Sample records for fluctuating velocity components

  1. New boundary conditions for fluid interaction with hydrophobic surface

    NASA Astrophysics Data System (ADS)

    Pochylý, František; Fialová, Simona; Havlásek, Michal

    2018-06-01

    Solution of both laminar and turbulent flow with consideration of hydrophobic surface is based on the original Navier assumption that the shear stress on the hydrophobic surface is directly proportional to the slipping velocity. In the previous work a laminar flow analysis with different boundary conditions was performed. The shear stress value on the tube walls directly depends on the pressure gradient. In the solution of the turbulent flow by the k-ɛ model, the occurrence of the fluctuation components of velocity on the hydrophobic surface is considered. The fluctuation components of the velocity affect the size of the adhesive forces. We assume that the boundary condition for ɛ depending on the velocity gradients will not need to be changed. When the liquid slips over the surface, non-zero fluctuation velocity components occur in the turbulent flow. These determine the non-zero value of the turbulent kinetic energy K. In addition, the fluctuation velocity components also influence the value of the adhesive forces, so it is necessary to include these in the formulation of new boundary conditions for turbulent flow on the hydrophobic surface.

  2. Statistics of velocity fluctuations of Geldart A particles in a circulating fluidized bed riser

    DOE PAGES

    Vaidheeswaran, Avinash; Shaffer, Franklin; Gopalan, Balaji

    2017-11-21

    Here, the statistics of fluctuating velocity components are studied in the riser of a closed-loop circulating fluidized bed with fluid catalytic cracking catalyst particles. Our analysis shows distinct similarities as well as deviations compared to existing theories and bench-scale experiments. The study confirms anisotropic and non-Maxwellian distribution of fluctuating velocity components. The velocity distribution functions (VDFs) corresponding to transverse fluctuations exhibit symmetry, and follow a stretched-exponential behavior up to three standard deviations. The form of the transverse VDF is largely determined by interparticle interactions. The tails become more overpopulated with an increase in particle loading. The observed deviations from themore » Gaussian distribution are represented using the leading order term in the Sonine expansion, which is commonly used to approximate the VDFs in kinetic theory for granular flows. The vertical fluctuating VDFs are asymmetric and the skewness shifts as the wall is approached. In comparison to transverse fluctuations, the vertical VDF is determined by the local hydrodynamics. This is an observation of particle velocity fluctuations in a large-scale system and their quantitative comparison with the Maxwell-Boltzmann statistics.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaidheeswaran, Avinash; Shaffer, Franklin; Gopalan, Balaji

    Here, the statistics of fluctuating velocity components are studied in the riser of a closed-loop circulating fluidized bed with fluid catalytic cracking catalyst particles. Our analysis shows distinct similarities as well as deviations compared to existing theories and bench-scale experiments. The study confirms anisotropic and non-Maxwellian distribution of fluctuating velocity components. The velocity distribution functions (VDFs) corresponding to transverse fluctuations exhibit symmetry, and follow a stretched-exponential behavior up to three standard deviations. The form of the transverse VDF is largely determined by interparticle interactions. The tails become more overpopulated with an increase in particle loading. The observed deviations from themore » Gaussian distribution are represented using the leading order term in the Sonine expansion, which is commonly used to approximate the VDFs in kinetic theory for granular flows. The vertical fluctuating VDFs are asymmetric and the skewness shifts as the wall is approached. In comparison to transverse fluctuations, the vertical VDF is determined by the local hydrodynamics. This is an observation of particle velocity fluctuations in a large-scale system and their quantitative comparison with the Maxwell-Boltzmann statistics.« less

  4. Measuring flow velocity and flow direction by spatial and temporal analysis of flow fluctuations.

    PubMed

    Chagnaud, Boris P; Brücker, Christoph; Hofmann, Michael H; Bleckmann, Horst

    2008-04-23

    If exposed to bulk water flow, fish lateral line afferents respond only to flow fluctuations (AC) and not to the steady (DC) component of the flow. Consequently, a single lateral line afferent can encode neither bulk flow direction nor velocity. It is possible, however, for a fish to obtain bulk flow information using multiple afferents that respond only to flow fluctuations. We show by means of particle image velocimetry that, if a flow contains fluctuations, these fluctuations propagate with the flow. A cross-correlation of water motion measured at an upstream point with that at a downstream point can then provide information about flow velocity and flow direction. In this study, we recorded from pairs of primary lateral line afferents while a fish was exposed to either bulk water flow, or to the water motion caused by a moving object. We confirm that lateral line afferents responded to the flow fluctuations and not to the DC component of the flow, and that responses of many fiber pairs were highly correlated, if they were time-shifted to correct for gross flow velocity and gross flow direction. To prove that a cross-correlation mechanism can be used to retrieve the information about gross flow velocity and direction, we measured the flow-induced bending motions of two flexible micropillars separated in a downstream direction. A cross-correlation of the bending motions of these micropillars did indeed produce an accurate estimate of the velocity vector along the direction of the micropillars.

  5. Measurements of the Free-Stream Fluctuations above a Turbulent Boundary Layer

    NASA Technical Reports Server (NTRS)

    Wood, D. H.; Westphal, R. V.

    1988-01-01

    In this paper an investigation of the velocity fluctuations in the free stream above an incompressible turbulent boundary layer developing at constant pressure is described. It is assumed that the fluctuations receive contributions from three statistically independent sources: (1) one-dimensional unsteadiness, (2) free-stream turbulence, and (3) the irrotational motion induced by the turbulent boundary layer. Measurements were made in a wind tunnel with a root-mean-square level of the axial velocity fluctuations of about 0.2%. All three velocity components were measured using an X-wire probe. The unsteadiness was determined from the spanwise covariance of the axial velocity fluctuations, measured using two single-wire probes. The results show that it is possible to separate the contributions to the rms level of the velocity fluctuations without resorting to the dubious technique of high-pass filtering. This separation could be extended to the spectral densities of the contributions if measurements of sufficient accuracy were available.

  6. Measurements of the free stream fluctuations above a turbulent boundary layer

    NASA Technical Reports Server (NTRS)

    Wood, David H.; Westphal, Russell V.

    1987-01-01

    This paper investigates the velocity fluctuations in the free stream above an incompressible turbulent boundary layer developing at constant pressure. It is assumed that the fluctuations receive contributions from three statistically independent sources: (1) one-dimensional unsteadiness, (2) free stream turbulence, and (3) the potential motion induced by the turbulent boundary layer. Measurements were made in a wind tunnel with a root-mean-square level of the axial velocity fluctuations of about 0.2 percent. All three velocity components were measured using an X-wire probe. The unsteadiness was determined from the spanwise covariance of the axial velocity, measured using two single wire probes. The results show that it is possible to separate the contributions to the r.m.s. level of the velocity fluctuations, without resorting to the dubious technique of high-pass filtering. The separation could be extended to the spectral densities of the contributions, if measurements of sufficient accuracy were available. The Appendix provides a general guide for the measurement of small free stream fluctuation levels.

  7. Measurements of surface-pressure fluctuations on the XB-70 airplane at local Mach numbers up to 2.45

    NASA Technical Reports Server (NTRS)

    Lewis, T. L.; Dods, J. B., Jr.; Hanly, R. D.

    1973-01-01

    Measurements of surface-pressure fluctuations were made at two locations on the XB-70 airplane for nine flight-test conditions encompassing a local Mach number range from 0.35 to 2.45. These measurements are presented in the form of estimated power spectral densities, coherence functions, and narrow-band-convection velocities. The estimated power spectral densities compared favorably with wind-tunnel data obtained by other experimenters. The coherence function and convection velocity data supported conclusions by other experimenters that low-frequency surface-pressure fluctuations consist of small-scale turbulence components with low convection velocity.

  8. Procedure for Determining Turbulence Length Scales Using Hotwire Anemometry

    NASA Technical Reports Server (NTRS)

    El-Gabry, Lamyaa A.; Thurman, Douglas R.; Poinsatte, Philip E.

    2014-01-01

    Hotwire anemometers are used to measure instantaneous velocity from which the mean velocity and the velocity fluctuation can be determined. Using a hotwire system, it is possible to deduce not only the velocity components and their fluctuation but to also analyze the energy spectra and from that the turbulence length scales. In this experiment, hotwire anemometry is used to measure the flow field turbulence for an array of film cooling holes. The objective of this paper is to document the procedure that is used to reduce the instantaneous velocity measurements to determine the turbulence length scales using data from the film-cooling experiments to illustrate the procedure.

  9. A statistical investigation of the single-point pdf of velocity and vorticity based on direct numerical simulations

    NASA Technical Reports Server (NTRS)

    Mortazavi, M.; Kollmann, W.; Squires, K.

    1987-01-01

    Vorticity plays a fundamental role in turbulent flows. The dynamics of vorticity in turbulent flows and the effect on single-point closure models were investigated. The approach was to use direct numerical simulations of turbulent flows to investigate the pdf of velocity and vorticity. The preliminary study of homogeneous shear flow has shown that the expectation of the fluctuating pressure gradient, conditioned with a velocity component, is linear in the velocity component, and that the coefficient is independent of velocity and vorticity. In addition, the work shows that the expectation of the pressure gradient, conditioned with a vorticity component, is essentially zero.

  10. Tip clearance noise of axial flow fans operating at design and off-design condition

    NASA Astrophysics Data System (ADS)

    Fukano, T.; Jang, C.-M.

    2004-08-01

    The noise due to tip clearance (TC) flow in axial flow fans operating at a design and off-design conditions is analyzed by an experimental measurement using two hot-wire probes rotating with the fan blades. The unsteady nature of the spectra of the real-time velocities measured by two hot-wire sensors in a vortical flow region is investigated by using cross-correlation coefficient and retarded time of the two fluctuating velocities. The results show that the noise due to TC flow consists of a discrete frequency noise due to periodic velocity fluctuation and a broadband noise due to velocity fluctuation in the blade passage. The peak frequencies in a vortical flow are mainly observed below at four harmonic blade passing frequency. The discrete frequency component of velocity fluctuation at the off-design operating conditions is generated in vortical flow region as well as in reverse flow region. The peak frequency can be an important noise source when the fans are rotated with a high rotational speed. The authors propose a spiral pattern of velocity fluctuation in the vortical flow to describe the generation mechanism of the peak frequency in the vortical flow. In addition, noise increase due to TC flow at low flow rate condition is analyzed with relation to the distribution of velocity fluctuation due to the interference between the tip leakage vortex and the adjacent pressure surface of the blade.

  11. An optical probe for local measurements of fast plasma ion dynamics

    NASA Astrophysics Data System (ADS)

    Fiksel, G.; Den Hartog, D. J.; Fontana, P. W.

    1998-05-01

    A novel insertable probe for local measurements of equilibrium and fluctuating plasma ion flow velocity and temperature via Doppler spectroscopy is described. Optical radiation is collected by two fused silica fiber optic bundles with perpendicular viewlines. Spatial resolution of about 5 cm is achieved by terminating each view with an optical dump. The collected light is transported by the fiber bundles to a high-resolution spectrometer. Two components of the velocity are measured simultaneously—the radial along the insertion of the probe and a perpendicular component (which can be varied by simply rotating the probe by 90°). The accuracy of the velocity measurements is better than 1 km/s. The probe is armored by a boron nitride enclosure and is inserted into a high temperature plasma to obtain radial profiles of the equilibrium and fluctuating plasma velocity. Initial measurements have been done in Madison Symmetric Torus reversed field pinch.

  12. The role of large scale motions on passive scalar transport

    NASA Astrophysics Data System (ADS)

    Dharmarathne, Suranga; Araya, Guillermo; Tutkun, Murat; Leonardi, Stefano; Castillo, Luciano

    2014-11-01

    We study direct numerical simulation (DNS) of turbulent channel flow at Reτ = 394 to investigate effect of large scale motions on fluctuating temperature field which forms a passive scalar field. Statistical description of the large scale features of the turbulent channel flow is obtained using two-point correlations of velocity components. Two-point correlations of fluctuating temperature field is also examined in order to identify possible similarities between velocity and temperature fields. The two-point cross-correlations betwen the velocity and temperature fluctuations are further analyzed to establish connections between these two fields. In addition, we use proper orhtogonal decompotion (POD) to extract most dominant modes of the fields and discuss the coupling of large scale features of turbulence and the temperature field.

  13. Sensors for Using Times of Flight to Measure Flow Velocities

    NASA Technical Reports Server (NTRS)

    Fralick, Gutave; Wrbanek, John D.; Hwang, Danny; Turso, James

    2006-01-01

    Thin-film sensors for measuring flow velocities in terms of times of flight are undergoing development. These sensors are very small and can be mounted flush with surfaces of airfoils, ducts, and other objects along which one might need to measure flows. Alternatively or in addition, these sensors can be mounted on small struts protruding from such surfaces for acquiring velocity measurements at various distances from the surfaces for the purpose of obtaining boundary-layer flow-velocity profiles. These sensors are related to, but not the same as, hot-wire anemometers. Each sensor includes a thin-film, electrically conductive loop, along which an electric current is made to flow to heat the loop to a temperature above that of the surrounding fluid. Instantaneous voltage fluctuations in segments of the loop are measured by means of electrical taps placed at intervals along the loop. These voltage fluctuations are caused by local fluctuations in electrical resistance that are, in turn, caused by local temperature fluctuations that are, in turn, caused by fluctuations in flow-induced cooling and, hence, in flow velocity. The differential voltage as a function of time, measured at each pair of taps, is subjected to cross-correlation processing with the corresponding quantities measured at other pairs of taps at different locations on the loop. The cross-correlations yield the times taken by elements of fluid to travel between the pairs of taps. Then the component of velocity along the line between any two pairs of taps is calculated simply as the distance between the pairs of taps divided by the travel time. Unlike in the case of hot-wire anemometers, there is no need to obtain calibration data on voltage fluctuations versus velocity fluctuations because, at least in principle, the correlation times are independent of the calibration data.

  14. Experimental Investigation of the Differences Between Reynolds-Averaged and Favre-Averaged Velocity in Supersonic Jets

    NASA Technical Reports Server (NTRS)

    Panda, J.; Seasholtz, R. G.

    2005-01-01

    Recent advancement in the molecular Rayleigh scattering based technique allowed for simultaneous measurement of velocity and density fluctuations with high sampling rates. The technique was used to investigate unheated high subsonic and supersonic fully expanded free jets in the Mach number range of 0.8 to 1.8. The difference between the Favre averaged and Reynolds averaged axial velocity and axial component of the turbulent kinetic energy is found to be small. Estimates based on the Morkovin's "Strong Reynolds Analogy" were found to provide lower values of turbulent density fluctuations than the measured data.

  15. Temperature effects on drift of suspended single-domain particles induced by the Magnus force

    NASA Astrophysics Data System (ADS)

    Denisov, S. I.; Lyutyy, T. V.; Reva, V. V.; Yermolenko, A. S.

    2018-03-01

    We study the temperature dependence of the drift velocity of single-domain ferromagnetic particles induced by the Magnus force in a dilute suspension. A set of stochastic equations describing the translational and rotational dynamics of particles is derived, and the particle drift velocity that depends on components of the average particle magnetization is introduced. The Fokker-Planck equation for the probability density of magnetization orientations is solved analytically in the limit of strong thermal fluctuations for both the planar rotor and general models. Using these solutions, we calculate the drift velocity and show that the out-of-plane fluctuations of magnetization, which are not accounted for in the planar rotor model, play an important role. In the general case of arbitrary fluctuations, we investigate the temperature dependence of the drift velocity by numerically simulating a set of effective stochastic differential equations for the magnetization dynamics.

  16. Statistical parameters of thermally driven turbulent anabatic flow

    NASA Astrophysics Data System (ADS)

    Hilel, Roni; Liberzon, Dan

    2016-11-01

    Field measurements of thermally driven turbulent anabatic flow over a moderate slope are reported. A collocated hot-films-sonic anemometer (Combo) obtained the finer scales of the flow by implementing a Neural Networks based in-situ calibration technique. Eight days of continuous measurements of the wind and temperature fluctuations reviled a diurnal pattern of unstable stratification that forced development of highly turbulent unidirectional up slope flow. Empirical fits of important turbulence statistics were obtained from velocity fluctuations' time series alongside fully resolved spectra of velocity field components and characteristic length scales. TKE and TI showed linear dependence on Re, while velocity derivative skewness and dissipation rates indicated the anisotropic nature of the flow. Empirical fits of normalized velocity fluctuations power density spectra were derived as spectral shapes exhibited high level of similarity. Bursting phenomenon was detected at 15% of the total time. Frequency of occurrence, spectral characteristics and possible generation mechanism are discussed. BSF Grant #2014075.

  17. Simultaneous three-dimensional velocity and mixing measurements by use of laser Doppler velocimetry and fluorescence probes in a water tunnel

    NASA Technical Reports Server (NTRS)

    Neuhart, Dan H.; Wing, David J.; Henderson, Uleses C., Jr.

    1994-01-01

    A water tunnel investigation was conducted to demonstrate the capabilities of a laser-based instrument that can measure velocity and fluorescence intensity simultaneously. Fluorescence intensity of an excited fluorescent dye is directly related to concentration level and is used to indicate the extent of mixing in flow. This instrument is a three-dimensional laser Doppler velocimeter (LDV) in combination with a fluorometer for measuring fluorescence intensity variations. This capability allows simultaneous flow measurements of the three orthogonal velocity components and mixing within the same region. Two different flows which were generated by two models were studied: a generic nonaxisymmetric nozzle propulsion simulation model with an auxiliary internal water source that generated a jet flow and an axisymmetric forebody model with a circular sector strake that generated a vortex flow. The off-body flow fields around these models were investigated in the Langley 16- by 24-Inch Water Tunnel. The experimental results were used to calculate 17 quantities that included mean and fluctuating velocities, Reynolds stresses, mean and fluctuating dye fluorescence intensities (proportional to concentration), and fluctuating velocity and dye concentration correlations. An uncertainty analysis was performed to establish confidence levels in the experimental results. In general, uncertainties in mean velocities varied between 1 and 7 percent of free-stream velocity; uncertainties in fluctuating velocities varied between 1 and 5 percent of reference values. The results show characteristics that are unique to each type of flow.

  18. LDV survey of cavitation and resonance effect on the precessing vortex rope dynamics in the draft tube of Francis turbines

    NASA Astrophysics Data System (ADS)

    Favrel, A.; Müller, A.; Landry, C.; Yamamoto, K.; Avellan, F.

    2016-11-01

    The large-scale penetration of the electrical grid by intermittent renewable energy sources requires a continuous operating range extension of hydropower plants. This causes the formation of unfavourable flow patterns in the draft tube of turbines and pump-turbines. At partial load operation, a precessing cavitation vortex rope is formed at the Francis turbine runner outlet, acting as an excitation source for the hydraulic system. In case of resonance, the resulting high-amplitude pressure pulsations can put at risk the stability of the machine and of the electrical grid to which it is connected. It is therefore crucial to understand and accurately simulate the underlying physical mechanisms in such conditions. However, the exact impact of cavitation and hydro-acoustic resonance on the flow velocity fluctuations in the draft tube remains to be established. The flow discharge pulsations expected to occur in the draft tube in resonance conditions have for instance never been verified experimentally. In this study, two-component Laser Doppler Velocimetry is used to investigate the axial and tangential velocity fluctuations at the runner outlet of a reduced scale physical model of a Francis turbine. The investigation is performed for a discharge equal to 64 % of the nominal value and three different pressure levels in the draft tube, including resonance and cavitation-free conditions. Based on the convective pressure fluctuations induced by the vortex precession, the periodical velocity fluctuations over one typical precession period are recovered by phase averaging. The impact of cavitation and hydro-acoustic resonance on both axial and tangential velocity fluctuations in terms of amplitude and phase shift is highlighted for the first time. It is shown that the occurrence of resonance does not have significant effects on the draft tube velocity fields, suggesting that the synchronous axial velocity fluctuations are surprisingly negligible compared to the velocity fluctuations induced by the vortex precession.

  19. Definition of the unsteady vortex flow over a wing/body configuration

    NASA Technical Reports Server (NTRS)

    Liou, S. G.; Debry, B.; Lenakos, J.; Caplin, J.; Komerath, N. M.

    1991-01-01

    A problem of current interest in computational aerodynamics is the prediction of unsteady vortex flows over aircraft at high angles of attack. A six-month experimental effort was conducted at the John H. Harper Wind Tunnel to acquire qualitative and quantitative information on the unsteady vortex flow over a generic wing-body configuration at high angles of attack. A double-delta flat-plate wing with beveled edges was combined with a slender sharp-nosed body-of-revolution fuselage to form the generic configuration. This configuration produces a strong attached leading edge vortex on the wing, as well as sharply-peaked flow velocity spectra above the wing. While it thus produces flows with several well-defined features of current interest, the model was designed for efficiency of representation in computational codes. A moderate number of surface pressure ports and two unsteady pressure sensors were used to study the pressure distribution over the wing and body surface at high angles of attack; the unsteady pressure sensing did not succeed because of inadequate signal-to-noise ratio. A pulsed copper vapor laser sheet was used to visualize the vortex flow over the model, and vortex trajectories, burst locations, mutual induction of vortex systems from the forebody, strake, and wing, were quantified. Laser Doppler velocimetry was used to quantify all 3 components of the time-average velocity in 3 data planes perpendicular to the freestream direction. Statistics of the instantaneous velocity were used to study intermittency and fluctuation intensity. Hot-film anemometry was used to study the fluctuation energy content in the velocity field, and the spectra of these fluctuations. In addition, a successful attempt was made to measure velocity spectra, component by component, using laser velocimetry, and these were compared with spectra measured by hot-film anemometry at several locations.

  20. Inverse kinematic problem for a random gradient medium in geometric optics approximation

    NASA Astrophysics Data System (ADS)

    Petersen, N. V.

    1990-03-01

    Scattering at random inhomogeneities in a gradient medium results in systematic deviations of the rays and travel times of refracted body waves from those corresponding to the deterministic velocity component. The character of the difference depends on the parameters of the deterministic and random velocity component. However, at great distances to the source, independently of the velocity parameters (weakly or strongly inhomogeneous medium), the most probable depth of the ray turning point is smaller than that corresponding to the deterministic velocity component, the most probable travel times also being lower. The relative uncertainty in the deterministic velocity component, derived from the mean travel times using methods developed for laterally homogeneous media (for instance, the Herglotz-Wiechert method), is systematic in character, but does not exceed the contrast of velocity inhomogeneities by magnitude. The gradient of the deterministic velocity component has a significant effect on the travel-time fluctuations. The variance at great distances to the source is mainly controlled by shallow inhomogeneities. The travel-time flucutations are studied only for weakly inhomogeneous media.

  1. Reynolds Stress Closure for Inertial Frames and Rotating Frames

    NASA Astrophysics Data System (ADS)

    Petty, Charles; Benard, Andre

    2017-11-01

    In a rotating frame-of-reference, the Coriolis acceleration and the mean vorticity field have a profound impact on the redistribution of kinetic energy among the three components of the fluctuating velocity. Consequently, the normalized Reynolds (NR) stress is not objective. Furthermore, because the Reynolds stress is defined as an ensemble average of a product of fluctuating velocity vector fields, its eigenvalues must be non-negative for all turbulent flows. These fundamental properties (realizability and non-objectivity) of the NR-stress cannot be compromised in computational fluid dynamic (CFD) simulations of turbulent flows in either inertial frames or in rotating frames. The recently developed universal realizable anisotropic prestress (URAPS) closure for the NR-stress depends explicitly on the local mean velocity gradient and the Coriolis operator. The URAPS-closure is a significant paradigm shift from turbulent closure models that assume that dyadic-valued operators associated with turbulent fluctuations are objective.

  2. Seeded hot dark matter models with inflation

    NASA Technical Reports Server (NTRS)

    Gratsias, John; Scherrer, Robert J.; Steigman, Gary; Villumsen, Jens V.

    1993-01-01

    We examine massive neutrino (hot dark matter) models for large-scale structure in which the density perturbations are produced by randomly distributed relic seeds and by inflation. Power spectra, streaming velocities, and the Sachs-Wolfe quadrupole fluctuation are derived for this model. We find that the pure seeded hot dark matter model without inflation produces Sachs-Wolfe fluctuations far smaller than those seen by COBE. With the addition of inflationary perturbations, fluctuations consistent with COBE can be produced. The COBE results set the normalization of the inflationary component, which determines the large-scale (about 50/h Mpc) streaming velocities. The normalization of the seed power spectrum is a free parameter, which can be adjusted to obtain the desired fluctuations on small scales. The power spectra produced are very similar to those seen in mixed hot and cold dark matter models.

  3. WATER AND METHANOL MASER ACTIVITIES IN THE NGC 2024 FIR 6 REGION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Minho; Kang, Miju; Byun, Do-Young

    The NGC 2024 FIR 6 region was observed in the water maser line at 22 GHz and the methanol class I maser lines at 44, 95, and 133 GHz. The water maser spectra displayed several velocity components and month-scale time variabilities. Most of the velocity components may be associated with FIR 6n, while one component was associated with FIR 4. A typical lifetime of the water maser velocity components is about eight months. The components showed velocity fluctuations with a typical drift rate of about 0.01 km s{sup -1} day{sup -1}. The methanol class I masers were detected toward FIRmore » 6. The methanol emission is confined within a narrow range around the systemic velocity of the FIR 6 cloud core. The methanol masers suggest the existence of shocks driven by either the expanding H II region of FIR 6c or the outflow of FIR 6n.« less

  4. A Modified Version of Taylor’s Hypothesis for Solar Probe Plus Observations

    NASA Astrophysics Data System (ADS)

    Klein, Kristopher G.; Perez, Jean C.; Verscharen, Daniel; Mallet, Alfred; Chandran, Benjamin D. G.

    2015-03-01

    The Solar Probe Plus (SPP) spacecraft will explore the near-Sun environment, reaching heliocentric distances less than 10 {{R}⊙ }. Near Earth, spacecraft measurements of fluctuating velocities and magnetic fields taken in the time domain are translated into information about the spatial structure of the solar wind via Taylor’s “frozen turbulence” hypothesis. Near the perihelion of SPP, however, the solar-wind speed is comparable to the Alfvén speed, and Taylor’s hypothesis in its usual form does not apply. In this paper, we show that under certain assumptions, a modified version of Taylor’s hypothesis can be recovered in the near-Sun region. We consider only the transverse, non-compressive component of the fluctuations at length scales exceeding the proton gyroradius, and we describe these fluctuations using an approximate theoretical framework developed by Heinemann and Olbert. We show that fluctuations propagating away from the Sun in the plasma frame obey a relation analogous to Taylor’s hypothesis when {{V}sc,\\bot }\\gg {{z}-} and {{z}+}\\gg {{z}-}, where {{V}sc,\\bot } is the component of the spacecraft velocity perpendicular to the mean magnetic field and {{{\\boldsymbol{z}} }+} ({{{\\boldsymbol{z}} }-}) is the Elsasser variable corresponding to transverse, non-compressive fluctuations propagating away from (toward) the Sun in the plasma frame. Observations and simulations suggest that, in the near-Sun solar wind, the above inequalities are satisfied and {{{\\boldsymbol{z}} }+} fluctuations account for most of the fluctuation energy. The modified form of Taylor’s hypothesis that we derive may thus make it possible to characterize the spatial structure of the energetically dominant component of the turbulence encountered by SPP.

  5. [Kinetic theory and boundary conditions for highly inelastic spheres]. Quarterly progress report, April 1, 1993--June 30, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richman, M.

    1993-12-31

    In this quarter, a kinetic theory was employed to set up the boundary value problem for steady, fully developed, gravity-driven flows of identical, smooth, highly inelastic spheres down bumpy inclines. The solid fraction, mean velocity, and components of the full second moment of fluctuation velocity were treated as mean fields. In addition to the balance equations for mass and momentum, the balance of the full second moment of fluctuation velocity was treated as an equation that must be satisfied by the mean fields. However, in order to simplify the resulting boundary value problem, fluxes of second moments in its isotropicmore » piece only were retained. The constitutive relations for the stresses and collisional source of second moment depend explicitly on the second moment of fluctuation velocity, and the constitutive relation for the energy flux depends on gradients of granular temperature, solid fraction, and components of the second moment. The boundary conditions require that the flows are free of stress and energy flux at their tops, and that momentum and energy are balanced at the bumpy base. The details of the boundary value problem are provided. In the next quarter, a solution procedure will be developed, and it will be employed to obtain sample numerical solutions to the boundary value problem described here.« less

  6. Turbulent solutions of the equations of fluid motion

    NASA Technical Reports Server (NTRS)

    Deissler, R. G.

    1984-01-01

    Some turbulent solutions of the unaveraged Navier-Stokes equations (equations of fluid motion) are reviewed. Those equations are solved numerically in order to study the nonlinear physics of incompressible turbulent flow. Initial three-dimensional cosine velocity fluctuations and periodic boundary conditions are used in most of the work considered. The three components of the mean-square velocity fluctuations are initially equal for the conditions chosen. The resulting solutions show characteristics of turbulence such as the linear and nonlinear excitation of small-scale fluctuations. For the stronger fluctuations, the initially nonrandom flow develops into an apparently random turbulence. Thus randomness or turbulence can arise as a consequence of the structure of the Navier-Stokes equations. The cases considered include turbulence which is statistically homogeneous or inhomogeneous and isotropic or anisotropic. A mean shear is present in some cases. A statistically steady-state turbulence is obtained by using a spatially periodic body force. Various turbulence processes, including the transfer of energy between eddy sizes and between directional components, and the production, dissipation, and spatial diffusion of turbulence, are considered. It is concluded that the physical processes occurring in turbulence can be profitably studied numerically.

  7. Direct numerical simulation of stochastically forced laminar plane couette flow: peculiarities of hydrodynamic fluctuations.

    PubMed

    Khujadze, G; Oberlack, M; Chagelishvili, G

    2006-07-21

    The background of three-dimensional hydrodynamic (vortical) fluctuations in a stochastically forced, laminar, incompressible, plane Couette flow is simulated numerically. The fluctuating field is anisotropic and has well pronounced peculiarities: (i) the hydrodynamic fluctuations exhibit nonexponential, transient growth; (ii) fluctuations with the streamwise characteristic length scale about 2 times larger than the channel width are predominant in the fluctuating spectrum instead of streamwise constant ones; (iii) nonzero cross correlations of velocity (even streamwise-spanwise) components appear; (iv) stochastic forcing destroys the spanwise reflection symmetry (inherent to the linear and full Navier-Stokes equations in a case of the Couette flow) and causes an asymmetry of the dynamical processes.

  8. Adiabatic electron thermal pressure fluctuations in tokamak plasmas.

    PubMed

    Meier, M A; Bengtson, R D; Hallock, G A; Wootton, A J

    2001-08-20

    Electron thermal pressure fluctuations measured in the edge plasma of the Texas Experimental Tokamak Upgrade are a fundamental component of plasma turbulence on both sides of the velocity shear layer. The ratio of specific heats, estimated from fluctuations in electron temperature and electron number density measured simultaneously at the same electrode, indicates that observed fluctuations are adiabatic. The observations are made by means of a novel Langmuir probe technique, the time domain triple-probe method, which concurrently measures multiple plasma properties at each of two electrodes with the temporal and the spatial resolution required to estimate thermodynamic properties in a turbulent plasma.

  9. LDV Surveys Over a Fighter Model at Moderate to High Angles of Attack

    NASA Technical Reports Server (NTRS)

    Sellers, William L., III; Meyers, James F.; Hepner, Timothy E.

    2004-01-01

    The vortex flowfield over an advanced twin-tailed fighter configuration was measured in a low-speed wind tunnel at two angles of attack. The primary test data consisted of 3-component velocity surveys obtained using a Laser Doppler Velocimeter. Laser light sheet and surface flow visualization were also obtained to provide insight into the flowfield structure. Time-averaged velocities and the root mean square of the velocity fluctuations were obtained at two cross-sections above the model. At 15 degrees angle of attack, the vortices generated by the wing leading edge extension (LEX) were unburst over the model and passed outboard of the vertical tail. At 25 degrees angle of attack, the vortices burst in the vicinity of the wing-LEX intersection and impact directly on the vertical tails. The RMS levels of the velocity fluctuations reach values of approximately 30% in the region of the vertical tails.

  10. Influence of the Proton Pressure Tensor on the Turbulent Velocity Spectrum at Ion Kinetic Scales

    NASA Astrophysics Data System (ADS)

    Vasquez, B. J.; Markovskii, S.

    2011-12-01

    Numerical hybrid simulations with particle protons and fluid electrons are presented for turbulent fluctuations with spatial variations in a plane perpendicular to the background magnetic field. The steepened portion of the proton bulk velocity spectrum is found at smaller wavenumbers for larger background proton temperature. The velocity spectrum is determined, in part, by the proton pressure tensor. The proton pressure tensor is shown to possess non-gyrotropic and finite off-diagonal components in the places where the turbulent fluctuations have developed strong gradients. Proton demagnetization at these places is a factor in the departure from a Maxwellian velocity distribution function. How demagnetization could connect with both reversible and effectively irreversible aspects of the pressure tensor is considered. The effectively irreversible aspect corresponds to the net heating of the protons and to the dissipation of the turbulent energy cascade.

  11. Reduction of turbomachinery noise

    NASA Technical Reports Server (NTRS)

    Waitz, Ian A. (Inventor); Hayden, Belva J. (Inventor); Ingard, K. Uno (Inventor); Brookfield, John M. (Inventor); Sell, Julian (Inventor)

    1999-01-01

    In the invention, propagating broad band and tonal acoustic components of noise characteristic of interaction of a turbomachine blade wake, produced by a turbomachine blade as the blade rotates, with a turbomachine component downstream of the rotating blade, are reduced. This is accomplished by injection of fluid into the blade wake through a port in the rotor blade. The mass flow rate of the fluid injected into the blade wake is selected to reduce the momentum deficit of the wake to correspondingly increase the time-mean velocity of the wake and decrease the turbulent velocity fluctuations of the wake. With this fluid injection, reduction of both propagating broad band and tonal acoustic components of noise produced by interaction of the blade wake with a turbomachine component downstream of the rotating blade is achieved. In a further noise reduction technique, boundary layer fluid is suctioned into the turbomachine blade through a suction port on the side of the blade that is characterized as the relatively low-pressure blade side. As with the fluid injection technique, the mass flow rate of the fluid suctioned into the blade is here selected to reduce the momentum deficit of the wake to correspondingly increase the time-mean velocity of the wake and decrease the turbulent velocity fluctuations of the wake; reduction of both propagating broad band and tonal acoustic components of noise produced by interaction of the blade wake with a turbomachine component downstream of the rotating blade is achieved with this suction technique. Blowing and suction techniques are also provided in the invention for reducing noise associated with the wake produced by fluid flow around a stationary blade upstream of a rotating turbomachine.

  12. Statistics of spatial derivatives of velocity and pressure in turbulent channel flow

    NASA Astrophysics Data System (ADS)

    Vreman, A. W.; Kuerten, J. G. M.

    2014-08-01

    Statistical profiles of the first- and second-order spatial derivatives of velocity and pressure are reported for turbulent channel flow at Reτ = 590. The statistics were extracted from a high-resolution direct numerical simulation. To quantify the anisotropic behavior of fine-scale structures, the variances of the derivatives are compared with the theoretical values for isotropic turbulence. It is shown that appropriate combinations of first- and second-order velocity derivatives lead to (directional) viscous length scales without explicit occurrence of the viscosity in the definitions. To quantify the non-Gaussian and intermittent behavior of fine-scale structures, higher-order moments and probability density functions of spatial derivatives are reported. Absolute skewnesses and flatnesses of several spatial derivatives display high peaks in the near wall region. In the logarithmic and central regions of the channel flow, all first-order derivatives appear to be significantly more intermittent than in isotropic turbulence at the same Taylor Reynolds number. Since the nine variances of first-order velocity derivatives are the distinct elements of the turbulence dissipation, the budgets of these nine variances are shown, together with the budget of the turbulence dissipation. The comparison of the budgets in the near-wall region indicates that the normal derivative of the fluctuating streamwise velocity (∂u'/∂y) plays a more important role than other components of the fluctuating velocity gradient. The small-scale generation term formed by triple correlations of fluctuations of first-order velocity derivatives is analyzed. A typical mechanism of small-scale generation near the wall (around y+ = 1), the intensification of positive ∂u'/∂y by local strain fluctuation (compression in normal and stretching in spanwise direction), is illustrated and discussed.

  13. An Experimental Study of the Effect of Streamwise Vortices on Unsteady Turbulent Boundary-Layer Separation

    DTIC Science & Technology

    1988-12-09

    Measurement of Second Order Statistics .... .............. .54 5.4 Measurement of Triple Products ...... ................. .58 5.6 Uncertainty Analysis...deterministic fluctuations, u/ 2 , were 25 times larger than the mean fluctuations, u𔃼, there were no significant variations in the mean statistical ...input signals, the three velocity components are cal- culated, Awn in ,i-;dual phase ensembles are collected for the appropriate statistical 3

  14. Particle image velocimetry measurements of Mach 3 turbulent boundary layers at low Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Brooks, J. M.; Gupta, A. K.; Smith, M. S.; Marineau, E. C.

    2018-05-01

    Particle image velocimetry (PIV) measurements of Mach 3 turbulent boundary layers (TBL) have been performed under low Reynolds number conditions, Re_τ =200{-}1000, typical of direct numerical simulations (DNS). Three reservoir pressures and three measurement locations create an overlap in parameter space at one research facility. This allows us to assess the effects of Reynolds number, particle response and boundary layer thickness separate from facility specific experimental apparatus or methods. The Morkovin-scaled streamwise fluctuating velocity profiles agree well with published experimental and numerical data and show a small standard deviation among the nine test conditions. The wall-normal fluctuating velocity profiles show larger variations which appears to be due to particle lag. Prior to the current study, no detailed experimental study characterizing the effect of Stokes number on attenuating wall-normal fluctuating velocities has been performed. A linear variation is found between the Stokes number ( St) and the relative error in wall-normal fluctuating velocity magnitude (compared to hot wire anemometry data from Klebanoff, Characteristics of Turbulence in a Boundary Layer with Zero Pressure Gradient. Tech. Rep. NACA-TR-1247, National Advisory Committee for Aeronautics, Springfield, Virginia, 1955). The relative error ranges from about 10% for St=0.26 to over 50% for St=1.06. Particle lag and spatial resolution are shown to act as low-pass filters on the fluctuating velocity power spectral densities which limit the measurable energy content. The wall-normal component appears more susceptible to these effects due to the flatter spectrum profile which indicates that there is additional energy at higher wave numbers not measured by PIV. The upstream inclination and spatial correlation extent of coherent turbulent structures agree well with published data including those using krypton tagging velocimetry (KTV) performed at the same facility.

  15. Simultaneous Temperature and Velocity Measurements in a Large-Scale, Supersonic, Heated Jet

    NASA Technical Reports Server (NTRS)

    Danehy, P. M.; Magnotti, G.; Bivolaru, D.; Tedder, S.; Cutler, A. D.

    2008-01-01

    Two laser-based measurement techniques have been used to characterize an axisymmetric, combustion-heated supersonic jet issuing into static room air. The dual-pump coherent anti-Stokes Raman spectroscopy (CARS) measurement technique measured temperature and concentration while the interferometric Rayleigh scattering (IRS) method simultaneously measured two components of velocity. This paper reports a preliminary analysis of CARS-IRS temperature and velocity measurements from selected measurement locations. The temperature measurements show that the temperature along the jet axis remains constant while dropping off radially. The velocity measurements show that the nozzle exit velocity fluctuations are about 3% of the maximum velocity in the flow.

  16. Probability density and exceedance rate functions of locally Gaussian turbulence

    NASA Technical Reports Server (NTRS)

    Mark, W. D.

    1989-01-01

    A locally Gaussian model of turbulence velocities is postulated which consists of the superposition of a slowly varying strictly Gaussian component representing slow temporal changes in the mean wind speed and a more rapidly varying locally Gaussian turbulence component possessing a temporally fluctuating local variance. Series expansions of the probability density and exceedance rate functions of the turbulence velocity model, based on Taylor's series, are derived. Comparisons of the resulting two-term approximations with measured probability density and exceedance rate functions of atmospheric turbulence velocity records show encouraging agreement, thereby confirming the consistency of the measured records with the locally Gaussian model. Explicit formulas are derived for computing all required expansion coefficients from measured turbulence records.

  17. Measurements of the wall-normal velocity component in very high Reynolds number pipe flow

    NASA Astrophysics Data System (ADS)

    Vallikivi, Margit; Hultmark, Marcus; Smits, Alexander J.

    2012-11-01

    Nano-Scale Thermal Anemometry Probes (NSTAPs) have recently been developed and used to study the scaling of the streamwise component of turbulence in pipe flow over a very large range of Reynolds numbers. This probe has an order of magnitude higher spatial and temporal resolution than regular hot wires, allowing it to resolve small scale motions at very high Reynolds numbers. Here use a single inclined NSTAP probe to study the scaling of the wall normal component of velocity fluctuations in the same flow. These new probes are calibrated using a method that is based on the use of the linear stress region of a fully developed pipe flow. Results on the behavior of the wall-normal component of velocity for Reynolds numbers up to 2 million are reported. Supported under NR Grant N00014-09-1-0263 (program manager Ron Joslin) and NSF Grant CBET-1064257 (program manager Henning Winter).

  18. Soviet Material on Internal Wave Effects, Number 5, March 1976

    DTIC Science & Technology

    1976-03-15

    Fig. 2. General view of the optoacoustic instrument. 1 - OKG-13 gas laser; 2, 3 - optics ; 4 - piezoceramic emitters; 5 - electronic unit; 6...operating principle f the ptoacoustical instrument is based on optical recording of the propagauon velocity of ultrasound in a measurement area...fluctuations of ilow velocity. 1-3 - longitudinal component from measurements by optical -acoustical instruments at depths of 5, 50, and 80 m; r , 4

  19. LES-based generation of high-frequency fluctuation in wind turbulence obtained by meteorological model

    NASA Astrophysics Data System (ADS)

    Tamura, Tetsuro; Kawaguchi, Masaharu; Kawai, Hidenori; Tao, Tao

    2017-11-01

    The connection between a meso-scale model and a micro-scale large eddy simulation (LES) is significant to simulate the micro-scale meteorological problem such as strong convective events due to the typhoon or the tornado using LES. In these problems the mean velocity profiles and the mean wind directions change with time according to the movement of the typhoons or tornadoes. Although, a fine grid micro-scale LES could not be connected to a coarse grid meso-scale WRF directly. In LES when the grid is suddenly refined at the interface of nested grids which is normal to the mean advection the resolved shear stresses decrease due to the interpolation errors and the delay of the generation of smaller scale turbulence that can be resolved on the finer mesh. For the estimation of wind gust disaster the peak wind acting on buildings and structures has to be correctly predicted. In the case of meteorological model the velocity fluctuations have a tendency of diffusive variation without the high frequency component due to the numerically filtering effects. In order to predict the peak value of wind velocity with good accuracy, this paper proposes a LES-based method for generating the higher frequency components of velocity and temperature fields obtained by meteorological model.

  20. A GENERALIZED TWO-COMPONENT MODEL OF SOLAR WIND TURBULENCE AND AB INITIO DIFFUSION MEAN-FREE PATHS AND DRIFT LENGTHSCALES OF COSMIC RAYS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiengarten, T.; Fichtner, H.; Kleimann, J.

    2016-12-10

    We extend a two-component model for the evolution of fluctuations in the solar wind plasma so that it is fully three-dimensional (3D) and also coupled self-consistently to the large-scale magnetohydrodynamic equations describing the background solar wind. The two classes of fluctuations considered are a high-frequency parallel-propagating wave-like piece and a low-frequency quasi-two-dimensional component. For both components, the nonlinear dynamics is dominanted by quasi-perpendicular spectral cascades of energy. Driving of the fluctuations by, for example, velocity shear and pickup ions is included. Numerical solutions to the new model are obtained using the Cronos framework, and validated against previous simpler models. Comparing results frommore » the new model with spacecraft measurements, we find improved agreement relative to earlier models that employ prescribed background solar wind fields. Finally, the new results for the wave-like and quasi-two-dimensional fluctuations are used to calculate ab initio diffusion mean-free paths and drift lengthscales for the transport of cosmic rays in the turbulent solar wind.« less

  1. CRIT II electric, magnetic, and density measurements within an ionizing neutral stream

    NASA Technical Reports Server (NTRS)

    Swenson, C. M.; Kelley, M. C.; Primdahl, F.; Baker, K. D.

    1990-01-01

    Measurements from rocket-borne sensors inside a high-velocity neutral barium beam show a-factor-of-six increase in plasma density in a moving ionizing front. This region was colocated with intense fluctuating electric fields at frequencies well under the lower hybrid frequency for a barium plasma. Large quasi-dc electric and magnetic field fluctuations were also detected with a large component of the current and the electric field parallel to B(0). An Alfven wave with a finite electric field component parallel to the geomagnetic field was observed to propagate along B(0), where it was detected by an instrumented subpayload.

  2. NMRI Measurements of Flow of Granular Mixtures

    NASA Technical Reports Server (NTRS)

    Nakagawa, Masami; Waggoner, R. Allen; Fukushima, Eiichi

    1996-01-01

    We investigate complex 3D behavior of granular mixtures in shaking and shearing devices. NMRI can non-invasively measure concentration, velocity, and velocity fluctuations of flows of suitable particles. We investigate origins of wall-shear induced convection flow of single component particles by measuring the flow and fluctuating motion of particles near rough boundaries. We also investigate if a mixture of different size particles segregate into their own species under the influence of external shaking and shearing disturbances. These non-invasive measurements will reveal true nature of convecting flow properties and wall disturbance. For experiments in a reduced gravity environment, we will design a light weight NMR imager. The proof of principle development will prepare for the construction of a complete spaceborne system to perform experiments in space.

  3. Studies of velocity fluctuations in the lower atmosphere using the MU radar. I - Azimuthal anisotropy. II - Momentum fluxes and energy densities

    NASA Technical Reports Server (NTRS)

    Vanzandt, T. E.; Smith, S. A.; Tsuda, T.; Sato, T.; Fritts, D. C.

    1990-01-01

    Results are presented from a six-day campaign to observe velocity fluctuations in the lower atmosphere using the MU radar (Fukao et al., 1985) in Shigaraki, Japan in March, 1986. Consideration is given to the azimuthal anisotropy, the frequency spectra, the vertical profiles of energy density, and the momentum flux of the motion field. It is found that all of the observed azimuthal variations are probably caused by a gravity wave field whose parameters vary with time. The results show significant differences between the mean zonal and meridional frequency spectra and different profiles of mean energy density with height for different frequency bands and for zonal and meridional components.

  4. Steady and unsteady calculations on thermal striping phenomena in triple-parallel jet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Y. Q.; Merzari, E.; Thomas, J. W.

    2017-02-01

    The phenomenon of thermal striping is encountered in liquid metal cooled fast reactors (LMFR), in which temperature fluctuation due to convective mixing between hot and cold fluids can lead to a possibility of crack initiation and propagation in the structure due to high cycle thermal fatigue. Using sodium experiments of parallel triple jets configuration performed by Japan Atomic Energy Agency (JAEA) as benchmark, numerical simulations were carried out to evaluate the temperature fluctuation characteristics in fluid and the transfer characteristics of temperature fluctuation from fluid to structure, which is important to assess the potential thermal fatigue damage. In this study,more » both steady (RANS) and unsteady (URANS, LES) methods were applied to predict the temperature fluctuations of thermal striping. The parametric studies on the effects of mesh density and boundary conditions on the accuracy of the overall solutions were also conducted. The velocity, temperature and temperature fluctuation intensity distribution were compared with the experimental data. As expected, steady calculation has limited success in predicting the thermal–hydraulic characteristics of the thermal striping, highlighting the limitations of the RANS approach in unsteady heat transfer simulations. The unsteady results exhibited reasonably good agreement with experimental results for temperature fluctuation intensity, as well as the average temperature and velocity components at the measurement locations.« less

  5. Phenomenology of wall-bounded Newtonian turbulence.

    PubMed

    L'vov, Victor S; Pomyalov, Anna; Procaccia, Itamar; Zilitinkevich, Sergej S

    2006-01-01

    We construct a simple analytic model for wall-bounded turbulence, containing only four adjustable parameters. Two of these parameters are responsible for the viscous dissipation of the components of the Reynolds stress tensor. The other two parameters control the nonlinear relaxation of these objects. The model offers an analytic description of the profiles of the mean velocity and the correlation functions of velocity fluctuations in the entire boundary region, from the viscous sublayer, through the buffer layer, and further into the log-law turbulent region. In particular, the model predicts a very simple distribution of the turbulent kinetic energy in the log-law region between the velocity components: the streamwise component contains a half of the total energy whereas the wall-normal and cross-stream components contain a quarter each. In addition, the model predicts a very simple relation between the von Kármán slope k and the turbulent velocity in the log-law region v+ (in wall units): v+=6k. These predictions are in excellent agreement with direct numerical simulation data and with recent laboratory experiments.

  6. OCT methods for capillary velocimetry

    PubMed Central

    Srinivasan, Vivek J.; Radhakrishnan, Harsha; Lo, Eng H.; Mandeville, Emiri T.; Jiang, James Y.; Barry, Scott; Cable, Alex E.

    2012-01-01

    To date, two main categories of OCT techniques have been described for imaging hemodynamics: Doppler OCT and OCT angiography. Doppler OCT can measure axial velocity profiles and flow in arteries and veins, while OCT angiography can determine vascular morphology, tone, and presence or absence of red blood cell (RBC) perfusion. However, neither method can quantify RBC velocity in capillaries, where RBC flow is typically transverse to the probe beam and single-file. Here, we describe new methods that potentially address these limitations. Firstly, we describe a complex-valued OCT signal in terms of a static scattering component, dynamic scattering component, and noise. Secondly, we propose that the time scale of random fluctuations in the dynamic scattering component are related to red blood cell velocity. Analysis was performed along the slow axis of repeated B-scans to parallelize measurements. We correlate our purported velocity measurements against two-photon microscopy measurements of RBC velocity, and investigate changes during hypercapnia. Finally, we image the ischemic stroke penumbra during distal middle cerebral artery occlusion (dMCAO), where OCT velocimetry methods provide additional insight that is not afforded by either Doppler OCT or OCT angiography. PMID:22435106

  7. Covariances and spectra of the kinematics and dynamics of nonlinear waves

    NASA Technical Reports Server (NTRS)

    Tung, C. C.; Huang, N. E.

    1985-01-01

    Using the Stokes waves as a model of nonlinear waves and considering the linear component as a narrow-band Gaussian process, the covariances and spectra of velocity and acceleration components and pressure for points in the vicinity of still water level were derived taking into consideration the effects of free surface fluctuations. The results are compared with those obtained earlier using linear Gaussian waves.

  8. The relation between skin friction fluctuations and turbulent fluctuating velocities in turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Diaz Daniel, Carlos; Laizet, Sylvain; Vassilicos, John Christos

    2015-11-01

    The Townsend-Perry hypothesis of wall-attached eddies relates the friction velocity uτ at the wall to velocity fluctuations at a position y from the wall, resulting in a wavenumber range where the streamwise fluctuating velocity spectrum scales as E (k) ~k-1 and the corresponding structure function scales as uτ2 in the corresponding length-scale range. However, this model does not take in account the fluctuations of the skin friction velocity, which are in fact strongly intermittent. A DNS of zero-pressure gradient turbulent boundary layer suggests a 10 to 15 degree angle from the lag of the peak in the cross-correlations between the fluctuations of the shear stress and streamwise fluctuating velocities at different heights in the boundary layer. Using this result, it is possible to refine the definition of the attached eddy range of scales, and our DNS suggests that, in this range, the second order structure function depends on filtered skin friction fluctuations in a way which is about the same at different distances from the wall and different local Reynolds numbers.

  9. Measuring Magnetic Oscillations in the Solar Photosphere: Coordinated Observations with MDI, ASP and MWO

    NASA Astrophysics Data System (ADS)

    Norton, A. A.; Ulrich, R. K.

    2000-03-01

    A comprehensive observing effort was undertaken to simultaneously obtain full Stokes profiles as well as longitudinal magnetogram maps of a positive plage region on 8 December, 1998 with the Michelson Doppler Imager, the Advanced Stokes Polarimeter and Mt. Wilson Observatory magnetograph. We compare 1.2'' spatially-averaged signals of velocities as well as filter magnetograph longitudinal flux signals with Stokes determined fluctuations in filling factor, field inclination, magnetic flux and field strength. The velocity signals are in excellent agreement. Michelson Doppler Imager magnetic flux correlates best with fluctuations in the Advanced Stokes Polarimeter filling factor, not inclination angle or field strength. A correlated flux and filling factor change in the absence of a field strength fluctuation can be understood in terms of internally unperturbed flux tubes being buffeted by external pressure fluctuations. The 12.5'' square aperture spatially averaged Mt. Wilson magnetograph signals are compared with Michelson Doppler Imager signals from the corresponding observing area. Velocity signals are in superb agreement. Magnetic signals exhibit similar oscillatory behavior. Lack of Advanced Stokes Polarimeter data for this time excludes interpretation of magnetic fluctuations as due to filling factor or field inclination angle. Mt. Wilson Observatory simultaneous sampling of the nickel and sodium spectral line profiles with several wing pairs allowed inter-comparison of signals from different heights of formation. Slight phase shifts and large propagation speeds for the velocity signals are indicative of modified standing waves. Phase speeds associated with magnetic signals are characteristic of photospheric Alfvén speeds for plage fields. The phase speed increase with height agrees with the altitude dependence of the Alfvén speed. The observed fluctuations and phases are interpreted as a superposition of signatures from the horizontal component of the driving mechanism sweeping the field lines in/out of the resolution area and the magnetic response of the flux tube to this buffeting.

  10. Rayleigh Scattering Diagnostic Used to Measure Velocity and Density Fluctuation Spectra

    NASA Technical Reports Server (NTRS)

    Seasholtz, Richard G.; Panda, Jayanta; Elam, Kristie A.

    2003-01-01

    A new, molecular Rayleigh-scattering-based flow diagnostic developed at the NASA Glenn Research Center has been used for the first time to measure the power spectrum of both gas density and radial velocity components in the plumes of high-speed jets. The objective of the work is to develop an unseeded, nonintrusive dynamic measurement technique for studying turbulent flows in NASA test facilities. This technique provides aerothermodynamic data not previously obtainable. It is particularly important for supersonic flows, where hot wire and pitot probes are difficult to use and disturb the flow under study. The effort is part of the nonintrusive instrumentation development program supporting propulsion research at the NASA Glenn Research Center. In particular, this work is measuring fluctuations in flow velocity, density, and temperature for jet noise studies. These data are valuable to researchers studying the correlation of flow fluctuations with far-field noise. One of the main objectives in jet noise research is to identify noise sources in the jet and to determine their contribution to noise generation. The technique is based on analyzing light scattered from molecules within the jet using a Fabry-Perot interferometer operating in a static imaging mode. The PC-based data acquisition system can simultaneously sample velocity and density data at rates to about 100 kHz and can handle up to 10 million data records. We used this system to interrogate three different jet nozzle designs in a Glenn free-jet facility. Each nozzle had a 25.4-mm exit diameter. One was convergent, used for subsonic flow measurements and to produce a screeching underexpanded jet with a fully expanded Mach number of 1.42. The other nozzles (Mach 1.4 and 1.8) were convergent-divergent types. The radial component of velocity and gas density were simultaneously measured in this work.

  11. An improved car-following model considering velocity fluctuation of the immediately ahead car

    NASA Astrophysics Data System (ADS)

    Yu, Shaowei; Huang, Mengxing; Ren, Jia; Shi, Zhongke

    2016-05-01

    To better describe car-following behaviors in the adaptive cruise control strategy and further increase roadway traffic mobility and reduce fuel consumptions, the linkage between velocity fluctuation of the immediately ahead car and the following car's acceleration or deceleration is explored with respect to the measured car-following data by employing the gray correlation analysis theory and then an improved car-following model considering velocity fluctuation of the immediately ahead car on basis of the full velocity difference model is proposed. Numerical simulations are carried out and the effects of velocity fluctuation of the immediately ahead car on each car's velocity, acceleration, vehicular gap, fuel consumptions and the total fuel consumptions of the whole car-following system with different time window lengths are investigated in detail. The results show that velocity fluctuation of the immediately ahead car has significant effects on car-following behaviors and fuel consumptions, and that considering velocity fluctuation of the immediately ahead car in designing the adaptive cruise control system can improve traffic flow stability and reduce fuel consumptions.

  12. Assessment of fluctuating pressure gradient using acceleration spectra in near wall flows

    NASA Astrophysics Data System (ADS)

    Cadel, Daniel; Lowe, K. Todd

    2015-11-01

    Separation of contributions to the fluctuating acceleration from pressure gradient fluctuations and viscous shear fluctuations in the frequency domain is examined in a turbulent boundary layer. Past work leveraging turbulent accelerations for pressure gradient measurements has neglected the viscous shear term from the momentum equation--an invalid assumption in the case of near wall flows. The present study seeks to account for the influence of the viscous shear term and spectrally reject its contribution, which is thought to be concentrated at higher frequencies. Spectra of velocity and acceleration fluctuations in a flat plate, zero pressure gradient turbulent boundary layer at a momentum thickness Reynolds number of 7500 are measured using a spatially resolving three-component laser Doppler velocimeter. This canonical case data is applied for validation of the spectral approach for future application in more complex aerodynamic flows.

  13. Fluctuating pressures in flow fields of jets

    NASA Technical Reports Server (NTRS)

    Schroeder, J. C.; Haviland, J. K.

    1976-01-01

    The powered lift configurations under present development for STOL aircraft are the externally blown flap (EBF), involving direct jet impingement on the aircraft flaps, and the upper surface blown (USB), where the jet flow is attached on the upper surface of the wing and directed downwards. Towards the goal of developing scaling laws to predict unsteady loads imposed on the structural components of these STOL aircraft from small model tests, the near field fluctuating pressure behavior for the simplified cases of a round free cold jet and the same jet impinging on a flat plate was investigated. Examples are given of coherences, phase lags (giving convection velocities), and overall fluctuating pressure levels measured. The fluctuating pressure levels measured on the flat plate are compared to surface fluctuating pressure levels measured on full-scale powered-lift configuration models.

  14. Turbulent solutions of equations of fluid motion

    NASA Technical Reports Server (NTRS)

    Deissler, R. G.

    1985-01-01

    Some turbulent solutions of the unaveraged Navier-Stokes equations (equations of fluid motion) are reviewed. Those equations are solved numerically in order to study the nonlinear physics of incompressible turbulent flow. The three components of the mean-square velocity fluctuations are initially equal for the conditions chosen. The resulting solutions show characteristics of turbulence, such as the linear and nonlinear excitation of small-scale fluctuations. For the stronger fluctuations the initially nonrandom flow develops into an apparently random turbulence. The cases considered include turbulence that is statistically homogeneous or inhomogeneous and isotropic or anisotropic. A statistically steady-state turbulence is obtained by using a spatially periodic body force. Various turbulence processes, including the transfer of energy between eddy sizes and between directional components and the production, dissipation, and spatial diffusion of turbulence, are considered. It is concluded that the physical processes occurring in turbulence can be profitably studied numerically.

  15. Documentation of the Recirculation in a Closed-Chamber Rotor Hover Test

    NASA Technical Reports Server (NTRS)

    McCoy, Miranda; Wadcock, Alan J.; Young, Larry A.

    2016-01-01

    A rotor hover test was performed inside the JPL 25-foot-diameter Space Simulator. The 40-inch-diameter rotor was tested at two locations in the chamber-on the chamber centerline and 2m off-axis. The rotor was tested in both upright and inverted configurations for 500 < RPM < 2000. Fluorescent tufts were used to identify regions of recirculation. Velocities on the entrainment side of the rotor were measured. Tabulated values for the mean entrainment velocity components and the corresponding root mean square velocity fluctuations are provided. Unsteady velocity measurements provide a description of the turbulence ingested into the rotor plane and quantify the unsteady velocity field that the Mars Scout Helicopter can expect to encounter during free flight inside the Space Simulator.

  16. Magnetic and velocity fluctuations from nonlinearly coupled tearing modes in the reversed field pinch with and without the reversal surface

    NASA Astrophysics Data System (ADS)

    Craig, D.; Martin, D.; Den Hartog, D. J.; Nornberg, M. D.; Reusch, J. A.

    2017-08-01

    We investigate the role of poloidal mode number m = 0 fluctuations on m = 1 velocity and magnetic field fluctuations in the Reversed Field Pinch (RFP). Removing the m = 0 resonant surface in the Madison Symmetric Torus (MST), results in suppressed m = 0 activity without a reduction in m = 1 magnetic activity. However, the m = 1 velocity fluctuations and fluctuation-induced mean emf are reduced as m = 0 modes are suppressed. Velocity fluctuations are measured directly using fast Doppler spectroscopy. Similar results are seen in visco-resistive MHD simulation with the DEBS code. An artificial line-averaged velocity diagnostic is developed for DEBS simulations to facilitate direct comparisons with experimental measurements. The sensitivity of the m = 1 velocity fluctuations and corresponding emf to changes in m = 0 mode activity is a feature of tearing modes in the nonlinear regime with a spectrum of interacting modes. These results have implications for RFP sustainment strategies and inform our understanding of the role of magnetic turbulence in astrophysical contexts.

  17. Flat Plate Wake Velocity Statistics Obtained With Circular And Elliptic Trailing Edges

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan

    2016-01-01

    The near wake of a flat plate with circular and elliptic trailing edges is investigated with data from direct numerical simulations. The plate length and thickness are the same in both cases. The separating boundary layers are turbulent and statistically identical. Therefore the wake is symmetric in the two cases. The emphasis in this study is on a comparison of the wake-distributions of velocity components, normal intensity and fluctuating shear stress obtained in the two cases.

  18. ISEE observations of low frequency waves and ion distribution function evolution in the plasma sheet boundary layer

    NASA Technical Reports Server (NTRS)

    Elphic, R. C.; Gary, S. P.

    1990-01-01

    This paper describes ISEE plasma and magnetic fluctuation observations during two crossings of the plasma sheet boundary layer (PSBL) in the earth's magnetotail. Distribution function observations show that the counterstreaming ion components undergo pitch-angle scattering and evolve into a shell distribution in velocity space. This evolution is correlated with the development of low frequency, low amplitude magnetic fluctuations. However, the measured wave amplitudes are insufficient to accomplish the observed degree of ion pitch-angle scatttering locally; the near-earth distributions may be the result of processes occurring much farther down the magnetotail. Results show a clear correlation between the ion component beta and the relative streaming speed of the two components, suggesting that electromagnetic ion/ion instabilities do play an important role in the scattering of PSBL ions.

  19. Influence of large-scale motion on turbulent transport for confined coaxial jets. Volume 1: Analytical analysis of the experimental data using conditional sampling

    NASA Technical Reports Server (NTRS)

    Brondum, D. C.; Bennett, J. C.

    1986-01-01

    The existence of large scale coherent structures in turbulent shear flows has been well documented. Discrepancies between experimental and computational data suggest a necessity to understand the roles they play in mass and momentum transport. Using conditional sampling and averaging on coincident two component velocity and concentration velocity experimental data for swirling and nonswirling coaxial jets, triggers for identifying the structures were examined. Concentration fluctuation was found to be an adequate trigger or indicator for the concentration-velocity data, but no suitable detector was located for the two component velocity data. The large scale structures are found in the region where the largest discrepancies exist between model and experiment. The traditional gradient transport model does not fit in this region as a result of these structures. The large scale motion was found to be responsible for a large percentage downstream at approximately the mean velocity of the overall flow in the axial direction. The radial mean velocity of the structures was found to be substantially greater than that of the overall flow.

  20. Effect of vision and stance width on human body motion when standing: implications for afferent control of lateral sway.

    PubMed

    Day, B L; Steiger, M J; Thompson, P D; Marsden, C D

    1993-09-01

    1. Measurements of human upright body movements in three dimensions have been made on thirty-five male subjects attempting to stand still with various stance widths and with eyes closed or open. Body motion was inferred from movements of eight markers fixed to specific sites on the body from the shoulders to the ankles. Motion of these markers was recorded together with motion of the point of application of the resultant of the ground reaction forces (centre of pressure). 2. The speed of the body (average from eight sites) was increased by closing the eyes or narrowing the stance width and there was an interaction between these two factors such that vision reduced body speed more effectively when the feet were closer together. Similar relationships were found for components of velocity both in the frontal and sagittal planes although stance width exerted a much greater influence on the lateral velocity component. 3. Fluctuations in position of the body were also increased by eye closure or narrowing of stance width. Again, the effect of stance width was more potent for lateral than for anteroposterior movements. In contrast to the velocity measurements, there was no interaction between vision and stance width. 4. There was a progressive increase in the amplitude of position and velocity fluctuations from markers placed higher on the body. The fluctuations in the position of the centre of pressure were similar in magnitude to those of the markers placed near the hip. The fluctuations in velocity of centre of pressure, however, were greater than of any site on the body. 5. Analysis of the amplitude of angular motion between adjacent straight line segments joining the markers suggests that the inverted pendulum model of body sway is incomplete. Motion about the ankle joint was dominant only for lateral movement in the frontal plane with narrow stance widths (< 8 cm). For all other conditions most angular motion occurred between the trunk and leg. 6. The large reduction in lateral body motion with increasing stance width was mainly due to a disproportionate reduction in the angular motion about the ankles and feet. A mathematical model of the skeletal structure has been constructed which offers some explanation for this specific reduction in joint motion.(ABSTRACT TRUNCATED AT 400 WORDS)

  1. Synthesis of wavelet envelope in 2-D random media having power-law spectra: comparison with FD simulations

    NASA Astrophysics Data System (ADS)

    Sato, Haruo; Fehler, Michael C.

    2016-10-01

    The envelope broadening and the peak delay of the S-wavelet of a small earthquake with increasing travel distance are results of scattering by random velocity inhomogeneities in the earth medium. As a simple mathematical model, Sato proposed a new stochastic synthesis of the scalar wavelet envelope in 3-D von Kármán type random media when the centre wavenumber of the wavelet is in the power-law spectral range of the random velocity fluctuation. The essential idea is to split the random medium spectrum into two components using the centre wavenumber as a reference: the long-scale (low-wavenumber spectral) component produces the peak delay and the envelope broadening by multiple scattering around the forward direction; the short-scale (high-wavenumber spectral) component attenuates wave amplitude by wide angle scattering. The former is calculated by the Markov approximation based on the parabolic approximation and the latter is calculated by the Born approximation. Here, we extend the theory for the envelope synthesis of a wavelet in 2-D random media, which makes it easy to compare with finite difference (FD) simulation results. The synthetic wavelet envelope is analytically written by using the random medium parameters in the angular frequency domain. For the case that the power spectral density function of the random velocity fluctuation has a steep roll-off at large wavenumbers, the envelope broadening is small and frequency independent, and scattering attenuation is weak. For the case of a small roll-off, however, the envelope broadening is large and increases with frequency, and the scattering attenuation is strong and increases with frequency. As a preliminary study, we compare synthetic wavelet envelopes with the average of FD simulation wavelet envelopes in 50 synthesized random media, which are characterized by the RMS fractional velocity fluctuation ε = 0.05, correlation scale a = 5 km and the background wave velocity V0 = 4 km s-1. We use the radiation of a 2 Hz Ricker wavelet from a point source. For all the cases of von Kármán order κ = 0.1, 0.5 and 1, we find the synthetic wavelet envelopes are a good match to the characteristics of FD simulation wavelet envelopes in a time window starting from the onset through the maximum peak to the time when the amplitude decreases to half the peak amplitude.

  2. Hypersonic Boundary Layer Measurements with Variable Blowing Rates Using Molecular Tagging Velocimetry

    NASA Technical Reports Server (NTRS)

    Bathel, Brett F.; Danehy, Paul M.; Johansen, Craig T.; Jones, Stephen B.; Goyne, Christopher P.

    2012-01-01

    Measurements of mean and instantaneous streamwise velocity profiles in a hypersonic boundary layer with variable rates of mass injection (blowing) of nitrogen dioxide (NO2) were obtained over a 10-degree half-angle wedge model. The NO2 was seeded into the flow from a slot located 29.4 mm downstream of the sharp leading edge. The top surface of the wedge was oriented at a 20 degree angle in the Mach 10 flow, yielding an edge Mach number of approximately 4.2. The streamwise velocity profiles and streamwise fluctuating velocity component profiles were obtained using a three-laser NO2->NO photolysis molecular tagging velocimetry method. Observed trends in the mean streamwise velocity profiles and profiles of the fluctuating component of streamwise velocity as functions of the blowing rate are described. An effort is made to distinguish between the effect of blowing rate and wall temperature on the measured profiles. An analysis of the mean velocity profiles for a constant blowing rate is presented to determine the uncertainty in the measurement for different probe laser delay settings. Measurements of streamwise velocity were made to within approximately 120 gm of the model surface. The streamwise spatial resolution in this experiment ranged from 0.6 mm to 2.6 mm. An improvement in the spatial precision of the measurement technique has been made, with spatial uncertainties reduced by about a factor of 2 compared to previous measurements. For the quiescent flow calibration measurements presented, uncertainties as low as 2 m/s are obtained at 95% confidence for long delay times (25 gs). For the velocity measurements obtained with the wind tunnel operating, average single-shot uncertainties of less than 44 m/s are obtained at 95% confidence with a probe laser delay setting of 1 gs. The measurements were performed in the 31-inch Mach 10 Air Tunnel at the NASA Langley Research Center.

  3. Modeling velocity space-time correlations in wind farms

    NASA Astrophysics Data System (ADS)

    Lukassen, Laura J.; Stevens, Richard J. A. M.; Meneveau, Charles; Wilczek, Michael

    2016-11-01

    Turbulent fluctuations of wind velocities cause power-output fluctuations in wind farms. The statistics of velocity fluctuations can be described by velocity space-time correlations in the atmospheric boundary layer. In this context, it is important to derive simple physics-based models. The so-called Tennekes-Kraichnan random sweeping hypothesis states that small-scale velocity fluctuations are passively advected by large-scale velocity perturbations in a random fashion. In the present work, this hypothesis is used with an additional mean wind velocity to derive a model for the spatial and temporal decorrelation of velocities in wind farms. It turns out that in the framework of this model, space-time correlations are a convolution of the spatial correlation function with a temporal decorrelation kernel. In this presentation, first results on the comparison to large eddy simulations will be presented and the potential of the approach to characterize power output fluctuations of wind farms will be discussed. Acknowledgements: 'Fellowships for Young Energy Scientists' (YES!) of FOM, the US National Science Foundation Grant IIA 1243482, and support by the Max Planck Society.

  4. Rayleigh Scattering Diagnostic for Measurement of Velocity and Density Fluctuation Spectra

    NASA Technical Reports Server (NTRS)

    Seasholtz, Richard G.; Panda, Jayanta; Elam, Kristie A.

    2002-01-01

    A new molecular Rayleigh scattering based flow diagnostic is used for the first time to measure the power spectrum of gas density and radial velocity component in the plumes of high speed jets. The technique is based on analyzing the Rayleigh scattered light with a Fabry-Perot interferometer used in the static, imaging mode. The PC based data acquisition system is capable of simultaneous sampling of velocity and density at rates to 100 kHz and data record lengths to 10 million. Velocity and density power spectra and velocity-density cross spectra are presented for a subsonic jet, an underexpanded screeching jet, and for Mach 1.4 and Mach 1.8 supersonic jets. Software and hardware interfaces were developed to allow computer control of all aspects of the experiment and data acquisition.

  5. Fluctuating ideal-gas lattice Boltzmann method with fluctuation dissipation theorem for nonvanishing velocities.

    PubMed

    Kaehler, G; Wagner, A J

    2013-06-01

    Current implementations of fluctuating ideal-gas descriptions with the lattice Boltzmann methods are based on a fluctuation dissipation theorem, which, while greatly simplifying the implementation, strictly holds only for zero mean velocity and small fluctuations. We show how to derive the fluctuation dissipation theorem for all k, which was done only for k=0 in previous derivations. The consistent derivation requires, in principle, locally velocity-dependent multirelaxation time transforms. Such an implementation is computationally prohibitively expensive but, with a small computational trick, it is feasible to reproduce the correct FDT without overhead in computation time. It is then shown that the previous standard implementations perform poorly for non vanishing mean velocity as indicated by violations of Galilean invariance of measured structure factors. Results obtained with the method introduced here show a significant reduction of the Galilean invariance violations.

  6. Velocity landscape correlation resolves multiple flowing protein populations from fluorescence image time series.

    PubMed

    Pandžić, Elvis; Abu-Arish, Asmahan; Whan, Renee M; Hanrahan, John W; Wiseman, Paul W

    2018-02-16

    Molecular, vesicular and organellar flows are of fundamental importance for the delivery of nutrients and essential components used in cellular functions such as motility and division. With recent advances in fluorescence/super-resolution microscopy modalities we can resolve the movements of these objects at higher spatio-temporal resolutions and with better sensitivity. Previously, spatio-temporal image correlation spectroscopy has been applied to map molecular flows by correlation analysis of fluorescence fluctuations in image series. However, an underlying assumption of this approach is that the sampled time windows contain one dominant flowing component. Although this was true for most of the cases analyzed earlier, in some situations two or more different flowing populations can be present in the same spatio-temporal window. We introduce an approach, termed velocity landscape correlation (VLC), which detects and extracts multiple flow components present in a sampled image region via an extension of the correlation analysis of fluorescence intensity fluctuations. First we demonstrate theoretically how this approach works, test the performance of the method with a range of computer simulated image series with varying flow dynamics. Finally we apply VLC to study variable fluxing of STIM1 proteins on microtubules connected to the plasma membrane of Cystic Fibrosis Bronchial Epithelial (CFBE) cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Elastic constants and dynamics in nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Humpert, Anja; Allen, Michael P.

    2015-09-01

    In this paper, we present molecular dynamics calculations of the Frank elastic constants, and associated time correlation functions, in nematic liquid crystals. We study two variants of the Gay-Berne potential, and use system sizes of half a million molecules, significantly larger than in previous studies of elastic behaviour. Equilibrium orientational fluctuations in reciprocal (k-) space were calculated, to determine the elastic constants by fitting at low |k|; our results indicate that small system size may be a source of inaccuracy in previous work. Furthermore, the dynamics of the Gay-Berne nematic were studied by calculating time correlation functions of components of the order tensor, together with associated components of the velocity field, for a set of wave vectors k. Confirming our earlier work, we found exponential decay for splay and twist correlations, and oscillatory exponential decay for the bend correlation. In this work, we confirm similar behaviour for the corresponding velocity components. In all cases, the decay rates, and oscillation frequencies, were found to be accurately proportional to k2 for small k, as predicted by the equations of nematodynamics. However, the observation of oscillatory bend fluctuations, and corresponding oscillatory shear flow decay, is in contradiction to the usual assumptions appearing in the literature, and in standard texts. We discuss the advantages and drawbacks of using large systems in these calculations.

  8. Estimation of velocity fluctuation in internal combustion engine exhaust systems through beamforming techniques

    NASA Astrophysics Data System (ADS)

    Piñero, G.; Vergara, L.; Desantes, J. M.; Broatch, A.

    2000-11-01

    The knowledge of the particle velocity fluctuations associated with acoustic pressure oscillation in the exhaust system of internal combustion engines may represent a powerful aid in the design of such systems, from the point of view of both engine performance improvement and exhaust noise abatement. However, usual velocity measurement techniques, even if applicable, are not well suited to the aggressive environment existing in exhaust systems. In this paper, a method to obtain a suitable estimate of velocity fluctuations is proposed, which is based on the application of spatial filtering (beamforming) techniques to instantaneous pressure measurements. Making use of simulated pressure-time histories, several algorithms have been checked by comparison between the simulated and the estimated velocity fluctuations. Then, problems related to the experimental procedure and associated with the proposed methodology are addressed, making application to measurements made in a real exhaust system. The results indicate that, if proper care is taken when performing the measurements, the application of beamforming techniques gives a reasonable estimate of the velocity fluctuations.

  9. Development of a beam ion velocity detector for the heavy ion beam probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fimognari, P. J., E-mail: PJFimognari@XanthoTechnologies.com; Crowley, T. P.; Demers, D. R.

    2016-11-15

    In an axisymmetric plasma, the conservation of canonical angular momentum constrains heavy ion beam probe (HIBP) trajectories such that measurement of the toroidal velocity component of secondary ions provides a localized determination of the poloidal flux at the volume where they originated. We have developed a prototype detector which is designed to determine the beam angle in one dimension through the detection of ion current landing on two parallel planes of detecting elements. A set of apertures creates a pattern of ion current on wires in the first plane and solid metal plates behind them; the relative amounts detected bymore » the wires and plates determine the angle which beam ions enter the detector, which is used to infer the toroidal velocity component. The design evolved from a series of simulations within which we modeled ion beam velocity changes due to equilibrium and fluctuating magnetic fields, along with the ion beam profile and velocity dispersion, and studied how these and characteristics such as the size, cross section, and spacing of the detector elements affect performance.« less

  10. Interscale energy transfer in the merger of wakes of a multiscale array of rectangular cylinders

    NASA Astrophysics Data System (ADS)

    Baj, Pawel; Buxton, Oliver R. H.

    2017-11-01

    The near wake of a flow past a multiscale array of bars is studied by means of particle image velocimetry (PIV). The aim of this research is to understand the nature of multiscale flows, where multiple coherent motions of nonuniform sizes and characteristic frequencies (i.e., sheddings of particular bars in our considered case) interact with each other. The velocity fields acquired from the experiments are triple decomposed into their mean, a number of coherent fluctuations, and their stochastic part according to a triple decomposition technique introduced recently by Baj et al., Phys. Fluids 27, 075104 (2015), 10.1063/1.4923744. This nonstandard approach allows us to monitor the interactions between different coherent fluctuations representative of sheddings of the particular bars. Further, additional equations governing the kinetic energy of the recognized velocity components are derived to provide better insight into the dynamics of these interactions. Interestingly, apart from the coherent fluctuations associated with sheddings, some additional, secondary coherent fluctuations are also recognized. These seem to appear as a result of nonlinear triadic interactions between the primary shedding modes when the two shedding structures of different characteristic frequencies are in close proximity to one another. The secondary coherent motions are almost exclusively supplied with energy by the primary coherent motions, whereas the latter are driven by the mean flow. It is also found that the coherent fluctuations play an important role in exciting the stochastic fluctuations, as the energy is not fed to the stochastic fluctuations directly from the mean flow but rather through the coherent modes.

  11. Anisotropy of MHD Turbulence at Low Magnetic Reynolds Number

    NASA Technical Reports Server (NTRS)

    Zikanov, O.; Vorobev, A.; Thess, A.; Davidson, P. A.; Knaepen, B.

    2004-01-01

    Turbulent fluctuations in MHD flows are known to become dimensionally anisotropic under the action of a sufficiently strong magnetic field. We consider the technologically relevant case of low magnetic Reynolds number and apply the method of DNS of forced flow in a periodic box to generate velocity fields. The analysis based on different anisotropy characteristics shows that the dimensional anisotropy is virtually scale-independent. We also find that, except for the case of very strong magnetic field, the flow is componentally isotropic. Its kinetic energy is practically uniformly distributed among the velocity components.

  12. Experimental study of dynamic stall on Darrieus wind turbine blades

    NASA Astrophysics Data System (ADS)

    Brochier, G.; Fraunie, P.; Beguier, C.; Paraschivoiu, I.

    1985-12-01

    An experimental study of periodic vortex phenomena was performed on a model of a two straight-bladed Darrieus wind turbine under controlled-rotation conditions in the IMST water tunnel. The main focus of interest was the tip-speed ratios at which dynamic stall appears. Observations of this phenomenon from dye emission and the formation of hydrogen bubbles were made in the form of photographs, film and video recordings. Velocity measurements were obtained using the Laser-Doppler Velocimeter and components of velocity fluctuations could be determined quantitatively.

  13. Pacing the phasing of leg and arm movements in breaststroke swimming to minimize intra-cyclic velocity fluctuations

    PubMed Central

    Roerdink, Melvyn; Huibers, Alja V.; Evers, Lotte L. W.; Beek, Peter J.

    2017-01-01

    In swimming propelling efficiency is partly determined by intra-cyclic velocity fluctuations. The higher these fluctuations are at a given average swimming velocity, the less efficient is the propulsion. This study explored whether the leg-arm coordination (i.e. phase relation ϕ) within the breaststroke cycle can be influenced with acoustic pacing, and whether the so induced changes are accompanied by changes in intra-cyclic velocity fluctuations. Twenty-six participants were asked to couple their propulsive leg and arm movements to a double-tone metronome beat and to keep their average swimming velocity constant over trials. The metronome imposed five different phase relations ϕi (90, 135, 180, 225 and 270°) of leg-arm coordination. Swimmers adjusted their technique under the influence of the metronome, but failed to comply to the velocity requirement for ϕ = 90 and 135°. For imposed ϕ = 180, 225 and 270°, the intra-cyclic velocity fluctuations increased with increasing ϕ, while average swimming velocity did not differ. This suggests that acoustic pacing may be used to adjust ϕ and thereby performance of breaststroke swimming given the dependence of propelling efficiency on ϕ. PMID:29023496

  14. Pacing the phasing of leg and arm movements in breaststroke swimming to minimize intra-cyclic velocity fluctuations.

    PubMed

    van Houwelingen, Josje; Roerdink, Melvyn; Huibers, Alja V; Evers, Lotte L W; Beek, Peter J

    2017-01-01

    In swimming propelling efficiency is partly determined by intra-cyclic velocity fluctuations. The higher these fluctuations are at a given average swimming velocity, the less efficient is the propulsion. This study explored whether the leg-arm coordination (i.e. phase relation ϕ) within the breaststroke cycle can be influenced with acoustic pacing, and whether the so induced changes are accompanied by changes in intra-cyclic velocity fluctuations. Twenty-six participants were asked to couple their propulsive leg and arm movements to a double-tone metronome beat and to keep their average swimming velocity constant over trials. The metronome imposed five different phase relations ϕi (90, 135, 180, 225 and 270°) of leg-arm coordination. Swimmers adjusted their technique under the influence of the metronome, but failed to comply to the velocity requirement for ϕ = 90 and 135°. For imposed ϕ = 180, 225 and 270°, the intra-cyclic velocity fluctuations increased with increasing ϕ, while average swimming velocity did not differ. This suggests that acoustic pacing may be used to adjust ϕ and thereby performance of breaststroke swimming given the dependence of propelling efficiency on ϕ.

  15. Molecular Rayleigh Scattering Diagnostic for Dynamic Temperature, Velocity, and Density Measurements

    NASA Technical Reports Server (NTRS)

    Mielke, Amy R.; Elam, Kristie A.; Sung, Chi-Jen

    2006-01-01

    A molecular Rayleigh scattering technique is developed to measure dynamic gas temperature, velocity, and density in unseeded turbulent flows at sampling rates up to 16 kHz. A high power CW laser beam is focused at a point in an air jet plume and Rayleigh scattered light is collected and spectrally resolved. The spectrum of the light, which contains information about the temperature and velocity of the flow, is analyzed using a Fabry-Perot interferometer. The circular interference fringe pattern is divided into four concentric regions and sampled at 1 and 16 kHz using photon counting electronics. Monitoring the relative change in intensity within each region allows for measurement of gas temperature and velocity. Independently monitoring the total scattered light intensity provides a measure of gas density. A low speed heated jet is used to validate the measurement of temperature fluctuations and an acoustically excited nozzle flow is studied to validate velocity fluctuation measurements. Power spectral density calculations of the property fluctuations, as well as mean and fluctuating quantities are presented. Temperature fluctuation results are compared with constant current anemometry measurements and velocity fluctuation results are compared with constant temperature anemometry measurements at the same locations.

  16. The Missing Link Coupling the Foreshock to the Magnetosphere?: Impact of the Magnetosheath Velocity Fluctuations on the Growth of the Kelvin-Helmholtz instability.

    NASA Astrophysics Data System (ADS)

    Nykyri, K.; Dimmock, A. P.; Pulkkinen, T. I.; Otto, A.; Ma, X.

    2014-12-01

    Our statistical study of magnetosheath velocity fluctuations using 6+ years of THEMIS spacecraft measurements in Magnetosheath InterPlanetary Medium (MIPM) reference frame show that amplitudes of the velocity fluctuations are enhanced in the magnetosheath downstream of the quasi-parallel shock. The fluctuation amplitudes can be substantial and frequencies of these flcutuations can vary. We have examined the role of the i) amplitude, ii) frequency, iii) number of the modes, iv) as well as mode combinations of magnetosheath velocity fluctuations on the growth of Kelvin-Helmholtz Instability (KHI) using high-resolution macro-scale MHD simulations in magnetospheric inertial frame. The results show that even for the same magnetic field and plasma parameters across the magnetopause there can be major differences due to 'magnetosheath fluctuation state' on the growth and dynamical evolution of the KHI. This may provide the missing link how foreshock fluctuations couple to the magnetosphere and into the ionosphere

  17. Active Brownian particles with velocity-alignment and active fluctuations

    NASA Astrophysics Data System (ADS)

    Großmann, R.; Schimansky-Geier, L.; Romanczuk, P.

    2012-07-01

    We consider a model of active Brownian particles (ABPs) with velocity alignment in two spatial dimensions with passive and active fluctuations. Here, active fluctuations refers to purely non-equilibrium stochastic forces correlated with the heading of an individual active particle. In the simplest case studied here, they are assumed to be independent stochastic forces parallel (speed noise) and perpendicular (angular noise) to the velocity of the particle. On the other hand, passive fluctuations are defined by a noise vector independent of the direction of motion of a particle, and may account, for example, for thermal fluctuations. We derive a macroscopic description of the ABP gas with velocity-alignment interaction. Here, we start from the individual-based description in terms of stochastic differential equations (Langevin equations) and derive equations of motion for the coarse-grained kinetic variables (density, velocity and temperature) via a moment expansion of the corresponding probability density function. We focus here on the different impact of active and passive fluctuations on onset of collective motion and show how active fluctuations in the active Brownian dynamics can change the phase-transition behaviour of the system. In particular, we show that active angular fluctuations lead to an earlier breakdown of collective motion and to the emergence of a new bistable regime in the mean-field case.

  18. A study of sound generation in subsonic rotors, volume 1

    NASA Technical Reports Server (NTRS)

    Chalupnik, J. D.; Clark, L. T.

    1975-01-01

    A model for the prediction of wake related sound generation by a single airfoil is presented. It is assumed that the net force fluctuation on an airfoil may be expressed in terms of the net momentum fluctuation in the near wake of the airfoil. The forcing function for sound generation depends on the spectra of the two point velocity correlations in the turbulent region near the airfoil trailing edge. The spectra of the two point velocity correlations were measured for the longitudinal and transverse components of turbulence in the wake of a 91.4 cm chord airfoil. A scaling procedure was developed using the turbulent boundary layer thickness. The model was then used to predict the radiated sound from a 5.1 cm chord airfoil. Agreement between the predicted and measured sound radiation spectra was good. The single airfoil results were extended to a rotor geometry, and various aerodynamic parameters were studied.

  19. Influence of large-scale motion on turbulent transport for confined coaxial jets. Volume 2: Navier-Stokes calculations of swirling and nonswirling confined coaxial jets

    NASA Technical Reports Server (NTRS)

    Weinberg, B. C.; Mcdonald, H.

    1986-01-01

    The existence of large scale coherent structures in turbulent shear flows has been well documented. Discrepancies between experimental and computational data suggest a necessity to understand the roles they play in mass and momentum transport. Using conditional sampling and averaging on coincident two-component velocity and concentration velocity experimental data for swirling and nonswirling coaxial jets, triggers for identifying the structures were examined. Concentration fluctuation was found to be an adequate trigger or indicator for the concentration-velocity data, but no suitable detector was located for the two-component velocity data. The large scale structures are found in the region where the largest discrepancies exist between model and experiment. The traditional gradient transport model does not fit in this region as a result of these structures. The large scale motion was found to be responsible for a large percentage of the axial mass transport. The large scale structures were found to convect downstream at approximately the mean velocity of the overall flow in the axial direction. The radial mean velocity of the structures was found to be substantially greater than that of the overall flow.

  20. On the Behavior of Velocity Fluctuations in Rapidly Rotating Flows

    NASA Technical Reports Server (NTRS)

    Girimaji, S. S.; Ristorcelli, J. R.

    1997-01-01

    The behavior of velocity fluctuations subjected to rapid rotation is examined. The rapid rotation considered is any arbitrary combination of two basic forms of rotation, reference frame rotation and mean flow rotation. It is recognized that the two types of rotating flows differ in the manner in which the fluctuating fields are advected. The first category is comprised of flows in rotating systems of which synoptic scale geophysical flows are a good example. In this class of flows the fluctuating velocity field advects and rotates with the mean flow. In the rapid rotation limit, the Taylor-Proudman theorem describes the behavior of this class of fluctuations. Velocity fluctuations that are advected without rotation by the mean flow constitute the second category which includes vortical flows of aerodynamic interest. The Taylor-Proudman theorem is not pertinent to I his class flows and a new result appropriate to this second category of fluctuations is derived. The present development demonstrates that the fluctuating velocity fields are rendered two-dimensional and horizontally non-divergent in the limit of any large combination of reference frame rotation and mean-flow rotation. The concommitant 'geostrophic' balance of the momentum equation is, however, dependent upon the form of rapid rotation. It is also demonstrated that the evolution equations of a two-dimensional fluctuating velocity fields are frame-indifferent with any imposed mean-flow rotation. The analyses and results of this paper highlight many fundamental aspects of rotating flows and have important consequences for their turbulence closures in inertial and non-inertial frames.

  1. Estimating of higher order velocity moments and their derivatives in boundary layer by Smoke Image Velocimetry

    NASA Astrophysics Data System (ADS)

    Mikheev, N. I.; Goltsman, A. E.; Salekhova, I. G.; Saushin, I. I.

    2017-11-01

    The results of an experimental evaluation of the third-order moments profiles of velocity fluctuations and their partial derivatives in a zero pressure-gradient turbulent boundary layer are presented. Profiles of characteristics are estimated on the basis of the dynamics of two-component instantaneous velocity vector fields measured by the optical method Smoke Image Velocimetry (SIV). Comparison SIV-measurements with the results of measurements by a thermoanemometer and DNS data with similar Reθ and Reτ showed good agreement between the profiles of +, +, ∂+/∂y+ и ∂+/∂y+ obtained by SIV and DNS.

  2. An improved car-following model with multiple preceding cars' velocity fluctuation feedback

    NASA Astrophysics Data System (ADS)

    Guo, Lantian; Zhao, Xiangmo; Yu, Shaowei; Li, Xiuhai; Shi, Zhongke

    2017-04-01

    In order to explore and evaluate the effects of velocity variation trend of multiple preceding cars used in the Cooperative Adaptive Cruise Control (CACC) strategy on the dynamic characteristic, fuel economy and emission of the corresponding traffic flow, we conduct a study as follows: firstly, with the real-time car-following (CF) data, the close relationship between multiple preceding cars' velocity fluctuation feedback and the host car's behaviors is explored, the evaluation results clearly show that multiple preceding cars' velocity fluctuation with different time window-width are highly correlated to the host car's acceleration/deceleration. Then, a microscopic traffic flow model is proposed to evaluate the effects of multiple preceding cars' velocity fluctuation feedback in the CACC strategy on the traffic flow evolution process. Finally, numerical simulations on fuel economy and exhaust emission of the traffic flow are also implemented by utilizing VT-micro model. Simulation results prove that considering multiple preceding cars' velocity fluctuation feedback in the control strategy of the CACC system can improve roadway traffic mobility, fuel economy and exhaust emission performance.

  3. Studies of interactions of a propagating shock wave with decaying grid turbulence: velocity and vorticity fields

    NASA Astrophysics Data System (ADS)

    Agui, Juan H.; Briassulis, George; Andreopoulos, Yiannis

    2005-02-01

    The unsteady interaction of a moving shock wave with nearly homogeneous and isotropic decaying compressible turbulence has been studied experimentally in a large-scale shock tube facility. Rectangular grids of various mesh sizes were used to generate turbulence with Reynolds numbers based on Taylor's microscale ranging from 260 to 1300. The interaction has been investigated by measuring the three-dimensional velocity and vorticity vectors, the full velocity gradient and rate-of-strain tensors with instrumentation of high temporal and spatial resolution. This allowed estimates of dilatation, compressible dissipation and dilatational stretching to be obtained. The time-dependent signals of enstrophy, vortex stretching/tilting vector and dilatational stretching vector were found to exhibit a rather strong intermittent behaviour which is characterized by high-amplitude bursts with values up to 8 times their r.m.s. within periods of less violent and longer lived events. Several of these bursts are evident in all the signals, suggesting the existence of a dynamical flow phenomenon as a common cause. Fluctuations of all velocity gradients in the longitudinal direction are amplified significantly downstream of the interaction. Fluctuations of the velocity gradients in the lateral directions show no change or a minor reduction through the interaction. Root mean square values of the lateral vorticity components indicate a 25% amplification on average, which appears to be very weakly dependent on the shock strength. The transmission of the longitudinal vorticity fluctuations through the shock appears to be less affected by the interaction than the fluctuations of the lateral components. Non-dissipative vortex tubes and irrotational dissipative motions are more intense in the region downstream of the shock. There is also a significant increase in the number of events with intense rotational and dissipative motions. Integral length scales and Taylor's microscales were reduced after the interaction with the shock in all investigated flow cases. The integral length scales in the lateral direction increase at low Mach numbers and decrease during strong interactions. It appears that in the weakest of the present interactions, turbulent eddies are compressed drastically in the longitudinal direction while their extent in the normal direction remains relatively the same. As the shock strength increases the lateral integral length scales increase while the longitudinal ones decrease. At the strongest interaction of the present flow cases turbulent eddies are compressed in both directions. However, even at the highest Mach number the issue is more complicated since amplification of the lateral scales has been observed in flows with fine grids. Thus the outcome of the interaction strongly depends on the initial conditions.

  4. Response of the Equatorial Ionosphere to the Geomagnetic DP 2 Current System

    NASA Technical Reports Server (NTRS)

    Yizengaw, E.; Moldwin, M. B.; Zesta, E.; Magoun, M.; Pradipta, R.; Biouele, C. M.; Rabiu, A. B.; Obrou, O. K.; Bamba, Z.; Paula, E. R. De

    2016-01-01

    The response of equatorial ionosphere to the magnetospheric origin DP 2 current system fluctuations is examined using ground-based multiinstrument observations. The interaction between the solar wind and fluctuations of the interplanetary magnetic field (IMF) Bz, penetrates nearly instantaneously to the dayside equatorial region at all longitudes and modulates the electrodynamics that governs the equatorial density distributions. In this paper, using magnetometers at high and equatorial latitudes, we demonstrate that the quasiperiodic DP 2 current system penetrates to the equator and causes the dayside equatorial electrojet (EEJ) and the independently measured ionospheric drift velocity to fluctuate coherently with the high-latitude DP 2 current as well as with the IMF Bz component. At the same time, radar observations show that the ionospheric density layers move up and down, causing the density to fluctuate up and down coherently with the EEJ and IMF Bz.

  5. Role of large-scale velocity fluctuations in a two-vortex kinematic dynamo.

    PubMed

    Kaplan, E J; Brown, B P; Rahbarnia, K; Forest, C B

    2012-06-01

    This paper presents an analysis of the Dudley-James two-vortex flow, which inspired several laboratory-scale liquid-metal experiments, in order to better demonstrate its relation to astrophysical dynamos. A coordinate transformation splits the flow into components that are axisymmetric and nonaxisymmetric relative to the induced magnetic dipole moment. The reformulation gives the flow the same dynamo ingredients as are present in more complicated convection-driven dynamo simulations. These ingredients are currents driven by the mean flow and currents driven by correlations between fluctuations in the flow and fluctuations in the magnetic field. The simple model allows us to isolate the dynamics of the growing eigenvector and trace them back to individual three-wave couplings between the magnetic field and the flow. This simple model demonstrates the necessity of poloidal advection in sustaining the dynamo and points to the effect of large-scale flow fluctuations in exciting a dynamo magnetic field.

  6. Investigation of fluctuations in angular velocity in magnetic memory devices

    NASA Technical Reports Server (NTRS)

    Meshkis, Y. A.; Potsyus, Z. Y.

    1973-01-01

    The fluctuations in the angular velocity of individual assemblies of a precision mechanical system were analyzed. The system was composed of an electric motor and a magnetic drum which were connected by a flexible coupling. A dynamic model was constructed which took into account the absence of torsion in the rigid shafts of the electric motor drive rotor and the magnetic drum. The motion was described by Lagrange differential equations of the second kind. Curves are developed to show the nature of amplitude fluctuation of the magnetic drum angular velocity at a specific excitation frequency. Additional curves show the amplitudes of fluctuation of the magnetic drum angular velocity compared to the quantity of damping at specific frequencies.

  7. Noise of High-Performance Aircraft at Afterburner

    DTIC Science & Technology

    2016-09-22

    Investigation of the importance of indirect combustion noise as a dominant component of military aircraft noise at afterburner. This quarterly...the combustion process is highly unsteady. This creates large temperature fluctuations resulting in the generation of numerous high and low...flow with significant axial velocity gradients, indirect combustion noise is generated (see figure 1). The present research is to investigate this

  8. Anisotropic Structure of Rotating Homogeneous Turbulence at High Reynolds Numbers

    NASA Technical Reports Server (NTRS)

    Cambon, Claude; Mansour, Nagi N.; Squires, Kyle D.; Rai, Man Mohan (Technical Monitor)

    1995-01-01

    Large eddy simulation is used to investigate the development of anisotropies and the evolution towards a quasi two-dimensional state in rotating homogeneous turbulence at high Reynolds number. The present study demonstrates the existence of two transitions in the development of anisotropy. The first transition marks the onset of anisotropy and occurs when a macro-Rossby number (based on a longitudinal integral lengthscale) has decreased to near unity while the second transition occurs when a micro-Rossby number (defined in this work as the ratio of the rms fluctuating vorticity to background vorticity) has decreased to unity. The anisotropy marked by the first transition corresponds to a reduction in dimensionality while the second transition corresponds to a polarization of the flow, i.e., relative dominance of the velocity components in the plane normal to the rotation axis. Polarization is reflected by emergence of anisotropy measures based on the two-dimensional component of the turbulence. Investigation of the vorticity structure shows that the second transition is also characterized by an increasing tendency for alignment between the fluctuating vorticity vector and the background angular velocity vector with a preference for corrotative vorticity.

  9. Extremely high wall-shear stress events in a turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Pan, Chong; Kwon, Yongseok

    2018-04-01

    The present work studies the fluctuating characteristics of the streamwise wall-shear stress in a DNS of a turbulent boundary layer at Re τ =1500 from a structural view. The two-dimensional field of the fluctuating friction velocity u‧ τ (x,z) is decomposed into the large- and small-scale components via a recently proposed scale separation algorithm, Quasi-bivariate Variational Mode Decomposition (QB-VMD). Both components are found to be dominated by streak-like structures, which can be regarded as the wall signature of the inner-layer streaks and the outer-layer LSMs, respectively. Extreme positive/negative wall-shear stress fluctuation events are detected in the large-scale component. The former’s occurrence frequency is nearly one order of magnitude higher than the latter; therefore, they contribute a significant portion of the long tail of the wall-shear stress distribution. Both two-point correlations and conditional averages show that these extreme positive wall-shear stress events are embedded in the large-scale positive u‧ τ streaks. They seem to be formed by near-wall ‘splatting’ process, which are related to strong finger-like sweeping (Q4) events originated from the outer-layer positive LSMs.

  10. Analysis of Meniscus Fluctuation in a Continuous Casting Slab Mold

    NASA Astrophysics Data System (ADS)

    Zhang, Kaitian; Liu, Jianhua; Cui, Heng; Xiao, Chao

    2018-06-01

    A water model of slab mold was established to analyze the microscopic and macroscopic fluctuation of meniscus. The fast Fourier transform and wavelet entropy were adopted to analyze the wave amplitude, frequency, and components of fluctuation. The flow patterns under the meniscus were measured by using particle image velocimetry measurement and then the mechanisms of meniscus fluctuation were discussed. The results reflected that wavelet entropy had multi-scale and statistical properties, and it was suitable for the study of meniscus fluctuation details both in time and frequency domain. The basic wave, frequency of which exceeding 1 Hz in the condition of no mold oscillation, was demonstrated in this work. In fact, three basic waves were found: long-wave with low frequency, middle-wave with middle frequency, and short-wave with high frequency. In addition, the upper roll flow in mold had significant effect on meniscus fluctuation. When the position of flow impinged was far from the meniscus, long-wave dominated the fluctuation and the stability of meniscus was enhanced. However, when the velocity of flow was increased, the short-wave dominated the meniscus fluctuation and the meniscus stability was decreased.

  11. Ion-driven instabilities in the solar wind: Wind observations of 19 March 2005

    DOE PAGES

    Gary, S. Peter; Jian, Lan K.; Broiles, Thomas W.; ...

    2016-01-16

    Intervals of enhanced magnetic fluctuations have been frequently observed in the solar wind. However, it remains an open question as to whether these waves are generated at the Sun and then transported outward by the solar wind or generated locally in the interplanetary medium. Magnetic field and plasma measurements from the Wind spacecraft under slow solar wind conditions on 19 March 2005 demonstrate seven events of enhanced magnetic fluctuations at spacecraft-frame frequencies somewhat above the proton cyclotron frequency and propagation approximately parallel or antiparallel to the background magnetic field B o. The proton velocity distributions during these events are characterizedmore » by two components: a more dense, slower core and a less dense, faster beam. In conclusion, observed plasma parameters are used in a kinetic linear dispersion equation analysis for electromagnetic fluctuations at k x B o = 0; for two events the most unstable mode is the Alfvén-cyclotron instability driven by a proton component temperature anisotropy T ⊥/T || > 1 (where the subscripts denote directions relative to B o), and for three events the most unstable mode is the right-hand polarized magnetosonic instability driven primarily by ion component relative flows. Thus, both types of ion anisotropies and both types of instabilities are likely to be local sources of these enhanced fluctuation events in the solar wind.« less

  12. Ion-driven instabilities in the solar wind: Wind observations of 19 March 2005

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gary, S. Peter; Jian, Lan K.; Broiles, Thomas W.

    Intervals of enhanced magnetic fluctuations have been frequently observed in the solar wind. However, it remains an open question as to whether these waves are generated at the Sun and then transported outward by the solar wind or generated locally in the interplanetary medium. Magnetic field and plasma measurements from the Wind spacecraft under slow solar wind conditions on 19 March 2005 demonstrate seven events of enhanced magnetic fluctuations at spacecraft-frame frequencies somewhat above the proton cyclotron frequency and propagation approximately parallel or antiparallel to the background magnetic field B o. The proton velocity distributions during these events are characterizedmore » by two components: a more dense, slower core and a less dense, faster beam. In conclusion, observed plasma parameters are used in a kinetic linear dispersion equation analysis for electromagnetic fluctuations at k x B o = 0; for two events the most unstable mode is the Alfvén-cyclotron instability driven by a proton component temperature anisotropy T ⊥/T || > 1 (where the subscripts denote directions relative to B o), and for three events the most unstable mode is the right-hand polarized magnetosonic instability driven primarily by ion component relative flows. Thus, both types of ion anisotropies and both types of instabilities are likely to be local sources of these enhanced fluctuation events in the solar wind.« less

  13. Ion-driven instabilities in the solar wind: Wind observations of 19 March 2005.

    PubMed

    Gary, S Peter; Jian, Lan K; Broiles, Thomas W; Stevens, Michael L; Podesta, John J; Kasper, Justin C

    2016-01-01

    Intervals of enhanced magnetic fluctuations have been frequently observed in the solar wind. But it remains an open question as to whether these waves are generated at the Sun and then transported outward by the solar wind or generated locally in the interplanetary medium. Magnetic field and plasma measurements from the Wind spacecraft under slow solar wind conditions on 19 March 2005 demonstrate seven events of enhanced magnetic fluctuations at spacecraft-frame frequencies somewhat above the proton cyclotron frequency and propagation approximately parallel or antiparallel to the background magnetic field B o . The proton velocity distributions during these events are characterized by two components: a more dense, slower core and a less dense, faster beam. Observed plasma parameters are used in a kinetic linear dispersion equation analysis for electromagnetic fluctuations at k x B o  = 0; for two events the most unstable mode is the Alfvén-cyclotron instability driven by a proton component temperature anisotropy T ⊥ /T ||  > 1 (where the subscripts denote directions relative to B o ), and for three events the most unstable mode is the right-hand polarized magnetosonic instability driven primarily by ion component relative flows. Thus, both types of ion anisotropies and both types of instabilities are likely to be local sources of these enhanced fluctuation events in the solar wind.

  14. Ion‐driven instabilities in the solar wind: Wind observations of 19 March 2005

    PubMed Central

    Jian, Lan K.; Broiles, Thomas W.; Stevens, Michael L.; Podesta, John J.; Kasper, Justin C.

    2016-01-01

    Abstract Intervals of enhanced magnetic fluctuations have been frequently observed in the solar wind. But it remains an open question as to whether these waves are generated at the Sun and then transported outward by the solar wind or generated locally in the interplanetary medium. Magnetic field and plasma measurements from the Wind spacecraft under slow solar wind conditions on 19 March 2005 demonstrate seven events of enhanced magnetic fluctuations at spacecraft‐frame frequencies somewhat above the proton cyclotron frequency and propagation approximately parallel or antiparallel to the background magnetic field B o. The proton velocity distributions during these events are characterized by two components: a more dense, slower core and a less dense, faster beam. Observed plasma parameters are used in a kinetic linear dispersion equation analysis for electromagnetic fluctuations at k x B o = 0; for two events the most unstable mode is the Alfvén‐cyclotron instability driven by a proton component temperature anisotropy T⊥/T|| > 1 (where the subscripts denote directions relative to B o), and for three events the most unstable mode is the right‐hand polarized magnetosonic instability driven primarily by ion component relative flows. Thus, both types of ion anisotropies and both types of instabilities are likely to be local sources of these enhanced fluctuation events in the solar wind. PMID:27818854

  15. Spectra of turbulent static pressure fluctuations in jet mixing layers

    NASA Technical Reports Server (NTRS)

    Jones, B. G.; Adrian, R. J.; Nithianandan, C. K.; Planchon, H. P., Jr.

    1977-01-01

    Spectral similarity laws are derived for the power spectra of turbulent static pressure fluctuations by application of dimensional analysis in the limit of large turbulent Reynolds number. The theory predicts that pressure spectra are generated by three distinct types of interaction in the velocity fields: a fourth order interaction between fluctuating velocities, an interaction between the first order mean shear and the third order velocity fluctuations, and an interaction between the second order mean shear rate and the second order fluctuating velocity. Measurements of one-dimensional power spectra of the turbulent static pressure fluctuations in the driven mixing layer of a subsonic, circular jet are presented, and the spectra are examined for evidence of spectral similarity. Spectral similarity is found for the low wavenumber range when the large scale flow on the centerline of the mixing layer is self-preserving. The data are also consistent with the existence of universal inertial subranges for the spectra of each interaction mode.

  16. Parallel electron force balance and the L-H transition

    DOE PAGES

    Stoltzfus-Dueck, T.

    2016-05-23

    In one popular paradigm for the L-H transition, energy transfer to the mean flows directly depletes turbulence fluctuation energy, resulting in suppression of the turbulence and a corresponding transport bifurcation. To quantitatively evaluate this mechanism, one must remember that electron parallel force balance couples nonzonal velocity fluctuations with electron pressure fluctuations on rapid timescales, comparable with the electron transit time. For this reason, energy in the nonzonal velocity stays in a fairly fixed ratio to the free energy in electron density fluctuations, at least for frequency scales much slower than electron transit. Furthermore, in order for direct depletion of themore » energy in turbulent fluctuations to cause the L-H transition, energy transfer via Reynolds stress must therefore drain enough energy to significantly reduce the sum of the free energy in nonzonal velocities and electron pressure fluctuations. At low k⊥, the electron thermal free energy is much larger than the energy in nonzonal velocities, posing a stark challenge for this model of the L-H transition.« less

  17. THE RELATION BETWEEN GAS DENSITY AND VELOCITY POWER SPECTRA IN GALAXY CLUSTERS: QUALITATIVE TREATMENT AND COSMOLOGICAL SIMULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhuravleva, I.; Allen, S. W.; Churazov, E. M.

    2014-06-10

    We address the problem of evaluating the power spectrum of the velocity field of the intracluster medium using only information on the plasma density fluctuations, which can be measured today by Chandra and XMM-Newton observatories. We argue that for relaxed clusters there is a linear relation between the rms density and velocity fluctuations across a range of scales, from the largest ones, where motions are dominated by buoyancy, down to small, turbulent scales: (δρ{sub k}/ρ){sup 2}=η{sub 1}{sup 2}(V{sub 1,k}/c{sub s}){sup 2}, where δρ {sub k}/ρ is the spectral amplitude of the density perturbations at wavenumber k, V{sub 1,k}{sup 2}=V{sub k}{supmore » 2}/3 is the mean square component of the velocity field, c{sub s} is the sound speed, and η{sub 1} is a dimensionless constant of the order of unity. Using cosmological simulations of relaxed galaxy clusters, we calibrate this relation and find η{sub 1} ≈ 1 ± 0.3. We argue that this value is set at large scales by buoyancy physics, while at small scales the density and velocity power spectra are proportional because the former are a passive scalar advected by the latter. This opens an interesting possibility to use gas density power spectra as a proxy for the velocity power spectra in relaxed clusters across a wide range of scales.« less

  18. Nature and origin of upper crustal seismic velocity fluctuations and associated scaling properties: Combined stochastic analyses of KTB velocity and lithology logs

    USGS Publications Warehouse

    Goff, J.A.; Holliger, K.

    1999-01-01

    The main borehole of the German Continental Deep Drilling Program (KTB) extends over 9000 m into a crystalline upper crust consisting primarily of interlayered gneiss and metabasite. We present a joint analysis of the velocity and lithology logs in an effort to extract the lithology component of the velocity log. Covariance analysis of lithology log, approximated as a binary series, indicates that it may originate from the superposition of two Brownian stochastic processes (fractal dimension 1.5) with characteristic scales of ???2800 m and ???150 m, respectively. Covariance analysis of the velocity fluctuations provides evidence for the superposition of four stochastic process with distinct characteristic scales. The largest two scales are identical to those derived from the lithology, confirming that these scales of velocity heterogeneity are caused by lithology variations. The third characteristic scale, ???20 m, also a Brownian process, is probably related to fracturing based on correlation with the resistivity log. The superposition of these three Brownian processes closely mimics the commonly observed 1/k decay (fractal dimension 2.0) of the velocity power spectrum. The smallest scale process (characteristic scale ???1.7 m) requires a low fractal dimension, ???1.0, and accounts for ???60% of the total rms velocity variation. A comparison of successive logs from 6900-7140 m depth indicates that such variations are not repeatable and thus probably do not represent true velocity variations in the crust. The results of this study resolve disparity between the differing published estimates of seismic heterogeneity based on the KTB sonic logs, and bridge the gap between estimates of crustal heterogeneity from geologic maps and borehole logs. Copyright 1999 by the American Geophysical Union.

  19. Wave-current generated turbulence over hemisphere bottom roughness

    NASA Astrophysics Data System (ADS)

    Barman, Krishnendu; Roy, Sayahnya; Debnath, Koustuv

    2018-03-01

    The present paper explores the effect of wave-current interaction on the turbulence characteristics and the distribution of eddy structure over artificially crammed rough bed prepared with hemispheres. The effect of the surface wave on temporal and spatial-averaged mean velocity, intensity, Reynolds shear stress over, within cavity and above the hemispherical bed are discussed. Detailed three-dimensional time series velocity components were measured in a tilting flume using 3-D Micro-Acoustic Doppler Velocimeter (ADV) at a Reynolds number, 62 × 103. This study reports the fractional contributions of burst-sweep cycles dominating the total shear stress near hemispherical rough surface both for current only flow as well as for wave-induced cases. Wavelet analysis of the fluctuating velocity signal shows that the superimposed wave of frequency 1 Hz is capable of modulating the energy containing a range of velocity fluctuations at the mid-depth of the cavity region (formed due to the crammed arrangement of the hemispheres). As a result, the large-scale eddies (with large values of wavelet coefficients) are concentrated at a pseudo-frequency which is equal to the wave oscillating frequency. On the other hand, it is observed that the higher wave frequency (2 Hz) is incapable of modulating the eddy structures at that particular region.

  20. The impact of fluctuations in boat velocity during the rowing cycle on race time.

    PubMed

    Hill, H; Fahrig, S

    2009-08-01

    In competitive rowing, the fluctuations in boat velocity during the rowing cycle are associated with an increased water resistance of the boat as compared with a boat moving at a constant velocity. We aimed to quantify the influence of the increased water resistance on race time using a mathematical approximation, based on the increase in physiological power being proportional to the 2nd power of boat speed. Biomechanical data (oar force, rowing angle, boat velocity, and boat acceleration) were measured when eight elite coxless pair crews performed a rowing test with a stepwise increasing stroke rate (SR: 20, 24, 28, and 32 min(-1)) that successively increased the mean boat speed. The results revealed a +4.59 s (SR 24.2) to +5.05 s (SR 31.5) 2000-m race-time difference compared with a boat hypothetically moving without velocity fluctuations. Velocity fluctuations were highly correlated with SR (r=0.93) because the accelerations of the rowers' body mass and the mass of the counteracting boat increase with SR. The possibilities to reduce velocity fluctuations and therefore race time are limited. For elite rowers, race time may be slightly reduced by a moderate reduction in SR that is compensated by an increased force output for each stroke.

  1. Turbulent structures of non-Newtonian solutions containing rigid polymers

    NASA Astrophysics Data System (ADS)

    Mohammadtabar, M.; Sanders, R. S.; Ghaemi, S.

    2017-10-01

    The turbulent structure of a channel flow of Xanthan Gum (XG) polymer solution is experimentally investigated and compared with water flow at a Reynolds number of Re = 7200 (based on channel height and properties of water) and Reτ = 220 (based on channel height and friction velocity, uτ0). The polymer concentration is varied from 75, 100, and 125 ppm to reach the point of maximum drag reduction (MDR). Measurements are carried out using high-resolution, two-component Particle Image Velocimetry (PIV) to capture the inner and outer layer turbulence. The measurements showed that the logarithmic layer shifts away from the wall with increasing polymer concentration. The slopes of the mean velocity profile for flows containing 100 and 125 ppm XG are greater than that measured for XG at 75 ppm, which is parallel with the slope obtained for deionized water. The increase in slope results in thickening buffer layer. At MDR, the streamwise Reynolds stresses are as large as those of the Newtonian flow while the wall-normal Reynolds stresses and Reynolds shear stresses are significantly attenuated. The sweep-dominated region in the immediate vicinity of the wall extends further from the wall with increasing polymer concentration. The near-wall skewness intensifies towards positive streamwise fluctuations and covers a larger wall-normal length at larger drag reduction values. The quadrant analysis at y + 0 = 25 shows that the addition of polymers inclines the principal axis of v versus u plot to almost zero (horizontal) as the joint probability density function of fluctuations becomes symmetric with respect to the u axis at MDR. The reduction of turbulence production is mainly associated with the attenuation of the ejection motions. The spatial-correlation of the fluctuating velocity field shows that increasing the polymer concentration increases the spatial coherence of u fluctuations in the streamwise direction while they appear to have the opposite effect in the wall-normal direction. The proper orthogonal decomposition of velocity fluctuations shows that the inclined shear layer structure of Newtonian wall flows becomes horizontal at the MDR and does not contribute to turbulence production.

  2. On the flux of fluctuation energy in a collisional grain flow at a flat, frictional wall

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenkins, J.T.; Louge, M.Y.

    We consider a flow of colliding spheres that interacts with a flat, frictional wall and calculate the flux of fluctuation energy in two limits. In the first limit, all spheres slide upon contact with the wall. Here, we refine the calculations of Jenkins [J. Appl. Mech. {bold 59}, 120 (1992)] and show that a correlation between two orthogonal components of the fluctuation velocity of the point of contact of the grains with the wall provides a substantial correction to the flux originally predicted. In the other limit, the granular material is agitated but the mean velocity of the contact pointsmore » with respect to the wall is zero and Jenkins{close_quote} earlier calculation is improved by distinguishing between those contacts that slide in a collision and those that stick. The new expressions for the flux agree well with the computer simulations of Louge [Phys. Fluids {bold 6}, 2253 (1994)]. Finally, we extend the expression for zero mean sliding to incorporate small sliding and obtain an approximate expression for the flux between the two limits. {copyright} {ital 1997 American Institute of Physics.}« less

  3. Fluctuation diagrams for hot-wire anemometry in subsonic compressible flows

    NASA Technical Reports Server (NTRS)

    Stainback, P. C.; Nagabushana, K. A.

    1991-01-01

    The concept of using 'fluctuation diagrams' for describing basic fluctuations in compressible flows was reported by Kovasznay in the 1950's. The application of this technique, for the most part, was restricted to supersonic flows. Recently, Zinovev and Lebiga published reports where they considered the fluctuation diagrams in subsonic compressible flows. For the above studies, the velocity and density sensitivities of the heated wires were equal. However, there are considerable data, much taken in the 1950's, which indicate that under some conditions the velocity and density sensitivities are not equal in subsonic compressible flows. Therefore, possible fluctuation diagrams are described for the cases where the velocity and density sensitivities are equal and the more general cases where they are unequal.

  4. Turbulent transport of a passive-scalar field by using a renormalization-group method

    NASA Technical Reports Server (NTRS)

    Hossain, Murshed

    1992-01-01

    A passive-scalar field is considered to evolve under the influence of a turbulent fluid governed by the Navier-Stokes equation. Turbulent-transport coefficients are calculated by small-scale elimination using a renormalization-group method. Turbulent processes couple both the viscosity and the diffusivity. In the absence of any correlation between the passive-scalar fluctuations and any component of the fluid velocity, the renormalized diffusivity is essentially the same as if the fluid velocity were frozen, although the renormalized equation does contain higher-order nonlinear terms involving viscosity. This arises due to the nonlinear interaction of the velocity with itself. In the presence of a finite correlation, the turbulent diffusivity becomes coupled with both the velocity field and the viscosity. There is then a dependence of the turbulent decay of the passive scalar on the turbulent Prandtl number.

  5. Flight Measurement of Wall-Pressure Fluctuations and Boundary-Layer Turbulence

    NASA Technical Reports Server (NTRS)

    Mull, Harold R.; Algranti, Joseph S.

    1960-01-01

    The results are presented for a flight test program using a fighter type jet aircraft flying at pressure altitudes of 10,000, 20,000, and 30,000 feet at Mach numbers from 0.3 to 0.8. Specially designed apparatus was used to measure and record the output of microphones and hot-wire anemometers mounted on the forward-fuselage section and wing of the airplane. Mean-velocity profiles in the boundary layers were obtained from total-pressure measurements. The ratio of the root-mean-square fluctuating wall pressure to the free-stream dynamic pressure is presented as a function of Reynolds number and Mach number. The longitudinal component of the turbulent-velocity fluctuations was measured, and the turbulence-intensity profiles are presented for the wing and forward-fuselage section. In general, the results are in agreement with wind-tunnel measurements which have been-reported in the literature. For example, the variation the square root of p(sup 2)/q times the square root of p(sup 2) is the root mean square of the wall-pressure fluctuation, and q is the free-stream dynamic pressure) with Reynolds number was found to be essentially constant for the forward-fuselage-section boundary layer, while variations at the wing station were probably unduly affected by the microphone diameter (5/8 in.), which was large compared with the boundary-layer thickness.

  6. Using travel times to simulate multi-dimensional bioreactive transport in time-periodic flows.

    PubMed

    Sanz-Prat, Alicia; Lu, Chuanhe; Finkel, Michael; Cirpka, Olaf A

    2016-04-01

    In travel-time models, the spatially explicit description of reactive transport is replaced by associating reactive-species concentrations with the travel time or groundwater age at all locations. These models have been shown adequate for reactive transport in river-bank filtration under steady-state flow conditions. Dynamic hydrological conditions, however, can lead to fluctuations of infiltration velocities, putting the validity of travel-time models into question. In transient flow, the local travel-time distributions change with time. We show that a modified version of travel-time based reactive transport models is valid if only the magnitude of the velocity fluctuates, whereas its spatial orientation remains constant. We simulate nonlinear, one-dimensional, bioreactive transport involving oxygen, nitrate, dissolved organic carbon, aerobic and denitrifying bacteria, considering periodic fluctuations of velocity. These fluctuations make the bioreactive system pulsate: The aerobic zone decreases at times of low velocity and increases at those of high velocity. For the case of diurnal fluctuations, the biomass concentrations cannot follow the hydrological fluctuations and a transition zone containing both aerobic and obligatory denitrifying bacteria is established, whereas a clear separation of the two types of bacteria prevails in the case of seasonal velocity fluctuations. We map the 1-D results to a heterogeneous, two-dimensional domain by means of the mean groundwater age for steady-state flow in both domains. The mapped results are compared to simulation results of spatially explicit, two-dimensional, advective-dispersive-bioreactive transport subject to the same relative fluctuations of velocity as in the one-dimensional model. The agreement between the mapped 1-D and the explicit 2-D results is excellent. We conclude that travel-time models of nonlinear bioreactive transport are adequate in systems of time-periodic flow if the flow direction does not change. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. The effect of bed roughness on the free surface of an open channel flow and implications for remotely monitoring river discharge

    NASA Astrophysics Data System (ADS)

    Johnson, Erika; Cowen, Edwin

    2013-11-01

    The effect of increased bed roughness on the free surface turbulence signature of an open channel flow is investigated with the goal of incorporating the findings into a methodology to remotely monitor volumetric flow rates. Half of a wide (B = 2 m) open channel bed is covered with a 3 cm thick layer of loose gravel (D50 = 0.6 cm). Surface PIV (particle image velocimetry) experiments are conducted for a range of flow depths (B/H = 10-30) and Reynolds numbers (ReH = 10,000-60,000). It is well established that bed roughness in wall-bounded flows enhances the vertical velocity fluctuations (e.g. Krogstad et al. 1992). When the vertical velocity fluctuations approach the free surface they are redistributed (e.g. Cowen et al. 1995) to the surface parallel component directions. It is anticipated and confirmed that the interaction of these two phenomena result in enhanced turbulence at the free surface. The effect of the rough bed on the integral length scales and the second order velocity structure functions calculated at the free surface are investigated. These findings have important implications for developing new technologies in stream gaging.

  8. Comparison of direct numerical simulation databases of turbulent channel flow at Reτ = 180

    NASA Astrophysics Data System (ADS)

    Vreman, A. W.; Kuerten, J. G. M.

    2014-01-01

    Direct numerical simulation (DNS) databases are compared to assess the accuracy and reproducibility of standard and non-standard turbulence statistics of incompressible plane channel flow at Reτ = 180. Two fundamentally different DNS codes are shown to produce maximum relative deviations below 0.2% for the mean flow, below 1% for the root-mean-square velocity and pressure fluctuations, and below 2% for the three components of the turbulent dissipation. Relatively fine grids and long statistical averaging times are required. An analysis of dissipation spectra demonstrates that the enhanced resolution is necessary for an accurate representation of the smallest physical scales in the turbulent dissipation. The results are related to the physics of turbulent channel flow in several ways. First, the reproducibility supports the hitherto unproven theoretical hypothesis that the statistically stationary state of turbulent channel flow is unique. Second, the peaks of dissipation spectra provide information on length scales of the small-scale turbulence. Third, the computed means and fluctuations of the convective, pressure, and viscous terms in the momentum equation show the importance of the different forces in the momentum equation relative to each other. The Galilean transformation that leads to minimum peak fluctuation of the convective term is determined. Fourth, an analysis of higher-order statistics is performed. The skewness of the longitudinal derivative of the streamwise velocity is stronger than expected (-1.5 at y+ = 30). This skewness and also the strong near-wall intermittency of the normal velocity are related to coherent structures.

  9. Correlative velocity fluctuations over a gravel river bed

    USGS Publications Warehouse

    Dinehart, Randal L.

    1999-01-01

    Velocity fluctuations in a steep, coarse‐bedded river were measured in flow depths ranging from 0.8 to 2.2 m, with mean velocities at middepth from 1.1 to 3.1 m s−1. Analyses of synchronous velocity records for two and three points in the vertical showed a broad range of high coherence for wave periods from 10 to 100 s, centering around 10–30 s. Streamwise correlations over distances of 9 and 14 m showed convection velocities near mean velocity for the same wave periods. The range of coherent wave periods was a small multiple of predicted “boil” periods. Correlative fluctuations in synchronous velocity records in the vertical direction suggested the blending of short pulses into longer wave periods. The highest spectral densities were measured beyond the range of coherent wave periods and were probably induced by migration of low‐relief bed forms.

  10. Magnetofluid Turbulence in the Solar Wind

    NASA Technical Reports Server (NTRS)

    Goldstein, Melvyn L.

    2008-01-01

    The solar wind shows striking characteristics that suggest that it is a turbulent magnetofluid, but the picture is not altogether simple. From the earliest observations, a strong correlation between magnetic fluctuations and plasma velocity fluctuations was noted. The high corrections suggest that the fluctuations are Alfven waves. In addition, the power spectrum of the magnetic fluctuation showed evidence of an inertial range that resembled that seen in fully-developed fluid turbulence. Alfven waves, however, are exact solutions of the equations of incompressible magnetohydrodynamics. Thus, there was a puzzle: how can a magnetofluid consisting of Alfven waves be turbulent? The answer lay in the role of velocity shears in the solar wind that could drive turbulent evolution. Puzzles remain: for example, the power spectrum of the velocity fluctuations is less steep than the slope of the magnetic fluctuations, nor do we understand even now why the solar wind appears to be nearly incompressible with a -5/3 power-spectral index.

  11. Motion of Euglena gracilis: Active fluctuations and velocity distribution

    NASA Astrophysics Data System (ADS)

    Romanczuk, P.; Romensky, M.; Scholz, D.; Lobaskin, V.; Schimansky-Geier, L.

    2015-07-01

    We study the velocity distribution of unicellular swimming algae Euglena gracilis using optical microscopy and active Brownian particle theory. To characterize a peculiar feature of the experimentally observed distribution at small velocities we use the concept of active fluctuations, which was recently proposed for the description of stochastically self-propelled particles [Romanczuk, P. and Schimansky-Geier, L., Phys. Rev. Lett. 106, 230601 (2011)]. In this concept, the fluctuating forces arise due to internal random performance of the propulsive motor. The fluctuating forces are directed in parallel to the heading direction, in which the propulsion acts. In the theory, we introduce the active motion via the depot model [Schweitzer, et al., Phys. Rev. Lett. 80(23), 5044 (1998)]. We demonstrate that the theoretical predictions based on the depot model with active fluctuations are consistent with the experimentally observed velocity distributions. In addition to the model with additive active noise, we obtain theoretical results for a constant propulsion with multiplicative noise.

  12. On the Development of Turbulent Wakes from Vortex Streets

    NASA Technical Reports Server (NTRS)

    Roshko, Anatol

    1954-01-01

    Wake development behind circular cylinders at Reynolds numbers from 40 to 10,000 was investigated in a low-speed wind tunnel. Standard hot-wire techniques were used to study the velocity fluctuations. The Reynolds number range of periodic vortex shedding is divided into two distinct subranges. At r=40 to 150, called the stable range, regular vortex streets are formed and no turbulent velocity fluctuations accompany the periodic formation of vortices. The range r=150 to 300 is a transition range to a regime called the irregular range, in which turbulent velocity fluctuations accompany the periodic formation of vortices. The turbulence is initiated by laminar-turbulent transition in the free layers which spring from the separation points on the cylinder. The transition first occurs in the range r=150 to 300. Spectrum and statistical measurements were made to study the velocity fluctuations.

  13. Near wakes of advanced turbopropellers

    NASA Technical Reports Server (NTRS)

    Hanson, D. B.; Patrick, W. P.

    1989-01-01

    The flow in the wake of a model single rotation Prop-Fan rotor operating in a wind tunnel was traversed with a hot-wire anemometer system designed to determine the 3 periodic velocity components. Special data acquisition and data reduction methods were required to deal with the high data frequency, narrow wakes, and large fluctuating air angles in the tip vortex region. The model tip helical Mach number was 1.17, simulating the cruise condition. Although the flow field is complex, flow features such as viscous velocity defects, vortex sheets, tip vortices, and propagating acoustic pulses are clearly identified with the aid of a simple analytical wake theory.

  14. Brownian Motion with Active Fluctuations

    NASA Astrophysics Data System (ADS)

    Romanczuk, Pawel; Schimansky-Geier, Lutz

    2011-06-01

    We study the effect of different types of fluctuation on the motion of self-propelled particles in two spatial dimensions. We distinguish between passive and active fluctuations. Passive fluctuations (e.g., thermal fluctuations) are independent of the orientation of the particle. In contrast, active ones point parallel or perpendicular to the time dependent orientation of the particle. We derive analytical expressions for the speed and velocity probability density for a generic model of active Brownian particles, which yields an increased probability of low speeds in the presence of active fluctuations in comparison to the case of purely passive fluctuations. As a consequence, we predict sharply peaked Cartesian velocity probability densities at the origin. Finally, we show that such a behavior may also occur in non-Gaussian active fluctuations and discuss briefly correlations of the fluctuating stochastic forces.

  15. Velocity-Field Measurements of an Axisymmetric Separated Flow Subjected to Amplitude-Modulated Excitation

    NASA Technical Reports Server (NTRS)

    Trosin, Barry James

    2007-01-01

    Active flow control was applied at the point of separation of an axisymmetric, backward-facing-step flow. The control was implemented by employing a Helmholtz resonator that was externally driven by an amplitude-modulated, acoustic disturbance from a speaker located upstream of the wind tunnel. The velocity field of the separating/reattaching flow region downstream of the step was characterized using hotwire velocity measurements with and without flow control. Conventional statistics of the data reveal that the separating/reattaching flow is affected by the imposed forcing. Triple decomposition along with conditional averaging was used to distinguish periodic disturbances from random turbulence in the fluctuating velocity component. A significant outcome of the present study is that it demonstrates that amplitude-modulated forcing of the separated flow alters the flow in the same manner as the more conventional method of periodic excitation.

  16. An experimental study of the velocity-forced flame response of a lean-premixed multi-nozzle can combustor for gas turbines

    NASA Astrophysics Data System (ADS)

    Szedlmayer, Michael Thomas

    The velocity forced flame response of a multi-nozzle, lean-premixed, swirl-stabilized, turbulent combustor was investigated at atmospheric pressure. The purpose of this study was to analyze the mechanisms that allowed velocity fluctuations to cause fluctuations in the rate of heat release in a gas turbine combustor experiencing combustion instability. Controlled velocity fluctuations were introduced to the combustor by a rotating siren device which periodically allowed the air-natural gas mixture to flow. The velocity fluctuation entering the combustor was measured using the two-microphone method. The resulting heat release rate fluctuation was measured using CH* chemiluminescence. The global response of the flame was quantified using the flame transfer function with the velocity fluctuation as the input and the heat release rate fluctuation as the output. Velocity fluctuation amplitude was initially maintained at 5% of the inlet velocity in order to remain in the linear response regime. Flame transfer function measurements were acquired at a wide range of operating conditions and forcing frequencies. The selected range corresponds to the conditions and instability frequencies typical of real gas turbine combustors. Multi-nozzle flame transfer functions were found to bear a qualitative similarity to the single-nozzle flame transfer functions in the literature. The flame transfer function gain exhibited alternating minima and maxima while the phase decreased linearly with increasing forcing frequency. Several normalization techniques were applied to all flame transfer function data in an attempt to collapse the data into a single curve. The best collapse was found to occur using a Strouhal number which was the ratio of the characteristic flame length to the wavelength of the forced disturbance. Critical values of Strouhal number are used to predict the shedding of vortical structures in shear layers. Because of the collapse observed when the flame transfer functions are plotted versus Strouhal number, vortical structures are thought to have a strong influence on the response of this multi-nozzle configuration. The structure of heat release rate fluctuations throughout the flame is analyzed using CH* chemiluminescence acquired with a high speed camera. Flames with a similar level of flame transfer function gain are found to exhibit similarity in the spatial distribution of their heat release rate fluctuations, regardless of the operating condition. Flames with high gain are found to have high amplitude fluctuations near the downstream end of the flame, with weak fluctuations near the flame base. The phase of the downstream fluctuations changes minimally across the downstream region, indicating that they occur inphase. Flames with low gain exhibit stronger fluctuations near the flame base, but weak fluctuations in the downstream region. The phase of the fluctuations near the flame base changes continuously along the flame axis, indicating that parts of the flame will fluctuate out-of-phase. Accordingly, from a global perspective, destructive interference between heat release rate fluctuations in different parts of the flame can be expected. The behavior observed in the flame is ascribed to the interaction of acoustic velocity fluctuations, vortical disturbances and swirl fluctuations. The response of the multi-nozzle flame to high amplitude velocity fluctuations was tested for a single operating condition. Based on the global flame response, most frequencies responded linearly over the tested range of amplitudes. Nonlinear effects were found to occur at three frequencies. The behaviors observed at these frequencies matched those observed in the literature and included flame response saturation and mode triggering. For conditions which responded linearly at all amplitudes, the structure of heat release rate fluctuations was found to remain nearly constant. For conditions with nonlinear behavior, the structure of the fluctuations was a function of the forcing amplitude, particularly in the downstream region. The behavior of the multi-nozzle flame was compared directly to that of a single-nozzle flame of the same nozzle design. The multi-nozzle characteristic flame length was found to be on average 10% longer than for the single-nozzle flame. The flame transfer functions from the two cases were found to exhibit qualitative similarity, where the frequencies at which the extrema occur are similar. The actual value of gain for the same operating condition and frequency does, however, vary by more than a factor of two in some cases. The phase value can also vary by as much as pi radians. These differences indicate that single-nozzle flame transfer functions should not be used directly to predict the instability driving force of real gas turbine combustors.

  17. Will nonlinear peculiar velocity and inhomogeneous reionization spoil 21 cm cosmology from the epoch of reionization?

    PubMed

    Shapiro, Paul R; Mao, Yi; Iliev, Ilian T; Mellema, Garrelt; Datta, Kanan K; Ahn, Kyungjin; Koda, Jun

    2013-04-12

    The 21 cm background from the epoch of reionization is a promising cosmological probe: line-of-sight velocity fluctuations distort redshift, so brightness fluctuations in Fourier space depend upon angle, which linear theory shows can separate cosmological from astrophysical information. Nonlinear fluctuations in ionization, density, and velocity change this, however. The validity and accuracy of the separation scheme are tested here for the first time, by detailed reionization simulations. The scheme works reasonably well early in reionization (≲40% ionized), but not late (≳80% ionized).

  18. Turbulent flame spreading mechanisms after spark ignition

    NASA Astrophysics Data System (ADS)

    Subramanian, V.; Domingo, Pascale; Vervisch, Luc

    2009-12-01

    Numerical simulation of forced ignition is performed in the framework of Large-Eddy Simulation (LES) combined with a tabulated detailed chemistry approach. The objective is to reproduce the flame properties observed in a recent experimental work reporting probability of ignition in a laboratory-scale burner operating with Methane/air non premixed mixture [1]. The smallest scales of chemical phenomena, which are unresolved by the LES grid, are approximated with a flamelet model combined with presumed probability density functions, to account for the unresolved part of turbulent fluctuations of species and temperature. Mono-dimensional flamelets are simulated using GRI-3.0 [2] and tabulated under a set of parameters describing the local mixing and progress of reaction. A non reacting case was simulated at first, to study the unsteady velocity and mixture fields. The time averaged velocity and mixture fraction, and their respective turbulent fluctuations, are compared against the experimental measurements, in order to estimate the prediction capabilities of LES. The time history of axial and radial components of velocity and mixture fraction is cumulated and analysed for different burner regimes. Based on this information, spark ignition is mimicked on selected ignition spots and the dynamics of kernel development analyzed to be compared against the experimental observations. The possible link between the success or failure of the ignition and the flow conditions (in terms of velocity and composition) at the sparking time are then explored.

  19. Simulation of spatially evolving turbulence and the applicability of Taylor's hypothesis in compressible flow

    NASA Technical Reports Server (NTRS)

    Lee, Sangsan; Lele, Sanjiva K.; Moin, Parviz

    1992-01-01

    For the numerical simulation of inhomogeneous turbulent flows, a method is developed for generating stochastic inflow boundary conditions with a prescribed power spectrum. Turbulence statistics from spatial simulations using this method with a low fluctuation Mach number are in excellent agreement with the experimental data, which validates the procedure. Turbulence statistics from spatial simulations are also compared to those from temporal simulations using Taylor's hypothesis. Statistics such as turbulence intensity, vorticity, and velocity derivative skewness compare favorably with the temporal simulation. However, the statistics of dilatation show a significant departure from those obtained in the temporal simulation. To directly check the applicability of Taylor's hypothesis, space-time correlations of fluctuations in velocity, vorticity, and dilatation are investigated. Convection velocities based on vorticity and velocity fluctuations are computed as functions of the spatial and temporal separations. The profile of the space-time correlation of dilatation fluctuations is explained via a wave propagation model.

  20. Measurement of Correlation Between Flow Density, Velocity, and Density*velocity(sup 2) with Far Field Noise in High Speed Jets

    NASA Technical Reports Server (NTRS)

    Panda, Jayanta; Seasholtz, Richard G.; Elam, Kristie A.

    2002-01-01

    To locate noise sources in high-speed jets, the sound pressure fluctuations p', measured at far field locations, were correlated with each of radial velocity v, density rho, and phov(exp 2) fluctuations measured from various points in jet plumes. The experiments follow the cause-and-effect method of sound source identification, where correlation is related to the first, and correlation to the second source terms of Lighthill's equation. Three fully expanded, unheated plumes of Mach number 0.95, 1.4 and 1.8 were studied for this purpose. The velocity and density fluctuations were measured simultaneously using a recently developed, non-intrusive, point measurement technique based on molecular Rayleigh scattering. It was observed that along the jet centerline the density fluctuation spectra S(sub rho) have different shapes than the radial velocity spectra S(sub v), while data obtained from the peripheral shear layer show similarity between the two spectra. Density fluctuations in the jet showed significantly higher correlation, than either rhov(sub 2) or v fluctuations. It is found that a single point correlation from the peak sound emitting region at the end of the potential core can account for nearly 10% of all noise at 30 to the jet axis. The correlation, representing the effectiveness of a longitudinal quadrupole in generating noise 90 to the jet axis, is found to be zero within experimental uncertainty. In contrast rhov(exp 2) fluctuations were better correlated with sound pressure fluctuation at the 30 location. The strongest source of sound is found to lie at the centerline and beyond the end of potential core.

  1. Faraday rotation fluctutation spectra observed during solar occultation of the Helios spacecraft

    NASA Technical Reports Server (NTRS)

    Andreev, V.; Efimov, A. I.; Samoznaev, L.; Bird, M. K.

    1995-01-01

    Faraday rotation (FR) measurements using linearly polarized radio signals from the two Helios spacecraft were carried out during the period from 1975 to 1984. This paper presents the results of a spectral analysis of the Helios S-band FR fluctuations observed at heliocentric distances from 2.6 to 15 solar radii during the superior conjunctions 1975-1983. The mean intensity of the FR fluctuations does not exceed the noise level for solar offsets greater than ca. 15 solar radii. The rms FR fluctuation amplitude increases rapidly as the radio ray path approaches the Sun, varying according to a power law (exponent: 2.85 +/- 0.15) at solar distances 4-12 solar radii. At distances inside 4 solar radii the increase is even steeper (exponent: 5.6 +/- 0.2). The equivalent two-dimensional FR fluctuation spectrum is well modeled by a single power-law over the frequency range from 5 to 50 mHz. For heliocentric distances larger than 4 solar radii the spectral index varies between 1.1 and 1.6 with a mean value of 1.4 +/- 0.2, corresponding to a 3-D spectral index p = 2.4. FR fluctuations thus display a somwhat lower spectral index compared with phase and amplitude fluctuations. Surprisingly high values of the spectral index were found for measurements inside 4 solar radii (p = 2.9 +/- 0.2). This may arise from the increasingly dominant effect of the magnetic field on radio wave propagation at small solar offsets. Finally, a quasiperiodic component, believed to be associated with Alfven waves, was discovered in some (but not all!) fluctuation spectra observed simultaneously at two ground stations. Characteristic periods and bulk velocities of this component were 240 +/- 30 sec and 300 +/- 60 km/s, respectively.

  2. DISCOVERY OF RELATIVISTIC OUTFLOW IN THE SEYFERT GALAXY Ark 564

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, A.; Mathur, S.; Krongold, Y.

    2013-07-20

    We present Chandra High Energy Transmission Grating Spectra of the narrow-line Seyfert-1 galaxy Ark 564. The spectrum shows numerous absorption lines which are well modeled with low-velocity outflow components usually observed in Seyfert galaxies. There are, however, some residual absorption lines which are not accounted for by low-velocity outflows. Here, we present identifications of the strongest lines as K{alpha} transitions of O VII (two lines) and O VI at outflow velocities of {approx}0.1c. These lines are detected at 6.9{sigma}, 6.2{sigma}, and 4.7{sigma}, respectively, and cannot be due to chance statistical fluctuations. Photoionization models with ultra-high velocity components improve the spectralmore » fit significantly, providing further support for the presence of relativistic outflow in this source. Without knowing the location of the absorber, its mass and energy outflow rates cannot be well constrained; we find E-dot (outflow)/L{sub bol} lower limit of {>=}0.006% assuming a bi-conical wind geometry. This is the first time that absorption lines with ultra-high velocities are unambiguously detected in the soft X-ray band. The presence of outflows with relativistic velocities in active galactic nuclei (AGNs) with Seyfert-type luminosities is hard to understand and provides valuable constraints to models of AGN outflows. Radiation pressure is unlikely to be the driving mechanism for such outflows and magnetohydrodynamic may be involved.« less

  3. Compressible turbulence measurements in a supersonic boundary layer including favorable pressure gradient effects

    NASA Astrophysics Data System (ADS)

    Miller, Raymond S.

    1994-12-01

    The effect of a favorable pressure gradient on the turbulent flow structure in a Mach 2.9 boundary layer (Re/m approximately equal to 1.5 x 10(exp 7)) is investigated experimentally. Conventional flow and hot film measurements of turbulent fluctuation properties have been made upstream of and along an expansion ramp. Upstream measurements were taken in a zero pressure gradient boundary layer 44 cm from the nozzle throat in a 6.35 cm square test section. Measurements are obtained in the boundary layer, above the expansion ramp, 71.5 cm from the nozzle throat. Mean flow and turbulent flow characteristics are measured in all three dimensions. Comparisons are made between data obtained using single and multiple-overheat cross-wire anemometry as well as conventional mean flow probes. Conventional flow measurements were taken using a Pitot probe and a 10 degree cone static probe. Flow visualization was conducted via imaging techniques (Schlieren and shadowgraph photographs). Results suggest that compressibility effects, as seen through the density fluctuations in the Reynolds shear stress, are roughly 10% relative to the mean velocity and are large relative to the velocity fluctuations. This is also observed in the total Reynolds shear stress; compressibility accounts for 50-75% of the total shear. This is particularly true in the favorable pressure gradient region, where though the peak fluctuation intensities are diminished, the streamwise component of the mean flow is larger, hence the contribution of the compressibility term is significant in the Reynolds shear.

  4. Interaction of weakly compressible isotropic turbulence with planar expansion waves: Flow anisotropy and vorticity alignment

    NASA Astrophysics Data System (ADS)

    Xanthos, Savvas; Gong, Minwei; Andreopoulos, Yiannis

    2010-01-01

    Further analysis of the experimental data of the velocity gradient tensor first published by Xanthos et al. [J. Fluid Mech. 584, 301 (2007)] has been carried out and new results are reported here to provide additional insights on the effects of expansion waves interacting with isotropic turbulence. The flow field was generated by the reflection of an incoming shock wave at the open end of a large scale shock tube facility which interacted with the induced flow behind the incident shock wave which passed through a turbulence generating grid. In the present configuration the interaction is free from streamline curvature effects, which cause additional effects on turbulence. The strength of the applied expansive straining was 240 s-1. Rectangular pattern grids of different mesh sizes were used to generate isotropic and homogeneous turbulence with turbulent Reynolds number Reλ based on Taylor's microscale between 450 and 488. Lateral vorticity fluctuations and fluctuations of enstrophy and all stretching vector components are drastically reduced during the interaction. Residual attenuation in the postinteraction flow field was found only in the lateral vorticity fluctuations and in the longitudinal stretching term S11Ω1. Helicity and the helicity angle were computed from the data and the orientation angle of the vorticity vector in reference to the velocity vector was determined. Large fluctuations of the helicity angle were observed which extend from 0° to 180° with most probable values close to 30° and 130° and a mean value of 85°. Rotational dissipation rate was found to be high at these angles. The time-dependent signals of enstrophy, vortex stretching/tilting vector, and dissipation rate were found to exhibit a rather strong intermittent behavior which is characterized by high amplitude bursts followed by low level activities. It was found that the observed strong dissipative events are mostly associated with strong activities in the longitudinal stretching S11Ω1 rather than with events in the lateral components.

  5. Output power fluctuations due to different weights of macro particles used in particle-in-cell simulations of Cerenkov devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bao, Rong; Li, Yongdong; Liu, Chunliang

    2016-07-15

    The output power fluctuations caused by weights of macro particles used in particle-in-cell (PIC) simulations of a backward wave oscillator and a travelling wave tube are statistically analyzed. It is found that the velocities of electrons passed a specific slow-wave structure form a specific electron velocity distribution. The electron velocity distribution obtained in PIC simulation with a relative small weight of macro particles is considered as an initial distribution. By analyzing this initial distribution with a statistical method, the estimations of the output power fluctuations caused by different weights of macro particles are obtained. The statistical method is verified bymore » comparing the estimations with the simulation results. The fluctuations become stronger with increasing weight of macro particles, which can also be determined reversely from estimations of the output power fluctuations. With the weights of macro particles optimized by the statistical method, the output power fluctuations in PIC simulations are relatively small and acceptable.« less

  6. Turbulence and Global Properties of the Solar Wind

    NASA Technical Reports Server (NTRS)

    Goldstein, Melvyn L.

    2007-01-01

    The solar wind shows striking characteristics that suggest that it is a turbulent magnetofluid, but the picture is not altogether simple. From the earliest observations, a strong correlation between magnetic fluctuations and plasma velocity fluctuations as noted. The high corrections suggest that the fluctuations are Alven waves. In addition, the power spectrum of the magnetic fluctuation showed evidence of an inertial range that resembled that seen in fully-developed fluid turbulence. Alfven waves, however, are exact solutions of the equations of an incompressible magnetohydrodynamics. Thus, there was a puzzle: how can a magnetofluid consisting of Alfven waves be turbulent? The answer lay in the role of velocity shears in the solar wind that could drive turbulent evolution. Puzzles remain: for example, the power spectrum of the velocity fluctuations is less steep than the slope of the magnetic fluctuations. The plasma in the magnetic tail of Earth's magnetosphere also shows aspects of turbulence, as does the plasma in the dayside magnetosphere near the poles--the so-called dayside cusps.

  7. Measurement of the dynamo effect in a plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, H.; Prager, S.C.; Almagri, A.F.

    1995-11-01

    A series of the detailed experiments has been conducted in three laboratory plasma devices to measure the dynamo electric field along the equilibrium field line (the {alpha} effect) arising from the correlation between the fluctuating flow velocity and magnetic field. The fluctuating flow velocity is obtained from probe measurement of the fluctuating E x B drift and electron diamagnetic drift. The three major findings are (1) the {alpha} effect accounts for the dynamo current generation, even in the time dependence through a ``sawtooth`` cycle; (2) at low collisionality the dynamo is explained primarily by the widely studied pressureless Magnetohydrodynamic (MHD)more » model, i.e., the fluctuating velocity is dominated by the E x B drift; (3) at high collisionality, a new ``electron diamagnetic dynamo`` is observed, in which the fluctuating velocity is dominated by the diamagnetic drift. In addition, direct measurements of the helicity flux indicate that the dynamo activity transports magnetic helicity from one part of the plasma to another, but the total helicity is roughly conserved, verifying J.B. Taylor`s conjecture.« less

  8. Center of pressure velocity reflects body acceleration rather than body velocity during quiet standing.

    PubMed

    Masani, Kei; Vette, Albert H; Abe, Masaki O; Nakazawa, Kimitaka

    2014-03-01

    The purpose of this study was to test the hypothesis that the center of pressure (COP) velocity reflects the center of mass (COM) acceleration due to a large derivative gain in the neural control system during quiet standing. Twenty-seven young (27.2±4.5 years) and twenty-three elderly (66.2±5.0 years) subjects participated in this study. Each subject was requested to stand quietly on a force plate for five trials, each 90 s long. The COP and COM displacements, the COP and COM velocities, and the COM acceleration were acquired via a force plate and a laser displacement sensor. The amount of fluctuation of each variable was quantified using the root mean square. Following the experimental study, a simulation study was executed to investigate the experimental findings. The experimental results revealed that the COP velocity was correlated with the COM velocity, but more highly correlated with the COM acceleration. The equation of motion of the inverted pendulum model, however, accounts only for the correlation between the COP and COM velocities. These experimental results can be meaningfully explained by the simulation study, which indicated that the neural motor command presumably contains a significant portion that is proportional to body velocity. In conclusion, the COP velocity fluctuation reflects the COM acceleration fluctuation rather than the COM velocity fluctuation, implying that the neural motor command controlling quiet standing posture contains a significant portion that is proportional to body velocity. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Modeling space-time correlations of velocity fluctuations in wind farms

    NASA Astrophysics Data System (ADS)

    Lukassen, Laura J.; Stevens, Richard J. A. M.; Meneveau, Charles; Wilczek, Michael

    2018-07-01

    An analytical model for the streamwise velocity space-time correlations in turbulent flows is derived and applied to the special case of velocity fluctuations in large wind farms. The model is based on the Kraichnan-Tennekes random sweeping hypothesis, capturing the decorrelation in time while including a mean wind velocity in the streamwise direction. In the resulting model, the streamwise velocity space-time correlation is expressed as a convolution of the pure space correlation with an analytical temporal decorrelation kernel. Hence, the spatio-temporal structure of velocity fluctuations in wind farms can be derived from the spatial correlations only. We then explore the applicability of the model to predict spatio-temporal correlations in turbulent flows in wind farms. Comparisons of the model with data from a large eddy simulation of flow in a large, spatially periodic wind farm are performed, where needed model parameters such as spatial and temporal integral scales and spatial correlations are determined from the large eddy simulation. Good agreement is obtained between the model and large eddy simulation data showing that spatial data may be used to model the full temporal structure of fluctuations in wind farms.

  10. Exploration of thermal counterflow in He II using particle tracking velocimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mastracci, Brian; Guo, Wei

    Flow visualization using particle image velocimetry (PIV) and particularly particle tracking velocimetry (PTV) has been applied to thermal counterflow in He II for nearly two decades now, but the results remain difficult to interpret because tracer particle motion can be influenced by both the normal fluid and superfluid components of He II as well as the quantized vortex tangle. For instance, in one early experiment it was observed (using PTV) that tracer particles move at the normal fluid velocity v n, while in another it was observed (using PIV) that particles move at v n/2. Besides the different visualization methods,more » the range of applied heat flux investigated by these experiments differed by an order of magnitude. To resolve this apparent discrepancy and explore the statistics of particle motion in thermal counterflow, we apply the PTV method to a wide range of heat flux at a number of different fluid temperatures. In our analysis, we introduce a scheme for analyzing the velocity of particles presumably moving with the normal fluid separately from those presumably influenced by the quantized vortex tangle. Our results show that for lower heat flux there are two distinct peaks in the streamwise particle velocity probability density function (PDF), with one centered at the normal fluid velocity v n (named G2 for convenience) while the other is centered near v n/2 (G1). For higher heat flux there is a single peak centered near v n/2 (G3). Using our separation scheme, we show quantitatively that there is no size difference between the particles contributing to G1 and G2. We also show that nonclassical features of the transverse particle velocity PDF arise entirely from G1, while the corresponding PDF for G2 exhibits the classical Gaussian form. The G2 transverse velocity fluctuation, backed up by second sound attenuation in decaying counterflow, suggests that large-scale turbulence in the normal fluid is absent from the two-peak region. We offer a brief discussion of the physical mechanisms that may be responsible for our observations, revealing that G1 velocity fluctuations may be linked to fluctuations of quantized vortex line velocity, and suggest a number of numerical simulations that may reveal the underlying physics in detail.« less

  11. Exploration of thermal counterflow in He II using particle tracking velocimetry

    DOE PAGES

    Mastracci, Brian; Guo, Wei

    2018-06-22

    Flow visualization using particle image velocimetry (PIV) and particularly particle tracking velocimetry (PTV) has been applied to thermal counterflow in He II for nearly two decades now, but the results remain difficult to interpret because tracer particle motion can be influenced by both the normal fluid and superfluid components of He II as well as the quantized vortex tangle. For instance, in one early experiment it was observed (using PTV) that tracer particles move at the normal fluid velocity v n, while in another it was observed (using PIV) that particles move at v n/2. Besides the different visualization methods,more » the range of applied heat flux investigated by these experiments differed by an order of magnitude. To resolve this apparent discrepancy and explore the statistics of particle motion in thermal counterflow, we apply the PTV method to a wide range of heat flux at a number of different fluid temperatures. In our analysis, we introduce a scheme for analyzing the velocity of particles presumably moving with the normal fluid separately from those presumably influenced by the quantized vortex tangle. Our results show that for lower heat flux there are two distinct peaks in the streamwise particle velocity probability density function (PDF), with one centered at the normal fluid velocity v n (named G2 for convenience) while the other is centered near v n/2 (G1). For higher heat flux there is a single peak centered near v n/2 (G3). Using our separation scheme, we show quantitatively that there is no size difference between the particles contributing to G1 and G2. We also show that nonclassical features of the transverse particle velocity PDF arise entirely from G1, while the corresponding PDF for G2 exhibits the classical Gaussian form. The G2 transverse velocity fluctuation, backed up by second sound attenuation in decaying counterflow, suggests that large-scale turbulence in the normal fluid is absent from the two-peak region. We offer a brief discussion of the physical mechanisms that may be responsible for our observations, revealing that G1 velocity fluctuations may be linked to fluctuations of quantized vortex line velocity, and suggest a number of numerical simulations that may reveal the underlying physics in detail.« less

  12. Implication of Taylor's hypothesis on amplitude modulation

    NASA Astrophysics Data System (ADS)

    Howland, Michael; Yang, Xiang

    2017-11-01

    Amplitude modulation is a physical phenomenon which describes the non-linear inter-scale interaction between large and small scales in a turbulent wall-bounded flow. The amplitude of the small scale fluctuations are modulated by the large scale flow structures. Due to the increase of amplitude modulation as a function of Reynolds number (Reτ = δuτ / ν), this phenomenon is frequently studied using experimental temporal 1D signals, taken using hot-wire anemometry. Typically, Taylor's frozen turbulence hypothesis has been invoked where the convection by velocity fluctuations is neglected and the mean velocity is used as the convective velocity. At high Reynolds numbers, turbulent fluctuations are comparable to the mean velocity in the near wall region (y+ O(10)), and as a result, using a constant global convective velocity systematically locally compresses or stretches a velocity signal when converting from temporal to spatial domain given a positive or negative fluctuation respectively. Despite this, temporal hot-wire data from wind tunnel or field experiments of high Reynolds number boundary layer flows can still be used for measuring modulation provided that the local fluid velocity is used as the local convective velocity. MH is funded through the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1656518 and the Stanford Graduate Fellowship. XY is funded by the US AFOSR, Grant No. 1194592-1-TAAHO monitored by Dr. Ivett Leyva.

  13. Study of solar photospheric MHD oscillations: Observations with MDI, ASP and MWO

    NASA Astrophysics Data System (ADS)

    Norton, Aimee Ann

    Magnetodydrodynamical waves are expected to be an important energy transport mechanism in the solar atmosphere. This thesis uses data from a spectro-polarimeter and longitudinal magnetographs to study characteristics of magneto-hydrodynamical oscillations at photospheric heights. Significant oscillatory magnetic power is observed with the Michelson Doppler Imager in three frequency regimes: 0.5--1.0, 3.0--3.5 and 5.5--6.0 mHz corresponding to timescales of magnetic evolution, p-modes and the three minute resonant sunspot oscillation. Spatial distribution of magnetogram oscillatory power exhibits the same general features in numerous datasets. Low frequency magnetogram power is found in rings with filamentary structure surrounding sunspots. Five minute power peaks in extended regions of plage. Three minute oscillations are observed in sunspot umbra. Phase angles between velocity and magnetic fluctuations are found to be approximately -90°, a signature of magnetoacoustic waves, in disk-center active region data. Phase dependence upon observation angle is established through sunspot values decreasing from -100° at disk-center towards -31° at the limb, confirming greater Alfen wave visibility at the limb. Consistent propagation direction or field-aligned velocities explain an unexpected phase jump from negative to positive values for divergent sunspot fields observed away from disk-center. Simultaneously obtained Stokes profiles and longitudinal magnetogram maps of a positive plage region provide time series which could be compared. The velocity signals are in excellent agreement. Magnetic flux correlates best with fluctuations in filling factor, not inclination angle or field strength, implying the responsible physical mechanism is internally unperturbed flux tubes being buffeted by external pressure fluctuations. Sampling signals from different heights of formation provides slight phase shifts and large propagation speeds for velocity, indicative of modified standing waves. Phase speeds associated with magnetic signals are characteristic of photospheric Alfven speeds for plage fields. The phase speed increase with height agrees with the altitude dependence of the Alfven speed. Observed fluctuations, phase angles and phase lags are interpreted as a superposition of signatures from the horizontal component of the driving mechanism sweeping the field lines in/out of the resolution area and the magnetic response of the flux tube to this buffeting.

  14. Strongly coupled fluid-particle flows in vertical channels. I. Reynolds-averaged two-phase turbulence statistics

    NASA Astrophysics Data System (ADS)

    Capecelatro, Jesse; Desjardins, Olivier; Fox, Rodney O.

    2016-03-01

    Simulations of strongly coupled (i.e., high-mass-loading) fluid-particle flows in vertical channels are performed with the purpose of understanding the fundamental physics of wall-bounded multiphase turbulence. The exact Reynolds-averaged (RA) equations for high-mass-loading suspensions are presented, and the unclosed terms that are retained in the context of fully developed channel flow are evaluated in an Eulerian-Lagrangian (EL) framework for the first time. A key distinction between the RA formulation presented in the current work and previous derivations of multiphase turbulence models is the partitioning of the particle velocity fluctuations into spatially correlated and uncorrelated components, used to define the components of the particle-phase turbulent kinetic energy (TKE) and granular temperature, respectively. The adaptive spatial filtering technique developed in our previous work for homogeneous flows [J. Capecelatro, O. Desjardins, and R. O. Fox, "Numerical study of collisional particle dynamics in cluster-induced turbulence," J. Fluid Mech. 747, R2 (2014)] is shown to accurately partition the particle velocity fluctuations at all distances from the wall. Strong segregation in the components of granular energy is observed, with the largest values of particle-phase TKE associated with clusters falling near the channel wall, while maximum granular temperature is observed at the center of the channel. The anisotropy of the Reynolds stresses both near the wall and far away is found to be a crucial component for understanding the distribution of the particle-phase volume fraction. In Part II of this paper, results from the EL simulations are used to validate a multiphase Reynolds-stress turbulence model that correctly predicts the wall-normal distribution of the two-phase turbulence statistics.

  15. Strongly coupled fluid-particle flows in vertical channels. I. Reynolds-averaged two-phase turbulence statistics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capecelatro, Jesse, E-mail: jcaps@illinois.edu; Desjardins, Olivier; Fox, Rodney O.

    Simulations of strongly coupled (i.e., high-mass-loading) fluid-particle flows in vertical channels are performed with the purpose of understanding the fundamental physics of wall-bounded multiphase turbulence. The exact Reynolds-averaged (RA) equations for high-mass-loading suspensions are presented, and the unclosed terms that are retained in the context of fully developed channel flow are evaluated in an Eulerian–Lagrangian (EL) framework for the first time. A key distinction between the RA formulation presented in the current work and previous derivations of multiphase turbulence models is the partitioning of the particle velocity fluctuations into spatially correlated and uncorrelated components, used to define the components ofmore » the particle-phase turbulent kinetic energy (TKE) and granular temperature, respectively. The adaptive spatial filtering technique developed in our previous work for homogeneous flows [J. Capecelatro, O. Desjardins, and R. O. Fox, “Numerical study of collisional particle dynamics in cluster-induced turbulence,” J. Fluid Mech. 747, R2 (2014)] is shown to accurately partition the particle velocity fluctuations at all distances from the wall. Strong segregation in the components of granular energy is observed, with the largest values of particle-phase TKE associated with clusters falling near the channel wall, while maximum granular temperature is observed at the center of the channel. The anisotropy of the Reynolds stresses both near the wall and far away is found to be a crucial component for understanding the distribution of the particle-phase volume fraction. In Part II of this paper, results from the EL simulations are used to validate a multiphase Reynolds-stress turbulence model that correctly predicts the wall-normal distribution of the two-phase turbulence statistics.« less

  16. An experimental study of airfoil-spoiler aerodynamics

    NASA Technical Reports Server (NTRS)

    Mclachlan, B. G.; Karamcheti, K.

    1985-01-01

    The steady/unsteady flow field generated by a typical two dimensional airfoil with a statically deflected flap type spoiler was investigated. Subsonic wind tunnel tests were made over a range of parameters: spoiler deflection, angle of attack, and two Reynolds numbers; and comprehensive measurements of the mean and fluctuating surface pressures, velocities in the boundary layer, and velocities in the wake. Schlieren flow visualization of the near wake structure was performed. The mean lift, moment, and surface pressure characteristics are in agreement with previous investigations of spoiler aerodynamics. At large spoiler deflections, boundary layer character affects the static pressure distribution in the spoiler hingeline region; and, the wake mean velocity fields reveals a closed region of reversed flow aft of the spoiler. It is shown that the unsteady flow field characteristics are as follows: (1) the unsteady nature of the wake is characterized by vortex shedding; (2) the character of the vortex shedding changes with spoiler deflection; (3) the vortex shedding characteristics are in agreement with other bluff body investigations; and (4) the vortex shedding frequency component of the fluctuating surface pressure field is of appreciable magnitude at large spoiler deflections. The flow past an airfoil with deflected spoiler is a particular problem in bluff body aerodynamics is considered.

  17. Trip-Induced Transition Measurements in a Hypersonic Boundary Layer Using Molecular Tagging Velocimetry

    NASA Technical Reports Server (NTRS)

    Bathel, Brett F.; Danehy, Paul M.; Jones, Stephen B.; Johansen, Craig T.; Goyne, Christopher P.

    2013-01-01

    Measurements of mean streamwise velocity, fluctuating streamwise velocity, and instantaneous streamwise velocity profiles in a hypersonic boundary layer were obtained over a 10-degree half-angle wedge model. A laser-induced fluorescence-based molecular tagging velocimetry technique was used to make the measurements. The nominal edge Mach number was 4.2. Velocity profiles were measured both in an untripped boundary layer and in the wake of a 4-mm diameter cylindrical tripping element centered 75.4 mm downstream of the sharp leading edge. Three different trip heights were investigated: k = 0.53 mm, k = 1.0 mm and k = 2.0 mm. The laminar boundary layer thickness at the position of the measurements was approximately 1 mm, though the exact thickness was dependent on Reynolds number and wall temperature. All of the measurements were made starting from a streamwise location approximately 18 mm downstream of the tripping element. This measurement region continued approximately 30 mm in the streamwise direction. Additionally, measurements were made at several spanwise locations. An analysis of flow features show how the magnitude, spatial location, and spatial growth of streamwise velocity instabilities are affected by parameters such as the ratio of trip height to boundary layer thickness and roughness Reynolds number. The fluctuating component of streamwise velocity measured along the centerline of the model increased from approximately 75 m/s with no trip to +/-225 m/s with a 0.53-mm trip, and to +/-240 m/s with a 1-mm trip, while holding the freestream Reynolds number constant. These measurements were performed in the 31-inch Mach 10 Air Tunnel at the NASA Langley Research Center.

  18. Generation of large-scale magnetic fields by small-scale dynamo in shear flows

    NASA Astrophysics Data System (ADS)

    Squire, Jonathan; Bhattacharjee, Amitava

    2015-11-01

    A new mechanism for turbulent mean-field dynamo is proposed, in which the magnetic fluctuations resulting from a small-scale dynamo drive the generation of large-scale magnetic fields. This is in stark contrast to the common idea that small-scale magnetic fields should be harmful to large-scale dynamo action. These dynamos occur in the presence of large-scale velocity shear and do not require net helicity, resulting from off-diagonal components of the turbulent resistivity tensor as the magnetic analogue of the ``shear-current'' effect. The dynamo is studied using a variety of computational and analytic techniques, both when the magnetic fluctuations arise self-consistently through the small-scale dynamo and in lower Reynolds number regimes. Given the inevitable existence of non-helical small-scale magnetic fields in turbulent plasmas, as well as the generic nature of velocity shear, the suggested mechanism may help to explain generation of large-scale magnetic fields across a wide range of astrophysical objects. This work was supported by a Procter Fellowship at Princeton University, and the US Department of Energy Grant DE-AC02-09-CH11466.

  19. Coexistence of Velocity Renormalization and Ferrimagnetic Fluctuation in the Organic Dirac Electron System α-(BEDT-TTF)2I3

    NASA Astrophysics Data System (ADS)

    Matsuno, Genki; Kobayashi, Akito

    2018-05-01

    We evaluate the uniform spin susceptibility in an extended Hubbard model describing α-(BEDT-TTF)2I3. Employing the Fock-type self-energy with the long-range Coulomb interaction and the random phase approximation with the on-site Coulomb interaction, it is clarified that the characteristic energy scales at which ferrimagnetic fluctuation and velocity renormalization emerge are different. This is why these phenomena coexist while the ferrimagnetic fluctuation is disturbed by the velocity renormalization. In addition, it is found that screening effect to the self-energy is irrelevant in the presence of a strong on-site Coulomb interaction U.

  20. The alpha dynamo parameter and measurability of helicities in magnetohydrodynamic turbulence

    NASA Technical Reports Server (NTRS)

    Matthaeus, W. H.; Goldstein, M. L.; Lantz, S. R.

    1986-01-01

    Alpha, an important parameter in dynamo theory, is shown to be proportional to either the kinetic, current, magnetic, or velocity helicities of the fluctuating magnetic field and fluctuating velocity field. The particular helicity to which alpha is proportional depends on the assumptions used in deriving the first-order smoothed equations that describe the alpha effect. In two cases, viz., when alpha is proportional to either the magnetic helicity or velocity helicity, alpha can be determined experimentally from two-point measurements of the fluctuating fields in incompressible, homogeneous turbulence with arbitrary rotational symmetry. For the other two possibilities, alpha can be determined if the turbulence is isotropic.

  1. Velocity-Vorticity Correlation Structure in Turbulent Channel Flow

    NASA Astrophysics Data System (ADS)

    Chen, J.; Pei, J.; She, Z. S.; Hussain, F.

    2011-09-01

    We present a new definition of statistical structure — velocity-vorticity correlation structure (VVCS) — based on amplitude distributions of the tensor field of normalized velocity-vorticity correlation (uiωj), and show that it displays the geometry of the statistical structure relevant to a given reference point, and it effectively captures coherent motions in inhomogeneous shear flows. The variation of the extracted objects moving with the reference point yr+ then presents a full picture of statistical structures for the flow, which goes beyond the traditional view of searching for reference-independent structures. Application to turbulent channel flow simulation data at Reτ = 180 demonstrates that the VVCS successfully captures, qualitatively and quantitatively, the near-wall streaks, the streamwise vortices [1,2], and their extensions up to yr+ = 110 with variations of their length and inclination angle. More interestingly, the VVCS associated with the streamwise velocity component (particularly (uωx ( and (uωz) displays topological change at four distances from the wall (with transitions at yr+≈20,40,60,110), giving rise to a geometrical interpretation of the multi-layer structure of wall-bounded turbulence. Specifically, we find that the VVCS of (uωz( bifurcates at yr+ = 40 with one attached to the wall and the other near the reference location. The VVCS of (uωx) is blob-like in the center region, quite different from a pair of elongated and inclined objects near the wall. The propagation speeds of the velocity components in the near-wall region, y+ ≤ 10, is found to be characterized by the same stream-wise correlation structures of (uωx) and (uωz), whose core is located at y+≈20. As a result, the convection of the velocity fluctuations always reveal the constant propagation speeds in the near-wall region. The coherent motions parallel to the wall plays an important role in determining the propagation of the velocity fluctuations. This study suggests that a variable set of geometrical structures should be invoked for the study of turbulence structures and for modeling mean flow properties in terms of structures. The method and the concept presented here are general for the study of other flow systems (like boundary or mixing layer), as long as ensemble averaging is well-defined.

  2. Suppression of the Near Wall Burst Process of a Fully Developed Turbulent Pipe Flow

    DTIC Science & Technology

    1993-05-01

    tunmel turbulent boundary layer a) velocity fluctuation skewness levels and b) velocity fluctuation kurtosis levels ...by the undisturbed total uv level and u*. a) quadrants I and 2 and b) quadrants 3 and 4 ...................... 105 5.20 Spanwise development of the uw...and radial velocity skewness levels . Normalization with ref. u". .............................. 111 xi 5.23 Spanwise development of profi!s of the

  3. Development of a Rayleigh Scattering Diagnostic for Time-Resolved Gas Flow Velocity, Temperature, and Density Measurements in Aerodynamic Test Facilities

    NASA Technical Reports Server (NTRS)

    Mielke, Amy F.; Elam, Kristie A.; Sung, Chih-Jen

    2007-01-01

    A molecular Rayleigh scattering technique is developed to measure time-resolved gas velocity, temperature, and density in unseeded turbulent flows at sampling rates up to 32 kHz. A high power continuous-wave laser beam is focused at a point in an air flow field and Rayleigh scattered light is collected and fiber-optically transmitted to the spectral analysis and detection equipment. The spectrum of the light, which contains information about the temperature and velocity of the flow, is analyzed using a Fabry-Perot interferometer. Photomultiplier tubes operated in the photon counting mode allow high frequency sampling of the circular interference pattern to provide time-resolved flow property measurements. An acoustically driven nozzle flow is studied to validate velocity fluctuation measurements, and an asymmetric oscillating counterflow with unequal enthalpies is studied to validate the measurement of temperature fluctuations. Velocity fluctuations are compared with constant temperature anemometry measurements and temperature fluctuations are compared with constant current anemometry measurements at the same locations. Time-series and power spectra of the temperature and velocity measurements are presented. A numerical simulation of the light scattering and detection process was developed and compared with experimental data for future use as an experiment design tool.

  4. Regulation of pressure anisotropy in the solar wind: processes within inertial range of turbulence

    NASA Astrophysics Data System (ADS)

    Strumik, M.; Schekochihin, A. A.; Squire, J.; Bale, S. D.

    2016-12-01

    Dynamics of weakly collisional plasmas may lead to thermal pressure anisotropies that are driven by velocity shear, plasma expansion/compression or temperature gradients. The pressure anisotropies can provide free energy for the growth of micro-scale instabilities, like the mirror of firehose instabilities, that are commonly believed to constrain the pressure anisotropy in the solar wind if appropriate thresholds are exceeded. We discuss possible alternative mechanisms of regulation of the pressure anisotropy in the inertial range of solar wind turbulence that provide β-dependent constraints on the amplitude of fluctuations of pressure components and other quantities. In particular it is shown that double-adiabatic (CGL) closure for magnetohydrodynamic regime leads to 1/β scaling of the amplitude of the pressure component fluctuations and the pressure anisotropy. Both freely decaying and forced turbulence are discussed based on results of 3D numerical simulations and analytical theoretical predictions. The theoretical results are contrasted with WIND spacecraft measurements.

  5. Discrete-vortex simulation of pulsating flow on a turbulent leading-edge separation bubble

    NASA Technical Reports Server (NTRS)

    Sung, Hyung Jin; Rhim, Jae Wook; Kiya, Masaru

    1992-01-01

    Studies are made of the turbulent separation bubble in a two-dimensional semi-infinite blunt plate aligned to a uniform free stream with a pulsating component. The discrete-vortex method is applied to simulate this flow situation because this approach is effective for representing the unsteady motions of the turbulent shear layer and the effect of viscosity near the solid surface. The numerical simulation provides reasonable predictions when compared with the experimental results. A particular frequency with a minimum reattachment is related to the drag reduction. The most effective frequency is dependent on the amplified shedding frequency. The turbulent flow structure is scrutinized. This includes the time-mean and fluctuations of the velocity and the surface pressure, together with correlations between the fluctuating components. A comparison between the pulsating flow and the non-pulsating flow at the particular frequency of the minimum reattachment length of the separation bubble suggests that the large-scale vortical structure is associated with the shedding frequency and the flow instabilities.

  6. Turbulence and Global Properties of the Solar Wind

    NASA Technical Reports Server (NTRS)

    Goldstein, Melvyn L.

    2010-01-01

    The solar wind shows striking characteristics that suggest that it is a turbulent magnetofluid, but the picture is not altogether simple. From the earliest observations, a strong correlation between magnetic fluctuations and plasma velocity fluctuations was noted. The high corrections suggest that the fluctuations are Alfven waves. In addition, the power spectrum of the magnetic fluctuation showed evidence of an inertial range that resembled that seen in fully-developed fluid turbulence. Alfven waves, however, are exact solutions of the equations of incompressible magnetohydrodynamics. Thus, there was a puzzle: how can a magnetofluid consisting of Alfven waves be turbulent? The answer lay in the role of velocity shears in the solar wind that could drive turbulent evolution. Puzzles remain: for example, the power spectrum of the velocity fluctuations is less steep than the slope of the magnetic fluctuations. The plasma in the magnetic tail of Earth's magnetosphere also shows aspects of turbulence, as does the plasma in the dayside magnetosphere near the poles the dayside cusps. Recently, new analyses of high time resolution magnetic field data from Cluster have offered a glimpse of how turbulence is dissipated, thus heating the ambient plasma.

  7. Effect of pressure fluctuations on Richtmyer-Meshkov coherent structures

    NASA Astrophysics Data System (ADS)

    Bhowmick, Aklant K.; Abarzhi, Snezhana

    2016-11-01

    We investigate the formation and evolution of Richtmyer Meshkov bubbles after the passage of a shock wave across a two fluid interface in the presence of pressure fluctuations. The fluids are ideal and incompressible and the pressure fluctuations are scale invariant in space and time, and are modeled by a power law time dependent acceleration field with exponent -2. Solutions indicate sensitivity to pressure fluctuations. In the linear regime, the growth of curvature and bubble velocity is linear. The growth rate is dominated by the initial velocity for weak pressure fluctuations, and by the acceleration term for strong pressure fluctuations. In the non-linear regime, the bubble curvature is constant and the solutions form a one parameter family (parametrized by the bubble curvature). The solutions are shown to be convergent and asymptotically stable. The physical solution (stable fastest growing) is a flat bubble for small pressure fluctuations and a curved bubble for large pressure fluctuations. The velocity field (in the frame of references accounting for the background motion) involves intense motion of the fluids in a vicinity of the interface, effectively no motion of the fluids away from the interfaces, and formation of vortical structures at the interface. The work is supported by the US National Science Foundation.

  8. Effect of pressure fluctuations on Richtmyer-Meshkov coherent structures

    NASA Astrophysics Data System (ADS)

    Bhowmick, Aklant K.; Abarzhi, Snezhana

    2016-10-01

    We investigate the formation and evolution of Richtmyer Meshkov bubbles after the passage of a shock wave across a two fluid interface in the presence of pressure fluctuations. The fluids are ideal and incompressible and the pressure fluctuations are scale invariant in space and time, and are modeled by a power law time dependent acceleration field with exponent -2. Solutions indicate sensitivity to pressure fluctuations. In the linear regime, the growth of curvature and bubble velocity is linear. The growth rate is dominated by the initial velocity for weak pressure fluctuations, and by the acceleration term for strong pressure fluctuations. In the non-linear regime, the bubble curvature is constant and the solutions form a one parameter family (parametrized by the bubble curvature). The solutions are shown to be convergent and asymptotically stable. The physical solution (stable fastest growing) is a flat bubble for small pressure fluctuations and a curved bubble for large pressure fluctuations. The velocity field (in the frame of references accounting for the background motion) involves intense motion of the fluids in a vicinity of the interface, effectively no motion of the fluids away from the interfaces, and formation of vortical structures at the interface. The work is supported by the US National Science Foundation.

  9. Gravity waves

    NASA Technical Reports Server (NTRS)

    Fritts, David

    1987-01-01

    Gravity waves contributed to the establishment of the thermal structure, small scale (80 to 100 km) fluctuations in velocity (50 to 80 m/sec) and density (20 to 30%, 0 to peak). Dominant gravity wave spectrum in the middle atmosphere: x-scale, less than 100 km; z-scale, greater than 10 km; t-scale, less than 2 hr. Theorists are beginning to understand middle atmosphere motions. There are two classes: Planetary waves and equatorial motions, gravity waves and tidal motions. The former give rise to variability at large scales, which may alter apparent mean structure. Effects include density and velocity fluctuations, induced mean motions, and stratospheric warmings which lead to the breakup of the polar vortex and cooling of the mesosphere. On this scale are also equatorial quasi-biennial and semi-annual oscillations. Gravity wave and tidal motions produce large rms fluctuations in density and velocity. The magnitude of the density fluctuations compared to the mean density is of the order of the vertical wavelength, which grows with height. Relative density fluctuations are less than, or of the order of 30% below the mesopause. Such motions may cause significant and variable convection, and wind shear. There is a strong seasonal variation in gravity wave amplitude. Additional observations are needed to address and quantify mean and fluctuation statistics of both density and mean velocity, variability of the mean and fluctuations, and to identify dominant gravity wave scales and sources as well as causes of variability, both temporal and geographic.

  10. Fluctuating pressures in pump diffuser and collector scrolls, part 1

    NASA Technical Reports Server (NTRS)

    Sloteman, Donald P.

    1989-01-01

    The cracking of scroll liners on the SSME High Pressure Fuel Turbo Pump (HPFTP) on hot gas engine test firings has prompted a study into the nature of pressure fluctuations in centrifugal pump states. The amplitudes of these fluctuations and where they originate in the pump stage are quantified. To accomplish this, a test program was conducted to map the pressure pulsation activity in a centrifugal pump stage. This stage is based on typical commercial (or generic) pump design practice and not the specialized design of the HPFTP. Measurements made in the various elements comprising the stage indicate that pulsation activity is dominated by synchronous related phenomena. Pulsation amplitudes measured in the scroll are low, on the order of 2 to 7 percent of the impeller exit tip speed velocity head. Significant non-sychronous pressure fluctuations occur at low flow, and while of interest to commercial pump designers, have little meaning to the HPFTP experience. Results obtained with the generic components do provide insights into possible pulsation related scroll failures on the HPFTP, and provide a basis for further study.

  11. Pressure-Velocity Correlations in the Cove of a Leading Edge Slat

    NASA Astrophysics Data System (ADS)

    Wilkins, Stephen; Richard, Patrick; Hall, Joseph

    2015-11-01

    One of the major sources of aircraft airframe noise is related to the deployment of high-lift devices, such as leading-edge slats, particularly when the aircraft is preparing to land. As the engines are throttled back, the noise produced by the airframe itself is of great concern, as the aircraft is low enough for the noise to impact civilian populations. In order to reduce the aeroacoustic noise sources associated with these high lift devices for the next generation of aircraft an experimental investigation of the correlation between multi-point surface-mounted fluctuating pressures measured via flush-mounted microphones and the simultaneously measured two-component velocity field measured via Particle Image Velocimetry (PIV) is studied. The development of the resulting shear-layer within the slat cove is studied for Re =80,000, based on the wing chord. For low Mach number flows in air, the major acoustic source is a dipole acoustic source tied to fluctuating surface pressures on solid boundaries, such as the underside of the slat itself. Regions of high correlations between the pressure and velocity field near the surface will likely indicate a strong acoustic dipole source. In order to study the underlying physical mechanisms and understand their role in the development of aeroacoustic noise, Proper Orthogonal Decomposition (POD) by the method of snapshots is employed on the velocity field. The correlation between low-order reconstructions and the surface-pressure measurements are also studied.

  12. Fluctuations and intermittent poloidal transport in a simple toroidal plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goud, T. S.; Ganesh, R.; Saxena, Y. C.

    In a simple magnetized toroidal plasma, fluctuation induced poloidal flux is found to be significant in magnitude. The probability distribution function of the fluctuation induced poloidal flux is observed to be strongly non-Gaussian in nature; however, in some cases, the distribution shows good agreement with the analytical form [Carreras et al., Phys. Plasmas 3, 2664 (1996)], assuming a coupling between the near Gaussian density and poloidal velocity fluctuations. The observed non-Gaussian nature of the fluctuation induced poloidal flux and other plasma parameters such as density and fluctuating poloidal velocity in this device is due to intermittent and bursty nature ofmore » poloidal transport. In the simple magnetized torus used here, such an intermittent fluctuation induced poloidal flux is found to play a crucial role in generating the poloidal flow.« less

  13. Acute Positive Effects of Exercise on Center-of-Pressure Fluctuations During Quiet Standing in Middle-Aged and Elderly Women.

    PubMed

    Fukusaki, Chiho; Masani, Kei; Miyasaka, Maya; Nakazawa, Kimitaka

    2016-01-01

    Acute effects of exercise on postural stability have been studied with a focus on fatigue. This study investigated the acute effects of moderate-intensity exercise on center-of-pressure (COP) fluctuation measures in middle-aged and elderly women. Thirty-five healthy women volunteered: 18 women performed a moderate aquatic exercise session for 80 minutes and 17 remained calm in a sitting position for the same duration. Center-of-pressure fluctuations during quiet standing were recorded for 60 seconds with eyes open and closed before and after the exercise and sitting tasks. The time- and frequency-domain measures of the COP time series were calculated. The frequency-domain measures were also calculated for the COP velocity time series. According to 2-way analysis of variance and paired t-tests with a Bonferroni's correction, mean velocity of COP fluctuations, mean velocity of COP fluctuations in the medial-lateral (ML) direction, and total power of the COP velocity time series in the ML direction exhibited significant reductions after 1 session of exercise. These results indicated that a moderate-intensity aquatic exercise decreased COP velocity, counteracting age-related and fatigue-inducing postural deterioration. Therefore, we concluded that a single session of moderate-intensity aquatic exercise has acute positive effects on postural stability in middle-aged and elderly women.

  14. Negative velocity fluctuations and non-equilibrium fluctuation relation for a driven high critical current vortex state.

    PubMed

    Bag, Biplab; Shaw, Gorky; Banerjee, S S; Majumdar, Sayantan; Sood, A K; Grover, A K

    2017-07-17

    Under the influence of a constant drive the moving vortex state in 2H-NbS 2 superconductor exhibits a negative differential resistance (NDR) transition from a steady flow to an immobile state. This state possesses a high depinning current threshold ([Formula: see text]) with unconventional depinning characteristics. At currents well above [Formula: see text], the moving vortex state exhibits a multimodal velocity distribution which is characteristic of vortex flow instabilities in the NDR regime. However at lower currents which are just above [Formula: see text], the velocity distribution is non-Gaussian with a tail extending to significant negative velocity values. These unusual negative velocity events correspond to vortices drifting opposite to the driving force direction. We show that this distribution obeys the Gallavotti-Cohen Non-Equilibrium Fluctuation Relation (GC-NEFR). Just above [Formula: see text], we also find a high vortex density fluctuating driven state not obeying the conventional GC-NEFR. The GC-NEFR analysis provides a measure of an effective energy scale (E eff ) associated with the driven vortex state. The E eff corresponds to the average energy dissipated by the fluctuating vortex state above [Formula: see text]. We propose the high E eff value corresponds to the onset of high energy dynamic instabilities in this driven vortex state just above [Formula: see text].

  15. A GLOBAL VIEW OF VELOCITY FLUCTUATIONS IN THE CORONA BELOW 1.3 R {sub ⊙} WITH CoMP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morton, R. J.; Tomczyk, S.; Pinto, R. F., E-mail: richard.morton@northumbria.ac.uk

    The Coronal Multi-channel Polarimeter (CoMP) has previously demonstrated the presence of Doppler velocity fluctuations in the solar corona. The observed fluctuations are thought to be transverse waves, i.e., highly incompressible motions whose restoring force is dominated by the magnetic tension, some of which demonstrate clear periodicity. We aim to exploit CoMP’s ability to provide high cadence observations of the off-limb corona to investigate the properties of velocity fluctuations in a range of coronal features, providing insight into how (whether) the properties of the waves are influenced by the varying magnetic topology in active regions, quiet Sun and open field regions.more » An analysis of Doppler velocity time-series of the solar corona from the 10747 Å Iron xiii line is performed, determining the velocity power spectrum and using it as a tool to probe wave behavior. Further, the average phase speed and density for each region are estimated and used to compute the spectra for energy density and energy flux. In addition, we assess the noise levels associated with the CoMP data, deriving analytic formulae for the uncertainty on Doppler velocity measurements and providing a comparison by estimating the noise from the data. It is found that the entire corona is replete with transverse wave behavior. The corresponding power spectra indicate that the observed velocity fluctuations are predominately generated by stochastic processes, with the spectral slope of the power varying between the different magnetic regions. Most strikingly, all power spectra reveal the presence of enhanced power occurring at ∼3 mHz, potentially implying that the excitation of coronal transverse waves by p -modes is a global phenomenon.« less

  16. Mathematical model for logarithmic scaling of velocity fluctuations in wall turbulence.

    PubMed

    Mouri, Hideaki

    2015-12-01

    For wall turbulence, moments of velocity fluctuations are known to be logarithmic functions of the height from the wall. This logarithmic scaling is due to the existence of a characteristic velocity and to the nonexistence of any characteristic height in the range of the scaling. By using the mathematics of random variables, we obtain its necessary and sufficient conditions. They are compared with characteristics of a phenomenological model of eddies attached to the wall and also with those of the logarithmic scaling of the mean velocity.

  17. Study of droplet flow in a T-shape microchannel with bottom wall fluctuation

    NASA Astrophysics Data System (ADS)

    Pang, Yan; Wang, Xiang; Liu, Zhaomiao

    2018-03-01

    Droplet generation in a T-shape microchannel, with a main channel width of 50 μm , side channel width of 25 μm, and height of 50 μm, is simulated to study the effects of the forced fluctuation of the bottom wall. The periodic fluctuations of the bottom wall are applied on the near junction part of the main channel in the T-shape microchannel. Effects of bottom wall's shape, fluctuation periods, and amplitudes on the droplet generation are covered in the research of this protocol. In the simulation, the average size is affected a little by the fluctuations, but significantly by the fixed shape of the deformed bottom wall, while the droplet size range is expanded by the fluctuations under most of the conditions. Droplet sizes are distributed in a periodic pattern with small amplitude along the relative time when the fluctuation is forced on the bottom wall near the T-junction, while the droplet emerging frequency is not varied by the fluctuation. The droplet velocity is varied by the bottom wall motion, especially under the shorter period and the larger amplitude. When the fluctuation period is similar to the droplet emerging period, the droplet size is as stable as the non-fluctuation case after a development stage at the beginning of flow, while the droplet velocity is varied by the moving wall with the scope up to 80% of the average velocity under the conditions of this investigation.

  18. Turbulence in simulated H II regions

    NASA Astrophysics Data System (ADS)

    Medina, S.-N. X.; Arthur, S. J.; Henney, W. J.; Mellema, G.; Gazol, A.

    2014-12-01

    We investigate the scale dependence of fluctuations inside a realistic model of an evolving turbulent H II region and to what extent these may be studied observationally. We find that the multiple scales of energy injection from champagne flows and the photoionization of clumps and filaments leads to a flatter spectrum of fluctuations than would be expected from top-down turbulence driven at the largest scales. The traditional structure function approach to the observational study of velocity fluctuations is shown to be incapable of reliably determining the velocity power spectrum of our simulation. We find that a more promising approach is the Velocity Channel Analysis technique of Lazarian & Pogosyan (2000), which, despite being intrinsically limited by thermal broadening, can successfully recover the logarithmic slope of the velocity power spectrum to a precision of ±0.1 from high-resolution optical emission-line spectroscopy.

  19. Statistics of the cosmic Mach number from numerical simulations of a cold dark matter universe

    NASA Technical Reports Server (NTRS)

    Suto, Yasushi; Cen, Renyue; Ostriker, Jeremiah P.

    1992-01-01

    Results are presented of an analysis of the cosmic Mach number, M, the ratio of the streaming velocity, v, to the random velocity dispersion, sigma, of galaxies in a given patch of the universe, which was performed on the basis of hydrodynamical simulations of the cold dark matter scenario. Galaxy formation is modeled by application of detailed physical processes rather than by the ad hoc assumption of 'bias' between dark matter and galaxy fluctuations. The correlation between M and sigma is found to be very weak for both components. No evidence is found for a physical 'velocity bias' in the quantities which appear in the definition of M. Standard cold-dark-matter-dominated universes are in conflict, at a statistically significant level, with the available observation, in that they predict a Mach number considerably lower than is observed.

  20. Experimental study of two separating turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Nagabushana, K. A.; Simpson, R. L.; Agarwal, N. K.

    1987-01-01

    A detailed study of two strong adverse pressure gradient flows, one with a free-stream velocity of 35 m/sec, at throat (producing a Re sub theta of 27000 at detachment) and another with free-stream velocity of 22 m/sec, at throat (producing a Re sub theta of 19000 at detachment) is presented. In these examples flows separate slowly and reattach very rapidly over a very short distance in a streamwise direction. In the backflow region, there appears to be a semi-logarithmically flat region in the streamwise fluctuating velocity component, u', which spreads over a definite range of y/delta. In power spectra, the flow variables phi sub upsilon upsilon (kappa sub 1 delta)/ -uv bar sub max vs. kappa sub 1 delta forms a unique set of scaling parameters for adverse pressure gradient flows. Experimental results show good agreement with previous studies.

  1. Wall-based identification of coherent structures in wall-bounded turbulence

    NASA Astrophysics Data System (ADS)

    Sanmiguel Vila, C.; Flores, O.

    2018-04-01

    During the last decades, a number of reduced order models based on coherent structures have been proposed to describe wall-bounded turbulence. Many of these models emphasize the importance of coherent wall-normal velocity eddies (ν-eddies), which drive the generation of the very long streamwise velocity structures observed in the logarithmic and outer region. In order to use these models to improve our ability to control wall-bounded turbulence in realistic applications, these ν-eddies need to be identified from the wall in a non-intrusive way. In this paper, the possibility of using the pressure signal at the wall to identify these ν-eddies is explored, analyzing the cross-correlation between the wall-normal velocity component and the pressure fluctuations at the wall in a DNS of a turbulent channel flow at Reτ = 939. The results show that the cross-correlation has a region of negative correlation upstream, and a region of positive correlation backwards. In the spanwise direction the correlation decays monotonously, except very close to the wall where a change of sign of the correlation coefficient is observed. Moreover, filtering the pressure fluctuations at the wall in space results in an increase of the region where the cross-correlation is strong, both for the positively and the negatively correlated regions. The use of a time filter for the pressure fluctuations at the wall yields different results, displacing the regions of strong correlation without changing much their sizes. The results suggest that space-filtering the pressure at the wall is a feasible way to identify ν-eddies of different sizes, which could be used to trigger turbulent control strategies.

  2. Effect of thermal stability/complex terrain on wind turbine model(s): a wind tunnel study to address complex atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Guala, M.; Hu, S. J.; Chamorro, L. P.

    2011-12-01

    Turbulent boundary layer measurements in both wind tunnel and in the near-neutral atmospheric surface layer revealed in the last decade the significant contribution of the large scales of motions to both turbulent kinetic energy and Reynolds stresses, for a wide range of Reynolds number. These scales are known to grow throughout the logarithmic layer and to extend several boundary layer heights in the streamwise direction. Potentially, they are a source of strong unsteadiness in the power output of wind turbines and in the aerodynamic loads of wind turbine blades. However, the large scales in realistic atmospheric conditions deserves further study, with well controlled boundary conditions. In the atmospheric wind tunnel of the St. Anthony Falls Laboratory, with a 16 m long test section and independently controlled incoming flow and floor temperatures, turbulent boundary layers in a range of stability conditions, from the stratified to the convective case, can be reproduced and monitored. Measurements of fluctuating temperature, streamwise and wall normal velocity components are simultaneously obtained by an ad hoc calibrated and customized triple-wire sensor. A wind turbine model with constant loading DC motor, constant tip speed ratio, and a rotor diameter of 0.128m is used to mimic a large full scale turbine in the atmospheric boundary layer. Measurements of the fluctuating voltage generated by the DC motor are compared with measurements of the blade's angular velocity by laser scanning, and eventually related to velocity measurements from the triple-wire sensor. This study preliminary explores the effect of weak stability and complex terrain (through a set of spanwise aligned topographic perturbations) on the large scales of the flow and on the fluctuations in the wind turbine(s) power output.

  3. Walén test and de Hoffmann-Teller frame of interplanetary large-amplitude Alfvén waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chao, J. K.; Hsieh, Wen-Chieh; Lee, L. C.

    2014-05-10

    In this study, three methods of analysis are compared to test the Walén relation. Method 1 requires a good de Hoffmann-Teller (HT) frame. Method 2 uses three components separately to find the frame that is slightly modified from Method 1. This method is intended to improve the accuracy of the HT frame and able to demonstrate the anisotropic property of the fluctuations. The better the relation is, the closer the slope of a regression fitting the data of plasma versus Alfvén velocities is to 1. However, this criterion is based on an average HT frame, and the fitted slope doesmore » not always work for the Walén test because the HT frame can change so fast in the high-speed streams. We propose Method 3 to check the Walén relation using a sequence of data generated by taking the difference of two consecutive values of plasma and Alfvén velocities, respectively. The difference data are independent of the HT frame. We suggest that the ratio of the variances between plasma and Alfvén velocities is a better parameter to qualify the Walén relation. Four cases in two solar wind streams are studied using these three methods. Our results show that when the solar wind HT frame remains stable, all three methods can predict Alfvénic fluctuations well, but Method 3 can better predict the Walén relation when solar wind contains structures with several small streams. A simulated case also demonstrates that Method 3 is better and more robust than Methods 1 and 2. These results are important for a better understanding of Alfvénic fluctuations and turbulence in the solar wind.« less

  4. Reference measurements on a Francis model turbine with 2D Laser-Doppler-Anemometry

    NASA Astrophysics Data System (ADS)

    Frey, A.; Kirschner, O.; Riedelbauch, S.; Jester-Zuerker, R.; Jung, A.

    2016-11-01

    To validate the investigations of a high-resolution CFD simulation of a Francis turbine, measurements with 2D Laser-Doppler-Anemometry are carried out. The turbine is operated in part load, where a rotating vortex rope occurs. To validate both, mean velocities and velocity fluctuations, the measurements are classified relative to the vortex rope position. Several acrylic glass windows are installed in the turbine walls such as upstream of the spiral case inlet, in the vaneless space and in the draft tube. The current investigation is focused on a measurement plane below the runner. 2D velocity components are measured on this whole plane by measuring several narrow spaced radial lines. To avoid optical refraction of the laser beam a plan parallel window is inserted in the cone wall. The laser probe is positioned with a 2D traverse system consisting of a circumferential rail and a radial aligned linear traverse. The velocity data are synchronized with the rotational frequency of the rotating vortex rope. The results of one measurement line show the dependency of the axial and circumferential velocities on the vortex rope position.

  5. Multi-component wind measurements of wind turbine wakes performed with three LiDARs

    NASA Astrophysics Data System (ADS)

    Iungo, G. V.; Wu, Y.-T.; Porté-Agel, F.

    2012-04-01

    Field measurements of the wake flow produced from the interaction between atmospheric boundary layer and a wind turbine are performed with three wind LiDARs. The tested wind turbine is a 2 MW Enercon E-70 located in Collonges, Switzerland. First, accuracy of mean values and frequency resolution of the wind measurements are surveyed as a function of the number of laser rays emitted for each measurement. Indeed, measurements performed with one single ray allow maximizing sampling frequency, thus characterizing wake turbulence. On the other hand, if the number of emitted rays is increased accuracy of mean wind is increased due to the longer sampling period. Subsequently, two-dimensional measurements with a single LiDAR are carried out over vertical sections of the wind turbine wake and mean wake flow is obtained by averaging 2D measurements consecutively performed. The high spatial resolution of the used LiDAR allows characterizing in details velocity defect present in the central part of the wake and its downstream recovery. Single LiDAR measurements are also performed by staring the laser beam at fixed directions for a sampling period of about ten minutes and maximizing the sampling frequency in order to characterize wake turbulence. From these tests wind fluctuation peaks are detected in the wind turbine wake at blade top-tip height for different downstream locations. The magnitude of these turbulence peaks is generally reduced by moving downstream. This increased turbulence level at blade top-tip height observed for a real wind turbine has been already detected from previous wind tunnel tests and Large Eddy simulations, thus confirming the presence of a source of dangerous fatigue loads for following wind turbines within a wind farm. Furthermore, the proper characterization of wind fluctuations through LiDAR measurements is proved by the detection of the inertial subrange from spectral analysis of these velocity signals. Finally, simultaneous measurements with two LiDARs are performed over the mean vertical symmetry plane of the wind turbine wake, while a third LiDAR measures the incoming wind over a vertical plane parallel to the mean wind direction and lying outside of the wake. One LiDAR is placed in proximity of the wind turbine location and measures pointing downstream, whereas a second LiDAR is located along the mean wind direction at a downstream distance of 6.5 diameters and measures pointing upstream. For these measurements axial and vertical velocity components are retrieved only for measurement points where the two laser beams result to be roughly orthogonal. Statistics of the two velocity components show in the near wake at hub height strong flow fluctuations with magnitudes about 30% of the mean value, and a gradual reduction for downstream distances larger than three rotor diameters.

  6. Spectroscopic interpretation and velocimetry analysis of fluctuations in a cylindrical plasma recorded by a fast camera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oldenbuerger, S.; Brandt, C.; Brochard, F.

    2010-06-15

    Fast visible imaging is used on a cylindrical magnetized argon plasma produced by thermionic discharge in the Mirabelle device. To link the information collected with the camera to a physical quantity, fast camera movies of plasma structures are compared to Langmuir probe measurements. High correlation is found between light fluctuations and plasma density fluctuations. Contributions from neutral argon and ionized argon to the overall light intensity are separated by using interference filters and a light intensifier. Light emitting transitions are shown to involve a metastable neutral argon state that can be excited by thermal plasma electrons, thus explaining the goodmore » correlation between light and density fluctuations. The propagation velocity of plasma structures is calculated by adapting velocimetry methods to the fast camera movies. The resulting estimates of instantaneous propagation velocity are in agreement with former experiments. The computation of mean velocities is discussed.« less

  7. Spectroscopic interpretation and velocimetry analysis of fluctuations in a cylindrical plasma recorded by a fast camera

    NASA Astrophysics Data System (ADS)

    Oldenbürger, S.; Brandt, C.; Brochard, F.; Lemoine, N.; Bonhomme, G.

    2010-06-01

    Fast visible imaging is used on a cylindrical magnetized argon plasma produced by thermionic discharge in the Mirabelle device. To link the information collected with the camera to a physical quantity, fast camera movies of plasma structures are compared to Langmuir probe measurements. High correlation is found between light fluctuations and plasma density fluctuations. Contributions from neutral argon and ionized argon to the overall light intensity are separated by using interference filters and a light intensifier. Light emitting transitions are shown to involve a metastable neutral argon state that can be excited by thermal plasma electrons, thus explaining the good correlation between light and density fluctuations. The propagation velocity of plasma structures is calculated by adapting velocimetry methods to the fast camera movies. The resulting estimates of instantaneous propagation velocity are in agreement with former experiments. The computation of mean velocities is discussed.

  8. The Origin of Radially Aligned Magnetic Fields in Young Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Inoue, Tsuyoshi; Shimoda, Jiro; Ohira, Yutaka; Yamazaki, Ryo

    2013-08-01

    It has been suggested by radio observations of polarized synchrotron emissions that downstream magnetic fields in some young supernova remnants (SNRs) are oriented radially. We study the magnetic field distribution of turbulent SNRs driven by the Richtmyer-Meshkov instability (RMI)—in other words, the effect of rippled shock—by using three-dimensional magnetohydrodynamics simulations. We find that the induced turbulence has radially biased anisotropic velocity dispersion that leads to a selective amplification of the radial component of the magnetic field. The RMI is induced by the interaction between the shock and upstream density fluctuations. Future high-resolution polarization observations can distinguish the following candidates responsible for the upstream density fluctuations: (1) inhomogeneity caused by the cascade of large-scale turbulence in the interstellar medium, the so-called big power-law in the sky; (2) structures generated by the Drury instability in the cosmic-ray modified shock; and (3) fluctuations induced by the nonlinear feedback of the cosmic-ray streaming instability.

  9. Scaling Laws in Turbulence: Their Manifestation and Utility.

    NASA Astrophysics Data System (ADS)

    Juneja, Anurag

    1995-01-01

    It has long been hypothesized that small-scale features in turbulence possess some form of scale-invariance leading to several interesting predictions about related flow quantities. In the present work, we examine the scaling features and scaling exponents of various quantities in turbulence and the relationship they bear to Kolmogorov and multifractal scaling theories. A related goal (which is the inverse problem) is to synthesize stochastic fields which faithfully reproduce the observed scaling features of velocity fluctuations in high-Reynolds-number turbulence. First, we obtain, for structure functions of arbitrary order, an expression which is uniformly valid for the inertial and dissipation range. This enables a more definitive determination of scaling exponents than has been possible in the past. Next, we examine the scaling properties of circulation around contours of various sizes, as it is suggested that a better way to study the small-scale features might be to focus on the vortical component of the velocity field. We then utilize a quantity called the cancellation exponent to characterize the singular nature of vorticity fluctuations, whose trace exhibits an oscillation in sign on arbitrary fine scales. We note that the inter-relationships which can be established among the aforementioned scaling exponents for velocity structure functions, circulation and vorticity provide support for the multifractal formalism of turbulence. Next, we examine the fractal structure of self -affine time series data in turbulent flows. It is shown that the fractal dimension of velocity and temperature signals in atmospheric turbulence is 1.65 +/- 0.05 implying that the dimension of iso-velocity or iso-temperature surfaces in fully developed turbulence is about 2.65 +/- 0.05 in agreement with previous theoretical predictions. The Reynolds number dependence of the measured dimensions is also explored by examining laboratory data at moderate Reynolds numbers. Using simple ideas from turbulence physics underlying the observed scaling features, we outline a family of schemes for generating artificial velocity fields, dubbed synthetic turbulence, which mimic velocity fluctuations in high-Reynolds -number turbulence to various degrees of detail. In the case of one-dimensional implementation of these schemes, we provide comparisons with experimental turbulence data and note that analytical predictions from the model allow us to relate the parameters of synthetic turbulence to those of real turbulence. Finally, we show that, compared to random initial conditions, an artificial velocity field in three-dimensions generated using a simplified synthetic turbulence scheme may be better suited for use as the initial condition for direct numerical simulation of homogeneous isotropic turbulence.

  10. Energy loss of ions by electric-field fluctuations in a magnetized plasma.

    PubMed

    Nersisyan, Hrachya B; Deutsch, Claude

    2011-06-01

    The results of a theoretical investigation of the energy loss of charged particles in a magnetized classical plasma due to the electric-field fluctuations are reported. The energy loss for a test particle is calculated through the linear-response theory. At vanishing magnetic field, the electric-field fluctuations lead to an energy gain of the charged particle for all velocities. It has been shown that in the presence of strong magnetic field, this effect occurs only at low velocities. In the case of high velocities, the test particle systematically loses its energy due to the interaction with a stochastic electric field. The net effect of the fluctuations is the systematic reduction of the total energy loss (i.e., the sum of the polarization and stochastic energy losses) at vanishing magnetic field and reduction or enhancement at strong field, depending on the velocity of the particle. It is found that the energy loss of the slow heavy ion contains an anomalous term that depends logarithmically on the projectile mass. The physical origin of this anomalous term is the coupling between the cyclotron motion of the plasma electrons and the long-wavelength, low-frequency fluctuations produced by the projectile ion. This effect may strongly enhance the stochastic energy gain of the particle.

  11. Experimental investigation of the draft tube inlet flow of a bulb turbine

    NASA Astrophysics Data System (ADS)

    Vuillemard, J.; Aeschlimann, V.; Fraser, R.; Lemay, S.; Deschênes, C.

    2014-03-01

    In the BulbT project framework, a bulb turbine model was studied with a strongly diverging draft tube. At high discharge, flow separation occurs in the draft tube correlated to significant efficiency and power drops. In this context, a focus was put on the draft tube inlet flow conditions. Actually, a precise inlet flow velocity field is required for comparison and validation purposes with CFD simulation. This paper presents different laser Doppler velocimetry (LDV) measurements at the draft tube inlet and their analysis. The LDV was setup to measure the axial and circumferential velocity on a radius under the runner and a diameter under the hub. A method was developed to perform indirect measurement of the mean radial velocity component. Five operating conditions were studied to correlate the inlet flow to the separation in the draft tube. Mean velocities, fluctuations and frequencies allowed characterizing the flow. Using this experimental database, the flow structure was characterized. Phase averaged velocities based on the runner position allowed detecting the runner blade wakes. The velocity gradients induced by the blade tip vortices were captured. The guide vane wakes was also detected at the draft tube inlet. The recirculation in the hub wake was observed.

  12. The Temporal Resolution of Laser Induced Fluorescence Photobleaching Anemometer

    NASA Astrophysics Data System (ADS)

    Zhao, Wei; Yang, Fang; Wang, Guiren

    2014-11-01

    Recently, in microfluidics, electrokinetic flows are widely used on micromixer designing. However, there is unfortunately no valid velocimeter today that can measure the random velocity fluctuation at high temporal and spatial resolution simultaneously in the complicated flow circumstance. We recently introduced laser induced fluorescence photobleaching anemometer (LIFPA), which has been successfully used in the measurement of velocity field in AC electrically driven microflow. Here, we theoretically study the temporal resolution (TR) of and experimentally verify, LIFPA can have simultaneously ultrahigh temporal (~4 μs) and spatial (~203 nm) resolution and can measure velocity fluctuation up to at least 2 kHz, whose corresponding wave number is about 6 × 106 1/m in an electrokinetically forced unsteady flow in microfluidics. The measurement of LIFPA is also compared with the widely used micro Particle Imaging Velocimetry (μPIV). We found, at the inlet, due to multiple uncertainties, the velocity fluctuations by μPIV exhibits apparently smaller values than that by LIFPA. But at downstreams, where velocity fluctuation is much lower than at the inlet and the uncertainties of complicated electric field on particles becomes smaller, LIFPA and μPIV indicate similar measurement. The work was supported by NSF under grant no. CAREER CBET-0954977 and MRI CBET-1040227, respectively.

  13. Strong seismic wave scattering beneath Kanto region derived from dense K-NET/KiK-net strong motion network and numerical simulation

    NASA Astrophysics Data System (ADS)

    Takemura, S.; Yoshimoto, K.

    2013-12-01

    Observed seismograms, which consist of the high-frequency body waves through the low-velocity (LV) region at depth of 20-40 km beneath northwestern Chiba in Kanto, show strong peak delay and spindle shape of S waves. By analyzing dense seismic records from K-NET/KiK-net, such spindle-shape S waves are clearly observed in the frequency range of 1-8 Hz. In order to investigate a specific heterogeneous structure to generate such observations, we conduct 3-D finite-difference method (FDM) simulation using realistic heterogeneous models and compare the simulation results with dense strong motion array observations. Our 3-D simulation model is covering the zone 150 km by 64 km in horizontal directions and 75 km in vertical direction, which has been discretized with uniform grid size 0.05 km. We assume a layered background velocity structure, which includes basin structure, crust, mantle and subducting oceanic plate, base on the model proposed by Koketsu et al. (2008). In order to introduce the effect of seismic wave scattering, we assume a stochastic random velocity fluctuation in each layer. Random velocity fluctuations are characterized by exponential-type auto-correlation function (ACF) with correlation distance a = 3 km and rms value of fluctuation e = 0.05 in the upper crust, a = 3 km and e = 0.07 in the lower crust, a = 10 km and e = 0.02 in the mantle. In the subducting oceanic plate, we assume an anisotropic random velocity fluctuation characterized by exponential-type ACF with aH = 10 km in horizontal direction, aZ = 0.5 km in vertical direction and e = 0.02 (e.g., Furumura and Kennett, 2005). In addition, we assume a LV zone at northeastern part of Chiba with depth of 20-40 km (e.g., Matsubara et al., 2004). In the LV zone, random velocity fluctuation characterized by Gaussian-type ACF with a = 1 km and e = 0.07 is superposed on exponential-type ACF with a = 3 km and e = 0.07, in order to modulate the S-wave propagation in the dominant frequency range of spindle-shape S waves. Such large-scale FDM simulations are conducted on the Earth Simulator at JAMSTEC. It is found that the FDM simulation of the model without strong velocity fluctuation cannot explain the characteristics of observed S waves. By introducing strong velocity fluctuation in the LV zone, strong peak delay and spindle-shape S waves observed at central and southern part of Chiba are simulated successfully. In addition, the strong amplitude decrease of S waves in the LV zone due to strong seismic scattering is good corresponding to results based on the tomographic study of Q in Kanto (e.g., Nakamura et al., 2006). Simulation results demonstrated that strong velocity fluctuation in the LV zone plays important role in the peak delay and waveform shape. The LV zone beneath northeastern Chiba is considered as a result of dehydration from oceanic crust of subducted Philippine Sea plate (e.g., Matsubara et al., 2005). Therefore strong small-scale velocity fluctuation in the LV zone may be related with dehydrated water.

  14. Decay of the supersonic turbulent wakes from micro-ramps

    NASA Astrophysics Data System (ADS)

    Sun, Z.; Schrijer, F. F. J.; Scarano, F.; van Oudheusden, B. W.

    2014-02-01

    The wakes resulting from micro-ramps immersed in a supersonic turbulent boundary layer at Ma = 2.0 are investigated by means of particle image velocimetry. Two micro-ramps are investigated with height of 60% and 80% of the undisturbed boundary layer, respectively. The measurement domain is placed at the symmetry plane of the ramp and encompasses the range from 10 to 32 ramp heights downstream of the ramp. The decay of the flow field properties is evaluated in terms of time-averaged and root-mean-square (RMS) statistics. In the time-averaged flow field, the recovery from the imparted momentum deficit and the decay of upwash motion are analyzed. The RMS fluctuations of the velocity components exhibit strong anisotropy at the most upstream location and develop into a more isotropic regime downstream. The self-similarity properties of velocity components and fluctuation components along wall-normal direction are followed. The investigation of the unsteady large scale motion is carried out by means of snapshot analysis and by a statistical approach based on the spatial auto-correlation function. The Kelvin-Helmholtz (K-H) instability at the upper shear layer is observed to develop further with the onset of vortex pairing. The average distance between vortices is statistically estimated using the spatial auto-correlation. A marked transition with the wavelength increase is observed across the pairing regime. The K-H instability, initially observed only at the upper shear layer also begins to appear in the lower shear layer as soon as the wake is elevated sufficiently off the wall. The auto-correlation statistics confirm the coherence of counter-rotating vortices from the upper and lower sides, indicating the formation of vortex rings downstream of the pairing region.

  15. The Effects of Turbulence on Tthe Measurements of Five-Hole Probes

    NASA Astrophysics Data System (ADS)

    Diebold, Jeffrey Michael

    The primary goals of this research were to quantify the effects of turbulence on the measurements of five-hole pressure probes (5HP) and to develop a model capable of predicting the response of a 5HP to turbulence. The five-hole pressure probe is a commonly used device in experimental fluid dynamics and aerodynamics. By measuring the pressure at the five pressure ports located on the tip of the probe it is possible to determine the total pressure, static pressure and the three components of velocity at a point in the flow. Previous research has demonstrated that the measurements of simple pressure probes such as Pitot probes are significantly influenced by the presence of turbulence. Turbulent velocity fluctuations contaminate the measurement of pressure due to the nonlinear relationship between pressure and velocity as well as the angular response characteristics of the probe. Despite our understanding of the effects of turbulence on Pitot and static pressure probes, relatively little is known about the influence of turbulence on five-hole probes. This study attempts to fill this gap in our knowledge by using advanced experimental techniques to quantify these turbulence-induced errors and by developing a novel method of predicting the response of a five-hole probe to turbulence. A few studies have attempted to quantify turbulence-induced errors in five-hole probe measurements but they were limited by their inability to accurately measure the total and static pressure in the turbulent flow. The current research utilizes a fast-response five-hole probe (FR5HP) in order to accurately quantify the effects of turbulence on different standard five-hole probes (Std5HP). The FR5HP is capable of measuring the instantaneous flowfield and unlike the Std5HP the FR5HP measurements are not contaminated by the turbulent velocity fluctuations. Measurements with the FR5HP and two different Std5HPs were acquired in the highly turbulent wakes of 2D and 3D cylinders in order to quantify the turbulence-induced errors in Std5HP measurements. The primary contribution of this work is the development and validation of a simulation method to predict the measurements of a Std5HP in an arbitrary turbulent flow. This simulation utilizes a statistical approach to estimating the pressure at each port on the tip of the probe. The angular response of the probe is modeled using experimental calibration data for each five-hole probe. The simulation method is validated against the experimental measurements of the Std5HPs, and then used to study the how the characteristics of the turbulent flowfield influence the measurements of the Std5HPs. It is shown that total pressure measured by a Std5HP is increased by axial velocity fluctuations but decreased by the transverse fluctuations. The static pressure was shown to be very sensitive to the transverse fluctuations while the axial fluctuations had a negligible effect. As with Pitot probes, the turbulence-induced errors in the Std5HPs measurements were dependent on both the properties of the turbulent flow and the geometry of the probe tip. It is then demonstrated that this simulation method can be used to correct the measurements of a Std5HP in a turbulent flow if the characteristics of the turbulence are known. Finally, it is demonstrated that turbulence-induced errors in Std5HP measurements can have a substantial effect on the determination of the profile and vortex-induced drag from measurements in the wake of a 3D body. The results showed that while the calculation of both drag components was influenced by turbulence-induced errors the largest effect was on the determination of vortex-induced drag.

  16. Observational Tests of Recent MHD Turbulence Perspectives

    NASA Technical Reports Server (NTRS)

    Ghosh, Sanjoy; Guhathakurta, M. (Technical Monitor)

    2001-01-01

    This grant seeks to analyze the Heliospheric Missions data to test current theories on the angular dependence (with respect to mean magnetic field direction) of magnetohydrodynamic (MHD) turbulence in the solar wind. Solar wind turbulence may be composed of two or more dynamically independent components. Such components include magnetic pressure-balanced structures, velocity shears, quasi-2D turbulence, and slab (Alfven) waves. We use a method, developed during the first two years of this grant, for extracting the individual reduced spectra of up to three separate turbulence components from a single spacecraft time series. The method has been used on ISEE-3 data, Pioneer Venus Orbiter, Ulysses, and Voyager data samples. The correlation of fluctuations as a function of angle between flow direction and magnetic-field direction is the focus of study during the third year.

  17. Torque fluctuations caused by upstream mean flow and turbulence

    NASA Astrophysics Data System (ADS)

    Farr, T. D.; Hancock, P. E.

    2014-12-01

    A series of studies are in progress investigating the effects of turbine-array-wake interactions for a range of atmospheric boundary layer states by means of the EnFlo meteorological wind tunnel. The small, three-blade model wind turbines drive 4-quadrant motor-generators. Only a single turbine in neutral flow is considered here. The motor-generator current can be measured with adequate sensitivity by means of a current sensor allowing the mean and fluctuating torque to be inferred. Spectra of torque fluctuations and streamwise velocity fluctuations ahead of the rotor, between 0.1 and 2 diameters, show that only the large-scale turbulent motions contribute significantly to the torque fluctuations. Time-lagged cross-correlation between upstream velocity and torque fluctuations are largest over the inner part of the blade. They also show the turbulence to be frozen in behaviour over the 2 diameters upstream of the turbine.

  18. The Impact of Unsteady Reconfiguration on Turbulence Structure within a Flexible Canopy: Large-Eddy Simulation Study of a Cornfield

    NASA Astrophysics Data System (ADS)

    Chamecki, M.; Pan, Y.; Nepf, H. M.; Follett, E.

    2014-12-01

    Flexible plants bend in response to fluid motion and this reconfiguration mechanism allows plants to minimize the increase of drag force with increasing velocity, ensuring survival in flow-dominated habitats. The effect of reconfiguration on the flow field can be modeled by introducing a drag coefficient that decreases with increasing velocity. Typically, a power-law decrease of the drag coefficient with increasing velocity is used, and the negative exponent is known as the Vogel number. In practice, the Vogel number is a function of canopy rigidity and flow conditions. In this work we show that accounting for the effect of reconfiguration is required for large-eddy simulation (LES) models to reproduce the skewness of the streamwise and vertical velocity components and the distribution of sweeps and ejections observed in a large cornfield. Additional LES runs are conducted to investigate the structure of turbulence in different reconfiguration regimes, with mean vertical momentum flux constrained by measurements. The change of the Vogel number has negligible effects on LES predictions of the total vertical momentum flux and the components of turbulent kinetic energy, but produces profound changes in the mechanisms of momentum transport. This work demonstrates the necessity to model the effect of reconfiguration in LES studies of canopy flows. It also highlights the impacts of reconfiguration on the structure of turbulence and the dynamics of momentum fluxes, as well as any other process that depends on velocity fluctuations above and within the canopy region.

  19. Logarithmic scaling for fluctuations of a scalar concentration in wall turbulence.

    PubMed

    Mouri, Hideaki; Morinaga, Takeshi; Yagi, Toshimasa; Mori, Kazuyasu

    2017-12-01

    Within wall turbulence, there is a sublayer where the mean velocity and the variance of velocity fluctuations vary logarithmically with the height from the wall. This logarithmic scaling is also known for the mean concentration of a passive scalar. By using heat as such a scalar in a laboratory experiment of a turbulent boundary layer, the existence of the logarithmic scaling is shown here for the variance of fluctuations of the scalar concentration. It is reproduced by a model of energy-containing eddies that are attached to the wall.

  20. Intermittent electron density and temperature fluctuations and associated fluxes in the Alcator C-Mod scrape-off layer

    NASA Astrophysics Data System (ADS)

    Kube, R.; Garcia, O. E.; Theodorsen, A.; Brunner, D.; Kuang, A. Q.; LaBombard, B.; Terry, J. L.

    2018-06-01

    The Alcator C-Mod mirror Langmuir probe system has been used to sample data time series of fluctuating plasma parameters in the outboard mid-plane far scrape-off layer. We present a statistical analysis of one second long time series of electron density, temperature, radial electric drift velocity and the corresponding particle and electron heat fluxes. These are sampled during stationary plasma conditions in an ohmically heated, lower single null diverted discharge. The electron density and temperature are strongly correlated and feature fluctuation statistics similar to the ion saturation current. Both electron density and temperature time series are dominated by intermittent, large-amplitude burst with an exponential distribution of both burst amplitudes and waiting times between them. The characteristic time scale of the large-amplitude bursts is approximately 15 μ {{s}}. Large-amplitude velocity fluctuations feature a slightly faster characteristic time scale and appear at a faster rate than electron density and temperature fluctuations. Describing these time series as a superposition of uncorrelated exponential pulses, we find that probability distribution functions, power spectral densities as well as auto-correlation functions of the data time series agree well with predictions from the stochastic model. The electron particle and heat fluxes present large-amplitude fluctuations. For this low-density plasma, the radial electron heat flux is dominated by convection, that is, correlations of fluctuations in the electron density and radial velocity. Hot and dense blobs contribute only a minute fraction of the total fluctuation driven heat flux.

  1. The Theory of Nearly Incompressible Magnetohydrodynamic Turbulence: Homogeneous Description

    NASA Astrophysics Data System (ADS)

    Zank, G. P.; Adhikari, L.; Hunana, P.; Shiota, D.; Bruno, R.; Telloni, D.; Avinash, K.

    2017-09-01

    The theory of nearly incompressible magnetohydrodynamics (NI MHD) was developed to understand the apparent incompressibility of the solar wind and other plasma environments, particularly the relationship of density fluctuations to incompressible manifestations of turbulence in the solar wind and interstellar medium. Of interest was the identification of distinct leading-order incompressible descriptions for plasma beta β ≫ 1 and β ∼ 1 or ≪ 1 environments. In the first case, the “dimensionality” of the MHD description is 3D whereas for the latter two, there is a collapse of dimensionality in that the leading-order incompressible MHD description is 2D in a plane orthogonal to the large-scale or mean magnetic field. Despite the success of NI MHD in describing fluctuations in a low-frequency plasma environment such as the solar wind, a basic turbulence description has not been developed. Here, we rewrite the NI MHD system in terms of Elsässer variables. We discuss the distinction that emerges between the three cases. However, we focus on the β ∼ 1 or ≪ 1 regimes since these are appropriate to the solar wind and solar corona. In both cases, the leading-order turbulence model describes 2D turbulence and the higher-order description corresponds to slab turbulence, which forms a minority component. The Elsäasser β ∼ 1 or ≪ 1 formulation exhibits the nonlinear couplings between 2D and slab components very clearly, and shows that slab fluctuations respond in a passive scalar sense to the turbulently evolving majority 2D component fluctuations. The coupling of 2D and slab fluctuations through the β ∼ 1 or ≪ 1 NI MHD description leads to a very natural emergence of the “Goldreich-Sridhar” critical balance scaling parameter, although now with a different interpretation. Specifically, the critical balance parameter shows that the energy flux in wave number space is a consequence of the intensity of Alfvén wave sweeping versus passive scalar convection by leading-order 2D Elsässer fluctuations, with critical balance being achieved when Alfvén wave sweeping balances passive scalar convection by leading-order 2D Elsässer fluctuations. Besides yielding predictions of 2D and slab spectra for Elsässer fluctuations, NI MHD shows that density fluctuations are advected by the majority or dominant incompressible velocity fluctuations. In the case of β ∼ 1 or ≪ 1, the density spectrum is Kolmogorov in the perpendicular wave number, thus providing a possible explanation for the observed extended Kolmogorov-like power law spectrum for electron density fluctuations in the interstellar medium.

  2. Revised Model of the Steady-state Solar Wind Halo Electron Velocity Distribution Function

    NASA Astrophysics Data System (ADS)

    Yoon, Peter H.; Kim, Sunjung; Choe, G. S.; moon, Y.-J.

    2016-08-01

    A recent study discussed the steady-state model for solar wind electrons during quiet time conditions. The electrons emanating from the Sun are treated in a composite three-population model—the low-energy Maxwellian core with an energy range of tens of eV, the intermediate ˜102-103 eV energy-range (“halo”) electrons, and the high ˜103-105 eV energy-range (“super-halo”) electrons. In the model, the intermediate energy halo electrons are assumed to be in resonance with transverse EM fluctuations in the whistler frequency range (˜102 Hz), while the high-energy super-halo electrons are presumed to be in steady-state wave-particle resonance with higher-frequency electrostatic fluctuations in the Langmuir frequency range (˜105 Hz). A comparison with STEREO and WIND spacecraft data was also made. However, ignoring the influence of Langmuir fluctuations on the halo population turns out to be an unjustifiable assumption. The present paper rectifies the previous approach by including both Langmuir and whistler fluctuations in the construction of the steady-state velocity distribution function for the halo population, and demonstrates that the role of whistler-range fluctuation is minimal unless the fluctuation intensity is arbitrarily raised. This implies that the Langmuir-range fluctuations, known as the quasi thermal noise, are important for both halo and super-halo electron velocity distribution.

  3. A Framework for Integrated Component and System Analyses of Instabilities

    NASA Technical Reports Server (NTRS)

    Ahuja, Vineet; Erwin, James; Arunajatesan, Srinivasan; Cattafesta, Lou; Liu, Fei

    2010-01-01

    Instabilities associated with fluid handling and operation in liquid rocket propulsion systems and test facilities usually manifest themselves as structural vibrations or some form of structural damage. While the source of the instability is directly related to the performance of a component such as a turbopump, valve or a flow control element, the associated pressure fluctuations as they propagate through the system have the potential to amplify and resonate with natural modes of the structural elements and components of the system. In this paper, the authors have developed an innovative multi-level approach that involves analysis at the component and systems level. The primary source of the unsteadiness is modeled with a high-fidelity hybrid RANS/LES based CFD methodology that has been previously used to study instabilities in feed systems. This high fidelity approach is used to quantify the instability and understand the physics associated with the instability. System response to the driving instability is determined through a transfer matrix approach wherein the incoming and outgoing pressure and velocity fluctuations are related through a transfer (or transmission) matrix. The coefficients of the transfer matrix for each component (i.e. valve, pipe, orifice etc.) are individually derived from the flow physics associated with the component. A demonstration case representing a test loop/test facility comprised of a network of elements is constructed with the transfer matrix approach and the amplification of modes analyzed as the instability propagates through the test loop.

  4. Transport of temperature-velocity covariance in gas-solid flow and its relation to the axial dispersion coefficient

    NASA Astrophysics Data System (ADS)

    Subramaniam, Shankar; Sun, Bo

    2015-11-01

    The presence of solid particles in a steady laminar flow generates velocity fluctuations with respect to the mean fluid velocity that are termed pseudo-turbulence. The level of these pseudo-turbulent velocity fluctuations has been characterized in statistically homogeneous fixed particle assemblies and freely evolving suspensions using particle-resolved direct numerical simulation (PR-DNS) by Mehrabadi et al. (JFM, 2015), and it is found to be a significant contribution to the total kinetic energy associated with the flow. The correlation of these velocity fluctuations with temperature (or a passive scalar) generates a flux term that appears in the transport equation for the average fluid temperature (or average scalar concentration). The magnitude of this transport of temperature-velocity covariance is quantified using PR-DNS of thermally fully developed flow past a statistically homogeneous fixed assembly of particles, and the budget of the average fluid temperature equation is presented. The relation of this transport term to the axial dispersion coefficient (Brenner, Phil. Trans. Roy. Soc. A, 1980) is established. The simulation results are then interpreted in the context of our understanding of axial dispersion in gas-solid flow. NSF CBET 1336941.

  5. Role of pseudo-turbulent stresses in shocked particle clouds and construction of surrogate models for closure

    NASA Astrophysics Data System (ADS)

    Sen, O.; Gaul, N. J.; Davis, S.; Choi, K. K.; Jacobs, G.; Udaykumar, H. S.

    2018-05-01

    Macroscale models of shock-particle interactions require closure terms for unresolved solid-fluid momentum and energy transfer. These comprise the effects of mean as well as fluctuating fluid-phase velocity fields in the particle cloud. Mean drag and Reynolds stress equivalent terms (also known as pseudo-turbulent terms) appear in the macroscale equations. Closure laws for the pseudo-turbulent terms are constructed in this work from ensembles of high-fidelity mesoscale simulations. The computations are performed over a wide range of Mach numbers ( M) and particle volume fractions (φ ) and are used to explicitly compute the pseudo-turbulent stresses from the Favre average of the velocity fluctuations in the flow field. The computed stresses are then used as inputs to a Modified Bayesian Kriging method to generate surrogate models. The surrogates can be used as closure models for the pseudo-turbulent terms in macroscale computations of shock-particle interactions. It is found that the kinetic energy associated with the velocity fluctuations is comparable to that of the mean flow—especially for increasing M and φ . This work is a first attempt to quantify and evaluate the effect of velocity fluctuations for problems of shock-particle interactions.

  6. Role of pseudo-turbulent stresses in shocked particle clouds and construction of surrogate models for closure

    NASA Astrophysics Data System (ADS)

    Sen, O.; Gaul, N. J.; Davis, S.; Choi, K. K.; Jacobs, G.; Udaykumar, H. S.

    2018-02-01

    Macroscale models of shock-particle interactions require closure terms for unresolved solid-fluid momentum and energy transfer. These comprise the effects of mean as well as fluctuating fluid-phase velocity fields in the particle cloud. Mean drag and Reynolds stress equivalent terms (also known as pseudo-turbulent terms) appear in the macroscale equations. Closure laws for the pseudo-turbulent terms are constructed in this work from ensembles of high-fidelity mesoscale simulations. The computations are performed over a wide range of Mach numbers (M) and particle volume fractions (φ ) and are used to explicitly compute the pseudo-turbulent stresses from the Favre average of the velocity fluctuations in the flow field. The computed stresses are then used as inputs to a Modified Bayesian Kriging method to generate surrogate models. The surrogates can be used as closure models for the pseudo-turbulent terms in macroscale computations of shock-particle interactions. It is found that the kinetic energy associated with the velocity fluctuations is comparable to that of the mean flow—especially for increasing M and φ . This work is a first attempt to quantify and evaluate the effect of velocity fluctuations for problems of shock-particle interactions.

  7. Emergence of acoustic waves from vorticity fluctuations: impact of non-normality.

    PubMed

    George, Joseph; Sujith, R I

    2009-10-01

    Chagelishvili et al. [Phys. Rev. Lett. 79, 3178 (1997)] discovered a linear mechanism of acoustic wave emergence from vorticity fluctuations in shear flows. This paper illustrates how this "nonresonant" phenomenon is related to the non-normality of the operator governing the linear dynamics of disturbances in shear flows. The non-self-adjoint nature of the governing operator causes the emergent acoustic wave to interact strongly with the vorticity disturbance. Analytical expressions are obtained for the nondivergent vorticity perturbation. A discontinuity in the x component of the velocity field corresponding to the vorticity disturbance was originally identified to be the cause of acoustic wave emergence. However, a different mechanism is proposed in this paper. The correct "acoustic source" is identified and the reason for the abrupt nature of wave emergence is explained. The impact of viscous damping is also discussed.

  8. Cluster Observations of Multiple Dipolarization Fronts

    NASA Technical Reports Server (NTRS)

    Hwang, Kyoung-Joo; Goldstein, Melvyn L.; Lee, Ensang; Pickett, Jolene S.

    2011-01-01

    We present Cluster observations of a series of dipolarization fronts (DF 1 to 6) at the central current sheet in Earth's magnetotail. The velocities of fast earthward flow following behind each DF 1-3, are comparable to the Alfven velocity, indicating that the flow bursts might have been generated by bursty reconnection that occurred tailward of the spacecraft. Based on multi-spacecraft timing analysis, DF normals are found to propagate mainly earthward at $160-335$ km/s with a thickness of 900-1500 km, which corresponds to the ion inertial length or gyroradius scale. Each DF is followed by significant fluctuations in the $x$ and $y$ components of the magnetic field whose peaks are found 1-2 minutes after the DF passage. These $(B_{x},B_{y} )$-fluctuations propagate dawnward (mainly) and earthward. Strongly enhanced field-aligned beams are observed coincidently with $(B_{x},B_{y})$ fluctuations, while an enhancement of cross-tail currents is associated with the DFs. From the observed pressure imbalance and flux-tube entropy changes between the two regions separated by the DF, we speculate that interchange instability destabilizes the DFs and causes the deformation of the mid-tail magnetic topology. This process generates significant field-aligned currents, and might power the auroral brightening in the ionosphere. However, this event is neither associated with the main substorm auroral breakup nor the poleward expansion, which might indicate that the observed multiple DFs have been dissipated before they reach the inner plasma sheet boundary.

  9. Cluster Observations of Multiple Dipolarization Fronts

    NASA Technical Reports Server (NTRS)

    Hwang, K.-J.; Goldstein, M. L.; Lee, E.; Pickett, J. S.

    2011-01-01

    We present Cluster observations of a series of dipolarization fronts (DF 1 to 6) at the central current sheet in Earth's magnetotail. The velocities of fast earthward flow following behind each DF 1.3 are comparable to the Alfven velocity, indicating that the flow bursts might have been generated by bursty reconnection that occurred tailward of the spacecraft. Based on multispacecraft timing analysis, DF normals are found to propagate mainly earthward at 160.335 km/s with a thickness of 900-1500 km, which corresponds to the ion inertial length or gyroradius scale. Each DF is followed by significant fluctuations in the x and y components of the magnetic field whose peaks are found 1.2 min after the DF passage. These (B(sub x), B(sub y)) fluctuations propagate dawnward (mainly) and earthward. Strongly enhanced field-aligned beams are observed coincidently with (B(sub x), B(sub y)) fluctuations, while an enhancement of cross-tail currents is associated with the DFs. From the observed pressure imbalance and flux tube entropy changes between the two regions separated by the DF, we speculate that interchange instability destabilizes the DFs and causes the deformation of the midtail magnetic topology. This process generates significant field-aligned currents and might power the auroral brightening in the ionosphere. However, this event is associated with neither the main substorm auroral breakup nor the poleward expansion, which might indicate that the observed multiple DFs have been dissipated before they reach the inner plasma sheet boundary.

  10. Unsteady Flows in a Single-Stage Transonic Axial-Flow Fan Stator Row. Ph.D. Thesis - Iowa State Univ.

    NASA Technical Reports Server (NTRS)

    Hathaway, Michael D.

    1986-01-01

    Measurements of the unsteady velocity field within the stator row of a transonic axial-flow fan were acquired using a laser anemometer. Measurements were obtained on axisymmetric surfaces located at 10 and 50 percent span from the shroud, with the fan operating at maximum efficiency at design speed. The ensemble-average and variance of the measured velocities are used to identify rotor-wake-generated (deterministic) unsteadiness and turbulence, respectively. Correlations of both deterministic and turbulent velocity fluctuations provide information on the characteristics of unsteady interactions within the stator row. These correlations are derived from the Navier-Stokes equation in a manner similar to deriving the Reynolds stress terms, whereby various averaging operators are used to average the aperiodic, deterministic, and turbulent velocity fluctuations which are known to be present in multistage turbomachines. The correlations of deterministic and turbulent velocity fluctuations throughout the axial fan stator row are presented. In particular, amplification and attenuation of both types of unsteadiness are shown to occur within the stator blade passage.

  11. Rayleigh Scattering Diagnostic for Measurement of Temperature, Velocity, and Density Fluctuation Spectra

    NASA Technical Reports Server (NTRS)

    Mielke, Amy F.; Elam, Kristie A.; Sung, Chih-Jen; Panda, Jayanta

    2006-01-01

    A molecular Rayleigh scattering technique is developed to measure dynamic gas temperature, velocity, and density in unseeded turbulent flows at sampling rates up to 10 kHz. A high power CW laser beam is focused at a point in a heated air jet plume and Rayleigh scattered light is collected and spectrally resolved. The spectrum of the light, which contains information about the temperature, velocity, and density of the flow, is analyzed using a Fabry-Perot interferometer. The circular interference fringe pattern is divided into four concentric regions and sampled at 1 and 10 kHz using photon counting electronics. Monitoring the relative change in intensity within each region allows for measurement of gas temperature and velocity. Independently monitoring the total scattered light intensity provides a measure of gas density. Power spectral density calculations of temperature, velocity, and density fluctuations, as well as mean and fluctuating quantities are demonstrated for various radial locations in the jet flow at a fixed axial distance from the jet exit plane. Results are compared with constant current anemometry and pitot probe measurements at the same locations.

  12. Anomalous diffusion due to the non-Markovian process of the dust particle velocity in complex plasmas

    NASA Astrophysics Data System (ADS)

    Ghannad, Z.; Hakimi Pajouh, H.

    2017-12-01

    In this work, the motion of a dust particle under the influence of the random force due to dust charge fluctuations is considered as a non-Markovian stochastic process. Memory effects in the velocity process of the dust particle are studied. A model is developed based on the fractional Langevin equation for the motion of the dust grain. The fluctuation-dissipation theorem for the dust grain is derived from this equation. The mean-square displacement and the velocity autocorrelation function of the dust particle are obtained in terms of the Mittag-Leffler functions. Their asymptotic behavior and the dust particle temperature due to charge fluctuations are studied in the long-time limit. As an interesting result, it is found that the presence of memory effects in the velocity process of the dust particle as a non-Markovian process can cause an anomalous diffusion in dusty plasmas. In this case, the velocity autocorrelation function of the dust particle has a power-law decay like t - α - 2, where the exponent α take values 0 < α < 1.

  13. A spatial length scale analysis of turbulent temperature and velocity fluctuations within and above an orchard canopy

    USGS Publications Warehouse

    Wang, Y.S.; Miller, D.R.; Anderson, D.E.; Cionco, R.M.; Lin, J.D.

    1992-01-01

    Turbulent flow within and above an almond orchard was measured with three-dimensional wind sensors and fine-wire thermocouple sensors arranged in a horizontal array. The data showed organized turbulent structures as indicated by coherent asymmetric ramp patterns in the time series traces across the sensor array. Space-time correlation analysis indicated that velocity and temperature fluctuations were significantly correlated over a transverse distance more than 4m. Integral length scales of velocity and temperature fluctuations were substantially greater in unstable conditions than those in stable conditions. The coherence spectral analysis indicated that Davenport's geometric similarity hypothesis was satisfied in the lower frequency region. From the geometric similarity hypothesis, the spatial extents of large ramp structures were also estimated with the coherence functions.

  14. Effect of particle velocity fluctuations on the inertia coupling in two-phase flow

    NASA Technical Reports Server (NTRS)

    Drew, Donald A.

    1989-01-01

    Consistent forms for the interfacial force, the interfacial pressure, the Reynolds stresses and the particle stress have been derived for the inviscid, irrotational incompressible flow of fluid in a dilute suspension of spheres. The particles are assumed to have a velocity distribution, giving rise to an effective pressure and stress in the particle phase. The velocity fluctuations also contribute in the fluid Reynolds stress and in the (elastic) stress field inside the spheres. The relation of these constitutive equations to the force on an individual sphere is discussed.

  15. Turbulent statistics and intermittency enhancement in coflowing superfluid 4He

    NASA Astrophysics Data System (ADS)

    Biferale, L.; Khomenko, D.; L'vov, V.; Pomyalov, A.; Procaccia, I.; Sahoo, G.

    2018-02-01

    The large-scale turbulent statistics of mechanically driven superfluid 4He was shown experimentally to follow the classical counterpart. In this paper, we use direct numerical simulations to study the whole range of scales in a range of temperatures T ∈[1.3 ,2.1 ] K. The numerics employ self-consistent and nonlinearly coupled normal and superfluid components. The main results are that (i) the velocity fluctuations of normal and super components are well correlated in the inertial range of scales, but decorrelate at small scales. (ii) The energy transfer by mutual friction between components is particulary efficient in the temperature range between 1.8 and 2 K, leading to enhancement of small-scale intermittency for these temperatures. (iii) At low T and close to Tλ, the scaling properties of the energy spectra and structure functions of the two components are approaching those of classical hydrodynamic turbulence.

  16. Symposium on Turbulent Shear Flows (4th) Held at Karlsruhe University (Germany, F.R.), 12-14 September 1983.

    DTIC Science & Technology

    1983-09-01

    fluctuat- structed for the present purpose and a small amount of ing velocity components. The present experimental data milk was introduced into the...water flow. Finely dis- will also be compared with the nuerical results and the parsed milk droplets serve as the scattering particles._ experimental...correlation coefficient for the radial In the photoultipIler, I.e., f’ a 0.01. The mean mass transport Is 0.3 < Rvf < 0.4 though the momentum concentration

  17. An experimental investigation of the flow past a finite circular cylinder at a low subcritical Reynolds number

    NASA Technical Reports Server (NTRS)

    Budair, M.; Ayoub, A.; Karamcheti, K.

    1981-01-01

    Results of hot wire measurements made in the near wake at a Reynolds number of 9955 are reported. The measurements include the mean velocity profiles, root mean square values of the velocity fluctuations, frequency spectra, and velocity cross correlations. The mean velocity profiles were used to determine the wake width, whose variation in the downstream and spanwise directions was examined. It is observed that close to the cylinder, the wake is narrower toward the free end than it is away from it, while further downstream the wake is wider toward the tip than it is away from it. It is found that the flow over the span can be characterized by four regions: a tip region where vortex shedding occurs at a lower frequency than that prevalent for away from the tip; an intermediate region adjacent to the first one where a frequency component of a nonshedding character is present; a third region characterized by a gradually increasing shedding frequency with increasing distance from the tip; and a two dimensional region where the shedding frequency is constant.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Zhenwei; Yang, Weihong, E-mail: whyang@ustc.edu.cn

    By using analytical method, the exact solutions of the incompressible dissipative Hall magnetohydrodynamics (MHD) equations are derived. It is found that a phase difference may occur between the velocity and magnetic field fluctuations when the kinetic and magnetic Reynolds numbers are both very large. Since velocity and magnetic field fluctuations are both circular polarized, the phase difference makes them no longer parallel or anti-parallel like that in the incompressible ideal Hall MHD.

  19. Exact solution of the Lifshitz equations governing the growth of fluctuations in cosmology

    NASA Technical Reports Server (NTRS)

    Adams, P. J.; Canuto, V.

    1975-01-01

    The exact solution of the Lifshitz equations governing the cosmological evolution of an initial fluctuation is presented. Lifshitz results valid for squares of the sound velocity equal to zero and 1/3 are extended in closed form to any equation of state where the pressure equals the total energy density times the square of the sound velocity. The solutions embody all the results found previously for special cases of the square of the sound velocity. It is found that the growth of any initial fluctuation is only an exponential function of time with an exponent of not more than 4/3 and is insufficient to produce galaxies unless the initial fluctuation is very large. A possible way to produce very large initial fluctuations by modifying the equation of state by including gravitational interactions is also examined. It is found that a phase transition can occur at baryonic density of 1 nucleon per cubic Planck length or equivalently, at a time of about 10 to the -43rd power sec. At those early times, the masses allowed by causality requirements are too small to be of interest in galaxy formation.

  20. Estimating Variances of Horizontal Wind Fluctuations in Stable Conditions

    NASA Astrophysics Data System (ADS)

    Luhar, Ashok K.

    2010-05-01

    Information concerning the average wind speed and the variances of lateral and longitudinal wind velocity fluctuations is required by dispersion models to characterise turbulence in the atmospheric boundary layer. When the winds are weak, the scalar average wind speed and the vector average wind speed need to be clearly distinguished and both lateral and longitudinal wind velocity fluctuations assume equal importance in dispersion calculations. We examine commonly-used methods of estimating these variances from wind-speed and wind-direction statistics measured separately, for example, by a cup anemometer and a wind vane, and evaluate the implied relationship between the scalar and vector wind speeds, using measurements taken under low-wind stable conditions. We highlight several inconsistencies inherent in the existing formulations and show that the widely-used assumption that the lateral velocity variance is equal to the longitudinal velocity variance is not necessarily true. We derive improved relations for the two variances, and although data under stable stratification are considered for comparison, our analysis is applicable more generally.

  1. Physical Roles of Interstellar-origin Pickup Ions at Heliospheric Termination Shock. II. Impact of the Front Nonstationary on the Energy Partition and Particle Velocity Distribution

    NASA Astrophysics Data System (ADS)

    Lembège, Bertrand; Yang, Zhongwei

    2018-06-01

    The impact of the nonstationarity of the heliospheric termination shock in the presence of pickup ions (PUIs) on the energy partition between different plasma components is analyzed self-consistently by using a one-dimensional particle-in-cell simulation code. Solar wind ions (SWIs) and PUIs are introduced as Maxwellian and shell distributions, respectively. For a fixed time, (a) with a percentage of 25% PUIs, a large part of the downstream thermal pressure is carried by reflected PUIs, in agreement with previous hybrid simulations; (b) the total downstream distribution includes three main components: (i) a low-energy component dominated by directly transmitted (DT) SWIs, (ii) a high-energy component dominated by reflected PUIs, and (iii) an intermediate-energy component dominated by reflected SWIs and DT PUIs. Moreover, results show that the front nonstationarity (self-reformation) persists even in presence of 25% PUIs, and has some impacts on both SWIs and PUIs: (a) the rate of reflected ions suffers some time fluctuations for both SWIs and PUIs; (b) the relative percentage of downstream thermal pressure transfered to PUIs and SWIs also suffers some time fluctuations, but depends on the relative distance from the front; (c) the three components within the total downstream heliosheath distribution persist in time, but the contribution of the ion subpopulations to the low- and intermediate-energy components are redistributed by the front nonstationarity. Our results allow clarifying the respective roles of SWIs and PUIs as a viable production source of energetic neutral atoms and are compared with previous results.

  2. REVISED MODEL OF THE STEADY-STATE SOLAR WIND HALO ELECTRON VELOCITY DISTRIBUTION FUNCTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Peter H.; Kim, Sunjung; Choe, G. S.

    2016-08-01

    A recent study discussed the steady-state model for solar wind electrons during quiet time conditions. The electrons emanating from the Sun are treated in a composite three-population model—the low-energy Maxwellian core with an energy range of tens of eV, the intermediate ∼10{sup 2}–10{sup 3} eV energy-range (“halo”) electrons, and the high ∼10{sup 3}–10{sup 5} eV energy-range (“super-halo”) electrons. In the model, the intermediate energy halo electrons are assumed to be in resonance with transverse EM fluctuations in the whistler frequency range (∼10{sup 2} Hz), while the high-energy super-halo electrons are presumed to be in steady-state wave–particle resonance with higher-frequency electrostaticmore » fluctuations in the Langmuir frequency range (∼10{sup 5} Hz). A comparison with STEREO and WIND spacecraft data was also made. However, ignoring the influence of Langmuir fluctuations on the halo population turns out to be an unjustifiable assumption. The present paper rectifies the previous approach by including both Langmuir and whistler fluctuations in the construction of the steady-state velocity distribution function for the halo population, and demonstrates that the role of whistler-range fluctuation is minimal unless the fluctuation intensity is arbitrarily raised. This implies that the Langmuir-range fluctuations, known as the quasi thermal noise, are important for both halo and super-halo electron velocity distribution.« less

  3. A Model for Temperature Fluctuations in a Buoyant Plume

    NASA Astrophysics Data System (ADS)

    Bisignano, A.; Devenish, B. J.

    2015-11-01

    We present a hybrid Lagrangian stochastic model for buoyant plume rise from an isolated source that includes the effects of temperature fluctuations. The model is based on that of Webster and Thomson (Atmos Environ 36:5031-5042, 2002) in that it is a coupling of a classical plume model in a crossflow with stochastic differential equations for the vertical velocity and temperature (which are themselves coupled). The novelty lies in the addition of the latter stochastic differential equation. Parametrizations of the plume turbulence are presented that are used as inputs to the model. The root-mean-square temperature is assumed to be proportional to the difference between the centreline temperature of the plume and the ambient temperature. The constant of proportionality is tuned by comparison with equivalent statistics from large-eddy simulations (LES) of buoyant plumes in a uniform crossflow and linear stratification. We compare plume trajectories for a wide range of crossflow velocities and find that the model generally compares well with the equivalent LES results particularly when added mass is included in the model. The exception occurs when the crossflow velocity component becomes very small. Comparison of the scalar concentration, both in terms of the height of the maximum concentration and its vertical spread, shows similar behaviour. The model is extended to allow for realistic profiles of ambient wind and temperature and the results are compared with LES of the plume that emanated from the explosion and fire at the Buncefield oil depot in 2005.

  4. The 3D pore structure and fluid dynamics simulation of macroporous monoliths: High permeability due to alternating channel width.

    PubMed

    Jungreuthmayer, Christian; Steppert, Petra; Sekot, Gerhard; Zankel, Armin; Reingruber, Herbert; Zanghellini, Jürgen; Jungbauer, Alois

    2015-12-18

    Polymethacrylate-based monoliths have excellent flow properties. Flow in the wide channel interconnected with narrow channels is theoretically assumed to account for favorable permeability. Monoliths were cut into 898 slices in 50nm distances and visualized by serial block face scanning electron microscopy (SBEM). A 3D structure was reconstructed and used for the calculation of flow profiles within the monolith and for calculation of pressure drop and permeability by computational fluid dynamics (CFD). The calculated and measured permeabilities showed good agreement. Small channels clearly flowed into wide and wide into small channels in a repetitive manner which supported the hypothesis describing the favorable flow properties of these materials. This alternating property is also reflected in the streamline velocity which fluctuated. These findings were corroborated by artificial monoliths which were composed of regular (interconnected) cells where narrow cells followed wide cells. In the real monolith and the artificial monoliths with interconnected flow channels similar velocity fluctuations could be observed. A two phase flow simulation showed a lateral velocity component, which may contribute to the transport of molecules to the monolith wall. Our study showed that the interconnection of small and wide pores is responsible for the excellent pressure flow properties. This study is also a guide for further design of continuous porous materials to achieve good flow properties. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  5. FLEET Velocimetry Measurements on a Transonic Airfoil

    NASA Technical Reports Server (NTRS)

    Burns, Ross A.; Danehy, Paul M.

    2017-01-01

    Femtosecond laser electronic excitation tagging (FLEET) velocimetry was used to study the flowfield around a symmetric, transonic airfoil in the NASA Langley 0.3-m TCT facility. A nominal Mach number of 0.85 was investigated with a total pressure of 125 kPa and total temperature of 280 K. Two-components of velocity were measured along vertical profiles at different locations above, below, and aft of the airfoil at angles of attack of 0 deg, 3.5 deg, and 7deg. Measurements were assessed for their accuracy, precision, dynamic range, spatial resolution, and overall measurement uncertainty in the context of the applied flowfield. Measurement precisions as low as 1 m/s were observed, while overall uncertainties ranged from 4 to 5 percent. Velocity profiles within the wake showed sufficient accuracy, precision, and sensitivity to resolve both the mean and fluctuating velocities and general flow physics such as shear layer growth. Evidence of flow separation is found at high angles of attack.

  6. Influence of bulk turbulence and entrance boundary layer thickness on the curved duct flow field

    NASA Technical Reports Server (NTRS)

    Crawford, R. A.

    1988-01-01

    The influence of bulk turbulence and boundary layer thickness on the secondary flow development in a square, 90 degree turning duct was investigated. A three-dimensional laser velocimetry system was utilized to measure the mean and fluctuating components of velocity at six cross-planes in the duct. The results from this investigation, with entrance boundary layer thickness of 20 percent, were compared with the thin boundary layer results documented in NASA CR-174811. The axial velocity profiles, cross-flow velocities, and turbulence intensities were compared and evaluated with regard to the influence of bulk turbulence intensity and boundary layer thickness, and the influence was significant. The results of this investigation expand the 90 degree curved duct experimental data base to higher turbulence levels and thicker entrance boundary layers. The experimental results provide a challenging benchmark data base for computational fluid dynamics code development and validation. The variation of inlet bulk turbulence intensity provides additional information to aid in turbulence model evaluation.

  7. Structure of large-scale flows and their oscillation in the thermal convection of liquid gallium.

    PubMed

    Yanagisawa, Takatoshi; Yamagishi, Yasuko; Hamano, Yozo; Tasaka, Yuji; Yoshida, Masataka; Yano, Kanako; Takeda, Yasushi

    2010-07-01

    This investigation observed large-scale flows in liquid gallium and the oscillation with Rayleigh-Bénard convection. An ultrasonic velocity profiling method was used to visualize the spatiotemporal flow pattern of the liquid gallium in a horizontally long rectangular vessel. Measuring the horizontal component of the flow velocity at several lines, an organized roll-like structure with four cells was observed in the 1×10(4)-2×10(5) range of Rayleigh numbers, and the rolls show clear oscillatory behavior. The long-term fluctuations in temperature observed in point measurements correspond to the oscillations of the organized roll structure. This flow structure can be interpreted as the continuous development of the oscillatory instability of two-dimensional roll convection that is theoretically investigated around the critical Rayleigh number. Both the velocity of the large-scale flows and the frequency of the oscillation increase proportional to the square root of the Rayleigh number. This indicates that the oscillation is closely related to the circulation of large-scale flow.

  8. Investigation of dissipation elements in a fully developed turbulent channel flow by tomographic particle-image velocimetry

    NASA Astrophysics Data System (ADS)

    Schäfer, L.; Dierksheide, U.; Klaas, M.; Schröder, W.

    2011-03-01

    A new method to describe statistical information from passive scalar fields has been proposed by Wang and Peters ["The length-scale distribution function of the distance between extremal points in passive scalar turbulence," J. Fluid Mech. 554, 457 (2006)]. They used direct numerical simulations (DNS) of homogeneous shear flow to introduce the innovative concept. This novel method determines the local minimum and maximum points of the fluctuating scalar field via gradient trajectories, starting from every grid point in the direction of the steepest ascending and descending scalar gradients. Relying on gradient trajectories, a dissipation element is defined as the region of all the grid points, the trajectories of which share the same pair of maximum and minimum points. The procedure has also been successfully applied to various DNS fields of homogeneous shear turbulence using the three velocity components and the kinetic energy as scalar fields [L. Wang and N. Peters, "Length-scale distribution functions and conditional means for various fields in turbulence," J. Fluid Mech. 608, 113 (2008)]. In this spirit, dissipation elements are, for the first time, determined from experimental data of a fully developed turbulent channel flow. The dissipation elements are deduced from the gradients of the instantaneous fluctuation of the three velocity components u', v', and w' and the instantaneous kinetic energy k', respectively. The measurements are conducted at a Reynolds number of 1.7×104 based on the channel half-height δ and the bulk velocity U. The required three-dimensional velocity data are obtained investigating a 17.75×17.75×6 mm3 (0.355δ×0.355δ×0.12δ) test volume using tomographic particle-image velocimetry. Detection and analysis of dissipation elements from the experimental velocity data are discussed in detail. The statistical results are compared to the DNS data from Wang and Peters ["The length-scale distribution function of the distance between extremal points in passive scalar turbulence," J. Fluid Mech. 554, 457 (2006); "Length-scale distribution functions and conditional means for various fields in turbulence," J. Fluid Mech. 608, 113 (2008)]. Similar characteristics have been found especially for the pdf's of the large dissipation element length regarding the exponential decay. In agreement with the DNS results, over 99% of the experimental dissipation elements possess a length that is smaller than three times the average element length.

  9. Internal tides in the Northern Gulf of California

    NASA Astrophysics Data System (ADS)

    Filonov, Anatoliy E.; LavíN, M. F.

    2003-05-01

    The characteristics of the internal tide in the Northern Gulf of California are described using data from two moored arrays of temperature and current sensors, one for summer and one for winter, located between Angel de la Guarda Island and the mainland. From the summer six-sensor mooring it was found that: (1) the current fluctuations are dominated by the semidiurnal frequency band, while the quarterdiurnal frequency dominated the temperature fluctuations. (2) The baroclinic semidiurnal horizontal current fluctuations are aligned with the gulf axis, and have amplitudes of 10-15 cm s-1; the vertical displacements reached 4 m in this frequency band. (3) The vertical modal structure for the temperature and velocity oscillations was dominated by the first and third modes. (4) The energy of the semidiurnal internal tide is 45% of that of the barotropic tide. (5) Vertical wave number spectra showed slightly asymmetric peaks in the high wave number components, indicating that their downflowing energy is larger than that flowing upward. From the winter two-sensor mooring, it was found that the vertical oscillations were mainly semidiurnal, with root mean square amplitudes of 7 m.

  10. Experimental determination of the correlation properties of plasma turbulence using 2D BES systems

    NASA Astrophysics Data System (ADS)

    Fox, M. F. J.; Field, A. R.; van Wyk, F.; Ghim, Y.-c.; Schekochihin, A. A.; the MAST Team

    2017-04-01

    A procedure is presented to map from the spatial correlation parameters of a turbulent density field (the radial and binormal correlation lengths and wavenumbers, and the fluctuation amplitude) to correlation parameters that would be measured by a beam emission spectroscopy (BES) diagnostic. The inverse mapping is also derived, which results in resolution criteria for recovering correct correlation parameters, depending on the spatial response of the instrument quantified in terms of point-spread functions (PSFs). Thus, a procedure is presented that allows for a systematic comparison between theoretical predictions and experimental observations. This procedure is illustrated using the Mega-Ampere Spherical Tokamak BES system and the validity of the underlying assumptions is tested on fluctuating density fields generated by direct numerical simulations using the gyrokinetic code GS2. The measurement of the correlation time, by means of the cross-correlation time-delay method, is also investigated and is shown to be sensitive to the fluctuating radial component of velocity, as well as to small variations in the spatial properties of the PSFs.

  11. Transition from geostrophic turbulence to inertia-gravity waves in the atmospheric energy spectrum.

    PubMed

    Callies, Jörn; Ferrari, Raffaele; Bühler, Oliver

    2014-12-02

    Midlatitude fluctuations of the atmospheric winds on scales of thousands of kilometers, the most energetic of such fluctuations, are strongly constrained by the Earth's rotation and the atmosphere's stratification. As a result of these constraints, the flow is quasi-2D and energy is trapped at large scales—nonlinear turbulent interactions transfer energy to larger scales, but not to smaller scales. Aircraft observations of wind and temperature near the tropopause indicate that fluctuations at horizontal scales smaller than about 500 km are more energetic than expected from these quasi-2D dynamics. We present an analysis of the observations that indicates that these smaller-scale motions are due to approximately linear inertia-gravity waves, contrary to recent claims that these scales are strongly turbulent. Specifically, the aircraft velocity and temperature measurements are separated into two components: one due to the quasi-2D dynamics and one due to linear inertia-gravity waves. Quasi-2D dynamics dominate at scales larger than 500 km; inertia-gravity waves dominate at scales smaller than 500 km.

  12. Transition from geostrophic turbulence to inertia–gravity waves in the atmospheric energy spectrum

    PubMed Central

    Callies, Jörn; Ferrari, Raffaele; Bühler, Oliver

    2014-01-01

    Midlatitude fluctuations of the atmospheric winds on scales of thousands of kilometers, the most energetic of such fluctuations, are strongly constrained by the Earth’s rotation and the atmosphere’s stratification. As a result of these constraints, the flow is quasi-2D and energy is trapped at large scales—nonlinear turbulent interactions transfer energy to larger scales, but not to smaller scales. Aircraft observations of wind and temperature near the tropopause indicate that fluctuations at horizontal scales smaller than about 500 km are more energetic than expected from these quasi-2D dynamics. We present an analysis of the observations that indicates that these smaller-scale motions are due to approximately linear inertia–gravity waves, contrary to recent claims that these scales are strongly turbulent. Specifically, the aircraft velocity and temperature measurements are separated into two components: one due to the quasi-2D dynamics and one due to linear inertia–gravity waves. Quasi-2D dynamics dominate at scales larger than 500 km; inertia–gravity waves dominate at scales smaller than 500 km. PMID:25404349

  13. Experimental Test of the Differential Fluctuation Theorem and a Generalized Jarzynski Equality for Arbitrary Initial States

    NASA Astrophysics Data System (ADS)

    Hoang, Thai M.; Pan, Rui; Ahn, Jonghoon; Bang, Jaehoon; Quan, H. T.; Li, Tongcang

    2018-02-01

    Nonequilibrium processes of small systems such as molecular machines are ubiquitous in biology, chemistry, and physics but are often challenging to comprehend. In the past two decades, several exact thermodynamic relations of nonequilibrium processes, collectively known as fluctuation theorems, have been discovered and provided critical insights. These fluctuation theorems are generalizations of the second law and can be unified by a differential fluctuation theorem. Here we perform the first experimental test of the differential fluctuation theorem using an optically levitated nanosphere in both underdamped and overdamped regimes and in both spatial and velocity spaces. We also test several theorems that can be obtained from it directly, including a generalized Jarzynski equality that is valid for arbitrary initial states, and the Hummer-Szabo relation. Our study experimentally verifies these fundamental theorems and initiates the experimental study of stochastic energetics with the instantaneous velocity measurement.

  14. Origin of Stability in Particle Sedimentation

    NASA Technical Reports Server (NTRS)

    Segre, Philip N.

    2003-01-01

    Particle Image Velocimetry (PIV) is used to study the slow settling motions of spheres in suspensions ranging from dilute to highly concentrated, 0.0001 less than phi less than 0.50. During sedimentation, particle velocity fluctuations are found to be organized into regions of characteristic size xi approximately 11 a phi (exp -1/3). A simple model, based upon buoyant mass fluctuations DELTAm given by random density fluctuations in a region of size xi, accurately predicts the magnitudes of the velocity fluctuations DELTAV. We also find a new universal relation for particle diffusion during sedimentation. It can be written in a Stokes-Einstein form as Dapproximately(DELTAmxi)/(6pietaxi), where the effective temperature DELTAmgxi is the gravitational potential energy of density fluctuations. In addition related experiments examining inertial effects and transient states, that are aimed at uncovering the origin of the new lengthscale xi, will also be given.

  15. Time scale defined by the fractal structure of the price fluctuations in foreign exchange markets

    NASA Astrophysics Data System (ADS)

    Kumagai, Yoshiaki

    2010-04-01

    In this contribution, a new time scale named C-fluctuation time is defined by price fluctuations observed at a given resolution. The intraday fractal structures and the relations of the three time scales: real time (physical time), tick time and C-fluctuation time, in foreign exchange markets are analyzed. The data set used is trading prices of foreign exchange rates; US dollar (USD)/Japanese yen (JPY), USD/Euro (EUR), and EUR/JPY. The accuracy of the data is one minute and data within a minute are recorded in order of transaction. The series of instantaneous velocity of C-fluctuation time flowing are exponentially distributed for small C when they are measured by real time and for tiny C when they are measured by tick time. When the market is volatile, for larger C, the series of instantaneous velocity are exponentially distributed.

  16. Effects of precipitation on sonic anemometer measurements of turbulent fluxes in the atmospheric surface layer

    NASA Astrophysics Data System (ADS)

    Zhang, Rongwang; Huang, Jian; Wang, Xin; Zhang, Jun A.; Huang, Fei

    2016-06-01

    Effects caused by precipitation on the measurements of three-dimensional sonic anemometer are analyzed based on a field observational experiment conducted in Maoming, Guangdong Province, China. Obvious fluctuations induced by precipitation are observed for the outputs of sonic anemometer-derived temperature and wind velocity components. A technique of turbulence spectra and cospectra normalized in the framework of similarity theory is utilized to validate the measured variables and calculated fluxes. It is found that the sensitivity of sonic anemometer-derived temperature to precipitation is significant, compared with that of the wind velocity components. The spectra of wind velocity and cospectra of momentum flux resemble the standard universal shape with the slopes of the spectra and cospectra at the inertial subrange, following the -2/3 and -4/3 power law, respectively, even under the condition of heavy rain. Contaminated by precipitation, however, the spectra of temperature and cospectra of sensible heat flux do not exhibit a universal shape and have obvious frequency loss at the inertial subrange. From the physical structure and working principle of sonic anemometer, a possible explanation is proposed to describe this difference, which is found to be related to the variations of precipitation particles. Corrections for errors of sonic anemometer-derived temperature under precipitation is needed, which is still under exploration.

  17. Mean flows and blob velocities in scrape-off layer (SOLT) simulations of an L-mode discharge on Alcator C-Mod

    DOE PAGES

    Russell, D. A.; Myra, J. R.; D'Ippolito, D. A.; ...

    2016-06-10

    Two-dimensional scrape-off layer turbulence (SOLT) code simulations are compared with an L-mode discharge on the Alcator C-Mod tokamak [M. Greenwald, et al., Phys. Plasmas 21, 110501 (2014)]. Density and temperature profiles for the simulations were obtained by smoothly fitting Thomson scattering and mirror Langmuir probe (MLP) data from the shot. Simulations differing in turbulence intensity were obtained by varying a dissipation parameter. Mean flow profiles and density fluctuation amplitudes are consistent with those measured by MLP in the experiment and with a Fourier space diagnostic designed to measure poloidal phase velocity. Blob velocities in the simulations were determined from themore » correlation function for density fluctuations, as in the analysis of gas-puff-imaging (GPI) blobs in the experiment. In the simulations, it was found that larger blobs moved poloidally with the ExB flow velocity, v E , in the near-SOL, while smaller fluctuations moved with the group velocity of the dominant linear (interchange) mode, v E + 1/2 v di, where v di is the ion diamagnetic drift velocity. Comparisons are made with the measured GPI correlation velocity for the discharge. The saturation mechanisms operative in the simulation of the discharge are also discussed. In conclusion, it is found that neither sheared flow nor pressure gradient modification can be excluded as saturation mechanisms.« less

  18. Prediction of Turbulent Temperature Fluctuations in Hot Jets

    NASA Technical Reports Server (NTRS)

    DeBonis, James R.

    2017-01-01

    Large-eddy simulations (LES) were used to investigate turbulent temperature fluctuations and turbulent heat flux in hot jets. A high-resolution finite-difference Navier-Stokes solver was used to compute the flow from a 2-inch round nozzle. Three different flow conditions of varying jet Mach numbers and temperature ratios were examined. The LES results showed that the temperature field behaves similar to the velocity field, but with a more rapidly spreading mixing layer. Predictions of mean, mu-bar(sub i), and fluctuating, mu'(sub i), velocities were compared to particle image velocimetry data. Predictions of mean, T-bar, and fluctuating, T', temperature were compared to data obtained using Rayleigh scattering and Raman spectroscopy. Very good agreement with experimental data was demonstrated for the mean and fluctuating velocities. The LES correctly predicts the behavior of the turbulent temperature field, but over-predicts the levels of the fluctuations. The turbulent heat flux was examined and compared to Reynolds-averaged Navier-Stokes (RANS) results. The LES and RANS simulations produced very similar results for the radial heat flux. However, the axial heat flux obtained from the LES differed significantly from the RANS result in both structure and magnitude, indicating that the gradient diffusion type model in RANS is inadequate. Finally, the LES data was used to compute the turbulent Prandtl number and verify that a constant value of 0.7 used in the RANS models is a reasonable assumption.

  19. Statistical Theory of the Ideal MHD Geodynamo

    NASA Technical Reports Server (NTRS)

    Shebalin, J. V.

    2012-01-01

    A statistical theory of geodynamo action is developed, using a mathematical model of the geodynamo as a rotating outer core containing an ideal (i.e., no dissipation), incompressible, turbulent, convecting magnetofluid. On the concentric inner and outer spherical bounding surfaces the normal components of the velocity, magnetic field, vorticity and electric current are zero, as is the temperature fluctuation. This allows the use of a set of Galerkin expansion functions that are common to both velocity and magnetic field, as well as vorticity, current and the temperature fluctuation. The resulting dynamical system, based on the Boussinesq form of the magnetohydrodynamic (MHD) equations, represents MHD turbulence in a spherical domain. These basic equations (minus the temperature equation) and boundary conditions have been used previously in numerical simulations of forced, decaying MHD turbulence inside a sphere [1,2]. Here, the ideal case is studied through statistical analysis and leads to a prediction that an ideal coherent structure will be found in the form of a large-scale quasistationary magnetic field that results from broken ergodicity, an effect that has been previously studied both analytically and numerically for homogeneous MHD turbulence [3,4]. The axial dipole component becomes prominent when there is a relatively large magnetic helicity (proportional to the global correlation of magnetic vector potential and magnetic field) and a stationary, nonzero cross helicity (proportional to the global correlation of velocity and magnetic field). The expected angle of the dipole moment vector with respect to the rotation axis is found to decrease to a minimum as the average cross helicity increases for a fixed value of magnetic helicity and then to increase again when average cross helicity approaches its maximum possible value. Only a relatively small value of cross helicity is needed to produce a dipole moment vector that is aligned at approx.10deg with the rotation axis.

  20. Unsteady sedimentation of a sphere in wormlike micellar fluids

    NASA Astrophysics Data System (ADS)

    Zhang, Yiran; Muller, Susan J.

    2018-04-01

    The unsteady sedimentation of a sphere in wormlike micellar fluids is studied experimentally through shear and extensional rheometry, sphere trajectory tracking, and particle image velocimetry. Unsteady sphere sedimentation characterized by fluctuations in the sphere settling velocity was observed for a range of sphere size and density in two non-shear-banding wormlike micellar solutions, a cetylpyridinium chloride (CpCl)-sodium salicylate (NaSal) solution and a cetyltrimethylammonium p-toluenesulfonate (CTAT)-NaCl solution. The onset of the transition from steady to unsteady sphere motion is characterized by an extensional Deborah number, D eext , defined locally in the negative wake of the falling sphere. This instability criterion is in agreement with previous findings by Mohammadigoushki and Muller [J. Rheol. 60, 587 (2016), 10.1122/1.4948800] in the wormlike micelle system of cetyltrimethylammonium bromide (CTAB) and NaSal, and appears to be universally valid independent of micelle chemistry or solution rheology (e.g., shear banding or not). Moreover, the frequency at which the sphere velocity fluctuates is found to be linearly correlated with an average shear Deborah number D es , which is a measure of the overall flow strength. This suggests that a constant critical strain is accumulated before the flow instability takes place in each velocity oscillation. The velocity fluctuations are found to become increasingly disordered with increasing elastic Mach number, M ae , indicating that the interactions between the flow instability and elastic wave propagation result in more chaotic velocity fluctuations.

  1. Enhanced Spectral Anisotropies Near the Proton-Cyclotron Scale: Possible Two-Component Structure in Hall-FLR MHD Turbulence Simulations

    NASA Technical Reports Server (NTRS)

    Ghosh, Sanjoy; Goldstein, Melvyn L.

    2011-01-01

    Recent analysis of the magnetic correlation function of solar wind fluctuations at 1 AU suggests the existence of two-component structure near the proton-cyclotron scale. Here we use two-and-one-half dimensional and three-dimensional compressible MHD models to look for two-component structure adjacent the proton-cyclotron scale. Our MHD system incorporates both Hall and Finite Larmor Radius (FLR) terms. We find that strong spectral anisotropies appear adjacent the proton-cyclotron scales depending on selections of initial condition and plasma beta. These anisotropies are enhancements on top of related anisotropies that appear in standard MHD turbulence in the presence of a mean magnetic field and are suggestive of one turbulence component along the inertial scales and another component adjacent the dissipative scales. We compute the relative strengths of linear and nonlinear accelerations on the velocity and magnetic fields to gauge the relative influence of terms that drive the system with wave-like (linear) versus turbulent (nonlinear) dynamics.

  2. Generation of large-scale magnetic fields by small-scale dynamo in shear flows

    DOE PAGES

    Squire, J.; Bhattacharjee, A.

    2015-10-20

    We propose a new mechanism for a turbulent mean-field dynamo in which the magnetic fluctuations resulting from a small-scale dynamo drive the generation of large-scale magnetic fields. This is in stark contrast to the common idea that small-scale magnetic fields should be harmful to large-scale dynamo action. These dynamos occur in the presence of a large-scale velocity shear and do not require net helicity, resulting from off-diagonal components of the turbulent resistivity tensor as the magnetic analogue of the "shear-current" effect. Furthermore, given the inevitable existence of nonhelical small-scale magnetic fields in turbulent plasmas, as well as the generic naturemore » of velocity shear, the suggested mechanism may help explain the generation of large-scale magnetic fields across a wide range of astrophysical objects.« less

  3. Inflow measurement made with a laser velocimeter on a helicopter model in forward flight. Volume 3: Rectangular planform blades at an advance ratio of 0.30

    NASA Technical Reports Server (NTRS)

    Elliott, Joe W.; Althoff, Susan L.; Sailey, Richard H.

    1988-01-01

    An experimental investigation was conducted in the 14- by 22-Foot Subsonic Tunnel at NASA Langley Research Center to measure the inflow into a scale model helicopter rotor in forward flight (micron sub infinity = 0.30). The measurements were made with a two component Laser Velocimeter (LV) one chord above the plane formed by the path of the rotor tips (tip path plane). A conditional sampling technique was employed to determine the azimuthal position of the rotor at the time that each velocity measurement was made so that the azimuthal fluctuations in velocity could be determined. Measurements were made at a total of 180 separate locations in order to clearly define the inflow character. These data are presented without analysis.

  4. Generation of Large-Scale Magnetic Fields by Small-Scale Dynamo in Shear Flows.

    PubMed

    Squire, J; Bhattacharjee, A

    2015-10-23

    We propose a new mechanism for a turbulent mean-field dynamo in which the magnetic fluctuations resulting from a small-scale dynamo drive the generation of large-scale magnetic fields. This is in stark contrast to the common idea that small-scale magnetic fields should be harmful to large-scale dynamo action. These dynamos occur in the presence of a large-scale velocity shear and do not require net helicity, resulting from off-diagonal components of the turbulent resistivity tensor as the magnetic analogue of the "shear-current" effect. Given the inevitable existence of nonhelical small-scale magnetic fields in turbulent plasmas, as well as the generic nature of velocity shear, the suggested mechanism may help explain the generation of large-scale magnetic fields across a wide range of astrophysical objects.

  5. Evaluation of probe-induced flow distortion of Campbell CSAT3 sonic anemometers by numerical simulation

    NASA Astrophysics Data System (ADS)

    Mauder, M.; Huq, S.; De Roo, F.; Foken, T.; Manhart, M.; Schmid, H. P. E.

    2017-12-01

    The Campbell CSAT3 sonic anemometer is one of the most widely used instruments for eddy-covariance measurement. However, conflicting estimates for the probe-induced flow distortion error of this instrument have been reported recently, and those error estimates range between 3% and 14% for the measurement of vertical velocity fluctuations. This large discrepancy between the different studies can probably be attributed to the different experimental approaches applied. In order to overcome the limitations of both field intercomparison experiments and wind tunnel experiments, we propose a new approach that relies on virtual measurements in a large-eddy simulation (LES) environment. In our experimental set-up, we generate horizontal and vertical velocity fluctuations at frequencies that typically dominate the turbulence spectra of the surface layer. The probe-induced flow distortion error of a CSAT3 is then quantified by this numerical wind tunnel approach while the statistics of the prescribed inflow signal are taken as reference or etalon. The resulting relative error is found to range from 3% to 7% and from 1% to 3% for the standard deviation of the vertical and the horizontal velocity component, respectively, depending on the orientation of the CSAT3 in the flow field. We further demonstrate that these errors are independent of the frequency of fluctuations at the inflow of the simulation. The analytical corrections proposed by Kaimal et al. (Proc Dyn Flow Conf, 551-565, 1978) and Horst et al. (Boundary-Layer Meteorol, 155, 371-395, 2015) are compared against our simulated results, and we find that they indeed reduce the error by up to three percentage points. However, these corrections fail to reproduce the azimuth-dependence of the error that we observe. Moreover, we investigate the general Reynolds number dependence of the flow distortion error by more detailed idealized simulations.

  6. Galilean invariance and vertex renormalization in turbulence theory.

    PubMed

    McComb, W D

    2005-03-01

    The Navier-Stokes equation is invariant under Galilean transformation of the instantaneous velocity field. However, the total velocity transformation is effected by transformation of the mean velocity alone. For a constant mean velocity, the equation of motion for the fluctuating velocity is automatically Galilean invariant in the comoving frame, and vertex renormalization is not constrained by this symmetry.

  7. Hypersonic Boundary Layer Transition Measurements Using NO2 approaches NO Photo-dissociation Tagging Velocimetry

    NASA Technical Reports Server (NTRS)

    Bathel, Brett F.; Johansen, Craig T.; Danehy, Paul M.; Inman, Jennifer A.; Jones, Stephen B.; Goyne, Christopher P.

    2011-01-01

    Measurements of instantaneous and mean streamwise velocity profiles in a hypersonic laminar boundary layer as well as a boundary layer undergoing laminar-to-turbulent transition were obtained over a 10-degree half-angle wedge model. A molecular tagging velocimetry technique consisting of a NO2 approaches?NO photo-dissociation reaction and two subsequent excitations of NO was used. The measurement of the transitional boundary layer velocity profiles was made downstream of a 1-mm tall, 4-mm diameter cylindrical trip along several lines lying within a streamwise measurement plane normal to the model surface and offset 6-mm from the model centerline. For laminar and transitional boundary layer measurements, the magnitudes of streamwise velocity fluctuations are compared. In the transitional boundary layer the fluctuations were, in general, 2-4 times larger than those in the laminar boundary layer. Of particular interest were fluctuations corresponding to a height of approximately 50% of the laminar boundary layer thickness having a magnitude of nearly 30% of the mean measured velocity. For comparison, the measured fluctuations in the laminar boundary layer were approximately 5% of the mean measured velocity at the same location. For the highest 10% signal-to-noise ratio data, average single-shot uncertainties using a 1 ?Es and 50 ?Es interframe delay were 115 m/s and 3 m/s, respectively. By averaging single-shot measurements of the transitional boundary layer, uncertainties in mean velocity as low as 39 m/s were obtained in the wind tunnel. The wall-normal and streamwise spatial resolutions were 0.14-mm (2 pixel) and 0.82-mm (11 pixels), respectively. These measurements were performed in the 31-inch Mach 10 Air Wind Tunnel at the NASA Langley Research Center.

  8. Numerical investigation of turbulence in reshocked Richtmyer-Meshkov unstable curtain of dense gas

    NASA Astrophysics Data System (ADS)

    Shankar, S. K.; Lele, S. K.

    2014-01-01

    Moderate-resolution numerical simulations of the impulsive acceleration of a dense gas curtain in air by a Mach 1.21 planar shock are carried out by solving the 3D compressible multi-species Navier-Stokes equations coupled with localized artificial diffusivity method to capture discontinuities in the flow field. The simulations account for the presence of three species in the flow field: air, and acetone (used as a tracer species in the experiments). Simulations at different concentration levels of the species are conducted and the temporal evolution of the curtain width is compared with the measured data from the experimental studies by Balakumar et al. (Phys Fluids 20:124103-124113, 2008). The instantaneous density and velocity fields at two different times (prior and after the reshock) are compared with experimental data and show good qualitative agreement. The reshock process is studied by re-impacting the evolving curtain with the reflected shock wave. Reshock causes enhanced mixing and destroys the ordered velocity field causing a chaotic flow. The unsteady flow field is characterized by computing statistics of certain flow variables using two different definitions of the mean flow. The average profiles conditioned on the heavy gas (comprising and acetone) and the corresponding fluctuating fields provide metrics which are more suitable to comparing with experimentally measured data. Mean profiles (conditioned on the heavy gas) of stream-wise velocity, variance of stream-wise velocity, and turbulent kinetic energy and PDF (probability distribution function) of fluctuating velocity components are computed at two different times along the flow evolution and are seen to show trend towards grid convergence. The spectra of turbulent kinetic energy and scalar energy (of mass fraction of heavy gas) show the existence of more than half decade of inertial sub-range at late times following reshock. The Reynolds stresses in the domain are reported while identifying the term that is dominant in its contribution to the Reynolds stresses.

  9. Synthetic spectral analysis of a kinetic model for slow-magnetosonic waves in solar corona

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruan, Wenzhi; He, Jiansen; Tu, Chuanyi

    We propose a kinetic model of slow-magnetosonic waves to explain various observational features associated with the propagating intensity disturbances (PIDs) occurring in the solar corona. The characteristics of slow mode waves, e.g, inphase oscillations of density, velocity, and thermal speed, are reproduced in this kinetic model. Moreover, the red-blue (R-B) asymmetry of the velocity distribution as self-consistently generated in the model is found to be contributed from the beam component, as a result of the competition between Landau resonance and Coulomb collisions. Furthermore, we synthesize the spectral lines and make the spectral analysis, based on the kinetic simulation data ofmore » the flux tube plasmas and the hypothesis of the surrounding background plasmas. It is found that the fluctuations of parameters of the synthetic spectral lines are basically consistent with the observations: (1) the line intensity, Doppler shift, and line width are fluctuating in phase; (2) the R-B asymmetry usually oscillate out of phase with the former three parameters; (3) the blueward asymmetry is more evident than the redward asymmetry in the R-B fluctuations. The oscillations of line parameters become weakened for the case with denser surrounding background plasmas. Similar to the observations, there is no doubled-frequency oscillation of the line width for the case with flux-tube plasmas flowing bulkly upward among the static background plasmas. Therefore, we suggest that the “wave + beam flow” kinetic model may be a viable interpretation for the PIDs observed in the solar corona.« less

  10. Acoustic propagation and atmosphere characteristics derived from infrasonic waves generated by the Concorde.

    PubMed

    Le, Pichon Alexis; Garcés, Milton; Blanc, Elisabeth; Barthélémy, Maud; Drob, Doug P

    2002-01-01

    Infrasonic signals generated by daily supersonic Concorde flights between North America and Europe have been consistently recorded by an array of microbarographs in France. These signals are used to investigate the effects of atmospheric variability on long-range sound propagation. Statistical analysis of wave parameters shows seasonal and daily variations associated with changes in the wind structure of the atmosphere. The measurements are compared to the predictions obtained by tracing rays through realistic atmospheric models. Theoretical ray paths allow a consistent interpretation of the observed wave parameters. Variations in the reflection level, travel time, azimuth deviation and propagation range are explained by the source and propagation models. The angular deviation of a ray's azimuth direction, due to the seasonal and diurnal fluctuations of the transverse wind component, is found to be approximately 5 degrees from the initial launch direction. One application of the seasonal and diurnal variations of the observed phase parameters is the use of ground measurements to estimate fluctuations in the wind velocity at the reflection heights. The simulations point out that care must be taken when ascribing a phase velocity to a turning height. Ray path simulations which allow the correct computation of reflection heights are essential for accurate phase identifications.

  11. Pressure Fluctuations Induced by a Hypersonic Turbulent Boundary Layer

    NASA Technical Reports Server (NTRS)

    Duan, Lian; Choudhari, Meelan M.; Zhang, Chao

    2016-01-01

    Direct numerical simulations (DNS) are used to examine the pressure fluctuations generated by a spatially-developed Mach 5.86 turbulent boundary layer. The unsteady pressure field is analyzed at multiple wall-normal locations, including those at the wall, within the boundary layer (including inner layer, the log layer, and the outer layer), and in the free stream. The statistical and structural variations of pressure fluctuations as a function of wall-normal distance are highlighted. Computational predictions for mean velocity pro les and surface pressure spectrum are in good agreement with experimental measurements, providing a first ever comparison of this type at hypersonic Mach numbers. The simulation shows that the dominant frequency of boundary-layer-induced pressure fluctuations shifts to lower frequencies as the location of interest moves away from the wall. The pressure wave propagates with a speed nearly equal to the local mean velocity within the boundary layer (except in the immediate vicinity of the wall) while the propagation speed deviates from the Taylor's hypothesis in the free stream. Compared with the surface pressure fluctuations, which are primarily vortical, the acoustic pressure fluctuations in the free stream exhibit a significantly lower dominant frequency, a greater spatial extent, and a smaller bulk propagation speed. The freestream pressure structures are found to have similar Lagrangian time and spatial scales as the acoustic sources near the wall. As the Mach number increases, the freestream acoustic fluctuations exhibit increased radiation intensity, enhanced energy content at high frequencies, shallower orientation of wave fronts with respect to the flow direction, and larger propagation velocity.

  12. Fluctuation-enhanced electric conductivity in electrolyte solutions.

    PubMed

    Péraud, Jean-Philippe; Nonaka, Andrew J; Bell, John B; Donev, Aleksandar; Garcia, Alejandro L

    2017-10-10

    We analyze the effects of an externally applied electric field on thermal fluctuations for a binary electrolyte fluid. We show that the fluctuating Poisson-Nernst-Planck (PNP) equations for charged multispecies diffusion coupled with the fluctuating fluid momentum equation result in enhanced charge transport via a mechanism distinct from the well-known enhancement of mass transport that accompanies giant fluctuations. Although the mass and charge transport occurs by advection by thermal velocity fluctuations, it can macroscopically be represented as electrodiffusion with renormalized electric conductivity and a nonzero cation-anion diffusion coefficient. Specifically, we predict a nonzero cation-anion Maxwell-Stefan coefficient proportional to the square root of the salt concentration, a prediction that agrees quantitatively with experimental measurements. The renormalized or effective macroscopic equations are different from the starting PNP equations, which contain no cross-diffusion terms, even for rather dilute binary electrolytes. At the same time, for infinitely dilute solutions the renormalized electric conductivity and renormalized diffusion coefficients are consistent and the classical PNP equations with renormalized coefficients are recovered, demonstrating the self-consistency of the fluctuating hydrodynamics equations. Our calculations show that the fluctuating hydrodynamics approach recovers the electrophoretic and relaxation corrections obtained by Debye-Huckel-Onsager theory, while elucidating the physical origins of these corrections and generalizing straightforwardly to more complex multispecies electrolytes. Finally, we show that strong applied electric fields result in anisotropically enhanced "giant" velocity fluctuations and reduced fluctuations of salt concentration.

  13. Fluctuation-enhanced electric conductivity in electrolyte solutions

    PubMed Central

    Péraud, Jean-Philippe; Nonaka, Andrew J.; Bell, John B.; Donev, Aleksandar; Garcia, Alejandro L.

    2017-01-01

    We analyze the effects of an externally applied electric field on thermal fluctuations for a binary electrolyte fluid. We show that the fluctuating Poisson–Nernst–Planck (PNP) equations for charged multispecies diffusion coupled with the fluctuating fluid momentum equation result in enhanced charge transport via a mechanism distinct from the well-known enhancement of mass transport that accompanies giant fluctuations. Although the mass and charge transport occurs by advection by thermal velocity fluctuations, it can macroscopically be represented as electrodiffusion with renormalized electric conductivity and a nonzero cation–anion diffusion coefficient. Specifically, we predict a nonzero cation–anion Maxwell–Stefan coefficient proportional to the square root of the salt concentration, a prediction that agrees quantitatively with experimental measurements. The renormalized or effective macroscopic equations are different from the starting PNP equations, which contain no cross-diffusion terms, even for rather dilute binary electrolytes. At the same time, for infinitely dilute solutions the renormalized electric conductivity and renormalized diffusion coefficients are consistent and the classical PNP equations with renormalized coefficients are recovered, demonstrating the self-consistency of the fluctuating hydrodynamics equations. Our calculations show that the fluctuating hydrodynamics approach recovers the electrophoretic and relaxation corrections obtained by Debye–Huckel–Onsager theory, while elucidating the physical origins of these corrections and generalizing straightforwardly to more complex multispecies electrolytes. Finally, we show that strong applied electric fields result in anisotropically enhanced “giant” velocity fluctuations and reduced fluctuations of salt concentration. PMID:28973890

  14. Evolution of a Planar Wake in Adverse Pressure Gradient

    NASA Technical Reports Server (NTRS)

    Driver, David M.; Mateer, George G.

    2016-01-01

    In the interest of improving the predictability of high-lift systems at maximum lift conditions, a series of fundamental experiments were conducted to study the effects of adverse pressure gradient on a wake flow. Mean and fluctuating velocities were measured with a two-component laser-Doppler velocimeter. Data were obtained for several cases of adverse pressure gradient, producing flows ranging from no reversed flow to massively reversed flow. While the turbulent Reynolds stresses increase with increasing size of the reversed flow region, the gradient of Reynolds stress does not. Computations using various turbulence models were unable to reproduce the reversed flow.

  15. The mechanism of explosive emission excitation in thermionic energy conversion processes

    NASA Astrophysics Data System (ADS)

    Bulyga, A. V.

    A study has been made of the mechanism of explosive electron emission in vacuum thermionic converters induced by thermionic currents in the case of the anomalous Richardson effect. The latter is associated with a spotted emitting surface and temperature fluctuations. In order to account for one of the components of the electrode potential difference, it is proposed that allowance be made for the difference between the polarization signal velocity in a dense metal electron gas and that in the electron-ion gas of the electrode gap. Ways to achieve explosive emission in real thermionic converters are discussed.

  16. Measurements in the Turbulent Boundary Layer at Constant Pressure in Subsonic and Supersonic Flow. Part 2: Laser-Doppler Velocity Measurements

    NASA Technical Reports Server (NTRS)

    Dimotakis, P. E.; Collins, D. J.; Lang, D. B.

    1979-01-01

    A description of both the mean and the fluctuating components of the flow, and of the Reynolds stress as observed using a dual forward scattering laser-Doppler velocimeter is presented. A detailed description of the instrument and of the data analysis techniques were included in order to fully document the data. A detailed comparison was made between the laser-Doppler results and those presented in Part 1, and an assessment was made of the ability of the laser-Doppler velocimeter to measure the details of the flows involved.

  17. A technique for plasma velocity-space cross-correlation

    NASA Astrophysics Data System (ADS)

    Mattingly, Sean; Skiff, Fred

    2018-05-01

    An advance in experimental plasma diagnostics is presented and used to make the first measurement of a plasma velocity-space cross-correlation matrix. The velocity space correlation function can detect collective fluctuations of plasmas through a localized measurement. An empirical decomposition, singular value decomposition, is applied to this Hermitian matrix in order to obtain the plasma fluctuation eigenmode structure on the ion distribution function. A basic theory is introduced and compared to the modes obtained by the experiment. A full characterization of these modes is left for future work, but an outline of this endeavor is provided. Finally, the requirements for this experimental technique in other plasma regimes are discussed.

  18. Turbulence in the ionized gas of the Orion nebula

    NASA Astrophysics Data System (ADS)

    Arthur, S. J.; Medina, S.-N. X.; Henney, W. J.

    2016-12-01

    In order to study the nature, origin, and impact of turbulent velocity fluctuations in the ionized gas of the Orion nebula, we apply a variety of statistical techniques to observed velocity cubes. The cubes are derived from high resolving power (R ≈ 40 000) longslit spectroscopy of optical emission lines that span a range of ionizations. From velocity channel analysis (VCA), we find that the slope of the velocity power spectrum is consistent with predictions of Kolmogorov theory between scales of 8 and 22 arcsec (0.02 to 0.05 pc). The outer scale, which is the dominant scale of density fluctuations in the nebula, approximately coincides with the autocorrelation length of the velocity fluctuations that we determine from the second-order velocity structure function. We propose that this is the principal driving scale of the turbulence, which originates in the autocorrelation length of dense cores in the Orion molecular filament. By combining analysis of the non-thermal linewidths with the systematic trends of velocity centroid versus ionization, we find that the global champagne flow and smaller scale turbulence each contribute in equal measure to the total velocity dispersion, with respective root-mean-square widths of 4-5 km s-1. The turbulence is subsonic and can account for only one half of the derived variance in ionized density, with the remaining variance provided by density gradients in photoevaporation flows from globules and filaments. Intercomparison with results from simulations implies that the ionized gas is confined to a thick shell and does not fill the interior of the nebula.

  19. Shear localization and effective wall friction in a wall bounded granular flow

    NASA Astrophysics Data System (ADS)

    Artoni, Riccardo; Richard, Patrick

    2017-06-01

    In this work, granular flow rheology is investigated by means of discrete numerical simulations of a torsional, cylindrical shear cell. Firstly, we focus on azimuthal velocity profiles and study the effect of (i) the confining pressure, (ii) the particle-wall friction coefficient, (iii) the rotating velocity of the bottom wall and (iv) the cell diameter. For small cell diameters, azimuthal velocity profiles are nearly auto-similar, i.e. they are almost linear with the radial coordinate. Different strain localization regimes are observed : shear can be localized at the bottom, at the top of the shear cell, or it can be even quite distributed. This behavior originates from the competition between dissipation at the sidewalls and dissipation in the bulk of the system. Then we study the effective friction at the cylindrical wall, and point out the strong link between wall friction, slip and fluctuations of forces and velocities. Even if the system is globally below the sliding threshold, force fluctuations trigger slip events, leading to a nonzero wall slip velocity and an effective wall friction coefficient different from the particle-wall one. A scaling law was found linking slip velocity, granular temperature in the main flow direction and effective friction. Our results suggest that fluctuations are an important ingredient for theories aiming to capture the interface rheology of granular materials.

  20. Analysis of Handwriting based on Rhythm Perception

    NASA Astrophysics Data System (ADS)

    Saito, Kazuya; Uchida, Masafumi; Nozawa, Akio

    Humanity fluctuation was reported in some fields. In handwriting process, fluctuation appears on handwriting-velocity. In this report, we focused attention on human rhythm perception and analyzed fluctuation in handwriting process. As a result, 1/f noise related to rhythm perception and features may caused by Kahneman's capacity model were measured on handwriting process.

  1. Interaction of grid generated turbulence with expansion waves

    NASA Astrophysics Data System (ADS)

    Xanthos, Savvas Steliou

    2004-11-01

    The interaction of traveling expansion waves with grid-generated turbulence was investigated in a large-scale shock tube research facility. The incident shock and the induced flow behind it passed through a rectangular grid, which generated a nearly homogeneous and nearly isotropic turbulent flow. As the shock wave exited the open end of the shock tube, a system of expansion waves was generated which traveled upstream and interacted with the grid-generated turbulence. The Mach number of the incoming flows investigated was about 0.3 hence interactions are considered as interactions with an almost incompressible flow. Mild interactions with expansion waves, which generated expansion ratios of the order of 1.8, were achieved in the present investigations. In that respect the compressibility effects started to become important during the interaction. A custom designed vorticity probe was used to measure for the first time the rate-of-strain, the rate-of-rotation and the velocity-gradient tensors in several of the present flows. Custom made x-hotwire probes were initially used to measure the flow quantities simultaneously at different locations inside the flow field. Although the strength of the generated expansion waves was mild, S = 6U6x EW = 50 to 100 s-1, the effect on damping fluctuations of turbulence was clear. Vorticity fluctuations were reduced dramatically more than velocity or pressure fluctuations. Attenuation of longitudinal velocity fluctuations has been observed in all experiments. It appears that the attenuation increases in interactions with higher Reynolds number. The data of velocity fluctuations in the lateral directions show no consistent behavior change or some minor attenuation through the interaction. The present results clearly show that in most of the cases, attenuation occurs at large xM distances where length scales of the incoming flow are high and turbulence intensities are low. Thus large in size eddies with low velocity fluctuations are affected the most by the interaction with the expansion waves. Spectral analysis indicated that spectral energy is shifted after the interaction to lower wave numbers suggesting that the typical length scales of turbulence are increased after the interaction.

  2. Velocity Space Degrees of Freedom of Plasma Fluctuations

    NASA Astrophysics Data System (ADS)

    Mattingly, Sean

    2017-10-01

    Small scale wave modes are becoming more important in plasma physics. Examples include turbulent cascades in the solar wind, the energetics of fusion plasma electrostatic turbulence and transport, and low temperature basic plasma physics experiments. In order to improve our understanding of these modes, I present an advance in experimental plasma diagnostics and use it to show the first measurement of a plasma ion velocity-space cross-correlation matrix. From this matrix I determine the eigenmodes of fluctuations on the ion distribution function as a function of frequency. I also determine the relative strengths of these modes - these are the velocity space degrees of freedom of plasma fluctuations. This measurement can detect the aforementioned smaller scale modes in plasmas through a localized measurement. The locality of this measurement means that it may be applied to plasmas in which a single - point velocity sensitive diagnostic is available and multipoint measurements may be difficult. Examples include in situ measurements of space plasmas, fusion plasmas, trapped plasmas, and laser cooled plasmas. This fact, combined with the new perspective it can give on small scale plasma fluctuations, means it may be used to further research on the above cited subjects. Much work remains on fully understanding this measurement. This measurement opens a velocity space interpretation of small scale plasma wave modes, and understanding this perspective from theory requires the application or invention of new mathematical tools. I discuss open problems to follow up on, which include questions from experimental, theoretical, and instrumentation perspectives. NSF-DOE Program Grant DE-FG02-99ER54543.

  3. Turbulent flows over sparse canopies

    NASA Astrophysics Data System (ADS)

    Sharma, Akshath; García-Mayoral, Ricardo

    2018-04-01

    Turbulent flows over sparse and dense canopies exerting a similar drag force on the flow are investigated using Direct Numerical Simulations. The dense canopies are modelled using a homogeneous drag force, while for the sparse canopy, the geometry of the canopy elements is represented. It is found that on using the friction velocity based on the local shear at each height, the streamwise velocity fluctuations and the Reynolds stress within the sparse canopy are similar to those from a comparable smooth-wall case. In addition, when scaled with the local friction velocity, the intensity of the off-wall peak in the streamwise vorticity for sparse canopies also recovers a value similar to a smooth-wall. This indicates that the sparse canopy does not significantly disturb the near-wall turbulence cycle, but causes its rescaling to an intensity consistent with a lower friction velocity within the canopy. In comparison, the dense canopy is found to have a higher damping effect on the turbulent fluctuations. For the case of the sparse canopy, a peak in the spectral energy density of the wall-normal velocity, and Reynolds stress is observed, which may indicate the formation of Kelvin-Helmholtz-like instabilities. It is also found that a sparse canopy is better modelled by a homogeneous drag applied on the mean flow alone, and not the turbulent fluctuations.

  4. Flow disturbance due to presence of the vane anemometer

    NASA Astrophysics Data System (ADS)

    Bujalski, M.; Gawor, M.; Sobczyk, J.

    2014-08-01

    This paper presents the results of the preliminary experimental investigations of the disturbance of velocity field resulting from placing a vane anemometer in the analyzed air flow. Experiments were conducted in a wind tunnel with a closed loop. For the measurement process, Particle Image Velocimetry (PIV) method was used to visualize the flow structure and evaluate the instantaneous, two-dimensional velocity vector fields. Regions of inflow on the vane anemometer as well as flow behind it were examined. Ensemble averaged velocity distribution and root-mean-square (RMS) velocity fluctuations were determined. The results below are presented in the form of contour-velocity maps and profile plots. In order to investigate velocity fluctuations in the wake of vane anemometer with high temporal resolution hot-wire anemometry (HWA) technique was used. Frequency analysis by means of Fast Fourier Transform was carried out. The obtained results give evidence to a significant spatially and temporally complex flow disturbance in the vicinity of analyzed instrument.

  5. The analysis and simulation of compressible turbulence

    NASA Technical Reports Server (NTRS)

    Erlebacher, Gordon; Hussaini, M. Y.; Kreiss, H. O.; Sarkar, S.

    1990-01-01

    Compressible turbulent flows at low turbulent Mach numbers are considered. Contrary to the general belief that such flows are almost incompressible, (i.e., the divergence of the velocity field remains small for all times), it is shown that even if the divergence of the initial velocity field is negligibly small, it can grow rapidly on a non-dimensional time scale which is the inverse of the fluctuating Mach number. An asymptotic theory which enables one to obtain a description of the flow in terms of its divergence-free and vorticity-free components has been developed to solve the initial-value problem. As a result, the various types of low Mach number turbulent regimes have been classified with respect to the initial conditions. Formulae are derived that accurately predict the level of compressibility after the initial transients have disappeared. These results are verified by extensive direct numerical simulations of isotropic turbulence.

  6. [Improvement of reproducibility in capillary electrophoretic characterization of rhubarb by normalization of migration time].

    PubMed

    Zhang, Hongyi; Ge, Lijuan; Chen, Hui; Jing, Cong; Shi, Zhihong

    2009-07-01

    The principle of the normalization of migration time and its application on the traditional Chinese medicine (TCM) analysis by capillary electrophoresis (CE) are presented. It is the core of the normalization of migration time that the fluctuation of apparent migration velocity for each component at different runs is attributed to the difference of electroosmotic flow velocity. To transform migration time (t) to normalized migration time, one peak or two peaks in the original electropherogram are selected as internal peak. The normalization of migration time is therefore classified into two types based on the number of selected internal peaks, one-peak and two-peak approaches. The migration times processed by one-peak normalization and by two-peak normalization are conducted by the following equations, respectively: (t'(i))(j) = 1/ [1/(t(i))(j) - [1/(t(istd))(j) - 1/(t(istd))1

  7. Temporal Variability of Interstellar Na I Absorption toward the Monoceros Loop

    NASA Astrophysics Data System (ADS)

    Dirks, Cody; Meyer, David M.

    2016-03-01

    We report the first evidence of temporal variability in the interstellar Na I absorption toward HD 47240, which lies behind the Monoceros Loop supernova remnant (SNR). Analysis of multi-epoch Kitt Peak coudé feed spectra from this sight line taken over an eight-year period reveals significant variation in both the observed column density and the central velocities of the high-velocity gas components in these spectra. Given the ˜1.3 mas yr-1 proper motion of HD 47240 and an SNR distance of 1.6 kpc, this variation would imply ˜10 au fluctuations within the SNR shell. Similar variations have been previously reported in the Vela SNR, suggesting a connection between the expanding SNR gas and the observed variations. We speculate on the potential nature of the observed variations toward HD 47240 in the context of the expanding remnant gas interacting with the ambient interstellar medium.

  8. Formulating viscous hydrodynamics for large velocity gradients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pratt, Scott

    2008-02-15

    Viscous corrections to relativistic hydrodynamics, which are usually formulated for small velocity gradients, have recently been extended from Navier-Stokes formulations to a class of treatments based on Israel-Stewart equations. Israel-Stewart treatments, which treat the spatial components of the stress-energy tensor {tau}{sub ij} as dynamical objects, introduce new parameters, such as the relaxation times describing nonequilibrium behavior of the elements {tau}{sub ij}. By considering linear response theory and entropy constraints, we show how the additional parameters are related to fluctuations of {tau}{sub ij}. Furthermore, the Israel-Stewart parameters are analyzed for their ability to provide stable and physical solutions for sound waves.more » Finally, it is shown how these parameters, which are naturally described by correlation functions in real time, might be constrained by lattice calculations, which are based on path-integral formulations in imaginary time.« less

  9. The analysis and simulation of compressible turbulence

    NASA Technical Reports Server (NTRS)

    Erlebacher, Gordon; Hussaini, M. Y.; Sarkar, S.; Kreiss, H. O.

    1990-01-01

    Compressible turbulent flows at low turbulent Mach numbers are considered. Contrary to the general belief that such flows are almost incompressible (i.e., the divergence of the velocity field remains small for all times), it is shown that even if the divergence of the initial velocity field is negligibly small, it can grow rapidly on a nondimensional time scale which is the inverse of the fluctuating Mach number. An asymptotic theory which enables one to obtain a description of the flow in terms of its divergence-free and vorticity-free components has been developed to solve the initial-value problem. As a result, the various types of low Mach number turbulent regimes have been classified with respect to the initial conditions. Formulae are derived that accurately predict the level of compressibility after the initial transients have disappeared. These results are verified by extensive direct numerical simulations of isotropic turbulence.

  10. Experimental Study of the Relation Between Heat Transfer and Flow Behavior in a Single Microtube

    NASA Astrophysics Data System (ADS)

    Huang, Shih-Che; Kawanami, Osamu; Kawakami, Kazunari; Honda, Itsuro; Kawashima, Yousuke; Ohta, Haruhiko

    2008-09-01

    The flow boiling heat transfer in microchannels have become important issue because it is extremely high-performance heat exchanger for electronic devices. For a detailed study on flow boiling heat transfer in a microtube, we have used a transparent heated microtube, which is coated with a thin gold film on its inner wall. The gold film is used as a resistance thermometer to directly evaluate the inner wall temperature averaged over the entire temperature measurement length. At the same time, the transparency of the film enables the observation of fluid behavior. Flow boiling experiments have been carried out using the microtube under the following conditions; mass velocity of 105 kg/m2 s, tube diameter of 1 mm, heat flux in the range of 10 380 kW/m2 s, and the test fluid used is ionized water. Under low heat flux conditions, the fluctuations in the inner wall temperature and mass velocity are closely related; the frequency of these fluctuations is the same. However, the fluctuations in the inner wall temperature and heat transfer coefficient are found to be independent of the fluctuation in the mass velocity under high heat flux conditions.

  11. Measurements of Impurity Particle Transport Associated with Drift-Wave Turbulence in MST

    NASA Astrophysics Data System (ADS)

    Nishizawa, Takashi; Nornberg, Mark; Boguski, John; Craig, Darren; den Hartog, Daniel; Pueschel, M. J.; Sarff, John; Terry, Paul; Williams, Zach; Xing, Zichuan

    2017-10-01

    Understanding and controlling impurity transport in a toroidal magnetized plasma is one of the critical issues that need to be addressed in order to achieve controlled fusion. Gyrokinetic modeling shows turbulence can drive impurity transport, but direct measurements of the turbulent flux have not been made. Particle balance is typically used to infer the presence of turbulent impurity transport. We report, for the first time in a toroidal plasma, direct measurements of turbulence-driven impurity transport. Trapped electron mode (TEM) turbulence appears in MST plasmas when MHD tearing fluctuations are suppressed. Impurity ion-Doppler spectroscopy is used to correlate impurity density and radial velocity fluctuations associated with TEM. Small Doppler shifts associated with the radial velocity fluctuations (rms 1km/s) are resolved with the use of a new linearized spectrum correlation analysis method, which improves the rejection of Poisson noise. The method employs frequency-domain correlation analysis to expose the fluctuation and transport spectrum. The C+ 2 impurity transport velocity driven by turbulence is found to be 48m/s (inward), which is sufficiently large to impact an impurity flux balance in MST improved-confinement plasmas. This work is supported by the US DOE.

  12. Receptivity of a Cryogenic Coaxial Liquid Jet to Acoustic Disturbances

    DTIC Science & Technology

    2014-01-01

    PAGES 19a. NAME OF RESPONSIBLE PERSON D. Talley a. REPORT Unclassified b. ABSTRACT Unclassified c . THIS PAGE Unclassified SAR 13 19b... c pu c    (1) where u’ is the magnitude of the velocity fluctuation in the velocity antinode region, p’ is the magnitude of the pressure...fluctuation in the pressure antinode region,  c is the density of the ambient gas in the chamber, which is nominal room temperature nitrogen, and c

  13. Monitoring the Groningen gas field by seismic noise interferometry

    NASA Astrophysics Data System (ADS)

    Zhou, Wen; Paulssen, Hanneke

    2017-04-01

    The Groningen gas field in the Netherlands is the world's 7th largest onshore gas field and has been producing from 1963. Since 2013, the year with the highest level of induced seismicity, the reservoir has been monitored by two geophone strings at reservoir level at about 3 km depth. For borehole SDM, 10 geophones with a natural frequency of 15-Hz are positioned from the top to bottom of the reservoir with a geophone spacing of 30 m. We used seismic interferometry to determine, as accurately as possible, the inter-geophone P- and S-wave velocities from ambient noise. We used 1-bit normalization and spectral whitening, together with a bandpass filter from 3 to 400 Hz. After that, for each station pair, the normalized cross-correlation was calculated for 6 seconds segments with 2/3 overlap. These segmented cross-correlations were stacked for every 1 hour, 24(hours)*33(days) segments were obtained for each station pair. The cross-correlations show both day-and-night and weekly variations reflecting fluctuations in cultural noise. The apparent P-wave travel time for each geophone pair is measured from the maximum of the vertical component cross-correlation for each of the hourly stacks. Because the distribution of these (24*33) picked travel times is not Gaussian but skewed, we used Kernel density estimations to obtain probability density functions of the travel times. The maximum likelihood travel times of all the geophone pairs was subsequently used to determine inter-geophone P-wave velocities. A good agreement was found between our estimated P velocity structure and well logging data, with difference less than 5%. The S-velocity structure was obtained from the east-component cross-correlations. They show both the direct P- and S-wave arrivals and, because of the interference, the inferred S-velocity structure is less accurate. From the 9(3x3)-component cross-correlations for all the geophone pairs, not only the direct P and S waves can be identified, but also reflected waves within the reservoir for some of the cross-correlations. It is concluded that noise interferometry can be used to determine the seismic velocity structure from deep borehole data.

  14. Reynolds number trend of hierarchies and scale interactions in turbulent boundary layers.

    PubMed

    Baars, W J; Hutchins, N; Marusic, I

    2017-03-13

    Small-scale velocity fluctuations in turbulent boundary layers are often coupled with the larger-scale motions. Studying the nature and extent of this scale interaction allows for a statistically representative description of the small scales over a time scale of the larger, coherent scales. In this study, we consider temporal data from hot-wire anemometry at Reynolds numbers ranging from Re τ ≈2800 to 22 800, in order to reveal how the scale interaction varies with Reynolds number. Large-scale conditional views of the representative amplitude and frequency of the small-scale turbulence, relative to the large-scale features, complement the existing consensus on large-scale modulation of the small-scale dynamics in the near-wall region. Modulation is a type of scale interaction, where the amplitude of the small-scale fluctuations is continuously proportional to the near-wall footprint of the large-scale velocity fluctuations. Aside from this amplitude modulation phenomenon, we reveal the influence of the large-scale motions on the characteristic frequency of the small scales, known as frequency modulation. From the wall-normal trends in the conditional averages of the small-scale properties, it is revealed how the near-wall modulation transitions to an intermittent-type scale arrangement in the log-region. On average, the amplitude of the small-scale velocity fluctuations only deviates from its mean value in a confined temporal domain, the duration of which is fixed in terms of the local Taylor time scale. These concentrated temporal regions are centred on the internal shear layers of the large-scale uniform momentum zones, which exhibit regions of positive and negative streamwise velocity fluctuations. With an increasing scale separation at high Reynolds numbers, this interaction pattern encompasses the features found in studies on internal shear layers and concentrated vorticity fluctuations in high-Reynolds-number wall turbulence.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'. © 2017 The Author(s).

  15. Time-Series Analyses of Supergranule Characteristics Compared Between SDO/HMI, SOHO/MDI and Simulated Datasets

    NASA Technical Reports Server (NTRS)

    Williams, Peter E.; Pesnell, William Dean

    2012-01-01

    Supergranulation is a well-observed solar phenomenon despite its underlying mechanisms remaining a mystery. Originally considered to arise due to convective motions, alternative mechanisms have been suggested such as the cumulative downdrafts of granules as well as displaying wave-like properties. Supergranule characteristics are well documented, however. Supergranule cells are approximately 35 Mm across, have lifetimes on the order of a day and have divergent horizontal velocities of around 300 mis, a factor of 10 higher than their central radial components. While they have been observed using Doppler methods for more than half a century, their existence is also observed in other datasets such as magneto grams and Ca II K images. These datasets clearly show the influence of supergranulation on solar magnetism and how the local field is organized by the flows of supergranule cells. The Heliospheric and Magnetic Imager (HMI) aboard the Solar Dynamics Observatory (SDO) continues to produce Doppler images enabling the continuation of supergranulation studies made with SOHO/MDI, but with superior temporal and spatial resolution. The size-distribution of divergent cellular flows observed on the photosphere now reaches down to granular scales, allowing contemporaneous comparisons between the two flow components. SOHO/MDI Doppler observations made during the minima of cycles 22/23 and 23/24 exhibit fluctuations of supergranule characteristics (global averages of the supergranule size, size-range and horizontal velocity) with periods of 3-5 days. Similar fluctuations have been observed in SDO/HMI Dopplergrams and the high correlation between co-temporal HMI & MOl suggest a solar origin. Their nature has been probed by invoking data simulations that produce realistic Dopplergrams based on MOl data.

  16. Fluctuation-enhanced electric conductivity in electrolyte solutions

    DOE PAGES

    Péraud, Jean-Philippe; Nonaka, Andrew J.; Bell, John B.; ...

    2017-09-26

    In this work, we analyze the effects of an externally applied electric field on thermal fluctuations for a binary electrolyte fluid. We show that the fluctuating Poisson–Nernst–Planck (PNP) equations for charged multispecies diffusion coupled with the fluctuating fluid momentum equation result in enhanced charge transport via a mechanism distinct from the well-known enhancement of mass transport that accompanies giant fluctuations. Although the mass and charge transport occurs by advection by thermal velocity fluctuations, it can macroscopically be represented as electrodiffusion with renormalized electric conductivity and a nonzero cation–anion diffusion coefficient. Specifically, we predict a nonzero cation–anion Maxwell– Stefan coefficient proportionalmore » to the square root of the salt concentration, a prediction that agrees quantitatively with experimental measurements. The renormalized or effective macroscopic equations are different from the starting PNP equations, which contain no cross-diffusion terms, even for rather dilute binary electrolytes. At the same time, for infinitely dilute solutions the renormalized electric conductivity and renormalized diffusion coefficients are consistent and the classical PNP equations with renormalized coefficients are recovered, demonstrating the self-consistency of the fluctuating hydrodynamics equations. Our calculations show that the fluctuating hydrodynamics approach recovers the electrophoretic and relaxation corrections obtained by Debye–Huckel–Onsager theory, while elucidating the physical origins of these corrections and generalizing straightforwardly to more complex multispecies electrolytes. Lastly, we show that strong applied electric fields result in anisotropically enhanced “giant” velocity fluctuations and reduced fluctuations of salt concentration.« less

  17. Fluctuation-enhanced electric conductivity in electrolyte solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Péraud, Jean-Philippe; Nonaka, Andrew J.; Bell, John B.

    In this work, we analyze the effects of an externally applied electric field on thermal fluctuations for a binary electrolyte fluid. We show that the fluctuating Poisson–Nernst–Planck (PNP) equations for charged multispecies diffusion coupled with the fluctuating fluid momentum equation result in enhanced charge transport via a mechanism distinct from the well-known enhancement of mass transport that accompanies giant fluctuations. Although the mass and charge transport occurs by advection by thermal velocity fluctuations, it can macroscopically be represented as electrodiffusion with renormalized electric conductivity and a nonzero cation–anion diffusion coefficient. Specifically, we predict a nonzero cation–anion Maxwell– Stefan coefficient proportionalmore » to the square root of the salt concentration, a prediction that agrees quantitatively with experimental measurements. The renormalized or effective macroscopic equations are different from the starting PNP equations, which contain no cross-diffusion terms, even for rather dilute binary electrolytes. At the same time, for infinitely dilute solutions the renormalized electric conductivity and renormalized diffusion coefficients are consistent and the classical PNP equations with renormalized coefficients are recovered, demonstrating the self-consistency of the fluctuating hydrodynamics equations. Our calculations show that the fluctuating hydrodynamics approach recovers the electrophoretic and relaxation corrections obtained by Debye–Huckel–Onsager theory, while elucidating the physical origins of these corrections and generalizing straightforwardly to more complex multispecies electrolytes. Lastly, we show that strong applied electric fields result in anisotropically enhanced “giant” velocity fluctuations and reduced fluctuations of salt concentration.« less

  18. Shock wave oscillation driven by turbulent boundary layer fluctuations

    NASA Technical Reports Server (NTRS)

    Plotkin, K. J.

    1972-01-01

    Pressure fluctuations due to the interaction of a shock wave with a turbulent boundary layer were investigated. A simple model is proposed in which the shock wave is convected from its mean position by velocity fluctuations in the turbulent boundary layer. Displacement of the shock is assumed limited by a linear restoring mechanism. Predictions of peak root mean square pressure fluctuation and spectral density are in excellent agreement with available experimental data.

  19. Effects of density gradients and fluctuations at the plasma edge on ECEI measurements at ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Vanovac, B.; Wolfrum, E.; Denk, S. S.; Mink, F.; Laggner, F. M.; Birkenmeier, G.; Willensdorfer, M.; Viezzer, E.; Hoelzl, M.; Freethy, S. J.; Dunne, M. G.; Lessig, A.; Luhmann, N. C., Jr.; the ASDEX Upgrade Team; the EUROfusion MST1 Team

    2018-04-01

    Electron cyclotron emission imaging (ECEI) provides measurements of electron temperature (T e ) and its fluctuations (δT e ). However, when measuring at the plasma edge, in the steep gradient region, radiation transport effects must be taken into account. It is shown that due to these effects, the scrape-off layer region is not accessible to the ECEI measurements in steady state conditions and that the signal is dominated by the shine-through emission. Transient effects, such as filaments, can change the radiation transport locally, but cannot be distinguished from the shine-through. Local density measurements are essential for the correct interpretation of the electron cyclotron emission, since the density fluctuations influence the temperature measurements at the plasma edge. As an example, a low frequency 8 kHz mode, which causes 10%-15% fluctuations in the signal level of the ECEI, is analysed. The same mode has been measured with the lithium beam emission spectroscopy density diagnostic, and is very well correlated in time with high frequency magnetic fluctuations. With radiation transport modelling of the electron cyclotron radiation in the ECEI geometry, it is shown that the density contributes significantly to the radiation temperature (T rad) and the experimental observations have shown the amplitude modulation in both density and temperature measurements. The poloidal velocity of the low frequency mode measured by the ECEI is 3 km s-1. The calculated velocity of the high frequency mode measured with the magnetic pick-up coils is about 25 km s-1. Velocities are compared with the E × B background flow velocity and possible explanations for the origin of the low frequency mode are discussed.

  20. Evaluation of Probe-Induced Flow Distortion of Campbell CSAT3 Sonic Anemometers by Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Huq, Sadiq; De Roo, Frederik; Foken, Thomas; Mauder, Matthias

    2017-10-01

    The Campbell CSAT3 sonic anemometer is one of the most popular instruments for turbulence measurements in basic micrometeorological research and ecological applications. While measurement uncertainty has been characterized by field experiments and wind-tunnel studies in the past, there are conflicting estimates, which motivated us to conduct a numerical experiment using large-eddy simulation to evaluate the probe-induced flow distortion of the CSAT3 anemometer under controlled conditions, and with exact knowledge of the undisturbed flow. As opposed to wind-tunnel studies, we imposed oscillations in both the vertical and horizontal velocity components at the distinct frequencies and amplitudes found in typical turbulence spectra in the surface layer. The resulting flow-distortion errors for the standard deviations of the vertical velocity component range from 3 to 7%, and from 1 to 3% for the horizontal velocity component, depending on the azimuth angle. The magnitude of these errors is almost independent of the frequency of wind speed fluctuations, provided the amplitude is typical for surface-layer turbulence. A comparison of the corrections for transducer shadowing proposed by both Kaimal et al. (Proc Dyn Flow Conf, 551-565, 1978) and Horst et al. (Boundary-Layer Meteorol 155:371-395, 2015) show that both methods compensate for a larger part of the observed error, but do not sufficiently account for the azimuth dependency. Further numerical simulations could be conducted in the future to characterize the flow distortion induced by other existing types of sonic anemometers for the purposes of optimizing their geometry.

  1. Effect of Water-Table Fluctuations on Source Depletion and Dissolved-Plume Behavior of a Multi-Component Light Nonaqueous-Phase Liquid

    NASA Astrophysics Data System (ADS)

    Dobson, R.; Schroth, M. H.; Zeyer, J.

    2006-12-01

    Light nonaqueous-phase liquids (LNAPLs) such as gasoline and diesel are among the most common soil and groundwater contaminants. Dissolution and subsequent advective transport of LNAPL components can negatively impact downgradient water supplies, while biodegradation is commonly thought to be an important sink for this class of contaminants. Water-table fluctuations, either naturally occurring or intentionally induced, may affect LNAPL component transport and biodegradation in aquifers. We present a laboratory investigation of the effect of water-table fluctuations on the dissolution and biodegradation of a multi-component LNAPL in a pair of similar model aquifers, one of which was subjected to a water-table fluctuation. Water-table fluctuation resulted in LNAPL and air entrapment below the water table, an increase in the vertical extent of LNAPL contamination and an increase in the volume of water passing through the contaminated zone. Effluent concentrations of dissolved LNAPL components were higher and those of dissolved nitrate were lower in the aquifer model where a fluctuation had been induced. Thus, water table fluctuation led to enhanced LNAPL dissolution as well as enhanced biodegradation activity. The increase in biodegradation observed after fluctuation was of lesser magnitude than the increase in LNAPL dissolution, such that water-table fluctuations might be expected to result in increased exposure of downgradient receptors to dissolved LNAPL components. Conversely, the potential for free-phase LNAPL migration was reduced following a water-table fluctuation, as LNAPL entrapment by the rising water table reduced the amount of free phase LNAPL. Lateral migration of LNAPL following emplacement was observed in the model aquifer where no fluctuation occurred, but not in the model aquifer where a water-table fluctuation was induced.

  2. Vortex clustering and universal scaling laws in two-dimensional quantum turbulence.

    PubMed

    Skaugen, Audun; Angheluta, Luiza

    2016-03-01

    We investigate numerically the statistics of quantized vortices in two-dimensional quantum turbulence using the Gross-Pitaevskii equation. We find that a universal -5/3 scaling law in the turbulent energy spectrum is intimately connected with the vortex statistics, such as number fluctuations and vortex velocity, which is also characterized by a similar scaling behavior. The -5/3 scaling law appearing in the power spectrum of vortex number fluctuations is consistent with the scenario of passive advection of isolated vortices by a turbulent superfluid velocity generated by like-signed vortex clusters. The velocity probability distribution of clustered vortices is also sensitive to spatial configurations, and exhibits a power-law tail distribution with a -5/3 exponent.

  3. Inverse energy cascade and emergence of large coherent vortices in turbulence driven by Faraday waves.

    PubMed

    Francois, N; Xia, H; Punzmann, H; Shats, M

    2013-05-10

    We report the generation of large coherent vortices via inverse energy cascade in Faraday wave driven turbulence. The motion of floaters in the Faraday waves is three dimensional, but its horizontal velocity fluctuations show unexpected similarity with two-dimensional turbulence. The inverse cascade is detected by measuring frequency spectra of the Lagrangian velocity, and it is confirmed by computing the third moment of the horizontal velocity fluctuations. This is observed in deep water in a broad range of wavelengths and vertical accelerations. The results broaden the scope of recent findings on Faraday waves in thin layers [A. von Kameke et al., Phys. Rev. Lett. 107, 074502 (2011)].

  4. Fluid mechanics experiments in oscillatory flow. Volume 2: Tabulated data

    NASA Technical Reports Server (NTRS)

    Seume, J.; Friedman, G.; Simon, T. W.

    1992-01-01

    Results of a fluid mechanics measurement program in oscillating flow within a circular duct are presented. The program began with a survey of transition behavior over a range of oscillation frequency and magnitude and continued with a detailed study at a single operating point. Such measurements were made in support of Stirling engine development. Values of three dimensionless parameters, Re sub max, Re sub w, and A sub R, embody the velocity amplitude, frequency of oscillation, and mean fluid displacement of the cycle, respectively. Measurements were first made over a range of these parameters that are representative of the heat exchanger tubes in the heater section of NASA's Stirling cycle Space Power Research Engine (SPRE). Measurements were taken of the axial and radial components of ensemble-averaged velocity and rms velocity fluctuation and the dominant Reynolds shear stress, at various radial positions for each of four axial stations. In each run, transition from laminar to turbulent flow, and its reverse, were identified and sufficient data was gathered to propose the transition mechanism. Volume 2 contains data reduction program listings and tabulated data (including its graphics).

  5. The minimum record time for PIV measurement in a vessel agitated by a Rushton turbine

    NASA Astrophysics Data System (ADS)

    Šulc, Radek; Ditl, Pavel; Fořt, Ivan; Jašíkova, Darina; Kotek, Michal; Kopecký, Václav; Kysela, Bohuš

    In PIV studies published in the literature focusing on the investigation of the flow field in an agitated vessel the record time is ranging from the tenths and the units of seconds. The aim of this work was to determine minimum record time for PIV measurement in a vessel agitated by a Rushton turbine that is necessary to obtain relevant results of velocity field. The velocity fields were measured in a fully baffled cylindrical flat bottom vessel 400 mm in inner diameter agitated by a Rushton turbine 133 mm in diameter using 2-D Time Resolved Particle Image Velocimetry in the impeller Reynolds number range from 50 000 to 189 000. This Re range secures the fully-developed turbulent flow of agitated liquid. Three liquids of different viscosities were used as the agitated liquid. On the basis of the analysis of the radial and axial components of the mean- and fluctuation velocities measured outside the impeller region it was found that dimensionless minimum record time is independent of impeller Reynolds number and is equalled N.tRmin = 103 ± 19.

  6. Scales of Heterogeneities in the Continental Crust and Upper Mantle

    NASA Astrophysics Data System (ADS)

    Tittgemeyer, M.; Wenzel, F.; Ryberg, T.; Fuchs, K.

    1999-09-01

    A seismological characterization of crust and upper mantle can refer to large-scale averages of seismic velocities or to fluctuations of elastic parameters. Large is understood here relative to the wavelength used to probe the earth.¶In this paper we try to characterize crust and upper mantle by the fluctuations in media properties rather than by their average velocities. As such it becomes evident that different scales of heterogeneities prevail in different layers of crust and mantle. Although we cannot provide final models and an explanation of why these different scales exist, we believe that scales of inhomogeneities carry significant information regarding the tectonic processes that have affected the lower crust, the lithospheric and the sublithospheric upper mantle.¶We focus on four different types of small-scale inhomogeneities (1) the characteristics of the lower crust, (2) velocity fluctuations in the uppermost mantle, (3) scattering in the lowermost lithosphere and on (4) heterogeneities in the mantle transition zone.

  7. Exact solutions for kinetic models of macromolecular dynamics.

    PubMed

    Chemla, Yann R; Moffitt, Jeffrey R; Bustamante, Carlos

    2008-05-15

    Dynamic biological processes such as enzyme catalysis, molecular motor translocation, and protein and nucleic acid conformational dynamics are inherently stochastic processes. However, when such processes are studied on a nonsynchronized ensemble, the inherent fluctuations are lost, and only the average rate of the process can be measured. With the recent development of methods of single-molecule manipulation and detection, it is now possible to follow the progress of an individual molecule, measuring not just the average rate but the fluctuations in this rate as well. These fluctuations can provide a great deal of detail about the underlying kinetic cycle that governs the dynamical behavior of the system. However, extracting this information from experiments requires the ability to calculate the general properties of arbitrarily complex theoretical kinetic schemes. We present here a general technique that determines the exact analytical solution for the mean velocity and for measures of the fluctuations. We adopt a formalism based on the master equation and show how the probability density for the position of a molecular motor at a given time can be solved exactly in Fourier-Laplace space. With this analytic solution, we can then calculate the mean velocity and fluctuation-related parameters, such as the randomness parameter (a dimensionless ratio of the diffusion constant and the velocity) and the dwell time distributions, which fully characterize the fluctuations of the system, both commonly used kinetic parameters in single-molecule measurements. Furthermore, we show that this formalism allows calculation of these parameters for a much wider class of general kinetic models than demonstrated with previous methods.

  8. Fluctuations uncover a distinct class of traveling waves

    PubMed Central

    Korolev, Kirill S.

    2018-01-01

    Epidemics, flame propagation, and cardiac rhythms are classic examples of reaction–diffusion waves that describe a switch from one alternative state to another. Only two types of waves are known: pulled, driven by the leading edge, and pushed, driven by the bulk of the wave. Here, we report a distinct class of semipushed waves for which both the bulk and the leading edge contribute to the dynamics. These hybrid waves have the kinetics of pushed waves, but exhibit giant fluctuations similar to pulled waves. The transitions between pulled, semipushed, and fully pushed waves occur at universal ratios of the wave velocity to the Fisher velocity. We derive these results in the context of a species invading a new habitat by examining front diffusion, rate of diversity loss, and fluctuation-induced corrections to the expansion velocity. All three quantities decrease as a power law of the population density with the same exponent. We analytically calculate this exponent, taking into account the fluctuations in the shape of the wave front. For fully pushed waves, the exponent is −1, consistent with the central limit theorem. In semipushed waves, however, the fluctuations average out much more slowly, and the exponent approaches 0 toward the transition to pulled waves. As a result, a rapid loss of genetic diversity and large fluctuations in the position of the front occur, even for populations with cooperative growth and other forms of an Allee effect. The evolutionary outcome of spatial spreading in such populations could therefore be less predictable than previously thought. PMID:29610340

  9. Fluctuations uncover a distinct class of traveling waves.

    PubMed

    Birzu, Gabriel; Hallatschek, Oskar; Korolev, Kirill S

    2018-04-17

    Epidemics, flame propagation, and cardiac rhythms are classic examples of reaction-diffusion waves that describe a switch from one alternative state to another. Only two types of waves are known: pulled, driven by the leading edge, and pushed, driven by the bulk of the wave. Here, we report a distinct class of semipushed waves for which both the bulk and the leading edge contribute to the dynamics. These hybrid waves have the kinetics of pushed waves, but exhibit giant fluctuations similar to pulled waves. The transitions between pulled, semipushed, and fully pushed waves occur at universal ratios of the wave velocity to the Fisher velocity. We derive these results in the context of a species invading a new habitat by examining front diffusion, rate of diversity loss, and fluctuation-induced corrections to the expansion velocity. All three quantities decrease as a power law of the population density with the same exponent. We analytically calculate this exponent, taking into account the fluctuations in the shape of the wave front. For fully pushed waves, the exponent is -1, consistent with the central limit theorem. In semipushed waves, however, the fluctuations average out much more slowly, and the exponent approaches 0 toward the transition to pulled waves. As a result, a rapid loss of genetic diversity and large fluctuations in the position of the front occur, even for populations with cooperative growth and other forms of an Allee effect. The evolutionary outcome of spatial spreading in such populations could therefore be less predictable than previously thought. Copyright © 2018 the Author(s). Published by PNAS.

  10. Particle-fluid interactions for flow measurements

    NASA Technical Reports Server (NTRS)

    Berman, N. S.

    1973-01-01

    Study has been made of the motion of single particle and of group of particles, emphasizing solid particles in gaseous fluid. Velocities of fluid and particle are compared for several conditions of physical interest. Mean velocity and velocity fluctuations are calculated for single particle, and some consideration is given to multiparticle systems.

  11. Bedload fluctuations in a steep macro-rough channel

    NASA Astrophysics Data System (ADS)

    Ghilardi, Tamara; Franca, Mário J.; Schleiss, Anton J.

    2014-05-01

    It is known that bedload fluctuates over time in steep rivers with wide grain size distributions, even when conditions of constant sediment feed and water discharge are met. Bedload fluctuations are periodic and related to fluctuations in the flow velocity and channel bed morphology. In cascade morphologies, the presence of large relatively immobile boulders has a strong impact on flow conditions and sediment transport; their influence on bedload fluctuations is considered in this research. Sediment transport fluctuations were investigated in a set of 38 laboratory experiments carried out on a steep tilting flume, under several conditions of constant sediment and water discharge, for three different slopes (S=6.7%, 9.9%, and 13%). The impact of the diameter and spatial density of randomly placed boulders was studied for several flow conditions. Along with the sediment transport and bulk mean flow velocity, the boulder protrusion, boulder surface, and number of hydraulic jumps, which are indicators of the channel morphology, were measured regularly during the experiments. Periodic bedload pulses are clearly visible in the data collected during the experiments, along with well correlated fluctuations in the flow velocity and bed morphology parameters. Well-behaved cyclic oscillations in the auto-correlation and cross-correlation functions confirm the periodicity of the observed fluctuations and show that the durations of these cycles are similar, although not necessarily in phase. A detailed analysis of data time series and image acquired during the tests show a link between bedload pulses and different bed states, boulder protrusion, and surface grain size distributions. A feedback system exists among channel morphology, flow kinematics and sediment transport. A phase analysis for the observed variables, based on the identification of bedload cycles in the instantaneous signal, is performed. The link between the phases of bedload and each of the morphological parameters show a hysteretic path. The relation between the phase-averaged bedload and the phase-averaged flow velocity show a considerable lesser degree of hysteresis. Comparing the phase averaged bedload of the experiments, it is observed that the shape of bedload cycles is the same for all tested hydraulic conditions. The cycles present a long duration low sediment transport event and a shorter peak transport event. This indicates that long periods of sediment aggradations alternate with short erosion periods, even under constant hydraulic conditions. The bedload pulses may be characterized by their amplitude and period as a function of various boulder spatial densities and diameters. We show that for higher stream power, the fluctuations decrease, both in cycle duration and in amplitude. The presence of boulders increases the stream power needed to transport a given amount of sediment, thus decreasing fluctuations. KEY WORDS: Bedload fluctuations; Morphological changes; Sediment transport; Boulders; Steep channel.

  12. Molecular Rayleigh Scattering Techniques Developed for Measuring Gas Flow Velocity, Density, Temperature, and Turbulence

    NASA Technical Reports Server (NTRS)

    Mielke, Amy F.; Seasholtz, Richard G.; Elam, Kristie A.; Panda, Jayanta

    2005-01-01

    Nonintrusive optical point-wise measurement techniques utilizing the principles of molecular Rayleigh scattering have been developed at the NASA Glenn Research Center to obtain time-averaged information about gas velocity, density, temperature, and turbulence, or dynamic information about gas velocity and density in unseeded flows. These techniques enable measurements that are necessary for validating computational fluid dynamics (CFD) and computational aeroacoustic (CAA) codes. Dynamic measurements allow the calculation of power spectra for the various flow properties. This type of information is currently being used in jet noise studies, correlating sound pressure fluctuations with velocity and density fluctuations to determine noise sources in jets. These nonintrusive techniques are particularly useful in supersonic flows, where seeding the flow with particles is not an option, and where the environment is too harsh for hot-wire measurements.

  13. On the estimation of wall pressure coherence using time-resolved tomographic PIV

    NASA Astrophysics Data System (ADS)

    Pröbsting, Stefan; Scarano, Fulvio; Bernardini, Matteo; Pirozzoli, Sergio

    2013-07-01

    Three-dimensional time-resolved velocity field measurements are obtained using a high-speed tomographic Particle Image Velocimetry (PIV) system on a fully developed flat plate turbulent boundary layer for the estimation of wall pressure fluctuations. The work focuses on the applicability of tomographic PIV to compute the coherence of pressure fluctuations, with attention to the estimation of the stream and spanwise coherence length. The latter is required for estimations of aeroacoustic noise radiation by boundary layers and trailing edge flows, but is also of interest for vibro-structural problems. The pressure field is obtained by solving the Poisson equation for incompressible flows, where the source terms are provided by time-resolved velocity field measurements. Measured 3D velocity data is compared to results obtained from planar PIV, and a Direct Numerical Simulation (DNS) at similar Reynolds number. An improved method for the estimation of the material based on a least squares estimator of the velocity derivative along a particle trajectory is proposed and applied. Computed surface pressure fluctuations are further verified by means of simultaneous measurements by a pinhole microphone and compared to the DNS results and a semi-empirical model available from literature. The correlation coefficient for the reconstructed pressure time series with respect to pinhole microphone measurements attains approximately 0.5 for the band-pass filtered signal over the range of frequencies resolved by the velocity field measurements. Scaled power spectra of the pressure at a single point compare favorably to the DNS results and those available from literature. Finally, the coherence of surface pressure fluctuations and the resulting span- and streamwise coherence lengths are estimated and compared to semi-empirical models and DNS results.

  14. Velocity Measurement by Scattering from Index of Refraction Fluctuations Induced in Turbulent Flows

    NASA Technical Reports Server (NTRS)

    Lading, Lars; Saffman, Mark; Edwards, Robert

    1996-01-01

    Induced phase screen scattering is defined as scatter light from a weak index of refraction fluctuations induced by turbulence. The basic assumptions and requirements for induced phase screen scattering, including scale requirements, are presented.

  15. Attenuation of centre-of-pressure trajectory fluctuations under the prosthetic foot when using an articulating hydraulic ankle attachment compared to fixed attachment.

    PubMed

    De Asha, Alan R; Johnson, Louise; Munjal, Ramesh; Kulkarni, Jai; Buckley, John G

    2013-02-01

    Disruptions to the progress of the centre-of-pressure trajectory beneath prosthetic feet have been reported previously. These disruptions reflect how body weight is transferred over the prosthetic limb and are governed by the compliance of the prosthetic foot device and its ability to simulate ankle function. This study investigated whether using an articulating hydraulic ankle attachment attenuates centre-of-pressure trajectory fluctuations under the prosthetic foot compared to a fixed attachment. Twenty active unilateral trans-tibial amputees completed walking trials at their freely-selected, comfortable walking speed using both their habitual foot with either a rigid or elastic articulating attachment and a foot with a hydraulic ankle attachment. Centre-of-pressure displacement and velocity fluctuations beneath the prosthetic foot, prosthetic shank angular velocity during stance, and walking speed were compared between foot conditions. Use of the hydraulic device eliminated or reduced the magnitude of posteriorly directed centre-of-pressure displacements, reduced centre-of-pressure velocity variability across single-support, increased mean forward angular velocity of the shank during early stance, and increased freely chosen comfortable walking speed (P ≤ 0.002). The attenuation of centre-of-pressure trajectory fluctuations when using the hydraulic device indicated bodyweight was transferred onto the prosthetic limb in a smoother, less faltering manner which allowed the centre of mass to translate more quickly over the foot. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Topography and Radiative Forcing Patterns on Glaciers in the Karakoram Himalaya

    NASA Astrophysics Data System (ADS)

    Dobreva, I. D.; Bishop, M. P.; Liu, J. C.; Liang, D.

    2015-12-01

    Glaciers in the western Himalaya exhibit significant spatial variations in morphology and dynamics. Climate, topography and debris cover variations are thought to significantly affect glacier fluctuations and glacier sensitivity to climate change, although the role of topography and radiative forcing have not been adequately characterized and related to glacier fluctuations and dynamics. Consequently, we examined the glaciers in the Karakoram Himalaya, as they exhibit high spatial variability in glacier fluctuation rates and ice dynamics including flow velocity and surging. Specifically, we wanted to examine the relationships between these glacier characteristics and temporal patterns of surface irradiance over the ablation season. To accomplish this, we developed and used a rigorous GIS-based solar radiative transfer model that accounts for the direct and diffuse-skylight irradiance components. The model accounts for multiple topographic effects on the magnitude of irradiance reaching glacier surfaces. We specifically used the ASTER GDEM digital elevation model for irradiance simulations. We then examined temporal patterns of irradiance at the grid-cell level to identify the dominant patterns that were used to train a 3-layer artificial neural network. Our results demonstrate that there are unique spatial and temporal patterns associated with downwasting and surging glaciers, and that these patterns partially account for the spatial distribution of advancing and retreating glaciers. Lower-altitude terminus regions of surging glaciers exhibited relatively low surface irradiance values that decreased in magnitude with time, demonstrating that high-velocity surging glaciers facilitate relief production and exhibit steeper surface irradiance gradients with altitude. Collectively, these results demonstrate the important role that local and regional topography play in governing climate-glacier dynamics in the Himalaya.

  17. Schneefernerhaus as a mountain research station for clouds and turbulence - Part 2: Cloud microphysics and fine-scale turbulence

    NASA Astrophysics Data System (ADS)

    Siebert, H.; Shaw, R. A.; Ditas, J.; Schmeissner, T.; Malinowski, S. P.; Bodenschatz, E.; Xu, H.

    2015-01-01

    Mountain research stations are advantageous not only for long-term sampling of cloud properties, but also for measurements that prohibitively difficult to perform on airborne platforms due to the true air speed or adverse factors such as weight and complexity of the equipment necessary. Some cloud-turbulence measurements, especially Lagrangian in nature, fall into this category. We report results from simultaneous, high-resolution and collocated measurements of cloud microphysical and turbulence properties during several warm cloud events at the Umweltforschungsstation Schneefernerhaus (UFS) on Zugspitze in the German Alps. The data gathered was found to be representative of observations made with similar instrumentation in free clouds. The turbulence observed, shared all features known for high Reynolds number flows: it exhibited approximately Gaussian fluctuations for all three velocity components, a clearly defined inertial subrange following Kolmogorov scaling (power spectrum, and second and third order Eulerian structure functions), and highly intermittent velocity gradients, as well as approximately lognormal kinetic energy dissipation rates. The clouds were observed to have liquid water contents of order 1 g m-3, and size distributions typical of continental clouds, sometimes exhibiting long positive tails indicative of large drop production through turbulent mixing or coalescence growth. Dimensionless parameters relevant to cloud-turbulence interactions, the Stokes number and settling parameter, are in the range typically observed in atmospheric clouds. Observed fluctuations in droplet number concentration and diameter suggest a preference for inhomogeneous mixing. Finally, enhanced variance in liquid water content fluctuations is observed at high frequencies, and the scale break occurs at a value consistent with the independently estimated phase relaxation time from microphysical measurements.

  18. High-resolution measurement of cloud microphysics and turbulence at a mountaintop station

    NASA Astrophysics Data System (ADS)

    Siebert, H.; Shaw, R. A.; Ditas, J.; Schmeissner, T.; Malinowski, S. P.; Bodenschatz, E.; Xu, H.

    2015-08-01

    Mountain research stations are advantageous not only for long-term sampling of cloud properties but also for measurements that are prohibitively difficult to perform on airborne platforms due to the large true air speed or adverse factors such as weight and complexity of the equipment necessary. Some cloud-turbulence measurements, especially Lagrangian in nature, fall into this category. We report results from simultaneous, high-resolution and collocated measurements of cloud microphysical and turbulence properties during several warm cloud events at the Umweltforschungsstation Schneefernerhaus (UFS) on Zugspitze in the German Alps. The data gathered were found to be representative of observations made with similar instrumentation in free clouds. The observed turbulence shared all features known for high-Reynolds-number flows: it exhibited approximately Gaussian fluctuations for all three velocity components, a clearly defined inertial subrange following Kolmogorov scaling (power spectrum, and second- and third-order Eulerian structure functions), and highly intermittent velocity gradients, as well as approximately lognormal kinetic energy dissipation rates. The clouds were observed to have liquid water contents on the order of 1 g m-3 and size distributions typical of continental clouds, sometimes exhibiting long positive tails indicative of large drop production through turbulent mixing or coalescence growth. Dimensionless parameters relevant to cloud-turbulence interactions, the Stokes number and settling parameter are in the range typically observed in atmospheric clouds. Observed fluctuations in droplet number concentration and diameter suggest a preference for inhomogeneous mixing. Finally, enhanced variance in liquid water content fluctuations is observed at high frequencies, and the scale break occurs at a value consistent with the independently estimated phase relaxation time from microphysical measurements.

  19. Space-time correlations of fluctuating velocities in turbulent shear flows

    NASA Astrophysics Data System (ADS)

    Zhao, Xin; He, Guo-Wei

    2009-04-01

    Space-time correlations or Eulerian two-point two-time correlations of fluctuating velocities are analytically and numerically investigated in turbulent shear flows. An elliptic model for the space-time correlations in the inertial range is developed from the similarity assumptions on the isocorrelation contours: they share a uniform preference direction and a constant aspect ratio. The similarity assumptions are justified using the Kolmogorov similarity hypotheses and verified using the direct numerical simulation (DNS) of turbulent channel flows. The model relates the space-time correlations to the space correlations via the convection and sweeping characteristic velocities. The analytical expressions for the convection and sweeping velocities are derived from the Navier-Stokes equations for homogeneous turbulent shear flows, where the convection velocity is represented by the mean velocity and the sweeping velocity is the sum of the random sweeping velocity and the shear-induced velocity. This suggests that unlike Taylor’s model where the convection velocity is dominating and Kraichnan and Tennekes’ model where the random sweeping velocity is dominating, the decorrelation time scales of the space-time correlations in turbulent shear flows are determined by the convection velocity, the random sweeping velocity, and the shear-induced velocity. This model predicts a universal form of the space-time correlations with the two characteristic velocities. The DNS of turbulent channel flows supports the prediction: the correlation functions exhibit a fair good collapse, when plotted against the normalized space and time separations defined by the elliptic model.

  20. Fourier and wavelet analyses of intermittent and resonant pressure components in a slot burner

    NASA Astrophysics Data System (ADS)

    Pagliaroli, Tiziano; Mancinelli, Matteo; Troiani, Guido; Iemma, Umberto; Camussi, Roberto

    2018-01-01

    In laboratory-scale burner it has been observed that the acoustic excitations change the flame topology inducing asymmetry and oscillations. Hence, an acoustic and aeroacoustic study in non reactive condition is of primary importance during the design stage of a new burner in order to avoid the development of standing waves which can force the flame. So wall pressure fluctuations inside and outside of a novel slot burner have been studied experimentally and numerically for a broad range of geometrical parameters and mass flow rates. Wall pressure fluctuations have been measured through cavity-mounted microphones, providing uni- and multi-variate pressure statistics in both the time and frequency domains. Furthermore, since the onset of combustion-driven oscillations is always presaged by intermittent bursts of high amplitude, a wavelet-based conditional sampling procedure was applied to the database in order to detect coherent signatures embedded in the pressure time signals. Since for a particular case the coherent structures identified have a multi-scale signature, a wavelet-based decomposition technique was proposed as well to separate the contribution of the large- and small-scale flow structures to the pressure fluctuation field. As a main outcome of the activity no coupling between standing waves and velocity fluctuations was observed, but only well localized pressure signatures with shape strongly affected by the neighbouring flow physics.

  1. The Turbulent/Non-Turbulent Interface Bounding a Far-Wake

    NASA Technical Reports Server (NTRS)

    Bisset, David K.; Hunt, Julian C. R.; Rogers, Michael M.; Kwak, Dochan (Technical Monitor)

    2000-01-01

    The velocity fields of a turbulent wake behind a flat plate obtained from the direct numerical simulations of Moser et al. are used to study the structure of the flow in the intermittent zone where there are, alternately, regions of fully turbulent flow and non-turbulent velocity fluctuations either side of a thin randomly moving interface. Comparisons are made with a wake that is 'forced' by amplifying initial velocity fluctuations. There is also a random temperature field T in the flow; T varies between constant values of 0.0 and 1.0 on the sides of the wake. The value of the Reynolds number based on the centreplane mean velocity defect and halfwidth b of the wake is Re approx. = 2000. It is found that the thickness of the continuous interface is about equal to 0.07b, whereas the amplitude of fluctuations of the instantaneous interface displacement y(sub I)(t) is an order of magnitude larger, being about 0.5b. This explains why the mean statistics of vorticity in the intermittent zone can be calculated in terms of the probability distribution of y(sub I) and the instantaneous discontinuity in vorticity across the interface. When plotted as functions of y - y(sub I), the conditional mean velocity (U) and temperature (T) profiles show sharp jumps Delta(U) and Delta(T) at the interface adjacent to a thick zone where (U) and (T) vary much more slowly. Statistics for the vorticity and velocity variances, available in such detail only from DNS data, show how streamwise and spanwise components of vorticity are generated by vortex stretching in the bulges of the interface. Flow fields around the interface, analyzed in terms of the local streamline pattern, confirm previous results that the advancement of the vortical interface into the irrotational flow is driven by large-scale eddy motion. It is argued that because this is an inviscid mechanism the entrainment process is not sensitive to the value of Re, and that small-scale nibbling only plays a subsidiary role. While mean Reynolds stresses decrease gradually in the intermittent zone, conditional stresses are found to decrease sharply towards zero at the interface. Using one-point turbulence models applied to either unconditional or conditional statistics for the turbulent region and then averaged, the entrainment rate E(sub b) would, if calculated exactly, be zero. But if computed with standard computational methods, E(sub b) would be non-zero because of numerical diffusion. It is concluded that the current practice in statistical models of approximating entrainment by a diffusion process is computationally arbitrary and physically incorrect. An analysis shows how E(sub b) is related to Delta(U) and the jump in shear stress at the interface, and correspondingly to Delta(T) and the heat flux.

  2. Stereo particle image velocimetry of nonequilibrium turbulence relaxation in a supersonic boundary layer

    NASA Astrophysics Data System (ADS)

    Lapsa, Andrew P.; Dahm, Werner J. A.

    2011-01-01

    Measurements using stereo particle image velocimetry are presented for a developing turbulent boundary layer in a wind tunnel with a Mach 2.75 free stream. As the boundary layer exits from the tunnel nozzle and moves through the wave-free test section, small initial departures from equilibrium turbulence relax, and the boundary layer develops toward the equilibrium zero-pressure-gradient form. This relaxation process is quantified by comparison of first and second order mean, fluctuation, and gradient statistics to classical inner and outer layer scalings. Simultaneous measurement of all three instantaneous velocity components enables direct assessment of the complete turbulence anisotropy tensor. Profiles of the turbulence Mach number show that, despite the M = 2.75 free stream, the incompressibility relation among spatial gradients in the velocity fluctuations applies. This result is used in constructing various estimates of the measured-dissipation rate, comparisons among which show only remarkably small differences over most of the boundary layer. The resulting measured-dissipation profiles, together with measured profiles of the turbulence kinetic energy and mean-flow gradients, enable an assessment of how the turbulence anisotropy relaxes toward its equilibrium zero-pressure-gradient state. The results suggest that the relaxation of the initially disturbed turbulence anisotropy profile toward its equilibrium zero-pressure-gradient form begins near the upper edge of the boundary layer and propagates downward through the defect layer.

  3. Incoherent scatter radar observations of the ionosphere

    NASA Technical Reports Server (NTRS)

    Hagfors, Tor

    1989-01-01

    Incoherent scatter radar (ISR) has become the most powerful means of studying the ionosphere from the ground. Many of the ideas and methods underlying the troposphere and stratosphere (ST) radars have been taken over from ISR. Whereas the theory of refractive index fluctuations in the lower atmosphere, depending as it does on turbulence, is poorly understood, the theory of the refractivity fluctuations in the ionosphere, which depend on thermal fluctuations, is known in great detail. The underlying theory is one of the most successful theories in plasma physics, and allows for many detailed investigations of a number of parameters such as electron density, electron temperature, ion temperature, electron mean velocity, and ion mean velocity as well as parameters pertaining to composition, neutral density and others. Here, the author reviews the fundamental processes involved in the scattering from a plasma undergoing thermal or near thermal fluctuations in density. The fundamental scattering properties of the plasma to the physical parameters characterizing them from first principles. He does not discuss the observation process itself, as the observational principles are quite similar whether they are applied to a neutral gas or a fluctuating plasma.

  4. Bounds on isocurvature perturbations from cosmic microwave background and large scale structure data.

    PubMed

    Crotty, Patrick; García-Bellido, Juan; Lesgourgues, Julien; Riazuelo, Alain

    2003-10-24

    We obtain very stringent bounds on the possible cold dark matter, baryon, and neutrino isocurvature contributions to the primordial fluctuations in the Universe, using recent cosmic microwave background and large scale structure data. Neglecting the possible effects of spatial curvature, tensor perturbations, and reionization, we perform a Bayesian likelihood analysis with nine free parameters, and find that the amplitude of the isocurvature component cannot be larger than about 31% for the cold dark matter mode, 91% for the baryon mode, 76% for the neutrino density mode, and 60% for the neutrino velocity mode, at 2sigma, for uncorrelated models. For correlated adiabatic and isocurvature components, the fraction could be slightly larger. However, the cross-correlation coefficient is strongly constrained, and maximally correlated/anticorrelated models are disfavored. This puts strong bounds on the curvaton model.

  5. On the role of the quasi-parallel bow shock in ion pickup - A lesson from Venus?

    NASA Technical Reports Server (NTRS)

    Luhmann, J. G.; Russell, C. T.; Phillips, J. L.; Barnes, A.

    1987-01-01

    Previous observations at Venus show convincing evidence of planetary O(+) ion pickup by the largescale motional -V x B electric field in the magnetosheath when the interplanetary magnetic field is perpendicular to the solar wind flow. However, the presence of magnetic field fluctuations in the magnetosheath downstream from the quasi-parallel bow shock should allow pickup to occur even when the upstream magnetic field B and plasma velocity V are practically coaligned. Single-particle calculations are used to demonstrate the convecting magnetic field fluctuations similar to those observed in the Venus magnetosheath when the subsolar bow shock is quasi-parallel can efficiently accelerate cold planetary ions by means of the electric field associated with their transverse components. This ion pickup process, which is characterized by a spatial dependence determined by the bow shock shape and the orientation of the upstream magnetic field, is likely also to occur at Mars and may be effective at comets.

  6. Role of location-dependent transverse wind on root-mean-square bandwidth of temporal light-flux fluctuations in the turbulent atmosphere.

    PubMed

    Chen, Chunyi; Yang, Huamin

    2017-11-01

    The root-mean-square (RMS) bandwidth of temporal light-flux fluctuations is formulated for both plane and spherical waves propagating in the turbulent atmosphere with location-dependent transverse wind. Two path weighting functions characterizing the joint contributions of turbulent eddies and transverse winds at various locations toward the RMS bandwidth are derived. Based on the developed formulations, the roles of variations in both the direction and magnitude of transverse wind velocity with locations over a path on the RMS bandwidth are elucidated. For propagation paths between ground and space, comparisons of the RMS bandwidth computed based on the Bufton wind profile with that calculated by assuming a nominal constant transverse wind velocity are made to exemplify the effect that location dependence of transverse wind velocity has on the RMS bandwidth. Moreover, an expression for the weighted RMS transverse wind velocity has been derived, which can be used as a nominal constant transverse wind velocity over a path for accurately determining the RMS bandwidth.

  7. Experiments on integral length scale control in atmospheric boundary layer wind tunnel

    NASA Astrophysics Data System (ADS)

    Varshney, Kapil; Poddar, Kamal

    2011-11-01

    Accurate predictions of turbulent characteristics in the atmospheric boundary layer (ABL) depends on understanding the effects of surface roughness on the spatial distribution of velocity, turbulence intensity, and turbulence length scales. Simulation of the ABL characteristics have been performed in a short test section length wind tunnel to determine the appropriate length scale factor for modeling, which ensures correct aeroelastic behavior of structural models for non-aerodynamic applications. The ABL characteristics have been simulated by using various configurations of passive devices such as vortex generators, air barriers, and slot in the test section floor which was extended into the contraction cone. Mean velocity and velocity fluctuations have been measured using a hot-wire anemometry system. Mean velocity, turbulence intensity, turbulence scale, and power spectral density of velocity fluctuations have been obtained from the experiments for various configuration of the passive devices. It is shown that the integral length scale factor can be controlled using various combinations of the passive devices.

  8. Optimization and application of cooled avalanche photodiodes for spectroscopic fluctuation measurements with ultra-fast charge exchange recombination spectroscopy

    DOE PAGES

    Truong, D. D.; Fonck, R. J.; McKee, G. R.

    2016-09-23

    The Ultra Fast Charge Exchange Recombination Spectroscopy (UF-CHERS) diagnostic is a highly specialized spectroscopic instrument with 2 spatial channels consisting of 8 spectral channels each and a resolution of ~0.25 nm deployed at DIII-D to measure turbulent ion temperature fluctuations. Charge exchange emissions are obtained between 528-530 nm with 1 μs time resolution to study plasma instabilities. A primary challenge of extracting fluctuation measurements from raw UF-CHERS signals is photon and electronic noise. In order to reduce dark current, the Avalanche Photodiode (APD) detectors are thermoelectrically cooled. State-of-the-art components are used for the signal amplifiers and conditioners to minimize electronicmore » noise. Due to the low incident photon power (≤ 1 nW), APDs with a gain of up to 300 are used to optimize the signal to noise ratio. Maximizing the APDs’ gain while minimizing the excess noise factor (ENF) is essential since the total noise of the diagnostic sets a floor for the minimum level of detectable broadband fluctuations. The APDs’ gain should be high enough that photon noise dominates electronic noise, but not excessive so that the ENF overwhelms plasma fluctuations. A new generation of cooled APDs and optimized preamplifiers exhibits significantly enhanced signal-to-noise compared to a previous generation. Experiments at DIII-D have allowed for characterization and optimization of the ENF vs. gain. Here, a gain of ~100 at 1700 V is found to be near optimal for most plasma conditions. Ion temperature and toroidal velocity fluctuations due to the Edge Harmonic Oscillation (EHO) in Quiescent H-mode (QH) plasmas are presented to demonstrate UF-CHERS’ capabilities.« less

  9. Quasi-periodic Fluctuations and Chromospheric Evaporation in a Solar Flare Ribbon Observed by Hinode/EIS, IRIS, and RHESSI

    NASA Astrophysics Data System (ADS)

    Brosius, Jeffrey W.; Daw, Adrian N.; Inglis, Andrew R.

    2016-10-01

    The Hinode/Extreme-ultraviolet Imaging Spectrometer (EIS) obtained rapid cadence (11.2 s) EUV stare spectra of an M7.3 flare ribbon in AR 12036 on 2014 April 18. Quasi-periodic (P ≈ 75.6 ± 9.2 s) intensity fluctuations occurred in emission lines of O IV, Mg VI, Mg vii, Si vii, Fe xiv, and Fe xvi during the flare's impulsive rise, and ended when the maximum intensity in Fe xxiii was reached. The profiles of the O IV-Fe xvi lines reveal that they were all redshifted during most of the interval of quasi-periodic intensity fluctuations, while the Fe xxiii profile revealed multiple components including one or two highly blueshifted ones. This indicates that the flare underwent explosive chromospheric evaporation during its impulsive rise. Fluctuations in the relative Doppler velocities were seen, but their amplitudes were too subtle to extract significant quasi-periodicities. RHESSI detected 25-100 keV hard-X-ray sources in the ribbon near the EIS slit's pointing position during the peaks in the EIS intensity fluctuations. The observations are consistent with a series of energy injections into the chromosphere by nonthermal particle beams. Electron densities derived with Fe xiv (4.6 × 1010 cm-3) and Mg vii (7.8 × 109 cm-3) average line intensity ratios during the interval of quasi-periodic intensity fluctuations, combined with the radiative loss function of an optically thin plasma, yield radiative cooling times of 32 s at 2.0 × 106 K, and 46 s at 6.3 × 105 K (about half the quasi-period); assuming Fe xiv's density for Fe xxiii yields a radiative cooling time of 103 s (13 times the quasi-period) at 1.4 × 107 K.

  10. Double-modulation spectroscopy of molecular ions - Eliminating the background in velocity-modulation spectroscopy

    NASA Technical Reports Server (NTRS)

    Lan, Guang; Tholl, Hans Dieter; Farley, John W.

    1991-01-01

    Velocity-modulation spectroscopy is an established technique for performing laser absorption spectroscopy of molecular ions in a discharge. However, such experiments are often plagued by a coherent background signal arising from emission from the discharge or from electronic pickup. Fluctuations in the background can obscure the desired signal. A simple technique using amplitude modulation of the laser and two lock-in amplifiers in series to detect the signal is demonstrated. The background and background fluctuations are thereby eliminated, facilitating the detection of molecular ions.

  11. An Exact Form of Lilley's Equation with a Velocity Quadrupole/Temperature Dipole Source Term

    NASA Technical Reports Server (NTRS)

    Goldstein, Marvin E.

    2001-01-01

    There have been several attempts to introduce approximations into the exact form of Lilley's equation in order to express the source term as the sum of a quadrupole whose strength is quadratic in the fluctuating velocities and a dipole whose strength is proportional to the temperature fluctuations. The purpose of this note is to show that it is possible to choose the dependent (i.e., the pressure) variable so that this type of result can be derived directly from the Euler equations without introducing any additional approximations.

  12. Kinetic Features Observed in the Solar Wind Electron Distributions

    NASA Astrophysics Data System (ADS)

    Pierrard, V.; Lazar, M.; Poedts, S.

    2016-12-01

    More than 120 000 of velocity distributions measured by Helios, Cluster and Ulysses in the ecliptic have been analyzed within an extended range of heliocentric distances from 0.3 to over 4 AU. The velocity distribution of electrons reveal a dual structure with a thermal (Maxwellian) core and a suprathermal (Kappa) halo. A detailed observational analysis of these two components provides estimations of their temperatures and temperature anisotropies, and we decode any potential interdependence that their properties may indicate. The core temperature is found to decrease with the radial distance, while the halo temperature slightly increases, clarifying an apparent contradiction in previous observational analysis and providing valuable clues about the temperature of the Kappa-distributed populations. For low values of the power-index kappa, these two components manifest a clear tendency to deviate from isotropy in the same direction, that seems to confirm the existence of mechanisms with similar effects on both components, e.g., the solar wind expansion, or the particle heating by the fluctuations. However, the existence of plasma states with anti-correlated anisotropies of the core and halo populations and the increase of their number for high values of the power-index kappa suggest a dynamic interplay of these components, mediated most probably by the anisotropy-driven instabilities. Estimating the temperature of the solar wind particles and their anisotropies is particularly important for understanding the origin of these deviations from thermal equilibrium as well as their effects.

  13. Distinct patterns of seasonal Greenland glacier velocity

    PubMed Central

    Moon, Twila; Joughin, Ian; Smith, Ben; van den Broeke, Michiel R; van de Berg, Willem Jan; Noël, Brice; Usher, Mika

    2014-01-01

    Predicting Greenland Ice Sheet mass loss due to ice dynamics requires a complete understanding of spatiotemporal velocity fluctuations and related control mechanisms. We present a 5 year record of seasonal velocity measurements for 55 marine-terminating glaciers distributed around the ice sheet margin, along with ice-front position and runoff data sets for each glacier. Among glaciers with substantial speed variations, we find three distinct seasonal velocity patterns. One pattern indicates relatively high glacier sensitivity to ice-front position. The other two patterns are more prevalent and appear to be meltwater controlled. These patterns reveal differences in which some subglacial systems likely transition seasonally from inefficient, distributed hydrologic networks to efficient, channelized drainage, while others do not. The difference may be determined by meltwater availability, which in some regions may be influenced by perennial firn aquifers. Our results highlight the need to understand subglacial meltwater availability on an ice sheet-wide scale to predict future dynamic changes. Key Points First multi-region seasonal velocity measurements show regional differences Seasonal velocity fluctuations on most glaciers appear meltwater controlled Seasonal development of efficient subglacial drainage geographically divided PMID:25821275

  14. Kinetic Roughening and Energetics of Tetragonal Lysozyme Crystal Growth: A Preliminary Atomic Force Microscopy Investigation

    NASA Technical Reports Server (NTRS)

    Gorti, Sridhar; Forsythe, Elizabeth L.; Pusey, Marc L.

    2004-01-01

    We examined particulars of crystal growth from measurements obtained at both microscopic and molecular levels. The crystal growth measurements performed at the microscopic level are well characterized by a model that balances the flux of macromolecules towards the crystal surface with the flux of the crystal surface. Numerical evaluation of model with measurements of crystal growth, in time, provided accurate estimates for the average growth velocities. Growth velocities thus obtained were also interpreted using well-established phenomenological theories. Moreover, we find that microscopic measurements of growth velocity measurements obtained as a function of temperature best characterizes changes in crystal growth modes, when present. We also examined the possibility of detecting a change in crystal growth modes at the molecular level using atomic force microscopy, AFM. From preliminary AFM measurements performed at various supersaturations, we find that magnitude of surface height fluctuations, h(x), increases with supersaturation. Further examination of surface height fluctuations using methods established for fluctuation spectroscopy also enabled the discovery of the existence of a characteristic length, c, which may possibly determine the mode of crystal growth. Although the results are preliminary, we establish the non- critical divergence of 5 and the root-mean-square (rms) magnitude of height-height fluctuations as the kinetic roughening transition temperatures are approached. Moreover, we also examine approximate models for interpreting the non-critical behavior of both 6 and rms magnitude of height-height fluctuations, as the solution supersaturation is increased towards the kinetic roughening supersaturation.

  15. Tracking of large-scale structures in turbulent channel with direct numerical simulation of low Prandtl number passive scalar

    NASA Astrophysics Data System (ADS)

    Tiselj, Iztok

    2014-12-01

    Channel flow DNS (Direct Numerical Simulation) at friction Reynolds number 180 and with passive scalars of Prandtl numbers 1 and 0.01 was performed in various computational domains. The "normal" size domain was ˜2300 wall units long and ˜750 wall units wide; size taken from the similar DNS of Moser et al. The "large" computational domain, which is supposed to be sufficient to describe the largest structures of the turbulent flows was 3 times longer and 3 times wider than the "normal" domain. The "very large" domain was 6 times longer and 6 times wider than the "normal" domain. All simulations were performed with the same spatial and temporal resolution. Comparison of the standard and large computational domains shows the velocity field statistics (mean velocity, root-mean-square (RMS) fluctuations, and turbulent Reynolds stresses) that are within 1%-2%. Similar agreement is observed for Pr = 1 temperature fields and can be observed also for the mean temperature profiles at Pr = 0.01. These differences can be attributed to the statistical uncertainties of the DNS. However, second-order moments, i.e., RMS temperature fluctuations of standard and large computational domains at Pr = 0.01 show significant differences of up to 20%. Stronger temperature fluctuations in the "large" and "very large" domains confirm the existence of the large-scale structures. Their influence is more or less invisible in the main velocity field statistics or in the statistics of the temperature fields at Prandtl numbers around 1. However, these structures play visible role in the temperature fluctuations at low Prandtl number, where high temperature diffusivity effectively smears the small-scale structures in the thermal field and enhances the relative contribution of large-scales. These large thermal structures represent some kind of an echo of the large scale velocity structures: the highest temperature-velocity correlations are not observed between the instantaneous temperatures and instantaneous streamwise velocities, but between the instantaneous temperatures and velocities averaged over certain time interval.

  16. Wind velocity profile reconstruction from intensity fluctuations of a plane wave propagating in a turbulent atmosphere.

    PubMed

    Banakh, V A; Marakasov, D A

    2007-08-01

    Reconstruction of a wind profile based on the statistics of plane-wave intensity fluctuations in a turbulent atmosphere is considered. The algorithm for wind profile retrieval from the spatiotemporal spectrum of plane-wave weak intensity fluctuations is described, and the results of end-to-end computer experiments on wind profiling based on the developed algorithm are presented. It is shown that the reconstructing algorithm allows retrieval of a wind profile from turbulent plane-wave intensity fluctuations with acceptable accuracy.

  17. The ongoing saga surrounding the velocity fluctuations in sedimentation

    NASA Astrophysics Data System (ADS)

    Brenner, Michael P.

    2002-11-01

    Particles moving through a viscous fluid interact with each other, because each individual particle drags fluid along with it, which then pulls on other particles. In a low Reynolds number sediment, such hydrodynamic interactions are extremely strong, even when the particles are well separated. Despite more than a century of research, the character of the particle motions in a dilute suspension of heavy particles is highly controversial: In 1985, Caflisch and Luke presented an extremely simple argument indicating that the velocity fluctuations in such a sediment should diverge with the system size. Experiments have mainly contradicted this conclusion, leading to the hope that there is a (perhaps universal) ''screening mechanism'' controlling the size of the fluctuations. In this lecture I will review the history of this problem, and then present the results of our recent research which indicates that the velocity fluctuations are highly nonuniversal and system size dependent, depending subtley on both the shape of the container holding the sediment and any particle stratification that develops during an experiment. Experiments, numerical simulations and theory are presented that quantitatively support this point of view. This work is in collaboration with P. J. Mucha and the experimental group of D. A. Weitz: (S. Tee, S. Manley and L. Cippelletti).

  18. Standard deviation of vertical two-point longitudinal velocity differences in the atmospheric boundary layer.

    NASA Technical Reports Server (NTRS)

    Fichtl, G. H.

    1971-01-01

    Statistical estimates of wind shear in the planetary boundary layer are important in the design of V/STOL aircraft, and for the design of the Space Shuttle. The data analyzed in this study consist of eleven sets of longitudinal turbulent velocity fluctuation time histories digitized at 0.2 sec intervals with approximately 18,000 data points per time history. The longitudinal velocity fluctuations were calculated with horizontal wind and direction data collected at the 18-, 30-, 60-, 90-, 120-, and 150-m levels. The data obtained confirm the result that Eulerian time spectra transformed to wave-number spectra with Taylor's frozen eddy hypothesis possess inertial-like behavior at wave-numbers well out of the inertial subrange.

  19. Pressure fluctuations on the surface of a cylinder in uniform flow

    NASA Technical Reports Server (NTRS)

    Ayoub, A.; Karamcheti, K.

    1976-01-01

    The problem of determining the pressure fluctuations induced on the surface of a cylinder by the fluctuating wake behind it is formulated. A formal solution relating the unsteady surface pressure field to the velocity field in the wake is derived and used to obtain general results independent of cylinder shape and Reynolds number. The case of the circular cylinder is then examined in detail.

  20. Exact symmetries in the velocity fluctuations of a hot Brownian swimmer

    NASA Astrophysics Data System (ADS)

    Falasco, Gianmaria; Pfaller, Richard; Bregulla, Andreas P.; Cichos, Frank; Kroy, Klaus

    2016-09-01

    Symmetries constrain dynamics. We test this fundamental physical principle, experimentally and by molecular dynamics simulations, for a hot Janus swimmer operating far from thermal equilibrium. Our results establish scalar and vectorial steady-state fluctuation theorems and a thermodynamic uncertainty relation that link the fluctuating particle current to its entropy production at an effective temperature. A Markovian minimal model elucidates the underlying nonequilibrium physics.

  1. Further evaluation of waves and turbulence encountered by the Galileo Probe during descent in Jupiter's atmosphere

    NASA Astrophysics Data System (ADS)

    Seiff, Alvin; Kirk, Donn B.; Mihalov, John; Knight, Tony C. D.

    Data from the Galileo Probe in Jupiter descent indicated descent velocity oscillations as large as ±5 m/s on a height scale of a few km, which suggested gravity waves in the atmosphere between 4 and 20 bars (Seiff et al., 1998), an important observation for atmospheric stability and dynamics. But we now find these velocity fluctuations to be inconsistent with simultaneous measurements of mean accelerations, which were relatively steady. This conflict is resolved in favor of the accelerometers. The velocity fluctuations can be explained from digital uncertainties in the slow rate of pressure rise. However, the accelerometers did record higher frequency perturbations of up to 0.1g. Attributed to turbulence, these imply turbulent velocities from 0.3 to 5 m/s at scales of 10 to 40 m. However, they were at least partly a result of unsteady parachute aerodynamics.

  2. Astrophysical Gyrokinetics: Kinetic and Fluid Turbulent Cascades in Magnetized Weakly Collisional Plasmas

    NASA Astrophysics Data System (ADS)

    Schekochihin, A. A.; Cowley, S. C.; Dorland, W.; Hammett, G. W.; Howes, G. G.; Quataert, E.; Tatsuno, T.

    2009-05-01

    This paper presents a theoretical framework for understanding plasma turbulence in astrophysical plasmas. It is motivated by observations of electromagnetic and density fluctuations in the solar wind, interstellar medium and galaxy clusters, as well as by models of particle heating in accretion disks. All of these plasmas and many others have turbulent motions at weakly collisional and collisionless scales. The paper focuses on turbulence in a strong mean magnetic field. The key assumptions are that the turbulent fluctuations are small compared to the mean field, spatially anisotropic with respect to it and that their frequency is low compared to the ion cyclotron frequency. The turbulence is assumed to be forced at some system-specific outer scale. The energy injected at this scale has to be dissipated into heat, which ultimately cannot be accomplished without collisions. A kinetic cascade develops that brings the energy to collisional scales both in space and velocity. The nature of the kinetic cascade in various scale ranges depends on the physics of plasma fluctuations that exist there. There are four special scales that separate physically distinct regimes: the electron and ion gyroscales, the mean free path and the electron diffusion scale. In each of the scale ranges separated by these scales, the fully kinetic problem is systematically reduced to a more physically transparent and computationally tractable system of equations, which are derived in a rigorous way. In the "inertial range" above the ion gyroscale, the kinetic cascade separates into two parts: a cascade of Alfvénic fluctuations and a passive cascade of density and magnetic-field-strength fluctuations. The former are governed by the reduced magnetohydrodynamic (RMHD) equations at both the collisional and collisionless scales; the latter obey a linear kinetic equation along the (moving) field lines associated with the Alfvénic component (in the collisional limit, these compressive fluctuations become the slow and entropy modes of the conventional MHD). In the "dissipation range" below ion gyroscale, there are again two cascades: the kinetic-Alfvén-wave (KAW) cascade governed by two fluid-like electron reduced magnetohydrodynamic (ERMHD) equations and a passive cascade of ion entropy fluctuations both in space and velocity. The latter cascade brings the energy of the inertial-range fluctuations that was Landau-damped at the ion gyroscale to collisional scales in the phase space and leads to ion heating. The KAW energy is similarly damped at the electron gyroscale and converted into electron heat. Kolmogorov-style scaling relations are derived for all of these cascades. The relationship between the theoretical models proposed in this paper and astrophysical applications and observations is discussed in detail.

  3. Spontaneous fluctuations in cerebral blood flow: insights from extended-duration recordings in humans

    NASA Technical Reports Server (NTRS)

    Zhang, R.; Zuckerman, J. H.; Levine, B. D.; Blomqvist, C. G. (Principal Investigator)

    2000-01-01

    To determine the dependence of cerebral blood flow (CBF) on arterial pressure over prolonged time periods, we measured beat-to-beat changes in mean CBF velocity in the middle cerebral artery (transcranial Doppler) and mean arterial pressure (Finapres) continuously for 2 h in six healthy subjects (5 men and 1 woman, 18-40 yr old) during supine rest. Fluctuations in velocity and pressure were quantified by the range [(peak - trough)/mean] and coefficients of variation (SD/mean) in the time domain and by spectral analysis in the frequency domain. Mean velocity and pressure over the 2-h recordings were 60 +/- 7 cm/s and 83 +/- 8 mmHg, associated with ranges of 77 +/- 8 and 89 +/- 10% and coefficients of variation of 9.3 +/- 2.2 and 7.9 +/- 2.3%, respectively. Spectral power of the velocity and pressure was predominantly distributed in the frequency range of 0.00014-0.1 Hz and increased inversely with frequency, indicating characteristics of an inverse power law (1/f(alpha)). However, linear regression on a log-log scale revealed that the slope of spectral power of pressure and velocity was steeper in the high-frequency (0.02-0.5 Hz) than in the low-frequency range (0.002-0.02 Hz), suggesting different regulatory mechanisms in these two frequency ranges. Furthermore, the spectral slope of pressure was significantly steeper than that of velocity in the low-frequency range, consistent with the low transfer function gain and low coherence estimated at these frequencies. We conclude that 1) long-term fluctuations in CBF velocity are prominent and similar to those observed in arterial pressure, 2) spectral power of CBF velocity reveals characteristics of 1/f(alpha), and 3) cerebral attenuation of oscillations in CBF velocity in response to changes in pressure may be more effective at low than that at high frequencies, emphasizing the frequency dependence of cerebral autoregulation.

  4. Magnetic field amplification by small-scale dynamo action: dependence on turbulence models and Reynolds and Prandtl numbers.

    PubMed

    Schober, Jennifer; Schleicher, Dominik; Federrath, Christoph; Klessen, Ralf; Banerjee, Robi

    2012-02-01

    The small-scale dynamo is a process by which turbulent kinetic energy is converted into magnetic energy, and thus it is expected to depend crucially on the nature of the turbulence. In this paper, we present a model for the small-scale dynamo that takes into account the slope of the turbulent velocity spectrum v(ℓ)proportional ℓ([symbol see text])V}, where ℓ and v(ℓ) are the size of a turbulent fluctuation and the typical velocity on that scale. The time evolution of the fluctuation component of the magnetic field, i.e., the small-scale field, is described by the Kazantsev equation. We solve this linear differential equation for its eigenvalues with the quantum-mechanical WKB approximation. The validity of this method is estimated as a function of the magnetic Prandtl number Pm. We calculate the minimal magnetic Reynolds number for dynamo action, Rm_{crit}, using our model of the turbulent velocity correlation function. For Kolmogorov turbulence ([symbol see text] = 1/3), we find that the critical magnetic Reynolds number is Rm(crit) (K) ≈ 110 and for Burgers turbulence ([symbol see text] = 1/2) Rm(crit)(B) ≈ 2700. Furthermore, we derive that the growth rate of the small-scale magnetic field for a general type of turbulence is Γ proportional Re((1-[symbol see text])/(1+[symbol see text])) in the limit of infinite magnetic Prandtl number. For decreasing magnetic Prandtl number (down to Pm >/~ 10), the growth rate of the small-scale dynamo decreases. The details of this drop depend on the WKB approximation, which becomes invalid for a magnetic Prandtl number of about unity.

  5. Large eddy simulations and reduced models of the Unsteady Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Momen, M.; Bou-Zeid, E.

    2013-12-01

    Most studies of the dynamics of Atmospheric Boundary Layers (ABLs) have focused on steady geostrophic conditions, such as the classic Ekman boundary layer problem. However, real-world ABLs are driven by a time-dependent geostrophic forcing that changes at sub-diurnal scales. Hence, to advance our understanding of the dynamics of atmospheric flows, and to improve their modeling, the unsteady cases have to be analyzed and understood. This is particularly relevant to new applications related to wind energy (e.g. short-term forecast of wind power changes) and pollutant dispersion (forecasting of rapid changes in wind velocity and direction after an accidental spill), as well as to classic weather prediction and hydrometeorological applications. The present study aims to investigate the ABL behavior under variable forcing and to derive a simple model to predict the ABL response under these forcing fluctuations. Simplifications of the governing Navier-Stokes equations, with the Coriolis force, are tested using LES and then applied to derive a physical model of the unsteady ABL. LES is then exploited again to validate the analogy and the output of the simpler model. Results from the analytical model, as well as LES outputs, open the way for inertial oscillations to play an important role in the dynamics. Several simulations with different variable forcing patterns are then conducted to investigate some of the characteristics of the unsteady ABL such as resonant frequency, ABL response time, equilibrium states, etc. The variability of wind velocity profiles and hodographs, turbulent kinetic energy, and vertical profiles of the total stress and potential temperature are also examined. Wind Hodograph of the Unsteady ABL at Different Heights - This figure shows fluctuations in the mean u and v components of the velocity as time passes due to variable geostrophic forcing

  6. Chromatin hydrodynamics.

    PubMed

    Bruinsma, Robijn; Grosberg, Alexander Y; Rabin, Yitzhak; Zidovska, Alexandra

    2014-05-06

    Following recent observations of large scale correlated motion of chromatin inside the nuclei of live differentiated cells, we present a hydrodynamic theory-the two-fluid model-in which the content of a nucleus is described as a chromatin solution with the nucleoplasm playing the role of the solvent and the chromatin fiber that of a solute. This system is subject to both passive thermal fluctuations and active scalar and vector events that are associated with free energy consumption, such as ATP hydrolysis. Scalar events drive the longitudinal viscoelastic modes (where the chromatin fiber moves relative to the solvent) while vector events generate the transverse modes (where the chromatin fiber moves together with the solvent). Using linear response methods, we derive explicit expressions for the response functions that connect the chromatin density and velocity correlation functions to the corresponding correlation functions of the active sources and the complex viscoelastic moduli of the chromatin solution. We then derive general expressions for the flow spectral density of the chromatin velocity field. We use the theory to analyze experimental results recently obtained by one of the present authors and her co-workers. We find that the time dependence of the experimental data for both native and ATP-depleted chromatin can be well-fitted using a simple model-the Maxwell fluid-for the complex modulus, although there is some discrepancy in terms of the wavevector dependence. Thermal fluctuations of ATP-depleted cells are predominantly longitudinal. ATP-active cells exhibit intense transverse long wavelength velocity fluctuations driven by force dipoles. Fluctuations with wavenumbers larger than a few inverse microns are dominated by concentration fluctuations with the same spectrum as thermal fluctuations but with increased intensity. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  7. Chromatin Hydrodynamics

    PubMed Central

    Bruinsma, Robijn; Grosberg, Alexander Y.; Rabin, Yitzhak; Zidovska, Alexandra

    2014-01-01

    Following recent observations of large scale correlated motion of chromatin inside the nuclei of live differentiated cells, we present a hydrodynamic theory—the two-fluid model—in which the content of a nucleus is described as a chromatin solution with the nucleoplasm playing the role of the solvent and the chromatin fiber that of a solute. This system is subject to both passive thermal fluctuations and active scalar and vector events that are associated with free energy consumption, such as ATP hydrolysis. Scalar events drive the longitudinal viscoelastic modes (where the chromatin fiber moves relative to the solvent) while vector events generate the transverse modes (where the chromatin fiber moves together with the solvent). Using linear response methods, we derive explicit expressions for the response functions that connect the chromatin density and velocity correlation functions to the corresponding correlation functions of the active sources and the complex viscoelastic moduli of the chromatin solution. We then derive general expressions for the flow spectral density of the chromatin velocity field. We use the theory to analyze experimental results recently obtained by one of the present authors and her co-workers. We find that the time dependence of the experimental data for both native and ATP-depleted chromatin can be well-fitted using a simple model—the Maxwell fluid—for the complex modulus, although there is some discrepancy in terms of the wavevector dependence. Thermal fluctuations of ATP-depleted cells are predominantly longitudinal. ATP-active cells exhibit intense transverse long wavelength velocity fluctuations driven by force dipoles. Fluctuations with wavenumbers larger than a few inverse microns are dominated by concentration fluctuations with the same spectrum as thermal fluctuations but with increased intensity. PMID:24806919

  8. Fluid simulations of plasma turbulence at ion scales: Comparison with Vlasov-Maxwell simulations

    NASA Astrophysics Data System (ADS)

    Perrone, D.; Passot, T.; Laveder, D.; Valentini, F.; Sulem, P. L.; Zouganelis, I.; Veltri, P.; Servidio, S.

    2018-05-01

    Comparisons are presented between a hybrid Vlasov-Maxwell (HVM) simulation of turbulence in a collisionless plasma and fluid reductions. These include Hall-magnetohydrodynamics (HMHD) and Landau fluid (LF) or finite Larmor radius-Landau fluid (FLR-LF) models that retain pressure anisotropy and low-frequency kinetic effects such as Landau damping and, for the last model, finite Larmor radius (FLR) corrections. The problem is considered in two space dimensions, when initial conditions involve moderate-amplitude perturbations of a homogeneous equilibrium plasma subject to an out-of-plane magnetic field. LF turns out to provide an accurate description of the velocity field up to the ion Larmor radius scale, and even to smaller scales for the magnetic field. Compressibility nevertheless appears significantly larger at the sub-ion scales in the fluid models than in the HVM simulation. High frequency kinetic effects, such as cyclotron resonances, not retained by fluid descriptions, could be at the origin of this discrepancy. A significant temperature anisotropy is generated, with a bias towards the perpendicular component, the more intense fluctuations being rather spread out and located in a broad vicinity of current sheets. Non-gyrotropic pressure tensor components are measured and are shown to reach a significant fraction of the total pressure fluctuations, with intense regions closely correlated with current sheets.

  9. Fluctuations of sediments-related optical parameters on a megatidal beach in the Eastern English Channel

    NASA Astrophysics Data System (ADS)

    Xing, Q.; Schmitt, F.; Loisel, H.

    2009-04-01

    To investigate the influence of turbulence coupled with waves and tides on the re-suspension of sediments, a 4-hour field experiment was conducted on a surf-zone beach near Wimereux, France where is at the Eastern English Channel and characterized by a semi-diurnal megatide (spring tidal range > 8 m). A sensor cluster was fixed 1.5 m above the sea bed when the tidal level was low. The parameters of the particle scattering coefficient and the optical attenuation coefficient were measured as a surrogate of the suspended sediments concentration (SSC), and the water temperature, the pressure, the horizontal 2-D velocity and so on, were also simultaneously measured in a continuous mode at a frequency of 1 Hz. The parameter of pressure was used for monitoring the water level and estimating the variation of surface wave heights by removing the local averages of time series, and the pressure time series show that the experiment started with a water level of about 3.7 m at 10 o'clock and ended with 4.5 m at 14 o'clock, and that the water level reached the highest at about 12 o'clock. The time series of current direction indicate that there was a steady along-coast current with a direction of 218 degrees when the water level almost reached the largest of 6 m, i.e., when the sensors were 4.5 m under the water surface. The particle scattering coefficient and the optical attenuation coefficient exhibit a similar fluctuating trend with a correlation coefficient of 0.85 between them. Although there is a time lag of about 1000 s, a relation between the optical parameters and the square of U is observed, i.e., SSC is a function of U, where U is the vector product of the along-shore and cross-shore velocities (v and u). The cross-shore velocity u fluctuates roughly with a mean of zero, and its variation decreases exponentially with the increase of water level, which is consistent with the common sense that wave orbital motions decrease exponentially with the water depth; the variation of v is slightly different to that of u, and the mean of fluctuations changes against the occurrence of along-coast current. Power spectral analysis on the basis of Fast Fourier Transform (FFT) is used to study their scaling behaviors in an energy (E(f)) ~ frequency (f) function of log(E(f)) ~ -p log(f). Temperature fluctuations exhibit to be corresponding to a passive scalar turbulence, p=1.79. When f < 0.003Hz, the values of p with the fluctuations of v and u are between 5/3 and 3, and more close to 3, which may suggest a main component of wave orbital motions in the mixed behavior with turbulence. Particle scattering coefficients and water attenuation coefficients exhibit a similar scaling behavior to each other, and when f < 0.003Hz, the values of p are close to 3 and a little larger than it, which also suggests the role of wave orbital motions in the re-suspension of sediments. In this experiments, a water volume of tens to one hundred cubic centimeters were monitored for velocity measurement. However, a finer spatial resolution may be more suitable for the observation of turbulence as well as the sediments-related optical parameters.

  10. Unsteady loads due to propulsive lift configurations. Part B: Pressure and velocity measurements in a three dimensional wall jet

    NASA Technical Reports Server (NTRS)

    Catalano, G. D.; Morton, J. B.; Humphris, R. R.

    1978-01-01

    The effects of increasing the velocity ratio, lambda sub j were explored. The quantities measured include the width of the mixing region, the mean velocity field, turbulent intensities and time scales. In addition, wall and static pressure velocity correlations and coherences are presented. The velocity measurements were made using a laser Doppler velocimeter with a phase locked loop processor. The fluctuating pressures were monitored using condenser type microphones.

  11. Helium-filled soap bubbles tracing fidelity in wall-bounded turbulence

    NASA Astrophysics Data System (ADS)

    Faleiros, David Engler; Tuinstra, Marthijn; Sciacchitano, Andrea; Scarano, Fulvio

    2018-03-01

    The use of helium-filled soap bubbles (HFSB) as flow tracers for particle image velocimetry (PIV) and particle tracking velocimetry (PTV) to measure the properties of turbulent boundary layers is investigated in the velocity range from 30 to 50 m/s. The experiments correspond to momentum thickness-based Reynolds numbers of 3300 and 5100. A single bubble generator delivers nearly neutrally buoyant HFSB to seed the air flow developing over the flat plate. The HFSB motion analysis is performed by PTV using single-frame multi-exposure recordings. The measurements yield the local velocity and turbulence statistics. Planar two-component-PIV measurements with micron-sized droplets (DEHS) conducted under the same conditions provide reference data for the quantities of interest. In addition, the behavior of air-filled soap bubbles is studied where the effect of non-neutral buoyancy is more pronounced. The mean velocity profiles as well as the turbulent stresses obtained with HFSB are in good agreement with the flow statistics obtained with DEHS particles. The study illustrates that HFSB tracers can be used to determine the mean velocity and the turbulent fluctuations of turbulent boundary layers above a distance of approximately two bubble diameters from the wall. This work broadens the current range of application of HFSB from external aerodynamics of large-scale-PIV experiments towards wall-bounded turbulence.

  12. Nonlinear dynamics of mushy layers induced by external stochastic fluctuations.

    PubMed

    Alexandrov, Dmitri V; Bashkirtseva, Irina A; Ryashko, Lev B

    2018-02-28

    The time-dependent process of directional crystallization in the presence of a mushy layer is considered with allowance for arbitrary fluctuations in the atmospheric temperature and friction velocity. A nonlinear set of mushy layer equations and boundary conditions is solved analytically when the heat and mass fluxes at the boundary between the mushy layer and liquid phase are induced by turbulent motion in the liquid and, as a result, have the corresponding convective form. Namely, the 'solid phase-mushy layer' and 'mushy layer-liquid phase' phase transition boundaries as well as the solid fraction, temperature and concentration (salinity) distributions are found. If the atmospheric temperature and friction velocity are constant, the analytical solution takes a parametric form. In the more common case when they represent arbitrary functions of time, the analytical solution is given by means of the standard Cauchy problem. The deterministic and stochastic behaviour of the phase transition process is analysed on the basis of the obtained analytical solutions. In the case of stochastic fluctuations in the atmospheric temperature and friction velocity, the phase transition interfaces (mushy layer boundaries) move faster than in the deterministic case. A cumulative effect of these noise contributions is revealed as well. In other words, when the atmospheric temperature and friction velocity fluctuate simultaneously due to the influence of different external processes and phenomena, the phase transition boundaries move even faster. This article is part of the theme issue 'From atomistic interfaces to dendritic patterns'.This article is part of the theme issue 'From atomistic interfaces to dendritic patterns'. © 2018 The Author(s).

  13. Fluctuation dynamo and turbulent induction at small Prandtl number.

    PubMed

    Eyink, Gregory L

    2010-10-01

    We study the Lagrangian mechanism of the fluctuation dynamo at zero Prandtl number and infinite magnetic Reynolds number, in the Kazantsev-Kraichnan model of white-noise advection. With a rough velocity field corresponding to a turbulent inertial range, flux freezing holds only in a stochastic sense. We show that field lines arriving to the same point which were initially separated by many resistive lengths are important to the dynamo. Magnetic vectors of the seed field that point parallel to the initial separation vector arrive anticorrelated and produce an "antidynamo" effect. We also study the problem of "magnetic induction" of a spatially uniform seed field. We find no essential distinction between this process and fluctuation dynamo, both producing the same growth rates and small-scale magnetic correlations. In the regime of very rough velocity fields where fluctuation dynamo fails, we obtain the induced magnetic energy spectra. We use these results to evaluate theories proposed for magnetic spectra in laboratory experiments of turbulent induction.

  14. A wind tunnel study on the effects of complex topography on wind turbine performance

    NASA Astrophysics Data System (ADS)

    Howard, Kevin; Hu, Stephen; Chamorro, Leonardo; Guala, Michele

    2012-11-01

    A set of wind tunnel experiments were conducted to study the response of a wind turbine under flow conditions typically observed at the wind farm scale, in complex terrain. A scale model wind turbine was placed in a fully developed turbulent boundary layer flow obtained in the SAFL Wind Tunnel. Experiments focused on the performance of a turbine model, under the effects induced by a second upwind turbine or a by three-dimensional, sinusoidal hill, peaking at the turbine hub height. High frequency measurements of fluctuating streamwise and wall normal velocities were obtained with a X-wire anemometer simultaneously with the rotor angular velocity and the turbine(s) voltage output. Velocity measurements in the wake of the first turbine and of the hill were used to determine the inflow conditions for the downwind test turbine. Turbine performance was inferred by the mean and fluctuating voltage statistics. Specific experiments were devoted to relate the mean voltage to the mean hub velocity, and the fluctuating voltage to the unsteadiness in the rotor kinematics induced by the perturbed (hill or turbine) or unperturbed (boundary layer) large scales of the incoming turbulent flow. Results show that the voltage signal can be used to assess turbine performance in complex flows.

  15. Mesoscale simulations of hydrodynamic squirmer interactions.

    PubMed

    Götze, Ingo O; Gompper, Gerhard

    2010-10-01

    The swimming behavior of self-propelled microorganisms is studied by particle-based mesoscale simulations. The simulation technique includes both hydrodynamics and thermal fluctuations that are both essential for the dynamics of microswimmers. The swimmers are modeled as squirmers, i.e., spherical objects with a prescribed tangential surface velocity, where the focus of thrust generation can be tuned from pushers to pullers. For passive squirmers (colloids), we show that the velocity autocorrelation function agrees quantitatively with the Boussinesq approximation. Single active squirmers show a persistent random-walk behavior, determined by forward motion, lateral diffusion, and orientational fluctuations, in agreement with theoretical predictions. For pairs of squirmers, which are initially swimming in parallel, we find an attraction for pushers and a repulsion for pullers, as expected. The hydrodynamic force between squirmer pairs is calculated as a function of the center-to-center distances d(cm) and is found to be consistent with a logarithmic distance dependence for d(cm) less than about two sphere diameters; here, the force is considerably stronger than expected from the far-field expansion. The dependence of the force strength on the asymmetry of the polar surface velocity is obtained. During the collision process, thermal fluctuations turn out to be very important and to strongly affect the postcollision velocity directions of both squirmers.

  16. Reconstruction of a Broadband Spectrum of Alfvenic Fluctuations

    NASA Technical Reports Server (NTRS)

    Vinas, Adolfo F.; Fuentes, Pablo S. M.; Araneda, Jaime A.; Maneva, Yana G.

    2014-01-01

    Alfvenic fluctuations in the solar wind exhibit a high degree of velocities and magnetic field correlations consistent with Alfven waves propagating away and toward the Sun. Two remarkable properties of these fluctuations are the tendencies to have either positive or negative magnetic helicity (-1 less than or equal to sigma(sub m) less than or equal to +1) associated with either left- or right- topological handedness of the fluctuations and to have a constant magnetic field magnitude. This paper provides, for the first time, a theoretical framework for reconstructing both the magnetic and velocity field fluctuations with a divergence-free magnetic field, with any specified power spectral index and normalized magnetic- and cross-helicity spectrum field fluctuations for any plasma species. The spectrum is constructed in the Fourier domain by imposing two conditions-a divergence-free magnetic field and the preservation of the sense of magnetic helicity in both spaces-as well as using Parseval's theorem for the conservation of energy between configuration and Fourier spaces. Applications to the one-dimensional spatial Alfvenic propagation are presented. The theoretical construction is in agreement with typical time series and power spectra properties observed in the solar wind. The theoretical ideas presented in this spectral reconstruction provide a foundation for more realistic simulations of plasma waves, solar wind turbulence, and the propagation of energetic particles in such fluctuating fields.

  17. Flow noise of an underwater vector sensor embedded in a flexible towed array.

    PubMed

    Korenbaum, Vladimir I; Tagiltsev, Alexander A

    2012-05-01

    The objective of this work is to simulate the flow noise of a vector sensor embedded in a flexible towed array. The mathematical model developed, based on long-wavelength analysis of the inner space of a cylindrical multipole source, predicts the reduction of the flow noise of a vector sensor embedded in an underwater flexible towed array by means of intensimetric processing (cross-spectral density calculation of oscillatory velocity and sound-pressure-sensor responses). It is found experimentally that intensimetric processing results in flow noise reduction by 12-25 dB at mean levels and by 10-30 dB in fluctuations compared to a squared oscillatory velocity channel. The effect of flow noise suppression in the intensimetry channel relative to a squared sound pressure channel is observed, but only for frequencies above the threshold. These suppression values are 10-15 dB at mean noise levels and 3-6 dB in fluctuations. At towing velocities of 1.5-3 ms(-1) and an accumulation time of 98.3 s, the threshold frequency in fluctuations is between 30 and 45 Hz.

  18. Unsteady inflow effects on the wake shed from a high-lift LPT blade subjected to boundary layer laminar separation

    NASA Astrophysics Data System (ADS)

    Satta, Francesca; Ubaldi, Marina; Zunino, Pietro

    2012-04-01

    An experimental investigation on the near and far wake of a cascade of high-lift low-pressure turbine blades subjected to boundary layer separation over the suction side surface has been carried out, under steady and unsteady inflows. Two Reynolds number conditions, representative of take-off/landing and cruise operating conditions of the real engine, have been tested. The effect of upstream wake-boundary layer interaction on the wake shed from the profile has been investigated in a three-blade large-scale linear turbine cascade. The comparison between the wakes shed under steady and unsteady inflows has been performed through the analysis of mean velocity and Reynolds stress components measured at midspan of the central blade by means of a two-component crossed miniature hot-wire probe. The wake development has been analyzed in the region between 2% and 100% of the blade chord from the central blade trailing edge, aligned with the blade exit direction. Wake integral parameters, half-width and maximum velocity defects have been evaluated from the mean velocity distributions to quantify the modifications induced on the vane wake by the upstream wake. Moreover the thicknesses of the two wake shear layers have been considered separately in order to identify the effects of Reynolds number and incoming flow on the wake shape. The self-preserving state of the wake has been looked at, taking into account the different thicknesses of the two shear layers. The evaluation of the power density spectra of the velocity fluctuations allowed the study of the wake unsteady behavior, and the detection of the effects induced by the different operating conditions on the trailing edge vortex shedding.

  19. Turbulent two-dimensional jet flow and its effect on laser beam degradation

    NASA Technical Reports Server (NTRS)

    Catalano, G. D.; Cudahy, G. F.; Vankuren, J. T.; Wright, H. E.

    1980-01-01

    An experiment in which visible wavelength lasers traversed a well-documented two dimensional jet was conducted. Temperature perturbations varied from 0.25 to 1.80 K and velocity fluctuations ranged from 9.2 to 30.8 m/sec. Measured central spot intensities were as low as 18% of the undisturbed beam, depending on jet Mach number, beam position theory and experiment was two percent in terms of far field intensity. To supplement the flow field information, a laser Doppler velocimeter was developed to measure both mean and fluctuating velocities and a photo correlator was used as a signal processor.

  20. Scaling of the velocity fluctuations in turbulent channels up to Reτ=2003

    NASA Astrophysics Data System (ADS)

    Hoyas, Sergio; Jiménez, Javier

    2006-01-01

    A new numerical simulation of a turbulent channel in a large box at Reτ=2003 is described and briefly compared with simulations at lower Reynolds numbers and with experiments. Some of the fluctuation intensities, especially the streamwise velocity, do not scale well in wall units, both near and away from the wall. Spectral analysis traces the near-wall scaling failure to the interaction of the logarithmic layer with the wall. The present statistics can be downloaded from http://torroja.dmt.upm.es/ftp/channels. Further ones will be added to the site as they become available.

  1. Root mean square fluctuation of a weak magnetic field in an infinite medium of homogeneous stationary turbulence.

    NASA Technical Reports Server (NTRS)

    Low, B.-C.

    1972-01-01

    The generation of a magnetic field by statistically homogeneous, stationary velocity turbulence is considered. The generation of rms magnetic fluctuation is explicitly demonstrated in the limit of short turbulence correlation time. It is shown that the fluctuation associated with a growing or stationary mean field grows with time such that the ratio of the fluctuation and the square of the mean field tends to a steady value, which is a monotonically decreasing function of the growth rate of the mean field.

  2. Time-Series Analysis of Supergranule Characterstics at Solar Minimum

    NASA Technical Reports Server (NTRS)

    Williams, Peter E.; Pesnell, W. Dean

    2013-01-01

    Sixty days of Doppler images from the Solar and Heliospheric Observatory (SOHO) / Michelson Doppler Imager (MDI) investigation during the 1996 and 2008 solar minima have been analyzed to show that certain supergranule characteristics (size, size range, and horizontal velocity) exhibit fluctuations of three to five days. Cross-correlating parameters showed a good, positive correlation between supergranulation size and size range, and a moderate, negative correlation between size range and velocity. The size and velocity do exhibit a moderate, negative correlation, but with a small time lag (less than 12 hours). Supergranule sizes during five days of co-temporal data from MDI and the Solar Dynamics Observatory (SDO) / Helioseismic Magnetic Imager (HMI) exhibit similar fluctuations with a high level of correlation between them. This verifies the solar origin of the fluctuations, which cannot be caused by instrumental artifacts according to these observations. Similar fluctuations are also observed in data simulations that model the evolution of the MDI Doppler pattern over a 60-day period. Correlations between the supergranule size and size range time-series derived from the simulated data are similar to those seen in MDI data. A simple toy-model using cumulative, uncorrelated exponential growth and decay patterns at random emergence times produces a time-series similar to the data simulations. The qualitative similarities between the simulated and the observed time-series suggest that the fluctuations arise from stochastic processes occurring within the solar convection zone. This behavior, propagating to surface manifestations of supergranulation, may assist our understanding of magnetic-field-line advection, evolution, and interaction.

  3. Phase Averaged Measurements of the Coherent Structure of a Mach Number 0.6 Jet. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Emami, S.

    1983-01-01

    The existence of a large scale structure in a Mach number 0.6, axisymmetric jet of cold air was proven. In order to further characterize the coherent structure, phase averaged measurements of the axial mass velocity, radial velocity, and the product of the two were made. These measurements yield information about the percent of the total fluctuations contained in the coherent structure. These measured values were compared to the total fluctuation levels for each quantity and the result expressed as a percent of the total fluctuation level contained in the organized structure at a given frequency. These measurements were performed for five frequencies (St=0.16, 0.32, 0.474, 0.95, and 1.26). All of the phase averaged measurements required that the jet be artificially excited.

  4. Inhibition of crossed-beam energy transfer induced by expansion-velocity fluctuations

    NASA Astrophysics Data System (ADS)

    Neuville, C.; Glize, K.; Loiseau, P.; Masson-Laborde, P.-E.; Debayle, A.; Casanova, M.; Baccou, C.; Labaune, C.; Depierreux, S.

    2018-04-01

    Crossed-beam energy transfer between three laser beams has been experimentally investigated in a flowing plasma. Time-evolution measurements of the amplification of a first beam by a second beam highlighted the inhibition of energy transfer by hydrodynamic modifications of the plasma in the crossing volume due to the propagation of a third beam. According to 3D simulations and an analytical model, it appears that the long-wavelength expansion-velocity fluctuations produced by the propagation of the third beam in the crossing volume are responsible for this mitigation of energy transfer. This effect could be a cause of the over-estimation of the amount of the transferred energy in indirect-drive inertial confinement fusion experiments. Besides, tuning such long-wavelength fluctuations could be a way to completely inhibit CBET at the laser entrance holes of hohlraums.

  5. Hydraulic and Thermal Response to Intermittent Pumping in Unconfined Alluvial Aquifers along a Regulated Stream

    NASA Astrophysics Data System (ADS)

    Maharjan, Madan

    Groundwater response to stream stage fluctuations was studied using a year-long time series of stream stage and well heads in Glen Dale and New Martinsville, WV. Stream stage fluctuations exerted primary control over groundwater levels, especially during high flows. The location and operation of river pools created by dams alter groundwater flow paths and velocities. Aquifers are more prone to surface water infiltration in the upper reaches of pools than in lower reaches. Aquifer diffusivity is heterogeneous within and between the two sites. Temperature fluctuations were observed for 2.5 years in 14 wells in three alluvial aquifers. Temperature signals have 2 components corresponding to pump-on and pump-off periods. Both components vary seasonality at different magnitudes. While pump-off temperatures fluctuated up to 3.8o C seasonally, short-term temperature shifts induced by turning the pump on were 0.2 to 2.5o C. Pumping-induced temperature shifts were highest in magnitude in summer and winter. Groundwater temperature lagged behind that of surface water by approximately six months. Pumping induced and seasonal temperature shifts were spatially and temporally complex but indicate stream exfiltration is a major driver for a number of these wells. Numerical simulation of aquifer response to pumping show different conditions before and after well-field development. During pre-development, the stream was losing at high flow and gaining at low flow. During post-development, however, the stream was losing at high flow and spatially variable at low flow. While bank storage gained only during high stage, stream exfiltration occurred year-round. Pumping induced stream exfiltration by creating an extensive cone of depression beneath the stream in both upstream and downstream directions. Spatially and temporally variable groundwater-surface water interaction next to a regulated stream were studied using analytical and numerical models, based on field observations. Seasonality plays an important role in these interactions, but human activity may also alter its intensity.

  6. Hydro-sliding and the Springtime Dynamical Evolution of Kennicott Glacier, Alaska

    NASA Astrophysics Data System (ADS)

    Armstrong, W. H., Jr.; Anderson, R. S.

    2017-12-01

    Glacier basal motion is a poorly understood aspect of glacier mechanics that is responsible for the majority of ice flux on fast-flowing glaciers, enables rapid changes in glacier motion, and provides the means by which glaciers shape alpine landscapes. We collect hydrometerologic data and GPS-derived ice surface motion to probe the link between subglacial water pressure and the evolution of glacier velocity on Kennicott Glacier, Alaska. We find a chaotic timeseries of >50 m fill-and-drain sequences on the well-connected ice-marginal Donoho Falls Lake. Glacier velocity in the down-glacier reach responds sensitively to lake stage, with high amplitude diurnal velocity fluctuations during high or rising stage. The timing of velocity peaks precedes peak stage by 2-3 hours, and synchronously shifts earlier in the day throughout our observation period. We find the up-glacier station appears to first speed up in response to longitudinal coupling with accelerating down-glacier ice before responding to local variations in basal traction. We find the transition to responding to local basal conditions results in the glacier behaving more uniformly, with similar magnitude diurnal velocity fluctuations, synchronous timing of velocity extrema across the 10 km study reach, and steadier longitudinal strain rates.

  7. Some experiments in swirling flows: Detailed velocity measurements of a vortex breakdown using a laser Doppler anemometer. Ph.D. Thesis - Cornell Univ. Final Report

    NASA Technical Reports Server (NTRS)

    Faler, J. H.

    1976-01-01

    The results of an experimental study of spiraling flows in a slightly diverging, circular duct are reported. Seven types of flow disturbances were observed. In addition to the spiral and axisymmetric vortex breakdowns and the double helix mode, four other forms were identified and are reported. The type and axial location of the disturbance depended on the Reynolds and circulation numbers of the flow. Detailed velocity measurements were made by using a laser Doppler anemometer. Measurements made far upstream of any disturbance showed that the introduction of swirl resulted in the formation of a high axial velocity jet centered around the vortex center. A mapping of the velocity field of a so-called axisymmetric breakdown, formed at a Reynolds number of 2560, revealed that the recirculation zone is a two-celled structure, with four stagnation points on the vortex axis marking the axial extremes of the concentric cells. The dominant feature of the flow inside the bubble was the strong, periodic velocity fluctuations. Existing theoretical models do not predict the two-celled structure and the temporal velocity fluctuations that were observed.

  8. Velocity- and pointing-error measurements of a 300 000-r/min self-bearing permanent-magnet motor for optical applications

    NASA Astrophysics Data System (ADS)

    Breitkopf, Sven; Lilienfein, Nikolai; Achtnich, Timon; Zwyssig, Christof; Tünnermann, Andreas; Pupeza, Ioachim; Limpert, Jens

    2018-06-01

    Compact, ultra-high-speed self-bearing permanent-magnet motors enable a wide scope of applications including an increasing number of optical ones. For implementation in an optical setup, the rotors have to satisfy high demands regarding their velocity and pointing errors. Only a restricted number of measurements of these parameters exist and only at relatively low velocities. This manuscript presents the measurement of the velocity and pointing errors at rotation frequencies up to 5 kHz. The acquired data allow us to identify the rotor drive as the main source of velocity variations with fast fluctuations of up to 3.4 ns (RMS) and slow drifts of 23 ns (RMS) over ˜120 revolutions at 5 kHz in vacuum. At the same rotation frequency, the pointing fluctuated by 12 μrad (RMS) and 33 μrad (peak-to-peak) over ˜10 000 round trips. To our best knowledge, this states the first measurement of velocity and pointing errors at multi-kHz rotation frequencies and will allow potential adopters to evaluate the feasibility of such rotor drives for their application.

  9. Simultaneous velocity and concentration measurements in the near field of a turbulent low-pressure jet by digital particle image velocimetry-planar laser-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Borg, A.; Bolinder, J.; Fuchs, L.

    The main purpose of this work is to develop a method for simultaneous measurement of velocity and passive scalar concentration by means of digital particle image velocimetry and planar laser-induced fluorescence. Details of the implementation of the method are given, and the technique is applied to measurements of concentration and velocity in the centre-plane of a liquid jet with a Reynolds number of 6,000. The measurements are compared with large eddy simulations. Mean velocities and concentrations, fluctuating velocities and concentrations, and correlation between fluctuating velocities and concentrations are analysed for the first six diameters downstream of the jet exit. The general agreement between measured and simulated results was found to be good, in particular for mean quantities. Mean profiles are also found to be in good agreement with other experimental work on jets reported in the literature. The ``whole-plane'' measurement method was found to be very useful for detailed comparisons of turbulent statistics with simulated data. The inadequacy of models for turbulent mass transport based on the standard gradient diffusion concept is demonstrated through the experimental data.

  10. Wind-Tunnel Experiments for Gas Dispersion in an Atmospheric Boundary Layer with Large-Scale Turbulent Motion

    NASA Astrophysics Data System (ADS)

    Michioka, Takenobu; Sato, Ayumu; Sada, Koichi

    2011-10-01

    Large-scale turbulent motions enhancing horizontal gas spread in an atmospheric boundary layer are simulated in a wind-tunnel experiment. The large-scale turbulent motions can be generated using an active grid installed at the front of the test section in the wind tunnel, when appropriate parameters for the angular deflection and the rotation speed are chosen. The power spectra of vertical velocity fluctuations are unchanged with and without the active grid because they are strongly affected by the surface. The power spectra of both streamwise and lateral velocity fluctuations with the active grid increase in the low frequency region, and are closer to the empirical relations inferred from field observations. The large-scale turbulent motions do not affect the Reynolds shear stress, but change the balance of the processes involved. The relative contributions of ejections to sweeps are suppressed by large-scale turbulent motions, indicating that the motions behave as sweep events. The lateral gas spread is enhanced by the lateral large-scale turbulent motions generated by the active grid. The large-scale motions, however, do not affect the vertical velocity fluctuations near the surface, resulting in their having a minimal effect on the vertical gas spread. The peak concentration normalized using the root-mean-squared value of concentration fluctuation is remarkably constant over most regions of the plume irrespective of the operation of the active grid.

  11. The effect of neutrally buoyant finite-size particles on channel flows in the laminar-turbulent transition regime

    NASA Astrophysics Data System (ADS)

    Loisel, Vincent; Abbas, Micheline; Masbernat, Olivier; Climent, Eric

    2013-12-01

    The presence of finite-size particles in a channel flow close to the laminar-turbulent transition is simulated with the Force Coupling Method which allows two-way coupling with the flow dynamics. Spherical particles with channel height-to-particle diameter ratio of 16 are initially randomly seeded in a fluctuating flow above the critical Reynolds number corresponding to single phase flow relaminarization. When steady-state is reached, the particle volume fraction is homogeneously distributed in the channel cross-section (ϕ ≅ 5%) except in the near-wall region where it is larger due to inertia-driven migration. Turbulence statistics (intensity of velocity fluctuations, small-scale vortical structures, wall shear stress) calculated in the fully coupled two-phase flow simulations are compared to single-phase flow data in the transition regime. It is observed that particles increase the transverse r.m.s. flow velocity fluctuations and they break down the flow coherent structures into smaller, more numerous and sustained eddies, preventing the flow to relaminarize at the single-phase critical Reynolds number. When the Reynolds number is further decreased and the suspension flow becomes laminar, the wall friction coefficient recovers the evolution of the laminar single-phase law provided that the suspension viscosity is used in the Reynolds number definition. The residual velocity fluctuations in the suspension correspond to a regime of particulate shear-induced agitation.

  12. Inflow measurement made with a laser velocimeter on a helicopter model in forward flight. Volume 5: Tapered planform blades at an advance ratio of 0.23

    NASA Technical Reports Server (NTRS)

    Althoff, Susan L.; Elliott, Joe W.; Sailey, Richard H.

    1988-01-01

    An experimental investigation was conducted in the 14- by 22-Foot Subsonic tunnel at NASA Langley Research Center to measure the inflow into a scale model helicopter rotor in forward flight (mu sub inf = 0.23). The measurements were made with a two component Laser Velocimeter (LV) one chord above the plane formed by the path of the blade tips. A conditional sampling technique was employed to determine the position of the rotor at the time that each velocity measurement was made so that the azimuthal fluctuations in velocity could be determined. Measurements were made at a total of 168 separate locations in order to clearly define the inflow character. This data is presented without analysis. In order to increase the availability of the resulting data, both the mean and azimuthally dependenet values are included as part of this report on two 5.25 inch floppy disks in Microsoft Corporation MS-DOS format.

  13. Localised burst reconstruction from space-time PODs in a turbulent channel

    NASA Astrophysics Data System (ADS)

    Garcia-Gutierrez, Adrian; Jimenez, Javier

    2017-11-01

    The traditional proper orthogonal decomposition of the turbulent velocity fluctuations in a channel is extended to time under the assumption that the attractor is statistically stationary and can be treated as periodic for long-enough times. The objective is to extract space- and time-localised eddies that optimally represent the kinetic energy (and two-event correlation) of the flow. Using time-resolved data of a small-box simulation at Reτ = 1880 , minimal for y / h 0.25 , PODs are computed from the two-point spectral-density tensor Φ(kx ,kz , y ,y' , ω) . They are Fourier components in x, z and time, and depend on y and on the temporal frequency ω, or, equivalently, on the convection velocity c = ω /kx . Although the latter depends on y, a spatially and temporally localised `burst' can be synthesised by adding a range of PODs with specific phases. The results are localised bursts that are amplified and tilted, in a time-periodic version of Orr-like behaviour. Funded by the ERC COTURB project.

  14. Optical Correlation Techniques In Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Schatzel, K.; Schulz-DuBois, E. O.; Vehrenkamp, R.

    1981-05-01

    Three flow measurement techniques make use of fast digital correlators. (1) Most widely spread is photon correlation velocimetry using crossed laser beams and detecting Doppler shifted light scattered by small particles in the flow. Depending on the processing of the photon correlogram, this technique yields mean velocity, turbulence level, or even the detailed probability distribution of one velocity component. An improved data processing scheme is demonstrated on laminar vortex flow in a curved channel. (2) Rate correlation based upon threshold crossings of a high pass filtered laser Doppler signal can he used to obtain velocity correlation functions. The most powerful setup developed in our laboratory uses a phase locked loop type tracker and a multibit correlator to analyse time-dependent Taylor vortex flow. With two optical systems and trackers, crosscorrelation functions reveal phase relations between different vortices. (3) Making use of refractive index fluctuations (e. g. in two phase flows) instead of scattering particles, interferometry with bidirectional fringe counting and digital correlation and probability analysis constitute a new quantitative technique related to classical Schlieren methods. Measurements on a mixing flow of heated and cold air contribute new ideas to the theory of turbulent random phase screens.

  15. Optical correlation techniques in fluid dynamics

    NASA Astrophysics Data System (ADS)

    Schätzel, K.; Schulz-Dubois, E. O.; Vehrenkamp, R.

    1981-04-01

    Three flow measurement techniques make use of fast digital correlators. The most widely spread is photon correlation velocimetry using crossed laser beams, and detecting Doppler shifted light scattered by small particles in the flow. Depending on the processing of the photon correlation output, this technique yields mean velocity, turbulence level, and even the detailed probability distribution of one velocity component. An improved data processing scheme is demonstrated on laminar vortex flow in a curved channel. In the second method, rate correlation based upon threshold crossings of a high pass filtered laser Doppler signal can be used to obtain velocity correlation functions. The most powerful set-up developed in our laboratory uses a phase locked loop type tracker and a multibit correlator to analyze time-dependent Taylor vortex flow. With two optical systems and trackers, cross-correlation functions reveal phase relations between different vortices. The last method makes use of refractive index fluctuations (eg in two phase flows) instead of scattering particles. Interferometry with bidirectional counting, and digital correlation and probability analysis, constitutes a new quantitative technique related to classical Schlieren methods. Measurements on a mixing flow of heated and cold air contribute new ideas to the theory of turbulent random phase screens.

  16. Self-similarity in high Atwood number Rayleigh-Taylor experiments

    NASA Astrophysics Data System (ADS)

    Mikhaeil, Mark; Suchandra, Prasoon; Pathikonda, Gokul; Ranjan, Devesh

    2017-11-01

    Self-similarity is a critical concept in turbulent and mixing flows. In the Rayleigh-Taylor instability, theory and simulations have shown that the flow exhibits properties of self-similarity as the mixing Reynolds number exceeds 20000 and the flow enters the turbulent regime. Here, we present results from the first large Atwood number (0.7) Rayleigh-Taylor experimental campaign for mixing Reynolds number beyond 20000 in an effort to characterize the self-similar nature of the instability. Experiments are performed in a statistically steady gas tunnel facility, allowing for the evaluation of turbulence statistics. A visualization diagnostic is used to study the evolution of the mixing width as the instability grows. This allows for computation of the instability growth rate. For the first time in such a facility, stereoscopic particle image velocimetry is used to resolve three-component velocity information in a plane. Velocity means, fluctuations, and correlations are considered as well as their appropriate scaling. Probability density functions of velocity fields, energy spectra, and higher-order statistics are also presented. The energy budget of the flow is described, including the ratio of the kinetic energy to the released potential energy. This work was supported by the DOE-NNSA SSAA Grant DE-NA0002922.

  17. Tomographic reconstruction of atmospheric turbulence with the use of time-dependent stochastic inversion.

    PubMed

    Vecherin, Sergey N; Ostashev, Vladimir E; Ziemann, A; Wilson, D Keith; Arnold, K; Barth, M

    2007-09-01

    Acoustic travel-time tomography allows one to reconstruct temperature and wind velocity fields in the atmosphere. In a recently published paper [S. Vecherin et al., J. Acoust. Soc. Am. 119, 2579 (2006)], a time-dependent stochastic inversion (TDSI) was developed for the reconstruction of these fields from travel times of sound propagation between sources and receivers in a tomography array. TDSI accounts for the correlation of temperature and wind velocity fluctuations both in space and time and therefore yields more accurate reconstruction of these fields in comparison with algebraic techniques and regular stochastic inversion. To use TDSI, one needs to estimate spatial-temporal covariance functions of temperature and wind velocity fluctuations. In this paper, these spatial-temporal covariance functions are derived for locally frozen turbulence which is a more general concept than a widely used hypothesis of frozen turbulence. The developed theory is applied to reconstruction of temperature and wind velocity fields in the acoustic tomography experiment carried out by University of Leipzig, Germany. The reconstructed temperature and velocity fields are presented and errors in reconstruction of these fields are studied.

  18. Theory of slightly fluctuating ratchets

    NASA Astrophysics Data System (ADS)

    Rozenbaum, V. M.; Shapochkina, I. V.; Lin, S. H.; Trakhtenberg, L. I.

    2017-04-01

    We consider a Brownian particle moving in a slightly fluctuating potential. Using the perturbation theory on small potential fluctuations, we derive a general analytical expression for the average particle velocity valid for both flashing and rocking ratchets with arbitrary, stochastic or deterministic, time dependence of potential energy fluctuations. The result is determined by the Green's function for diffusion in the time-independent part of the potential and by the features of correlations in the fluctuating part of the potential. The generality of the result allows describing complex ratchet systems with competing characteristic times; these systems are exemplified by the model of a Brownian photomotor with relaxation processes of finite duration.

  19. Vortex boundary-layer interactions

    NASA Technical Reports Server (NTRS)

    Bradshaw, P.

    1986-01-01

    Parametric studies to identify a vortex generator were completed. Data acquisition in the first chosen configuration, in which a longitudinal vortex pair generated by an isolated delta wing starts to merge with a turbulent boundary layer on a flat plate fairly close to the leading edge is nearly completed. Work on a delta-wing/flat-plate combination, consisting of a flow visualization and hot wire measurements taken with a computer controlled traverse gear and data logging system were completed. Data taking and analysis have continued, and sample results for another cross stream plane are presented. Available data include all mean velocity components, second order mean products of turbulent fluctuations, and third order mean products. Implementation of a faster data logging system was accomplished.

  20. The second-order theory of electromagnetic hot ion beam instabilities. [in interplanetary magnetic field

    NASA Technical Reports Server (NTRS)

    Gary, S. P.; Tokar, R. L.

    1985-01-01

    The present investigation is concerned with the application of a second-order theory for electromagnetic instabilities in a collisionless plasma to two modes which resonate with hot ion beams. The application of the theory is strictly limited to the linear growth phase. However, the application of the theory may be extended to obtain a description of the beam at postsaturation if the wave-beam resonance is sufficiently broad in velocity space. Under the considered limitations, it is shown that, as in the cold beam case, the fluctuating fields do not gain appreciable momentum and that the primary exchange of momentum is between the beam and main component.

  1. Hydrodynamically Coupled Brownian Dynamics: A coarse-grain particle-based Brownian dynamics technique with hydrodynamic interactions for modeling self-developing flow of polymer solutions

    NASA Astrophysics Data System (ADS)

    Ahuja, V. R.; van der Gucht, J.; Briels, W. J.

    2018-01-01

    We present a novel coarse-grain particle-based simulation technique for modeling self-developing flow of dilute and semi-dilute polymer solutions. The central idea in this paper is the two-way coupling between a mesoscopic polymer model and a phenomenological fluid model. As our polymer model, we choose Responsive Particle Dynamics (RaPiD), a Brownian dynamics method, which formulates the so-called "conservative" and "transient" pair-potentials through which the polymers interact besides experiencing random forces in accordance with the fluctuation dissipation theorem. In addition to these interactions, our polymer blobs are also influenced by the background solvent velocity field, which we calculate by solving the Navier-Stokes equation discretized on a moving grid of fluid blobs using the Smoothed Particle Hydrodynamics (SPH) technique. While the polymers experience this frictional force opposing their motion relative to the background flow field, our fluid blobs also in turn are influenced by the motion of the polymers through an interaction term. This makes our technique a two-way coupling algorithm. We have constructed this interaction term in such a way that momentum is conserved locally, thereby preserving long range hydrodynamics. Furthermore, we have derived pairwise fluctuation terms for the velocities of the fluid blobs using the Fokker-Planck equation, which have been alternatively derived using the General Equation for the Non-Equilibrium Reversible-Irreversible Coupling (GENERIC) approach in Smoothed Dissipative Particle Dynamics (SDPD) literature. These velocity fluctuations for the fluid may be incorporated into the velocity updates for our fluid blobs to obtain a thermodynamically consistent distribution of velocities. In cases where these fluctuations are insignificant, however, these additional terms may well be dropped out as they are in a standard SPH simulation. We have applied our technique to study the rheology of two different concentrations of our model linear polymer solutions. The results show that the polymers and the fluid are coupled very well with each other, showing no lag between their velocities. Furthermore, our results show non-Newtonian shear thinning and the characteristic flattening of the Poiseuille flow profile typically observed for polymer solutions.

  2. Hydrodynamically Coupled Brownian Dynamics: A coarse-grain particle-based Brownian dynamics technique with hydrodynamic interactions for modeling self-developing flow of polymer solutions.

    PubMed

    Ahuja, V R; van der Gucht, J; Briels, W J

    2018-01-21

    We present a novel coarse-grain particle-based simulation technique for modeling self-developing flow of dilute and semi-dilute polymer solutions. The central idea in this paper is the two-way coupling between a mesoscopic polymer model and a phenomenological fluid model. As our polymer model, we choose Responsive Particle Dynamics (RaPiD), a Brownian dynamics method, which formulates the so-called "conservative" and "transient" pair-potentials through which the polymers interact besides experiencing random forces in accordance with the fluctuation dissipation theorem. In addition to these interactions, our polymer blobs are also influenced by the background solvent velocity field, which we calculate by solving the Navier-Stokes equation discretized on a moving grid of fluid blobs using the Smoothed Particle Hydrodynamics (SPH) technique. While the polymers experience this frictional force opposing their motion relative to the background flow field, our fluid blobs also in turn are influenced by the motion of the polymers through an interaction term. This makes our technique a two-way coupling algorithm. We have constructed this interaction term in such a way that momentum is conserved locally, thereby preserving long range hydrodynamics. Furthermore, we have derived pairwise fluctuation terms for the velocities of the fluid blobs using the Fokker-Planck equation, which have been alternatively derived using the General Equation for the Non-Equilibrium Reversible-Irreversible Coupling (GENERIC) approach in Smoothed Dissipative Particle Dynamics (SDPD) literature. These velocity fluctuations for the fluid may be incorporated into the velocity updates for our fluid blobs to obtain a thermodynamically consistent distribution of velocities. In cases where these fluctuations are insignificant, however, these additional terms may well be dropped out as they are in a standard SPH simulation. We have applied our technique to study the rheology of two different concentrations of our model linear polymer solutions. The results show that the polymers and the fluid are coupled very well with each other, showing no lag between their velocities. Furthermore, our results show non-Newtonian shear thinning and the characteristic flattening of the Poiseuille flow profile typically observed for polymer solutions.

  3. Effects of sedimenting particles on the turbulence structure in a horizontal channel flow

    NASA Astrophysics Data System (ADS)

    Tay, Godwin F. K.; Kuhn, David C. S.; Tachie, Mark F.

    2015-02-01

    This work presents the results of experiments conducted in a horizontal channel to characterize low Reynolds number turbulent flows in the presence of small solid particles. The particle diameter relative to the integral length scale, dp/Λx, is approximately 0.02. Particles and fluid turbulence characteristics are measured for three average solid volume fractions of approximately ϕv = 2.0 × 10-4, 4.0 × 10-4, and 8.0 × 10-4 under conditions where the particle number density is evolving due to deposition. The results indicate that the mean slip between particles and the fluid is important only close to the wall. Away from the wall, the particles and unladen fluid mean velocities are similar. Differences between particles and the unladen fluid statistics are more pronounced in the wall-normal velocity fluctuations than the streamwise velocity fluctuations and Reynolds shear stress due to the stronger effect of the gravitational force in the wall-normal direction. The fluid turbulent intensities show no dependency on loading, but the peak Reynolds shear stress is significantly reduced. A quadrant decomposition of the Reynolds shear stress revealed a corresponding reduction in the ejections and sweeps for the laden flow in comparison with the unladen flow. Swirling strength and vorticity root-mean-square fluctuations decayed due to the damping effect of particles. The influence of particles on the turbulence structure was examined using two-point correlations of the velocity fluctuations and swirling strength, where it was demonstrated that the wall structures are attached eddies which are more extensive (much larger) in the particle-laden flow compared to the unladen flow.

  4. Don’t Rock the Boat: How Antiphase Crew Coordination Affects Rowing

    PubMed Central

    de Brouwer, Anouk J.; de Poel, Harjo J.; Hofmijster, Mathijs J.

    2013-01-01

    It is generally accepted that crew rowing requires perfect synchronization between the movements of the rowers. However, a long-standing and somewhat counterintuitive idea is that out-of-phase crew rowing might have benefits over in-phase (i.e., synchronous) rowing. In synchronous rowing, 5 to 6% of the power produced by the rower(s) is lost to velocity fluctuations of the shell within each rowing cycle. Theoretically, a possible way for crews to increase average boat velocity is to reduce these fluctuations by rowing in antiphase coordination, a strategy in which rowers perfectly alternate their movements. On the other hand, the framework of coordination dynamics explicates that antiphase coordination is less stable than in-phase coordination, which may impede performance gains. Therefore, we compared antiphase to in-phase crew rowing performance in an ergometer experiment. Nine pairs of rowers performed a two-minute maximum effort in-phase and antiphase trial at 36 strokes min−1 on two coupled free-floating ergometers that allowed for power losses to velocity fluctuations. Rower and ergometer kinetics and kinematics were measured during the trials. All nine pairs easily acquired antiphase rowing during the warm-up, while one pair’s coordination briefly switched to in-phase during the maximum effort trial. Although antiphase interpersonal coordination was indeed less accurate and more variable, power production was not negatively affected. Importantly, in antiphase rowing the decreased power loss to velocity fluctuations resulted in more useful power being transferred to the ergometer flywheels. These results imply that antiphase rowing may indeed improve performance, even without any experience with antiphase technique. Furthermore, it demonstrates that although perfectly synchronous coordination may be the most stable, it is not necessarily equated with the most efficient or optimal performance. PMID:23383024

  5. Don't rock the boat: how antiphase crew coordination affects rowing.

    PubMed

    de Brouwer, Anouk J; de Poel, Harjo J; Hofmijster, Mathijs J

    2013-01-01

    It is generally accepted that crew rowing requires perfect synchronization between the movements of the rowers. However, a long-standing and somewhat counterintuitive idea is that out-of-phase crew rowing might have benefits over in-phase (i.e., synchronous) rowing. In synchronous rowing, 5 to 6% of the power produced by the rower(s) is lost to velocity fluctuations of the shell within each rowing cycle. Theoretically, a possible way for crews to increase average boat velocity is to reduce these fluctuations by rowing in antiphase coordination, a strategy in which rowers perfectly alternate their movements. On the other hand, the framework of coordination dynamics explicates that antiphase coordination is less stable than in-phase coordination, which may impede performance gains. Therefore, we compared antiphase to in-phase crew rowing performance in an ergometer experiment. Nine pairs of rowers performed a two-minute maximum effort in-phase and antiphase trial at 36 strokes min(-1) on two coupled free-floating ergometers that allowed for power losses to velocity fluctuations. Rower and ergometer kinetics and kinematics were measured during the trials. All nine pairs easily acquired antiphase rowing during the warm-up, while one pair's coordination briefly switched to in-phase during the maximum effort trial. Although antiphase interpersonal coordination was indeed less accurate and more variable, power production was not negatively affected. Importantly, in antiphase rowing the decreased power loss to velocity fluctuations resulted in more useful power being transferred to the ergometer flywheels. These results imply that antiphase rowing may indeed improve performance, even without any experience with antiphase technique. Furthermore, it demonstrates that although perfectly synchronous coordination may be the most stable, it is not necessarily equated with the most efficient or optimal performance.

  6. H-mode transitions and limit cycle oscillations from mean field transport equations

    DOE PAGES

    Staebler, Gary M.; Groebner, Richard J.

    2014-11-28

    The mean field toroidal and parallel momentum transport equations will be shown to admit both onestep transitions to suppressed transport (L/H) and limit cycle oscillations (LCO). Both types of transitions are driven by the suppression of turbulence by the mean field ExB velocity shear. Using experimental data to evaluate the coefficients of a reduced transport model, the observed frequency of the LCO can be matched. The increase in the H-mode power threshold above and below a minimum density agrees with the trends in the model. Both leading and lagging phase relations between the turbulent density fluctuation amplitude and the ExBmore » velocity shear can occur depending on the evolution of the linear growth rate of the turbulence. As a result, the transport solutions match the initial phase of the L/H transition where the poloidal and ExB velocities are observed to change, and the density fluctuations drop, faster than the diamagnetic velocity.« less

  7. Obtaining phase velocity of turbulent boundary layer pressure fluctuations at high subsonic Mach number from wind tunnel data affected by strong background noise

    NASA Astrophysics Data System (ADS)

    Haxter, Stefan; Brouwer, Jens; Sesterhenn, Jörn; Spehr, Carsten

    2017-08-01

    Boundary layer measurements at high subsonic Mach number are evaluated in order to obtain the dominant phase velocities of boundary layer pressure fluctuations. The measurements were performed in a transonic wind tunnel which had a very strong background noise. The phase velocity was taken from phase inclination and from the convective peak in one- and two-dimensional wavenumber spectra. An approach was introduced to remove the acoustic noise from the data by applying a method based on CLEAN-SC on the two-dimensional spectra, thereby increasing the frequency range where information about the boundary layer was retrievable. A comparison with prediction models showed some discrepancies in the low-frequency range. Therefore, pressure data from a DNS calculation was used to substantiate the results of the analysis in this frequency range. Using the measured data, the DNS results and a review of the models used for comparison it was found that the phase velocity decreases at low frequencies.

  8. Turbulence Measurements of Rectangular Nozzles with Bevel

    NASA Technical Reports Server (NTRS)

    Bridges, James; Wernet, Mark P.

    2015-01-01

    This paper covers particle image velocimetry measurements of a family of rectangular nozzles with aspect ratios 2, 4, and 8, in the high subsonic flow regime. Far-field acoustic results, presented previously, showed that increasing aspect ratios increased the high frequency noise, especially directed in the polar plane containing the minor axis of the nozzle. The measurements presented here have important implications in the modeling of turbulent sources for acoustic analogy theories. While the nonaxisymmetric mean flow from the rectangular nozzles can be studied reliably using computational solutions, the nonaxisymmetry of the turbulent fluctuations, particularly at the level of velocity components, cannot; only measurements such as these can determine the impact of nozzle geometry on acoustic source anisotropy. Additional nozzles were constructed that extended the wide lip on one side of these nozzles to form beveled nozzles. The paper first documents the velocity fields, mean and variance, from the round, rectangular, and beveled rectangular nozzles at high subsonic speeds. A second section introduces measures of the isotropy of the turbulence, such as component ratios and lengthscales, first by showing them for a round jet and then for the rectangular nozzles. From these measures the source models of acoustic analogy codes can be judged or modified to account for these anisotropies.

  9. Adiabatic elimination of inertia of the stochastic microswimmer driven by α -stable noise

    NASA Astrophysics Data System (ADS)

    Noetel, Joerg; Sokolov, Igor M.; Schimansky-Geier, Lutz

    2017-10-01

    We consider a microswimmer that moves in two dimensions at a constant speed and changes the direction of its motion due to a torque consisting of a constant and a fluctuating component. The latter will be modeled by a symmetric Lévy-stable (α -stable) noise. The purpose is to develop a kinetic approach to eliminate the angular component of the dynamics to find a coarse-grained description in the coordinate space. By defining the joint probability density function of the position and of the orientation of the particle through the Fokker-Planck equation, we derive transport equations for the position-dependent marginal density, the particle's mean velocity, and the velocity's variance. At time scales larger than the relaxation time of the torque τϕ, the two higher moments follow the marginal density and can be adiabatically eliminated. As a result, a closed equation for the marginal density follows. This equation, which gives a coarse-grained description of the microswimmer's positions at time scales t ≫τϕ , is a diffusion equation with a constant diffusion coefficient depending on the properties of the noise. Hence, the long-time dynamics of a microswimmer can be described as a normal, diffusive, Brownian motion with Gaussian increments.

  10. Adiabatic elimination of inertia of the stochastic microswimmer driven by α-stable noise.

    PubMed

    Noetel, Joerg; Sokolov, Igor M; Schimansky-Geier, Lutz

    2017-10-01

    We consider a microswimmer that moves in two dimensions at a constant speed and changes the direction of its motion due to a torque consisting of a constant and a fluctuating component. The latter will be modeled by a symmetric Lévy-stable (α-stable) noise. The purpose is to develop a kinetic approach to eliminate the angular component of the dynamics to find a coarse-grained description in the coordinate space. By defining the joint probability density function of the position and of the orientation of the particle through the Fokker-Planck equation, we derive transport equations for the position-dependent marginal density, the particle's mean velocity, and the velocity's variance. At time scales larger than the relaxation time of the torque τ_{ϕ}, the two higher moments follow the marginal density and can be adiabatically eliminated. As a result, a closed equation for the marginal density follows. This equation, which gives a coarse-grained description of the microswimmer's positions at time scales t≫τ_{ϕ}, is a diffusion equation with a constant diffusion coefficient depending on the properties of the noise. Hence, the long-time dynamics of a microswimmer can be described as a normal, diffusive, Brownian motion with Gaussian increments.

  11. Microelectrokinetic turbulence in microfluidics at low Reynolds number.

    PubMed

    Wang, Guiren; Yang, Fang; Zhao, Wei

    2016-01-01

    There is commonly no turbulence in microfluidics, and the flows are believed to be either laminar or chaotic, since Reynolds number (Re) in microflows is usually on the order of unity or lower. However, we recently demonstrated that it is possible to achieve turbulence with low Re (based on the measured flow velocity and the width of the channel entrance) when a pressure-driven flow is electrokinetically forced in a quasi T-microchannel. To be able to measure high frequency velocity fluctuations in microchannels, a velocimeter with submicrometer spatial resolution and microsecond temporal resolution, called a laser-induced fluorescence photobleaching anemometer, is developed. Here we characterize the microelectrokinetic turbulence and observe some typical and important features of high Re flows, such as Kolmogorov -5/3 spectrum of velocity fluctuation, which usually can be realized only at very high Re in macroturbulent flows.

  12. Study on Combustion Oscillation of Premixed Flame with Pilot Fuel at Elevated Pressures

    NASA Astrophysics Data System (ADS)

    Ohtsuka, Masaya; Yoshida, Shohei; Hirata, Yoshitaka; Kobayashi, Nariyoshi

    Acoustically-coupled combustion oscillation is studied for premixed flame with pilot fuel to be used in gas turbine combustors. Premixed gas is passed through swirl vanes and burnt with the centrally injected pilot fuel. The dependencies of pressure, fuel to air ratio, premixed fuel rate, inlet velocity and air temperature on the combustion oscillation are investigated. Two kinds of oscillation modes of ˜100Hz and ˜350Hz are activated according to inlet velocities. Fluctuating pressures are amplified when the premixed fuel rate is over ˜80% at elevated pressures. The fluctuating pressure peak moves to a higher premixed fuel ratio region with increased pressure or fuel to air ratio for the Helmholz type mode. Combustion oscillation occurs when the pilot fuel velocity is changed proportionally with the flame length.

  13. Experimental evaluation of fluctuating density and radiated noise from a high temperature jet

    NASA Technical Reports Server (NTRS)

    Massier, P. F.; Parthasarathy, S. P.; Cuffel, R. F.

    1973-01-01

    An experimental investigation has been conducted to characterize the fluctuating density within a high-temperature (1100 K) subsonic jet and to characterize by the noise radiated to the surroundings. Cross correlations obtained by introducing time delay to the signals detected from spatially separated crossed laser beams set up as a Schlieren system were used to determine radial and axial distributions of the convection velocity of the moving noise sources (eddies). In addition, the autocorrelation of the fluctuating density was evaluated in the moving frame of reference of the eddies. Also, the autocorrelation of the radiated noise in the moving reference frame was evaluated from cross correlations by introducing time delay to the signals detected by spatially separated pairs of microphones. Radial distributions of the mean velocity were obtained from measurements of the stagnation temperature, and stagnation and static pressures with the use of probes.

  14. A real time dynamic data acquisition and processing system for velocity, density, and total temperature fluctuation measurements

    NASA Technical Reports Server (NTRS)

    Clukey, Steven J.

    1991-01-01

    The real time Dynamic Data Acquisition and Processing System (DDAPS) is described which provides the capability for the simultaneous measurement of velocity, density, and total temperature fluctuations. The system of hardware and software is described in context of the wind tunnel environment. The DDAPS replaces both a recording mechanism and a separate data processing system. DDAPS receives input from hot wire anemometers. Amplifiers and filters condition the signals with computer controlled modules. The analog signals are simultaneously digitized and digitally recorded on disk. Automatic acquisition collects necessary calibration and environment data. Hot wire sensitivities are generated and applied to the hot wire data to compute fluctuations. The presentation of the raw and processed data is accomplished on demand. The interface to DDAPS is described along with the internal mechanisms of DDAPS. A summary of operations relevant to the use of the DDAPS is also provided.

  15. Comparison of 74-MHz interplanetary scintillation and IMP 7 observations of the solar wind during 1973

    NASA Technical Reports Server (NTRS)

    Coles, W. A.; Harmon, J. K.; Lazarus, A. J.; Sullivan, J. D.

    1978-01-01

    Solar wind velocities measured by earth-orbiting spacecraft are compared with velocities determined from interplanetary scintillation (IPS) observations for 1973, a period when high-velocity streams were prevalent. The spacecraft and IPS velocities agree well in the mean and are highly correlated. No simple model for the distribution of enhanced turbulence within streams is sufficient to explain the velocity comparison results for the entire year. Although a simple proportionality between density fluctuation level and bulk density is consistent with IPS velocities for some periods, some streams appear to have enhanced turbulence in the high-velocity region, where the density is low.

  16. On the Kolmogorov constant in stochastic turbulence models

    NASA Astrophysics Data System (ADS)

    Heinz, Stefan

    2002-11-01

    The Kolmogorov constant is fundamental in stochastic models of turbulence. To explain the reasons for observed variations of this quantity, it is calculated for two flows by various methods and data. Velocity fluctuations are considered as the sum of contributions due to anisotropy, acceleration fluctuations and stochastic forcing that is controlled by the Kolmogorov constant. It is shown that the effects of anisotropy and acceleration fluctuations are responsible for significant variations of the Kolmogorov constant. It is found near 2 for flows where anisotropy and acceleration fluctuations contribute to the energy budget, and near 6 if such contributions disappear.

  17. Prediction of Turbulent Temperature Fluctuations in Hot Jets

    NASA Technical Reports Server (NTRS)

    Debonis, James R.

    2017-01-01

    Large-eddy simulations were used to investigate turbulent temperature fluctuations and turbulent heat flux in hot jets. A high-resolution finite-difference Navier-Stokes solver, WRLES, was used to compute the flow from a 2-inch round nozzle. Several different flow conditions, consisting of different jet Mach numbers and temperature ratios, were examined. Predictions of mean and fluctuating velocities were compared to previously obtained particle image velocimetry data. Predictions of mean and fluctuating temperature were compared to new data obtained using Raman spectroscopy. Based on the good agreement with experimental data for the individual quantities, the combined quantity turbulent heat flux was examined.

  18. Mean, tidal, and fluctuating winds in the middle atmosphere and lower thermosphere observed during MAP/WINE in Northern Scandinavia

    NASA Technical Reports Server (NTRS)

    Roettger, J.

    1989-01-01

    During the MAP/WINE campaign in winter 1983 to 1984 several instrumental techniques, such as meteorological rockets, sounding rockets, MST radar and incoherent scatter radar, were applied to measure wind velocities in the middle atmosphere. Profiles of mean, tidal and fluctuating wind velocities were obtained up to 90 to 100 km altitude. These are compared with profiles from models, measurements at other locations and at other times as well as satellite derived data. The results are discussed in terms of ageostropic winds, planetary waves, tidal modes and the possibility of a saturated gravity wave spectrum in the mesosphere.

  19. Residual Energy Spectrum of Solar Wind Turbulence

    NASA Astrophysics Data System (ADS)

    Chen, C. H. K.; Bale, S. D.; Salem, C. S.; Maruca, B. A.

    2013-06-01

    It has long been known that the energy in velocity and magnetic field fluctuations in the solar wind is not in equipartition. In this paper, we present an analysis of 5 yr of Wind data at 1 AU to investigate the reason for this. The residual energy (difference between energy in velocity and magnetic field fluctuations) was calculated using both the standard magnetohydrodynamic (MHD) normalization for the magnetic field and a kinetic version, which includes temperature anisotropies and drifts between particle species. It was found that with the kinetic normalization, the fluctuations are closer to equipartition, with a mean normalized residual energy of σr = -0.19 and mean Alfvén ratio of r A = 0.71. The spectrum of residual energy, in the kinetic normalization, was found to be steeper than both the velocity and magnetic field spectra, consistent with some recent MHD turbulence predictions and numerical simulations, having a spectral index close to -1.9. The local properties of residual energy and cross helicity were also investigated, showing that globally balanced intervals with small residual energy contain local patches of larger imbalance and larger residual energy at all scales, as expected for nonlinear turbulent interactions.

  20. The Power Spectrum of the Milky Way: Velocity Fluctuations in the Galactic Disk

    NASA Astrophysics Data System (ADS)

    Bovy, Jo; Bird, Jonathan C.; García Pérez, Ana E.; Majewski, Steven R.; Nidever, David L.; Zasowski, Gail

    2015-02-01

    We investigate the kinematics of stars in the mid-plane of the Milky Way (MW) on scales between 25 pc and 10 kpc with data from the Apache Point Observatory Galactic Evolution Experiment (APOGEE), the Radial Velocity Experiment (RAVE), and the Geneva-Copenhagen survey (GCS). Using red-clump (RC) stars in APOGEE, we determine the large-scale line-of-sight velocity field out to 5 kpc from the Sun in (0.75 kpc)2 bins. The solar motion V ⊙ - c with respect to the circular velocity Vc is the largest contribution to the power on large scales after subtracting an axisymmetric rotation field; we determine the solar motion by minimizing the large-scale power to be V ⊙ - c = 24 ± 1 (ran.) ± 2 (syst. [Vc ]) ± 5 (syst.[large-scale]) km s-1, where the systematic uncertainty is due to (1) a conservative 20 km s-1 uncertainty in Vc and (2) the estimated power on unobserved larger scales. Combining the APOGEE peculiar-velocity field with RC stars in RAVE out to 2 kpc from the Sun and with local GCS stars, we determine the power spectrum of residual velocity fluctuations in the MW's disk on scales between 0.2 kpc-1 <= k <= 40 kpc-1. Most of the power is contained in a broad peak between 0.2 kpc-1 < k < 0.9 kpc-1. We investigate the expected power spectrum for various non-axisymmetric perturbations and demonstrate that the central bar with commonly used parameters but of relatively high mass can explain the bulk of velocity fluctuations in the plane of the Galactic disk near the Sun. Streaming motions ≈10 km s-1 on >~ 3 kpc scales in the MW are in good agreement with observations of external galaxies and directly explain why local determinations of the solar motion are inconsistent with global measurements.

  1. Effects of Glen Canyon Dam discharges on water velocity and temperatures at the confluence of the Colorado and Little Colorado Rivers and implications for habitat for young-of-year humpback chub (Gila cypha-

    USGS Publications Warehouse

    Protiva, Frank R.; Ralston, Barbara E.; Stone, Dennis M.; Kohl, Keith A.; Yard, Michael D.; Haden, G. Allen

    2010-01-01

    Water velocity and temperature are physical variables that affect the growth and survivorship of young-of-year (YOY) fishes. The Little Colorado River, a tributary to the Colorado River in Grand Canyon, is an important spawning ground and warmwater refuge for the endangered humpback chub (Gila cypha) from the colder mainstem Colorado River that is regulated by Glen Canyon Dam. The confluence area of the Little Colorado River and the Colorado River is a site where YOY humpback chub (size 30-90 mm) emerging from the Little Colorado River experience both colder temperatures and higher velocities associated with higher mainstem discharge. We used detailed surveying and mapping techniques in combination with YOY velocity and temperature preferenda (determined from field and lab studies) to compare the areal extent of available habitat for young fishes at the confluence area under four mainstem discharges (227, 368, 504, and 878 m3/s). Comparisons revealed that the areal extent of low-velocity, warm water at the confluence decreased when discharges exceeded 368 m3/s. Furthermore, mainstem fluctuations, depending on the rate of upramp, can affect velocity and temperature dynamics in the confluence area within several hours. The amount of daily fluctuations in discharge can result in the loss of approximately 1.8 hectares of habitat favorable to YOY humpback chub. Consequently, flow fluctuations and the accompanying changes in velocity and temperature at the confluence may diminish the recruitment potential of humpback chub that spawn in the tributary stream. This study illustrates the utility of multiple georeferenced data sources to provide critical information related to the influence of the timing and magnitude of discharge from Glen Canyon Dam on potential rearing environment at the confluence area of the Little Colorado River.

  2. Further Progress in Noise Source Identification in High Speed Jets via Causality Principle

    NASA Technical Reports Server (NTRS)

    Panda, J.; Seasholtz, R. G.; Elam, K. A.

    2004-01-01

    To locate noise sources in high-speed jets, the sound pressure fluctuations p/, measured at far field locations, were correlated with each of density p, axial velocity u, radial velocity v, puu and pvv fluctuations measured from various points in fully expanded, unheated plumes of Mach number 0.95, 1.4 and 1.8. The velocity and density fluctuations were measured simultaneously using a recently developed, non-intrusive, point measurement technique based on molecular Rayleigh scattering (Seasholtz, Panda, and Elam, AIAA Paper 2002-0827). The technique uses a continuous wave, narrow line-width laser, Fabry-Perot interferometer and photon counting electronics. The far field sound pressure fluctuations at 30 to the jet axis provided the highest correlation coefficients with all flow variables. The correlation coefficients decreased sharply with increased microphone polar angle, and beyond about 60 all correlation mostly fell below the experimental noise floor. Among all correlations < puu; p/> showed the highest values. Interestingly, , in all respects, were very similar to . The and correlations with 90deg microphone fell below the noise floor. By moving the laser probe at various locations in the jet it was found that the strongest noise source lies downstream of the end of the potential core and extends many diameters beyond. Correlation measurement from the lip shear layer showed a Mach number dependency. While significant correlations were measured in Mach 1.8 jet, values were mostly below the noise floor for subsonic Mach 0.95 jet. Various additional analyses showed that fluctuations from large organized structures mostly contributed to the measured correlation, while that from small scale structures fell below the noise floor.

  3. Quantification of the transient mass flow rate in a simplex swirl injector

    NASA Astrophysics Data System (ADS)

    Khil, Taeock; Kim, Sunghyuk; Cho, Seongho; Yoon, Youngbin

    2009-07-01

    When a heat release and acoustic pressure fluctuations are generated in a combustor by irregular and local combustions, these fluctuations affect the mass flow rate of the propellants injected through the injectors. In addition, variations of the mass flow rate caused by these fluctuations bring about irregular combustion, which is associated with combustion instability, so it is very important to identify a mass variation through the pressure fluctuation on the injector and to investigate its transfer function. Therefore, quantification of the variation of the mass flow rate generated in a simplex swirl injector via the injection pressure fluctuation was the subject of an initial study. To acquire the transient mass flow rate in the orifice with time, the axial velocity of flows and the liquid film thickness in the orifice were measured. The axial velocity was acquired through a theoretical approach after measuring the pressure in the orifice. In an effort to understand the flow area in the orifice, the liquid film thickness was measured by an electric conductance method. In the results, the mass flow rate calculated from the axial velocity and the liquid film thickness measured by the electric conductance method in the orifice was in good agreement with the mass flow rate acquired by the direct measuring method in a small error range within 1% in the steady state and within 4% for the average mass flow rate in a pulsated state. Also, the amplitude (gain) of the mass flow rate acquired by the proposed direct measuring method was confirmed using the PLLIF technique in the low pressure fluctuation frequency ranges with an error under 6%. This study shows that our proposed method can be used to measure the mass flow rate not only in the steady state but also in the unsteady state (or the pulsated state). Moreover, this method shows very high accuracy based on the experimental results.

  4. Measurement of Microscopic Growth Rates in Float-Zone Silicon Crystals

    NASA Technical Reports Server (NTRS)

    Dold, P.; Schweizer, M.; Benz, K. W.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Time dependent convective flows during crystal growth of doped semiconductors lead to fluctuations of the composition, so called dopant striations. In general, it is difficult to decide which is the main mechanism for the generation of these striations, it might be either the fluctuation of the concentration field in the melt and the extent of the solute boundary layer ahead of the solid-liquid interface or a variation of the growth velocity. Direct access to the concentration field is rather complicated to achieve, especially considering the high process temperature and the chemical activity of liquid silicon. The contribution of growth rate fluctuations to the formation of compositional fluctuations can be determined by measuring microscopic growth rates. The classical method of current pulses requires electrical feed-throughs and good electrical contacts, both are critical issues for the growth of high purity silicon crystals. Using a radiation based heating system, the heating power can be modulated very fast and effectively. We added to the normal heater power a sinusoidal off-set in the frequency range of 1 to 10 Hz, generating a narrow spaced weak rippling in the grown crystals which are superposed to the dopant striations caused by natural and by thermocapillary convection. The pulling speed was varied between 1 and 4mm/min. The microscope images of etched crystals slices have been analyzed by peak-search algorithms (measuring the spacing between each artificially induced marker) and by FFT. Performing growth experiments under a time-dependent flow regime, fluctuations of the microscopic growth velocity of Delta(v)/v(sub average) up to 50% have been measured. Damping the time-dependent convection by the use of an axial, static magnetic field of 500mT, the microscopic growth rate became constant within the resolution limit of this method. The results will be discussed using analytical methods for the calculation of microscopic growth velocity and by comparing them with measurements of temperature fluctuations in the melt during growth experiments itself.

  5. Mass and Momentum Turbulent Transport Experiments with Confined Coaxial Jets

    NASA Technical Reports Server (NTRS)

    Johnson, B. V.; Bennett, J. C.

    1981-01-01

    Downstream mixing of coaxial jets discharging in an expanded duct was studied to obtain data for the evaluation and improvement of turbulent transport models currently used in a variety of computational procedures throughout the propulsion community for combustor flow modeling. Flow visualization studies showed four major shear regions occurring; a wake region immediately downstream of the inlet jet inlet duct; a shear region further downstream between the inner and annular jets; a recirculation zone; and a reattachment zone. A combination of turbulent momentum transport rate and two velocity component data were obtained from simultaneous measurements with a two color laser velocimeter (LV) system. Axial, radial and azimuthal velocities and turbulent momentum transport rate measurements in the r-z and r-theta planes were used to determine the mean value, second central moment (or rms fluctuation from mean), skewness and kurtosis for each data set probability density function (p.d.f.). A combination of turbulent mass transport rate, concentration and velocity data were obtained system. Velocity and mass transport in all three directions as well as concentration distributions were used to obtain the mean, second central moments, skewness and kurtosis for each p.d.f. These LV/LIF measurements also exposed the existence of a large region of countergradient turbulent axial mass transport in the region where the annular jet fluid was accelerating the inner jet fluid.

  6. Construction of Solar-Wind-Like Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Roberts, Dana Aaron

    2012-01-01

    Fluctuations in the solar wind fields tend to not only have velocities and magnetic fields correlated in the sense consistent with Alfven waves traveling from the Sun, but they also have the magnitude of the magnetic field remarkably constant despite their being broadband. This paper provides, for the first time, a method for constructing fields with nearly constant magnetic field, zero divergence, and with any specified power spectrum for the fluctuations of the components of the field. Every wave vector, k, is associated with two polarizations the relative phases of these can be chosen to minimize the variance of the field magnitude while retaining the\\random character of the fields. The method is applied to a case with one spatial coordinate that demonstrates good agreement with observed time series and power spectra of the magnetic field in the solar wind, as well as with the distribution of the angles of rapid changes (discontinuities), thus showing a deep connection between two seemingly unrelated issues. It is suggested that using this construction will lead to more realistic simulations of solar wind turbulence and of the propagation of energetic particles.

  7. Sound production due to large-scale coherent structures

    NASA Technical Reports Server (NTRS)

    Gatski, T. B.

    1979-01-01

    The acoustic pressure fluctuations due to large-scale finite amplitude disturbances in a free turbulent shear flow are calculated. The flow is decomposed into three component scales; the mean motion, the large-scale wave-like disturbance, and the small-scale random turbulence. The effect of the large-scale structure on the flow is isolated by applying both a spatial and phase average on the governing differential equations and by initially taking the small-scale turbulence to be in energetic equilibrium with the mean flow. The subsequent temporal evolution of the flow is computed from global energetic rate equations for the different component scales. Lighthill's theory is then applied to the region with the flowfield as the source and an observer located outside the flowfield in a region of uniform velocity. Since the time history of all flow variables is known, a minimum of simplifying assumptions for the Lighthill stress tensor is required, including no far-field approximations. A phase average is used to isolate the pressure fluctuations due to the large-scale structure, and also to isolate the dynamic process responsible. Variation of mean square pressure with distance from the source is computed to determine the acoustic far-field location and decay rate, and, in addition, spectra at various acoustic field locations are computed and analyzed. Also included are the effects of varying the growth and decay of the large-scale disturbance on the sound produced.

  8. MULTI-COMPONENT ANALYSIS OF POSITION-VELOCITY CUBES OF THE HH 34 JET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez-Gonzalez, A.; Esquivel, A.; Raga, A. C.

    We present an analysis of H{alpha} spectra of the HH 34 jet with two-dimensional spectral resolution. We carry out multi-Gaussian fits to the spatially resolved line profiles and derive maps of the intensity, radial velocity, and velocity width of each of the components. We find that close to the outflow source we have three components: a high (negative) radial velocity component with a well-collimated, jet-like morphology; an intermediate velocity component with a broader morphology; and a positive radial velocity component with a non-collimated morphology and large linewidth. We suggest that this positive velocity component is associated with jet emission scatteredmore » in stationary dust present in the circumstellar environment. Farther away from the outflow source, we find only two components (a high, negative radial velocity component, which has a narrower spatial distribution than an intermediate velocity component). The fitting procedure was carried out with the new AGA-V1 code, which is available online and is described in detail in this paper.« less

  9. Kinetic-scale fluctuations resolved with the Fast Plasma Investigation on NASA's Magnetospheric Multiscale mission.

    NASA Astrophysics Data System (ADS)

    Gershman, D. J.; Figueroa-Vinas, A.; Dorelli, J.; Goldstein, M. L.; Shuster, J. R.; Avanov, L. A.; Boardsen, S. A.; Stawarz, J. E.; Schwartz, S. J.; Schiff, C.; Lavraud, B.; Saito, Y.; Paterson, W. R.; Giles, B. L.; Pollock, C. J.; Strangeway, R. J.; Russell, C. T.; Torbert, R. B.; Moore, T. E.; Burch, J. L.

    2017-12-01

    Measurements from the Fast Plasma Investigation (FPI) on NASA's Magnetospheric Multiscale (MMS) mission have enabled unprecedented analyses of kinetic-scale plasma physics. FPI regularly provides estimates of current density and pressure gradients of sufficient accuracy to evaluate the relative contribution of terms in plasma equations of motion. In addition, high-resolution three-dimensional velocity distribution functions of both ions and electrons provide new insights into kinetic-scale processes. As an example, for a monochromatic kinetic Alfven wave (KAW) we find non-zero, but out-of-phase parallel current density and electric field fluctuations, providing direct confirmation of the conservative energy exchange between the wave field and particles. In addition, we use fluctuations in current density and magnetic field to calculate the perpendicular and parallel wavelengths of the KAW. Furthermore, examination of the electron velocity distribution inside the KAW reveals a population of electrons non-linearly trapped in the kinetic-scale magnetic mirror formed between successive wave peaks. These electrons not only contribute to the wave's parallel electric field but also account for over half of the density fluctuations within the wave, supplying an unexpected mechanism for maintaining quasi-neutrality in a KAW. Finally, we demonstrate that the employed wave vector determination technique is also applicable to broadband fluctuations found in Earth's turbulent magnetosheath.

  10. The role of large eddy fluctuations in the magnetic dynamics of the Madison Dynamo Experiment

    NASA Astrophysics Data System (ADS)

    Kaplan, Elliot

    The Madison Dynamo Experiment (MDE), a liquid sodium magnetohydrodynamics experiment in a 1 m diameter sphere at the University of Wisconsin-Madison, had measured [in Spence et al., 2006] diamagnetic electrical currents in the experiment that violated an anti dynamo theorem for axisymmetric flow. The diamagnetic currents were instead attributed to nonaxisymmetric turbulent fluctuations. The experimental apparatus has been modified to reduce the strength of the large-scale turbulence driven by the shear layer in its flow. A 7.62 cm baffle was affixed to the equator of the machine to stabilize the shear layer. This reduction has correlated with a decrease in the magnetic fields, induced by the flow, which had been associated with the α and β effects of mean-field magnetohydrodynamics. The research presented herein presents the experimental evidence for reduced fluctuations and reduced mean field emfs, and provides a theoretical framework—based upon mean-field MHD—that connects the observations. The shapes of the large-scale velocity fluctuations are inferred by the spectra of induced magnetic fluctuations and measured in a kinematically similar water experiment. The Bullard and Gellman [1954] formalism demonstrates that the large-scale velocity fluctuations that are inhibited by the baffle can beat with the large-scale magnetic fluctuations that they produce to generate a mean-field emf of the sort measured in Spence et al. [2006]. This shows that the reduction of these large-scale eddies has brought the MDE closer to exciting a dynamo magnetic field. We also examine the mean-field like effects of large-scale (stable) eddies in the Dudley-James [1989] two-vortex dynamo (that the MDE was based upon). Rotating the axis of symmetry redefines the problem from one of an axisymmetric flow exciting a nonaxisymmetric field to one of a combination of axisymmetric and nonaxisymmetric flows exciting a predominantly axisymmetric magnetic eigenmode. As a result, specific interactions between large-scale velocity modes and large-scale magnetic modes are shown to correspond to the Ω effect and the mean-field α and β effects.

  11. Acoustic Resonance and Vortex Shedding from Tube Banks of Boiler Plant

    NASA Astrophysics Data System (ADS)

    Hamakawa, Hiromitsu; Matsue, Hiroto; Nishida, Eiichi; Fukano, Tohru

    This paper focuses on the relationship between acoustic resonance and vortex shedding from the tube banks of a boiler plant. We have built a model similar to the actual boiler plant to clarify the characteristics of acoustic resonance phenomena and vortex shedding. The model used in-line tube banks with a small tube pitch ratio. We examined the relationship between the acoustic resonance of the actual plant and that of the model, and measured the sound pressure level, acoustic pressure mode shape, spectrum of velocity fluctuation, and gap velocity. Gap velocity was defined as the mean velocity in the smallest gaps between two neighboring tubes in the transverse direction. As a result, the resonant frequencies and mode shapes of the acoustic resonances in the actual boiler plant agreed well with those in the similar model. We found many peak frequencies in the sound pressure level spectrum when acoustic resonances occurred. The typical Strouhal numbers at the onset velocity of acoustic resonances were about 0.19, 0.26 and 0.52. Periodic velocity fluctuation caused by vortex shedding was observed inside the tube banks without acoustic resonance. The Strouhal number measured for vortex shedding was 0.15. Acoustic resonances of higher-order modes were generated in this plant.

  12. System identification of velocity mechanomyogram measured with a capacitor microphone for muscle stiffness estimation.

    PubMed

    Uchiyama, Takanori; Tomoshige, Taiki

    2017-04-01

    A mechanomyogram (MMG) measured with a displacement sensor (displacement MMG) can provide a better estimation of longitudinal muscle stiffness than that measured with an acceleration sensor (acceleration MMG), but the displacement MMG cannot provide transverse muscle stiffness. We propose a method to estimate both longitudinal and transverse muscle stiffness from a velocity MMG using a system identification technique. The aims of this study are to show the advantages of the proposed method. The velocity MMG was measured using a capacitor microphone and a differential circuit, and the MMG, evoked by electrical stimulation, of the tibialis anterior muscle was measured five times in seven healthy young male volunteers. The evoked MMG system was identified using the singular value decomposition method and was approximated with a fourth-order model, which provides two undamped natural frequencies corresponding to the longitudinal and transverse muscle stiffness. The fluctuation of the undamped natural frequencies estimated from the velocity MMG was significantly smaller than that from the acceleration MMG. There was no significant difference between the fluctuations of the undamped natural frequencies estimated from the velocity MMG and that from the displacement MMG. The proposed method using the velocity MMG is thus more advantageous for muscle stiffness estimation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Turbulent Burning Velocities of Two-Component Fuel Mixtures of Methane, Propane and Hydrogen

    NASA Astrophysics Data System (ADS)

    Kido, Hiroyuki; Nakahara, Masaya; Hashimoto, Jun; Barat, Dilmurat

    In order to clarify the turbulent burning velocity of multi-component fuel mixtures, both lean and rich two-component fuel mixtures, in which methane, propane and hydrogen were used as fuels, were prepared while maintaining the laminar burning velocity approximately constant. A distinct difference in the measured turbulent burning velocity at the same turbulence intensity is observed for two-component fuel mixtures having different addition rates of fuel, even the laminar burning velocities are approximately the same. The burning velocities of lean mixtures change almost constantly as the rate of addition changes, whereas the burning velocities of the rich mixtures show no such tendency. This trend can be explained qualitatively based on the mean local burning velocity, which is estimated by taking into account the preferential diffusion effect for each fuel component. In addition, a model of turbulent burning velocity proposed for single-component fuel mixtures may be applied to two-component fuel mixtures by considering the estimated mean local burning velocity of each fuel.

  14. Flow velocity and the hydrologic behavior of streams during baseflow.

    Treesearch

    Steven M. Wondzell; Michael N. Gooseff; Brian L. McGlynn

    2007-01-01

    Diel variations in stream discharge have long been recognized, but are relatively little studied. Here we demonstrate that these diel fluctuations can be used to investigate both streamflow generation and network routing. We treat evapo-transpiration (ET) as a distributed impulse function in an advection model and analyze the effect of ET on diel fluctuations in...

  15. QUASI-PERIODIC FLUCTUATIONS AND CHROMOSPHERIC EVAPORATION IN A SOLAR FLARE RIBBON OBSERVED BY HINODE /EIS, IRIS , AND RHESSI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brosius, Jeffrey W.; Inglis, Andrew R.; Daw, Adrian N., E-mail: Jeffrey.W.Brosius@nasa.gov

    The Hinode /Extreme-ultraviolet Imaging Spectrometer (EIS) obtained rapid cadence (11.2 s) EUV stare spectra of an M7.3 flare ribbon in AR 12036 on 2014 April 18. Quasi-periodic ( P ≈ 75.6 ± 9.2 s) intensity fluctuations occurred in emission lines of O iv, Mg vi, Mg vii, Si vii, Fe xiv, and Fe xvi during the flare's impulsive rise, and ended when the maximum intensity in Fe xxiii was reached. The profiles of the O iv–Fe xvi lines reveal that they were all redshifted during most of the interval of quasi-periodic intensity fluctuations, while the Fe xxiii profile revealed multiplemore » components including one or two highly blueshifted ones. This indicates that the flare underwent explosive chromospheric evaporation during its impulsive rise. Fluctuations in the relative Doppler velocities were seen, but their amplitudes were too subtle to extract significant quasi-periodicities. RHESSI detected 25–100 keV hard-X-ray sources in the ribbon near the EIS slit's pointing position during the peaks in the EIS intensity fluctuations. The observations are consistent with a series of energy injections into the chromosphere by nonthermal particle beams. Electron densities derived with Fe xiv (4.6 × 10{sup 10} cm{sup −3}) and Mg vii (7.8 × 10{sup 9} cm{sup −3}) average line intensity ratios during the interval of quasi-periodic intensity fluctuations, combined with the radiative loss function of an optically thin plasma, yield radiative cooling times of 32 s at 2.0 × 10{sup 6} K, and 46 s at 6.3 × 10{sup 5} K (about half the quasi-period); assuming Fe xiv's density for Fe xxiii yields a radiative cooling time of 10{sup 3} s (13 times the quasi-period) at 1.4 × 10{sup 7} K.« less

  16. Quasi-Periodic Fluctuations and Chromospheric Evaporation in a Solar Flare Ribbon Observed by Hinode/EIS, IRIS, and RHESSI

    NASA Technical Reports Server (NTRS)

    Brosius, Jeffrey W.; Daw, Adrian N.; Inglis, Andrew R.

    2016-01-01

    The Hinode/Extreme-ultraviolet Imaging Spectrometer (EIS) obtained rapid cadence (11.2 s) EUV stare spectra of an M7.3 flare ribbon in AR 12036 on 2014 April 18. Quasi-periodic (P approx. = 75.6 +/- 9.2 s) intensity fluctuations occurred in emission lines of O IV, Mg VI, Mg VII, Si VII, Fe XIV, and Fe XVI during the flare's impulsive rise, and ended when the maximum intensity in Fe XXIII was reached. The profiles of the O IV- Fe XVI lines reveal that they were all redshifted during most of the interval of quasi-periodic intensity fluctuations, while the Fe XXIII profile revealed multiple components including one or two highly blueshifted ones. This indicates that the flare underwent explosive chromospheric evaporation during its impulsive rise. Fluctuations in the relative Doppler velocities were seen, but their amplitudes were too subtle to extract significant quasi-periodicities. RHESSI detected 25-100 keV hard-X-ray sources in the ribbon near the EIS slit's pointing position during the peaks in the EIS intensity fluctuations. The observations are consistent with a series of energy injections into the chromosphere by nonthermal particle beams. Electron densities derived with Fe XIV (4.6 x 10(exp 10) per cu cm) and Mg VII (7.8 x 10(exp 9) per cu cm) average line intensity ratios during the interval of quasi-periodic intensity fluctuations, combined with the radiative loss function of an optically thin plasma, yield radiative cooling times of 32 s at 2.0 x 10(exp 6) K, and 46 s at 6.3 x 10(exp 5) K (about half the quasi-period); assuming Fe XIV's density for Fe XXIII yields a radiative cooling time of 10(exp 3) s (13 times the quasi-period) at 1.4 x 10(exp 7) K.

  17. Time-Series Analysis of Intermittent Velocity Fluctuations in Turbulent Boundary Layers

    NASA Astrophysics Data System (ADS)

    Zayernouri, Mohsen; Samiee, Mehdi; Meerschaert, Mark M.; Klewicki, Joseph

    2017-11-01

    Classical turbulence theory is modified under the inhomogeneities produced by the presence of a wall. In this regard, we propose a new time series model for the streamwise velocity fluctuations in the inertial sub-layer of turbulent boundary layers. The new model employs tempered fractional calculus and seamlessly extends the classical 5/3 spectral model of Kolmogorov in the inertial subrange to the whole spectrum from large to small scales. Moreover, the proposed time-series model allows the quantification of data uncertainties in the underlying stochastic cascade of turbulent kinetic energy. The model is tested using well-resolved streamwise velocity measurements up to friction Reynolds numbers of about 20,000. The physics of the energy cascade are briefly described within the context of the determined model parameters. This work was supported by the AFOSR Young Investigator Program (YIP) award (FA9550-17-1-0150) and partially by MURI/ARO (W911NF-15-1-0562).

  18. Study on typhoon characteristic based on bridge health monitoring system.

    PubMed

    Wang, Xu; Chen, Bin; Sun, Dezhang; Wu, Yinqiang

    2014-01-01

    Through the wind velocity and direction monitoring system installed on Jiubao Bridge of Qiantang River, Hangzhou city, Zhejiang province, China, a full range of wind velocity and direction data was collected during typhoon HAIKUI in 2012. Based on these data, it was found that, at higher observed elevation, turbulence intensity is lower, and the variation tendency of longitudinal and lateral turbulence intensities with mean wind speeds is basically the same. Gust factor goes higher with increasing mean wind speed, and the change rate obviously decreases as wind speed goes down and an inconspicuous increase occurs when wind speed is high. The change of peak factor is inconspicuous with increasing time and mean wind speed. The probability density function (PDF) of fluctuating wind speed follows Gaussian distribution. Turbulence integral scale increases with mean wind speed, and its PDF does not follow Gaussian distribution. The power spectrum of observation fluctuating velocity is in accordance with Von Karman spectrum.

  19. Vertical mass transfer in open channel flow

    USGS Publications Warehouse

    Jobson, Harvey E.

    1968-01-01

    The vertical mass transfer coefficient and particle fall velocity were determined in an open channel shear flow. Three dispersants, dye, fine sand and medium sand, were used with each of three flow conditions. The dispersant was injected as a continuous line source across the channel and downstream concentration profiles were measured. From these profiles along with the measured velocity distribution both the vertical mass transfer coefficient and the local particle fall velocity were determined.The effects of secondary currents on the vertical mixing process were discussed. Data was taken and analyzed in such a way as to largely eliminate the effects of these currents on the measured values. A procedure was developed by which the local value of the fall velocity of sand sized particles could be determined in an open channel flow. The fall velocity of the particles in the turbulent flow was always greater than their fall velocity in quiescent water. Reynolds analogy between the transfer of momentum and marked fluid particles was further substantiated. The turbulent Schmidt number was shown to be approximately 1.03 for an open channel flow with a rough boundary. Eulerian turbulence measurements were not sufficient to predict the vertical transfer coefficient. Vertical mixing of sediment is due to three semi-independent processes. These processes are: secondary currents, diffusion due to tangential velocity fluctuations and diffusion due to the curvature of the fluid particle path lines. The diffusion coefficient due to tangential velocity fluctuations is approximately proportional to the transfer coefficient of marked fluid particles. The proportionality constant is less than or equal to 1.0 and decreases with increasing particle size. The diffusion coefficient due to the curvature of the fluid particle path lines is not related to the diffusion coefficient for marked fluid particles and increases with particle size, at least for sediment particles in the sand size range. The total sediment transfer coefficient is equal to the sum of the coefficient due to tangential velocity fluctuations and the coefficient due to the curvature of the fluid particle path lines. A numerical solution to the conservation of mass equation is given. The effects of the transfer coefficient, fall velocity and bed conditions on the predicted concentration profiles are illustrated.

  20. Residual fluctuations in the matter and radiation distribution after the decoupling epoch. [of early universe

    NASA Technical Reports Server (NTRS)

    Silk, J.; Wilson, M. L.

    1980-01-01

    The residual spectra of matter and radiation fluctuations in the early universe are investigated, and the evolution of primordial adiabatic and isothermal fluctuations through the decoupling epoch is studied. Amplification of adiabatic density fluctuations during decoupling, or velocity 'overshoot', is largely suppressed by Compton drag. Consequently, the amplitude of density fluctuations entering the horizon prior to decoupling is larger than hitherto assumed in the adiabatic theory. Damping of primordial adiabatic density fluctuations by an order of magnitude occurs on mass-scales of 3 x 10 to the 13th solar masses (Omega = 1) or 10 to the 14th solar masses (Omega = 0.2). Comparison of the residual radiation fluctuations with observational limits indicates that the adiabatic theory is only acceptable if re-ionization of the intergalactic medium results in additional scattering of the radiation after decoupling. Primordial isothermal fluctuations are found to yield radiation fluctuations which are insensitive to the assumed spectrum and lie a factor of about 5 below current limits

  1. Characterization of a Combined CARS and Interferometric Rayleigh Scattering System

    NASA Technical Reports Server (NTRS)

    Tedder, Sarah A.; Bivolaru, Daniel; Danehy, Paul M.; Weikl, M. C.; Beyrau, F.; Seeger, T.; Cutler, Andrew D.

    2007-01-01

    This paper describes the characterization of a combined Coherent anti-Stokes Raman Spectroscopy and Interferometric Rayleigh Scattering (CARS-IRS) system by reporting the accuracy and precision of the measurements of temperature, species mole fraction of N2, O2, and H2, and two-components of velocity. A near-adiabatic H2-air Hencken burner flame was used to provide known properties for measurements made with the system. The measurement system is also demonstrated in a small-scale Mach 1.6 H2-air combustion-heated supersonic jet with a co-flow of H2. The system is found to have a precision that is sufficient to resolve fluctuations of flow properties in the mixing layer of the jet.

  2. Method and apparatus for measuring the mass flow rate of a fluid

    DOEpatents

    Evans, Robert P.; Wilkins, S. Curtis; Goodrich, Lorenzo D.; Blotter, Jonathan D.

    2002-01-01

    A non invasive method and apparatus is provided to measure the mass flow rate of a multi-phase fluid. An accelerometer is attached to a pipe carrying a multi-phase fluid. Flow related measurements in pipes are sensitive to random velocity fluctuations whose magnitude is proportional to the mean mass flow rate. An analysis of the signal produced by the accelerometer shows a relationship between the mass flow of a fluid and the noise component of the signal of an accelerometer. The noise signal, as defined by the standard deviation of the accelerometer signal allows the method and apparatus of the present invention to non-intrusively measure the mass flow rate of a multi-phase fluid.

  3. Development of Turbulence-Measuring Equipment

    NASA Technical Reports Server (NTRS)

    Kovasznay, Leslie S G

    1954-01-01

    Hot wire turbulence-measuring equipment has been developed to meet the more stringent requirements involved in the measurement of fluctuations in flow parameters at supersonic velocities. The higher mean speed necessitates the resolution of higher frequency components than at low speed, and the relatively low turbulence level present at supersonic speed makes necessary an improved noise level for the equipment. The equipment covers the frequency range from 2 to about 70,000 cycles per second. Constant-current operation is employed. Compensation for hot-wire lag is adjusted manually using square-wave testing to indicate proper setting. These and other features make the equipment adaptable to all-purpose turbulence work with improved utility and accuracy over that of older types of equipment. Sample measurements are given to demonstrate the performance.

  4. The accuracy of tomographic particle image velocimetry for measurements of a turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Atkinson, Callum; Coudert, Sebastien; Foucaut, Jean-Marc; Stanislas, Michel; Soria, Julio

    2011-04-01

    To investigate the accuracy of tomographic particle image velocimetry (Tomo-PIV) for turbulent boundary layer measurements, a series of synthetic image-based simulations and practical experiments are performed on a high Reynolds number turbulent boundary layer at Reθ = 7,800. Two different approaches to Tomo-PIV are examined using a full-volume slab measurement and a thin-volume "fat" light sheet approach. Tomographic reconstruction is performed using both the standard MART technique and the more efficient MLOS-SMART approach, showing a 10-time increase in processing speed. Random and bias errors are quantified under the influence of the near-wall velocity gradient, reconstruction method, ghost particles, seeding density and volume thickness, using synthetic images. Experimental Tomo-PIV results are compared with hot-wire measurements and errors are examined in terms of the measured mean and fluctuating profiles, probability density functions of the fluctuations, distributions of fluctuating divergence through the volume and velocity power spectra. Velocity gradients have a large effect on errors near the wall and also increase the errors associated with ghost particles, which convect at mean velocities through the volume thickness. Tomo-PIV provides accurate experimental measurements at low wave numbers; however, reconstruction introduces high noise levels that reduces the effective spatial resolution. A thinner volume is shown to provide a higher measurement accuracy at the expense of the measurement domain, albeit still at a lower effective spatial resolution than planar and Stereo-PIV.

  5. HOW THE DENSITY ENVIRONMENT CHANGES THE INFLUENCE OF THE DARK MATTER–BARYON STREAMING VELOCITY ON COSMOLOGICAL STRUCTURE FORMATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, Kyungjin, E-mail: kjahn@chosun.ac.kr

    We study the dynamical effect of the relative velocity between dark matter and baryonic fluids, which remained supersonic after the epoch of recombination. The impact of this supersonic motion on the formation of cosmological structures was first formulated by Tseliakhovich and Hirata, in terms of the linear theory of small-scale fluctuations coupled to large-scale, relative velocities in mean-density regions. In their formalism, they limited the large-scale density environment to be that of the global mean density. We improve on their formulation by allowing variation in the density environment as well as the relative velocities. This leads to a new typemore » of coupling between large-scale and small-scale modes. We find that the small-scale fluctuation grows in a biased way: faster in the overdense environment and slower in the underdense environment. We also find that the net effect on the global power spectrum of the density fluctuation is to boost its overall amplitude from the prediction by Tseliakhovich and Hirata. Correspondingly, the conditional mass function of cosmological halos and the halo bias parameter are both affected in a similar way. The discrepancy between our prediction and that of Tseliakhovich and Hirata is significant, and therefore, the related cosmology and high-redshift astrophysics should be revisited. The mathematical formalism of this study can be used for generating cosmological initial conditions of small-scale perturbations in generic, overdense (underdense) background patches.« less

  6. Structure of high and low shear-stress events in a turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Gomit, G.; de Kat, R.; Ganapathisubramani, B.

    2018-01-01

    Simultaneous particle image velocimetry (PIV) and wall-shear-stress sensor measurements were performed to study structures associated with shear-stress events in a flat plate turbulent boundary layer at a Reynolds number Reτ≈4000 . The PIV field of view covers 8 δ (where δ is the boundary layer thickness) along the streamwise direction and captures the entire boundary layer in the wall-normal direction. Simultaneously, wall-shear-stress measurements that capture the large-scale fluctuations were taken using a spanwise array of hot-film skin-friction sensors (spanning 2 δ ). Based on this combination of measurements, the organization of the conditional wall-normal and streamwise velocity fluctuations (u and v ) and of the Reynolds shear stress (-u v ) can be extracted. Conditional averages of the velocity field are computed by dividing the histogram of the large-scale wall-shear-stress fluctuations into four quartiles, each containing 25% of the occurrences. The conditional events corresponding to the extreme quartiles of the histogram (positive and negative) predominantly contribute to a change of velocity profile associated with the large structures and in the modulation of the small scales. A detailed examination of the Reynolds shear-stress contribution related to each of the four quartiles shows that the flow above a low wall-shear-stress event carries a larger amount of Reynolds shear stress than the other quartiles. The contribution of the small and large scales to this observation is discussed based on a scale decomposition of the velocity field.

  7. Dissolution of Si in Molten Al with Gas Injection

    NASA Astrophysics Data System (ADS)

    Seyed Ahmadi, Mehran

    Silicon is an essential component of many aluminum alloys, as it imparts a range of desirable characteristics. However, there are considerable practical difficulties in dissolving solid Si in molten Al, because the dissolution process is slow, resulting in material and energy losses. It is thus essential to examine Si dissolution in molten Al, to identify means of accelerating the process. This thesis presents an experimental study of the effect of Si purity, bath temperature, fluid flow conditions, and gas stirring on the dissolution of Si in molten Al, plus the results of physical and numerical modeling of the flow to corroborate the experimental results. The dissolution experiments were conducted in a revolving liquid metal tank to generate a bulk velocity, and gas was introduced into the melt using top lance injection. Cylindrical Si specimens were immersed into molten Al for fixed durations, and upon removal the dissolved Si was measured. The shape and trajectory of injected bubbles were examined by means of auxiliary water experiments and video recordings of the molten Al free surface. The gas-agitated liquid was simulated using the commercial software FLOW-3D. The simulation results provide insights into bubble dynamics and offer estimates of the fluctuating velocities within the Al bath. The experimental results indicate that the dissolution rate of Si increases in tandem with the melt temperature and bulk velocity. A higher bath temperature increases the solubility of Si at the solid/liquid interface, resulting in a greater driving force for mass transfer, and a higher liquid velocity decreases the resistance to mass transfer via a thinner mass boundary layer. Impurities (with lower diffusion coefficients) in the form of inclusions obstruct the dissolution of the Si main matrix. Finally, dissolution rate enhancement was observed by gas agitation. It is postulated that the bubble-induced fluctuating velocities disturb the mass boundary layer, which increases the mass transfer rate. Correlations derived for mass transfer from solids in liquids under various operating conditions were applied to the Al--Si system. A new correlation for combined natural and forced convection mass transfer from vertical cylinders in cross flow is presented, and a modification is proposed to take into account free stream turbulence in a correlation for forced convection mass transfer from vertical cylinders in cross flow.

  8. Constraints on Fluctuations in Sparsely Characterized Biological Systems.

    PubMed

    Hilfinger, Andreas; Norman, Thomas M; Vinnicombe, Glenn; Paulsson, Johan

    2016-02-05

    Biochemical processes are inherently stochastic, creating molecular fluctuations in otherwise identical cells. Such "noise" is widespread but has proven difficult to analyze because most systems are sparsely characterized at the single cell level and because nonlinear stochastic models are analytically intractable. Here, we exactly relate average abundances, lifetimes, step sizes, and covariances for any pair of components in complex stochastic reaction systems even when the dynamics of other components are left unspecified. Using basic mathematical inequalities, we then establish bounds for whole classes of systems. These bounds highlight fundamental trade-offs that show how efficient assembly processes must invariably exhibit large fluctuations in subunit levels and how eliminating fluctuations in one cellular component requires creating heterogeneity in another.

  9. Constraints on Fluctuations in Sparsely Characterized Biological Systems

    NASA Astrophysics Data System (ADS)

    Hilfinger, Andreas; Norman, Thomas M.; Vinnicombe, Glenn; Paulsson, Johan

    2016-02-01

    Biochemical processes are inherently stochastic, creating molecular fluctuations in otherwise identical cells. Such "noise" is widespread but has proven difficult to analyze because most systems are sparsely characterized at the single cell level and because nonlinear stochastic models are analytically intractable. Here, we exactly relate average abundances, lifetimes, step sizes, and covariances for any pair of components in complex stochastic reaction systems even when the dynamics of other components are left unspecified. Using basic mathematical inequalities, we then establish bounds for whole classes of systems. These bounds highlight fundamental trade-offs that show how efficient assembly processes must invariably exhibit large fluctuations in subunit levels and how eliminating fluctuations in one cellular component requires creating heterogeneity in another.

  10. Effect of Contraction on Turbulence and Temperature Fluctuations Generated by a Warm Grid

    NASA Technical Reports Server (NTRS)

    Mills, Robert R., Jr.; Corrsin, Stanley

    1959-01-01

    Hot-wire anemometer measurements were made of several statistical properties of approximately homogeneous and isotropic fields of turbulence and temperature fluctuations generated by a warm grid in a uniform airstream sent through a 4-to-1 contraction. These measurements were made both in the contraction and in the axisymmetric domain farther downstream. In addition to confirming the well-known turbulence anisotropy induced by strain, the data show effects on the skewnesses of both longitudinal velocity fluctuation (which has zero skewness in isotropic turbulence) and its derivative. The concomitant anisotropy in the temperature field accelerates the decay of temperature fluctuations.

  11. Characteristics of sources and sinks of momentum in a turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Fiscaletti, D.; Ganapathisubramani, B.

    2018-05-01

    In turbulent boundary layers, the wall-normal gradient of the Reynolds shear stress identifies momentum sources and sinks (T =∂ [-u v ]/∂ y ). These motions can be physically interpreted in two ways: (1) as contributors to the turbulence term balancing the mean momentum equation, and (2) as regions of strong local interaction between velocity and vorticity fluctuations. In this paper, the space-time evolution of momentum sources and sinks is investigated in a turbulent boundary layer at the Reynolds number (Reτ) = 2700, with time-resolved planar particle image velocimetry in a plane along the streamwise and wall-normal directions. Wave number-frequency power spectra of T fluctuations reveal that the wave velocities of momentum sources and sinks tend to match the local streamwise velocity in proximity to the wall. However, as the distance from the wall increases, the wave velocities of the T events are slightly lower than the local streamwise velocities of the flow, which is also confirmed from the tracking in time of the intense momentum sources and sinks. This evidences that momentum sources and sinks are preferentially located in low-momentum regions of the flow. The spectral content of the T fluctuations is maximum at the wall, but it decreases monotonically as the distance from the wall grows. The relative spectral contributions of the different wavelengths remains unaltered at varying wall-normal locations. From autocorrelation coefficient maps, the characteristic streamwise and wall-normal extents of the T motions are respectively 60 and 40 wall units, independent of the wall distance. Both statistics and instantaneous visualizations show that momentum sources and sinks have a preferential tendency to be organized in positive-negative pairs in the wall-normal direction.

  12. Statistics of actin-propelled trajectories in noisy environments

    NASA Astrophysics Data System (ADS)

    Wen, Fu-Lai; Chen, Hsuan-Yi; Leung, Kwan-tai

    2016-06-01

    Actin polymerization is ubiquitously utilized to power the locomotion of eukaryotic cells and pathogenic bacteria in living systems. Inevitably, actin polymerization and depolymerization proceed in a fluctuating environment that renders the locomotion stochastic. Previously, we have introduced a deterministic model that manages to reproduce actin-propelled trajectories in experiments, but not to address fluctuations around them. To remedy this, here we supplement the deterministic model with noise terms. It enables us to compute the effects of fluctuating actin density and forces on the trajectories. Specifically, the mean-squared displacement (MSD) of the trajectories is computed and found to show a super-ballistic scaling with an exponent 3 in the early stage, followed by a crossover to a normal, diffusive scaling of exponent 1 in the late stage. For open-end trajectories such as straights and S-shaped curves, the time of crossover matches the decay time of orientational order of the velocities along trajectories, suggesting that it is the spreading of velocities that leads to the crossover. We show that the super-ballistic scaling of MSD arises from the initial, linearly increasing correlation of velocities, before time translational symmetry is established. When the spreading of velocities reaches a steady state in the long-time limit, short-range correlation then yields a diffusive scaling in MSD. In contrast, close-loop trajectories like circles exhibit localized periodic motion, which inhibits spreading. The initial super-ballistic scaling of MSD arises from velocity correlation that both linearly increases and oscillates in time. Finally, we find that the above statistical features of the trajectories transcend the nature of noises, be it additive or multiplicative, and generalize to other self-propelled systems that are not necessarily actin based.

  13. Acoustic radiation from weakly wrinkled premixed flames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lieuwen, Tim; Mohan, Sripathi; Rajaram, Rajesh

    2006-01-01

    This paper describes a theoretical analysis of acoustic radiation from weakly wrinkled (i.e., u'/S{sub L}<1) premixed flames. Specifically, it determines the transfer function relating the spectrum of the acoustic pressure oscillations, P'({omega}), to that of the turbulent velocity fluctuations in the approach flow, U'({omega}). In the weakly wrinkled limit, this transfer function is local in frequency space; i.e., velocity fluctuations at a frequency {omega} distort the flame and generate sound at the same frequency. This transfer function primarily depends upon the flame Strouhal number St (based on mean flow velocity and flame length) and the correlation length, {lambda}, of themore » flow fluctuations. For cases where the ratio of the correlation length and duct radius {lambda}/a>>1, the acoustic pressure and turbulent velocity power spectra are related by P'({omega})-{omega}{sup 2}U'({omega}) and P'({omega})-U'({omega}) for St<<1 and St>>1, respectively. For cases where {lambda}/a<<1, the transfer functions take the form P'({omega})-{omega}{sup 2}({lambda}/a){sup 2}U'({omega}) and P'({omega})-{omega}{sup 2}({lambda}/a){sup 2}({psi}-{delta}ln({lambda}/a))U'({omega}) for St<<1 and St>>1, respectively, where (PS) and {delta} are constants. The latter result demonstrates that this transfer function does not exhibit a simple power law relationship in the high frequency region of the spectra. The simultaneous dependence of this pressure-velocity transfer function upon the Strouhal number and correlation length suggests a mechanism for the experimentally observed maximum in acoustic spectra and provides some insight into the controversy in the literature over how this peak should scale with the flame Strouhal number.« less

  14. Development of perspective methods for modeling 3D currents for coastal systems in connection with environmental problems in South of France as well as South of Russia

    NASA Astrophysics Data System (ADS)

    Alexeenko, Elena; Sukhinov, Alexander; Roux, Bernard; Meule, Samuel; Chistyakov, Alexander

    2010-05-01

    Shallow water reservoirs are complex multi-parameter hydrodynamic systems. The current and the coupled processes occurring in them are spatially three-dimensional and unsteady, and have essentially nonlinear character. Therefore, the use of field experiments to analyse such a systems is extremely labor intensive and costly. Without underestimating the role of field experiments, it should be nevertheless noted that the most optimal in terms of cost and reliability of the results is an approach based on a combination of relatively inexpensive and safe field experiments and mathematical modeling of the processes under study. The present approach has several advantages with respect to the existing models. Three components of velocity vector from the full system of Navier-Stokes equations (and not on the basis of the hydrostatic approximation) and the equation of the surface elevation are calculated. In most hydrodynamic models of shallow water, the third component of the velocity vector is determined from the equations of continuity and the elevation surface level, which introduces significant error in the determination of the component. Calculation of the three components of velocity vector based on the equations of motion is a time-consuming process, so the hydrostatic approximation is used as an initial approximation for calculating the pressure. This approach greatly reduces the computing time and the costs. Also one of the advantages of the present model is an improved parameterization of the vertical turbulent exchange coefficient, on the basis of ADCP measurement data (Acoustic Doppler Current Profiler). In modern numerical models of vertical turbulent exchange, this coefficient often appears as a fitting parameter. Among the numerous approximations of the coefficient of vertical turbulent exchange, the algebraic subgrid model of Belotcerkovskii, which is based on the determination of turbulent flows as multiplications of averaged over time (correlation) fluctuations of the horizontal and vertical velocity's components, showed itself in the best way in comparison with expedition data. Mathematical and numerical modeling was carried out on the Azov Sea (Russia) and the lagoon Etang de Berre (France), taking into account three main forcing mechanisms: wind effect, fresh and marine water input (micro-tidal effect). Expeditions were conducted in Azov Sea (in 2005 and 2006) and in the lagoon Etang de Berre (in 2006 and 2008), for obtaining data on the status and changes in hydro-physical and hydro chemical parameters. During these expeditions data on the velocity fluctuations in certain locations on the basis of ADCP measurements (WHS600 Sentinel) were obtained. We studied the situation which can occur typically on the second half of the summer where the water, at the exit area of the waters of Taganrog Gulf in Azov Sea, can be saturated by organic compounds coming from rivers. For some wind intensity and direction, the presence of a closed vortex motion can be exhibited; then, these organic compounds can deposit on the seabed and their decomposition can lead to huge phenomena of hypoxia (as in 2001). In the north-western part of the lagoon Etang de Berre, stable vortex structures can be exhibited for different forcing mechanisms, including the discharge of water from an hydroelectric dam. A large number of organic matter falls into this area. These substances are captured by the vortex structure, and, sinking to the bottom, form the organic sediment. For temperatures typical for the summer period, begins intensive oxidation of the resulting sediment with a simultaneous decrease in the concentration of dissolved oxygen. In case of stable stratification phenomenon, occurs quite rapidly anoxia (complete lack of oxygen) and further expansion is on anaerobic cycle with the formation of hydrogen sulfide. This phenomenon was observed during the September expedition of 2006.

  15. Double inflation - A possible resolution of the large-scale structure problem

    NASA Technical Reports Server (NTRS)

    Turner, Michael S.; Villumsen, Jens V.; Vittorio, Nicola; Silk, Joseph; Juszkiewicz, Roman

    1987-01-01

    A model is presented for the large-scale structure of the universe in which two successive inflationary phases resulted in large small-scale and small large-scale density fluctuations. This bimodal density fluctuation spectrum in an Omega = 1 universe dominated by hot dark matter leads to large-scale structure of the galaxy distribution that is consistent with recent observational results. In particular, large, nearly empty voids and significant large-scale peculiar velocity fields are produced over scales of about 100 Mpc, while the small-scale structure over less than about 10 Mpc resembles that in a low-density universe, as observed. Detailed analytical calculations and numerical simulations are given of the spatial and velocity correlations.

  16. Definition of Contravariant Velocity Components

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Mao; Kwak, Dochan (Technical Monitor)

    2002-01-01

    This is an old issue in computational fluid dynamics (CFD). What is the so-called contravariant velocity or contravariant velocity component? In the article, we review the basics of tensor analysis and give the contravariant velocity component a rigorous explanation. For a given coordinate system, there exist two uniquely determined sets of base vector systems - one is the covariant and another is the contravariant base vector system. The two base vector systems are reciprocal. The so-called contravariant velocity component is really the contravariant component of a velocity vector for a time-independent coordinate system, or the contravariant component of a relative velocity between fluid and coordinates, for a time-dependent coordinate system. The contravariant velocity components are not physical quantities of the velocity vector. Their magnitudes, dimensions, and associated directions are controlled by their corresponding covariant base vectors. Several 2-D (two-dimensional) linear examples and 2-D mass-conservation equation are used to illustrate the details of expressing a vector with respect to the covariant and contravariant base vector systems, respectively.

  17. Constraints on galaxy formation theories

    NASA Technical Reports Server (NTRS)

    Szalay, A. S.

    1986-01-01

    The present theories of galaxy formation are reviewed. The relation between peculiar velocities, temperature fluctuations of the microwave background and the correlation function of galaxies point to the possibility that galaxies do not form uniformly everywhere. The velocity data provide strong constraints on the theories even in the case when light does not follow mass of the universe.

  18. High-Reynolds-number turbulent-boundary-layer wall-pressure fluctuations with dilute polymer solutions

    NASA Astrophysics Data System (ADS)

    Elbing, Brian R.; Winkel, Eric S.; Ceccio, Steven L.; Perlin, Marc; Dowling, David R.

    2010-08-01

    Wall-pressure fluctuations were investigated within a high-Reynolds-number turbulent boundary layer (TBL) modified by the addition of dilute friction-drag-reducing polymer solutions. The experiment was conducted at the U.S. Navy's Large Cavitation Channel on a 12.9 m long flat-plate test model with the surface hydraulically smooth (k+<0.2) and achieving downstream-distance-based Reynolds numbers to 220×106. The polymer (polyethylene oxide) solution was injected into the TBL through a slot in the surface. The primary flow diagnostics were skin-friction drag balances and an array of flush-mounted dynamic pressure transducers 9.8 m from the model leading edge. Parameters varied included the free-stream speed (6.7, 13.4, and 20.2 m s-1) and the injection condition (polymer molecular weight, injection concentration, and volumetric injection flux). The behavior of the pressure spectra, convection velocity, and coherence, regardless of the injection condition, were determined primarily based on the level of drag reduction. Results were divided into two regimes dependent on the level of polymer drag reduction (PDR), nominally separated at a PDR of 40%. The low-PDR regime is characterized by decreasing mean-square pressure fluctuations and increasing convection velocity with increasing drag reduction. This shows that the decrease in the pressure spectra with increasing drag reduction is due in part to the moving of the turbulent structures from the wall. Conversely, with further increases in drag reduction, the high-PDR regime has negligible variation in the mean-squared pressure fluctuations and convection velocity. The convection velocity remains constant at approximately 10% above the baseline-flow convection velocity, which suggests that the turbulent structures no longer move farther from the wall with increasing drag reduction. In light of recent numerical work, the coherence results indicate that in the low-PDR regime, the turbulent structures are being elongated in the streamwise direction and occurring at decreasing frequency. In the high-PDR regime, the rate of occurrence continues to decrease until large-scale coherent turbulent structures are potentially no longer present.

  19. Dynamics of Intense Currents in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Artemyev, Anton V.; Angelopoulos, Vassilis; Halekas, Jasper S.; Vinogradov, Alexander A.; Vasko, Ivan Y.; Zelenyi, Lev M.

    2018-06-01

    Transient currents in the solar wind are carried by various magnetic field discontinuities that contribute significantly to the magnetic field fluctuation spectrum. Internal instabilities and dynamics of these discontinuities are believed to be responsible for magnetic field energy dissipation and corresponding charged particle acceleration and heating. Accurate modeling of these phenomena requires detailed investigation of transient current formation and evolution. By examining such evolution using a unique data set compiled from observations of the same solar wind flow by two spacecraft at Earth’s and Mars’s orbits, we show that it consists of several processes: discontinuity thinning (decrease in thickness normalized by the ion inertial length), intensification of currents normalized to the proton thermal current (i.e., the product of proton charge, density, and thermal velocity), and increase in the compressional component of magnetic field variations across discontinuities. The significant proton temperature variation around most observed discontinuities indicates possible proton heating. Plasma velocity jumps across the discontinuities are well correlated with Alfvén velocity changes. We discuss possible explanations of the observed discontinuity evolution. We also compare the observed evolution with predictions of models describing discontinuity formation due to Alfvén wave steepening. Our results show that discontinuity modeling likely requires taking into account both the effects of nonlinear Alfvén wave dynamics and solar wind expansion.

  20. Water-mediated influence of a crowded environment on internal vibrations of a protein molecule.

    PubMed

    Kuffel, Anna; Zielkiewicz, Jan

    2016-02-14

    The influence of crowding on the protein inner dynamics is examined by putting a single protein molecule close to one or two neighboring protein molecules. The presence of additional molecules influences the amplitudes of protein fluctuations. Also, a weak dynamical coupling of collective velocities of surface atoms of proteins separated by a layer of water is detected. The possible mechanisms of these phenomena are described. The cross-correlation function of the collective velocities of surface atoms of two proteins was decomposed into the Fourier series. The amplitude spectrum displays a peak at low frequencies. Also, the results of principal component analysis suggest that the close presence of an additional protein molecule influences the high-amplitude, low-frequency modes in the most prominent way. This part of the spectrum covers biologically important protein motions. The neighbor-induced changes in the inner dynamics of the protein may be connected with the changes in the velocity power spectrum of interfacial water. The additional protein molecule changes the properties of solvation water and in this way it can influence the dynamics of the second protein. It is suggested that this phenomenon may be described, at first approximation, by a damped oscillator driven by an external random force. This model was successfully applied to conformationally rigid Choristoneura fumiferana antifreeze protein molecules.

  1. Time-Resolved Analysis of Turbulent Mixing Flow Characteristics of Intermittent Multi-Hole Diesel Spray Using 2-D PDPA

    NASA Astrophysics Data System (ADS)

    Lee, Jeekuen; Kang, Shinjae; Rho, Byungjoon

    The turbulent mixing flow characteristics of an intermittent diesel spray were investigated. A 5-hole diesel nozzle (dn=0.32mm) with a 2-spring nozzle holder, which is widely used in heavy-duty diesel engines, was tested. Time-resolved analysis of the turbulent mixing flow characteristics of the spray, injected intermittently into the still ambient air, was made under room temperature by using a 2-D PDPA system. The mean and the fluctuation velocities of the spray were measured. The axial velocity distribution shows similar to that of the free air jets at the downstream of the spray, and the distribution well coincides with the result proposed by Hinze at R/b<1.5. The turbulent intensity of the axial velocity component is high near the spray axis, and it decreases gradually with the increase in the radial distance. The turbulent shear stress increases with proceeding to the trailing edge as well as the downstream of the spray. The maximum value of the turbulent shear stress is observed near R/b≈1.0, regardless of the evolution time. The turbulent shear stress in the central parts of the spray is lower than that of the continuous free air jets, whereas that in the trailing edge is considerably higher.

  2. Magnetohydrodynamic turbulence in the solar wind

    NASA Technical Reports Server (NTRS)

    Matthaeus, W. H.; Goldstein, M. L.

    1983-01-01

    Recent work in describing the solar wind as an MHD turbulent fluid has shown that the magnetic fluctuations are adequately described as time stationary and to some extent as spatially homogeneous. Spectra of the three rugged invariants of incompressible MHD are the principal quantities used to characterize the velocity and magnetic field fluctuations. Unresolved issues concerning the existence of actively developing turbulence are discussed.

  3. Transport of Solar Wind Fluctuations: A Two-Component Model

    NASA Technical Reports Server (NTRS)

    Oughton, S.; Matthaeus, W. H.; Smith, C. W.; Breech, B.; Isenberg, P. A.

    2011-01-01

    We present a new model for the transport of solar wind fluctuations which treats them as two interacting incompressible components: quasi-two-dimensional turbulence and a wave-like piece. Quantities solved for include the energy, cross helicity, and characteristic transverse length scale of each component, plus the proton temperature. The development of the model is outlined and numerical solutions are compared with spacecraft observations. Compared to previous single-component models, this new model incorporates a more physically realistic treatment of fluctuations induced by pickup ions and yields improved agreement with observed values of the correlation length, while maintaining good observational accord with the energy, cross helicity, and temperature.

  4. IUTAM symposium on hydrodynamic diffusion of suspended particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, R.H.

    Hydrodynamic diffusion refers to the fluctuating motion of nonBrownian particles (or droplets or bubbles) which occurs in a dispersion due to multiparticle interactions. For example, in a concentrated sheared suspension, particles do not move along streamlines but instead exhibit fluctuating motions as they tumble around each other. This leads to a net migration of particles down gradients in particle concentration and in shear rate, due to the higher frequency of encounters of a test particle with other particles on the side of the test particle which has higher concentration or shear rate. As another example, suspended particles subject to sedimentation,more » centrifugation, or fluidization, do not generally move relative to the fluid with a constant velocity, but instead experience diffusion-like fluctuations in velocity due to interactions with neighboring particles and the resulting variation in the microstructure or configuration of the suspended particles. In flowing granular materials, the particles interact through direct collisions or contacts (rather than through the surrounding fluid); these collisions also cause the particles to undergo fluctuating motions characteristic of diffusion processes. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.« less

  5. Flow of Red Blood Cells in Stenosed Microvessels.

    PubMed

    Vahidkhah, Koohyar; Balogh, Peter; Bagchi, Prosenjit

    2016-06-20

    A computational study is presented on the flow of deformable red blood cells in stenosed microvessels. It is observed that the Fahraeus-Lindqvist effect is significantly enhanced due to the presence of a stenosis. The apparent viscosity of blood is observed to increase by several folds when compared to non-stenosed vessels. An asymmetric distribution of the red blood cells, caused by geometric focusing in stenosed vessels, is observed to play a major role in the enhancement. The asymmetry in cell distribution also results in an asymmetry in average velocity and wall shear stress along the length of the stenosis. The discrete motion of the cells causes large time-dependent fluctuations in flow properties. The root-mean-square of flow rate fluctuations could be an order of magnitude higher than that in non-stenosed vessels. Several folds increase in Eulerian velocity fluctuation is also observed in the vicinity of the stenosis. Surprisingly, a transient flow reversal is observed upstream a stenosis but not downstream. The asymmetry and fluctuations in flow quantities and the flow reversal would not occur in absence of the cells. It is concluded that the flow physics and its physiological consequences are significantly different in micro- versus macrovascular stenosis.

  6. A Heliosphere Buffeted by Interstellar Turbulence?

    NASA Astrophysics Data System (ADS)

    Jokipii, J. R.; Giacalone, J.

    2014-12-01

    Recent observations from IBEX combined with previous measurements from other sources suggest new, local, effects of interstellar turbulence. Observations of various interstellar parameters such as the magnetic field, fluid velocity and electron density, over large spatial scales, have revealed a broadband Kolmogorov spectrum of interstellar turbulence which pervades most of interstellar space. The outer scale (or coherence scale of this turbulence) is found to be approximately 10^19 cm and the inner cutoff scale is less than 1000 km. The root-mean-square relative fluctuation in the fluid and the magnetic-field parameters is of order unity. If this turbulence exists at the heliosphere, the root-mean-square relative fluctuations at 100 (heliospheric) AU scales is approximately 0.1. The recently published value for the change In observed velocity direction for the interstellar flow relative to the heliosphere (Frisch, etal, 2014)is consistent with this. Similarly, interpreting the width of the IBEX ribbon in terms of a fluctuating magnetic field also is in agreement with this picture. Observations of TeV cosmic rays can also be explained. Potential effects of these fluctuations in the interstellar medium on the heliosphere will be discussed. Reference: Frisch, etal, Science, 341, 480

  7. Flow of Red Blood Cells in Stenosed Microvessels

    NASA Astrophysics Data System (ADS)

    Vahidkhah, Koohyar; Balogh, Peter; Bagchi, Prosenjit

    2016-06-01

    A computational study is presented on the flow of deformable red blood cells in stenosed microvessels. It is observed that the Fahraeus-Lindqvist effect is significantly enhanced due to the presence of a stenosis. The apparent viscosity of blood is observed to increase by several folds when compared to non-stenosed vessels. An asymmetric distribution of the red blood cells, caused by geometric focusing in stenosed vessels, is observed to play a major role in the enhancement. The asymmetry in cell distribution also results in an asymmetry in average velocity and wall shear stress along the length of the stenosis. The discrete motion of the cells causes large time-dependent fluctuations in flow properties. The root-mean-square of flow rate fluctuations could be an order of magnitude higher than that in non-stenosed vessels. Several folds increase in Eulerian velocity fluctuation is also observed in the vicinity of the stenosis. Surprisingly, a transient flow reversal is observed upstream a stenosis but not downstream. The asymmetry and fluctuations in flow quantities and the flow reversal would not occur in absence of the cells. It is concluded that the flow physics and its physiological consequences are significantly different in micro- versus macrovascular stenosis.

  8. Particle Resolved DNS of Turbulent Oscillatory Flow Over a Layer of Fixed Particles

    NASA Astrophysics Data System (ADS)

    Ghodke, Chaitanya; Urzay, Javier; Apte, Sourabh

    2014-11-01

    Particle resolved direct numerical simulations are performed using fictitious domain approach (Apte et al., JCP 2009) to investigate oscillatory turbulent flow over a layer of fixed particles representative of a sediment layer in coastal environments. Five particle Reynolds numbers in the range, ReD = 660 - 4240 are studied and results are compared against available experimental data (Keiller & Sleath, JFM 1976). Flow is characterized in terms of coherent vortex structures, Reynolds stress variation, turbulent cross-correlations and PDF distributions. The nature of the unsteady hydrodynamic forces on particles and their correlation to sweep and burst events is reported. The net lift coefficient remains positive over the cycle and is well correlated with phase averaged near-bed velocity. Maximum in the lift coefficient occurs when the strength of the horseshoe vortices is maximum. At this phase the lift fluctuations are correlated negatively with pressure and positively with velocity fluctuations in the region above the particle bed. Preliminary analysis shows non-Gaussian distribution for velocity fluctuation and follows 4th order Gram-Charlier. These detailed findings could eventually be useful in improving the existing criterion for predicting sediment incipient motion. Supported by NSF Project # 1133363 as well as Center for Turbulence Research Stanford University Summer Program 2014.

  9. Assessment of benthic flux of dissolved organic carbon in wetland and estuarine sediments using the eddy-correlation technique

    NASA Astrophysics Data System (ADS)

    Swett, M. P.; Amirbahman, A.; Boss, E.

    2009-12-01

    Wetland and estuarine sediments release significant amounts of dissolved organic carbon (DOC) due to high levels of microbial activity, particularly sulfate reduction. Changes in climate and hydrologic conditions have a potential to alter DOC release from these systems as well. This is a concern, as high levels of DOC can lead to mobilization of toxic metals and organics in natural waters. In addition, source waters high in DOC produce undesirable disinfection byproducts in water treatment. Various in situ methods, such as peepers and sediment core centrifugation, exist to quantify vertical benthic fluxes of DOC and other dissolved species from the sediment-water interface (SWI). These techniques, however, are intrusive and involve disturbance of the sediment environment. Eddy-correlation allows for real-time, non-intrusive, in situ flux measurement of important analytes, such as O2 and DOC. An Acoustic Doppler Velocimeter (ADV) is used to obtain three-dimensional fluid velocity measurements. The eddy-correlation technique employs the mathematical separation of fluid velocity into mean velocity and fluctuating velocity components, with the latter representing turbulent eddy velocity. DOC concentrations are measured using a colored dissolved organic matter (CDOM) fluorometer, and instantaneous vertical flux is determined from the correlated data. This study assesses DOC flux at three project sites: a beaver pond in the Lower Penobscot Watershed, Maine; a mudflat in Penobscot River, Maine; and a mudflat in Great Bay, New Hampshire. Eddy flux values are compared with results obtained using peepers and centrifugation, as well as vertical profiling.

  10. Three-dimensional hybrid modeling of ion kinetic instabilities in space plasma

    NASA Astrophysics Data System (ADS)

    Ofman, L.

    2017-12-01

    Ion kinetic instabilities in space plasma are believed to play an imprortant role in energy transport, heating, dissipation of turbulence, as well as in generating of spectrum of magnetic fluctuations in the kinetic frequency range. The velocity distribution functions (VDFs) of unstable ion populations are generally non-Maxwellian and provide the free energy source that drives the waves. The VDFs were measured in-situ by satellites such as Helios, WIND, and would be obtained in the future Parkers' Solar Probe close to the Sun. In particular, temperature anisotropy provides a measure of VDF non-equilibroum structure, that together with parallel-beta determine the threshold of kinetic instabilities, such as mirror, ion-cyclotron, and firehose. Drifting population of alphas with respect to protons lead to the magnetosonic instability. So far, these isntabilities were studied primaraly using 1.5D or 2.5D particle-in-cell (PIC) or hybrid models (where electrons are modeled as a fluid), i.e., in 1 or 2 spatial dimensions with 3 components of velocity and magnetic field. I will present the results of recent full 3D hybrid models that studies these instabilities for heliospheric conditions and compare to previous modeling results. I will discuss the agreement and the differences between the 3D and more approximate models of the VDFs, the magnetic fluctuations spectra, and the temporal evolution of the anisotropy for typical instabilities relevant for space plasma. I will duscuss the use of the modeled VDFs for diagnostic of the physical processes that lead to space plasma energization from the observed VDFs in the heliospheric and magnetospheric plasma.

  11. Variable density mixing in turbulent jets with coflow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charonko, John James; Prestridge, Katherine Philomena

    Two sets of experiments are performed to study variable-density effects in turbulent round jets with co flow at density ratios, s = 4.2 and s = 1.2. 10,000 instantaneous realisations of simultaneous 2-D PIV and PLIF at three axial locations in the momentumdominated region of the jet allow us to calculate the full t.k.e. budgets, providing insights into the mechanisms of density fluctuation correlations both axially and radially in a non- Boussinesq flow. The strongest variable-density effects are observed within the velocity half-width of the jet, r ~u1/2 . Variable density effects decrease the Reynolds stresses via increased turbulent massmore » flux in the heavy jet, as shown by previous jet centreline measurements. Radial pro les of turbulent flux show that in the lighter jet t.k.e. is moving away from the centreline, while in the heavy jet it is being transported both inwards towards the centreline and radially outwards. Negative t.k.e. production is observed in the heavy jet, and we demonstrate that this is caused by both reduced gradient stretching in the axial direction and increased turbulent mass fluxes. Large differences in advection are also observed between the two jets. The air jet has higher total advection caused by strong axial components, while density fluctuations in the heavy jet reduce the axial advection signi cantly. The budget mechanisms in the non-Boussinesq regime are best understood using effective density and velocity half-width, ρeff ¯u 3 1,CL/r ~u1/2,eff , a modi cation of previous scaling.« less

  12. Variable density mixing in turbulent jets with coflow

    DOE PAGES

    Charonko, John James; Prestridge, Katherine Philomena

    2017-07-24

    Two sets of experiments are performed to study variable-density effects in turbulent round jets with co flow at density ratios, s = 4.2 and s = 1.2. 10,000 instantaneous realisations of simultaneous 2-D PIV and PLIF at three axial locations in the momentumdominated region of the jet allow us to calculate the full t.k.e. budgets, providing insights into the mechanisms of density fluctuation correlations both axially and radially in a non- Boussinesq flow. The strongest variable-density effects are observed within the velocity half-width of the jet, r ~u1/2 . Variable density effects decrease the Reynolds stresses via increased turbulent massmore » flux in the heavy jet, as shown by previous jet centreline measurements. Radial pro les of turbulent flux show that in the lighter jet t.k.e. is moving away from the centreline, while in the heavy jet it is being transported both inwards towards the centreline and radially outwards. Negative t.k.e. production is observed in the heavy jet, and we demonstrate that this is caused by both reduced gradient stretching in the axial direction and increased turbulent mass fluxes. Large differences in advection are also observed between the two jets. The air jet has higher total advection caused by strong axial components, while density fluctuations in the heavy jet reduce the axial advection signi cantly. The budget mechanisms in the non-Boussinesq regime are best understood using effective density and velocity half-width, ρeff ¯u 3 1,CL/r ~u1/2,eff , a modi cation of previous scaling.« less

  13. Experimental demonstration that a free-falling aerosol particle obeys a fluctuation theorem

    NASA Astrophysics Data System (ADS)

    Wong, Chun-Shang; Goree, J.; Gopalakrishnan, Ranganathan

    2018-05-01

    We investigate the fluctuating motion of an aerosol particle falling in air. Using a Millikan-like setup, we tracked a 1-μ m sphere falling at its terminal velocity. We observe occurrences of particles undergoing upward displacements against the force of gravity, so that negative work is done briefly. These negative-work events have a probability that is shown to obey the work fluctuation theorem. This experimental confirmation of the theorem's applicability to aerosols leads us to develop and demonstrate an application: an in situ measurement of an aerosol particle's mass.

  14. Simulation of a Driven Dense Granular Gas

    NASA Astrophysics Data System (ADS)

    Bizon, Chris; Shattuck, M. D.; Swift, J. B.; Swinney, Harry L.

    1998-11-01

    Event driven particle simulations quantitatively reproduce the experimental results on vibrated granular layers, including the formation of standing wave patterns(C. Bizon, M.D. Shattuck, J.B. Swift, W.D. McCormick, and H.L. Swinney, Phys. Rev. Lett. 80), pp. 57-60 (1998). and secondary instabilities(J.R. deBruyn, C. Bizon, M.D. Shattuck, D. Goldman, J.B. Swift, and H.L. Swinney, Phys. Rev. Lett. 81) (1998), to appear. . In these simulations the velocity distributions are nearly Gaussian when scaled with the local fluctuational kinetic energy (granular temperature); this suggests that inelastic dense gas kinetic theory is applicable. We perform simulations of a two-dimensional granular gas that is homogeneously driven with fluctuating forces. We find that the equation of state differs from that of an elastic dense gas and that this difference is due to a change in the distribution of relative velocities at collisions. Granular thermal conductivity and viscosity are measured by allowing the fluctuating forces to have large scale spatial gradients.

  15. Time-dependent behavior in a transport-barrier model for the quasi-single helcity state

    NASA Astrophysics Data System (ADS)

    Terry, P. W.; Whelan, G. G.

    2014-09-01

    Time-dependent behavior that follows from a recent theory of the quasi-single-helicity (QSH) state of the reversed field pinch is considered. The theory (Kim and Terry 2012 Phys. Plasmas 19 122304) treats QSH as a core fluctuation structure tied to a tearing mode of the same helicity, and shows that strong magnetic and velocity shears in the structure suppress the nonlinear interaction with other fluctuations. By summing the multiple helicity fluctuation energies over wavenumber, we reduce the theory to a predator-prey model. The suppression of the nonlinear interaction is governed by the single helicity energy, which, for fixed radial structure, controls the magnetic and velocity shearing rates. It is also controlled by plasma current which, in the theory, sets the shearing threshold for suppression. The model shows a limit cycle oscillation in which the system toggles between QSH and multiple helicity states, with the single helicity phase becoming increasingly long-lived relative to the multiple helicity phase as plasma current increases.

  16. Role of turbulence fluctuations on uncertainties of acoutic Doppler current profiler discharge measurements

    USGS Publications Warehouse

    Tarrab, Leticia; Garcia, Carlos M.; Cantero, Mariano I.; Oberg, Kevin

    2012-01-01

    This work presents a systematic analysis quantifying the role of the presence of turbulence fluctuations on uncertainties (random errors) of acoustic Doppler current profiler (ADCP) discharge measurements from moving platforms. Data sets of three-dimensional flow velocities with high temporal and spatial resolution were generated from direct numerical simulation (DNS) of turbulent open channel flow. Dimensionless functions relating parameters quantifying the uncertainty in discharge measurements due to flow turbulence (relative variance and relative maximum random error) to sampling configuration were developed from the DNS simulations and then validated with field-scale discharge measurements. The validated functions were used to evaluate the role of the presence of flow turbulence fluctuations on uncertainties in ADCP discharge measurements. The results of this work indicate that random errors due to the flow turbulence are significant when: (a) a low number of transects is used for a discharge measurement, and (b) measurements are made in shallow rivers using high boat velocity (short time for the boat to cross a flow turbulence structure).

  17. Airflow elicits a spider's jump towards airborne prey. I. Airflow around a flying blowfly

    PubMed Central

    Klopsch, Christian; Kuhlmann, Hendrik C.; Barth, Friedrich G.

    2012-01-01

    The hunting spider Cupiennius salei uses airflow generated by flying insects for the guidance of its prey-capture jump. We investigated the velocity field of the airflow generated by a freely flying blowfly close to the flow sensors on the spider's legs. It shows three characteristic phases (I–III). (I) When approaching, the blowfly induces an airflow signal near the spider with only little fluctuation (0.013 ± 0.006 m s−1) and a strength that increases nearly exponentially with time (maximum: 0.164 ± 0.051 m s−1 s.d.). The spider detects this flow while the fly is still 38.4 ± 5.6 mm away. The fluctuation of the airflow above the sensors increases linearly up to 0.037 m s−1 with the fly's altitude. Differences in the time of arrival and intensity of the fly signal at different legs probably inform the spider about the direction to the prey. (II) Phase II abruptly follows phase I with a much higher degree of fluctuation (fluctuation amplitudes: 0.114 ± 0.050 m s−1). It starts when the fly is directly above the sensor and corresponds to the time-dependent flow in the wake below and behind the fly. Its onset indicates to the spider that its prey is now within reach and triggers its jump. The spider derives information on the fly's position from the airflow characteristics, enabling it to properly time its jump. The horizontal velocity of the approaching fly is reflected by the time of arrival differences (ranging from 0.038 to 0.108 s) of the flow at different legs and the exponential velocity growth rate (16–79 s−1) during phase I. (III) The air flow velocity decays again after the fly has passed the spider. PMID:22572032

  18. Direct numerical simulation of turbulence in injection-driven plane channel flows

    NASA Astrophysics Data System (ADS)

    Venugopal, Prem; Moser, Robert D.; Najjar, Fady M.

    2008-10-01

    Compressible turbulent flow in a periodic plane channel with mass injecting walls is studied as a simplified model for core flow in a solid-propellant rocket motor with homogeneous propellant and other injection-driven internal flows. In this model problem, the streamwise direction was asymptotically homogenized by assuming that at large distances from the closed end, both the mean and rms of turbulent fluctuations evolve slowly in the streamwise direction when compared to the turbulent fluctuations themselves. The Navier-Stokes equations were then modified to account for this slow growth. A direct numerical simulation of the homogenized compressible injection-driven turbulent flow was then conducted for conditions occurring at a streamwise location situated 40 channel half-widths from the closed off end and at an injection Reynolds number of approximately 190. The turbulence in this model flow was found to be only weakly compressible, although significant compressibility existed in the mean flow. As in nontranspired channels, turbulence resulted in increased near-wall shear for the mean streamwise velocity. When normalized by the average rate of turbulence production, the magnitudes of near-wall velocity fluctuations were similar to those in the log region of nontranspired wall-bounded turbulence. However, the sharp peak in streamwise velocity fluctuations observed in nontranspired channels was absent. While streaks and inclined vortices were observed in the near-wall region, their structure was very similar to those observed in the log region of nontranspired channels. These differences are attributed to the absence of a viscous sublayer in the transpired case which in turn is the result of the fact that the no-slip condition for the transpired case is an inviscid boundary condition. That is, unlike nontranspired walls, with transpiration, zero tangential velocity boundary conditions can be imposed at the wall for the Euler (inviscid) equations. The results of this study have important implications on the ability of turbulence models to predict this flow.

  19. Modeling non-Fickian dispersion by use of the velocity PDF on the pore scale

    NASA Astrophysics Data System (ADS)

    Kooshapur, Sheema; Manhart, Michael

    2015-04-01

    For obtaining a description of reactive flows in porous media, apart from the geometrical complications of resolving the velocities and scalar values, one has to deal with the additional reactive term in the transport equation. An accurate description of the interface of the reacting fluids - which is strongly influenced by dispersion- is essential for resolving this term. In REV-based simulations the reactive term needs to be modeled taking sub-REV fluctuations and possibly non-Fickian dispersion into account. Non-Fickian dispersion has been observed in strongly heterogeneous domains and in early phases of transport. A fully resolved solution of the Navier-Stokes and transport equations which yields a detailed description of the flow properties, dispersion, interfaces of fluids, etc. however, is not practical for domains containing more than a few thousand grains, due to the huge computational effort required. Through Probability Density Function (PDF) based methods, the velocity distribution in the pore space can facilitate the understanding and modelling of non-Fickian dispersion [1,2]. Our aim is to model the transition between non-Fickian and Fickian dispersion in a random sphere pack within the framework of a PDF based transport model proposed by Meyer and Tchelepi [1,3]. They proposed a stochastic transport model where velocity components of tracer particles are represented by a continuous Markovian stochastic process. In addition to [3], we consider the effects of pore scale diffusion and formulate a different stochastic equation for the increments in velocity space from first principles. To assess the terms in this equation, we performed Direct Numerical Simulations (DNS) for solving the Navier-Stokes equation on a random sphere pack. We extracted the PDFs and statistical moments (up to the 4th moment) of the stream-wise velocity, u, and first and second order velocity derivatives both independent and conditioned on velocity. By using this data and combining the Taylor expansion of velocity increments, du, and the Langevin equation for point particles we obtained the components of velocity fluxes which point to a drift and diffusion behavior in the velocity space. Thus a partial differential equation for the velocity PDF has been formulated that constitutes an advection-diffusion equation in velocity space (a Fokker-Planck equation) in which the drift and diffusion coefficients are obtained using the velocity conditioned statistics of the derivatives of the pore scale velocity field. This has been solved by both a Random Walk (RW) model and a Finite Volume method. We conclude that both, these methods are able to simulate the velocity PDF obtained by DNS. References [1] D. W. Meyer, P. Jenny, H.A.Tschelepi, A joint velocity-concentration PDF method for traqcer flow in heterogeneous porous media, Water Resour.Res., 46, W12522, (2010). [2] Nowak, W., R. L. Schwede, O. A. Cirpka, and I. Neuweiler, Probability density functions of hydraulic head and velocity in three-dimensional heterogeneous porous media, Water Resour.Res., 44, W08452, (2008) [3] D. W. Meyer, H. A. Tchelepi, Particle-based transport model with Markovian velocity processes for tracer dispersion in highly heterogeneous porous media, Water Resour. Res., 46, W11552, (2010)

  20. Wind regime peculiarities in the lower thermosphere in the winter of 1983/84

    NASA Technical Reports Server (NTRS)

    Lysenko, I. A.; Makarov, N. A.; Portnyagin, Yu. I.; Petrov, B. I.; Greisiger, K. M.; Schminder, R.; Kurschner, D.

    1987-01-01

    Temporal variations of prevailing winds at 90 to 100 km obtained from measurements carried out in winter 1983 to 1984 at three sites in the USSR and two sites in East Germany are reported. These variations are compared with those of the thermal stratospheric regime. Measurements were carried out using the drifts D2 method (meteor wind radar) and the D1 method (ionospheric drifts). Temporal variations of zonal and meridional prevailing wind components for all the sites are given. Also presented are zonal wind data obtained using the partial reflection wind radar. Wind velocity values were obtained by averaging data recorded at between 105 and 91 km altitude. Wind velocity data averaged in such a way can be related to about the same height interval to which the data obtained by the meteor radar and ionospheric methods at other sites, i.e., the mean height of the meteor zone (about 95 km). The results presented show that there are significant fluctuations about the seasonal course of both zonal and meridional prevailing winds.

  1. Laser Velocimeter for Studies of Microgravity Combustion Flowfields

    NASA Technical Reports Server (NTRS)

    Varghese, Philip L.

    2003-01-01

    A velocimeter was developed based on modulated filtered Rayleigh scattering (MFRS). The MFRS velocimeter was successfully demonstrated by making one-component velocity measurements in a supersonic expansion using molecular Rayleigh scattering in a jet of N2. These measurements were made in a sweep mode where the Rayleigh scattered profile is cross-correlated with absorption in a static cell to determine velocity. To improve temporal resolution the frequency-locked mode of operation was developed, with an in-situ referencing scheme to compensate for signal fluctuations arising from density variations in the probe volume. Spectroscopic grade (i.e. continuously tunable, single-mode) laser sources with high power (greater than 100 mW) are not commercially available at the wavelength of interest (780 nm). We developed an all-solid-state system with a low power (approximately 10 mW) spectroscopic grade laser source in a Littrow cavity is amplified by a broad-area diode laser. We have demonstrated that the slaved output tracks the injected input but have not yet demonstrated power gain by the end of the grant period.

  2. Dark energy and the quietness of the local Hubble flow

    NASA Astrophysics Data System (ADS)

    Axenides, M.; Perivolaropoulos, L.

    2002-06-01

    The linearity and quietness of the local (<10 Mpc) Hubble flow (LHF) in view of the very clumpy local universe is a long standing puzzle in standard and in open CDM (cold dark matter) cosmogony. The question addressed in this paper is whether the antigravity component of the recently discovered dark energy can cool the velocity flow enough to provide a solution to this puzzle. We calculate the growth of matter fluctuations in a flat universe containing a fraction ΩX(t0) of dark energy obeying the time independent equation of state pX=wρX. We find that dark energy can indeed cool the LHF. However the dark energy parameter values required to make the predicted velocity dispersion consistent with the observed value vrms~=40 km/s have been ruled out by other observational tests constraining the dark energy parameters w and ΩX. Therefore despite the claims of recent qualitative studies, dark energy with time independent equation of state cannot by itself explain the quietness and linearity of the local Hubble flow.

  3. Demonstration of Wavelet Techniques in the Spectral Analysis of Bypass Transition Data

    NASA Technical Reports Server (NTRS)

    Lewalle, Jacques; Ashpis, David E.; Sohn, Ki-Hyeon

    1997-01-01

    A number of wavelet-based techniques for the analysis of experimental data are developed and illustrated. A multiscale analysis based on the Mexican hat wavelet is demonstrated as a tool for acquiring physical and quantitative information not obtainable by standard signal analysis methods. Experimental data for the analysis came from simultaneous hot-wire velocity traces in a bypass transition of the boundary layer on a heated flat plate. A pair of traces (two components of velocity) at one location was excerpted. A number of ensemble and conditional statistics related to dominant time scales for energy and momentum transport were calculated. The analysis revealed a lack of energy-dominant time scales inside turbulent spots but identified transport-dominant scales inside spots that account for the largest part of the Reynolds stress. Momentum transport was much more intermittent than were energetic fluctuations. This work is the first step in a continuing study of the spatial evolution of these scale-related statistics, the goal being to apply the multiscale analysis results to improve the modeling of transitional and turbulent industrial flows.

  4. Response to perturbations for granular flow in a hopper

    NASA Astrophysics Data System (ADS)

    Wambaugh, John F.; Behringer, Robert P.; Matthews, John V.; Gremaud, Pierre A.

    2007-11-01

    We experimentally investigate the response to perturbations of circular symmetry for dense granular flow inside a three-dimensional right-conical hopper. These experiments consist of particle tracking velocimetry for the flow at the outer boundary of the hopper. We are able to test commonly used constitutive relations and observe granular flow phenomena that we can model numerically. Unperturbed conical hopper flow has been described as a radial velocity field with no azimuthal component. Guided by numerical models based upon continuum descriptions, we find experimental evidence for secondary, azimuthal circulation in response to perturbation of the symmetry with respect to gravity by tilting. For small perturbations we can discriminate between constitutive relations, based upon the agreement between the numerical predictions they produce and our experimental results. We find that the secondary circulation can be suppressed as wall friction is varied, also in agreement with numerical predictions. For large tilt angles we observe the abrupt onset of circulation for parameters where circulation was previously suppressed. Finally, we observe that for large tilt angles the fluctuations in velocity grow, independent of the onset of circulation.

  5. Understanding Fomalhaut as a Cooper pair

    NASA Astrophysics Data System (ADS)

    Feng, F.; Jones, H. R. A.

    2018-03-01

    Fomalhaut is a nearby stellar system and has been found to be a triple based on astrometric observations. With new radial velocity and astrometric data, we study the association between Fomalhaut A, B, and C in a Bayesian framework, finding that the system is gravitationally bound or at least associated. Based on simulations of the system, we find that Fomalhaut C can be easily destabilized through combined perturbations from the Galactic tide and stellar encounters. Considering that observing the disruption of a triple is probably rare in the solar neighbourhood, we conclude that Fomalhaut C is a so-called `gravitational pair' of Fomalhaut A and B. Like the Cooper pair mechanism in superconductors, this phenomenon only appears once the orbital energy of a component becomes comparable with the energy fluctuations caused by the environment. Based on our simulations, we find (1) an upper limit of 8 km s-1 velocity difference is appropriate when selecting binary candidates, and (2) an empirical formula for the escape radius, which is more appropriate than tidal radius when measuring the stability of wide binaries.

  6. High-resolution CFD detects high-frequency velocity fluctuations in bifurcation, but not sidewall, aneurysms.

    PubMed

    Valen-Sendstad, Kristian; Mardal, Kent-André; Steinman, David A

    2013-01-18

    High-frequency flow fluctuations in intracranial aneurysms have previously been reported in vitro and in vivo. On the other hand, the vast majority of image-based computational fluid dynamics (CFD) studies of cerebral aneurysms report periodic, laminar flow. We have previously demonstrated that transitional flow, consistent with in vivo reports, can occur in a middle cerebral artery (MCA) bifurcation aneurysm when ultra-high-resolution direct numerical simulation methods are applied. The object of the present study was to investigate if such high-frequency flow fluctuations might be more widespread in adequately-resolved CFD models. A sample of N=12 anatomically realistic MCA aneurysms (five unruptured, seven ruptured), was digitally segmented from CT angiograms. Four were classified as sidewall aneurysms, the other eight as bifurcation aneurysms. Transient CFD simulations were carried out assuming a steady inflow velocity of 0.5m/s, corresponding to typical peak systolic conditions at the MCA. To allow for detection of clinically-reported high-frequency flow fluctuations and resulting flow structures, temporal and spatial resolutions of the CFD simulations were in the order of 0.1 ms and 0.1 mm, respectively. A transient flow response to the stationary inflow conditions was found in five of the 12 aneurysms, with energetic fluctuations up to 100 Hz, and in one case up to 900 Hz. Incidentally, all five were ruptured bifurcation aneurysms, whereas all four sidewall aneurysms, including one ruptured case, quickly reached a stable, steady state solution. Energetic, rapid fluctuations may be overlooked in CFD models of bifurcation aneurysms unless adequate temporal and spatial resolutions are used. Such fluctuations may be relevant to the mechanobiology of aneurysm rupture, and to a recently reported dichotomy between predictors of rupture likelihood for bifurcation vs. sidewall aneurysms. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. NMR studies of multiphase flows II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altobelli, S.A.; Caprihan, A.; Fukushima, E.

    NMR techniques for measurements of spatial distribution of material phase, velocity and velocity fluctuation are being developed and refined. Versions of these techniques which provide time average liquid fraction and fluid phase velocity have been applied to several concentrated suspension systems which will not be discussed extensively here. Technical developments required to further extend the use of NMR to the multi-phase flow arena and to provide measurements of previously unobtainable parameters are the focus of this report.

  8. Feedback Regulation and Its Efficiency in Biochemical Networks

    NASA Astrophysics Data System (ADS)

    Kobayashi, Tetsuya J.; Yokota, Ryo; Aihara, Kazuyuki

    2016-03-01

    Intracellular biochemical networks fluctuate dynamically due to various internal and external sources of fluctuation. Dissecting the fluctuation into biologically relevant components is important for understanding how a cell controls and harnesses noise and how information is transferred over apparently noisy intracellular networks. While substantial theoretical and experimental advancement on the decomposition of fluctuation was achieved for feedforward networks without any loop, we still lack a theoretical basis that can consistently extend such advancement to feedback networks. The main obstacle that hampers is the circulative propagation of fluctuation by feedback loops. In order to define the relevant quantity for the impact of feedback loops for fluctuation, disentanglement of the causally interlocked influences between the components is required. In addition, we also lack an approach that enables us to infer non-perturbatively the influence of the feedback to fluctuation in the same way as the dual reporter system does in the feedforward networks. In this work, we address these problems by extending the work on the fluctuation decomposition and the dual reporter system. For a single-loop feedback network with two components, we define feedback loop gain as the feedback efficiency that is consistent with the fluctuation decomposition for feedforward networks. Then, we clarify the relation of the feedback efficiency with the fluctuation propagation in an open-looped FF network. Finally, by extending the dual reporter system, we propose a conjugate feedback and feedforward system for estimating the feedback efficiency non-perturbatively only from the statistics of the system.

  9. The influence of a high pressure gradient on unsteady velocity perturbations in the case of a turbulent supersonic flow

    NASA Technical Reports Server (NTRS)

    Dussauge, J. P.; Debieve, J. F.

    1980-01-01

    The amplification or reduction of unsteady velocity perturbations under the influence of strong flow acceleration or deceleration was studied. Supersonic flows with large velocity, pressure gradients, and the conditions in which the velocity fluctuations depend on the action of the average gradients of pressure and velocity rather than turbulence, are described. Results are analyzed statistically and interpreted as a return to laminar process. It is shown that this return to laminar implies negative values in the turbulence production terms for kinetic energy. A simple geometrical representation of the Reynolds stress production is given.

  10. The acute effects of lower limb intermittent negative pressure on foot macro- and microcirculation in patients with peripheral arterial disease.

    PubMed

    Sundby, Øyvind Heiberg; Høiseth, Lars Øivind; Mathiesen, Iacob; Weedon-Fekjær, Harald; Sundhagen, Jon O; Hisdal, Jonny

    2017-01-01

    Intermittent negative pressure (INP) applied to the lower leg and foot increases foot perfusion in healthy volunteers. The aim of the present study was to describe the effects of INP to the lower leg and foot on foot macro- and microcirculation in patients with lower extremity peripheral arterial disease (PAD). In this experimental study, we analyzed foot circulation during INP in 20 patients [median (range): 75 (63-84yrs)] with PAD. One leg was placed inside an air-tight vacuum chamber connected to an INP-generator. During application of INP (alternating 10s of -40mmHg/7s of atmospheric pressure), we continuously recorded blood flow velocity in a distal foot artery (ultrasound Doppler), skin blood flow on the pulp of the first toes (laser Doppler), heart rate (ECG), and systemic blood pressure (Finometer). After a 5-min baseline sequence (no pressure), a 10-min INP sequence was applied, followed by 5-min post-INP (no pressure). To compare and quantify blood flow fluctuations between sequences, we calculated cumulative up-and-down fluctuations in arterial blood flow velocity per minute. Onset of INP induced an increase in arterial flow velocity and skin blood flow. Peak blood flow velocity was reached 3s after the onset of negative pressure, and increased 46% [(95% CI 36-57), P<0.001] above baseline. Peak skin blood flow was reached 2s after the onset of negative pressure, and increased 89% (95% CI 48-130), P<0.001) above baseline. Cumulative fluctuations per minute were significantly higher during INP-sequences compared to baseline [21 (95% CI 12-30)cm/s/min to 41 (95% CI 32-51)cm/s/min, P<0.001]. Mean INP blood flow velocity increased significantly ~12% above mean baseline blood flow velocity [(6.7 (95% CI 5.2-8.3)cm/s to 7.5 (95% CI 5.9-9.1)cm/s, P = 0.03)]. INP increases foot macro- and microcirculatory flow pulsatility in patients with PAD. Additionally, application of INP resulted in increased mean arterial blood flow velocity.

  11. The acute effects of lower limb intermittent negative pressure on foot macro- and microcirculation in patients with peripheral arterial disease

    PubMed Central

    Høiseth, Lars Øivind; Mathiesen, Iacob; Weedon-Fekjær, Harald; Sundhagen, Jon O.; Hisdal, Jonny

    2017-01-01

    Background Intermittent negative pressure (INP) applied to the lower leg and foot increases foot perfusion in healthy volunteers. The aim of the present study was to describe the effects of INP to the lower leg and foot on foot macro- and microcirculation in patients with lower extremity peripheral arterial disease (PAD). Methods In this experimental study, we analyzed foot circulation during INP in 20 patients [median (range): 75 (63-84yrs)] with PAD. One leg was placed inside an air-tight vacuum chamber connected to an INP-generator. During application of INP (alternating 10s of -40mmHg/7s of atmospheric pressure), we continuously recorded blood flow velocity in a distal foot artery (ultrasound Doppler), skin blood flow on the pulp of the first toes (laser Doppler), heart rate (ECG), and systemic blood pressure (Finometer). After a 5-min baseline sequence (no pressure), a 10-min INP sequence was applied, followed by 5-min post-INP (no pressure). To compare and quantify blood flow fluctuations between sequences, we calculated cumulative up-and-down fluctuations in arterial blood flow velocity per minute. Results Onset of INP induced an increase in arterial flow velocity and skin blood flow. Peak blood flow velocity was reached 3s after the onset of negative pressure, and increased 46% [(95% CI 36–57), P<0.001] above baseline. Peak skin blood flow was reached 2s after the onset of negative pressure, and increased 89% (95% CI 48–130), P<0.001) above baseline. Cumulative fluctuations per minute were significantly higher during INP-sequences compared to baseline [21 (95% CI 12–30)cm/s/min to 41 (95% CI 32–51)cm/s/min, P<0.001]. Mean INP blood flow velocity increased significantly ~12% above mean baseline blood flow velocity [(6.7 (95% CI 5.2–8.3)cm/s to 7.5 (95% CI 5.9–9.1)cm/s, P = 0.03)]. Conclusion INP increases foot macro- and microcirculatory flow pulsatility in patients with PAD. Additionally, application of INP resulted in increased mean arterial blood flow velocity. PMID:28591174

  12. Effect of blade outlet angle on radial thrust of single-blade centrifugal pump

    NASA Astrophysics Data System (ADS)

    Nishi, Y.; Fukutomi, J.; Fujiwara, R.

    2012-11-01

    Single-blade centrifugal pumps are widely used as sewage pumps. However, a large radial thrust acts on a single blade during pump operation because of the geometrical axial asymmetry of the impeller. This radial thrust causes vibrations of the pump shaft, reducing the service life of bearings and shaft seal devices. Therefore, to ensure pump reliability, it is necessary to quantitatively understand the radial thrust and clarify the behavior and generation mechanism. This study investigated the radial thrust acting on two kinds of single-blade centrifugal impellers having different blade outlet angles by experiments and computational fluid dynamics (CFD) analysis. Furthermore, the radial thrust was modeled by a combination of three components, inertia, momentum, and pressure, by applying an unsteady conservation of momentum to this impeller. As a result, the effects of the blade outlet angle on both the radial thrust and the modeled components were clarified. The total head of the impeller with a blade outlet angle of 16 degrees increases more than the impeller with a blade outlet angle of 8 degrees at a large flow rate. In this case, since the static pressure of the circumference of the impeller increases uniformly, the time-averaged value of the radial thrust of both impellers does not change at every flow rate. On the other hand, since the impeller blade loading becomes large, the fluctuation component of the radial thrust of the impeller with the blade outlet angle of 16 degrees increases. If the blade outlet angle increases, the fluctuation component of the inertia component will increase, but the time-averaged value of the inertia component is located near the origin despite changes in the flow rate. The fluctuation component of the momentum component becomes large at all flow rates. Furthermore, although the time-averaged value of the pressure component is almost constant, the fluctuation component of the pressure component becomes large at a large flow rate. In addition to the increase of the fluctuation component of this pressure component, because the fluctuation component of the inertia and momentum components becomes large (as mentioned above), the radial thrust increases at a large flow rate, as is the case for the impeller with a large blade outlet angle.

  13. On total turbulent energy and the passive and active role of buoyancy in turbulent momentum and mass transfer.

    PubMed

    de Nijs, Michel A J; Pietrzak, Julie D

    Measurements of turbulent fluctuations of horizontal and vertical components of velocity, salinity and suspended particulate matter are presented. Turbulent Prandtl numbers are found to increase with stratification and to become larger than 1. Consequently, the vertical turbulent mass transport is suppressed by buoyancy forces, before the turbulent kinetic energy (TKE) and vertical turbulent momentum exchange are inhibited. With increasing stratification, the buoyancy fluxes do not cease, instead they become countergradient. We find that buoyantly driven motions play an active role in the transfer of mass. This is in agreement with trends derived from Monin-Obukhov scaling. For positive Richardson flux numbers (Ri f ), the log velocity profile in the near-bed layer requires correction with a drag reduction. For negative Ri f , the log velocity profile should be corrected with a drag increase, with increasing |Ri f |. This highlights the active role played by buoyancy in momentum transfer and the production of TKE. However, the data do not appear to entirely follow Monin-Obukhov scaling. This is consistent with the notion that the turbulence field is not in equilibrium. The large stratification results in the decay of turbulence and countergradient buoyancy fluxes act to restore equilibrium in the energy budget. This implies that there is a finite adjustment timescale of the turbulence field to changes in velocity shear and density stratification. The energy transfers associated with the source and sink function of the buoyancy flux can be modeled with the concept of total turbulent energy.

  14. Development of a linearized unsteady aerodynamic analysis for cascade gust response predictions

    NASA Technical Reports Server (NTRS)

    Verdon, Joseph M.; Hall, Kenneth C.

    1990-01-01

    A method for predicting the unsteady aerodynamic response of a cascade of airfoils to entropic, vortical, and acoustic gust excitations is being developed. Here, the unsteady flow is regarded as a small perturbation of a nonuniform isentropic and irrotational steady background flow. A splitting technique is used to decompose the linearized unsteady velocity into rotational and irrotational parts leading to equations for the complex amplitudes of the linearized unsteady entropy, rotational velocity, and velocity potential that are coupled only sequentially. The entropic and rotational velocity fluctuations are described by transport equations for which closed-form solutions in terms of the mean-flow drift and stream functions can be determined. The potential fluctuation is described by an inhomogeneous convected wave equation in which the source term depends on the rotational velocity field, and is determined using finite-difference procedures. The analytical and numerical techniques used to determine the linearized unsteady flow are outlined. Results are presented to indicate the status of the solution procedure and to demonstrate the impact of blade geometry and mean blade loading on the aerodynamic response of cascades to vortical gust excitations. The analysis described herein leads to very efficient predictions of cascade unsteady aerodynamic response phenomena making it useful for turbomachinery aeroelastic and aeroacoustic design applications.

  15. Control of end-tidal PCO2 reduces middle cerebral artery blood velocity variability: implications for physiological neuroimaging.

    PubMed

    Harris, Ashley D; Ide, Kojiro; Poulin, Marc J; Frayne, Richard

    2006-02-15

    Breath-by-breath variability of the end-tidal partial pressure of CO2 (Pet(CO2)) has been shown to be associated with cerebral blood flow (CBF) fluctuations. These fluctuations can impact neuroimaging techniques that depend on cerebrovascular blood flow. We hypothesized that controlling Pet(CO2) would reduce CBF variability. Dynamic end-tidal forcing was used to control Pet(CO2) at 1.5 mm Hg above the resting level and to hold the end-tidal partial pressure of oxygen (Pet(O2)) at the resting level. Peak blood velocity in the middle cerebral artery (MCA) was measured by transcranial Doppler ultrasound (TCD) as an index of CBF. Blood velocity parameters and timing features were determined on each waveform and the variance of these parameters was compared between Normal (air breathing) and Forcing (end-tidal gas control) sessions. The variability of all velocity parameters was significantly reduced in the Forcing session. In particular, the variability of the average velocity over the cardiac cycle was decreased by 18.2% (P < 0.001). For the most part, the variability of the timing parameters was unchanged. Thus, we conclude that controlling Pet(CO2) is effective in reducing CBF variability, which would have important implications for physiologic neuroimaging.

  16. Electronic zero-point fluctuation forces inside circuit components

    PubMed Central

    Leonhardt, Ulf

    2018-01-01

    One of the most intriguing manifestations of quantum zero-point fluctuations are the van der Waals and Casimir forces, often associated with vacuum fluctuations of the electromagnetic field. We study generalized fluctuation potentials acting on internal degrees of freedom of components in electrical circuits. These electronic Casimir-like potentials are induced by the zero-point current fluctuations of any general conductive circuit. For realistic examples of an electromechanical capacitor and a superconducting qubit, our results reveal the possibility of tunable forces between the capacitor plates, or the level shifts of the qubit, respectively. Our analysis suggests an alternative route toward the exploration of Casimir-like fluctuation potentials, namely, by characterizing and measuring them as a function of parameters of the environment. These tunable potentials may be useful for future nanoelectromechanical and quantum technologies. PMID:29719863

  17. Time-Average Measurement of Velocity, Density, Temperature, and Turbulence Using Molecular Rayleigh Scattering

    NASA Technical Reports Server (NTRS)

    Mielke, Amy F.; Seasholtz, Richard G.; Elam, Krisie A.; Panda, Jayanta

    2004-01-01

    Measurement of time-averaged velocity, density, temperature, and turbulence in gas flows using a nonintrusive, point-wise measurement technique based on molecular Rayleigh scattering is discussed. Subsonic and supersonic flows in a 25.4-mm diameter free jet facility were studied. The developed instrumentation utilizes a Fabry-Perot interferometer to spectrally resolve molecularly scattered light from a laser beam passed through a gas flow. The spectrum of the scattered light contains information about velocity, density, and temperature of the gas. The technique uses a slow scan, low noise 16-bit depth CCD camera to record images of the fringes formed by Rayleigh scattered light passing through the interferometer. A kinetic theory model of the Rayleigh scattered light is used in a nonlinear least squares fitting routine to estimate the unknown parameters from the fringe images. The ability to extract turbulence information from the fringe image data proved to be a challenge since the fringe is broadened by not only turbulence, but also thermal fluctuations and aperture effects from collecting light over a range of scattering angles. Figure 1 illustrates broadening of a Rayleigh spectrum typical of flow conditions observed in this work due to aperture effects and turbulence for a scattering angle, chi(sub s), of 90 degrees, f/3.67 collection optics, mean flow velocity, u(sub k), of 300 m/s, and turbulent velocity fluctuations, sigma (sub uk), of 55 m/s. The greatest difficulty in processing the image data was decoupling the thermal and turbulence broadening in the spectrum. To aid in this endeavor, it was necessary to seed the ambient air with smoke and dust particulates; taking advantage of the turbulence broadening in the Mie scattering component of the spectrum of the collected light (not shown in the figure). The primary jet flow was not seeded due to the difficulty of the task. For measurement points lacking particles, velocity, density, and temperature information could reliably be recovered, however the turbulence estimates contained significant uncertainty. Resulting flow parameter estimates are presented for surveys of Mach 0.6, 0.95, and 1.4 jet flows. Velocity, density, and temperature were determined with accuracies of 5 m/s, 1.5%, and 1%, respectively, in flows with no particles present, and with accuracies of 5 m/s, 1-4%, and 2% in flows with particles. Comparison with hotwire data for the Mach 0.6 condition demonstrated turbulence estimates with accuracies of about 5 m/s outside the jet core where Mie scattering from dust/smoke particulates aided in the estimation of turbulence. Turbulence estimates could not be recovered with any significant accuracy for measurement points where no particles were present.

  18. Feedback Flow Control for a Pitching Turret (Part I) (POSTPRINT)

    DTIC Science & Technology

    2010-01-01

    4013, 38th AIAA Plasmadynamics and Lasers Conference, Miami, FL, 2007. 2S. Gordeyev , T. E. Hayden, and E. J. Jumper , “Aero-Optical and Flow...public release; distribution unlimited. 13. SUPPLEMENTARY NOTES Conference presentation published in the Proceedings of the 48th AIAA Aerospace... present at this speed, but systems for controlling velocity fluctuations in incompressible flows will be effective in controlling density fluctuations

  19. Evolution in fluctuating environments: decomposing selection into additive components of the Robertson-Price equation.

    PubMed

    Engen, Steinar; Saether, Bernt-Erik

    2014-03-01

    We analyze the stochastic components of the Robertson-Price equation for the evolution of quantitative characters that enables decomposition of the selection differential into components due to demographic and environmental stochasticity. We show how these two types of stochasticity affect the evolution of multivariate quantitative characters by defining demographic and environmental variances as components of individual fitness. The exact covariance formula for selection is decomposed into three components, the deterministic mean value, as well as stochastic demographic and environmental components. We show that demographic and environmental stochasticity generate random genetic drift and fluctuating selection, respectively. This provides a common theoretical framework for linking ecological and evolutionary processes. Demographic stochasticity can cause random variation in selection differentials independent of fluctuating selection caused by environmental variation. We use this model of selection to illustrate that the effect on the expected selection differential of random variation in individual fitness is dependent on population size, and that the strength of fluctuating selection is affected by how environmental variation affects the covariance in Malthusian fitness between individuals with different phenotypes. Thus, our approach enables us to partition out the effects of fluctuating selection from the effects of selection due to random variation in individual fitness caused by demographic stochasticity. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  20. Velocity Fluctuations in Helical Propulsion: How Small Can a Propeller Be.

    PubMed

    Ghosh, Arijit; Paria, Debadrita; Rangarajan, Govindan; Ghosh, Ambarish

    2014-01-02

    Helical propulsion is at the heart of locomotion strategies utilized by various natural and artificial swimmers. We used experimental observations and a numerical model to study the various fluctuation mechanisms that determine the performance of an externally driven helical propeller as the size of the helix is reduced. From causality analysis, an overwhelming effect of orientational noise at low length scales is observed, which strongly affects the average velocity and direction of motion of a propeller. For length scales smaller than a few micrometers in aqueous media, the operational frequency for the propulsion system would have to increase as the inverse cube of the size, which can be the limiting factor for a helical propeller to achieve locomotion in the desired direction.

  1. Exact solution of a linear molecular motor model driven by two-step fluctuations and subject to protein friction.

    PubMed

    Fogedby, Hans C; Metzler, Ralf; Svane, Axel

    2004-08-01

    We investigate by analytical means the stochastic equations of motion of a linear molecular motor model based on the concept of protein friction. Solving the coupled Langevin equations originally proposed by Mogilner et al. [Phys. Lett. A 237, 297 (1998)], and averaging over both the two-step internal conformational fluctuations and the thermal noise, we present explicit, analytical expressions for the average motion and the velocity-force relationship. Our results allow for a direct interpretation of details of this motor model which are not readily accessible from numerical solutions. In particular, we find that the model is able to predict physiologically reasonable values for the load-free motor velocity and the motor mobility.

  2. Phase separation and large deviations of lattice active matter

    NASA Astrophysics Data System (ADS)

    Whitelam, Stephen; Klymko, Katherine; Mandal, Dibyendu

    2018-04-01

    Off-lattice active Brownian particles form clusters and undergo phase separation even in the absence of attractions or velocity-alignment mechanisms. Arguments that explain this phenomenon appeal only to the ability of particles to move persistently in a direction that fluctuates, but existing lattice models of hard particles that account for this behavior do not exhibit phase separation. Here we present a lattice model of active matter that exhibits motility-induced phase separation in the absence of velocity alignment. Using direct and rare-event sampling of dynamical trajectories, we show that clustering and phase separation are accompanied by pronounced fluctuations of static and dynamic order parameters. This model provides a complement to off-lattice models for the study of motility-induced phase separation.

  3. Rough-pipe flows and the existence of fully developed turbulence

    NASA Astrophysics Data System (ADS)

    Gioia, G.; Chakraborty, Pinaki; Bombardelli, Fabián A.

    2006-03-01

    It is widely believed that at high Reynolds number (Re) all turbulent flows approach a limiting state of "fully developed turbulence" in which the statistics of the velocity fluctuations are independent of Re. Nevertheless, direct measurements of the velocity fluctuations have failed to yield firm empirical evidence that even the second-order structure function becomes independent of Re at high Re, let alone structure functions of higher order. Here we relate the friction coefficient (f) of rough-pipe flows to the second-order structure function. Then we show that in light of experimental measurements of f our results yield unequivocal evidence that the second-order structure function becomes independent of Re at high Re, compatible with the existence of fully developed turbulence.

  4. The geocentric particulate distribution: Cometary, asteroidal, or space debris?

    NASA Technical Reports Server (NTRS)

    Mcdonnell, J. A. M.; Ratcliff, P. R.

    1992-01-01

    Definition of the Low Earth Orbit (LEO) particulate environment has been refined considerably with the analysis of data from NASA's Long Duration Exposure Facility (LDEF). Measurements of the impact rates from particulates ranging from sub-micron to millimetres in dimension and, especially, information on their directionality has permitted new scrunity of the sources of the particulates. Modelling of the dynamics of both bound (Earth orbital) and unbound (hyperbolic interplanetary) particulates intercepting LDEF's faces leads to the conclusion that the source is dominantly interplanetary for particle dimensions of greater than some 5 microns diameter; however the anisotropy below this dimension demands lower velocities and is compatible with an orbital component. Characteristics of the LDEF interplanetary component are compatible with familiar meteoroid sources and deep space measurements. Understanding of the orbital component which exceeds the interplanetary flux by a factor of 4 is less clear; although the very small particulates in orbit have been associated with space debris (Lawrance and Brownlee, 1986) this data conflicts with other measurements (McDonnell, Carey and Dixon, 1984) at the same epoch. By analysis of trajectories approaching the Earth and its atmosphere, we have shown that a significant contribution could be captured by aerocapture, i.e., atmospheric drag, from either asteroidal or cometary sources; such enhancement is unlikely however to provide the temporal and spatial fluctuations observed by the LDEF Interplanetary Dust Experiment (Mullholland et al. 1992). A further new mechanism is also examined, that of aerofragmentation capture, where an atmospheric grazing trajectory, which would not normally lead to capture, leads to fragmentation by thermal or mechanical shock; the microparticulates thus created can be injected in large numbers, but only into short-lifetime orbits. The concentration in one particular orbit plane, could explain the temporal fluctuations seen on LDEF; space debris could also explain the phenomenon.

  5. Discrete-frequency and broadband noise radiation from diesel engine cooling fans

    NASA Astrophysics Data System (ADS)

    Kim, Geon-Seok

    This effort focuses on measuring and predicting the discrete-frequency and broadband noise radiated by diesel engine cooling fans. Unsteady forces developed by the interaction of the fan blade with inlet flow are the dominant source for both discrete-frequency and broadband noise of the subject propeller fan. In many cases, a primary source of discrepancy between fan noise prediction and measurement is due to incomplete description of the fan inflow. Particularly, in such engine cooling systems where space is very limited, it would be very difficult, if not, impossible to measure the fan inflow velocity field using the conventional, stationary hot-wire method. Instead, the fan inflow was measured with two-component x-type hot-film probes attached very close to the leading edge of a rotating blade. One of the advantages of the blade-mounted-probe measurement technique is that it measures velocities relative to the rotating probe, which enables the acquired data to be applied directly in many aerodynamic theories that have been developed for the airfoil fixed-coordinate system. However, the velocity time data measured by this technique contains the spatially non-uniform mean velocity field along with the temporal fluctuations. A phase-locked averaging technique was successfully employed to decompose the velocity data into time-invariant flow distortions and fluctuations due to turbulence. The angles of attack of the fan blades, obtained from inlet flow measurements, indicate that the blades are stalled. The fan's radiated noise was measured without contamination from the engine noise by driving the fan with an electric motor. The motor operated at a constant speed while a pair of speed controllable pulleys controlled the fan speed. Narrowband and 1/3-octave band sound power of the cooling fan was measured by using the comparison method with a reference sound source in a reverberant room. The spatially non-uniform mean velocity field was used in axial-flow fan noise theory to predict the discrete-frequency noise at the blade passing frequency (BPF) and harmonics. The unsteady lift was predicted by considering transverse and longitudinal velocity fluctuations. The influences due to an upstream finger guard were also investigated. The radiated sound power spectra that were measured for the fan are shown to be in excellent agreement with those predicted. The agreement between prediction and measurement is only fair at the fundamental BPF tone. Further experimental investigations revealed that the interaction noise between the fan blades and a shroud surrounding the fan might be the dominant source for the radiation at the first harmonic. The space-time correlation functions of the inflow velocity fluctuations were measured and utilized in stochastic lifting surface theory to calculate the unsteady blade lift and resulting broadband fan noise. The integral length scale of the inlet flow was found to be much smaller than the blade-to-blade separate distance of the fan. Therefore, contributions from blade-to-blade correlations of the various elements on different blades were found to be negligible and hence ignored; only the correlations between the strip elements on a given blade were considered. The cross-correlations measured between elements separated by more than the integral length scale were also found to be negligibly small. The predicted broadband sound power spectra agree well with those measured for frequencies greater than 400 Hz. There are deviations between the predictions and measurements at lower frequencies. These are likely due to fan blade stall, and possibly, anomalies in the noise measurement environment. In order to reduce the sound radiation at the blade rate tones, the baseline fan was replaced with a skewed fan. The backward skew angle of 30° was found to effectively reduce the 2nd and higher harmonics of the blade rate tone. The interaction of the shroud opening and the blade tips dominates the sound level at the fundamental tone. This tone was successfully reduced by incorporating a serrated shroud opening. Overall, a 2.8 dB sound power level reduction was achieved by applying the skewed fan and the serrated shroud opening simultaneously. Almost all blade rate tone levels were reduced without adversely affecting the flow performance of the system.

  6. Evaluation of the topological characteristics of the turbulent flow in a `box of turbulence' through 2D time-resolved particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Lian, Huan; Soulopoulos, Nikolaos; Hardalupas, Yannis

    2017-09-01

    The experimental evaluation of the topological characteristics of the turbulent flow in a `box' of homogeneous and isotropic turbulence (HIT) with zero mean velocity is presented. This requires an initial evaluation of the effect of signal noise on measurement of velocity invariants. The joint probability distribution functions (pdfs) of experimentally evaluated, noise contaminated, velocity invariants have a different shape than the corresponding noise-free joint pdfs obtained from the DNS data of the Johns Hopkins University (JHU) open resource HIT database. A noise model, based on Gaussian and impulsive Salt and Pepper noise, is established and added artificially to the DNS velocity vector field of the JHU database. Digital filtering methods, based on Median and Wiener Filters, are chosen to eliminate the modeled noise source and their capacity to restore the joint pdfs of velocity invariants to that of the noise-free DNS data is examined. The remaining errors after filtering are quantified by evaluating the global mean velocity, turbulent kinetic energy and global turbulent homogeneity, assessed through the behavior of the ratio of the standard deviation of the velocity fluctuations in two directions, the energy spectrum of the velocity fluctuations and the eigenvalues of the rate-of-strain tensor. A method of data filtering, based on median filtered velocity using different median filter window size, is used to quantify the clustering of zero velocity points of the turbulent field using the radial distribution function (RDF) and Voronoï analysis to analyze the 2D time-resolved particle image velocimetry (TR-PIV) velocity measurements. It was found that a median filter with window size 3 × 3 vector spacing is the effective and efficient approach to eliminate the experimental noise from PIV measured velocity images to a satisfactory level and extract the statistical two-dimensional topological turbulent flow patterns.

  7. Comparison of turbulence estimation for four- and five-beam ADCP configurations

    NASA Astrophysics Data System (ADS)

    Togneri, Michael; Masters, Ian; Jones, Dale

    2017-04-01

    Turbulence is a vital consideration for tidal power generation, as the resulting fluctuating loads greatly impact the fatigue life of tidal turbines and their components. Acoustic Doppler current profilers (ADCPs) are one of the most common tools for measurement of currents in tidal power applications, and although most often used for assessment of mean current properties they are also capable of measuring turbulence parameters. Conventional ADCPs use four diverging beams in a so-called 'Janus' configuration, but more recent models employ an additional vertical beam. In this paper we explore the improvements to turbulence measurements that are made possible by the addition of the fifth beam, with a focus on estimation of turbulent kinetic energy (TKE) density. The standard approach for estimating TKE density from ADCP measurements is the variance method. As each of the diverging beams measures a single velocity component at spatially-separated points, it is not possible to find the TKE density by a straightforward combination of beam measurements. Instead, we must assume that the statistical properties of the turbulence are uniform across the spatial extent of the beams; it is then possible to express the TKE density as a linear combination of the velocity variance as measured by each beam. In the four-beam configuration, an additional assumption regarding the magnitude of the turbulent anisotropy: a parameter ξ is introduced that characterises the proportion of TKE in the vertical fluctuations. With the five-beam configuration, direct measurements of the vertical component are available and this assumption is no longer required. In this paper, turbulence measurements from a five-beam ADCP deployed off the coast of Anglesey in 2014 are analysed. We compare turbulence estimates using all five beams to estimates obtained using only the conventional four-beam setup by discarding the vertical beam data. This allows us to quantify the error in the standard value of ξ. We find that it is on average within 3.4% of the real value, although there are times for which it is much greater. We also discuss the Doppler noise correction in the five-beam case, which is more complex than the four-beam case due to the different noise properties of the vertical beam.

  8. The spanwise spectra in wall-bounded turbulence

    NASA Astrophysics Data System (ADS)

    Wang, Hong-Ping; Wang, Shi-Zhao; He, Guo-Wei

    2017-12-01

    The pre-multiplied spanwise energy spectra of streamwise velocity fluctuations are investigated in this paper. Two distinct spectral peaks in the spanwise spectra are observed in low-Reynolds-number wall-bounded turbulence. The spectra are calculated from direct numerical simulation (DNS) of turbulent channel flows and zero-pressure-gradient boundary layer flows. These two peaks locate in the near-wall and outer regions and are referred to as the inner peak and the outer peak, respectively. This result implies that the streamwise velocity fluctuations can be separated into large and small scales in the spanwise direction even though the friction Reynolds number Re_τ can be as low as 1000. The properties of the inner and outer peaks in the spanwise spectra are analyzed. The locations of the inner peak are invariant over a range of Reynolds numbers. However, the locations of the outer peak are associated with the Reynolds number, which are much higher than those of the outer peak of the pre-multiplied streamwise energy spectra of the streamwise velocity.

  9. Reynolds number of transition and self-organized criticality of strong turbulence.

    PubMed

    Yakhot, Victor

    2014-10-01

    A turbulent flow is characterized by velocity fluctuations excited in an extremely broad interval of wave numbers k>Λf, where Λf is a relatively small set of the wave vectors where energy is pumped into fluid by external forces. Iterative averaging over small-scale velocity fluctuations from the interval Λf

  10. Evaluation of a locally homogeneous model of spray evaporation

    NASA Technical Reports Server (NTRS)

    Shearer, A. J.; Faeth, G. M.; Tamura, H.

    1978-01-01

    Measurements were conducted on an evaporating spray in a stagnant environment. The spray was formed using an air-atomizing injector to yield a Sauter mean diameter of the order of 30 microns. The region where evaporation occurred extended approximately 1 m from the injector for the test conditions. Profiles of mean velocity, temperature, composition, and drop size distribution, as well as velocity fluctuations and Reynolds stress, were measured. The results are compared with a locally homogeneous two-phase flow model which implies no velocity difference and thermodynamic equilibrium between the phases. The flow was represented by a k-epsilon-g turbulence model employing a clipped Gaussian probability density function for mixture fraction fluctuations. The model provides a good representation of earlier single-phase jet measurements, but generally overestimates the rate of development of the spray. Using the model predictions to represent conditions along the centerline of the spray, drop life-history calculations were conducted which indicate that these discrepancies are due to slip and loss of thermodynamic equilibrium between the phases.

  11. Reynolds number of transition and self-organized criticality of strong turbulence

    NASA Astrophysics Data System (ADS)

    Yakhot, Victor

    2014-10-01

    A turbulent flow is characterized by velocity fluctuations excited in an extremely broad interval of wave numbers k >Λf , where Λf is a relatively small set of the wave vectors where energy is pumped into fluid by external forces. Iterative averaging over small-scale velocity fluctuations from the interval Λf

  12. The spanwise spectra in wall-bounded turbulence

    NASA Astrophysics Data System (ADS)

    Wang, Hong-Ping; Wang, Shi-Zhao; He, Guo-Wei

    2018-06-01

    The pre-multiplied spanwise energy spectra of streamwise velocity fluctuations are investigated in this paper. Two distinct spectral peaks in the spanwise spectra are observed in low-Reynolds-number wall-bounded turbulence. The spectra are calculated from direct numerical simulation (DNS) of turbulent channel flows and zero-pressure-gradient boundary layer flows. These two peaks locate in the near-wall and outer regions and are referred to as the inner peak and the outer peak, respectively. This result implies that the streamwise velocity fluctuations can be separated into large and small scales in the spanwise direction even though the friction Reynolds number Re_τ can be as low as 1000. The properties of the inner and outer peaks in the spanwise spectra are analyzed. The locations of the inner peak are invariant over a range of Reynolds numbers. However, the locations of the outer peak are associated with the Reynolds number, which are much higher than those of the outer peak of the pre-multiplied streamwise energy spectra of the streamwise velocity.

  13. Instantaneous and Time Averaged Flow Fields of Multiple Vortices in the Tip Region of a Ducted Propulsor

    NASA Astrophysics Data System (ADS)

    Oweis, Ghanem; Steven, Ceccio

    2003-11-01

    PIV data of the flow field in the immediate vicinity of the trailing edge of a ducted propeller at the tip revealed the existence of multiple vorticity concentrations. The multiple vortices in each instantaneous PIV field were identified and individually characterized. The measurements of the multiple vortices were combined with a Gaussian vortex model to reconstruct the vorticity and velocity fields. The major features of the original experimental field were recovered, and the correlation between the two fields was good. The time averaged field and velocity fluctuations were also measured. We will discuss why the "typical" instantaneous tip vortex and the tip vortex from the time averaged field are substantially different. We attempt to explain the cause of these differences. Knowledge of the instantaneous flow field variability is used to understand the causes of the measured velocity fluctuations. The results from this study have an impact on the understanding of the roll-up of tip vortices, and the dynamics of multiple vortices.

  14. Pulsed electromagnetic gas acceleration

    NASA Technical Reports Server (NTRS)

    Jahn, R. G.; Vonjaskowsky, W. F.; Clark, K. E.

    1974-01-01

    Detailed measurements of the axial velocity profile and electromagnetic structure of a high power, quasi-steady MPD discharge are used to formulate a gasdynamic model of the acceleration process. Conceptually dividing the accelerated plasma into an inner flow and an outer flow, it is found that more than two-thirds of the total power in the plasma is deposited in the inner flow, accelerating it to an exhaust velocity of 12.5 km/sec. The outer flow, which is accelerated to a velocity of only 6.2 km/sec, appears to provide a current conduction path between the inner flow and the anode. Related cathode studies have shown that the critical current for the onset of terminal voltage fluctuations, which was recently shown to be a function of the cathode area, appears to reach an asymptote for cathodes of very large surface area. Detailed floating potential measurements show that the fluctuations are confined to the vicinity of the cathode and hence reflect a cathode emission process rather than a fundamental limit on MPD performance.

  15. Polymer as Permeability Modifier in Porous Media

    NASA Astrophysics Data System (ADS)

    Parsa, S.; Weitz, D.

    2017-12-01

    Polymer flow through porous media is of particular interest in applications such as enhanced oil recovery and ground water remediation. We measure the effects of polymer flow on the permeability and local velocity distribution of a single phase flow in 3D micromodel of porous media using confocal microscopy and bulk permeability measurement. Our measurements show considerable reduction in permeability and increased velocity fluctuations with fluid velocities being diverted in some pores after polymer flow. We also find that the average velocity in the medium at constant imposed flow rate scales with the inverse square root of permeability.

  16. Regional difference in small-scale heterogeneities in the crust and upper mantle in Japan derived by the analysis of high-frequency P-wave

    NASA Astrophysics Data System (ADS)

    Takemura, S.; Furumura, T.

    2010-12-01

    In order to understand distribution properties of small-scale heterogeneities in the crust and upper mantle structure, we analyze three-component seismograms recorded by Hi-net in Japan. We examined relative strength of the P-wave in the transverse (T) component and its change as a function of frequency and propagation distances, which is strongly relating to the strength of seismic wave scattering in the lithosphere. We analyzed 53,220 Hi-net record from 310 shallow (h<30km) crustal earthquakes with MJMA =2.0-5.3. The three-component seismograms are firstly applied by band-pass filter with pass band frequency of f=1-2, 2-4, 4-8, 8-16, 16-32 Hz and then the Hilbert transform is used to synthesize envelope of each component. Then, the energy partition (EP) of P wave in the T component relative to total P-wave energy is evaluated around the P wave in 3-sec time window. The estimated EP value is almost constant 0.2 in high-frequencies (8-16 Hz) at shorter distance, while it is 0.07 in low-frequencies (1-2 Hz). We found clearly frequency-change property of EP value. But at larger distance over 150 km, EP values gradually increase with increasing distance. In high-frequencies (8-16, 16-32 Hz), especially EP values asymptotically reach from 0.2 to 0.33, equi-partitioning of P-wave energy into three components. This may because Pn-phase dominates in larger hypocentral distances. In order to examine difference in the EP in each area of Japan which would be relating to the strength of crustal heterogeneities in each area we divided the area of Japan into three regions, fore-arc side of Tohoku, back-arc side of Tohoku and Chugoku-Shikoku area. The difference in EP value in each area is clearly found in the high-frequency (4-8 Hz) band, where larger EP (0.2) was obtained at back-arc side of Tohoku relative to smaller EP (0.1) at fore-arc side of Tohoku and Chugoku-Shikoku. This is consistent with the results of Carcole and Sato (2009) who estimated the strength of crustal heterogeneities based on the multi lapse time-window analysis. In order to clarify the cause of such regional difference of EP, we conduct 3-D FDM simulations using stochastic random media. The model covers a zone 204.8 km by 204.8 km by 64.0 km descretized with 0.1 km in horizontal direction and 0.05 km in vertical direction. The small-scale heterogeneity in the lithosphere is constructed by velocity fluctuation from average velocity. The fluctuation is characterized by von Karman-type ACF with the correlation length a, the rms value e and decay order k. We assume average background velocities of P-wave and S-wave are VP = 5.8 km and VS = 3.36 km, respectively. We employ an explosive point source into the model. The FDM simulations were conducted on the Earth Simulator at JAMSTEC. We conducted a number of FDM simulation using different model parameters of stochastic random media for different e (= 0.03, 0.05, 0.07, 0.09) and fixed a and k (a = 5km, k = 0.5). The simulation results confirm EP value increases linearly with increasing e. We also found that larger EP obtained in the back-arc side of Tohoku can be explained by 4% larger e relative to those of other regions.

  17. Three Component Velocity and Acceleration Measurement Using FLEET

    NASA Technical Reports Server (NTRS)

    Danehy, Paul M.; Bathel, Brett F.; Calvert, Nathan; Dogariu, Arthur; Miles, Richard P.

    2014-01-01

    The femtosecond laser electronic excitation and tagging (FLEET) method has been used to measure three components of velocity and acceleration for the first time. A jet of pure N2 issuing into atmospheric pressure air was probed by the FLEET system. The femtosecond laser was focused down to a point to create a small measurement volume in the flow. The long-lived lifetime of this fluorescence was used to measure the location of the tagged particles at different times. Simultaneous images of the flow were taken from two orthogonal views using a mirror assembly and a single intensified CCD camera, allowing two components of velocity to be measured in each view. These different velocity components were combined to determine three orthogonal velocity components. The differences between subsequent velocity components could be used to measure the acceleration. Velocity accuracy and precision were roughly estimated to be +/-4 m/s and +/-10 m/s respectively. These errors were small compared to the approx. 100 m/s velocity of the subsonic jet studied.

  18. Spectral analysis of the turbulent mixing of two fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinkamp, M.J.

    1996-02-01

    The authors describe a spectral approach to the investigation of fluid instability, generalized turbulence, and the interpenetration of fluids across an interface. The technique also applies to a single fluid with large variations in density. Departures of fluctuating velocity components from the local mean are far subsonic, but the mean Mach number can be large. Validity of the description is demonstrated by comparisons with experiments on turbulent mixing due to the late stages of Rayleigh-Taylor instability, when the dynamics become approximately self-similar in response to a constant body force. Generic forms for anisotropic spectral structure are described and used asmore » a basis for deriving spectrally integrated moment equations that can be incorporated into computer codes for scientific and engineering analyses.« less

  19. Transverse injection into Mach 2 flow behind a rearward-facing step - A 3-D, compressible flow test case for hypersonic combustor CFD validation

    NASA Technical Reports Server (NTRS)

    Mcdaniel, James C.; Fletcher, Douglas G.; Hartfield, Roy J.; Hollo, Steven D.

    1991-01-01

    A spatially-complete data set of the important primitive flow variables is presented for the complex, nonreacting, 3D unit combustor flow field employing transverse injection into a Mach 2 flow behind a rearward-facing step. A unique wind tunnel facility providing the capability for iodine seeding was built specifically for these measurements. Two optical techniques based on laser-induced-iodine fluorescence were developed and utilized for nonintrusive, in situ flow field measurements. LDA provided both mean and fluctuating velocity component measurements. A thermographic phosphor wall temperature measurement technique was developed and employed. Data from the 2D flow over a rearward-facing step and the complex 3D mixing flow with injection are reported.

  20. Fast Magnetosonic Waves Observed by Van Allen Probes: Testing Local Wave Excitation Mechanism

    NASA Astrophysics Data System (ADS)

    Min, Kyungguk; Liu, Kaijun; Wang, Xueyi; Chen, Lunjin; Denton, Richard E.

    2018-01-01

    Linear Vlasov theory and particle-in-cell (PIC) simulations for electromagnetic fluctuations in a homogeneous, magnetized, and collisionless plasma are used to investigate a fast magnetosonic wave event observed by the Van Allen Probes. The fluctuating magnetic field observed exhibits a series of spectral peaks at harmonics of the proton cyclotron frequency Ωp and has a dominant compressional component, which can be classified as fast magnetosonic waves. Furthermore, the simultaneously observed proton phase space density exhibits positive slopes in the perpendicular velocity space, ∂fp/∂v⊥>0, which can be a source for these waves. Linear theory analyses and PIC simulations use plasma and field parameters measured in situ except that the modeled proton distribution is modified to have larger ∂fp/∂v⊥ under the assumption that the observed distribution corresponds to a marginally stable state when the distribution has already been scattered by the excited waves. The results show that the positive slope is the source of the proton cyclotron harmonic waves at propagation quasi-perpendicular to the background magnetic field, and as a result of interactions with the excited waves the evolving proton distribution progresses approximately toward the observed distribution.

  1. Microlensing makes lensed quasar time delays significantly time variable

    NASA Astrophysics Data System (ADS)

    Tie, S. S.; Kochanek, C. S.

    2018-01-01

    The time delays of gravitationally lensed quasars are generally believed to be unique numbers whose measurement is limited only by the quality of the light curves and the models for the contaminating contribution of gravitational microlensing to the light curves. This belief is incorrect - gravitational microlensing also produces changes in the actual time delays on the ∼day(s) light-crossing time-scale of the emission region. This is due to a combination of the inclination of the disc relative to the line of sight and the differential magnification of the temperature fluctuations producing the variability. We demonstrate this both mathematically and with direct calculations using microlensing magnification patterns. Measuring these delay fluctuations can provide a physical scale for microlensing observations, removing the need for priors on either the microlens masses or the component velocities. That time delays in lensed quasars are themselves time variable likely explains why repeated delay measurements of individual lensed quasars appear to vary by more than their estimated uncertainties. This effect is also a new important systematic problem for attempts to use time delays in lensed quasars for cosmology or to detect substructures (satellites) in lens galaxies.

  2. Analysis on the multi-dimensional spectrum of the thrust force for the linear motor feed drive system in machine tools

    NASA Astrophysics Data System (ADS)

    Yang, Xiaojun; Lu, Dun; Ma, Chengfang; Zhang, Jun; Zhao, Wanhua

    2017-01-01

    The motor thrust force has lots of harmonic components due to the nonlinearity of drive circuit and motor itself in the linear motor feed drive system. What is more, in the motion process, these thrust force harmonics may vary with the position, velocity, acceleration and load, which affects the displacement fluctuation of the feed drive system. Therefore, in this paper, on the basis of the thrust force spectrum obtained by the Maxwell equation and the electromagnetic energy method, the multi-dimensional variation of each thrust harmonic is analyzed under different motion parameters. Then the model of the servo system is established oriented to the dynamic precision. The influence of the variation of the thrust force spectrum on the displacement fluctuation is discussed. At last the experiments are carried out to verify the theoretical analysis above. It can be found that the thrust harmonics show multi-dimensional spectrum characteristics under different motion parameters and loads, which should be considered to choose the motion parameters and optimize the servo control parameters in the high-speed and high-precision machine tools equipped with the linear motor feed drive system.

  3. Temporal Statistics of Natural Image Sequences Generated by Movements with Insect Flight Characteristics

    PubMed Central

    Schwegmann, Alexander; Lindemann, Jens Peter; Egelhaaf, Martin

    2014-01-01

    Many flying insects, such as flies, wasps and bees, pursue a saccadic flight and gaze strategy. This behavioral strategy is thought to separate the translational and rotational components of self-motion and, thereby, to reduce the computational efforts to extract information about the environment from the retinal image flow. Because of the distinguishing dynamic features of this active flight and gaze strategy of insects, the present study analyzes systematically the spatiotemporal statistics of image sequences generated during saccades and intersaccadic intervals in cluttered natural environments. We show that, in general, rotational movements with saccade-like dynamics elicit fluctuations and overall changes in brightness, contrast and spatial frequency of up to two orders of magnitude larger than translational movements at velocities that are characteristic of insects. Distinct changes in image parameters during translations are only caused by nearby objects. Image analysis based on larger patches in the visual field reveals smaller fluctuations in brightness and spatial frequency composition compared to small patches. The temporal structure and extent of these changes in image parameters define the temporal constraints imposed on signal processing performed by the insect visual system under behavioral conditions in natural environments. PMID:25340761

  4. Strained spiral vortex model for turbulent fine structure

    NASA Technical Reports Server (NTRS)

    Lundgren, T. S.

    1982-01-01

    A model for the intermittent fine structure of high Reynolds number turbulence is proposed. The model consists of slender axially strained spiral vortex solutions of the Navier-Stokes equation. The tightening of the spiral turns by the differential rotation of the induced swirling velocity produces a cascade of velocity fluctuations to smaller scale. The Kolmogorov energy spectrum is a result of this model.

  5. Scale effects in wind tunnel modeling of an urban atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Kozmar, Hrvoje

    2010-03-01

    Precise urban atmospheric boundary layer (ABL) wind tunnel simulations are essential for a wide variety of atmospheric studies in built-up environments including wind loading of structures and air pollutant dispersion. One of key issues in addressing these problems is a proper choice of simulation length scale. In this study, an urban ABL was reproduced in a boundary layer wind tunnel at different scales to study possible scale effects. Two full-depth simulations and one part-depth simulation were carried out using castellated barrier wall, vortex generators, and a fetch of roughness elements. Redesigned “Counihan” vortex generators were employed in the part-depth ABL simulation. A hot-wire anemometry system was used to measure mean velocity and velocity fluctuations. Experimental results are presented as mean velocity, turbulence intensity, Reynolds stress, integral length scale of turbulence, and power spectral density of velocity fluctuations. Results suggest that variations in length-scale factor do not influence the generated ABL models when using similarity criteria applied in this study. Part-depth ABL simulation compares well with two full-depth ABL simulations indicating the truncated vortex generators developed for this study can be successfully employed in urban ABL part-depth simulations.

  6. Detonation velocity in poorly mixed gas mixtures

    NASA Astrophysics Data System (ADS)

    Prokhorov, E. S.

    2017-10-01

    The technique for computation of the average velocity of plane detonation wave front in poorly mixed mixture of gaseous hydrocarbon fuel and oxygen is proposed. Here it is assumed that along the direction of detonation propagation the chemical composition of the mixture has periodic fluctuations caused, for example, by layered stratification of gas charge. The technique is based on the analysis of functional dependence of ideal (Chapman-Jouget) detonation velocity on mole fraction (with respect to molar concentration) of the fuel. It is shown that the average velocity of detonation can be significantly (by more than 10%) less than the velocity of ideal detonation. The dependence that permits to estimate the degree of mixing of gas mixture basing on the measurements of average detonation velocity is established.

  7. Molecules with an induced dipole moment in a stochastic electric field.

    PubMed

    Band, Y B; Ben-Shimol, Y

    2013-10-01

    The mean-field dynamics of a molecule with an induced dipole moment (e.g., a homonuclear diatomic molecule) in a deterministic and a stochastic (fluctuating) electric field is solved to obtain the decoherence properties of the system. The average (over fluctuations) electric dipole moment and average angular momentum as a function of time for a Gaussian white noise electric field are determined via perturbative and nonperturbative solutions in the fluctuating field. In the perturbative solution, the components of the average electric dipole moment and the average angular momentum along the deterministic electric field direction do not decay to zero, despite fluctuations in all three components of the electric field. This is in contrast to the decay of the average over fluctuations of a magnetic moment in a Gaussian white noise magnetic field. In the nonperturbative solution, the component of the average electric dipole moment and the average angular momentum in the deterministic electric field direction also decay to zero.

  8. Wall-pressure fluctuations beneath a spatially evolving turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Mahesh, Krishnan; Kumar, Praveen

    2016-11-01

    Wall-pressure fluctuations beneath a turbulent boundary layer are important in applications dealing with structural deformation and acoustics. Simulations are performed for flat plate and axisymmetric, spatially evolving zero-pressure-gradient turbulent boundary layers at inflow Reynolds number of 1400 and 2200 based on momentum thickness. The simulations generate their own inflow using the recycle-rescale method. The results for mean velocity and second-order statistics show excellent agreement with the data available in literature. The spectral characteristics of wall-pressure fluctuations and their relation to flow structure will be discussed. This work is supported by ONR.

  9. A comparison of calibration techniques for hot-wires operated in subsonic compressible slip flows

    NASA Technical Reports Server (NTRS)

    Jones, Gregory S.; Stainback, P. C.; Nagabushana, K. A.

    1992-01-01

    This paper focuses on the correlation of constant temperature anemometer voltages to velocity, density, and total temperature in the transonic slip flow regime. Three different calibration schemes were evaluated. The ultimate use of these hot-wire calibrations is to obtain fluctuations in the flow variables. Without the appropriate mean flow sensitivities of the heated wire, the measurements of these fluctuations cannot be accurately determined.

  10. Intermittency in two-dimensional Ekman-Navier-Stokes turbulence.

    PubMed

    Boffetta, G; Celani, A; Musacchio, S; Vergassola, M

    2002-08-01

    We study the statistics of the vorticity field in two-dimensional Navier-Stokes turbulence with linear Ekman friction. We show that the small-scale vorticity fluctuations are intermittent, as conjectured by Bernard [Europhys. Lett. 50, 333 (2000)] and Nam et al. [Phys. Rev. Lett. 84, 5134 (2000)]. The small-scale statistics of vorticity fluctuations coincide with that of a passive scalar with finite lifetime transported by the velocity field itself.

  11. Diffusive motion with nonlinear friction: apparently Brownian.

    PubMed

    Goohpattader, Partho S; Chaudhury, Manoj K

    2010-07-14

    We study the diffusive motion of a small object placed on a solid support using an inertial tribometer. With an external bias and a Gaussian noise, the object slides accompanied with a fluctuation of displacement that exhibits unique characteristics at different powers of the noise. While it exhibits a fluidlike motion at high powers, a stick-slip motion occurs at a low power. Below a critical power, no motion is observed. The signature of a nonlinear friction is evident in this type of stochastic motion both in the reduced mobility in comparison to that governed by a linear kinematic (Stokes-Einstein-like) friction and in the non-Gaussian probability distribution of the displacement fluctuation. As the power of the noise increases, the effect of the nonlinearity appears to play a lesser role, so that the displacement fluctuation becomes more Gaussian. When the distribution is exponential, it also exhibits an asymmetry with its skewness increasing with the applied bias. A new finding of this study is that the stochastic velocities of the object are so poorly correlated that its diffusivity is much lower than either the linear or the nonlinear friction cases studied by de Gennes [J. Stat. Phys. 119, 953 (2005)]. The mobilities at different powers of the noise together with the estimated variances of velocity fluctuations follow an Einstein-like relation.

  12. Microgravity Segregation in Binary Mixtures of Inelastic Spheres Driven by Velocity Fluctuation Gradients

    NASA Technical Reports Server (NTRS)

    Jenkins, James T.; Louge, Michel Y.

    1996-01-01

    We are interested in collisional granular flows of dry materials in reduced gravity. Because the particles interact through collisions, the energy of the particle velocity fluctuations plays an important role in the physics. Here we focus on the separation of grains by properties - size, for example - that is driven by spatial gradients in the fluctuation energy of the grains. The segregation of grains by size is commonly observed in geophysical flows and industrial processes. Segregation of flowing grains can also take place based on other properties, e.g. shape, mass, friction, and coefficient of restitution. Many mechanisms may be responsible for segregation; most of these are strongly influenced by gravity. Here, we outline a mechanism that is independent of gravity. This mechanism may be important but is often obscured in terrestrial grain flows. It is driven by gradients in fluctuation energy. In microgravity, the separation of grains by property will proceed slowly enough to permit flight observations to provide an unambiguous measurement of the transport coefficients associated with the segregation. In this context, we are planning a microgravity shear cell experiment that contains a mixture of two types of spherical grains. The grains will be driven to interact with two different types of boundaries on either sides of the cell. The resulting separation will be observed visually.

  13. Hierarchical Regularity in Multi-Basin Dynamics on Protein Landscapes

    NASA Astrophysics Data System (ADS)

    Matsunaga, Yasuhiro; Kostov, Konstatin S.; Komatsuzaki, Tamiki

    2004-04-01

    We analyze time series of potential energy fluctuations and principal components at several temperatures for two kinds of off-lattice 46-bead models that have two distinctive energy landscapes. The less-frustrated "funnel" energy landscape brings about stronger nonstationary behavior of the potential energy fluctuations at the folding temperature than the other, rather frustrated energy landscape at the collapse temperature. By combining principal component analysis with an embedding nonlinear time-series analysis, it is shown that the fast fluctuations with small amplitudes of 70-80% of the principal components cause the time series to become almost "random" in only 100 simulation steps. However, the stochastic feature of the principal components tends to be suppressed through a wide range of degrees of freedom at the transition temperature.

  14. A spatial model to assess the effects of hydropower operations on Columbia River fall Chinook Salmon spawning habitat

    USGS Publications Warehouse

    Hatten, James R.; Tiffan, Kenneth F.; Anglin, Donald R.; Haeseker, Steven L.; Skalicky, Joseph J.; Schaller, Howard

    2009-01-01

    Priest Rapids Dam on the Columbia River produces large daily and hourly streamflow fluctuations throughout the Hanford Reach during the period when fall Chinook salmon Oncorhynchus tshawytscha are selecting spawning habitat, constructing redds, and actively engaged in spawning. Concern over the detrimental effects of these fluctuations prompted us to quantify the effects of variable flows on the amount and persistence of fall Chinook salmon spawning habitat in the Hanford Reach. Specifically, our goal was to develop a management tool capable of quantifying the effects of current and alternative hydrographs on predicted spawning habitat in a spatially explicit manner. Toward this goal, we modeled the water velocities and depths that fall Chinook salmon experienced during the 2004 spawning season, plus what they would probably have experienced under several alternative (i.e., synthetic) hydrographs, using both one- and two-dimensional hydrodynamic models. To estimate spawning habitat under existing or alternative hydrographs, we used cell-based modeling and logistic regression to construct and compare numerous spatial habitat models. We found that fall Chinook salmon were more likely to spawn at locations where velocities were persistently greater than 1 m/s and in areas where fluctuating water velocities were reduced. Simulations of alternative dam operations indicate that the quantity of spawning habitat is expected to increase as streamflow fluctuations are reduced during the spawning season. The spatial habitat models that we developed provide management agencies with a quantitative tool for predicting, in a spatially explicit manner, the effects of different flow regimes on fall Chinook salmon spawning habitat in the Hanford Reach. In addition to characterizing temporally varying habitat conditions, our research describes an analytical approach that could be applied in other highly variable aquatic systems.

  15. Computational and Experimental Study of the Transient Transport Phenomena in a Full-Scale Twin-Roll Continuous Casting Machine

    NASA Astrophysics Data System (ADS)

    Xu, Mianguang; Li, Zhongyang; Wang, Zhaohui; Zhu, Miaoyong

    2017-02-01

    To gain a fundamental understanding of the transient fluid flow in twin-roll continuous casting, the current paper applies both large eddy simulation (LES) and full-scale water modeling experiments to investigate the characteristics of the top free surface, stirring effect of the roll rotation, boundary layer fluctuations, and backflow stability. The results show that, the characteristics of the top free surface and the flow field in the wedge-shaped pool region are quite different with/without the consideration of the roll rotation. The roll rotation decreases the instantaneous fluctuation range of the top free surface, but increases its horizontal velocity. The stirring effect of the roll rotating makes the flow field more homogenous and there exists clear shear flow on the rotating roll surface. The vortex shedding induced by the Kármán Vortex Street from the submerged entry nozzle (SEN) causes the "velocity magnitude wave" and strongly influences the boundary layer stability and the backflow stability. The boundary layer fluctuations or the "velocity magnitude wave" induced by the vortex shedding could give rise to the internal porosity. In strip continuous casting process, the vortex shedding phenomenon indicates that the laminar flow can give rise to instability and that it should be made important in the design of the feeding system and the setting of the operating parameters.

  16. MEASURING COLLISIONLESS DAMPING IN HELIOSPHERIC PLASMAS USING FIELD–PARTICLE CORRELATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, K. G.; Howes, G. G.

    2016-08-01

    An innovative field–particle correlation technique is proposed that uses single-point measurements of the electromagnetic fields and particle velocity distribution functions to investigate the net transfer of energy from fields to particles associated with the collisionless damping of turbulent fluctuations in weakly collisional plasmas, such as the solar wind. In addition to providing a direct estimate of the local rate of energy transfer between fields and particles, it provides vital new information about the distribution of that energy transfer in velocity space. This velocity-space signature can potentially be used to identify the dominant collisionless mechanism responsible for the damping of turbulentmore » fluctuations in the solar wind. The application of this novel field–particle correlation technique is illustrated using the simplified case of the Landau damping of Langmuir waves in an electrostatic 1D-1V Vlasov–Poisson plasma, showing that the procedure both estimates the local rate of energy transfer from the electrostatic field to the electrons and indicates the resonant nature of this interaction. Modifications of the technique to enable single-point spacecraft measurements of fields and particles to diagnose the collisionless damping of turbulent fluctuations in the solar wind are discussed, yielding a method with the potential to transform our ability to maximize the scientific return from current and upcoming spacecraft missions, such as the Magnetospheric Multiscale ( MMS ) and Solar Probe Plus missions.« less

  17. Turbulence scaling study in an MHD wind tunnel on the Swarthmore Spheromak Experiment

    NASA Astrophysics Data System (ADS)

    Schaffner, D. A.; Wan, A.; Owusu-Boateng, J.; Brown, M. R.; Lukin, V. S.

    2013-10-01

    The turbulence of colliding spheromaks are explored in the MHD wind tunnel on the SSX. Fully ionized hydrogen plasma is produced by two plasma guns on opposite sides of a 1 m by 15 cm copper cylinder. Modification of B-field, Ti and β are made through stuffing flux variation of the plasma guns. Presented here are turbulent f-/ k-spectra and correlation times/lengths of B-field fluctuations as measured by a 16 channel B-dot radial probe array at the chamber midplane. Power-law fits to spectra show scaling that is robust to changes in stuffing flux; fits are on the order of f-3 and k - 2 . 1 for all flux variations. Dissipation range modification of the spectra is observed; changes to the f-spectra slopes occur around f =fci while changes in k-spectra slopes appear around ~ 5ρi . Dissipation range fits are made with an exponentially modified power-law model [Terry et al., PoP 2012]. Fluctuations in axial velocity are made using a Mach probe. Both B-field and velocity fluctuations persist on the same timescale in these experiments. Mach velocity f-spectra show power-laws similar to that for B-field. Comparison of spectra from MHD and Hall MHD simulations of SSX performed within the HiFi modeling framework are made to the experimental results.

  18. Recovering Long-wavelength Velocity Models using Spectrogram Inversion with Single- and Multi-frequency Components

    NASA Astrophysics Data System (ADS)

    Ha, J.; Chung, W.; Shin, S.

    2015-12-01

    Many waveform inversion algorithms have been proposed in order to construct subsurface velocity structures from seismic data sets. These algorithms have suffered from computational burden, local minima problems, and the lack of low-frequency components. Computational efficiency can be improved by the application of back-propagation techniques and advances in computing hardware. In addition, waveform inversion algorithms, for obtaining long-wavelength velocity models, could avoid both the local minima problem and the effect of the lack of low-frequency components in seismic data. In this study, we proposed spectrogram inversion as a technique for recovering long-wavelength velocity models. In spectrogram inversion, decomposed frequency components from spectrograms of traces, in the observed and calculated data, are utilized to generate traces with reproduced low-frequency components. Moreover, since each decomposed component can reveal the different characteristics of a subsurface structure, several frequency components were utilized to analyze the velocity features in the subsurface. We performed the spectrogram inversion using a modified SEG/SEGE salt A-A' line. Numerical results demonstrate that spectrogram inversion could also recover the long-wavelength velocity features. However, inversion results varied according to the frequency components utilized. Based on the results of inversion using a decomposed single-frequency component, we noticed that robust inversion results are obtained when a dominant frequency component of the spectrogram was utilized. In addition, detailed information on recovered long-wavelength velocity models was obtained using a multi-frequency component combined with single-frequency components. Numerical examples indicate that various detailed analyses of long-wavelength velocity models can be carried out utilizing several frequency components.

  19. History dependence of human muscle-fiber conduction velocity during voluntary isometric contractions.

    PubMed

    McGill, Kevin C; Lateva, Zoia C

    2011-09-01

    The conduction velocity (CV) of a muscle fiber is affected by the fiber's discharge history going back ∼1 s. We investigated this dependence by measuring CV fluctuations during voluntary isometric contractions of the human brachioradialis muscle. We recorded electromyogram (EMG) signals simultaneously from multiple intramuscular electrodes, identified potentials belonging to the same motor unit using EMG decomposition, and estimated the CV of each discharge from the interpotential interval. In 12 of 14 subjects, CV increased by ∼10% during the first second after recruitment and then fluctuated by about ±2% in a way that mirrored the fluctuations in the instantaneous firing rate. The CV profile could be precisely described in terms of the discharge history by a simple mathematical model. In the other two subjects, and one subject retested after cooling the arm, the CV fluctuations were inversely correlated with instantaneous firing rate. In all subjects, CV was additionally affected by very short interdischarge intervals (<25 ms): it was increased in doublets at recruitment, but decreased in doublets during continuous firing and after short interdischarge intervals in doubly innervated fibers. CV also exhibited a slow trend of about -0.05%/s that did not depend on the immediate discharge history. We suggest that measurements of CV fluctuations during voluntary contractions, or during stimulation protocols that involve longer and more complex stimulation patterns than are currently being used, may provide a sensitive approach for estimating the dynamic characteristics of ion channels in the human muscle-fiber membrane.

  20. History dependence of human muscle-fiber conduction velocity during voluntary isometric contractions

    PubMed Central

    Lateva, Zoia C.

    2011-01-01

    The conduction velocity (CV) of a muscle fiber is affected by the fiber's discharge history going back ∼1 s. We investigated this dependence by measuring CV fluctuations during voluntary isometric contractions of the human brachioradialis muscle. We recorded electromyogram (EMG) signals simultaneously from multiple intramuscular electrodes, identified potentials belonging to the same motor unit using EMG decomposition, and estimated the CV of each discharge from the interpotential interval. In 12 of 14 subjects, CV increased by ∼10% during the first second after recruitment and then fluctuated by about ±2% in a way that mirrored the fluctuations in the instantaneous firing rate. The CV profile could be precisely described in terms of the discharge history by a simple mathematical model. In the other two subjects, and one subject retested after cooling the arm, the CV fluctuations were inversely correlated with instantaneous firing rate. In all subjects, CV was additionally affected by very short interdischarge intervals (<25 ms): it was increased in doublets at recruitment, but decreased in doublets during continuous firing and after short interdischarge intervals in doubly innervated fibers. CV also exhibited a slow trend of about −0.05%/s that did not depend on the immediate discharge history. We suggest that measurements of CV fluctuations during voluntary contractions, or during stimulation protocols that involve longer and more complex stimulation patterns than are currently being used, may provide a sensitive approach for estimating the dynamic characteristics of ion channels in the human muscle-fiber membrane. PMID:21565985

  1. Vertical Scales of Turbulence at the Mount Wilson Observatory

    NASA Technical Reports Server (NTRS)

    Treuhaft, Robert N.; Lowe, Stephen T.; Bester, Manfred; Danchi, William C.; Townes, Charles H.

    1995-01-01

    The vertical scales of turbulence at the Mount Wilson Observatory are inferred from data from the University of California at Berkeley Infrared Spatial Interferometer (ISI), by modeling path length fluctuations observed in the interferometric paths to celestial objects and those in instrumental ground-based paths. The correlations between the stellar and ground-based path length fluctuations and the temporal statistics of those fluctuations are modeled on various timescales to constrain the vertical scales. A Kolmogorov-Taylor turbulence model with a finite outer scale was used to simulate ISI data. The simulation also included the white instrumental noise of the interferometer, aperture-filtering effects, and the data analysis algorithms. The simulations suggest that the path delay fluctuations observed in the 1992-1993 ISI data are largely consistent with being generated by refractivity fluctuations at two characteristic vertical scales: one extending to a height of 45 m above the ground, with a wind speed of about 1 m/ s, and another at a much higher altitude, with a wind speed of about 10 m/ s. The height of the lower layer is of the order of the dimensions of trees and other structures near the interferometer, which suggests that these objects, including elements of the interferometer, may play a role in generating the lower layer of turbulence. The modeling indicates that the high- attitude component contributes primarily to short-period (less than 10 s) fluctuations, while the lower component dominates the long-period (up to a few minutes) fluctuations. The lower component turbulent height, along with outer scales of the order of 10 m, suggest that the baseline dependence of long-term interferometric, atmospheric fluctuations should weaken for baselines greater than a few tens of meters. Simulations further show that there is the potential for improving the seeing or astrometric accuracy by about 30%-50% on average, if the path length fluctuations in the lower component are directly calibrated. Statistical and systematic effects induce an error of about 15 m in the estimate of the lower component turbulent altitude.

  2. Fluctuating chemohydrodynamics and the stochastic motion of self-diffusiophoretic particles

    NASA Astrophysics Data System (ADS)

    Gaspard, Pierre; Kapral, Raymond

    2018-04-01

    The propulsion of active particles by self-diffusiophoresis is driven by asymmetric catalytic reactions on the particle surface that generate a mechanochemical coupling between the fluid velocity and the concentration fields of fuel and product in the surrounding solution. Because of thermal and molecular fluctuations in the solution, the motion of micrometric or submicrometric active particles is stochastic. Coupled Langevin equations describing the translation, rotation, and reaction of such active particles are deduced from fluctuating chemohydrodynamics and fluctuating boundary conditions at the interface between the fluid and the particle. These equations are consistent with microreversibility and the Onsager-Casimir reciprocal relations between affinities and currents and provide a thermodynamically consistent basis for the investigation of the dynamics of active particles propelled by diffusiophoretic mechanisms.

  3. Chaotic dynamics of a microswimmer in Poiseuille flow.

    PubMed

    Chacón, Ricardo

    2013-11-01

    The chaotic dynamics of pointlike, spherical particles in cylindrical Poiseuille flow is theoretically characterized and numerically confirmed when their own intrinsic swimming velocity undergoes temporal fluctuations around an average value. Two dimensionless ratios associated with the three significant temporal scales of the problem are identified that fully determine the chaos scenario. In particular, small but finite periodic fluctuations of swimming speed result in chaotic or regular motion depending on the position and orientation of the microswimmer with respect to the flow center line. Remarkably, the spatial extension of chaotic microswimmers is found to depend crucially on the fluctuations' period and amplitude and to be highly sensitive to the Fourier spectrum of the fluctuations. This has implications for the design of artificial microswimmers.

  4. Tissue velocity imaging of coronary artery by rotating-type intravascular ultrasound.

    PubMed

    Saijo, Yoshifumi; Tanaka, Akira; Owada, Naoki; Akino, Yoshihisa; Nitta, Shinichi

    2004-04-01

    Intravascular ultrasound (IVUS) provides not only the dimensions of coronary artery but the information of tissue components. In catheterization laboratory, soft and hard plaques are classified by visual inspection of echo intensity. So-called soft plaque contains lipid core or thrombus and it is believed to be more vulnerable than a hard plaque. However, it is not simple to analyze the echo signals quantitatively. When we look at a reflection signal, the intensity is affected by the distance of the object, the medium between transducer and objects and the fluctuation caused by rotation of IVUS probe. The time of flight is also affected by the sound speed of the medium and Doppler shift caused by tissue motion but usually those can be neglected. Thus, the analysis of RF signal in time domain can be more quantitative than intensity of RF signal. In the present study, a novel imaging technique called "intravascular tissue velocity imaging" was developed for searching a vulnerable plaque. Radio-frequency (RF) signal from a clinically used IVUS apparatus was digitized at 500 MSa/s and stored in a workstation. First, non-uniform rotation was corrected by maximizing the correlation coefficient of circumferential RF signal distribution in two consecutive frames. Then, the correlation and displacement were calculated by analyzing the radial difference of RF signal. Tissue velocity was determined by the displacement and the frame rate. The correlation image of normal and atherosclerotic coronary arteries clearly showed the internal and external borders of arterial wall. Soft plaque with low echo area in the intima showed high velocity while the calcified lesion showed the very low tissue velocity. This technique provides important information on tissue character of coronary artery.

  5. Lensing of 21-cm fluctuations by primordial gravitational waves.

    PubMed

    Book, Laura; Kamionkowski, Marc; Schmidt, Fabian

    2012-05-25

    Weak-gravitational-lensing distortions to the intensity pattern of 21-cm radiation from the dark ages can be decomposed geometrically into curl and curl-free components. Lensing by primordial gravitational waves induces a curl component, while the contribution from lensing by density fluctuations is strongly suppressed. Angular fluctuations in the 21-cm background extend to very small angular scales, and measurements at different frequencies probe different shells in redshift space. There is thus a huge trove of information with which to reconstruct the curl component of the lensing field, allowing tensor-to-scalar ratios conceivably as small as r~10(-9)-far smaller than those currently accessible-to be probed.

  6. Idealized models of the joint probability distribution of wind speeds

    NASA Astrophysics Data System (ADS)

    Monahan, Adam H.

    2018-05-01

    The joint probability distribution of wind speeds at two separate locations in space or points in time completely characterizes the statistical dependence of these two quantities, providing more information than linear measures such as correlation. In this study, we consider two models of the joint distribution of wind speeds obtained from idealized models of the dependence structure of the horizontal wind velocity components. The bivariate Rice distribution follows from assuming that the wind components have Gaussian and isotropic fluctuations. The bivariate Weibull distribution arises from power law transformations of wind speeds corresponding to vector components with Gaussian, isotropic, mean-zero variability. Maximum likelihood estimates of these distributions are compared using wind speed data from the mid-troposphere, from different altitudes at the Cabauw tower in the Netherlands, and from scatterometer observations over the sea surface. While the bivariate Rice distribution is more flexible and can represent a broader class of dependence structures, the bivariate Weibull distribution is mathematically simpler and may be more convenient in many applications. The complexity of the mathematical expressions obtained for the joint distributions suggests that the development of explicit functional forms for multivariate speed distributions from distributions of the components will not be practical for more complicated dependence structure or more than two speed variables.

  7. Generalized hydrodynamic correlations and fractional memory functions

    NASA Astrophysics Data System (ADS)

    Rodríguez, Rosalio F.; Fujioka, Jorge

    2015-12-01

    A fractional generalized hydrodynamic (GH) model of the longitudinal velocity fluctuations correlation, and its associated memory function, for a complex fluid is analyzed. The adiabatic elimination of fast variables introduces memory effects in the transport equations, and the dynamic of the fluctuations is described by a generalized Langevin equation with long-range noise correlations. These features motivate the introduction of Caputo time fractional derivatives and allows us to calculate analytic expressions for the fractional longitudinal velocity correlation function and its associated memory function. Our analysis eliminates a spurious constant term in the non-fractional memory function found in the non-fractional description. It also produces a significantly slower power-law decay of the memory function in the GH regime that reduces to the well-known exponential decay in the non-fractional Navier-Stokes limit.

  8. Predicting Electron Transport Using Simulated Axial Waves in a Radial-Axial Hybrid Hall Thruster Model

    DTIC Science & Technology

    2009-09-01

    resulting equations is given below: 1. Electron Density Fluctuation Amplitude   e eb eoe oeceeoe e oee m Tk iUk iUk k iUk m e nn...3. Axial Electron Velocity Fluctuation Amplitude        kikiUk iUk n nm Tk m e U cezeoe ceeoe e oee eb e ez      , 2 2...kiUkki iUk n nm Tk m e U eoezce ceeoe e oee eb e e      , 2 2 , , ~~ ~   (15) 5. Axial Ion Velocity

  9. Anisotropic phase diagram and spin fluctuations of the hyperkagome magnet Gd3Ga5O12 as revealed by sound velocity measurements

    NASA Astrophysics Data System (ADS)

    Rousseau, Alexandre; Parent, Jean-Michel; Quilliam, Jeffrey A.

    2017-08-01

    Sound velocity and attenuation measurements on the frustrated garnet material Gd3Ga5O12 (GGG) are presented as a function of field and temperature, with two different magnetic field orientations: [100 ] and [110 ] . We demonstrate that the phase diagram is highly anisotropic, with two distinct field-induced ordered phases for H ||[110 ] and only one for H ||[100 ] . Extensive lattice softening is found to occur at low fields, which can be associated with spin fluctuations. However, deep within the spin liquid phase a low-temperature stiffening of the lattice and reduced attenuation provide evidence for a spin gap which may be related to short-range antiferromagnetic correlations over minimal ten-spin loops.

  10. Elastic Wave Imaging of in-Situ Bio-Alterations in a Contaminated Aquifer

    NASA Astrophysics Data System (ADS)

    Jaiswal, P.; Raj, R.; Atekwana, E. A.; Briand, B.; Alam, I.

    2014-12-01

    We present a pioneering report on the utility of seismic methods in imaging bio-induced elastic property changes within a contaminated aquifer. To understand physical properties of contaminated soil, we acquired 48 meters long multichannel seismic profile over the Norman landfill leachate plume in Norman Oklahoma, USA. We estimated both the P- and S- wave velocities respectively using full-waveform inversion of the transmission and the ground-roll coda. The resulting S-wave model showed distinct velocity anomaly (~10% over background) within the water table fluctuation zone bounded by the historical minimum and maximum groundwater table. In comparison, the P-wave velocity anomaly within the same zone was negligible. The Environmental Scanning Electron Microscope (ESEM) images of samples from a core located along the seismic profile clearly shows presence of biofilms in the water table fluctuation zone and their absence both above and below the fluctuation zone. Elemental chemistry further indicates that the sediment composition throughout the core is fairly constant. We conclude that the velocity anomaly in S-wave is due to biofilms. As a next step, we develop mechanistic modeling to gain insights into the petro-physical behavior of biofilm-bearing sediments. Preliminary results suggest that a plausible model could be biofilms acting as contact cement between sediment grains. The biofilm cement can be placed in two ways - (i) superficial non-contact deposition on sediment grains, and (ii) deposition at grain contacts. Both models explain P- and S- wave velocity structure at reasonable (~5-10%) biofilm saturation and are equivocally supported by the ESEM images. Ongoing attenuation modeling from full-waveform inversion and its mechanistic realization, may be able to further discriminate between the two cement models. Our study strongly suggests that as opposed to the traditional P-wave seismic, S-wave acquisition and imaging can be a more powerful tool for in-situ imaging of biofilm formation in field settings with significant implication for bioremediation and microbial enhanced oil recovery monitoring.

  11. Determination of the Thermal Noise Limit of Graphene Biotransistors.

    PubMed

    Crosser, Michael S; Brown, Morgan A; McEuen, Paul L; Minot, Ethan D

    2015-08-12

    To determine the thermal noise limit of graphene biotransistors, we have measured the complex impedance between the basal plane of single-layer graphene and an aqueous electrolyte. The impedance is dominated by an imaginary component but has a finite real component. Invoking the fluctuation-dissipation theorem, we determine the power spectral density of thermally driven voltage fluctuations at the graphene/electrolyte interface. The fluctuations have 1/f(p) dependence, with p = 0.75-0.85, and the magnitude of fluctuations scales inversely with area. Our results explain noise spectra previously measured in liquid-gated suspended graphene devices and provide realistic targets for future device performance.

  12. The Solar Wind as a Magnetofluid Turbulence Laboratory

    NASA Technical Reports Server (NTRS)

    Goldstein, Melvyn L.

    2011-01-01

    The solar wind is the Sun's exosphere. As the solar atmosphere expands into interplanetary space, it is accelerated and heated. Data from spacecraft located throughout the heliosphere have revealed that this exosphere has velocities of several hundred kilometers/sec, densities at Earth orbit of about 5 particles/cu cm, and an entrained magnetic field that at Earth orbit that is about 5 10-5 Gauss. A fascinating feature of the solar wind is that the magnetic field fluctuates in a way that is highly reminiscent of "Alfven waves, i.e., the fluctuating magnetic fields are more-or-less aligned with fluctuations in the velocity of the plasma and, with proper normalization, have approximately equal magnitudes. The imperfect (observed) alignment leads to a variety of complex interactions. In many respects, the flow patterns appear to be an example of fully developed magneto fluid turbulence. Recently, the dissipation range of this turbulence has been studied using search coil magnetometer data from the STAFF instrument on the four Cluster spacecraft. I will attempt to give an overview of selected properties of this large-scale and small-scale turbulence.

  13. Radial and poloidal correlation reflectometry on Experimental Advanced Superconducting Tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qu, Hao; Zhang, Tao; Han, Xiang

    2015-08-15

    An X-mode polarized V band (50 GHz–75 GHz) radial and poloidal correlation reflectometry is designed and installed on Experimental Advanced Superconducting Tokamak (EAST). Two frequency synthesizers (12 GHz–19 GHz) are used as sources. Signals from the sources are up-converted to V band using active quadruplers and then coupled together for launching through one single pyramidal antenna. Two poloidally separated antennae are installed to receive the reflected waves from plasma. This reflectometry system can be used for radial and poloidal correlation measurement of the electron density fluctuation. In ohmically heated plasma, the radial correlation length is about 1.5 cm measured bymore » the system. The poloidal correlation analysis provides a means to estimate the fluctuation velocity perpendicular to the main magnetic field. In the present paper, the distance between two poloidal probing points is calculated with ray-tracing code and the propagation time is deduced from cross-phase spectrum. Fluctuation velocity perpendicular to the main magnetic field in the core of ohmically heated plasma is about from −1 km/s to −3 km/s.« less

  14. Analysis of velocity and magnetic field fluctuations from simulated Solar Probe Plus measurements: Interpretation and predictions.

    NASA Astrophysics Data System (ADS)

    Perez, J. C.; Chandran, B. D. G.

    2016-12-01

    As Solar Probe Plus (SPP) explores the near-Sun environment, our ability to obtain meaningful interpretation of in-situ measurements faces two significant challenges. The first challenge is that the Taylor Hypothesis (TH), which is normally used in the interpretation of existing spacecraft data, breaks down at the low heliocentric distances that SPP mission will explore. The second challenge is our limited understanding of turbulence in this region, largely due to the theoretical and numerical difficulties in modeling this problem. In this work we present recent progress towards overcoming these challenges using high-resolution numerical simulations of Alfvenic turbulence in the inner heliosphere. We fly virtual SPP spacecraft in the simulation domain to obtain single-point measurements of the velocity and magnetic field fluctuations at several radial locations relevant to SPP. We use these virtual measurements to 1) validate a recently introduced modified TH that allows one to recover the spatial structure of the dominant (outward-propagating) Alfvenic fluctuations, of the kind SPP will encounter; and 2) to compare these virtual observations with our most recent phenomenological models of reflection-driven Alfven turbulence.

  15. Studying Suspended Sediment Mechanism with Two-Phase PIV

    NASA Astrophysics Data System (ADS)

    Matinpour, H.; Atkinson, J. F.; Bennett, S. J.; Guala, M.

    2017-12-01

    Suspended sediment transport affects soil erosion, agriculture and water resources quality. Turbulent diffusion is the most primary force to maintain sediments in suspension. Although extensive previous literature have been studying the interactions between turbulent motion and suspended sediment, mechanism of sediments in suspension is still poorly understood. In this study, we investigate suspension of sediments as two distinct phases: one phase of sediments and another phase of fluid with turbulent motions. We designed and deployed a state-of-the-art two-phase PIV measurement technique to discriminate these two phases and acquire velocities of each phase separately and simultaneously. The technique that we have developed is employing a computer-vision based method, which enables us to discriminate sediment particles from fluid tracer particles based on two thresholds, dissimilar particle sizes and different particle intensities. Results indicate that fluid turbulence decreases in the presence of suspended sediments. Obtaining only sediment phase consecutive images enable us to compute fluctuation sediment concentration. This result enlightens understanding of complex interaction between the fluctuation velocities and the fluctuation of associated mass and compares turbulent viscosity with turbulent eddy diffusivity experimentally.

  16. When the Jeans Do Not Fit: How Stellar Feedback Drives Stellar Kinematics and Complicates Dynamical Modeling in Low-mass Galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El-Badry, Kareem; Quataert, Eliot; Wetzel, Andrew R.

    In low-mass galaxies, stellar feedback can drive gas outflows that generate non-equilibrium fluctuations in the gravitational potential. Using cosmological zoom-in baryonic simulations from the Feedback in Realistic Environments project, we investigate how these fluctuations affect stellar kinematics and the reliability of Jeans dynamical modeling in low-mass galaxies. We find that stellar velocity dispersion and anisotropy profiles fluctuate significantly over the course of galaxies’ starburst cycles. We therefore predict an observable correlation between star formation rate and stellar kinematics: dwarf galaxies with higher recent star formation rates should have systemically higher stellar velocity dispersions. This prediction provides an observational test ofmore » the role of stellar feedback in regulating both stellar and dark-matter densities in dwarf galaxies. We find that Jeans modeling, which treats galaxies as virialized systems in dynamical equilibrium, overestimates a galaxy’s dynamical mass during periods of post-starburst gas outflow and underestimates it during periods of net inflow. Short-timescale potential fluctuations lead to typical errors of ∼20% in dynamical mass estimates, even if full three-dimensional stellar kinematics—including the orbital anisotropy—are known exactly. When orbital anisotropy is not known a priori, typical mass errors arising from non-equilibrium fluctuations in the potential are larger than those arising from the mass-anisotropy degeneracy. However, Jeans modeling alone cannot reliably constrain the orbital anisotropy, and problematically, it often favors anisotropy models that do not reflect the true profile. If galaxies completely lose their gas and cease forming stars, fluctuations in the potential subside, and Jeans modeling becomes much more reliable.« less

  17. On the relationship between the tree and its environment, based on electrical potential difference monitoring on trunk of trees

    NASA Astrophysics Data System (ADS)

    Koppan, A.; Fenyvesi, A.; Szarka, L.; Wesztergom, V.

    2002-05-01

    Electrical potential differences (EPD) in the trunk of a Turkey oak tree (measured by using non-polarising electrodes deepened in the sap wood) have been continuously recorded in the Geophysical Observatory "Istv n Széchenyi" of the Hungarian Academy of Sciences since 1997. Besides of various geophysical observations, meteorological and direct sap-flow measurements have also been carried out in the observatory. As it was found (Kopp n A., Szarka L., Wesztergom V., 2000: Annual fluctuation in amplitudes of daily variations of electrical signals measured in the trunk of a standing tree. C.R. Acad. Sci. Paris, Life Sciences 323, 559-563), the measured electric potential difference data have a characteristic sinusoidal daily fluctuation, and the intensity of the diurnal variations has a double-peak annual characteristics, which coincides with the life activity maximums of the tree. We have found a remarkable inter-correlation between trunk EPD, water potential of air (derived from meteorological data), and direct sap flow velocity data from a neighboring tree. All these results clearly demonstrate that the sap streaming due to the transpiration and root pressure generates the largest part of measured potential differences. The ratio of the flow velocity of a diluted solution forced through stems and the potential differences was found to be constant (Gindl, W., L”ppert, H.-G., Wimmer, R., 1999: Relationship between streaming potential and sap velocity in Salix alba L. Phyton, 39, 217-224.). On the contrary in our in-vivo experiments the relationship between the measured sap flow velocity and EPD is non-linear, which means that the conductivity (i.e. ion concentration) of the xylem sap itself also has a daily fluctuation.

  18. Near bed suspended sediment flux by single turbulent events

    NASA Astrophysics Data System (ADS)

    Amirshahi, Seyed Mohammad; Kwoll, Eva; Winter, Christian

    2018-01-01

    The role of small scale single turbulent events in the vertical mixing of near bed suspended sediments was explored in a shallow shelf sea environment. High frequency velocity and suspended sediment concentration (SSC; calibrated from the backscatter intensity) were collected using an Acoustic Doppler Velocimeter (ADV). Using quadrant analysis, the despiked velocity time series was divided into turbulent events and small background fluctuations. Reynolds stress and Turbulent Kinetic Energy (TKE) calculated from all velocity samples, were compared to the same turbulent statistics calculated only from velocity samples classified as turbulent events (Reevents and TKEevents). The comparison showed that Reevents and TKEevents was increased 3 and 1.6 times, respectively, when small background fluctuations were removed and that the correlation with SSC for TKE could be improved through removal of the latter. The correlation between instantaneous vertical turbulent flux (w ‧) and SSC fluctuations (SSC ‧) exhibits a tidal pattern with the maximum correlation at peak ebb and flood currents, when strong turbulent events appear. Individual turbulent events were characterized by type, strength, duration and length. Cumulative vertical turbulent sediment fluxes and average SSC associated with individual turbulent events were calculated. Over the tidal cycle, ejections and sweeps were the most dominant events, transporting 50% and 36% of the cumulative vertical turbulent event sediment flux, respectively. Although the contribution of outward interactions to the vertical turbulent event sediment flux was low (11%), single outward interaction events were capable of inducing similar SSC ‧ as sweep events. The results suggest that on time scales of tens of minutes to hours, TKE may be appropriate to quantify turbulence in sediment transport studies, but that event characteristics, particular the upward turbulent flux need to be accounted for when considering sediment transport on process time scales.

  19. Additional motional-magnetic-field considerations for electric-dipole-moment experiments

    NASA Astrophysics Data System (ADS)

    Lamoreaux, S. K.

    1996-06-01

    Electric-dipole-moment experiments based on spin-precession measurements of stored atoms or neutrons are generally considered to be immune from the effects of v×E or motional magnetic fields. This is because the average velocity for such systems is zero. We show here that the fluctuating field associated with the random velocity, heretofore not considered, can in fact lead to sizable systematic effects.

  20. Water velocity tolerance in tadpoles of the foothill yellow-legged frog (Rana boylii): Swimming performance, growth, and survival

    Treesearch

    S. Kupferberg; A. Lind; V. Thill; S. Yarnell

    2011-01-01

    We explored the effects of large magnitude flow fluctuations in rivers with dams, commonly referred to as pulsed flows, on tadpoles of the lotic-breeding Foothill Yellow-legged Frog, Rana boylii. We quantified the velocity conditions in habitats occupied by tadpoles and then conducted experiments to assess the tolerance to values at the upper limit...

Top