Science.gov

Sample records for fluctuation induced forces

  1. Hydrodynamic fluctuation-induced forces in confined fluids.

    PubMed

    Monahan, Christopher; Naji, Ali; Horgan, Ronald; Lu, Bing-Sui; Podgornik, Rudolf

    2016-01-14

    We study thermal, fluctuation-induced hydrodynamic interaction forces in a classical, compressible, viscous fluid confined between two rigid, planar walls with no-slip boundary conditions. We calculate hydrodynamic fluctuations using the linearized, stochastic Navier-Stokes formalism of Landau and Lifshitz. The mean fluctuation-induced force acting on the fluid boundaries vanishes in this system, so we evaluate the two-point, time-dependent force correlations. The equal-time correlation function of the forces acting on a single wall gives the force variance, which we show to be finite and independent of the plate separation at large inter-plate distances. The equal-time, cross-plate force correlation, on the other hand, decays with the inverse inter-plate distance and is independent of the fluid viscosity at large distances; it turns out to be negative over the whole range of plate separations, indicating that the two bounding plates are subjected to counter-phase correlations. We show that the time-dependent force correlations exhibit damped temporal oscillations for small plate separations and a more irregular oscillatory behavior at large separations. The long-range hydrodynamic correlations reported here represent a "secondary Casimir effect", because the mean fluctuation-induced force, which represents the primary Casimir effect, is absent.

  2. Constraints on Stable Equilibria with Fluctuation-Induced (Casimir) Forces

    SciTech Connect

    Rahi, Sahand Jamal; Kardar, Mehran; Emig, Thorsten

    2010-08-13

    We examine whether fluctuation-induced forces can lead to stable levitation. First, we analyze a collection of classical objects at finite temperature that contain fixed and mobile charges and show that any arrangement in space is unstable to small perturbations in position. This extends Earnshaw's theorem for electrostatics by including thermal fluctuations of internal charges. Quantum fluctuations of the electromagnetic field are responsible for Casimir or van der Waals interactions. Neglecting permeabilities, we find that any equilibrium position of items subject to such forces is also unstable if the permittivities of all objects are higher or lower than that of the enveloping medium, the former being the generic case for ordinary materials in vacuum.

  3. Charge-induced fluctuation forces in graphitic nanostructures

    DOE PAGES

    Drosdoff, D.; Bondarev, Igor V.; Widom, Allan; ...

    2016-01-21

    Charge fluctuations in nanocircuits with capacitor components are shown to give rise to a novel type of long-ranged interaction, which coexist with the regular Casimir–van derWaals force. The developed theory distinguishes between thermal and quantum mechanical effects, and it is applied to capacitors involving graphene nanostructures. The charge fluctuations mechanism is captured via the capacitance of the system with geometrical and quantum mechanical components. The dependence on the distance separation, temperature, size, and response properties of the system shows that this type of force can have a comparable and even dominant effect to the Casimir interaction. Lastly, our results stronglymore » indicate that fluctuation-induced interactions due to various thermodynamic quantities can have important thermal and quantum mechanical contributions at the microscale and the nanoscale.« less

  4. Fluctuation-induced forces between rings threaded around a polymer chain under tension.

    PubMed

    Gilles, F M; Llubaroff, R; Pastorino, C

    2016-09-01

    We characterize the fluctuation properties of a polymer chain under external tension and the fluctuation-induced forces between two ring molecules threaded around the chain. The problem is relevant in the context of fluctuation-induced forces in soft-matter systems, features of liquid interfaces, and to describe the properties of polyrotaxanes and slide-ring materials. We perform molecular-dynamics simulations of the Kremer-Grest bead-spring model for the polymer and a simple ring-molecule model in the canonical ensemble. We study transverse fluctuations of the stretched chain as a function of chain stretching and in the presence of ring-shaped threaded molecules. The fluctuation spectra of the chains are analyzed in equilibrium at constant temperature, and the differences in the presence of two-ring molecules are compared. For the rings located at fixed distances, we find an attractive fluctuation-induced force between the rings, proportional to the temperature and decaying with the ring distance. We characterize this force as a function of ring distance, chain stretching, and ring radius, and we measure the differences between the free chain spectrum and the fluctuations of the chain constrained by the rings. We also compare the dependence and range of the force found in the simulations with theoretical models coming from different fields.

  5. Electron fluctuation induced resonance broadening in nano electromechanical systems: the origin of shear force in vacuum.

    PubMed

    Siria, A; Barois, T; Vilella, K; Perisanu, S; Ayari, A; Guillot, D; Purcell, S T; Poncharal, P

    2012-07-11

    This article presents a study of the poorly understood "shear-force" used in an important class of near-field instruments that use mechanical resonance feedback detection. In the case of a metallic probe near a metallic surface in vacuum, we show that in the 10-60 nm range there is no such a thing as a shear-force in the sense of the nonconservative friction force. Fluctuations of the oscillator resonance frequency, likely induced by local charge variations, could account for the reported effects in the literature without introducing a dissipative force.

  6. Fluctuating Pressure Environments and Hydrodynamic Radial Force Mitigation for a Two Blade Unshrouded Inducer

    NASA Technical Reports Server (NTRS)

    Mulder, Andrew; Skelley, Stephen

    2011-01-01

    Fluctuating pressure data from water flow testing of an unshrouded two blade inducer revealed a cavitation induced oscillation with the potential to induce a radial load on the turbopump shaft in addition to other more traditionally analyzed radial loads. Subsequent water flow testing of the inducer with a rotating force measurement system confirmed that the cavitation induced oscillation did impart a radial load to the inducer. After quantifying the load in a baseline configuration, two inducer shroud treatments were selected and tested to reduce the cavitation induced load. The first treatment was to increase the tip clearance, and the second was to introduce a circumferential groove near the inducer leading edge. Increasing the clearance resulted in a small decrease in radial load along with some steady performance degradation. The groove greatly reduced the hydrodynamic load with little to no steady performance loss. The groove did however generate some new, relatively high frequency, spatially complex oscillations to the flow environment.

  7. Fluctuating Pressure Environments and Hydrodynamic Radial Force Mitigation for a Two Blade Unshrouded Inducer

    NASA Technical Reports Server (NTRS)

    Mulder, Andrew; Skelley, Stephen

    2011-01-01

    Fluctuating pressure data from water flow testing of an unshrouded two blade inducer revealed a cavitation induced oscillation with the potential to induce a radial load on the turbopump shaft in addition to other more traditionally analyzed radial loads. Subsequent water flow testing of the inducer with a rotating force measurement system confirmed that the cavitation induced oscillation did impart a radial load to the inducer. After quantifying the load in a baseline configuration, two inducer shroud treatments were selected and tested to reduce the cavitation induced load. The first treatment was to increase the tip clearance, and the second was to introduce a circumferential groove near the inducer leading edge. Increasing the clearance resulted in a small load decrease along with some steady performance degradation. The groove greatly reduced the hydrodynamic load with little to no steady performance loss. The groove did however generate some new, relatively high frequency, spatially complex oscillations to the environment.

  8. Fluctuation-induced forces in nematics with a foreign anisotropy in the bulk

    NASA Astrophysics Data System (ADS)

    Karimi Pour Haddadan, Fahimeh

    2017-02-01

    Within a linear coupling between orientational order of nematic liquid crystal and anisotropic mesoscopic particles immeresed in the nematic, the pseudo-Casimir effect is investigated. A quenched disorder in the alignment of the particles, which is on average in the direction of the nematic director, induces an inter-substrate force as this composite is confined by two flat parallel surfaces a distance d apart. The disorder-induced force decays as -d -1 in the weak coupling regime. The force magnitude increases with the variance of the disorder and decreases on increasing the correlation length of the disorder. If the disorder is considered to be annealed, the disorder effects are not decoupled from the thermal effects and thus the form of the nematic fluctuation-induced force does not alter. The force is affected by the disorder only through a re-normalization of the mean particles’ pinning strength. The trend for this modified thermal-induced force with respect to the variance and the correlation length of the disorder remains as in the quenched case, where the pseudo-Casimir force was decomposed into two distinct thermal- and disorder-induced components.

  9. Depletion-induced forces and crowding in polymer-nanoparticle mixtures: Role of polymer shape fluctuations and penetrability

    NASA Astrophysics Data System (ADS)

    Lim, Wei Kang; Denton, Alan R.

    2016-01-01

    Depletion forces and macromolecular crowding govern the structure and function of biopolymers in biological cells and the properties of polymer nanocomposite materials. To isolate and analyze the influence of polymer shape fluctuations and penetrability on depletion-induced interactions and crowding by nanoparticles, we model polymers as effective penetrable ellipsoids, whose shapes fluctuate according to the probability distributions of the eigenvalues of the gyration tensor of an ideal random walk. Within this model, we apply Monte Carlo simulation methods to compute the depletion-induced potential of mean force between hard nanospheres and crowding-induced shape distributions of polymers in the protein limit, in which polymer coils can be easily penetrated by smaller nanospheres. By comparing depletion potentials from simulations of ellipsoidal and spherical polymer models with predictions of polymer field theory and free-volume theory, we show that polymer depletion-induced interactions and crowding depend sensitively on polymer shapes and penetrability, with important implications for bulk thermodynamic phase behavior.

  10. Depletion-induced forces and crowding in polymer-nanoparticle mixtures: Role of polymer shape fluctuations and penetrability.

    PubMed

    Lim, Wei Kang; Denton, Alan R

    2016-01-14

    Depletion forces and macromolecular crowding govern the structure and function of biopolymers in biological cells and the properties of polymer nanocomposite materials. To isolate and analyze the influence of polymer shape fluctuations and penetrability on depletion-induced interactions and crowding by nanoparticles, we model polymers as effective penetrable ellipsoids, whose shapes fluctuate according to the probability distributions of the eigenvalues of the gyration tensor of an ideal random walk. Within this model, we apply Monte Carlo simulation methods to compute the depletion-induced potential of mean force between hard nanospheres and crowding-induced shape distributions of polymers in the protein limit, in which polymer coils can be easily penetrated by smaller nanospheres. By comparing depletion potentials from simulations of ellipsoidal and spherical polymer models with predictions of polymer field theory and free-volume theory, we show that polymer depletion-induced interactions and crowding depend sensitively on polymer shapes and penetrability, with important implications for bulk thermodynamic phase behavior.

  11. Fluctuation-induced forces in confined ideal and imperfect Bose gases

    NASA Astrophysics Data System (ADS)

    Diehl, H. W.; Rutkevich, Sergei B.

    2017-06-01

    Fluctuation-induced ("Casimir") forces caused by thermal and quantum fluctuations are investigated for ideal and imperfect Bose gases confined to d -dimensional films of size ∞d -1×D under periodic (P), antiperiodic (A), Dirichlet-Dirichlet (DD), Neumann-Neumann (NN), and Robin (R) boundary conditions (BCs). The full scaling functions ΥdBC(xλ=D /λth ,xξ=D /ξ ) of the residual reduced grand potential per area φres,dBC(T ,μ ,D ) =D-(d -1 )ΥdBC(xλ,xξ) are determined for the ideal gas case with these BCs, where λth and ξ are the thermal de Broglie wavelength and the bulk correlation length, respectively. The associated limiting scaling functions ΘdBC(xξ) ≡ΥdBC(∞ ,xξ) describing the critical behavior at the bulk condensation transition are shown to agree with those previously determined from a massive free O (2 ) theory for BC=P,A,DD,DN,NN . For d =3 , they are expressed in closed analytical form in terms of polylogarithms. The analogous scaling functions ΥdBC(xλ,xξ,c1D ,c2D ) and ΘdR(xξ,c1D ,c2D ) under the RBCs (∂z-c1) ϕ |z=0=(∂z+c2) ϕ | z =D=0 with c1≥0 and c2≥0 are also determined. The corresponding scaling functions Υ∞,d P(xλ,xξ) and Θ∞,d P(xξ) for the imperfect Bose gas are shown to agree with those of the interacting Bose gas with n internal degrees of freedom in the limit n →∞ . Hence, for d =3 , Θ∞,d P(xξ) is known exactly in closed analytic form. To account for the breakdown of translation invariance in the direction perpendicular to the boundary planes implied by free BCs such as DDBCs, a modified imperfect Bose gas model is introduced that corresponds to the limit n →∞ of this interacting Bose gas. Numerically and analytically exact results for the scaling function Θ∞,3 DD(xξ) therefore follow from those of the O (2 n ) ϕ4 model for n →∞ .

  12. Fluctuation-induced forces in confined ideal and imperfect Bose gases.

    PubMed

    Diehl, H W; Rutkevich, Sergei B

    2017-06-01

    Fluctuation-induced ("Casimir") forces caused by thermal and quantum fluctuations are investigated for ideal and imperfect Bose gases confined to d-dimensional films of size ∞^{d-1}×D under periodic (P), antiperiodic (A), Dirichlet-Dirichlet (DD), Neumann-Neumann (NN), and Robin (R) boundary conditions (BCs). The full scaling functions Υ_{d}^{BC}(x_{λ}=D/λ_{th},x_{ξ}=D/ξ) of the residual reduced grand potential per area φ_{res,d}^{BC}(T,μ,D)=D^{-(d-1)}Υ_{d}^{BC}(x_{λ},x_{ξ}) are determined for the ideal gas case with these BCs, where λ_{th} and ξ are the thermal de Broglie wavelength and the bulk correlation length, respectively. The associated limiting scaling functions Θ_{d}^{BC}(x_{ξ})≡Υ_{d}^{BC}(∞,x_{ξ}) describing the critical behavior at the bulk condensation transition are shown to agree with those previously determined from a massive free O(2) theory for BC=P,A,DD,DN,NN. For d=3, they are expressed in closed analytical form in terms of polylogarithms. The analogous scaling functions Υ_{d}^{BC}(x_{λ},x_{ξ},c_{1}D,c_{2}D) and Θ_{d}^{R}(x_{ξ},c_{1}D,c_{2}D) under the RBCs (∂_{z}-c_{1})ϕ|_{z=0}=(∂_{z}+c_{2})ϕ|_{z=D}=0 with c_{1}≥0 and c_{2}≥0 are also determined. The corresponding scaling functions Υ_{∞,d}^{P}(x_{λ},x_{ξ}) and Θ_{∞,d}^{P}(x_{ξ}) for the imperfect Bose gas are shown to agree with those of the interacting Bose gas with n internal degrees of freedom in the limit n→∞. Hence, for d=3, Θ_{∞,d}^{P}(x_{ξ}) is known exactly in closed analytic form. To account for the breakdown of translation invariance in the direction perpendicular to the boundary planes implied by free BCs such as DDBCs, a modified imperfect Bose gas model is introduced that corresponds to the limit n→∞ of this interacting Bose gas. Numerically and analytically exact results for the scaling function Θ_{∞,3}^{DD}(x_{ξ}) therefore follow from those of the O(2n)ϕ^{4} model for n→∞.

  13. Effects of local and core body temperature on grip force modulation during movement-induced load force fluctuations.

    PubMed

    Cheung, Stephen S; Reynolds, Luke F; Macdonald, Mark A B; Tweedie, Constance L; Urquhart, Robin L; Westwood, David A

    2008-05-01

    Impaired manual functioning often occurs when the hands are exposed to cold temperatures, but the underlying mechanism is not clearly understood. Tactile feedback is thought to provide important information during object manipulations in order to scale and regulate grip forces; however, topical anaesthetic-induced tactile sensation impairments may not realistically simulate the systemic neuromuscular impairment of the whole hand that could occur during cold temperature exposure. In two experiments, we studied the impact of (1) local hand cooling [thermoneutral finger skin temperature, cold (<8 degrees C)] and (2) core body temperature (thermoneutral core body temperature, pre-heated by 0.5 degrees C, pre-cooled by 0.5 degrees C) with cold hands on manual dexterity and the ability to control and co-ordinate grip forces during a cyclical load-lifting task. In Experiment 1 (n = 10), hand cooling significantly decreased Purdue Pegboard performance (P = 0.002), while increasing grip force by approximately 5 N during the cyclical load-lifting task compared to thermoneutral (P = 0.037). The temporal co-ordination of grip and load forces was unaffected by hand cooling. In Experiment 2 (n = 11), pegboard performance was impaired following hand cooling (P < 0.001), and to a greater extent when the body was pre-cooled (p < 0.001). However, neither grip force (P = 0.99) nor the temporal co-ordination of grasping and lifting forces (P = 0.85) were affected by core body temperature. These data support the existence of a robust centrally controlled feedforward system able to anticipate the dynamics of manual manipulations and accordingly regulate the temporal co-ordination of fingertip forces during object manipulation. This centrally controlled mechanism appears to differ from the mechanisms governing other aspects of manual dexterity.

  14. Fluctuation-induced forces in the presence of mobile carrier drift

    NASA Astrophysics Data System (ADS)

    Shapiro, Boris

    2017-08-01

    A small polarizable object (an atom, molecule, or nanoparticle), placed above a medium with flowing dc current in it, is considered. It is shown that the dc current can have a strong effect on the force exerted on the particle. The Casimir-Lifshitz force, well studied in the absence of current, gets modified due to drifting mobile carriers in the medium. Furthermore, a force in the lateral direction appears. This force is a nonmonotonic function of the drift velocity and its maximal value is comparable with the Casimir-Lifshitz force. If the temperatures of the medium and the particle are different, this lateral force can be directed along the current (drag) or in the opposite direction (antidrag).

  15. Force fluctuations in stretching a tethered polymer

    NASA Astrophysics Data System (ADS)

    Varghese, Anoop; Vemparala, Satyavani; Rajesh, R.

    2013-08-01

    The recently proposed fluctuation relation in unfolding forces [Phys. Rev. E1539-375510.1103/PhysRevE.84.060101 84, 060101(R) (2011)] is reexamined taking into account the explicit time dependence of the force distribution. The stretching of a tethered Rouse polymer is exactly solved and the ratio of the probabilities of positive to negative forces is shown to be an exponential in force. Extensive steered molecular dynamics simulations of unfolding of deca alanine peptide confirm the form of fluctuation relation proposed earlier, but with explicit correct time dependence of unfolding forces taken into account. From exact calculations and simulations, a linear dependence of the constant in the exponential of the fluctuation relation on average unfolding forces and inverse temperature is proposed.

  16. Friction forces arising from fluctuating thermal fields

    NASA Astrophysics Data System (ADS)

    Zurita-Sánchez, Jorge R.; Greffet, Jean-Jacques; Novotny, Lukas

    2004-02-01

    We calculate the damping of a classical oscillator induced by the electromagnetic field generated by thermally fluctuating currents in the environment. The fluctuation-dissipation theorem is applied to derive the linear-velocity damping coefficient γ. It turns out that γ is the result of fourth-order correlation functions. The theory is applied to a particle oscillating parallel to a flat substrate and numerical values for γ are evaluated for particle and substrate materials made of silver and glass. We find that losses are much higher for dielectric materials than for metals because of the higher resistivity. We predict that measurements performed on metal films are strongly affected by the underlying dielectric substrate and we show that our theory reproduces existing theoretical results in the nonretarded limit. The theory provides an explanation for the observed distance-dependent damping in shear-force microscopy and it gives guidance for future experiments. Also, the theory should be of importance for the design of nanoscale mechanical systems and for understanding the trade-offs of miniaturization.

  17. FLUCTUATING MOTOR FORCES BEND GROWING MICROTUBULES

    PubMed Central

    Shekhar, Nandini; Neelam, Srujana; Wu, Jun; Ladd, Anthony JC; Dickinson, Richard B.; Lele, Tanmay P.

    2013-01-01

    Despite their rigidity, microtubules in living cells bend significantly during polymerization resulting in greater curvature than can be explained by thermal forces alone. However, the source of the non-thermal forces that bend growing microtubules remains obscure. We analyzed the motion of microtubule tips in NIH-3T3 fibroblasts expressing EGFP-EB1, a fluorescent +TIP protein that specifically binds to the growing ends of microtubules. We found that dynein inhibition significantly reduced the deviation of the growing tip from its initial trajectory. Inhibiting myosin modestly reduced tip fluctuations, while simultaneous myosin and dynein inhibition caused no further decrease in fluctuations compared to dynein inhibition alone. Our results can be interpreted with a model in which dynein linkages play a key role in generating and transmitting fluctuating forces that bend growing microtubules. PMID:24039637

  18. Stress fluctuations in granular force networks

    NASA Astrophysics Data System (ADS)

    Tighe, Brian P.; Vlugt, Thijs J. H.

    2011-04-01

    The heterogeneous force networks in static granular media are distinguished from other network structures in that they must satisfy constraints of mechanical equilibrium on every vertex/grain. Here we study the statistics of ensembles of hyperstatic frictionless force networks, which are composed of more forces than can be determined uniquely from force balance. Hyperstatic force networks possess degrees of freedom that rearrange one balanced network into another. We calculate the equation of state and demonstrate that the number of rearrangements governs the macroscopic statistical properties of the ensemble, in particular the macroscopic fluctuations of stress, which scale with distance to the isostatic point. We then show that a maximum entropy postulate allows one to quantitatively capture many features of the microscopic statistics. All predictions are tested against highly accurate Monte Carlo numerical simulations employing umbrella sampling.

  19. Superfluid helium sloshing dynamics induced oscillations and fluctuations of angular momentum, force and moment actuated on spacecraft driven by gravity gradient or jitter acceleration associated with slew motion

    NASA Technical Reports Server (NTRS)

    Hung, R. J.

    1994-01-01

    The generalized mathematical formulation of sloshing dynamics for partially filled liquid of cryogenic superfluid helium II in dewar containers driven by the gravity gradient and jitter accelerations associated with slew motion for the purpose to perform scientific observation during the normal spacecraft operation are investigated. An example is given with the Advanced X-Ray Astrophysics Facility-Spectroscopy (AXAF-S) for slew motion which is responsible for the sloshing dynamics. The jitter accelerations include slew motion, spinning motion, atmospheric drag on the spacecraft, spacecraft attitude motions arising from machinery vibrations, thruster firing, pointing control of spacecraft, crew motion, etc. Explicit mathematical expressions to cover these forces acting on the spacecraft fluid systems are derived. The numerical computation of sloshing dynamics is based on the non-inertia frame spacecraft bound coordinate, and solve time-dependent, three-dimensional formulations of partial differential equations subject to initial and boundary conditions. The explicit mathematical expressions of boundary conditions to cover capillary force effect on the liquid-vapor interface in microgravity environments are also derived. The formulations of fluid moment and angular moment fluctuations in fluid profiles induced by the sloshing dynamics, together with fluid stress and moment fluctuations exerted on the spacecraft dewar containers have also been derived. Examples are also given for cases applicable to the AXAF-S spacecraft sloshing dynamics associated with slew motion.

  20. The fluctuation induced Hall effect

    SciTech Connect

    Shen, W.; Prager, S.C.

    1993-02-01

    The fluctuation induced Hall term, {le}{approximately}{ovr J} {times} {approximately}{ovr B}{ge}, has been measured in the MST reversed field pinch. The term is of interest as a possible source of current self-generation (dynamo). It is found to be non-negligible, but small in that it can account for less than 25% of the dynamo driven current.

  1. The fluctuation induced Hall effect

    SciTech Connect

    Shen, W.; Prager, S.C.

    1993-02-01

    The fluctuation induced Hall term, [le][approximately][ovr J] [times] [approximately][ovr B][ge], has been measured in the MST reversed field pinch. The term is of interest as a possible source of current self-generation (dynamo). It is found to be non-negligible, but small in that it can account for less than 25% of the dynamo driven current.

  2. Response of Brownian Fluctuations to External Forces

    NASA Astrophysics Data System (ADS)

    Laub, Jeffrey William

    Millikan's law of particle fall is an empirical result which shows the dependence of particle fall rate in a gas on particle radius and host gas density. The size of submicron particles in gases has long been determined by Millikan's law. The dominant factor is Stokes' law with a correction added to account for the physics of slip. However, it was recently shown by Kim and Fedele that Brownian fluctuations affect the fall rate while showing no anomalies in the density dependence of the rms displacement. The effect was an enhancement of the fall rate of small particles as the density of the host gas is increased. This enhancement showed a size dependence in the form of a smooth transition from the one of decreasing fall rate with increasing density for large particles (~0.4 μm radius) to another of increasing fall rate with increasing gas density for small particles ( ~0.15mum radius). The magnitude of the anomaly is determined by how the rms Brownian velocity compares with its fall rate. In an effort to understand the effect of Brownian fluctuations coupling with gravity, a new experiment has been carried out where an AC field was applied to force particles to fluctuate more in the vertical direction on one hand and where a constant DC field was applied to change the effective force of gravity on the other. These fields were applied to a charged oil drop in the 0.2 to 0.3 μm radius range falling in a nitrogen environment. Displacements over a 4 second time interval were repeatedly measured in both the vertical and horizontal directions. The original experimental apparatus was used with some modifications. The modifications included computer automation of particle control and data taking to allow for longer use of the same particle, up to 120 hours, and to facilitate application of the additional fields. The objective was to make large particles appear to be smaller via forced oscillations and make them fall faster or slower via the DC bias to effect the change in

  3. Dynamics of intermittent force fluctuations in vesicular nanotubulation

    NASA Astrophysics Data System (ADS)

    Ashok, B.; Ananthakrishna, G.

    2014-11-01

    Irregular force fluctuations are seen in most nanotubulation experiments. The dynamics behind their presence has, however, been neither commented upon nor modeled. A simple estimate of the mean energy dissipated in force drops turns out to be several times the thermal energy. This coupled with the rate dependent nature of the deformation reported in several experiments point to a dynamical origin of the serrations. We simplify the whole process of tether formation through a three-stage model of successive deformations of sphere to ellipsoid, neck-formation, and tubule birth and extension. Based on this, we envisage a rate-softening frictional force at the neck that must be overcome before a nanotube can be pulled out. Our minimal model includes elastic and visco-elastic deformation of the vesicle, and has built-in dependence on pull velocity, vesicle radius, and other material parameters, enabling us to capture various kinds of serrated force-extension curves for different parameter choices. Serrations are predicted in the nanotubulation region. Other features of force-extension plots reported in the literature such as a plateauing serrated region beyond a force drop, serrated flow region with a small positive slope, an increase in the elastic threshold with pull velocity, force-extension curves for vesicles with larger radius lying lower than those for smaller radius, are all also predicted by the model. A toy model is introduced to demonstrate that the role of the friction law is limited to inducing stick-slip oscillations in the force, and all other qualitative and quantitative features emerging from the model can only be attributed to other physical mechanisms included in the deformation dynamics of the vesicle.

  4. Noncontact Friction and Force Fluctuations between Closely Spaced Bodies

    SciTech Connect

    Stipe, B. C.; Mamin, H. J.; Stowe, T. D.; Kenny, T. W.; Rugar, D.

    2001-08-27

    Noncontact friction between a Au(111) surface and an ultrasensitive gold-coated cantilever was measured as a function of tip-sample spacing, temperature, and bias voltage using observations of cantilever damping and Brownian motion. The importance of the inhomogeneous contact potential is discussed and comparison is made to measurements over dielectric surfaces. Using the fluctuation-dissipation theorem, the force fluctuations are interpreted in terms of near-surface fluctuating electric fields interacting with static surface charge.

  5. Dielectric fluctuations in force microscopy: noncontact friction and frequency jitter.

    PubMed

    Yazdanian, Showkat M; Marohn, John A; Loring, Roger F

    2008-06-14

    Electric force microscopy, in which a charged probe oscillates tens to hundreds of nanometers above a sample surface, provides direct mechanical detection of relaxation in molecular materials. Noncontact friction, the damping of the probe's motions, reflects the dielectric function at the resonant frequency of the probe, while fluctuations in the probe frequency are induced by slower molecular motions. We present a unified theoretical picture of both measurements, which relates the noncontact friction and the power spectrum of the frequency jitter to dielectric properties of the sample and to experimental geometry. Each observable is related to an equilibrium correlation function associated with electric field fluctuations, which is determined by two alternative, complementary strategies for a dielectric continuum model of the sample. The first method is based on the calculation of a response function associated with the polarization of the dielectric by a time-varying external charge distribution. The second approach employs a stochastic form of Maxwell's equations, which incorporate a fluctuating electric polarization, to compute directly the equilibrium correlation function in the absence of an external charge distribution. This approach includes effects associated with the propagation of radiation. In the experimentally relevant limit that the tip-sample distance is small compared to pertinent wavelengths of radiation, the two methods yield identical results. Measurements of the power spectrum of frequency fluctuations of an ultrasensitive cantilever together with measurements of the noncontact friction over a poly(methylmethacrylate) film are used to estimate the minimum experimentally detectable frequency jitter. The predicted jitter for this polymer is shown to exceed this threshold, demonstrating the feasibility of the measurement.

  6. Dielectric fluctuations in force microscopy: Noncontact friction and frequency jitter

    PubMed Central

    Yazdanian, Showkat M.; Marohn, John A.; Loring, Roger F.

    2008-01-01

    Electric force microscopy, in which a charged probe oscillates tens to hundreds of nanometers above a sample surface, provides direct mechanical detection of relaxation in molecular materials. Noncontact friction, the damping of the probe’s motions, reflects the dielectric function at the resonant frequency of the probe, while fluctuations in the probe frequency are induced by slower molecular motions. We present a unified theoretical picture of both measurements, which relates the noncontact friction and the power spectrum of the frequency jitter to dielectric properties of the sample and to experimental geometry. Each observable is related to an equilibrium correlation function associated with electric field fluctuations, which is determined by two alternative, complementary strategies for a dielectric continuum model of the sample. The first method is based on the calculation of a response function associated with the polarization of the dielectric by a time-varying external charge distribution. The second approach employs a stochastic form of Maxwell’s equations, which incorporate a fluctuating electric polarization, to compute directly the equilibrium correlation function in the absence of an external charge distribution. This approach includes effects associated with the propagation of radiation. In the experimentally relevant limit that the tip-sample distance is small compared to pertinent wavelengths of radiation, the two methods yield identical results. Measurements of the power spectrum of frequency fluctuations of an ultrasensitive cantilever together with measurements of the noncontact friction over a poly(methylmethacrylate) film are used to estimate the minimum experimentally detectable frequency jitter. The predicted jitter for this polymer is shown to exceed this threshold, demonstrating the feasibility of the measurement. PMID:18554042

  7. Stability of focal adhesion enhanced by its inner force fluctuation

    NASA Astrophysics Data System (ADS)

    Mao, Zhi-Xiu; Chen, Xiao-Feng; Chen, Bin

    2015-08-01

    Cells actively sense and respond to mechanical signals from the extracellular matrix through focal adhesions. By representing a single focal adhesion as a cluster of slip bonds, it has been demonstrated that the cluster often became unstable under fluctuated forces. However, an unusual case was also reported, where the stability of the cluster might be substantially enhanced by a fluctuated force with a relatively low fluctuation frequency and high fluctuation amplitude. Such an observation cannot be explained by the conventional fracture theory of fatigue. Here, we intensively investigate this intriguing observation by carrying out systematic parametric studies. Our intensive simulation results indicate that stability enhancement of this kind is in fact quite robust, which can be affected by the stochastic features of a single bond and the profile of the fluctuated forces such as the average value of bond force. We then suggest that the fluctuation of traction force within a focal adhesion might enhance its stability in a certain way. Project supported by the National Natural Science Foundation of China (Grant No.*11372279).

  8. Fluctuation-induced interaction between randomly charged dielectrics.

    PubMed

    Naji, Ali; Dean, David S; Sarabadani, Jalal; Horgan, Ron R; Podgornik, Rudolf

    2010-02-12

    Monopolar charge disorder effects are studied in the context of fluctuation-induced interactions between neutral dielectric slabs. It is shown that quenched bulk charge disorder gives rise to an additive contribution to the net interaction force which decays as the inverse distance between the slabs and may thus completely mask the standard Casimir-van der Waals force at large separations. By contrast, annealed (bulk or surface) charge disorder leads to a net interaction force whose large-distance behavior agrees with the universal Casimir force between ideal conductors, which scales as the inverse cubic distance, and the dielectric properties enter only in the subleading corrections.

  9. Force fluctuations in three-dimensional suspended fibroblasts.

    PubMed

    Schlosser, Florian; Rehfeldt, Florian; Schmidt, Christoph F

    2015-02-05

    Cells are sensitive to mechanical cues from their environment and at the same time generate and transmit forces to their surroundings. To test quantitatively forces generated by cells not attached to a substrate, we used a dual optical trap to suspend 3T3 fibroblasts between two fibronectin-coated beads. In this simple geometry, we measured both the cells' elastic properties and the force fluctuations they generate with high bandwidth. Cell stiffness decreased substantially with both myosin inhibition by blebbistatin and serum-starvation, but not with microtubule depolymerization by nocodazole. We show that cortical forces generated by non-muscle myosin II deform the cell from its rounded shape in the frequency regime from 0.1 to 10 Hz. The amplitudes of these forces were strongly reduced by blebbistatin and serum starvation, but were unaffected by depolymerization of microtubules. Force fluctuations show a spectrum that is characteristic for an elastic network activated by random sustained stresses with abrupt transitions.

  10. Casimir forces in transmission-line circuits: QED and fluctuation-dissipation formalisms

    NASA Astrophysics Data System (ADS)

    Shahmoon, Ephraim

    2017-06-01

    It was recently shown that transmission-line waveguides can mediate long-range fluctuation forces between neutral objects, potentially leading to novel Casimir forces in electric circuits. Here we present two approaches for the general description of these forces between electric components embedded in transmission-line circuits. The first, following ordinary quantum electrodynamics (QED), consists of the quantization and scattering theory of voltage and current waves inside transmission lines. The second approach relies on a simple circuit analysis with additional noisy current sources due to resistors in the circuit, as per the fluctuation-dissipation theorem (FDT). We apply the latter approach to derive a general formula for the Casimir force induced by circuit fluctuations between any two impedances. The application of this formula, considering the sign of the resulting force, is discussed. While both QED and FDT approaches are equivalent, we conclude that the latter is simpler to generalize and solve.

  11. The medial gastrocnemius muscle attenuates force fluctuations during plantar flexion.

    PubMed

    Shinohara, Minoru; Yoshitake, Yasuhide; Kouzaki, Motoki; Fukunaga, Tetsuo

    2006-02-01

    Force fluctuations during steady contractions of multiple agonist muscles may be influenced by the relative contribution of force by each muscle. The purpose of the study was to compare force fluctuations during steady contractions performed with the plantar flexor muscles in different knee positions. Nine men (25.8+/-5.1 years) performed steady contractions of the plantar flexor muscles in the knee-flexed and knee-extended (greater involvement of the gastrocnemii muscles) positions. The maximal voluntary contraction (MVC) force was 32% greater in the knee-extended position compared with the knee-flexed position. The target forces were 2.5-10% MVC force in the respective position. The amplitude of electromyogram in the medial gastrocnemius muscle was greater in the knee-extended position (10.50+/-9.80%) compared with the knee-flexed position (1.26+/-1.15%, P<0.01). The amplitude of electromyogram in the soleus muscle was not influenced by the knee position. The amplitude of electromyogram in the lateral gastrocnemius and tibialis anterior muscles was marginal and unaltered with knee position. At the same force (in Newtons), the standard deviation of force was lower in the knee-extended position compared with the knee-flexed position. These results indicate that force fluctuations during plantar flexion are attenuated with greater involvement of the medial gastrocnemius muscle.

  12. Fluctuating magnetic field induced resonant activation

    SciTech Connect

    Mondal, Shrabani; Das, Sudip; Baura, Alendu; Bag, Bidhan Chandra

    2014-12-14

    In this paper, we have studied the properties of a Brownian particle at stationary state in the presence of a fluctuating magnetic field. Time dependence of the field makes the system thermodynamically open. As a signature of that the steady state distribution function becomes function of damping strength, intensity of fluctuations and constant parts of the applied magnetic field. It also depends on the correlation time of the fluctuating magnetic field. Our another observation is that the random magnetic field can induce the resonant activation phenomenon. Here correlation time is increased under the fixed variance of the fluctuating field. But if the correlation time (τ) increases under the fixed field strength then the mean first passage time rapidly grows at low τ and it almost converges at other limit. This is sharp contrast to the usual colored noise driven open system case where the mean first passage time diverges exponentially. We have also observed that a giant enhancement of barrier crossing rate occurs particularly at large strength of constant parts of the applied magnetic field even for very weak fluctuating magnetic field. Finally, break down of the Arrhenius result and disappearance of the Kramers’ turn over phenomenon may occur in the presence of a fluctuating magnetic field.

  13. Electromotive force due to magnetohydrodynamic fluctuations in sheared rotating turbulence

    DOE PAGES

    Squire, J.; Bhattacharjee, A.

    2015-11-02

    Here, this article presents a calculation of the mean electromotive force arising from general small-scale magnetohydrodynamical turbulence, within the framework of the second-order correlation approximation. With the goal of improving understanding of the accretion disk dynamo, effects arising through small-scale magnetic fluctuations, velocity gradients, density and turbulence stratification, and rotation, are included. The primary result, which supplements numerical findings, is that an off-diagonal turbulent resistivity due to magnetic fluctuations can produce large-scale dynamo action-the magnetic analog of the "shear-current" effect. In addition, consideration of alpha effects in the stratified regions of disks gives the puzzling result that there is nomore » strong prediction for a sign of alpha, since the effects due to kinetic and magnetic fluctuations, as well as those due to shear and rotation, are each of opposing signs and tend to cancel each other.« less

  14. Electromotive force due to magnetohydrodynamic fluctuations in sheared rotating turbulence.

    PubMed

    Squire, J; Bhattacharjee, A

    2015-11-01

    This article presents a calculation of the mean electromotive force arising from general small-scale magnetohydrodynamical turbulence, within the framework of the second-order correlation approximation. With the goal of improving understanding of the accretion disk dynamo, effects arising through small-scale magnetic fluctuations, velocity gradients, density and turbulence stratification, and rotation, are included. The primary result, which supplements numerical findings, is that an off-diagonal turbulent resistivity due to magnetic fluctuations can produce large-scale dynamo action-the magnetic analog of the "shear-current" effect. In addition, consideration of α effects in the stratified regions of disks gives the puzzling result that there is no strong prediction for a sign of α, since the effects due to kinetic and magnetic fluctuations, as well as those due to shear and rotation, are each of opposing signs and tend to cancel each other.

  15. Electromotive force due to magnetohydrodynamic fluctuations in sheared rotating turbulence

    SciTech Connect

    Squire, J.; Bhattacharjee, A.

    2015-11-02

    Here, this article presents a calculation of the mean electromotive force arising from general small-scale magnetohydrodynamical turbulence, within the framework of the second-order correlation approximation. With the goal of improving understanding of the accretion disk dynamo, effects arising through small-scale magnetic fluctuations, velocity gradients, density and turbulence stratification, and rotation, are included. The primary result, which supplements numerical findings, is that an off-diagonal turbulent resistivity due to magnetic fluctuations can produce large-scale dynamo action-the magnetic analog of the "shear-current" effect. In addition, consideration of alpha effects in the stratified regions of disks gives the puzzling result that there is no strong prediction for a sign of alpha, since the effects due to kinetic and magnetic fluctuations, as well as those due to shear and rotation, are each of opposing signs and tend to cancel each other.

  16. Fluctuations of induced charge in ionization detectors

    SciTech Connect

    Samedov, V. V.

    2016-12-15

    Fluctuations of charge induced by charge carriers on the detector electrodes make a significant contribution to the energy resolution of ionization detectors, namely, semiconductor detectors and gas and liquid ionization chambers. These fluctuations are determined by the capture of charge carriers, as they drift in the bulk of the detector under the action of an electric field, by traps. In this study, we give a correct mathematical description of charge induction on electrodes of an ionization detector for an arbitrary electric field distribution in the detector with consideration of charge carrier capture by traps. The characteristic function obtained in this study yields the general expression for the distribution function of the charge induced on the detector electrodes. The formulas obtained in this study are useful for analysis of the influence of charge carrier transport on energy resolution of ionization detectors.

  17. Force Fluctuations in a 2D Granular Drag Experiment

    NASA Astrophysics Data System (ADS)

    Geng, Junfei; Behringer, R. P.

    2002-11-01

    We study fluctuations in the drag force experienced by an object slowly moving through a 2D granular material consisting of bidisperse disks. Slow drag experiments provide a useful way to understand the nature of stress propagation, fluctuations, and slow dynamics in granular materials. Unlike in a liquid, the drag force in a granular material is largely due to the resistance of inhomogeneous and anisotropic ``force chains'', and thus exhibits strong fluctuations. Experiments were carried out in an apparatus similar in spirit to the one by Albert et al.(R. Albert, M.A. Pfeifer, A.L. Barabasi and P. Schiffer, Phys. Rev. Lett. 82), 205 (1999). and we varied the rotation rate (ω=6.3× 10-6 ˜ 8.7× 10-4Hz), the object size (0.744, 0.876, 1.250,1.610,1.930 cm), and the packing fraction of the system. We observed a weak dependence of the mean force on the medium velocity, a rate-invariant power spectrum decaying as ω-2 for large ω (a remarkable resemblance to results by Miller et al.(B. Miller, C. O'Hern and R.P. Behringer, Phys. Rev. Lett. 77), 3110 (1996).), an exponential distribution of avalanche sizes, and a well defined ``Stress Chain Force Constant''. We also show that a simple model adapted after Kahng. et al.(B. Kahng, I. Albert, P. Schiffer and A.L. Barabasi, Phys. Rev. E. 64), 051303 (2001). reproduces many of experimental observations.

  18. Traction force and tension fluctuations in growing axons.

    PubMed

    Polackwich, Robert J; Koch, Daniel; McAllister, Ryan; Geller, Herbert M; Urbach, Jeffrey S

    2015-01-01

    Actively generated mechanical forces play a central role in axon growth and guidance, but the mechanisms that underly force generation and regulation in growing axons remain poorly understood. We report measurements of the dynamics of traction stresses from growth cones of actively advancing axons from postnatal rat DRG neurons. By tracking the movement of the growth cone and analyzing the traction stress field from a reference frame that moves with it, we are able to show that there is a clear and consistent average stress field that underlies the complex spatial stresses present at any one time. The average stress field has strong maxima on the sides of the growth cone, directed inward toward the growth cone neck. This pattern represents a contractile stress contained within the growth cone, and a net force that is balanced by the axon tension. Using high time-resolution measurements of the growth cone traction stresses, we show that the stress field is composed of fluctuating local stress peaks, with a large number peaks that live for a short time, a population of peaks whose lifetime distribution follows an exponential decay, and a small number of very long-lived peaks. We show that the high time-resolution data also reveal that the tension appears to vary randomly over short time scales, roughly consistent with the lifetime of the stress peaks, suggesting that the tension fluctuations originate from stochastic adhesion dynamics.

  19. Motor unit control and force fluctuation during fatigue

    PubMed Central

    Contessa, Paola; Adam, Alexander; De Luca, Carlo J.

    2009-01-01

    During isometric contractions, the fluctuation of the force output of muscles increases as the muscle fatigues, and the contraction is sustained to exhaustion. We analyzed motor unit firing data from the vastus lateralis muscle to investigate which motor unit control parameters were associated with the increased force fluctuation. Subjects performed a sequence of isometric constant-force contractions sustained at 20% maximal force, each spaced by a 6-s rest period. The contractions were performed until the mean value of the force output could not be maintained at the desired level. Intramuscular EMG signals were detected with a quadrifilar fine-wire sensor. The EMG signals were decomposed to identify all of the firings of several motor units by using an artificial intelligence-based set of algorithms. We were able to follow the behavior of the same motor units as the endurance time progressed. The force output of the muscle was filtered to remove contributions from the tracking task. The coefficient of variation of the force was found to increase with endurance time (P < 0.001, R2 = 0.51). We calculated the coefficient of variation of the firing rates, the synchronization of pairs of motor unit firings, the cross-correlation value of the firing rates of pairs of motor units, the cross-correlation of the firing rates of motor units and the force, and the number of motor units recruited during the contractions. Of these parameters, only the cross-correlation of the firing rates (P < 0.01, R2 = 0.10) and the number of recruited motor units (P = 0.042, R2 = 0.22) increased significantly with endurance time for grouped subjects. A significant increase (P < 0.001, R2 = 0.16) in the cross-correlation of the firing rates and force was also observed. It is suggested that the increase in the cross-correlation of the firing rates is likely due to a decrease in the sensitivity of the proprioceptive feedback from the spindles. PMID:19390005

  20. Fluctuation-induced interactions in nematics with disordered anchoring energy

    NASA Astrophysics Data System (ADS)

    Karimi Pour Haddadan, Fahimeh; Naji, Ali; Shirzadiani, Nafiseh; Podgornik, Rudolf

    2014-12-01

    We examine fluctuation-induced (pseudo-Casimir) interactions in nematic liquid-crystalline films confined between two surfaces, where one of the surfaces imposes a strong homeotropic anchoring (ensuring a uniform mean director profile), while the other one is assumed to be a chemically disordered substrate exhibiting an annealed distribution of anchoring energies. We employ a saddle-point approximation to evaluate the free energy of interaction mediated between the two surfaces and investigate how the interaction force is influenced by the presence of disordered surface anchoring energy. It is shown that the disorder results in a renormalization of the effective surface anchoring parameter in a way that it leads to quantitative and qualitative changes (including a change of sign at intermediate inter-surface separations) in the pseudo-Casimir interaction force when compared with the interaction force in the absence of disorder.

  1. Fluctuations of the Casimir-Polder force between an atom and a conducting wall

    SciTech Connect

    Messina, R.; Passante, R.

    2007-09-15

    We consider quantum fluctuations of the Casimir-Polder force between a neutral atom and a perfectly conducting wall in the ground state of the system. In order to obtain the atom-wall force fluctuation we first define an operator directly associated with the force experienced by the atom considered as a polarizable body in an electromagnetic field and we use a time-averaged force operator in order to avoid ultraviolet divergences appearing in the fluctuation of the force. This time-averaged force operator takes into account that any measurement involves a finite time. We also calculate the Casimir-Polder force fluctuation for an atom between two conducting walls. Experimental observability of these Casimir-Polder force fluctuations is also discussed, as well as the dependence of the relative force fluctuation on the duration of the measurement.

  2. Traction force and tension fluctuations in growing axons

    NASA Astrophysics Data System (ADS)

    Urbach, Jeffrey; Polackwich, Jamie; Koch, Daniel; McAllister, Ryan; Geller, Herbert

    Actively generated mechanical forces play a central role in axon growth and guidance during nervous system development. We describe the dynamics of traction stresses from growth cones of actively advancing axons from postnatal rat DRG neurons. By tracking the movement of the growth cone and analyzing the traction stresses in a co-moving reference frame, we show that there is a clear and consistent average stress field underlying the complex spatial stresses present at any one time. The average stress field has strong maxima on the sides of the growth cone, directed inward toward the growth cone neck. This pattern represents a Contractile stress contained within the growth cone, and a net force that is balanced by the axon tension. In addition, using high time-resolution measurements, we show that the stress field is composed of fluctuating local stress peaks, with a population of peaks whose lifetime distribution follows an exponential decay, and a small number of very long-lived peaks. We also find that the tension appears to vary randomly over short time scales, roughly consistent with the lifetime of the stress peaks, suggesting that the tension fluctuations originate from stochastic adhesion dynamics.

  3. Fluctuations of the Casimir-like force between two membrane inclusions.

    PubMed

    Bitbol, Anne-Florence; Dommersnes, Paul G; Fournier, Jean-Baptiste

    2010-05-01

    Although Casimir forces are inseparable from their fluctuations, little is known about these fluctuations in soft matter systems. We use the membrane stress tensor to study the fluctuations of the membrane-mediated Casimir-like force. This method enables us to recover the Casimir force between two inclusions and to calculate its variance. We show that the Casimir force is dominated by its fluctuations. Furthermore, when the distance d between the inclusions is decreased from infinity, the variance of the Casimir force decreases as -1/d2. This distance dependence shares a common physical origin with the Casimir force itself.

  4. Negative mobility induced by colored thermal fluctuations.

    PubMed

    Kostur, M; Luczka, J; Hänggi, P

    2009-11-01

    Anomalous transport of non-Markovian thermal Brownian particle dynamics in spatially periodic symmetric systems that is driven by time-periodic symmetric driving and constant bias is investigated numerically. The Brownian dynamics is modeled by a generalized Langevin equation with exponentially correlated Gaussian thermal noise, obeying the fluctuation-dissipation theorem. We study the role of nonzero correlation time of thermal fluctuations for the occurrence of absolute negative (linear) mobility (ANM) near zero bias, negative-valued, nonlinear mobility (NNM), and negative differential mobility (NDM) at finite bias away from equilibrium. We detect that a nonzero thermal correlation time can either enhance or also diminish the value of ANM. Moreover, finite thermal noise correlation can induce NDM and NNM in regions of parameter space for which such ANM and NNM behaviors are distinctly absent for limiting white thermal noise. In parts of the parameter space, we find a complex structure of regions of linear and nonlinear negative mobility: islands and tongues which emerge and vanish under parameters manipulation. While certain such anomalous transport regimes fade away with increasing temperature some specific regions interestingly remain rather robust. Outside those regimes with anomalous mobility, the ac/dc driven transport is either normal or the driven Brownian particles are not transported at all.

  5. Electric force microscopy of semiconductors: theory of cantilever frequency fluctuations and noncontact friction.

    PubMed

    Lekkala, Swapna; Marohn, John A; Loring, Roger F

    2013-11-14

    An electric force microscope employs a charged atomic force microscope probe in vacuum to measure fluctuating electric forces above the sample surface generated by dynamics of molecules and charge carriers. We present a theoretical description of two observables in electric force microscopy of a semiconductor: the spectral density of cantilever frequency fluctuations (jitter), which are associated with low-frequency dynamics in the sample, and the coefficient of noncontact friction, induced by higher-frequency motions. The treatment is classical-mechanical, based on linear response theory and classical electrodynamics of diffusing charges in a dielectric continuum. Calculations of frequency jitter explain the absence of contributions from carrier dynamics to previous measurements of an organic field effect transistor. Calculations of noncontact friction predict decreasing friction with increasing carrier density through the suppression of carrier density fluctuations by intercarrier Coulomb interactions. The predicted carrier density dependence of the friction coefficient is consistent with measurements of the dopant density dependence of noncontact friction over Si. Our calculations predict that in contrast to the measurement of cantilever frequency jitter, a noncontact friction measurement over an organic semiconductor could show appreciable contributions from charge carriers.

  6. Electric force microscopy of semiconductors: Theory of cantilever frequency fluctuations and noncontact friction

    SciTech Connect

    Lekkala, Swapna; Marohn, John A.; Loring, Roger F.

    2013-11-14

    An electric force microscope employs a charged atomic force microscope probe in vacuum to measure fluctuating electric forces above the sample surface generated by dynamics of molecules and charge carriers. We present a theoretical description of two observables in electric force microscopy of a semiconductor: the spectral density of cantilever frequency fluctuations (jitter), which are associated with low-frequency dynamics in the sample, and the coefficient of noncontact friction, induced by higher-frequency motions. The treatment is classical-mechanical, based on linear response theory and classical electrodynamics of diffusing charges in a dielectric continuum. Calculations of frequency jitter explain the absence of contributions from carrier dynamics to previous measurements of an organic field effect transistor. Calculations of noncontact friction predict decreasing friction with increasing carrier density through the suppression of carrier density fluctuations by intercarrier Coulomb interactions. The predicted carrier density dependence of the friction coefficient is consistent with measurements of the dopant density dependence of noncontact friction over Si. Our calculations predict that in contrast to the measurement of cantilever frequency jitter, a noncontact friction measurement over an organic semiconductor could show appreciable contributions from charge carriers.

  7. Imperceptible electrical noise attenuates isometric plantar flexion force fluctuations with correlated reductions in postural sway.

    PubMed

    Magalhães, Fernando Henrique; Kohn, André Fabio

    2012-03-01

    Optimal levels of noise stimulation have been shown to enhance the detection and transmission of neural signals thereby improving the performance of sensory and motor systems. The first series of experiments in the present study aimed to investigate whether subsensory electrical noise stimulation applied over the triceps surae (TS) in seated subjects decreases torque variability during a force-matching task of isometric plantar flexion and whether the same electrical noise stimulation decreases postural sway during quiet stance. Correlation tests were applied to investigate whether the noise-induced postural sway decrease is linearly predicted by the noise-induced torque variability decrease. A second series of experiments was conducted to investigate whether there are differences in torque variability between conditions in which the subsensory electrical noise is applied only to the TS, only to the tibialis anterior (TA) and to both TS and TA, during the force-matching task with seated subjects. Noise stimulation applied over the TS muscles caused a significant reduction in force variability during the maintained isometric force paradigm and also decreased postural oscillations during quiet stance. Moreover, there was a significant correlation between the reduction in force fluctuation and the decrease in postural sway with the electrical noise stimulation. This last result indicates that changes in plantar flexion force variability in response to a given subsensory random stimulation of the TS may provide an estimate of the variations in postural sway caused by the same subsensory stimulation of the TS. We suggest that the decreases in force variability and postural sway found here are due to stochastic resonance that causes an improved transmission of proprioceptive information. In the second series of experiments, the reduction in force variability found when noise was applied to the TA muscle alone did not reach statistical significance, suggesting that TS

  8. Nonequilibrium fluctuation-induced Casimir pressures in liquid mixtures.

    PubMed

    Kirkpatrick, T R; Ortiz de Zárate, J M; Sengers, J V

    2016-03-01

    In this article we derive expressions for Casimir-like pressures induced by nonequilibrium concentration fluctuations in liquid mixtures. The results are then applied to liquid mixtures in which the concentration gradient results from a temperature gradient through the Soret effect. A comparison is made between the pressures induced by nonequilibrium concentration fluctuations in liquid mixtures and those induced by nonequilibrium temperature fluctuations in one-component fluids. Some suggestions for experimental verification procedures are also presented.

  9. Influence of the Basset force on the resonant behavior of an oscillator with fluctuating frequency

    SciTech Connect

    Rekker, A. Mankin, R.

    2015-10-28

    The influence of hydrodynamic interactions, such as Stokes and Basset forces, on the dynamics of a harmonically trapped Brownian tracer is considered. A generalized Langevin equation is used to describe the tracer’s response to an external periodic force and to dichotomous fluctuations of the stiffness of the trapping potential. Relying on the Shapiro-Loginov formula, exact expressions for the complex susceptibility and for the response function are presented. On the basis of these exact formulas, it is demonstrated that interplay of a multiplicative colored noise and the Basset force induced memory effects can generate a variety of cooperation effects, such as multiresonance versus the driving frequency, as well as stochastic resonance versus noise parameters. In particular, in certain parameter regions the response function exhibits a resonance-like enhancement at intermediate values of the intensity of the Basset force. Conditions for the appearance of these effects are also discussed.

  10. Solar wind thermally induced magnetic fluctuations.

    PubMed

    Navarro, R E; Moya, P S; Muñoz, V; Araneda, J A; F-Viñas, A; Valdivia, J A

    2014-06-20

    A kinetic description of Alfvén-cyclotron magnetic fluctuations for anisotropic electron-proton quasistable plasmas is studied. An analytical treatment, based on the fluctuation-dissipation theorem, consistently shows that spontaneous fluctuations in plasmas with stable distributions significantly contribute to the observed magnetic fluctuations in the solar wind, as seen, for example, in [S. D. Bale et al., Phys. Rev. Lett. 103, 211101 (2009)], even far below from the instability thresholds. Furthermore, these results, which do not require any adjustable parameters or wave excitations, are consistent with the results provided by hybrid simulations. It is expected that this analysis contributes to our understanding of the nature of magnetic fluctuations in the solar wind.

  11. Fatigue Effect on Low-Frequency Force Fluctuations and Muscular Oscillations during Rhythmic Isometric Contraction

    PubMed Central

    Lin, Yen-Ting; Kuo, Chia-Hua; Hwang, Ing-Shiou

    2014-01-01

    Continuous force output containing numerous intermittent force pulses is not completely smooth. By characterizing force fluctuation properties and force pulse metrics, this study investigated adaptive changes in trajectory control, both force-generating capacity and force fluctuations, as fatigue progresses. Sixteen healthy subjects (20–24 years old) completed rhythmic isometric gripping with the non-dominant hand to volitional failure. Before and immediately following the fatigue intervention, we measured the gripping force to couple a 0.5 Hz sinusoidal target in the range of 50–100% maximal voluntary contraction. Dynamic force output was off-line decomposed into 1) an ideal force trajectory spectrally identical to the target rate; and 2) a force pulse trace pertaining to force fluctuations and error-correction attempts. The amplitude of ideal force trajectory regarding to force-generating capacity was more suppressed than that of the force pulse trace with increasing fatigue, which also shifted the force pulse trace to lower frequency bands. Multi-scale entropy analysis revealed that the complexity of the force pulse trace at high time scales increased with fatigue, contrary to the decrease in complexity of the force pulse trace at low time scales. Statistical properties of individual force pulses in the spatial and temporal domains varied with muscular fatigue, concurrent with marked suppression of gamma muscular oscillations (40–60 Hz) in the post-fatigue test. In conclusion, this study first reveals that muscular fatigue impairs the amplitude modulation of force pattern generation more than it affects the amplitude responsiveness of fine-tuning a force trajectory. Besides, motor fatigue results disadvantageously in enhancement of motor noises, simplification of short-term force-tuning strategy, and slow responsiveness to force errors, pertaining to dimensional changes in force fluctuations, scaling properties of force pulse, and muscular oscillation

  12. Structural fluctuation of proteins induced by thermodynamic perturbation

    SciTech Connect

    Hirata, Fumio; Akasaka, Kazuyuki

    2015-01-28

    A theory to describe structural fluctuations of protein induced by thermodynamic perturbations, pressure, temperature, and denaturant, is proposed. The theory is formulated based on the three methods in the statistical mechanics: the generalized Langevin theory, the linear response theory, and the three dimensional interaction site model (3D-RISM) theory. The theory clarifies how the change in thermodynamic conditions, or a macroscopic perturbation, induces the conformational fluctuation, which is a microscopic property. The theoretical results are applied, on the conceptual basis, to explain the experimental finding by Akasaka et al., concerning the NMR experiment which states that the conformational change induced by pressure corresponds to structural fluctuations occurring in the ambient condition. A method to evaluate the structural fluctuation induced by pressure is also suggested by means of the 3D-RISM and the site-site Kirkwood-Buff theories.

  13. Laser-Based Faraday-Effect Measurement of Magnetic Fluctuations and Fluctuation-Induced Transport

    NASA Astrophysics Data System (ADS)

    Lin, L.; Brower, D. L.; Ding, W. X.; Sarff, J. S.

    2013-10-01

    A multichord far-infrared laser-based Faraday-effect polarimetry diagnostic has been well developed on MST. Combined polarimetry-interferometry capability permits simultaneous measurement of internal structure of density and magnetic field with fast time response (~ 4 μs) and low phase noise (< 0 .01°) . With this diagnostic, the impact on toroidal current profile from a tangentially injected neutral beam is directly measured, allowing evaluation of non-inductive current drive. In addition, 0 .05° Faraday-effect fluctuations associated with global tearing modes are resolved with an uncertainty below 0 .01° . For physics investigations, these Faraday-effect fluctuations are complicated by contributions from both density and magnetic fluctuations. In our analysis, the local density fluctuations are obtained by inverting the line-integrated interferometry data after resolving the mode helicity through correlation techniques. The local magnetic fluctuations are then reconstructed using a parameterized fit of the polarimetry data, accounting for both the density and magnetic contributions. For the same mode, density and radial magnetic fluctuations exhibit very different spatial structure. In this process, their relative phase is also determined, thereby allowing the determination of magnetic-fluctuation-induced transport. Work supported by US DoE.

  14. Trapped Electron Precession Shear Induced Fluctuation Decorrelation

    SciTech Connect

    T.S. Hahm; P.H. Diamond; E.-J. Kim

    2002-07-29

    We consider the effects of trapped electron precession shear on the microturbulence. In a similar way the strong E x B shear reduces the radial correlation length of ambient fluctuations, the radial variation of the trapped electron precession frequency can reduce the radial correlation length of fluctuations associated with trapped electrons. In reversed shear plasmas, with the explicit dependence of the trapped electron precession shearing rate on B(subscript)theta, the sharp radial gradient of T(subscript)e due to local electron heating inside qmin can make the precession shearing mechanism more effective, and reduce the electron thermal transport constructing a positive feedback loop for the T(subscript)e barrier formation.

  15. Diastolic scattered light fluctuation, resting force and twitch force in mammalian cardiac muscle

    PubMed Central

    Lakatta, E. G.; Lappé, D. L.

    1981-01-01

    1. When coherent light was passed through isolated isometric cardiac muscles during the diastolic or resting period, intensity fluctuations were observed in the scattered field. The frequency of these intensity fluctuations (f½) varied with many experimental interventions known to enhance Ca2+ flux into the cell. 2. In rat muscles stimulated at low frequencies (0.1 ± 2.0 min-1) stepwise increases (0.4-10 mm) of [Ca2+] in the bathing fluid ([Ca2+]e), or addition of ouabain (10-6-6 × 10-4 m) to the perfusate caused stepwise increases in f½. These were paralleled by increments in resting force (RF) such that the changes in f½ and RF were highly correlated. Substitution of K+ for Na+ in the perfusate resulted in parallel transients in RF and f½. 3. In contrast to the rat, most cat muscles stimulated at low frequencies in the steady state exhibited neither diastolic intensity fluctuations nor Ca2+-dependent changes in RF in [Ca2+]e of 10 mm or less; when [Ca2+]e was increased to 12-32 mm, however, steady-state Ca2+-dependent f½ and RF were observed. In a given [Ca2+]e reduction of [Na+]e increased f½. In the transient state following cessation of regular stimulation at more rapid rates (12-96 min-1) intensity fluctuations were present in all [Ca2+]e and decayed with time (seconds to minutes); the f½ and time course of the decay of the fluctuations were determined by the rate of prior stimulation and [Ca2+]e. 4. Maximum potentiation of twitch force in response to the above inotropic interventions was associated with an optimal level of f½ which was similar in both species; when higher levels of f½ were produced by more intense inotropic intervention, twitch force declined. Over the range of inotropic intervention up to and including that at which maximum twitch potentiation occurred, the increase in diastolic f½ predicted the extent of twitch potentiation with a high degree of accuracy (r > 0.97) both in the transient and steady states. 5. In contrast to the

  16. Portfolio theory of optimal isometric force production: Variability predictions and nonequilibrium fluctuation dissipation theorem

    NASA Astrophysics Data System (ADS)

    Frank, T. D.; Patanarapeelert, K.; Beek, P. J.

    2008-05-01

    We derive a fundamental relationship between the mean and the variability of isometric force. The relationship arises from an optimal collection of active motor units such that the force variability assumes a minimum (optimal isometric force). The relationship is shown to be independent of the explicit motor unit properties and of the dynamical features of isometric force production. A constant coefficient of variation in the asymptotic regime and a nonequilibrium fluctuation-dissipation theorem for optimal isometric force are predicted.

  17. Parameter Fluctuation-Induced Pattern Transition in the Complex Ginzburg-Landau Equation

    NASA Astrophysics Data System (ADS)

    Ma, Jun; Ja, Ya; Tang, Jun; Chen, Yong

    Parameter fluctuation, which is often induced by the noise, temperature, deformation of the media etc., plays an important role in changing the dynamics of the system. In this paper, the problem of parameter fluctuation-induced pattern transition in the Complex Ginzburg-Landau equation (CGLE) is investigated. At first, the perpendicular-gradient initial values are used to generate spiral wave and spiral turbulence under appropriate parameters. At second, the parameter is perturbed with the periodical and/or random signal to simulate the parameter fluctuation, respectively. Then a class of linear error feedback is used to induce transition of the spiral wave and spiral turbulence. It is found that target waves can be induced by the complete feedback forcing, while the local feedback forcing seldom induce a target wave. In the case of spiral turbulence, spiral wave is generated and the spiral turbulence is removed by the new appeared spiral wave as the linear error feedback began to work on the whole media. Finally, the common negative feedback is also used to control the parameter-fluctuated CGLE, and the results are compared with the linear error feedback control, it is found that the whole system become homogeneous when the negative feedback is imposed on the whole media, and the local negative feedback can induce new target wave to remove the spiral wave while it is in vain to generate new target or spiral wave to overcome and eliminate the spiral turbulence.

  18. Casimir-Polder force fluctuations as spatial probes of dissipation in metals

    NASA Astrophysics Data System (ADS)

    Cherroret, Nicolas; Crépin, Pierre-Philippe; Guérout, Romain; Lambrecht, Astrid; Reynaud, Serge

    2017-03-01

    We study the spatial fluctuations of the Casimir-Polder force experienced by an atom or a small sphere moved above a metallic plate at fixed separation distance. We demonstrate that unlike the mean force, the magnitude of these fluctuations crucially relies on the relaxation of conduction electron in the metallic bulk, and even achieves values that differ by orders of magnitude depending on the amount of dissipation. We also discover that fluctuations suffer a spectacular decrease at large distances in the case of nonzero temperature.

  19. Fluctuation of a Piston in Vacuum Induced by Thermal Radiation Pressure

    NASA Astrophysics Data System (ADS)

    Inui, Norio

    2017-10-01

    We consider the displacement of a piston dividing a vacuum cavity at a finite temperature T induced by fluctuations in the thermal radiation pressure. The correlation function of the thermal radiation pressure is calculated using the theoretical framework developed by Barton, which was first applied to the fluctuation of the Casimir force at absolute zero. We show that the variance of the radiation pressure at a fixed point is proportional to T8 and evaluate the mean square displacement for a piston with a small cross section in a characteristic correlation timescale ħ/(kBT). At room temperature, the contribution of the thermal radiation to the fluctuation is larger than that of the vacuum fluctuation.

  20. Comment on ``Gravity as a zero-point-fluctuation force''

    NASA Astrophysics Data System (ADS)

    Carlip, S.

    1993-04-01

    A paper by H. Puthoff [Phys. Rev. A 39, 2333 (1989)], which claims to derive Newtonian gravity from stochastic electrodynamics, contains a serious computational error. When the calculation is corrected, the resulting force is shown to be nongravitational and negligible.

  1. Robustness of networks against fluctuation-induced cascading failures.

    PubMed

    Heide, Dominik; Schäfer, Mirko; Greiner, Martin

    2008-05-01

    Fluctuating fluxes on a complex network lead to load fluctuations at the vertices, which may cause them to become overloaded and to induce a cascading failure. A characterization of the one-point load fluctuations is presented, revealing their dependence on the nature of the flux fluctuations and on the underlying network structure. Based on these findings, an alternate robustness layout of the network is proposed. Taking load correlations between the vertices into account, an analytical prediction of the probability for the network to remain fully efficient is confirmed by simulations. Compared to previously proposed mean-flux layouts, the alternate layout comes with significantly less investment costs in the high-confidence limit.

  2. Vacuum Fluctuation Force on a Rigid Casimir Cavity in de Sitter and Schwarzschild-De Sitter Space-Time

    NASA Astrophysics Data System (ADS)

    Chen, Xiang

    2012-11-01

    We investigate the net force on a rigid Casimir cavity generated by vacuum fluctuations of electromagnetic field in three cases: de Sitter space-time, de Sitter space-time with weak gravitational field and Schwarzschild-de Sitter space-time. In de Sitter space-time the resulting net force follows the square inverse law but unfortunately it is too weak to be measurable due to the large universe radius. By introducing a weak gravitational field into the de Sitter space-time, we find that the net force can now be split into two parts, one is the gravitational force due to the induced effective mass between the two plates and the other one is generated by the metric structure of de Sitter space-time. In order to investigate the vacuum fluctuation force on the rigid cavity under strong gravitational field, we perform a similar analysis in Schwarzschild-de Sitter space-time and results are obtained in three different limits. The most interesting one is when the cavity gets closer to the horizon of a blackhole, square inverse law is recovered and the repulsive force due to negative energy/mass of the cavity now has an observable strength. More importantly the force changes from being repulsive to attractive when the cavity crosses the event horizon, so that the energy/mass of the cavity switches the sign, which suggests the unusual time direction inside the event horizon.

  3. Laser-detected lateral muscle displacement is correlated with force fluctuations during voluntary contractions in humans.

    PubMed

    Yoshitake, Yasuhide; Masani, Kei; Shinohara, Minoru

    2008-08-30

    Fluctuations in muscle force during steady voluntary contractions result from the summation of twitch forces produced by asynchronous activation of multiple motor units. We hypothesized that oscillatory lateral muscle displacement, measured with a non-contact high-resolution laser displacement sensor, is correlated with force fluctuations during steady, voluntary contractions with a human muscle. Eight healthy young adults (20-33 yrs) performed steady isometric contractions with the first dorsal interosseus muscle. Contraction intensity ranged from 2.5% to 60% of the maximal voluntary contraction force. Oscillatory lateral displacement of the muscle surface was measured with a high-resolution laser displacement sensor (0.5 microm resolution), concurrently with abduction force of the index finger. In the time-domain analysis, there was a significant positive peak in the cross-correlation function between lateral muscle displacement and force fluctuations. In addition, the amplitude increased linearly with contraction intensity in both signals. In the frequency-domain analysis, frequency content was similar in both signals, and there was significant coherence between signals for the major frequency range of the signals (<5 Hz). In conclusion, laser-detected lateral displacement of a hand muscle is correlated with force fluctuations across a wide range of contraction intensity during steady voluntary contractions in humans.

  4. Force on a moving point impurity due to quantum fluctuations in a Bose-Einstein condensate

    SciTech Connect

    Roberts, D. C.

    2006-07-15

    An analytic expression is derived for a force on a weak point impurity arising from the scattering of quantum fluctuations in a slow-moving, weakly interacting, three-dimensional Bose-Einstein condensate at zero temperature. In an infinitely extended geometry, this force is shown to exist at any arbitrarily small flow velocity below Landau's critical velocity. Furthermore, this force is shown to be directly proportional to the flow speed.

  5. Short-term climatic fluctuations forced by thermal anomalies

    NASA Technical Reports Server (NTRS)

    Hanna, A. F.

    1982-01-01

    A two level, global, spectral model using pressure as a vertical coordinate was developed. The system of equations describing the model is nonlinear and quasi-geostrophic (linear balance). Static stability is variable in the model. A moisture budget is calculated in the lower layer only. Convective adjustment is used to avoid supercritical temperature lapse rates. The mechanical forcing of topography is introduced as a vertical velocity at the lower boundary. Solar forcing is specified assuming a daily mean zenith angle. The differential diabatic heating between land and sea is paramterized. On land and sea ice surfaces, a steady state thermal energy equation is solved to calculate the surface temperature. On the oceans, the sea surface temperature is specified as the climatological average for January. The model is used to simulate the January, February and March circulations.

  6. Fluctuations of the proton-electromotive force across the inner mitochondrial membrane

    NASA Astrophysics Data System (ADS)

    Procopio, Joaquim; Fornés, José A.

    1997-05-01

    The intermembrane mitochondrial space (IMMS) is delimited by the inner and outer mitochondrial membranes and defines a region of molecular dimension where fluctuations of the number of free protons and of transmembrane voltage can give rise to fluctuations in the proton-electromotive force EPMF across the inner mitochondrial membrane (IMM). We have applied the fluctuation-dissipation theorem to an electrical equivalent circuit consisting of a resistor Rm in parallel with a capacitor Cm representing the passive electrical properties of the IMM, in series with another capacitor Cb representing the proton-buffering power of the IMMS fluid. An access resistance Ra was defined as a link between the capacitor Cb and the membrane. Average EPMF fluctuations across the IMM were calculated for different assumptions concerning the intermembrane space dimensions. The calculated average EPMF fluctuations were in the vicinity of 100 mV for relaxation times in the few-microseconds range. The corresponding fluctuational protonic free energy is about 10 kJ/mole, which is comparable to the binding energy for protons in different transporters. This suggests that fluctuations in EPMF can be of relevance in the universe of forces influencing the molecular machinery embedded in the IMM.

  7. Branching influences force-velocity curves and length fluctuations in actin networks

    NASA Astrophysics Data System (ADS)

    Hansda, Deepak Kumar; Sen, Shamik; Padinhateeri, Ranjith

    2014-12-01

    We investigate collective dynamics of branched actin networks growing against a rigid movable wall constrained by a resistive force. Computing the force velocity relations, we show that the stall force of such networks depends not only on the average number of filaments touching the wall, but also on the amount of fluctuation of the leading edge of the network. These differences arise due to differences in the network architecture, namely, distance between two adjacent branching points and the initial distance of the starting filament from the wall, with their relative magnitudes influencing the nature of the force velocity curves (convex versus concave). We also show that the introduction of branching results in nonmonotonic diffusion constant, a quantity that measures the growth in length fluctuation of the leading edge of the network, as a function of externally applied force. Together our results demonstrate how the collective dynamics of a branched network differs from that of a parallel filament network.

  8. 'Elastic' fluctuation-induced effects in smectic wetting films

    SciTech Connect

    Pikina, E. S.

    2009-11-15

    The Li-Kardar field theory approach is generalized to wetting smectic films and the 'elastic' fluctuation-induced interaction is obtained between the external flat bounding surface and distorted IA (isotropic liquid-smectic A) interface acting as an 'internal' (bulk) boundary of the wetting smectic film under the assumption that the IA interface is essentially 'softer' than the surface smectic layer. This field theory approach allows calculating the fluctuation-induced corrections in Hamiltonians of the so-called 'correlated' liquids confined by two surfaces, in the case where one of the bounding surfaces is 'rough' and with different types of surface smectic layer anchoring. We obtain that in practice, the account of thermal displacements of the smectic layers in a wetting smectic film reduces to the addition of two contributions to the IA interface Hamiltonian. The first, so-called local contribution describes the long-range thermal 'elastic' repulsion of the fluctuating IA interface from the flat bounding surface. The second, so-called nonlocal contribution is connected with the occurrence of an 'elastic' fluctuation-induced correction to the stiffness of the IA interface. An analytic expression for this correction is obtained.

  9. Fluctuation forces and wetting layers in colloid-polymer mixtures.

    PubMed

    Hennequin, Y; Aarts, D G A L; Indekeu, J O; Lekkerkerker, H N W; Bonn, D

    2008-05-02

    We present confocal microscopy experiments on the wetting of phase-separated colloid-polymer mixtures. We observe that an unusually thick wetting layer of the colloid-rich phase forms at the walls of the glass container that holds the mixture. Because of the ultralow interfacial tension between the colloid-rich and the polymer-rich phases, the thermally activated roughness of the interfaces becomes very big and measurable. We observe that close to the critical point the roughness of the interface between the wetting layer and the polymer-rich phase decreases with decreasing layer thickness: large excursions of the interface are confined in the wetting layer. The measured relationship between the roughness and the thickness of the wetting layer is in qualitative agreement with the predictions of renormalization group theory for short-range forces and complete wetting.

  10. Subthreshold electrical stimulation reduces motor unit discharge variability and decreases the force fluctuations of plantar flexion.

    PubMed

    Kouzaki, Motoki; Kimura, Tetsuya; Yoshitake, Yasuhide; Hayashi, Tatsuya; Moritani, Toshio

    2012-04-04

    The purpose of this study was to examine the influence of subthreshold electrical stimulation on the force fluctuations and motor-unit discharge variability during low-level, steady contraction of the plantar flexor muscles. Seven subjects performed a force-matching task of isometric plantar flexion at 5% of maximal voluntary contraction with and without random electrical stimulation applied to the tibial nerve. During the task, the motor unit action potential was continuously recorded with fine-wire electrodes, and the inter-spike intervals of a single motor unit were calculated. The coefficient of variation (CV) of the force fluctuations and the inter-spike intervals of the motor unit discharge were significantly decreased by the intervention of subthreshold electrical stimulation, although there were no changes in the mean values. These results suggest that subthreshold stimulation reduced the motor-unit discharge variability, which in turn, increased the steadiness of the force.

  11. Giant Amplification of Noise in Fluctuation-Induced Pattern Formation

    NASA Astrophysics Data System (ADS)

    Biancalani, Tommaso; Jafarpour, Farshid; Goldenfeld, Nigel

    2017-01-01

    The amplitude of fluctuation-induced patterns might be expected to be proportional to the strength of the driving noise, suggesting that such patterns would be difficult to observe in nature. Here, we show that a large class of spatially extended dynamical systems driven by intrinsic noise can exhibit giant amplification, yielding patterns whose amplitude is comparable to that of deterministic Turing instabilities. The giant amplification results from the interplay between noise and nonorthogonal eigenvectors of the linear stability matrix, yielding transients that grow with time, and which, when driven by the ever-present intrinsic noise, lead to persistent large amplitude patterns. This mechanism shows that fluctuation-induced Turing patterns are observable, and are not strongly limited by the amplitude of demographic stochasticity nor by the value of the diffusion coefficients.

  12. Pressure Fluctuations Induced by a Hypersonic Turbulent Boundary Layer

    NASA Technical Reports Server (NTRS)

    Duan, Lian; Choudhari, Meelan M.; Zhang, Chao

    2016-01-01

    Direct numerical simulations (DNS) are used to examine the pressure fluctuations generated by a spatially-developed Mach 5.86 turbulent boundary layer. The unsteady pressure field is analyzed at multiple wall-normal locations, including those at the wall, within the boundary layer (including inner layer, the log layer, and the outer layer), and in the free stream. The statistical and structural variations of pressure fluctuations as a function of wall-normal distance are highlighted. Computational predictions for mean velocity pro les and surface pressure spectrum are in good agreement with experimental measurements, providing a first ever comparison of this type at hypersonic Mach numbers. The simulation shows that the dominant frequency of boundary-layer-induced pressure fluctuations shifts to lower frequencies as the location of interest moves away from the wall. The pressure wave propagates with a speed nearly equal to the local mean velocity within the boundary layer (except in the immediate vicinity of the wall) while the propagation speed deviates from the Taylor's hypothesis in the free stream. Compared with the surface pressure fluctuations, which are primarily vortical, the acoustic pressure fluctuations in the free stream exhibit a significantly lower dominant frequency, a greater spatial extent, and a smaller bulk propagation speed. The freestream pressure structures are found to have similar Lagrangian time and spatial scales as the acoustic sources near the wall. As the Mach number increases, the freestream acoustic fluctuations exhibit increased radiation intensity, enhanced energy content at high frequencies, shallower orientation of wave fronts with respect to the flow direction, and larger propagation velocity.

  13. Measurement of magnetic fluctuation-induced particle flux (invited).

    PubMed

    Ding, W X; Brower, D L; Yates, T Y

    2008-10-01

    Magnetic field fluctuation-induced particle transport has been directly measured in the high-temperature core of the MST reversed field pinch plasma. Measurement of radial particle transport is achieved by combining various interferometry techniques, including Faraday rotation, conventional interferometry, and differential interferometry. It is observed that electron convective particle flux and its divergence exhibit a significant increase during a sawtooth crash. In this paper, we describe the basic techniques employed to determine the particle flux.

  14. Structure Formation in the Universe from Texture Induced Fluctuations

    NASA Astrophysics Data System (ADS)

    Durrer, Ruth; Zhou, Zhi-Hong

    1995-03-01

    We discuss structure formation with topological defects. First we present a partially new, local, and gauge invariant system of perturbation equations to treat microwave background and dark matter fluctuations induced by topological defects or any other type of seeds. We show that this system is well suited for numerical analysis of structure formation by applying it to the texture scenario. Our numerical results cover a larger dynamical range than previous investigations and are complementary to them since we use substantially different methods.

  15. OH* imager response to turbulence-induced temperature fluctuations

    NASA Astrophysics Data System (ADS)

    Gardner, Chester S.; Vargas, Fabio A.

    2016-12-01

    The layer of the excited state hydroxyl radical (OH*) is formed in the mesopause region by the reaction of ozone (O3) and atomic hydrogen (H). We derive the theoretical expressions for the OH* brightness and rotational temperature (T*) responses to high-frequency atmospheric temperature perturbations. The theory is used to calculate the 1-D and 2-D horizontal wave number spectra of the OH* and T* image fluctuations induced by atmospheric turbulence. By applying the theory to images of a breaking gravity wave packet, acquired by the Utah State University Advanced Mesospheric Temperature Mapper, we show that existing infrared OH* imager technology can observe the evolution of gravity wave breakdown and characterize the resulting turbulent eddies in the source region and in the inertial subrange of the turbulence spectrum. For the example presented here, the RMS OH* brightness fluctuations induced by the gravity wave packet was 2.90% and by the associated turbulence was 1.07%. Unfortunately, the T* fluctuations induced by turbulence are usually too small to be observed in the OH* rotational temperature maps.

  16. Endpoint Force Fluctuations Reveal Flexible Rather Than Synergistic Patterns of Muscle Cooperation

    PubMed Central

    Kutch, Jason J.; Kuo, Arthur D.; Bloch, Anthony M.; Rymer, William Z.

    2008-01-01

    We developed a new approach to investigate how the nervous system activates multiple redundant muscles by studying the endpoint force fluctuations during isometric force generation at a multi-degree-of-freedom joint. We hypothesized that, due to signal-dependent muscle force noise, endpoint force fluctuations would depend on the target direction of index finger force and that this dependence could be used to distinguish flexible from synergistic activation of the musculature. We made high-gain measurements of isometric forces generated to different target magnitudes and directions, in the plane of index finger metacarpophalangeal joint abduction–adduction/flexion–extension. Force fluctuations from each target were used to calculate a covariance ellipse, the shape of which varied as a function of target direction. Directions with narrow ellipses were approximately aligned with the estimated mechanical actions of key muscles. For example, targets directed along the mechanical action of the first dorsal interosseous (FDI) yielded narrow ellipses, with 88% of the variance directed along those target directions. It follows the FDI is likely a prime mover in this target direction and that, at most, 12% of the force variance could be explained by synergistic coupling with other muscles. In contrast, other target directions exhibited broader covariance ellipses with as little as 30% of force variance directed along those target directions. This is the result of cooperation among multiple muscles, based on independent electromyographic recordings. However, the pattern of cooperation across target directions indicates that muscles are recruited flexibly in accordance with their mechanical action, rather than in fixed groupings. PMID:18799603

  17. Net force on an asymmetrically excited two-atom system from vacuum fluctuations

    NASA Astrophysics Data System (ADS)

    Donaire, M.

    2016-12-01

    A net force on a system of two dissimilar atoms, one of which is excited, is shown to result from their van der Waals interaction. It is accompanied by a net transfer of linear momentum to the quantum fluctuations of the electromagnetic field. This momentum results from the asymmetric interference of the virtual photons scattered off each atom along the interatomic direction, which is in itself a manifestation of the optical theorem. Ultimately, the virtual photons' momentum, of equal strength and opposite direction to the momentum gained by the two-atom system while excited, is released through directional spontaneous emission, which allows for an indirect measure, a posteriori, of the total force on the excited system. A quantitative prediction is made in a two-alkali atom system. It is conjectured that a net force and hence a nonzero momentum of quantum fluctuations take place in any asymmetrically excited system.

  18. Fluctuating, Lorentz-force-like coupling of Langevin equations and heat flux rectification

    NASA Astrophysics Data System (ADS)

    Sabass, B.

    2017-08-01

    In a description of physical systems with Langevin equations, interacting degrees of freedom are usually coupled through symmetric parameter matrices. This coupling symmetry is a consequence of time-reversal symmetry of the involved conservative forces. If coupling parameters fluctuate randomly, the resulting noise is called multiplicative. For example, mechanical oscillators can be coupled through a fluctuating, symmetric matrix of spring "constants." Such systems exhibit well-studied instabilities. In this article, we study the complementary case of antisymmetric, time-reversal symmetry-breaking coupling that can be realized with Lorentz forces or various gyrators. We consider the case in which these antisymmetric couplings fluctuate. This type of multiplicative noise does not lead to instabilities in the stationary state but renormalizes the effective nonequilibrium friction. Fluctuating Lorentz-force-like couplings also allow one to control and rectify heat transfer. A noteworthy property of this mechanism of producing asymmetric heat flux is that the controlling couplings do not exchange energy with the system.

  19. Dynamic Runner Forces and Pressure Fluctuations on the Draft Tube Wall of a Model Pump-Turbine

    NASA Astrophysics Data System (ADS)

    Kirschner, O.; Ruprecht, A.; Göde, E.; Riedelbauch, S.

    2016-11-01

    When Francis-turbines and pump-turbines operate at off-design conditions, typically a vortex rope develops. The vortex rope causes pressure oscillations leading to fluctuations of the forces affecting the runner. The presence of dynamic runner forces over a long period of time might damage the bearings and possibly the runner. In this experimental investigation, the fluctuating part of the runner forces and the pressure oscillations on the draft tube wall were measured on a model pump-turbine with a simplified straight cone draft tube in different operating conditions. The investigation focuses on the correlation of the pressure fluctuations frequency measured at the draft tube wall with the frequency of the fluctuating forces on the runner. The comparison between pressure fluctuations and dynamic forces shows a significant correlation in all operating points. For the comparison of different components in the spatial directions of the forces, the pressure fluctuations were separated in a synchronous part and a rotating part for operating points with higher amplitudes. The rotating pressure fluctuations correlate with the radial forces especially in the operating points with a rotating vortex rope. At frequencies with higher amplitudes in the pressure fluctuations caused by the vortex rope movement, there are also higher amplitudes in the radial forces at the same frequencies.

  20. Eustatic sea level fluctuations induced by polar wander

    NASA Technical Reports Server (NTRS)

    Sabadini, Roberto; Doglioni, Carlo; Yuen, David A.

    1990-01-01

    It is shown here that polar wander of a viscoelastic, stratified earth can induce global sea level fluctuations comparable to the short-term component in eustatic sea-level curves. The sign of these fluctuations, which are very sensitive to the rheological stratification, depends on the geographical location of the observation point; rises and falls in sea level can thus be coeval in different parts of the world. This finding is a distinct contrast to the main assumption underlying the reconstruction of eustatic curves, namely that global sea-level events produce the same depositional sequence everywhere. It is proposed that polar wander should be added to the list of geophysical mechanisms that can control the third-order cycles in sea level.

  1. Eustatic sea level fluctuations induced by polar wander

    NASA Technical Reports Server (NTRS)

    Sabadini, Roberto; Doglioni, Carlo; Yuen, David A.

    1990-01-01

    It is shown here that polar wander of a viscoelastic, stratified earth can induce global sea level fluctuations comparable to the short-term component in eustatic sea-level curves. The sign of these fluctuations, which are very sensitive to the rheological stratification, depends on the geographical location of the observation point; rises and falls in sea level can thus be coeval in different parts of the world. This finding is a distinct contrast to the main assumption underlying the reconstruction of eustatic curves, namely that global sea-level events produce the same depositional sequence everywhere. It is proposed that polar wander should be added to the list of geophysical mechanisms that can control the third-order cycles in sea level.

  2. Thermoelectricity in polymer composites due to fluctuation-induced tunneling.

    PubMed

    Stedman, T; Wei, K; Nolas, G S; Woods, L M

    2015-11-07

    Transport in heavily-doped polymer composites, characterized by localized charge regions, is examined in light of the recent interest in polymers for thermoelectric applications. The developed fundamental transport theory describes carrier tunneling between charged localizations by taking into account thermally induced fluctuations of the applied potential. A range of characteristic behaviors corresponding to experimental data are described. Deviations from the Wiedemann-Franz law are also identified. This novel theory enables the determination of factors dominating the transport in polymers and a comparison to tunneling without thermal fluctuations is also provided. The obtained asymptotic expressions for the conductivity, Seebeck coefficient, and carrier thermal conductivity are particularly useful for elucidating possible routes for thermoelectric transport control and optimization.

  3. Geometry-induced fluctuations of olfactory searches in bounded domains

    NASA Astrophysics Data System (ADS)

    Rodríguez, Juan Duque; Gómez-Ullate, David; Mejía-Monasterio, Carlos

    2014-04-01

    In olfactory search an immobile target emits chemical molecules at constant rate. The molecules are transported by the medium, which is assumed to be turbulent. Considering a searcher able to detect such chemical signals and whose motion follows the infotaxis strategy, we study the statistics of the first-passage time to the target when the searcher moves on a finite two-dimensional lattice of different geometries. Far from the target, where the concentration of chemicals is low, the direction of the searcher's first movement is determined by the geometry of the domain and the topology of the lattice, inducing strong fluctuations on the average search time with respect to the initial position of the searcher. The domain is partitioned in well-defined regions characterized by the direction of the first movement. If the search starts over the interface between two different regions, large fluctuations in the search time are observed.

  4. Geometry-induced fluctuations of olfactory searches in bounded domains.

    PubMed

    Rodríguez, Juan Duque; Gómez-Ullate, David; Mejía-Monasterio, Carlos

    2014-04-01

    In olfactory search an immobile target emits chemical molecules at constant rate. The molecules are transported by the medium, which is assumed to be turbulent. Considering a searcher able to detect such chemical signals and whose motion follows the infotaxis strategy, we study the statistics of the first-passage time to the target when the searcher moves on a finite two-dimensional lattice of different geometries. Far from the target, where the concentration of chemicals is low, the direction of the searcher's first movement is determined by the geometry of the domain and the topology of the lattice, inducing strong fluctuations on the average search time with respect to the initial position of the searcher. The domain is partitioned in well-defined regions characterized by the direction of the first movement. If the search starts over the interface between two different regions, large fluctuations in the search time are observed.

  5. Electromagnetic fluctuation-induced interactions in randomly charged slabs.

    PubMed

    Rezvani, Vahid; Sarabadani, Jalal; Naji, Ali; Podgornik, Rudolf

    2012-09-21

    Randomly charged net-neutral dielectric slabs are shown to interact across a featureless dielectric continuum with long-range electrostatic forces that scale with the statistical variance of their quenched random charge distribution and inversely with the distance between their bounding surfaces. By accounting for the whole spectrum of electromagnetic field fluctuations, we show that this long-range disorder-generated interaction extends well into the retarded regime where higher order (non-zero) Matsubara frequencies contribute significantly. This occurs even for highly clean samples with only a trace amount of charge disorder and shows that disorder effects can be important down to the nanoscale. As a result, the previously predicted non-monotonic behavior for the total force between dissimilar slabs as a function of their separation distance is substantially modified by higher order contributions, and in almost all cases of interest, we find that the equilibrium inter-surface separation is shifted to substantially larger values compared to predictions based solely on the zero-frequency component. This suggests that the ensuing non-monotonic interaction is more easily amenable to experimental detection. The presence of charge disorder in the intervening dielectric medium between the two slabs is shown to lead to an additional force that can be repulsive or attractive depending on the system parameters and can, for instance, wash out the non-monotonic behavior of the total force when the intervening slab contains a sufficiently large amount of disorder charges.

  6. Electromagnetic fluctuation-induced interactions in randomly charged slabs

    NASA Astrophysics Data System (ADS)

    Rezvani, Vahid; Sarabadani, Jalal; Naji, Ali; Podgornik, Rudolf

    2012-09-01

    Randomly charged net-neutral dielectric slabs are shown to interact across a featureless dielectric continuum with long-range electrostatic forces that scale with the statistical variance of their quenched random charge distribution and inversely with the distance between their bounding surfaces. By accounting for the whole spectrum of electromagnetic field fluctuations, we show that this long-range disorder-generated interaction extends well into the retarded regime where higher order (non-zero) Matsubara frequencies contribute significantly. This occurs even for highly clean samples with only a trace amount of charge disorder and shows that disorder effects can be important down to the nanoscale. As a result, the previously predicted non-monotonic behavior for the total force between dissimilar slabs as a function of their separation distance is substantially modified by higher order contributions, and in almost all cases of interest, we find that the equilibrium inter-surface separation is shifted to substantially larger values compared to predictions based solely on the zero-frequency component. This suggests that the ensuing non-monotonic interaction is more easily amenable to experimental detection. The presence of charge disorder in the intervening dielectric medium between the two slabs is shown to lead to an additional force that can be repulsive or attractive depending on the system parameters and can, for instance, wash out the non-monotonic behavior of the total force when the intervening slab contains a sufficiently large amount of disorder charges.

  7. Mean and Fluctuating Force Distribution in a Random Array of Spheres

    NASA Astrophysics Data System (ADS)

    Akiki, Georges; Jackson, Thomas; Balachandar, Sivaramakrishnan

    2015-11-01

    This study presents a numerical study of the force distribution within a cluster of mono-disperse spherical particles. A direct forcing immersed boundary method is used to calculate the forces on individual particles for a volume fraction range of [0.1, 0.4] and a Reynolds number range of [10, 625]. The overall drag is compared to several drag laws found in the literature. As for the fluctuation of the hydrodynamic streamwise force among individual particles, it is shown to have a normal distribution with a standard deviation that varies with the volume fraction only. The standard deviation remains approximately 25% of the mean streamwise force on a single sphere. The force distribution shows a good correlation between the location of two to three nearest upstream and downstream neighbors and the magnitude of the forces. A detailed analysis of the pressure and shear forces contributions calculated on a ghost sphere in the vicinity of a single particle in a uniform flow reveals a mapping of those contributions. The combination of the mapping and number of nearest neighbors leads to a first order correction of the force distribution within a cluster which can be used in Lagrangian-Eulerian techniques. We also explore the possibility of a binary force model that systematically accounts for the effect of the nearest neighbors. This work was supported by the National Science Foundation (NSF OISE-0968313) under Partnership for International Research and Education (PIRE) in Multiphase Flows at the University of Florida.

  8. Fluctuation and synchronization of gait intervals and gait force profiles distinguish stages of Parkinson's disease

    PubMed Central

    Bartsch, Ronny; Plotnik, Meir; Kantelhardt, Jan W.; Havlin, Shlomo; Giladi, Nir; Hausdorff, Jeffrey M.

    2007-01-01

    We study the effects of Parkinson's disease (PD) on the long-term fluctuation and phase synchronization properties of gait timing (series of interstride intervals) as well as gait force profiles (series characterizing the morphological changes between the steps). We find that the fluctuations in the gait timing are significantly larger for PD patients and early PD patients, who were not treated yet with medication, compared to age-matched healthy controls. Simultaneously, the long-term correlations and the phase synchronization of right and left leg are significantly reduced in both types of PD patients. Surprisingly, long-term correlations of the gait force profiles are relatively weak for treated PD patients and healthy controls, while they are significantly larger for early PD patients. The results support the idea that timing and morphology of recordings obtained from a complex system can contain complementary information. PMID:18163154

  9. Fluctuation and synchronization of gait intervals and gait force profiles distinguish stages of Parkinson's disease

    NASA Astrophysics Data System (ADS)

    Bartsch, Ronny; Plotnik, Meir; Kantelhardt, Jan W.; Havlin, Shlomo; Giladi, Nir; Hausdorff, Jeffrey M.

    2007-09-01

    We study the effects of Parkinson's disease (PD) on the long-term fluctuation and phase synchronization properties of gait timing (series of interstride intervals) as well as gait force profiles (series characterizing the morphological changes between the steps). We find that the fluctuations in the gait timing are significantly larger for PD patients and early PD patients, who were not treated yet with medication, compared to age-matched healthy controls. Simultaneously, the long-term correlations and the phase synchronization of right and left leg are significantly reduced in both types of PD patients. Surprisingly, long-term correlations of the gait force profiles are relatively weak for treated PD patients and healthy controls, while they are significantly larger for early PD patients. The results support the idea that timing and morphology of recordings obtained from a complex system can contain complementary information.

  10. Fluctuations of the van der Waals attraction force between macroscopic bodies

    SciTech Connect

    Kogan, A. S.

    2003-01-01

    The tliccry of the fluctuations of the van der Waals (vdW) attractive force between macroscopic bodies is developed. A general equation for the spectral density of the fluctuating surface Maxwell stress (force per unit mea.) in va,cuurn nea,r the surface of a body is derived under the assumption that, inside the bodies, the random La.ngevin sources of the electric and magnetic fields (charges, polarizations, currents) are Gaussian. This spectral density of stress is an integral over frequencies of a sum of terms each of which is a product of Fourier amplitudes of two field components' correlation functions. For metallic bodies, the contribution of free electrons to the vdW force (at frequencies up to the frequency of electron scattering) is calculated. This contribution to the force and its noise grows with temperature. Application of noiseless voltage to two interacting metals across the vacuum gap between them generates an additional force noise. This additional noise is proportional to the volta.ge squared and to the spectral density of the random electric field at the frequency of noise measurement. The theoretical qualitative conclusions are in good agreement with experirncnts.

  11. Cosmological implications of modified gravity induced by quantum metric fluctuations

    NASA Astrophysics Data System (ADS)

    Liu, Xing; Harko, Tiberiu; Liang, Shi-Dong

    2016-08-01

    We investigate the cosmological implications of modified gravities induced by the quantum fluctuations of the gravitational metric. If the metric can be decomposed as the sum of the classical and of a fluctuating part, of quantum origin, then the corresponding Einstein quantum gravity generates at the classical level modified gravity models with a non-minimal coupling between geometry and matter. As a first step in our study, after assuming that the expectation value of the quantum correction can be generally expressed in terms of an arbitrary second order tensor constructed from the metric and from the thermodynamic quantities characterizing the matter content of the Universe, we derive the (classical) gravitational field equations in their general form. We analyze in detail the cosmological models obtained by assuming that the quantum correction tensor is given by the coupling of a scalar field and of a scalar function to the metric tensor, and by a term proportional to the matter energy-momentum tensor. For each considered model we obtain the gravitational field equations, and the generalized Friedmann equations for the case of a flat homogeneous and isotropic geometry. In some of these models the divergence of the matter energy-momentum tensor is non-zero, indicating a process of matter creation, which corresponds to an irreversible energy flow from the gravitational field to the matter fluid, and which is direct consequence of the non-minimal curvature-matter coupling. The cosmological evolution equations of these modified gravity models induced by the quantum fluctuations of the metric are investigated in detail by using both analytical and numerical methods, and it is shown that a large variety of cosmological models can be constructed, which, depending on the numerical values of the model parameters, can exhibit both accelerating and decelerating behaviors.

  12. Forces and mechanical energy fluctuations during diagonal stride roller skiing; running on wheels?

    PubMed

    Kehler, Alyse L; Hajkova, Eliska; Holmberg, Hans-Christer; Kram, Rodger

    2014-11-01

    Mechanical energy can be conserved during terrestrial locomotion in two ways: the inverted pendulum mechanism for walking and the spring-mass mechanism for running. Here, we investigated whether diagonal stride cross-country roller skiing (DIA) utilizes similar mechanisms. Based on previous studies, we hypothesized that running and DIA would share similar phase relationships and magnitudes of kinetic energy (KE), and gravitational potential energy (GPE) fluctuations, indicating elastic energy storage and return, as if roller skiing is like 'running on wheels'. Experienced skiers (N=9) walked and ran at 1.25 and 3 m s(-1), respectively, and roller skied with DIA at both speeds on a level dual-belt treadmill that recorded perpendicular and parallel forces. We calculated the KE and GPE of the center of mass from the force recordings. As expected, the KE and GPE fluctuated with an out-of-phase pattern during walking and an in-phase pattern during running. Unlike walking, during DIA, the KE and GPE fluctuations were in phase, as they are in running. However, during the glide phase, KE was dissipated as frictional heat and could not be stored elastically in the tendons, as in running. Elastic energy storage and return epitomize running and thus we reject our hypothesis. Diagonal stride cross-country skiing is a biomechanically unique movement that only superficially resembles walking or running.

  13. Particle simulation of fluctuation-induced anomalous plasma diffusion

    SciTech Connect

    Sydora, R.D.

    1995-04-01

    In present toroidal magnetic confinement devices for fusion such as the tokamak, classical transport theory and Monte Carlo simulations both predict energy and particle confinement times longer than those measured by factors of about 30-50 for electrons and about 3-10 for the ions. Fluctuation-induced anomalous transport mechanisms can fully account for these collisionless losses and a detailed study of microinstabilities and plasma turbulence in the core plasma region requires a kinetic treatment. In this talk recent progress in particle-based simulation models using finite-gyroradius modified drift equations of motion coupled to Maxwell`s equations is outlined. Two classes of models are described; local models designed to simulate annular slice regions of the plasma and global models which include the full thermal and density inhomogeneity profiles. Results of turbulence calculations are presented from current topics of active theoretical and experimental interest, namely, the Bohm versus gyroradius-reduced Bohm thermal diffusivity scaling based on long wavelength microinstabilities, spatial intermittency development in core plasma turbulence, and mean flow generation and damping from long wavelength fluctuations. The impact of massive parallel computers on this area of research is also addressed as well as the future outlook.

  14. Bubble mass center and fluid feedback force fluctuations activated by constant lateral impulse with variable thrust

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Long, Y. T.

    1995-01-01

    Sloshing dynamics within a partially filled rotating dewar of superfluid helium 2 are investigated in response to constant lateral impulse with variable thrust. The study, including how the rotating bubble of superfluid helium 2 reacts to the constant impulse with variable time period of thrust action in microgravity, how amplitudes of bubble mass center fluctuates with growth and decay of disturbances, and how fluid feedback forces fluctuates in activating on the rotating dewar through the dynamics of sloshing waves are investigated. The numerical computation of sloshing dynamics is based on the non-inertial frame spacecraft bound coordinate with lateral impulses actuating on the rotating dewar in both inertial and non-inertial frames of thrust. Results of the simulations are illustrated.

  15. Coherent control of quantum fluctuations using cavity electromagnetically induced transparency.

    PubMed

    Souza, J A; Figueroa, E; Chibani, H; Villas-Boas, C J; Rempe, G

    2013-09-13

    We study the all-optical control of the quantum fluctuations of a light beam via a combination of single-atom cavity quantum electrodynamics (CQED) and electromagnetically induced transparency (EIT). Specifically, the EIT control field is used to tune the CQED transition frequencies in and out of resonance with the probe light. In this way, photon blockade and antiblockade effects are employed to produce sub-Poissonian and super-Poissonian light fields, respectively. The achievable quantum control paves the way towards the realization of a prototype of a novel quantum transistor which amplifies or attenuates the relative intensity noise of a light beam. Its feasibility is demonstrated by calculations using realistic parameters from recent experiments.

  16. Decoherence in current induced forces: Application to adiabatic quantum motors

    NASA Astrophysics Data System (ADS)

    Fernández-Alcázar, Lucas J.; Bustos-Marún, Raúl A.; Pastawski, Horacio M.

    2015-08-01

    Current induced forces are not only related with the discrete nature of electrons but also with its quantum character. It is natural then to wonder about the effect of decoherence. Here, we develop the theory of current induced forces including dephasing processes and we apply it to study adiabatic quantum motors (AQMs). The theory is based on Büttiker's fictitious probe model, which here is reformulated for this particular case. We prove that it accomplishes the fluctuation-dissipation theorem. We also show that, in spite of decoherence, the total work performed by the current induced forces remains equal to the pumped charge per cycle times the voltage. We find that decoherence affects not only the current induced forces of the system but also its intrinsic friction and noise, modifying in a nontrivial way the efficiency of AQMs. We apply the theory to study an AQM inspired by a classical peristaltic pump where we surprisingly find that decoherence can play a crucial role by triggering its operation. Our results can help to understand how environmentally induced dephasing affects the quantum behavior of nanomechanical devices.

  17. Velocity Measurement by Scattering from Index of Refraction Fluctuations Induced in Turbulent Flows

    NASA Technical Reports Server (NTRS)

    Lading, Lars; Saffman, Mark; Edwards, Robert

    1996-01-01

    Induced phase screen scattering is defined as scatter light from a weak index of refraction fluctuations induced by turbulence. The basic assumptions and requirements for induced phase screen scattering, including scale requirements, are presented.

  18. Stress-induced electric current fluctuations in rocks: a superstatistical model

    NASA Astrophysics Data System (ADS)

    Cartwright-Taylor, Alexis; Vallianatos, Filippos; Sammonds, Peter

    2017-04-01

    We recorded spontaneous electric current flow in non-piezoelectric Carrara marble samples during triaxial deformation. Mechanical data, ultrasonic velocities and acoustic emissions were acquired simultaneously with electric current to constrain the relationship between electric current flow, differential stress and damage. Under strain-controlled loading, spontaneous electric current signals (nA) were generated and sustained under all conditions tested. In dry samples, a detectable electric current arises only during dilatancy and the overall signal is correlated with the damage induced by microcracking. Our results show that fracture plays a key role in the generation of electric currents in deforming rocks (Cartwright-Taylor et al., in prep). We also analysed the high-frequency fluctuations of these electric current signals and found that they are not normally distributed - they exhibit power-law tails (Cartwright-Taylor et al., 2014). We modelled these distributions with q-Gaussian statistics, derived by maximising the Tsallis entropy. This definition of entropy is particularly applicable to systems which are strongly correlated and far from equilibrium. Good agreement, at all experimental conditions, between the distributions of electric current fluctuations and the q-Gaussian function with q-values far from one, illustrates the highly correlated, fractal nature of the electric source network within the samples and provides further evidence that the source of the electric signals is the developing fractal network of cracks. It has been shown (Beck, 2001) that q-Gaussian distributions can arise from the superposition of local relaxations in the presence of a slowly varying driving force, thus providing a dynamic reason for the appearance of Tsallis statistics in systems with a fluctuating energy dissipation rate. So, the probability distribution for a dynamic variable, u under some external slow forcing, β, can be obtained as a superposition of temporary local

  19. Single-molecule force spectroscopy of rapidly fluctuating, marginally stable structures in the intrinsically disordered protein α-synuclein.

    PubMed

    Solanki, Allison; Neupane, Krishna; Woodside, Michael T

    2014-04-18

    Intrinsically disordered proteins form transient, fluctuating structures that are difficult to observe directly. We used optical tweezers to apply force to single α-synuclein molecules and measure their extension, characterizing the resulting conformational transitions. Force-extension curves revealed rapid fluctuations at low force, arising from the folding of two different classes of structure that were only marginally stable. The energy landscape for these transitions was characterized via the force-dependent kinetics derived from correlation analysis of the extension trajectories. The barriers were small, only a few kBT, but the diffusion was slow, revealing a landscape that is flat but rough.

  20. Spherical Monovalent Ions at Aqueous Liquid-Vapor Interfaces: Interfacial Stability and Induced Interface Fluctuations

    PubMed Central

    Ou, Shuching; Hu, Yuan; Patel, Sandeep; Wan, Hongbin

    2014-01-01

    Ion-specific interfacial behaviors of monovalent halides impact processes such as protein denaturation, interfacial stability, surface tension modulation, and as such, their molecular and thermodynamic underpinnings garner much attention. We use molecular dynamics simulations of monovalent anions in water to explore effects on distant interfaces. We observe long-ranged ion-induced perturbations of the aqueous environment as suggested by experiment and theory. Surface stable ions, characterized as such by minima in potentials of mean force computed using umbrella sampling MD simulations, induce larger interfacial fluctuations compared to non-surface active species, conferring more entropy approaching the interface. Smaller anions and cations show no interfacial potential of mean force minima. The difference is traced to hydration shell properties of the anions, and the coupling of these shells with distant solvent. The effects correlate with the positions of the anions in the Hofmeister series (acknowledging variations in force field ability to recapitulate essential underlying physics), suggesting how differences in induced, non-local perturbations of interfaces may be related to different specific-ion effects in dilute biophysical and nanomaterial systems. PMID:24032752

  1. Turbulence-induced pressure fluctuations in snow and their effect on heat and moisture transport

    NASA Astrophysics Data System (ADS)

    Huwald, H.; Higgins, C. W.; Drake, S.; Nolin, A. W.; Parlange, M. B.

    2010-12-01

    Accurate measurement of the heat and moisture flux components of the energy budget of a snow pack is difficult, and to date no generally satisfying solutions exist. In particular, little quantitative knowledge exists on heat and water vapor exchange associated to dynamically driven air movement in the snow pack as a consequence of atmospheric turbulence. This so-called wind-pumping constitutes a mechanism for forced release of saturated air form the snow pack and thus determines evaporation or sublimation rates from the snow and consequently affects the turbulent latent heat flux. A unique experiment and measurement system has been developed and deployed in the field to investigate and quantify the influence of atmospheric turbulence on heat and moisture transport across the snow-air interface. To this end, high-frequency measurements of 3-dimensional wind components, air temperature, and water vapor fluctuations above the snow surface were taken simultaneously together with differential air pressure fluctuations at several depths in the snow pack. The analysis addresses changes in frequency, amplitude, and penetration depth of the pressure fluctuations with depth, and the relationship of turbulence intensity to attenuation characteristics of the pressure within the snow pack. Finally, the study aims at understanding how turbulence-induced air pressure dynamics within the snow pack impacts on the heat budget of the snow pack and the turbulent sensible and latent heat flux above the snow surface.

  2. Characterization of base pressure fluctuations in a blunt trailing edge wake with three-dimensional forcing

    NASA Astrophysics Data System (ADS)

    Clark, Heather; Lavoie, Philippe

    2015-11-01

    The wakes of many nominally two-dimensional bluff bodies exhibit multiple intrinsic three-dimensional instabilities whose spatiotemporal structure and growth rate depend on geometry and Reynolds number. Here, these features are investigated experimentally for a blunt trailing edge profiled body using simultaneous measurements of velocity and fluctuating surface pressure on the model rear face near separation. Passive three-dimensional forcing of the wake is implemented with an array of vortex generators that are distributed according to the characteristic spanwise wavelength of the dominant secondary instability. For a Reynolds number of 8000 based on model thickness, the control strategy is found to increase the base pressure coefficient by 26% while globally reducing the amplitude of base pressure fluctuations, relative to the unforced flow. Additionally, amplitude modulation of the pressure signals that is observed in the natural wake decreases in strength with distributed forcing as a result of the modified three-dimensional flow structure. The spanwise distribution of pressure will be further examined for the baseline and controlled flows via temporal spectral analysis and spatial modal decomposition.

  3. Force Fluctuations within Focal Adhesions Mediate ECM-Rigidity Sensing to Guide Directed Cell Migration

    PubMed Central

    Plotnikov, Sergey V.; Pasapera, Ana M.; Sabass, Benedikt; Waterman, Clare M.

    2013-01-01

    Summary Cell migration toward areas of higher extracellular matrix (ECM) rigidity via a process called “durotaxis” is thought to contribute to development, immune response, and cancer metastasis. To understand how cells sample ECM rigidity to guide durotaxis, we characterized cell-generated forces on the nanoscale within single mature integrin-based focal adhesions (FAs). We found that individual FAs act autonomously, exhibiting either stable or dynamically fluctuating (“tugging”) traction. We show that a FAK/phosphopaxillin/vinculin pathway is essential for high FA traction and to enable tugging FA traction over a broad range of ECM rigidities. We show that tugging FA traction is dispensable for FA maturation, chemotaxis, and haptotaxis but is critical to direct cell migration toward rigid ECM. We conclude that individual FAs dynamically sample rigidity by applying fluctuating pulling forces to the ECM to act as sensors to guide durotaxis, and that FAK/phosphopaxillin/vinculin signaling defines the rigidity range over which this dynamic sensing process operates. PMID:23260139

  4. Measurement on the Fluid Forces Induced by Rotor-Stator Interaction in a Centrifugal Pump

    NASA Astrophysics Data System (ADS)

    Guo, Shijie; Okamoto, Hidenobu; Maruta, Yoshiyuki

    The pressure fluctuations and the radial fluid forces induced by rotor-stator interaction in a centrifugal pump were measured and their relationship was investigated. Experiments were done for various guide vanes, flow rates, and rotating speeds. It was demonstrated that both the blade pressure fluctuations and the volute static pressures are non-uniform circumferentially (not axisymmetric) under off-design operating conditions and that the two have a strong relationship. At high flow rates, the interaction-induced blade pressure fluctuations are large in areas where the volute static pressure is low. The propagating directions of the pressure fluctuations, the whirling directions of the radial fluid forces acting on the impeller and the dominant frequency components of both the fluctuations and the fluid forces are discussed. When measuring the fluid forces in the rotating frame, other frequency components, in addition to those related to the products of the number of guide vanes and the rotating frequency, may occur due to the circumferential unevenness of the pressure fluctuations.

  5. Spin jam induced by quantum fluctuations in a frustrated magnet

    PubMed Central

    Yang, Junjie; Samarakoon, Anjana; Dissanayake, Sachith; Ueda, Hiroaki; Klich, Israel; Iida, Kazuki; Pajerowski, Daniel; Butch, Nicholas P.; Huang, Q.; Copley, John R. D.; Lee, Seung-Hun

    2015-01-01

    Since the discovery of spin glasses in dilute magnetic systems, their study has been largely focused on understanding randomness and defects as the driving mechanism. The same paradigm has also been applied to explain glassy states found in dense frustrated systems. Recently, however, it has been theoretically suggested that different mechanisms, such as quantum fluctuations and topological features, may induce glassy states in defect-free spin systems, far from the conventional dilute limit. Here we report experimental evidence for existence of a glassy state, which we call a spin jam, in the vicinity of the clean limit of a frustrated magnet, which is insensitive to a low concentration of defects. We have studied the effect of impurities on SrCr9pGa12-9pO19 [SCGO(p)], a highly frustrated magnet, in which the magnetic Cr3+ (s = 3/2) ions form a quasi-2D triangular system of bipyramids. Our experimental data show that as the nonmagnetic Ga3+ impurity concentration is changed, there are two distinct phases of glassiness: an exotic glassy state, which we call a spin jam, for the high magnetic concentration region (p>0.8) and a cluster spin glass for lower magnetic concentration (p<0.8). This observation indicates that a spin jam is a unique vantage point from which the class of glassy states of dense frustrated magnets can be understood. PMID:26324917

  6. Fluctuations-induced coexistence in public goods dynamics

    NASA Astrophysics Data System (ADS)

    Behar, H.; Brenner, N.; Ariel, G.; Louzoun, Y.

    2016-10-01

    Cooperative interactions between individuals in a population and their stability properties are central to population dynamics and evolution. We introduce a generic class of nonlinear dynamical systems describing such interactions between producers and non-producers of a rapidly equilibrating common resource extracted from a finite environment. In the deterministic mean field approximation, fast-growing non-producers drive the entire population to extinction. However, the presence of arbitrarily small perturbations destabilizes this fixed point into a stochastic attractor where both phenotypes can survive. Phase space arguments and moment closure are used to characterize the attractor and show that its properties are not determined by the noise amplitude or boundary conditions, but rather it is stabilized by the stochastic nonlinear dynamics. Spatial Monte Carlo simulations with demographic fluctuations and diffusion illustrate a similar effect, supporting the validity of the two-dimensional stochastic differential equation as an approximation. The functional distribution of the noise emerges as the main factor determining the dynamical outcome. Noise resulting from diffusion between different regions, or additive noise, induce coexistence while multiplicative or local demographic noise do not alter the outcome of deterministic dynamics. The results are discussed in a general context of the effect of noise on phase space structure.

  7. Spin jam induced by quantum fluctuations in a frustrated magnet.

    PubMed

    Yang, Junjie; Samarakoon, Anjana; Dissanayake, Sachith; Ueda, Hiroaki; Klich, Israel; Iida, Kazuki; Pajerowski, Daniel; Butch, Nicholas P; Huang, Q; Copley, John R D; Lee, Seung-Hun

    2015-09-15

    Since the discovery of spin glasses in dilute magnetic systems, their study has been largely focused on understanding randomness and defects as the driving mechanism. The same paradigm has also been applied to explain glassy states found in dense frustrated systems. Recently, however, it has been theoretically suggested that different mechanisms, such as quantum fluctuations and topological features, may induce glassy states in defect-free spin systems, far from the conventional dilute limit. Here we report experimental evidence for existence of a glassy state, which we call a spin jam, in the vicinity of the clean limit of a frustrated magnet, which is insensitive to a low concentration of defects. We have studied the effect of impurities on SrCr9pGa12-9pO19 [SCGO(p)], a highly frustrated magnet, in which the magnetic Cr(3+) (s = 3/2) ions form a quasi-2D triangular system of bipyramids. Our experimental data show that as the nonmagnetic Ga(3+) impurity concentration is changed, there are two distinct phases of glassiness: an exotic glassy state, which we call a spin jam, for the high magnetic concentration region (p > 0.8) and a cluster spin glass for lower magnetic concentration (p < 0.8). This observation indicates that a spin jam is a unique vantage point from which the class of glassy states of dense frustrated magnets can be understood.

  8. Estimating Transmissivity from the Water Level Fluctuations of a Sinusoidally Forced Well

    USGS Publications Warehouse

    Mehnert, E.; Valocchi, A.J.; Heidari, M.; Kapoor, S.G.; Kumar, P.

    1999-01-01

    The water levels in wells are known to fluctuate in response to earth tides and changes in atmospheric pressure. These water level fluctuations can be analyzed to estimate transmissivity (T). A new method to estimate transmissivity, which assumes that the atmospheric pressure varies in a sinusoidal fashion, is presented. Data analysis for this simplified method involves using a set of type curves and estimating the ratio of the amplitudes of the well response over the atmospheric pressure. Type curves for this new method were generated based on a model for ground water flow between the well and aquifer developed by Cooper et al. (1965). Data analysis with this method confirmed these published results: (1) the amplitude ratio is a function of transmissivity, the well radius, and the frequency of the sinusoidal oscillation; and (2) the amplitude ratio is a weak function of storativity. Compared to other methods, the developed method involves simpler, more intuitive data analysis and allows shorter data sets to be analyzed. The effect of noise on estimating the amplitude ratio was evaluated and found to be more significant at lower T. For aquifers with low T, noise was shown to mask the water level fluctuations induced by atmospheric pressure changes. In addition, reducing the length of the data series did not affect the estimate of T, but the variance of the estimate was higher for the shorter series of noisy data.

  9. Scrape-off layer-induced beam density fluctuations and their effect on beam emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Moulton, D.; Marandet, Y.; Tamain, P.; Dif-Pradalier, G.

    2015-07-01

    A statistical model is presented to calculate the magnitude of beam density fluctuations generated by a turbulent scrape-off layer (SOL). It is shown that the SOL can induce neutral beam density fluctuations of a similar magnitude to the plasma density fluctuations in the core, potentially corrupting beam emission spectroscopy measurements. The degree of corruption is quantified by combining simulations of beam and plasma density fluctuations inside a simulated measurement window. A change in pitch angle from the separatrix to the measurement window is found to reduce the effect of beam fluctuations, whose largest effect is to significantly reduce the measured correlation time.

  10. Multifield measurement of magnetic fluctuation-induced particle flux in a high-temperature toroidal plasma

    NASA Astrophysics Data System (ADS)

    Lin, L.; Ding, W. X.; Brower, D. L.

    2016-12-01

    Magnetic fluctuation-induced particle transport is explored in the high-temperature, high-beta interior of the Madison symmetric torus (MST) reversed-field pinch by performing a multifield measurement of the correlated product of magnetic and density fluctuations associated with global resistive tearing modes. Local density fluctuations are obtained by inverting the line-integrated interferometry data after resolving the mode helicity through correlation techniques. The local magnetic and current density fluctuations are then reconstructed using a parameterized fit of Faraday-effect polarimetry measurements. Reconstructed 2D images of density and current density perturbations in a poloidal cross section exhibit significantly different spatial structure. Combined with their relative phase, the magnetic-fluctuation-induced particle transport flux and its spatial distribution are resolved. The convective magnetic fluctuation-induced particle flux profile is measured for both standard and high-performance plasmas in MST with tokamak-like confinement, showing large reduction in the flux during improved confinement.

  11. Assessment of the fluctuation-dissipation theorem as an estimator of the tropospheric response to forcing.

    NASA Astrophysics Data System (ADS)

    Cooper, Fenwick; Haynes, Peter

    2013-04-01

    The Fluctuation-Dissipation Theorem (FDT) predicts the response of a stochastic dynamical system to a small applied forcing given data on the unforced behaviour of the system. The applicability of the FDT to predicting the zonally averaged response of the tropospheric circulation to an external forcing is investigated, with particular emphasis on quantitative accuracy. The latter requires consideration of the statistical problem of estimating the linear operator, expressing the response in terms of the applied forcing, from the available data. Two different forms of this estimated operator are considered, one (the Gaussian FDT) resulting from a quasi-Gaussian assumption and the other (the linear FDT) resulting from a linear inverse modelling approach. Both forms include a parameter that needs to be chosen on practical grounds. Analysis of the behaviour of a simple two-dimensional stochastic model shows how statistical uncertainty needs to be taken into account in choosing the optimal form for the estimated operator. The same principles are shown to be relevant when applying the FDT to a simple general circulation model. The additional question of how many spatial degrees of freedom it is useful to include in the calculation is also considered. Other aspects of the application of the FDT which are also important to consider include whether or not a linearised approach valid for small forcing is justified and also the calculation of an 'effective forcing' that is required when the FDT is applied to a reduced system in which some of the degrees of freedom of the original system have been discarded. Having taken all these aspects into account, it is concluded that the Gaussian FDT and linear FDT are not useful quantitative estimators of the zonally symmetric circulation response.

  12. Dissociation rates from single-molecule pulling experiments under large thermal fluctuations or large applied force.

    PubMed

    Abkenar, Masoud; Gray, Thomas H; Zaccone, Alessio

    2017-04-01

    Theories that are used to extract energy-landscape information from single-molecule pulling experiments in biophysics are all invariably based on Kramers' theory of the thermally activated escape rate from a potential well. As is well known, this theory recovers the Arrhenius dependence of the rate on the barrier energy and crucially relies on the assumption that the barrier energy is much larger than k_{B}T (limit of comparatively low thermal fluctuations). As was shown already in Dudko et al. [Phys. Rev. Lett. 96, 108101 (2006)PRLTAO0031-900710.1103/PhysRevLett.96.108101], this approach leads to the unphysical prediction of dissociation time increasing with decreasing binding energy when the latter is lowered to values comparable to k_{B}T (limit of large thermal fluctuations). We propose a theoretical framework (fully supported by numerical simulations) which amends Kramers' theory in this limit and use it to extract the dissociation rate from single-molecule experiments where now predictions are physically meaningful and in agreement with simulations over the whole range of applied forces (binding energies). These results are expected to be relevant for a large number of experimental settings in single-molecule biophysics.

  13. Progressive Shear Failure in Granular Materials: Linking Force Fluctuations With Acoustic Emissions

    NASA Astrophysics Data System (ADS)

    Michlmayr, G. K.; Cohen, D. O.; Or, D.

    2011-12-01

    Natural hazards associated with rapid mass movements such as shallow landslides, rock falls or debris flows are notoriously difficult to predict even though precursor events associated with small internal failures are known to occur. In this study we focus on grain scale processes preceding the formation of a shear plane in granular materials such as frictional sliding of grain contacts, accommodation of contact networks and fracturing of grain bonds (in cohesive materials) - all of which are discrete micro-mechanical failure events that emit characteristic acoustic emissions that could be used to study internal failure and potentially provide early warning (albeit short). Experiments involving direct shear tests using glass beads and sand were combined with acoustic emission (AE) measurements using piezoelectric sensors with sensitivities to frequencies in the range of 20kHz - 200kHz and accelerometers (0.2kHz - 20kHz) buried within the sheared sample. We obtained good correlations between shear deformation and associated grain-scale mechanical behavior with key characteristics of measured AE (frequency content, signal energy). Fluctuations of shear force occurring during strain controlled deformation are assumed to represent micro-structural rearrangements of the material. We obtained exponential distributions of force fluctuation magnitudes and low frequency AE event statistics. The number of AE events increased with confining stress as well as with particle roughness and were inversely related to grain size. These results were linked with conceptual models of failure accumulation such as the fiber-bundle model. The statistics of AE event occurrence, particularly magnitude-frequency distributions may provide prediction of imminent mechanical collapse. The strong attenuation of acoustic signals within most earth materials present a major challenge to field applications requiring innovative deployment strategies such as the use of acoustic waveguides.

  14. Coherent structure induced pressure fluctuations in an elliptic jet

    NASA Technical Reports Server (NTRS)

    Schreck, S.; Ho, C. M.

    1990-01-01

    The fluctuating pressure near an M = 0.5 elliptic jet was examined. Layered structures of the pressure field were found. Just outside of the jet edge, the pressure is mainly produced by the passing vortices. A short distance away from this layer, the pressure fluctuations originating from the end of the potential core become dominant and are the source of the far field noise.

  15. Orbital forced sea level fluctuations during the Middle Eocene (ODP site 1172, East Tasman Plateau)

    NASA Astrophysics Data System (ADS)

    Warnaar, J.; Stickley, C.; Jovane, L.; Roehl, U.; Brinkhuis, H.; Visscher, H.

    2004-12-01

    Ocean Drilling Program leg 189 was undertaken to test and refine the hypothesis (by Kennett et al., 1975), that the reconfiguration of continents around Antarctica (e.g.: the opening of the Tasmanian Gateway and Drake passage) led to the onset of the Antarctic Circumpolar Current that, in turn, would cause thermal isolation and hence cooling of Antarctica. This would possibly even cause global cooling, as suggested by the 33.3 Ma Oi1 event. The cores of leg 189, site 1172 on the eastern side of the Tasmanian Gateway provided a nearly complete succession of Eocene and Oligocene sediments. Cyclostratigraphic analysis based on XRF derived Ca and Fe records indicates distinct Milankovitch cyclicity between 40 and 36 Ma. (Röhl et al, in press). In the core-section representing magnetochron 18n-1n, the Ca record shows precession cycles in combination with obliquity, suggested to reflect sea level fluctuations (Röhl et al, in press). New datasets include microfossil data (organic-walled dinoflagellate cysts, pollen/spores and diatoms), loss-on-ignition measurements, magnetic data (environmental magnetics - ARM). Here, we aim to further investigate the proposed relationship between astronomical forcing and sea-level fluctuations. Additionally, we aim to obtain insight in the palaeoecology of the distinct endemic circum-Antarctic late Middle to Late Eocene dinoflagellate cyst assemblages. Results corroborate the concept that the cyclicity recorded by Ca and Fe measurements is the result of sea-level fluctuations. This implies that during late Middle Eocene times, astronomical forcing has modulated sea level - most likely through Antarctic ice buildup and meltdown. In turn, this would indicate the presence of significant, though probably modest, ice masses already ~40 Ma ago, well before the onset of the Antarctic Circumpolar Current. Kennett, J. P., R. E. Houtz, et al. (1975). Development of the circum-Antarctic current. Science 186: 144-147. Röhl, U.; H. Brinkhuis, C

  16. Spectroscopic observation of fluctuation-induced dynamo in the edge of the reversed-field pinch.

    PubMed

    Fontana, P W; Den Hartog, D J; Fiksel, G; Prager, S C

    2000-07-17

    The fluctuation-induced dynamo has been investigated by direct measurement of v and b in the edge of a reversed-field pinch and is found to be significant in balancing Ohm's law. The velocity fluctuations producing the dynamo emf have poloidal mode number m = 0, consistent with MHD calculations and in contrast with the core m = 1 dynamo. The velocity fluctuations exhibit the parity relative to their resonant surface predicted by linear MHD theory.

  17. Developments of the theory of spin fluctuations and spin fluctuation-induced superconductivity

    PubMed Central

    Moriya, Tôru

    2006-01-01

    Theory of spin fluctuations as developed in the past 30 years have played important roles in the theory of magnetism in metals, particularly in elucidating the properties around the magnetic instability or quantum critical points. Recently the theory has been extended to deal with the spin fluctuaion-mediated superconductivity with anisotropic order parameters in strongly correlated electron systems. These theoretical developments are briefly reviewed and the high temperature superconductivity of cuprates and organic and heavy electron superconductors are discussed in the light of these theories. PMID:25792765

  18. Syringe-pump-induced fluctuation in all-aqueous microfluidic system implications for flow rate accuracy.

    PubMed

    Li, Zida; Mak, Sze Yi; Sauret, Alban; Shum, Ho Cheung

    2014-02-21

    We report a new method to display the minute fluctuations induced by syringe pumps on microfluidic flows by using a liquid-liquid system with an ultralow interfacial tension. We demonstrate that the stepper motor inside the pump is a source of fluctuations in microfluidic flows by comparing the frequencies of the ripples observed at the interface to that of the pulsation of the stepper motor. We also quantify the fluctuations induced at different flow rates, using syringes of different diameters, and using different syringe pumps with different advancing distances per step. Our work provides a way to predict the frequency of the fluctuation that the driving syringe pump induces on a microfluidic system and suggests that syringe pumps can be a source of fluctuations in microfluidic flows, thus contributing to the polydispersity of the resulting droplets.

  19. Altered visual strategies and attention are related to increased force fluctuations during a pinch grip task in older adults.

    PubMed

    Keenan, Kevin G; Huddleston, Wendy E; Ernest, Bradley E

    2017-07-12

    The purpose of the study was to determine the visual strategies used by older adults during a pinch grip task and to assess the relations between visual strategy, deficits in attention, and increased force fluctuations in older adults. Eye movements of 23 older adults (>65 years) were monitored during a low-force pinch grip task while viewing three common visual feedback displays. Performance on the Grooved Pegboard test and an attention task (which required no concurrent hand movements) was also measured. Visual strategies varied across subjects and depended on the type of visual feedback provided to the subjects. First, while viewing a high-gain compensatory feedback display (horizontal bar moving up and down with force), 9 of 23 older subjects adopted a strategy of performing saccades during the task, which resulted in 2.5× greater force fluctuations in those that exhibited saccades compared to those who maintained fixation near the target line. Second, during pursuit feedback displays (force trace moving left to right across screen and up and down with force), all subjects exhibited multiple saccades, and increased force fluctuations were associated (rs = 0.6; p = .002) with fewer saccades during the pursuit task. Also, decreased low-frequency (< 4 Hz) force fluctuations and Grooved Pegboard times were significantly related (p = .033 and p = .005; respectively) with higher (i.e., better) attention z-scores. These results are compared with our previously published results in young subjects and indicate that saccadic eye movements and attention are related to force control in older adults. Copyright © 2016, Journal of Neurophysiology.

  20. Nonmonotoic fluctuation-induced interactions between dielectric slabs carrying charge disorder.

    PubMed

    Sarabadani, Jalal; Naji, Ali; Dean, David S; Horgan, Ron R; Podgornik, Rudolf

    2010-11-07

    We investigate the effect of monopolar charge disorder on the classical fluctuation-induced interactions between randomly charged net-neutral dielectric slabs and discuss various generalizations of recent results [A. Naji et al., Phys. Rev. Lett. 104, 060601 (2010)] to highly inhomogeneous dielectric systems with and without statistical disorder correlations. We shall focus on the specific case of two generally dissimilar plane-parallel slabs, which interact across vacuum or an arbitrary intervening dielectric medium. Monopolar charge disorder is considered to be present on the bounding surfaces and/or in the bulk of the slabs, may be in general quenched or annealed and may possess a finite lateral correlation length reflecting possible "patchiness" of the random charge distribution. In the case of quenched disorder, the bulk disorder is shown to give rise to an additive long-range contribution to the total force, which decays as the inverse distance between the slabs and may be attractive or repulsive depending on the dielectric constants of the slabs. By contrast, the force induced by annealed disorder in general combines with the underlying van der Waals forces in a nonadditive fashion, and the net force decays as an inverse cube law at large separations. We show, however, that in the case of two dissimilar slabs, the net effect due to the interplay between the disorder-induced and the pure van der Waals interactions can lead to a variety of unusual nonmonotonic interaction profiles between the dielectric slabs. In particular, when the intervening medium has a larger dielectric constant than the two slabs, we find that the net interaction can become repulsive and exhibit a potential barrier, while the underlying van der Waals force is attractive. On the contrary, when the intervening medium has a dielectric constant between that of the two slabs, the net interaction can become attractive and exhibit a free energy minimum, while the pure van der Waals force is

  1. Nonmonotoic fluctuation-induced interactions between dielectric slabs carrying charge disorder

    NASA Astrophysics Data System (ADS)

    Sarabadani, Jalal; Naji, Ali; Dean, David S.; Horgan, Ron R.; Podgornik, Rudolf

    2010-11-01

    We investigate the effect of monopolar charge disorder on the classical fluctuation-induced interactions between randomly charged net-neutral dielectric slabs and discuss various generalizations of recent results [A. Naji et al., Phys. Rev. Lett. 104, 060601 (2010)] to highly inhomogeneous dielectric systems with and without statistical disorder correlations. We shall focus on the specific case of two generally dissimilar plane-parallel slabs, which interact across vacuum or an arbitrary intervening dielectric medium. Monopolar charge disorder is considered to be present on the bounding surfaces and/or in the bulk of the slabs, may be in general quenched or annealed and may possess a finite lateral correlation length reflecting possible "patchiness" of the random charge distribution. In the case of quenched disorder, the bulk disorder is shown to give rise to an additive long-range contribution to the total force, which decays as the inverse distance between the slabs and may be attractive or repulsive depending on the dielectric constants of the slabs. By contrast, the force induced by annealed disorder in general combines with the underlying van der Waals forces in a nonadditive fashion, and the net force decays as an inverse cube law at large separations. We show, however, that in the case of two dissimilar slabs, the net effect due to the interplay between the disorder-induced and the pure van der Waals interactions can lead to a variety of unusual nonmonotonic interaction profiles between the dielectric slabs. In particular, when the intervening medium has a larger dielectric constant than the two slabs, we find that the net interaction can become repulsive and exhibit a potential barrier, while the underlying van der Waals force is attractive. On the contrary, when the intervening medium has a dielectric constant between that of the two slabs, the net interaction can become attractive and exhibit a free energy minimum, while the pure van der Waals force is

  2. Effective cosmological constant induced by stochastic fluctuations of Newton's constant

    NASA Astrophysics Data System (ADS)

    de Cesare, Marco; Lizzi, Fedele; Sakellariadou, Mairi

    2016-09-01

    We consider implications of the microscopic dynamics of spacetime for the evolution of cosmological models. We argue that quantum geometry effects may lead to stochastic fluctuations of the gravitational constant, which is thus considered as a macroscopic effective dynamical quantity. Consistency with Riemannian geometry entails the presence of a time-dependent dark energy term in the modified field equations, which can be expressed in terms of the dynamical gravitational constant. We suggest that the late-time accelerated expansion of the Universe may be ascribed to quantum fluctuations in the geometry of spacetime rather than the vacuum energy from the matter sector.

  3. Casimir-Like Force Arising from Quantum Fluctuations in a Slowly Moving Dilute Bose-Einstein Condensate

    SciTech Connect

    Roberts, D.C.; Pomeau, Y.

    2005-09-30

    We calculate a force due to zero-temperature quantum fluctuations on a stationary object in a moving superfluid flow. We model the object by a localized potential varying only in the flow direction and model the flow by a three-dimensional weakly interacting Bose-Einstein condensate at zero temperature. We show that this force exists for any arbitrarily small flow velocity and discuss the implications for the stability of superfluid flow.

  4. Low frequency modes and instability analysis in non-thermal dusty magnetoplasma considering dust charge fluctuation and polarization force

    NASA Astrophysics Data System (ADS)

    Sharma, Prerana; Jain, Shweta; Patidar, Archana

    2017-01-01

    The effect of non-thermal ion population on self-gravitational instability of magnetized dusty plasma considering electrons are in Maxwell-Boltzmann distribution has been investigated. The dust dynamics is described including polarization force, thermal velocity, and charge fluctuation dust. The modified general dispersion relation has been derived including non-thermal ion population, polarization force, and dust charge fluctuation for self-gravitating dusty plasma system, using the normal mode analysis method. The obtained general dispersion relation is discussed in parallel and perpendicular modes of propagation. The population of non-thermal ion, polarization force and dust charge fluctuation affect the self-gravitational instability criteria in both the modes of propagation while the magnetic field affects the instability criterion only in perpendicular mode of propagation. The domains of instability has been discussed analytically to signify the importance of considered parameters. The stability of the self-gravitating dusty plasma system has been analyzed using Routh-Hurwitz stability criterion. Numerical calculations have been performed to analyze the effects of non-thermal ion population, polarization force, and dust charge fluctuation on the growth rate of self-gravitational instability. The results of the present work can be useful in self-gravitating dusty plasma found in space and the interstellar medium such as the interstellar molecular clouds where non-thermally distributed ions are the species of the plasma matter.

  5. Fluctuation-induced pair density wave in itinerant ferromagnets

    NASA Astrophysics Data System (ADS)

    Conduit, G. J.; Pedder, C. J.; Green, A. G.

    2013-03-01

    Magnetic fluctuations near to quantum criticality can have profound effects. They lead to characteristic scaling at high temperature which may ultimately give way to a reconstruction of the phase diagram and the formation of new phases at low temperatures. The ferromagnet UGe2 is unstable to p-wave superconducting order—an effect presaged by the superfluidity in 3He—whereas in CeFePO fluctuations drive the formation of spiral magnetic order. Here we develop a general quantum order-by-disorder description of these systems that encompasses both of these instabilities within a unified framework. This allows us to demonstrate that in fact these instabilities intertwine to form a pair density wave.

  6. Force spectroscopy with dual-trap optical tweezers: molecular stiffness measurements and coupled fluctuations analysis.

    PubMed

    Ribezzi-Crivellari, M; Ritort, F

    2012-11-07

    Dual-trap optical tweezers are often used in high-resolution measurements in single-molecule biophysics. Such measurements can be hindered by the presence of extraneous noise sources, the most prominent of which is the coupling of fluctuations along different spatial directions, which may affect any optical tweezers setup. In this article, we analyze, both from the theoretical and the experimental points of view, the most common source for these couplings in dual-trap optical-tweezers setups: the misalignment of traps and tether. We give criteria to distinguish different kinds of misalignment, to estimate their quantitative relevance and to include them in the data analysis. The experimental data is obtained in a, to our knowledge, novel dual-trap optical-tweezers setup that directly measures forces. In the case in which misalignment is negligible, we provide a method to measure the stiffness of traps and tether based on variance analysis. This method can be seen as a calibration technique valid beyond the linear trap region. Our analysis is then employed to measure the persistence length of dsDNA tethers of three different lengths spanning two orders of magnitude. The effective persistence length of such tethers is shown to decrease with the contour length, in accordance with previous studies. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  7. Force Spectroscopy with Dual-Trap Optical Tweezers: Molecular Stiffness Measurements and Coupled Fluctuations Analysis

    PubMed Central

    Ribezzi-Crivellari, M.; Ritort, F.

    2012-01-01

    Dual-trap optical tweezers are often used in high-resolution measurements in single-molecule biophysics. Such measurements can be hindered by the presence of extraneous noise sources, the most prominent of which is the coupling of fluctuations along different spatial directions, which may affect any optical tweezers setup. In this article, we analyze, both from the theoretical and the experimental points of view, the most common source for these couplings in dual-trap optical-tweezers setups: the misalignment of traps and tether. We give criteria to distinguish different kinds of misalignment, to estimate their quantitative relevance and to include them in the data analysis. The experimental data is obtained in a, to our knowledge, novel dual-trap optical-tweezers setup that directly measures forces. In the case in which misalignment is negligible, we provide a method to measure the stiffness of traps and tether based on variance analysis. This method can be seen as a calibration technique valid beyond the linear trap region. Our analysis is then employed to measure the persistence length of dsDNA tethers of three different lengths spanning two orders of magnitude. The effective persistence length of such tethers is shown to decrease with the contour length, in accordance with previous studies. PMID:23199920

  8. Calibration of Atmospherically Induced Delay Fluctuations Due to Water Vapor

    NASA Technical Reports Server (NTRS)

    Resch, George; Jacobs, Christopher; Keihm, Steve; Lanyi, Gabor; Naudet, Charles; Riley, Abraham; Rosenberger, Hans; Tanner, Alan

    2000-01-01

    We have completed a new generation of water vapor radiometers (WVR), the A- series, in order to support radio science experiments with the Cassini spacecraft. These new instruments sense three frequencies in the vicinity of the 22 GHz emission line of atmospheric water vapor within a 1 degree beamwidth from a clear aperture antenna that is co-pointed with the radio telescope down to 10 degree elevation. The radiometer electronics features almost an order of magnitude improvement in temperature stability compared with earlier WVR designs. For many radio science experiments, the error budget is likely to be dominated by path delay fluctuations due to variable atmospheric water vapor along the line-of-sight to the spacecraft. In order to demonstrate the performance of these new WVRs we are attempting to calibrate the delay fluctuations as seen by a radio interferometer operating over a 21 km baseline with a WVR near each antenna. The characteristics of these new WVRs will be described and the results of our preliminary analysis will be presented indicating an accuracy of 0.2 to 0.5 mm in tracking path delay fluctuations over time scales of 10 to 10,000 seconds.

  9. Star polymers rupture induced by constant forces.

    PubMed

    García, N A; Febbo, M; Vega, D A; Milchev, A

    2014-10-28

    In this work, we study the breakage process of an unknotted three-arm star-shaped polymer when it is pulled from its free ends by a constant force. The star polymer configuration is described through an array of monomers coupled by anharmonic bonds, while the rupture process is tracked in three-dimensional space by means of Langevin Molecular Dynamics simulations. The interaction between monomers is described by a Morse potential, while a Weeks-Chandler-Anderson energetic contribution accounts for the excluded volume interaction. We explore the effect of the molecular architecture on the distributions of rupture times over a broad interval of pulling forces and star configurations. It was found that the rupture time distribution of the individual star arms is strongly affected by the star configuration imposed by the pulling forces and the length of the arms. We also observed that for large pulling forces the rupture time distributions resemble the dominant features observed for linear polymer chains. The model introduced here provides the basic ingredients to describe the effects of tensile forces on stress-induced degradation of branched macromolecules and polymer networks.

  10. AMBER-DYES: Characterization of Charge Fluctuations and Force Field Parameterization of Fluorescent Dyes for Molecular Dynamics Simulations.

    PubMed

    Graen, Timo; Hoefling, Martin; Grubmüller, Helmut

    2014-12-09

    Recent advances in single molecule fluorescence experiments and theory allow a direct comparison and improved interpretation of experiment and simulation. To this end, force fields for a larger number of dyes are required which are compatible with and can be integrated into existing biomolecular force fields. Here, we developed, characterized, and implemented AMBER-DYES, a modular fluorescent label force field, for a set of 22 fluorescent dyes and their linkers from the Alexa, Atto, and Cy families, which are in common use for single molecule spectroscopy experiments. The force field is compatible with the AMBER protein force fields and the GROMACS molecular dynamics simulation program. The high electronic polarizability of the delocalized π-electron orbitals, as found in many fluorescent dyes, poses a particular challenge to point charge based force fields such as AMBER. To quantify the charge fluctuations due to the electronic polarizability, we simulated the 22 dyes in explicit solvent and sampled the charge fluctuations using QM/MM simulations at the B3LYP/6-31G*//TIP3P level of theory. The analysis of the simulations enabled us to derive ensemble fitted RESP charges from the solvated charge distributions of multiple trajectories. We observed broad, single peaked charge distributions for the conjugated ring atoms with well-defined mean values. The charge fitting procedure was validated against published charges of the dyelike amino acid tryptophan, which showed good agreement with existing tryptophan parameters from the AMBER, CHARMM, and OPLS force field families. A principal component analysis of the charge fluctuations revealed that a small number of collective coordinates suffices to describe most of the in-plane dye polarizability. The AMBER-DYES force field allows the rapid preparation of all atom molecular dynamics simulations of fluorescent systems for state of the art multi microsecond trajectories.

  11. Prediction of fluctuating pressure environments associated with plume-induced separated flow fields

    NASA Technical Reports Server (NTRS)

    Plotkin, K. J.

    1973-01-01

    The separated flow environment induced by underexpanded rocket plumes during boost phase of rocket vehicles has been investigated. A simple semi-empirical model for predicting the extent of separation was developed. This model offers considerable computational economy as compared to other schemes reported in the literature, and has been shown to be in good agreement with limited flight data. The unsteady pressure field in plume-induced separated regions was investigated. It was found that fluctuations differed from those for a rigid flare only at low frequencies. The major difference between plume-induced separation and flare-induced separation was shown to be an increase in shock oscillation distance for the plume case. The prediction schemes were applied to PRR shuttle launch configuration. It was found that fluctuating pressures from plume-induced separation are not as severe as for other fluctuating environments at the critical flight condition of maximum dynamic pressure.

  12. Characterization of syringe-pump-driven induced pressure fluctuations in elastic microchannels.

    PubMed

    Zeng, Wen; Jacobi, Ian; Beck, David J; Li, Songjing; Stone, Howard A

    2015-02-21

    We study pressure and flow-rate fluctuations in microchannels, where the flow rate is supplied by a syringe pump. We demonstrate that the pressure fluctuations are induced by the flow-rate fluctuations coming from mechanical oscillations of the pump motor. Also, we provide a mathematical model of the effect of the frequency of the pump on the normalized amplitude of pressure fluctuations and introduce a dimensionless parameter incorporating pump frequency, channel geometry and mechanical properties that can be used to predict the performance of different microfluidic device configurations. The normalized amplitude of pressure fluctuations decreases as the frequency of the pump increases and the elasticity of the channel material decreases. The mathematical model is verified experimentally over a range of typical operating conditions and possible applications are discussed.

  13. Spectroscopic Observation of Fluctuation-Induced Dynamo in the Edge of the Reversed-Field Pinch

    SciTech Connect

    Fontana, P. W.; Den Hartog, D. J.; Fiksel, G.; Prager, S. C.

    2000-07-17

    The fluctuation-induced dynamo has been investigated by direct measurement of v(tilde sign) and b(tilde sign) in the edge of a reversed-field pinch and is found to be significant in balancing Ohm's law. The velocity fluctuations producing the dynamo emf have poloidal mode number m=0 , consistent with MHD calculations and in contrast with the core m=1 dynamo. The velocity fluctuations exhibit the parity relative to their resonant surface predicted by linear MHD theory. (c) 2000 The American Physical Society.

  14. Transconductance fluctuations as a probe for interaction-induced quantum Hall states in graphene.

    PubMed

    Lee, Dong Su; Skákalová, Viera; Weitz, R Thomas; von Klitzing, Klaus; Smet, Jurgen H

    2012-08-03

    Transport measurements normally provide a macroscopic, averaged view of the sample so that disorder prevents the observation of fragile interaction-induced states. Here, we demonstrate that transconductance fluctuations in a graphene field effect transistor reflect charge localization phenomena on the nanometer scale due to the formation of a dot network which forms near incompressible quantum states. These fluctuations give access to fragile broken symmetry and fractional quantum Hall states even though these states remain hidden in conventional magnetotransport quantities.

  15. Force on a slow moving impurity due to thermal and quantum fluctuations in a 1D Bose-Einstein condensate

    SciTech Connect

    Roberts, David; Sykes, Andrew

    2009-01-01

    We study the drag force acting on an impurity moving through a 1D Bose-Einstein condensate in the presence of both quantum and thermal fluctuations. We are able to find exact analytical solutions of the partial differential equations to the level of the Bogoliubov approximation. At zero temperature, we find a nonzero force is exerted on the impurity at subcritical velocities, due to the scattering of quantum fluctuations. We make the following explicit assumptions: far from the impurity the system is in a quantum state given by that of a zero (or finite) temperature Bose-Einstein condensate, and the scattering process generates only causally related reflection/transmission. The results raise unanswered questions in the quantum dynamics associated with the formation of persistent currents.

  16. Density Fluctuation Induced Kinetic Dynamo and Tearing Mode Nonlinear Saturation in the MST Reversed Field Pinch

    NASA Astrophysics Data System (ADS)

    Ding, Weixing; Lin, Liang; Duff, J. R.; Brower, D. L.; Sarff, J. S.

    2014-10-01

    In the MST reversed field pinch (RFP), the evolution of core tearing mode nonlinear evolution is partially determined by the electron current density profile along with nonlinear interactions among multiple tearing modes. Density fluctuations driven by intrinsic magnetic perturbations are usually large, approximately 1%, in RFP plasmas. These density fluctuations can modify the current density profile via the kinetic dynamo effect, defined as the correlated product of parallel electron pressure and radial magnetic field fluctuations, which alters the temporal dynamics of tearing modes in MST. A component of the kinetic dynamo originating from the correlated product of density and radial magnetic fluctuations has been measured using a high-speed, low phase noise polarimetry-interferometry diagnostic. Between sawtooth crashes it is found that the measured kinetic dynamo has finite amplitude that generates an anti-dynamo in the plasma core, which would tend to flatten the current density profile. These measurements suggest that density fluctuations passively driven by magnetic fluctuations can actively alter tearing modes via fluctuation-induced current transport. Work supported by US DOE and NSF.

  17. Puerarin may protect against Schwann cell damage induced by glucose fluctuation.

    PubMed

    Xue, Bing; Wang, Lin; Zhang, Zhe; Wang, Rui; Xia, Xin-Xin; Han, Ping-Ping; Cao, Li-Jun; Liu, Yong-Hui; Sun, Lian-Qing

    2017-02-08

    Puerarin is one of the major active ingredients in Gegen, a traditional Chinese herb that has been reported to have a wide variety of beneficial pharmacology functions. Previous studies have implicated that the damaging effects of hyperglycemia resulting from oxidative stress and glucose fluctuation may be more dangerous than constant high glucose in the development of diabetes-related complications. The present study focuses on the effects of puerarin on glucose fluctuation-induced oxidative stress-induced Schwann cell (SC) apoptosis in vitro. Primarily cultured SCs were exposed to different conditions and the effect of puerarin on cell viability was determined by MTT assays. Intracellular reactive oxygen species (ROS) generation and mitochondrial transmembrane potential were detected by flow cytometry analysis. Apoptosis was confirmed by the Annexin V-FITC/PI and TUNEL method. Quantitative real-time reverse transcriptase polymerase chain reaction was performed to analyze the expression levels of bax and bcl-2. Western blot was performed to analyze the expression levels of some important transcription factors and proteins. The results showed that incubating SCs with intermittent high glucose for 48 h decreased cell viability and increased the number of apoptotic cells whereas treating with puerarin protected SCs against glucose fluctuation-induced cell damage. Further study demonstrated that puerarin suppressed activation of apoptosis-related proteins including PARP and caspase-3, downregulation of bcl-2, and upregulation of intracellular distribution of bax from cytosol to mitochondria, which was induced by glucose fluctuation. Moreover, puerarin inhibited the elevation of intracellular ROS and mitochondrial depolarization induced by glucose fluctuation. These results suggest that puerarin may protect SCs against glucose fluctuation-induced cell injury through inhibiting apoptosis as well as oxidative stress.

  18. Numerical Study on the Partitioning of the Molecular Polarizability into Fluctuating Charge and Induced Atomic Dipole Contributions

    PubMed Central

    Mei, Ye; Simmonett, Andrew C.; Pickard, Frank C.; DiStasio, Robert A.; Brooks, Bernard R.; Shao, Yihan

    2015-01-01

    In order to carry out a detailed analysis of the molecular static polarizability, which is the response of the molecule to a uniform external electric field, the molecular polarizability was computed using the finite-difference method for 21 small molecules, using density functional theory. Within nine charge population schemes (Löwdin, Mulliken, Becke, Hirshfeld, CM5, Hirshfeld-I, NPA, CHELPG, MK-ESP) in common use, the charge fluctuation contribution is found to dominate the molecular polarizability, with its ratio ranging from 59.9% with the Hirshfeld or CM5 scheme to 96.2% with the Mulliken scheme. The Hirshfeld-I scheme is also used to compute the other contribution to the molecular polarizability coming from the induced atomic dipoles, and the atomic polarizabilities in 8 small molecules and water pentamer are found to be highly anisotropic for most atoms. Overall, the results suggest that (a) more emphasis probably should be placed on the charge fluctuation terms in future polarizable force field development; (b) an anisotropic polarizability might be more suitable than an isotropic one in polarizable force fields based entirely or partially on the induced atomic dipoles. PMID:25945749

  19. Numerical study on the partitioning of the molecular polarizability into fluctuating charge and induced atomic dipole contributions

    SciTech Connect

    Mei, Ye; Simmonett, Andrew C.; Pickard, IV, Frank C.; DiStasio, Jr., Robert A.; Brooks, Bernard R.; Shao, Yihan

    2015-05-06

    In order to carry out a detailed analysis of the molecular static polarizability, which is the response of the molecule to a uniform external electric field, the molecular polarizability was computed in this study using the finite-difference method for 21 small molecules, using density functional theory. Within nine charge population schemes (Lowdin, Mulliken, Becke, Hirshfeld, CM5, Hirshfeld-I, NPA, CHELPG, MK-ESP) in common use, the charge fluctuation contribution is found to dominate the molecular polarizability, with its ratio ranging from 59.9% with the Hirshfeld or CM5 scheme to 96.2% with the Mulliken scheme. The Hirshfeld-I scheme is also used to compute the other contribution to the molecular polarizability coming from the induced atomic dipoles, and the atomic polarizabilities in eight small molecules and water pentamer are found to be highly anisotropic for most atoms. In conclusion, the overall results suggest that (a) more emphasis probably should be placed on the charge fluctuation terms in future polarizable force field development and (b) an anisotropic polarizability might be more suitable than an isotropic one in polarizable force fields based entirely or partially on the induced atomic dipoles.

  20. Numerical study on the partitioning of the molecular polarizability into fluctuating charge and induced atomic dipole contributions

    DOE PAGES

    Mei, Ye; Simmonett, Andrew C.; Pickard, IV, Frank C.; ...

    2015-05-06

    In order to carry out a detailed analysis of the molecular static polarizability, which is the response of the molecule to a uniform external electric field, the molecular polarizability was computed in this study using the finite-difference method for 21 small molecules, using density functional theory. Within nine charge population schemes (Lowdin, Mulliken, Becke, Hirshfeld, CM5, Hirshfeld-I, NPA, CHELPG, MK-ESP) in common use, the charge fluctuation contribution is found to dominate the molecular polarizability, with its ratio ranging from 59.9% with the Hirshfeld or CM5 scheme to 96.2% with the Mulliken scheme. The Hirshfeld-I scheme is also used to computemore » the other contribution to the molecular polarizability coming from the induced atomic dipoles, and the atomic polarizabilities in eight small molecules and water pentamer are found to be highly anisotropic for most atoms. In conclusion, the overall results suggest that (a) more emphasis probably should be placed on the charge fluctuation terms in future polarizable force field development and (b) an anisotropic polarizability might be more suitable than an isotropic one in polarizable force fields based entirely or partially on the induced atomic dipoles.« less

  1. Numerical study on the partitioning of the molecular polarizability into fluctuating charge and induced atomic dipole contributions.

    PubMed

    Mei, Ye; Simmonett, Andrew C; Pickard, Frank C; DiStasio, Robert A; Brooks, Bernard R; Shao, Yihan

    2015-06-04

    In order to carry out a detailed analysis of the molecular static polarizability, which is the response of the molecule to a uniform external electric field, the molecular polarizability was computed using the finite-difference method for 21 small molecules, using density functional theory. Within nine charge population schemes (Löwdin, Mulliken, Becke, Hirshfeld, CM5, Hirshfeld-I, NPA, CHELPG, MK-ESP) in common use, the charge fluctuation contribution is found to dominate the molecular polarizability, with its ratio ranging from 59.9% with the Hirshfeld or CM5 scheme to 96.2% with the Mulliken scheme. The Hirshfeld-I scheme is also used to compute the other contribution to the molecular polarizability coming from the induced atomic dipoles, and the atomic polarizabilities in eight small molecules and water pentamer are found to be highly anisotropic for most atoms. Overall, the results suggest that (a) more emphasis probably should be placed on the charge fluctuation terms in future polarizable force field development and (b) an anisotropic polarizability might be more suitable than an isotropic one in polarizable force fields based entirely or partially on the induced atomic dipoles.

  2. SmB6: Topological insulator or semiconductor with valence-fluctuation induced hopping transport?

    NASA Astrophysics Data System (ADS)

    Batko, I.; Batkova, M.

    2014-10-01

    We advert to the fact that the presence of valence fluctuations (VFs) in semiconductors with in-gap impurity bands unconditionally leads to dynamical changes (fluctuations) of energies of localized impurity states. We provide arguments that in the impurity subnetwork consisting of centers having energy levels fluctuating around the Fermi energy there exist favorable conditions for hops from occupied states to empty states of less energy. Consequently, we propose original valence-fluctuation induced hopping mechanism as a new possibility to explain unusual metallic-like conduction of SmB6 and other Kondo insulators experimentally observed at lowest temperatures. Interestingly, the proposed mechanism infers enhanced metallic-like surface conductivity of SmB6, what resembles a characteristic property of topological insulator, and is in agreement with experimental observations attempting to prove the existence of topologically protected surface state in SmB6.

  3. A stochastic mechanism for signal propagation in the brain: Force of rapid random fluctuations in membrane potentials of individual neurons.

    PubMed

    Hong, Dawei; Man, Shushuang; Martin, Joseph V

    2016-01-21

    There are two functionally important factors in signal propagation in a brain structural network: the very first synaptic delay-a time delay about 1ms-from the moment when signals originate to the moment when observation on the signal propagation can begin; and rapid random fluctuations in membrane potentials of every individual neuron in the network at a timescale of microseconds. We provide a stochastic analysis of signal propagation in a general setting. The analysis shows that the two factors together result in a stochastic mechanism for the signal propagation as described below. A brain structural network is not a rigid circuit rather a very flexible framework that guides signals to propagate but does not guarantee success of the signal propagation. In such a framework, with the very first synaptic delay, rapid random fluctuations in every individual neuron in the network cause an "alter-and-concentrate effect" that almost surely forces signals to successfully propagate. By the stochastic mechanism we provide analytic evidence for the existence of a force behind signal propagation in a brain structural network caused by rapid random fluctuations in every individual neuron in the network at a timescale of microseconds with a time delay of 1ms. Published by Elsevier Ltd.

  4. Amiodarone Induced Thyrotoxicosis - Fluctuating RVOT and LV Scar VT.

    PubMed

    Pillarisetti, Jayasree; Vanga, Subba Reddy; Lakkireddy, Dhanunjaya

    2013-01-01

    A 61 year old patient with non-ischemic cardiomyopathy and implantable cardioverter defibrillator presented with multiple shocks for ventricular tachycardia (VT). EKG revealed monomorphic sustained VT which was left bundle inferior axis that spontaneously changed into sustained VT which was right bundle superior axis. This was suggestive of an outflow tract VT transforming into a VT probably related to reentry from LV scar. The patient was transferred to our university for VT ablation. However, further investigation revealed amiodarone induced hyperthyroidism which was the cause of his ventricular tachycardia storm. Reversible causes of VT should be considered before proceeding with radiofrequency ablation.

  5. Decoherence induced by a fluctuating Aharonov-Casher phase

    SciTech Connect

    Lombardo, Fernando C.; Mazzitelli, Francisco D.; Villar, Paula I.

    2005-10-15

    Dipole interference is studied when atomic systems are coupled to classical electromagnetic fields. The interaction between the dipoles and the classical fields induces a time-varying Aharonov-Casher phase. Averaging over the phase generates a suppression of fringe visibility in the interference pattern. We show that, for suitable experimental conditions, the loss of contrast for dipoles can be observable and almost as large as the corresponding one for coherent electrons. We analyze different trajectories in order to show the dependence of the decoherence factor with the velocity of the particles.

  6. New spreading law of thin film liquids controlled by gravity and vdW forces under thermal fluctuations

    NASA Astrophysics Data System (ADS)

    Nesic, Svetozar; Cuerno Rejado, Rodolfo; Moro Egido, Esteban

    2013-11-01

    It has been shown that, in the regime controlled by surface tension, the spreading dynamics of a thin viscous fluid droplet changes significantly when it is subjected to thermal fluctuations. Technically, this has been accomplished through the incorporation of appropriate stochastic terms into the standard lubrication equation. In practice, it leads to a modification of the classic Tanner's law for spreading, with implications for Micro and Nanofluidic systems. We have recently found a new law of spreading for the same kind of systems, but in the gravity-dominated regime. Moreover, in the deteministic case a finite contact angle is formed when a van der Waals attractive force is introduced to the system and we show that there is a slight change in contact angle when thermal fluctuations are taken into account. Ph.D student and a member of GISC (http://matematicas.uc3m.es/index.php/gisc).

  7. Effects of Airflow Induced by Rainfall on Shallow Groundwater Table Fluctuations.

    PubMed

    Zang, Yong Ge; Sun, Dong Mei; Feng, Ping; Semprich, Stephan

    2017-05-01

    An investigation of groundwater table fluctuations induced by rainfall should consider interactions between the liquid and gas phases in soils. In this study, a water-air two-phase flow model was initially verified by simulating an infiltration experiment. It was then employed to model the interactions between liquid and gas phases regarding actions of airflow on the groundwater table and the fluctuations of the phreatic level and water level in the well induced by rainfall. The effects of airflo7w caused by rainfall on phreatic level fluctuations were also studied quantitatively by comparing the results obtained using the proposed model with those obtained from a water single-phase flow model. The simulation results show that in addition to actual recharge, compressed airflow in unsaturated zones causes the phreatic level to increase, but the rise in the phreatic level is lower than that in the pore-air pressure head in unsaturated zones due to the mitigation of capillary fringe. The existence of airflow enhances the phreatic level rise during and after rainfall. In addition, the water level in the well, pushed by the phreatic level fluctuations, varies similarly to the phreatic level, but it experiences somewhat delayed and slightly attenuated. The Lisse effect precisely reflects the phreatic level fluctuations before actual recharge. Furthermore, the fluctuations in the phreatic level and water level in the well and the contributions of airflow to phreatic level fluctuations are affected by many factors: rain intensity, initial moisture, overlying aquitard, groundwater table depths, and screen depths of the well. © 2016, National Ground Water Association.

  8. Current-induced forces in mesoscopic systems: A scattering-matrix approach.

    PubMed

    Bode, Niels; Kusminskiy, Silvia Viola; Egger, Reinhold; von Oppen, Felix

    2012-01-01

    Nanoelectromechanical systems are characterized by an intimate connection between electronic and mechanical degrees of freedom. Due to the nanoscopic scale, current flowing through the system noticeably impacts upons the vibrational dynamics of the device, complementing the effect of the vibrational modes on the electronic dynamics. We employ the scattering-matrix approach to quantum transport in order to develop a unified theory of nanoelectromechanical systems out of equilibrium. For a slow mechanical mode the current can be obtained from the Landauer-Büttiker formula in the strictly adiabatic limit. The leading correction to the adiabatic limit reduces to Brouwer's formula for the current of a quantum pump in the absence of a bias voltage. The principal results of the present paper are the scattering-matrix expressions for the current-induced forces acting on the mechanical degrees of freedom. These forces control the Langevin dynamics of the mechanical modes. Specifically, we derive expressions for the (typically nonconservative) mean force, for the (possibly negative) damping force, an effective "Lorentz" force that exists even for time-reversal-invariant systems, and the fluctuating Langevin force originating from Nyquist and shot noise of the current flow. We apply our general formalism to several simple models that illustrate the peculiar nature of the current-induced forces. Specifically, we find that in out-of-equilibrium situations the current-induced forces can destabilize the mechanical vibrations and cause limit-cycle dynamics.

  9. Inducer Hydrodynamic Forces in a Cavitating Environment

    NASA Technical Reports Server (NTRS)

    Skelley, Stephen E.

    2004-01-01

    Marshall Space Flight Center has developed and demonstrated a measurement device for sensing and resolving the hydrodynamic loads on fluid machinery. The device - a derivative of the six-component wind tunnel balance - senses the forces and moments on the rotating device through a weakened shaft section instrumented with a series of strain gauges. This rotating balance was designed to directly measure the steady and unsteady hydrodynamic loads on an inducer, thereby defining the amplitude and frequency content associated with operating in various cavitation modes. The rotating balance was calibrated statically using a dead-weight load system in order to generate the 6 x 12 calibration matrix later used to convert measured voltages to engineering units. Structural modeling suggested that the rotating assembly first bending mode would be significantly reduced with the balance s inclusion. This reduction in structural stiffness was later confirmed experimentally with a hammer-impact test. This effect, coupled with the relatively large damping associated with the rotating balance waterproofing material, limited the device s bandwidth to approximately 50 Hertz Other pre-test validations included sensing the test article rotating assembly built-in imbalance for two configurations and directly measuring the assembly mass and buoyancy while submerged under water. Both tests matched predictions and confirmed the device s sensitivity while stationary and rotating. The rotating balance was then demonstrated in a water test of a full-scale Space Shuttle Main Engine high-pressure liquid oxygen pump inducer. Experimental data was collected a scaled operating conditions at three flow coefficients across a range of cavitation numbers for the single inducer geometry and radial clearance. Two distinct cavitation modes were observed symmetric tip vortex cavitation and alternate-blade cavitation. Although previous experimental tests on the same inducer demonstrated two additional

  10. Electrostatic potential fluctuation induced by charge discreteness in a nanoscale trench

    SciTech Connect

    Lee, Taesang; Kim, S. S.; Jho, Y. S.; Park, Gunyoung; Chang, C. S.

    2007-10-15

    A simplified two-dimensional Monte Carlo simulation is performed to estimate the charging potential fluctuations caused by strong binary Coulomb interactions between discrete charged particles in nanometer scale trenches. It is found that the discrete charge effect can be an important part of the nanoscale trench research, inducing scattering of ion trajectories in a nanoscale trench by a fluctuating electric field. The effect can enhance the ion deposition on the side walls and disperse the material contact energy of the incident ions, among others.

  11. Fluctuation induced excess conductivity in Tl 2CaBa 2Cu 2O 8

    NASA Astrophysics Data System (ADS)

    Srinivasan, R.; Krishnan, H.; Sankaranarayanan, V.; Gopalakrishnan, I. K.; Sastry, P. V. P. S. S.; Yakhmi, J. V.; Iyer, R. M.

    1989-08-01

    Two samples of single phase thallium-calcium-barium-copper-oxide were prepared using a precursor matrix technique. The resistivity of these samples was determined from 300 K to the temperature of zero resistance, Tzero, using the Montgomery technique. The room temperature resistivity of sample 2 was approximately seven times the room temperature resistivity of sample 1. From these measurements it was found that the temperature dependence of the fluctuation-induced excess conductivity in both the samples was in agreement with the Aslamazov-Larkin expression for three dimensional fluctuations.

  12. Photo-induced conductance fluctuations in mesoscopic Ge/Si systems with quantum dots

    SciTech Connect

    Stepina, N. P.; Dvurechenskii, A. V.; Nikiforov, A. I.; Moers, J.; Gruetzmacher, D.

    2014-08-20

    We study the evolution of electron transport in strongly localized mesoscopic system with quantum dots under small photon flux. Exploring devices with narrow transport channels lead to the observation of giant fluctuations of the photoconductance, which is attributed to the strong dependence of hopping current on the filling of dots by holes. In our experiments, single-photon mode operation is indicated by the linear dependence of the frequency of photo-induced fluctuations on the light intensity and the step-like response of conductance on the pulse excitation. The effect of the light wavelength, measurement temperature, size of the conductive channel on the device efficiency are considered.

  13. Protein Denaturants at Aqueous–Hydrophobic Interfaces: Self-Consistent Correlation between Induced Interfacial Fluctuations and Denaturant Stability at the Interface

    PubMed Central

    2015-01-01

    The notion of direct interaction between denaturing cosolvent and protein residues has been proposed in dialogue relevant to molecular mechanisms of protein denaturation. Here we consider the correlation between free energetic stability and induced fluctuations of an aqueous–hydrophobic interface between a model hydrophobically associating protein, HFBII, and two common protein denaturants, guanidinium cation (Gdm+) and urea. We compute potentials of mean force along an order parameter that brings the solute molecule close to the known hydrophobic region of the protein. We assess potentials of mean force for different relative orientations between the protein and denaturant molecule. We find that in both cases of guanidinium cation and urea relative orientations of the denaturant molecule that are parallel to the local protein–water interface exhibit greater stability compared to edge-on or perpendicular orientations. This behavior has been observed for guanidinium/methylguanidinium cations at the liquid–vapor interface of water, and thus the present results further corroborate earlier findings. Further analysis of the induced fluctuations of the aqueous–hydrophobic interface upon approach of the denaturant molecule indicates that the parallel orientation, displaying a greater stability at the interface, also induces larger fluctuations of the interface compared to the perpendicular orientations. The correlation of interfacial stability and induced interface fluctuation is a recurring theme for interface-stable solutes at hydrophobic interfaces. Moreover, observed correlations between interface stability and induced fluctuations recapitulate connections to local hydration structure and patterns around solutes as evidenced by experiment (Cooper et al., J. Phys. Chem. A2014, 118, 5657.) and high-level ab initio/DFT calculations (Baer et al., Faraday Discuss2013, 160, 89). PMID:25536388

  14. Shock induced ignition and DDT in the presence of mechanically driven fluctuations

    NASA Astrophysics Data System (ADS)

    Wang, Wentian; McDonald, James G.; Radulescu, Matei I.

    2015-11-01

    The present study addresses the problem of shock induced ignition and transition to detonation in the presence of mechanical and thermal fluctuations. These departures from a homogeneous medium are of significant importance in practical situations, where such fluctuations may promote hot-spot ignition and favor the flame transition to detonation. The problem is studied in 1D, where a piston-induced shock ignites the gas. The fluctuations in the shock-compressed medium are controlled by allowing the piston's speed to oscillate around a mean, with controllable frequency and amplitude. A Lagrangian numerical formulation is used, which allows to treat exactly the transient boundary condition at the piston head. The hydrodynamic solver is coupled with the reactive dynamics of the gas using Cantera. The code was verified by comparison with steady state ZND solutions and previous shock induced ignition results in homogeneous media. Results obtained for different fuels illustrate the strong relation of the DDT amplification length to mechanical fluctuations in systems with a high effective activation energy and fast rate of energy deposition, consistent with experiments performed on fast flame acceleration in the presence of strong mechanical perturbations. Financial support from NSERC and Shell, with A. Pekalski and M. Levin as technical monitors, are greatly acknowledged.

  15. Thermal fluctuations and stability of a particle levitated by a repulsive Casimir force in a liquid.

    PubMed

    Inui, Norio; Goto, Kosuke

    2013-11-01

    We study the vertical Brownian motion of a gold particle levitated by a repulsive Casimir force to a silica plate immersed in bromobenzene. The time evolution of the particle distribution starting from an equilibrium position, where the Casimir force and gravitational force are balanced, is considered by solving the Langevin equation using the Monte Carlo method. When the gold particle is very close to the silica plate, the Casimir force changes from repulsive to attractive, and the particle eventually sticks to the surface. The escape rate from a metastable position is calculated by solving the Fokker-Plank equation; it agrees with the value obtained by Kramers' escape theory. The duration of levitation increases as the particle radius increases up to around 2.3 μm. As an example, we show that a 1-μm-diameter gold particle can be levitated for a significantly long time by the repulsive Casimir force at room temperature.

  16. Analytical and statistical investigation on structural fluctuations induced radiation in photonic crystal slabs.

    PubMed

    Ni, Liangfu; Jin, Jicheng; Peng, Chao; Li, Zhengbin

    2017-03-06

    We extend the coupled-wave-theory (CWT) framework to a supercell lattice photonic crystal (PC) structure to model the radiation of high-Q resonances under structural fluctuations since they are inevitable in realistic devices. The comparison of CWT results and the finite-element-method (FEM) simulations confirm the validity of CWT. It is proved that the supercell model approaches a realistic finite-size PC device when the supercell size is large enough. The Q factors within fluctuated structures are constraint owing to the appearance of fractional orders of radiative waves, which are induced by structural fluctuations. For a large enough footprint size, the upper bound of the Q factor is determined by the fabrication precision, and further increasing the device size will no longer benefit the Q factor.

  17. Fluctuations induced extinction and stochastic resonance effect in a model of tumor growth with periodic treatment

    NASA Astrophysics Data System (ADS)

    Li, Dongxi; Xu, Wei; Guo, Yongfeng; Xu, Yong

    2011-01-01

    We investigate a stochastic model of tumor growth derived from the catalytic Michaelis-Menten reaction with positional and environmental fluctuations under subthreshold periodic treatment. Firstly, the influences of environmental fluctuations on the treatable stage are analyzed numerically. Applying the standard theory of stochastic resonance derived from the two-state approach, we derive the signal-to-noise ratio (SNR) analytically, which is used to measure the stochastic resonance phenomenon. It is found that the weak environmental fluctuations could induce the extinction of tumor cells in the subthreshold periodic treatment. The positional stability is better in favor of the treatment of the tumor cells. Besides, the appropriate and feasible treatment intensity and the treatment cycle should be highlighted considered in the treatment of tumor cells.

  18. Force fluctuations while pressing and moving against high- and low-friction touch screen surfaces.

    PubMed

    Joshi, Mukta N; Keenan, Kevin G

    2016-07-01

    The purpose of this study was to identify the influence of a high- and low-friction surface on the ability to maintain a steady downward force during an index finger pressing and moving task. Fifteen right-handed subjects (24-48 years) performed a static force pressing task and a hybrid pressing and moving task on the surface of an iPad mini while holding a steady 2-N force on high- and low-friction surfaces. Variability of force was quantified as the standard deviation (SD) of normal force (F z) and shear force (F xy) across friction conditions and tasks. The SD of F z was 227 % greater during the hybrid task as compared to the static task (p < .001) and was 19 % greater for the high- versus low-friction condition (p = .033). There were positive correlations between SD of F z and F xy during the hybrid force/motion tasks on the high- and low-friction conditions (r (2) = 0.5 and 0.86, respectively), suggesting significant associations between normal and shear forces for this hybrid task. The correlation between the SD of F z for static and hybrid tasks was r (2) = 0.44, indicating that the common practice of examining the control of static tasks may not sufficiently explain performance during hybrid tasks, at least for the young subjects tested in the current study. As activities of daily living frequently require hybrid force/motion tasks (e.g., writing, doing the dishes, and cleaning counters), the results of this study emphasize the need to study motor performance during hybrid tasks in addition to static force tasks.

  19. Including Thermal Fluctuations in Actomyosin Stable States Increases the Predicted Force per Motor and Macroscopic Efficiency in Muscle Modelling.

    PubMed

    Marcucci, Lorenzo; Washio, Takumi; Yanagida, Toshio

    2016-09-01

    Muscle contractions are generated by cyclical interactions of myosin heads with actin filaments to form the actomyosin complex. To simulate actomyosin complex stable states, mathematical models usually define an energy landscape with a corresponding number of wells. The jumps between these wells are defined through rate constants. Almost all previous models assign these wells an infinite sharpness by imposing a relatively simple expression for the detailed balance, i.e., the ratio of the rate constants depends exponentially on the sole myosin elastic energy. Physically, this assumption corresponds to neglecting thermal fluctuations in the actomyosin complex stable states. By comparing three mathematical models, we examine the extent to which this hypothesis affects muscle model predictions at the single cross-bridge, single fiber, and organ levels in a ceteris paribus analysis. We show that including fluctuations in stable states allows the lever arm of the myosin to easily and dynamically explore all possible minima in the energy landscape, generating several backward and forward jumps between states during the lifetime of the actomyosin complex, whereas the infinitely sharp minima case is characterized by fewer jumps between states. Moreover, the analysis predicts that thermal fluctuations enable a more efficient contraction mechanism, in which a higher force is sustained by fewer attached cross-bridges.

  20. Including Thermal Fluctuations in Actomyosin Stable States Increases the Predicted Force per Motor and Macroscopic Efficiency in Muscle Modelling

    PubMed Central

    2016-01-01

    Muscle contractions are generated by cyclical interactions of myosin heads with actin filaments to form the actomyosin complex. To simulate actomyosin complex stable states, mathematical models usually define an energy landscape with a corresponding number of wells. The jumps between these wells are defined through rate constants. Almost all previous models assign these wells an infinite sharpness by imposing a relatively simple expression for the detailed balance, i.e., the ratio of the rate constants depends exponentially on the sole myosin elastic energy. Physically, this assumption corresponds to neglecting thermal fluctuations in the actomyosin complex stable states. By comparing three mathematical models, we examine the extent to which this hypothesis affects muscle model predictions at the single cross-bridge, single fiber, and organ levels in a ceteris paribus analysis. We show that including fluctuations in stable states allows the lever arm of the myosin to easily and dynamically explore all possible minima in the energy landscape, generating several backward and forward jumps between states during the lifetime of the actomyosin complex, whereas the infinitely sharp minima case is characterized by fewer jumps between states. Moreover, the analysis predicts that thermal fluctuations enable a more efficient contraction mechanism, in which a higher force is sustained by fewer attached cross-bridges. PMID:27626630

  1. Piston slap induced pressure fluctuation in the water coolant passage of an internal combustion engine

    NASA Astrophysics Data System (ADS)

    Ohta, Kazuhide; Wang, Xiaoyu; Saeki, Atsushi

    2016-02-01

    Liner cavitation is caused by water pressure fluctuation in the water coolant passage (WCP). When the negative pressure falls below the saturated vapor pressure, the impulsive pressure following the implosion of cavitation bubbles causes cavitation erosion of the wet cylinder liner surface. The present work establishes a numerical model for structural-acoustic coupling between the crankcase and the acoustic field in the WCP considering their dynamic characteristics. The coupling effect is evaluated through mutual interaction terms that are calculated from the mode shapes of the acoustic field and of the crankcase vibration on the boundary. Water pressure fluctuations in the WCP under the action of piston slap forces are predicted and the contributions of the uncoupled mode shapes of the crankcase and the acoustic field to the pressure waveform are analyzed. The influence of sound speed variations on the water pressure response is discussed, as well as the pressure on the thrust sides of the four cylinders.

  2. Homotopy Perturbation Method-Based Analytical Solution for Tide-Induced Groundwater Fluctuations.

    PubMed

    Munusamy, Selva Balaji; Dhar, Anirban

    2016-05-01

    The groundwater variations in unconfined aquifers are governed by the nonlinear Boussinesq's equation. Analytical solution for groundwater fluctuations in coastal aquifers under tidal forcing can be solved using perturbation methods. However, the perturbation parameters should be properly selected and predefined for traditional perturbation methods. In this study, a new dimensional, higher-order analytical solution for groundwater fluctuations is proposed by using the homotopy perturbation method with a virtual perturbation parameter. Parameter-expansion method is used to remove the secular terms generated during the solution process. The solution does not require any predefined perturbation parameter and valid for higher values of amplitude parameter A/D, where A is the amplitude of the tide and D is the aquifer thickness.

  3. Low-frequency fluctuation in continuous real-time feedback of finger force: a new paradigm for sustained attention.

    PubMed

    Dong, Zhang-Ye; Liu, Dong-Qiang; Wang, Jue; Qing, Zhao; Zang, Zhen-Xiang; Yan, Chao-Gan; Zang, Yu-Feng

    2012-08-01

    Behavioral studies have suggested a low-frequency (0.05 Hz) fluctuation of sustained attention on the basis of the intra-individual variability of reaction-time. Conventional task designs for functional magnetic resonance imaging (fMRI) studies are not appropriate for frequency analysis. The present study aimed to propose a new paradigm, real-time finger force feedback (RT-FFF), to study the brain mechanisms of sustained attention and neurofeedback. We compared the low-frequency fluctuations in both behavioral and fMRI data from 38 healthy adults (19 males; mean age, 22.3 years). Two fMRI sessions, in RT-FFF and sham finger force feedback (S-FFF) states, were acquired (TR 2 s, Siemens Trio 3-Tesla scanner, 8 min each, counter-balanced). Behavioral data of finger force were obtained simultaneously at a sampling rate of 250 Hz. Frequency analysis of the behavioral data showed lower amplitude in the low-frequency band (0.004-0.104 Hz) but higher amplitude in the high-frequency band (27.02-125 Hz) in the RT-FFF than the S-FFF states. The mean finger force was not significantly different between the two states. fMRI data analysis showed higher fractional amplitude of low-frequency fluctuation (fALFF) in the S-FFF than in the RT-FFF state in the visual cortex, but higher fALFF in RT-FFF than S-FFF in the middle frontal gyrus, the superior frontal gyrus, and the default mode network. The behavioral results suggest that the proposed paradigm may provide a new approach to studies of sustained attention. The fMRI results suggest that a distributed network including visual, motor, attentional, and default mode networks may be involved in sustained attention and/or real-time feedback. This paradigm may be helpful for future studies on deficits of attention, such as attention deficit hyperactivity disorder and mild traumatic brain injury.

  4. Critical Casimir force and its fluctuations in lattice spin models: exact and Monte Carlo results.

    PubMed

    Dantchev, Daniel; Krech, Michael

    2004-04-01

    We present general arguments and construct a stress tensor operator for finite lattice spin models. The average value of this operator gives the Casimir force of the system close to the bulk critical temperature T(c). We verify our arguments via exact results for the force in the two-dimensional Ising model, d -dimensional Gaussian, and mean spherical model with 2force F(C) in a slab geometry confining a critical substance in-between is k(b) TD(T) (A/ a(d-1) )(1/2), where A is the surface area of the plates, a is the lattice spacing, and D(T) is a slowly varying nonuniversal function of the temperature T. The numerical calculations demonstrate that at the critical temperature T(c) the force possesses a Gaussian distribution centered at the mean value of the force = k(b) T(c) (d-1)Delta/ (L/a)(d), where L is the distance between the plates and Delta is the (universal) Casimir amplitude.

  5. Fluctuation-induced transport of two coupled particles: Effect of the interparticle interaction

    NASA Astrophysics Data System (ADS)

    Makhnovskii, Yurii A.; Rozenbaum, Viktor M.; Sheu, Sheh-Yi; Yang, Dah-Yen; Trakhtenberg, Leonid I.; Lin, Sheng Hsien

    2014-06-01

    We consider a system of two coupled particles fluctuating between two states, with different interparticle interaction potentials and particle friction coefficients. An external action drives the interstate transitions that induces reciprocating motion along the internal coordinate x (the interparticle distance). The system moves unidirectionally due to rectification of the internal motion by asymmetric friction fluctuations and thus operates as a dimeric motor that converts input energy into net movement. We focus on how the law of interaction between the particles affects the dimer transport and, in particular, the role of thermal noise in the motion inducing mechanism. It is argued that if the interaction potential behaves at large distances as xα, depending on the value of the exponent α, the thermal noise plays a constructive (α > 2), neutral (α = 2), or destructive (α < 2) role. In the case of α = 1, corresponding piecewise linear potential profiles, an exact solution is obtained and discussed in detail.

  6. Fluctuation-induced modifications of the phase structure in (2 +1 )-flavor QCD

    NASA Astrophysics Data System (ADS)

    Rennecke, Fabian; Schaefer, Bernd-Jochen

    2017-07-01

    The low-energy sector of QCD with Nf=2 +1 dynamical quark flavors at nonvanishing chemical potential and temperature is studied with a nonperturbative functional renormalization group method. The analysis is performed in different truncations in order to explore fluctuation-induced modifications of the quark-meson correlations as well as quark and meson propagators on the chiral phase transition of QCD. Depending on the chosen truncation, significant quantitative implications on the phase transition are found. In the chirally symmetric phase, the quark flavor composition of the pseudoscalar (η ,η')-meson complex turns out to be drastically sensitive to fluctuation-induced modifications in the presence of the axial U (1 )A anomaly. This has important phenomenological consequences for the assignment of chiral partners to these mesons.

  7. Measurements of temperature, density, pressure, and their fluctuations in supersonic turbulence using laser-induced fluorescence

    NASA Technical Reports Server (NTRS)

    Gross, K. P.; Mckenzie, R. L.; Logan, P.

    1987-01-01

    A laser-induced fluorescence method has been developed that provides simultaneous measurements of temperature, density, and their fluctuations owing to turbulence in unheated compressible flows. Pressure and its fluctuations are also deduced using the equation of state. Fluorescence is induced in nitric oxide that has been seeded into a nitrogen flow in concentrations of 100 ppm. Measurements are obtained from each laser pulse, with a spatial resolution of 1 mm and a temporal resolution of 125 ns. The method was applied to a supersonic, turbulent, boundary-layer flow with a free-stream Mach number of 2. For stream conditions in the range from 150-300 K and 0.3-1 atm, temperature is measured with an uncertainty of approximately 1 percent rms, while density and pressure uncertainties are approximately 2 percent rms.

  8. Fluctuation-induced tunneling in TiO2-derived nanotube pellets

    NASA Astrophysics Data System (ADS)

    Filipič, Cene; Levstik, Adrijan; Kutnjak, Zdravko; Umek, Polona; Arčon, Denis

    2007-04-01

    The frequency-dependent conductivity of TiO2-derived nanotubes pressed to a pellet was measured over the temperature range 100 to 390 K. The temperature dependence of the electrical conductivity measured at 100 Hz indicates a three-dimensional variable range hopping mechanism at higher temperatures and fluctuation-induced tunneling conduction below 300 K. From the frequency dependence of the conductivity it is possible to conclude that the conductivity is governed by two parallel channels. The first channel, dominating at higher temperatures, is characterized by the three-dimensional variable range hopping mechanism and the second channel, which takes over at lower temperatures, by the fluctuation-induced tunneling mechanism. Such a two-channel mechanism may be responsible for the similar temperature dependence of the electrical conductivity observed in some other three-dimensional systems.

  9. Fluctuation-Induced Particle Transport and Density Relaxation in a Stochastic Magnetic Field

    NASA Astrophysics Data System (ADS)

    Brower, David L.

    2009-11-01

    Particle transport and density relaxation associated with electromagnetic fluctuations is an unresolved problem of long standing in plasma physics and magnetic fusion research. In toroidal fusion plasmas, magnetic field fluctuations can arise spontaneously from global MHD instabilities, e.g., tearing fluctuations associated with sawtooth oscillations. Resonant magnetic perturbations (RMP) have also been externally imposed to mitigate the effect of edge localized modes (ELMs) by locally enhancing edge transport in Tokamaks. Understanding stochastic-field-driven transport processes is thus not only of basic science interest but possibly critical to ELM control in ITER. We report on the first direct measurement of magnetic fluctuation-induced particle transport in the core of a high-temperature plasma, the MST reversed field pinch. Measurements focus on the sawtooth crash, when the stochastic field resulting from tearing reconnection is strongest, and are accomplished using newly developed, laser-based, differential interferometry and Faraday rotation techniques. The measured electron particle flux, resulting from the correlated product of electron density (δn) and radial magnetic fluctuations (δbr), accounts for density profile relaxation during these magnetic reconnection events. Surprisingly, the electron diffusion is 30 times larger than estimates of ambipolarity-constrained transport in a stochastic magnetic field. A significant ion flux associated with parallel ion flow velocity fluctuations (δvi,//) correlated with δbr appears responsible for transport larger than predictions from the quasi-linear test particle model. These results indicate the need for improved understanding of particle transport in a stochastic magnetic field. Work performed in collaboration with W.X. Ding, W.F. Bergerson, T.F. Yates, UCLA; D.J. Den Hartog, G. Fiksel, S.C. Prager, J.S. Sarff and the MST Group, University of Wisconsin-Madison.

  10. Retinal Changes Induced by Epiretinal Tangential Forces

    PubMed Central

    Romano, Mario R.; Comune, Chiara; Ferrara, Mariantonia; Cennamo, Gilda; De Cillà, Stefano; Toto, Lisa; Cennamo, Giovanni

    2015-01-01

    Two kinds of forces are active in vitreoretinal traction diseases: tangential and anterior-posterior forces. However, tangential forces are less characterized and classified in literature compared to the anterior-posterior ones. Tangential epiretinal forces are mainly due to anomalous posterior vitreous detachment (PVD), vitreoschisis, vitreopapillary adhesion (VPA), and epiretinal membranes (ERMs). Anomalous PVD plays a key role in the formation of the tangential vectorial forces on the retinal surface as consequence of gel liquefaction (synchysis) without sufficient and fast vitreous dehiscence at the vitreoretinal interface. The anomalous and persistent adherence of the posterior hyaloid to the retina can lead to vitreomacular/vitreopapillary adhesion or to a formation of avascular fibrocellular tissue (ERM) resulting from the proliferation and transdifferentiation of hyalocytes resident in the cortical vitreous remnants after vitreoschisis. The right interpretation of the forces involved in the epiretinal tangential tractions helps in a better definition of diagnosis, progression, prognosis, and surgical outcomes of vitreomacular interfaces. PMID:26421183

  11. Current-induced forces: a simple derivation

    NASA Astrophysics Data System (ADS)

    Todorov, Tchavdar N.; Dundas, Daniel; Lü, Jing-Tao; Brandbyge, Mads; Hedegård, Per

    2014-11-01

    We revisit the problem of forces on atoms under current in nanoscale conductors. We derive and discuss the five principal kinds of force under steady-state conditions from a simple standpoint that—with the help of background literature—should be accessible to physics undergraduates. The discussion aims at combining methodology with an emphasis on the underlying physics through examples. We discuss and compare two forces present only under current—the non-conservative electron wind force and a Lorentz-like velocity-dependent force. It is shown that in metallic nanowires both display significant features at the wire surface, making it a candidate for the nucleation of current-driven structural transformations and failure. Finally we discuss the problem of force noise and the limitations of Ehrenfest dynamics.

  12. Memory effect in the upper bound of the heat flux induced by quantum fluctuations

    NASA Astrophysics Data System (ADS)

    Koide, T.

    2016-10-01

    Thermodynamic behaviors in a quantum Brownian motion coupled to a classical heat bath is studied. We then define a heat operator by generalizing the stochastic energetics and show the energy balance (first law) and the upper bound of the expectation value of the heat operator (second law). We further find that this upper bound depends on the memory effect induced by quantum fluctuations and hence the maximum extractable work can be qualitatively modified in quantum thermodynamics.

  13. Memory effect in the upper bound of the heat flux induced by quantum fluctuations.

    PubMed

    Koide, T

    2016-10-01

    Thermodynamic behaviors in a quantum Brownian motion coupled to a classical heat bath is studied. We then define a heat operator by generalizing the stochastic energetics and show the energy balance (first law) and the upper bound of the expectation value of the heat operator (second law). We further find that this upper bound depends on the memory effect induced by quantum fluctuations and hence the maximum extractable work can be qualitatively modified in quantum thermodynamics.

  14. Lateral-drag propulsion forces induced by anisotropy.

    PubMed

    Nefedov, Igor S; Rubi, J Miguel

    2017-07-21

    We predict the existence of lateral drag forces near the flat surface of an absorbing slab made of an anisotropic material. The forces originate from the fluctuations of the electromagnetic field, when the anisotropy axis of the material forms a certain angle with the surface. In this situation, the spatial spectra of the fluctuating electromagnetic fields becomes asymmetric, different for positive and negative transverse wave vectors components. Differently from the case of van der Waals interactions in which the forward-backward symmetry is broken due to the particle movement, in our case the lateral motion results merely from the anisotropy of the slab. This new effect, of particular significance in hyperbolic materials, could be used for the manipulation of nanoparticles.

  15. QED vacuum fluctuations and induced electric dipole moment of the neutron

    SciTech Connect

    Dominguez, C. A.; Falomir, H.; Ipinza, M.; Loewe, M.; Kohler, S.; Rojas, J. C.

    2009-08-01

    Quantum fluctuations in the QED vacuum generate nonlinear effects, such as peculiar induced electromagnetic fields. In particular, we show here that an electrically neutral particle, possessing a magnetic dipole moment, develops an induced electric dipole-type moment with unusual angular dependence, when immersed in a quasistatic, constant external electric field. The calculation of this effect is done in the framework of the Euler-Heisenberg effective QED Lagrangian, corresponding to the weak field asymptotic expansion of the effective action to one-loop order. It is argued that the neutron might be a good candidate to probe this signal of nonlinearity in QED.

  16. Motor Proteins as Nanomachines: The Roles of Thermal Fluctuations in Generating Force and Motion

    NASA Astrophysics Data System (ADS)

    Howard, Jonathon

    Motor proteins are enzymes that convert chemical energy derived from the hydrolysis of a small molecule called ATP into mechanical work used to power directed movement along cytoskeletal filaments inside cells. Motor proteins have essential biological functions such as driving the contraction of muscle, the beating of sperm and cilia, and the transport of intracellular cargoes. Motor proteins are also interesting from a physical point of view because they do what no man-made engines do: they transduce chemical energy directly to mechanical work without using heat or electrical energy as an intermediate. A central issue in the mechanism of this chemomechanical transduction by motor proteins concerns the roles played by thermal fluctuations, diffusion and Brownian motion. In this lecture I discuss several molecular models for motor proteins, including so-called ratchet models, and compare predictions of these models to experimental results for the microtubule-based motor protein kinesin. I argue that kinesin, which has two motor domains or "heads," walks using a "hand-over-hand" mechanism such that at least one head is bound to the microtubule. Diffusion likely plays an essential role by facilitating the search of the unbound head for the next binding site, a distance 8 nm away. During this diffusive phase, the bound head supports the load ensuring that forward motion can still take place even against loads up to several piconewtons.

  17. Tropical ocean-atmospheric forcing of Late Glacial and Holocene glacier fluctuations in the Cordillera Blanca, Peru

    NASA Astrophysics Data System (ADS)

    Stansell, Nathan D.; Licciardi, Joseph M.; Rodbell, Donald T.; Mark, Bryan G.

    2017-05-01

    Evaluating the timing and style of past glacier fluctuations in the tropical Andes is important for our scientific understanding of global environmental change. Terrestrial cosmogenic nuclide ages on moraine boulders combined with 14C-dated clastic sediment records from alpine lakes document glacial variability in the Cordillera Blanca of Peru during the last 16 ka. Late Glacial ice extents culminated at the start of the Antarctic Cold Reversal and began retracting prior to the Younger Dryas. Multiple moraine crests dating to the early Holocene mark brief readvances or stillstands that punctuated overall retreat of the Queshque Valley glacier terminus during this interval. Glaciers were less extensive during the middle Holocene before readvancing during the latest Holocene. These records suggest that tropical Atlantic and Pacific ocean-atmospheric processes exerted temporally variable forcing of Late Glacial and Holocene glacial changes in the Peruvian Andes.

  18. Spin fluctuation induced linear magnetoresistance in ultrathin superconducting FeSe films

    NASA Astrophysics Data System (ADS)

    Wang, Qingyan; Zhang, Wenhao; Chen, Weiwei; Xing, Ying; Sun, Yi; Wang, Ziqiao; Mei, Jia-Wei; Wang, Zhengfei; Wang, Lili; Ma, Xu-Cun; Liu, Feng; Xue, Qi-Kun; Wang, Jian

    2017-09-01

    The discovery of high-temperature superconductivity in FeSe/STO has trigged great research interest to reveal a range of exotic physical phenomena in this novel material. Here we present a temperature dependent magnetotransport measurement for ultrathin FeSe/STO films with different thickness and protection layers. Remarkably, a surprising linear magnetoresistance (LMR) is observed around the superconducting transition temperatures but absent otherwise. The experimental LMR can be reproduced by magnetotransport calculations based on a model of magnetic field dependent disorder induced by spin fluctuation. Thus, the observed LMR in coexistence with superconductivity provides the first magnetotransport signature for spin fluctuation around the superconducting transition region in ultrathin FeSe/STO films.

  19. Blade Section Design of Marine Propellers with Minimum Cavitation Induced Pressure Fluctuations

    NASA Astrophysics Data System (ADS)

    Zeng, Zhibo; Kuiper, Gert

    2015-12-01

    To minimize cavitation induced pressure fluctuations by marine propellers with minimum efficiency loss, the paper presents a new design and optimization method using a blade section design method. The sheet cavity volume variation on a two-dimensional blade section in quasi-steady condition has been simplified to a relation with only a limited number of non-dimensional parameters. This results in a fast prediction method of the cavity volume of a blade section passing a wake peak, using a pre-calculated database. This makes optimization feasible. The optimization method was applied to the propeller of a container ship. Extensive tests in a towing tank and a cavitation channel validated the reduction of pressure fluctuations: 33% reduction in the first blade frequency amplitude and 18% reduction in the second blade frequency amplitude, with the same open water efficiency.

  20. Stochastic transport in the presence of spatial disorder: Fluctuation-induced corrections to homogenization

    NASA Astrophysics Data System (ADS)

    Russell, Matthew J.; Jensen, Oliver E.; Galla, Tobias

    2016-10-01

    Motivated by uncertainty quantification in natural transport systems, we investigate an individual-based transport process involving particles undergoing a random walk along a line of point sinks whose strengths are themselves independent random variables. We assume particles are removed from the system via first-order kinetics. We analyze the system using a hierarchy of approaches when the sinks are sparsely distributed, including a stochastic homogenization approximation that yields explicit predictions for the extrinsic disorder in the stationary state due to sink strength fluctuations. The extrinsic noise induces long-range spatial correlations in the particle concentration, unlike fluctuations due to the intrinsic noise alone. Additionally, the mean concentration profile, averaged over both intrinsic and extrinsic noise, is elevated compared with the corresponding profile from a uniform sink distribution, showing that the classical homogenization approximation can be a biased estimator of the true mean.

  1. Gravity effects on Soret-induced non-equilibrium fluctuations in ternary mixtures.

    PubMed

    Martínez Pancorbo, Pablo; Ortiz de Zárate, José M; Bataller, Henri; Croccolo, Fabrizio

    2017-02-01

    We discuss the gravity effects on the dynamics of composition fluctuations in a ternary mixture around the non-equilibrium quiescent state induced by thermodiffusion when subjected to a stationary temperature gradient. We found that the autocorrelation matrix of concentration fluctuations can be expressed as the sum of two exponentially decaying concentration modes. Without accounting for confinement, we obtained exact analytical expressions for the two decay rates which, as a consequence of gravity, display a wave-number-dependent mixing. The stability of the quiescent solution is also examined, as a function of the two solutal Rayleigh numbers used to express the decay rates. After having discussed the dynamics of the two concentration modes, we calculate the corresponding amplitudes. Consequences for optical experiments are discussed.

  2. Fluctuation-induced shear flow and energy transfer in plasma interchange turbulence

    SciTech Connect

    Li, B.; Sun, C. K.; Wang, X. Y.; Zhou, A.; Wang, X. G.; Ernst, D. R.

    2015-11-15

    Fluctuation-induced E × B shear flow and energy transfer for plasma interchange turbulence are examined in a flux-driven system with both closed and open magnetic field lines. The nonlinear evolution of interchange turbulence shows the presence of two confinement regimes characterized by low and high E × B flow shear. In the first regime, the large-scale turbulent convection is dominant and the mean E × B shear flow is at a relatively low level. By increasing the heat flux above a certain threshold, the increased turbulent intensity gives rise to the transfer of energy from fluctuations to mean E × B flows. As a result, a transition to the second regime occurs, in which a strong mean E × B shear flow is generated.

  3. Transient violations of the second law of thermodynamics in protein unfolding examined using synthetic atomic force microscopy and the fluctuation theorem.

    PubMed

    Paramore, Sterling; Ayton, Gary S; Voth, Gregory A

    2007-09-14

    The synthetic atomic force microscopy (AFM) method is developed to simulate a periodically replicated atomistic system subject to force and length fluctuations characteristic of an AFM experiment. This new method is used to examine the forced-extension and subsequent rupture of the alpha-helical linker connecting periodic images of a spectrin protein repeat unit. A two-dimensional potential of mean force (PMF) along the length and a reaction coordinate describing the state of the linker was calculated. This PMF reveals that the basic material properties of the spectrin repeat unit are sensitive to the state of linker, an important feature that cannot be accounted for in a one-dimensional PMF. Furthermore, nonequilibrium simulations were generated to examine the rupture event in the context of the fluctuation theorem. These atomistic simulations demonstrate that trajectories which are in apparent violation of the second law can overcome unfolding barriers at significantly reduced rupture forces.

  4. Geometry and Excitation Energy Fluctuations of NMA in Aqueous Solution with CHARMM, AMBER, OPLS, and GROMOS Force Fields: Implications for Protein Ultraviolet Spectra Simulation.

    PubMed

    Li, Zhenyu; Yu, Haibo; Zhuang, Wei; Mukamel, Shaul

    2008-02-04

    Molecular dynamics (MD) simulations are performed for N-methylamide (NMA) in water at 300 K with different force fields. Compared to the three all-atom force fields (CHARMM22, AMBER03, and OPLS-AA), the united-atom force field (GROMOS96) predicts a broader distribution of the peptide OCNH dehedral angle. A map constructed by fitting the npi* and pipi* transition energies as quadratic functions of the NMA geometric variables is used to simulate the excitation energy fluctuations. GROMOS96 predicts blue-shifted npi* and pipi* energies and stronger fluctuations compared to the other three force fields, which indicates that different force fields may predict different spectral lineshapes for proteins.

  5. Geometry and excitation energy fluctuations of NMA in aqueous solution with CHARMM, AMBER, OPLS, and GROMOS force fields: Implications for protein ultraviolet spectra simulation

    NASA Astrophysics Data System (ADS)

    Li, Zhenyu; Yu, Haibo; Zhuang, Wei; Mukamel, Shaul

    2008-02-01

    Molecular dynamics (MD) simulations are performed for N-methylacetamide (NMA) in water at 300 K with different force fields. Compared to the three all-atom force fields (CHARMM22, AMBER03, and OPLS-AA), the united-atom force field (GROMOS96) predicts a broader distribution of the peptide OCNH dehedral angle. A map constructed by fitting the nπ∗ and ππ∗ transition energies as quadratic functions of the NMA geometric variables is used to simulate the excitation energy fluctuations. GROMOS96 predicts blue shifted nπ∗ and ππ∗ energies and stronger fluctuations compared to the other three force fields, which indicates that different force fields may predict different spectral lineshapes for proteins.

  6. Nonequilibrium Casimir-like Forces in Liquid Mixtures.

    PubMed

    Kirkpatrick, T R; Ortiz de Zárate, J M; Sengers, J V

    2015-07-17

    In this Letter, we consider a liquid mixture confined between two thermally conducting walls subjected to a stationary temperature gradient. While in a one-component liquid nonequilibrium fluctuation forces appear inside the liquid layer, nonequilibrium fluctuations in a mixture induce a Casimir-like force on the walls. The physical reason is that the temperature gradient induces large concentration fluctuations through the Soret effect. Unlike temperature fluctuations, nonequilibrium concentration fluctuations are also present near a perfectly thermally conducting wall. The magnitude of the fluctuation-induced Casimir force is proportional to the square of the Soret coefficient and is related to the concentration dependence of the heat and volume of mixing.

  7. Flow-induced agitations create a granular fluid: effective viscosity and fluctuations.

    PubMed

    Nichol, Kiri; van Hecke, Martin

    2012-06-01

    We fluidize a granular medium with localized stirring in a split-bottom shear cell. We probe the mechanical response of quiescent regions far from the main flow by observing the vertical motion of cylindrical probes rising, sinking, and floating in the grains. First, we find that the probe motion suggests that the granular material behaves in a liquid-like manner: high-density probes sink and low-density probes float at the depth given by Archimedes' law. Second, we observe that the drag force on moving probes scales linearly with their velocity, which allows us to define an effective viscosity for the system. This effective viscosity is inversely proportional to the rotation rate of the disk which drives the split bottom flow. Moreover, the apparent viscosity depends on radius and mass of the probe: despite the linear dependence of the drag forces on sinking speed of the probe, the granular medium is not simply Newtonian, but exhibits a more complex rheology. The decrease of viscosity with filling height of the cell, combined with the poor correlation between local strain rate and viscosity, suggests that the fluid-like character of the material is set by agitations generated in the stirred region: the relation between applied stress and observed strain rate in one location depends on the strain rate in another location. We probe the nature of the granular fluctuations that we believe mediates these nonlocal interactions by characterizing the small and random up and down motion that the probe experiences. These Gaussian fluctuations exhibit a mix of diffusive and subdiffusive behavior at short times and saturate at a value of roughly 1/10th of a grain diameter longer times, consistent with the picture of a random walker in a potential well. The product of crossover time and effective viscosity is constant, evidencing a direct link between fluctuations and viscosity.

  8. Polymer-induced forces at interfaces

    NASA Astrophysics Data System (ADS)

    Rangarajan, Murali

    This dissertation concerns studies of forces generated by confined and physisorbed flexible polymers using lattice mean-field theories, and those generated by confined and clamped semiflexible polymers modeled as slender elastic rods. Lattice mean-field theories have been used in understanding and predicting the behavior of polymeric interfacial systems. In order to efficiently tailor such systems for various applications of interest, one has to understand the forces generated in the interface due to the polymer molecules. The present work examines the abilities and limitations of lattice mean-field theories in predicting the structure of physisorbed polymer layers and the resultant forces. Within the lattice mean-field theory, a definition of normal force of compression as the negative derivative of the partition-function-based excess free energy with surface separation gives misleading results because the theory does not explicitly account for the normal stresses involved in the system. Correct expressions for normal and tangential forces are obtained from a continuum-mechanics-based formulation. Preliminary comparisons with lattice Monte Carlo simulations show that mean-field theories fail to predict significant attractive forces when the surfaces are undersaturated, as one would expect. The corrections to the excluded volume (non-reversal chains) and the mean-field (anisotropic field) approximations improve the predictions of layer structure, but not the forces. Bending of semiflexible polymer chains (elastic rods) is considered for two boundary conditions---where the chain is hinged on both ends and where the chain is clamped on one end and hinged on the other. For the former case, the compressive forces and chain shapes obtained are consistent with the inflexional elastica published by Love. For the latter, multiple and higher-order solutions are observed for the hinged-end position for a given force. Preliminary studies are conducted on actin-based motility

  9. Orbitally Forced Climatic Fluctuations in Snowball Earth: Compelling Evidence from a Data-Model Study

    NASA Astrophysics Data System (ADS)

    Benn, D.; Fairchild, I. J.; Le Hir, G.; Fleming, E.; Ramstein, G.; Stevenson, C.; Donnadieu, Y.; Bao, H.; Hambrey, M.; Petronis, M. S.; Wynn, P.

    2014-12-01

    The Snowball Earth model provides a powerful conceptual framework for understanding the causes and demise of the extreme global glaciations that occurred during the Neoproterozoic, and can be refined through creative interactions between geological, geochemical and modeling studies. We present unequivocal evidence for oscillating glacier extent and varying hydrological conditions during the Marinoan, the second major Cryogenian glaciation (~650-635 Ma), from the Wilsonbreen Formation of NE Svalbard. Extensive exposures record (1) a possibly long arid periglacial phase; (2) multiple switches between subglacial, glaciolacustrine, carbonate lacustrine and non-glacial terrestrial deposition; and (3) rapid deglaciation. Oxygen and sulfur isotopes of sulfate in carbonate facies indicate persistently high pCO2 consistent with deposition of the Formation on a 105-year timescale. Using an ice sheet model (GRISLI) coupled to a General Circulation Model (LMDz), the response of the continental ice-sheet to insolation changes (i.e. orbital forcing) and pCO2 is investigated. We show that land-ice cover waxes and wanes over the course of a precession cycle for pCO2 levels from 0.01 to 0.05 bar. Growth and retreat of ice reflect shifts in the balance between precipitation and evaporation (P-E), in response to migration of the tropical Hadley Cell. In cold conditions (<0.01bar), the weakness of the hydrological cycle makes the system insensitive to precession changes, explaining relatively stable ice-sheets during the earlier stages of the Snowball Earth. With 0.01forcing) produces advances/retreats of the ice sheet in <10 kyr. With pCO2>0.05bar, the albedo effect is overcome and air temperatures rise in ice free regions in low latitudes and deglaciation occurs. The results show that the Snowball Earth model can be reconciled with evidence for prolonged, pulsed glacial deposition. The main, longest

  10. Transcription upregulation via force-induced direct stretching of chromatin

    NASA Astrophysics Data System (ADS)

    Tajik, Arash; Zhang, Yuejin; Wei, Fuxiang; Sun, Jian; Jia, Qiong; Zhou, Wenwen; Singh, Rishi; Khanna, Nimish; Belmont, Andrew S.; Wang, Ning

    2016-12-01

    Mechanical forces play critical roles in the function of living cells. However, the underlying mechanisms of how forces influence nuclear events remain elusive. Here, we show that chromatin deformation as well as force-induced transcription of a green fluorescent protein (GFP)-tagged bacterial-chromosome dihydrofolate reductase (DHFR) transgene can be visualized in a living cell by using three-dimensional magnetic twisting cytometry to apply local stresses on the cell surface via an Arg-Gly-Asp-coated magnetic bead. Chromatin stretching depended on loading direction. DHFR transcription upregulation was sensitive to load direction and proportional to the magnitude of chromatin stretching. Disrupting filamentous actin or inhibiting actomyosin contraction abrogated or attenuated force-induced DHFR transcription, whereas activating endogenous contraction upregulated force-induced DHFR transcription. Our findings suggest that local stresses applied to integrins propagate from the tensed actin cytoskeleton to the LINC complex and then through lamina-chromatin interactions to directly stretch chromatin and upregulate transcription.

  11. Mean and fluctuating components of drag and lift forces on an isolated finite-sized particle in turbulence

    NASA Astrophysics Data System (ADS)

    Kim, Jungwoo; Balachandar, S.

    2012-01-01

    We perform fully resolved direct numerical simulations of an isolated particle subjected to free-stream turbulence in order to investigate the effect of turbulence on the drag and lift forces at the level of a single particle, following Bagchi and Balachandar's work (Bagchi and Balachandar in Phys Fluids 15:3496-3513, 2003). The particle Reynolds numbers based on the mean relative particle velocity and the particle diameter are Re = 100, 250 and 350, which covers three different regimes of wake evolution in a uniform flow: steady axisymmetric wake, steady planar symmetric wake, and unsteady planar symmetric vortex shedding. At each particle Reynolds number, the turbulent intensity is 5-10% of the mean relative particle velocity, and the corresponding diameter of the particle is comparable to or larger than the Kolmogorov scale. The simulation results show that standard drag values determined from uniform flow simulations can accurately predict the drag force if the turbulence intensity is sufficiently weak (5% or less compared to the mean relative velocity). However, it is shown that for finite-sized particles, flow non-uniformity, which is usually neglected in the case of the small particles, can play an important role in determining the forces as the relative turbulence intensity becomes large. The influence of flow non-uniformity on drag force could be qualitatively similar to the Faxen correction. In addition, finite-sized particles at sufficient Reynolds number are inherently subjected to stochastic forces arising from their self-induced vortex shedding in addition to lift force arising from the local ambient flow properties (vorticity and strain rate). The effect of rotational and strain rate of the ambient turbulence seen by the particle on the lift force is explored based on the conditional averaging using the generalized representation of the quasi-steady force proposed by Bagchi and Balachandar (J Fluid Mech 481:105-148, 2003). From the present study, it

  12. Geometry-induced modification of fluctuation spectrum in quasi-two-dimensional condensates

    NASA Astrophysics Data System (ADS)

    Roy, Arko; Angom, D.

    2016-08-01

    We report the structural transformation of the low-lying spectral modes, especially the Kohn mode, from radial to circular topology as harmonic confining potential is modified to a toroidal one, and this corresponds to a transition from simply to multiply connected geometry. For this we employ the Hartree-Fock-Bogoliubov theory to examine the evolution of low energy quasiparticles. We, then, use the Hartree-Fock-Bogoliubov theory with the Popov approximation to demonstrate the two striking features of quantum and thermal fluctuations. At T = 0, the non-condensate density due to interaction induced quantum fluctuations increases with the transformation from pancake to toroidal geometry. The other feature is, there is a marked change in the density profile of the non-condensate density at finite temperatures with the modification of trapping potential. In particular, the condensate and non-condensate density distributions have overlapping maxima in the toroidal condensate, which is in stark contrast to the case of pancake geometry. The genesis of this difference lies in the nature of the thermal fluctuations.

  13. Fluctuation-induced constraints on the observation of unbinding in a confined complex fluid.

    PubMed

    Clarysse, F; Boulter, C J

    2001-07-01

    An extensive study of the effect of fluctuations on the unbinding of an interface from a wall in a ternary system is presented. The framework upon which the analysis is based is a linear functional renormalization group scheme of the appropriate effective interface Hamiltonian. The interface model includes position-dependent gradient coefficients, and their presence is shown to be equivalent to modifications of the bare interface potential that are highly relevant in determining the renormalized critical behavior. We analyze the modified interface potential in a mean-field-like way for both bare critical and first-order unbinding transitions in order to highlight the key effects. We further perform a detailed study of the linearized renormalization group equations identifying three fluctuation regimes and recovering earlier predictions for nonuniversal critical exponents. The surface phase diagram changes dramatically under renormalization with, most notably, fluctuation-induced reentrant behavior. We show that in the revised phase diagram the unbound region is limited in extent indicating that the opportunity for observing an unbinding transition in a confined complex fluid is highly restricted.

  14. Materials for damping the PTC-induced thermal fluctuations of the cold-head

    NASA Astrophysics Data System (ADS)

    Catarino, I.; Martins, D.; Sudiwala, R.

    2015-12-01

    The cold head on mechanical Pulse Tube Cryocoolers (PTCs) is subject to substantially less mechanical vibration and electromagnetic interference compared to that typically found in Gifford MacMahon coolers. However, thermal fluctuations at the PTC frequency are still present at the cold-head, typically at a level of 200 mK peak-to-peak at 1.4 Hz for a Cryomech Model PT405 cooler running at 4 K. It is highly desirable to damp out these fluctuations if PTCs are to be used successfully for running systems sensitive to such thermal fluctuations, for example, bolometeric detectors. We report here the characterization over the temperature range 2.5 K to 6 K of two materials, GOS (Gd2O2S) and GAP (GdAlO3), for use as low-pass thermal filters. These materials have antiferromagnetic transitions at around 4 K giving rise to an enhanced heat capacity and have a high thermal conductance. These are two highly desirable properties for thermal dampers in this application. Those materials were fired as ceramic discs to be tested as thermal dumpers. Thermal filter assemblies with discs of diameter 75 mm and thickness 2.5 mm and 1.6 mm (GOS and GAP, respectively) mounted in a PTC show thermal attenuation levels of x0.12 (GOS) and x0.11 (GAP) at 0.01Hz with a clean-side temperature of 4 K; the PTC induced fluctuations at 1.48 Hz are damped completely to within the noise limits (0.2 mK) of the thermometers. Experimentally determined thermal conductance and heat capacity data are reported. For this system, with a PTC cold-head (dirty-side) temperature of 3.3 K, a clean-side power dissipation of up to 30 mW is realized before its temperature rises above 4.2 K.

  15. Visualization of thermally fluctuating surface structure in noncontact atomic-force microscopy and tip effects on fluctuation: theoretical study of Si(111)-(square root[3] x square root[3])-Ag surface.

    PubMed

    Sasaki, Naruo; Watanabe, Satoshi; Tsukada, Masaru

    2002-01-28

    We investigated noncontact atomic-force microscopy (NC-AFM) images of a thermally fluctuating surface structure together with tip effects based on the first-principles electronic state calculation. As an example the Si(111)-(square root[3] x square root[3])-Ag (square root[3]-Ag) surface is studied. We have succeeded in theoretically visualizing the thermal fluctuation of the square root[3]-Ag surface at room temperature, and in reproducing the observed NC-AFM image for the first time. Further, the pinning effect of the thermal fluctuation of the square root[3]-Ag surface by the tip is clarified, which shows a novel ability of NC-AFM to modify the surface structure.

  16. Lorentz Body Force Induced by Traveling Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Mazuruk, K.

    2003-01-01

    The Lorentz force induced by a traveling magnetic field (TMF) in a cylindrical container has been calculated. The force can be used to control flow in dectrically conducting melts and the direction of the magnetic field and resulting flow can be reversed. A TMF can be used to partially cancel flow driven by buoyancy. The penetration of the field into the cylinder decreases as the frequency increases, and there exists an optimal value of frequency for which the resulting force is a maximum. Expressions for the Lorentz force in the limiting cases of low frequency and infinite cylinder are also given and compared to the numerical calculations.

  17. Considerations on the mechanisms and transition temperatures of superconductivity induced by electronic fluctuations.

    PubMed

    Varma, C M

    2012-05-01

    An overview of the momentum and frequency dependence of effective electron-electron interactions which favor electronic instability to a superconducting state in the angular-momentum channel ℓ and the properties of the interactions which determine the magnitude of the temperature T(c) of the instability is provided. Interactions induced through exchange of electronic fluctuations of spin density, charge density or current density are considered. Special attention is paid to the role of quantum-critical fluctuations (QCFs) including pairing due to their virtual exchange as well as de-pairing due to inelastic scattering. Additional insight is gained by reviewing empirical data and theory specific to superfluidity in liquid He(3), superconductivity in some of the heavy-fermion compounds, in cuprates, in pncitides and the valence skipping compound. The physical basis for the following observation is provided: the ratio of the maximum T(c) to the typical phonon frequency in phonon induced s-wave superconductivity is O(10(-1)); the ratio of p-wave T(c) to the renormalized Fermi energy in liquid He(3), a very strongly correlated Fermi liquid near its melting pressure, is only O(10(-3)); in the cuprates and the heavy fermions where d-wave superconductivity occurs in a region governed by QCFs, this ratio rises to O(10(-2)). These discussions also suggest factors important for obtaining higher T(c). Experiments and theoretical investigations are suggested to clarify the many unresolved issues.

  18. Measurement of laterally induced optical forces at the nanoscale

    NASA Astrophysics Data System (ADS)

    Huang, Fei; Tamma, Venkata Ananth; Rajaei, Mohsen; Almajhadi, Mohammad; Kumar Wickramasinghe, H.

    2017-02-01

    We demonstrate the measurement of laterally induced optical forces using an Atomic Force Microscope (AFM). The lateral electric field distribution between a gold coated AFM probe and a single nano-aperture in a gold film is mapped by measuring the lateral optical force between the apex of the AFM probe and the nano-aperture. The fundamental torsional eigen-mode of an AFM cantilever probe was used to detect the laterally induced optical forces. We engineered the cantilever shape using focused ion beam milling to improve the detected signal to noise ratio. The measured distributions of lateral optical force agree well with electromagnetic simulations of the metal coated AFM probe interacting with the nano-aperture. This technique can be extended to simultaneously detect both lateral and longitudinal optical forces at the nanoscale by using an AFM cantilever as a multi-channel detector. This will enable simultaneous Photon Induced Force Microscopy detection of molecular responses with different incident field polarizations. The technique can be implemented on both cantilever and tuning fork based AFMs.

  19. Effects of mixing-induced irradiance fluctuations on nitrogen uptake in size-fractionated coastal phytoplankton communities

    NASA Astrophysics Data System (ADS)

    Maguer, Jean-François; L'Helguen, Stéphane; Waeles, Matthieu

    2015-03-01

    In coastal waters subjected to strong tidal forcing, phytoplankton populations are exposed to highly variable light regimes. To grow under such fluctuating light environments, phytoplankton adjust their physiological properties. Here, we investigated nitrogen (N) uptake patterns in the western English Channel to determine whether phytoplankton modify their physiological processes involved in N uptake in response to changing irradiance conditions induced by spring-neap tidal cycles. Nitrate (NO3-) and ammonium (NH4+) uptake kinetics as a function of irradiance (VN-E curves) were assessed using 15N tracer techniques on two size fractions (<10 and >10 μm) of phytoplankton collected at 50% and 1% of surface irradiance during two spring-neap tidal cycles. Overall, the results showed that both small and large phytoplankton, whatever their vertical position in the water column, increased their maximum uptake capacity and their light utilization efficiency for the two N substrates following the decrease in vertical mixing intensity. Moreover, the improvement of irradiance conditions at neap tides was of greater benefit for the larger cells than for the smaller ones and was more favorable for NO3- uptake than for NH4+ uptake. These findings show that the light regime fluctuation resulting from the relaxation of tidal mixing during spring-neap tidal cycle leads to profound physiological adjustments of N uptake processes in phytoplankton communities. They suggest that the changes in NO3- uptake by large phytoplankton associated with the fortnightly spring-neap tidal cycle can account for most of the deviation in background productivity in the western English Channel which is based on NH4+ and is dominated by small cells. The dynamic light regime inherent to macrotidal coastal ecosystems could therefore determine, to a large extent, the importance of new vs. regenerated production as well as the size structure of the phytoplankton community.

  20. Investigation of the spatial variability and possible origins of wind-induced air pressure fluctuations responsible for pressure pumping

    NASA Astrophysics Data System (ADS)

    Mohr, Manuel; Laemmel, Thomas; Maier, Martin; Zeeman, Matthias; Longdoz, Bernard; Schindler, Dirk

    2017-04-01

    The exchange of greenhouse gases between the soil and the atmosphere is highly relevant for the climate of the Earth. Recent research suggests that wind-induced air pressure fluctuations can alter the soil gas transport and therefore soil gas efflux significantly. Using a newly developed method, we measured soil gas transport in situ in a well aerated forest soil. Results from these measurements showed that the commonly used soil gas diffusion coefficient is enhanced up to 30% during periods of strong wind-induced air pressure fluctuations. The air pressure fluctuations above the forest floor are only induced at high above-canopy wind speeds (> 5 m s-1) and lie in the frequency range 0.01-0.1 Hz. Moreover, the amplitudes of air pressure fluctuations in this frequency range show a clear quadratic dependence on mean above-canopy wind speed. However, the origin of these wind-induced pressure fluctuations is still unclear. Airflow measurements and high-precision air pressure measurements were conducted at three different vegetation-covered sites (conifer forest, deciduous forest, grassland) to investigate the spatial variability of dominant air pressure fluctuations, their origin and vegetation-dependent characteristics. At the conifer forest site, a vertical profile of air pressure fluctuations was measured and an array consisting of five pressure sensors were installed at the forest floor. At the grassland site, the air pressure measurements were compared with wind observations made by ground-based LIDAR and spatial temperature observations from a fibre-optic sensing network (ScaleX Campaign 2016). Preliminary results show that at all sites the amplitudes of relevant air pressure fluctuations increase with increasing wind speed. Data from the array measurements reveal that there are no time lags between the air pressure signals of different heights, but a time lag existed between the air pressure signals of the sensors distributed laterally on the forest floor

  1. Wave-Induced Fluctuations in Underwater Light Field: Analysis of Data from RaDyO Experiments

    DTIC Science & Technology

    2011-09-30

    special instrument, an Underwater Porcupine Radiometer System, which provides a capability to measure wave-induced fluctuations in downward irradiance...fluctuations with the Porcupine system at various depths within the near-surface ocean, typically at depths from about 0.5 or 1 m to 10 m under sunny...conditions. Typical 10-min time-series obtained with the Porcupine system using the sampling frequency of 1 kHz includes 600,000 data points for each of

  2. Measuring Force-Induced Dissociation Kinetics of Protein Complexes Using Single-Molecule Atomic Force Microscopy.

    PubMed

    Manibog, K; Yen, C F; Sivasankar, S

    2017-01-01

    Proteins respond to mechanical force by undergoing conformational changes and altering the kinetics of their interactions. However, the biophysical relationship between mechanical force and the lifetime of protein complexes is not completely understood. In this chapter, we provide a step-by-step tutorial on characterizing the force-dependent regulation of protein interactions using in vitro and in vivo single-molecule force clamp measurements with an atomic force microscope (AFM). While we focus on the force-induced dissociation of E-cadherins, a critical cell-cell adhesion protein, the approaches described here can be readily adapted to study other protein complexes. We begin this chapter by providing a brief overview of theoretical models that describe force-dependent kinetics of biomolecular interactions. Next, we present step-by-step methods for measuring the response of single receptor-ligand bonds to tensile force in vitro. Finally, we describe methods for quantifying the mechanical response of single protein complexes on the surface of living cells. We describe general protocols for conducting such measurements, including sample preparation, AFM force clamp measurements, and data analysis. We also highlight critical limitations in current technologies and discuss solutions to these challenges. © 2017 Elsevier Inc. All rights reserved.

  3. Light-Induced Pulling and Pushing by the Synergic Effect of Optical Force and Photophoretic Force

    NASA Astrophysics Data System (ADS)

    Lu, Jinsheng; Yang, Hangbo; Zhou, Lina; Yang, Yuanqing; Luo, Si; Li, Qiang; Qiu, Min

    2017-01-01

    Optical force, coming from momentum exchange during light-matter interactions, has been widely utilized to manipulate microscopic objects, though mostly in vacuum or in liquids. By contrast, due to the light-induced thermal effect, photophoretic force provides an alternative and effective way to transport light-absorbing particles in ambient gases. However, in most cases these forces work independently. Here, by employing the synergy of optical force and photophoretic force, we propose and experimentally demonstrate a configuration which can drive a micron-size metallic plate moving back and forth on a tapered fiber with supercontinuum light in ambient air. Optical pulling and oscillation of the metallic plate are experimentally realized. The results might open exhilarating possibilities in applications of optical driving and energy conversion.

  4. Image reconstruction with acoustic radiation force induced shear waves

    NASA Astrophysics Data System (ADS)

    McAleavey, Stephen A.; Nightingale, Kathryn R.; Stutz, Deborah L.; Hsu, Stephen J.; Trahey, Gregg E.

    2003-05-01

    Acoustic radiation force may be used to induce localized displacements within tissue. This phenomenon is used in Acoustic Radiation Force Impulse Imaging (ARFI), where short bursts of ultrasound deliver an impulsive force to a small region. The application of this transient force launches shear waves which propagate normally to the ultrasound beam axis. Measurements of the displacements induced by the propagating shear wave allow reconstruction of the local shear modulus, by wave tracking and inversion techniques. Here we present in vitro, ex vivo and in vivo measurements and images of shear modulus. Data were obtained with a single transducer, a conventional ultrasound scanner and specialized pulse sequences. Young's modulus values of 4 kPa, 13 kPa and 14 kPa were observed for fat, breast fibroadenoma, and skin. Shear modulus anisotropy in beef muscle was observed.

  5. Force-induced tautomerization in a single molecule

    NASA Astrophysics Data System (ADS)

    Ladenthin, Janina N.; Frederiksen, Thomas; Persson, Mats; Sharp, John C.; Gawinkowski, Sylwester; Waluk, Jacek; Kumagai, Takashi

    2016-10-01

    Heat transfer, electrical potential and light energy are common ways to activate chemical reactions. Applied force is another way, but dedicated studies for such a mechanical activation are limited, and this activation is poorly understood at the single-molecule level. Here, we report force-induced tautomerization in a single porphycene molecule on a Cu(110) surface at 5 K, which is studied by scanning probe microscopy and density functional theory calculations. Force spectroscopy quantifies the force needed to trigger tautomerization with submolecular spatial resolution. The calculations show how the reaction pathway and barrier of tautomerization are modified in the presence of a copper tip and reveal the atomistic origin of the process. Moreover, we demonstrate that a chemically inert tip whose apex is terminated by a xenon atom cannot induce the reaction because of a weak interaction with porphycene and a strong relaxation of xenon on the tip as contact to the molecule is formed.

  6. Locomotive and reptation motion induced by internal force and friction.

    PubMed

    Sakaguchi, Hidetsugu; Ishihara, Taisuke

    2011-06-01

    We propose a simple mechanical model of locomotion induced by internal force and friction. We first construct a system of two elements as an analog of the bipedal motion. The internal force does not induce a directional motion by itself because of the action-reaction law, but a directional motion becomes possible by the control of the frictional force. The efficiency of these model systems is studied using an analogy to the heat engine. As a modified version of the two-element model, we construct a model that exhibits a bipedal motion similar to kinesin's motion of molecular motor. Next, we propose a linear chain model and a ladder model as an extension of the original two-element model. We find a transition from a straight to a snake-like motion in a ladder model by changing the strength of the internal force.

  7. Locomotive and reptation motion induced by internal force and friction

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Hidetsugu; Ishihara, Taisuke

    2011-06-01

    We propose a simple mechanical model of locomotion induced by internal force and friction. We first construct a system of two elements as an analog of the bipedal motion. The internal force does not induce a directional motion by itself because of the action-reaction law, but a directional motion becomes possible by the control of the frictional force. The efficiency of these model systems is studied using an analogy to the heat engine. As a modified version of the two-element model, we construct a model that exhibits a bipedal motion similar to kinesin’s motion of molecular motor. Next, we propose a linear chain model and a ladder model as an extension of the original two-element model. We find a transition from a straight to a snake-like motion in a ladder model by changing the strength of the internal force.

  8. Thermal-induced force release in oxyhemoglobin

    PubMed Central

    Gevorkian, S. G.; Allahverdyan, A. E.; Gevorgyan, D. S.; Hu, Chin-Kun

    2015-01-01

    Oxygen is released to living tissues via conformational changes of hemoglobin from R-state (oxyhemoglobin) to T-state (desoxyhemoglobin). The detailed mechanism of this process is not yet fully understood. We have carried out micromechanical experiments on oxyhemoglobin crystals to determine the behavior of the Young’s modulus and the internal friction for temperatures between 20 °C and 70 °C. We have found that around 49 °C oxyhemoglobin crystal samples undergo a sudden and strong increase of their Young’s modulus, accompanied by a sudden decrease of the internal friction. This sudden mechanical change (and the ensuing force release) takes place in a partially unfolded state and precedes the full denaturation transition at higher temperatures. After this transformation, the hemoglobin crystals have the same mechanical properties as their initial state at room temperatures. We conjecture that it can be relevant for explaining the oxygen-releasing function of native oxyhemoglobin when the temperature is increased, e.g. due to active sport. The effect is specific for the quaternary structure of hemoglobin, and is absent for myoglobin with only one peptide sequence. PMID:26277901

  9. Fatigue-induced dissociation between rate of force development and maximal force across repeated rapid contractions.

    PubMed

    Boccia, Gennaro; Dardanello, Davide; Tarperi, Cantor; Festa, Luca; La Torre, Antonio; Pellegrini, Barbara; Schena, Federico; Rainoldi, Alberto

    2017-08-01

    We examined whether the presence of fatigue induced by prolonged running influenced the time courses of force generating capacities throughout a series of intermittent rapid contractions. Thirteen male amateur runners performed a set of 15 intermittent isometric rapid contractions of the knee extensor muscles, (3s/5s on/off) the day before (PRE) and immediately after (POST) a half marathon. The maximal voluntary contraction force, rate of force development (RFDpeak), and their ratio (relative RFDpeak) were calculated. At POST, considering the first (out of 15) repetition, the maximal force and RFDpeak decreased (p<0.0001) at the same extent (by 22±6% and 24±22%, respectively), resulting in unchanged relative RFDpeak (p=0.6). Conversely, the decline of RFDpeak throughout the repetitions was more pronounced at POST (p=0.02), thus the decline of relative RFDpeak was more pronounced (p=0.007) at POST (-25±13%) than at PRE (-3±13%). The main finding of this study was that the fatigue induced by a half-marathon caused a more pronounced impairment of rapid compared to maximal force in the subsequent intermittent protocol. Thus, the fatigue-induced impairment in rapid muscle contractions may have a greater effect on repeated, rather than on single, attempts of maximal force production. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Fluctuations in central and peripheral temperatures induced by intravenous nicotine: central and peripheral contributions

    PubMed Central

    Tang, Jeremy; Kiyatkin, Eugene A.

    2011-01-01

    Nicotine (NIC) is a highly addictive substance that interacts with different subtypes of nicotinic acetylcholine receptors widely distributed in the central and peripheral nervous systems. While the direct action of NIC on central neurons appears to be essential for its reinforcing properties, the role of peripheral actions of this drug remains a matter of controversy. In this study, we examined changes in locomotor activity and temperature fluctuations in the brain (nucleus accumbens and ventral tegmental area), temporal muscle, and skin induced by intravenous (iv) NIC at low human-relevant doses (10 and 30 μg/kg) in freely moving rats. These effects were compared to those induced by social interaction, an arousing procedure that induces behavioral activation and temperature responses via pure neural mechanism procedure, and iv injections of a peripherally acting NIC analogue, NIC pyrrolidine methiodide (NIC-PM) used at equimolar doses. We found that NIC at 30 μg/kg induces a modest locomotor activation, rapid and strong decrease in skin temperature, and weak increases in brain and muscle temperature. While these effects were qualitatively similar to those induced by social interaction, they were much weaker and showed a tendency to increase with repeated drug administrations. In contrast, NIC-PM did not affect locomotion and induced much weaker than NIC increases in brain and muscle temperatures and decreases in skin temperature; these effects showed a tendency to be weaker with repeated drug administrations. Our data indicate that NIC's actions in the brain are essential to induce locomotor activation and brain and body hyperthermic responses. However, rapid peripheral action of NIC on sensory afferents could be an important factor in triggering its central effects, contributing to neural and physiological activation following repeated drug use. PMID:21295014

  11. Microtubule depolymerization induces traction force increase through two distinct pathways

    PubMed Central

    Rape, Andrew; Guo, Wei-hui; Wang, Yu-li

    2011-01-01

    Traction forces increase after microtubule depolymerization; however, the signaling mechanisms underlying this, in particular the dependence upon myosin II, remain unclear. We investigated the mechanism of traction force increase after nocodazole-induced microtubule depolymerization by applying traction force microscopy to cells cultured on micropatterned polyacrylamide hydrogels to obtain samples of homogeneous shape and size. Control cells and cells treated with a focal adhesion kinase (FAK) inhibitor showed similar increases in traction forces, indicating that the response is independent of FAK. Surprisingly, pharmacological inhibition of myosin II did not prevent the increase of residual traction forces upon nocodazole treatment. This increase was abolished upon pharmacological inhibition of FAK. These results suggest two distinct pathways for the regulation of traction forces. First, microtubule depolymerization activates a myosin-II-dependent mechanism through a FAK-independent pathway. Second, microtubule depolymerization also enhances traction forces through a myosin-II-independent, FAK-regulated pathway. Traction forces are therefore regulated by a complex network of complementary signals and force-generating mechanisms. PMID:22193960

  12. Microtubule depolymerization induces traction force increase through two distinct pathways.

    PubMed

    Rape, Andrew; Guo, Wei-hui; Wang, Yu-li

    2011-12-15

    Traction forces increase after microtubule depolymerization; however, the signaling mechanisms underlying this, in particular the dependence upon myosin II, remain unclear. We investigated the mechanism of traction force increase after nocodazole-induced microtubule depolymerization by applying traction force microscopy to cells cultured on micropatterned polyacrylamide hydrogels to obtain samples of homogeneous shape and size. Control cells and cells treated with a focal adhesion kinase (FAK) inhibitor showed similar increases in traction forces, indicating that the response is independent of FAK. Surprisingly, pharmacological inhibition of myosin II did not prevent the increase of residual traction forces upon nocodazole treatment. This increase was abolished upon pharmacological inhibition of FAK. These results suggest two distinct pathways for the regulation of traction forces. First, microtubule depolymerization activates a myosin-II-dependent mechanism through a FAK-independent pathway. Second, microtubule depolymerization also enhances traction forces through a myosin-II-independent, FAK-regulated pathway. Traction forces are therefore regulated by a complex network of complementary signals and force-generating mechanisms.

  13. Thermal gradient-induced forces on geodesic reference masses for LISA

    SciTech Connect

    Carbone, L.; Ciani, G.; Dolesi, R.; Hueller, M.; Tombolato, D.; Vitale, S.; Weber, W. J.; Cavalleri, A.

    2007-11-15

    The low frequency sensitivity of space-borne gravitational wave observatories will depend critically on the geodesic purity of the trajectories of orbiting test masses. Fluctuations in the temperature difference across the enclosure surrounding the free-falling test mass can produce noisy forces through several processes, including the radiometric effect, radiation pressure, and outgassing. We present here a detailed experimental investigation of thermal gradient-induced forces for the Laser Interferometer Space Antenna (LISA) gravitational wave mission and the LISA Pathfinder, employing high resolution torsion pendulum measurements of the torque on a LISA-like test mass suspended inside a prototype of the LISA gravitational reference sensor that will surround the test mass in orbit. The measurement campaign, accompanied by numerical simulations of the radiometric and radiation pressure effects, allows a more accurate and representative characterization of thermal-gradient forces in the specific geometry and environment relevant to LISA free-fall. The pressure dependence of the measured torques allows clear identification of the radiometric effect, in quantitative agreement with the model developed. In the limit of zero gas pressure, the measurements are most likely dominated by outgassing, but at a low level that does not threaten the current LISA noise estimate, which assumes a maximum net force per degree of temperature difference of 100(pN/K) for the overall thermal gradient-induced effects.

  14. Ion-specific induced fluctuations and free energetics of aqueous protein hydrophobic interfaces: toward connecting to specific-ion behaviors at aqueous liquid-vapor interfaces.

    PubMed

    Cui, Di; Ou, Shuching; Peters, Eric; Patel, Sandeep

    2014-05-01

    We explore anion-induced interface fluctuations near protein-water interfaces using coarse-grained representations of interfaces as proposed by Willard and Chandler ( J. Phys. Chem. B 2010 , 114 , 1954 - 1958 ). We use umbrella sampling molecular dynamics to compute potentials of mean force along a reaction coordinate bridging the state where the anion is fully solvated and one where it is biased via harmonic restraints to remain at the protein-water interface. Specifically, we focus on fluctuations of an interface between water and a hydrophobic region of hydrophobin-II (HFBII), a 71 amino acid residue protein expressed by filamentous fungi and known for its ability to form hydrophobically mediated self-assemblies at interfaces such as a water/air interface. We consider the anions chloride and iodide that have been shown previously by simulations as displaying specific-ion behaviors at aqueous liquid-vapor interfaces. We find that as in the case of a pure liquid-vapor interface, at the hydrophobic protein-water interface, the larger, less charge-dense iodide anion displays a marginal interfacial stability compared with that of the smaller, more charge-dense chloride anion. Furthermore, consistent with the results at aqueous liquid-vapor interfaces, we find that iodide induces larger fluctuations of the protein-water interface than chloride.

  15. Ion-Specific Induced Fluctuations and Free Energetics of Aqueous Protein Hydrophobic Interfaces: Toward Connecting to Specific-Ion Behaviors at Aqueous Liquid–Vapor Interfaces

    PubMed Central

    2015-01-01

    We explore anion-induced interface fluctuations near protein–water interfaces using coarse-grained representations of interfaces as proposed by Willard and Chandler (J. Phys. Chem. B2010, 114, 1954−195820055377). We use umbrella sampling molecular dynamics to compute potentials of mean force along a reaction coordinate bridging the state where the anion is fully solvated and one where it is biased via harmonic restraints to remain at the protein–water interface. Specifically, we focus on fluctuations of an interface between water and a hydrophobic region of hydrophobin-II (HFBII), a 71 amino acid residue protein expressed by filamentous fungi and known for its ability to form hydrophobically mediated self-assemblies at interfaces such as a water/air interface. We consider the anions chloride and iodide that have been shown previously by simulations as displaying specific-ion behaviors at aqueous liquid–vapor interfaces. We find that as in the case of a pure liquid–vapor interface, at the hydrophobic protein–water interface, the larger, less charge-dense iodide anion displays a marginal interfacial stability compared with that of the smaller, more charge-dense chloride anion. Furthermore, consistent with the results at aqueous liquid–vapor interfaces, we find that iodide induces larger fluctuations of the protein–water interface than chloride. PMID:24701961

  16. Solvent induced conformational fluctuation of alanine dipeptide studied by using vibrational probes.

    PubMed

    Cai, Kaicong; Du, Fenfen; Liu, Jia; Su, Tingting

    2015-02-25

    The solvation effect on the three dimensional structure and the vibrational feature of alanine dipeptide (ALAD) was evaluated by applying the implicit solvents from polarizable continuum solvent model (PCM) through ab initio calculations, by using molecular dynamic (MD) simulations with explicit solvents, and by combining these two approaches. The implicit solvent induced potential energy fluctuations of ALAD in CHCl3, DMSO and H2O are revealed by means of ab initio calculations, and a global view of conformational and solvation environmental dependence of amide I frequencies is achieved. The results from MD simulations with explicit solvents show that ALAD trends to form PPII, αL, αR, and C5 in water, PPII and C5 in DMSO, and C5 in CHCl3, ordered by population, and the demonstration of the solvated structure, the solute-solvent interaction and hydrogen bonding is therefore enhanced. Representative ALAD-solvent clusters were sampled from MD trajectories and undergone ab initio calculations. The explicit solvents reveal the hydrogen bonding between ALAD and solvents, and the correlation between amide I frequencies and the CO bond length is built. The implicit solvents applied to the ALAD-solvent clusters further compensate the solvation effect from the bulk, and thus enlarge the degree of structural distortion and the amide I frequency red shift. The combination of explicit solvent in the first hydration shell and implicit solvent in the bulk is helpful for our understanding about the conformational fluctuation of solvated polypeptides through vibrational probes.

  17. Statistics of fluctuation induced transport in the scrape-off layer of Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Kube, Ralph; Garcia, Odd Erik; Theodorsen, Audun; Labombard, Brian; Terry, James

    2016-10-01

    The fluctuation induced transport in the scrape-off layer of Alcator C-Mod is investigated in an ohmically heated lower single-null discharge using Mirror Langmuir Probes. The probes are connected to a horizontal scanning probe which dwells at the outboard mid plane limiter radius and to electrodes in the outer divertor baffle. At the limiter radius the electron density, electron temperature and plasma potential are correlated with linear correlation coefficients r of approximately r=0.8. The bursts show a steep rise and a decay on a time scales of approximately 5 and 10 microseconds respectively. Amplitudes of bursts in the density, temperature, and plasma potential time series are correlated with r approximately 0.7-0.8. Conditionally averaged bursts in the radial particle and heat flux time series are less coherent and less reproducible, their amplitudes are correlated to the amplitude of bursts in the density time series with r=0.4. Statistics of the fluctuating plasma parameters at the outer divertor baffle are qualitatively similar to those at outboard midplane. Histograms, as well as statistics for level crossings and excess times spent above a given threshold for the time series compare favorably to a stochastic model for time series of scrape-off layer plasmas.

  18. Solvent induced conformational fluctuation of alanine dipeptide studied by using vibrational probes

    NASA Astrophysics Data System (ADS)

    Cai, Kaicong; Du, Fenfen; Liu, Jia; Su, Tingting

    2015-02-01

    The solvation effect on the three dimensional structure and the vibrational feature of alanine dipeptide (ALAD) was evaluated by applying the implicit solvents from polarizable continuum solvent model (PCM) through ab initio calculations, by using molecular dynamic (MD) simulations with explicit solvents, and by combining these two approaches. The implicit solvent induced potential energy fluctuations of ALAD in CHCl3, DMSO and H2O are revealed by means of ab initio calculations, and a global view of conformational and solvation environmental dependence of amide I frequencies is achieved. The results from MD simulations with explicit solvents show that ALAD trends to form PPII, αL, αR, and C5 in water, PPII and C5 in DMSO, and C5 in CHCl3, ordered by population, and the demonstration of the solvated structure, the solute-solvent interaction and hydrogen bonding is therefore enhanced. Representative ALAD-solvent clusters were sampled from MD trajectories and undergone ab initio calculations. The explicit solvents reveal the hydrogen bonding between ALAD and solvents, and the correlation between amide I frequencies and the Cdbnd O bond length is built. The implicit solvents applied to the ALAD-solvent clusters further compensate the solvation effect from the bulk, and thus enlarge the degree of structural distortion and the amide I frequency red shift. The combination of explicit solvent in the first hydration shell and implicit solvent in the bulk is helpful for our understanding about the conformational fluctuation of solvated polypeptides through vibrational probes.

  19. Temperature increase and fluctuation induce phytoplankton biodiversity loss - Evidence from a multi-seasonal mesocosm experiment.

    PubMed

    Rasconi, Serena; Winter, Katharina; Kainz, Martin J

    2017-05-01

    Global climate change scenarios predict lake water temperatures to increase up to 4°C and extreme weather events, including heat waves and large temperature fluctuations, to occur more frequently. Such changes may result in a reorganization of the plankton community structure, causing shifts in diversity and structure toward a community dominated by fewer species that are more adapted to endure warmer and irregular temperature conditions. We designed a long-term (8 months) mesocosm experiment to explore how ambient water temperature (C: control), induced increased temperature (T: +4°C), and temperature fluctuations (F: ±4°C relative to T) change phytoplankton phenology, taxonomical diversity, and community structure, and how such changes affected zooplankton abundance and composition. Synthesis. Our results show that T and F relative to C significantly decreased phytoplankton diversity. Moreover, there was a clear effect of the temperature treatments (T and F) on phytoplankton size structure that resulted in a significantly lower growth of large species (i.e., large Chlorophyta) compared to C. Decreased diversity and evenness in the T and F treatments pushed the community toward the dominance of only a few phytoplankton taxa (mainly Cyanobacteria and Chlorophyta) that are better adapted to endure warmer and more irregular temperature conditions. The observed shift toward Cyanobacteria dominance may affect trophic energy transfer along the aquatic food web.

  20. Quantum decoherence of a single ion qubit induced by photon-number fluctuations

    NASA Astrophysics Data System (ADS)

    Lee, Moonjoo; Friebe, Konstantin; Ong, Florian R.; Fioretto, Dario A.; Schüppert, Klemens; Blatt, Rainer; Northup, Tracy E.

    2016-09-01

    Quantum measurement is based on the interaction between a quantum object and a meter entangled with the object. While information about the object is being extracted by the interaction, the quantum fluctuations of the object are imprinted onto the meter as a form of decoherence. Here, we study the nondestructive reconstruction of the photon number in an optical cavity, harnessing the quantum decoherence. We consider a single 40Ca+ ion that is dispersively coupled to a high-finesse cavity. While the cavity is populated with weak coherent states, Ramsey spectroscopy is performed on the qubit transition to identify the shift and the broadening of the atomic energy levels. The shift is due to the ac Stark effect induced by cavity photons, and the broadening is attributed to the photon-number fluctuations of the cavity field. We show theoretically that photon-number distributions of the intracavity fields can be reconstructed in a basis of up to eleven Fock states with the maximum likelihood method. Furthermore, we show that the photon number of each polarization component can also be reconstructed, taking advantage of the rich energy-level structure of the ion. In combination with currently available mirror-coating technology, quantum non-demolition (QND) measurement of cavity photons will make it possible to create and manipulate nonclassical cavity-field states in the optical domain.

  1. Nonconservative current-induced forces: A physical interpretation.

    PubMed

    Todorov, Tchavdar N; Dundas, Daniel; Paxton, Anthony T; Horsfield, Andrew P

    2011-01-01

    We give a physical interpretation of the recently demonstrated nonconservative nature of interatomic forces in current-carrying nanostructures. We start from the analytical expression for the curl of these forces, and evaluate it for a point defect in a current-carrying system. We obtain a general definition of the capacity of electrical current flow to exert a nonconservative force, and thus do net work around closed paths, by a formal noninvasive test procedure. Second, we show that the gain in atomic kinetic energy over time, generated by nonconservative current-induced forces, is equivalent to the uncompensated stimulated emission of directional phonons. This connection with electron-phonon interactions quantifies explicitly the intuitive notion that nonconservative forces work by angular momentum transfer.

  2. Probability distribution analysis of force induced unzipping of DNA

    NASA Astrophysics Data System (ADS)

    Kumar, Sanjay; Giri, Debaprasad

    2006-07-01

    We present a semimicroscopic model of dsDNA by incorporating the directional nature of hydrogen bond to describe the force induced unzipping transition. Using exact enumeration technique, we obtain the force-temperature and the force-extension curves and compare our results with the other models of dsDNA. The model proposed by us is rich enough to describe the basic mechanism of dsDNA unzipping and predicts the existence of an "eye phase." We show oscillations in the probability distribution function during unzipping. Effects of stacking energies on the melting profile have also been studied.

  3. Fluctuation analysis of nonselective cation currents induced by AIF complex in guinea-pig chromaffin cells.

    PubMed

    Inoue, M; Imanaga, I

    1996-11-11

    Properties of aluminium fluoride (AIF) complex-activated nonselective cation (NS) channels in guinea-pig chromaffin cells were investigated using the patch clamp technique. As the membrane potential was hyperpolarized from the holding potential of -55 mV, the AIF-induced nonselective cation current (INS) diminished progressively. With hyperpolarizations to -100 mV or more negative potentials, the AIF.INS almost instantaneously disappeared. The apparent unit conductance of AIF INS was estimated to be 3 pS by fluctuation analysis. The open state probability of AIF-activated NS channels became large with a decrease in concentration of free Mg2+ ions inside the cell and was less than 0.5 at 12 microM Mg2+. It is concluded that NS channels in the chromaffin cell apparently differ from those in smooth muscle cells.

  4. Distortion in turbulence upstream of a flat plate and induced pressure fluctuations

    NASA Astrophysics Data System (ADS)

    Huot, J.-P.; Arbey, H.; Rey, C.

    1983-01-01

    Wind tunnel trials involving air flow over a flat plate were performed in order to test the feasibility of extending Hunt's (1973) theory of the location of the stagnation point, the pressure distribution, and the turbulence induced upstream from a circular cylinder to other cases. A flow velocity of 10 m/sec was used, with a grid of 0.3 solidity placed 40 mesh sizes upstream. A pressure sensor was placed above the plate, which was progressively drawn downstream during the experiment. The X-wire sensor permitted measurement of longitudinal and transversal velocity disturbances, and a microphone was placed at the stagnation point to measure pressure fluctuations. As Hunt predicted, the low frequency turbulence spectra increased upstream from the plate. A cut-off frequency was found, above which the turbulence decreased.

  5. Quantum dots in InAs nanowires induced by surface potential fluctuations.

    PubMed

    Weis, Karl; Wirths, Stephan; Winden, Andreas; Sladek, Kamil; Hardtdegen, Hilde; Lüth, Hans; Grützmacher, Detlev; Schäpers, Thomas

    2014-04-04

    Back-gated InAs nanowire field-effect transistors are studied focusing on the formation of intrinsic quantum dots, i.e. dots not intentionally defined by electrodes. Such dots have been studied before, but the suggested explanations for their origin leave some open questions, which are addressed here. Stability diagrams of samples with different doping levels are recorded at electron temperatures below 200 mK, allowing us to estimate the number and size of the dots as well as the type of connection, i.e. in series or in parallel. We discuss several potential physical origins of the dots and conclude that they are most probably induced by potential fluctuations at the nanowire surface. Additionally, we show that via gate voltage and doping, the samples can be tuned to different regimes of Coulomb blockade.

  6. Glassiness and exotic entropy scaling induced by quantum fluctuations in a disorder-free frustrated magnet.

    PubMed

    Klich, I; Lee, S-H; Iida, K

    2014-04-01

    When spins are arranged in a lattice of triangular motif, the phenomenon of frustration leads to numerous energetically equivalent ground states, and results in exotic states such as spin liquid and spin ice. Here we report an alternative situation: a system, classically a liquid, freezes in the clean limit into a glassy state induced by quantum fluctuations. We call such glassy state a spin jam. The case in point is a frustrated magnet, where spins are arranged in a triangular network of bipyramids. Quantum corrections break the classical degeneracy into a set of aperiodic spin configurations forming local minima in a rugged energy landscape. This is established by mapping the problem into tiling with hexagonal tiles. The number of tessellations scales with the boundary length rather than its volume, showing the absence of local zero-energy modes. Low-temperature thermodynamics is discussed to compare it with other glassy materials.

  7. Tip-bias-induced domain evolution in PMN-PT transparent ceramics via piezoresponse force microscopy

    NASA Astrophysics Data System (ADS)

    Zhao, K. Y.; Zhao, W.; Zeng, H. R.; Yu, H. Z.; Ruan, W.; Xu, K. Q.; Li, G. R.

    2015-05-01

    Piezoresponse force microscopy (PFM) was employed to investigate ferroelectric domain structures and their dynamic behavior of lead magnesium niobate-lead titanate [Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-PT)] transparent ceramics under an tip-bias-induced electric field. A remarkable effect of fluctuation of PT content on the domain configurations and domain dynamic response in PMN-PT transparent ferroelectric ceramics were found by PFM. Comparing with PMN-10%PT and PMN-20%PT, the reversed polarization of macrodomain area in PMN-35%PT and PMN-25%PT exhibits a relatively higher response behavior and better polarization retention performance under the PFM tip-bias-induced electric field, which correspond to their unique macroscopic electro-optic properties.

  8. Quantum Mechanical Enhancement of the Random Dopant Induced Threshold Voltage Fluctuations and Lowering in Sub 0.1 Micron MOSFETs

    NASA Technical Reports Server (NTRS)

    Asenov, Asen; Slavcheva, G.; Brown, A. R.; Davies, J. H.; Saini, Subhash

    1999-01-01

    A detailed study of the influence of quantum effects in the inversion layer on the random dopant induced threshold voltage fluctuations and lowering in sub 0.1 micron MOSFETs has been performed. This has been achieved using a full 3D implementation of the density gradient (DG) formalism incorporated in our previously published 3D 'atomistic' simulation approach. This results in a consistent, fully 3D, quantum mechanical picture which implies not only the vertical inversion layer quantisation but also the lateral confinement effects manifested by current filamentation in the 'valleys' of the random potential fluctuations. We have shown that the net result of including quantum mechanical effects, while considering statistical fluctuations, is an increase in both threshold voltage fluctuations and lowering.

  9. Market forces and technological substitutes cause fluctuations in the value of bat pest-control services for cotton

    USGS Publications Warehouse

    López-Hoffman, Laura; Wiederholt, Ruscena; Sansone, Chris; Bagstad, Kenneth J.; Cryan, Paul M.; Diffendorfer, James E.; Goldstein, Joshua; LaSharr, Kelsie; Loomis, John; McCracken, Gary; Medellin, Rodrigo A.; Russell, Amy; Semmens, Darius J.

    2014-01-01

    Critics of the market-based, ecosystem services approach to biodiversity conservation worry that volatile market conditions and technological substitutes will diminish the value of ecosystem services and obviate the “economic benefits” arguments for conservation. To explore the effects of market forces and substitutes on service values, we assessed how the value of the pest-control services provided by Mexican free-tailed bats (Tadarida brasiliensis mexicana) to cotton production in the southwestern U.S. has changed over time. We calculated service values each year from 1990 through 2008 by estimating the value of avoided crop damage and the reduced social and private costs of insecticide use in the presence of bats. Over this period, the ecosystem service value declined by 79% ($19.09 million U.S. dollars) due to the introduction and widespread adoption of Bt (Bacillus thuringiensis) cotton transgenically modified to express its own pesticide, falling global cotton prices and the reduction in the number of hectares in the U.S. planted with cotton. Our results demonstrate that fluctuations in market conditions can cause temporal variation in ecosystem service values even when ecosystem function – in this case bat population numbers – is held constant. Evidence is accumulating, however, of the evolution of pest resistance to Bt cotton, suggesting that the value of bat pest-control services may increase again. This gives rise to an economic option value argument for conserving Mexican free-tailed bat populations. We anticipate that these results will spur discussion about the role of ecosystem services in biodiversity conservation in general, and bat conservation in particular.

  10. Market Forces and Technological Substitutes Cause Fluctuations in the Value of Bat Pest-Control Services for Cotton

    PubMed Central

    López-Hoffman, Laura; Wiederholt, Ruscena; Sansone, Chris; Bagstad, Kenneth J.; Cryan, Paul; Diffendorfer, Jay E.; Goldstein, Joshua; LaSharr, Kelsie; Loomis, John; McCracken, Gary; Medellín, Rodrigo A.; Russell, Amy; Semmens, Darius

    2014-01-01

    Critics of the market-based, ecosystem services approach to biodiversity conservation worry that volatile market conditions and technological substitutes will diminish the value of ecosystem services and obviate the “economic benefits” arguments for conservation. To explore the effects of market forces and substitutes on service values, we assessed how the value of the pest-control services provided by Mexican free-tailed bats (Tadarida brasiliensis mexicana) to cotton production in the southwestern U.S. has changed over time. We calculated service values each year from 1990 through 2008 by estimating the value of avoided crop damage and the reduced social and private costs of insecticide use in the presence of bats. Over this period, the ecosystem service value declined by 79% ($19.09 million U.S. dollars) due to the introduction and widespread adoption of Bt (Bacillus thuringiensis) cotton transgenically modified to express its own pesticide, falling global cotton prices and the reduction in the number of hectares in the U.S. planted with cotton. Our results demonstrate that fluctuations in market conditions can cause temporal variation in ecosystem service values even when ecosystem function – in this case bat population numbers – is held constant. Evidence is accumulating, however, of the evolution of pest resistance to Bt cotton, suggesting that the value of bat pest-control services may increase again. This gives rise to an economic option value argument for conserving Mexican free-tailed bat populations. We anticipate that these results will spur discussion about the role of ecosystem services in biodiversity conservation in general, and bat conservation in particular. PMID:24498400

  11. Market forces and technological substitutes cause fluctuations in the value of bat pest-control services for cotton.

    PubMed

    López-Hoffman, Laura; Wiederholt, Ruscena; Sansone, Chris; Bagstad, Kenneth J; Cryan, Paul; Diffendorfer, Jay E; Goldstein, Joshua; Lasharr, Kelsie; Loomis, John; McCracken, Gary; Medellín, Rodrigo A; Russell, Amy; Semmens, Darius

    2014-01-01

    Critics of the market-based, ecosystem services approach to biodiversity conservation worry that volatile market conditions and technological substitutes will diminish the value of ecosystem services and obviate the "economic benefits" arguments for conservation. To explore the effects of market forces and substitutes on service values, we assessed how the value of the pest-control services provided by Mexican free-tailed bats (Tadarida brasiliensis mexicana) to cotton production in the southwestern U.S. has changed over time. We calculated service values each year from 1990 through 2008 by estimating the value of avoided crop damage and the reduced social and private costs of insecticide use in the presence of bats. Over this period, the ecosystem service value declined by 79% ($19.09 million U.S. dollars) due to the introduction and widespread adoption of Bt (Bacillus thuringiensis) cotton transgenically modified to express its own pesticide, falling global cotton prices and the reduction in the number of hectares in the U.S. planted with cotton. Our results demonstrate that fluctuations in market conditions can cause temporal variation in ecosystem service values even when ecosystem function--in this case bat population numbers--is held constant. Evidence is accumulating, however, of the evolution of pest resistance to Bt cotton, suggesting that the value of bat pest-control services may increase again. This gives rise to an economic option value argument for conserving Mexican free-tailed bat populations. We anticipate that these results will spur discussion about the role of ecosystem services in biodiversity conservation in general, and bat conservation in particular.

  12. L-DOPA-induced dyskinesias, motor fluctuations and health-related quality of life: the COPARK survey.

    PubMed

    Perez-Lloret, S; Negre-Pages, L; Damier, P; Delval, A; Derkinderen, P; Destée, A; Meissner, W G; Tison, F; Rascol, O

    2017-09-20

    Studies assessing the correlations between L-DOPA-induced dyskinesias (LIDs) and motor fluctuations with health-related quality of life (HRQoL) in Parkinson's disease (PD) have yielded conflicting results. This study aimed to assess the relationship between LIDs and motor fluctuations with HRQoL in patients with PD, and to assess the relative contribution of their severity and duration in a large sample of patients with PD. A total of 683 patients with PD from the COPARK survey were evaluated. HRQoL was assessed using the 39-Item Parkinson's Disease Questionnaire (PDQ-39) (primary outcome) and 36-Item Short Form Survey (SF-36). The daily duration and severity of LIDs were obtained from Unified Parkinson's Disease Rating Scale (UPDRS) IV items 32 and 33, respectively. The daily duration of motor fluctuations was obtained from UPDRS IV item 36 and severity was estimated as the difference between the UPDRS 2 (Activities of Daily Living) score in 'OFF' versus 'ON' condition. A total of 235 patients with PD (35%) experienced motor fluctuations and 182 (27%) experienced LIDs. The PDQ-39 total and SF-36 physical scores were significantly worse in patients with LIDs, after adjusting for the presence of motor fluctuations. The PDQ-39 total score and SF-36 physical and mental score were significantly worse in patients with motor fluctuations, after adjusting for the presence of LIDs. The severity of LIDs and the duration of motor fluctuations significantly and independently affected PDQ-39 scores. The SF-36 physical score was affected only by the severity of motor fluctuations, whereas the mental score was not affected by any of the aforementioned variables. Our findings suggest that LIDs (mainly their severity) and motor fluctuations (mainly their duration) correlate independently with HRQoL in patients with PD. © 2017 EAN.

  13. Nonlinear restoring forces in vortex-induced vibration

    NASA Astrophysics Data System (ADS)

    Mackowski, A. W.; Williamson, C. H. K.

    2011-11-01

    When studying vortex-induced vibration of a rigid circular cylinder, almost all experimental and computational studies involve the cylinder being supported by linear springs. However, there are cases in which we may be interested in the VIV response of a cylinder supported by nonlinear springs. A system with nonlinearities in the restoring force has the potential to increase the amplitude response envelope, critical to the success of aero-vibrating energy harvesters. On the other hand, designing nonlinear restoring forces to decrease the amplitude response may lead to structures more able to withstand flow-induced vibration. In addition, adding nonlinear terms to the restoring force on a rigid cylinder might be used to simulate higher-order dynamics of long, elastic marine cables. To experimentally observe the effects of nonlinear springs on flow-induced vibration, we apply a novel approach that lets us parametrically control the nature of the springs and the strength of the nonlinearities. The technique, called Cyber-Physical Fluid Dynamics, uses a force-feedback control system to simulate arbitrary forces on a submerged body [the details of this system were shown in the APS presentation of Mackowski & Williamson (2010)]. We present results using this technique to explore the amplitude response of a circular cylinder in a crossflow.

  14. Transcription upregulation via force-induced direct stretching of chromatin

    PubMed Central

    Tajik, Arash; Zhang, Yuejin; Wei, Fuxiang; Sun, Jian; Jia, Qiong; Zhou, Wenwen; Singh, Rishi; Khanna, Nimish; Belmont, Andrew S.; Wang, Ning

    2016-01-01

    Mechanical forces play critical roles in the function of living cells. However, the underlying mechanisms of how forces influence nuclear events remain elusive. Here, we show that chromatin deformation as well as force-induced transcription of a green-fluorescent-protein (GFP) tagged bacterial-chromosome dihydrofolate reductase (DHFR) transgene can be visualized in a living cell by using three-dimensional magnetic twisting cytometry to apply local stresses on the cell surface via an Arg-Gly-Asp-coated magnetic bead. Chromatin stretching depended on loading direction. DHFR transcription upregulation was sensitive to load direction and proportional to the magnitude of chromatin stretching. Disrupting filamentous actin or inhibiting actomyosin contraction abrogated or attenuated force-induced DHFR transcription, whereas activating endogenous contraction upregulated force-induced DHFR transcription. Our findings suggest that local stresses applied to integrins propagate from the tensed actin cytoskeleton to the LINC complex and then through lamina-chromatin interactions to directly stretch chromatin and upregulate transcription. PMID:27548707

  15. Lorentz-force-induced motion in conductive media.

    PubMed

    Basford, Alexandra T; Basford, Jeffrey R; Kugel, Jennifer; Ehman, Richard L

    2005-06-01

    This project was designed to assess whether MRI imaging could detect Lorentz-force-induced motion in conductive samples. Experiments were performed by applying alternating voltages across 2% agar and 18% bovine gels placed in the field of a 1.5-T MRI scanner. Motion-sensitized time-gated MRI images that were obtained and analyzed with custom-developed software used in previous studies revealed the production of movement in both agar and gel samples. Motion was most pronounced in the plane vertical to the sample and had the greatest amplitude when the current path was perpendicular to the scanner's magnetic field. These findings are compatible with the vector cross product nature of the Lorentz force and suggest that the imaging of Lorentz-force-induced motion in conductive samples is feasible. Whether this approach can be extended to study electrically active tissues such as the peripheral nerves, brain and heart remains to be seen.

  16. Water's role in the force-induced unfolding of ubiquitin.

    PubMed

    Li, Jingyuan; Fernandez, Julio M; Berne, B J

    2010-11-09

    In atomic force spectroscopic studies of the elastomeric protein ubiquitin, the β-strands 1-5 serve as the force clamp. Simulations show how the rupture force in the force-induced unfolding depends on the kinetics of water molecule insertion into positions where they can eventually form hydrogen bonding bridges with the backbone hydrogen bonds in the force-clamp region. The intrusion of water into this region is slowed down by the hydrophobic shielding effect of carbonaceous groups on the surface residues of β-strands 1-5, which thereby regulates water insertion prior to hydrogen bond breakage. The experiments show that the unfolding of the mechanically stressed protein is nonexponential due to static disorder. Our simulations show that different numbers and/or locations of bridging water molecules give rise to a long-lived distribution of transition states and static disorder. We find that slowing down the translational (not rotational) motions of the water molecules by increasing the mass of their oxygen atoms, which leaves the force field and thereby the equilibrium structure of the solvent unchanged, increases the average rupture force; however, the early stages of the force versus time behavior are very similar for our "normal" and fictitious "heavy" water models. Finally, we construct six mutant systems to regulate the hydrophobic shielding effect of the surface residues in the force-clamp region. The mutations in the two termini of β-sheets 1-5 are found to determine a preference for different unfolding pathways and change mutant's average rupture force.

  17. Tokamak Plasma Flows Induced by Local RF Forces

    NASA Astrophysics Data System (ADS)

    Chen, Jiale; Gao, Zhe

    2015-10-01

    The tokamak plasma flows induced by the local radio frequency (RF) forces in the core region are analyzed. The effective components of local RF forces are composed of the momentum absorption term and the resonant parallel momentum transport term (i.e. the parallel component of the resonant ponderomotive forces). Different momentum balance relations are employed to calculate the plasma flows depending on different assumptions of momentum transport. With the RF fields solved from RF simulation codes, the toroidal and poloidal flows by these forces under the lower hybrid current drive and the mode conversion ion cyclotron resonance heating on EAST-like plasmas are evaluated. supported by National Natural Science Foundation of China (Nos. 11405218, 11325524, 11375235 and 11261140327), in part by the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB111002, 2013GB112001 and 2013GB112010), and the Program of Fusion Reactor Physics and Digital Tokamak with the CAS “One-Three-Five” Strategic Planning

  18. Theory of spin-fluctuation induced superconductivity in iron-based superconductors

    SciTech Connect

    Zhang, Junhua

    2011-01-01

    In this dissertation we focus on the investigation of the pairing mechanism in the recently discovered high-temperature superconductor, iron pnictides. Due to the proximity to magnetic instability of the system, we considered short-range spin fluctuations as the major mediating source to induce superconductivity. Our calculation supports the magnetic fluctuations as a strong candidate that drives Cooper-pair formation in this material. We find the corresponding order parameter to be of the so-called ss-wave type and show its evolution with temperature as well as the capability of supporting high transition temperature up to several tens of Kelvin. On the other hand, our itinerant model calculation shows pronounced spin correlation at the observed antiferromagnetic ordering wave vector, indicating the underlying electronic structure in favor of antiferromagnetic state. Therefore, the electronic degrees of freedom could participate both in the magnetic and in the superconducting properties. Our work shows that the interplay between magnetism and superconductivity plays an important role to the understanding of the rich physics in this material. The magnetic-excitation spectrum carries important information on the nature of magnetism and the characteristics of superconductivity. We analyze the spin excitation spectrum in the normal and superconducting states of iron pnictides in the magnetic scenario. As a consequence of the sign-reversed gap structure obtained in the above, a spin resonance mode appears below the superconducting transition temperature. The calculated resonance energy, scaled with the gap magnitude and the magnetic correlation length, agrees well with the inelastic neutron scattering (INS) measurements. More interestingly, we find a common feature of those short-range spin fluctuations that are capable of inducing a fully gapped ss state is the momentum anisotropy with elongated span along the direction transverse to the antiferromagnetic momentum

  19. Earthquake-induced water-level fluctuations at Yucca Mountain, Nevada, June 1992

    SciTech Connect

    O`Brien, G.M.

    1993-07-01

    This report presents earthquake-induced water-level and fluid-pressure data for wells in the Yucca Mountain area, Nevada, during June 1992. Three earthquakes occurred which caused significant water-level and fluid-pressure responses in wells. Wells USW H-5 and USW H-6 are continuously monitored to detect short-term responses caused by earthquakes. Two wells, monitored hourly, had significant, longer-term responses in water level following the earthquakes. On June 28, 1992, a 7.5-magnitude earthquake occurred near Landers, California causing an estimated maximum water-level change of 90 centimeters in well USW H-5. Three hours later a 6.6-magnitude earthquake occurred near Big Bear Lake, California; the maximum water-level fluctuation was 20 centimeters in well USW H-5. A 5.6-magnitude earthquake occurred at Little Skull Mountain, Nevada, on June 29, approximately 23 kilometers from Yucca Mountain. The maximum estimated short-term water-level fluctuation from the Little Skull Mountain earthquake was 40 centimeters in well USW H-5. The water level in well UE-25p {number_sign}1, monitored hourly, decreased approximately 50 centimeters over 3 days following the Little Skull Mountain earthquake. The water level in UE-25p {number_sign}1 returned to pre-earthquake levels in approximately 6 months. The water level in the lower interval of well USW H-3 increased 28 centimeters following the Little Skull Mountain earthquake. The Landers and Little Skull Mountain earthquakes caused responses in 17 intervals of 14 hourly monitored wells, however, most responses were small and of short duration. For several days following the major earthquakes, many smaller magnitude aftershocks occurred causing measurable responses in the continuously monitored wells.

  20. Foot forces induced through Tai Chi push-hand exercises.

    PubMed

    Wong, Shiu Hong; Ji, Tianjian; Hong, Youlian; Fok, Siu Lun; Wang, Lin

    2013-08-01

    The low impact forces of Tai Chi push-hand exercises may be particularly suited for older people and for those with arthritis; however, the biomechanics of push-hand exercises have not previously been reported. This paper examines the ground reaction forces (GRFs) and plantar force distributions during Tai Chi push-hand exercises in a stationary stance with and without an opponent. Ten male Tai Chi practitioners participated in the study. The GRFs of each foot were measured in three perpendicular directions using two force plates (Kistler). The plantar force distribution of each foot was measured concurrently using an insole sensor system (Novel). The results showed that the average maximum vertical GRF of each foot was not more than 88% ± 6.1% of the body weight and the sum of the vertical forces (103% ± 1.4%) generated by the two feet approximately equals the body weight at any one time. The horizontal GRFs generated by the two feet were in the opposite directions and the measured mean peak values were not more than 12% ± 2.8% and 17% ± 4.3% of the body weight in the medio-lateral and antero-posterior directions respectively. Among the nine plantar areas, the toes sustained the greatest plantar force. This study indicates that push-hand exercises generate lower vertical forces than those induced by walking, bouncing, jumping and Tai Chi gait, and that the greatest plantar force is located in the toe area, which may have an important application in balance training particularly for older adults.

  1. Efficient 3D 'Atomistic' Simulation Technique for Studying of Random Dopant Induced Threshold Voltage Lowering and Fluctuations in Decanano MOSFETs

    NASA Technical Reports Server (NTRS)

    Asenov, Asen

    1998-01-01

    A 3D 'atomistic' simulation technique to study random dopant induced threshold voltage lowering and fluctuations in sub 0.1 micron MOSFETs is presented. It allows statistical analysis of random impurity effects down to the individual impurity level. Efficient algorithms based on a single solution of Poisson's equation, followed by the solution of a simplified current continuity equation are used in the simulations.

  2. Production of hydroxyl radicals from Fe(II) oxygenation induced by groundwater table fluctuations in a sand column.

    PubMed

    Jia, Mengqi; Bian, Xiao; Yuan, Songhu

    2017-04-15

    Natural and artificial processes often cause the fluctuation of groundwater table, inducing the interaction of O2 from the unsaturated zone with reduced components such as Fe(II) from the saturated zone. In light of previous findings that hydroxyl radicals (OH) can be produced from Fe(II) oxygenation, we hypothesize that OH could be produced during groundwater table fluctuations. Therefore, this study aims to measure the production of OH during water table fluctuations in a simulated sand column. Deoxygenated water in the absence and presence of 20mg/L Fe(2+) (pH6.5) was fed into the sand column. Water table fluctuations were manipulated to observe O2 entrapment, Fe(2+)oxygenation and OH production. Results showed that O2 in the pore air was efficiently entrapped by the rise of water table at the tested rates of 0.16-0.34cm/min (or 0.10-0.20m/h), and the dissolution of entrapped O2 into the pore water led to the oxygenation of Fe(2+). Production of OH was presumably attributed to oxygenation of the Fe(2+) adsorbed on Fe(III) oxyhydroxides generated in situ. In a total of 4cycles of fluctuations, the cumulative OH at all the elevations increased progressively, attaining 2.7μM in the zone near the water table in the 4th cycle. We suggest that OH produced from water table fluctuations could induce an overlooked pathway for contaminant transformation in the fluctuation zone. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Analysis of Wind-induced Air Pressure Fluctuations and Topsoil Gas Concentrations within a Scots Pine Forest

    NASA Astrophysics Data System (ADS)

    Mohr, M.; Laemmel, T.; Maier, M.; Schindler, D.

    2016-12-01

    The influence of small, wind-induced pressure fluctuations on soil gas transport, known as the pressure pumping effect, has attracted great interest over recent years. However, results for the quantification of the effect from field experiments are ambiguous, and there is still need for further in-situ quantification of the variables associated with this effect such as amplitudes and frequencies of pressure fluctuations. Airflow measurements above and below the canopy of a Scots pine forest and high-precision relative pressure measurements were conducted in the sub-canopy space as well as in the soil over a measurement period of 16 weeks. A newly developed gas measurement system was used to investigate the effect of the pressure fluctuations on topsoil gas concentrations. The gas measurement system uses helium as a tracer gas, which is injected into the soil. Then, the helium concentrations up to the topsoil are measured. Data analysis was based on 30 min intervals. Results show that pressure fluctuations occurring below the Scot pine forest canopy and in the soil were strongly dependent on mean wind speed at canopy height. Mean amplitudes of wind-induced pressure fluctuations reached values up to 10 Pa and had periods of 20 s to 50 s. While mean amplitudes of pressure fluctuations significantly increased with increasing wind speed, mean periods significantly decreased. A coefficient describing the strength of the pressure pumping was developed. It is a measure for the half-hourly intensity of pressure fluctuations and describes the mean change in pressure per second. It showed a quadratic relation to mean wind speed at canopy top and reached values up to 0.2 Pa s-1. Empirical modelling of helium concentration based on the measurements from a field campaign demonstrated that the pressure pumping coefficient is an important predictor for changes in the topsoil helium concentration, and thus, an important factor for soil gas transport.

  4. Force-Induced Craniosynostosis in the Murine Sagittal Suture

    PubMed Central

    Oppenheimer, Adam J.; Rhee, Samuel T.; Goldstein, Steven A.; Buchman, Steven R.

    2010-01-01

    BACKGROUND The etiology of non-syndromic craniosynostosis remains elusive. While compressive forces have been implicated in premature suture fusion, conclusive evidence of force-induced craniosynostosis is lacking. The purpose of this study was to determine if cyclical loading of the murine calvarium could induce suture fusion. METHODS Calvarial coupons from post-natal day 21, B6CBA wild-type mice (n = 18) were harvested and cultured. A custom appliance capable of delivering controlled, cyclical, compressive loads was applied perpendicular to the sagittal suture within the coupon in vitro. Nine coupons were subjected to 0.3g of force for 30 minutes each day for a total of 14 days. A control group of nine coupons was clamped in the appliance without loading. Analysis of suture phenotype was performed using alkaline phosphatase and H&E staining techniques, as well as in situ hybridization analysis using Bone Sialoprotein (BSP). RESULTS Control group sagittal sutures—which normally remain patent in mice—showed their customary histological appearance. In contradistinction, sagittal sutures subjected to cyclic loading showed histological evidence of premature fusion (craniosynostosis). In addition, alkaline phosphatase activity and BSP expression was observed to be increased in the experimental group when compared to matched controls. CONCLUSIONS An in vitro model of forced-induced craniosynostosis has been devised. Premature fusion of the murine sagittal suture was induced with the application of controlled, cyclical, compressive loads. These results implicate abnormal forces in the development of non-syndromic craniosynostosis, which supports our global hypothesis that epigenetic phenomena have a crucial role in the pathogenesis of craniosynostosis. PMID:19952640

  5. Derivation of Aero-Induced Fluctuating Pressure Environments for Ares I-X

    NASA Technical Reports Server (NTRS)

    Yang, Michael Y.; Wilby, John F.

    2008-01-01

    A description is given of the external aero-inducted fluctuating pressure model which was fit and anchored to wind tunnel data from the past 40 years. This model is based upon the assumption that the flow around a vehicle can be divided into discrete flow zones with independent fluctuating pressure properties. The model is then used to derive fluctuating pressure environments during ascent for the Ares I-X test vehicle. A sensitivity study of the structural response to the spatial correlation of the fluctuating pressures is also performed.

  6. Asymmetrical, agonist-induced fluctuations in local extracellular [Ca2+] in intact polarized epithelia

    PubMed Central

    Caroppo, Rosa; Gerbino, Andrea; Debellis, Lucantonio; Kifor, Olga; Soybel, David I.; Brown, Edward M.; Hofer, Aldebaran M.; Curci, Silvana

    2001-01-01

    We recently proposed that extracellular Ca2+ ions participate in a novel form of intercellular communication involving the extracellular Ca2+-sensing receptor (CaR). Here, using Ca2+-selective microelectrodes, we directly measured the profile of agonist-induced [Ca2+]ext changes in restricted domains near the basolateral or luminal membranes of polarized gastric acid-secreting cells. The Ca2+-mobilizing agonist carbachol elicited a transient, La3+-sensitive decrease in basolateral [Ca2+] (average ≈250 µM, but as large as 530 µM). Conversely, carbachol evoked an HgCl2-sensitive increase in [Ca2+] (average ≈400 µM, but as large as 520 µM) in the lumen of single gastric glands. Both responses were significantly reduced by pre-treatment with sarco-endoplasmic reticulum Ca2+ ATPase (SERCA) pump inhibitors or with the intracellular Ca2+ chelator BAPTA-AM. Immunofluores cence experiments demonstrated an asymmetric localization of plasma membrane Ca2+ ATPase (PMCA), which appeared to be partially co-localized with CaR and the gastric H+/K+-ATPase in the apical membrane of the acid-secreting cells. Our data indicate that agonist stimulation results in local fluctuations in [Ca2+]ext that would be sufficient to modulate the activity of the CaR on neighboring cells. PMID:11707403

  7. Fluctuations of visual awareness: Combining motion-induced blindness with binocular rivalry

    PubMed Central

    Jaworska, Katarzyna; Lages, Martin

    2014-01-01

    Binocular rivalry (BR) and motion-induced blindness (MIB) are two phenomena of visual awareness where perception alternates between multiple states despite constant retinal input. Both phenomena have been extensively studied, but the underlying processing remains unclear. It has been suggested that BR and MIB involve the same neural mechanism, but how the two phenomena compete for visual awareness in the same stimulus has not been systematically investigated. Here we introduce BR in a dichoptic stimulus display that can also elicit MIB and examine fluctuations of visual awareness over the course of each trial. Exploiting this paradigm we manipulated stimulus characteristics that are known to influence MIB and BR. In two experiments we found that effects on multistable percepts were incompatible with the idea of a common oscillator. The results suggest instead that local and global stimulus attributes can affect the dynamics of each percept differently. We conclude that the two phenomena of visual awareness share basic temporal characteristics but are most likely influenced by processing at different stages within the visual system. PMID:25240063

  8. Suppression of nuclear spin bath fluctuations in self-assembled quantum dots induced by inhomogeneous strain

    PubMed Central

    Chekhovich, E.A.; Hopkinson, M.; Skolnick, M.S.; Tartakovskii, A.I.

    2015-01-01

    Interaction with nuclear spins leads to decoherence and information loss in solid-state electron-spin qubits. One particular, ineradicable source of electron decoherence arises from decoherence of the nuclear spin bath, driven by nuclear–nuclear dipolar interactions. Owing to its many-body nature nuclear decoherence is difficult to predict, especially for an important class of strained nanostructures where nuclear quadrupolar effects have a significant but largely unknown impact. Here, we report direct measurement of nuclear spin bath coherence in individual self-assembled InGaAs/GaAs quantum dots: spin-echo coherence times in the range 1.2–4.5 ms are found. Based on these values, we demonstrate that strain-induced quadrupolar interactions make nuclear spin fluctuations much slower compared with lattice-matched GaAs/AlGaAs structures. Our findings demonstrate that quadrupolar effects can potentially be used to engineer optically active III-V semiconductor spin-qubits with a nearly noise-free nuclear spin bath, previously achievable only in nuclear spin-0 semiconductors, where qubit network interconnection and scaling are challenging. PMID:25704639

  9. Spatiotemporal patterns of water table fluctuations and evapotranspiration induced by riparian vegetation in a semiarid area

    NASA Astrophysics Data System (ADS)

    Yue, Weifeng; Wang, Tiejun; Franz, Trenton E.; Chen, Xunhong

    2016-03-01

    Groundwater evapotranspiration (ETg) links various ecohydrological processes and is an important component in regional water budgets. In this study, an extensive monitoring network was established in a semiarid riparian area to investigate various controls on the spatiotemporal pattern of water table fluctuations (WTFs) and ETg induced by riparian vegetation. Along a vegetation gradient (˜1200 m), diurnal WTFs were observed during a growing season in areas covered by woody species (Populus sect. Aigeiros and Juniperus virginiana) and wet slough vegetation (Panicum virgatum and Bromus inermis) with deeper root systems; whereas, no diurnal WTFs were found in the middle section with shallower-rooted grasses (Poa pratensis and Carex sp.). The occurrence of diurnal WTFs was related to temperature-controlled plant phenology at seasonal scales and to radiation at subdaily scales. Daily ETg in the mid-growing season was calculated using the White method. The results revealed that depth to water table (DTWT) was the dominant control on ETg, followed by potential evapotranspiration (ETp). By combining the effects of DTWT and ETp, it was found that at shallower depths, ETg was more responsive to changes in ETp, due to the closer linkage of land surface processes with shallower groundwater. Finally, exponential relationships between ETg/ETp and DTWT were obtained at the study site, although those relationships varied considerably across the sites. This study demonstrates the complex interactions of WTFs and ETg with surrounding environmental variables and provides further insight into modeling ETg over different time scales and riparian vegetation.

  10. Suppression of nuclear spin bath fluctuations in self-assembled quantum dots induced by inhomogeneous strain.

    PubMed

    Chekhovich, E A; Hopkinson, M; Skolnick, M S; Tartakovskii, A I

    2015-02-23

    Interaction with nuclear spins leads to decoherence and information loss in solid-state electron-spin qubits. One particular, ineradicable source of electron decoherence arises from decoherence of the nuclear spin bath, driven by nuclear-nuclear dipolar interactions. Owing to its many-body nature nuclear decoherence is difficult to predict, especially for an important class of strained nanostructures where nuclear quadrupolar effects have a significant but largely unknown impact. Here, we report direct measurement of nuclear spin bath coherence in individual self-assembled InGaAs/GaAs quantum dots: spin-echo coherence times in the range 1.2-4.5 ms are found. Based on these values, we demonstrate that strain-induced quadrupolar interactions make nuclear spin fluctuations much slower compared with lattice-matched GaAs/AlGaAs structures. Our findings demonstrate that quadrupolar effects can potentially be used to engineer optically active III-V semiconductor spin-qubits with a nearly noise-free nuclear spin bath, previously achievable only in nuclear spin-0 semiconductors, where qubit network interconnection and scaling are challenging.

  11. Radiation-Induced Glass Transition and Structural Fluctuation in NiTi Metallic Glass System

    SciTech Connect

    Watanabe, Seiichi

    2006-05-05

    We report an evidence of fluctuation during amorphization in NiTi ordered intermetallic compounds under electron irradiation, using an in situ observation technique with a high resolution High Voltage Electron Microscope (HVEM). Molecular dynamics calculation, which is executed to simulate atomic-level electron micrographic images, also revealed the similar fluctuation trend.

  12. Fluctuation amplitude and local synchronization of brain activity in the ultra-low frequency band: An fMRI investigation of continuous feedback of finger force.

    PubMed

    Zhang, Hang; Zhang, Lijuan; Zang, Yufeng

    2015-12-10

    Functional magnetic resonance imaging (fMRI) studies of motor feedback have suggested that brain activity in the ultra-low frequency band (0-0.01Hz) may be physiologically significant for various feedback conditions, i.e., real and sham feedback. However, the functional role of the ultra-low frequency band of brain activity during the feedback procedure remains unclear. Here, we carried out an fMRI study of continuous feedback (8min) of finger force and assessed two important properties of brain activity: the fluctuation amplitude and local synchronization in the ultra-low frequency band. Two intriguing results were obtained: (1) real feedback recruited a stronger fluctuation amplitude and local synchronization in the basal ganglia compared with sham feedback; however, no significant correlation was found between the two properties across subjects; and (2) the behavioral performance was significantly correlated with the fluctuation amplitude but was not correlated with local synchronization in the basal ganglia. These findings contribute to characterization of the functional role of brain activity in the ultra-low frequency band and further suggest that the fluctuation amplitude and local synchronization in the basal ganglia may contribute differently to motor feedback.

  13. Characterization of an induced pressure pumping force for microfluidics

    NASA Astrophysics Data System (ADS)

    Jiang, Hai; Fan, Na; Peng, Bei; Weng, Xuan

    2017-05-01

    The electro-osmotic pumping and pressure-driven manipulation of fluids are considered as the most common strategies in microfluidic devices. However, both of them exhibit major disadvantages such as hard integration and high reagent consumption, and they are destructive methods for detection and photo bleaching. In this paper, an electric field-effect flow control approach, combining the electro-osmotic pumping force and the pressure-driven pumping force, was developed to generate the induced pressure-driven flow in a T-shaped microfluidic chip. Electro-osmotic flow between the T-intersection and two reservoirs was demonstrated, and it provided a stable, continuous, and electric field-free flow in the section of the microchannel without the electrodes. The velocity of the induced pressure-driven flow was linearly proportional to the applied voltages. Both numerical and experimental investigations were conducted to prove the concept, and the experimental results showed good agreement with the numerical simulations. In comparison to other induced pressure pumping methods, this approach can induce a high and controllable pressure drop in the electric field-free segment, subsequently causing an induced pressure-driven flow for transporting particles or biological cells. In addition, the generation of bubbles and the blocking of the microchannel are avoided.

  14. SNW 2000 Proceedings. Oxide Thickness Variation Induced Threshold Voltage Fluctuations in Decanano MOSFETs: a 3D Density Gradient Simulation Study

    NASA Technical Reports Server (NTRS)

    Asenov, Asen; Kaya, S.; Davies, J. H.; Saini, S.

    2000-01-01

    We use the density gradient (DG) simulation approach to study, in 3D, the effect of local oxide thickness fluctuations on the threshold voltage of decanano MOSFETs in a statistical manner. A description of the reconstruction procedure for the random 2D surfaces representing the 'atomistic' Si-SiO2 interface variations is presented. The procedure is based on power spectrum synthesis in the Fourier domain and can include either Gaussian or exponential spectra. The simulations show that threshold voltage variations induced by oxide thickness fluctuation become significant when the gate length of the devices become comparable to the correlation length of the fluctuations. The extent of quantum corrections in the simulations with respect to the classical case and the dependence of threshold variations on the oxide thickness are examined.

  15. Absence of a Large Superconductivity-Induced Gap in Magnetic Fluctuations of Sr_{2}RuO_{4}.

    PubMed

    Kunkemöller, S; Steffens, P; Link, P; Sidis, Y; Mao, Z Q; Maeno, Y; Braden, M

    2017-04-07

    Inelastic neutron scattering experiments on Sr_{2}RuO_{4} determine the spectral weight of the nesting induced magnetic fluctuations across the superconducting transition. There is no observable change at the superconducting transition down to an energy of ∼0.35  meV, which is well below the 2Δ values reported in several tunneling experiments. At this and higher energies magnetic fluctuations clearly persist in the superconducting state. Only at energies below ∼0.3  meV can evidence for partial suppression of spectral weight in the superconducting state be observed. This strongly suggests that the one-dimensional bands with the associated nesting fluctuations do not form the active, highly gapped bands in the superconducting pairing in Sr_{2}RuO_{4}.

  16. Absence of a Large Superconductivity-Induced Gap in Magnetic Fluctuations of Sr2RuO4

    NASA Astrophysics Data System (ADS)

    Kunkemöller, S.; Steffens, P.; Link, P.; Sidis, Y.; Mao, Z. Q.; Maeno, Y.; Braden, M.

    2017-04-01

    Inelastic neutron scattering experiments on Sr2RuO4 determine the spectral weight of the nesting induced magnetic fluctuations across the superconducting transition. There is no observable change at the superconducting transition down to an energy of ˜0.35 meV , which is well below the 2 Δ values reported in several tunneling experiments. At this and higher energies magnetic fluctuations clearly persist in the superconducting state. Only at energies below ˜0.3 meV can evidence for partial suppression of spectral weight in the superconducting state be observed. This strongly suggests that the one-dimensional bands with the associated nesting fluctuations do not form the active, highly gapped bands in the superconducting pairing in Sr2RuO4 .

  17. Random Dopant Induced Threshold Voltage Lowering and Fluctuations in Sub 50 nm MOSFETs: a Statistical 3D 'Atomistic' Simulation Study

    NASA Technical Reports Server (NTRS)

    Asenov, Asen

    1999-01-01

    A 3D 'atomistic' simulation study of random dopant induced threshold voltage fluctuations and lowering in sub 50 nm MOSFETs is presented. The attention is focused mainly on devices with 30 nm effective channel length which represent the expected level of scaling at the end of the Silicon Roadmap. An efficient algorithm, based on a single 3D ap solution of the Poisson equation and a simplified current continuity equation, is used in the simulations. Large samples of microscopically different devices (typically 200) arc used in order to obtain statistically reliable results. The influence of different aspects of the conventional MOSFET design on the threshold voltage fluctuations and lowering are investigated. Results for fluctuation resistant device architectures based on low-doped epitaxial channel MOSFETs are also presented.

  18. Pressure-induced spin fluctuations and spin reorientation in hexagonal manganites

    NASA Astrophysics Data System (ADS)

    Kozlenko, D. P.; Kichanov, S. E.; Lee, S.; Park, J.-G.; Savenko, B. N.

    2007-04-01

    The magnetic structures of hexagonal manganites YMnO3 and LuMnO3 have been studied by powder neutron diffraction up to 6 GPa in the temperature range 10-295 K. At ambient pressure, a triangular antiferromagnetic (AFM) state of a Γ1 irreducible representation is stable below TN = 70 K in YMnO3. Upon the application of high pressure, a spin reorientation is induced and the triangular AFM structure evolves from Γ1 to Γ1+Γ2 representations. On the other hand, in LuMnO3 the triangular AFM state of a Γ2 irreducible representation with TNap90 K remains stable over the entire pressure range investigated. The ordered magnetic moment values decrease under pressure with dM/dP = -0.35 μB GPa-1 in YMnO3 and -0.08 μB GPa-1 in LuMnO3. Simultaneously, a considerable increase in diffuse scattering intensity was found in YMnO3, while it was much less pronounced for LuMnO3. Both features indicate the enhancement of spin fluctuations due to geometrical frustration effects and an increase in the volume fraction of the spin-liquid state coexisting with the ordered AFM phase. The characteristic spin correlation length is weakly affected by pressure. The relationship between the pressure-induced behaviour of magnetic structure and the structural characteristics of the quasi-two-dimensional (2D) triangular network formed by Mn and O ions in hexagonal RMnO3 is analysed.

  19. A field investigation of phreatophyte-induced fluctuations in the water table

    USGS Publications Warehouse

    Butler, J.J.; Kluitenberg, G.J.; Whittemore, D.O.; Loheide, S.P.; Jin, W.; Billinger, M.A.; Zhan, X.

    2007-01-01

    Hydrographs from shallow wells in vegetated riparian zones frequently display a distinctive pattern of diurnal water table fluctuations produced by variations in plant water use. A multisite investigation assessed the major controls on these fluctuations and the ecohydrologic insights that can be gleaned from them. Spatial and temporal variations in the amplitude of the fluctuations are primarily a function of variations in (1) the meteorological drivers of plant water use, (2) vegetation density, type, and vitality, and (3) the specific yield of sediments in the vicinity of the water table. Past hydrologic conditions experienced by the riparian zone vegetation, either in previous years or earlier within the same growing season, are also an important control. Diurnal water table fluctuations can be considered a diagnostic indicator of groundwater consumption by phreatophytes at most sites, so the information embedded within these fluctuations should be more widely exploited in ecohydrologic studies. Copyright 2007 by the American Geophysical Union.

  20. Stratospheric Annular Modes Induced By Stationary Wave Forcing

    NASA Astrophysics Data System (ADS)

    Körnich, H.; Schmitz, G.

    The variability of the winter stratosphere shows distinguishable features in the north- ern and southern hemisphere. Since these differences are based on the different plan- etary waves of the underlying atmosphere, we explore the mechanism how stationary wave forcing in the troposphere can induce a stratospheric Annular Mode using a simple GCM. The model KMCM (Kühlungsborn Mechanistic Circulation Model) extends from the ground up to 60 km height and produces a reasonable winter climate. It takes into account the different large-scale wave forcings in the troposphere as prescribed pro- cesses. This allows us to examine the stratospheric Annular-Mode generation depend- ing on different wave forcings under perpetual January conditions. Principal com- ponent analysis is applied to identify the variability patterns of the geopotential and of the zonally averaged zonal wind. By this way, it is shown that the amplitude and composition of the orographic and thermal eddy forcing determines the stratospheric Annular Mode and the related downward propagation in the temperature field. Further model simplifications are introduced in order to understand the mechanism of the stratospheric AM-generation. Using a linear model version we illuminate the influence of the different wave forcing processes on the Annular Modes. Addition- ally, a constant-troposphere model is used to clarify the importance of transient and stationary waves. Finally, the Annular Mode is interpreted in terms of the dynamical coupling of the troposphere and stratosphere.

  1. Force-Induced Changes in Subnuclear Movement and Rheology

    PubMed Central

    Booth-Gauthier, Elizabeth A.; Alcoser, Turi A.; Yang, Ge; Dahl, Kris N.

    2012-01-01

    Extracellular mechanical forces result in changes in gene expression, but it is unclear how cells are able to permanently adapt to new mechanical environments because chemical signaling pathways are short-lived. We visualize force-induced changes in nuclear rheology to examine short- and long-time genome organization and movements. Punctate labels in the nuclear interior of HeLa, human umbilical vein endothelial, and osteosarcoma (Saos-2) cells allow tracking of nuclear movements in cells under varying levels of shear and compressive force. Under adequate shear stress two distinct regimes develop in cells under mechanical stimulation: an initial event of increased intranuclear movement followed by a regime of intranuclear movements that reflect the dose of applied force. At early times there is a nondirectionally oriented response with a small increase in nuclear translocations. After 30 min, there is a significant increase in nuclear movements, which scales with the amount of shear or compressive stress. The similarities in the nuclear response to shear and compressive stress suggest that the nucleus is a mechanosensitive element within the cell. Thus, applied extracellular forces stimulate intranuclear movements, resulting in repositioning of nuclear bodies and the associated chromatin within the nucleus. PMID:23260044

  2. The key event in force-induced unfolding of Titin's immunoglobulin domains.

    PubMed

    Lu, H; Schulten, K

    2000-07-01

    Steered molecular dynamics simulation of force-induced titin immunoglobulin domain I27 unfolding led to the discovery of a significant potential energy barrier at an extension of approximately 14 A on the unfolding pathway that protects the domain against stretching. Previous simulations showed that this barrier is due to the concurrent breaking of six interstrand hydrogen bonds (H-bonds) between beta-strands A' and G that is preceded by the breaking of two to three hydrogen bonds between strands A and B, the latter leading to an unfolding intermediate. The simulation results are supported by Angstrom-resolution atomic force microscopy data. Here we perform a structural and energetic analysis of the H-bonds breaking. It is confirmed that H-bonds between strands A and B break rapidly. However, the breaking of the H-bond between strands A' and G needs to be assisted by fluctuations of water molecules. In nanosecond simulations, water molecules are found to repeatedly interact with the protein backbone atoms, weakening individual interstrand H-bonds until all six A'-G H-bonds break simultaneously under the influence of external stretching forces. Only when those bonds are broken can the generic unfolding take place, which involves hydrophobic interactions of the protein core and exerts weaker resistance against stretching than the key event.

  3. Fluctuations induced transition of localization of granular objects caused by degrees of crowding

    NASA Astrophysics Data System (ADS)

    Oda, Soutaro; Kubo, Yoshitsugu; Shew, Chwen-Yang; Yoshikawa, Kenichi

    2016-12-01

    Fluctuations are ubiquitous in both microscopic and macroscopic systems, and an investigation of confined particles under fluctuations is relevant to how living cells on the earth maintain their lives. Inspired by biological cells, we conduct the experiment through a very simple fluctuating system containing one or several large spherical granular particles and multiple smaller ones confined on a cylindrical dish under vertical vibration. We find a universal behavior that large particles preferentially locate in cavity interior due to the fact that large particles are depleted from the cavity wall by small spheres under vertical vibration in the actual experiment. This universal behavior can be understood from the standpoint of entropy.

  4. Field-induced quantum fluctuations in the heavy fermion superconductor CeCu(2)Ge(2).

    PubMed

    Singh, D K; Thamizhavel, A; Lynn, J W; Dhar, S; Rodriguez-Rivera, J; Herman, T

    2011-01-01

    Quantum-mechanical fluctuations in strongly correlated electron systems cause unconventional phenomena such as non-Fermi liquid behavior, and arguably high temperature superconductivity. Here we report the discovery of a field-tuned quantum critical phenomenon in stoichiometric CeCu(2)Ge(2), a spin density wave ordered heavy fermion metal that exhibits unconventional superconductivity under ≃10 GPa of applied pressure. Our finding of the associated quantum critical spin fluctuations of the antiferromagnetic spin density wave order, dominating the local fluctuations due to single-site Kondo effect, provide new information about the underlying mechanism that can be important in understanding superconductivity in this novel compound.

  5. Fluctuations of fresh-saline water interface and of water table induced by sea tides in unconfined aquifers

    NASA Astrophysics Data System (ADS)

    Levanon, Elad; Shalev, Eyal; Yechieli, Yoseph; Gvirtzman, Haim

    2016-10-01

    This study examines effects of tides on fluctuations of the fresh-saline water interface and the groundwater level in unconfined coastal aquifers using a two-dimensional numerical model. The time-lags of the simulated hydraulic heads and salinities fluctuations compared to sea level fluctuations are analyzed using cross-correlation analysis. The results show that both the fresh-saline water interface and the groundwater level are affected harmonically by sea tide fluctuations. However, significantly different time-lags are obtained between the hydraulic head in the deeper and upper parts of the aquifer, and between head and salinity in the fresh-saline water interface. The hydraulic head in the deeper part of the aquifer responses much faster to sea level fluctuations than in the upper part. Surprisingly, a similar difference is detected between the time-lag of the hydraulic head in the fresh-saline water interface and the time-lag of the salinity at the same location. Furthermore, the time-lag of the salinity in the fresh-saline water interface is similar to the time-lag of the water table. We suggest a comprehensive mechanism for tidal influence on the coastal groundwater system, in which two main processes act simultaneously. First, sea tide causes a pressure head wave which propagates into the saturated zone of the aquifer, governed by the diffusivity of the aquifer (Ks/Ss). Second, this pressure head wave is attenuated at the water table due to the unsaturated flow within the capillary fringe which occurs during groundwater level oscillations. Because the tidal forcing acts on the sea-floor boundary and the attenuation of the groundwater level due to capillary effect acts on the groundwater table, two dimensional distributions of time-lag and hydraulic head amplitude are created. The capillary effect in the unsaturated zone plays a key role not only in the water table fluctuations as shown previously, but also on the salinity fluctuations in the fresh

  6. Wave-induced mass transport affects daily Escherichia coli fluctuations in nearshore water.

    PubMed

    Ge, Zhongfu; Whitman, Richard L; Nevers, Meredith B; Phanikumar, Mantha S

    2012-02-21

    Characterization of diel variability of fecal indicator bacteria concentration in nearshore waters is of particular importance for development of water sampling standards and protection of public health. Significant nighttime increase in Escherichia coli (E. coli) concentration in beach water, previously observed at marine sites, has also been identified in summer 2000 from fixed locations in waist- and knee-deep waters at Chicago 63rd Street Beach, an embayed, tideless, freshwater beach with low currents at night (approximately 0.015 m s(-1)). A theoretical model using wave-induced mass transport velocity for advection was developed to assess the contribution of surface waves to the observed nighttime E. coli replenishment in the nearshore water. Using average wave conditions for the summer season of year 2000, the model predicted an amount of E. coli transported from water of intermediate depth, where sediment resuspension occurred intermittently, that would be sufficient to have elevated E. coli concentration in the surf and swash zones as observed. The nighttime replenishment of E. coli in the surf and swash zones revealed here is an important phase in the cycle of diel variations of E. coli concentration in nearshore water. According to previous findings in Ge et al. (Environ. Sci. Technol. 2010, 44, 6731-6737), enhanced current circulation in the embayment during the day tends to displace and deposit material offshore, which partially sets up the system by the early evening for a new period of nighttime onshore movement. This wave-induced mass transport effect, although facilitating a significant base supply of material shoreward, can be perturbed or significantly influenced by high currents (orders of magnitude larger than a typical wave-induced mass transport velocity), current-induced turbulence, and tidal forcing.

  7. Wave-induced mass transport affects daily Escherichia coli fluctuations in nearshore water

    USGS Publications Warehouse

    Ge, Zhongfu; Whitman, Richard L.; Nevers, Meredith B.; Phanikumar, Mantha S.

    2012-01-01

    Characterization of diel variability of fecal indicator bacteria concentration in nearshore waters is of particular importance for development of water sampling standards and protection of public health. Significant nighttime increase in Escherichia coli (E. coli) concentration in beach water, previously observed at marine sites, has also been identified in summer 2000 from fixed locations in waist- and knee-deep waters at Chicago 63rd Street Beach, an embayed, tideless, freshwater beach with low currents at night (approximately 0.015 m s–1). A theoretical model using wave-induced mass transport velocity for advection was developed to assess the contribution of surface waves to the observed nighttime E. coli replenishment in the nearshore water. Using average wave conditions for the summer season of year 2000, the model predicted an amount of E. coli transported from water of intermediate depth, where sediment resuspension occurred intermittently, that would be sufficient to have elevated E. coli concentration in the surf and swash zones as observed. The nighttime replenishment of E. coli in the surf and swash zones revealed here is an important phase in the cycle of diel variations of E. coli concentration in nearshore water. According to previous findings in Ge et al. (Environ. Sci. Technol. 2010, 44, 6731–6737), enhanced current circulation in the embayment during the day tends to displace and deposit material offshore, which partially sets up the system by the early evening for a new period of nighttime onshore movement. This wave-induced mass transport effect, although facilitating a significant base supply of material shoreward, can be perturbed or significantly influenced by high currents (orders of magnitude larger than a typical wave-induced mass transport velocity), current-induced turbulence, and tidal forcing.

  8. Heterogeneity in (2-butoxyethanol + water) mixtures: Hydrophobicity-induced aggregation or criticality-driven concentration fluctuations?

    PubMed

    Indra, Sandipa; Biswas, Ranjit

    2015-05-28

    Micro-heterogeneity in aqueous solutions of 2-butoxyethanol (BE), a system with closed loop miscibility gap, has been explored via absorption and time-resolved fluorescence measurements of a dissolved dipolar solute, coumarin 153 (C153), in the water-rich region at various BE mole fractions (0 ≤ XBE ≤ 0.25) in the temperature range, 278 ≤ T/K ≤ 320. Evidences for both alcohol-induced H-bond strengthening and subsequent structural transition of H-bond network have been observed. Analyses of steady state and time-resolved spectroscopic data for these aqueous mixtures and comparisons with the results for aqueous solutions of ethanol and tertiary butanol indicate that alcohol aggregation in BE/water mixtures is driven by hydrophobic interaction with no or insignificant role for criticality-driven concentration fluctuations preceding phase separation. Excitation energy dependence of fluorescence emission of C153 confirms formation of aggregated structures at very low BE mole fractions. No asymptotic critical power law dependence for relaxation rates of the type, k ∝ (|T - Tc|/Tc)(γ), with γ denoting universal critical constant, has been observed for both solute's rotational relaxation and population relaxation rates in these mixtures upon either approaching to critical concentration or critical temperature. Estimated activation energies for rotational relaxation rate of C153 and solution viscosity have been found to follow each other with no abrupt changes in either of them at any mixture composition. In addition, measured C153 rotation times at various compositions and temperatures reflect near-hydrodynamic viscosity coupling through the dependence,〈τr〉∝ (η/T)(p), with p = 0.8-1.0, suggesting solute's orientational relaxation dynamics being, on an average, temporally homogeneous.

  9. Comparison of theories for gravity wave induced fluctuations in airglow emissions

    NASA Technical Reports Server (NTRS)

    Walterscheid, R. L.; Schubert, G.; Hickey, M. P.

    1994-01-01

    A comparison is undertaken of theories for the gravity wave induced fluctuations in the intensity of airglow emissions and the associated temperature of the source region. The comparison is made in terms of Krassovsky's ratio eta(sub E) for a vertically extended emission region (eta(sub E) is the ratio of the vertically integrated normalized intensity perturbation to the vertically integrated intensity-weighted temperature perturbation). It is shown that the formulas for eta(sub E) in the works by Tarasick and Hines (1990) and Schubert et al. (1991) are in agreement for the case of an inviscid atmosphere. The calculation of eta(sub E) using the theory of Tarasick and Hines (1990) requires determination of their function chi; we show that chi is simply related to the 'single-level' Krassovsky's ratio eta of Schubert et al. (1991). The general relationship between chi and eta is applied to a simple chemical-dynamical model of the O2 atmospheric airglow and the altitude dependence of these quantities is evaluated for nonsteady state chemistry. Though the Tarasick and Hines (1990) formula for eta(sub E) does not explicitly depend on the scale heights of the minor constituents involved in airglow chemistry, eta(sub E) implicitly depends upon these scale heights through its dependences on chemical production and loss contained in chi. We demonstrate this dependence of eta(sub E) for the OH nightglow on atomic oxygen scale height by direct numerical evaluation of eta(sub E) in this case the dependence originates in the chemical production of perturbed ozone.

  10. Comparison of theories for gravity wave induced fluctuations in airglow emissions

    NASA Technical Reports Server (NTRS)

    Walterscheid, R. L.; Schubert, G.; Hickey, M. P.

    1994-01-01

    A comparison is undertaken of theories for the gravity wave induced fluctuations in the intensity of airglow emissions and the associated temperature of the source region. The comparison is made in terms of Krassovsky's ratio eta(sub E) for a vertically extended emission region (eta(sub E) is the ratio of the vertically integrated normalized intensity perturbation to the vertically integrated intensity-weighted temperature perturbation). It is shown that the formulas for eta(sub E) in the works by Tarasick and Hines (1990) and Schubert et al. (1991) are in agreement for the case of an inviscid atmosphere. The calculation of eta(sub E) using the theory of Tarasick and Hines (1990) requires determination of their function chi; we show that chi is simply related to the 'single-level' Krassovsky's ratio eta of Schubert et al. (1991). The general relationship between chi and eta is applied to a simple chemical-dynamical model of the O2 atmospheric airglow and the altitude dependence of these quantities is evaluated for nonsteady state chemistry. Though the Tarasick and Hines (1990) formula for eta(sub E) does not explicitly depend on the scale heights of the minor constituents involved in airglow chemistry, eta(sub E) implicitly depends upon these scale heights through its dependences on chemical production and loss contained in chi. We demonstrate this dependence of eta(sub E) for the OH nightglow on atomic oxygen scale height by direct numerical evaluation of eta(sub E) in this case the dependence originates in the chemical production of perturbed ozone.

  11. Measurement of energetic-particle-driven core magnetic fluctuations and induced fast-ion transport

    NASA Astrophysics Data System (ADS)

    Lin, L.; Ding, W. X.; Brower, D. L.; Koliner, J. J.; Eilerman, S.; Reusch, J. A.; Anderson, J. K.; Nornberg, M. D.; Sarff, J. S.; Waksman, J.; Liu, D.

    2013-03-01

    Internal fluctuations arising from energetic-particle-driven instabilities, including both density and radial magnetic field, are measured in a reversed-field-pinch plasma. The fluctuations peak near the core where fast ions reside and shift outward along the major radius as the instability transits from the n = 5 to n = 4 mode. During this transition, strong nonlinear three-wave interaction among multiple modes accompanied by enhanced fast-ion transport is observed.

  12. Tissue deformation induced by radiation force from Gaussian transducers.

    PubMed

    Myers, Matthew R

    2006-05-01

    Imaging techniques based upon the tissue mechanical response to an acoustic radiation force are being actively researched. In this paper a model for predicting steady-state tissue displacement induced by a radiation force arising from the absorption of Gaussian ultrasound beams is presented. A simple analytic expression is derived that agrees closely with the numerical quadrature of the displacement convolution integrals. The analytic result reveals the dependence of the steady-state axial displacement upon the operational parameters, e.g., an inverse proportional relationship to the tissue shear modulus. The derivation requires that the transducer radius be small compared to the focal length, but accurate results were obtained for transducer radii comparable to the focal length. Favorable comparisons with displacement predictions for non-Gaussian transducers indicate that the theory is also useful for a broader range of transducer intensity profiles.

  13. Optical measurements of fluctuating temperatures in a supersonic turbulent flow using one- and two-photon, laser-induced fluorescence

    NASA Technical Reports Server (NTRS)

    Gross, K. P.; Mckenzie, R. L.

    1984-01-01

    A laser-induced fluorescence technique has been developed that provides a practical means of nonintrusively measuring the instantaneous temperatures in low-temperature turbulent flows. The capabilities of the method are reviewed, and its application to a simple, two-dimensional, turbulent boundary-layer flow at Mach 2 is reported. Measurements of the average temperature distribution through the boundary layer and the magnitudes of temperature fluctuations about their average values are presented.

  14. Optical measurements of fluctuating temperatures in a supersonic turbulent flow using one- and two-photon, laser-induced fluorescence

    NASA Technical Reports Server (NTRS)

    Gross, K. P.; Mckenzie, R. L.

    1984-01-01

    A laser-induced fluorescence technique was developed that provides a practical means of nonintrusively measuring the instantaneous temperatures in low-temperature turbulent flows. The capabilities of the method are reviewed, and its application to a simple, two-dimensional, turbulent boundary-layer flow at Mach 2 is reported. Measurements of the average temperature distribution through the boundary layer and the magnitudes of temperature fluctuations about their average values are presented.

  15. Interferometric fiber-optic gyroscope performance owing to temperature-induced index fluctuations in the fiber: effect on bias modulation

    NASA Astrophysics Data System (ADS)

    Knudsen, Sverre; Bløtekjær, Kjell

    1995-06-01

    An analysis of the noise floor owing to temperature-induced index fluctuations in the fiber of a dynamically biased interferometric fiber-optic gyroscope is presented. A comparison with shot noise indicates that, for a harmonic bias modulation, thermal noise in the fiber dominates for fiber lengths longer than \\similar 1 - 2km when practical source power levels are considered. The noise can be reduced or eliminated by the proper choice of modulation frequency or waveform.

  16. Moist Greenhouse states with solar and CO2-induced forcing

    NASA Astrophysics Data System (ADS)

    Popp, Max; Schmidt, Hauke; Marotzke, Jochem

    2016-04-01

    Water-rich planets such as Earth are expected to become eventually uninhabitable, because liquid water does not remain stable at the surface as surface temperatures increase with the solar luminosity over time. It is conceivable that a large increase in atmospheric greenhouse-gas concentrations could also destroy the habitability of water-rich planets, but previous studies could not clearly establish this. Here we use for the first time a state-of-the-art atmospheric general circulation model, namely a modified version of ECHAM6, to compare the potential of both solar and CO2-induced forcing to render a water-rich planet uninhabitable. We find that CO2-induced forcing as readily destabilizes a present-day Earth-like climate as does solar forcing. This climate instability is caused by a positive cloud feedback, which is in turn caused by the weakening large-scale circulation with increasing surface temperature. The climate does not run away, but instead attains a new steady state with global-mean sea-surface temperatures above 330 K. The upper atmosphere is considerably moister in this warm steady state than in the reference climate. The upper-atmospheric mixing ratio of water exceeds the so-called Moist-Greenhouse limit, which implies that the planet would be subject to substantial loss of water to space. For either a certain range of elevated CO2 concentrations or solar irradiation, we find both cold and warm equilibrium states. Therefore the transition to the warm state may not simply be reversed by removing the additional forcing.

  17. Current-induced forces and hot spots in biased nanojunctions.

    PubMed

    Lü, Jing-Tao; Christensen, Rasmus B; Wang, Jian-Sheng; Hedegård, Per; Brandbyge, Mads

    2015-03-06

    We investigate theoretically the interplay of current-induced forces (CIFs), Joule heating, and heat transport inside a current-carrying nanoconductor. We find that the CIFs, due to the electron-phonon coherence, can control the spatial heat dissipation in the conductor. This yields a significant asymmetric concentration of excess heating (hot spot) even for a symmetric conductor. When coupled to the electrode phonons, CIFs drive different phonon heat flux into the two electrodes. First-principles calculations on realistic biased nanojunctions illustrate the importance of the effect.

  18. Effects of eddy viscosity and thermal conduction and Coriolis force in the dynamics of gravity wave driven fluctuations in the OH nightglow

    NASA Technical Reports Server (NTRS)

    Hickey, M. P.

    1988-01-01

    The chemical-dynamical model of Walterscheid et al. (1987), which describes wave-driven fluctuations in OH nightglow, was modified to include the effects of both eddy thermal conduction and viscosity, as well as the Coriolis force (with the shallow atmosphere approximation). Using the new model, calculations were performed for the same nominal case as used by Walterscheid et al. but with only wave periods considered. For this case, the Coriolis force was found to be unimportant at any wave period. For wave periods greater than 2 or 3 hours, the inclusion of thermal conduction alone greatly modified the results (in terms of a complex ratio 'eta' which expresses the relationship between the intensity oscillation about the time-averaged intensity and the temperature oscillation about the time-averaged temperature); this effect was reduced with the further inclusion of the eddy viscosity.

  19. Polysilicon Gate Enhancement of the Random Dopant Induced Threshold Voltage Fluctuations in Sub-100 nm MOSFET's with Ultrathin Gate Oxide

    NASA Technical Reports Server (NTRS)

    Asenov, Asen; Saini, Subhash

    2000-01-01

    In this paper, we investigate various aspects of the polysilicon gate influence on the random dopant induced threshold voltage fluctuations in sub-100 nm MOSFET's with ultrathin gate oxides. The study is done by using an efficient statistical three-dimensional (3-D) "atomistic" simulation technique described else-where. MOSFET's with uniform channel doping and with low doped epitaxial channels have been investigated. The simulations reveal that even in devices with a single crystal gate the gate depletion and the random dopants in it are responsible for a substantial fraction of the threshold voltage fluctuations when the gate oxide is scaled-in the range of 1-2 nm. Simulation experiments have been used in order to separate the enhancement in the threshold voltage fluctuations due to an effective increase in the oxide thickness associated with the gate depletion from the direct influence of the random dopants in the gate depletion layer. The results of the experiments show that the both factors contribute to the enhancement of the threshold voltage fluctuations, but the effective increase in the oxide-thickness has a dominant effect in the investigated range of devices. Simulations illustrating the effect or the polysilicon grain boundaries on the threshold voltage variation are also presented.

  20. Research of fluid-induced pressure fluctuation due to impeller-volute interaction in a centrifugal pump

    NASA Astrophysics Data System (ADS)

    Liu, Q. Z.; Yang, K.; Y Li, D.; Gong, R. Z.

    2013-12-01

    The fluid pressure fluctuation generated by unsteady flow is a very important factor to induce vibration of the centrifugal pump. The relative movement between impeller and volute generates an unsteady interaction which affects not only the overall pump performance, but is also responsible for pressure fluctuations. Pressure fluctuations interact with the volute casing or even with the circuit and give rise to dynamic effects over the mechanical parts, which are one of the most important sources of vibration and hydraulic noise. To investigate the flow characteristic in the centrifugal pump, the unsteady flow is simulated by CFD methods in this paper. Unsteady flow characteristic in the centrifugal pump is obtained considering the impeller-volute interaction in the whole flow field. Based on the unsteady flow simulation, amplitude-frequency characteristics of the pressure fluctuation in the centrifugal pump are obtained through setting up monitoring point at the impeller outlet. The research shows that the frequency component include the blade passing frequency as the main component, the multiplication of blade passing frequency, and the harmonic interference due to the unsteady flow.

  1. Decay of bound states in the continuum of Majorana fermions induced by vacuum fluctuations: Proposal of qubit technology

    NASA Astrophysics Data System (ADS)

    Ricco, L. S.; Marques, Y.; Dessotti, F. A.; Machado, R. S.; de Souza, M.; Seridonio, A. C.

    2016-04-01

    We report on a theoretical investigation of the interplay between vacuum fluctuations, Majorana quasiparticles (MQPs), and bound states in the continuum (BICs) by proposing a new venue for qubit storage. BICs emerge due to quantum interference processes as the Fano effect and, since such a mechanism is unbalanced, these states decay as regular into the continuum. Such fingerprints identify BICs in graphene as we have discussed in detail in Phys. Rev. B 92, 245107 (2015), 10.1103/PhysRevB.92.245107 and Phys. Rev. B, 92, 045409 (2015), 10.1103/PhysRevB.92.045409. Here, by considering two semi-infinite Kitaev chains within the topological phase, coupled to a quantum dot (QD) hybridized with leads, we show the emergence of a novel type of BICs, in which MQPs are trapped. As the MQPs of these chains far apart build a delocalized fermion and qubit, we identify that the decay of these BICs is not connected to Fano and it occurs when finite fluctuations are observed in the vacuum composed by electron pairs for this qubit. From the experimental point of view, we also show that vacuum fluctuations can be induced just by changing the chain-dot couplings from symmetric to asymmetric. Hence, we show how to perform the qubit storage within two delocalized BICs of MQPs and to access it when the vacuum fluctuates by means of a complete controllable way in quantum transport experiments.

  2. A 3D CFD Simulation and Analysis of Flow-Induced Forces on Polymer Piezoelectric Sensors in a Chinese Liquors Identification E-Nose.

    PubMed

    Gu, Yu; Wang, Yang-Fu; Li, Qiang; Liu, Zu-Wu

    2016-10-20

    Chinese liquors can be classified according to their flavor types. Accurate identification of Chinese liquor flavors is not always possible through professional sommeliers' subjective assessment. A novel polymer piezoelectric sensor electric nose (e-nose) can be applied to distinguish Chinese liquors because of its excellent ability in imitating human senses by using sensor arrays and pattern recognition systems. The sensor, based on the quartz crystal microbalance (QCM) principle is comprised of a quartz piezoelectric crystal plate sandwiched between two specific gas-sensitive polymer coatings. Chinese liquors are identified by obtaining the resonance frequency value changes of each sensor using the e-nose. However, the QCM principle failed to completely account for a particular phenomenon: we found that the resonance frequency values fluctuated in the stable state. For better understanding the phenomenon, a 3D Computational Fluid Dynamics (CFD) simulation using the finite volume method is employed to study the influence of the flow-induced forces to the resonance frequency fluctuation of each sensor in the sensor box. A dedicated procedure was developed for modeling the flow of volatile gas from Chinese liquors in a realistic scenario to give reasonably good results with fair accuracy. The flow-induced forces on the sensors are displayed from the perspective of their spatial-temporal and probability density distributions. To evaluate the influence of the fluctuation of the flow-induced forces on each sensor and ensure the serviceability of the e-nose, the standard deviation of resonance frequency value (SDF) and the standard deviation of resultant forces (SDFy) in y-direction (Fy) are compared. Results show that the fluctuations of Fy are bound up with the resonance frequency values fluctuations. To ensure that the sensor's resonance frequency values are steady and only fluctuate slightly, in order to improve the identification accuracy of Chinese liquors using

  3. A 3D CFD Simulation and Analysis of Flow-Induced Forces on Polymer Piezoelectric Sensors in a Chinese Liquors Identification E-Nose

    PubMed Central

    Gu, Yu; Wang, Yang-Fu; Li, Qiang; Liu, Zu-Wu

    2016-01-01

    Chinese liquors can be classified according to their flavor types. Accurate identification of Chinese liquor flavors is not always possible through professional sommeliers’ subjective assessment. A novel polymer piezoelectric sensor electric nose (e-nose) can be applied to distinguish Chinese liquors because of its excellent ability in imitating human senses by using sensor arrays and pattern recognition systems. The sensor, based on the quartz crystal microbalance (QCM) principle is comprised of a quartz piezoelectric crystal plate sandwiched between two specific gas-sensitive polymer coatings. Chinese liquors are identified by obtaining the resonance frequency value changes of each sensor using the e-nose. However, the QCM principle failed to completely account for a particular phenomenon: we found that the resonance frequency values fluctuated in the stable state. For better understanding the phenomenon, a 3D Computational Fluid Dynamics (CFD) simulation using the finite volume method is employed to study the influence of the flow-induced forces to the resonance frequency fluctuation of each sensor in the sensor box. A dedicated procedure was developed for modeling the flow of volatile gas from Chinese liquors in a realistic scenario to give reasonably good results with fair accuracy. The flow-induced forces on the sensors are displayed from the perspective of their spatial-temporal and probability density distributions. To evaluate the influence of the fluctuation of the flow-induced forces on each sensor and ensure the serviceability of the e-nose, the standard deviation of resonance frequency value (SDF) and the standard deviation of resultant forces (SDFy) in y-direction (Fy) are compared. Results show that the fluctuations of Fy are bound up with the resonance frequency values fluctuations. To ensure that the sensor's resonance frequency values are steady and only fluctuate slightly, in order to improve the identification accuracy of Chinese liquors using

  4. Analysis of Numerical Simulation Database for Pressure Fluctuations Induced by High-Speed Turbulent Boundary Layers

    NASA Technical Reports Server (NTRS)

    Duan, Lian; Choudhari, Meelan M.

    2014-01-01

    Direct numerical simulations (DNS) of Mach 6 turbulent boundary layer with nominal freestream Mach number of 6 and Reynolds number of Re(sub T) approximately 460 are conducted at two wall temperatures (Tw/Tr = 0.25, 0.76) to investigate the generated pressure fluctuations and their dependence on wall temperature. Simulations indicate that the influence of wall temperature on pressure fluctuations is largely limited to the near-wall region, with the characteristics of wall-pressure fluctuations showing a strong temperature dependence. Wall temperature has little influence on the propagation speed of the freestream pressure signal. The freestream radiation intensity compares well between wall-temperature cases when normalized by the local wall shear; the propagation speed of the freestream pressure signal and the orientation of the radiation wave front show little dependence on the wall temperature.

  5. Effect of syncytium structure of receptor systems on stochastic resonance induced by chaotic potential fluctuation.

    PubMed Central

    Kashimori, Y; Funakubo, H; Kambara, T

    1998-01-01

    To study a role of syncytium structure of sensory receptor systems in the detection of weak signals through stochastic resonance, we present a model of a receptor system with syncytium structure in which receptor cells are interconnected by gap junctions. The apical membrane of each cell includes two kinds of ion channels whose gating processes are described by the deterministic model. The membrane potential of each cell fluctuates chaotically or periodically, depending on the dynamical state of collective channel gating. The chaotic fluctuation of membrane potential acts as internal noise for the stochastic resonance. The detection ability of the system increases as the electric conductance between adjacent cells generated by the gap junction increases. This effect of gap junctions arises mainly from the fact that the synchronization of chaotic fluctuation of membrane potential between the receptor cells is strengthened as the density of gap junctions is increased. PMID:9746512

  6. Stochastic Faraday rotation induced by the electric current fluctuations in nanosystems

    NASA Astrophysics Data System (ADS)

    Smirnov, D. S.; Glazov, M. M.

    2017-01-01

    We demonstrate theoretically that in gyrotropic semiconductors and semiconductor nanosystems the Brownian motion of electrons results in temporal fluctuations of the polarization plane of light passing through or reflected from the structure, i.e., in stochastic Faraday or Kerr rotation effects. The theory of the effects is developed for a number of prominent gyrotropic systems such as bulk tellurium, ensembles of chiral carbon nanotubes, and GaAs-based quantum wells of different crystallographic orientations. We show that the power spectrum of these fluctuations in thermal equilibrium is proportional to the a c conductivity of the system. We evaluate contributions resulting from the fluctuations of the electric current, as well as of spin, valley polarization, and the spin current to the noise of the Faraday/Kerr rotation. Hence all-optical measurements of the Faraday and Kerr rotation noise provide an access to the transport properties of the semiconductor systems.

  7. Finite-difference analysis of plasmon-induced forces of metal nano-clusters by the Lorentz force formulation.

    PubMed

    Fujii, Masafumi

    2010-12-20

    We analyze light-induced forces on metal nano-spheres by using the three-dimensional finite-difference time-domain method with the Lorentz force formulation. Convergent analysis of the force on metal nano-particle clusters has been achieved by integrating the Lorentz and the Coulomb forces over the volume of the metal particles. Comparison to the Mie theory of radiation pressure on metal spheres under a plane wave illumination has verified rigorously the accuracy of the numerical method. We also analyze separate two metal spheres in close proximity and the results of the induced forces are compared to those in previous publications. The present method allows analysis of forces on various irregular structures; we apply the method to touching metal spheres, forming a simple cluster with a slight deformation at the contact point, to analyze the forces induced by the plasmonic resonance of the clusters. We show that the fundamental resonance modes, which newly appear in an infrared range when spheres are touching, exhibit strong binding forces within the clusters. Based on the numerical analyses we identify the resonance modes and evaluate quantitatively the infrared-induced forces on metal nano-sphere clusters.

  8. Geographic variation in the flood-induced fluctuating temperature requirement for germination in Setaria parviflora seeds.

    PubMed

    Mollard, F P O; Insausti, P

    2011-07-01

    Our aim was to search for specific seed germinative strategies related to flooding escape in Setaria parviflora, a common species across the Americas. For this purpose, we investigated induction after floods, in relation to fluctuating temperature requirements for germination in seeds from mountain, floodplain and successional grasslands. A laboratory experiment was conducted in which seeds were imbibed or immersed in water at 5°C. Seeds were also buried in flood-prone and upland grasslands and exhumed during the flooding season. Additionally, seeds were buried in flooded or drained grassland mesocosms. Germination of exhumed seeds was assayed at 25°C or at 20°C/30°C in the dark or in the presence of red light pulses. After submergence or soil flooding, a high fraction (>32%) of seeds from the floodplain required fluctuating temperatures to germinate. In contrast, seeds from the mountains showed maximum differences in germination between fluctuating and constant temperature treatment only after imbibition (35%) or in non-flooded soil conditions (40%). The fluctuating temperature requirement was not clearly related to the foregoing conditions in the successional grassland seeds. Maximum germination could also be attained with red light pulses to seeds from mountain and successional grasslands. Results show that the fluctuating temperature requirement might help floodplain seeds to germinate after floods, indicating a unique feature of the dormancy of S. parviflora seeds from floodplains, which suggests an adaptive advantage aimed at postponing emergence during inundation periods. In contrast, the fluctuating temperature required for germination among seeds from mountain and successional grasslands show its importance for gap detection.

  9. Microwave-induced excess quasiparticles in superconducting resonators measured through correlated conductivity fluctuations

    NASA Astrophysics Data System (ADS)

    de Visser, P. J.; Baselmans, J. J. A.; Yates, S. J. C.; Diener, P.; Endo, A.; Klapwijk, T. M.

    2012-04-01

    We have measured the number of quasiparticles and their lifetime in aluminium superconducting microwave resonators. The number of excess quasiparticles below 160 mK decreases from 72 to 17 μm-3 with a 6 dB decrease of the microwave power. The quasiparticle lifetime increases accordingly from 1.4 to 3.5 ms. These properties of the superconductor were measured through the spectrum of correlated fluctuations in the quasiparticle system and condensate of the superconductor, which show up in the resonator amplitude and phase, respectively. Because uncorrelated noise sources vanish, fluctuations in the superconductor can be studied with a sensitivity close to the vacuum noise.

  10. Appearance of a homochiral state of crystals induced by random fluctuation in grinding

    NASA Astrophysics Data System (ADS)

    Katsuno, Hiroyasu; Uwaha, Makio

    2012-11-01

    We study crystallization of chiral crystals from achiral molecules using a master equation based on a simple reaction model. Although there is no chiral symmetry breaking in the reaction model, random fluctuations drive the system to a homochiral state. The time necessary for the appearance of the homochiral state is proportional to the total number of molecules in the system. This behavior is described by a diffusion equation in a size space with a position-dependent diffusion coefficient. We also study the effect of chiral impurities, which affect the crystal growth. Depending on the type of impurities, the chiral symmetry breaking occurs either deterministically or with the help of random fluctuations.

  11. Experimental identification of pedestrian-induced lateral forces on footbridges

    NASA Astrophysics Data System (ADS)

    Ingólfsson, E. T.; Georgakis, C. T.; Ricciardelli, F.; Jönsson, J.

    2011-03-01

    This paper presents a comprehensive experimental analysis of lateral forces generated by single pedestrians during continuous walking on a treadmill. Two different conditions are investigated; initially the treadmill is fixed and then it is laterally driven in a sinusoidal motion at varying combinations of frequencies (0.33-1.07 Hz) and amplitudes (4.5-48 mm). The experimental campaign involved 71 male and female human adults and covered approximately 55 km of walking distributed between 4954 individual tests. When walking on a laterally moving surface, motion-induced forces develop at the frequency of the movement and are herewith quantified through equivalent velocity and acceleration proportional coefficients. Their dependency on the vibration frequency and amplitude is presented, both in terms of mean values and probabilistically to illustrate the randomness associated with intra- and inter-subject variability. It is shown that the motion-induced portion of the pedestrian load (on average) inputs energy into the structure in the frequency range (normalised by the mean walking frequency) between approximately 0.6 and 1.2. Furthermore, it is shown that the load component in phase with the acceleration of the treadmill depends on the frequency of the movement, such that pedestrians (on average) subtract from the overall modal mass for low frequency motion and add to the overall modal mass at higher frequencies.

  12. Limitations to photosynthesis by proton motive force-induced photosystem II photodamage

    PubMed Central

    Davis, Geoffry A; Kanazawa, Atsuko; Schöttler, Mark Aurel; Kohzuma, Kaori; Froehlich, John E; Rutherford, A William; Satoh-Cruz, Mio; Minhas, Deepika; Tietz, Stefanie; Dhingra, Amit; Kramer, David M

    2016-01-01

    The thylakoid proton motive force (pmf) generated during photosynthesis is the essential driving force for ATP production; it is also a central regulator of light capture and electron transfer. We investigated the effects of elevated pmf on photosynthesis in a library of Arabidopsis thaliana mutants with altered rates of thylakoid lumen proton efflux, leading to a range of steady-state pmf extents. We observed the expected pmf-dependent alterations in photosynthetic regulation, but also strong effects on the rate of photosystem II (PSII) photodamage. Detailed analyses indicate this effect is related to an elevated electric field (Δψ) component of the pmf, rather than lumen acidification, which in vivo increased PSII charge recombination rates, producing singlet oxygen and subsequent photodamage. The effects are seen even in wild type plants, especially under fluctuating illumination, suggesting that Δψ-induced photodamage represents a previously unrecognized limiting factor for plant productivity under dynamic environmental conditions seen in the field. DOI: http://dx.doi.org/10.7554/eLife.16921.001 PMID:27697149

  13. Limitations to photosynthesis by proton motive force-induced photosystem II photodamage

    DOE PAGES

    Davis, Geoffry A.; Kanazawa, Atsuko; Schöttler, Mark Aurel; ...

    2016-10-04

    The thylakoid proton motive force ( pmf ) generated during photosynthesis is the essential driving force for ATP production; it is also a central regulator of light capture and electron transfer. We investigated the effects of elevated pmf on photosynthesis in a library of Arabidopsis thaliana mutants with altered rates of thylakoid lumen proton efflux, leading to a range of steady-state pmf extents. We observed the expected pmf- dependent alterations in photosynthetic regulation, but also strong effects on the rate of photosystem II (PSII) photodamage. Detailed analyses indicate this effect is related to an elevated electric field (Δ ψmore » ) component of the pmf , rather than lumen acidification, which in vivo increased PSII charge recombination rates, producing singlet oxygen and subsequent photodamage. The effects are seen even in wild type plants, especially under fluctuating illumination, suggesting that Δ ψ -induced photodamage represents a previously unrecognized limiting factor for plant productivity under dynamic environmental conditions seen in the field.« less

  14. Acute blood glucose fluctuation induces myocardial apoptosis through oxidative stress and nuclear factor-ĸB activation.

    PubMed

    Zhang, Wei; Zhao, Sheng; Li, Yan; Peng, Guanjing; Han, Ping

    2013-01-01

    It was the aim of this study to investigate whether acute blood glucose fluctuation induces myocardial apoptosis and to examine the potential mechanisms. Wistar rats were infused intermittently or continually with 50% glucose solution for 48 h. Serum and myocardium were taken to measure the levels of malondialdehyde and glutathione peroxidase. The expression of nuclear factor (NF)-ĸB and apoptosis in myocardial cells was determined with immunohistochemisty and terminal deoxynucleotidyl transferase dUTP nick end labeling, respectively. Expressions of B-cell lymphoma/leukemia-2-associated X protein and B-cell lymphoma/leukemia 2 in myocardium were tested with Western blot analysis. The levels of malondialdehyde and B-cell lymphoma/leukemia-2-associated X protein in the acute blood glucose fluctuation group (AFG) were enhanced, but glutathione peroxidase and B-cell lymphoma/leukemia-2 were reduced compared with levels in the continually high blood glucose group (p < 0.05). The expression of NF-ĸB in the nuclei of myocardial cells in the AFG was significantly higher than that in the continually high blood glucose group (p < 0.05). Apoptotic myocytes were observed in myocardium of the AFG. Acute blood glucose fluctuation induces myocardial apoptosis, apparently associated with enhanced oxidative stress and activation of NF-ĸB. Copyright © 2012 S. Karger AG, Basel.

  15. Fluctuating plasma phosphorus level by changes in dietary phosphorus intake induces endothelial dysfunction.

    PubMed

    Watari, Eriko; Taketani, Yutaka; Kitamura, Tomoyo; Tanaka, Terumi; Ohminami, Hirokazu; Abuduli, Maerjianghan; Harada, Nagakatsu; Yamanaka-Okumura, Hisami; Yamamoto, Hironori; Takeda, Eiji

    2015-01-01

    High serum phosphorus (P) impairs endothelial function by increasing oxidative stress and decreasing nitric oxide production. Serum P levels fluctuate due to circadian rhythms or dietary P intake in healthy people and due to dialysis in end-stage chronic kidney disease patients. Here we examined whether fluctuating plasma P caused by changes in dietary P intake may be involved in endothelial dysfunction, resulting in increased cardiovascular risk. Rats were fed a diet containing 0.6% P for 16 days (control group), or a diet alternating between 0.02% P and 1.2% P (LH group) or between 1.2% P and 0.02% P (HL group) every 2 days; the total amount of P intake among the groups during the feeding period was similar. In the LH and HL groups, endothelial-dependent vasodilation significantly decreased plasma 8-(OH)dG level significantly increased, and the expression of inflammatory factors such as MCP-1 increased in the endothelium as compared with the control group. These data indicate that repetitive fluctuations of plasma P caused by varying dietary P intake can impair endothelial function via increased oxidative stress and inflammatory response. Taken together, these results suggest that habitual fluctuation of dietary P intake might be a cause of cardiovascular disease through endothelial dysfunction, especially in chronic kidney disease patients.

  16. Nonlinear behavior and fluctuation-induced dynamics in the photosensitive Belousov-Zhabotinsky reaction.

    PubMed

    Voorsluijs, Valérie; Kevrekidis, Ioannis G; De Decker, Yannick

    2017-08-23

    The photosensitive Belousov-Zhabotinsky (pBZ) reaction has been used extensively to study the properties of chemical oscillators. In particular, recent experiments revealed the existence of complex spatiotemporal dynamics for systems consisting of coupled micelles (V < 10(-21) L) or droplets (V ≈ [10(-8)-10(-11)] L) in which the pBZ reaction takes place. These results have been mostly understood in terms of reaction-diffusion models. However, in view of the small size of the droplets and micelles, large fluctuations of concentrations are to be expected. In this work, we investigate the role of fluctuations on the dynamics of a single droplet with stochastic simulations of an extension of the Field-Körös-Noyes (FKN) model taking into account the photosensitivity. The birhythmicity and chaotic behaviors predicted by the FKN model in the absence of fluctuations become transient or intermittent regimes whose lifetime decreases with the size of the droplet. Simple oscillations are more robust and can be observed even in small systems (V > 10(-12) L), which justifies the use of deterministic models in microfluidic systems of coupled oscillators. The simulations also reveal that fluctuations strongly affect the efficiency of inhibition by light, which is often used to control the kinetics of these systems: oscillations are found for parameter values for which they are supposed to be quenched according to deterministic predictions.

  17. Fluctuating plasma phosphorus level by changes in dietary phosphorus intake induces endothelial dysfunction

    PubMed Central

    Watari, Eriko; Taketani, Yutaka; Kitamura, Tomoyo; Tanaka, Terumi; Ohminami, Hirokazu; Abuduli, Maerjianghan; Harada, Nagakatsu; Yamanaka-Okumura, Hisami; Yamamoto, Hironori; Takeda, Eiji

    2015-01-01

    High serum phosphorus (P) impairs endothelial function by increasing oxidative stress and decreasing nitric oxide production. Serum P levels fluctuate due to circadian rhythms or dietary P intake in healthy people and due to dialysis in end-stage chronic kidney disease patients. Here we examined whether fluctuating plasma P caused by changes in dietary P intake may be involved in endothelial dysfunction, resulting in increased cardiovascular risk. Rats were fed a diet containing 0.6% P for 16 days (control group), or a diet alternating between 0.02% P and 1.2% P (LH group) or between 1.2% P and 0.02% P (HL group) every 2 days; the total amount of P intake among the groups during the feeding period was similar. In the LH and HL groups, endothelial-dependent vasodilation significantly decreased plasma 8-(OH)dG level significantly increased, and the expression of inflammatory factors such as MCP-1 increased in the endothelium as compared with the control group. These data indicate that repetitive fluctuations of plasma P caused by varying dietary P intake can impair endothelial function via increased oxidative stress and inflammatory response. Taken together, these results suggest that habitual fluctuation of dietary P intake might be a cause of cardiovascular disease through endothelial dysfunction, especially in chronic kidney disease patients. PMID:25678749

  18. Experimental investigation of lateral forces induced by flow through model labyrinth glands

    NASA Technical Reports Server (NTRS)

    Leong, Y. M. M. S.; Brown, R. D.

    1984-01-01

    The lateral forces induced by flow through model labyrinth glands were investigated. Circumferential pressure distributions, lateral forces and stiffness coefficients data obtained are discussed. The force system is represented as a negative spring and a tangential force orthogonal to eccentricity. The magnitude of these forces are dependent on eccentricity, entry swirl, rotor peripheral velocity and seal size. A pressure equalization chamber at midgland tests should in significantly reduced forces and stiffness coefficients.

  19. Wavelength dependence of eddy dissipation and Coriolis force in the dynamics of gravity wave driven fluctuations in the OH nightglow

    NASA Technical Reports Server (NTRS)

    Hickey, M. P.

    1988-01-01

    This paper examines the effect of inclusion of Coriolis force and eddy dissipation in the gravity wave dynamics theory of Walterscheid et al. (1987). It was found that the values of the ratio 'eta' (where eta is a complex quantity describing the ralationship between the intensity oscillation about the time-averaged intensity, and the temperature oscillation about the time-averaged temperature) strongly depend on the wave period and the horizontal wavelength; thus, if comparisons are to be made between observations and theory, horizontal wavelengths will need to be measured in conjunction with the OH nightglow measurements. For the waves with horizontal wavelengths up to 1000 km, the eddy dissipation was found to dominate over the Coriolis force in the gravity wave dynamics and also in the associated values of eta. However, for waves with horizontal wavelengths of 10,000 km or more, the Coriolis force cannot be neglected; it has to be taken into account along with the eddy dissipation.

  20. Fluctuations in isometric muscle force can be described by one linear projection of low-frequency components of motor unit discharge rates.

    PubMed

    Negro, Francesco; Holobar, Ales; Farina, Dario

    2009-12-15

    The aim of the study was to investigate the relation between linear transformations of motor unit discharge rates and muscle force. Intramuscular (wire electrodes) and high-density surface EMG (13 x 5 electrode grid) were recorded from the abductor digiti minimi muscle of eight healthy men during 60 s contractions at 5%, 7.5% and 10% of the maximal force. Spike trains of a total of 222 motor units were identified from the EMG recordings with decomposition algorithms. Principal component analysis of the smoothed motor unit discharge rates indicated that one component (first common component, FCC) described 44.2 +/- 7.5% of the total variability of the smoothed discharge rates when computed over the entire contraction interval and 64.3 +/- 10.2% of the variability when computed over 5 s intervals. When the FCC was computed from four or more motor units per contraction, it correlated with the force produced by the muscle (62.7 +/- 10.1%) by a greater degree (P < 0.001) than the smoothed discharge rates of individual motor units (41.4 +/- 7.8%). The correlation between FCC and the force signal increased up to 71.8 +/- 13.1% when the duration and the shape of the smoothing window for discharge rates were similar to the average motor unit twitch force. Moreover, the coefficients of variation (CoV) for the force and for the FCC signal were correlated in all subjects (R(2) range = 0.14-0.56; P < 0.05) whereas the CoV for force was correlated to the interspike interval variability in only one subject (R(2) = 0.12; P < 0.05). Similar results were further obtained from measures on the tibialis anterior muscle of an additional eight subjects during contractions at forces up to 20% of the maximal force (e.g. FCC explained 59.8 +/- 11.0% of variability of the smoothed discharge rates). In conclusion, one signal captures most of the underlying variability of the low-frequency components of motor unit discharge rates and explains large part of the fluctuations in the motor output

  1. Fluctuation-induced conductivity of superconductors above the transition temperature - Regularization of the Maki diagram.

    NASA Technical Reports Server (NTRS)

    Keller, J.; Korenman, V.

    1972-01-01

    The Maki contribution to the conductivity above the superconducting transition temperature is regularized within the framework of the BCS theory. This is achieved through the renormalization of the impurity-scattering vertex by inclusion of the effects of pair fluctuations. The conductivity is evaluated for a thin film. It depends only on the reduced temperature and the normal resistance per square. Fair agreement is found with Al films over a wide temperature range. Agreement is not found with experiments on Bi, Pb, and Ga films, which apparently contain a strong additional pair-breaking effect. The temperature range in which interactions among fluctuations become important in the Maki conductivity is generally larger than that given by the Ginzburg criterion.

  2. Structure-fluctuation-induced abnormal thermoelectric properties in semiconductor copper selenide

    SciTech Connect

    Liu, Huili; Shi, Xun; Kirkham, Melanie J; Wang, Hsin; Li, Qiang; Uher, Ctirad; Zhang, Wenqing; Chen, Lidong

    2013-01-01

    Thermoelectric effects and related technologies have attracted a great interest due to the world-wide energy harvesting. Thermoelectricity has usually been considered in the context of stable material phases. Here we report that the fluctuation of structures during the second-order phase transition in Cu2Se semiconductor breaks the conventional trends of thermoelectric transports in normal phases, leading to a critically phase-transition-enhanced thermoelectric figure of merit zT above unity at 400K, a three times larger value than for the normal phases. Dynamic structural transformations introduce intensive fluctuations and extreme complexity, which enhance the carrier entropy and thus the thermopower, and strongly scatter carriers and phonons as well to make their transports behave critically.

  3. Computational Investigation of Block Copolymer Surfactants for Stabilizing Fluctuation-Induced Polymeric Microemulsions

    NASA Astrophysics Data System (ADS)

    Delaney, Kris; Fredrickson, Glenn

    2013-03-01

    High molecular weight diblock copolymers introduced into a blend of immiscible homopolymers can act as a surfactant to suppress macroscopic two-fluid phase separation. With variation of block copolymer composition, the crossover between low-temperature ordering into microphase or macrophase separated states is marked by a mean-field isotropic Lifshitz multi-critical point. Strong fluctuations close to the Lifshitz point are observed to suppress the low-temperature ordering; a microemulsion state emerges, with large, co-continuous domains of segregated fluid lacking any long-range order. We study this phenomenon with fully fluctuating field-theoretic simulations based on complex Langevin sampling, and we attempt to design new block polymer surfactants that can produce the microemulsion state with a wider composition tolerance.

  4. Deformation-induced spatiotemporal fluctuation, evolution and localization of strain fields in a bulk metallic glass

    DOE PAGES

    Wu, Yuan; Bei, Hongbin; Wang, Yanli; ...

    2015-05-16

    Deformation behavior and local strain evolutions upon loading and unloading of a bulk metallic glass (BMG) were systematically investigated by in situ digital image correlation (DIC). Distinct fluctuations and irreversible local strains were observed before the onset of macroscopic yielding. Statistical analysis shows that these fluctuations might be related to intrinsic structural heterogeneities, and that the evolution history and characteristics of local strain fields play an important role in the subsequent initiation of shear bands. Effects of sample size, pre-strain, and loading conditions were systematically analyzed in terms of the probability distributions of the resulting local strain fields. It ismore » found that a higher degree of local shear strain heterogeneity corresponds to a more ductile stressestrain curve. Implications of these findings are discussed for the design of new materials.« less

  5. Deformation-induced spatiotemporal fluctuation, evolution and localization of strain fields in a bulk metallic glass

    SciTech Connect

    Wu, Yuan; Bei, Hongbin; Wang, Yanli; Lu, Zhaoping; George, Easo P.; Gao, Yanfei

    2015-05-16

    Deformation behavior and local strain evolutions upon loading and unloading of a bulk metallic glass (BMG) were systematically investigated by in situ digital image correlation (DIC). Distinct fluctuations and irreversible local strains were observed before the onset of macroscopic yielding. Statistical analysis shows that these fluctuations might be related to intrinsic structural heterogeneities, and that the evolution history and characteristics of local strain fields play an important role in the subsequent initiation of shear bands. Effects of sample size, pre-strain, and loading conditions were systematically analyzed in terms of the probability distributions of the resulting local strain fields. It is found that a higher degree of local shear strain heterogeneity corresponds to a more ductile stressestrain curve. Implications of these findings are discussed for the design of new materials.

  6. Precipitation-Induced Voltage-Dependent Ion Current Fluctuations in Conical Nanopores

    SciTech Connect

    Vlassiouk, Ivan V

    2010-01-01

    Single conically shaped nanopores produce stable ion current fluctuations when in contact with weakly soluble salts, such as calcium hydrogen phosphate (CaHPO{sub 4}) and cobalt hydrogen phosphate (CoHPO{sub 4}). The pore spontaneously switches between high and low conductance states, called open and closed states, respectively. Pore opening and closing are linked to the dynamic formation of the calcium and cobalt precipitates at the small opening of the pore. The probabilities of pore opening and closing are voltage-dependent, and this characteristic of ion current signal is known for biological voltage-gated channels. We show that new types of ion current fluctuations are obtained in conditions at which precipitates of CaHPO{sub 4} and CoHPO{sub 4} can form in the pore at the same time.

  7. Optofluidic lens actuated by laser-induced solutocapillary forces

    NASA Astrophysics Data System (ADS)

    Malyuk, A. Yu.; Ivanova, N. A.

    2017-06-01

    We demonstrate an adaptive liquid lens controlled by laser-induced solutocapillary forces. The liquid droplet serving as a lens is formed in a thin layer of binary liquid mixture by surface tension driven flows caused by the thermal action of laser irradiation. The shape of droplet, its aperture and the focal length are reversibly changed without hysteresis by varying the intensity of the laser beam. The focal length variation range of the droplet-lens lies in between infinity (a flat layer) to 15 mm (a curved interface). The droplet-lens is capable to adjust the in-plane lateral position in response to a displacement of the laser beam. The proposed laser controlled droplet-lens will enable to develop smart liquid optical devices, which can imitate the accommodation reflex and pupillary light reflex of the eye.

  8. Rapid fluctuations in extracellular brain glucose levels induced by natural arousing stimuli and intravenous cocaine: fueling the brain during neural activation

    PubMed Central

    Lenoir, Magalie

    2012-01-01

    Glucose, a primary energetic substrate for neural activity, is continuously influenced by two opposing forces that tend to either decrease its extracellular levels due to enhanced utilization in neural cells or increase its levels due to entry from peripheral circulation via enhanced cerebral blood flow. How this balance is maintained under physiological conditions and changed during neural activation remains unclear. To clarify this issue, enzyme-based glucose sensors coupled with high-speed amperometry were used in freely moving rats to evaluate fluctuations in extracellular glucose levels induced by brief audio stimulus, tail pinch (TP), social interaction with another rat (SI), and intravenous cocaine (1 mg/kg). Measurements were performed in nucleus accumbens (NAcc) and substantia nigra pars reticulata (SNr), which drastically differ in neuronal activity. In NAcc, where most cells are powerfully excited after salient stimulation, glucose levels rapidly (latency 2–6 s) increased (30–70 μM or 6–14% over baseline) by all stimuli; the increase differed in magnitude and duration for each stimulus. In SNr, where most cells are transiently inhibited by salient stimuli, TP, SI, and cocaine induced a biphasic glucose response, with the initial decrease (−20–40 μM or 5–10% below baseline) followed by a reboundlike increase. The critical role of neuronal activity in mediating the initial glucose response was confirmed by monitoring glucose currents after local microinjections of glutamate (GLU) or procaine (PRO). While intra-NAcc injection of GLU transiently increased glucose levels in this structure, intra-SNr PRO injection resulted in rapid, transient decreases in SNr glucose. Therefore, extracellular glucose levels in the brain change very rapidly after physiological and pharmacological stimulation, the response is structure specific, and the pattern of neuronal activity appears to be a critical factor determining direction and magnitude of physiological

  9. Calculations of internal-wave-induced fluctuations in ocean-acoustic propagation.

    PubMed

    Flatté, S M; Rovner, G

    2000-08-01

    Variability in the ocean sound-speed field on time scales of a few hours and horizontal spatial scales of a few kilometers is often dominated by the random, anisotropic fluctuations caused by the internal-wave field. Results have been compiled from analytical approaches and from numerical simulations using the parabolic approximation into an efficient set of algorithms for calculating approximations to internal-wave effects on temporal and spatial coherences, coherent bandwidths, and regimes of acoustic fluctuation behavior. These approximate formulas account for the background, deterministic, sound-speed profile and the anisotropy of the internal-wave field, and they also allow for the incorporation of experimentally determined profiles of sound speed, buoyancy frequency, and sound-speed variance. The algorithms start from the geometrical-acoustics approximation, in which the field transmitted from a source can be described completely in terms of rays whose characteristics are determined by the sound speed as a function of position. Ordinary integrals along these rays provide approximations to acoustic-fluctuation quantities due to the statistical effects of internal waves, including diffraction. The results from the algorithms are compared with numerical simulations and with experimental results for long-range propagation in the deep ocean.

  10. Possible weakly first-order superconducting transition induced by magnetic excitations in the YBCO system: A fluctuation conductivity study

    NASA Astrophysics Data System (ADS)

    Hneda, Marlon Luiz; da Silva Berchon, Luciano; Pureur, Paulo; das Neves Vieira, Valdemar; Jaeckel, Sandra Teixeira; Dias, Fábio Teixeira; Menegotto Costa, Rosângela

    2017-04-01

    Fluctuation conductivity is experimentally studied in the genuine critical region near the superconducting transition of YBa2Cu3O7 - δ, YBa2Cu2.985Fe0.015O7 - δ and Y0.95Ca0.05Ba2Cu3O7 - δ single crystal samples. Two fluctuation regimes where the electrical conductivity diverges as a power-law of the reduced temperature were systematically observed. In the first regime, farther from the critical temperature Tc, the transition behaves as predicted by the thermodynamics of the three dimensional-XY (3D-XY) universality class characteristic of a second-order phase transition. In the asymptotic regime closer to Tc a power-law regime characterized by a much smaller exponent is observed. The smallest value ever reported for the fluctuation conductivity exponent in the high-Tc superconductors is obtained for the Fe- and Ca-doped systems. We suggest that the regime beyond 3D-XY is a crossover towards a weakly first-order transition induced by internal magnetic excitations.

  11. Fluctuation-induced magnetization dynamics and criticality at the interface of a topological insulator with a magnetically ordered layer.

    PubMed

    Nogueira, Flavio S; Eremin, Ilya

    2012-12-07

    We consider a theory for a two-dimensional interacting conduction electron system with strong spin-orbit coupling on the interface between a topological insulator and the magnetic (ferromagnetic or antiferromagnetic) layer. For the ferromagnetic case we derive the Landau-Lifshitz equation, which features a contribution proportional to a fluctuation-induced electric field obtained by computing the topological (Chern-Simons) contribution from the vacuum polarization. We also show that fermionic quantum fluctuations reduce the critical temperature T[over ˜](c) at the interface relative to the critical temperature T(c) of the bulk, so that in the interval T[over ˜](c)≤Tfluctuations.

  12. Force.

    ERIC Educational Resources Information Center

    Gamble, Reed

    1989-01-01

    Discusses pupil misconceptions concerning forces. Summarizes some of Assessment of Performance Unit's findings on meaning of (1) force, (2) force and motion in one dimension and two dimensions, and (3) Newton's second law. (YP)

  13. Force.

    ERIC Educational Resources Information Center

    Gamble, Reed

    1989-01-01

    Discusses pupil misconceptions concerning forces. Summarizes some of Assessment of Performance Unit's findings on meaning of (1) force, (2) force and motion in one dimension and two dimensions, and (3) Newton's second law. (YP)

  14. Spatial mobility fluctuation induced giant linear magnetoresistance in multilayered graphene foam

    NASA Astrophysics Data System (ADS)

    Li, Peng; Zhang, Qiang; He, Xin; Ren, Wencai; Cheng, Hui-Ming; Zhang, Xi-xiang

    2016-07-01

    Giant, positive, and near-temperature-independent linear magnetoresistance (LMR), as large as 340%, was observed in graphene foam with a three-dimensional flexible network. Careful analysis of the magnetoresistance revealed that Shubnikov-de Haas (SdH) oscillations occurred at low temperatures and decayed with increasing temperature. The average classical mobility ranged from 300 (2 K) to 150 (300 K) c m2V-1s-1 , which is much smaller than that required by the observed SdH oscillations. To understand the mechanism behind the observation, we performed the same measurements on the microsized graphene sheets that constitute the graphene foam. Much more pronounced SdH oscillations superimposed on the LMR background were observed in these microscaled samples, which correspond to a quantum mobility as high as 26 ,500 c m2V-1s-1 . Moreover, the spatial mobility fluctuated significantly from 64 ,200 c m2V-1s-1 to 1370 c m2V-1s-1 , accompanied by a variation of magnetoresistance from near 20,000% to less than 20%. The presence of SdH oscillations actually excludes the possibility that the observed LMR originated from the extreme quantum limit, because this would demand all electrons to be in the first Landau level. Instead, we ascribe the large LMR to the second case of the classical Parish and Littlewood model, in which spatial mobility fluctuation dominates electrical transport. This is an experimental confirmation of the Parish and Littlewood model by measuring the local mobility randomly (by measuring the microsized graphene sheets) and finding the spatial mobility fluctuation.

  15. Collapse of a Bose-Einstein condensate induced by fluctuations of the laser intensity

    SciTech Connect

    Garnier, J.; Abdullaev, F.Kh.; Baizakov, B.B.

    2004-05-01

    The dynamics of a metastable attractive Bose-Einstein condensate trapped by a system of laser beams is analyzed in the presence of small fluctuations of the laser intensity. It is shown that the condensate will eventually collapse. The expected collapse time is inversely proportional to the integrated covariance of the time autocorrelation function of the laser intensity and it decays logarithmically with the number of atoms. Numerical simulations of the stochastic three-dimensional Gross-Pitaevskii equation confirm analytical predictions for small and moderate values of mean-field interaction.

  16. Feasibility of measuring temperature and density fluctuations in air using laser-induced O2 fluorescence

    NASA Technical Reports Server (NTRS)

    Massey, G. A.; Lemon, C. J.

    1984-01-01

    A tunable line-narrowed ArF laser can selectively excite several rotation al lines of the Schumann-Runge band system of O2 in air. The resulting ultraviolet fluorescence can be monitored at 90 deg to the laser beam axis, permitting space and time resolved observation of density and temperature fluctuations in turbulence. Experiments and calculations show that + or - 1 K, + or - 1 percent density, 1 cu mm spatial, and 1 microsecond temporal resolution can be achieved simultaneously under some conditions.

  17. Berry-phase-induced heat pumping and its impact on the fluctuation theorem.

    PubMed

    Ren, Jie; Hänggi, Peter; Li, Baowen

    2010-04-30

    Applying adiabatic, cyclic two-parameter modulations we investigate quantum heat transfer across an anharmonic molecular junction contacted with two heat baths. We demonstrate that the pumped heat typically exhibits a Berry-phase effect in providing an additional geometric contribution to heat flux. Remarkably, a robust fractional quantized geometric phonon response is identified as well. The presence of this geometric phase contribution in turn causes a breakdown of the fluctuation theorem of the Gallavotti-Cohen type for quantum heat transfer. This can be restored only if (i) the geometric phase contribution vanishes and if (ii) the cyclic protocol preserves the detailed balance symmetry.

  18. Berry-Phase-Induced Heat Pumping and Its Impact on the Fluctuation Theorem

    NASA Astrophysics Data System (ADS)

    Ren, Jie; Hänggi, Peter; Li, Baowen

    2010-04-01

    Applying adiabatic, cyclic two-parameter modulations we investigate quantum heat transfer across an anharmonic molecular junction contacted with two heat baths. We demonstrate that the pumped heat typically exhibits a Berry-phase effect in providing an additional geometric contribution to heat flux. Remarkably, a robust fractional quantized geometric phonon response is identified as well. The presence of this geometric phase contribution in turn causes a breakdown of the fluctuation theorem of the Gallavotti-Cohen type for quantum heat transfer. This can be restored only if (i) the geometric phase contribution vanishes and if (ii) the cyclic protocol preserves the detailed balance symmetry.

  19. Conductance fluctuations and disorder induced ν =0 quantum Hall plateau in topological insulator nanowires

    NASA Astrophysics Data System (ADS)

    Xypakis, Emmanouil; Bardarson, Jens H.

    2017-01-01

    Clean topological insulators exposed to a magnetic field develop Landau levels accompanied by a nonzero Hall conductivity for the infinite slab geometry. In this work we consider the case of disordered topological insulator nanowires and find, in contrast, that a zero Hall plateau emerges within a broad energy window close to the Dirac point. We numerically calculate the conductance and its distribution for a statistical ensemble of disordered nanowires, and use the conductance fluctuations to study the dependence of the insulating phase on system parameters, such as the nanowire length, disorder strength, and the magnetic field.

  20. Exercise-induced metabolic fluctuations influence AMPK, p38-MAPK and CaMKII phosphorylation in human skeletal muscle

    PubMed Central

    Combes, Adrien; Dekerle, Jeanne; Webborn, Nick; Watt, Peter; Bougault, Valérie; Daussin, Frédéric N

    2015-01-01

    During transition from rest to exercise, metabolic reaction rates increase substantially to sustain intracellular ATP use. These metabolic demands activate several kinases that initiate signal transduction pathways which modulate transcriptional regulation of mitochondrial biogenesis. The purpose of this study was to determine whether metabolic fluctuations per se affect the signaling cascades known to regulate peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α). On two separate occasions, nine men performed a continuous (30-min) and an intermittent exercise (30 × 1-min intervals separated by 1-min of recovery) at 70% of . Skeletal muscle biopsies from the vastus lateralis were taken at rest and at +0 h and +3 h after each exercise. Metabolic fluctuations that correspond to exercise-induced variation in metabolic rates were determined by analysis of VO2 responses. During intermittent exercise metabolic fluctuations were 2.8-fold higher despite identical total work done to continuous exercise (317 ± 41 vs. 312 ± 56 kJ after intermittent and continuous exercise, respectively). Increased phosphorylation of AMP-activated protein kinase (AMPK) (˜2.9-fold, P < 0.01), calcium/calmodulin-dependent protein kinase II (CaMKII) (˜2.7-fold, P < 0.01) and p38-mitogen-activated protein kinase (MAPK) (˜4.2-fold, P < 0.01) occurred immediately in both exercises and to a greater extent after the intermittent exercise (condition x time interaction, P < 0.05). A single bout of intermittent exercise induces a greater activation of these signaling pathways regulating PGC-1α when compared to a single bout of continuous exercise of matched work and intensity. Chronic adaptations to exercise on mitochondria biogenesis are yet to be investigated. PMID:26359238

  1. Detection of Non-Equilibrium Fluctuations in Active Gels

    NASA Astrophysics Data System (ADS)

    Bacanu, Alexandru; Broedersz, Chase; Gladrow, Jannes; Mackintosh, Fred; Schmidt, Christoph; Fakhri, Nikta

    Active force generation at the molecular scale in cells can result in stochastic non-equilibrium dynamics on mesoscpopic scales. Molecular motors such as myosin can drive steady-state stress fluctuations in cytoskeletal networks. Here, we present a non-invasive technique to probe non-equilibrium fluctuations in an active gel using single-walled carbon nanotubes (SWNTs). SWNTs are semiflexible polymers with intrinsic fluorescence in the near infrared. Both thermal and active motor-induced forces in the network induce transverse fluctuations of SWNTs. We demonstrate that active driven shape fluctuations of the SWNTs exhibit dynamics that reflect the non-equilibrium activity, in particular the emergence of correlations between the bending modes. We discuss the observation of breaking of detailed balance in this configurational space of the SWNT probes. Supported by National Defense Science and Engineering Graduate Student Fellowship (NDSEG).

  2. Directivity of a Sparse Array in the Presence of Atmospheric-Induced Phase Fluctuations for Deep Space Communications

    NASA Technical Reports Server (NTRS)

    Nessel, James A.; Acosta, Robert J.

    2010-01-01

    Widely distributed (sparse) ground-based arrays have been utilized for decades in the radio science community for imaging celestial objects, but have only recently become an option for deep space communications applications with the advent of the proposed Next Generation Deep Space Network (DSN) array. But whereas in astronomical imaging, observations (receive-mode only) are made on the order of minutes to hours and atmospheric-induced aberrations can be mostly corrected for in post-processing, communications applications require transmit capabilities and real-time corrections over time scales as short as fractions of a second. This presents an unavoidable problem with the use of sparse arrays for deep space communications at Ka-band which has yet to be successfully resolved, particularly for uplink arraying. In this paper, an analysis of the performance of a sparse antenna array, in terms of its directivity, is performed to derive a closed form solution to the expected array loss in the presence of atmospheric-induced phase fluctuations. The theoretical derivation for array directivity degradation is validated with interferometric measurements for a two-element array taken at Goldstone, California. With the validity of the model established, an arbitrary 27-element array geometry is defined at Goldstone, California, to ascertain its performance in the presence of phase fluctuations. It is concluded that a combination of compact array geometry and atmospheric compensation is necessary to ensure high levels of availability.

  3. Wall pressure fluctuations induced by turbulent boundary layers over surface discontinuities

    NASA Astrophysics Data System (ADS)

    Camussi, R.; Guj, G.; Ragni, A.

    2006-06-01

    An experimental investigation of wall pressure fluctuations generated by turbulent boundary layers over surface irregularities has been conducted in a backward-forward-facing step geometry simulating a large aspect-ratio cavity. This simplified incompressible flow model was designed to reproduce geometrical discontinuities present, for example on an aircraft fuselage, and responsible for interior noise generation. This study considers the effects of the main dimensionless parameters, such as the Reynolds number, the normalized incoming boundary layer thickness and its space averaged turbulence intensity, on the Sound Pressure Levels (SPL) and auto-spectra frequency estimates at the wall. Phase averaged temporal quantities are obtained by the application of a wavelet based auto-conditioning method and by velocity/pressure conditional statistics and cross-correlations. This analysis clarifies some relevant properties of the wall pressure fluctuations in the two-steps configuration. Satisfactory scaling for both the SPL and the frequency spectra by dimensionless parameters are obtained and empirical correlations which might be useful for predicting wall pressure properties in practical applications are derived.

  4. Dynamic interactions between a membrane binding protein and lipids induce fluctuating diffusivity

    PubMed Central

    Yamamoto, Eiji; Akimoto, Takuma; Kalli, Antreas C.; Yasuoka, Kenji; Sansom, Mark S. P.

    2017-01-01

    Pleckstrin homology (PH) domains are membrane-binding lipid recognition proteins that interact with phosphatidylinositol phosphate (PIP) molecules in eukaryotic cell membranes. Diffusion of PH domains plays a critical role in biological reactions on membrane surfaces. Although diffusivity can be estimated by long-time measurements, it lacks information on the short-time diffusive nature. We reveal two diffusive properties of a PH domain bound to the surface of a PIP-containing membrane using molecular dynamics simulations. One is fractional Brownian motion, attributed to the motion of the lipids with which the PH domain interacts. The other is temporally fluctuating diffusivity; that is, the short-time diffusivity of the bound protein changes substantially with time. Moreover, the diffusivity for short-time measurements is intrinsically different from that for long-time measurements. This fluctuating diffusivity results from dynamic changes in interactions between the PH domain and PIP molecules. Our results provide evidence that the complexity of protein-lipid interactions plays a crucial role in the diffusion of proteins on biological membrane surfaces. Changes in the diffusivity of PH domains and related membrane-bound proteins may in turn contribute to the formation/dissolution of protein complexes in membranes. PMID:28116358

  5. Barometric and tidal-induced aquifer water level fluctuation near the Ariake Sea.

    PubMed

    Dong, Linyao; Shimada, Jun; Kagabu, Makoto; Yang, Heejun

    2015-01-01

    Observations of water levels in coastal aquifers and corresponding tides coupled with meteorological variances near the Ariake Sea show that groundwater in this area mainly fluctuates with atmospheric and tidal variations. Tidal effects occur with semi-monthly, diurnal, or semi-diurnal periodicity, whereas the barometric influences commonly act in the low-frequency domain. Tidal and barometric effects in water levels are separable using wavelet techniques and can be evaluated statistically. Results show the following. (1) The tidal coefficients are 0.002-0.154, attenuating roughly exponentially from the seashore. The time lags in water levels increase linearly approximately with increasing inshore distance. Relations between tidal coefficients and time lags and the inshore distance indicate higher hydraulic diffusivity in the south aquifer, which was confirmed by the hydraulic property calibrations in analytical simulations. (2) Water levels related to meteorological phenomena fluctuate inversely according to barometric loading variation with time lags of 2-3 h. The effective barometric efficiencies are 0.022-0.12. Lower barometric influences were found in the south aquifer.

  6. Fluctuation-induced first-order transition in Eu-based trillium lattices

    NASA Astrophysics Data System (ADS)

    Franco, Diego G.; Prots, Yurii; Geibel, Christoph; Seiro, Silvia

    2017-07-01

    Among spin arrangements prone to geometric frustration, the so-called trillium lattice has not been very intensively investigated. A few theoretical works show that it is at the border between a degenerate, an only partially ordered, and a fully ordered ground state. However, only few compounds with this structure have been studied, and there is presently no good example of a trillium lattice with an antiferromagnetic ground state and clear evidence for frustration effects. We present magnetic and specific heat measurements on two realizations of a trillium lattice of local spins, EuPtSi and EuPtGe. Both compounds exhibit a similar magnetic behavior, with Eu2 + moments ordering antiferromagnetically at TN=4.1 K (EuPtSi) and 3.3 K (EuPtGe), albeit retaining a considerable amount of entropy in strong magnetic fluctuations extending to temperatures well above TN. The magnetic entropy reaches only roughly half of R ln8 at TN. These fluctuations are presumably the source for the pronounced first-order character of the transition at TN and are likely due to magnetic frustration. Thus, EuPtSi and EuPtGe open a new door to experimental studies of frustration effects in the trillium lattice and provide a testing ground for theoretical predictions.

  7. Magnetized Reverse Shock: Density-fluctuation-induced Field Distortion, Polarization Degree Reduction, and Application to GRBs

    NASA Astrophysics Data System (ADS)

    Deng, Wei; Zhang, Bing; Li, Hui; Stone, James M.

    2017-08-01

    The early optical afterglow emission of several gamma-ray bursts (GRBs) shows a high linear polarization degree (PD) of tens of percent, suggesting an ordered magnetic field in the emission region. The light curves are consistent with being of a reverse shock (RS) origin. However, the magnetization parameter, σ, of the outflow is unknown. If σ is too small, an ordered field in the RS may be quickly randomized due to turbulence driven by various perturbations so that the PD may not be as high as observed. Here we use the “Athena++” relativistic MHD code to simulate a relativistic jet with an ordered magnetic field propagating into a clumpy ambient medium, with a focus on how density fluctuations may distort the ordered magnetic field and reduce PD in the RS emission for different σ values. For a given density fluctuation, we discover a clear power-law relationship between the relative PD reduction and the σ value of the outflow. Such a relation may be applied to estimate σ of the GRB outflows using the polarization data of early afterglows.

  8. Fluctuation-induced continuous transition and quantum criticality in Dirac semimetals

    NASA Astrophysics Data System (ADS)

    Classen, Laura; Herbut, Igor F.; Scherer, Michael M.

    2017-09-01

    We establish a scenario where fluctuations of new degrees of freedom at a quantum phase transition change the nature of a transition beyond the standard Landau-Ginzburg paradigm. To this end, we study the quantum phase transition of gapless Dirac fermions coupled to a Z3 symmetric order parameter within a Gross-Neveu-Yukawa model in 2+1 dimensions, appropriate for the Kekulé transition in honeycomb lattice materials. For this model, the standard Landau-Ginzburg approach suggests a first-order transition due to the symmetry-allowed cubic terms in the action. At zero temperature, however, quantum fluctuations of the massless Dirac fermions have to be included. We show that they reduce the putative first-order character of the transition and can even render it continuous, depending on the number of Dirac fermions Nf. A nonperturbative functional renormalization group approach is employed to investigate the phase transition for a wide range of fermion numbers and we obtain the critical Nf, where the nature of the transition changes. Furthermore, it is shown that for large Nf the change from the first to second order of the transition as a function of dimension occurs exactly in the physical 2+1 dimensions. We compute the critical exponents and predict sizable corrections to scaling for Nf=2 .

  9. Effect of self-induced magnetic force in a coronal loop transient

    NASA Technical Reports Server (NTRS)

    Yeh, T.; Dryer, M.

    1981-01-01

    The distribution of the self-induced magnetic force in a section of a model coronal loop is examined and it is found that an axial current produces a pointwise magnetic force in the direction toward the axis of the loop. The direction of the pointwise magnetic force indicates that the effect of this force, acting alone, is to cause a contraction of the cross section of the magnetic loop toward the axis, but not the translation motion of the loop as a whole. It is concluded that forces other than the self-induced magnetic force, such as thermal force of pressure gradient or extra-induced magnetic force of magnetic buoyancy, must be involved in the acceleration mechanisms for the heliocentrifugal motion of coronal transients.

  10. Increase in the Random Dopant Induced Threshold Fluctuations and Lowering in Sub 100 nm MOSFETs Due to Quantum Effects: A 3-D Density-Gradient Simulation Study

    NASA Technical Reports Server (NTRS)

    Asenov, Asen; Slavcheva, G.; Brown, A. R.; Davies, J. H.; Saini, S.

    2000-01-01

    In this paper we present a detailed simulation study of the influence of quantum mechanical effects in the inversion layer on random dopant induced threshold voltage fluctuations and lowering in sub 100 nm MOSFETs. The simulations have been performed using a 3-D implementation of the density gradient (DG) formalism incorporated in our established 3-D atomistic simulation approach. This results in a self-consistent 3-D quantum mechanical picture, which implies not only the vertical inversion layer quantisation but also the lateral confinement effects related to current filamentation in the 'valleys' of the random potential fluctuations. We have shown that the net result of including quantum mechanical effects, while considering statistical dopant fluctuations, is an increase in both threshold voltage fluctuations and lowering. At the same time, the random dopant induced threshold voltage lowering partially compensates for the quantum mechanical threshold voltage shift in aggressively scaled MOSFETs with ultrathin gate oxides.

  11. Ground state energy fluctuations in the nuclear shell model

    NASA Astrophysics Data System (ADS)

    Velázquez, Víctor; Hirsch, Jorge G.; Frank, Alejandro; Barea, José; Zuker, Andrés P.

    2005-05-01

    Statistical fluctuations of the nuclear ground state energies are estimated using shell model calculations in which particles in the valence shells interact through well-defined forces, and are coupled to an upper shell governed by random 2-body interactions. Induced ground-state energy fluctuations are found to be one order of magnitude smaller than those previously associated with chaotic components, in close agreement with independent perturbative estimates based on the spreading widths of excited states.

  12. Fluctuation theorem for a small engine and magnetization switching by spin torque.

    PubMed

    Utsumi, Yasuhiro; Taniguchi, Tomohiro

    2015-05-08

    We consider a reversal of the magnetic moment of a nanomagnet by a fluctuating spin torque induced by a nonequilibrium current of electron spins. This is an example of the problem of the escape of a particle from a metastable state subjected to a fluctuating nonconservative force. Spin torque is a nonconservative force, and its fluctuations are beyond the description of the fluctuation-dissipation theorem. We estimate the joint probability distribution of work done by the spin torque and the Joule heat generated by the current, which satisfies the fluctuation theorem for a small engine. We predict a threshold voltage above which the spin-torque shot noise induces probabilistic switching events and below which such events are blocked. We adopt the theory of full-counting statistics under the adiabatic pumping of spin angular momentum. This enables us to account for the backaction effect, which is crucial to maintain consistency with the fluctuation theorem.

  13. Brevity of haptic force perturbations induces heightened adaptive sensitivity.

    PubMed

    Wanda, Paul A; Fine, Michael S; Weeks, Heidi M; Gross, Andrew M; Macy, Jenny L; Thoroughman, Kurt A

    2013-05-01

    We have exposed human participants to both full-movement and pulsatile viscous force perturbations to study the effect of force duration on the incremental transformation of sensation into adaptation. Traditional views of movement biomechanics could suggest that pulsatile forces would largely be attenuated as stiffness and viscosity act as a natural low-pass filter. Sensory transduction, however, tends to react to changes in stimuli and therefore could underlie heightened sensitivity to briefer, pulsatile forces. Here, participants adapted within perturbation duration conditions in a manner proportionate to sensed force and positional errors. Across perturbation conditions, we found participants had greater adaptive sensitivity when experiencing pulsatile forces rather than full-movement forces. In a follow-up experiment, we employed error-clamped, force channel trials to determine changes in predictive force generation. We found that while participants learned to closely compensate for the amplitude and breadth of full-movement forces, they exhibited a persistent mismatch in amplitude and breadth between adapted motor output and experienced pulsatile forces. This mismatch could generate higher salience of error signals that contribute to heightened sensitivity to pulsatile forces.

  14. Brevity of haptic force perturbations induces heightened adaptive sensitivity

    PubMed Central

    Wanda, Paul A.; Fine, Michael S.; Weeks, Heidi M.; Gross, Andrew M.; Macy, Jenny L.; Thoroughman, Kurt A.

    2013-01-01

    We have exposed human participants to both full-movement and pulsatile viscous force perturbations to study the effect of force duration on the incremental transformation of sensation into adaptation. Traditional views of movement biomechanics could suggest that pulsatile forces would largely be attenuated as stiffness and viscosity act as a natural low-pass filter. Sensory transduction, however, tends to react to changes in stimuli and therefore could underlie heightened sensitivity to briefer, pulsatile forces. Here, participants adapted within perturbation duration conditions in a manner proportionate to sensed force and positional errors. Across perturbation conditions, we found participants had greater adaptive sensitivity when experiencing pulsatile forces rather than full-movement forces. In a follow-up experiment, we employed error-clamped, force channel trials to determine changes in predictive force generation. We found that while participants learned to closely compensate for the amplitude and breadth of full-movement forces, they exhibited a persistent mismatch in amplitude and breadth between adapted motor output and experienced pulsatile forces. This mismatch could generate higher salience of error signals that contribute to heightened sensitivity to pulsatile forces. PMID:23468159

  15. Cholesterol-Induced Suppression of Membrane Elastic Fluctuations at the Atomistic Level

    PubMed Central

    Molugu, Trivikram R.

    2017-01-01

    Applications of solid-state NMR spectroscopy for investigating the influences of lipid-cholesterol interactions on membrane fluctuations are reviewed in this paper. Emphasis is placed on understanding the energy landscapes and fluctuations at an emergent atomistic level. Solid-state 2H NMR spectroscopy directly measures residual quadrupolar couplings (RQCs) due to individual C–2H labeled segments of the lipid molecules. Moreover, residual dipolar couplings (RDCs) of 13C–1H bonds are obtained in separated local-field NMR spectroscopy. The distributions of RQC or RDC values give nearly complete profiles of the order parameters as a function of acyl segment position. Measured equilibrium properties of glycerophospholipids and sphingolipids including their binary and tertiary mixtures with cholesterol show unequal mixing associated with liquid-ordered domains. The entropic loss upon addition of cholesterol to sphingolipids is less than for glycerophospholipids and may drive the formation of lipid rafts. In addition relaxation time measurements enable one to study the molecular dynamics over a wide time-scale range. For 2H NMR the experimental spin-lattice (R1Z) relaxation rates follow a theoretical square-law dependence on segmental order parameters (SCD) due to collective slow dynamics over mesoscopic length scales. The functional dependence for the liquid-crystalline lipid membranes is indicative of viscoelastic properties as they emerge from atomistic-level interactions. A striking decrease in square-law slope upon addition of cholesterol denotes stiffening relative to the pure lipid bilayers that is diminished in the case of lanosterol. Measured equilibrium properties and relaxation rates infer opposite influences of cholesterol and detergents on collective dynamics and elasticity at an atomistic scale that potentially affects lipid raft formation in cellular membranes. PMID:27154600

  16. X-ray polarization fluctuations induced by cloud eclipses in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Marin, F.; Dovčiak, M.

    2015-01-01

    Context. A fraction of active galactic nuclei (AGN) show dramatic X-ray spectral changes on the day-to-week time scales associated with variation in the line of sight of the cold absorber. Aims: We intend to model the polarization fluctuations arising from an obscuration event, thereby offering a method of determining whether flux variations are due to occultation or extreme intrinsic emission variability. Methods: Undertaking 1-100 keV polarimetric simulations with the Monte Carlo code Stokes, we simulated the journey of a variety of cold gas clouds in front of an extended primary source. We varied the hydrogen column density nH and size of the absorber, as well as the initial polarization state of the emitting source, to cover a wide range of scenarios. Results: Simulations indicate that different results are expected according to the initial polarization of the extended continuum source. For unpolarized primary fluxes, large (~50°) variations of the polarization position angle ψ are expected before and after an occultation event, which is associated with very low residual polarization degrees (P ≪ 1%). In the case of an emitting disk with intrinsic, position-independent polarization, and for a given range of parameters, X-ray eclipses significantly alter the observed polarization spectra, with most of the variations seen in ψ. Finally, non-uniformly polarized emitting regions produce very distinctive polarization variations due to the successive covering and uncovering of different portions of the disk. Plotted against time, variations in P and ψ form detectable P Cygni type profiles that are distinctive signatures of non-axisymmetric emission. Conclusions: We find that X-ray polarimetry is particularly adapted to probing X-ray eclipses due to Compton-thin and Compton-thick gas clouds. Polarization measurements would distinguish between intrinsic intensity fluctuations and external eclipsing events, constrain the geometry of the covering medium, and test

  17. Cholesterol-induced suppression of membrane elastic fluctuations at the atomistic level.

    PubMed

    Molugu, Trivikram R; Brown, Michael F

    2016-09-01

    Applications of solid-state NMR spectroscopy for investigating the influences of lipid-cholesterol interactions on membrane fluctuations are reviewed in this paper. Emphasis is placed on understanding the energy landscapes and fluctuations at an emergent atomistic level. Solid-state (2)H NMR spectroscopy directly measures residual quadrupolar couplings (RQCs) due to individual C-(2)H labeled segments of the lipid molecules. Moreover, residual dipolar couplings (RDCs) of (13)C-(1)H bonds are obtained in separated local-field NMR spectroscopy. The distributions of RQC or RDC values give nearly complete profiles of the order parameters as a function of acyl segment position. Measured equilibrium properties of glycerophospholipids and sphingolipids including their binary and tertiary mixtures with cholesterol show unequal mixing associated with liquid-ordered domains. The entropic loss upon addition of cholesterol to sphingolipids is less than for glycerophospholipids and may drive the formation of lipid rafts. In addition relaxation time measurements enable one to study the molecular dynamics over a wide time-scale range. For (2)H NMR the experimental spin-lattice (R1Z) relaxation rates follow a theoretical square-law dependence on segmental order parameters (SCD) due to collective slow dynamics over mesoscopic length scales. The functional dependence for the liquid-crystalline lipid membranes is indicative of viscoelastic properties as they emerge from atomistic-level interactions. A striking decrease in square-law slope upon addition of cholesterol denotes stiffening relative to the pure lipid bilayers that is diminished in the case of lanosterol. Measured equilibrium properties and relaxation rates infer opposite influences of cholesterol and detergents on collective dynamics and elasticity at an atomistic scale that potentially affects lipid raft formation in cellular membranes.

  18. Fluctuating Hydrodynamics of Electrolytes Solutions

    NASA Astrophysics Data System (ADS)

    Peraud, Jean-Philippe; Nonaka, Andy; Chaudhri, Anuj; Bell, John B.; Donev, Aleksandar; Garcia, Alejandro L.

    2016-11-01

    In this work, we develop a numerical method for multicomponent solutions featuring electrolytes, in the context of fluctuating hydrodynamics as modeled by the Landau-Lifshitz Navier Stokes equations. Starting from a previously developed numerical scheme for multicomponent low Mach number fluctuating hydrodynamics, we study the effect of the additional forcing terms induced by charged species. We validate our numerical approach with additional theoretical considerations and with examples involving sodium-chloride solutions, with length scales close to Debye length. In particular, we show how charged species modify the structure factors of the fluctuations, both in equilibrium and non-equilibrium (giant fluctuations) systems, and show that the former is consistent with Debye-Huckel theory. We also discuss the consistency of this approach with the electroneutral approximation in regimes where characteristic length scales are significantly larger than the Debye length. Finally, we use this method to explore a type of electrokinetic instability. This work was supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research,.

  19. Fluctuating Arctic Sea ice thickness changes estimated by an in situ learned and empirically forced neural network model

    USGS Publications Warehouse

    Belchansky, G.I.; Douglas, D.C.; Platonov, N.G.

    2008-01-01

    Sea ice thickness (SIT) is a key parameter of scientific interest because understanding the natural spatiotemporal variability of ice thickness is critical for improving global climate models. In this paper, changes in Arctic SIT during 1982-2003 are examined using a neural network (NN) algorithm trained with in situ submarine ice draft and surface drilling data. For each month of the study period, the NN individually estimated SIT of each ice-covered pixel (25-km resolution) based on seven geophysical parameters (four shortwave and longwave radiative fluxes, surface air temperature, ice drift velocity, and ice divergence/convergence) that were cumulatively summed at each monthly position along the pixel's previous 3-yr drift track (or less if the ice was <3 yr old). Average January SIT increased during 1982-88 in most regions of the Arctic (+7.6 ?? 0.9 cm yr-1), decreased through 1996 Arctic-wide (-6.1 ?? 1.2 cm yr-1), then modestly increased through 2003 mostly in the central Arctic (+2.1 ?? 0.6 cm yr-1). Net ice volume change in the Arctic Ocean from 1982 to 2003 was negligible, indicating that cumulative ice growth had largely replaced the estimated 45 000 km3 of ice lost by cumulative export. Above 65??N, total annual ice volume and interannual volume changes were correlated with the Arctic Oscillation (AO) at decadal and annual time scales, respectively. Late-summer ice thickness and total volume varied proportionally until the mid-1990s, but volume did not increase commensurate with the thickening during 1996-2002. The authors speculate that decoupling of the ice thickness-volume relationship resulted from two opposing mechanisms with different latitudinal expressions: a recent quasi-decadal shift in atmospheric circulation patterns associated with the AO's neutral state facilitated ice thickening at high latitudes while anomalously warm thermal forcing thinned and melted the ice cap at its periphery. ?? 2008 American Meteorological Society.

  20. Novel electrostatic attraction from plasmon fluctuations

    PubMed

    Lau; Levine; Pincus

    2000-05-01

    In this Letter, we show that, at low temperatures, zero-point fluctuations of the plasmon modes of two mutually coupled 2D planar Wigner crystals give rise to a novel long-range attractive force. For the case where the distance d between two planar surfaces is large, this attractive force has an unusual power-law decay, which scales as d(-7/2), unlike other fluctuation-induced forces. Specifically, we note that its range is longer than the "standard" zero-temperature van der Waals interaction. This result may, in principle, be observed in bilayer electronic systems and provides insight into the nature of correlation effects for highly charged surfaces.

  1. The Characteristics and Climate Forcing Implication of the Multi-time Scale Fluctuations in the Air Temperature in Xiamen, China From 1954 to 2007

    NASA Astrophysics Data System (ADS)

    Li, X.; Huang, S.; Ye, H.; Zhang, R.; Li, S.

    2009-05-01

    Xiamen (also known as Amoy) is a coastal city with a population of over 1.5 millions located in the southeast Fujian Province across the Taiwan Strait from Taiwan. The monthly and annual surface air temperature (SAT) time series from 1954 on from its meteorological observatory (24.48 °N, 118.07 °E, 139.0m) are available at the National Meteorological Information Centre of China Meteorological Administration and the Global Historical Climatology Network online database. Over the 54-year period from 1954 to 2007, Xiamen experienced diverse seasonal trends in SAT: warming at a rate of 0.14 K/10a in winter and 0.05 K/10a in spring, as opposed to cooling at -0.04 and -0.03 K/10a in summer and fall, respectively. Overall, the trend in the annual SAT series over the 54-year period is an insignificant warming rate of 0.03 K/a, which is substantially smaller than the nation-wide and global averages. Nevertheless, the fluctuations in the SAT may bear important clues about climate forcing in this region. Our Morlet wavelet analysis reveals three principle time scales -- 42-year, 30-year, and 13-year -- in the Xiamen annual series. Interestingly, the periodic component of around 13-year, ranging from 9 to 15 years, exhibits not only in the annual series, but also in the four seasonal series. Moreover, the components of roughly same scale have been detected from several nearby meteorological stations including Fuzhou and Nanping in Fujian Province, and Tainan, Kaohsiung and Hengchun in Taiwan. The possible attribution of this 9- to 15-year temperature fluctuation to the solar activity cycling remains under investigation.

  2. Harmonic tracking of acoustic radiation force-induced displacements.

    PubMed

    Doherty, Joshua R; Dahl, Jeremy J; Trahey, Gregg E

    2013-11-01

    Ultrasound-based elasticity imaging methods rely upon accurate estimates of tissue deformation to characterize the mechanical properties of soft tissues. These methods are corrupted by clutter, which can bias and/or increase variance in displacement estimates. Harmonic imaging methods are routinely used for clutter suppression and improved image quality in conventional B-mode ultrasound, but have not been utilized in ultrasound-based elasticity imaging methods. We introduce a novel, fully-sampled pulse-inversion harmonic method for tracking tissue displacements that corrects the loss in temporal sampling frequency associated with conventional pulse-inversion techniques. The method is implemented with acoustic radiation force impulse (ARFI) imaging to monitor the displacements induced by an impulsive acoustic radiation force excitation. Custom pulse sequences were implemented on a diagnostic ultrasound scanner to collect spatially-matched fundamental and harmonic information within a single acquisition. B-mode and ARFI images created from fundamental data collected at 4 MHz and 8 MHz are compared with 8-MHz harmonic images created using a band-pass filter approach and the fully sampled pulse-inversion method. In homogeneous, tissue-mimicking phantoms, where no visible clutter was observed, there was little difference in the axial displacements, estimated jitter, and normalized cross-correlation among the fundamental and harmonic tracking methods. The similarity of the lower- and higher-frequency methods suggests that any improvement resulting from the increased frequency of the harmonic components is negligible. The harmonic tracking methods demonstrated a marked improvement in B-mode and ARFI image quality of in vivo carotid arteries. Improved feature detection and decreased variance in estimated displacements were observed in the arterial walls of harmonic ARFI images, especially in the pulse-inversion harmonic ARFI images. Within the lumen, the harmonic tracking

  3. Harmonic Tracking of Acoustic Radiation Force Induced Displacements

    PubMed Central

    Doherty, Joshua R.; Dahl, Jeremy J.; Trahey, Gregg E.

    2014-01-01

    Ultrasound-based elasticity imaging methods rely upon accurate estimates of tissue deformation to characterize the mechanical properties of soft tissues. These methods are corrupted by clutter, which can bias and/or increase variance in displacement estimates. Harmonic imaging methods are routinely used for clutter suppression and improved image quality in conventional B-mode ultrasound, but have not been utilized in ultrasound-based elasticity imaging methods. We introduce a novel, fully-sampled pulse inversion harmonic method for tracking tissue displacements that corrects the loss in temporal sampling frequency associated with conventional pulse inversion techniques. The method is implemented with Acoustic Radiation Force Impulse (ARFI) imaging to monitor the displacements induced by an impulsive acoustic radiation force excitation. Custom pulse sequences were implemented on a diagnostic ultrasound scanner to collect spatially-matched fundamental and harmonic information within a single acquisition. B-mode and ARFI images created from fundamental data collected at 4 MHz and 8 MHz are compared with 8 MHz harmonic images created using a bandpass filter approach and the fully sampled pulse inversion method. In homogeneous, tissue-mimicking phantoms, where no visible clutter was observed, there was little difference in the axial displacements, estimated jitter, and normalized cross-correlation among the fundamental and harmonic tracking methods. The similarity of the lower and higher frequency methods suggests that any improvement due to the increased frequency of the harmonic components is negligible. The harmonic tracking methods demonstrated a marked improvement in B-mode and ARFI image quality of in vivo carotid arteries. Improved feature detection and decreased variance in estimated displacements were observed in the arterial walls of harmonic ARFI images, especially in the pulse inversion harmonic ARFI images. Within the lumen, the harmonic tracking methods

  4. Computational Catalysis Using the Artificial Force Induced Reaction Method.

    PubMed

    Sameera, W M C; Maeda, Satoshi; Morokuma, Keiji

    2016-04-19

    The artificial force induced reaction (AFIR) method in the global reaction route mapping (GRRM) strategy is an automatic approach to explore all important reaction paths of complex reactions. Most traditional methods in computational catalysis require guess reaction paths. On the other hand, the AFIR approach locates local minima (LMs) and transition states (TSs) of reaction paths without a guess, and therefore finds unanticipated as well as anticipated reaction paths. The AFIR method has been applied for multicomponent organic reactions, such as the aldol reaction, Passerini reaction, Biginelli reaction, and phase-transfer catalysis. In the presence of several reactants, many equilibrium structures are possible, leading to a number of reaction pathways. The AFIR method in the GRRM strategy determines all of the important equilibrium structures and subsequent reaction paths systematically. As the AFIR search is fully automatic, exhaustive trial-and-error and guess-and-check processes by the user can be eliminated. At the same time, the AFIR search is systematic, and therefore a more accurate and comprehensive description of the reaction mechanism can be determined. The AFIR method has been used for the study of full catalytic cycles and reaction steps in transition metal catalysis, such as cobalt-catalyzed hydroformylation and iron-catalyzed carbon-carbon bond formation reactions in aqueous media. Some AFIR applications have targeted the selectivity-determining step of transition-metal-catalyzed asymmetric reactions, including stereoselective water-tolerant lanthanide Lewis acid-catalyzed Mukaiyama aldol reactions. In terms of establishing the selectivity of a reaction, systematic sampling of the transition states is critical. In this direction, AFIR is very useful for performing a systematic and automatic determination of TSs. In the presence of a comprehensive description of the transition states, the selectivity of the reaction can be calculated more accurately

  5. [Amplitude Changes of Low Frequency Fluctuation in Brain Spontaneous Nervous Activities Induced by Needling at Hand Taiyin Lung Channel].

    PubMed

    Zhou, You-long; Su, Cheng-guo; Liu, Shou-fang; Jin, Xiang-yu; Duan, Yan-li; Chen, Xiao-yan; Zhao, Shu-hua; Wang, Quan-liang; Dang, Chang-lin

    2016-05-01

    To observe amplitude changes of low frequency fluctuation in brain spontaneous nervous activities induced by needling at Hand Taiyin Lung Channel, and to preliminarily explore the possible brain function network of Hand Taiyin Lung Channel. By using functional magnetic resonance imaging (fMRI), 16 healthy volunteers underwent resting-state scanning (R1) and scanning with retained acupuncture at Hand Taiyin Lung Channel (acupuncture, AP). Data of fMRI collected were statistically calculated using amplitude of low frequency fluctuations (ALFF). Under R1 significantly enhanced ALFF occurred in right precuneus, left inferior parietal lobule, bilateral superior temporal gyrus, bilateral middle frontal gyrus, left superior frontal gyrus, left inferior frontal gyrus, left medial frontal gyrus. Under AP significantly enhanced ALFF occurred in right precuneus, bilateral superior frontal gyrus, cerebellum, bilateral middle frontal gyrus, right medial frontal gyrus, and so on. Compared with R1, needing at Hand Taiyin Lung Channel could significantly enhance ALFF in right gyrus subcallosum and right inferior frontal gyrus. Significant decreased ALFF appeared in right postcentral gyrus, left precuneus, left superior temporal gyrus, left middle temporal gyrus, and so on. Needing at Hand Taiyin Lung Channel could significantly change fixed activities of cerebral cortex, especially in right subcallosal gyrus, right inferior frontal gyrus, and so on.

  6. Seismic wave attenuation and dispersion due to wave-induced fluid flow in rocks with strong permeability fluctuations.

    PubMed

    Germán Rubino, J; Monachesi, Leonardo B; Müller, Tobias M; Guarracino, Luis; Holliger, Klaus

    2013-12-01

    Oscillatory fluid movements in heterogeneous porous rocks induced by seismic waves cause dissipation of wave field energy. The resulting seismic signature depends not only on the rock compressibility distribution, but also on a statistically averaged permeability. This so-called equivalent seismic permeability does not, however, coincide with the respective equivalent flow permeability. While this issue has been analyzed for one-dimensional (1D) media, the corresponding two-dimensional (2D) and three-dimensional (3D) cases remain unexplored. In this work, this topic is analyzed for 2D random medium realizations having strong permeability fluctuations. With this objective, oscillatory compressibility simulations based on the quasi-static poroelasticity equations are performed. Numerical analysis shows that strong permeability fluctuations diminish the magnitude of attenuation and velocity dispersion due to fluid flow, while the frequency range where these effects are significant gets broader. By comparing the acoustic responses obtained using different permeability averages, it is also shown that at very low frequencies the equivalent seismic permeability is similar to the equivalent flow permeability, while for very high frequencies this parameter approaches the arithmetic average of the permeability field. These seemingly generic findings have potentially important implications with regard to the estimation of equivalent flow permeability from seismic data.

  7. The Risk of Noise-Induced Hearing Loss During Simulated Dives in Canadian Forces Hyperbaric Facilities

    DTIC Science & Technology

    2012-10-01

    The risk of noise-induced hearing loss during simulated dives in Canadian Forces hyperbaric facilities Sharon M...2012-084 October 2012 The risk of noise-induced hearing loss during simulated dives in Canadian Forces hyperbaric ...transferred into the dive chamber of a hyperbaric facility. The mechanism is audible and sufficiently high in level in adjacent areas to warrant the

  8. Model energy landscapes and the force-induced dissociation of ligand-receptor bonds.

    PubMed

    Strunz, T; Oroszlan, K; Schumakovitch, I; Güntherodt, H; Hegner, M

    2000-09-01

    We discuss models for the force-induced dissociation of a ligand-receptor bond, occurring in the context of cell adhesion or single molecule unbinding force measurements. We consider a bond with a structured energy landscape which is modeled by a network of force dependent transition rates between intermediate states. The behavior of a model with only one intermediate state and a model describing a molecular zipper is studied. We calculate the bond lifetime as a function of an applied force and unbinding forces under an increasing applied load and determine the relationship between both quantities. The dissociation via an intermediate state can lead to distinct functional relations of the bond lifetime on force. One possibility is the occurrence of three force regimes where the lifetime of the bond is determined by different transitions within the energy landscape. This case can be related to recent experimental observations of the force-induced dissociation of single avidin-biotin bonds.

  9. Model energy landscapes and the force-induced dissociation of ligand-receptor bonds.

    PubMed Central

    Strunz, T; Oroszlan, K; Schumakovitch, I; Güntherodt, H; Hegner, M

    2000-01-01

    We discuss models for the force-induced dissociation of a ligand-receptor bond, occurring in the context of cell adhesion or single molecule unbinding force measurements. We consider a bond with a structured energy landscape which is modeled by a network of force dependent transition rates between intermediate states. The behavior of a model with only one intermediate state and a model describing a molecular zipper is studied. We calculate the bond lifetime as a function of an applied force and unbinding forces under an increasing applied load and determine the relationship between both quantities. The dissociation via an intermediate state can lead to distinct functional relations of the bond lifetime on force. One possibility is the occurrence of three force regimes where the lifetime of the bond is determined by different transitions within the energy landscape. This case can be related to recent experimental observations of the force-induced dissociation of single avidin-biotin bonds. PMID:10968985

  10. Can the Gulf Stream induce coherent short-term fluctuations in sea level along the US East Coast? A modeling study

    NASA Astrophysics Data System (ADS)

    Ezer, Tal

    2016-02-01

    Much attention has been given in recent years to observations and models that show that variations in the transport of the Atlantic Meridional Overturning Circulation (AMOC) and in the Gulf Stream (GS) can contribute to interannual, decadal, and multi-decadal variations in coastal sea level (CSL) along the US East Coast. However, less is known about the impact of short-term (time scales of days to weeks) fluctuations in the GS and their impact on CSL anomalies. Some observations suggest that these anomalies can cause unpredictable minor tidal flooding in low-lying areas when the GS suddenly weakens. Can these short-term CSL variations be attributed to changes in the transport of the GS? An idealized numerical model of the GS has been set up to test this proposition. The regional model uses a 1/12° grid with a simplified coastline to eliminate impacts from estuaries and small-scale coastal features and thus isolate the GS impact. The GS in the model is driven by inflows/outflows, representing the Florida Current (FC), the Slope Current (SC), and the Sargasso Sea (SS) flows. Forcing the model with an oscillatory FC transport with a period of 2, 5, and 10 days produced coherent CSL variations from Florida to the Gulf of Maine with similar periods. However, when imposing variations in the transports of the SC or the SS, they induce CSL variations only north of Cape Hatteras. The suggested mechanism is that variations in GS transport produce variations in sea level gradient across the entire GS length and this large-scale signal is then transmitted into the shelf by the generation of coastal-trapped waves (CTW). In this idealized model, the CSL variations induced by variations of ˜10 Sv in the transport of the GS are found to resemble CSL variations induced by ˜5 m s-1 zonal wind fluctuations, though the mechanisms of wind-driven and GS-driven sea level are quite different. Better understanding of the relation between variations in offshore currents and CSL will help

  11. Influence of wind-induced air pressure fluctuations on topsoil gas concentrations within a Scots pine forest

    NASA Astrophysics Data System (ADS)

    Mohr, Manuel; Laemmel, Thomas; Maier, Martin; Schindler, Dirk

    2017-04-01

    Commonly it is assumed that soil gas transport is dominated by molecular diffusion. Few recent studies indicate that the atmosphere above the soil triggers non-diffusive gas transport processes in the soil, which can enhance soil gas transport and therefore soil gas efflux significantly. During high wind speed conditions, the so called pressure pumping effect has been observed: the enhancement of soil gas transport through dynamic changes in the air pressure field above the soil. However, the amplitudes and frequencies of the air pressure fluctuations responsible for pressure pumping are still uncertain. Moreover, an in situ observation of the pressure pumping effect is still missing. To investigate the pressure pumping effect, airflow measurements above and below the canopy of a Scots pine forest and high-precision relative air pressure measurements were conducted in the below-canopy space and in the soil over a measurement period of 16 weeks. To monitor the soil gas transport, a newly developed gas measurement system was used. The gas measurement system continuously injects helium as a tracer gas into the soil until a diffusive steady state is reached. With the steady state concentration profile of the tracer gas, it is possible to inversely model the gas diffusion coefficient profile of the soil. If the gas diffusion coefficient profile differed from steady state, we deduced that the soil gas transport is not only diffusive, but also influenced by non-diffusive processes. Results show that the occurrence of small air pressure fluctuations is strongly dependent on the mean above-canopy wind speed. The wind-induced air pressure fluctuations have mean amplitudes up to 10 Pa and lie in the frequency range 0.01-0.1 Hz. To describe the pumping motion of the air pressure field, the pressure pumping coefficient (PPC) was defined as the mean change in pressure per second. The PPC shows a clear quadratic dependence on mean above-canopy wind speed. Empirical modelling of

  12. Domain structure in biaxial Fe/Cr films induced by lateral fluctuations of the magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Rzhevsky, A. A.; Krichevtsov, B. B.; Bürgler, D. E.; Schneider, C. M.

    2008-05-01

    The magnetic microstructure of single-crystalline Fe(001) thin films has been studied by magnetic second harmonic generation and conventional magneto-optical Kerr effect methods. The layers were grown on GaAs/Fe/Ag(100) substrates, capped by a Cr overlayer, and displayed a fourfold in-plane magnetic anisotropy. We observe the formation of a multidomain structure at magnetic fields |H|≤0.5kOe , when the field is applied in a narrow range of azimuthal angles close to the hard axis direction (|Δξ|<1°) . The domains are characterized by the same longitudinal magnetization component Mx and transverse components My of opposite signs. We developed an approach to extract the change of the relative contributions of domains with different magnetization directions during magnetization reversal from the experimental data. The formation of a domain structure can be explained by taking into account the lateral fluctuations of the magnetic anisotropy energy caused by defects and stress at the interfaces and the role of the biquadratic exchange coupling between interfacial Fe and Cr magnetic moments.

  13. Improved treatment of cosmic microwave background fluctuations induced by a late-decaying massive neutrino

    SciTech Connect

    Kaplinghat, Manoj; Lopez, Robert E.; Dodelson, Scott

    1999-12-15

    A massive neutrino which decays after recombination (t{>=}10{sup 13} sec) into relativistic decay products produces an enhanced integrated Sachs-Wolfe effect, allowing constraints to be placed on such neutrinos from present cosmic microwave background anisotropy data. Previous treatments of this problem have approximated the decay products as an additional component of the neutrino background. This approach violates energy-momentum conservation, and we show that it leads to serious errors for some neutrino masses and lifetimes. We redo this calculation more accurately, by correctly incorporating the spatial distribution of the decay products. For low neutrino masses and long lifetimes, we obtain a much smaller distortion in the CMB fluctuation spectrum than have previous treatments. We combine these new results with a recent set of CMB data to exclude the mass and lifetime range m{sub h}>100 eV, {tau}>10{sup 12} sec. Masses as low as 30 eV are excluded for a narrower range in lifetime. (c) 1999 The American Physical Society.

  14. Local strain-induced band gap fluctuations and exciton localization in aged WS2 monolayers

    NASA Astrophysics Data System (ADS)

    Krustok, J.; Kaupmees, R.; Jaaniso, R.; Kiisk, V.; Sildos, I.; Li, B.; Gong, Y.

    2017-06-01

    Optical properties of aged WS2 monolayers grown by CVD method on Si/SiO2 substrates are studied using temperature dependent photoluminescence and reflectance contrast spectroscopy. Aged WS2 monolayers have a typical surface roughness about 0.5 nm and, in addition, a high density of nanoparticles (nanocaps) with the base diameter about 30 nm and average height of 7 nm. The A-exciton of aged monolayer has a peak position at 1.951 eV while in as-grown monolayer the peak is at about 24 meV higher energy at room temperature. This red-shift is explained using local tensile strain concept, where strain value of 2.1% was calculated for these nanocap regions. Strained nanocaps have lower band gap energy and excitons will funnel into these regions. At T=10K a double exciton and trion peaks were revealed. The separation between double peaks is about 20 meV and the origin of higher energy peaks is related to the optical band gap energy fluctuations caused by random distribution of local tensile strain due to increased surface roughness. In addition, a wide defect related exciton band XD was found at about 1.93 eV in all aged monolayers. It is shown that the theory of localized excitons describes well the temperature dependence of peak position and halfwidth of the A-exciton band. The possible origin of nanocaps is also discussed.

  15. Cholesterol-induced variations in the volume and enthalpy fluctuations of lipid bilayers.

    PubMed Central

    Halstenberg, S; Heimburg, T; Hianik, T; Kaatze, U; Krivanek, R

    1998-01-01

    The sound velocity and density of suspensions of large unilamellar liposomes from dimyristoylphosphatidylcholine with admixed cholesterol have been measured as a function of temperature around the chain melting temperature of the phospholipid. The cholesterol-to-phospholipid molar ratio xc has been varied over a wide range (0 fluctuations within the samples. A theoretical relation between the compressibility and the excess heat capacity of the bilayer system has been derived. Comparison of the compressibilities (and sound velocity numbers) with heat capacity traces display the close correlation between these quantities for bilayer systems. This correlation appears to be very useful as it allows some of the mechanical properties of membrane systems to be calculated from the specific heat capacity data and vice versa. PMID:9649386

  16. Manganese oxidation induced by water table fluctuations in a sand column.

    PubMed

    Farnsworth, Claire E; Voegelin, Andreas; Hering, Janet G

    2012-01-03

    On-off cycles of production wells, especially in bank filtration settings, cause oscillations in the local water table, which can deliver significant amounts of dissolved oxygen (DO) to the shallow groundwater. The potential for DO introduced in this manner to oxidize manganese(II) (Mn(II)), mediated by the obligate aerobe Pseudomonas putida GB-1, was tested in a column of quartz sand fed with anoxic influent solution and subject to 1.3 m water table changes every 30-50 h. After a period of filter ripening, 100 μM Mn was rapidly removed during periods of low water table and high dissolved oxygen concentrations. The accumulation of Mn in the column was confirmed by XRF analysis of the sand at the conclusion of the study, and both measured net oxidation rates and XAS analysis suggest microbial oxidation as the dominant process. The addition of Zn, which inhibited GB-1 Mn oxidation but not its growth, interrupted the Mn removal process, but Mn oxidation recovered within one water table fluctuation. Thus transient DO conditions could support microbially mediated Mn oxidation, and this process could be more relevant in shallow groundwater than previously thought.

  17. Carrier-Number-Fluctuation Induced Ultralow 1/f Noise Level in Top-Gated Graphene Field Effect Transistor.

    PubMed

    Peng, Songang; Jin, Zhi; Zhang, Dayong; Shi, Jingyuan; Mao, Dacheng; Wang, Shaoqing; Yu, Guanghui

    2017-03-01

    A top-gated graphene FET with an ultralow 1/f noise level of 1.8 × 10(-12) μm(2)Hz(1-) (f = 10 Hz) has been fabricated. The noise has the least value at Dirac point, it then increases fast when the current deviates from that at Dirac point, the noise slightly decreases at large current. The phenomenon can be understood by the carrier-number-fluctuation induced low frequency noise, which caused by the trapping-detrapping processes of the carriers. Further analysis suggests that the effect trap density depends on the location of Fermi level in graphene channel. The study has provided guidance for suppressing the 1/f noise in graphene-based applications.

  18. Synchronization transitions induced by the fluctuation of adaptive coupling strength in delayed Newman-Watts neuronal networks.

    PubMed

    Wang, Qi; Gong, Yubing; Wu, Yanan

    2015-11-01

    Introducing adaptive coupling in delayed neuronal networks and regulating the dissipative parameter (DP) of adaptive coupling by noise, we study the effect of fluctuations of the changing rate of adaptive coupling on the synchronization of the neuronal networks. It is found that time delay can induce synchronization transitions for intermediate DP values, and the synchronization transitions become strongest when DP is optimal. As the intensity of DP noise is varied, the neurons can also exhibit synchronization transitions, and the phenomenon is delay-dependent and is enhanced for certain time delays. Moreover, the synchronization transitions change with the change of DP and become strongest when DP is optimal. These results show that randomly changing adaptive coupling can considerably change the synchronization of the neuronal networks, and hence could play a crucial role in the information processing and transmission in neural systems.

  19. Force-Induced H2S by PDLSCs Modifies Osteoclastic Activity during Tooth Movement.

    PubMed

    Liu, F; Wen, F; He, D; Liu, D; Yang, R; Wang, X; Yan, Y; Liu, Y; Kou, X; Zhou, Y

    2017-02-01

    Hydrogen sulfide (H2S), a gasotransmitter, has been recently linked to mesenchymal stem cell (MSC) function and bone homeostasis. Periodontal ligament stem cells (PDLSCs) are the main MSCs in PDL, which respond to mechanical force to induce physiological activities during orthodontic tooth movement (OTM). However, it is unknown whether mechanical force might induce endogenous H2S production by PDLSCs to regulate alveolar bone homeostasis. Here, we used a mouse OTM model to demonstrate that orthodontic force-induced endogenous H2S production in PDL tissue was associated with macrophage accumulation and osteoclastic activity in alveolar bone. Then, we showed that mechanical force application induced cystathionine β-synthase (CBS) expression and endogenous H2S production by PDLSCs. Moreover, blocking endogenous H2S or systemically increasing H2S levels could decrease or enhance force-induced osteoclastic activities to control tooth movement. We further revealed how force-induced H2S production by PDLSCs contributed to the secretion of monocyte chemoattractant protein-1 (MCP-1) and the expression of receptor activator of nuclear factor-κB ligand/osteoprotegerin (RANKL/OPG) system by PDLSCs. The secretion and expression of these factors controlled macrophage migration and osteoclast differentiation. This study demonstrated that PDLSCs produced H2S to respond to and transduce force signals. Force-induced gasotransmitter H2S production in PDLSCs therefore regulated osteoclastic activities in alveolar bone and controlled the OTM process through the MCP-1 secretion and RANKL/OPG system.

  20. Endogenous insulin fluctuations during glucose-induced paralysis in patients with familial periodic hypokalemia.

    PubMed

    Johnsen, T

    1977-11-01

    Endogenous insulin production in patients with familial periodic hypokalemia has not previously been studied during induced attacks. The serum insulin, serum potassium, and blood glucose concentrations were measured in six patients with familial periodic hypokalemia during six attacks of paralysis induced by long-lasting glucose stimulation. The same parameters were measured in four normal subjects under the same conditions. There was no difference in insulin response or in blood glucose between the two groups. Basal insulin levels showed no difference. There was no correlation between the occurrence of the attack and the serum insulin level in the patients. All the patients responded by severe paralysis and hypokalemia.

  1. Optical forces on metallic nanoparticles induced by a photonic nanojet.

    PubMed

    Cui, Xudong; Erni, Daniel; Hafner, Christian

    2008-09-01

    We investigate the optical forces acting on a metallic nanoparticle when the nanoparticle is introduced within a photonic nanojet (PNJ). Optical forces at resonance and off-resonance conditions of the microcylinder or nanoparticle are investigated. Under proper polarization conditions, the whispering gallery mode can be excited in the microcylinder, even at off resonance provided that scattering from the nanoparticle is strong enough. The optical forces are enhanced at resonance either of the single microcylinder or of the nanoparticle with respect to the forces under off-resonant illuminations. We found that the optical forces acting on the nanoparticle depend strongly on the dielectric permittivity of the nanoparticle, as well as on the intensity and the beam width of the PNJ. Hence, metallic sub-wavelength nanoparticle can be efficiently trapped by PNJs. Furthermore, the PNJ's attractive force can be simply changed to a repulsive force by varying the polarization of the incident beam. The changed sign of the force is related to the particle's polarizability and the excitation of localized surface plasmons in the nanoparticle.

  2. Force-induced remodelling of proteins and their complexes

    PubMed Central

    Chen, Yun; Radford, Sheena E; Brockwell, David J

    2015-01-01

    Force can drive conformational changes in proteins, as well as modulate their stability and the affinity of their complexes, allowing a mechanical input to be converted into a biochemical output. These properties have been utilised by nature and force is now recognised to be widely used at the cellular level. The effects of force on the biophysical properties of biological systems can be large and varied. As these effects are only apparent in the presence of force, studies on the same proteins using traditional ensemble biophysical methods can yield apparently conflicting results. Where appropriate, therefore, force measurements should be integrated with other experimental approaches to understand the physiological context of the system under study. PMID:25710390

  3. Chemotherapy Drug Induced Discoordination of Mitochondrial Life Cycle Detected by Cardiolipin Fluctuation

    PubMed Central

    Chao, Yu-Jen; Chan, Jui-Fen; Hsu, Yuan-Hao Howard

    2016-01-01

    Chemotherapy drugs have been prescribed for the systemic treatment of cancer. We selected three chemotherapy drugs, including methotrexate, mitomycine C and vincristine to inhibit the proliferation of HT1080 human fibrosarcoma cells in S, G2 and M phases of the cell cycle respectively. These chemotherapy drugs showed significant toxicity and growth inhibition to the cancer cells measured by MTT assay. After treated with a 50% inhibitory dosage for 48 hours, these cancer cells showed significant accumulation of cardiolipin (CL), which was a reverse trend of the nutritional deficiency induced arrest at G1 phase. The quantity of each CL species was further semi-quantitated by HPLC-ion trap mass spectrometer. Methotraxate treatment caused unique increases of acyl chain length on CL, which were the opposite of the serum starvation, mitomycine C and vincristine treatments. Although mitomycine C and vincristine have different mechanisms to induce cell cycle arrest, these two drugs displayed similar effects on decreasing chain length of CL. Continuation of CL synthesis during cell cycle arrest indicated the chemotherapy drugs resulting in the discoordination of the mitochondrial life cycle from the cell cycle and thus caused the accumulation of CL. These finding reveals that the pre-remodeling nascent CL accumulates during the methotraxate induced arrest; however, the post-remodeling mature CL accumulates during the mitomycine C and vincristine induced arrest after the synthesis phase. PMID:27627658

  4. Cold induces micro- and nano-scale reorganization of lipid raft markers at mounds of T-cell membrane fluctuations.

    PubMed

    Chen, Yong; Qin, Jie; Cai, Jiye; Chen, Zheng W

    2009-01-01

    Whether and how cold causes changes in cell-membrane or lipid rafts remain poorly characterized. Using the NSOM/QD and confocal imaging systems, we found that cold caused microscale redistribution of lipid raft markers, GM1 for lipid and CD59 for protein, from the peripheral part of microdomains to the central part on Jurkat T cells, and that cold also induced the nanoscale size-enlargement (1/3- to 2/3-fold) of the nanoclusters of lipid raft markers and even the colocalization of GM1 and CD59 nanoclusters. These findings indicate cold-induced lateral rearrangement/coalescence of raft-related membrane heterogeneity. The cold-induced re-distribution of lipid raft markers under a nearly-natural condition provide clues for their alternations, and help to propose a model in which raft lipids associate themselves or interact with protein components to generate functional membrane heterogeneity in response to stimulus. The data also underscore the possible cold-induced artifacts in early-described cold-related experiments and the detergent-resistance-based analyses of lipid rafts at 4 degrees C, and provide a biophysical explanation for recently-reported cold-induced activation of signaling pathways in T cells. Importantly, our fluorescence-topographic NSOM imaging demonstrated that GM1/CD59 raft markers distributed and re-distributed at mounds but not depressions of T-cell membrane fluctuations. Such mound-top distribution of lipid raft markers or lipid rafts provides spatial advantage for lipid rafts or contact molecules interacting readily with neighboring cells or free molecules.

  5. The role of peripheral and central sodium channels in mediating brain temperature fluctuations induced by intravenous cocaine

    PubMed Central

    Kiyatkin, Eugene A.; Brown, P. Leon

    2007-01-01

    While cocaine’s interaction with the dopamine (DA) transporter and subsequent increase in DA transmission are usually considered key factors responsible for its locomotor stimulatory and reinforcing properties, many centrally-mediated physiological and psychoemotional effects of cocaine are resistant to DA receptor blockade, suggesting the importance of other, non-DA mechanisms. To explore the role of cocaine’s interaction with Na+ channels, rats were used to compare locomotor stimulatory and temperature (NAcc, temporal muscle and skin) effects of repeated iv injections of cocaine (1 mg/kg) with those induced by procaine (PRO 5 mg/kg), a short-acting local anesthetic with negligible effect on the DA transporter, and cocaine-methiodide (COC-MET 1.31 mg/kg), a quaternary cocaine derivative that is unable to cross the blood-brain barrier. While PRO, unlike cocaine, did not induce locomotor activation, it mimicked cocaine in its ability to increase brain temperature following the initial injection and to induce biphasic, down-up fluctuations following repeated injections. This similarity suggests that both these effects of cocaine may be driven by its action on Na+ channels, a common action of both drugs. While COC-MET also did not affect locomotor activity, it shared with cocaine and PRO their ability to increase brain temperature but failed to induce temperature decreases after repeated injections. These findings point toward activation of peripheral Na+ channels as the primary mechanism of rapid excitatory effects of cocaine and inhibition of centrally-located Na+ channels as a the primary mechanism for transient inhibitory effects of cocaine. DA receptor blockade (SCH23390 + eticlopride) fully eliminated locomotor stimulatory and temperature-increasing effects of cocaine, but its temperature-decreasing effects remained intact. Surprisingly, DA receptor blockade also altered the temperature fluctuations caused by PRO and COC-MET, suggesting that some of the

  6. Polarization force-induced changes in the dust sheath formation

    SciTech Connect

    Mayout, Saliha; Bentabet, Karima; Tribeche, Mouloud

    2015-09-15

    The modifications arising in the dusty plasma sheath structure due to the presence of polarization forces acting on the dust grains are investigated. The corresponding appropriate Bohm criterion for sheath formation is obtained. It is found that the critical Mach number, beyond which the dusty plasma electrostatic sheath sets in, decreases whenever the polarization effects become important. In addition, when the polarization force dominates over the electrical one, the dust plasma sheath cannot set in. This happens whenever the dust grain size exceeds a critical threshold. Moreover, the sheath electrostatic potential-gradient becomes abruptly steep, and the sheath thickness becomes broader as the polarization force effects strengthen.

  7. EMG and peak force responses to PNF stretching and the relationship between stretching-induced force deficits and bilateral deficits

    PubMed Central

    Cengiz, Asim

    2015-01-01

    [Purpose] The aim of the present study was to investigate the possibility of an interaction between stretching induced deficit (SFD) and bilateral deficits (BLD) during maximal voluntary isometric hand flexion under PNF stretch and no-stretch conditions through measurement of EMG and force production. [Subjects and Methods] Ten physically active male Caucasian students (age, 24.1±2.38 years; body mass, 79.48±11.40 kg; height, 174.15±0.8 cm) volunteered to participate in this study. EMG and force measurements of the subjects were recorded during either unilateral or bilateral 3-second maximal voluntary isometric hand flexion (MVC) against a force transducer. The paired sample t-test was used to examine the significance of differences among several conditions. Pearson product-moment correlation was used to evaluate the associations between different parameters. [Results] Stretching-induced deficits correlated with bilateral deficits in both force (r=0.85) and iEMG (r=0.89). PNF stretching caused significant decrements in the bilateral and unilateral conditions for both the right and left sides. [Conclusion] Since both force and iEMG decreases were observed in most measurements; it suggests there is a neural mechanism behinnd both the BLD and the SFD. PMID:25931696

  8. Taste aversion in rats induced by forced swimming, voluntary running, forced running, and lithium chloride injection treatments.

    PubMed

    Masaki, Takahisa; Nakajima, Sadahiko

    2006-07-30

    The present experiment compared the strengths of taste aversion learning in rats induced by forced swimming in a water pool (5, 15, 30, or 60 min), voluntary running in an activity wheel (15, 30, 60, or 120 min), forced running in a motorized wheel (60 min at the speed of 8 m/min), optional running in the apparatus consisting of an activity wheel and a side room (120 min), and a lithium chloride (LiCl, 0.15 M LiCl at 2% of body weight) injection. The rats were given an access to saccharin solution immediately followed by one of the above treatments or simply returned back to the home cages for the control group. On the next 2 days, aversion to the saccharin solution was assessed by two-bottle choice testing between it and tap water. The following results were obtained. (1) The saccharin aversion was a positive function of exercise durations in the forced swimming and voluntary running rats, and the exercise of more than 30 min induced statistically significant saccharin aversion, compared with the control rats. (2) The forced running caused relatively strong saccharin aversion. The group of forced running rats acquired the numerically strongest saccharin aversion on average among all exercised rats. (3) The optional running treatment had little effect. (4) The LiCl injection resulted in the strongest aversion among the all treatments explored here.

  9. Quantification of friction force reduction induced by obstetric gels.

    PubMed

    Riener, Robert; Leypold, Kerstin; Brunschweiler, Andreas; Schaub, Andreas; Bleul, Ulrich; Wolf, Peter

    2009-06-01

    The objective of this study was to quantify the reduction of friction forces by obstetric gels aimed to facilitate human childbirth. Lubricants, two obstetric gels with different viscosities and distilled water, were applied to a porcine model under mechanical conditions comparable to human childbirth. In tests with higher movement speeds of the skin relative to the birth canal, both obstetric gels significantly reduced dynamic friction forces by 30-40% in comparison to distilled water. At the lowest movement speed, only the more viscous gel reduced dynamic friction force significantly. In tests modifying the dwell time before a movement was initiated, static friction forces of trials with highly viscous gel were generally lower than those with distilled water. The performed biomechanical tests support the recommendation of using obstetric gels during human childbirth. Using the presented test apparatus may reduce the amount of clinical testing required to optimize gel formulation.

  10. A magnetic gradient induced force in NMR restricted diffusion experiments

    SciTech Connect

    Ghadirian, Bahman; Stait-Gardner, Tim; Castillo, Reynaldo; Price, William S.

    2014-03-28

    We predict that the phase cancellation of a precessing magnetisation field carried by a diffusing species in a bounded geometry under certain nuclear magnetic resonance pulsed magnetic field gradient sequences results in a small force over typically micrometre length scales. Our calculations reveal that the total magnetisation energy in a pore under the influence of a pulsed gradient will be distance-dependent thus resulting in a force acting on the boundary. It is shown that this effect of the magnetisation of diffusing particles will appear as either an attractive or repulsive force depending on the geometry of the pore and magnetic properties of the material. A detailed analysis is performed for the case of a pulsed gradient spin-echo experiment on parallel planes. It is shown that the force decays exponentially in terms of the spin-spin relaxation. The proof is based on classical electrodynamics. An application of this effect to soft matter is suggested.

  11. APPLICATIONS OF LASERS AND OTHER TOPICS IN LASER PHYSICS AND TECHNOLOGY: Influence of atmospheric fluctuations of the induced temperature on the characteristics of laser radiation

    NASA Astrophysics Data System (ADS)

    Banakh, Viktor A.; Smalikho, I. N.

    1987-10-01

    The expression for the function representing the second-order mutual coherence of a laser beam propagating in a turbulent atmosphere under thermal self-interaction conditions is derived in the aberration-free approximation. An analysis is made of the width of a beam, its wind refraction, and the radius of coherence as a function of the initial coherence of the radiation, of conditions of diffraction on the transmitting aperture, and of fluctuations of the wind velocity. It is shown that on increase in the power the coherence radius of cw laser radiation first increases because of thermal defocusing and then decreases due to the appearance (because of fluctuations of the wind velocity) of induced temperature inhomogeneities in air in the beam localization region. The conditions under which fluctuations of the induced temperature have a significant influence on the coherence of the radiation are determined.

  12. Magnetic field induced enlargement of the regime of critical fluctuations in the classical superconductor V3Si from high-resolution specific heat experiments

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Liu, Y.; Toyota, N.; Lortz, R.

    2015-02-01

    We present high-resolution specific heat data from a high-purity single crystal of the classical superconductor V3Si, which reveal tiny lambda-shape anomalies at the superconducting transition superimposed onto the BCS specific heat jump in magnetic fields of 2 T and higher. The appearance of these anomalies is accompanied by a magnetic-field-induced broadening of the superconducting transition. We demonstrate, using scaling relations predicted by the fluctuation models of the 3d-XY and the 3d-lowest-Landau-level (3d-LLL) universality class that the effect of critical fluctuations becomes experimentally observable due to of a magnetic field-induced enlargement of the regime of critical fluctuations. The scaling indicates that a reduction of the effective dimensionality due to the confinement of quasiparticles into low Landau levels is responsible for this effect.

  13. Effect of baclofen, a GABAB-agonist, on forced swimming-induced immobility in mice.

    PubMed

    Aley, K O; Kulkarni, S K

    1990-01-01

    The effect of baclofen, a GABAB-agonist, was studied on both forced swimming-induced immobility and isoprenaline-induced enhancement of forced swimming-induced immobility in mice. (+/-) Baclofen (0.5 and 1 mg/kg), and (-) baclofen (0.5, 1 and 2 mg/kg) attenuated forced swimming-induced immobility. The effect of baclofen was not reversed by bicuculline, a GABAA-antagonist. Baclofen also reduced isoprenaline-induced enhancement of forced swimming-induced immobility. On concomitant administration of a subeffective dose of baclofen with a subeffective dose of propranolol, desipramine and amitriptyline, a potentiating effect was observed. These results are corroborative of our previous finding that GABAergic agents, particularly GABAB-receptors, play a role in the modulation of despair behavior in mice and in the action of antidepressant drugs. Baclofen (5 mg/kg) did not produce any significant effect on forced swimming-induced immobility, but reduced significantly the locomotor activity of the animals. Lower doses (0.5 and 1 mg/kg) of baclofen, which reduced the forced swimming-induced immobility, did not affect the locomotor activity. At higher and lower tissue concentrations of the drug, involvement of different receptor populations is suggested.

  14. Fluctuation-induced patterns and rapid evolution in predator-prey ecosystems

    NASA Astrophysics Data System (ADS)

    Goldenfeld, Nigel

    2014-03-01

    Predator-prey ecosystems exhibit noisy, persistent cycles that cannot be described by intuitive population-level differential equations such as the Lotka-Volterra equations. Traditionally this paradox has been met by including additional nonlinearities such as predator satiation to force limit cycle behavior. Over the last few years, it has been realized that individual-level descriptions, combined with systematic perturbation techniques can reproduce the key features of such systems in a minimal way, without requiring many additional assumptions or fine tunings. Here I review work in this area that uses these techniques to treat spatial patterns and the phenomenon of rapidly evolving prey sub-populations. In the latter case, I show how stochastic individual-level models reproduce the key features observed in chemostats and in the wild, including anomalous phase shifts between predator and prey species, evolutionary cycles and cryptic cycles. This work shows that stochastic individual-level models naturally describe systems where evolutionary time scales surprisingly match ecosystem time scales.

  15. The Casimir effect: From quantum to critical fluctuations

    NASA Astrophysics Data System (ADS)

    Gambassi, Andrea

    2009-04-01

    The Casimir effect in quantum electrodynamics (QED) is perhaps the best-known example of fluctuation-induced long-ranged force acting on objects (conducting plates) immersed in a fluctuating medium (quantum electromagnetic field in vacuum). A similar effect emerges in statistical physics, where the force acting, e.g., on colloidal particles immersed in a binary liquid mixture is affected by the classical thermal fluctuations occurring in the surrounding medium. The resulting Casimir-like force acquires universal features upon approaching a critical point of the medium and becomes long-ranged at criticality. In turn, this universality allows one to investigate theoretically the temperature dependence of the force via representative models and to stringently test the corresponding predictions in experiments. In contrast to QED, the Casimir force resulting from critical fluctuations can be easily tuned with respect to strength and sign by surface treatments and temperature control. We present some recent advances in the theoretical study of the universal properties of the critical Casimir force arising in thin films. The corresponding predictions compare very well with the experimental results obtained for wetting layers of various fluids. We discuss how the Casimir force between a colloidal particle and a planar wall immersed in a binary liquid mixture has been measured with femto-Newton accuracy, comparing these experimental results with the corresponding theoretical predictions.

  16. A new motor model representing the stretch-induced force enhancement and shortening-induced force depression in skeletal muscle.

    PubMed

    Tamura, Youjiro; Saito, Masami; Nagato, Rie

    2005-04-01

    A motor model that consists of two Maxwell elements with a force generator and one Voigt element is proposed in this paper. The motor model can achieve a hyperbolic force-velocity relation when we alter weight functions applied to the Maxwell elements and the force generator. Rate coefficients are introduced to determine the weight function and to improve the motor performance and the time course of the motor force. The weight functions are used as a controller of the motor. We assume that the mechanical impulse applied to the motor affects the rate coefficients and found that the amount of the mechanical impulse is related to the amount of force depression following motor shortening and to the amount of force enhancement following motor stretching. The time courses of the motor force following shortening and stretching quantitatively resemble those in other muscle experiments. The maximum energy efficiency of the motor that we obtained was 50% with an ATP hydrolysis type and 25% with an AC-DC motor type.

  17. Residual force enhancement following eccentric induced muscle damage.

    PubMed

    Power, Geoffrey A; Rice, Charles L; Vandervoort, Anthony A

    2012-06-26

    During lengthening of an activated skeletal muscle, the force maintained following the stretch is greater than the isometric force at the same muscle length. This is termed residual force enhancement (RFE), but it is unknown how muscle damage following repeated eccentric contractions affects RFE. Using the dorsiflexors, we hypothesised muscle damage will impair the force generating sarcomeric structures leading to a reduction in RFE. Following reference maximal voluntary isometric contractions (MVC) in 8 young men (26.5±2.8y) a stretch was performed at 30°/s over a 30° ankle excursion ending at the same muscle length as the reference MVCs (30° plantar flexion). Surface electromyography (EMG) of the tibialis anterior and soleus muscles was recorded during all tasks. The damage protocol involved 4 sets of 25 isokinetic (30°/s) lengthening contractions. The same measures were collected at baseline and immediately post lengthening contractions, and for up to 10min recovery. Following the lengthening contraction task, there was a 30.3±6.4% decrease in eccentric torque (P<0.05) and 36.2±9.7% decrease in MVC (P<0.05) compared to baseline. Voluntary activation using twitch interpolation and RMS EMG amplitude of the tibialis anterior remained near maximal without increased coactivation for MVC. Contrary to our hypothesis, RFE increased (∼100-250%) following muscle damage (P<0.05). It appears stretch provided a mechanical strategy for enhanced muscle function compared to isometric actions succeeding damage. Thus, active force of cross-bridges is decreased because of impaired excitation-contraction coupling but force generated during stretch remains intact because force contribution from stretched sarcomeric structures is less impaired.

  18. The 4-Dimensional Plant: Effects of Wind-Induced Canopy Movement on Light Fluctuations and Photosynthesis.

    PubMed

    Burgess, Alexandra J; Retkute, Renata; Preston, Simon P; Jensen, Oliver E; Pound, Michael P; Pridmore, Tony P; Murchie, Erik H

    2016-01-01

    Physical perturbation of a plant canopy brought about by wind is a ubiquitous phenomenon and yet its biological importance has often been overlooked. This is partly due to the complexity of the issue at hand: wind-induced movement (or mechanical excitation) is a stochastic process which is difficult to measure and quantify; plant motion is dependent upon canopy architectural features which, until recently, were difficult to accurately represent and model in 3-dimensions; light patterning throughout a canopy is difficult to compute at high-resolutions, especially when confounded by other environmental variables. Recent studies have reinforced the expectation that canopy architecture is a strong determinant of productivity and yield; however, links between the architectural properties of the plant and its mechanical properties, particularly its response to wind, are relatively unknown. As a result, biologically relevant data relating canopy architecture, light- dynamics, and short-scale photosynthetic responses in the canopy setting are scarce. Here, we hypothesize that wind-induced movement will have large consequences for the photosynthetic productivity of our crops due to its influence on light patterning. To address this issue, in this study we combined high resolution 3D reconstructions of a plant canopy with a simple representation of canopy perturbation as a result of wind using solid body rotation in order to explore the potential effects on light patterning, interception, and photosynthetic productivity. We looked at two different scenarios: firstly a constant distortion where a rice canopy was subject to a permanent distortion throughout the whole day; and secondly, a dynamic distortion, where the canopy was distorted in incremental steps between two extremes at set time points in the day. We find that mechanical canopy excitation substantially alters light dynamics; light distribution and modeled canopy carbon gain. We then discuss methods required for

  19. The 4-Dimensional Plant: Effects of Wind-Induced Canopy Movement on Light Fluctuations and Photosynthesis

    PubMed Central

    Burgess, Alexandra J.; Retkute, Renata; Preston, Simon P.; Jensen, Oliver E.; Pound, Michael P.; Pridmore, Tony P.; Murchie, Erik H.

    2016-01-01

    Physical perturbation of a plant canopy brought about by wind is a ubiquitous phenomenon and yet its biological importance has often been overlooked. This is partly due to the complexity of the issue at hand: wind-induced movement (or mechanical excitation) is a stochastic process which is difficult to measure and quantify; plant motion is dependent upon canopy architectural features which, until recently, were difficult to accurately represent and model in 3-dimensions; light patterning throughout a canopy is difficult to compute at high-resolutions, especially when confounded by other environmental variables. Recent studies have reinforced the expectation that canopy architecture is a strong determinant of productivity and yield; however, links between the architectural properties of the plant and its mechanical properties, particularly its response to wind, are relatively unknown. As a result, biologically relevant data relating canopy architecture, light- dynamics, and short-scale photosynthetic responses in the canopy setting are scarce. Here, we hypothesize that wind-induced movement will have large consequences for the photosynthetic productivity of our crops due to its influence on light patterning. To address this issue, in this study we combined high resolution 3D reconstructions of a plant canopy with a simple representation of canopy perturbation as a result of wind using solid body rotation in order to explore the potential effects on light patterning, interception, and photosynthetic productivity. We looked at two different scenarios: firstly a constant distortion where a rice canopy was subject to a permanent distortion throughout the whole day; and secondly, a dynamic distortion, where the canopy was distorted in incremental steps between two extremes at set time points in the day. We find that mechanical canopy excitation substantially alters light dynamics; light distribution and modeled canopy carbon gain. We then discuss methods required for

  20. Revisiting detrended fluctuation analysis

    PubMed Central

    Bryce, R. M.; Sprague, K. B.

    2012-01-01

    Half a century ago Hurst introduced Rescaled Range (R/S) Analysis to study fluctuations in time series. Thousands of works have investigated or applied the original methodology and similar techniques, with Detrended Fluctuation Analysis becoming preferred due to its purported ability to mitigate nonstationaries. We show Detrended Fluctuation Analysis introduces artifacts for nonlinear trends, in contrast to common expectation, and demonstrate that the empirically observed curvature induced is a serious finite-size effect which will always be present. Explicit detrending followed by measurement of the diffusional spread of a signals' associated random walk is preferable, a surprising conclusion given that Detrended Fluctuation Analysis was crafted specifically to replace this approach. The implications are simple yet sweeping: there is no compelling reason to apply Detrended Fluctuation Analysis as it 1) introduces uncontrolled bias; 2) is computationally more expensive than the unbiased estimator; and 3) cannot provide generic or useful protection against nonstationaries. PMID:22419991

  1. Earth-tide-induced fluctuations in the salinity of an inland river, New South Wales, Australia: a short-term study.

    PubMed

    Jasonsmith, J F; Macdonald, B C T; White, I

    2017-04-01

    Wybong Creek discharges salts into the agriculturally and industrially important Hunter River in New South Wales, Australia. Abrupt increases in salinity occur periodically in the mid-Wybong Creek catchment. In order to understand the processes which cause these abrupt increases, changes in surface and groundwater were investigated. It is shown that salinity increases can be attributed to highly discrete groundwater discharge directly into the river from below. Hourly electrical conductivity data measured in the river showed regular, diurnal electrical conductivity fluctuations of up to 350 μS cm(-1). These fluctuations could not be attributed to barometric pressure, temperature, or evapotranspiration. Instead, a similar periodicity in surface water electrical conductivity and groundwater height in nearby groundwater wells was found. Fluctuations were of similar periodicity to the orthotides which cause fluctuations in surface water height and are induced by Earth tides. The geology in the mid-catchment area indicates conditions are optimal for Earth tides to impact groundwater. The reporting of orthotidal changes in water chemistry in this article is believed to be the first of its kind in the scientific literature, with the large fluctuations noted having important implications for water monitoring and management in the catchment. Further research investigating Earth-tide-induced phases of groundwater heights will better constrain the relationships between surface water chemistry and groundwater height.

  2. Casimir force induced by an imperfect Bose gas.

    PubMed

    Napiórkowski, Marek; Piasecki, Jarosław

    2011-12-01

    We present a study of the Casimir effect in an imperfect (mean-field) Bose gas contained between two infinite parallel plane walls. The derivation of the Casimir force follows from the calculation of the excess grand-canonical free energy density under periodic, Dirichlet, and Neumann boundary conditions with the use of the steepest descent method. In the one-phase region, the force decays exponentially fast when distance D between the walls tends to infinity. When the Bose-Einstein condensation point is approached, the decay length in the exponential law diverges with critical exponent ν(IMP) = 1, which differs from the perfect gas case where ν(P) = 1/2. In the two-phase region, the Casimir force is long range and decays following the power law D(-3), with the same amplitude as in the perfect gas.

  3. Force-induced transparency and conversion between slow and fast light in optomechanics

    NASA Astrophysics Data System (ADS)

    Wu, Zhen; Luo, Ren-Hua; Zhang, Jian-Qi; Wang, Yu-Hua; Yang, Wen; Feng, Mang

    2017-09-01

    The optomechanics can generate fantastic effects of optics due to appropriate mechanical control. Here we theoretically study effects of slow and fast lights in a single-sided optomechanical cavity with an external force. The force-induced transparency of slow and fast lights and the force-dependent conversion between the slow and fast lights result from effects of the rotating-wave approximation (RWA) and the anti-RWA, which can be controlled by properly modifying the effective cavity frequency due to the external force. These force-induced phenomena can be applied to control the light group velocity and to detect the force variation, which are feasible using current laboratory techniques.

  4. Analysis of wind-induced dynamic pressure fluctuations during one and a half Martian years at Gale Crater

    NASA Astrophysics Data System (ADS)

    Ullán, Aurora; Zorzano, María-Paz; Javier Martín-Torres, Francisco; Valentín-Serrano, Patricia; Kahanpää, Henrik; Harri, Ari-Matti; Gómez-Elvira, Javier; Navarro, Sara

    2017-05-01

    The Rover Environmental Monitoring Station (REMS) instrument on-board the Mars Science Laboratory (MSL) has acquired unprecedented measurements of key environmental variables at the base of Gale Crater. The pressure measured by REMS shows modulations with a very structured pattern of short-time scale (of the order of seconds to several minutes) mild fluctuations (typically up to 0.2 Pa at daytime and 1 Pa at night-time). These dynamic pressure oscillations are consistent with wind, air and ground temperature modulations measured simultaneously by REMS. We detect the signals of a repetitive pattern of upslope/downslope winds, with maximal speeds of about 21 m/s, associated with thermal changes in the air and surface temperatures, that are initiated after sunset and finish with sunrise proving that Gale, a 4.5 km deep impact crater, is an active Aeolian environment. At nighttime topographic slope winds are intense with maximal activity from 17:00 through 23:00 Local Mean Solar Time, and simultaneous changes of surface temperature are detected. During the day, the wind modulations are related to convection of the planetary boundary layer, winds are softer with maximum wind speed of about 14 m/s. The ground temperature is modulated by the forced convection of winds, with amplitudes between 0.2 K and 0.5 K, and the air temperatures fluctuate with amplitudes of about 2 K. The analysis of more than one and a half Martian years indicates the year-to-year repeatability of these environmental phenomena. The wind pattern minimizes at the beginning of the south hemisphere winter (Ls 90) season and maximizes during late spring and early summer (Ls 270). The procedure that we present here is a useful tool to investigate in a semi-quantitative way the winds by: i) filling both seasonal and diurnal gaps where wind measurements do not exist, ii) providing an alternative way for comparisons through different measuring principia and, iii) filling the gap of observation of short

  5. Synergistic Modification Induced Specific Recognition between Histone and TRIM24 via Fluctuation Correlation Network Analysis

    PubMed Central

    Zhang, Jinmai; Luo, Huajie; Liu, Hao; Ye, Wei; Luo, Ray; Chen, Hai-Feng

    2016-01-01

    Histone modification plays a key role in gene regulation and gene expression. TRIM24 as a histone reader can recognize histone modification. However the specific recognition mechanism between TRIM24 and histone modification is unsolved. Here, systems biology method of dynamics correlation network based on molecular dynamics simulation was used to answer the question. Our network analysis shows that the dynamics correlation network of H3K23ac is distinctly different from that of wild type and other modifications. A hypothesis of “synergistic modification induced recognition” is then proposed to link histone modification and TRIM24 binding. These observations were further confirmed from community analysis of networks with mutation and network perturbation. Finally, a possible recognition pathway is also identified based on the shortest path search for H3K23ac. Significant difference of recognition pathway was found among different systems due to methylation and acetylation modifications. The analysis presented here and other studies show that the dynamic network-based analysis might be a useful general strategy to study the biology of protein post-translational modification and associated recognition. PMID:27079666

  6. Fluctuations of electrical and mechanical properties of diamond induced by interstitial hydrogen

    NASA Astrophysics Data System (ADS)

    Zhuang, Chun-Qiang; Liu, Lei

    2015-01-01

    While experimental evidence demonstrates that the presence of hydrogen (H) impurities in diamond films plays a significant role in determining their physical properties, the small radius of the H atom makes detecting such impurities quite a challenging task. In the present work, first-principles calculations were employed to provide an insight into the effects of the interstitial hydrogen on the electrical and mechanical properties of diamond crystals at the atomic level. The migrated pathways of the interstitial hydrogen are dictated by energetic considerations. Some new electronic states are formed near the Fermi level. The interstitial hydrogen markedly narrows the bandgap of the diamond and weakens the diamond crystal. The obvious decrement of the critical strain clearly implies the presence of an H-induced embrittlement effect. Project supported by the Project of Construction of Innovative Teams and Teacher Career Development for Universities and Colleges under Beijing Municipality, China (Grant No. IDHT20140504), the National Natural Science Foundation of China (Grant No. 51402009), and the Foundation for Young Scholars of Beijing University of Technology, China.

  7. Synergistic Modification Induced Specific Recognition between Histone and TRIM24 via Fluctuation Correlation Network Analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Jinmai; Luo, Huajie; Liu, Hao; Ye, Wei; Luo, Ray; Chen, Hai-Feng

    2016-04-01

    Histone modification plays a key role in gene regulation and gene expression. TRIM24 as a histone reader can recognize histone modification. However the specific recognition mechanism between TRIM24 and histone modification is unsolved. Here, systems biology method of dynamics correlation network based on molecular dynamics simulation was used to answer the question. Our network analysis shows that the dynamics correlation network of H3K23ac is distinctly different from that of wild type and other modifications. A hypothesis of “synergistic modification induced recognition” is then proposed to link histone modification and TRIM24 binding. These observations were further confirmed from community analysis of networks with mutation and network perturbation. Finally, a possible recognition pathway is also identified based on the shortest path search for H3K23ac. Significant difference of recognition pathway was found among different systems due to methylation and acetylation modifications. The analysis presented here and other studies show that the dynamic network-based analysis might be a useful general strategy to study the biology of protein post-translational modification and associated recognition.

  8. Measurements of Propeller-Induced Unsteady Surface Force and Pressures

    DTIC Science & Technology

    1986-12-01

    lessons learned froka the experimental and analytical investiga- tions carried out for the AO-177 project was the observation of how such subtle changes of...ing Model N400 Filter 1000 Hz 5 kHz 1000 Hz 70 v2 is made at point 2 in the same direction as the calibration drive force, with the cavitating

  9. Attosecond Electro-Magnetic Forces Acting on Metal Nanospheres Induced By Relativistic Electrons

    NASA Astrophysics Data System (ADS)

    Lagos, M. J.; Batson, P. E.; Reyes-Coronado, A.; Echenique, P. M.; Aizpurua, J.

    2014-03-01

    Swift electron scattering near nanoscale materials provides information about light-matter behavior, including induced forces. We calculate time-dependent electromagnetic forces acting on 1-1.5 nm metal nanospheres induced by passing swift electrons, finding both impulse-like and oscillatory response forces. Initially, impulse-like forces are generated by a competition between attractive electric forces and repulsive magnetic forces, lasting a few attoseconds (5-10 as). Oscillatory, plasmonic response forces take place later in time, last a few femtoseconds (1- 5 fs), and apparently rely on photon emission by decay of the electron-induced surface plasmons. A comparison of the strength of these two forces suggests that the impulse-like behavior dominates the process, and can transfer significant linear momentum to the sphere. Our results advance understanding of the physics behind the observation of both attractive and repulsive behavior of gold nano-particles induced by electron beams in aberration-corrected electron microscopy. Work supported under DOE, Award # DE-SC0005132, Basque Gov. project ETORTEK inano, Spanish Ministerio de Ciencia e Innovacion, No. FIS2010-19609-C02-01.

  10. Zero field splitting fluctuations induced phase relaxation of Gd3+ in frozen solutions at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Raitsimring, A.; Dalaloyan, A.; Collauto, A.; Feintuch, A.; Meade, T.; Goldfarb, D.

    2014-11-01

    Distance measurements using double electron-electron resonance (DEER) and Gd3+ chelates for spin labels (GdSL) have been shown to be an attractive alternative to nitroxide spin labels at W-band (95 GHz). The maximal distance that can be accessed by DEER measurements and the sensitivity of such measurements strongly depends on the phase relaxation of Gd3+ chelates in frozen, glassy solutions. In this work, we explore the phase relaxation of Gd3+-DOTA as a representative of GdSL in temperature and concentration ranges typically used for W-band DEER measurements. We observed that in addition to the usual mechanisms of phase relaxation known for nitroxide based spin labels, GdSL are subjected to an additional phase relaxation mechanism that features an increase in the relaxation rate from the center to the periphery of the EPR spectrum. Since the EPR spectrum of GdSL is the sum of subspectra of the individual EPR transitions, we attribute this field dependence to transition dependent phase relaxation. Using simulations of the EPR spectra and its decomposition into the individual transition subspectra, we isolated the phase relaxation of each transition and found that its rate increases with |ms|. We suggest that this mechanism is due to transient zero field splitting (tZFS), where its magnitude and correlation time are scaled down and distributed as compared with similar situations in liquids. This tZFS induced phase relaxation mechanism becomes dominant (or at least significant) when all other well-known phase relaxation mechanisms, such as spectral diffusion caused by nuclear spin diffusion, instantaneous and electron spin spectral diffusion, are significantly suppressed by matrix deuteration and low concentration, and when the temperature is sufficiently low to disable spin lattice interaction as a source of phase relaxation.

  11. Zero field splitting fluctuations induced phase relaxation of Gd3+ in frozen solutions at cryogenic temperatures

    PubMed Central

    Raitsimring, A.; Dalaloyan, A.; Collauto, A.; Feintuch, A.; Meade, T.; Goldfarb, D.

    2015-01-01

    Distance measurements using double electron–electron resonance (DEER) and Gd3+ chelates for spin labels (GdSL) have been shown to be an attractive alternative to nitroxide spin labels at W-band (95 GHz). The maximal distance that can be accessed by DEER measurements and the sensitivity of such measurements strongly depends on the phase relaxation of Gd3+ chelates in frozen, glassy solutions. In this work, we explore the phase relaxation of Gd3+-DOTA as a representative of GdSL in temperature and concentration ranges typically used for W-band DEER measurements. We observed that in addition to the usual mechanisms of phase relaxation known for nitroxide based spin labels, GdSL are subjected to an additional phase relaxation mechanism that features an increase in the relaxation rate from the center to the periphery of the EPR spectrum. Since the EPR spectrum of GdSL is the sum of subspectra of the individual EPR transitions, we attribute this field dependence to transition dependent phase relaxation. Using simulations of the EPR spectra and its decomposition into the individual transition subspectra, we isolated the phase relaxation of each transition and found that its rate increases with |ms|. We suggest that this mechanism is due to transient zero field splitting (tZFS), where its magnitude and correlation time are scaled down and distributed as compared with similar situations in liquids. This tZFS induced phase relaxation mechanism becomes dominant (or at least significant) when all other well-known phase relaxation mechanisms, such as spectral diffusion caused by nuclear spin diffusion, instantaneous and electron spin spectral diffusion, are significantly suppressed by matrix deuteration and low concentration, and when the temperature is sufficiently low to disable spin lattice interaction as a source of phase relaxation. PMID:25442776

  12. Zero field splitting fluctuations induced phase relaxation of Gd3+ in frozen solutions at cryogenic temperatures.

    PubMed

    Raitsimring, A; Dalaloyan, A; Collauto, A; Feintuch, A; Meade, T; Goldfarb, D

    2014-11-01

    Distance measurements using double electron-electron resonance (DEER) and Gd(3+) chelates for spin labels (GdSL) have been shown to be an attractive alternative to nitroxide spin labels at W-band (95GHz). The maximal distance that can be accessed by DEER measurements and the sensitivity of such measurements strongly depends on the phase relaxation of Gd(3+) chelates in frozen, glassy solutions. In this work, we explore the phase relaxation of Gd(3+)-DOTA as a representative of GdSL in temperature and concentration ranges typically used for W-band DEER measurements. We observed that in addition to the usual mechanisms of phase relaxation known for nitroxide based spin labels, GdSL are subjected to an additional phase relaxation mechanism that features an increase in the relaxation rate from the center to the periphery of the EPR spectrum. Since the EPR spectrum of GdSL is the sum of subspectra of the individual EPR transitions, we attribute this field dependence to transition dependent phase relaxation. Using simulations of the EPR spectra and its decomposition into the individual transition subspectra, we isolated the phase relaxation of each transition and found that its rate increases with |ms|. We suggest that this mechanism is due to transient zero field splitting (tZFS), where its magnitude and correlation time are scaled down and distributed as compared with similar situations in liquids. This tZFS induced phase relaxation mechanism becomes dominant (or at least significant) when all other well-known phase relaxation mechanisms, such as spectral diffusion caused by nuclear spin diffusion, instantaneous and electron spin spectral diffusion, are significantly suppressed by matrix deuteration and low concentration, and when the temperature is sufficiently low to disable spin lattice interaction as a source of phase relaxation. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Anomalous transport and diffusion phenomena induced by biharmonic forces in deformable potential systems

    NASA Astrophysics Data System (ADS)

    Mbemmo, André Marie Fopossi; Kenmoé, Germaine Djuidjé; Kofané, Timoléon Crépin

    2016-09-01

    We study transport properties of an inertial Brownian motor which moves in a deformable Remoissenet-Peyrad periodic potential and is subjected to both a static bias force and time periodic driving biharmonic force. By modifying the shape of the potential, the anomalous transport is identified for a particular set of the system parameters. For a particular potential shape, the mean velocity of a particle is modified by going from negative to positive values according to the external bias force. These features also depend on both the biharmonic parameter and the phase-lag of two signals. A remarkable transition of the negative velocity depending on the shape of the potential is observed. We also focus on the efficiency of the motor and discuss velocity fluctuation. In addition, within selected system parameters, different types of diffusion particle such as subdiffusion, superdiffusion, normal diffusion, ballistic diffusion, hyperdiffusion and dispersionless transport phenomena are generated in the system.

  14. Influence of the Polysilicon Gate on the Random Dopant Induced Threshold Voltage Fluctuations in Sub 100 nm MOSFETS with Thin Gate Oxides

    NASA Technical Reports Server (NTRS)

    Asenov, Asen; Saini, S.

    2000-01-01

    In this paper for the first time we study the influence of the polysilicon gate on the random dopant induced threshold voltage fluctuations in sub 100 nm MOSFETs with tunnelling gate oxides. This is done by using an efficient 3D 'atomistic' simulation technique described elsewhere. Devices with uniform channel doping and with low doped epitaxial channels have been investigated. The simulations reveale that the polysilicon gate is responsible for a substantial fraction of the threshold voltage fluctuations in both devices when the gate oxide is scaled to tunnelling thickness in the range of 1 - 2 nm.

  15. Force Responses and Sarcomere Dynamics of Cardiac Myofibrils Induced by Rapid Changes in [Pi].

    PubMed

    Stehle, Robert

    2017-01-24

    The second phase of the biphasic force decay upon release of phosphate from caged phosphate was previously interpreted as a signature of kinetics of the force-generating step in the cross-bridge cycle. To test this hypothesis without using caged compounds, force responses and individual sarcomere dynamics upon rapid increases or decreases in concentration of inorganic phosphate [Pi] were investigated in calcium-activated cardiac myofibrils. Rapid increases in [Pi] induced a biphasic force decay with an initial slow decline (phase 1) and a subsequent 3-5-fold faster major decay (phase 2). Phase 2 started with the distinct elongation of a single sarcomere, the so-called sarcomere "give". "Give" then propagated from sarcomere to sarcomere along the myofibril. Propagation speed and rate constant of phase 2 (k+Pi(2)) had a similar [Pi]-dependence, indicating that the kinetics of the major force decay (phase 2) upon rapid increase in [Pi] is determined by sarcomere dynamics. In contrast, no "give" was observed during phase 1 after rapid [Pi]-increase (rate constant k+Pi(1)) and during the single-exponential force rise (rate constant k-Pi) after rapid [Pi]-decrease. The values of k+Pi(1) and k-Pi were similar to the rate constant of mechanically induced force redevelopment (kTR) and Ca(2+)-induced force development (kACT) measured at same [Pi]. These results indicate that the major phase 2 of force decay upon a Pi-jump does not reflect kinetics of the force-generating step but results from sarcomere "give". The other phases of Pi-induced force kinetics that occur in the absence of "give" yield the same information as mechanically and Ca(2+)-induced force kinetics (k+Pi(1) ∼ k-Pi ∼ kTR ∼ kACT). Model simulations indicate that Pi-induced force kinetics neither enable the separation of Pi-release from the rate-limiting transition f into force states nor differentiate whether the "force-generating step" occurs before, along, or after the Pi-release.

  16. Effect of disorder on temporal fluctuations in drying-induced cracking.

    PubMed

    Villalobos, Gabriel; Kun, Ferenc; Muñoz, José D

    2011-10-01

    We investigate by means of computer simulations the effect of structural disorder on the statistics of cracking for a thin layer of material under uniform and isotropic drying. For this purpose, the layer is discretized into a triangular lattice of springs with a slightly randomized arrangement. The drying process is captured by reducing the natural length of all springs by the same factor, and the amount of quenched disorder is controlled by varying the width ξ of the distribution of the random breaking thresholds for the springs. Once a spring breaks, the redistribution of the load may trigger an avalanche of breaks, not necessarily as part of the same crack. Our computer simulations revealed that the system exhibits a phase transition with the amount of disorder as control parameter: at low disorders, the breaking process is dominated by a macroscopic crack at the beginning, and the size distribution of the subsequent breaking avalanches shows an exponential form. At high disorders, the fracturing proceeds in small-sized avalanches with an exponential distribution, generating a large number of microcracks, which eventually merge and break the layer. Between both phases, a sharp transition occurs at a critical amount of disorder ξ(c)=0.40±0.01, where the avalanche size distribution becomes a power law with exponent τ=2.6±0.08, in agreement with the mean-field value τ=5/2 of the fiber bundle model. Moreover, good quality data collapses from the finite-size scaling analysis show that the average value of the largest burst ⟨Δ(max)⟩ can be identified as the order parameter, with β/ν=1.4 and 1/ν≃1.0, and that the average ratio ⟨m(2)/m(1)⟩ of the second m(2) and first moments m(1) of the avalanche size distribution shows similar behavior to the susceptibility of a continuous transition, with γ/ν=1, 1/ν≃0.9. These results suggest that the disorder-induced transition of the breakup of thin layers is analogous to a continuous phase transition.

  17. Fluctuations between multiple EF-G-induced chimeric tRNA states during translocation on the ribosome

    NASA Astrophysics Data System (ADS)

    Adio, Sarah; Senyushkina, Tamara; Peske, Frank; Fischer, Niels; Wintermeyer, Wolfgang; Rodnina, Marina V.

    2015-06-01

    The coupled translocation of transfer RNA and messenger RNA through the ribosome entails large-scale structural rearrangements, including step-wise movements of the tRNAs. Recent structural work has visualized intermediates of translocation induced by elongation factor G (EF-G) with tRNAs trapped in chimeric states with respect to 30S and 50S ribosomal subunits. The functional role of the chimeric states is not known. Here we follow the formation of translocation intermediates by single-molecule fluorescence resonance energy transfer. Using EF-G mutants, a non-hydrolysable GTP analogue, and fusidic acid, we interfere with either translocation or EF-G release from the ribosome and identify several rapidly interconverting chimeric tRNA states on the reaction pathway. EF-G engagement prevents backward transitions early in translocation and increases the fraction of ribosomes that rapidly fluctuate between hybrid, chimeric and posttranslocation states. Thus, the engagement of EF-G alters the energetics of translocation towards a flat energy landscape, thereby promoting forward tRNA movement.

  18. Radiation Force induced Liquid Flow within a Homogeneous Medium

    NASA Astrophysics Data System (ADS)

    Choi, Honggu; Joo, Boram; Jisung, Jeong; Oh, Kyunghwan; Yonsei Univ Collaboration

    2015-05-01

    The visualization of optical force required refractive index inhomogeneous boundary, or absorption to generate radiation pressure. However, the dilute liquid medium with low attenuation coefficient is affected by light carrying momentum, and generated flow. The optical force density within a dielectric medium oscillates, and their time averaged value was regarded as a vanishing parameter, however the existence of light carrying momentum within a dielectric media generates material momentum density and it results localized liquid flow. We used 980 nm fiber laser source guided along HI1060 single mode fiber which guides localized single mode Poynting vector, in order to generate effectively measureable radiation pressure during light propagation within deionized water. The micro beads with 2 micrometer diameter were deployed to visualize the flow and their location was out of beam to reject the effect of radiation pressure at the refractive index inhomogeneity between water and polymer beads.

  19. Differential equations governing slip-induced pore-pressure fluctuations in a water-saturated granular medium

    USGS Publications Warehouse

    Iverson, R.M.

    1993-01-01

    Macroscopic frictional slip in water-saturated granular media occurs commonly during landsliding, surface faulting, and intense bedload transport. A mathematical model of dynamic pore-pressure fluctuations that accompany and influence such sliding is derived here by both inductive and deductive methods. The inductive derivation shows how the governing differential equations represent the physics of the steadily sliding array of cylindrical fiberglass rods investigated experimentally by Iverson and LaHusen (1989). The deductive derivation shows how the same equations result from a novel application of Biot's (1956) dynamic mixture theory to macroscopic deformation. The model consists of two linear differential equations and five initial and boundary conditions that govern solid displacements and pore-water pressures. Solid displacements and water pressures are strongly coupled, in part through a boundary condition that ensures mass conservation during irreversible pore deformation that occurs along the bumpy slip surface. Feedback between this deformation and the pore-pressure field may yield complex system responses. The dual derivations of the model help explicate key assumptions. For example, the model requires that the dimensionless parameter B, defined here through normalization of Biot's equations, is much larger than one. This indicates that solid-fluid coupling forces are dominated by viscous rather than inertial effects. A tabulation of physical and kinematic variables for the rod-array experiments of Iverson and LaHusen and for various geologic phenomena shows that the model assumptions commonly are satisfied. A subsequent paper will describe model tests against experimental data. ?? 1993 International Association for Mathematical Geology.

  20. A complex social-ecological disaster: Environmentally induced forced migration

    PubMed Central

    Rechkemmer, Andreas; O'Connor, Ashley; Rai, Abha; Decker Sparks, Jessica L.; Mudliar, Pranietha; Shultz, James M.

    2016-01-01

    ABSTRACT In the 21st century, global issues are increasingly characterized by inter-connectedness and complexity. Global environmental change, and climate change in particular, has become a powerful driver and catalyst of forced migration and internal displacement of people. Environmental migrants may far outnumber any other group of displaced people and refugees in the years to come. Deeper scientific integration, especially across the social sciences, is a prerequisite to tackle this issue.

  1. A complex social-ecological disaster: Environmentally induced forced migration.

    PubMed

    Rechkemmer, Andreas; O'Connor, Ashley; Rai, Abha; Decker Sparks, Jessica L; Mudliar, Pranietha; Shultz, James M

    2016-01-01

    In the 21(st) century, global issues are increasingly characterized by inter-connectedness and complexity. Global environmental change, and climate change in particular, has become a powerful driver and catalyst of forced migration and internal displacement of people. Environmental migrants may far outnumber any other group of displaced people and refugees in the years to come. Deeper scientific integration, especially across the social sciences, is a prerequisite to tackle this issue.

  2. Investigation on flow and mixing characteristics of supersonic mixing layer induced by forced vibration of cantilever

    NASA Astrophysics Data System (ADS)

    Zhang, Dongdong; Tan, Jianguo; Lv, Liang

    2015-12-01

    The mixing process has been an important issue for the design of supersonic combustion ramjet engine, and the mixing efficiency plays a crucial role in the improvement of the combustion efficiency. In the present study, nanoparticle-based planar laser scattering (NPLS), particle image velocimetry (PIV) and large eddy simulation (LES) are employed to investigate the flow and mixing characteristics of supersonic mixing layer under different forced vibration conditions. The indexes of fractal dimension, mixing layer thickness, momentum thickness and scalar mixing level are applied to describe the mixing process. Results show that different from the development and evolution of supersonic mixing layer without vibration, the flow under forced vibration is more likely to present the characteristics of three-dimensionality. The laminar flow region of mixing layer under forced vibration is greatly shortened and the scales of rolled up Kelvin-Helmholtz vortices become larger, which promote the mixing process remarkably. The fractal dimension distribution reveals that comparing with the flow without vibration, the turbulent fluctuation of supersonic mixing layer under forced vibration is more intense. Besides, the distribution of mixing layer thickness, momentum thickness and scalar mixing level are strongly influenced by forced vibration. Especially, when the forcing frequency is 4000 Hz, the mixing layer thickness and momentum thickness are 0.0391 m and 0.0222 m at the far field of 0.16 m, 83% and 131% higher than that without vibration at the same position, respectively.

  3. The response of short-scale density fluctuations to the activity of beta-induced Alfvén eigenmodes during strong tearing modes on EAST tokamak

    NASA Astrophysics Data System (ADS)

    Cao, G. M.; Li, Y. D.; Li, Q.; Sun, P. J.; Wu, G. J.; Hu, L. Q.; the EAST Team

    2015-08-01

    Beta-induced Alfvén eigenmodes (BAEs) during strong tearing modes (TMs) have been frequently observed in fast-electron plasmas of EAST tokamak. The dynamics of the short-scale ({k}\\perp {ρ }s~{1.5-4.3}) density fluctuations during the activity of BAEs with strong TMs has been preliminarily investigated by a tangential CO2 laser collective scattering system. The results suggest the active, but different, response of short-scale density fluctuations to the TMs and BAEs. In the low-frequency (0-10 kHz) part of density fluctuations, there are harmonic oscillations totally corresponding to those of TMs. In the medium-high frequency (10-250 kHz) part of density fluctuations, with the appearance of the BAEs, the medium-high frequency density fluctuations begin to be dominated by several quasi-coherent (QC) modes, and the frequencies of the QC modes seem to be related to the changes of both TMs and BAEs. These results would shed some light on the understanding of the multi-scale interaction physics.

  4. Aerodynamic forces induced by controlled transitory flow on a body of revolution

    NASA Astrophysics Data System (ADS)

    Rinehart, Christopher S.

    The aerodynamic forces and moments on an axisymmetric body of revolution are controlled in a low-speed wind tunnel by induced local flow attachment. Control is effected by an array of aft-facing synthetic jets emanating from narrow, azimuthally segmented slots embedded within an axisymmetric backward facing step. The actuation results in a localized, segmented vectoring of the separated base flow along a rear Coanda surface and induced asymmetric aerodynamic forces and moments. The observed effects are investigated in both quasi-steady and transient states, with emphasis on parametric dependence. It is shown that the magnitude of the effected forces can be substantially increased by slight variations of the Coanda surface geometry. Force and velocity measurements are used to elucidate the mechanisms by which the synthetic jets produce asymmetric aerodynamic forces and moments, demonstrating a novel method to steer axisymmetric bodies during flight.

  5. Contact force measurements and stress-induced anisotropy in granular materials.

    PubMed

    Majmudar, T S; Behringer, R P

    2005-06-23

    Interparticle forces in granular media form an inhomogeneous distribution of filamentary force chains. Understanding such forces and their spatial correlations, specifically in response to forces at the system boundaries, represents a fundamental goal of granular mechanics. The problem is of relevance to civil engineering, geophysics and physics, being important for the understanding of jamming, shear-induced yielding and mechanical response. Here we report measurements of the normal and tangential grain-scale forces inside a two-dimensional system of photoelastic disks that are subject to pure shear and isotropic compression. Various statistical measures show the underlying differences between these two stress states. These differences appear in the distributions of normal forces (which are more rounded for compression than shear), although not in the distributions of tangential forces (which are exponential in both cases). Sheared systems show anisotropy in the distributions of both the contact network and the contact forces. Anisotropy also occurs in the spatial correlations of forces, which provide a quantitative replacement for the idea of force chains. Sheared systems have long-range correlations in the direction of force chains, whereas isotropically compressed systems have short-range correlations regardless of the direction.

  6. Excitation-induced force recovery in potassium-inhibited rat soleus muscle

    PubMed Central

    Nielsen, Ole Bækgaard; Hilsted, Linda; Clausen, Torben

    1998-01-01

    Excitation markedly stimulates the Na+-K+ pump in skeletal muscle. The effect of this stimulation on contractility was examined in rat soleus muscles exposed to high extracellular K+ concentration ([K+]o).At a [K+]o of 10 mm, tetanic force declined to 58 % of the force in standard buffer with 5.9 mm K+. Subsequent direct stimulation of the muscle at 1 min intervals with 30 Hz pulse trains of 2 s duration induced a 97 % recovery of force within 14 min. Force recovery could also be elicited by stimulation via the nerve. In muscles exposed to 12.5 mm K+, 30 Hz pulse trains of 2 s duration at 1 min intervals induced a recovery of force from 16 ± 2 to 62 ± 4 % of the initial control force at a [K+]o of 5.9 mm.The recovery of force was associated with a decrease in intracellular Na+ and was blocked by ouabain. This indicates that the force recovery was secondary to activation of the Na+-K+ pump.Excitation stimulates the release of calcitonin gene-related peptide (CGRP) from nerves in the muscle. Since CGRP stimulates the Na+-K+ pump, this may contribute to the excitation-induced force recovery. Indeed, reducing CGRP content by capsaicin pre-treatment or prior denervation prevented both the excitation-induced force recovery and the drop in intracellular Na+.The data suggest that activation of the Na+-K+ pump in contracting muscles counterbalances the depressing effect of reductions in the chemical gradients for Na+ and K+ on excitability. PMID:9769424

  7. Study of Elastin Sequences with Solvent Induced Force Field

    NASA Astrophysics Data System (ADS)

    Arkin, Handan

    Conformational structures of two common repeat motifs Val1-Pro2-Gly3-Val4-Gly5 and Gly1-Leu2-Gly3-Gly4 of tropoelastin are investigated by using the multicanonical simulation procedure with solvation effects included energy force field. The effects of solvation energy term on the conformations are determined by analyzing Ramachandran plots. By minimizing the energy structures along the trajectory, the thermodynamically most stable low-energy microstates of the molecule in aqueous solution are determined and the root mean square deviations of these structures with respect to the global minimum are calculated.

  8. Comparison of various approaches to the calculation of optically induced forces

    SciTech Connect

    Torchigin, V.P. Torchigin, A.V.

    2012-09-15

    Various approaches used for the calculation of optically induced forces applied to a transparent optical medium imbedded in a close plane optical resonator are analyzed. The forces are calculated by means of analysis of a change in the eigen frequency and energy stored in the resonator at various positions of the medium. It is shown that results obtained are identical to those calculated by means of approaches based on the Maxwell stress tensor, based on an analysis of a change in the momentum of light. An exception is for results obtained on the base of last versions of the Lorentz density force. - Highlights: Black-Right-Pointing-Pointer There are no Lorentz forces in a homogeneous optical medium. Black-Right-Pointing-Pointer A net force produced by an inhomogeneous electrostriction pressure is equal to zero. Black-Right-Pointing-Pointer Any distributions of the Lorentz force in a homogeneous optical medium are misleading.

  9. Depletion forces on circular and elliptical obstacles induced by active matter.

    PubMed

    Leite, L R; Lucena, D; Potiguar, F Q; Ferreira, W P

    2016-12-01

    Depletion forces exerted by self-propelled particles on circular and elliptical passive objects are studied using numerical simulations. We show that a bath of active particles can induce repulsive and attractive forces which are sensitive to the shape and orientation of the passive objects (either horizontal or vertical ellipses). The resultant force on the passive objects due to the active particles is studied as a function of the shape and orientation of the passive objects, magnitude of the angular noise, and distance between the passive objects. By increasing the distance between obstacles the magnitude of the repulsive depletion force increases, as long as such a distance is less than one active particle diameter. For longer distances, the magnitude of the force always decreases with increasing distance. We also found that attractive forces may arise for vertical ellipses at high enough area fraction.

  10. Force-induced selective dissociation of noncovalent antibody-antigen bonds.

    PubMed

    Yao, Li; Xu, Shoujun

    2012-08-23

    Specific noncovalent binding between antibody and antigen molecules is the basis for molecular recognition in biochemical processes. Quantitative investigation of the binding forces could lead to molecular specific analysis and potentially mechanical manipulation of these processes. Using our force-induced remnant magnetization spectroscopy, we revealed a well-defined binding force for the bonds between mouse immunoglobulin G and magnetically labeled α-mouse immunoglobulin G. The force was calibrated to be 120 ± 15 pN. In comparison, the binding force was only 17 ± 3 pN for physisorption and much higher than 120 pN for biotin-streptavidin bonds. A unique rebinding method was used to confirm the dissociation of the antibody-antigen bonds. A well-defined and molecule-specific binding force opens a new avenue for distinguishing different noncovalent bonds in biochemical processes.

  11. Depletion forces on circular and elliptical obstacles induced by active matter

    NASA Astrophysics Data System (ADS)

    Leite, L. R.; Lucena, D.; Potiguar, F. Q.; Ferreira, W. P.

    2016-12-01

    Depletion forces exerted by self-propelled particles on circular and elliptical passive objects are studied using numerical simulations. We show that a bath of active particles can induce repulsive and attractive forces which are sensitive to the shape and orientation of the passive objects (either horizontal or vertical ellipses). The resultant force on the passive objects due to the active particles is studied as a function of the shape and orientation of the passive objects, magnitude of the angular noise, and distance between the passive objects. By increasing the distance between obstacles the magnitude of the repulsive depletion force increases, as long as such a distance is less than one active particle diameter. For longer distances, the magnitude of the force always decreases with increasing distance. We also found that attractive forces may arise for vertical ellipses at high enough area fraction.

  12. Correlative atomic force and confocal fluorescence microscopy: single molecule imaging and force induced spectral shifts (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Basché, Thomas; Hinze, Gerald; Stöttinger, Sven

    2016-09-01

    A grand challenge in nanoscience is to correlate structure or morphology of individual nano-sized objects with their photo-physical properties. An early example have been measurements of the emission spectra and polarization of single semiconductor quantum dots as well as their crystallographic structure by a combination of confocal fluorescence microscopy and transmission electron microscopy.[1] Recently, the simultaneous use of confocal fluorescence and atomic force microscopy (AFM) has allowed for correlating the morphology/conformation of individual nanoparticle oligomers or molecules with their photo-physics.[2, 3] In particular, we have employed the tip of an AFM cantilever to apply compressive stress to single molecules adsorbed on a surface and follow the effect of the impact on the electronic states of the molecule by fluorescence spectroscopy.[3] Quantum mechanical calculations corroborate that the spectral changes induced by the localized force can be associated to transitions among the different possible conformers of the adsorbed molecule.

  13. Enhancement of vortex induced forces and motion through surface roughness control

    DOEpatents

    Bernitsas, Michael M [Saline, MI; Raghavan, Kamaldev [Houston, TX

    2011-11-01

    Roughness is added to the surface of a bluff body in a relative motion with respect to a fluid. The amount, size, and distribution of roughness on the body surface is controlled passively or actively to modify the flow around the body and subsequently the Vortex Induced Forces and Motion (VIFM). The added roughness, when designed and implemented appropriately, affects in a predetermined way the boundary layer, the separation of the boundary layer, the level of turbulence, the wake, the drag and lift forces, and consequently the Vortex Induced Motion (VIM), and the fluid-structure interaction. The goal of surface roughness control is to increase Vortex Induced Forces and Motion. Enhancement is needed in such applications as harnessing of clean and renewable energy from ocean/river currents using the ocean energy converter VIVACE (Vortex Induced Vibration for Aquatic Clean Energy).

  14. Mechanical force-induced midpalatal suture remodeling in mice

    PubMed Central

    Hou, Bo; Fukai, Naomi; Olsen, Bjorn R.

    2007-01-01

    Mechanical stress is an important epigenetic factor for regulating skeletal remodeling, and application of force can lead to remodeling of both bone and cartilage. Chondrocytes, osteoblasts and osteoclasts all participate and interact with each other in this remodeling process. To study cellular responses to mechanical stimuli in a system that can be genetically manipulated, we used mouse midpalatal suture expansion in vivo. 6-weeks-old male C57BL/6 mice were subjected to palatal suture expansion by opening loops with an initial force of 0.56N for periods of 1, 3, 7, 14 or 28 days. Periosteal cells in expanding sutures showed increased proliferation, with Ki67 positive cells representing 1.8±0.1% to 4.5±0.4% of total suture cells in control groups and 12.0±2.6% to 19.9±1.2% in experimental/expansion groups (p<0.05). Starting at day 1, cells expressing alkaline phosphatase and type I collagen were seen. New cartilage and bone formation was observed at the oral edges of the palatal bones at day 7; at the nasal edges only bone formation without cartilage appeared to occur. An increase in osteoclast numbers suggested increased bone remodeling, ranging from 60 to 160% throughout the experimental period. Decreased Saffranin O staining after day 3 suggested decreased proteoglycan content in the secondary cartilage. MicroCT showed a significant increase in maxillary width at days 14 and 28 (from 2334±4μm to 2485±3μm at day 14 and from 2383±5μm to 2574±7μm at day 28, p<0.001). The suture width was increased at days 14 and 28, except in the oral third region at day 28 (from 48±5μm to 36±4μm, p<0.05). Bone volume/total volume was significantly reduced at days 14 and 28 (50.2±0.7% vs. 68.0±3.7% and 56.5±1.0%vs. 60.9±1.3%, respectively, p<0.05), indicative of increased bone marrow space. These findings demonstrate that expansion forces across the midpalatal suture promote bone resorption through activation of osteoclasts and bone and cartilage formation via

  15. Magnetic Fluctuation-Driven Intrinsic Flow in a Toroidal Plasma

    NASA Astrophysics Data System (ADS)

    Brower, D. L.; Ding, W. X.; Lin, L.; Almagri, A. F.; den Hartog, D. J.; Sarff, J. S.

    2012-10-01

    Magnetic fluctuations have been long observed in various magnetic confinement configurations. These perturbations may arise naturally from plasma instabilities such as tearing modes and energetic particle driven modes, but they can also be externally imposed by error fields or external magnetic coils. It is commonly observed that large MHD modes lead to plasma locking (no rotation) due to torque produced by eddy currents on the wall, and it is predicted that stochastic field induces flow damping where the radial electric field is reduced. Flow generation is of great importance to fusion plasma research, especially low-torque devices like ITER, as it can act to improve performance. Here we describe new measurements in the MST reversed field pinch (RFP) showing that the coherent interaction of magnetic and particle density fluctuations can produce a turbulent fluctuation-induced kinetic force, which acts to drive intrinsic plasma rotation. Key observations include; (1) the average kinetic force resulting from density fluctuations, ˜ 0.5 N/m^3, is comparable to the intrinsic flow acceleration, and (2) between sawtooth crashes, the spatial distribution of the kinetic force is directed to create a sheared parallel flow profile that is consistent with the measured flow profile in direction and amplitude, suggesting the kinetic force is responsible for intrinsic plasma rotation.

  16. Magnetic force induced tristability for dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Li, Xin-Qiang; Li, Wen-Bo; Zhang, Wen-Ming; Zou, Hong-Xiang; Peng, Zhi-Ke; Meng, Guang

    2017-10-01

    This paper presents a novel dielectric elastomer actuator (DEA) with three stable states. By introducing magnetic forces and coupling them with two cone dielectric elastomer (DE) films, an inherent tristability for the DEA is obtained with a compact design. It is easy to switch between the three stable states by controlling the voltages applied to the DE films. A theoretical model of the system’s potential energy that contains the free energy of the DEs and the potential energy of the applied magnetic field was developed for the tristable mechanism. The experimental results demonstrate that controllable transitions between the three stable states can be achieved with this design by applying over-critical voltages to the various DE films. The maximum dynamic range of the DEA can exceed 53.8% of the total length of the device and the DE’s creep speed was accelerated under the action of the magnetic field.

  17. Further evidence for conditioned taste aversion induced by forced swimming.

    PubMed

    Masaki, Takahisa; Nakajima, Sadahiko

    2005-01-31

    A series of experiments with rats reported that aversion to a taste solution can be established by forced swimming in a water pool. Experiment 1 demonstrated that correlation of taste and swimming is a critical factor for this phenomenon, indicating associative (i.e., Pavlovian) nature of this learning. Experiment 2 showed that this learning obeys the Pavlovian law of strength, by displaying a positive relationship between the duration of water immersion in training and the taste aversion observed in subsequent testing. Experiment 3 revealed that swimming rather than being wet is the critical agent, because a water shower did not endow rats with taste aversion. Experiment 4 found that taste aversion was a positive function of water level of the pools in training (0, 12 or 32 cm). These results, taken together, suggest that energy expenditure caused by physical exercise might be involved in the development of taste aversion.

  18. Depletion force induced collective motion of microtubules driven by kinesin.

    PubMed

    Inoue, Daisuke; Mahmot, Bulbul; Kabir, Arif Md Rashedul; Farhana, Tamanna Ishrat; Tokuraku, Kiyotaka; Sada, Kazuki; Konagaya, Akihiko; Kakugo, Akira

    2015-11-21

    Collective motion is a fascinating example of coordinated behavior of self-propelled objects, which is often associated with the formation of large scale patterns. Nowadays, the in vitro gliding assay is being considered a model system to experimentally investigate various aspects of group behavior and pattern formation by self-propelled objects. In the in vitro gliding assay, cytoskeletal filaments F-actin or microtubules are driven by the surface immobilized associated biomolecular motors myosin or dynein respectively. Although the F-actin/myosin or microtubule/dynein system was found to be promising in understanding the collective motion and pattern formation by self-propelled objects, the most widely used biomolecular motor system microtubule/kinesin could not be successfully employed so far in this regard. Failure in exhibiting collective motion by kinesin driven microtubules is attributed to the intrinsic properties of kinesin, which was speculated to affect the behavior of individual gliding microtubules and mutual interactions among them. In this work, for the first time, we have demonstrated the collective motion of kinesin driven microtubules by regulating the mutual interaction among the gliding microtubules, by employing a depletion force among them. Proper regulation of the mutual interaction among the gliding microtubules through the employment of the depletion force was found to allow the exhibition of collective motion and stream pattern formation by the microtubules. This work offers a universal means for demonstrating the collective motion using the in vitro gliding assay of biomolecular motor systems and will help obtain a meticulous understanding of the fascinating coordinated behavior and pattern formation by self-propelled objects.

  19. Structural changes in precipitated silica induced by external forces

    NASA Astrophysics Data System (ADS)

    Schneider, Gerald Johannes; Göritz, Dietmar

    2010-04-01

    The morphology of pure precipitated silica, silica filled in polydimethylsiloxane rubber, and silica filled in styrene butadiene rubber was studied by means of small-angle X-ray scattering experiments. The silica at a length scale of a few nanometers consists of primary particles, which form aggregates, and clusters with aggregates as basic units. It is evidenced that the aggregate branching, represented by the mass fractal dimension, and the aggregate diameter are different if pure silica and silica in rubber are compared. Contrary, the size of the primary particles and their surface are not influenced. It is demonstrated that the change in the aggregate morphology is due to the external mechanical forces appearing during the mixing process. This is achieved by model experiments using a pistil and a mortar and a composite with different silica fractions. By that means, a systematic change in the morphology with grinding time is observed. Then, the experiments on the composite demonstrate that the major contributions to the mass fractal dimensions are due to the external mechanical forces. In order to test reproducibility and universal validity in the case of precipitated silicas, independent experiments on one silica and further silicas are performed. Several important conclusions are obtained from the study. First, it is shown that a comparison of different pure silica samples without knowing their history may be difficult or questionable. Second, it becomes evident that it is not sufficient to provide only a description of the materials, rather than the details of the sample treatment have to be reported. Therefore, solely the characterization of the morphology of the pure silica is not sufficient to be compared to the mechanical properties of the composites.

  20. Transient Casimir Forces from Quenches in Thermal and Active Matter.

    PubMed

    Rohwer, Christian M; Kardar, Mehran; Krüger, Matthias

    2017-01-06

    We compute fluctuation-induced (Casimir) forces for classical systems after a temperature quench. Using a generic coarse-grained model for fluctuations of a conserved density, we find that transient forces arise even if the initial and final states are force free. In setups reminiscent of Casimir (planar walls) and van der Waals (small inclusions) interactions, we find comparable exact universal expressions for the force. Dynamical details only scale the time axis of transient force curves. We propose that such quenches can be achieved, for instance, in experiments on active matter, employing tunable activity or interaction protocols.

  1. Transient Casimir Forces from Quenches in Thermal and Active Matter

    NASA Astrophysics Data System (ADS)

    Rohwer, Christian M.; Kardar, Mehran; Krüger, Matthias

    2017-01-01

    We compute fluctuation-induced (Casimir) forces for classical systems after a temperature quench. Using a generic coarse-grained model for fluctuations of a conserved density, we find that transient forces arise even if the initial and final states are force free. In setups reminiscent of Casimir (planar walls) and van der Waals (small inclusions) interactions, we find comparable exact universal expressions for the force. Dynamical details only scale the time axis of transient force curves. We propose that such quenches can be achieved, for instance, in experiments on active matter, employing tunable activity or interaction protocols.

  2. Microrheology of highly crosslinked microtubule networks is dominated by force-induced crosslinker unbinding

    PubMed Central

    Yang, Yali; Bai, Mo; Klug, William S.; Levine, Alex J.

    2012-01-01

    We determine the time- and force-dependent viscoelastic responses of reconstituted networks of microtubules that have been strongly crosslinked by biotin-streptavidin bonds. To measure the microscale viscoelasticity of such networks, we use a magnetic tweezers device to apply localized forces. At short time scales, the networks respond nonlinearly to applied force, with stiffening at small forces, followed by a reduction in the stiffening response at high forces, which we attribute to the force-induced unbinding of crosslinks. At long time scales, force-induced bond unbinding leads to local network rearrangement and significant bead creep. Interestingly, the network retains its elastic modulus even under conditions of significant plastic flow, suggesting that crosslinker breakage is balanced by the formation of new bonds. To better understand this effect, we developed a finite element model of such a stiff filament network with labile crosslinkers obeying force-dependent Bell model unbinding dynamics. The coexistence of dissipation, due to bond breakage, and the elastic recovery of the network is possible because each filament has many crosslinkers. Recovery can occur as long as a sufficient number of the original crosslinkers are preserved under the loading period. When these remaining original crosslinkers are broken, plastic flow results. PMID:23577042

  3. Thermally induced chronic developmental stress in coho salmon: Integrating measures of mortality, early growth and fluctuating asymmetry

    USGS Publications Warehouse

    Campbell, W.B.; Emlen, J.M.; Hershberger, W.K.

    1998-01-01

    Developmental stability, or homeostasis, facilitates the production of consistent phenotypes by buffering against stress. Fluctuating asymmetry is produced by developmental instability and is manifested as small random departures from bilateral symmetry. Increased fluctuating asymmetry is thought to parallel compromised fitness, in part, because stress promotes energy dissipation. Compensatory energy expenditures within the organism are required to complete development, thus promoting instability through reductions in homeostasis. Increased heterozygosity may enhance developmental stability by reducing energy dissipation from stress through increased metabolic efficiency, possibly by providing greater flexibility in metabolic pathways. Traditionally, fluctuating asymmetry has been used as a bioindicator of chronic stress, provided that selective mortality of less fit individuals did not reduce stress-mediated increases in fluctuating asymmetry to background levels produced by natural developmental error, or create data inconsistencies such as higher asymmetry in groups exposed to lower stress. Unfortunately, absence of selective mortality and its effects, while often assumed, can be difficult to substantiate. We integrated measures of early growth, mortality, fluctuating asymmetry (mandibular pores, pectoral finrays, pelvic finrays, and gillrakers on the upper and lower arms of the first branchial arch) and directional asymmetry (branchiostegal rays) to assess chronic thermal stress (fluctuating temperatures as opposed to ambient temperatures) in developing eggs from two different coho salmon (Oncorhynchus kisutch) stocks and their reciprocal hybrids. Hybridization provided insight on the capacity of heterozygosity to reduce stress during development. Although egg losses were consistently higher in crosses exposed to fluctuating temperatures, egg mortality was predominantly a function of maternal stock of origin. Post-hatch losses were higher in crosses exposed to

  4. Fore-aft ground force adaptations to induced forelimb lameness in walking and trotting dogs.

    PubMed

    Abdelhadi, Jalal; Wefstaedt, Patrick; Nolte, Ingo; Schilling, Nadja

    2012-01-01

    Animals alter their locomotor mechanics to adapt to a loss of limb function. To better understand their compensatory mechanisms, this study evaluated the changes in the fore-aft ground forces to forelimb lameness and tested the hypothesis that dogs unload the affected limb by producing a nose-up pitching moment via the exertion of a net-propulsive force when the lame limb is on the ground. Seven healthy Beagles walked and trotted at steady speed on an instrumented treadmill while horizontal force data were collected before and after a moderate lameness was induced. Peak, mean and summed braking and propulsive forces as well as the duration each force was exerted and the time to reach maximum force were evaluated for both the sound and the lame condition. Compared with the sound condition, a net-propulsive force was produced by the lame diagonal limbs due to a reduced braking force in the affected forelimb and an increased propulsive force in the contralateral hindlimb when the dogs walked and trotted. To regain pitch stability and ensure steady speed for a given locomotor cycle, the dogs produced a net-braking force when the sound diagonal limbs were on the ground by exerting greater braking forces in both limbs during walking and additionally reducing the propulsive force in the hindlimb during trotting. Consistent with the proposed mechanism, dogs maximize their double support phases when walking. Likely associated with the fore-aft force adaptations to lameness are changes in muscle recruitment that potentially result in short- and long-term effects on the limb and trunk muscles.

  5. Fore-Aft Ground Force Adaptations to Induced Forelimb Lameness in Walking and Trotting Dogs

    PubMed Central

    Abdelhadi, Jalal; Wefstaedt, Patrick; Nolte, Ingo; Schilling, Nadja

    2012-01-01

    Animals alter their locomotor mechanics to adapt to a loss of limb function. To better understand their compensatory mechanisms, this study evaluated the changes in the fore-aft ground forces to forelimb lameness and tested the hypothesis that dogs unload the affected limb by producing a nose-up pitching moment via the exertion of a net-propulsive force when the lame limb is on the ground. Seven healthy Beagles walked and trotted at steady speed on an instrumented treadmill while horizontal force data were collected before and after a moderate lameness was induced. Peak, mean and summed braking and propulsive forces as well as the duration each force was exerted and the time to reach maximum force were evaluated for both the sound and the lame condition. Compared with the sound condition, a net-propulsive force was produced by the lame diagonal limbs due to a reduced braking force in the affected forelimb and an increased propulsive force in the contralateral hindlimb when the dogs walked and trotted. To regain pitch stability and ensure steady speed for a given locomotor cycle, the dogs produced a net-braking force when the sound diagonal limbs were on the ground by exerting greater braking forces in both limbs during walking and additionally reducing the propulsive force in the hindlimb during trotting. Consistent with the proposed mechanism, dogs maximize their double support phases when walking. Likely associated with the fore-aft force adaptations to lameness are changes in muscle recruitment that potentially result in short- and long-term effects on the limb and trunk muscles. PMID:23300614

  6. Mapping the phase diagram of DNA force-induced melting in the presence of DNA intercalators

    NASA Astrophysics Data System (ADS)

    Vladescu, Ioana; McCauley, Micah; Nunez, Megan; Rouzina, Ioulia; Williams, Mark

    2006-03-01

    The interactions between single DNA molecules and different non-covalent binding agents - the classical intercalator ethidium and compounds from the family of ruthenium complexes - are investigated using an optical tweezers instrument and their effects on the structure and mechanical stability of DNA molecules are quantitatively analyzed using a model of force-induced melting. When a single DNA molecule is stretched beyond its normal contour length, a melting phase transition is observed. Drug binding increases the dsDNA contour length, decreases the DNA elongation upon melting, and increases the DNA melting force. At concentrations of intercalator above critical, no force induced melting of dsDNA is possible. The DNA stretching curves map out a phase diagram for DNA melting in the presence of intercalator, and define its critical point in the force-extension-drug concentration space. Our results allow for the complete thermodynamic characterization of the interaction of these intercalators with DNA.

  7. Centrifugal force induced by relativistically rotating spheroids and cylinders

    NASA Astrophysics Data System (ADS)

    Katz, Joseph; Lynden Bell, Donald; Bičák, Jiří

    2011-03-01

    Starting from the gravitational potential of a Newtonian spheroidal shell we discuss electrically charged rotating prolate spheroidal shells in the Maxwell theory. In particular we consider two confocal charged shells which rotate oppositely in such a way that there is no magnetic field outside the outer shell. In the Einstein theory we solve the Ernst equations in the region where the long prolate spheroids are almost cylindrical; in equatorial regions the exact Lewis 'rotating cylindrical' solution is so derived by a limiting procedure from a spatially bound system. In the second part we analyze two cylindrical shells rotating in opposite directions in such a way that the static Levi-Civita metric is produced outside and no angular momentum flux escapes to infinity. The rotation of the local inertial frames in flat space inside the inner cylinder is thus exhibited without any approximation or interpretational difficulties within this model. A test particle within the inner cylinder kept at rest with respect to axes that do not rotate as seen from infinity experiences a centrifugal force. Although in suitably chosen axes the spacetime there is exactly Minkowskian out to the inner cylinder, nevertheless, those inertial frame axes rotate with respect to infinity, so relative to the inertial frame inside the inner cylinder a test particle is traversing a circular orbit.

  8. Forced swimming stress induced alterations in ingestive behavior in rats.

    PubMed

    Nagaraja, H S; Jeganathan, P S

    2003-01-01

    The effects of forced swimming stress (15 minutes per day) on body weight, food intake, blood sugar, water intake, and urine output were studied in adult male Wistar rats on the first, seventh, fourteenth and 21st days in different subgroups. There was a significant initial decrease in the body weight up to 14 days followed by a regain in the body weight, which was sustained until 21 days. Though there was no change in the food intake initially for 7 days, after 14 days a significant increase in the food intake was observed. A significant hypoglycemia was observed throughout the entire period of stress. More significant fall in the blood sugar level was observed in the initial period of exposure of stress (1-7 days). There was a significant reduction in the water intake in the stressed animals. Urine output decreased significantly up to 7 days of stress, though it got marginally increased later. Thus, repeated stress may produce a reduction in body weight only initially, which is accompanied with an initial decrease in food and water intake also. The peak response to stress was seen after 7 days of stress exposure. There was a gradual recovery back to normal in the body weight, food intake, and water intake and urine output when stress period was prolonged to 14-21 days. This is suggestive of the adaptation of the organism to repeated exposure of similar kind of stress.

  9. The nature of the force-induced conformation transition of dsDNA studied by using single molecule force spectroscopy.

    PubMed

    Liu, Ningning; Bu, Tianjia; Song, Yu; Zhang, Wei; Li, Jinjing; Zhang, Wenke; Shen, Jiacong; Li, Hongbin

    2010-06-15

    Single-stranded DNA binding proteins (SSB) interact with single-stranded DNA (ssDNA) specifically. Taking advantage of this character, we have employed Bacillus subtilis SSB protein to investigate the nature of force-induced conformation transition of double-stranded DNA (dsDNA) by using AFM-based single molecule force spectroscopy (SMFS) technique. Our results show that, when a dsDNA is stretched beyond its contour length, the dsDNA is partially melted, producing some ssDNA segments which can be captured by SSB proteins. We have also systematically investigated the effects of stretching length, waiting time, and salt concentration on the conformation transition of dsDNA and SSB-ssDNA interactions, respectively. Furthermore, the effect of proflavine, a DNA intercalator, on the SSB-DNA interactions has been investigated, and the results indicate that the proflavine-saturated dsDNA can be stabilized to the extent that the dsDNA will no longer melt into ssDNA under the mechanical force even up to 150 pN, and no SSB-DNA interactions are detectable.

  10. Direct measurements of forces induced by Bloch surface waves in a one-dimensional photonic crystal.

    PubMed

    Shilkin, Daniil A; Lyubin, Evgeny V; Soboleva, Irina V; Fedyanin, Andrey A

    2015-11-01

    An experimental study of the interaction between a single dielectric microparticle and the evanescent field of the Bloch surface wave in a one-dimensional (1D) photonic crystal is reported. The Bloch surface wave-induced forces on a 1 μm polystyrene sphere were measured by photonic force microscopy. The results demonstrate the potential of 1D photonic crystals for the optical manipulation of microparticles and suggest a novel approach for utilizing light in lab-on-a-chip devices.

  11. Imaging of Shear Waves Induced by Lorentz Force in Soft Tissues

    NASA Astrophysics Data System (ADS)

    Grasland-Mongrain, P.; Souchon, R.; Cartellier, F.; Zorgani, A.; Chapelon, J. Y.; Lafon, C.; Catheline, S.

    2014-07-01

    This study presents the first observation of elastic shear waves generated in soft solids using a dynamic electromagnetic field. The first and second experiments of this study showed that Lorentz force can induce a displacement in a soft phantom and that this displacement was detectable by an ultrasound scanner using speckle-tracking algorithms. For a 100 mT magnetic field and a 10 ms, 100 mA peak-to-peak electrical burst, the displacement reached a magnitude of 1 μm. In the third experiment, we showed that Lorentz force can induce shear waves in a phantom. A physical model using electromagnetic and elasticity equations was proposed. Computer simulations were in good agreement with experimental results. The shear waves induced by Lorentz force were used in the last experiment to estimate the elasticity of a swine liver sample.

  12. Reduction of vortex induced forces and motion through surface roughness control

    DOEpatents

    Bernitsas, Michael M; Raghavan, Kamaldev

    2014-04-01

    Roughness is added to the surface of a bluff body in a relative motion with respect to a fluid. The amount, size, and distribution of roughness on the body surface is controlled passively or actively to modify the flow around the body and subsequently the Vortex Induced Forces and Motion (VIFM). The added roughness, when designed and implemented appropriately, affects in a predetermined way the boundary layer, the separation of the boundary layer, the level of turbulence, the wake, the drag and lift forces, and consequently the Vortex Induced Motion (VIM), and the fluid-structure interaction. The goal of surface roughness control is to decrease/suppress Vortex Induced Forces and Motion. Suppression is required when fluid-structure interaction becomes destructive as in VIM of flexible cylinders or rigid cylinders on elastic support, such as underwater pipelines, marine risers, tubes in heat exchangers, nuclear fuel rods, cooling towers, SPAR offshore platforms.

  13. Induced Voltage Linear Extraction Method Using an Active Kelvin Bridge for Disturbing Force Self-Sensing.

    PubMed

    Yang, Yuanyuan; Wang, Lei; Tan, Jiubin; Zhao, Bo

    2016-05-20

    This paper presents an induced voltage linear extraction method for disturbing force self-sensing in the application of giant magnetostrictive actuators (GMAs). In this method, a Kelvin bridge combined with an active device is constructed instead of a conventional Wheatstone bridge for extraction of the induced voltage, and an additional GMA is adopted as a reference actuator in the self-sensing circuit in order to balance the circuit bridge. The linear fitting of the measurement data is done according to the linear relationship between the disturbing forces and the integral of the induced voltage. The experimental results confirm the good performance of the proposed method, and the self-sensitivity of the disturbing forces is better than 2.0 (mV·s)/N.

  14. Divergent global precipitation changes induced by natural versus anthropogenic forcing.

    PubMed

    Liu, Jian; Wang, Bin; Cane, Mark A; Yim, So-Young; Lee, June-Yi

    2013-01-31

    As a result of global warming, precipitation is likely to increase in high latitudes and the tropics and to decrease in already dry subtropical regions. The absolute magnitude and regional details of such changes, however, remain intensely debated. As is well known from El Niño studies, sea-surface-temperature gradients across the tropical Pacific Ocean can strongly influence global rainfall. Palaeoproxy evidence indicates that the difference between the warm west Pacific and the colder east Pacific increased in past periods when the Earth warmed as a result of increased solar radiation. In contrast, in most model projections of future greenhouse warming this gradient weakens. It has not been clear how to reconcile these two findings. Here we show in climate model simulations that the tropical Pacific sea-surface-temperature gradient increases when the warming is due to increased solar radiation and decreases when it is due to increased greenhouse-gas forcing. For the same global surface temperature increase the latter pattern produces less rainfall, notably over tropical land, which explains why in the model the late twentieth century is warmer than in the Medieval Warm Period (around AD 1000-1250) but precipitation is less. This difference is consistent with the global tropospheric energy budget, which requires a balance between the latent heat released in precipitation and radiative cooling. The tropospheric cooling is less for increased greenhouse gases, which add radiative absorbers to the troposphere, than for increased solar heating, which is concentrated at the Earth's surface. Thus warming due to increased greenhouse gases produces a climate signature different from that of warming due to solar radiation changes.

  15. Environmental forcing does not induce diel or synoptic variation in carbon isotope content of forest soil respiration

    NASA Astrophysics Data System (ADS)

    Bowling, D. R.; Egan, J. E.; Hall, S. J.; Risk, D. A.

    2015-04-01

    Recent studies have examined temporal fluctuations in the amount and carbon isotope content (δ13C) of CO2 produced by respiration of roots and soil organisms. These changes have been correlated with diel cycles of environmental forcing (e.g., sunlight and soil temperature) and with synoptic-scale atmospheric motion (e.g., rain events and pressure-induced ventilation). We used an extensive suite of measurements to examine soil respiration over two months in a subalpine forest in Colorado, USA (the Niwot Ridge AmeriFlux forest). Observations included automated measurements of CO2 and δ13C of CO2 in the soil efflux, the soil gas profile, and forest air. There was strong diel variability in soil efflux, but no diel change in the δ13C of the soil efflux (δR) or the CO2 produced by biological activity in the soil (δJ). Following rain, soil efflux increased significantly, but δR and δJ did not change. Temporal variation in the δ13C of the soil efflux was unrelated to measured environmental variables. Measurements of the δ13C of the soil efflux with chambers agreed closely with independent observations of the isotopic composition of soil CO2 production derived from soil gas well measurements. Deeper in the soil profile and at the soil surface, results confirmed established theory regarding diffusive soil gas transport and isotopic fractionation. Deviation from best-fit diffusion model results at the shallower depths illuminated a pump-induced ventilation artifact that should be anticipated and avoided in future studies. There was no evidence of natural pressure-induced ventilation of the deep soil. However, higher variability of δ13C of the soil efflux relative to δ13C of production derived from soil profile measurements was likely caused by transient pressure-induced transport with small horizontal length scales.

  16. Environmental forcing does not induce diel or synoptic variation in the carbon isotope content of forest soil respiration

    NASA Astrophysics Data System (ADS)

    Bowling, D. R.; Egan, J. E.; Hall, S. J.; Risk, D. A.

    2015-08-01

    Recent studies have examined temporal fluctuations in the amount and carbon isotope content (δ13C) of CO2 produced by the respiration of roots and soil organisms. These changes have been correlated with diel cycles of environmental forcing (e.g., sunlight and soil temperature) and with synoptic-scale atmospheric motion (e.g., rain events and pressure-induced ventilation). We used an extensive suite of measurements to examine soil respiration over 2 months in a subalpine forest in Colorado, USA (the Niwot Ridge AmeriFlux forest). Observations included automated measurements of CO2 and δ13C of CO2 in the soil efflux, the soil gas profile, and forest air. There was strong diel variability in soil efflux but no diel change in the δ13C of the soil efflux (δR) or the CO2 produced by biological activity in the soil (δJ). Following rain, soil efflux increased significantly, but δR and δJ did not change. Temporal variation in the δ13C of the soil efflux was unrelated to measured environmental variables, and we failed to find an explanation for this unexpected result. Measurements of the δ13C of the soil efflux with chambers agreed closely with independent observations of the isotopic composition of soil CO2 production derived from soil gas well measurements. Deeper in the soil profile and at the soil surface, results confirmed established theory regarding diffusive soil gas transport and isotopic fractionation. Deviation from best-fit diffusion model results at the shallower depths illuminated a pump-induced ventilation artifact that should be anticipated and avoided in future studies. There was no evidence of natural pressure-induced ventilation of the deep soil. However, higher variability in δ13C of the soil efflux relative to δ13C of production derived from soil profile measurements was likely caused by transient pressure-induced transport with small horizontal length scales.

  17. Casimir force in the Gödel space-time and its possible induced cosmological inhomogeneity

    NASA Astrophysics Data System (ADS)

    Khodabakhshi, Sh.; Shojai, A.

    2017-07-01

    The Casimir force between two parallel plates in the Gödel universe is computed for a scalar field at finite temperature. It is observed that when the plates' separation is comparable with the scale given by the rotation of the space-time, the force becomes repulsive and then approaches zero. Since it has been shown previously that the universe may experience a Gödel phase for a small period of time, the induced inhomogeneities from the Casimir force are also studied.

  18. Akt activation prevents the force drop induced by eccentric contractions in dystrophin-deficient skeletal muscle.

    PubMed

    Blaauw, Bert; Mammucari, Cristina; Toniolo, Luana; Agatea, Lisa; Abraham, Reimar; Sandri, Marco; Reggiani, Carlo; Schiaffino, Stefano

    2008-12-01

    Skeletal muscles of the mdx mouse, a model of Duchenne Muscular Dystrophy, show an excessive reduction in the maximal tetanic force following eccentric contractions. This specific sign of the susceptibility of dystrophin-deficient muscles to mechanical stress can be used as a quantitative test to measure the efficacy of therapeutic interventions. Using inducible transgenesis in mice, we show that when Akt activity is increased the force drop induced by eccentric contractions in mdx mice becomes similar to that of wild-type mice. This effect is not correlated with muscle hypertrophy and is not blocked by rapamycin treatment. The force drop induced by eccentric contractions is similar in skinned muscle fibers from mdx and Akt-mdx mice when stretch is applied directly to skinned fibers. However, skinned fibers isolated from mdx muscles exposed to eccentric contractions in vivo develop less isometric force than wild-type fibers and this force depression is completely prevented by Akt activation. These experiments indicate that the myofibrillar-cytoskeletal system of dystrophin-deficient muscle is highly susceptible to a damage caused by eccentric contraction when elongation is applied in vivo, and this damage can be prevented by Akt activation. Microarray and PCR analyses indicate that Akt activation induces up-regulation of genes coding for proteins associated with Z-disks and costameres, and for proteins with anti-oxidant or chaperone function. The protein levels of utrophin and dysferlin are also increased by Akt activation.

  19. Measurements of drift-wave-induced density and velocity fluctuations using high-speed passive impurity spectroscopy

    NASA Astrophysics Data System (ADS)

    Nishizawa, Takashi; Craig, D.; den Hartog, D. J.; Nornberg, M. D.

    2016-10-01

    Passive impurity spectroscopy is used to study high frequency ( 100 kHz) electron density and ion velocity fluctuations in the edge of MST reversed field pinch plasmas. When tearing modes are suppressed, stochastic transport is greatly reduced and microturbulence is anticipated to become important. Gyrokinetic simulations predict unstable trapped electron modes (TEM) in the edge region of these improved-confinement MST plasmas. Interferometry measurements reveal electron density fluctuations with wavenumbers, propagation direction, and a density-gradient threshold in good agreement with predictions for TEMs. These density fluctuations are also observed as emission fluctuations using a recently upgraded Ion Dynamics Spectrometer (IDS II) through edge passive C +2 measurements. The particle transport associated with TEMs will be evaluated directly by correlating the IDS-measured ion velocity and density fluctuations. The measurement is localized to the C +2 emission shell in the edge of the plasma, which is determined by a coronal charge-state balance model using ADAS. We used a large-throughput spectrometer originally developed for fast CHERS measurements and PMTs for light detection to achieve high time resolution. This work is supported by the US DOE.

  20. Hole-s± State Induced by Coexisting Ferro- and Antiferromagnetic and Antiferro-orbital Fluctuations in Iron Pnictides

    NASA Astrophysics Data System (ADS)

    Ishizuka, Jun; Yamada, Takemi; Yanagi, Yuki; Ōno, Yoshiaki

    2016-11-01

    The five-orbital Hubbard model for iron-based superconductors is investigated using the dynamical mean-field theory combined with the Eliashberg equation to clarify the local correlation effects on the electronic states and the superconductivity. In the specific case where the antiferromagnetic (AFM) and antiferro-orbital (AFO) fluctuations are comparably enhanced, the orbital dependence of the vertex function is significantly large, while that of the self-energy is small, in contrast to the AFM fluctuation-dominated case where the vertex function (the self-energy) shows a small (large) orbital dependence. The orbital-dependent vertex function together with the nesting between the inner and outer hole Fermi surfaces results in the enhancement of the inter-orbital ferromagnetic (FM) fluctuation in addition to the AFM and AFO fluctuations. In this case, the hole-s±-wave pairing with the sign change of the two hole Fermi surfaces is mediated by the coexisting three fluctuations as expected to be observed in the specific compound LiFeAs.

  1. GRADFLEX: Fluctuations in Microgravity

    NASA Technical Reports Server (NTRS)

    Vailati, A.; Cerbino, R.; Mazzoni, S.; Giglio, M.; Nikolaenko, G.; Cannell, D. S.; Meyer, W. V.; Smart, A. E.

    2004-01-01

    We present the results of experimental investigations of gradient driven fluctuations induced in a liquid mixture with a concentration gradient and in a single-component fluid with a temperature gradient. We also describe the experimental apparatus being developed to carry out similar measurement under microgravity conditions.

  2. The effect of heating and cooling on the velocity fluctuations in the ISM induced by the system of stars

    NASA Astrophysics Data System (ADS)

    Deiss, B. M.; Kegel, W. H.

    1986-06-01

    Dissipative thermal effects are taken into account in the expressions for interstellar gas velocity fluctuations (due to the gravitational interaction with stars) derived by Kegel and Volk (1983), with application to the interpretation of interstellar lines, the large scale flow of the interstellar matter, and the collapse of interstellar clouds. Results indicate a decrease in the critical wavelength for gravitational instability, which value is prevented by thermal effects from becoming zero when the relative velocity approaches the velocity of sound, in contradiction with the results of Kegel and Volk, and of Niimi (1970). The velocity fluctuations in the gas derived by Kegel and Volk are shown to be reduced considerably, though velocity fluctuations many times the velocity of sound, which increase with increasing relative motion between gas and stars, are found, principally in molecular clouds.

  3. Tide-induced fluctuations of salinity and groundwater level in unconfined aquifers - Field measurements and numerical model

    NASA Astrophysics Data System (ADS)

    Levanon, Elad; Yechieli, Yoseph; Gvirtzman, Haim; Shalev, Eyal

    2017-08-01

    The responses of the fresh-saline water interface (FSI) and the groundwater level (GWL) to the Mediterranean Sea tide were monitored in the coastal aquifer of Israel, modeled numerically and analyzed using cross-correlation analysis. Different time-lags between sea level fluctuations and hydraulic head and salinity fluctuations were detected for the FSI and the GWL. At the FSI, the time-lag of hydraulic head behind the sea level is much shorter than the lag of the salinity at the same point. Surprisingly, similar time-lags behind the sea level were measured for both the hydraulic head at the GWL and the salinity at the FSI, both at the same distance from the shoreline. Results from a numerical model, simulating the flow and transport processes at the field scale, agree with field measurements. In both, the GWL and the salinity in the FSI fluctuate almost simultaneously, while the hydraulic head in the FSI reacts faster to sea level fluctuations. The actual movement of the fresh water body, which is controlled by the unsaturated flow in the capillary fringe ('capillary effect'), lags behind the pressure head fluctuations in the deeper parts of the aquifer, which is controlled by saturated parameters of the aquifer. The overall results agree with the conceptual mechanism suggested by Levanon et al. (2016), in which the effect of sea tide on the coastal groundwater system comprises two main processes: (1) tidal fluctuations at the sea floor boundary which cause pressure wave propagation into the aquifer, and (2) attenuation at the GWL due to the capillary effect which control also the change in the salinity and the actual movement of the FSI.

  4. Fluctuation phenomena

    SciTech Connect

    Montroll, E.W.; Lebowitz, J.L.

    1986-01-01

    Fluctuation phenomena are the ''tip of the iceberg'' revealing the existence, behind even the most quiescent appearing macroscopic states, of an underlying world of agitated, ever-changing microscopic processes. While the presence of these fluctuations can be ignored in some cases, e.g. if one is satisfied with purely thermostatic description of systems in equilibrium, they are central to the understanding of other phenomena, e.g. the nucleation of a new phase following the quenching of a system into the co-existence region. This volume contains a collection of review articles, written by experts in the field, on the subject of fluctuation phenomena. Some of the articles are of a very general nature discussing the modern mathematical formulation of the problems involved, while other articles deal with specific topics such as kinetics of phase transitions and conductivity in solids. The juxtaposition of the variety of physical situations in which fluctuation phenomena play an important role is novel and should give the reader an insight into this subject.

  5. Active shortening protects against stretch-induced force deficits in human skeletal muscle.

    PubMed

    Saripalli, Anjali L; Sugg, Kristoffer B; Mendias, Christopher L; Brooks, Susan V; Claflin, Dennis R

    2017-02-23

    Skeletal muscle contraction results from molecular interactions of myosin "crossbridges" with adjacent actin filament binding sites. The binding of myosin to actin can be "weak" or "strong", and only strong binding states contribute to force production. During active shortening, the number of strongly-bound crossbridges declines with increasing shortening velocity. Forcibly stretching a muscle that is actively shortening at high velocity results in no apparent negative consequences whereas stretch of an isometrically (fixed-length) contracting muscle causes ultrastructural damage and a decline in force-generating capability. Our working hypothesis is that stretch-induced damage is uniquely attributable to the population of crossbridges that are strongly-bound. We tested the hypothesis that stretch-induced force deficits decline as the prevailing shortening velocity is increased. Experiments were performed on permeabilized segments of individual skeletal muscle fibers obtained from human subjects. Fibers were maximally activated and either allowed to generate maximum isometric force (Fo), or to shorten at velocities that resulted in force maintenance of ≈50% Fo or ≈2% Fo. For each test condition, a rapid stretch equivalent to 0.1 x optimal fiber length was applied. Relative to pre-stretch Fo, force deficits resulting from stretches applied during force maintenance of 100%, ≈50%, and ≈2% Fo were 23.2 ± 8.6%, 7.8 ± 4.2% and 0.3 ± 3.3%, respectively (mean ± SD, n=20). We conclude that stretch-induced damage declines with increasing shortening velocity, consistent with the working hypothesis that the fraction of strongly-bound crossbridges is a causative factor in the susceptibility of skeletal muscle to stretch-induced damage.

  6. Sideways fall-induced impact force and its effect on hip fracture risk: a review.

    PubMed

    Nasiri Sarvi, M; Luo, Y

    2017-07-20

    Osteoporotic hip fracture, mostly induced in falls among the elderly, is a major health burden over the world. The impact force applied to the hip is an important factor in determining the risk of hip fracture. However, biomechanical researches have yielded conflicting conclusions about whether the fall-induced impact force can be accurately predicted by the available models. It also has been debated whether or not the effect of impact force has been considered appropriately in hip fracture risk assessment tools. This study aimed to provide a state-of-the-art review of the available methods for predicting the impact force, investigate their strengths/limitations, and suggest further improvements in modeling of human body falling. We divided the effective parameters on impact force to two categories: (1) the parameters that can be determined subject-specifically and (2) the parameters that may significantly vary from fall to fall for an individual and cannot be considered subject-specifically. The parameters in the first category can be investigated in human body fall experiments. Video capture of real-life falls was reported as a valuable method to investigate the parameters in the second category that significantly affect the impact force and cannot be determined in human body fall experiments. The analysis of the gathered data revealed that there is a need to develop modified biomechanical models for more accurate prediction of the impact force and appropriately adopt them in hip fracture risk assessment tools in order to achieve a better precision in identifying high-risk patients. Graphical abstract Impact force to the hip induced in sideways falls is affected by many parameters and may remarkably vary from subject to subject.

  7. Mechanical force-induced polymerization and depolymerization of F-actin at water/solid interfaces

    NASA Astrophysics Data System (ADS)

    Zhang, Xueqiang; Hu, Xiuyuan; Lei, Haozhi; Hu, Jun; Zhang, Yi

    2016-03-01

    Actin molecules are among the three main cytoskeleton proteins of cells and undergo rapid cycling to regulate critical processes such as endocytosis, cytokinesis, cell polarity, and cell morphogenesis. Although extensive studies have been carried out on the dynamics as well as biological functions of actin polymerization and depolymerization both in vivo and in vitro, the molecular mechanisms by which cells sense and respond to mechanical signals are not fully understood. In particular, little attention has been paid to the effect of a physical force that is exerted directly on the actin cytoskeleton. In this paper, we have explored how the mechanical force affects the actin polymerization and depolymerization behaviors at water/solid interfaces using an atomic force microscope (AFM) operated in liquid. By raster scanning an AFM probe on a substrate surface with a certain load, it was found that actin monomers could polymerize into filaments without the help of actin related proteins (ARPs). Further study indicated that actin monomers were inclined to form filaments only under a small scanning load. The polymerized actin filaments would be depolymerized when the mechanical force was stronger. A possible mechanism has been suggested to explain the mechanical force induced actin polymerization.Actin molecules are among the three main cytoskeleton proteins of cells and undergo rapid cycling to regulate critical processes such as endocytosis, cytokinesis, cell polarity, and cell morphogenesis. Although extensive studies have been carried out on the dynamics as well as biological functions of actin polymerization and depolymerization both in vivo and in vitro, the molecular mechanisms by which cells sense and respond to mechanical signals are not fully understood. In particular, little attention has been paid to the effect of a physical force that is exerted directly on the actin cytoskeleton. In this paper, we have explored how the mechanical force affects the actin

  8. Irrigation Induced Surface Cooling in the Context of Modern and Increased Greenhouse Gas Forcing

    NASA Technical Reports Server (NTRS)

    Cook, Benjamin I.; Puma, Michael J.; Krakauer, Nir Y.

    2010-01-01

    There is evidence that expected warming trends from increased greenhouse gas (GHG) forcing have been locally masked by irrigation induced cooling, and it is uncertain how the magnitude of this irrigation masking effect will change in the future. Using an irrigation dataset integrated into a global general circulation model, we investigate the equilibrium magnitude of irrigation induced cooling under modern (Year 2000) and increased (A1B Scenario, Year 2050) GHG forcing, using modern irrigation rates in both scenarios. For the modern scenario, the cooling is largest over North America, India, the Middle East, and East Asia. Under increased GHG forcing, this cooling effect largely disappears over North America, remains relatively unchanged over India, and intensifies over parts of China and the Middle East. For North America, irrigation significantly increases precipitation under modern GHG forcing; this precipitation enhancement largely disappears under A1B forcing, reducing total latent heat fluxes and the overall irrigation cooling effect. Over India, irrigation rates are high enough to keep pace with increased evaporative demand from the increased GHG forcing and the magnitude of the cooling is maintained. Over China, GHG forcing reduces precipitation and shifts the region to a drier evaporative regime, leading to a relatively increased impact of additional water from irrigation on the surface energy balance. Irrigation enhances precipitation in the Middle East under increased GHG forcing, increasing total latent heat fluxes and enhancing the irrigation cooling effect. Ultimately, the extent to which irrigation will continue to compensate for the warming from increased GHG forcing will primarily depend on changes in the background evaporative regime, secondary irrigation effects (e.g. clouds, precipitation), and the ability of societies to maintain (or increase) current irrigation rates.

  9. Spatially correlated fluctuations and coherence dynamics in photosynthesis.

    PubMed

    Yu, Z G; Berding, M A; Wang, Haobin

    2008-11-01

    Recent multicolor photon-echo experiments revealed a long-lasting quantum coherence between excitations on the donor and acceptor in photosynthetic systems. Identifying the origin of the quantum coherence is essential to fully understand photosynthesis. Here we present a generic model in which a strong intermolecular steric restoring force in densely packed pigment-protein complexes results in a spatial correlation in conformational (static) variations of chromophores, which in turn induces an effective coupling between high-frequency (dynamic) fluctuations in donor and acceptor. The spatially correlated static and dynamic fluctuations provide a favorable environment to maintain quantum coherence, which can consistently explain the photon-echo measurements.

  10. Vorticity Fluctuations in Plane Couette Flow

    NASA Astrophysics Data System (ADS)

    Ortiz de Zarate, Jose; Sengers, Jan V.

    2010-11-01

    In this presentation we evaluate the flow-induced amplification of the thermal noise in plane Couette configuration. The physical origin of the noise is the random nature of molecular collisions, that contribute with a stochastic component to the stress tensor (Landau's fluctuating hydrodynamics). This intrinsic stochastic forcing is then amplified by the mode- coupling mechanisms associated to shear flow. In a linear approximation, noise amplification can be studied by solving stochastic Orr-Sommerfeld and Squire equations. We compare the efficiency of the different mechanisms, being the most important the direct coupling between Squire and Orr-Sommerfed equations. The main effect is to amplify wall-normal vorticity fluctuations with an spanwise modulation at wave number around 1.5, a configuration that resembles the streaks that have been proposed as precursors of the flow instability.

  11. Direct measurement of optical force induced by near-field plasmonic cavity using dynamic mode AFM

    DOE PAGES

    Guan, Dongshi; Hang, Zhi Hong; Marset, Zsolt; ...

    2015-11-20

    Plasmonic nanostructures have attracted much attention in recent years because of their potential applications in optical manipulation through near-field enhancement. Continuing experimental efforts have been made to develop accurate techniques to directly measure the near-field optical force induced by the plasmonic nanostructures in the visible frequency range. In this work, we report a new application of dynamic mode atomic force microscopy (DM-AFM) in the measurement of the enhanced optical force acting on a nano-structured plasmonic resonant cavity. The plasmonic cavity is made of an upper gold-coated glass sphere and a lower quartz substrate patterned with an array of subwavelength goldmore » disks. In the near-field when the sphere is positioned close to the disk array, plasmonic resonance is excited in the cavity and the induced force by a 1550 nm infrared laser is found to be increased by an order of magnitude compared with the photon pressure generated by the same laser light. Lastly, the experiment demonstrates that DM-AFM is a powerful tool for the study of light induced forces and their enhancement in plasmonic nanostructures.« less

  12. Direct measurement of optical force induced by near-field plasmonic cavity using dynamic mode AFM

    SciTech Connect

    Guan, Dongshi; Hang, Zhi Hong; Marset, Zsolt; Liu, Hui; Kravchenko, Ivan I.; Chan, Ho Bun; Chan, C. T.; Tong, Penger

    2015-11-20

    Plasmonic nanostructures have attracted much attention in recent years because of their potential applications in optical manipulation through near-field enhancement. Continuing experimental efforts have been made to develop accurate techniques to directly measure the near-field optical force induced by the plasmonic nanostructures in the visible frequency range. In this work, we report a new application of dynamic mode atomic force microscopy (DM-AFM) in the measurement of the enhanced optical force acting on a nano-structured plasmonic resonant cavity. The plasmonic cavity is made of an upper gold-coated glass sphere and a lower quartz substrate patterned with an array of subwavelength gold disks. In the near-field when the sphere is positioned close to the disk array, plasmonic resonance is excited in the cavity and the induced force by a 1550 nm infrared laser is found to be increased by an order of magnitude compared with the photon pressure generated by the same laser light. Lastly, the experiment demonstrates that DM-AFM is a powerful tool for the study of light induced forces and their enhancement in plasmonic nanostructures.

  13. Direct Measurement of Optical Force Induced by Near-Field Plasmonic Cavity Using Dynamic Mode AFM

    PubMed Central

    Guan, Dongshi; Hang, Zhi Hong; Marcet, Zsolt; Liu, Hui; Kravchenko, I. I.; Chan, C. T.; Chan, H. B.; Tong, Penger

    2015-01-01

    Plasmonic nanostructures have attracted much attention in recent years because of their potential applications in optical manipulation through near-field enhancement. Continuing experimental efforts have been made to develop accurate techniques to directly measure the near-field optical force induced by the plasmonic nanostructures in the visible frequency range. In this work, we report a new application of dynamic mode atomic force microscopy (DM-AFM) in the measurement of the enhanced optical force acting on a nano-structured plasmonic resonant cavity. The plasmonic cavity is made of an upper gold-coated glass sphere and a lower quartz substrate patterned with an array of subwavelength gold disks. In the near-field when the sphere is positioned close to the disk array, plasmonic resonance is excited in the cavity and the induced force by a 1550 nm infrared laser is found to be increased by an order of magnitude compared with the photon pressure generated by the same laser light. The experiment demonstrates that DM-AFM is a powerful tool for the study of light induced forces and their enhancement in plasmonic nanostructures. PMID:26586455

  14. Fano resonance-induced negative optical scattering force on plasmonic nanoparticles.

    PubMed

    Chen, Huajin; Liu, Shiyang; Zi, Jian; Lin, Zhifang

    2015-02-24

    We demonstrate theoretically that Fano resonance can induce a negative optical scattering force acting on plasmonic nanoparticles in the visible light spectrum when an appropriate manipulating laser beam is adopted. Under the illumination of a zeroth-order Bessel beam, the plasmonic nanoparticle at its Fano resonance exhibits a much stronger forward scattering than backward scattering and consequently leads to a net longitudinal backward optical scattering force, termed Fano resonance-induced negative optical scattering force. The extinction spectra obtained based on the Mie theory show that the Fano resonance arises from the interference of simultaneously excited multipoles, which can be either a broad electric dipole mode and a narrow electric quadrupole mode, or a quadrupole and an octupole mode mediated by the broad electric dipole. Such Fano resonance-induced negative optical scattering force is demonstrated to occur for core-shell, homogeneous, and hollow metallic particles and can therefore be expected to be universal for many other nanostructures exhibiting Fano resonance, adding considerably to the flexibility of optical micromanipulation on the plasmonic nanoparticles. More interestingly, the flexible tunability of the Fano resonance by particle morphology opens up the possibility of tailoring the optical scattering force accordingly, offering an additional degree of freedom to optical selection and sorting of plasmonic nanoparticles.

  15. Spin-fluctuation induced non-Fermi-liquid behaviour with suppressed superconductivity in LiFe1-xCoxAs

    NASA Astrophysics Data System (ADS)

    Miao, Hu; Dai, Yaomin; Xing, Lingyi; Wang, Xiancheng; Wang, Pengshuai; Xiao, Hong; Qian, Tian; Richard, Pierre; Qiu, Xianggang; Yu, Weiqiang; Jin, Changqing; Wang, Ziqiang; Johnson, P. D.; Homes, C. C.; Ding, Hong

    We study a series of LiFe1-xCoxAs compounds with different Co concentrations by transport, optical spectroscopy, angle-resolved photoemission spectroscopy, and nuclear magnetic resonance. We observe a Fermi-liquid to non-Fermi-liquid to Fermi-liquid (FL-NFL-FL) crossover alongside a monotonic suppression of the superconductivity with increasing Co content. In parallel to the FL-NFL-FL crossover, we find that both the low-energy spin fluctuations and Fermi surface nesting are enhanced and then diminished, strongly suggesting that the NFL behaviour in LiFe1-xCoxAs is induced by low-energy spin fluctuations that are very likely tuned by Fermi surface nesting. Our study reveals a unique phase diagram of LiFe1-xCoxAs where the region of NFL is moved to the boundary of the superconducting phase, implying that they are probably governed by different mechanisms.

  16. Spin-Fluctuation-Induced Non-Fermi-Liquid Behavior with Suppressed Superconductivity in LiFe1 -xCoxAs

    NASA Astrophysics Data System (ADS)

    Dai, Y. M.; Miao, H.; Xing, L. Y.; Wang, X. C.; Wang, P. S.; Xiao, H.; Qian, T.; Richard, P.; Qiu, X. G.; Yu, W.; Jin, C. Q.; Wang, Z.; Johnson, P. D.; Homes, C. C.; Ding, H.

    2015-07-01

    We study a series of LiFe1 -xCox As compounds with different Co concentrations by transport, optical spectroscopy, angle-resolved photoemission spectroscopy, and nuclear magnetic resonance. We observe a Fermi-liquid to non-Fermi-liquid to Fermi-liquid (FL-NFL-FL) crossover alongside a monotonic suppression of the superconductivity with increasing Co content. In parallel to the FL-NFL-FL crossover, we find that both the low-energy spin fluctuations and Fermi surface nesting are enhanced and then diminished, strongly suggesting that the NFL behavior in LiFe1 -xCox As is induced by low-energy spin fluctuations that are very likely tuned by Fermi surface nesting. Our study reveals a unique phase diagram of LiFe1 -xCox As where the region of NFL is moved to the boundary of the superconducting phase, implying that they are probably governed by different mechanisms.

  17. Advective transport of CO2 in permeable media induced by atmospheric pressure fluctuations: 1. An analytical model

    Treesearch

    W. J. Massman

    2006-01-01

    Advective flows within soils and snowpacks caused by pressure fluctuations at the upper surface of either medium can significantly influence the exchange rate of many trace gases from the underlying substrate to the atmosphere. Given the importance of many of these trace gases in understanding biogeochemical cycling and global change, it is crucial to quantify (as much...

  18. Anisotropic spin fluctuations in Sr2RuO4 : Role of spin-orbit coupling and induced strain

    NASA Astrophysics Data System (ADS)

    Cobo, Sergio; Ahn, Felix; Eremin, Ilya; Akbari, Alireza

    2016-12-01

    We analyze the spin anisotropy of the magnetic susceptibility of Sr2RuO 4 in the presence of spin-orbit coupling and anisotropic strain using quasi-two-dimensional tight-binding parametrization fitted to the angle-resolved photoemission spectroscopy results. Similar to the previous observations we find the in-plane polarization of the low-q magnetic fluctuations and the out-of-plane polarization of the incommensurate magnetic fluctuation at the nesting wave-vector Q1=(2 /3 π ,2 /3 π ) but also nearly isotropic fluctuations near Q2=(π /6 ,π /6 ) . Furthermore, one finds that, apart from the high-symmetry direction of the tetragonal Brillouin zone, the magnetic anisotropy is maximal, i.e., χx x≠χy y≠χz z reflected in the x polarization of the intraband nesting wave-vector Q3=(π /2 ,π ) . This is a consequence of the orbital anisotropy of the t2 g orbitals in momentum space. We also study how the magnetic anisotropy evolves in the presence of the strain and find strong Ising-like ferromagnetic fluctuations near the Lifshitz transition for the x y band.

  19. Numerical modeling of cell differentiation and proliferation in force-induced substrates via encapsulated magnetic nanoparticles.

    PubMed

    Mousavi, Seyed Jamaleddin; Doweidar, Mohamed Hamdy

    2016-07-01

    Cell migration, differentiation, proliferation and apoptosis are the main processes in tissue regeneration. Mesenchymal Stem Cells have the potential to differentiate into many cell phenotypes such as tissue- or organ-specific cells to perform special functions. Experimental observations illustrate that differentiation and proliferation of these cells can be regulated according to internal forces induced within their Extracellular Matrix. The process of how exactly they interpret and transduce these signals is not well understood. A previously developed three-dimensional (3D) computational model is here extended and employed to study how force-free substrates and force-induced substrate control cell differentiation and/or proliferation during the mechanosensing process. Consistent with experimental observations, it is assumed that cell internal deformation (a mechanical signal) in correlation with the cell maturation state directly triggers cell differentiation and/or proliferation. The Extracellular Matrix is modeled as Neo-Hookean hyperelastic material assuming that cells are cultured within 3D nonlinear hydrogels. In agreement with well-known experimental observations, the findings here indicate that within neurogenic (0.1-1kPa), chondrogenic (20-25kPa) and osteogenic (30-45kPa) substrates, Mesenchymal Stem Cells differentiation and proliferation can be precipitated by inducing the substrate with an internal force. Therefore, cells require a longer time to grow and maturate within force-free substrates than within force-induced substrates. In the instance of Mesenchymal Stem Cells differentiation into a compatible phenotype, the magnitude of the net traction force increases within chondrogenic and osteogenic substrates while it reduces within neurogenic substrates. This is consistent with experimental studies and numerical works recently published by the same authors. However, in all cases the magnitude of the net traction force considerably increases at the

  20. Dimethyl sulfoxide induced structural transformations and non-monotonic concentration dependence of conformational fluctuation around active site of lysozyme.

    PubMed

    Roy, Susmita; Jana, Biman; Bagchi, Biman

    2012-03-21

    Experimental studies have observed significant changes in both structure and function of lysozyme (and other proteins) on addition of a small amount of dimethyl sulfoxide (DMSO) in aqueous solution. Our atomistic molecular dynamic simulations of lysozyme in water-DMSO reveal the following sequence of changes on increasing DMSO concentration. (i) At the initial stage (around 5% DMSO concentration) protein's conformational flexibility gets markedly suppressed. From study of radial distribution functions, we attribute this to the preferential solvation of exposed protein hydrophobic residues by the methyl groups of DMSO. (ii) In the next stage (10-15% DMSO concentration range), lysozome partially unfolds accompanied by an increase both in fluctuation and in exposed protein surface area. (iii) Between 15-20% concentration ranges, both conformational fluctuation and solvent accessible protein surface area suddenly decrease again indicating the formation of an intermediate collapse state. These results are in good agreement with near-UV circular dichroism (CD) and fluorescence studies. We explain this apparently surprising behavior in terms of a structural transformation which involves clustering among the methyl groups of DMSO. (iv) Beyond 20% concentration of DMSO, the protein starts its final sojourn towards the unfolding state with further increase in conformational fluctuation and loss in native contacts. Most importantly, analysis of contact map and fluctuation near the active site reveal that both partial unfolding and conformational fluctuations are centered mostly on the hydrophobic core of active site of lysozyme. Our results could offer a general explanation and universal picture of the anomalous behavior of protein structure-function observed in the presence of cosolvents (DMSO, ethanol, tertiary butyl alcohol, dioxane) at their low concentrations.

  1. Dimethyl sulfoxide induced structural transformations and non-monotonic concentration dependence of conformational fluctuation around active site of lysozyme

    NASA Astrophysics Data System (ADS)

    Roy, Susmita; Jana, Biman; Bagchi, Biman

    2012-03-01

    Experimental studies have observed significant changes in both structure and function of lysozyme (and other proteins) on addition of a small amount of dimethyl sulfoxide (DMSO) in aqueous solution. Our atomistic molecular dynamic simulations of lysozyme in water-DMSO reveal the following sequence of changes on increasing DMSO concentration. (i) At the initial stage (around 5% DMSO concentration) protein's conformational flexibility gets markedly suppressed. From study of radial distribution functions, we attribute this to the preferential solvation of exposed protein hydrophobic residues by the methyl groups of DMSO. (ii) In the next stage (10-15% DMSO concentration range), lysozome partially unfolds accompanied by an increase both in fluctuation and in exposed protein surface area. (iii) Between 15-20% concentration ranges, both conformational fluctuation and solvent accessible protein surface area suddenly decrease again indicating the formation of an intermediate collapse state. These results are in good agreement with near-UV circular dichroism (CD) and fluorescence studies. We explain this apparently surprising behavior in terms of a structural transformation which involves clustering among the methyl groups of DMSO. (iv) Beyond 20% concentration of DMSO, the protein starts its final sojourn towards the unfolding state with further increase in conformational fluctuation and loss in native contacts. Most importantly, analysis of contact map and fluctuation near the active site reveal that both partial unfolding and conformational fluctuations are centered mostly on the hydrophobic core of active site of lysozyme. Our results could offer a general explanation and universal picture of the anomalous behavior of protein structure-function observed in the presence of cosolvents (DMSO, ethanol, tertiary butyl alcohol, dioxane) at their low concentrations.

  2. Explosive Ice Multiplication Induced by multiplicative-Noise fluctuation of Mechanical Break-up in Ice-Ice Collisions

    NASA Astrophysics Data System (ADS)

    Yano, Jun-Ichi; Phillips, Vaughan

    2017-04-01

    The number of ice fragments generated by break-up of large graupel in collisions with small graupel fluctuates randomly due to fluctuations in relative sizes and densities of colliding graupel particles and the stochastic nature of fracture propagation. This paper investigates an impact of the stochasticity of break-up on ice multiplication. When both the rate of generation of primary ice and the initial number concentration of ice-crystals are low, the system most likely loses all the initial ice and graupel due to a lack of sustaining sources. Even randomness does not change this mean evolution of the system in its phase-space. However, a fluctuation of ice break-up number gives a small but finite chance that substantial ice crystal fragments are generated by break-up of large graupel. That, in turn, generates more large graupel. This multiplicative process due to fluctuations potentially leads to a small but finite chance of explosive growth of ice number. A rigorous stochastic analysis demonstrates this point quantitatively. The randomness considered here belongs to a particular category called "multiplicative" noise, because the noise amplitude is proportional to a given physical state. In order to contrast the multiplicative-noise nature of ice break-up with a standard "additive" noise process, fluctuation of the primary ice generation rate is also considered as an example of the latter. These processes are examined by taking the Fokker-Planck equation that explicitly describes evolution of the probability distribution with time. As an important conclusion, stability in the phase-space of the cloud-microphysical system of break-up in ice-ice collisions is substantially altered by the multiplicative noise.

  3. Delta-opiod receptor-mediated forced swimming stress-induced antinociception in the formalin test.

    PubMed

    Kamei, J; Hitosugi, H; Misawa, M; Nagase, H; Kasuya, Y

    1993-01-01

    Forced swimming stress-induced antinociception (FSSIA) was assessed using the formalin test. Male ICR mice, weighing about 30 g, were forced to swim in water at 20 degrees C for 3 min. In unstressed mice, SC injection of formalin (0.5%) to the hindpaw caused a biphasic response: an immediate nociceptive response (first phase) followed by a tonic response (second phase). Although forced swimming stress (FSS) had no effect on the duration of the first-phase response, FSS significantly reduced the duration of the second-phase response. The effect of FSSIA on the second-phase response was blocked by naltrindole (1 mg/kg, SC), a selective delta-opioid receptor antagonist, but not by beta-funaltrexamine (20 mg/kg, SC), a selective mu-opioid receptor antagonist. These results indicate that FSS may selectively reduce the second phase of the formalin-induced nociceptive response, primarily through delta-opioid receptors.

  4. Periodic force induced stabilization or destabilization of the denatured state of a protein

    NASA Astrophysics Data System (ADS)

    Ghosh, Pulak Kumar; Li, Mai Suan; Bag, Bidhan Chandra

    2011-09-01

    We have studied the effects of an external sinusoidal force in protein folding kinetics. The externally applied force field acts on the each amino acid residues of polypeptide chains. Our simulation results show that mean protein folding time first increases with driving frequency and then decreases passing through a maximum. With further increase of the driving frequency the mean folding time starts increasing as the noise-induced hoping event (from the denatured state to the native state) begins to experience many oscillations over the mean barrier crossing time period. Thus unlike one-dimensional barrier crossing problems, the external oscillating force field induces both stabilization or destabilization of the denatured state of a protein. We have also studied the parametric dependence of the folding dynamics on temperature, viscosity, non-Markovian character of bath in presence of the external field.

  5. Modeling of wall-induced force for wall-bounded bubbly flow

    NASA Astrophysics Data System (ADS)

    Kim, Dongjoo; Kim, Jungwoo; Park, Hyungmin; Lee, Jun Ho

    2014-11-01

    The two-fluid model based on Eulerian-Eulerian approach has been widely used for simulating two-phase flow in industrial applications due to much less CPU time compared with interface tracking methods. However, the two-fluid approach requires accurate modeling of mass and momentum transfers between phases. The interfacial momentum exchange terms include drag, shear-induced lift, and wall-induced force. The last one is particularly important in order to correctly predict ``wall peaking'' and ``core peaking'' phenomena observed in bubbly pipe flows. However, the wall-induced force is not fully understood yet and the wall force coefficient used in previous studies has a wide range of values, probably tuned to match experiment. Therefore, we propose a new wall-induced force model in the present study. To verify the accuracy of present model, numerical simulations are performed for several laminar bubbly flows available in the literature. The spatial distributions of void fraction, liquid velocity, and bubble velocity are compared with those with previous models as well as experimental results. Supported by the NRF Programs (NRF-2012M2A8A4055647) of Korean government.

  6. Near-field light detection of a photo induced force by atomic force microscopy with frequency modulation

    NASA Astrophysics Data System (ADS)

    Satoh, Nobuo; Kobayashi, Kei; Matsushige, Kazumi; Yamada, Hirofumi

    2017-08-01

    We demonstrated near-field light detection using a non contact-mode atomic force microscope (nc-AFM). This system obtains molecular-level resolution by reducing noise in the displacement detection of a Si cantilever. The Si cantilever probe tip was brought close to a glass with a patterned chromium film on a dove prism. The backside of the prism was irradiated by an intensity-modulated laser light to create an evanescent field at the glass surface. We obtained a near-field optical image of the chromium-patterned glass by detecting the amplitude modulation induced by the near-field light while the tip-sample distance was regulated by the frequency modulation method under atmospheric conditions.

  7. A programmable DNA origami nanospring that reveals force-induced adjacent binding of myosin VI heads.

    PubMed

    Iwaki, M; Wickham, S F; Ikezaki, K; Yanagida, T; Shih, W M

    2016-12-12

    Mechanosensitive biological nanomachines such as motor proteins and ion channels regulate diverse cellular behaviour. Combined optical trapping with single-molecule fluorescence imaging provides a powerful methodology to clearly characterize the mechanoresponse, structural dynamics and stability of such nanomachines. However, this system requires complicated experimental geometry, preparation and optics, and is limited by low data-acquisition efficiency. Here we develop a programmable DNA origami nanospring that overcomes these issues. We apply our nanospring to human myosin VI, a mechanosensory motor protein, and demonstrate nanometre-precision single-molecule fluorescence imaging of the individual motor domains (heads) under force. We observe force-induced transitions of myosin VI heads from non-adjacent to adjacent binding, which correspond to adapted roles for low-load and high-load transport, respectively. Our technique extends single-molecule studies under force and clarifies the effect of force on biological processes.

  8. Analysis of dynamic characteristics of fluid force induced by labyrinth seal

    NASA Technical Reports Server (NTRS)

    Iwatsubo, T.; Kawai, R.; Kagawa, N.; Kakiuchi, T.; Takahara, K.

    1984-01-01

    Flow patterns of the labyrinth seal are experimentally investigated for making a mathematical model of labyrinth seal and to obtain the flow induced force of the seal. First, the flow patterns in the labyrinth chamber are studied on the circumferential flow using bubble and on the cross section of the seal chamber using aluminum powder as tracers. And next, the fluid force and its phase angle are obtained from the measured pressure distribution in the chamber and the fluid force coefficients are derived from the fluid force and the phase angle. Those are similar to the expression of oil film coefficients. As a result, it is found that the vortices exist in the labyrinth chambers and its center moves up and down periodically. The pressure drop is biggest in the first stage of chambers and next in the last stage of chambers.

  9. A programmable DNA origami nanospring that reveals force-induced adjacent binding of myosin VI heads

    PubMed Central

    Iwaki, M.; Wickham, S. F.; Ikezaki, K.; Yanagida, T.; Shih, W. M.

    2016-01-01

    Mechanosensitive biological nanomachines such as motor proteins and ion channels regulate diverse cellular behaviour. Combined optical trapping with single-molecule fluorescence imaging provides a powerful methodology to clearly characterize the mechanoresponse, structural dynamics and stability of such nanomachines. However, this system requires complicated experimental geometry, preparation and optics, and is limited by low data-acquisition efficiency. Here we develop a programmable DNA origami nanospring that overcomes these issues. We apply our nanospring to human myosin VI, a mechanosensory motor protein, and demonstrate nanometre-precision single-molecule fluorescence imaging of the individual motor domains (heads) under force. We observe force-induced transitions of myosin VI heads from non-adjacent to adjacent binding, which correspond to adapted roles for low-load and high-load transport, respectively. Our technique extends single-molecule studies under force and clarifies the effect of force on biological processes. PMID:27941751

  10. Internal phase transition induced by external forces in Finsler geometric model for membranes

    NASA Astrophysics Data System (ADS)

    Koibuchi, Hiroshi; Shobukhov, Andrey

    2016-10-01

    In this paper, we numerically study an anisotropic shape transformation of membranes under external forces for two-dimensional triangulated surfaces on the basis of Finsler geometry. The Finsler metric is defined by using a vector field, which is the tangential component of a three-dimensional unit vector σ corresponding to the tilt or some external macromolecules on the surface of disk topology. The sigma model Hamiltonian is assumed for the tangential component of σ with the interaction coefficient λ. For large (small) λ, the surface becomes oblong (collapsed) at relatively small bending rigidity. For the intermediate λ, the surface becomes planar. Conversely, fixing the surface with the boundary of area A or with the two-point boundaries of distance L, we find that the variable σ changes from random to aligned state with increasing of A or L for the intermediate region of λ. This implies that an internal phase transition for σ is triggered not only by the thermal fluctuations, but also by external mechanical forces. We also find that the frame (string) tension shows the expected scaling behavior with respect to A/N (L/N) at the intermediate region of A (L) where the σ configuration changes between the disordered and ordered phases. Moreover, we find that the string tension γ at sufficiently large λ is considerably smaller than that at small λ. This phenomenon resembles the so-called soft-elasticity in the liquid crystal elastomer, which is deformed by small external tensile forces.

  11. Residual force depression in single sarcomeres is abolished by MgADP-induced activation.

    PubMed

    Trecarten, Neal; Minozzo, Fabio C; Leite, Felipe S; Rassier, Dilson E

    2015-06-03

    The mechanisms behind the shortening-induced force depression commonly observed in skeletal muscles remain unclear, but have been associated with sarcomere length non-uniformity and/or crossbridge inhibition. The purpose of this study was twofold: (i) to evaluate if force depression is present in isolated single sarcomeres, a preparation that eliminates sarcomere length non-uniformities and (ii) to evaluate if force depression is inhibited when single sarcomeres are activated with MgADP, which biases crossbridges into a strongly-bound state. Single sarcomeres (n = 16) were isolated from rabbit psoas myofibrils using two micro-needles (one compliant, one rigid), piercing the sarcomere externally adjacent to the Z-lines. The sarcomeres were contracted isometrically and subsequently shortened, in both Ca(2+)- and MgADP-activating solutions. Shortening in Ca(2+)-activated samples resulted in a 27.44 ± 9.04% force depression when compared to isometric contractions produced at similar final sarcomere lengths (P < 0.001). There was no force depression in MgADP-activated sarcomeres (force depression = -1.79 ± 9.69%, P =  0.435). These results suggest that force depression is a sarcomeric property, and that is associated with an inhibition of myosin-actin interactions.

  12. Tip-force induced surface deformation in the layered commensurate tellurides NbA xTe 2 (A = Si, Ge) during atomic force microscopy measurements

    NASA Astrophysics Data System (ADS)

    Bengel, H.; Cantow, H.-J.; Magonov, S. N.; Monconduit, L.; Evain, M.; Whangbo, M.-H.

    1994-12-01

    The Te-atom surfaces of commensurate layered tellurides NbA xTe 2 ( A = Si, x = {1}/{2}; A = Ge, x = {1}/{3}, {2}/{5}, {3}/{7}) were examined by atomic force microscopy (AFM) at different applied forces. Although the bulk crystal structures show a negligible height corrugation in the surface Te-atom sheets, the AFM images exhibit dark linear patterns that become strongly pronounced at high applied forces (several hundreds nN). This feature comes about because the tip-sample force interactions induce a surface corrugation according to the local hardness variation of the surface.

  13. Fluctuating shells under pressure

    PubMed Central

    Paulose, Jayson; Vliegenthart, Gerard A.; Gompper, Gerhard; Nelson, David R.

    2012-01-01

    Thermal fluctuations strongly modify the large length-scale elastic behavior of cross-linked membranes, giving rise to scale-dependent elastic moduli. Whereas thermal effects in flat membranes are well understood, many natural and artificial microstructures are modeled as thin elastic shells. Shells are distinguished from flat membranes by their nonzero curvature, which provides a size-dependent coupling between the in-plane stretching modes and the out-of-plane undulations. In addition, a shell can support a pressure difference between its interior and its exterior. Little is known about the effect of thermal fluctuations on the elastic properties of shells. Here, we study the statistical mechanics of shape fluctuations in a pressurized spherical shell, using perturbation theory and Monte Carlo computer simulations, explicitly including the effects of curvature and an inward pressure. We predict novel properties of fluctuating thin shells under point indentations and pressure-induced deformations. The contribution due to thermal fluctuations increases with increasing ratio of shell radius to thickness and dominates the response when the product of this ratio and the thermal energy becomes large compared with the bending rigidity of the shell. Thermal effects are enhanced when a large uniform inward pressure acts on the shell and diverge as this pressure approaches the classical buckling transition of the shell. Our results are relevant for the elasticity and osmotic collapse of microcapsules. PMID:23150558

  14. The Norton-Simon hypothesis and the onset of non-genetic resistance to chemotherapy induced by stochastic fluctuations

    NASA Astrophysics Data System (ADS)

    d'Onofrio, Alberto; Gandolfi, Alberto; Gattoni, Sara

    2012-12-01

    By studying a simple but realistic biophysical model of tumor growth in the presence of a constant continuous chemotherapy, we show that if an extended Norton-Simon hypothesis holds, the system may have multiple equilibria. Thus, the stochastic bounded fluctuations that affect both the tumor carrying capacity and/or the drug pharmacodynamics (and/or the drug pharmacokinetics) may cause the transition from a small equilibrium to a far larger one, not compatible with the life of the host. In particular, we mainly investigated the effects of fluctuations that involve parameters nonlinearly affecting the deterministic model. We propose to frame the above phenomena as a new and non-genetic kind of resistance to chemotherapy.

  15. Remanent cell traction force in renal vascular smooth muscle cells induced by integrin-mediated mechanotransduction.

    PubMed

    Balasubramanian, Lavanya; Lo, Chun-Min; Sham, James S K; Yip, Kay-Pong

    2013-02-15

    It was previously demonstrated in isolated renal vascular smooth muscle cells (VSMCs) that integrin-mediated mechanotransduction triggers intracellular Ca(2+) mobilization, which is the hallmark of myogenic response in VSMCs. To test directly whether integrin-mediated mechanotransduction results in the myogenic response-like behavior in renal VSMCs, cell traction force microscopy was used to monitor cell traction force when the cells were pulled with fibronectin-coated or low density lipoprotein (LDL)-coated paramagnetic beads. LDL-coated beads were used as a control for nonintegrin-mediated mechanotransduction. Pulling with LDL-coated beads increased the cell traction force by 61 ± 12% (9 cells), which returned to the prepull level after the pulling process was terminated. Pulling with noncoated beads had a minimal increase in the cell traction force (12 ± 9%, 8 cells). Pulling with fibronectin-coated beads increased the cell traction force by 56 ± 20% (7 cells). However, the cell traction force was still elevated by 23 ± 14% after the pulling process was terminated. This behavior is analogous to the changes of vascular resistance in pressure-induced myogenic response, in which vascular resistance remains elevated after myogenic constriction. Fibronectin is a native ligand for α(5)β(1)-integrins in VSMCs. Similar remanent cell traction force was found when cells were pulled with beads coated with β(1)-integrin antibody (Ha2/5). Activation of β(1)-integrin with soluble antibody also triggered variations of cell traction force and Ca(2+) mobilization, which were abolished by the Src inhibitor. In conclusion, mechanical force transduced by α(5)β(1)-integrins triggered a myogenic response-like behavior in isolated renal VSMCs.

  16. Remanent cell traction force in renal vascular smooth muscle cells induced by integrin-mediated mechanotransduction

    PubMed Central

    Balasubramanian, Lavanya; Lo, Chun-Min; Sham, James S. K.

    2013-01-01

    It was previously demonstrated in isolated renal vascular smooth muscle cells (VSMCs) that integrin-mediated mechanotransduction triggers intracellular Ca2+ mobilization, which is the hallmark of myogenic response in VSMCs. To test directly whether integrin-mediated mechanotransduction results in the myogenic response-like behavior in renal VSMCs, cell traction force microscopy was used to monitor cell traction force when the cells were pulled with fibronectin-coated or low density lipoprotein (LDL)-coated paramagnetic beads. LDL-coated beads were used as a control for nonintegrin-mediated mechanotransduction. Pulling with LDL-coated beads increased the cell traction force by 61 ± 12% (9 cells), which returned to the prepull level after the pulling process was terminated. Pulling with noncoated beads had a minimal increase in the cell traction force (12 ± 9%, 8 cells). Pulling with fibronectin-coated beads increased the cell traction force by 56 ± 20% (7 cells). However, the cell traction force was still elevated by 23 ± 14% after the pulling process was terminated. This behavior is analogous to the changes of vascular resistance in pressure-induced myogenic response, in which vascular resistance remains elevated after myogenic constriction. Fibronectin is a native ligand for α5β1-integrins in VSMCs. Similar remanent cell traction force was found when cells were pulled with beads coated with β1-integrin antibody (Ha2/5). Activation of β1-integrin with soluble antibody also triggered variations of cell traction force and Ca2+ mobilization, which were abolished by the Src inhibitor. In conclusion, mechanical force transduced by α5β1-integrins triggered a myogenic response-like behavior in isolated renal VSMCs. PMID:23325413

  17. Temporary threshold shift of vibratory sensation induced by a vibrating handle and its gripping force.

    PubMed

    Nishiyama, K; Taoda, K; Yamashita, H; Watanabe, S

    1996-01-01

    This study examines the effect of the force with which a vibrating handle is gripped on the temporary threshold shift of vibratory sensation (TTSv) induced by hand-arm vibration. Six healthy subjects gripped a handle vibrating with a 1.3 octave-band vibration, with a central frequency of 200 Hz and an intensity of 39.2 m/s2. Exposure was for 1 min and 10 min, respectively. Gripping forces for the 1-min exposure were 5 N, 10 N, 40 N and 80 N, respectively, with 0 N push-pull force. Gripping forces for the 10-min exposure were the same as for the 1-min exposure but omitting 80 N. The vibratory sensation threshold at 125 Hz was measured before and after exposure of an exposed fingertip to vibration. The differences measured determine TTSv.t at time t. TTSv.t determines TTSv.0, that is, the temporary threshold shift of vibratory sensation immediately after exposure to vibration according to the estimate made on the basis of the preceding study. The same experimental conditions were repeated 3 times on different days in a soundproof and thermoregulated room. Our findings show that TTSv increases significantly with increasing gripping force. We also determined the quantitative relationships between TTSv.0 and gripping force as described by the equation TTSv.0 = exp(kf x F + Cf). where kt and Cf are constants and F is gripping force. This study revealed the importance of ergonomic design in reducing the force with which a vibrating handle is gripped to prevent an adverse effect of local vibration. The equation devised may help in the quantitative assessment of the effect of reduced gripping force.

  18. Toward steering a jet of particles into an x-ray beam with optically induced forces

    NASA Astrophysics Data System (ADS)

    Eckerskorn, Niko; Bowman, Richard; Kirian, Richard A.; Awel, Salah; Wiedorn, Max; Küpper, Jochen; Padgett, Miles J.; Chapman, Henry N.; Rode, Andrei V.

    2015-08-01

    Optical trapping of light-absorbing particles in a gaseous environment is governed by a laser-induced photophoretic force, which can be orders of magnitude stronger than the force of radiation pressure induced by the same light intensity. In spite of many experimental studies, the exact theoretical background underlying the photophoretic force and the prediction of its influence on the particle motion is still in its infancy. Here, we report the results of a quantitative analysis of the photophoretic force and the stiffness of trapping achieved by levitating graphite and carbon-coated glass shells of calibrated sizes in an upright diverging hollow-core vortex beam, which we refer to as an `optical funnel'. The measurements of forces were conducted in air at various gas pressures in the range from 5 mbar to 2 bar. The results of these measurements lay the foundation for developing a touch-free optical system for precisely positioning sub-micrometer bioparticles at the focal spot of an x-ray free electron laser, which would significantly enhance the efficiency of studying nanoscale morphology of proteins and biomolecules in femtosecond coherent diffractive imaging experiments.

  19. Spin motive force induced by Rashba interaction in the strong sd coupling regime

    NASA Astrophysics Data System (ADS)

    Tatara, Gen; Nakabayashi, Noriyuki; Lee, Kyun-Jin

    2013-02-01

    Spin motive force induced by the Rashba interaction in the presence of strong sd interaction between conduction electron and localized spin is theoretically studied. The motive force is calculated by evaluating the time derivative of the current density on the basis of microscopic formalism. It is shown that there are two motive forces, one proportional to ER×ṅ, the other, perpendicular component proportional to ER×(n×ṅ), where ER and n are the Rashba electric field and localized spin direction, respectively. The second type arises in the strong sd coupling regime from the spin relaxation. The appearance of perpendicular component from the spin relaxation is understood from the analogy with the current-induced torques. In the case of domain wall motion, the two contributions to the spin motive force are the same order of magnitude, while the first term dominates in the case of precession of uniform magnetization. Our result explains the appearance of the perpendicular component in the weak sd coupling limit, recently discussed in the context of spin damping monopole. Detection of ac voltage induced by the precession of uniform magnetization serves as a experimental evidence of the Rashba interaction in films and wires.

  20. Does vibration counteract the static stretch-induced deficit on muscle force development?

    PubMed

    Fernandes, Igor Alexandre; Kawchuk, Gregory; Bhambhani, Yagesh; Gomes, Paulo Sergio Chagas

    2013-09-01

    To determine the residual acute vibration-stretching effect on preactivation levels, short-latency stretch reflex, and performance during execution of drop jumps. Repeated measures. Eleven male recreational athletes performed a set of three 45cm drop jumps before and immediately after a 30s static stretching exercise with and without simultaneously imposed muscle vibration (45Hz, 5mm). Drop jump height, ground reaction forces and electromyographic data including Vastus Lateralis onset/levels of preactivation and short-latency stretch reflex were recorded. No changes were induced on drop jump height. However, stretching-induced decrements on ground reaction force peak and time to peak as well as an increment in contact time followed a delay in short-latency stretch reflex onset and a reduced preactivation level of Vastus Lateralis. Otherwise, when vibration was simultaneously imposed, there was no evidence of changes in high-speed force production variables or electromyographic recordings. Mechanical vibration, when applied simultaneously to static-stretching routines, appeared to be effective to counteract decreased musculotendinous unit stiffness-induced high-speed force production deficit during jumping performance. Copyright © 2012. Published by Elsevier Ltd.

  1. Mapping the Drude polarizable force field onto a multipole and induced dipole model

    NASA Astrophysics Data System (ADS)

    Huang, Jing; Simmonett, Andrew C.; Pickard, Frank C.; MacKerell, Alexander D.; Brooks, Bernard R.

    2017-10-01

    The induced dipole and the classical Drude oscillator represent two major approaches for the explicit inclusion of electronic polarizability into force field-based molecular modeling and simulations. In this work, we explore the equivalency of these two models by comparing condensed phase properties computed using the Drude force field and a multipole and induced dipole (MPID) model. Presented is an approach to map the electrostatic model optimized in the context of the Drude force field onto the MPID model. Condensed phase simulations on water and 15 small model compounds show that without any reparametrization, the MPID model yields properties similar to the Drude force field with both models yielding satisfactory reproduction of a range of experimental values and quantum mechanical data. Our results illustrate that the Drude oscillator model and the point induced dipole model are different representations of essentially the same physical model. However, results indicate the presence of small differences between the use of atomic multipoles and off-center charge sites. Additionally, results on the use of dispersion particle mesh Ewald further support its utility for treating long-range Lennard Jones dispersion contributions in the context of polarizable force fields. The main motivation in demonstrating the transferability of parameters between the Drude and MPID models is that the more than 15 years of development of the Drude polarizable force field can now be used with MPID formalism without the need for dual-thermostat integrators nor self-consistent iterations. This opens up a wide range of new methodological opportunities for polarizable models.

  2. The Ups and Downs of ASVAB: Fluctuations in Armed Services Vocational Aptitude Battery Scores and Implications for U.S. Army Force Readiness

    DTIC Science & Technology

    2017-03-30

    performance of highly complicated processes without human operators, even to the point of being able to exercise lethal force without human consent, the Army... PERFORMING ORGANIZATION NAME(S) AND AODRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Joint Advanced Warfighting School (JAWS) 9. SPONSORING/MONITORING...day, the Army is also reliant upon a human workforce that must be properly recruited, trained, and equipped to ensure a ready force capable of

  3. Does visually induced self-motion affect grip force when holding an object?

    PubMed

    Bringoux, Lionel; Lepecq, Jean-Claude; Danion, Frédéric

    2012-09-01

    Accurate control of grip force during object manipulation is necessary to prevent the object from slipping, especially to compensate for the action of gravitational and inertial forces resulting from hand/object motion. The goal of the current study was to assess whether the control of grip force was influenced by visually induced self-motion (i.e., vection), which would normally be accompanied by changes in object load. The main task involved holding a 400-g object between the thumb and the index finger while being seated within a virtual immersive environment that simulated the vertical motion of an elevator across floors. Different visual motions were tested, including oscillatory (0.21 Hz) and constant-speed displacements of the virtual scene. Different arm-loading conditions were also tested: with or without the hand-held object and with or without oscillatory arm motion (0.9 Hz). At the perceptual level, ratings from participants showed that both oscillatory and constant-speed motion of the elevator rapidly induced a long-lasting sensation of self-motion. At the sensorimotor level, vection compellingness altered arm movement control. Spectral analyses revealed that arm motion was entrained by the oscillatory motion of the elevator. However, we found no evidence that grip force used to hold the object was visually affected. Specifically, spectral analyses revealed no component in grip force that would mirror the virtual change in object load associated with the oscillatory motion of the elevator, thereby allowing the grip-to-load force coupling to remain unaffected. Altogether, our findings show that the neural mechanisms underlying vection interfere with arm movement control but do not interfere with the delicate modulation of grip force. More generally, those results provide evidence that the strength of the coupling between the sensorimotor system and the perceptual level can be modulated depending on the effector.

  4. Influence of environment induced correlated fluctuations in electronic coupling on coherent excitation energy transfer dynamics in model photosynthetic systems

    NASA Astrophysics Data System (ADS)

    Huo, Pengfei; Coker, David F.

    2012-03-01

    Two-dimensional photon-echo experiments indicate that excitation energy transfer between chromophores near the reaction center of the photosynthetic purple bacterium Rhodobacter sphaeroides occurs coherently with decoherence times of hundreds of femtoseconds, comparable to the energy transfer time scale in these systems. The original explanation of this observation suggested that correlated fluctuations in chromophore excitation energies, driven by large scale protein motions could result in long lived coherent energy transfer dynamics. However, no significant site energy correlation has been found in recent molecular dynamics simulations of several model light harvesting systems. Instead, there is evidence of correlated fluctuations in site energy-electronic coupling and electronic coupling-electronic coupling. The roles of these different types of correlations in excitation energy transfer dynamics are not yet thoroughly understood, though the effects of site energy correlations have been well studied. In this paper, we introduce several general models that can realistically describe the effects of various types of correlated fluctuations in chromophore properties and systematically study the behavior of these models using general methods for treating dissipative quantum dynamics in complex multi-chromophore systems. The effects of correlation between site energy and inter-site electronic couplings are explored in a two state model of excitation energy transfer between the accessory bacteriochlorophyll and bacteriopheophytin in a reaction center system and we find that these types of correlated fluctuations can enhance or suppress coherence and transfer rate simultaneously. In contrast, models for correlated fluctuations in chromophore excitation energies show enhanced coherent dynamics but necessarily show decrease in excitation energy transfer rate accompanying such coherence enhancement. Finally, for a three state model of the Fenna-Matthews-Olsen light

  5. A silicon-nanowire memory driven by optical gradient force induced bistability

    SciTech Connect

    Dong, B.; Cai, H. Gu, Y. D.; Kwong, D. L.; Chin, L. K.; Ng, G. I.; Ser, W.; Huang, J. G.; Yang, Z. C.; Liu, A. Q.

    2015-12-28

    In this paper, a bistable optical-driven silicon-nanowire memory is demonstrated, which employs ring resonator to generate optical gradient force over a doubly clamped silicon-nanowire. Two stable deformation positions of a doubly clamped silicon-nanowire represent two memory states (“0” and “1”) and can be set/reset by modulating the light intensity (<3 mW) based on the optical force induced bistability. The time response of the optical-driven memory is less than 250 ns. It has applications in the fields of all optical communication, quantum computing, and optomechanical circuits.

  6. Gamma globulins-induced interaction between two red blood cells: forces measurement with optical tweezers

    NASA Astrophysics Data System (ADS)

    Lee, Kisung; Muravyov, Alexei; Semenov, Alexei; Wagner, Christian; Priezzhev, Alexander; Lyubin, Eugeny; Fedyanin, Andrey

    2017-03-01

    The protein contribution to the red blood cell (RBC) aggregation is studied using the in-house made two-channeled optical tweezers. The cells interaction was characterized using two forces: the force required for separating two cells (FD - disaggregating force) and the force required for holding them from their spontaneous aggregation (FA - aggregating force). The gamma globulin solutions with/without albumin were used to induce the RBC aggregation. The strong interaction (3-10 pN) between the cells was measured within the contact formed using optical tweezers. We found that FD becomes stronger as the gamma globulin concentration increases, while the addition of albumin to the solution led to the significant (few fold) enhancement of the cells interaction forces. However, despite of the strong interaction between the cells their spontaneous overlapping was not observed, unlike the case in plasma, where the cells did increase their overlapping surface, when attached with small interacting surface and released from optical traps. This work in addition to our previous work with model solutions of fibrinogen allows us to conclude that the synergy of blood components is one of the most important features that contribute to the reversible RBC aggregation.

  7. Biomechanical force induces the growth factor production in human periodontal ligament-derived cells.

    PubMed

    Ichioka, Hiroaki; Yamamoto, Toshiro; Yamamoto, Kenta; Honjo, Ken-Ichi; Adachi, Tetsuya; Oseko, Fumishige; Mazda, Osam; Kanamura, Narisato; Kita, Masakazu

    2016-01-01

    Although many reports have been published on the functional roles of periodontal ligament (PDL) cells, the mechanisms involved in the maintenance and homeostasis of PDL have not been determined. We investigated the effects of biomechanical force on growth factor production, phosphorylation of MAPKs, and intracellular transduction pathways for growth factor production in human periodontal ligament (hPDL) cells using MAPK inhibitors. hPDL cells were exposed to mechanical force (6 MPa) using a hydrostatic pressure apparatus. The levels of growth factor mRNA and protein were examined by real-time RT-PCR and ELISA. The phosphorylation of MAPKs was measured using BD™ CBA Flex Set. In addition, MAPKs inhibitors were used to identify specific signal transduction pathways. Application of biomechanical force (equivalent to occlusal force) increased the synthesis of VEGF-A, FGF-2, and NGF. The application of biomechanical force increased the expression levels of phosphorylated ERK and p38, but not of JNK. Furthermore, the levels of VEGF-A and NGF expression were suppressed by ERK or p38 inhibitor. The growth factors induced by biomechanical force may play a role in the mechanisms of homeostasis of PDL.

  8. Optomechanically induced transparency in the presence of an external time-harmonic-driving force

    PubMed Central

    Ma, Jinyong; You, Cai; Si, Liu-Gang; Xiong, Hao; Li, Jiahua; Yang, Xiaoxue; Wu, Ying

    2015-01-01

    We propose a potentially valuable scheme to measure the properties of an external time-harmonic-driving force with frequency ω via investigating its interaction with the combination of a pump field and a probe field in a generic optomechanical system. We show that the spectra of both the cavity field and output field in the configuration of optomechanically induced transparency are greatly modified by such an external force, leading to many interesting linear and non-linear effects, such as the asymmetric structure of absorption in the frequency domain and the antisymmetry breaking of dispersion near ω = ωm. Furthermore, we find that our scheme can be used to measure the initial phase of the external force. More importantly, this setup may eliminate the negative impact of thermal noise on the measurement of the weak external force in virtue of the process of interference between the probe field and the external force. Finally, we show that our configuration can be employed to improve the measurement resolution of the radiation force produced by a weak ultrasonic wave. PMID:26062029

  9. Comparison of rotordynamic fluid forces in axial inducers and centrifugal turbopump impellers

    NASA Astrophysics Data System (ADS)

    d'Agostino, Luca

    2016-05-01

    The paper illustrates and compares the results of the experimental campaigns carried out in the Cavitating Pump Rotordynamic Test Facility (CPRTF) at Alta, Italy, under ESA funding for the characterization of the lateral rotordynamic fluid forces acting on high-head axial inducers and centrifugal turbopump impellers for space propulsion applications. The configurations presented here refer to a three-bladed tapered-hub, variable-pitch, inducer (DAPROT3) and a single-stage centrifugal pump (VAMPIRE) with vaneless diffuser and single spiral volute. Both the centrifugal pump and the inducer have been designed by means of reduced order models specifically developed by the author and his collaborators for the geometric definition and performance prediction of this kind of hydraulic turbomachinery. Continuous spectra of the rotordynamic forces acting on the impellers as functions of the whirl frequency have been obtained by means of the novel technique recently developed and demonstrated at Alta. The influence of the rotor whirl motion, flow rate, cavitating conditions, and liquid temperature (thermal cavitation effects) on the rotordynamic fluid forces is illustrated and the observed differences in their behavior in axial inducers and centrifugal turbpumps are discussed and interpreted in the light of the outcome of recent cavitation visualization experiments carried out by the Chemical Propulsion Team at Alta.

  10. Interplay between Solo and keratin filaments is crucial for mechanical force-induced stress fiber reinforcement.

    PubMed

    Fujiwara, Sachiko; Ohashi, Kazumasa; Mashiko, Toshiya; Kondo, Hiroshi; Mizuno, Kensaku

    2016-03-15

    Mechanical force-induced cytoskeletal reorganization is essential for cell and tissue remodeling and homeostasis; however, the underlying cellular mechanisms remain elusive. Solo (ARHGEF40) is a RhoA-targeting guanine nucleotide exchange factor (GEF) involved in cyclical stretch-induced human endothelial cell reorientation and convergent extension cell movement in zebrafish gastrula. In this study, we show that Solo binds to keratin-8/keratin-18 (K8/K18) intermediate filaments through multiple sites. Solo overexpression promotes the formation of thick actin stress fibers and keratin bundles, whereas knockdown of Solo, expression of a GEF-inactive mutant of Solo, or inhibition of ROCK suppresses stress fiber formation and leads to disorganized keratin networks, indicating that the Solo-RhoA-ROCK pathway serves to precisely organize keratin networks, as well as to promote stress fibers. Of importance, knockdown of Solo or K18 or overexpression of GEF-inactive or deletion mutants of Solo suppresses tensile force-induced stress fiber reinforcement. Furthermore, knockdown of Solo or K18 suppresses tensile force-induced RhoA activation. These results strongly suggest that the interplay between Solo and K8/K18 filaments plays a crucial role in tensile force-induced RhoA activation and consequent actin cytoskeletal reinforcement. © 2016 Fujiwara et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  11. Stretch-induced force enhancement and stability of skeletal muscle myofibrils.

    PubMed

    Rassier, Dilson E; Herzog, Walter; Pollack, Gerald H

    2003-01-01

    The main purpose of the experiments presented in this chapter was to test the hypothesis that the stretch-induced force enhancement commonly observed in skeletal muscle is associated with sarcomere length instability. Single myofibrils isolated from the rabbit psoas muscle were attached to a nanolever pair for force measurement at the one end, and to a glass needle for controlled displacements at the other end. The image of the striation pattern was projected onto a linear 1024-element photodiode array, which was scanned (20 Hz) to produce a dark-light pattern corresponding to the A- and I-bands, respectively. Starting from a mean SL of approximately 2.55 microm, stretches of a nominal amplitude of 4 to 10% of SL, at a nominal speed of 100 nm x sec(-1) were applied to activated myofibrils (pCa2+ = 4.75). Following stretch, the isometric, steady-state force was greater by 10.9% to 45.9% than the force produced before stretch, and was greater than the