGylation on gold nanoparticles to optimize cancer cell uptake by controlling targeting ligand and charge densities

    NASA Astrophysics Data System (ADS)

    Chen, Hongwei; Paholak, Hayley; Ito, Masayuki; Sansanaphongpricha, Kanokwan; Qian, Wei; Che, Yong; Sun, Duxin

    2013-09-01

    We report and demonstrate biomedical applications of a new technique—‘living’ PEGylation—that allows control of the density and composition of heterobifunctional PEG (HS-PEG-R; thiol-terminated poly(ethylene glycol)) on gold nanoparticles (AuNPs). We first establish ‘living’ PEGylation by incubating HS-PEG5000-COOH with AuNPs (˜20 nm) at increasing molar ratios from zero to 2000. This causes the hydrodynamic layer thickness to differentially increase up to 26 nm. The controlled, gradual increase in PEG-COOH density is revealed after centrifugation, based on the ability to re-suspend the pellet and increase the AuNP absorption. Using a fluorescamine-based assay we quantify differential HS-PEG5000-NH2 binding to AuNPs, revealing that it is highly efficient until AuNP saturation is reached. Furthermore, the zeta potential incrementally changes from -44.9 to +52.2 mV and becomes constant upon saturation. Using ‘living’ PEGylation we prepare AuNPs with different ratios of HS-PEG-RGD (RGD: Arg-Gly-Asp) and incubate them with U-87 MG (malignant glioblastoma) and non-target cells, demonstrating that targeting ligand density is critical to maximizing the efficiency of targeting of AuNPs to cancer cells. We also sequentially control the HS-PEG-R density to develop multifunctional nanoparticles, conjugating positively charged HS-PEG-NH2 at increasing ratios to AuNPs containing negatively charged HS-PEG-COOH to reduce uptake by macrophage cells. This ability to minimize non-specific binding/uptake by healthy cells could further improve targeted nanoparticle efficacy.

  13. Crystal Structures of Free and Ligand-Bound Focal Adhesion Targeting Domain of Pyk2

    SciTech Connect

    Lulo, J.; Yuzawa, S; Schlessinger, J

    2009-01-01

    Focal adhesion targeting (FAT) domains target the non-receptor tyrosine kinases FAK and Pyk2 to cellular focal adhesion areas, where the signaling molecule paxillin is also located. Here, we report the crystal structures of the Pyk2 FAT domain alone or in complex with paxillin LD4 peptides. The overall structure of Pyk2-FAT is an antiparallel four-helix bundle with an up-down, up-down, right-handed topology. In the LD4-bound FAT complex, two paxillin LD4 peptides interact with two opposite sides of Pyk2-FAT, at the surfaces of the a1a4 and a2a3 helices of each FAT molecule. We also demonstrate that, while paxillin is phosphorylated by Pyk2, complex formation between Pyk2 and paxillin does not depend on Pyk2 tyrosine kinase activity. These experiments reveal the structural basis underlying the selectivity of paxillin LD4 binding to the Pyk2 FAT domain and provide insights about the molecular details which influence the different behavior of these two closely-related kinases.

  14. Internal dosimetry through GATE simulations of preclinical radiotherapy using a melanin-targeting ligand.

    PubMed

    Perrot, Y; Degoul, F; Auzeloux, P; Bonnet, M; Cachin, F; Chezal, J M; Donnarieix, D; Labarre, P; Moins, N; Papon, J; Rbah-Vidal, L; Vidal, A; Miot-Noirault, E; Maigne, L

    2014-05-07

    The GATE Monte Carlo simulation platform based on the Geant4 toolkit is under constant improvement for dosimetric calculations. In this study, we explore its use for the dosimetry of the preclinical targeted radiotherapy of melanoma using a new specific melanin-targeting radiotracer labeled with iodine 131. Calculated absorbed fractions and S values for spheres and murine models (digital and CT-scan-based mouse phantoms) are compared between GATE and EGSnrc Monte Carlo codes considering monoenergetic electrons and the detailed energy spectrum of iodine 131. The behavior of Geant4 standard and low energy models is also tested. Following the different authors' guidelines concerning the parameterization of electron physics models, this study demonstrates an agreement of 1.2% and 1.5% with EGSnrc, respectively, for the calculation of S values for small spheres and mouse phantoms. S values calculated with GATE are then used to compute the dose distribution in organs of interest using the activity distribution in mouse phantoms. This study gives the dosimetric data required for the translation of the new treatment to the clinic.

  15. Internal dosimetry through GATE simulations of preclinical radiotherapy using a melanin-targeting ligand

    NASA Astrophysics Data System (ADS)

    Perrot, Y.; Degoul, F.; Auzeloux, P.; Bonnet, M.; Cachin, F.; Chezal, J. M.; Donnarieix, D.; Labarre, P.; Moins, N.; Papon, J.; Rbah-Vidal, L.; Vidal, A.; Miot-Noirault, E.; Maigne, L.

    2014-05-01

    The GATE Monte Carlo simulation platform based on the Geant4 toolkit is under constant improvement for dosimetric calculations. In this study, we explore its use for the dosimetry of the preclinical targeted radiotherapy of melanoma using a new specific melanin-targeting radiotracer labeled with iodine 131. Calculated absorbed fractions and S values for spheres and murine models (digital and CT-scan-based mouse phantoms) are compared between GATE and EGSnrc Monte Carlo codes considering monoenergetic electrons and the detailed energy spectrum of iodine 131. The behavior of Geant4 standard and low energy models is also tested. Following the different authors’ guidelines concerning the parameterization of electron physics models, this study demonstrates an agreement of 1.2% and 1.5% with EGSnrc, respectively, for the calculation of S values for small spheres and mouse phantoms. S values calculated with GATE are then used to compute the dose distribution in organs of interest using the activity distribution in mouse phantoms. This study gives the dosimetric data required for the translation of the new treatment to the clinic.

  16. Nimotuzumab, an antitumor antibody that targets the epidermal growth factor receptor, blocks ligand binding while permitting the active receptor conformation.

    PubMed

    Talavera, Ariel; Friemann, Rosmarie; Gómez-Puerta, Silvia; Martinez-Fleites, Carlos; Garrido, Greta; Rabasa, Ailem; López-Requena, Alejandro; Pupo, Amaury; Johansen, Rune F; Sánchez, Oliberto; Krengel, Ute; Moreno, Ernesto

    2009-07-15

    Overexpression of the epidermal growth factor (EGF) receptor (EGFR) in cancer cells correlates with tumor malignancy and poor prognosis for cancer patients. For this reason, the EGFR has become one of the main targets of anticancer therapies. Structural data obtained in the last few years have revealed the molecular mechanism for ligand-induced EGFR dimerization and subsequent signal transduction, and also how this signal is blocked by either monoclonal antibodies or small molecules. Nimotuzumab (also known as h-R3) is a humanized antibody that targets the EGFR and has been successful in the clinics. In this work, we report the crystal structure of the Fab fragment of Nimotuzumab, revealing some unique structural features in the heavy variable domain. Furthermore, competition assays show that Nimotuzumab binds to domain III of the extracellular region of the EGFR, within an area that overlaps with both the surface patch recognized by Cetuximab (another anti-EGFR antibody) and the binding site for EGF. A computer model of the Nimotuzumab-EGFR complex, constructed by docking and molecular dynamics simulations and supported by mutagenesis studies, unveils a novel mechanism of action, with Nimotuzumab blocking EGF binding while still allowing the receptor to adopt its active conformation, hence warranting a basal level of signaling.

  17. Targeting P-selectin glycoprotein ligand-1/P-selectin interactions as a novel therapy for metabolic syndrome.

    PubMed

    Patel, Madhukar S; Miranda-Nieves, David; Chen, Jiaxuan; Haller, Carolyn A; Chaikof, Elliot L

    2016-12-09

    Obesity-induced insulin resistance and metabolic syndrome continue to pose an important public health challenge worldwide as they significantly increase the risk of type 2 diabetes and atherosclerotic cardiovascular disease. Advances in the pathophysiologic understanding of this process has identified that chronic inflammation plays a pivotal role. In this regard, given that both animal models and human studies have demonstrated that the interaction of P-selectin glycoprotein ligand-1 (PSGL-1) with P-selectin is not only critical for normal immune response but also is upregulated in the setting of metabolic syndrome, PSGL-1/P-selectin interactions provide a novel target for preventing and treating resultant disease. Current approaches of interfering with PSGL-1/P-selectin interactions include targeted antibodies, recombinant immunoglobulins that competitively bind P-selectin, and synthetic molecular therapies. Experimental models as well as clinical trials assessing the role of these modalities in a variety of diseases have continued to contribute to the understanding of PSGL-1/P-selectin interactions and have demonstrated the difficulty in creating clinically relevant therapeutics. Most recently, however, computational simulations have further enhanced our understanding of the structural features of PSGL-1 and related glycomimetics, which are responsible for high-affinity selectin interactions. Leveraging these insights for the design of next generation agents has thus led to development of a promising synthetic method for generating PSGL-1 glycosulfopeptide mimetics for the treatment of metabolic syndrome.

  18. GPER-targeted, 99mTc-labeled, nonsteroidal ligands demonstrate selective tumor imaging and in vivo estrogen binding

    PubMed Central

    Nayak, Tapan K.; Ramesh, Chinnasamy; Hathaway, Helen J.; Norenberg, Jeffrey P.; Arterburn, Jeffrey B.; Prossnitz, Eric R.

    2014-01-01

    Our understanding of estrogen (E2) receptor biology has evolved in recent years with the discovery and characterization of a 7-transmembrane-spanning G protein-coupled estrogen receptor (GPER1/GPER/GPR30) and the development of GPER-selective functional chemical probes. GPER is highly expressed in certain breast, endometrial and ovarian cancers, establishing the importance of non-invasive methods to evaluate GPER expression in vivo. Herein, we developed 99mTc-labeled GPER ligands to demonstrate the in vivo status of GPER as an estrogen receptor and for GPER visualization in whole animals. A series of 99mTc(I)-labeled non-steroidal tetrahydro-3H-cyclopenta[c]quinolone derivatives was synthesized utilizing pyridin-2-yl hydrazine and picolylamine chelates. Radioligand receptor binding studies revealed binding affinities in the 10–30 nM range. Cell signaling assays previously demonstrated that derivatives retaining a ketone functionality displayed agonist properties whereas those lacking such a hydrogen bond acceptor were antagonists. In vivo biodistribution and imaging studies performed on mice bearing human endometrial and breast cancer cell xenografts yielded significant tumor uptake (0.4–1.1 %ID/g). Blocking studies revealed specific uptake in multiple organs (adrenals, uterus, mammary tissue) as well as tumor uptake with similar levels of competition by E2 and G-1, a GPER-selective agonist. In conclusion, we synthesized and evaluated a series of first generation 99mTc-labeled GPER-specific radioligands, demonstrating GPER as an estrogen-binding receptor for the first time in vivo using competitive binding principles, and establishing the utility of such ligands as tumor imaging agents. These results warrant further investigation into the role of GPER in estrogen-mediated carcinogenesis and as a target for diagnostic/therapeutic/ image-guided drug delivery. PMID:25030373

  19. Chemically Induced Degradation of Sirtuin 2 (Sirt2) by a Proteolysis Targeting Chimera (PROTAC) Based on Sirtuin Rearranging Ligands (SirReals).

    PubMed

    Schiedel, Matthias; Herp, Daniel; Hammelmann, Sören; Swyter, Sören; Lehotzky, Attila; Robaa, Dina; Oláh, Judit; Ovádi, Judit; Sippl, Wolfgang; Jung, Manfred

    2017-04-17

    Here we report the development of a proteolysis targeting chimera (PROTAC) based on the combination of the unique features of the sirtuin rearranging ligands (SirReals) as highly potent and isotype-selective Sirt2 inhibitors with thalidomide, a bona fide cereblon ligand. For the first time, we report the formation of a PROTAC by Cu(I)-catalyzed cycloaddition of a thalidomide-derived azide to an alkynylated inhibitor. This thalidomide-derived azide as well as the highly versatile linking strategy can be readily adapted to alkynylated ligands of other targets. In HeLa cells, our SirReal-based PROTAC induced isotype-selective Sirt2 degradation that results in the hyperacetylation of the microtubule network coupled with enhanced process elongation. Thus, our SirReal-based PROTAC is the first example of a probe that is able to chemically induce the degradation of an epigenetic eraser protein.

  20. RANK ligand as a potential target for breast cancer prevention in BRCA1-mutation carriers.

    PubMed

    Nolan, Emma; Vaillant, François; Branstetter, Daniel; Pal, Bhupinder; Giner, Göknur; Whitehead, Lachlan; Lok, Sheau W; Mann, Gregory B; Rohrbach, Kathy; Huang, Li-Ya; Soriano, Rosalia; Smyth, Gordon K; Dougall, William C; Visvader, Jane E; Lindeman, Geoffrey J

    2016-08-01

    Individuals who have mutations in the breast-cancer-susceptibility gene BRCA1 (hereafter referred to as BRCA1-mutation carriers) frequently undergo prophylactic mastectomy to minimize their risk of breast cancer. The identification of an effective prevention therapy therefore remains a 'holy grail' for the field. Precancerous BRCA1(mut/+) tissue harbors an aberrant population of luminal progenitor cells, and deregulated progesterone signaling has been implicated in BRCA1-associated oncogenesis. Coupled with the findings that tumor necrosis factor superfamily member 11 (TNFSF11; also known as RANKL) is a key paracrine effector of progesterone signaling and that RANKL and its receptor TNFRSF11A (also known as RANK) contribute to mammary tumorigenesis, we investigated a role for this pathway in the pre-neoplastic phase of BRCA1-mutation carriers. We identified two subsets of luminal progenitors (RANK(+) and RANK(-)) in histologically normal tissue of BRCA1-mutation carriers and showed that RANK(+) cells are highly proliferative, have grossly aberrant DNA repair and bear a molecular signature similar to that of basal-like breast cancer. These data suggest that RANK(+) and not RANK(-) progenitors are a key target population in these women. Inhibition of RANKL signaling by treatment with denosumab in three-dimensional breast organoids derived from pre-neoplastic BRCA1(mut/+) tissue attenuated progesterone-induced proliferation. Notably, proliferation was markedly reduced in breast biopsies from BRCA1-mutation carriers who were treated with denosumab. Furthermore, inhibition of RANKL in a Brca1-deficient mouse model substantially curtailed mammary tumorigenesis. Taken together, these findings identify a targetable pathway in a putative cell-of-origin population in BRCA1-mutation carriers and implicate RANKL blockade as a promising strategy in the prevention of breast cancer.

  1. Targeting of RAGE-ligand signaling impairs breast cancer cell invasion and metastasis.

    PubMed

    Kwak, T; Drews-Elger, K; Ergonul, A; Miller, P C; Braley, A; Hwang, G H; Zhao, D; Besser, A; Yamamoto, Y; Yamamoto, H; El-Ashry, D; Slingerland, J M; Lippman, M E; Hudson, B I

    2017-03-01

    The receptor for advanced glycation end products (RAGE) is highly expressed in various cancers and is correlated with poorer outcome in breast and other cancers. Here we tested the role of targeting RAGE by multiple approaches in the tumor and tumor microenvironment, to inhibit the metastatic process. We first tested how RAGE impacts tumor cell-intrinsic mechanisms using either RAGE overexpression or knockdown with short hairpin RNAs (shRNAs). RAGE ectopic overexpression in breast cancer cells increased MEK-EMT (MEK-epithelial-to-mesenchymal transition) signaling, transwell invasion and soft agar colony formation, and in vivo promoted lung metastasis independent of tumor growth. RAGE knockdown with multiple independent shRNAs in breast cancer cells led to decreased transwell invasion and soft agar colony formation, without affecting proliferation. In vivo, targeting RAGE shRNA knockdown in human and mouse breast cancer cells, decreased orthotopic tumor growth, reduced tumor angiogenesis and recruitment of inflammatory cells, and markedly decreased metastasis to the lung and liver in multiple xenograft and syngeneic mouse models. To test the non-tumor cell microenvironment role of RAGE, we performed syngeneic studies with orthotopically injected breast cancer cells in wild-type and RAGE-knockout C57BL6 mice. RAGE-knockout mice displayed striking impairment of tumor cell growth compared with wild-type mice, along with decreased mitogen-activated protein kinase signaling, tumor angiogenesis and inflammatory cell recruitment. To test the combined inhibition of RAGE in both tumor cell-intrinsic and non-tumor cells of the microenvironment, we performed in vivo treatment of xenografted tumors with FPS-ZM1 (1 mg/kg, two times per week). Compared with vehicle, FPS-ZM1 inhibited primary tumor growth, inhibited tumor angiogenesis and inflammatory cell recruitment and, most importantly, prevented metastasis to the lung and liver. These data demonstrate that RAGE drives tumor

  2. Riboswitch-Mediated Aptamer Binding for Imaging and Therapy (RABIT): A Novel Technique to Selectively Target an Intracellular Ligand Specific for Ovarian Cancer

    DTIC Science & Technology

    2013-10-01

    AD_________________ Award Number: TITLE: Riboswitch-Mediated Aptamer Binding for Imaging and...SUBTITLE Riboswitch-Mediated Aptamer Binding for Imaging and Therapy (RABIT): A Novel TTechnique to Selectively Target an Intracellular Ligand...ABSTRACT We have proposed to use a riboswitch to image or treat ovarian cancer. The riboswitch, attached to an EpCAM aptamer , will be transported

  3. Silencing NKG2D ligand-targeting miRNAs enhances natural killer cell-mediated cytotoxicity in breast cancer.

    PubMed

    Shen, Jiaying; Pan, Jie; Du, Chengyong; Si, Wengong; Yao, Minya; Xu, Liang; Zheng, Huilin; Xu, Mingjie; Chen, Danni; Wang, Shu; Fu, Peifen; Fan, Weimin

    2017-04-06

    NKG2D is one of the major activating receptors of natural killer (NK) cells and binds to several ligands (NKG2DLs). NKG2DLs are expressed on malignant cells and sensitize them to early elimination by cytotoxic lymphocytes. We investigated the clinical importance of NKG2DLs and the mechanism of NKG2DL regulation in breast cancer (BC). Among the NKG2DLs MICA/B and ULBP1/2/3, the expression levels of MICA/B in BC tissues were inversely associated with the Tumor Node Metastasis stage. We first found that the high expression of MICB, but not MICA, was an independent prognostic factor for overall survival in patients with BC. Investigation into the mechanism revealed that a group of microRNAs (miRNAs) belonging to the miR-17-92 cluster, especially miR-20a, decreased the expression of ULBP2 and MICA/B. These miRNAs downregulated the expression of MICA/B by targeting the MICA/B 3'-untranslated region and downregulated ULBP2 by inhibiting the MAPK/ERK signaling pathway. Functional analysis showed that the silencing of NKG2DL-targeting miRNAs in BC cells increased NK cell-mediated cytotoxicity in vitro and inhibited immune escape in vivo. In addition, histone deacetylase inhibitors (HDACis) increased NKG2DL expression in BC cells by inhibiting members of the miR-17-92 cluster. Thus, targeting miRNAs with antisense inhibitors or HDACis may represent a novel approach for increasing the immunogenicity of BC.

  4. Targeting heat shock proteins on cancer cells: selection, characterization, and cell-penetrating properties of a peptidic GRP78 ligand.

    PubMed

    Kim, Youngsoo; Lillo, Antonietta M; Steiniger, Sebastian C J; Liu, Ying; Ballatore, Carlo; Anichini, Andrea; Mortarini, Roberta; Kaufmann, Gunnar F; Zhou, Bin; Felding-Habermann, Brunhilde; Janda, Kim D

    2006-08-08

    Peptidic ligands can be used for specific cell targeting and the delivery of payloads into the target cell. Here we describe the screening of a pool of cyclic peptide phage display libraries using whole-cell panning against human melanoma cell line Me6652/4. This strategy resulted in the selection of the cyclic 13-mer Pep42, CTVALPGGYVRVC, which showed preferential internalization into melanoma cell line Me6652/4 versus the reference cell line Me6652/56. This translocation is a receptor-mediated process that does not require electrostatic interactions nor does it involve transfer to the lysosomal compartment. The cellular receptor for Pep42 was identified as the surface membrane form of glucose-regulated protein 78 (GRP78), a member of the heat shock protein family and a marker on malignant cancer cells. The cellular uptake and intracellular trafficking of Pep42-Quantum Dot conjugates was monitored by confocal laser microscopy, and colocalization within the endoplasmic reticulum was observed. The uptake of Pep42 could be blocked by a monoclonal antibody against the identified receptor. Furthermore, Pep42 was shown to target specifically GRP78-expressing cancer cells. The in vitro cytotoxicity of a Pep42-Taxol conjugate was evaluated by flow cytometry wherein the conjugate was shown to induce apoptosis and was more effective in promoting programmed cell death in Me6652/4 cells. In summary, the data presented suggest that cyclic peptide Pep42 might be a powerful tool in the construction of drug conjugates designed to selectively kill malignant cancer cells.

  5. Analysis of Small Molecule Ligands Targeting the HIV-1 Matrix Protein-RNA Binding Site*

    PubMed Central

    Alfadhli, Ayna; McNett, Henry; Eccles, Jacob; Tsagli, Seyram; Noviello, Colleen; Sloan, Rachel; López, Claudia S.; Peyton, David H.; Barklis, Eric

    2013-01-01

    The matrix domain (MA) of the HIV-1 precursor Gag (PrGag) protein directs PrGag proteins to assembly sites at the plasma membrane by virtue of its affinity to the phospholipid, phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2). MA also binds to RNA at a site that overlaps its PI(4,5)P2 site, suggesting that RNA binding may protect MA from associating with inappropriate cellular membranes prior to PrGag delivery to the PM. Based on this, we have developed an assay in which small molecule competitors to MA-RNA binding can be characterized, with the assumption that such compounds might interfere with essential MA functions and help elucidate additional features of MA binding. Following this approach, we have identified four compounds, including three thiadiazolanes, that compete with RNA for MA binding. We also have identified MA residues involved in thiadiazolane binding and found that they overlap the MA PI(4,5)P2 and RNA sites. Cell culture studies demonstrated that thiadiazolanes inhibit HIV-1 replication but are associated with significant levels of toxicity. Nevertheless, these observations provide new insights into MA binding and pave the way for the development of antivirals that target the HIV-1 matrix domain. PMID:23135280

  6. Peroxisome proliferator activated receptor α ligands as anticancer drugs targeting mitochondrial metabolism.

    PubMed

    Grabacka, Maja; Pierzchalska, Malgorzata; Reiss, Krzysztof

    2013-01-01

    Tumor cells show metabolic features distinctive from normal tissues, with characteristically enhanced aerobic glycolysis, glutaminolysis and lipid synthesis. Peroxisome proliferator activated receptor α (PPAR α) is activated by nutrients (fatty acids and their derivatives) and influences these metabolic pathways acting antagonistically to oncogenic Akt and c-Myc. Therefore PPAR α can be regarded as a candidate target molecule in supplementary anticancer pharmacotherapy as well as dietary therapeutic approach. This idea is based on hitting the cancer cell metabolic weak points through PPAR α mediated stimulation of mitochondrial fatty acid oxidation and ketogenesis with simultaneous reduction of glucose and glutamine consumption. PPAR α activity is induced by fasting and its molecular consequences overlap with the effects of calorie restriction and ketogenic diet (CRKD). CRKD induces increase of NAD+/NADH ratio and drop in ATP/AMP ratio. The first one is the main stimulus for enhanced protein deacetylase SIRT1 activity; the second one activates AMP-dependent protein kinase (AMPK). Both SIRT1 and AMPK exert their major metabolic activities such as fatty acid oxidation and block of glycolysis and protein, nucleotide and fatty acid synthesis through the effector protein peroxisome proliferator activated receptor gamma 1 α coactivator (PGC-1α). PGC-1α cooperates with PPAR α and their activities might contribute to potential anticancer effects of CRKD, which were reported for various brain tumors. Therefore, PPAR α activation can engage molecular interplay among SIRT1, AMPK, and PGC-1α that pro