[Present status and trend of heart fluid mechanics research based on medical image analysis].
Gan, Jianhong; Yin, Lixue; Xie, Shenghua; Li, Wenhua; Lu, Jing; Luo, Anguo
2014-06-01
With introduction of current main methods for heart fluid mechanics researches, we studied the characteristics and weakness for three primary analysis methods based on magnetic resonance imaging, color Doppler ultrasound and grayscale ultrasound image, respectively. It is pointed out that particle image velocity (PIV), speckle tracking and block match have the same nature, and three algorithms all adopt block correlation. The further analysis shows that, with the development of information technology and sensor, the research for cardiac function and fluid mechanics will focus on energy transfer process of heart fluid, characteristics of Chamber wall related to blood fluid and Fluid-structure interaction in the future heart fluid mechanics fields.
[Application of in situ cryogenic Raman spectroscopy to analysis of fluid inclusions in reservoirs].
Chen, Yong; Lin, Cheng-yan; Yu, Wen-quan; Zheng, Jie; Wang, Ai-guo
2010-01-01
Identification of salts is a principal problem for analysis of fluid inclusions in reservoirs. The fluid inclusions from deep natural gas reservoirs in Minfeng sub-sag were analyzed by in situ cryogenic Raman spectroscopy. The type of fluid inclusions was identified by Raman spectroscopy at room temperature. The Raman spectra show that the inclusions contain methane-bearing brine aqueous liquids. The fluid inclusions were analyzed at -180 degrees C by in situ cryogenic Raman spectroscopy. The spectra show that inclusions contain three salts, namely NaCl2, CaCl2 and MgCl2. Sodium chloride is most salt component, coexisting with small calcium chloride and little magnesium chloride. The origin of fluids in inclusions was explained by analysis of the process of sedimentation and diagenesis. The mechanism of diagenesis in reservoirs was also given in this paper. The results of this study indicate that in situ cryogenic Raman spectroscopy is an available method to get the composition of fluid inclusions in reservoirs. Based on the analysis of fluid inclusions in reservoirs by in situ cryogenic Raman spectroscopy with combination of the history of sedimentation and diagenesis, the authors can give important evidence for the type and mechanism of diagenesis in reservoirs.
Effects of real fluid properties on axial turbine meanline design and off-design analysis
NASA Astrophysics Data System (ADS)
MacLean, Cameron
The effects of real fluid properties on axial turbine meanline analysis have been investigated employing two meanline analysis codes, namely Turbine Meanline Design (TMLD) and Turbine Meanline Off-Design (TMLO). The previously developed TMLD code assumed the working fluid was an ideal gas. Therefore it was modified to use real fluid properties. TMLO was then developed from TMLD Both codes can be run using either the ideal gas assumption or real fluid properties. TMLD was employed for the meanline design of several axial turbines for a range of inlet conditions, using both the ideal gas assumption and real fluid properties. The resulting designs were compared to see the effects of real fluid properties. Meanline designs, generated using the ideal gas assumption, were then analysed with TMLO using real fluid properties. This was done over a range of inlet conditions that correspond to varying degrees of departure from ideal gas conditions. The goal was to show how machines designed with the ideal gas assumption would perform with the real working fluid. The working fluid used in both investigations was supercritical carbon dioxide. Results from the investigation show that real fluid properties had a strong effect on the gas path areas of the turbine designs as well as the performance of turbines designed using the ideal gas assumption. Specifically, power output and the velocities of the working fluid were affected. It was found that accounting for losses tended to lessen the effects of the real fluid properties.
Analysis of cannabis in oral fluid specimens by GC-MS with automatic SPE.
Choi, Hyeyoung; Baeck, Seungkyung; Kim, Eunmi; Lee, Sooyeun; Jang, Moonhee; Lee, Juseon; Choi, Hwakyung; Chung, Heesun
2009-12-01
Methamphetamine (MA) is the most commonly abused drug in Korea, followed by cannabis. Traditionally, MA analysis is carried out on both urine and hair samples and cannabis analysis in urine samples only. Despite the fact that oral fluid has become increasingly popular as an alternative specimen in the field of driving under the influence of drugs (DUID) and work place drug testing, its application has not been expanded to drug analysis in Korea. Oral fluid is easy to collect and handle and can provide an indication of recent drug abuse. In this study, we present an analytical method using GC-MS to determine tetrahydrocannabinol (THC) and its main metabolite 11-nor-delta9-tetrahydrocannabinol-9-carboxylic acid (THC-COOH) in oral fluid. The validated method was applied to oral fluid samples collected from drug abuse suspects and the results were compared with those in urine. The stability of THC and THC-COOH in oral fluid stored in different containers was also investigated. Oral fluid specimens from 12 drug abuse suspects, submitted by the police, were collected by direct expectoration. The samples were screened with microplate ELISA. For confirmation they were extracted using automated SPE with mixed-mode cation exchange cartridge, derivatized and analyzed by GC-MS using selective ion monitoring (SIM). The concentrations ofTHC and THC-COOH in oral fluid showed a large variation and the results from oral fluid and urine samples from cannabis abusers did not show any correlation. Thus, detailed information about time interval between drug use and sample collection is needed to interpret the oral fluid results properly. In addition, further investigation about the detection time window ofTHC and THC-COOH in oral fluid is required to substitute oral fluid for urine in drug testing.
Supercritical-fluid extraction and chromatography-mass spectrometry for analysis of mycotoxins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, R.D.; Udseth, H.R.
1982-07-01
The use of direct supercritical-fluid injection-mass spectrometry for the rapid analysis of mycotoxins of the tricothecene group is demonstrated. A solution containing diacetoxyscirpenol or T-2 toxin is injected into a fluid consisting primarily of pentane or carbon dioxide and is rapidly brought to supercritical conditions. Direct injection of the fluid stream into a chemical ionization source allows thermally labile compounds to be analyzed. Under these conditions trichothecene mass spectra showing significant (M + 1)/sup +/ ions and distinctive fragmentation patterns are obtained. Detection limits are in the subnanogram range. Direct analysis from complex substrates using selective supercritical-fluid extraction is proposed.more » 4 figures.« less
NASA Astrophysics Data System (ADS)
Hu, Q.; Li, Y.; Pan, H. L.; Liu, J. T.; Zhuang, B. T.
2015-01-01
Vane type propellant management device (PMD) is one of the key components of the vane-type surface tension tank (STT), and its fluid orbital performance directly determines the STT's success or failure. In present paper, numerical analysis and microgravity experiment study on fluid orbital performance of a vane type PMD were carried out. By using two-phase flow model of volume of fluid (VOF), fluid flow characteristics in the tank with the vane type PMD were numerically calculated, and the rules of fluid transfer and distribution were gotten. A abbreviate model test system of the vane type PMD is established and microgravity drop tower tests were performed, then fluid management and transmission rules of the vane type PMD were obtained under microgravity environment. The analysis and tests results show that the vane type PMD has good and initiative fluid orbital management ability and meets the demands of fluid orbital extrusion in the vane type STT. The results offer valuable guidance for the design and optimization of the new generation of vane type PMD, and also provide a new approach for fluid management and control in space environment.
Radon and ammonia transects across the Cerro Prieto geothermal field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Semprini, L.; Kruger, P.
1981-01-01
Radon and ammonia transects, conducted at the Cerro Prieto geothermal field, involve measurement of concentration gradients at wells along lines of structural significance in the reservoir. Analysis of four transects showed radon concentrations ranging from 0.20 to 3.60 nCi/kg and ammonia concentrations from 17.6 to 59.3 mg/l. The data showed the lower concentrations in wells of lowest enthalpy fluid and the higher concentrations in wells of highest enthalpy fluid. Linear correlation analysis of the radon-enthalpy data indicated a strong relationship, with a marked influence by the two-phase conditions of the produced fluid. It appears that after phase separation in themore » reservoir, radon achieves radioactive equilibrium between fluid and rock, suggesting that the phase separation occurs well within the reservoir. A two-phase mixing model based on radon-enthalpy relations allows estimation of the fluid phase temperatures in the reservoir. Correlations of ammonia concentration with fluid enthalpy suggests an equilibrium partitioning model in which enrichment of ammonia correlates with higher enthalpy vapor.« less
Variations in respiratory sounds in relation to fluid accumulation in the upper airways.
Yadollahi, Azadeh; Rudzicz, Frank; Montazeri, Aman; Bradley, T Douglas
2013-01-01
Obstructive sleep apnea (OSA) is a common disorder due to recurrent collapse of the upper airway (UA) during sleep that increases the risk for several cardiovascular diseases. Recently, we showed that nocturnal fluid accumulation in the neck can narrow the UA and predispose to OSA. Our goal is to develop non-invasive methods to study the pathogenesis of OSA and the factors that increase the risks of developing it. Respiratory sound analysis is a simple and non-invasive way to study variations in the properties of the UA. In this study we examine whether such analysis can be used to estimate the amount of neck fluid volume and whether fluid accumulation in the neck alters the properties of these sounds. Our acoustic features include estimates of formants, pitch, energy, duration, zero crossing rate, average power, Mel frequency power, Mel cepstral coefficients, skewness, and kurtosis across segments of sleep. Our results show that while all acoustic features vary significantly among subjects, only the variations in respiratory sound energy, power, duration, pitch, and formants varied significantly over time. Decreases in energy and power over time accompany increases in neck fluid volume which may indicate narrowing of UA and consequently an increased risk of OSA. Finally, simple discriminant analysis was used to estimate broad classes of neck fluid volume from acoustic features with an accuracy of 75%. These results suggest that acoustic analysis of respiratory sounds might be used to assess the role of fluid accumulation in the neck on the pathogenesis of OSA.
Hong, Hyo-Lim; Kim, Sung-Han; Huh, Jin Won; Sung, Heungsup; Lee, Sang-Oh; Kim, Mi-Na; Jeong, Jin-Yong; Lim, Chae-Man; Kim, Yang Soo; Woo, Jun Hee; Koh, Younsuck
2014-01-01
Background The usefulness of bronchoalveolar lavage (BAL) fluid cellular analysis in pneumonia has not been adequately evaluated. This study investigated the ability of cellular analysis of BAL fluid to differentially diagnose bacterial pneumonia from viral pneumonia in adult patients who are admitted to intensive care unit. Methods BAL fluid cellular analysis was evaluated in 47 adult patients who underwent bronchoscopic BAL following less than 24 hours of antimicrobial agent exposure. The abilities of BAL fluid total white blood cell (WBC) counts and differential cell counts to differentiate between bacterial and viral pneumonia were evaluated using receiver operating characteristic (ROC) curve analysis. Results Bacterial pneumonia (n = 24) and viral pneumonia (n = 23) were frequently associated with neutrophilic pleocytosis in BAL fluid. BAL fluid median total WBC count (2,815/µL vs. 300/µL, P<0.001) and percentage of neutrophils (80.5% vs. 54.0%, P = 0.02) were significantly higher in the bacterial pneumonia group than in the viral pneumonia group. In ROC curve analysis, BAL fluid total WBC count showed the best discrimination, with an area under the curve of 0.855 (95% CI, 0.750–0.960). BAL fluid total WBC count ≥510/µL had a sensitivity of 83.3%, specificity of 78.3%, positive likelihood ratio (PLR) of 3.83, and negative likelihood ratio (NLR) of 0.21. When analyzed in combination with serum procalcitonin or C-reactive protein, sensitivity was 95.8%, specificity was 95.7%, PLR was 8.63, and NLR was 0.07. BAL fluid total WBC count ≥510/µL was an independent predictor of bacterial pneumonia with an adjusted odds ratio of 13.5 in multiple logistic regression analysis. Conclusions Cellular analysis of BAL fluid can aid early differential diagnosis of bacterial pneumonia from viral pneumonia in critically ill patients. PMID:24824328
Fingering instability of Bingham fluids
NASA Astrophysics Data System (ADS)
Ghadge, Shilpa; Myers, Tim
2005-11-01
Contact line instabilities have been extensively studied and many useful results obtained for industrial applications. Our research in this area is to explore these instabilities for non-Newtonian fluids which has wide scope in geological, biological as well as industrial areas. In this talk, we will present an analysis of fingering instability near a contact line of the thin sheet of fluid flowing down on a moderately inclined plane. This instability has been well studied for Newtonian fluids. We explore the effect of a yield strength of the fluid on this instability. We have conveniently assumed the presence of the precussor film of small thickness ahead of the fluid film to avoid some mathematical singularities. Using a lubrication-type approximation, we perform a linear stability analysis of a straight contact line. We will show comparison with some experimental results using suspensions of kaolin in silicone oil as a yield strength fluid.
1989-01-01
intervals over a 60 minute period at flow rates of 100, 250, 500, 750, and 1,000 ml/hr. Analysis of variance showed a highly significant group effect with a...significant difference between all groups except Group 3 and Group 4. Analysis of - .riance aiso showed a highly significant flow rate effect on...as effective as the conventional method of delivering warmed fluids. Also, within the range of flow rates studied, faster flow rates tended to yield a
Magnetic Control of Convection in Electrically Nonconducting Fluids
NASA Technical Reports Server (NTRS)
Huang, Jie; Gray, Donald D.; Edwards, Boyd F.
1999-01-01
Inhomogeneous magnetic fields exert a body force on electrically nonconducting, magnetically permeable fluids. This force can be used to compensate for gravity and to control convection. The effects of uniform and nonuniform magnetic fields on a laterally unbounded fluid layer heated from below or above are studied using a linear stability analysis of the Navier-Stokes equations supplemented by Maxwell's equations and the appropriate magnetic body force. For a uniform oblique field, the analysis shows that longitudinal rolls with axes parallel to the horizontal component of the field are the rolls most unstable to convection. The corresponding critical Rayleigh number and critical wavelength for the onset of such rolls are less than the well-known Rayleigh-Benard values in the absence of magnetic fields. Vertical fields maximize these deviations, which vanish for horizontal fields. Horizontal fields increase the critical Rayleigh number and the critical wavelength for all rolls except longitudinal rolls. For a nonuniform field, our analysis shows that the magnetic effect on convection is represented by a dimensionless vector parameter which measures the relative strength of the induced magnetic buoyancy force due to the applied field gradient. The vertical component of this parameter competes with the gravitational buoyancy effect, and a critical relationship between this component and the Rayleigh number is identified for the onset of convection. Therefore, Rayleigh-Benard convection in such fluids can be enhanced or suppressed by the field. It also shows that magnetothermal convection is possible in both paramagnetic and diamagnetic fluids. Our theoretical predictions for paramagnetic fluids agree with experiments. Magnetically driven convection in diamagnetic fluids should be observable even in pure water using current technology.
Decreased levels of sRAGE in follicular fluid from patients with PCOS.
Wang, BiJun; Li, Jing; Yang, QingLing; Zhang, FuLi; Hao, MengMeng; Guo, YiHong
2017-03-01
This study aimed to explore the association between soluble receptor for advanced glycation end products (sRAGE) levels in follicular fluid and the number of oocytes retrieved and to evaluate the effect of sRAGE on vascular endothelial growth factor (VEGF) in granulosa cells in patients with polycystic ovarian syndrome (PCOS). Two sets of experiments were performed in this study. In part one, sRAGE and VEGF protein levels in follicular fluid samples from 39 patients with PCOS and 35 non-PCOS patients were measured by ELISA. In part two, ovarian granulosa cells were isolated from an additional 10 patients with PCOS and cultured. VEGF and SP1 mRNA and protein levels, as well as pAKT levels, were detected by real-time PCR and Western blotting after cultured cells were treated with different concentrations of sRAGE. Compared with the non-PCOS patients, patients with PCOS had lower sRAGE levels in follicular fluid. Multi-adjusted regression analysis showed that high sRAGE levels in follicular fluid predicted a lower Gn dose, more oocytes retrieved, and a better IVF outcome in the non-PCOS group. Logistic regression analysis showed that higher sRAGE levels predicted favorably IVF outcomes in the non-PCOS group. Multi-adjusted regression analysis also showed that high sRAGE levels in follicular fluid predicted a lower Gn dose in the PCOS group. Treating granulosa cells isolated from patients with PCOS with recombinant sRAGE decreased VEGF and SP1 mRNA and protein expression and pAKT levels in a dose-dependent manner. © 2017 Society for Reproduction and Fertility.
NASA Astrophysics Data System (ADS)
Wang, Ying; Xie, Yuling; Wu, Haoran
2018-02-01
Bairendaba silver-polymetallic deposit is located in the middle south of the Xing Meng orogenic belt, and in the silver-polymetallic metallogenic belt on the west slope of the southern of Great Xing’an Range. Based on studying of the fluid inclusion, we discuss the characteristics of ore-forming fluid and the metallic genesis of the Bairendaba silver-polymetallic deposit. By means of the analysis of the fluid inclusions, homogenization temperature, salinity and composition were studied in quartz and fluorite. The result is as the follows: with homogenization temperatures of fluid inclusions in quartz veins being 196∼312 °C, the average 244.52 °C, and fluid salinity 2.90∼9.08 wt%NaCl; with homogenization temperatures of fluid inclusions in fluorite being 127∼306 °C, the average 196.92 °C, and fluid salinity 2.90∼9.34 wt% NaCl. The ore-forming fluid is mainly composed of water and the gas. The results of laser Raman analysis show that the gas phase is mainly CH4. It shows that the ore-forming fluid is characterized by medium-low temperature and low-salinity system. The temperature of ore-forming fluid is from high to low, and the salinity from high to low, and the meteoric water or metamorphic water is added during deposit. According to the geological characteristics of the mining area, it is considered that the genetic type of the ore deposit should be the fault-controlled and the medium-low temperature hydrothermal deposit related to magmatic hydrothermal activities.
Quantitation of sperm bindable IgA and IgG in seminal fluid.
Howe, S E; Lynch, D M
1986-05-01
Seminal fluid and serum from 95 infertile males were assayed for sperm bindable immunoglobulins using an indirect ELISA with whole target sperm. The ELISA method was compared to seminal fluid and serum immobilization and agglutination assays (functional assays). In this infertile group, the ELISA assay was positive in 22% of seminal fluids (greater than 1.2 fg IgA/sperm and greater than 0.3 fg IgG/sperm). The seminal fluid antibodies were IgA and had an accompanying elevated IgG component in 78% of patients. There was a 96% correlation between negative seminal fluid functional assays and negative ELISA, and a 95% correlation between positive seminal fluid functional assays and positive ELISA. Positive serum sperm antibody tests were found in 71% of the infertile males with positive seminal fluid sperm antibodies, but 29% of the infertile males with strongly positive IgA seminal fluid sperm antibodies showed normal levels of serum sperm antibodies by either ELISA or functional assays. The ELISA method gives reproducible quantitation of sperm antibodies in seminal fluid and correlates well with accepted functional assays. Comparisons with serum sperm antibody assays suggests that seminal fluid sperm antibody analysis complements the serum analysis of sperm antibodies.
Ivy, Morgan I; Thoendel, Matthew J; Jeraldo, Patricio R; Greenwood-Quaintance, Kerryl E; Hanssen, Arlen D; Abdel, Matthew P; Chia, Nicholas; Yao, Janet Z; Tande, Aaron J; Mandrekar, Jayawant N; Patel, Robin
2018-05-30
Background: Metagenomic shotgun sequencing has the potential to transform how serious infections are diagnosed by offering universal, culture-free pathogen detection. This may be especially advantageous for microbial diagnosis of prosthetic joint infection (PJI) by synovial fluid analysis, since synovial fluid cultures are not universally positive, and synovial fluid is easily obtained pre-operatively. We applied a metagenomics-based approach to synovial fluid in an attempt to detect microorganisms in 168 failed total knee arthroplasties. Results: Genus- and species-level analysis of metagenomic sequencing yielded the known pathogen in 74 (90%) and 68 (83%) of the 82 culture-positive PJIs analyzed, respectively, with testing of two (2%) and three (4%) samples, respectively, yielding additional pathogens not detected by culture. For the 25 culture-negative PJIs tested, genus- and species-level analysis yielded 19 (76%) and 21 (84%) samples with insignificant findings, respectively, and 6 (24%) and 4 (16%) with potential pathogens detected, respectively. Genus- and species-level analysis of the 60 culture-negative aseptic failure cases yielded 53 (88.3%) and 56 (93.3%) cases with insignificant findings, and 7 (11.7%) and 4 (6.7%) with potential clinically-significant organisms detected, respectively. There was one case of aseptic failure with synovial fluid culture growth; metagenomic analysis showed insignificant findings, suggesting possible synovial fluid culture contamination. Conclusion: Metagenomic shotgun sequencing can detect pathogens involved in PJI when applied to synovial fluid and may be particularly useful for culture-negative cases. Copyright © 2018 American Society for Microbiology.
NASA Astrophysics Data System (ADS)
Staroń, Waldemar; Herbowski, Leszek; Gurgul, Henryk
2007-04-01
The goal of the work was to determine the values of cumulative parameters of the cerebrospinal fluid. Values of the parameters characterise statistical cerebrospinal fluid obtained by puncture from the patients diagnosed due to suspicion of normotensive hydrocephalus. The cerebrospinal fluid taken by puncture for the routine examinations carried out at the patients suspected of normotensive hydrocephalus was analysed. In the paper there are presented results of examinations of several dozens of puncture samples of the cerebrospinal fluid coming from various patients. Each sample was examined under the microscope and photographed in 20 randomly chosen places. On the basis of analysis of the pictures showing the area of 100 x 100μm, the selected cumulative parameters such as count, numerical density, field area and field perimeter were determined for each sample. Then the average value of the parameters was determined as well.
Noninvasive diagnosis of intraamniotic infection: proteomic biomarkers in vaginal fluid.
Hitti, Jane; Lapidus, Jodi A; Lu, Xinfang; Reddy, Ashok P; Jacob, Thomas; Dasari, Surendra; Eschenbach, David A; Gravett, Michael G; Nagalla, Srinivasa R
2010-07-01
We analyzed the vaginal fluid proteome to identify biomarkers of intraamniotic infection among women in preterm labor. Proteome analysis was performed on vaginal fluid specimens from women with preterm labor, using multidimensional liquid chromatography, tandem mass spectrometry, and label-free quantification. Enzyme immunoassays were used to quantify candidate proteins. Classification accuracy for intraamniotic infection (positive amniotic fluid bacterial culture and/or interleukin-6 >2 ng/mL) was evaluated using receiver-operator characteristic curves obtained by logistic regression. Of 170 subjects, 30 (18%) had intraamniotic infection. Vaginal fluid proteome analysis revealed 338 unique proteins. Label-free quantification identified 15 proteins differentially expressed in intraamniotic infection, including acute-phase reactants, immune modulators, high-abundance amniotic fluid proteins and extracellular matrix-signaling factors; these findings were confirmed by enzyme immunoassay. A multi-analyte algorithm showed accurate classification of intraamniotic infection. Vaginal fluid proteome analyses identified proteins capable of discriminating between patients with and without intraamniotic infection. Copyright (c) 2010 Mosby, Inc. All rights reserved.
Analysis and Calculation of the Fluid Flow and the Temperature Field by Finite Element Modeling
NASA Astrophysics Data System (ADS)
Dhamodaran, M.; Jegadeesan, S.; Kumar, R. Praveen
2018-04-01
This paper presents a fundamental and accurate approach to study numerical analysis of fluid flow and heat transfer inside a channel. In this study, the Finite Element Method is used to analyze the channel, which is divided into small subsections. The small subsections are discretized using higher number of domain elements and the corresponding number of nodes. MATLAB codes are developed to be used in the analysis. Simulation results showed that the analyses of fluid flow and temperature are influenced significantly by the changing entrance velocity. Also, there is an apparent effect on the temperature fields due to the presence of an energy source in the middle of the domain. In this paper, the characteristics of flow analysis and heat analysis in a channel have been investigated.
NASA Astrophysics Data System (ADS)
Kang, Yoon-Tae; Kim, Min-Ji; Cho, Young-Ho
2018-04-01
We present a cell impedance measurement chip capable of characterizing the toxic response of cells depending on the velocity of the supplied toxic fluid. Previous impedance-based devices using a single open-top chamber have been limited to maintaining a constant supply velocity, and devices with a single closed-top chamber present difficulties in simultaneous cytotoxicity assay for varying levels of supply velocities. The present device, capable of generating constant and multiple levels of toxic fluid velocity simultaneously within a single stepwise microchannel, performs a cytotoxicity assay dependent on toxic fluid velocity, in order to find the effective velocity of toxic fluid to cells for maximizing the cytotoxic effect. We analyze the cellular toxic response of 5% ethanol media supplied to cancer cells within a toxic fluid velocity range of 0-8.3 mm s-1. We observe the velocity-dependent cell detachment rate, impedance, and death rate. We find that the cell detachment rate decreased suddenly to 2.4% at a velocity of 4.4 mm s-1, and that the change rates of cell resistance and cell capacitance showed steep decreases to 8% and 41%, respectively, at a velocity of 5.7 mm s-1. The cell death rate and impedance fell steeply to 32% at a velocity of 5.7 mm s-1. We conclude that: (1) the present device is useful in deciding on the toxic fluid velocity effective to cytotoxicity assay, since the cellular toxic response is dependent on the velocity of toxic fluid, and; (2) the cell impedance analysis facilitates a finer cellular response analysis, showing better correlation with the cell death rate, compared to conventional visual observation. The present device, capable of performing the combinational analysis of toxic fluid velocity and cell impedance, has potential for application to the fine cellular toxicity assay of drugs with proper toxic fluid velocity.
Inter-laboratory validation of bioaccessibility testing for metals.
Henderson, Rayetta G; Verougstraete, Violaine; Anderson, Kim; Arbildua, José J; Brock, Thomas O; Brouwers, Tony; Cappellini, Danielle; Delbeke, Katrien; Herting, Gunilla; Hixon, Greg; Odnevall Wallinder, Inger; Rodriguez, Patricio H; Van Assche, Frank; Wilrich, Peter; Oller, Adriana R
2014-10-01
Bioelution assays are fast, simple alternatives to in vivo testing. In this study, the intra- and inter-laboratory variability in bioaccessibility data generated by bioelution tests were evaluated in synthetic fluids relevant to oral, inhalation, and dermal exposure. Using one defined protocol, five laboratories measured metal release from cobalt oxide, cobalt powder, copper concentrate, Inconel alloy, leaded brass alloy, and nickel sulfate hexahydrate. Standard deviations of repeatability (sr) and reproducibility (sR) were used to evaluate the intra- and inter-laboratory variability, respectively. Examination of the sR:sr ratios demonstrated that, while gastric and lysosomal fluids had reasonably good reproducibility, other fluids did not show as good concordance between laboratories. Relative standard deviation (RSD) analysis showed more favorable reproducibility outcomes for some data sets; overall results varied more between- than within-laboratories. RSD analysis of sr showed good within-laboratory variability for all conditions except some metals in interstitial fluid. In general, these findings indicate that absolute bioaccessibility results in some biological fluids may vary between different laboratories. However, for most applications, measures of relative bioaccessibility are needed, diminishing the requirement for high inter-laboratory reproducibility in absolute metal releases. The inter-laboratory exercise suggests that the degrees of freedom within the protocol need to be addressed. Copyright © 2014 Elsevier Inc. All rights reserved.
Quasi-one-dimensional compressible flow across face seals and narrow slots. 1: Analysis
NASA Technical Reports Server (NTRS)
Zuk, J.; Ludwig, L. P.; Johnson, R. L.
1972-01-01
An analysis is presented for compressible fluid flow across shaft face seals and narrow slots. The analysis includes fluid inertia, viscous friction, and entrance losses. Subsonic and choked flow conditions can be predicted and analyzed. The model is valid for both laminar and turbulent flows. Results agree with experiment and with solutions which are more limited in applicability. Results show that a parallel film can have a positive film stiffness under choked flow conditions.
NASA Astrophysics Data System (ADS)
Maestrelli, Daniele; Jihad, Ali; Iacopini, David; Bond, Clare
2016-04-01
Fluid escape pipes are key features of primary interest for the analysis of vertical fluid flow and secondary hydrocarbon migration in sedimentary basin. Identified worldwide (Løset et al., 2009), they acquired more and more importance as they represent critical pathways for supply of methane and potential structure for leakage into the storage reservoir (Cartwright & Santamarina, 2015). Therefore, understanding their genesis, internal characteristics and seismic expression, is of great significance for the exploration industry. Here we propose a detailed characterization of the internal seismic texture of some seal bypass system (e.g fluid escape pipes) from a 4D seismic survey (released by the BP) recently acquired in the Loyal Field. The seal by pass structure are characterized by big-scale fluid escape pipes affecting the Upper Paleogene/Neogene stratigraphic succession in the Loyal Field, Scotland (UK). The Loyal field, is located on the edge of the Faroe-Shetland Channel slope, about 130 km west of Shetland (Quadrants 204/205 of the UKCS) and has been recently re-appraised and re developed by a consortium led by BP. The 3D detailed mapping analysis of the full and partial stack survey (processed using amplitude preservation workflows) shows a complex system of fluid pipe structure rooted in the pre Lista formation and developed across the paleogene and Neogene Units. Geometrical analysis show that pipes got diameter varying between 100-300 m and a length of 500 m to 2 km. Most pipes seem to terminate abruptly at discrete subsurface horizons or in diffuse termination suggesting multiple overpressured events and lateral fluid migration (through Darcy flows) across the overburden units. The internal texture analysis of the large pipes, (across both the root and main conduit zones), using near, medium and far offset stack dataset (processed through an amplitude preserved PSTM workflow) shows a tendency of up-bending of reflection (rather than pulls up artefacts) affected by large scale fracture (semblance image) and seem consistent with a suspended mud/sand mixture non-fluidized fluid flow. Near-Middle-Far offsets amplitude analysis confirms that most of the amplitude anomalies within the pipes conduit and terminus are only partly related to gas. An interpretation of the possible texture observed is proposed with a discussion of the noise and artefact induced by resolution and migration problems. Possible hypothetical formation mechanisms for those Pipes are discussed.
Stability of the iterative solutions of integral equations as one phase freezing criterion.
Fantoni, R; Pastore, G
2003-10-01
A recently proposed connection between the threshold for the stability of the iterative solution of integral equations for the pair correlation functions of a classical fluid and the structural instability of the corresponding real fluid is carefully analyzed. Direct calculation of the Lyapunov exponent of the standard iterative solution of hypernetted chain and Percus-Yevick integral equations for the one-dimensional (1D) hard rods fluid shows the same behavior observed in 3D systems. Since no phase transition is allowed in such 1D system, our analysis shows that the proposed one phase criterion, at least in this case, fails. We argue that the observed proximity between the numerical and the structural instability in 3D originates from the enhanced structure present in the fluid but, in view of the arbitrary dependence on the iteration scheme, it seems uneasy to relate the numerical stability analysis to a robust one-phase criterion for predicting a thermodynamic phase transition.
Analysis of vesicle fluid following the sting of the lionfish Pterois volitans.
Auerbach, P S; McKinney, H E; Rees, R S; Heggers, J P
1987-01-01
Fluid aspirated from blisters following a lionfish (Pterois volitans) sting was analyzed utilizing combined capillary column gas chromatography and negative ion chemical ionization mass spectrometry. Analysis for prostaglandin F2 alpha demonstrated 16.91 ng/ml, for prostaglandin E2 0.143 ng/ml, for 6-keto-prostaglandin F1 alpha less than 0.1 ng/ml (nondetectable) and for thromboxane B2 1.65 ng/ml. Platelet aggregation studies showed that blister fluid caused aggregation of isolated platelets only, which was inhibited by heat treatment or by the presence of normal donor plasma.
Electroosmosis of viscoelastic fluids over charge modulated surfaces in narrow confinements
NASA Astrophysics Data System (ADS)
Ghosh, Uddipta; Chakraborty, Suman
2015-06-01
In the present work, we attempt to analyze the electroosmotic flow of a viscoelastic fluid, following quasi-linear constitutive behavior, over charge modulated surfaces in narrow confinements. We obtain analytical solutions for the flow field for thin electrical double layer (EDL) limit through asymptotic analysis for small Deborah numbers. We show that a combination of matched and regular asymptotic expansion is needed for the thin EDL limit. We subsequently determine the modified Smoluchowski slip velocity for viscoelastic fluids and show that the quasi-linear nature of the constitutive behavior adds to the periodicity of the flow. We also obtain the net throughput in the channel and demonstrate its relative decrement as compared to that of a Newtonian fluid. Our results may have potential implications towards augmenting microfluidic mixing by exploiting electrokinetic transport of viscoelastic fluids over charge modulated surfaces.
Childhood Psychosis and Monoamine Metabolites in Spinal Fluid.
ERIC Educational Resources Information Center
Gillberg, Christopher; And Others
1983-01-01
Analysis of cerebrospinal fluid of 22 psychotic children, 22 normal controls, and Ss with mental retardation, progressive encephalopathy, or meningitis revealed that psychotic Ss had raised levels of homovanillic acid. Thirteen Ss diagnosed as autistic showed isolated inrease of this metabolite. Increased concentration of mongamines was not…
Analysis of the cochlear amplifier fluid pump hypothesis.
Zagadou, Brissi Franck; Mountain, David C
2012-04-01
We use analysis of a realistic three-dimensional finite-element model of the tunnel of Corti (ToC) in the middle turn of the gerbil cochlea tuned to the characteristic frequency (CF) of 4 kHz to show that the anatomical structure of the organ of Corti (OC) is consistent with the hypothesis that the cochlear amplifier functions as a fluid pump. The experimental evidence for the fluid pump is that outer hair cell (OHC) contraction and expansion induce oscillatory flow in the ToC. We show that this oscillatory flow can produce a fluid wave traveling in the ToC and that the outer pillar cells (OPC) do not present a significant barrier to fluid flow into the ToC. The wavelength of the resulting fluid wave launched into the tunnel at the CF is 1.5 mm, which is somewhat longer than the wavelength estimated for the classical traveling wave. This fluid wave propagates at least one wavelength before being significantly attenuated. We also investigated the effect of OPC spacing on fluid flow into the ToC and found that, for physiologically relevant spacing between the OPCs, the impedance estimate is similar to that of the underlying basilar membrane. We conclude that the row of OPCs does not significantly impede fluid exchange between ToC and the space between the row of OPC and the first row of OHC-Dieter's cells complex, and hence does not lead to excessive power loss. The BM displacement resulting from the fluid pumped into the ToC is significant for motion amplification. Our results support the hypothesis that there is an additional source of longitudinal coupling, provided by the ToC, as required in many non-classical models of the cochlear amplifier.
Molecular mechanics and structure of the fluid-solid interface in simple fluids
NASA Astrophysics Data System (ADS)
Wang, Gerald J.; Hadjiconstantinou, Nicolas G.
2017-09-01
Near a fluid-solid interface, the fluid spatial density profile is highly nonuniform at the molecular scale. This nonuniformity can have profound effects on the dynamical behavior of the fluid and has been shown to play an especially important role when modeling a wide variety of nanoscale heat and momentum transfer phenomena. We use molecular-mechanics arguments and molecular-dynamics (MD) simulations to develop a better understanding of the structure of the first fluid layer directly adjacent to the solid in the layering regime, as delineated by a nondimensional number that compares the effects of wall-fluid interaction to thermal energy. Using asymptotic analysis of the Nernst-Planck equation, we show that features of the fluid density profile close to the wall, such as the areal density of the first layer ΣFL (defined as the number of atoms in this layer per unit of fluid-solid interfacial area), can be expressed as polynomial functions of the fluid average density ρave. This is found to be in agreement with MD simulations, which also show that the width of the first layer hFL is a linear function of the average density and only a weak function of the temperature T . These results can be combined to show that, for system average densities corresponding to a dense fluid (ρave≥0.7 ), the ratio C ≡ΣFLρavehFL, representing a density enhancement with respect to the bulk fluid, depends only weakly on temperature and is essentially independent of density. Further MD simulations suggest that the above results, nominally valid for large systems (solid in contact with semi-infinite fluid), also describe fluid-solid interfaces under considerable nanoconfinement, provided ρave is appropriately defined.
Spherical accretion of matter by charged black holes on f(T) Gravity
NASA Astrophysics Data System (ADS)
Rodrigues, M. E.; Junior, E. L. B.
2018-03-01
We studied the spherical accretion of matter by charged black holes on f(T) Gravity. Considering the accretion model of a isentropic perfect fluid we obtain the general form of the Hamiltonian and the dynamic system for the fluid. We have analysed the movements of an isothermal fluid model with p=ω e and where p is the pressure and e the total energy density. The analysis of the cases shows the possibility of spherical accretion of fluid by black holes, revealing new phenomena as cyclical movement inside the event horizon.
Forensic discrimination of vaginal epithelia by DNA methylation analysis through pyrosequencing.
Antunes, Joana; Silva, Deborah S B S; Balamurugan, Kuppareddi; Duncan, George; Alho, Clarice S; McCord, Bruce
2016-10-01
The accurate identification of body fluids from crime scenes can aid in the discrimination between criminal and innocent intent. This research aimed to determine if the levels of DNA methylation in the locus PFN3A could be used to discriminate vaginal epithelia from other body fluids. In this work we bisulfite-modified and amplified DNA samples from blood, saliva, semen, and vaginal epithelia using primers for PFN3A. Through pyrosequencing we were able to show that vaginal epithelia present distinct methylation levels when compared to other body fluids. Mixtures of different body fluids present methylation values that correlate with single-source body fluid samples and the primers for PFN3A are specific for primates. This report successfully demonstrated that the analysis of methylation in the PFN3A locus can be used for vaginal epithelia discrimination in forensic samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Reducing Uncertainties in Hydrocarbon Prediction through Application of Elastic Domain
NASA Astrophysics Data System (ADS)
Shamsuddin, S. Z.; Hermana, M.; Ghosh, D. P.; Salim, A. M. A.
2017-10-01
The application of lithology and fluid indicators has helped the geophysicists to discriminate reservoirs to non-reservoirs from a field. This analysis is conducted to select the most suitable lithology and fluid indicator for the Malaysian basins that could lead to better eliminate pitfalls of amplitude. This paper uses different rock physics analysis such as elastic impedance, Lambda-Mu-Rho, and SQp-SQs attribute. Litho-elastic impedance log is generated by correlating the gamma ray log with extended elastic impedance log. The same application is used for fluid-elastic impedance by correlation of EEI log with water saturation or resistivity. The work is done on several well logging data collected from different fields in Malay basin and its neighbouring basin. There's an excellent separation between hydrocarbon sand and background shale for Well-1 from different cross-plot analysis. Meanwhile, the Well-2 shows good separation in LMR plot. The similar method is done on the Well-3 shows fair separation of silty sand and gas sand using SQp-SQs attribute which can be correlated with well log. Based on the point distribution histogram plot, different lithology and fluid can be separated clearly. Simultaneous seismic inversion results in acoustic impedance, Vp/Vs, SQp, and SQs volumes. There are many attributes available in the industry used to separate the lithology and fluid, however some of the methods are not suitable for the application to the basins in Malaysia.
[Discrimination of varieties of brake fluid using visual-near infrared spectra].
Jiang, Lu-lu; Tan, Li-hong; Qiu, Zheng-jun; Lu, Jiang-feng; He, Yong
2008-06-01
A new method was developed to fast discriminate brands of brake fluid by means of visual-near infrared spectroscopy. Five different brands of brake fluid were analyzed using a handheld near infrared spectrograph, manufactured by ASD Company, and 60 samples were gotten from each brand of brake fluid. The samples data were pretreated using average smoothing and standard normal variable method, and then analyzed using principal component analysis (PCA). A 2-dimensional plot was drawn based on the first and the second principal components, and the plot indicated that the clustering characteristic of different brake fluid is distinct. The foregoing 6 principal components were taken as input variable, and the band of brake fluid as output variable to build the discriminate model by stepwise discriminant analysis method. Two hundred twenty five samples selected randomly were used to create the model, and the rest 75 samples to verify the model. The result showed that the distinguishing rate was 94.67%, indicating that the method proposed in this paper has good performance in classification and discrimination. It provides a new way to fast discriminate different brands of brake fluid.
Vapor-liquid equilibrium and critical asymmetry of square well and short square well chain fluids.
Li, Liyan; Sun, Fangfang; Chen, Zhitong; Wang, Long; Cai, Jun
2014-08-07
The critical behavior of square well fluids with variable interaction ranges and of short square well chain fluids have been investigated by grand canonical ensemble Monte Carlo simulations. The critical temperatures and densities were estimated by a finite-size scaling analysis with the help of histogram reweighting technique. The vapor-liquid coexistence curve in the near-critical region was determined using hyper-parallel tempering Monte Carlo simulations. The simulation results for coexistence diameters show that the contribution of |t|(1-α) to the coexistence diameter dominates the singular behavior in all systems investigated. The contribution of |t|(2β) to the coexistence diameter is larger for the system with a smaller interaction range λ. While for short square well chain fluids, longer the chain length, larger the contribution of |t|(2β). The molecular configuration greatly influences the critical asymmetry: a short soft chain fluid shows weaker critical asymmetry than a stiff chain fluid with same chain length.
Free Surface Flows and Extensional Rheology of Polymer Solutions
NASA Astrophysics Data System (ADS)
Dinic, Jelena; Jimenez, Leidy Nallely; Biagioli, Madeleine; Estrada, Alexandro; Sharma, Vivek
Free-surface flows - jetting, spraying, atomization during fuel injection, roller-coating, gravure printing, several microfluidic drop/particle formation techniques, and screen-printing - all involve the formation of axisymmetric fluid elements that spontaneously break into droplets by a surface-tension-driven instability. The growth of the capillary-driven instability and pinch-off dynamics are dictated by a complex interplay of inertial, viscous and capillary stresses for simple fluids. Additional contributions by elasticity, extensibility and extensional viscosity play a role for complex fluids. We show that visualization and analysis of capillary-driven thinning and pinch-off dynamics of the columnar neck in an asymmetric liquid bridge created by dripping-onto-substrate (DoS) can be used for characterizing the extensional rheology of complex fluids. Using a wide variety of complex fluids, we show the measurement of the extensional relaxation time, extensional viscosity, power-law index and shear viscosity. Lastly, we elucidate how polymer composition, flexibility, and molecular weight determine the thinning and pinch-off dynamics of polymeric complex fluids.
Limited options for low-global-warming-potential refrigerants.
McLinden, Mark O; Brown, J Steven; Brignoli, Riccardo; Kazakov, Andrei F; Domanski, Piotr A
2017-02-17
Hydrofluorocarbons, currently used as refrigerants in air-conditioning systems, are potent greenhouse gases, and their contribution to climate change is projected to increase. Future use of the hydrofluorocarbons will be phased down and, thus replacement fluids must be found. Here we show that only a few pure fluids possess the combination of chemical, environmental, thermodynamic, and safety properties necessary for a refrigerant and that these fluids are at least slightly flammable. We search for replacements by applying screening criteria to a comprehensive chemical database. For the fluids passing the thermodynamic and environmental screens (critical temperature and global warming potential), we simulate performance in small air-conditioning systems, including optimization of the heat exchangers. We show that the efficiency-versus-capacity trade-off that exists in an ideal analysis disappears when a more realistic system is considered. The maximum efficiency occurs at a relatively high volumetric refrigeration capacity, but there are few fluids in this range.
Limited options for low-global-warming-potential refrigerants
NASA Astrophysics Data System (ADS)
McLinden, Mark O.; Brown, J. Steven; Brignoli, Riccardo; Kazakov, Andrei F.; Domanski, Piotr A.
2017-02-01
Hydrofluorocarbons, currently used as refrigerants in air-conditioning systems, are potent greenhouse gases, and their contribution to climate change is projected to increase. Future use of the hydrofluorocarbons will be phased down and, thus replacement fluids must be found. Here we show that only a few pure fluids possess the combination of chemical, environmental, thermodynamic, and safety properties necessary for a refrigerant and that these fluids are at least slightly flammable. We search for replacements by applying screening criteria to a comprehensive chemical database. For the fluids passing the thermodynamic and environmental screens (critical temperature and global warming potential), we simulate performance in small air-conditioning systems, including optimization of the heat exchangers. We show that the efficiency-versus-capacity trade-off that exists in an ideal analysis disappears when a more realistic system is considered. The maximum efficiency occurs at a relatively high volumetric refrigeration capacity, but there are few fluids in this range.
Limited options for low-global-warming-potential refrigerants
McLinden, Mark O.; Brown, J. Steven; Brignoli, Riccardo; Kazakov, Andrei F.; Domanski, Piotr A.
2017-01-01
Hydrofluorocarbons, currently used as refrigerants in air-conditioning systems, are potent greenhouse gases, and their contribution to climate change is projected to increase. Future use of the hydrofluorocarbons will be phased down and, thus replacement fluids must be found. Here we show that only a few pure fluids possess the combination of chemical, environmental, thermodynamic, and safety properties necessary for a refrigerant and that these fluids are at least slightly flammable. We search for replacements by applying screening criteria to a comprehensive chemical database. For the fluids passing the thermodynamic and environmental screens (critical temperature and global warming potential), we simulate performance in small air-conditioning systems, including optimization of the heat exchangers. We show that the efficiency-versus-capacity trade-off that exists in an ideal analysis disappears when a more realistic system is considered. The maximum efficiency occurs at a relatively high volumetric refrigeration capacity, but there are few fluids in this range. PMID:28211518
Deftereos, Georgios; Finkelstein, Sydney D; Jackson, Sara A; Ellsworth, Eric M G; Krishnamurti, Uma; Liu, Yulin; Silverman, Jan F; Binkert, Candy R; Ujevich, Beth A; Mohanty, Alok
2014-04-01
Fine-needle aspiration (FNA) of pancreatic solid masses can be significantly impacted by sampling variation. Molecular analysis of tumor DNA can be an aid for more definitive diagnosis. The aim of this study was to evaluate how molecular analysis of the cell-free cytocentrifugation supernatant DNA can help reduce sampling variability and increase diagnostic yield. Twenty-three FNA smears from pancreatic solid masses were performed. Remaining aspirates were rinsed for preparation of cytocentrifuged slides or cell blocks. DNA was extracted from supernatant fluid and assessed for DNA quantity spectrophotometrically and for amplifiability by quantitative PCR (qPCR). Supernatants with adequate DNA were analyzed for mutations using PCR/capillary electrophoresis for a broad panel of markers (KRAS point mutation by sequencing, microsatellite fragment analysis for loss of heterozygosity (LOH) of 16 markers at 1p, 3p, 5q, 9p, 10q, 17p, 17q, 21q, and 22q). In selected cases, microdissection of stained cytology smears and/or cytocentrifugation cellular slides were analyzed and compared. In all, 5/23 samples cytologically confirmed as adenocarcinoma showed detectable mutations both in the microdissected slide-based cytology cells and in the cytocentrifugation supernatant. While most mutations detected were present in both microdissected slides and supernatant fluid specimens, the latter showed additional mutations supporting greater sensitivity for detecting relevant DNA damage. Clonality for individual marker mutations was higher in the supernatant fluid than in microdissected cells. Cytocentrifugation supernatant fluid contains levels of amplifiable DNA suitable for mutation detection and characterization. The finding of additional detectable mutations at higher clonality indicates that supernatant fluid may be enriched with tumor DNA. Molecular analysis of the supernatant fluid could serve as an adjunct method to reduce sampling variability and increase diagnostic yield, especially in cases with a high clinical suspicion for malignancy and limited number of atypical cells in the smears.
An asymptotic analysis of the laminar-turbulent transition of yield stress fluids in pipes
NASA Astrophysics Data System (ADS)
Myers, Tim G.; Mitchell, Sarah L.; Slatter, Paul
2017-02-01
The work in this paper concerns the axisymmetric pipe flow of a Herschel-Bulkley fluid, with the aim of determining a relation between the critical velocity (defining the transition between laminar and turbulent flow) and the pipe diameter in terms of the Reynolds number Re 3. The asymptotic behaviour for large and small pipes is examined and simple expressions for the leading order terms are presented. Results are then compared with experimental data. A nonlinear regression analysis shows that for the tested fluids the transition occurs at similar values to the Newtonian case, namely in the range 2100 < Re 3 < 2500.
NASA Astrophysics Data System (ADS)
Dorostkar, Omid; Guyer, Robert A.; Johnson, Paul A.; Marone, Chris; Carmeliet, Jan
2017-05-01
The presence of fault gouge has considerable influence on slip properties of tectonic faults and the physics of earthquake rupture. The presence of fluids within faults also plays a significant role in faulting and earthquake processes. In this paper, we present 3-D discrete element simulations of dry and fluid-saturated granular fault gouge and analyze the effect of fluids on stick-slip behavior. Fluid flow is modeled using computational fluid dynamics based on the Navier-Stokes equations for an incompressible fluid and modified to take into account the presence of particles. Analysis of a long time train of slip events shows that the (1) drop in shear stress, (2) compaction of granular layer, and (3) the kinetic energy release during slip all increase in magnitude in the presence of an incompressible fluid, compared to dry conditions. We also observe that on average, the recurrence interval between slip events is longer for fluid-saturated granular fault gouge compared to the dry case. This observation is consistent with the occurrence of larger events in the presence of fluid. It is found that the increase in kinetic energy during slip events for saturated conditions can be attributed to the increased fluid flow during slip. Our observations emphasize the important role that fluid flow and fluid-particle interactions play in tectonic fault zones and show in particular how discrete element method (DEM) models can help understand the hydromechanical processes that dictate fault slip.
Seismic low-frequency-based calculation of reservoir fluid mobility and its applications
NASA Astrophysics Data System (ADS)
Chen, Xue-Hua; He, Zhen-Hua; Zhu, Si-Xin; Liu, Wei; Zhong, Wen-Li
2012-06-01
Low frequency content of seismic signals contains information related to the reservoir fluid mobility. Based on the asymptotic analysis theory of frequency-dependent reflectivity from a fluid-saturated poroelastic medium, we derive the computational implementation of reservoir fluid mobility and present the determination of optimal frequency in the implementation. We then calculate the reservoir fluid mobility using the optimal frequency instantaneous spectra at the low-frequency end of the seismic spectrum. The methodology is applied to synthetic seismic data from a permeable gas-bearing reservoir model and real land and marine seismic data. The results demonstrate that the fluid mobility shows excellent quality in imaging the gas reservoirs. It is feasible to detect the location and spatial distribution of gas reservoirs and reduce the non-uniqueness and uncertainty in fluid identification.
Analysis of material parameter effects on fluidlastic isolators performance
NASA Astrophysics Data System (ADS)
Cheng, Q. Y.; Deng, J. H.; Feng, Z. Z.; Qian, F.
2018-01-01
Control of vibration in helicopters has always been a complex and challenging task. The fluidlastic isolators become more and more widely used because the fluids are non-toxic, non-corrosive, nonflammable, and compatible with most elastomers and adhesives. In the field of the fluidlastic isolators design, the selection of design parameters of fluid and rubber is very important to obtain efficient vibration-suppressed. Aiming at getting the property of fluidlastic isolator to material design parameters, a dynamic equation is set up based on the dynamic theory. And the dynamic analysis is carried out. The influences of design parameters on the property of fluidlastic isolator are calculated. The material parameters examined are the properties of fluid and rubber. Analysis results showed that the design parameters such as density of fluid, viscosity coefficient of fluid, stiffness of rubber (K1) and loss coefficient of rubber have obvious influence on the performance of isolator. Base on the results of the study it is concluded that the efficient vibration-suppressed can be obtained by the selection of design parameters.
Ryu, Ju Seok; Park, Donghwi; Oh, Yoongul; Lee, Seok Tae; Kang, Jin Young
2016-01-01
Background/Aims The purpose of this study was to develop new parameters of high-resolution manometry (HRM) and to applicate these to quantify the effect of bolus volume and texture on pharyngeal swallowing. Methods Ten healthy subjects prospectively swallowed dry, thin fluid 2 mL, thin fluid 5 mL, thin fluid 10 mL, and drinking twice to compare effects of bolus volume. To compare effect of texture, subjects swallowed thin fluid 5 mL, yogurt 5 mL, and bread twice. A 32-sensor HRM catheter and BioVIEW ANALYSIS software were used for data collection and analysis. HRM data were synchronized with kinematic analysis of videofluoroscopic swallowing study (VFSS) using epiglottis tilting. Results Linear correlation analysis for volume showed significant correlation for area of velopharynx, duration of velopharynx, pre-upper esophageal sphincter (UES) maximal pressure, minimal UES pressure, UES activity time, and nadir UES duration. In the correlation with texture, all parameters were not significantly different. The contraction of the velopharynx was faster than laryngeal elevation. The durations of UES relaxation was shorter in the kinematic analysis than HRM. Conclusions The bolus volume was shown to have significant effect on pharyngeal pressure and timing, but the texture did not show any effect on pharyngeal swallowing. The parameters of HRM were more sensitive than those of kinematic analysis. As the parameters of HRM are based on precise anatomic structure and the kinematic analysis reflects the actions of multiple anatomic structures, HRM and VFSS should be used according to their purposes. PMID:26598598
Advances of Researches on Improving the Stability of Foams by Nanoparticles
NASA Astrophysics Data System (ADS)
Wang, G.; Wang, K. L.; Lu, C. J.
2017-09-01
Recently, nano-tech made a change of traditional oil-gas exploration. Considering that foam fluid had a poor stability, investigators proposed to add nanoparticles to stabilize the foam fluid system. This paper described the mechanism of particles to improve the stability of the foam fluid in detail; and emphasized the synergistic effect between nanoparticles and surfactants and its effect on the foaming and foam stability of dispersions; and reviewed the latest applications of foam fluid that was stabilized by nanoparticle in enhancing oil-gas recovery, in which there are analysis that showed that the nanoparticles not only greatly increase the stability of the foam fluid, but also improve the efficiency of foam fluid; and lastly, forecasted the development of nanotechnology in petroleum areas.
On hydrodynamic phase field models for binary fluid mixtures
NASA Astrophysics Data System (ADS)
Yang, Xiaogang; Gong, Yuezheng; Li, Jun; Zhao, Jia; Wang, Qi
2018-05-01
Two classes of thermodynamically consistent hydrodynamic phase field models have been developed for binary fluid mixtures of incompressible viscous fluids of possibly different densities and viscosities. One is quasi-incompressible, while the other is incompressible. For the same binary fluid mixture of two incompressible viscous fluid components, which one is more appropriate? To answer this question, we conduct a comparative study in this paper. First, we visit their derivation, conservation and energy dissipation properties and show that the quasi-incompressible model conserves both mass and linear momentum, while the incompressible one does not. We then show that the quasi-incompressible model is sensitive to the density deviation of the fluid components, while the incompressible model is not in a linear stability analysis. Second, we conduct a numerical investigation on coarsening or coalescent dynamics of protuberances using the two models. We find that they can predict quite different transient dynamics depending on the initial conditions and the density difference although they predict essentially the same quasi-steady results in some cases. This study thus cast a doubt on the applicability of the incompressible model to describe dynamics of binary mixtures of two incompressible viscous fluids especially when the two fluid components have a large density deviation.
NASA Astrophysics Data System (ADS)
Kullmann, Tamás; Szipőcs, Annamária
2017-09-01
The seasonal variability of certain non-allergic respiratory diseases is not clearly understood. Analysis of the breath condensate, the liquid that can be collected by breathing into a cold tube, has been proposed to bring closer to the understanding of airway pathologies. It has been assumed, that (1) airway lining fluid was a stable body liquid and (2) the breath condensate samples were representative of the airway lining fluid. Research was focussed on the identification of biomarkers indicative of respiratory pathologies. Despite 30 years of extended investigations breath condensate analysis has not gained any clinical implementation so far. The pH of the condensate is the characteristic that can be determined with the highest reproducibility. The present paper shows, that contrary to the initial assumptions, breath condensate is not a representative of the airway lining fluid, and the airway lining fluid is not a stable body liquid. Condensate pH shows baseline variability and it is influenced by drinking and by the ambient temperature. The changes in condensate pH are linked to changes in airway lining fluid pH. The variability of airway lining fluid pH may explain seasonal incidence of certain non-allergic respiratory diseases such as the catching of a common cold and the increased incidence of COPD exacerbations and exercise-induced bronchoconstriction in cold periods.
Evaluation of Working Fluids for Organic Rankine Cycle Based on Exergy Analysis
NASA Astrophysics Data System (ADS)
Setiawan, D.; Subrata, I. D. M.; Purwanto, Y. A.; Tambunan, A. H.
2018-05-01
One of the crucial aspects to determine the performance of Organic Rankine Cycle (ORC) is the selection of appropriate working fluids. This paper describes the simulative performance of several organic fluid and water as working fluid of an ORC based on exergy analysis with a heat source from waste heat recovery. The simulation was conducted by using Engineering Equation Solver (EES). The effect of several parameters and thermodynamic properties of working fluid was analyzed, and part of them was used as variables for the simulation in order to determine their sensitivity to the exergy efficiency changes. The results of this study showed that water is not appropriate to be used as working fluid at temperature lower than 130 °C, because the expansion process falls in saturated area. It was also found that Benzene had the highest exergy efficiency, i.e. about 10.49%, among the dry type working fluid. The increasing turbine inlet temperature did not lead to the increase of exergy efficiency when using organic working fluids with critical temperature near heat source temperature. Meanwhile, exergy efficiency decreasing linearly with the increasing condenser inlet temperature. In addition, it was found that working fluid with high latent heat of vaporization and specific heat exert in high exergy efficiency.
NASA Astrophysics Data System (ADS)
Awais, M.; Khalil-Ur-Rehman; Malik, M. Y.; Hussain, Arif; Salahuddin, T.
2017-09-01
The present analysis is devoted to probing the salient features of the mixed convection and non-linear thermal radiation effects on non-Newtonian Sisko fluid flow over a linearly stretching cylindrical surface. Properties of heat transfer are outlined via variable thermal conductivity and convective boundary conditions. The boundary layer approach is implemented to construct the mathematical model in the form of partial differential equations. Then, the requisite PDEs are transmuted into a complex ordinary differential system by invoking appropriate dimensionless variables. Solution of subsequent ODEs is obtained by utilizing the Runge-Kutta algorithm (fifth order) along with the shooting scheme. The graphical illustrations are presented to interpret the features of the involved pertinent flow parameters on concerning profiles. For a better description of the fluid flow, numerical variations in local skin friction coefficient and local Nusselt number are scrutinized in tables. From thorough analysis, it is inferred that the mixed convection parameter and the curvature parameter increase the velocity while temperature shows a different behavior. Additionally, both momentum and thermal distribution of fluid flow decrease with increasing values of the non-linearity index. Furthermore, variable thermal parameter and heat generation/absorption parameter amplify the temperature significantly. The skin friction is an increasing function of all momentum controlling parameters. The local Nusselt number also shows a similar behavior against heat radiation parameter and variable thermal conductivity parameter while it shows a dual nature for the heat generation/absorption parameter. Finally, the obtained results are validated by comparison with the existing literature and hence the correctness of the analysis is proved.
Fluid manipulation among individuals with lower urinary tract symptoms: a mixed methods study.
Elstad, Emily A; Maserejian, Nancy N; McKinlay, John B; Tennstedt, Sharon L
2011-01-01
To determine, qualitatively and quantitatively, how individuals use fluid manipulation to self-manage the urinary symptoms of daytime frequency, urgency and urine leakage and the underlying rationale for this behaviour. Lower urinary tract symptoms are prevalent and burdensome, and little is known about how individuals with lower urinary tract symptoms manipulate their fluid intake. A mixed methods design included statistical analysis of data from a population-based survey of urologic symptoms and qualitative analysis of in-depth interviews. Quantitative data came from 5503 participants of the baseline Boston Area Community Health Survey, a population-based, random sample epidemiologic survey of urologic symptoms. Qualitative data came from in-depth interviews with a random subsample from Boston Area Community Health of 152 black, white and Hispanic men and women with LUTS. Qualitative data showed that some respondents restricted fluid intake while others increased it, in both cases with the expectation of improved symptoms. Quantitative data showed that fluid intake was greater in men and women reporting frequency (p < 0·001). Women with frequency drank significantly more water (p < 0·001), while women with urgency drank significantly less water (p = 0·047). This study found divergent expectations of the role of fluids in alleviating symptoms, leading some individuals to restrict and others to increase fluid intake. Individuals with lower urinary tract symptoms may need guidance in fluid management. Nurses should be aware that patients may self-manage lower urinary tract symptoms by restricting fluid intake, putting them at risk for dehydration, constipation and urinary tract infection, but also that they may be increasing their fluid intake, which could worsen symptoms. This study pinpoints a specific area of need among patients with lower urinary tract symptoms and provides a practical opportunity for nurses to assist their patients with behavioural and fluid management by emphasising the clinical guidelines. © 2010 Blackwell Publishing Ltd.
Classical analogous of quantum cosmological perfect fluid models
NASA Astrophysics Data System (ADS)
Batista, A. B.; Fabris, J. C.; Gonçalves, S. V. B.; Tossa, J.
2001-05-01
Quantization in the minisuperspace of a gravity system coupled to a perfect fluid, leads to a solvable model which implies singularity free solutions through the construction of a superposition of the wavefunctions. We show that such models are equivalent to a classical system where, besides the perfect fluid, a repulsive fluid with an equation of state pQ= ρQ is present. This leads to speculate on the true nature of this quantization procedure. A perturbative analysis of the classical system reveals the condition for the stability of the classical system in terms of the existence of an anti-gravity phase.
Borovcová, Lucie; Pauk, Volodymyr; Lemr, Karel
2018-05-01
New psychoactive substances represent serious social and health problem as tens of new compounds are detected in Europe annually. They often show structural proximity or even isomerism, which complicates their analysis. Two methods based on ultra high performance supercritical fluid chromatography and ultra high performance liquid chromatography with mass spectrometric detection were validated and compared. A simple dilute-filter-and-shoot protocol utilizing propan-2-ol or methanol for supercritical fluid or liquid chromatography, respectively, was proposed to detect and quantify 15 cathinones and phenethylamines in human urine. Both methods offered fast separation (<3 min) and short total analysis time. Precision was well <15% with a few exceptions in liquid chromatography. Limits of detection in urine ranged from 0.01 to 2.3 ng/mL, except for cathinone (5 ng/mL) in supercritical fluid chromatography. Nevertheless, this technique distinguished all analytes including four pairs of isomers, while liquid chromatography was unable to resolve fluoromethcathinone regioisomers. Concerning matrix effects and recoveries, supercritical fluid chromatography produced more uniform results for different compounds and at different concentration levels. This work demonstrates the performance and reliability of supercritical fluid chromatography and corroborates its applicability as an alternative tool for analysis of new psychoactive substances in biological matrixes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Immunogenicity testing of therapeutic antibodies in ocular fluids after intravitreal injection.
Wessels, Uwe; Zadak, Markus; Reiser, Astrid; Brockhaus, Janis; Ritter, Mirko; Abdolzade-Bavil, Afsaneh; Heinrich, Julia; Stubenrauch, Kay
2018-04-11
High drug concentrations in ocular fluids after intravitreal administration preclude the use of drug-sensitive immunoassays. A drug-tolerant immunoassay is therefore desirable for immunogenicity testing in ophthalmology. Immune complex (IC) antidrug antibody (ADA) assays were established for two species. The assays were compared with the bridging assay in ocular and plasma samples from two preclinical studies. The IC assays showed high drug tolerance, which enabled a reliable ADA detection in ocular fluids after intravitreal administration. The IC assays were superior to the bridging assay in the analysis of ocular fluids with high drug concentrations. The IC assay allows a reliable ADA detection in matrices with high drug concentrations, such as ocular fluids.
NASA Astrophysics Data System (ADS)
Plaza-Faverola, Andreia; Pecher, Ingo; Crutchley, Gareth; Barnes, Philip M.; Bünz, Stefan; Golding, Thomas; Klaeschen, Dirk; Papenberg, Cord; Bialas, Joerg
2014-02-01
Gas seepage from marine sediments has implications for understanding feedbacks between the global carbon reservoir, seabed ecology, and climate change. Although the relationship between hydrates, gas chimneys, and seafloor seepage is well established, the nature of fluid sources and plumbing mechanisms controlling fluid escape into the hydrate zone and up to the seafloor remain one of the least understood components of fluid migration systems. In this study, we present the analysis of new three-dimensional high-resolution seismic data acquired to investigate fluid migration systems sustaining active seafloor seepage at Omakere Ridge, on the Hikurangi subduction margin, New Zealand. The analysis reveals at high resolution, complex overprinting fault structures (i.e., protothrusts, normal faults from flexural extension, and shallow (<1 km) arrays of oblique shear structures) implicated in fluid migration within the gas hydrate stability zone in an area of 2 × 7 km. In addition to fluid migration systems sustaining seafloor seepage on both sides of a central thrust fault, the data show seismic evidence for subseafloor gas-rich fluid accumulation associated with proto-thrusts and extensional faults. In these latter systems fluid pressure dissipation through time has been favored, hindering the development of gas chimneys. We discuss the elements of the distinct fluid migration systems and the influence that a complex partitioning of stress may have on the evolution of fluid flow systems in active subduction margins.
Bernatoniene, Jurga; Kucinskaite, Agne; Masteikova, Ruta; Kalveniene, Zenona; Kasparaviciene, Giedre; Savickas, Arunas
2009-01-01
The aim of the study was to perform a quantitative analysis of fluid extracts of maidenhair tree (Ginkgo biloba L.), motherwort (Leonurus cardiaca L.) and hawthorn (Crataegus monogyna Jacq.), to evaluate their antioxidant activity and to compare their ability to inactivate free radicals. The antioxidant activity was measured using the DPPH*and the ABTS*+ radical scavenging reaction systems. The study showed that the manifestation of the radical scavenging capacity in the DPPH* reaction system was in the following order: the fluid extract of hawthorn (70.37 +/- 0.80%) > the fluid extract of maidenhair tree (82.63 +/- 0.23%) > the fluid extract of motherwort (84.89 +/- 0.18%), while in the ABTS*+ reaction system, the manifestation of the radical scavenging capacity was in the following order: the fluid extract of hawthorn (87.09 +/- 0.55%) > the fluid extract of motherwort (88.28 +/- 1.06%) > the fluid extract of maidenhair tree (88.39 +/- 0.72%). The results showed that in the DPPH* reaction system, fluid extract of motherwort manifested higher antioxidant activity, compared to the fluid extracts of maidenhair tree and hawthorn. By contrast, in the ABTS*+ reaction system, higher antioxidant activity was found in the fluid extract of maidenhair tree, compared to the fluid extracts of motherwort and hawthorn. This would suggest that preparations manufactured from these herbal raw materials could be used as effective preventive means and valuable additional remedies in the treatment of diseases caused by oxidative stress.
Effects of CO2 injection and Kerogen Maturation on Low-Field Nuclear Magnetic Resonance Response
NASA Astrophysics Data System (ADS)
Prasad, M.; Livo, K.
2017-12-01
Low-field Nuclear Magnetic Resonance (NMR) is commonly used in petrophysical analysis of petroleum reservoir rocks. NMR experiments record the relaxation and polarization of in-situ hydrogen protons present in gaseous phases such as free-gas intervals and solution gas fluids, bulk fluid phases such as oil and aquifer intervals, and immovable fractions of kerogen and bitumen. Analysis of NMR relaxation spectra is performed to record how fluid composition, maturity, and viscosity change NMR experimental results. We present T1-T2 maps as thermal maturity of a water-saturated, sub-mature Woodford shale is increased at temperatures from 125 to 400 degrees Celsius. Experiments with applied fluid pressure in paraffinic mineral oil and DI water with varying fluid pH have been performed to mimic reservoir conditions in analysis of the relaxation of bulk fluid phases. We have recorded NMR spectra, T1-T2 maps, and fluid diffusion coefficients using a low-field (2 MHz) MagritekTM NMR. CO2 was injected at a pressure of 900 psi in an in house developed NMR pressure vessel made of torlon plastic. Observable 2D NMR shifts in immature kerogen formations as thermal maturity is increased show generation of lighter oils with increased maturity. CO2 injection leads to a decrease in bulk fluid relaxation time that is attributed to viscosity modification with gas presence. pH variation with increased CO2 presence were shown to not effect NMR spectra. From this, fluid properties have been shown to greatly affect NMR readings and must be taken into account for more accurate NMR reservoir characterization.
Hard sphere perturbation theory of dense fluids with singular perturbation
NASA Astrophysics Data System (ADS)
Mon, K. K.
2000-02-01
Hard sphere perturbation theories (HSPT) played a significant role in the fundamental understanding of fluids and continues to be a popular method in a wide range of applications. The possibility of difficulty with singular perturbation for some classical soft core model fluids appears to have been overlooked or ignored in the literature. We address this issue in this short note and show by analysis that a region of phase space has been neglected in the standard application of HSPT involving singular perturbation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dorostkar, Omid; Guyer, Robert A.; Johnson, Paul A.
The presence of fault gouge has considerable influence on slip properties of tectonic faults and the physics of earthquake rupture. The presence of fluids within faults also plays a significant role in faulting and earthquake processes. In this study, we present 3-D discrete element simulations of dry and fluid-saturated granular fault gouge and analyze the effect of fluids on stick-slip behavior. Fluid flow is modeled using computational fluid dynamics based on the Navier-Stokes equations for an incompressible fluid and modified to take into account the presence of particles. Analysis of a long time train of slip events shows that themore » (1) drop in shear stress, (2) compaction of granular layer, and (3) the kinetic energy release during slip all increase in magnitude in the presence of an incompressible fluid, compared to dry conditions. We also observe that on average, the recurrence interval between slip events is longer for fluid-saturated granular fault gouge compared to the dry case. This observation is consistent with the occurrence of larger events in the presence of fluid. It is found that the increase in kinetic energy during slip events for saturated conditions can be attributed to the increased fluid flow during slip. Finally, our observations emphasize the important role that fluid flow and fluid-particle interactions play in tectonic fault zones and show in particular how discrete element method (DEM) models can help understand the hydromechanical processes that dictate fault slip.« less
Dorostkar, Omid; Guyer, Robert A.; Johnson, Paul A.; ...
2017-05-01
The presence of fault gouge has considerable influence on slip properties of tectonic faults and the physics of earthquake rupture. The presence of fluids within faults also plays a significant role in faulting and earthquake processes. In this study, we present 3-D discrete element simulations of dry and fluid-saturated granular fault gouge and analyze the effect of fluids on stick-slip behavior. Fluid flow is modeled using computational fluid dynamics based on the Navier-Stokes equations for an incompressible fluid and modified to take into account the presence of particles. Analysis of a long time train of slip events shows that themore » (1) drop in shear stress, (2) compaction of granular layer, and (3) the kinetic energy release during slip all increase in magnitude in the presence of an incompressible fluid, compared to dry conditions. We also observe that on average, the recurrence interval between slip events is longer for fluid-saturated granular fault gouge compared to the dry case. This observation is consistent with the occurrence of larger events in the presence of fluid. It is found that the increase in kinetic energy during slip events for saturated conditions can be attributed to the increased fluid flow during slip. Finally, our observations emphasize the important role that fluid flow and fluid-particle interactions play in tectonic fault zones and show in particular how discrete element method (DEM) models can help understand the hydromechanical processes that dictate fault slip.« less
NASA Astrophysics Data System (ADS)
Bai, Yu; Jiang, Yuehua; Liu, Fawang; Zhang, Yan
2017-12-01
This paper investigates the incompressible fractional MHD Maxwell fluid due to a power function accelerating plate with the first order slip, and the numerical analysis on the flow and heat transfer of fractional Maxwell fluid has been done. Moreover the deformation motion of fluid micelle is simply analyzed. Nonlinear velocity equation are formulated with multi-term time fractional derivatives in the boundary layer governing equations, and convective heat transfer boundary condition and viscous dissipation are both taken into consideration. A newly finite difference scheme with L1-algorithm of governing equations are constructed, whose convergence is confirmed by the comparison with analytical solution. Numerical solutions for velocity and temperature show the effects of pertinent parameters on flow and heat transfer of fractional Maxwell fluid. It reveals that the fractional derivative weakens the effects of motion and heat conduction. The larger the Nusselt number is, the greater the heat transfer capacity of fluid becomes, and the temperature gradient at the wall becomes more significantly. The lower Reynolds number enhances the viscosity of the fluid because it is the ratio of the viscous force and the inertia force, which resists the flow and heat transfer.
Development of an Aeroelastic Modeling Capability for Transient Nozzle Side Load Analysis
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Zhao, Xiang; Zhang, Sijun; Chen, Yen-Sen
2013-01-01
Lateral nozzle forces are known to cause severe structural damage to any new rocket engine in development during test. While three-dimensional, transient, turbulent, chemically reacting computational fluid dynamics methodology has been demonstrated to capture major side load physics with rigid nozzles, hot-fire tests often show nozzle structure deformation during major side load events, leading to structural damages if structural strengthening measures were not taken. The modeling picture is incomplete without the capability to address the two-way responses between the structure and fluid. The objective of this study is to develop a coupled aeroelastic modeling capability by implementing the necessary structural dynamics component into an anchored computational fluid dynamics methodology. The computational fluid dynamics component is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, while the computational structural dynamics component is developed in the framework of modal analysis. Transient aeroelastic nozzle startup analyses of the Block I Space Shuttle Main Engine at sea level were performed. The computed results from the aeroelastic nozzle modeling are presented.
Meier, D; Cagnola, H; Ramisch, D; Rumbo, C; Chirdo, F; Docena, G; Gondolesi, G E; Rumbo, M
2010-10-01
During intestinal transplant (ITx) operation, intestinal lymphatics are not reconstituted. Consequently, trafficking immune cells drain freely into the abdominal cavity. Our aim was to evaluate whether leucocytes migrating from a transplanted intestine could be recovered from the abdominal draining fluid collected by a peritoneal drainage system in the early post-ITx period, and to determine potential applications of the assessment of draining cellular populations. The cell composition of the abdominal draining fluid was analysed during the first 11 post-ITx days. Using flow cytometry, immune cells from blood and draining fluid samples obtained the same day showed an almost complete lymphopenia in peripheral blood, whereas CD3(+) CD4(+) CD8(-) , CD3(+) CD4(-) CD8(+) and human leucocyte antigen D-related (HLA-DR)(+) CD19(+) lymphocytes were the main populations in the draining fluid. Non-complicated recipients evolved from a mixed leucocyte pattern including granulocytes, monocytes and lymphocytes to an exclusively lymphocytic pattern along the first post-ITx week. At days 1-2 post-Itx, analysis by short tandem repeats fingerprinting of CD3(+) CD8(+) sorted T cells from draining fluid indicated that 50% of cells were from graft origin, whereas by day 11 post-ITx this proportion decreased to fewer than 1%. Our results show for the first time that the abdominal drainage fluid contains mainly immune cells trafficking from the implanted intestine, providing the opportunity to sample lymphocytes draining from the grafted organ along the post-ITx period. Therefore, this analysis may provide information useful for understanding ITx immunobiology and eventually could also be of interest for clinical management. © 2010 The Authors. Clinical and Experimental Immunology © 2010 British Society for Immunology.
Meier, D; Cagnola, H; Ramisch, D; Rumbo, C; Chirdo, F; Docena, G; Gondolesi, G E; Rumbo, M
2010-01-01
During intestinal transplant (ITx) operation, intestinal lymphatics are not reconstituted. Consequently, trafficking immune cells drain freely into the abdominal cavity. Our aim was to evaluate whether leucocytes migrating from a transplanted intestine could be recovered from the abdominal draining fluid collected by a peritoneal drainage system in the early post-ITx period, and to determine potential applications of the assessment of draining cellular populations. The cell composition of the abdominal draining fluid was analysed during the first 11 post-ITx days. Using flow cytometry, immune cells from blood and draining fluid samples obtained the same day showed an almost complete lymphopenia in peripheral blood, whereas CD3+CD4+CD8-, CD3+CD4-CD8+ and human leucocyte antigen D-related (HLA-DR)+CD19+ lymphocytes were the main populations in the draining fluid. Non-complicated recipients evolved from a mixed leucocyte pattern including granulocytes, monocytes and lymphocytes to an exclusively lymphocytic pattern along the first post-ITx week. At days 1–2 post-Itx, analysis by short tandem repeats fingerprinting of CD3+CD8+ sorted T cells from draining fluid indicated that 50% of cells were from graft origin, whereas by day 11 post-ITx this proportion decreased to fewer than 1%. Our results show for the first time that the abdominal drainage fluid contains mainly immune cells trafficking from the implanted intestine, providing the opportunity to sample lymphocytes draining from the grafted organ along the post-ITx period. Therefore, this analysis may provide information useful for understanding ITx immunobiology and eventually could also be of interest for clinical management. PMID:20831713
Nanoscale simple-fluid behavior under steady shear.
Yong, Xin; Zhang, Lucy T
2012-05-01
In this study, we use two nonequilibrium molecular dynamics algorithms, boundary-driven shear and homogeneous shear, to explore the rheology and flow properties of a simple fluid undergoing steady simple shear. The two distinct algorithms are designed to elucidate the influences of nanoscale confinement. The results of rheological material functions, i.e., viscosity and normal pressure differences, show consistent Newtonian behaviors at low shear rates from both systems. The comparison validates that confinements of the order of 10 nm are not strong enough to deviate the simple fluid behaviors from the continuum hydrodynamics. The non-Newtonian phenomena of the simple fluid are further investigated by the homogeneous shear simulations with much higher shear rates. We observe the "string phase" at high shear rates by applying both profile-biased and profile-unbiased thermostats. Contrary to other findings where the string phase is found to be an artifact of the thermostats, we perform a thorough analysis of the fluid microstructures formed due to shear, which shows that it is possible to have a string phase and second shear thinning for dense simple fluids.
Mollaoğlu, Mukadder; Kayataş, Mansur
2015-11-01
The purpose of this study was to evaluate nonadherence to diet and fluid restrictions and its relation with the level of disability in patients on chronic hemodialysis (CH). The study design was a descriptive survey. The data were obtained from 186 patients in hemodialysis centers in Turkey. Descriptive statistics including mean scores, standard deviations and frequencies, and correlations analysis and logistic regression were conducted. Data were collected by using a personal information form, the Dialysis Diet and Fluid and Brief Disability Questionnaire. A great majority of hemodialysis patients showed nonadherence to diet and fluid restrictions. In total, 124 patients (66.7 %) reported mild to very severe nonadherence to diet, and 128 patients (68.8 %) reported mild to very severe nonadherence to fluid restrictions. Most of the patients with CH (69.9 %) experienced disability. The results of this study showed that nonadherence was more common among older age, females, low-educated patients and those with higher levels of disability. The results of this study showed that the prevalence of nonadherence to diet and fluid restrictions was high in hemodialysis patients. The significant predictors for diet and fluid nonadherence were: older age, high interdialytic weight gain, and severe disability. Medical professionals must be aware of nonadherence and related factors and assist patients in developing strategies to prevent and respond to this.
NASA Astrophysics Data System (ADS)
Hu, R.; Wan, J.; Chen, Y.
2016-12-01
Wettability is a factor controlling the fluid-fluid displacement pattern in porous media and significantly affects the flow and transport of supercritical (sc) CO2 in geologic carbon sequestration. Using a high-pressure micromodel-microscopy system, we performed drainage experiments of scCO2 invasion into brine-saturated water-wet and intermediate-wet micromodels; we visualized the scCO2 invasion morphology at pore-scale under reservoir conditions. We also performed pore-scale numerical simulations of the Navier-Stokes equations to obtain 3D details of fluid-fluid displacement processes. Simulation results are qualitatively consistent with the experiments, showing wider scCO2 fingering, higher percentage of scCO2 and more compact displacement pattern in intermediate-wet micromodel. Through quantitative analysis based on pore-scale simulation, we found that the reduced wettability reduces the displacement front velocity, promotes the pore-filling events in the longitudinal direction, delays the breakthrough time of invading fluid, and then increases the displacement efficiency. Simulated results also show that the fluid-fluid interface area follows a unified power-law relation with scCO2 saturation, and show smaller interface area in intermediate-wet case which suppresses the mass transfer between the phases. These pore-scale results provide insights for the wettability effects on CO2 - brine immiscible displacement in geologic carbon sequestration.
Prothmann, Jens; Sun, Mingzhe; Spégel, Peter; Sandahl, Margareta; Turner, Charlotta
2017-12-01
The conversion of lignin to potentially high-value low molecular weight compounds often results in complex mixtures of monomeric and oligomeric compounds. In this study, a method for the quantitative and qualitative analysis of 40 lignin-derived compounds using ultra-high-performance supercritical fluid chromatography coupled to quadrupole-time-of-flight mass spectrometry (UHPSFC/QTOF-MS) has been developed. Seven different columns were explored for maximum selectivity. Makeup solvent composition and ion source settings were optimised using a D-optimal design of experiment (DoE). Differently processed lignin samples were analysed and used for the method validation. The new UHPSFC/QTOF-MS method showed good separation of the 40 compounds within only 6-min retention time, and out of these, 36 showed high ionisation efficiency in negative electrospray ionisation mode. Graphical abstract A rapid and selective method for the quantitative and qualitative analysis of 40 lignin-derived compounds using ultra-high-performance supercritical fluid chromatography coupled to quadrupole-time-of-flight mass spectrometry (UHPSFC/QTOF-MS).
Limited options for low-global-warming-potential refrigerants
McLinden, Mark O.; Brown, J. Steven; Brignoli, Riccardo; ...
2017-02-17
Hydrofluorocarbons, currently used as refrigerants in air-conditioning systems, are potent greenhouse gases, and their contribution to climate change is projected to increase. Future use of the hydrofluorocarbons will be phased down and, thus replacement fluids must be found. Here we show that only a few pure fluids possess the combination of chemical, environmental, thermodynamic, and safety properties necessary for a refrigerant and that these fluids are at least slightly flammable.We search for replacements by applying screening criteria to a comprehensive chemical database. For the fluids passing the thermodynamic and environmental screens (critical temperature and global warming potential), we simulate performancemore » in small air-conditioning systems, including optimization of the heat exchangers. We show that the efficiency-versus-capacity trade-off that exists in an ideal analysis disappears when a more realistic system is considered. Furthermore, the maximum efficiency occurs at a relatively high volumetric refrigeration capacity, but there are few fluids in this range.« less
Limited options for low-global-warming-potential refrigerants
DOE Office of Scientific and Technical Information (OSTI.GOV)
McLinden, Mark O.; Brown, J. Steven; Brignoli, Riccardo
Hydrofluorocarbons, currently used as refrigerants in air-conditioning systems, are potent greenhouse gases, and their contribution to climate change is projected to increase. Future use of the hydrofluorocarbons will be phased down and, thus replacement fluids must be found. Here we show that only a few pure fluids possess the combination of chemical, environmental, thermodynamic, and safety properties necessary for a refrigerant and that these fluids are at least slightly flammable.We search for replacements by applying screening criteria to a comprehensive chemical database. For the fluids passing the thermodynamic and environmental screens (critical temperature and global warming potential), we simulate performancemore » in small air-conditioning systems, including optimization of the heat exchangers. We show that the efficiency-versus-capacity trade-off that exists in an ideal analysis disappears when a more realistic system is considered. Furthermore, the maximum efficiency occurs at a relatively high volumetric refrigeration capacity, but there are few fluids in this range.« less
Reynolds, H Y; Fulmer, J D; Kazmierowski, J A; Roberts, W C; Frank, M M; Crystal, R G
1977-01-01
To evaluate cellular and protein components in the lower respiratory tract of patients with idiopathic pulmonary fibrosis (IPF) and chronic hypersensitivity pneumonitis (CHP), limited broncho-alveolar lavage was done in 58 patients (19 IPF, 7 CHP, and 32 controls). Analysis of the cells and protein in the lavage fluids from patients with IPF revealed an inflammatory and eosinophilic response and a significant elevation of IgG in the lungs. With corticosteroid therapy, inflammation diminished but eosinophils remained. Lavage fluid from patients with CHP also had eosinophils and elevated levels of IgG. However, in contrast to IPF, lavage fluid from CHP patients contained IgM, fewer inflammatory cells, and a strikingly increased number (38-74%) of lymphocytes. Identification of lavage lymphocytes in CHP showed that T lymphocytes were significantly elevated and B lymphocytes were decreased compared to peripheral blood. These studies suggest nthat the lung in IPF and CHP may function as a relatively independent immune organ, and that analysis of cells and proteins in broncho-alveolar lavage fluid may be of diagnostic, therapeutic, and investigative value in evaluating patients with fibrotic lung disease. PMID:830661
Critical asymmetry in renormalization group theory for fluids.
Zhao, Wei; Wu, Liang; Wang, Long; Li, Liyan; Cai, Jun
2013-06-21
The renormalization-group (RG) approaches for fluids are employed to investigate critical asymmetry of vapour-liquid equilibrium (VLE) of fluids. Three different approaches based on RG theory for fluids are reviewed and compared. RG approaches are applied to various fluid systems: hard-core square-well fluids of variable ranges, hard-core Yukawa fluids, and square-well dimer fluids and modelling VLE of n-alkane molecules. Phase diagrams of simple model fluids and alkanes described by RG approaches are analyzed to assess the capability of describing the VLE critical asymmetry which is suggested in complete scaling theory. Results of thermodynamic properties obtained by RG theory for fluids agree with the simulation and experimental data. Coexistence diameters, which are smaller than the critical densities, are found in the RG descriptions of critical asymmetries of several fluids. Our calculation and analysis show that the approach coupling local free energy with White's RG iteration which aims to incorporate density fluctuations into free energy is not adequate for VLE critical asymmetry due to the inadequate order parameter and the local free energy functional used in the partition function.
The effect of electromagnetic radiation of wireless connections on morphology of amniotic fluid
NASA Astrophysics Data System (ADS)
Novikov, Vsevolod O.; Titova, Natalia; Azarhov, Olexand; Wójcik, Waldemar; GrÄ dz, Å.»aklin; Mussabekova, Assel
2016-09-01
The article considers the effect of wireless networks on the morphology of amniotic fluid (AF) to demonstrate possible risks involving pregnant women. The analysis of AF thesiograms after exposure of the model fluid to Wi-Fi, 3G and β- radiation was chosen as the research method. A comparative analysis of facies structures is carried out, and depth maps of the facies structure are created. This comparative analysis permits an evaluation of the efficiency of morphological changes. It is shown that AF control facies differ in the concentration of areas with a narrow peripheral area and ellipsoidal formations of crystalloids in circumferences center. After exposure of different types of radiation onto AF, the facies structures collapse and form their own conglomerates. The obtained results show that the considered types of radiation have a negative effect on AF.
Method and apparatus for measuring the mass flow rate of a fluid
Evans, Robert P.; Wilkins, S. Curtis; Goodrich, Lorenzo D.; Blotter, Jonathan D.
2002-01-01
A non invasive method and apparatus is provided to measure the mass flow rate of a multi-phase fluid. An accelerometer is attached to a pipe carrying a multi-phase fluid. Flow related measurements in pipes are sensitive to random velocity fluctuations whose magnitude is proportional to the mean mass flow rate. An analysis of the signal produced by the accelerometer shows a relationship between the mass flow of a fluid and the noise component of the signal of an accelerometer. The noise signal, as defined by the standard deviation of the accelerometer signal allows the method and apparatus of the present invention to non-intrusively measure the mass flow rate of a multi-phase fluid.
NASA Astrophysics Data System (ADS)
Hasegawa, R.; Yamaguchi, A.; Fukuchi, R.; Kitamura, Y.; Kimura, G.; Hamada, Y.; Ashi, J.; Ishikawa, T.
2017-12-01
The relationship between faulting and fluid behavior has been in debate. In this study, we clarify the fluid-rock interaction in the Nobeoka Thrust by major/trace element composition analysis using the boring core of the Nobeoka Thrust, an exhumed analogue of an ancient megasplay fault in Shimanto accretionary complex, southwest Japan. The hanging wall and the footwall of the Nobeoka Thrust show difference in lithology and metamorphic grade, and their maximum burial temperature is estimated from vitrinite reflectance analysis to be 320 330°C and 250 270°C, respectively (Kondo et al., 2005). The fault zone was formed in a fluid-rich condition, as evidenced by warm fluid migration suggested by fluid inclusion analysis (Kondo et al., 2005), implosion brecciation accompanied by carbonate precipitation followed by formation of pseudotachylyte (Okamoto et al., 2006), ankerite veins coseismically formed under reducing conditions (Yamaguchi et al., 2011), and quartz veins recording stress rotation in seismic cycles (Otsubo et al., 2016). In this study, first we analyzed the major/trace element composition across the principal slip zone (PSZ) of the Nobeoka Thrust by using fragments of borehole cores penetrated through the Nobeoka Thrust. Many elements fluctuated just above the PSZ, whereas K increase and Na, Si decrease suggesting illitization of plagioclase, as well as positive anomalies in Li and Cs were found within the PSZ. For more detail understanding, we observed polished slabs and thin sections of the PSZ. Although grain size reduction of deformed clast and weak development of foliation were observed entirely in the PSZ by macroscopic observation, remarkable development of composite planar fabric nor evidence of friction melting were absent. In this presentation, we show the result of major/trace element composition corresponding to the internal structure of PSZ, and discuss fluid-rock interaction and its impact to megasplay fault activity in subduction zones.
Peristaltic transport of copper-water nanofluid saturating porous medium
NASA Astrophysics Data System (ADS)
Abbasi, F. M.; Hayat, T.; Ahmad, B.
2015-03-01
Prime goal of present study is to model the problem for peristaltic transport of copper-water nanofluid in an asymmetric channel. The fluid fills porous space. Analysis is carried out in the presence of mixed conviction, viscous dissipation and heat generation/absorption. Long wavelength and low Reynolds number approximations are utilized in problem formulation. Numerical computations are presented for the axial velocity, pressure gradient, streamlines, temperature and heat transfer rate at the boundary. Graphical analysis is carried out to examine the effects of sundry parameters on flow quantities of interest. Results revealed that the axial velocity of copper-water nanofluid decreases with an increase in the nanoparticle volume fraction. Copper nanoparticles prove effective coolant since they sufficiently reduce the fluid temperature and show increase in the heat transfer between the fluid and solid boundary. Moreover temperature of the fluid decreases by increasing the permeability of porous medium.
Study of Surface Wave Propagation in Fluid-Saturated Porous Solids.
NASA Astrophysics Data System (ADS)
Azcuaga, Valery Francisco Godinez
1995-01-01
This study addresses the surface wave propagation phenomena on fluid-saturated porous solids. The analytical method for calculation of surface wave velocities (Feng and Johnson, JASA, 74, 906, 1983) is extended to the case of a porous solid saturated with a wetting fluid in contact with a non-wetting fluid, in order to study a material combination suitable for experimental investigation. The analytical method is further extended to the case of a non-wetting fluid/wetting fluid-saturated porous solid interface with an arbitrary finite surface stiffness. These extensions of the analytical method allows to theoretically study surface wave propagation phenomena during the saturation process. A modification to the 2-D space-time reflection Green's function (Feng and Johnson, JASA, 74, 915, 1983) is introduced in order to simulate the behavior of surface wave signals detected during the experimental investigation of surface wave propagation on fluid-saturated porous solids (Nagy, Appl. Phys. Lett., 60, 2735, 1992). This modification, together with the introduction of an excess attenuation for the Rayleigh surface mode, makes it possible to explain the apparent velocity changes observed on the surface wave signals during saturation. Experimental results concerning the propagation of surface waves on an alcohol-saturated porous glass are presented. These experiments were performed at frequencies of 500 and 800 kHz and show the simultaneous propagation of the two surface modes predicted by the extended analytical method. Finally an analysis of the displacements associated with the different surface modes is presented. This analysis reveals that it is possible to favor the generation of the Rayleigh surface mode or of the slow surface mode, simply by changing the type of transducer used in the generation of surface waves. Calculations show that a shear transducer couples more energy into the Rayleigh mode, whereas a longitudinal transducer couples more energy into the slow surface mode. Experimental results obtained with the modified experimental system show a qualitative agreement with the theoretical predictions.
On the derivation of linear irreversible thermodynamics for classical fluids
Theodosopulu, M.; Grecos, A.; Prigogine, I.
1978-01-01
We consider the microscopic derivation of the linearized hydrodynamic equations for an arbitrary simple fluid. Our discussion is based on the concept of hydrodynamical modes, and use is made of the ideas and methods of the theory of subdynamics. We also show that this analysis leads to the Gibbs relation for the entropy of the system. PMID:16592516
A Coupled Fluid-Structure Interaction Analysis of Solid Rocket Motor with Flexible Inhibitors
NASA Technical Reports Server (NTRS)
Yang, H. Q.; West, Jeff
2014-01-01
A capability to couple NASA production CFD code, Loci/CHEM, with CFDRC's structural finite element code, CoBi, has been developed. This paper summarizes the efforts in applying the installed coupling software to demonstrate/investigate fluid-structure interaction (FSI) between pressure wave and flexible inhibitor inside reusable solid rocket motor (RSRM). First a unified governing equation for both fluid and structure is presented, then an Eulerian-Lagrangian framework is described to satisfy the interfacial continuity requirements. The features of fluid solver, Loci/CHEM and structural solver, CoBi, are discussed before the coupling methodology of the solvers is described. The simulation uses production level CFD LES turbulence model with a grid resolution of 80 million cells. The flexible inhibitor is modeled with full 3D shell elements. Verifications against analytical solutions of structural model under steady uniform pressure condition and under dynamic condition of modal analysis show excellent agreements in terms of displacement distribution and eigen modal frequencies. The preliminary coupled result shows that due to acoustic coupling, the dynamics of one of the more flexible inhibitors shift from its first modal frequency to the first acoustic frequency of the solid rocket motor.
CFD Analysis of nanofluid forced convection heat transport in laminar flow through a compact pipe
NASA Astrophysics Data System (ADS)
Yu, Kitae; Park, Cheol; Kim, Sedon; Song, Heegun; Jeong, Hyomin
2017-08-01
In the present paper, developing laminar forced convection flows were numerically investigated by using water-Al2O3 nano-fluid through a circular compact pipe which has 4.5mm diameter. Each model has a steady state and uniform heat flux (UHF) at the wall. The whole numerical experiments were processed under the Re = 1050 and the nano-fluid models were made by the Alumina volume fraction. A single-phase fluid models were defined through nano-fluid physical and thermal properties calculations, Two-phase model(mixture granular model) were processed in 100nm diameter. The results show that Nusselt number and heat transfer rate are improved as the Al2O3 volume fraction increased. All of the numerical flow simulations are processed by the FLUENT. The results show the increment of thermal transfer from the volume fraction concentration.
NASA Astrophysics Data System (ADS)
Anggrayni, S.; Mubarok, H.; Putri, N. P.; Suprapto, N.; Kholiq, A.
2018-03-01
The viscosity is defined by dimension of a fluid that resists the force tending to motive the fluid to flow. The aim of viscosity experiment is to determine the fluid viscosity coefficient value. By using graphical analysis, the result of oil viscosity coefficient value which performed by laboratory assistant showed: (1) 0.20 Pa.s using solid ball with accuracy 99.64% and (2) 0.21 Pa.s using smaller solid ball with accuracy 99.17%. Meanwhile, the result of oil viscosity coefficient value which performed by freshmen showed: (1) 0.44 Pa.s using solid ball with accuracy 87.85% and (2) 0.32 Pa.s using smaller solid ball with accuracy 89.84%. The differences result of the freshmen and assistant laboratory viscosity experiment are caused by the freshmen calculated the coefficient viscosity value without velocity correction factor and they used small range fluid so the times are not identified well.
Computational fluid dynamics analysis of a maglev centrifugal left ventricular assist device.
Burgreen, Greg W; Loree, Howard M; Bourque, Kevin; Dague, Charles; Poirier, Victor L; Farrar, David; Hampton, Edward; Wu, Z Jon; Gempp, Thomas M; Schöb, Reto
2004-10-01
The fluid dynamics of the Thoratec HeartMate III (Thoratec Corp., Pleasanton, CA, U.S.A.) left ventricular assist device are analyzed over a range of physiological operating conditions. The HeartMate III is a centrifugal flow pump with a magnetically suspended rotor. The complete pump was analyzed using computational fluid dynamics (CFD) analysis and experimental particle imaging flow visualization (PIFV). A comparison of CFD predictions to experimental imaging shows good agreement. Both CFD and experimental PIFV confirmed well-behaved flow fields in the main components of the HeartMate III pump: inlet, volute, and outlet. The HeartMate III is shown to exhibit clean flow features and good surface washing across its entire operating range.
Effect of pore geometry on the compressibility of a confined simple fluid
NASA Astrophysics Data System (ADS)
Dobrzanski, Christopher D.; Maximov, Max A.; Gor, Gennady Y.
2018-02-01
Fluids confined in nanopores exhibit properties different from the properties of the same fluids in bulk; among these properties is the isothermal compressibility or elastic modulus. The modulus of a fluid in nanopores can be extracted from ultrasonic experiments or calculated from molecular simulations. Using Monte Carlo simulations in the grand canonical ensemble, we calculated the modulus for liquid argon at its normal boiling point (87.3 K) adsorbed in model silica pores of two different morphologies and various sizes. For spherical pores, for all the pore sizes (diameters) exceeding 2 nm, we obtained a logarithmic dependence of fluid modulus on the vapor pressure. Calculation of the modulus at saturation showed that the modulus of the fluid in spherical pores is a linear function of the reciprocal pore size. The calculation of the modulus of the fluid in cylindrical pores appeared too scattered to make quantitative conclusions. We performed additional simulations at higher temperature (119.6 K), at which Monte Carlo insertions and removals become more efficient. The results of the simulations at higher temperature confirmed both regularities for cylindrical pores and showed quantitative difference between the fluid moduli in pores of different geometries. Both of the observed regularities for the modulus stem from the Tait-Murnaghan equation applied to the confined fluid. Our results, along with the development of the effective medium theories for nanoporous media, set the groundwork for analysis of the experimentally measured elastic properties of fluid-saturated nanoporous materials.
Assessment of existing Sierra/Fuego capabilities related to grid-to-rod-fretting (GTRF).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, Daniel Zack; Rodriguez, Salvador B.
2011-06-01
The following report presents an assessment of existing capabilities in Sierra/Fuego applied to modeling several aspects of grid-to-rod-fretting (GTRF) including: fluid dynamics, heat transfer, and fluid-structure interaction. We compare the results of a number of Fuego simulations with relevant sources in the literature to evaluate the accuracy, efficiency, and robustness of using Fuego to model the aforementioned aspects. Comparisons between flow domains that include the full fuel rod length vs. a subsection of the domain near the spacer show that tremendous efficiency gains can be obtained by truncating the domain without loss of accuracy. Thermal analysis reveals the extent tomore » which heat transfer from the fuel rods to the coolant is improved by the swirling flow created by the mixing vanes. Lastly, coupled fluid-structure interaction analysis shows that the vibrational modes of the fuel rods filter out high frequency turbulent pressure fluctuations. In general, these results allude to interesting phenomena for which further investigation could be quite fruitful.« less
Crystallography of biological fluid as a method for evaluating its physicochemical characteristics.
Martusevich, A K; Kamakin, N F
2007-03-01
Using an integral qualitative and quantitative approach to the studies of initiation of the biological material crystallogenesis, we showed in experiments with normal human saliva that the external characteristics of biological fluid (pH, osmolality, and environmental temperature) determine the results of crystallization (tesigraphic facies). The main external (macroenvironment) and inner (microenvironment) factors of biological fluid crystal formation, determining specific features of the tesigraphic facies, were distinguished and classified. The informative value of differential analysis of biomaterial properties by means of modulating the environmental conditions is established.
Analysis of Two-Phase Flow in Damper Seals for Cryogenic Turbopumps
NASA Technical Reports Server (NTRS)
Arauz, Grigory L.; SanAndres, Luis
1996-01-01
Cryogenic damper seals operating close to the liquid-vapor region (near the critical point or slightly su-cooled) are likely to present two-phase flow conditions. Under single phase flow conditions the mechanical energy conveyed to the fluid increases its temperature and causes a phase change when the fluid temperature reaches the saturation value. A bulk-flow analysis for the prediction of the dynamic force response of damper seals operating under two-phase conditions is presented as: all-liquid, liquid-vapor, and all-vapor, i.e. a 'continuous vaporization' model. The two phase region is considered as a homogeneous saturated mixture in thermodynamic equilibrium. Th flow in each region is described by continuity, momentum and energy transport equations. The interdependency of fluid temperatures and pressure in the two-phase region (saturated mixture) does not allow the use of an energy equation in terms of fluid temperature. Instead, the energy transport is expressed in terms of fluid enthalpy. Temperature in the single phase regions, or mixture composition in the two phase region are determined based on the fluid enthalpy. The flow is also regarded as adiabatic since the large axial velocities typical of the seal application determine small levels of heat conduction to the walls as compared to the heat carried by fluid advection. Static and dynamic force characteristics for the seal are obtained from a perturbation analysis of the governing equations. The solution expressed in terms of zeroth and first order fields provide the static (leakage, torque, velocity, pressure, temperature, and mixture composition fields) and dynamic (rotordynamic force coefficients) seal parameters. Theoretical predictions show good agreement with experimental leakage pressure profiles, available from a Nitrogen at cryogenic temperatures. Force coefficient predictions for two phase flow conditions show significant fluid compressibility effects, particularly for mixtures with low mass content of vapor. Under these conditions, an increase on direct stiffness and reduction of whirl frequency ratio are shown to occur. Prediction of such important effects will motivate experimental studies as well as a more judicious selection of the operating conditions for seals used in cryogenic turbomachinery.
NASA Astrophysics Data System (ADS)
Miquel, Benjamin
The dynamic or seismic behavior of hydraulic structures is, as for conventional structures, essential to assure protection of human lives. These types of analyses also aim at limiting structural damage caused by an earthquake to prevent rupture or collapse of the structure. The particularity of these hydraulic structures is that not only the internal displacements are caused by the earthquake, but also by the hydrodynamic loads resulting from fluid-structure interaction. This thesis reviews the existing complex and simplified methods to perform such dynamic analysis for hydraulic structures. For the complex existing methods, attention is placed on the difficulties arising from their use. Particularly, interest is given in this work on the use of transmitting boundary conditions to simulate the semi infinity of reservoirs. A procedure has been developed to estimate the error that these boundary conditions can introduce in finite element dynamic analysis. Depending on their formulation and location, we showed that they can considerably affect the response of such fluid-structure systems. For practical engineering applications, simplified procedures are still needed to evaluate the dynamic behavior of structures in contact with water. A review of the existing simplified procedures showed that these methods are based on numerous simplifications that can affect the prediction of the dynamic behavior of such systems. One of the main objectives of this thesis has been to develop new simplified methods that are more accurate than those existing. First, a new spectral analysis method has been proposed. Expressions for the fundamental frequency of fluid-structure systems, key parameter of spectral analysis, have been developed. We show that this new technique can easily be implemented in a spreadsheet or program, and that its calculation time is near instantaneous. When compared to more complex analytical or numerical method, this new procedure yields excellent prediction of the dynamic behavior of fluid-structure systems. Spectral analyses ignore the transient and oscillatory nature of vibrations. When such dynamic analyses show that some areas of the studied structure undergo excessive stresses, time history analyses allow a better estimate of the extent of these zones as well as a time notion of these excessive stresses. Furthermore, the existing spectral analyses methods for fluid-structure systems account only for the static effect of higher modes. Thought this can generally be sufficient for dams, for flexible structures the dynamic effect of these modes should be accounted for. New methods have been developed for fluid-structure systems to account for these observations as well as the flexibility of foundations. A first method was developed to study structures in contact with one or two finite or infinite water domains. This new technique includes flexibility of structures and foundations as well as the dynamic effect of higher vibration modes and variations of the levels of the water domains. Extension of this method was performed to study beam structures in contact with fluids. These new developments have also allowed extending existing analytical formulations of the dynamic properties of a dry beam to a new formulation that includes effect of fluid-structure interaction. The method yields a very good estimate of the dynamic behavior of beam-fluid systems or beam like structures in contact with fluid. Finally, a Modified Accelerogram Method (MAM) has been developed to modify the design earthquake into a new accelerogram that directly accounts for the effect of fluid-structure interaction. This new accelerogram can therefore be applied directly to the dry structure (i.e. without water) in order to calculate the dynamic response of the fluid-structure system. This original technique can include numerous parameters that influence the dynamic response of such systems and allows to treat analytically the fluid-structure interaction while keeping the advantages of finite element modeling.
Kulemann, Birte; Timme, Sylvia; Seifert, Gabriel; Holzner, Philipp A; Glatz, Torben; Sick, Olivia; Chikhladze, Sophia; Bronsert, Peter; Hoeppner, Jens; Werner, Martin; Hopt, Ulrich T; Marjanovic, Goran
2013-09-01
It has been shown that crystalloid fluid-overload promotes anastomotic instability. As physiologic anastomotic healing requires the sequential infiltration of different cells, we hypothesized this to be altered by liberal fluid regimes and performed a histomorphological analysis. 36 Wistar rats were randomized into 4 groups (n=8-10 rats/group) and treated with either liberal (+) or restrictive (-) perioperative crystalline (Jonosteril = Cry) or colloidal fluid (Voluven = Col). Anastomotic samples were obtained on postoperative day 4, routinely stained and histophathologically reviewed. Anastomotic healing was assessed using a semiquantitative score, assessing inflammatory cells, anastomotic repair and collagenase activity. Overall, the crystalloid overload group (Cry (+)) showed the worst healing score (P < 0.01). A substantial increase of lymphocytes and macrophages was found in this group compared to the other three (P < 0.01). Both groups that received colloidal fluid (Col (+) and Col (-)) as well as the group that received restricted crystalloid fluid resuscitation (Cry (-)) had better intestinal healing. Collagenase activity was significantly higher in the Cry (+) group. Intraoperative infusion of high-volume crystalloid fluid leads to a pathological anastomotic inflammatory response with a marked infiltration of leukocytes and macrophages resulting in accelerated collagenolysis. Copyright © 2013 Mosby, Inc. All rights reserved.
Longitudinal vibration and stability analysis of carbon nanotubes conveying viscous fluid
NASA Astrophysics Data System (ADS)
Oveissi, Soheil; Toghraie, Davood; Eftekhari, Seyyed Ali
2016-09-01
Nowadays, carbon nanotubes (CNT) play an important role in practical applications in fluidic devices. To this end, researchers have studied various aspects of vibration analysis of a behavior of CNT conveying fluid. In this paper, based on nonlocal elasticity theory, single-walled carbon nanotube (SWCNT) is simulated. To investigate and analyze the effect of internal fluid flow on the longitudinal vibration and stability of SWCNT, the equation of motion for longitudinal vibration is obtained by using Navier-Stokes equations. In the governing equation of motion, the interaction of fluid-structure, dynamic and fluid flow velocity along the axial coordinate of the nanotube and the nano-scale effect of the structure are considered. To solve the nonlocal longitudinal vibration equation, the approximate Galerkin method is employed and appropriate simply supported boundary conditions are applied. The results show that the axial vibrations of the nanotubesstrongly depend on the small-size effect. In addition, the fluid flowing in nanotube causes a decrease in the natural frequency of the system. It is obvious that the system natural frequencies reach zero at lower critical flow velocities as the wave number increases. Moreover, the critical flow velocity decreases as the nonlocal parameter increases.
Nikkhoo, Mohammad; Khalaf, Kinda; Kuo, Ya-Wen; Hsu, Yu-Chun; Haghpanahi, Mohammad; Parnianpour, Mohamad; Wang, Jaw-Lin
2015-01-01
The risk of low back pain resulted from cyclic loadings is greater than that resulted from prolonged static postures. Disk degeneration results in degradation of disk solid structures and decrease of water contents, which is caused by activation of matrix digestive enzymes. The mechanical responses resulted from internal solid-fluid interactions of degenerative disks to cyclic loadings are not well studied yet. The fluid-solid interactions in disks can be evaluated by mathematical models, especially the poroelastic finite element (FE) models. We developed a robust disk poroelastic FE model to analyze the effect of degeneration on solid-fluid interactions within disk subjected to cyclic loadings at different loading frequencies. A backward analysis combined with in vitro experiments was used to find the elastic modulus and hydraulic permeability of intact and enzyme-induced degenerated porcine disks. The results showed that the averaged peak-to-peak disk deformations during the in vitro cyclic tests were well fitted with limited FE simulations and a quadratic response surface regression for both disk groups. The results showed that higher loading frequency increased the intradiscal pressure, decreased the total fluid loss, and slightly increased the maximum axial stress within solid matrix. Enzyme-induced degeneration decreased the intradiscal pressure and total fluid loss, and barely changed the maximum axial stress within solid matrix. The increase of intradiscal pressure and total fluid loss with loading frequency was less sensitive after the frequency elevated to 0.1 Hz for the enzyme-induced degenerated disk. Based on this study, it is found that enzyme-induced degeneration decreases energy attenuation capability of disk, but less change the strength of disk.
Space processing applications payload equipment study. Volume 2A: Experiment requirements
NASA Technical Reports Server (NTRS)
Smith, A. G.; Anderson, W. T., Jr.
1974-01-01
An analysis of the space processing applications payload equipment was conducted. The primary objective was to perform a review and an update of the space processing activity research equipment requirements and specifications that were derived in the first study. The analysis is based on the six major experimental classes of: (1) biological applications, (2) chemical processes in fluids, (3) crystal growth, (4) glass technology, (5) metallurgical processes, and (6) physical processes in fluids. Tables of data are prepared to show the functional requirements for the areas of investigation.
Brake Fluid Compatibility with Hardware
2014-05-19
association or emblem usage considerations. All other legal considerations are the responsibility of the author and his/her/their employer(s...10 Figure 8. Backscatter SEM Image showing Elemental Analysis Scan Locations ....................... 11 Figure 9. Surface Scan jfs9176...Elemental Analysis .................................................................... 12 Figure 10. Particle Scan jfs9177 Elemental Analysis
Contrasting fault fluids along high-angle faults: a case study from Southern Apennines (Italy)
NASA Astrophysics Data System (ADS)
Sinisi, Rosa; Petrullo, Angela Vita; Agosta, Fabrizio; Paternoster, Michele; Belviso, Claudia; Grassa, Fausto
2016-10-01
This work focuses on two fault-controlled deposits, the Atella and Rapolla travertines, which are associated with high-angle extensional faults of the Bradano Trough, southern Apennines (Italy). The Atella travertine is along a NW-SE striking, deep-seated extensional fault, already described in literature, which crosscuts both Apulian carbonates and the overlying foredeep basin infill. The Rapolla travertine is on top of a NE-SW striking, shallow-seated fault, here described for the first time, which is interpreted as a tear fault associated with a shallow thrust displacing only the foredeep basin infill. The results of structural, sedimentological, mineralogical, and C and O isotope analyses are here reported and discussed to assess the provenance of mineralizing fluids, and to evaluate the control exerted by the aforementioned extensional faults on deep, mantle-derived and shallow, meteoric fluids. Sedimentological analysis is consistent with five lithofacies in the studied travertines, which likely formed in a typical lacustrine depositional environment. Mineralogical analysis show that travertines mainly consist of calcite, and minor quartz, feldspar and clay minerals, indicative of a terrigenous supply during travertine precipitation. The isotope signature of the two studied travertines shows different provenance for the mineralizing fluids. At the Atella site, the δ13CPDB values range between + 5.2 and + 5.7‰ and the δ18OPDB values between - 9.0 and - 7.3‰, which are consistent with a mantle-derived CO2 component in the fluid. In contrast, at the Rapolla site the δ13CPDB values vary from - 2.7 to + 1.5‰ and the δ18OPDB values from - 6.8 to - 5.4‰, suggesting a mixed CO2 source with both biogenic-derived and mantle-derived fluids. The results of structural analyses conducted along the footwall damage zone of the fault exposed at the Rapolla site, show that the whole damage zone, in which fractures and joints likely channeled the mixed fluids, acted as a distributed conduit for both fault-parallel and cross-fault fluid migration.
A Chlorine-Centric Perspective on Fluid-Mediated Processes at Convergent Plate Boundaries
NASA Astrophysics Data System (ADS)
Selverstone, J.
2014-12-01
The release and migration of metamorphic fluids from subducting slabs into overlying mantle is widely recognized as a major mechanism in producing arc geochemical signatures and returning fluid-mobile elements to earth's crust and surface environments. Although the magnitudes of many geochemical fluxes are well constrained, the processes whereby mass transfer occurs in different portions of the subduction system are less well known. Chlorine stable isotopes provide a new perspective on some of these processes: Cl is hydrophilic, but decarbonation reactions favor Cl retention in minerals. Cl also shows less isotopic fractionation than other fluid-sensitive systems and may thus preserve evidence of specific fluid sources and/or fluid mixing events. Detailed studies of sedimentary sequences show that individual beds are isotopically homogeneous but large heterogeneities in δ37Cl exist across beds on a cm to m scale and vary as a function of depositional environment. Compositionally correlative medium-, high-, and ultrahigh-pressure metamorphic sequences in the Alps record decreases of 30-50% in Cl contents in the earliest stages of metamorphism, but little change thereafter. No statistically significant change in isotopic composition occurs during prograde metamorphism of individual horizons, and the same large degree of isotopic heterogeneity (up to 6‰) persists throughout the prograde devolatilization history of the rocks. Likewise, analysis of HP/UHP serpentinites and altered oceanic crust show that heterogeneous protolith compositions are preserved during transport to sub-arc depths, despite large-scale devolatilization. However, upward transport of rocks within the subduction channel results in highly localized interaction with isotopically distinct, Cl-bearing fluid packets. Overlying forearc wedge rocks also record heterogeneous and channelized interaction with distinct fluid components with different δ37Cl. Within-layer fluid compartmentalization during continuous devolatilization reactions must thus be reconciled with discontinuous, cross-layer fluid percolation out of the slab and into the wedge. The resulting implications of the chlorine data for recent mechanical models of slab-to-wedge fluid transport will be discussed.
Luukkainen, R; Hakala, M; Sajanti, E; Huhtala, H; Yli-Kerttula, U; Hämeenkorpi, R
1992-01-01
The predictive relevance of synovial fluid analysis and some other variables for the efficacy of intra-articular corticosteroid injections in 30 patients with rheumatoid arthritis and hydropsy in a knee joint was evaluated in a prospective study. At the onset of the study, the knee joints were aspirated and 30 mg triamcinolone hexacetonide injected intra-articularly. The circumferences and the tenderness scores of the knee joints were measured at onset, after two months, and at the end of the six months' follow up. Of the variables studied, synovial fluid C4, percentage of synovial fluid polymorphonuclear leucocytes, blood haemoglobin, and serum C3 correlated significantly with the decrease in knee joint circumference after two months, whereas only the percentage of synovial fluid polymorphonuclear leucocytes correlated significantly after six months. Between the patients with and without improvement in the tenderness scores of the knee joints, only serum IgM differed at the examination after two months; this was higher in patients whose scores showed no improvement. PMID:1632661
Barry, P.H.; Hilton, David R.; Tryon, M.D.; Brown, K.M.; Kulongoski, J.T.
2009-01-01
[1] We present details of a newly designed syringe pump apparatus for the retrieval and temporal analysis of helium (SPARTAH). The device is composed of a commercially available syringe pump connected to coils of Cu tubing, which interface the syringe and the groundwater or geothermal wellhead. Through test deployments at geothermal wells in Iceland and California, we show that well fluids are drawn smoothly, accurately, and continuously into the Cu tubing and can be time-stamped through user-determined operating parameters. In the laboratory, the tubing is sectioned to reveal helium (He) characteristics of the fluids at times and for durations of interest. The device is capable of prolonged deployments, up to 6 months or more, with minimal maintenance. It can be used to produce detailed time series records of He, or any other geochemical parameter, in groundwaters and geothermal fluids. SPARTAH has application in monitoring projects assessing the relationship between external transient events (e.g., earthquakes) and geochemical signals in aqueous fluids. ?? 2009 by the American Geophysical Union.
Microbiome and Biocatalytic Bacteria in Monkey Cup (Nepenthes Pitcher) Digestive Fluid.
Chan, Xin-Yue; Hong, Kar-Wai; Yin, Wai-Fong; Chan, Kok-Gan
2016-01-28
Tropical carnivorous plant, Nepenthes, locally known as "monkey cup", utilises its pitcher as a passive trap to capture insects. It then secretes enzymes into the pitcher fluid to digest the insects for nutrients acquisition. However, little is known about the microbiota and their activity in its pitcher fluid. Eighteen bacteria phyla were detected from the metagenome study in the Nepenthes pitcher fluid. Proteobacteria, Bacteroidetes and Actinobacteria are the dominant phyla in the Nepenthes pitcher fluid. We also performed culturomics approach by isolating 18 bacteria from the Nepenthes pitcher fluid. Most of the bacterial isolates possess chitinolytic, proteolytic, amylolytic, and cellulolytic and xylanolytic activities. Fifteen putative chitinase genes were identified from the whole genome analysis on the genomes of the 18 bacteria isolated from Nepenthes pitcher fluid and expressed for chitinase assay. Of these, six clones possessed chitinase activity. In conclusion, our metagenome result shows that the Nepenthes pitcher fluid contains vast bacterial diversity and the culturomic studies confirmed the presence of biocatalytic bacteria within the Nepenthes pitcher juice which may act in symbiosis for the turn over of insects trapped in the Nepenthes pitcher fluid.
NASA Astrophysics Data System (ADS)
Vega-Cantu, Yadira Itzel
Poly(acrylonitrile-co-butadiene) or nitrile-butadiene rubber (NBR) is frequently used as an O-ring material in the oil extraction industry due to its excellent chemical properties and resistance to oil. However, degradation of NBR gaskets is known to occur during the well completion and oil extraction process where packers are exposed to completion fluids such as ZnBr2 brine. Under these conditions NBR exhibits accelerated chemical degradation resulting in embrittlement and cracking. Samples of NBR, poly(acrylonitrile) (PAN) and poly(butadiene) (PB) have been exposed to ZnBr2 based completion fluid, and analyzed by ATR and diffuse reflectance IR. Analysis shows the ZnBr2 based completion fluid promotes hydrolysis of the nitrile group to form amides and carboxylic groups. Analysis also shows that carbon-carbon double bonds in NBR are unaffected after short exposure to zinc bromide based completion fluid, but are quickly hydrolyzed in acidic bromide mixtures. Although fluoropolymers have excellent chemical resistance, their strength is less than nitrile rubber and replacing the usual gasket materials with fluoroelastomers is expensive. However, a fluoropolymer surface on a nitrile elastomer can provide the needed chemical resistance while retaining their strength. In this study, we have shown that this can be achieved by direct fluorination, a rather easy and inexpensive process. Samples of NBR O-rings have been fluorinated by exposure to F2 and F2/HF mixtures at various temperatures. Fluorination with F 2 produces the desired fluoropolymer layer; however, fluorination by F2/HF mixtures gave a smoother fluorinated layer at lower temperatures and shorter times. Fluorinated samples were exposed to ZnBr2 drilling fluid and solvents. Elemental analysis shows that the fluorinated layer eliminates ZnBr2 diffusion into the NBR polymeric matrix. It was also found that surface fluorination significantly retards the loss of mechanical properties such as elasticity, tensile strength, toughness and compression set of nitrile rubber when exposed to zinc bromide fluid. This surface fluorination can be applied to extend the useful life of O-rings and packers in the field during oil extraction. The extended life can save millions of dollars by limiting the downtime of the well.
Discriminating fluid source regions in orogenic gold deposits using B-isotopes
NASA Astrophysics Data System (ADS)
Lambert-Smith, James S.; Rocholl, Alexander; Treloar, Peter J.; Lawrence, David M.
2016-12-01
The genesis of orogenic gold deposits is commonly linked to hydrothermal ore fluids derived from metamorphic devolatilization reactions. However, there is considerable debate as to the ultimate source of these fluids and the metals they transport. Tourmaline is a common gangue mineral in orogenic gold deposits. It is stable over a very wide P-T range, demonstrates limited volume diffusion of major and trace elements and is the main host of B in most rock types. We have used texturally resolved B-isotope analysis by secondary ion mass spectrometry (SIMS) to identify multiple fluid sources within a single orogenic gold ore district. The Loulo Mining District in Mali, West Africa hosts several large orogenic gold ore bodies with complex fluid chemistry, associated with widespread pre-ore Na- and multi-stage B-metasomatism. The Gara deposit, as well as several smaller satellites, formed through partial mixing between a dilute aqueous-carbonic fluid and a hypersaline brine. Hydrothermal tourmaline occurs as a pre-ore phase in the matrix of tourmalinite units, which host mineralization in several ore bodies. Clasts of these tourmalinites occur in mineralized breccias. Disseminated hydrothermal and vein hosted tourmaline occur in textural sites which suggest growth during and after ore formation. Tourmalines show a large range in δ11B values from -3.5 to 19.8‰, which record a change in fluid source between paragenetic stages of tourmaline growth. Pre-mineralization tourmaline crystals show heavy δ11B values (8-19.8‰) and high X-site occupancy (Na ± Ca; 0.69-1 apfu) suggesting a marine evaporite source for hydrothermal fluids. Syn-mineralization and replacement phases show lighter δ11B values (-3.5 to 15.1‰) and lower X-site occupancy (0.62-0.88 apfu), suggesting a subsequent influx of more dilute fluids derived from devolatilization of marine carbonates and clastic metasediments. The large, overlapping range in isotopic compositions and a skew toward the opposing population in the δ11B data for both tourmaline groups reflects continual tourmaline growth throughout mineralization, which records the process of fluid mixing. A peak in δ11B values at ∼8‰ largely controlled by tourmalines of syn- to post-ore timing represents a mixture of the two isotopically distinct fluids. This paper demonstrates that B-isotopes in tourmaline can be instrumental in interpreting complex and dynamic hydrothermal systems. The importance of B as an integral constituent of orogenic ore forming fluids and as a gangue phase in orogenic gold deposits makes B-isotope analysis a powerful tool for testing the level of source region variability in these fluids, and by extension, that of metal sources.
Collective Surfing of Chemically Active Particles
NASA Astrophysics Data System (ADS)
Masoud, Hassan; Shelley, Michael J.
2014-03-01
We study theoretically the collective dynamics of immotile particles bound to a 2D surface atop a 3D fluid layer. These particles are chemically active and produce a chemical concentration field that creates surface-tension gradients along the surface. The resultant Marangoni stresses create flows that carry the particles, possibly concentrating them. For a 3D diffusion-dominated concentration field and Stokesian fluid we show that the surface dynamics of active particle density can be determined using nonlocal 2D surface operators. Remarkably, we also show that for both deep or shallow fluid layers this surface dynamics reduces to the 2D Keller-Segel model for the collective chemotactic aggregation of slime mold colonies. Mathematical analysis has established that the Keller-Segel model can yield finite-time, finite-mass concentration singularities. We show that such singular behavior occurs in our finite-depth system, and study the associated 3D flow structures.
The effect of fault-bend folding on seismic velocity in the marginal ridge of accretionary prisms
Cai, Y.; Wang, Chun-Yong; Hwang, W.-t.; Cochrane, G.R.
1995-01-01
Fluid venting in accretionary prisms, which feeds chemosynthetic biological communities, occurs mostly on the marginal thrust ridge. New seismic data for the marginal ridge of the Cascadia prism show significantly lower velocity than that in the adjacent oceanic basin and place important constraints on the interpretations of why fluid venting occurs mostly on the marginal ridge. We employed a finite-element method to analyze a typical fault-bend folding model to explain the phenomenon. The fault in the model is simulated by contact elements. The elements are characterized not only by finite sliding along a slide line, but also by elastoplastic deformation. We present the results of a stress analysis which show that the marginal ridge is under subhorizontal extension and the frontal thrust is under compression. This state of stress favors the growth of tensile cracks in the marginal ridge, facilitates fluid flow and reduces seismic velocities therein; on the other hand, it may close fluid pathways along the frontal thrust and divert fluid flow to the marginal ridge. ?? 1995 Birkha??user Verlag.
Base fluid in improving heat transfer for EV car battery
NASA Astrophysics Data System (ADS)
Bin-Abdun, Nazih A.; Razlan, Zuradzman M.; Shahriman, A. B.; Wan, Khairunizam; Hazry, D.; Ahmed, S. Faiz; Adnan, Nazrul H.; Heng, R.; Kamarudin, H.; Zunaidi, I.
2015-05-01
This study examined the effects of base fluid (as coolants) channeling inside the heat exchanger in the process of the increase in thermal conductivity between EV car battery and the heat exchanger. The analysis showed that secondary cooling system by means of water has advantages in improving the heat transfer process and reducing the electric power loss on the form of thermal energy from batteries. This leads to the increase in the efficiency of the EV car battery, hence also positively reflecting the performance of the EV car. The present work, analysis is performed to assess the design and use of heat exchanger in increasing the performance efficiency of the EV car battery. This provides a preface to the use this design for nano-fluids which increase and improve from heat transfer.
Human body fluid proteome analysis
Hu, Shen; Loo, Joseph A.; Wong, David T.
2010-01-01
The focus of this article is to review the recent advances in proteome analysis of human body fluids, including plasma/serum, urine, cerebrospinal fluid, saliva, bronchoalveolar lavage fluid, synovial fluid, nipple aspirate fluid, tear fluid, and amniotic fluid, as well as its applications to human disease biomarker discovery. We aim to summarize the proteomics technologies currently used for global identification and quantification of body fluid proteins, and elaborate the putative biomarkers discovered for a variety of human diseases through human body fluid proteome (HBFP) analysis. Some critical concerns and perspectives in this emerging field are also discussed. With the advances made in proteomics technologies, the impact of HBFP analysis in the search for clinically relevant disease biomarkers would be realized in the future. PMID:17083142
Human body fluid proteome analysis.
Hu, Shen; Loo, Joseph A; Wong, David T
2006-12-01
The focus of this article is to review the recent advances in proteome analysis of human body fluids, including plasma/serum, urine, cerebrospinal fluid, saliva, bronchoalveolar lavage fluid, synovial fluid, nipple aspirate fluid, tear fluid, and amniotic fluid, as well as its applications to human disease biomarker discovery. We aim to summarize the proteomics technologies currently used for global identification and quantification of body fluid proteins, and elaborate the putative biomarkers discovered for a variety of human diseases through human body fluid proteome (HBFP) analysis. Some critical concerns and perspectives in this emerging field are also discussed. With the advances made in proteomics technologies, the impact of HBFP analysis in the search for clinically relevant disease biomarkers would be realized in the future.
Wang, Weixiong; Graziano, Francesca; Russo, Vittorio; Ulm, Arthur J; De Kee, Daniel; Khismatullin, Damir B
2013-01-01
The endovascular treatment of intracranial aneurysms remains a challenge, especially when the aneurysm is large in size and has irregular, non-spherical geometry. In this paper, we use computational fluid dynamics to simulate blood flow in a vertebro-basilar junction giant aneurysm for the following three cases: (1) an empty aneurysm, (2) an aneurysm filled with platinum coils, and (3) an aneurysm filled with a yield stress fluid material. In the computational model, blood and the coil-filled region are treated as a non-Newtonian fluid and an isotropic porous medium, respectively. The results show that yield stress fluids can be used for aneurysm embolization provided the yield stress value is 20 Pa or higher. Specifically, flow recirculation in the aneurysm and the size of the inflow jet impingement zone on the aneurysm wall are substantially reduced by yield stress fluid treatment. Overall, this study opens up the possibility of using yield stress fluids for effective embolization of large-volume intracranial aneurysms.
Quantitative Analysis of Trace Element Impurity Levels in Some Gem-Quality Diamonds
NASA Astrophysics Data System (ADS)
McNeill, J. C.; Klein-Bendavid, O.; Pearson, D. G.; Nowell, G. M.; Ottley, C. J.; Chinn, I.; Malarkey, J.
2009-05-01
Perhaps the most important information required to understand the origin of diamonds is the nature of the fluid that they crystallise from. Constraining the identity of the diamond-forming fluid for high purity gem diamonds is hampered by analytical challenges because of the very low analyte levels involved. Here we use a new ultra- low blank 'off-line' laser ablation method coupled to sector-field ICPMS for the quantitative analysis of fluid-poor gem diamonds. Ten diamonds comprised of both E- and P-type parageneses, from the Premier Mine, South Africa, were analysed for trace element abundances. We assume that the elemental signatures arise from low densities of sub-microscopic fluid inclusions that are analogous to the much higher densities of fluid inclusions commonly found within fluid-rich diamonds exhibiting fibrous growth. Repeatability of multiple (>20) blanks yielded consistently low values so that using the current procedure our limits of quantitation (10-ã blank) are <1pg for most trace elements, except for Sr, Zr, Ba, from 2-9pg and Pb ~30pg. Trace element patterns of the Premier diamond suite show enrichment of LREE over HREE. Abundances broadly decrease with increasing elemental compatibility. As a suite the chondrite normalised diamond patterns show negative Sr, Zr, Ti and Y anomalies and positive U, and Pb anomalies. All sample abundances are very depleted relative to chondrites (0.1 to 0.001X ch). HREE range from 0.1 to 1ppb as do Y, Nb, Cs. Other lighter elements vary from 2-30ppb. Pb reaches several ppb and Ti ranges from ppb values up to 2ppm. No significant difference were observed between the trace element systematics of the eclogitic and peridotitic diamonds. Overall, these initial data have inter-element fractionation patterns similar to those evident from fluid-rich fibrous diamonds and can be sued to infer that both types of diamond-forming fluids share a common origin.
Onsurathum, Sudarat; Haonon, Ornuma; Pinlaor, Porntip; Pairojkul, Chawalit; Khuntikeo, Narong; Thanan, Raynoo; Roytrakul, Sittiruk; Pinlaor, Somchai
2018-04-01
Tumor interstitial fluid contains tumor-specific proteins that may be useful biomarkers for cancers. In this study, we identified proteins present in cholangiocarcinoma interstitial fluid. Proteins derived from three samples of tumor interstitial fluid and paired samples of adjacent normal interstitial fluid from cholangiocarcinoma patients were subjected to two-dimensional liquid chromatography with tandem mass spectrometry. Candidate proteins were selected based on a greater than twofold change in expression levels between tumor interstitial fluid and normal interstitial fluid. Upregulation of six proteins in tumor interstitial fluid, including S100 calcium binding protein A6 (S100A6), S100 calcium binding protein A9, aldo-keto reductase family 1 member C4, neuropilin-1, 14-3-3 zeta/delta, and triosephosphate isomerase was assessed by western blot and immunohistochemistry. Their potential as markers was evaluated in human cholangiocarcinoma tissue arrays, and in serum using enzyme-linked immunosorbent assay. Expression of S100A6 was higher in tumor interstitial fluid than in normal interstitial fluid and showed the highest positive rate (98.96%) in cholangiocarcinoma tissues. Serum levels of S100A6 did not differ between cholangitis and cholangiocarcinoma patients, but were significantly higher than in healthy individuals ( p < 0.0001). In cholangiocarcinoma cases, S100A6 level was associated with vascular invasion ( p = 0.007) and could distinguish cholangiocarcinoma patients from healthy individuals as effectively as the carbohydrate antigen 19-9. In addition, potential for drug treatment targeting S100A6 and other candidate proteins was also demonstrated using STITCH analysis. In conclusion, proteomics analysis of tumor interstitial fluid could be a new approach for biomarker discovery, and S100A6 is a potential risk marker for screening of cholangiocarcinoma.
Ares I-X Post Flight Ignition Overpressure Review
NASA Technical Reports Server (NTRS)
Alvord, David A.
2010-01-01
Ignition Overpressure (IOP) is an unsteady fluid flow and acoustic phenomena caused by the rapid expansion of gas from the rocket nozzle within a ducted launching space resulting in an initially higher amplitude pressure wave. This wave is potentially dangerous to the structural integrity of the vehicle. An in-depth look at the IOP environments resulting from the Ares I-X Solid Rocket Booster configuration showed high correlation between the pre-flight predictions and post-flight analysis results. Correlation between the chamber pressure and IOP transients showed successful acoustic mitigation, containing the strongest IOP waves below the Mobile Launch Pad deck. The flight data allowed subsequent verification and validation of Ares I-X unsteady fluid ducted launcher predictions, computational fluid dynamic models, and strong correlation with historical Shuttle data.
NASA Astrophysics Data System (ADS)
Il'ichev, A. T.; Savin, A. S.
2017-12-01
We consider a planar evolution problem for perturbations of the ice cover by a dipole starting its uniform rectilinear horizontal motion in a column of an initially stationary fluid. Using asymptotic Fourier analysis, we show that at supercritical velocities, waves of two types form on the water-ice interface. We describe the process of establishing these waves during the dipole motion. We assume that the fluid is ideal and incompressible and its motion is potential. The ice cover is modeled by the Kirchhoff-Love plate.
Fluid Stochastic Petri Nets: Theory, Applications, and Solution
NASA Technical Reports Server (NTRS)
Horton, Graham; Kulkarni, Vidyadhar G.; Nicol, David M.; Trivedi, Kishor S.
1996-01-01
In this paper we introduce a new class of stochastic Petri nets in which one or more places can hold fluid rather than discrete tokens. We define a class of fluid stochastic Petri nets in such a way that the discrete and continuous portions may affect each other. Following this definition we provide equations for their transient and steady-state behavior. We present several examples showing the utility of the construct in communication network modeling and reliability analysis, and discuss important special cases. We then discuss numerical methods for computing the transient behavior of such nets. Finally, some numerical examples are presented.
Comparison of reproducibility of natural head position using two methods.
Khan, Abdul Rahim; Rajesh, R N G; Dinesh, M R; Sanjay, N; Girish, K S; Venkataraghavan, Karthik
2012-01-01
Lateral cephalometric radiographs have become virtually indispensable to orthodontists in the treatment of patients. They are important in orthodontic growth analysis, diagnosis, treatment planning, monitoring of therapy and evaluation of final treatment outcome. The purpose of this study was to evaluate and compare the maximum reproducibility with minimum variation of natural head position using two methods, i.e. the mirror method and the fluid level device method. The study included two sets of 40 lateral cephalograms taken using two methods of obtaining natural head position: (1) The mirror method and (2) fluid level device method, with a time interval of 2 months. Inclusion criteria • Subjects were randomly selected aged between 18 to 26 years Exclusion criteria • History of orthodontic treatment • Any history of respiratory tract problem or chronic mouth breathing • Any congenital deformity • History of traumatically-induced deformity • History of myofacial pain syndrome • Any previous history of head and neck surgery. The result showed that both the methods for obtaining natural head position-the mirror method and fluid level device method were comparable, but maximum reproducibility was more with the fluid level device as shown by the Dahlberg's coefficient and Bland-Altman plot. The minimum variance was seen with the fluid level device method as shown by Precision and Pearson correlation. The mirror method and the fluid level device method used for obtaining natural head position were comparable without any significance, and the fluid level device method was more reproducible and showed less variance when compared to mirror method for obtaining natural head position. Fluid level device method was more reproducible and shows less variance when compared to mirror method for obtaining natural head position.
NASA Astrophysics Data System (ADS)
Bilal, S.; Rehman, Khalil Ur; Jamil, Hamayun; Malik, M. Y.; Salahuddin, T.
2016-12-01
An attempt has been constructed in the communication to envision heat and mass transfer characteristics of viscous fluid over a vertically rotating cone. Thermal transport in the fluid flow is anticipated in the presence of viscous dissipation. Whereas, concentration of fluid particles is contemplated by incorporating the diffusion-thermo (Dufour) and thermo-diffusion (Soret) effects. The governing equations for concerning problem is first modelled and then nondimensionalized by implementing compatible transformations. The utilization of these transformations yields ordinary differential system which is computed analytically through homotopic procedure. Impact of velocity, temperature and concentration profiles are presented through fascinating graphics. The influence of various pertinent parameters on skin friction coefficient, Nusselt number and Sherwood number are interpreted through graphical and tabular display. After comprehensive examination of analysis, it is concluded that temperature of fluid deescalates for growing values of Soret parameter whereas it shows inciting attitude towards Dufour parameter and similar agreement is observed for the behavior of concentration profile with respect to these parameters. Furthermore, the affirmation of present work is established by developing comparison with previously published literature. An excellent agreement is found which shows the credibility and assurance of present analysis.
None, None
2017-05-05
A generalized, intuitive two-fluid picture of 2D non-driven collisionless magnetic reconnection is described using results from a full-3D numerical simulation. The relevant two-fluid equations simplify to the condition that the flux associated with canonical circulation Q=m e∇×u e+q eB is perfectly frozen into the electron fluid. In the reconnection geometry, flux tubes defined by Q are convected with the central electron current, effectively stretching the tubes and increasing the magnitude of Q exponentially. This, coupled with the fact that Q is a sum of two quantities, explains how the magnetic fields in the reconnection region reconnect and give rise tomore » strong electron acceleration. The Q motion provides an interpretation for other phenomena as well, such as spiked central electron current filaments. The simulated reconnection rate was found to agree with a previous analytical calculation having the same geometry. Energy analysis shows that the magnetic energy is converted and propagated mainly in the form of the Poynting flux, and helicity analysis shows that the canonical helicity ∫P·Q dV as a whole must be considered when analyzing reconnection. A mechanism for whistler wave generation and propagation is also described, with comparisons to recent spacecraft observations.« less
Identifying Malignant Pleural Effusion by A Cancer Ratio (Serum LDH: Pleural Fluid ADA Ratio).
Verma, Akash; Abisheganaden, John; Light, R W
2016-02-01
We studied the diagnostic potential of serum lactate dehydrogenase (LDH) in malignant pleural effusion. Retrospective analysis of patients hospitalized with exudative pleural effusion in 2013. Serum LDH and serum LDH: pleural fluid ADA ratio was significantly higher in cancer patients presenting with exudative pleural effusion. In multivariate logistic regression analysis, pleural fluid ADA was negatively correlated 0.62 (0.45-0.85, p = 0.003) with malignancy, whereas serum LDH 1.02 (1.0-1.03, p = 0.004) and serum LDH: pleural fluid ADA ratio 0.94 (0.99-1.0, p = 0.04) was correlated positively with malignant pleural effusion. For serum LDH: pleural fluid ADA ratio, a cut-off level of >20 showed sensitivity, specificity of 0.98 (95 % CI 0.92-0.99) and 0.94 (95 % CI 0.83-0.98), respectively. The positive likelihood ratio was 32.6 (95 % CI 10.7-99.6), while the negative likelihood ratio at this cut-off was 0.03 (95 % CI 0.01-0.15). Higher serum LDH and serum LDH: pleural fluid ADA ratio in patients presenting with exudative pleural effusion can distinguish between malignant and non-malignant effusion on the first day of hospitalization. The cut-off level for serum LDH: pleural fluid ADA ratio of >20 is highly predictive of malignancy in patients with exudative pleural effusion (whether lymphocytic or neutrophilic) with high sensitivity and specificity.
NASA Astrophysics Data System (ADS)
Sondari, Dewi; Irawadi, Tun Tedja; Setyaningsih, Dwi; Tursiloadi, Silvester
2017-11-01
Supercritical fluid extraction of Zingiber officinale Roscoe has been carried out at a pressure of 16 MPa, with temperatures between 20-40 °C, during extraction time of 6 hours and the flow rate of CO2 fluid 5.5 ml/min. The result of supercritical method was compared with the extraction maceration using a mixture of water and ethanol (70% v/v) for 24 hours. The main content in ginger that has a main role as an antioxidant is a gingerol compound that can help neutralize the damaging effects caused by free radicals in the body, as anti-coagulant, and inhibit the occurrence of blood clots. This study aims to determine the effect of temperature on chemical components contained in rough extract of Zingiber officinale Roscoe and its antioxidant activity, total phenol and total flavonoid content. To determine the chemical components contained in the crude extract of Zingiber officinale Roscoe extracted by supercritical fluid and maceration extraction, GC-MS analysis was performed. Meanwhile, the antioxidant activity of the extract was evaluated based on a 2.2-diphenyl-1-picrylhydrazyl (DPPH) free radical damping method. The results of the analysis show that the result of ginger extract by using the supercritical CO2 extraction method has high antioxidant activity than by using maceration method. The highest total phenol content and total flavonoids were obtained on ginger extraction using supercritical CO2 fluid extraction, indicating that phenol and flavonoid compounds contribute to antioxidant activity. Chromatographic analysis showed that the chemical profile of ginger extract containing oxygenated monoterpenes, monoterpene hydrocarbons, sesquiterpene hydrocarbons, oxygenated monoterpene gingerol and esters. In supercritical fluid extraction, the compounds that can be identified at a temperature of 20-40 °C contain 27 compounds, and 11 compounds from the result of maceration extract. The main component of Zingiber officinale Roscoe extracted using supercritical fluid at a temperature of 40 °C is Hexanal (6.04%), Butan-2-one, 4-(3-hydroxy-2-methoxyphenyl) (27.95%), [6]-Paradol (0.73%), Gingerol (8.22%), Bis (2-ethylhexyl) phthalate (1.62%), α-Citral (12.14%) and α-zingiberene (2.90%). The main component extracts of Zingiber officinale Roscoe by maceration is Hexanal (10.71%), Decanal (3.74%), Butan-2-one, 4-(3-hydroxy-2-methoxyphenyl) (38.33%), Gingerol (4.56%) and Zingiberene (0.99).
NASA Astrophysics Data System (ADS)
Zhu, Minjie; Scott, Michael H.
2017-07-01
Accurate and efficient response sensitivities for fluid-structure interaction (FSI) simulations are important for assessing the uncertain response of coastal and off-shore structures to hydrodynamic loading. To compute gradients efficiently via the direct differentiation method (DDM) for the fully incompressible fluid formulation, approximations of the sensitivity equations are necessary, leading to inaccuracies of the computed gradients when the geometry of the fluid mesh changes rapidly between successive time steps or the fluid viscosity is nonzero. To maintain accuracy of the sensitivity computations, a quasi-incompressible fluid is assumed for the response analysis of FSI using the particle finite element method and DDM is applied to this formulation, resulting in linearized equations for the response sensitivity that are consistent with those used to compute the response. Both the response and the response sensitivity can be solved using the same unified fractional step method. FSI simulations show that although the response using the quasi-incompressible and incompressible fluid formulations is similar, only the quasi-incompressible approach gives accurate response sensitivity for viscous, turbulent flows regardless of time step size.
Electrically tunable negative refraction in core/shell-structured nanorod fluids.
Su, Zhaoxian; Yin, Jianbo; Guan, Yanqing; Zhao, Xiaopeng
2014-10-21
We theoretically investigate optical refraction behavior in a fluid system which contains silica-coated gold nanorods dispersed in silicone oil under an external electric field. Because of the formation of a chain-like or lattice-like structure of dispersed nanorods along the electric field, the fluid shows a hyperbolic equifrequency contour characteristic and, as a result, all-angle broadband optical negative refraction for transverse magnetic wave propagation can be realized. We calculate the effective permittivity tensor of the fluid and verify the analysis using finite element simulations. We also find that the negative refractive index can vary with the electric field strength and external field distribution. Under a non-uniform external field, the gradient refraction behavior can be realized.
Fluid Registration of Diffusion Tensor Images Using Information Theory
Chiang, Ming-Chang; Leow, Alex D.; Klunder, Andrea D.; Dutton, Rebecca A.; Barysheva, Marina; Rose, Stephen E.; McMahon, Katie L.; de Zubicaray, Greig I.; Toga, Arthur W.; Thompson, Paul M.
2008-01-01
We apply an information-theoretic cost metric, the symmetrized Kullback-Leibler (sKL) divergence, or J-divergence, to fluid registration of diffusion tensor images. The difference between diffusion tensors is quantified based on the sKL-divergence of their associated probability density functions (PDFs). Three-dimensional DTI data from 34 subjects were fluidly registered to an optimized target image. To allow large image deformations but preserve image topology, we regularized the flow with a large-deformation diffeomorphic mapping based on the kinematics of a Navier-Stokes fluid. A driving force was developed to minimize the J-divergence between the deforming source and target diffusion functions, while reorienting the flowing tensors to preserve fiber topography. In initial experiments, we showed that the sKL-divergence based on full diffusion PDFs is adaptable to higher-order diffusion models, such as high angular resolution diffusion imaging (HARDI). The sKL-divergence was sensitive to subtle differences between two diffusivity profiles, showing promise for nonlinear registration applications and multisubject statistical analysis of HARDI data. PMID:18390342
Stelten, Bianca Ml; Venhovens, Jeroen; van der Velden, Lieven Bj; Meulstee, Jan; Verhagen, Wim Im
2016-11-01
Introduction The syndrome of transient headache and neurological deficits with cerebrospinal fluid lymphocytosis (HaNDL) is a diagnosis made by exclusion. In the literature, different etiological explanations are proposed for HaNDL, including an immune-mediated reaction after a viral infection. Case description We present a case of a 23-year-old woman with several episodes of transient headache, neurological deficits and cerebrospinal fluid lymphocytosis. All diagnostic criteria for the HaNDL syndrome were fulfilled; however, additional cerebrospinal fluid analysis showed a positive polymerase chain reaction (PCR) for human herpes virus type 7 (HHV-7). Discussion The possible role of a (prodromal) viral infection in the etiology of HaNDL is discussed. Also the role of electroencephalography (EEG) recordings is discussed. Serial EEG recordings showed generalized slowing, frontal intermittent rhythmic delta activity (FIRDA) and symmetric triphasic frontal waves with a dilation lag.
NASA Astrophysics Data System (ADS)
Zheng, Chang-Jun; Bi, Chuan-Xing; Zhang, Chuanzeng; Gao, Hai-Feng; Chen, Hai-Bo
2018-04-01
The vibration behavior of thin elastic structures can be noticeably influenced by the surrounding water, which represents a kind of heavy fluid. Since the feedback of the acoustic pressure onto the structure cannot be neglected in this case, a strong coupled scheme between the structural and fluid domains is usually required. In this work, a coupled finite element and boundary element (FE-BE) solver is developed for the free vibration analysis of structures submerged in an infinite fluid domain or a semi-infinite fluid domain with a free water surface. The structure is modeled by the finite element method (FEM). The compressibility of the fluid is taken into account, and hence the Helmholtz equation serves as the governing equation of the fluid domain. The boundary element method (BEM) is employed to model the fluid domain, and a boundary integral formulation with a half-space fundamental solution is used to satisfy the Dirichlet boundary condition on the free water surface exactly. The resulting nonlinear eigenvalue problem (NEVP) is converted into a small linear one by using a contour integral method. Adequate modifications are suggested to improve the efficiency of the contour integral method and avoid missing the eigenfrequencies of interest. The Burton-Miller method is used to filter out the fictitious eigenfrequencies of the boundary integral formulations. Numerical examples are given to demonstrate the accuracy and applicability of the developed eigensolver, and also show that the fluid-loading effect strongly depends on both the water depth and the mode shapes.
The change in orientation of subsidiary shears near faults containing pore fluid under high pressure
Byerlee, J.
1992-01-01
Byerlee, J., 1992. The change in orientation of subsidiary shears near faults containing pore fluid under high pressure. In: T. Mikumo, K. Aki, M. Ohnaka, L.J. Ruff and P.K.P. Spudich (Editors), Earthquake Source Physics and Earthquake Precursors. Tectonophysics, 211: 295-303. The mechanical effects of a fault containing near-lithostatic fluid pressure in which fluid pressure decreases monotonically from the core of the fault zone to the adjacent country rock is considered. This fluid pressure distribution has mechanical implications for the orientation of subsidiary shears around a fault. Analysis shows that the maximum principal stress is oriented at a high angle to the fault in the country rock where the pore pressure is hydrostatic, and rotates to 45?? to the fault within the fault zone where the pore pressure is much higher. This analysis suggests that on the San Andreas fault, where heat flow constraints require that the coefficient of friction for slip on the fault be less than 0.1, the pore fluid pressure on the main fault is 85% of the lithostatic pressure. The observed geometry of the subsidiary shears in the creeping section of the San Andreas are broadly consistent with this model, with differences that may be due to the heterogeneous nature of the fault. ?? 1992.
NASA Astrophysics Data System (ADS)
Sarma, Rajkumar; Deka, Nabajit; Sarma, Kuldeep; Mondal, Pranab Kumar
2018-06-01
We present a mathematical model to study the electroosmotic flow of a viscoelastic fluid in a parallel plate microchannel with a high zeta potential, taking hydrodynamic slippage at the walls into account in the underlying analysis. We use the simplified Phan-Thien-Tanner (s-PTT) constitutive relationships to describe the rheological behavior of the viscoelastic fluid, while Navier's slip law is employed to model the interfacial hydrodynamic slip. Here, we derive analytical solutions for the potential distribution, flow velocity, and volumetric flow rate based on the complete Poisson-Boltzmann equation (without considering the frequently used Debye-Hückel linear approximation). For the underlying electrokinetic transport, this investigation primarily reveals the influence of fluid rheology, wall zeta potential as modulated by the interfacial electrochemistry and interfacial slip on the velocity distribution, volumetric flow rate, and fluid stress, as well as the apparent viscosity. We show that combined with the viscoelasticity of the fluid, a higher wall zeta potential and slip coefficient lead to a phenomenal enhancement in the volumetric flow rate. We believe that this analysis, besides providing a deep theoretical insight to interpret the transport process, will also serve as a fundamental design tool for microfluidic devices/systems under electrokinetic influence.
Fluid-rock Interactions recorded in Serpentinites subducted to 60-80 km Depth
NASA Astrophysics Data System (ADS)
Peters, D.; John, T.; Scambelluri, M.; Pettke, D. T.
2016-12-01
The HP metamorphic serpentinised peridotites of Erro-Tobbio (ET, Italy) offer a unique possibility to study fluid-rock interactions in subducted ultrabasic rocks that reached 550-650°C at 2-2.5 GPa. They contain metamorphic olivine + Ti-clinohumite in both the serpentinite matrix and veins cutting the rock foliation, interpreted to represent partial serpentinite dehydration fluid pathways [1,2] being variably retrogressed as e.g., indicated by chrysotile/lizardite mesh textures in vein olivine in strongly altered samples. This study aims to constraining the origin of fluid(s) and the scale(s) of fluid-rock interaction based on major to trace element systematics employing detailed bulk rock (nanoparticulate pressed powder pellet LA-ICP-MS [3] and ion chromatography / liquid ICP-MS analysis), and in situ mineral analysis (work in progress). Bulk data show moderate fluid-mobile element (FME) enrichment for Cs, Rb, Ba, Pb, As, and Sb (up to 100 times primitive mantle (PM)), W (1000 PM), and B (10000 PM). Alkali over U ratios of compiled serpentinite data (n ˜ 620) reveal distinctive global FME enrichment trends for MOR vs. forearc (FA) serpentinisation. ET serpentinites fall into the latter, indicating both sediment-equilibrated fluids and the preservation of characteristic FME enrichment patterns in HP serpentinites. Petrography reveals a multiphase evolution of the HP veins including retrograde serpentinisation, whereas serpentinite hosts have remained largely unaffected by retrogression. Comparison of vein vs. wall rock bulk data indicate vein-forming fluids in equilibrium with wall rocks, however, without evidence for external fluid ingress. The preservation of multiple fluid-rock interaction episodes and the lack of external fluid ingress in the ET HP serpentinites indicate near-closed system behaviour throughout subduction and imprint of characteristic fluid signatures onto the mantle. [1] Scambelluri et al. (1995) Geology, 23, 459-462. [2] John et al. (2011) Earth Planet Sci Lett 308, 65-76. [3] Peters and Pettke (2016) GGR, DOI: 10.1111/ggr.12125.
Karaer, Abdullah; Tuncay, Gorkem; Mumcu, Akın; Dogan, Berat
2018-05-28
The purpose of this study was to investigate whether a change in the follicular fluid metabolomics profile due to endometrioma is identifiable. Twelve women with ovarian endometriosis (aged<40 years, with a body mass index [BMI] of <30 kg/m 2 ) and 12 age- and BMI-matched controls (women with infertility purely due to a male factor) underwent ovarian stimulation for intracytoplasmic sperm injection (ICSI). Follicular fluid samples were collected from both of groups at the time of oocyte retrieval for ICSI. Next, nuclear magnetic resonance (NMR) spectroscopy was performed for the collected follicular fluids. The metabolic compositions of the follicular fluids were then compared using univariate and multivariate statistical analyses of NMR data. Univariate and multivariate statistical analyses of NMR data showed that the metabolomic profiles of the follicular fluids obtained from the women with ovarian endometriosis were distinctly different from those obtained from the control group. In comparison with the controls, the follicular fluids of the women with ovarian endometriosis had statistically significant elevated levels of lactate, β-glucose, pyruvate, and valine. We conclude that the levels of lactate, β-glucose, pyruvate, and valine in the follicular fluid of the women with endometrioma were higher than those of the controls. ASRM: American Society for Reproductive Medicine; BMI: body mass index; CPMG: Carr-Purcell-Meiboom-Gill; E 2 : estradiol; ESHRE: European Society of Human Reproduction and Embryology; ERETIC: electronic to access in vivo concentration; FF: follicular fluid; FSH: follicle-stimulating hormone; hCG: human chorionic gonadotropin; HEPES: 2-hydroxyethyl-1-piperazineethanesulfonic acid; ICSI: intracytoplasmic sperm injection; IVF: in vitro fertilization; NMR: nuclear magnetic resonance spectroscopy; PCA: principal component analysis; PCOS: polycystic ovary syndrome; PLS-DA: partial least squares discriminant analysis; ppm: parts per million; PULCON: pulse length-based concentration determination; TSP: 3-(trimethylsilyl)-1-propanesulfonic acid sodium salt; VIP: variable importance in projection.
NASA Astrophysics Data System (ADS)
Sánchez, D.; Muñoz de Escalona, J. M.; Monje, B.; Chacartegui, R.; Sánchez, T.
This article presents a novel proposal for complex hybrid systems comprising high temperature fuel cells and thermal engines. In this case, the system is composed by a molten carbonate fuel cell with cascaded hot air turbine and Organic Rankine Cycle (ORC), a layout that is based on subsequent waste heat recovery for additional power production. The work will credit that it is possible to achieve 60% efficiency even if the fuel cell operates at atmospheric pressure. The first part of the analysis focuses on selecting the working fluid of the Organic Rankine Cycle. After a thermodynamic optimisation, toluene turns out to be the most efficient fluid in terms of cycle performance. However, it is also detected that the performance of the heat recovery vapour generator is equally important, what makes R245fa be the most interesting fluid due to its balanced thermal and HRVG efficiencies that yield the highest global bottoming cycle efficiency. When this fluid is employed in the compound system, conservative operating conditions permit achieving 60% global system efficiency, therefore accomplishing the initial objective set up in the work. A simultaneous optimisation of gas turbine (pressure ratio) and ORC (live vapour pressure) is then presented, to check if the previous results are improved or if the fluid of choice must be replaced. Eventually, even if system performance improves for some fluids, it is concluded that (i) R245fa is the most efficient fluid and (ii) the operating conditions considered in the previous analysis are still valid. The work concludes with an assessment about safety-related aspects of using hydrocarbons in the system. Flammability is studied, showing that R245fa is the most interesting fluid also in this regard due to its inert behaviour, as opposed to the other fluids under consideration all of which are highly flammable.
NASA Astrophysics Data System (ADS)
Lawal, S. A.; Choudhury, I. A.; Nukman, Y.
2015-01-01
The understanding of cutting fluids performance in turning process is very important in order to improve the efficiency of the process. This efficiency can be determined based on certain process parameters such as flank wear, cutting forces developed, temperature developed at the tool chip interface, surface roughness on the work piece, etc. In this study, the objective is to determine the influence of cutting fluids on flank wear during turning of AISI 4340 with coated carbide inserts. The performances of three types of cutting fluids were compared using Taguchi experimental method. The results show that palm kernel oil based cutting fluids performed better than the other two cutting fluids in reducing flank wear. Mathematical models for cutting parameters such as cutting speed, feed rate, depth of cut and cutting fluids were obtained from regression analysis using MINITAB 14 software to predict flank wear. Experiments were conducted based on the optimized values to validate the regression equations for flank wear and 5.82 % error was obtained. The optimal cutting parameters for the flank wear using S/N ratio were 160 m/min of cutting speed (level 1), 0.18 mm/rev of feed (level 1), 1.75 mm of depth of cut (level 2) and 2.97 mm2/s palm kernel oil based cutting fluid (level 3). ANOVA shows cutting speed of 85.36 %; and feed rate 4.81 %) as significant factors.
NASA Astrophysics Data System (ADS)
Peng, Ning-Jun; Jiang, Shao-Yong; Xiong, Suo-Fei; Pi, Dao-Hui
2018-02-01
The Dalingshang W-Cu deposit is located in the North section of the Dahutang ore field, northern Jiangxi Province, South China. Vein- and breccia-style tungsten-copper mineralization is genetically associated with Mesozoic S-type granitic rocks. Infrared and conventional microthermometric studies of both gangue and ore minerals show that the homogenization temperatures for primary fluid inclusions in wolframite ( 340 °C) are similar to those in scheelite ( 330 °C), but about 40 °C higher than those of apatite ( 300 °C) and generally 70 °C higher than those in coexisting quartz ( 270 °C). Laser Raman analysis identifies CH4 and N2 without CO2 in fluid inclusions in scheelite and coexisting quartz, while fluid inclusions in quartz of the sulfide stage have variable CO2 content. The ore-forming fluids overall are characterized by high- to medium-temperature, low-salinity, CH4, N2, and/or CO2-bearing aqueous fluids. Chalcopyrite, muscovite, and sphalerite are the most abundant solids recognized in fluid inclusions from different ores. The H-O-S-Pb isotope compositions favor a dominantly magmatic origin for ores and fluids, while some depleted δ34S values (- 14.4 to - 0.9‰) of sulfides from the sulfide stage are most likely produced by an increase of oxygen fugacity, possibly caused by inflow of oxidized meteoric waters. The microthermometric data also indicate that a simple cooling process formed early scheelite and wolframite. However, increasing involvement of meteoric waters and fluid mixing may trigger a successive deposition of base metal sulfides. Fluid-rock interaction was critical for scheelite mineralization as indicated by in-situ LA-ICP-MS analysis of trace elements in scheelite.
Zhou, Dengbo; Jing, Tao; Tan, Xin; Chen, Bo; Zhang, Xiyan; Gao, Zhufen
2013-08-04
The objective of the present study is to elucidate the effects of the application of cake fertilizer fermentation fluid with antagonistic bacteria and soil disinfectant chlorine dioxide on the occurrence of banana fusarium wilt disease and soil bacterium community. Under the field cultivation conditions, the Biolog and T-RFLP method was used to investigate the soil bacterium diversity and community features in different treatments at different periods. The results show that both cake fertilizer fermentation fluid with antagonistic bacteria and soil disinfectant could reduce disease index of banana fusarium wilt disease significantly, the highest control effect could reach 60.82% with the combined application of these two methods. The result of Biolog eco plate shows that the application of cake fertilizer fermentation fluid with antagonistic bacteria could improve soil microbial AWCD (average well color development) and population uniformity, the use of soil disinfectant significantly reduced the soil microbial population's abundance and the uniformity. Principal component analysis shows that the soil microbial population using carbon source had an increasing trend throughout the banana growing season, the main carbon sources in the early stage were amino acids, carboxylic acids, amphiphilic compounds and carbohydrates, and the increased main carbon sources in the later stage were carboxylic acids and amphiphilic compounds. Soil bacterial diversity analysis by T-RFLP shows that the treatments of cake fertilizer fermentation fluid with antagonistic bacteria had the highest bacterial TRFs (Terminal restriction fragment) fragments, which resulted from the increase of Flavobacterium, Pseudomona and Lactobacillus population in the soil. The application of cake fertilizer fermentation fluid with antagonistic bacteria combining soil disinfectant could increase antagonistic microorganisms species, enhance soil microbial diversity, improve soil microbial ecological structure on the basis of reducing pathogen in soil, finally achieve the goal of improving the control effects of banana fusarium wilt disease.
Prati, Carlo; Siboni, Francesco; Polimeni, Antonella; Bossu, Maurizio; Gandolfi, Maria Giovanna
2014-12-30
The sealing of wide-open apex roots is still a challenge and requires the use of apical barrier techniques. The aim was to evaluate ex vivo the sealing and the apical morphology of 3 commercial calcium oxide (CaO)-containing sealers - namely, 2 zinc oxide-based (CRCS and Sealapex) and a calcium silicate MTA-based (TechBiosealer Endo) - placed in wet root canals with artificial wide-open apices. Thirty human single-rooted teeth were shaped with Protaper and an artificial open apex (diameter size 110) was created. Each root was inserted in a custom-designed support containing simulated body fluid (Hank's balanced salt solution, HBSS) at the bottom simulating the presence of periapical fluid in the canal. Each sealer (TechBiosealer Endo, CRCS, Sealapex) was compacted to the apical 5 mm and the filled roots stored in HBSS at 37°C. The sealing was evaluated as microinfiltrated fluid since 24 hours up to 6 months using a high-precision digital fluid flow meter. The sealers were also studied for setting time in HBSS, calcium releasing (statistical analysis by 2-way ANOVA followed by Student-Newman-Keuls test, P<0.05) and surface morpho-chemistry by ESEM-EDX and OM analysis. All sealers showed a stable seal. TechBiosealer Endo maintained a better seal than the other materials (P<0.05) and ESEM-EDX and OM analyses showed the presence of apatite deposits. The clinical use of hydraulic hydrophilic MTA-based sealers can be recommended to stop/reduce the fluid flow rate through the apex. The artificial apical barrier in wet wide apices is a suitable technique able to seal wet root canals.
Pattern Formation in Complex Fluids
NASA Astrophysics Data System (ADS)
Shelley, Michael
2000-03-01
Classical fluid instabilities -- such as the Saffman-Taylor instability in a Hele-Shaw cell -- are dramatically modified by using complex fluids. For example, polymeric liquids driven in a Hele-Shaw cell yield "dendritic" patterns with an apparent directional anisotropy. The dynamics of complex liquids can also lead to new instabilities and patterns, such as space-filling patterns formed by successive bucklings of growing "elastica" seen in the phase transition of a liquid crystalline material. Understanding such problems requires an interplay between physical modeling, mathematical analysis, and sophisticated nonlinear simulation. For the first problem, I will discuss a non-Newtonian version of Darcy's law for Hele-Shaw flow. This yields a free-boundary problem for the pattern formation, and requires the solution of a nonlinear elliptic equation in a time-dependent domain. This is pushing the development of adaptive grid methods that represent the geometry accurately and efficiently. Our simulations yield insight into how shear-thinning, as is evinced by polymeric liquids, can produce patterns reminiscent of experiment, with "dendritic fingers", side-branching, and reduced tip-splitting. In the second problem, a long filament in a smectic-A phase grows within an isotropic fluid. The splay deformation of the material gives this filament an elastic response. The macroscopic model describes the dynamics of a growing, elastic filament immersed in a Stokesian fluid. The model marries filament elasticity and tensile forces with a numerically tractable nonlocal slender-body theory. Analysis shows that growth of the filament, despite fluid drag, produces a buckling instability. When coupled to a nonlocal hydrodynamic self-interaction, our fully nonlinear simulations show that such instabilities iterate along the filament, and give "space-filling" patterns.
Quantification of oil and water in preserved reservoir rock by NMR spectroscopy and imaging.
Davies, S; Hardwick, A; Roberts, D; Spowage, K; Packer, K J
1994-01-01
Reservoir rock analysis by proton NMR requires separation of the response into brine and crude oil components. Tests on preserved core from a North Sea chalk reservoir show that spin-lattice relaxation time distributions can be used to distinguish the two fluids. NMR estimates of oil and water saturations for 1.5" diameter core examined in a 10 MHz Bruker Minispec spectrometer closely match fluid contents determined by distillation. The spin-lattice relaxation contrast mechanism developed for core samples can be applied in the quantitative analysis of NMR images. The relaxation data are compared with data from chemical shift imaging on the same core sample. The results indicate that it will be possible to monitor changes in fluid distributions, in this and similar systems, under dynamic conditions such as in a waterflood.
Viscosity and non-Newtonian features of thickened fluids used for dysphagia therapy.
O'Leary, Mark; Hanson, Ben; Smith, Christina
2010-08-01
Thickening agents based primarily on granulated maize starch are widely used in the care of patients with swallowing difficulties, increasing viscosity of consumed fluids. This slows bolus flow during swallowing, allowing airway protection to be more properly engaged. Thickened fluids have been shown to exhibit time-varying behavior and are non-Newtonian, complicating assessment of fluid thickness, potentially compromising efficacy of therapy. This work aimed to quantify the flow properties of fluids produced with commercial thickeners at shear rates representative of slow tipping in a beaker to fast swallowing. Results were presented as indices calculated using a power-law model representing apparent viscosity (consistency index) and non-Newtonian nature of flow (flow behavior index). Immediately following mixing, 3 fluid thicknesses showed distinct consistency indices and decreasing flow behavior index with increasing thickener concentration. An increase in consistency index over 30 min was observed, but only for samples that were repeatedly sheared during acquisition. Three-hour measurements showed changes in consistency index across fluids with the largest being a 25% rise from initial value. This may have implications for efficacy of treatment, as fluids are not always consumed immediately upon mixing. Flow behavior indices were comparable across thickeners exhibiting similar rises over time. The indices were a more complete method of quantifying flow properties compared with single viscosity measurements, allowing an increased depth of analysis. The non-Newtonian nature of fluids perhaps renders them particularly suitable for use as dysphagia therapies, and such analysis may allow the possibility of altering these properties to optimize therapeutic efficacy to be explored. Practical Application: Effective treatment of swallowing disorders relies upon the appropriate choice and subsequent reproduction of drinks thickened to one of a number of predetermined levels. Currently there are no agreed methods of measuring the thickness of these drinks in use and the specifications are subjective, relying on descriptions such as "syrup" thick. This research aims to further understanding of the flow properties of thickened drinks and bring a quantified measure of thickness closer to being a practical reality.
Xu, Han-Yan; Li, Cheng-Ye; Su, Shan-Shan; Yang, Li; Ye, Min; Ye, Jun-Ru; Ke, Pei-Pei; Chen, Cheng-Shui; Xie, Yu-Peng; Li, Yu-Ping
2017-11-01
The aim of this study was to identify the optimal cut-off value of T cell enzyme-linked immunospot assay for tuberculosis (T-SPOT.TB) and evaluate its diagnostic performance alone (in the peripheral blood) or in combination with the adenosine deaminase (ADA) activity test (in peripheral blood and the pleural fluid) in patients with tuberculous pleurisy.Adult patients presenting with pleural effusion were included in this prospective cohort study. Tuberculous pleurisy was diagnosed by T-SPOT.TB in peripheral blood and a combination of T-SPOT.TB and ADA activity test in pleural fluid and peripheral blood. Receiver operating characteristic (ROC) curve in combination with multivariate logistic regression was used to evaluate the diagnostic performance of the assays.Among a total of 189 patients with suspected tuberculous pleurisy who were prospectively enrolled in this study, 177 patients were validated for inclusion in the final analysis. ROC analysis revealed that the area under the ROC curve (AUC) for T-SPOT.TB in pleural fluid and peripheral blood was 0.918 and 0.881, respectively, and for the ADA activity test in pleural fluid was 0.944. In addition, 95.5 spot-forming cells (SFCs)/2.5 × 10 cells were determined as the optimal cut-off value for T-SPOT.TB in pleural fluid. Parallel combination of T-SPOT.TB and ADA activity test in pleural fluid showed increased sensitivity (96.9%) and specificity (87.5%), whereas serial combination showed increased specificity (97.5%). The combination of 3 assays had the highest sensitivity at 97.9%, with an AUC value of 0.964.T-SPOT.TB in pleural fluid performed better than that in peripheral blood and the ADA activity test in pleural fluid for tuberculous pleurisy diagnosis. The optimal cut-off value of T-SPOT.TB in pleural fluid was 95.5 SFCs/2.5 × 10 cells. Combination of 3 assays might be a promising approach for tuberculous pleurisy diagnosis. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.
Xu, Han-Yan; Li, Cheng-Ye; Su, Shan-Shan; Yang, Li; Ye, Min; Ye, Jun-Ru; Ke, Pei-Pei; Chen, Cheng-Shui; Xie, Yu-Peng; Li, Yu-Ping
2017-01-01
Abstract The aim of this study was to identify the optimal cut-off value of T cell enzyme-linked immunospot assay for tuberculosis (T-SPOT.TB) and evaluate its diagnostic performance alone (in the peripheral blood) or in combination with the adenosine deaminase (ADA) activity test (in peripheral blood and the pleural fluid) in patients with tuberculous pleurisy. Adult patients presenting with pleural effusion were included in this prospective cohort study. Tuberculous pleurisy was diagnosed by T-SPOT.TB in peripheral blood and a combination of T-SPOT.TB and ADA activity test in pleural fluid and peripheral blood. Receiver operating characteristic (ROC) curve in combination with multivariate logistic regression was used to evaluate the diagnostic performance of the assays. Among a total of 189 patients with suspected tuberculous pleurisy who were prospectively enrolled in this study, 177 patients were validated for inclusion in the final analysis. ROC analysis revealed that the area under the ROC curve (AUC) for T-SPOT.TB in pleural fluid and peripheral blood was 0.918 and 0.881, respectively, and for the ADA activity test in pleural fluid was 0.944. In addition, 95.5 spot-forming cells (SFCs)/2.5 × 105 cells were determined as the optimal cut-off value for T-SPOT.TB in pleural fluid. Parallel combination of T-SPOT.TB and ADA activity test in pleural fluid showed increased sensitivity (96.9%) and specificity (87.5%), whereas serial combination showed increased specificity (97.5%). The combination of 3 assays had the highest sensitivity at 97.9%, with an AUC value of 0.964. T-SPOT.TB in pleural fluid performed better than that in peripheral blood and the ADA activity test in pleural fluid for tuberculous pleurisy diagnosis. The optimal cut-off value of T-SPOT.TB in pleural fluid was 95.5 SFCs/2.5 × 105 cells. Combination of 3 assays might be a promising approach for tuberculous pleurisy diagnosis. PMID:29381918
Brulez, H F; ter Wee, P M; Snijders, S V; Donker, A J; Verbrugh, H A
1999-12-01
Previous studies showed that the currently used dextrose based peritoneal dialysis fluids impair several leucocyte functions. To determine which in vitro mononuclear leucocyte (monocyte) function tests most clearly reflect the biocompatibility of peritoneal dialysis fluid. Monocytes were tested for phagocytic capacity, bactericidal activity, Fc and C3 receptor expression, and chemiluminescence response, and by analysis of the release of interleukin 8 (IL-8) and tumour necrosis factor alpha (TNF alpha) in the presence of test fluids. Cytokine release was studied in an alternative dynamic in vitro peritoneal dialysis model in which monocytes were exposed to test fluid that was continuously equilibrated with an interstitial fluid-like medium through a microporous membrane. The chemiluminescence response by stressed monocytes was also tested after an 18 h recovery period. All tests were performed during or after exposure to different degrees of glycerol induced osmotic stress and after exposure to a 1% milk-whey derived, polypeptide enriched test fluid. Cells incubated in 0.1% gel Hanks buffer (GH) served as control. Osmotic stress induced impairment of leucocyte function was found by the chemiluminescence assay (mean (SEM): 179 (20)% v 138 (23)% after 30 minutes in 0.5% and 1.5% glycerol, respectively) and by the analysis of IL-8 released by monocytes (44 (9) ng in 0.7% glycerol v 40 (7) ng in 2.0% glycerol). Only the chemiluminescence assay showed a protective effect of polypeptides on leucocyte function (after > or = 60 minutes). If monocytes were allowed to recover in culture medium after exposure to test fluids, the changes in chemiluminescence response appeared to be reversible after a 30 minute exposure, but became more pronounced after 60 and 120 minutes. The phagocytosis and bacterial killing assays were less sensitive. The observations carried out with the phagocytosis assay did not correspond with the Fc or C3 receptor density data. The release of IL-8 by peripheral blood monocytes in a two compartment model and their chemiluminescence response are appropriate assays for the assessment of changes in leucocyte function in response to different peritoneal dialysis fluids.
Heparin-binding EGF-like growth factor is present in human amniotic fluid and breast milk.
Michalsky, M P; Lara-Marquez, M; Chun, L; Besner, G E
2002-01-01
Heparin-binding EGF-like growth factor (HB-EGF) is a member of the epidermal growth factor (EGF) family that has been implicated in the healing of various organ injuries. Endogenous HB-EGF production is upregulated in response to injury to the kidney, liver, brain, skin, and intestine. Exogenous administration of HB-EGF protects against intestinal epithelial cell apoptosis and necrosis and intestinal ischemia/reperfusion (I/R) injury. This study examines the presence of endogenous HB-EGF in human amniotic fluid and breast milk, fluids that are in intimate contact with the developing and neonatal gastrointestinal tract. Breast milk samples were collected from lactating women and amniotic fluid was gathered from full-term uteri (cesarian sections) or preterm uteri (amniocentesis). Crude and partially purified breast milk and amniotic fluid samples were analyzed for HB-EGF levels using an HB-EGF-specific enzyme-linked immunosorbent assay (ELISA). Analysis results showed detectable HB-EGF levels in human amniotic fluid and breast milk, ranging from 0.2 to 230 pg/mL. Breast milk and amniotic fluid subjected to heparin affinity or HB-EGF-affinity column chromatography showed bioactivity eluting at positions consistent with those known for native HB-EGF. This study represents the first report of detectable HB-EGF in human amniotic fluid and breast milk. The presence of HB-EGF in these fluids may serve a role in the development of the gastrointestinal tract in utero, and in protection against gut mucosal injury after birth. Copyright 2002 by W.B. Saunders Company.
Murali Mohan, Arvind; Hartsock, Angela; Bibby, Kyle J; Hammack, Richard W; Vidic, Radisav D; Gregory, Kelvin B
2013-11-19
Microbial communities associated with produced water from hydraulic fracturing are not well understood, and their deleterious activity can lead to significant increases in production costs and adverse environmental impacts. In this study, we compared the microbial ecology in prefracturing fluids (fracturing source water and fracturing fluid) and produced water at multiple time points from a natural gas well in southwestern Pennsylvania using 16S rRNA gene-based clone libraries, pyrosequencing, and quantitative PCR. The majority of the bacterial community in prefracturing fluids constituted aerobic species affiliated with the class Alphaproteobacteria. However, their relative abundance decreased in produced water with an increase in halotolerant, anaerobic/facultative anaerobic species affiliated with the classes Clostridia, Bacilli, Gammaproteobacteria, Epsilonproteobacteria, Bacteroidia, and Fusobacteria. Produced water collected at the last time point (day 187) consisted almost entirely of sequences similar to Clostridia and showed a decrease in bacterial abundance by 3 orders of magnitude compared to the prefracturing fluids and produced water samplesfrom earlier time points. Geochemical analysis showed that produced water contained higher concentrations of salts and total radioactivity compared to prefracturing fluids. This study provides evidence of long-term subsurface selection of the microbial community introduced through hydraulic fracturing, which may include significant implications for disinfection as well as reuse of produced water in future fracturing operations.
Atomistic Modeling of the Fluid-Solid Interface in Simple Fluids
NASA Astrophysics Data System (ADS)
Hadjiconstantinou, Nicolas; Wang, Gerald
2017-11-01
Fluids can exhibit pronounced structuring effects near a solid boundary, typically manifested in a layered structure that has been extensively shown to directly affect transport across the interface. We present and discuss several results from molecular-mechanical modeling and molecular-dynamics (MD) simulations aimed at characterizing the structure of the first fluid layer directly adjacent to the solid. We identify a new dimensionless group - termed the Wall number - which characterizes the degree of fluid layering, by comparing the competing effects of wall-fluid interaction and thermal energy. We find that in the layering regime, several key features of the first layer layer - including its distance from the solid, its width, and its areal density - can be described using mean-field-energy arguments, as well as asymptotic analysis of the Nernst-Planck equation. For dense fluids, the areal density and the width of the first layer can be related to the bulk fluid density using a simple scaling relation. MD simulations show that these results are broadly applicable and robust to the presence of a second confining solid boundary, different choices of wall structure and thermalization, strengths of fluid-solid interaction, and wall geometries.
Jafarian, Amir Hossein; Tasbandi, Aida; Mohamadian Roshan, Nema
2018-04-19
The aim of this study is to investigate and compare the results of digital image analysis in pleural effusion cytology samples with conventional modalities. In this cross-sectional study, 53 pleural fluid cytology smears from Qaem hospital pathology department, located in Mashhad, Iran were investigated. Prior to digital analysis, all specimens were evaluated by two pathologists and categorized into three groups as: benign, suspicious, and malignant. Using an Olympus microscope and Olympus DP3 digital camera, digital images from cytology slides were captured. Appropriate images (n = 130) were separately imported to Adobe Photoshop CS5 and parameters including area and perimeter, circularity, Gray Value mean, integrated density, and nucleus to cytoplasm area ratio were analyzed. Gray Value mean, nucleus to cytoplasm area ratio, and circularity showed the best sensitivity and specificity rates as well as significant differences between all groups. Also, nucleus area and perimeter showed a significant relation between suspicious and malignant groups with benign group. Whereas, there was no such difference between suspicious and malignant groups. We concluded that digital image analysis is welcomed in the field of research on pleural fluid smears as it can provide quantitative data to apply various comparisons and reduce interobserver variation which could assist pathologists to achieve a more accurate diagnosis. © 2018 Wiley Periodicals, Inc.
Economic and statistical analysis of time limitations for spotting fluids and fishing operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keller, P.S.; Brinkmann, P.E.; Taneja, P.K.
1984-05-01
This paper reviews the statistics of ''Spotting Fluids'' to free stuck drill pipe as well as the economics and statistics of drill string fishing operations. Data were taken from Mobil Oil Exploration and Producing Southeast Inc.'s (MOEPSI) records from 1970-1981. Only those events which occur after a drill string becomes stuck are discussed. The data collected were categorized as Directional Wells and Straight Wells. Bar diagrams are presented to show the Success Ratio vs. Soaking Time for each of the two categories. An analysis was made to identify the elapsed time limit to place the spotting fluid for maximum probabilitymore » of success. Also determined was the statistical minimum soaking time and the maximum soaking time. For determining the time limit for fishing operations, the following criteria were used: 1. The Risked ''Economic Breakeven Analysis'' concept was developed based on the work of Harrison. 2. Statistical Probability of Success based on MOEPSI's records from 1970-1981.« less
Holbek, Bo Laksáfoss; Petersen, René Horsleben; Kehlet, Henrik
2017-01-01
The objective of this study was to evaluate the potential of predicting the pleural fluid output in patients after video-assisted thoracoscopic lobectomy of the lung. Detailed measurements of continuous fluid output were obtained prospectively using an electronic thoracic drainage device (Thopaz+™, Medela AG, Switzerland). Patients were divided into high (≥500 mL) and low (<500 mL) 24-hour fluid output, and detailed flow curves were plotted graphically to identify arithmetic patterns predicting fluid output in the early (≤24 hours) and later (24–48 hours) post-operative phase. Furthermore, multiple logistic regression analysis was used to predict high 24-hour fluid output using baseline data. Data were obtained from 50 patients, where 52% had a fluid output of <500 mL/24 hours. From visual assessment of flow curves, patients were grouped according to fluid output 6 hours postoperatively. An output ≥200 mL/6 hours was predictive of ‘high 24-hour fluid output’ (P<0.0001). However, 33% of patients with <200 mL/6 hours ended with a ‘high 24-hour fluid output’. Baseline data showed no predictive value of fluid production, and 24-hour fluid output had no predictive value of fluid output between 24 and 48 hours. Assessment of initial fluid production may predict high 24-hour fluid output (≥500 mL) but seems to lack clinical value in drain removal criteria. PMID:28840021
Space station integrated propulsion and fluid systems study
NASA Technical Reports Server (NTRS)
Bicknell, B.; Wilson, S.; Dennis, M.; Shepard, D.; Rossier, R.
1988-01-01
The program study was performed in two tasks: Task 1 addressed propulsion systems and Task 2 addressed all fluid systems associated with the Space Station elements, which also included propulsion and pressurant systems. Program results indicated a substantial reduction in life cycle costs through integrating the oxygen/hydrogen propulsion system with the environmental control and life support system, and through supplying nitrogen in a cryogenic gaseous supercritical or subcritical liquid state. A water sensitivity analysis showed that increasing the food water content would substantially increase the amount of water available for propulsion use and in all cases, the implementation of the BOSCH CO2 reduction process would reduce overall life cycle costs to the station and minimize risk. An investigation of fluid systems and associated requirements revealed a delicate balance between the individual propulsion and fluid systems across work packages and a strong interdependence between all other fluid systems.
Regression analysis of traction characteristics of traction fluids
NASA Technical Reports Server (NTRS)
Loewenthal, S. H.; Rohn, D. A.
1983-01-01
Traction data for Santotrac 50 and TDF-88 over a wide range of operating conditions were analyzed. An eight term correlation equation to predict the maximum traction coefficient and a six term correlation equation to predict the initial slope of the traction curve were developed. The slope correlation was corrected for size effect considering the compliance of the disks. The effects of different operating conditions on the traction performance of each traction fluid were studied. Both fluids exhibited a loss in traction with increases in spin, but the losses with the TDF-88 fluid were not as severe as those with Santotrac 50. Overall, both fluids exhibited similar performance, showing an increase in traction with contact pressure up to about 2.0 GPa, and a reduction in traction with higher surface speeds up to about 100 m/sec. The apparent stiffness of the traction contact, that is, film disk combination, increases with contact pressure and decreases with speed.
Kim, Deokman; Hong, Seongkyeol; Park, Junhong
2017-01-01
The determination of fluid density and viscosity using most cantilever-based sensors is based on changes in resonant frequency and peak width. Here, we present a wave propagation analysis using piezoelectrically excited micro-cantilevers under distributed fluid loading. The standing wave shapes of microscale-thickness cantilevers partially immersed in liquids (water, 25% glycerol, and acetone), and nanoscale-thickness microfabricated cantilevers fully immersed in gases (air at three different pressures, carbon dioxide, and nitrogen) were investigated to identify the effects of fluid-structure interactions to thus determine the fluid properties. This measurement method was validated by comparing with the known fluid properties, which agreed well with the measurements. The relative differences for the liquids were less than 4.8% for the densities and 3.1% for the viscosities, and those for the gases were less than 6.7% for the densities and 7.3% for the viscosities, showing better agreements in liquids than in gases. PMID:29077005
The 'upstream wake' of swimming and flying animals and its correlation with propulsive efficiency.
Peng, Jifeng; Dabiri, John O
2008-08-01
The interaction between swimming and flying animals and their fluid environments generates downstream wake structures such as vortices. In most studies, the upstream flow in front of the animal is neglected. In this study, we demonstrate the existence of upstream fluid structures even though the upstream flow is quiescent or possesses a uniform incoming velocity. Using a computational model, the flow generated by a swimmer (an oscillating flexible plate) is simulated and a new fluid mechanical analysis is applied to the flow to identify the upstream fluid structures. These upstream structures show the exact portion of fluid that is going to interact with the swimmer. A mass flow rate is then defined based on the upstream structures, and a metric for propulsive efficiency is established using the mass flow rate and the kinematics of the swimmer. We propose that the unsteady mass flow rate defined by the upstream fluid structures can be used as a metric to measure and objectively compare the efficiency of locomotion in water and air.
Aeroelastic Modeling of a Nozzle Startup Transient
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Zhao, Xiang; Zhang, Sijun; Chen, Yen-Sen
2014-01-01
Lateral nozzle forces are known to cause severe structural damage to any new rocket engine in development during test. While three-dimensional, transient, turbulent, chemically reacting computational fluid dynamics methodology has been demonstrated to capture major side load physics with rigid nozzles, hot-fire tests often show nozzle structure deformation during major side load events, leading to structural damages if structural strengthening measures were not taken. The modeling picture is incomplete without the capability to address the two-way responses between the structure and fluid. The objective of this study is to develop a tightly coupled aeroelastic modeling algorithm by implementing the necessary structural dynamics component into an anchored computational fluid dynamics methodology. The computational fluid dynamics component is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, while the computational structural dynamics component is developed under the framework of modal analysis. Transient aeroelastic nozzle startup analyses at sea level were performed, and the computed transient nozzle fluid-structure interaction physics presented,
Zapata, Félix; de la Ossa, Ma Ángeles Fernández; García-Ruiz, Carmen
2016-04-01
Body fluids are evidence of great forensic interest due to the DNA extracted from them, which allows genetic identification of people. This study focuses on the discrimination among semen, vaginal fluid, and urine stains (main fluids in sexual crimes) placed on different colored cotton fabrics by external reflection Fourier transform infrared spectroscopy (FT-IR) combined with chemometrics. Semen-vaginal fluid mixtures and potential false positive substances commonly found in daily life such as soaps, milk, juices, and lotions were also studied. Results demonstrated that the IR spectral signature obtained for each body fluid allowed its identification and the correct classification of unknown stains by means of principal component analysis (PCA) and soft independent modeling of class analogy (SIMCA). Interestingly, results proved that these IR spectra did not show any bands due to the color of the fabric and no substance of those present in daily life which were analyzed, provided a false positive. © The Author(s) 2016.
Fluid-structure interaction analysis of deformation of sail of 30-foot yacht
NASA Astrophysics Data System (ADS)
Bak, Sera; Yoo, Jaehoon; Song, Chang Yong
2013-06-01
Most yacht sails are made of thin fabric, and they have a cambered shape to generate lift force; however, their shape can be easily deformed by wind pressure. Deformation of the sail shape changes the flow characteristics over the sail, which in turn further deforms the sail shape. Therefore, fluid-structure interaction (FSI) analysis is applied for the precise evaluation or optimization of the sail design. In this study, fluid flow analyses are performed for the main sail of a 30-foot yacht, and the results are applied to loading conditions for structural analyses. By applying the supporting forces from the rig, such as the mast and boom-end outhaul, as boundary conditions for structural analysis, the deformed sail shape is identified. Both the flow analyses and the structural analyses are iteratively carried out for the deformed sail shape. A comparison of the flow characteristics and surface pressures over the deformed sail shape with those over the initial shape shows that a considerable difference exists between the two and that FSI analysis is suitable for application to sail design.
Tsai, Jui-Pin; Chang, Liang-Cheng; Hsu, Shao-Yiu; Shan, Hsin-Yu
2017-12-01
In the current study, we used micromodel experiments to study three-phase fluid flow in porous media. In contrast to previous studies, we simultaneously observed and measured pore-scale fluid behavior and three-phase constitutive relationships with digital image acquisition/analysis, fluid pressure control, and permeability assays. Our results showed that the fluid layers significantly influenced pore-scale, three-phase fluid displacement as well as water relative permeability. At low water saturation, water relative permeability not only depended on water saturation but also on the distributions of air and diesel. The results also indicate that the relative permeability-saturation model proposed by Parker et al. (1987) could not completely describe the experimental data from our three-phase flow experiments because these models ignore the effects of phase distribution. A simple bundle-of-tubes model shows that the water relative permeability was proportional to the number of apparently continuous water paths before the critical stage in which no apparently continuous water flow path could be found. Our findings constitute additional information about the essential constitutive relationships involved in both the understanding and the modeling of three-phase flows in porous media.
NASA Astrophysics Data System (ADS)
Ju, Yaping; Liu, Hui; Yao, Ziyun; Xing, Peng; Zhang, Chuhua
2015-11-01
Up to present, there have been no studies concerning the application of fluid-structure interaction (FSI) analysis to the lifetime estimation of multi-stage centrifugal compressors under dangerous unsteady aerodynamic excitations. In this paper, computational fluid dynamics (CFD) simulations of a three-stage natural gas pipeline centrifugal compressor are performed under near-choke and near-surge conditions, and the unsteady aerodynamic pressure acting on impeller blades are obtained. Then computational structural dynamics (CSD) analysis is conducted through a one-way coupling FSI model to predict alternating stresses in impeller blades. Finally, the compressor lifetime is estimated using the nominal stress approach. The FSI results show that the impellers of latter stages suffer larger fluctuation stresses but smaller mean stresses than those at preceding stages under near-choke and near-surge conditions. The most dangerous position in the compressor is found to be located near the leading edge of the last-stage impeller blade. Compressor lifetime estimation shows that the investigated compressor can run up to 102.7 h under the near-choke condition and 200.2 h under the near-surge condition. This study is expected to provide a scientific guidance for the operation safety of natural gas pipeline centrifugal compressors.
NASA Astrophysics Data System (ADS)
Bao, Minle; Wang, Lu; Li, Wenyao; Gao, Tianze
2017-09-01
Fluid elastic excitation in shell side of heat exchanger was deduced theoretically in this paper. Model foundation was completed by using Pro / Engineer software. The finite element model was constructed and imported into the FLUENT module. The flow field simulation adopted the dynamic mesh model, RNG k-ε model and no-slip boundary conditions. Analysing different positions vibration of tube bundles by selecting three regions in shell side of heat exchanger. The results show that heat exchanger tube bundles at the inlet of the shell side are more likely to be failure due to fluid induced vibration.
The Sixth Annual Thermal and Fluids Analysis Workshop
NASA Technical Reports Server (NTRS)
1995-01-01
The Sixth Annual Thermal and Fluids Analysis Workshop consisted of classes, vendor demonstrations, and paper sessions. The classes and vendor demonstrations provided participants with the information on widely used tools for thermal and fluids analysis. The paper sessions provided a forum for the exchange of information and ideas among thermal and fluids analysis. Paper topics included advances an uses of established thermal and fluids computer codes (such as SINDA and TRASYS) as well as unique modeling techniques and applications.
Translational and rotational diffusion of Janus nanoparticles at liquid interfaces
NASA Astrophysics Data System (ADS)
Rezvantalab, Hossein; Shojaei-Zadeh, Shahab
2014-11-01
We use molecular dynamics simulations to understand the thermal motion of nanometer-sized Janus particles at the interface between two immiscible fluids. We consider spherical nanoparticles composed of two sides with different affinity to fluid phases, and evaluate their dynamics and changes in fluid structure as a function of particle size and surface chemistry. We show that as the amphiphilicity increases upon enhancing the wetting of each side with its favored fluid, the in-plane diffusivity at the interface becomes slower. Detail analysis of the fluid structure reveals that this is mainly due to formation of a denser adsorption layer around more amphiphilic particles, which leads to increased drag acting against nanoparticle motion. Similarly, the rotational thermal motion of Janus particles is reduced compared to their homogeneous counterparts as a result of the higher resistance of neighboring fluid species against rotation. We also incorporate the influence of fluid density and surface tension on the interfacial dynamics of such Janus nanoparticles. Our findings may have implications in understanding the adsorption mechanism of drugs and protein molecules with anisotropic surface properties to biological interfaces including cell membranes.
Analysis of the autonomous problem about coupled active non-Newtonian multi-seepage in sparse medium
NASA Astrophysics Data System (ADS)
Deng, Shuxian; Li, Hongen
2017-10-01
The flow field of non-Newtonian fluid in sparse medium was analyzed by computational fluid dynamics (CFD) method. The results show that the axial velocity and radial velocity of the non-Newtonian fluid are larger than those of the Newtonian fluid due to the coupling of the viscosity of the non-Newtonian fluid and the shear rate, and the tangential velocity is less than that of the Newtonian fluid. These differences lead to the difference in the sparse medium Non-Newtonian fluids are of a special nature. The influence of the weight function on the global existence and blasting of the problem is discussed by analyzing the non-Newtonian percolation equation with nonlocal and weighted non-local Dirichlet boundary conditions. According to the non-Newtonian percolation equation, we define the weak solution of the problem and expound the local existence of the weak solution. Then we construct the test function and prove the weak comparison principle by using the Grown well inequality. The overall existence and blasting are analyzed by constructing the upper and lower solutions.
Simulations of Bingham plastic flows with the multiple-relaxation-time lattice Boltzmann model
NASA Astrophysics Data System (ADS)
Chen, SongGui; Sun, QiCheng; Jin, Feng; Liu, JianGuo
2014-03-01
Fresh cement mortar is a type of workable paste, which can be well approximated as a Bingham plastic and whose flow behavior is of major concern in engineering. In this paper, Papanastasiou's model for Bingham fluids is solved by using the multiplerelaxation-time lattice Boltzmann model (MRT-LB). Analysis of the stress growth exponent m in Bingham fluid flow simulations shows that Papanastasiou's model provides a good approximation of realistic Bingham plastics for values of m > 108. For lower values of m, Papanastasiou's model is valid for fluids between Bingham and Newtonian fluids. The MRT-LB model is validated by two benchmark problems: 2D steady Poiseuille flows and lid-driven cavity flows. Comparing the numerical results of the velocity distributions with corresponding analytical solutions shows that the MRT-LB model is appropriate for studying Bingham fluids while also providing better numerical stability. We further apply the MRT-LB model to simulate flow through a sudden expansion channel and the flow surrounding a round particle. Besides the rich flow structures obtained in this work, the dynamics fluid force on the round particle is calculated. Results show that both the Reynolds number Re and the Bingham number Bn affect the drag coefficients C D , and a drag coefficient with Re and Bn being taken into account is proposed. The relationship of Bn and the ratio of unyielded zone thickness to particle diameter is also analyzed. Finally, the Bingham fluid flowing around a set of randomly dispersed particles is simulated to obtain the apparent viscosity and velocity fields. These results help simulation of fresh concrete flowing in porous media.
Mavel, Sylvie; Lefèvre, Antoine; Bakhos, David; Dufour-Rainfray, Diane; Blasco, Hélène; Emond, Patrick
2018-05-22
Although there is some data from animal studies, the metabolome of inner ear fluid in humans remains unknown. Characterization of the metabolome of the perilymph would allow for better understanding of its role in auditory function and for identification of biomarkers that might allow prediction of response to therapeutics. There is a major technical challenge due to the small sample of perilymph fluid available for analysis (sub-microliter). The objectives of this study were to develop and validate a methodology for analysis of perilymph metabolome using liquid chromatography-high resolution mass spectrometry (LC-HRMS). Due to the low availability of perilymph fluid; a methodological study was first performed using low volumes (0.8 μL) of cerebrospinal fluid (CSF) and optimized the LC-HRMS parameters using targeted and non-targeted metabolomics approaches. We obtained excellent parameters of reproducibility for about 100 metabolites. This methodology was then used to analyze perilymph fluid using two complementary chromatographic supports: reverse phase (RP-C18) and hydrophilic interaction liquid chromatography (HILIC). Both methods were highly robust and showed their complementarity, thus reinforcing the interest to combine these chromatographic supports. A fingerprinting was obtained from 98 robust metabolites (analytical variability <30%), where amino acids (e.g., asparagine, valine, glutamine, alanine, etc.), carboxylic acids and derivatives (e.g., lactate, carnitine, trigonelline, creatinine, etc.) were observed as first-order signals. This work lays the foundations of a robust analytical workflow for the exploration of the perilymph metabolome dedicated to the research of biomarkers for the diagnosis/prognosis of auditory pathologies. Copyright © 2018 Elsevier B.V. All rights reserved.
Proteomic analysis of Bombyx mori molting fluid: Insights into the molting process.
Liu, Hua-Wei; Wang, Luo-Ling; Tang, Xin; Dong, Zhao-Ming; Guo, Peng-Chao; Zhao, Dong-Chao; Xia, Qing-You; Zhao, Ping
2018-02-20
Molting is an essential biological process occurring multiple times throughout the life cycle of most Ecdysozoa. Molting fluids accumulate and function in the exuvial space during the molting process. In this study, we used liquid chromatography-tandem mass spectrometry to investigate the molting fluids to analyze the molecular mechanisms of molting in the silkworm, Bombyx mori. In total, 375 proteins were identified in molting fluids from the silkworm at 14-16h before pupation and eclosion, including 12 chitin metabolism-related enzymes, 35 serine proteases, 15 peptidases, and 38 protease inhibitors. Gene ontology analysis indicated that "catalytic" constitutes the most enriched function in the molting fluid. Gene expression patterns and bioinformatic analyses suggested that numerous enzymes are involved in the degradation of cuticle proteins and chitin. Protein-protein interaction network and activity analyses showed that protease inhibitors are involved in the regulation of multiple pathways in molting fluid. Additionally, many immune-related proteins may be involved in the immune defense during molting. These results provide a comprehensive proteomic insight into proteolytic enzymes and protease inhibitors in molting fluid, and will likely improve the current understanding of physiological processes in insect molting. Insect molting constitutes a dynamic physiological process. To better understand this process, we used LC-MS/MS to investigate the proteome of silkworm molting fluids and identified key proteins involved in silkworm molting. The biological processes of the old cuticle degradation pathway and immune defense response were analyzed in the proteome of silkworm molting fluid. We report that protease inhibitors serve as key factors in the regulation of the molting process. The proteomic results provide new insight into biological molting processes in insects. Copyright © 2017 Elsevier B.V. All rights reserved.
Liang, Yanshan; Liu, Jiaqi; Zhong, Qisheng; Shen, Lingling; Yao, Jinting; Huang, Taohong; Zhou, Ting
2018-04-01
An on-line supercritical fluid extraction coupled with supercritical fluid chromatography method was developed for the determination of four major aromatic constituents in vanilla. The parameters of supercritical fluid extraction were systematically investigated using single factor optimization experiments and response surface methodology by a Box-Behnken design. The modifier ratio, split ratio, and the extraction temperature and pressure were the major parameters which have significant effects on the extraction. While the static extraction time, dynamic extraction time, and recycle time had little influence on the compounds with low polarity. Under the optimized conditions, the relative extraction efficiencies of all the constituents reached 89.0-95.1%. The limits of quantification were in the range of 1.123-4.747 μg. The limits of detection were in the range of 0.3368-1.424 μg. The recoveries of the four analytes were in the range of 76.1-88.9%. The relative standard deviations of intra- and interday precision ranged from 4.2 to 7.6%. Compared with other off-line methods, the present method obtained higher extraction yields for all four aromatic constituents. Finally, this method has been applied to the analysis of vanilla from different sources. On the basis of the results, the on-line supercritical fluid extraction-supercritical fluid chromatography method shows great promise in the analysis of aromatic constituents in natural products. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Filgueira, Gabriela Campos de Oliveira; Filgueira, Osmany Alberto Silva; Carvalho, Daniela Miarelli; Marques, Maria Paula; Moisés, Elaine Christine Dantas; Duarte, Geraldo; Lanchote, Vera Lucia; Cavalli, Ricardo Carvalho
2015-07-01
Nifedipine is a dihydropyridine calcium channel blocker used for the treatment of hypertension in pregnant women. A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated for analysis of nifedipine in human plasma and amniotic fluid. Separation of nifedipine and nitrendipine (IS) was performed using a LiChroCART(®) RP-Select B column and a mixture of water:acetonitrile:glacial acetic acid (30:70:0.5 v/v) as the mobile phase. Aliquots of 500μL of biological samples were extracted at pH 13 using dichloromethane:n-pentane (3:7 v/v). The validated method was applied to a study of the pharmacokinetics of nifedipine in human plasma and amniotic fluid samples collected up to 12h after administration of the last slow-release nifedipine (20mg/12h) dose to 12 hypertensive pregnant women. The estimated pharmacokinetic parameters of nifedipine showed a mean AUC(0-12) of 250.2ngh/mL, ClT/F of 89.2L/h, Vd/F of 600.0L and t1/2 5.1h. The mean amniotic fluid/plasma concentration ratio was 0.05. The methods proved to be highly sensitive by showing a lower quantification limit of 0.1ng/mL for both matrices. And this study reports for the first time the complete development and validation of the method to quantify nifedipine in amniotic fluid using LC-MS-MS. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Ristenpart, W. D.; Aksay, I. A.; Saville, D. A.
2004-01-01
Electric fields generate transverse flows near electrodes that sweep colloidal particles into densely packed assemblies. We interpret this behavior in terms of electrohydrodynamic motion stemming from distortions of the field by the particles that alter the body force distribution in the electrode charge polarization layer. A scaling analysis shows how the action of the applied electric field generates fluid motion that carries particles toward one another. The resulting fluid velocity is proportional to the square of the applied field and decreases inversely with frequency. Experimental measurements of the particle aggregation rate accord with the electrohydrodynamic theory over a wide range of voltages and frequencies.
Bulk viscosity of water in acoustic modal analysis and experiment
NASA Astrophysics Data System (ADS)
Kůrečka, Jan; Habán, Vladimír; Himr, Daniel
2018-06-01
Bulk viscosity is an important factor in the damping properties of fluid systems and exhibits frequency dependent behaviour. A comparison between modal analysis in ANSYS Acoustics, custom code and experimental data is presented in this paper. The measured system consists of closed ended water-filled steel pipes of different lengths. The influence of a pipe wall, flanges on both ends and longitudinal waves in the structural part were included in measurement evaluation. Therefore, the obtained values of sound speed and bulk viscosity are parameters of the fluid. A numerical simulation was carried out only using fluid volume in a range of bulk viscosity. Damping characteristics in this range were compared to measured values. The results show a significant influence of sound speed and subsequently, the use of sound speed value regressed from experimental data yields a better fit between the measurement and the computation.
NASA Astrophysics Data System (ADS)
Wei, Xin; Sun, Bing
2011-10-01
The fluid-structure interaction may occur in space launch vehicles, which would lead to bad performance of vehicles, damage equipments on vehicles, or even affect astronauts' health. In this paper, analysis on dynamic behavior of liquid oxygen (LOX) feeding pipe system in a large scale launch vehicle is performed, with the effect of fluid-structure interaction (FSI) taken into consideration. The pipe system is simplified as a planar FSI model with Poisson coupling and junction coupling. Numerical tests on pipes between the tank and the pump are solved by the finite volume method. Results show that restrictions weaken the interaction between axial and lateral vibrations. The reasonable results regarding frequencies and modes indicate that the FSI affects substantially the dynamic analysis, and thus highlight the usefulness of the proposed model. This study would provide a reference to the pipe test, as well as facilitate further studies on oscillation suppression.
Charge-Induced Saffman-Taylor Instabilities in Toroidal Droplets
NASA Astrophysics Data System (ADS)
Fragkopoulos, A. A.; Aizenman, A.; Fernández-Nieves, A.
2017-06-01
We show that charged toroidal droplets can develop fingerlike structures as they expand due to Saffman-Taylor instabilities. While these are commonly observed in quasi-two-dimensional geometries when a fluid displaces another fluid of higher viscosity, we show that the toroidal confinement breaks the symmetry of the problem, effectively making it quasi-two-dimensional and enabling the instability to develop in this three-dimensional situation. We control the expansion speed of the torus with the imposed electric stress and show that fingers are observed provided the characteristic time scale associated with this instability is smaller than the characteristic time scale associated with Rayleigh-Plateau break-up. We confirm our interpretation of the results by showing that the number of fingers is consistent with expectations from linear stability analysis in radial Hele-Shaw cells.
Vibration analysis of partially cracked plate submerged in fluid
NASA Astrophysics Data System (ADS)
Soni, Shashank; Jain, N. K.; Joshi, P. V.
2018-01-01
The present work proposes an analytical model for vibration analysis of partially cracked rectangular plates coupled with fluid medium. The governing equation of motion for the isotropic plate based on the classical plate theory is modified to accommodate a part through continuous line crack according to simplified line spring model. The influence of surrounding fluid medium is incorporated in the governing equation in the form of inertia effects based on velocity potential function and Bernoulli's equations. Both partially and totally submerged plate configurations are considered. The governing equation also considers the in-plane stretching due to lateral deflection in the form of in-plane forces which introduces geometric non-linearity into the system. The fundamental frequencies are evaluated by expressing the lateral deflection in terms of modal functions. The assessment of the present results is carried out for intact submerged plate as to the best of the author's knowledge the literature lacks in analytical results for submerged cracked plates. New results for fundamental frequencies are presented as affected by crack length, fluid level, fluid density and immersed depth of plate. By employing the method of multiple scales, the frequency response and peak amplitude of the cracked structure is analyzed. The non-linear frequency response curves show the phenomenon of bending hardening or softening and the effect of fluid dynamic pressure on the response of the cracked plate.
Thermal/Fluid Analysis of a Composite Heat Exchanger for Use on the RLV Rocket Engine
NASA Technical Reports Server (NTRS)
Nguyen, Dalton
2002-01-01
As part of efforts to design a regeneratively cooled composite nozzle ramp for use on the reusable vehicle (RLV) rocket engine, an C-SiC composites heat exchanger concept was proposed for thermal performance evaluation. To test the feasibility of the concept, sample heat exchanger panels were made to fit the Glenn Research Center's cell 22 for testing. Operation of the heat exchanger was demonstrated in a combustion environment with high heat fluxes similar to the RLV Aerospike Ramp. Test measurements were reviewed and found to be valuable for the on going fluid and thermal analysis of the actual RLV composite ramp. Since the cooling fluid for the heat exchanger is water while the RLV Ramp cooling fluid is LH2, fluid and thermal models were constructed to correlate to the specific test set-up. The knowledge gained from this work will be helpful for analyzing the thermal response of the actual RLV Composite Ramp. The coolant thermal properties for the models are taken from test data. The heat exchanger's cooling performance was analyzed using the Generalized Fluid System Simulation Program (GFSSP). Temperatures of the heat exchanger's structure were predicted in finite element models using Patran and Sinda. Results from the analytical models and the tests show that RSC's heat exchanger satisfied the combustion environments in a series of 16 tests.
Thermal/Fluid Analysis of a Composite Heat Exchanger for Use on the RLV Rocket Engine
NASA Technical Reports Server (NTRS)
Nguyen, Dalton; Turner, Larry D. (Technical Monitor)
2001-01-01
As part of efforts to design a regeneratively cooled composite nozzle ramp for use on the reusable vehicle (RLV) rocket engine, a C-SiC composite heat exchanger concept was proposed for thermal performance evaluation. To test the feasibility of the concept, sample heat exchanger panels were made to fit the Glenn Research Center's cell 22 for testing. Operation of the heat exchanger was demonstrated in a combustion environment with high heat fluxes similar to the RLV Aerospike Ramp. Test measurements were reviewed and found to be valuable for the on-going fluid and thermal analysis of the actual RLV composite ramp. Since the cooling fluid for the heat exchanger is water while the RLV Ramp cooling fluid is LH2, fluid and therma models were constructed to correlate to the specific test set-up. The knowledge gained from this work will be helpful for analyzing the thermal response of the actual RLV Composite Ramp. The coolant thermal properties for the models are taken from test data. The heat exchanger's cooling performance was analyzed using the Generalized Fluid System Simulation Program (GFSSP). Temperatures of the heat exchanger's structure were predicted in finite element models using Patran and Sinda. Results from the analytical models and the tests show that RSC's heat exchanger satisfied the combustion environments in a series of 16 tests.
Ren, Xingfei; Wu, Chunlei; Yu, Qinnan; Zhu, Feng; Liu, Pei; Zhang, Huiqing
2016-01-01
To investigate the correlation of the levels of interleukin-8 (IL-8) and IL-6 in the prostatic fluid with serum levels of serum prostate-specific antigen (PSA) in patients with benign prostatic hyperplasia (BPH) complicated by prostatitis. A series of 211 patients undergoing surgery of BPH were divided into BPH group (n=75) and BPH with prostatitis group (n=136) according to the white blood cell count in the prostatic fluid. The clinical and laboratory findings were compared between the two groups, and stepwise regression analysis was used to assess the association of IL-8 and IL-6 with serum PSA level. No significant differences were found in age, BMI, blood pressure, blood glucose, blood lipids, IPSS score, PSA-Ratio, or prostate volume between the two groups (P<0.05). The patients with prostatitis had significantly increased serum PSA and prostate fluid IL-8 and IL-6 levels compared with those without prostatitis (P<0.001). Multiple linear regression analysis showed that IL-8 and IL-6 levels and white blood cell count in the prostatic fluid were all positively correlated with serum PSA level. Prostatitis is an important risk factor for elevated serum PSA level in patients with BPH, and both IL-8 and IL-6 levels in the prostatic fluid are correlated with serum PSA level.
NASA Astrophysics Data System (ADS)
Sesti, Erika L.; Alaniva, Nicholas; Rand, Peter W.; Choi, Eric J.; Albert, Brice J.; Saliba, Edward P.; Scott, Faith J.; Barnes, Alexander B.
2018-01-01
We report magic angle spinning (MAS) up to 8.5 kHz with a sample temperature below 6 K using liquid helium as a variable temperature fluid. Cross polarization 13C NMR spectra exhibit exquisite sensitivity with a single transient. Remarkably, 1H saturation recovery experiments show a 1H T1 of 21 s with MAS below 6 K in the presence of trityl radicals in a glassy matrix. Leveraging the thermal spin polarization available at 4.2 K versus 298 K should result in 71 times higher signal intensity. Taking the 1H longitudinal relaxation into account, signal averaging times are therefore predicted to be expedited by a factor of >500. Computer assisted design (CAD) and finite element analysis were employed in both the design and diagnostic stages of this cryogenic MAS technology development. Computational fluid dynamics (CFD) models describing temperature gradients and fluid flow are presented. The CFD models bearing and drive gas maintained at 100 K, while a colder helium variable temperature fluid stream cools the center of a zirconia rotor. Results from the CFD were used to optimize the helium exhaust path and determine the sample temperature. This novel cryogenic experimental platform will be integrated with pulsed dynamic nuclear polarization and electron decoupling to interrogate biomolecular structure within intact human cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ho-Young; Kang, In Man, E-mail: imkang@ee.knu.ac.kr; Shon, Chae-Hwa
2015-05-07
A variable inductor with magnetorheological (MR) fluid has been successfully applied to power electronics applications; however, its thermal characteristics have not been investigated. To evaluate the performance of the variable inductor with respect to temperature, we measured the characteristics of temperature rise and developed a numerical analysis technique. The characteristics of temperature rise were determined experimentally and verified numerically by adopting a multiphysics analysis technique. In order to accurately estimate the temperature distribution in a variable inductor with an MR fluid-gap, the thermal solver should import the heat source from the electromagnetic solver to solve the eddy current problem. Tomore » improve accuracy, the B–H curves of the MR fluid under operating temperature were obtained using the magnetic property measurement system. In addition, the Steinmetz equation was applied to evaluate the core loss in a ferrite core. The predicted temperature rise for a variable inductor showed good agreement with the experimental data and the developed numerical technique can be employed to design a variable inductor with a high-frequency pulsed voltage source.« less
Significance of Polarization Charges and Isomagnetic Surface in Magnetohydrodynamics
Liang, Zhu-Xing; Liang, Yi
2015-01-01
From the frozen-in field lines concept, a highly conducting fluid can move freely along, but not traverse to, magnetic field lines. We discuss this topic and find that in the study of the frozen-in field lines concept, the effects of inductive and capacitive reactance have been omitted. When admitted, the relationships among the motional electromotive field, the induced electric field, the eddy electric current, and the magnetic field becomes clearer. We emphasize the importance of isomagnetic surfaces and polarization charges, and show analytically that whether a conducting fluid can freely traverse magnetic field lines or not depends solely on the magnetic gradient along the path of the fluid. If a fluid does not change its density distribution and shape (can be regarded as a quasi-rigid body) and moves along isomagnetic surface, it can freely traverse magnetic field lines without any magnetic drag, no matter how strong the magnetic field is. Besides theoretical analysis, we also present experimental results to support our analysis. The main purpose of this work is to correct a fallacy among some astrophysicists. PMID:26322894
Effect of homogenous-heterogeneous reactions on MHD Prandtl fluid flow over a stretching sheet
NASA Astrophysics Data System (ADS)
Khan, Imad; Malik, M. Y.; Hussain, Arif; Salahuddin, T.
An analysis is performed to explore the effects of homogenous-heterogeneous reactions on two-dimensional flow of Prandtl fluid over a stretching sheet. In present analysis, we used the developed model of homogeneous-heterogeneous reactions in boundary layer flow. The mathematical configuration of presented flow phenomenon yields the nonlinear partial differential equations. Using scaling transformations, the governing partial differential equations (momentum equation and homogenous-heterogeneous reactions equations) are transformed into non-linear ordinary differential equations (ODE's). Then, resulting non-linear ODE's are solved by computational scheme known as shooting method. The quantitative and qualitative manners of concerned physical quantities (velocity, concentration and drag force coefficient) are examined under prescribed physical constrained through figures and tables. It is observed that velocity profile enhances verses fluid parameters α and β while Hartmann number reduced it. The homogeneous and heterogeneous reactions parameters have reverse effects on concentration profile. Concentration profile shows retarding behavior for large values of Schmidt number. Skin fraction coefficient enhances with increment in Hartmann number H and fluid parameter α .
Measurement of the refractive index of solutions based on digital holographic microscopy
NASA Astrophysics Data System (ADS)
Huang, Sujuan; Wang, Weiping; Zeng, Junzhang; Yan, Cheng; Lin, Yunyi; Wang, Tingyun
2018-01-01
A new approach for the refractive index (RI) measurement of solutions is proposed based on digital holographic microscopy. The experimental system consists of a modified Mach-Zehnder interferometer and related lab-developed analysis software. The high quality digital hologram of the tested solution is obtained by the real-time analysis software, which is firstly encapsulated into a capillary tube, and then the capillary tube is inserted in a matching fluid. An angular spectrum algorithm is adopted to extract the phase distribution from the hologram recorded by a CCD. Based on a capillary multi-layer calculation model, the RI of the tested solution is obtained at high accuracy. The results of transparent glycerol solution measured by the proposed method are more accurate than those measured by the Abbe refractometer. We also measure the RI of translucent magnetic fluid, which is not suitable to be measured by the Abbe refractometer. The relationship between the RI and the concentration of magnetic fluid is experimentally studied, and the results show that the RI is linearly related to the concentration of dilute magnetic fluid.
Whitman, Richard L; Byers, Stacey E; Shively, Dawn A; Ferguson, Donna M; Byappanahalli, Muruleedhara
2005-12-01
Sarracenia purpurea L., a carnivorous bog plant (also known as the pitcher plant), represents an excellent model of a well-defined, self-contained ecosystem; the individual pitchers of the plant serve as a microhabitat for a variety of micro- and macro-organisms. Previously, fecal indicator bacteria (Escherichia coli and enterococci) were shown as incidental contaminants in pitcher fluid; however, whether their occurrence in pitcher fluid is incidental or common has not been established. The purpose of this study was to investigate the occurrence, distribution, and growth potential of E. coli and enterococci in pitcher plant fluid from a protected bog in northwest Indiana. Escherichia coli and enterococci were recovered in pitcher fluids (n=43 plants), with mean densities (log CFU mL-1) of 1.28+/-0.23 and 1.97+/-0.27, respectively. In vitro experiments showed that E. coli growth in fluid not containing insects or indigenous organisms was directly proportional to the fluid concentration (growth was 10-fold in 24 h in 100% fluid); however, in the presence of other indigenous organisms, E. coli and enterococci were only sustained for 5 days at 26 degrees C. Pulsed-field gel electrophoresis (PFGE) analysis showed that the plant Enterococcus faecalis isolates were genetically distinct from the human isolates; identical PFGE patterns were observed among plant isolates that fell into one of six clonal groups. These findings suggest that (i) E. coli and enterococci occurrence in pitcher plants is rather common in the bog studied, although their originating source is unclear, and (ii) the pitcher fluid contains adequate nutrients, especially carbon and energy sources, to promote the growth of indicator bacteria; however, under natural conditions, the biotic factors (e.g., competition for nutrients) may restrict their growth.
Whitman, Richard L.; Byers, Stacey E.; Shively, Dawn A.; Ferguson, Donna M.; Byappanahalli, Muruleedhara N.
2005-01-01
Sarracenia purpurea L., a carnivorous bog plant (also known as the pitcher plant), represents an excellent model of a well-defined, self-contained ecosystem; the individual pitchers of the plant serve as a microhabitat for a variety of micro- and macro-organisms. Previously, fecal indicator bacteria (Escherichia coli and enterococci) were shown as incidental contaminants in pitcher fluid; however, whether their occurrence in pitcher fluid is incidental or common has not been established. The purpose of this study was to investigate the occurrence, distribution, and growth potential of E. coli and enterococci in pitcher plant fluid from a protected bog in northwest Indiana. Escherichia coli and enterococci were recovered in pitcher fluids (n = 43 plants), with mean densities (log CFU mL-1) of 1.28 ± 0.23 and 1.97 ± 0.27, respectively. In vitro experiments showed that E. coli growth in fluid not containing insects or indigenous organisms was directly proportional to the fluid concentration (growth was 10-fold in 24 h in 100% fluid); however, in the presence of other indigenous organisms, E. coli and enterococci were only sustained for 5 days at 26 °C. Pulsed-field gel electrophoresis (PFGE) analysis showed that the plant Enterococcus faecalis isolates were genetically distinct from the human isolates; identical PFGE patterns were observed among plant isolates that fell into one of six clonal groups. These findings suggest that (i) E. coli and enterococci occurrence in pitcher plants is rather common in the bog studied, although their originating source is unclear, and (ii) the pitcher fluid contains adequate nutrients, especially carbon and energy sources, to promote the growth of indicator bacteria; however, under natural conditions, the biotic factors (e.g., competition for nutrients) may restrict their growth.
Effects of geometry on blast-induced loadings
NASA Astrophysics Data System (ADS)
Moore, Christopher Dyer
Simulations of blasts in an urban environment were performed using Loci/BLAST, a full-featured fluid dynamics simulation code, and analyzed. A two-structure urban environment blast case was used to perform a mesh refinement study. Results show that mesh spacing on and around the structure must be 12.5 cm or less to resolve fluid dynamic features sufficiently to yield accurate results. The effects of confinement were illustrated by analyzing a blast initiated from the same location with and without the presence of a neighboring structure. Analysis of extreme pressures and impulses on structures showed that confinement can increase blast loading by more than 200 percent.
Motile bacteria in a critical fluid mixture
NASA Astrophysics Data System (ADS)
Koumakis, Nick; Devailly, Clémence; Poon, Wilson C. K.
2018-06-01
We studied the swimming of Escherichia coli bacteria in the vicinity of the critical point in a solution of the nonionic surfactant C12E5 in buffer solution. In phase-contrast microscopy, each swimming cell produces a transient trail behind itself lasting several seconds. Comparing quantitative image analysis with simulations show that these trails are due to local phase reorganization triggered by differential adsorption. This contrasts with similar trails seen in bacteria swimming in liquid crystals, which are due to shear effects. We show how our trails are controlled, and use them to probe the structure and dynamics of critical fluctuations in the fluid medium.
Fluid control mechanisms in weightlessness
NASA Technical Reports Server (NTRS)
Leach, Carolyn S.
1987-01-01
Experiments performed on Space Shuttle flights have emphasized study of the earliest effects of the cephalad fluid shift resulting from microgravity. Analysis of one subject's urine collected during flight showed that a sharp increase in antidiuretic hormone occurred within 2 h of launch, followed by an increase in cortisol excretion. Although this subject had symptoms of the space adaptation syndrome (SAS), inflight data from Spacelab missions suggested that these transient changes were not caused by SAS. Unpaired t-tests and Mann-Whitney tests showed that before and after flight, plasma thyroxine and urine osmolality were significantly higher in Shuttle crewmembers who exhibited more severe symptoms of SAS than in asymptomatic crewmembers.
Dilley, Lorie
2013-01-01
Fluid inclusion gas analysis for wells in various geothermal areas. Analyses used in developing fluid inclusion stratigraphy for wells and defining fluids across the geothermal fields. Each sample has mass spectrum counts for 180 chemical species.
2012-01-01
The analysis of the dissolved organic fraction of hydrothermal fluids has been considered a real challenge due to sampling difficulties, complexity of the matrix, numerous interferences and the assumed ppb concentration levels. The present study shows, in a qualitative approach, that Stir Bar Sorptive Extraction (SBSE) followed by Thermal Desorption – Gas Chromatography – Mass Spectrometry (TD-GC-MS) is suitable for extraction of small sample volumes and detection of a wide range of volatile and semivolatile organic compounds dissolved in hydrothermal fluids. In a case study, the technique was successfully applied to fluids from the Rainbow ultramafic-hosted hydrothermal field located at 36°14’N on the Mid-Atlantic Ridge (MAR). We show that n-alkanes, mono- and poly- aromatic hydrocarbons as well as fatty acids can be easily identified and their retention times determined. Our results demonstrate the excellent repeatability of the method as well as the possibility of storing stir bars for at least three years without significant changes in the composition of the recovered organic matter. A preliminary comparative investigation of the organic composition of the Rainbow fluids showed the great potential of the method to be used for assessing intrafield variations and carrying out time series studies. All together our results demonstrate that SBSE-TD-GC-MS analyses of hydrothermal fluids will make important contributions to the understanding of geochemical processes, geomicrobiological interactions and formation of mineral deposits. PMID:23134621
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohan, Arvind Murali; Hartsock, Angela; Bibby, Kyle J
2013-11-19
Microbial communities associated with produced water from hydraulic fracturing are not well understood, and their deleterious activity can lead to significant increases in production costs and adverse environmental impacts. In this study, we compared the microbial ecology in prefracturing fluids (fracturing source water and fracturing fluid) and produced water at multiple time points from a natural gas well in southwestern Pennsylvania using 16S rRNA gene-based clone libraries, pyrosequencing, and quantitative PCR. The majority of the bacterial community in prefracturing fluids constituted aerobic species affiliated with the class Alphaproteobacteria. However, their relative abundance decreased in produced water with an increase inmore » halotolerant, anaerobic/facultative anaerobic species affiliated with the classes Clostridia, Bacilli, Gammaproteobacteria, Epsilonproteobacteria, Bacteroidia, and Fusobacteria. Produced water collected at the last time point (day 187) consisted almost entirely of sequences similar to Clostridia and showed a decrease in bacterial abundance by 3 orders of magnitude compared to the prefracturing fluids and produced water samplesfrom earlier time points. Geochemical analysis showed that produced water contained higher concentrations of salts and total radioactivity compared to prefracturing fluids. This study provides evidence of long-term subsurface selection of the microbial community introduced through hydraulic fracturing, which may include significant implications for disinfection as well as reuse of produced water in future fracturing operations.« less
Shallow plumbing systems inferred from spatial analysis of pockmark arrays
NASA Astrophysics Data System (ADS)
Maia, A.; Cartwright, J. A.; Andersen, E.
2016-12-01
This study describes and analyses an extraordinary array of pockmarks at the modern seabed of the Lower Congo Basin (offshore Angola), in order to understand the fluid migration routes and shallow plumbing system of the area. The 3D seismic visualization of feeding conduits (pipes) allowed the identification of the source interval for the fluids expelled during pockmark formation. Spatial statistics are used to show the relationship between the underlying (polarised) polygonal fault (PPFs) patterns and seabed pockmarks distributions. Our results show PPFs control the linear arrangement of pockmarks and feeder pipes along fault strike, but faults do not act as conduits. Spatial statistics also revealed pockmark occurrence is not considered to be random, especially at short distances to nearest neighbours (<200m) where anti-clustering distributions suggest the presence of an exclusion zone around each pockmark in which no other pockmark will form. The results of this study are relevant for the understanding of shallow fluid plumbing systems in offshore settings, with implications on our current knowledge of overall fluid flow systems in hydrocarbon-rich continental margins.
Ferreira-Pêgo, Cíntia; Nissensohn, Mariela; Kavouras, Stavros A; Babio, Nancy; Serra-Majem, Lluís; Martín Águila, Adys; Mauromoustakos, Andy; Álvarez Pérez, Jacqueline; Salas-Salvadó, Jordi
2016-07-30
We assess the repeatability and relative validity of a Spanish beverage intake questionnaire for assessing water intake from beverages. The present analysis was performed within the framework of the PREDIMED-PLUS trial. The study participants were adults (aged 55-75) with a BMI ≥27 and <40 kg/m², and at least three components of Metabolic Syndrome (MetS). A trained dietitian completed the questionnaire. Participants provided 24-h urine samples, and the volume and urine osmolality were recorded. The repeatability of the baseline measurement at 6 and 1 year was examined by paired Student's t-test comparisons. A total of 160 participants were included in the analysis. The Bland-Altman analysis showed relatively good agreement between total daily fluid intake assessed using the fluid-specific questionnaire, and urine osmolality and 24-h volume with parameter estimates of -0.65 and 0.22, respectively (R² = 0.20; p < 0.001). In the repeatability test, no significant differences were found between neither type of beverage nor total daily fluid intake at 6 months and 1-year assessment, compared to baseline. The proposed fluid-specific assessment questionnaire designed to assess the consumption of water and other beverages in Spanish adult individuals was found to be relatively valid with good repeatability.
NASA Astrophysics Data System (ADS)
Martinelli, Bruno
1990-07-01
The seismic activity of the Nevado del Ruiz volcano was monitored during August-September 1985 using a three-component portable seismograph station placed on the upper part of the volcano. The objective was to investigate the frequency content of the seismic signals and the possible sources of the volcanic tremor. The seismicity showed a wide spectrum of signals, especially at the beginning of September. Some relevant patterns from the collected records, which have been analyzed by spectrum analysis, are presented. For the purpose of analysis, the records have been divided into several categories such as long-period events, tremor, cyclic tremor episodes, and strong seismic activity on September 8, 1985. The origin of the seismic signals must be considered in relation to the dynamical and acoustical properties of fluids and the shape and dimensions of the volcano's conduits. The main results of the present experiment and analysis show that the sources of the seismic signals are within the volcanic edifice. The signal characteristics indicate that the sources lie in fluid-phase interactions rather than in brittle fracturing of solid components.
Interferometric characterization of tear film dynamics
NASA Astrophysics Data System (ADS)
Primeau, Brian Christopher
The anterior refracting surface of the eye is the thin tear film that forms on the surface of the cornea. When a contact lens is on worn, the tear film covers the contact lens as it would a bare cornea, and is affected by the contact lens material properties. Tear film irregularity can cause both discomfort and vision quality degradation. Under normal conditions, the tear film is less than 10 microns thick and the thickness and topography change in the time between blinks. In order to both better understand the tear film, and to characterize how contact lenses affect tear film behavior, two interferometers were designed and built to separately measure tear film behavior in vitro and in vivo. An in vitro method of characterizing dynamic fluid layers applied to contact lenses mounted on mechanical substrates has been developed using a phase-shifting Twyman-Green interferometer. This interferometer continuously measures light reflected from the surface of the fluid layer, allowing precision analysis of the dynamic fluid layer. Movies showing this fluid layer behavior can be generated. The fluid behavior on the contact lens surface is measured, allowing quantitative analysis beyond what typical contact angle or visual inspection methods provide. The in vivo interferometer is a similar system, with additional modules included to provide capability for human testing. This tear film measurement allows analysis beyond capabilities of typical fluorescein visual inspection or videokeratometry and provides better sensitivity and resolution than shearing interferometry methods.
Whish, Sophie; Dziegielewska, Katarzyna M.; Møllgård, Kjeld; Noor, Natassya M.; Liddelow, Shane A.; Habgood, Mark D.; Richardson, Samantha J.; Saunders, Norman R.
2015-01-01
In the adult the interface between the cerebrospinal fluid and the brain is lined by the ependymal cells, which are joined by gap junctions. These intercellular connections do not provide a diffusional restrain between the two compartments. However, during development this interface, initially consisting of neuroepithelial cells and later radial glial cells, is characterized by “strap” junctions, which limit the exchange of different sized molecules between cerebrospinal fluid and the brain parenchyma. Here we provide a systematic study of permeability properties of this inner cerebrospinal fluid-brain barrier during mouse development from embryonic day, E17 until adult. Results show that at fetal stages exchange across this barrier is restricted to the smallest molecules (286Da) and the diffusional restraint is progressively removed as the brain develops. By postnatal day P20, molecules the size of plasma proteins (70 kDa) diffuse freely. Transcriptomic analysis of junctional proteins present in the cerebrospinal fluid-brain interface showed expression of adherens junctional proteins, actins, cadherins and catenins changing in a development manner consistent with the observed changes in the permeability studies. Gap junction proteins were only identified in the adult as was claudin-11. Immunohistochemistry was used to localize at the cellular level some of the adherens junctional proteins of genes identified from transcriptomic analysis. N-cadherin, β - and α-catenin immunoreactivity was detected outlining the inner CSF-brain interface from E16; most of these markers were not present in the adult ependyma. Claudin-5 was present in the apical-most part of radial glial cells and in endothelial cells in embryos, but only in endothelial cells including plexus endothelial cells in adults. Claudin-11 was only immunopositive in the adult, consistent with results obtained from transcriptomic analysis. These results provide information about physiological, molecular and morphological-related permeability changes occurring at the inner cerebrospinal fluid-brain barrier during brain development. PMID:25729345
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
A generalized, intuitive two-fluid picture of 2D non-driven collisionless magnetic reconnection is described using results from a full-3D numerical simulation. The relevant two-fluid equations simplify to the condition that the flux associated with canonical circulation Q=m e∇×u e+q eB is perfectly frozen into the electron fluid. In the reconnection geometry, flux tubes defined by Q are convected with the central electron current, effectively stretching the tubes and increasing the magnitude of Q exponentially. This, coupled with the fact that Q is a sum of two quantities, explains how the magnetic fields in the reconnection region reconnect and give rise tomore » strong electron acceleration. The Q motion provides an interpretation for other phenomena as well, such as spiked central electron current filaments. The simulated reconnection rate was found to agree with a previous analytical calculation having the same geometry. Energy analysis shows that the magnetic energy is converted and propagated mainly in the form of the Poynting flux, and helicity analysis shows that the canonical helicity ∫P·Q dV as a whole must be considered when analyzing reconnection. A mechanism for whistler wave generation and propagation is also described, with comparisons to recent spacecraft observations.« less
NASA Astrophysics Data System (ADS)
Carrión, Luis M.; Herrada, Miguel A.; Montanero, José M.; Vega, José M.
2017-09-01
As is well known, confined fluid systems subject to forced vibrations produce mean flows, called in this context streaming flows. These mean flows promote an overall mass transport in the fluid that has consequences in the transport of passive scalars and surfactants, when these are present in a fluid interface. Such transport causes surfactant concentration inhomogeneities that are to be counterbalanced by Marangoni elasticity. Therefore, the interaction of streaming flows and Marangoni convection is expected to produce new flow structures that are different from those resulting when only one of these effects is present. The present paper focuses on this interaction using the liquid bridge geometry as a paradigmatic system for the analysis. Such analysis is based on an appropriate post-processing of the results obtained via direct numerical simulation of the system for moderately small viscosity, a condition consistent with typical experiments of vibrated millimetric liquid bridges. It is seen that the flow patterns show a nonmonotone behavior as the Marangoni number is increased. In addition, the strength of the mean flow at the free surface exhibits two well-defined regimes as the forcing amplitude increases. These regimes show fairly universal power-law behaviors.
Han, Ga Jin; Kim, Suk; Lee, Nam Kyung; Kim, Chang Won; Seo, Hyeong Il; Kim, Hyun Sung; Kim, Tae Un
2018-01-01
Postpancreatectomy hemorrhage (PPH) is an uncommon but serious complication of Whipple surgery. To evaluate the radiologic features associated with late PPH at the first postoperative follow up CT, before bleeding. To evaluate the radiological features associated with late PPH at the first follow-up CT, two radiologists retrospectively reviewed the initial postoperative follow-up CT images of 151 patients, who had undergone Whipple surgery. Twenty patients showed PPH due to vascular problem or anastomotic ulcer. The research compared CT and clinical findings of 20 patients with late PPH and 131 patients without late PPH, including presence of suggestive feature of pancreatic fistula (presence of air at fluid along pancreaticojejunostomy [PJ]), abscess (fluid collection with an enhancing rim or gas), fluid along hepaticojejunostomy or PJ, the density of ascites, and the size of visible gastroduodenal artery (GDA) stump. CT findings including pancreatic fistula, abscess, and large GDA stump were associated with PPH on univariate analysis ( p ≤ 0.009). On multivariate analysis, radiological features suggestive of a pancreatic fistula, abscess, and a GDA stump > 4.45 mm were associated with PPH ( p ≤ 0.031). Early postoperative CT findings including GDA stump size larger than 4.45 mm, fluid collection with an enhancing rim or gas, and air at fluid along PJ, could predict late PPH.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cappa, F.; Rutqvist, J.; Yamamoto, K.
2009-05-15
In Matsushiro, central Japan, a series of more than 700,000 earthquakes occurred over a 2-year period (1965-1967) associated with a strike-slip faulting sequence. This swarm of earthquakes resulted in ground surface deformations, cracking of the topsoil, and enhanced spring-outflows with changes in chemical compositions as well as carbon dioxide (CO{sub 2}) degassing. Previous investigations of the Matsushiro earthquake swarm have suggested that migration of underground water and/or magma may have had a strong influence on the swarm activity. In this study, employing coupled multiphase flow and geomechanical modelling, we show that observed crustal deformations and seismicity can have been drivenmore » by upwelling of deep CO{sub 2}-rich fluids around the intersection of two fault zones - the regional East Nagano earthquake fault and the conjugate Matsushiro fault. We show that the observed spatial evolution of seismicity along the two faults and magnitudes surface uplift, are convincingly explained by a few MPa of pressurization from the upwelling fluid within the critically stressed crust - a crust under a strike-slip stress regime near the frictional strength limit. Our analysis indicates that the most important cause for triggering of seismicity during the Matsushiro swarm was the fluid pressurization with the associated reduction in effective stress and strength in fault segments that were initially near critically stressed for shear failure. Moreover, our analysis indicates that a two order of magnitude permeability enhancement in ruptured fault segments may be necessary to match the observed time evolution of surface uplift. We conclude that our hydromechanical modelling study of the Matsushiro earthquake swarm shows a clear connection between earthquake rupture, deformation, stress, and permeability changes, as well as large-scale fluid flow related to degassing of CO{sub 2} in the shallow seismogenic crust. Thus, our study provides further evidence of the important role of deep fluid sources in earthquake fault dynamics and surface deformations.« less
Dynamics of Liquids in Edges and Corners (DYLCO): IML-2 Experiment for the BDPU
NASA Technical Reports Server (NTRS)
Langbein, D.; Weislogel, M.
1998-01-01
Knowledge of the behavior of fluids possessing free surfaces is important to many fluid systems, particularly in space, where the normally subtle effects of surface wettability play a more dramatic and often surprising role. DYLCO for the IML-2 mission was proposed as a simple experiment to probe the particular behavior of capillary surfaces in containers of irregular cross section. Temperature control was utilized to vary the fluid-solid contact angle, a questionable thermodynamic parameter of the system, small changes in which can dramatically influence the configuration, stability, and flow of a capillary surface. Container shapes, test fluid, and temperature ranges were selected for observing both local changes in interface curvature as well as a global change in fluid orientation due to a critical wetting phenomenon. The experiment hardware performed beyond what was expected and fluid interfaces could be readily digitized post flight to show the dependence of the interface curvature on temperature. For each of the containers tested surfaces were observed which did not satisfy the classic equations for the prediction of interface shape with constant contact angle boundary condition. This is explained by the presence of contact angle hysteresis arising from expansion and contraction of the liquid during the heating and cooling steps of the test procedure. More importantly, surfaces exceeding the critical surface curvature required for critical wetting were measured, yet no wetting was observed. These findings are indeed curious and pose key questions concerning the role of hysteresis for this critical wetting phenomena. The stability of such surfaces was determined numerically and it is shown that stability is enhance (reduced) when a surface is in its 'advancing' ('receding') state, The analysis shows complete instability as the critical wetting condition is reached. The case of ideal dynamic wetting is addressed analytically in detail with results of significant flow characteristics presented in closed form. The solutions indicate a square root of T dependence of the capillary 'rise' rate which is corroborated by drop tower tests. The analysis clearly shows that infinite time is necessary for surfaces to reorient at the critical wetting transition.
Controlling Viscous Fingering Using Time-Dependent Strategies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stone, Howard; Zheng, Zhong; Kim, Hyoungsoo
Control and stabilization of viscous fingering of immiscible fluids impacts a wide variety of pressure-driven multiphase flows. Here, we report theoretical and experimental results on time-dependent control strategy by manipulating the gap thickness b(t) in a lifting Hele-Shaw cell in the power-law form b(t) = b 1t 1/7. Experimental results show good quantitative agreement with the predictions of linear stability analysis. Furthermore, by choosing the value of a single time-independent control parameter we can either totally suppress the viscous fingering instability or maintain a series of non-splitting viscous fingers during the fluid displacement process. Besides the gap thickness of amore » Hele-Shaw cell, in principle, time-dependent control strategies can also be placed on the injection rate, viscosity of the displaced fluid, and interfacial tensions between the two fluids.« less
Controlling Viscous Fingering Using Time-Dependent Strategies
Stone, Howard; Zheng, Zhong; Kim, Hyoungsoo
2015-10-20
Control and stabilization of viscous fingering of immiscible fluids impacts a wide variety of pressure-driven multiphase flows. Here, we report theoretical and experimental results on time-dependent control strategy by manipulating the gap thickness b(t) in a lifting Hele-Shaw cell in the power-law form b(t) = b 1t 1/7. Experimental results show good quantitative agreement with the predictions of linear stability analysis. Furthermore, by choosing the value of a single time-independent control parameter we can either totally suppress the viscous fingering instability or maintain a series of non-splitting viscous fingers during the fluid displacement process. Besides the gap thickness of amore » Hele-Shaw cell, in principle, time-dependent control strategies can also be placed on the injection rate, viscosity of the displaced fluid, and interfacial tensions between the two fluids.« less
Extreme concentration fluctuations due to local reversibility of mixing in turbulent flows
NASA Astrophysics Data System (ADS)
Xia, Hua; Francois, Nicolas; Punzmann, Horst; Szewc, Kamil; Shats, Michael
2018-05-01
Mixing of a passive scalar in a fluid (e.g. a radioactive spill in the ocean) is the irreversible process towards homogeneous distribution of a substance. In a moving fluid, due to the chaotic advection [H. Aref, J. Fluid Mech. 143 (1984) 1; J. M. Ottino, The Kinematics of Mixing: Stretching,Chaos and Transport (Cambridge University Press, Cambridge, 1989)] mixing is much faster than if driven by molecular diffusion only. Turbulence is known as the most efficient mixing flow [B. I. Shraiman and E. D. Siggia, Nature 405 (2000) 639]. We show that in contrast to spatially periodic flows, two-dimensional turbulence exhibits local reversibility in mixing, which leads to the generation of unpredictable strong fluctuations in the scalar concentration. These fluctuations can also be detected from the analysis of the fluid particle trajectories of the underlying flow.
A numerical method for electro-kinetic flow with deformable fluid interfaces
NASA Astrophysics Data System (ADS)
Booty, Michael; Ma, Manman; Siegel, Michael
2013-11-01
We consider two-phase flow of ionic fluids whose motion is driven by an imposed electric field. At a fluid interface, a screening cloud of ions develops and forms an electro-chemical double layer or Debye layer. The imposed field acts on this induced charge distribution, resulting in a strong slip flow near the interface. We formulate a ``hybrid'' or multiscale numerical method in the thin Debye layer limit that incorporates an asymptotic analysis of the electrostatic potential and fluid dynamics in the Debye layer into a boundary integral solution of the full moving boundary problem. Results of the method are presented that show time-dependent deformation and steady state drop interface shapes when the timescale for charge-up of the Debye layer is either much less than or comparable to the timescale of the flow.
Bacterial accumulation in viscosity gradients
NASA Astrophysics Data System (ADS)
Waisbord, Nicolas; Guasto, Jeffrey
2016-11-01
Cell motility is greatly modified by fluid rheology. In particular, the physical environments in which cells function, are often characterized by gradients of viscous biopolymers, such as mucus and extracellular matrix, which impact processes ranging from reproduction to digestion to biofilm formation. To understand how spatial heterogeneity of fluid rheology affects the motility and transport of swimming cells, we use hydrogel microfluidic devices to generate viscosity gradients in a simple, polymeric, Newtonian fluid. Using video microscopy, we characterize the random walk motility patterns of model bacteria (Bacillus subtilis), showing that both wild-type ('run-and-tumble') cells and smooth-swimming mutants accumulate in the viscous region of the fluid. Through statistical analysis of individual cell trajectories and body kinematics in both homogeneous and heterogeneous viscous environments, we discriminate passive, physical effects from active sensing processes to explain the observed cell accumulation at the ensemble level.
Hydromagnetic Rarefied Fluid Flow over a Wedge in the Presence of Surface Slip and Thermal Radiation
NASA Astrophysics Data System (ADS)
Das, K.; Sharma, R. P.; Duari, P. R.
2017-12-01
An analysis is presented to investigate the effects of thermal radiation on a convective slip flow of an electrically conducting slightly rarefied fluid, having temperature dependent fluid properties, over a wedge with a thermal jump at the surface of the boundary in the presence of a transverse magnetic field. The reduced equations are solved numerically using the finite difference code that implements the 3-stage Lobatto IIIa formula for the partitioned Runge-Kutta method. Numerical results for the dimensionless velocity and temperature as well as for the skin friction coefficient and the Nusselt number are presented through graphs and tables for pertinent parameters to show interesting aspects of the solution.
NASA Astrophysics Data System (ADS)
Mahaut, Fabien; Bertrand, François; Coussot, Philippe; Chateau, Xavier; Ovarlez, Guillaume
2008-07-01
We study experimentally and theoretically the behavior of suspensions of noncolloidal particles in yield stress fluids. We develop procedures and materials that allow focusing on the purely mechanical contribution of the particles to the yield stress fiuid behavior, allowing relating the macroscopic properties of these suspensions to the mechanical properties of the yield stress fluid and the particle volume fraction. We find that the elastic modulus/concentration relationship follows a Krieger-Dougherty law, and show that the yield stress/concentration relationship is related to the elastic modulus/concentration relationship through a very simple law, in agreement with a micromechanical analysis. We finally present evidence for shear-induced migration in the flows of these suspensions.
NASA Astrophysics Data System (ADS)
Henri, P. A.; Rommevaux, C.; Chavagnac, V.; Degboe, J.; Destrigneville, C.; Boulart, C.; Lesongeur, F.; Castillo, A.; Goodfroy, A.
2015-12-01
To study the hydrothermal forcing on microbial colonization, and impacts on the oceanic crust alteration, an integrated study was led at the Tour Eiffel hydrothermal site (Lucky Strike hydrothermal field, 37°N, MAR). We benefited from an annual survey between 2009 and 2011 of temperatures, along with sampling of focused and diffused fluids for chemical analysis, and chimney sampling and samples from microbial colonization experiments analyzed for prokaryotic composition and rock alteration study. The chemical composition of the fluids show an important increase in the CO2 concentration at the Eiffel Tower site between 2009 and 2010 followed by a decrease between 2010 and 2011. In 2011, several fluid samples show an important depletion in Si, suggesting that some Si was removed by interaction with the stockwork before emission. Our observations, regarding the previous studies of chemical fluid affected by a magmatic event lead us to suppose that a magmatic/tectonic event occurred under the Lucky Strike hydrothermal field between 2009 and 2010. The results of the prokaryotic communities' analysis show that a shift occurred in the dominant microbial metabolisms present in the colonizer retrieved in 2010 and the one retrieved in 2011. Archaeal communities shifted from chemolithoautotropic sulfite/thiosulfate reducers-dominated in 2010 to ammonia oxidizers-dominated in 2011. The bacterial communities also undergo a shift, from a community with diversified metabolisms in 2010 to a community strongly dominated by chemolithoautotrophic sulfide or hydrogen oxidation in 2011. Moreover, in terms of ecological preferendum, the Archaeal communities shifted from thermophilic-dominated to mesophilic-dominated. The present study underline the influence of modifications in gases compositions of hydrothermal fluids subsequently to a degassing of the magma chamber and their impact on the microbial communities living in the vicinity of hydrothermal vents at the Eiffel Tower site.
Li, Youfang; Wang, Yumiao; Zhang, Renzhong; Wang, Jue; Li, Zhiqing; Wang, Ling; Pan, Songfeng; Yang, Yanling; Ma, Yanling; Jia, Manhong
2016-01-01
To understood the accuracy of oral fluid-based rapid HIV self-testing among men who have sex with men (MSM) and related factors. Survey was conducted among MSM selected through non-probability sampling to evaluate the quality of their rapid HIV self-testing, and related information was analyzed. The most MSM were aged 21-30 years (57.0%). Among them, 45.7% had educational level of college or above, 78.5% were unmarried, 59.3% were casual laborers. The overall accuracy rate of oral fluid based self-testing was 95.0%, the handling of"inserting test paper into tube as indicated by arrow on it"had the highest accuracy rate (98.0%), and the handling of"gently upsetting tube for 3 times"had lowest accuracy rate (65.0%); Chi-square analysis showed that educational level, no touch with middle part of test paper, whether reading the instruction carefully, whether understanding the instruction and inserting test paper into tube as indicated by the arrow on it were associated with the accuracy of oral fluid-based rapid HIV self-testing, (P<0.05). Multivariate logistic regression analysis indicated that educational level, no touch with middle part of test paper and understanding instructions were associated with the accuracy of oral fluid-based rapid HIV self-testing. The accuracy of oral fluid-based rapid HIV self-testing was high among MSM, the accuracy varied with the educational level of the MSM. Touch with the middle part of test paper or not and understanding the instructions or not might influence the accuracy of the self-testing.
Röhrich, J; Zörntlein, S; Becker, J; Urban, R
2010-04-01
The Rapid Stat assay, a point-of-collection drug-testing device for detection of amphetamines, cannabinoids, cocaine, opiates, methadone, and benzodiazepines in oral fluid, was evaluated for cannabis and amphetamine-type stimulants. The Rapid Stat tests (n = 134) were applied by police officers in routine traffic checks. Oral fluid and blood samples were analyzed using gas chromatography-mass spectrometry (GC-MS) for Delta(9)-tetrahydrocannabinol, amphetamine, methamphetamine, methylenedioxymethamphetamine, methylenedioxyethylamphetamine, and methylenedioxyamphetamine. The comparison of GC-MS analysis of oral fluid with the Rapid Stat results for cannabis showed a sensitivity of 85%, a specificity of 87%, and a total confirmation rate of 87%. When compared with serum, the sensitivity of the cannabis assay decreased to 71%, the specificity to 60%, and the total confirmation rate to 66%. These findings were possibly caused by an incorrect reading of the THC test results. Comparison of the Rapid Stat amphetamine assay with GC-MS in oral fluid showed a sensitivity of 94%, a specificity of 97%, and a total confirmation rate of 97%. Compared with serum, a sensitivity of 100%, a specificity of 90%, and a total confirmation rate of 92% was found. The amphetamine assay must, therefore, be regarded as satisfactory.
NASA Astrophysics Data System (ADS)
Mayanovic, R. A.; Anderson, A. J.; Bassett, W. A.; Chou, I.
2006-05-01
Understanding the structural properties of trace elements in hydrous silicate melts in contact with a hydrothermal fluid is fundamentally important for a better assessment of the role of such elements in silicate melts being subjected to hydrothermal processes. We describe the use of synchrotron x-ray microprobe techniques and the modified hydrothermal diamond-anvil cell for in-situ spectroscopic analysis of individual phases of a silicate-melt/fluid system. Synchrotron X-ray fluorescence (XRF) and Nb K-edge X-ray absorption fine structure (XAFS) measurements were made on sectors ID20 and ID13 at the Advanced Photon Source, at the Argonne National Laboratory, on a Nb-bearing granitic glass in H2O and separately in a 1 M Na2CO3 aqueous solution at temperatures ranging from 25 to 880 °C and at up to 700 MPa of pressure. Individual phases of the Nb-glass/fluid system (at low temperatures) or the hydrous-silicate-melt/fluid system (at elevated temperatures) were probed using an X-ray beam focused to a diameter of 5 μm at the location of the sample. XRF analysis shows that the Nb partitions selectively from the hydrous silicate melt into the aqueous fluid at high temperatures in the Nb-glass/Na2CO3/H2O system but not so in the Nb-glass/H2O system. Analysis of XAFS spectra measured from the hydrous silicate melt phase of the Nb-glass/H2O sample in the 450 to 700 °C range shows that the first shell contains six oxygen atoms at a distance of ~1.98 Å. Our results suggest that reorganization of the silicate structure surrounding Nb occurs in the melt when compared to that of the starting glass. The X-ray absorption near edge structure (XANES) spectra show a pre-edge peak feature located at ~18995 eV that exhibits sharpening and becomes more intensified in the 450 to 700 °C range. Fitting of the Nb K-edge XANES spectra measured from the melt is accomplished using FEFF8.28 and an atomic model NbSi4O6-4(Na, K). The model is based on the structure of fresnoite (Ba2TiSi2O8), in which an NbO6 octahedron unit is substituted for the TiO5 unit, four Na and four K atoms are placed alternately on nearby Ba atom sites, and four Si atoms are arranged in a single plane intersecting the NbO6 unit. The results from fitting indicate that the local structure of Nb in the silicate melt is altered from its local structure in the quenched glass before heating and in the glass after heating in the diamond anvil cell. The importance of in situ analysis of melts and hydrothermal fluids at various temperatures and pressures is discussed in the context of our study.
The Role of Fluid Compression in Particle Energization during Magnetic Reconnection
NASA Astrophysics Data System (ADS)
Li, X.; Guo, F.; Li, H.; Li, S.
2017-12-01
Theories of particle transport and acceleration have shown that fluid compression is the leading mechanism for particle energization. However, the role of compression in particle energization during magnetic reconnection is unclear. We present a cluster of studies to clarify and show the effect of fluid compression in accelerating particles to high energies during magnetic reconnection. Using fully kinetic reconnection simulations, we show that fluid compression is the leading mechanism for high-energy particle energization. We find that the compressional energization is more important in a low-beta plasma or in a reconnection layer with a weak guide field (the magnetic field component perpendicular to the reconnecting magnetic field), which are relevant to solar flares. Our analysis on 3D kinetic simulations shows that the self-generated turbulence scatters particles and enhances the particle diffusion processes in the acceleration regions. Based on these results, we then study large-scale reconnection acceleration by solving the particle transport equation in a large-scale reconnection layer evolved with MHD simulations. Due to the compressional effect, particles are accelerated to high energies and develop power-law energy distributions. This study clarifies the nature of particle acceleration in reconnection layer and is important to understand particle energization during large-scale acceleration such as solar flares.
On Flexible Tubes Conveying Fluid: Geometric Nonlinear Theory, Stability and Dynamics
NASA Astrophysics Data System (ADS)
Gay-Balmaz, François; Putkaradze, Vakhtang
2015-08-01
We derive a fully three-dimensional, geometrically exact theory for flexible tubes conveying fluid. The theory also incorporates the change of the cross section available to the fluid motion during the dynamics. Our approach is based on the symmetry-reduced, exact geometric description for elastic rods, coupled with the fluid transport and subject to the volume conservation constraint for the fluid. We first derive the equations of motion directly, by using an Euler-Poincaré variational principle. We then justify this derivation with a more general theory elucidating the interesting mathematical concepts appearing in this problem, such as partial left (elastic) and right (fluid) invariance of the system, with the added holonomic constraint (volume). We analyze the fully nonlinear behavior of the model when the axis of the tube remains straight. We then proceed to the linear stability analysis and show that our theory introduces important corrections to previously derived results, both in the consistency at all wavelength and in the effects arising from the dynamical change of the cross section. Finally, we derive and analyze several analytical, fully nonlinear solutions of traveling wave type in two dimensions.
Thermodynamics Analysis of Binary Plant Generating Power from Low-Temperature Geothermal Resource
NASA Astrophysics Data System (ADS)
Maksuwan, A.
2018-05-01
The purpose in this research was to predict tendency of increase Carnot efficiency of the binary plant generating power from low-temperature geothermal resource. Low-temperature geothermal resources or less, are usually exploited by means of binary-type energy conversion systems. The maximum efficiency is analyzed for electricity production of the binary plant generating power from low-temperature geothermal resource becomes important. By using model of the heat exchanger equivalent to a power plant together with the calculation of the combined heat and power (CHP) generation. The CHP was solved in detail with appropriate boundary originating an idea from the effect of temperature of source fluid inlet-outlet and cooling fluid supply. The Carnot efficiency from the CHP calculation was compared between condition of increase temperature of source fluid inlet-outlet and decrease temperature of cooling fluid supply. Result in this research show that the Carnot efficiency for binary plant generating power from low-temperature geothermal resource has tendency increase by decrease temperature of cooling fluid supply.
Reduced viscosity interpreted for fluid/gas mixtures
NASA Technical Reports Server (NTRS)
Lewis, D. H.
1981-01-01
Analysis predicts decrease in fluid viscosity by comparing pressure profile of fluid/gas mixture with that of power-law fluid. Fluid is taken to be viscous, non-Newtonian, and incompressible; the gas to be ideal; the flow to be inertia-free, isothermal, and one dimensional. Analysis assists in design of flow systems for petroleum, coal, polymers, and other materials.
Nikkhoo, Mohammad; Khalaf, Kinda; Kuo, Ya-Wen; Hsu, Yu-Chun; Haghpanahi, Mohammad; Parnianpour, Mohamad; Wang, Jaw-Lin
2015-01-01
The risk of low back pain resulted from cyclic loadings is greater than that resulted from prolonged static postures. Disk degeneration results in degradation of disk solid structures and decrease of water contents, which is caused by activation of matrix digestive enzymes. The mechanical responses resulted from internal solid–fluid interactions of degenerative disks to cyclic loadings are not well studied yet. The fluid–solid interactions in disks can be evaluated by mathematical models, especially the poroelastic finite element (FE) models. We developed a robust disk poroelastic FE model to analyze the effect of degeneration on solid–fluid interactions within disk subjected to cyclic loadings at different loading frequencies. A backward analysis combined with in vitro experiments was used to find the elastic modulus and hydraulic permeability of intact and enzyme-induced degenerated porcine disks. The results showed that the averaged peak-to-peak disk deformations during the in vitro cyclic tests were well fitted with limited FE simulations and a quadratic response surface regression for both disk groups. The results showed that higher loading frequency increased the intradiscal pressure, decreased the total fluid loss, and slightly increased the maximum axial stress within solid matrix. Enzyme-induced degeneration decreased the intradiscal pressure and total fluid loss, and barely changed the maximum axial stress within solid matrix. The increase of intradiscal pressure and total fluid loss with loading frequency was less sensitive after the frequency elevated to 0.1 Hz for the enzyme-induced degenerated disk. Based on this study, it is found that enzyme-induced degeneration decreases energy attenuation capability of disk, but less change the strength of disk. PMID:25674562
An Integrated Solution for Performing Thermo-fluid Conjugate Analysis
NASA Technical Reports Server (NTRS)
Kornberg, Oren
2009-01-01
A method has been developed which integrates a fluid flow analyzer and a thermal analyzer to produce both steady state and transient results of 1-D, 2-D, and 3-D analysis models. The Generalized Fluid System Simulation Program (GFSSP) is a one dimensional, general purpose fluid analysis code which computes pressures and flow distributions in complex fluid networks. The MSC Systems Improved Numerical Differencing Analyzer (MSC.SINDA) is a one dimensional general purpose thermal analyzer that solves network representations of thermal systems. Both GFSSP and MSC.SINDA have graphical user interfaces which are used to build the respective model and prepare it for analysis. The SINDA/GFSSP Conjugate Integrator (SGCI) is a formbase graphical integration program used to set input parameters for the conjugate analyses and run the models. The contents of this paper describes SGCI and its thermo-fluids conjugate analysis techniques and capabilities by presenting results from some example models including the cryogenic chill down of a copper pipe, a bar between two walls in a fluid stream, and a solid plate creating a phase change in a flowing fluid.
Trace-element patterns of fibrous and monocrystalline diamonds: Insights into mantle fluids
NASA Astrophysics Data System (ADS)
Rege, S.; Griffin, W. L.; Pearson, N. J.; Araujo, D.; Zedgenizov, D.; O'Reilly, S. Y.
2010-08-01
During their growth diamonds may trap micron-scale inclusions of the fluids from which they grew, and these "time capsules" provide insights into the metasomatic processes that have modified the subcontinental lithospheric mantle. LAM-ICPMS analysis of trace elements in > 500 fibrous and monocrystalline diamonds worldwide has been used to understand the nature of these fluids. Analyses of fibrous diamonds define two general types of pattern, a "fibrous-high" (FH) one with high contents of LREE, Ba and K, and a "fibrous-low" (FL) pattern characterized by depletion in LREE/MREE, Ba and K, negative anomalies in Sr and Y, and subchondritic Zr/Hf and Nb/Ta. Both types may be found in fibrous diamonds from single deposits, and in three Yakutian pipes some diamonds show abrupt transitions from inclusion-rich cores with FH patterns to clearer rims with FL patterns. Most monocrystalline diamonds show FL-type patterns, but some have patterns that resemble those of FH fibrous diamonds. Peridotitic and eclogitic monocrystalline diamonds may show either patterns with relatively flat REE, or patterns with more strongly depleted LREE. Kimberlites that contain peridotitic diamonds with "high" patterns also contain eclogitic diamonds with "high" patterns. Strong similarities in the patterns of these two groups of diamonds may suggest high fluid/rock ratios. Many diamonds of the "superdeep" paragenesis have trace-element patterns similar to those of other monocrystalline diamonds. This may be evidence that the trace-element compositions of deep-seated fluids are generally similar to those that form diamonds in the subcontinental lithospheric mantle. The element fractionations observed between the FH and FL patterns are consistent with the immiscible separation of a silicic fluid from a carbonatite-silicate fluid, leaving a residual carbonatitic fluid strongly enriched in LREE, Ba and alkalies. This model would suggest that most monocrystalline diamonds crystallized from the more silicic fraction. Comparison with studies of single fluid inclusions in fibrous diamonds suggests that the FH patterns reflect trapped inclusions of high-Mg and low-Mg carbonatitic high-density fluids. In terms of the rock-forming elements, the fluids that precipitated the rims of some fibrous diamonds (FL pattern) and most monocrystalline diamonds are broadly similar to some hydro-silicic high-density fluids found in fibrous diamonds. However, there are still significant differences between the trace-element patterns of most monocrystalline diamonds and known high-density fluids, and further research is required to understand the formation and growth of these diamonds.
microRNA Profiling of Amniotic Fluid: Evidence of Synergy of microRNAs in Fetal Development.
Sun, Tingting; Li, Weiyun; Li, Tianpeng; Ling, Shucai
2016-01-01
Amniotic fluid (AF) continuously exchanges molecules with the fetus, playing critical roles in fetal development especially via its complex components. Among these components, microRNAs are thought to be transferred between cells loaded in microvesicles. However, the functions of AF microRNAs remain unknown. To date, few studies have examined microRNAs in amniotic fluid. In this study, we employed miRCURY Locked Nucleotide Acid arrays to profile the dynamic expression of microRNAs in AF from mice on embryonic days E13, E15, and E17. At these times, 233 microRNAs were differentially expressed (p< 0.01), accounting for 23% of the total Mus musculus microRNAs. These differentially-expressed microRNAs were divided into two distinct groups based on their expression patterns. Gene ontology analysis showed that the intersectional target genes of these differentially-expressed microRNAs were mainly distributed in synapse, synaptosome, cell projection, and cytoskeleton. Pathway analysis revealed that the target genes of the two groups of microRNAs were synergistically enriched in axon guidance, focal adhesion, and MAPK signaling pathways. MicroRNA-mRNA network analysis and gene- mapping showed that these microRNAs synergistically regulated cell motility, cell proliferation and differentiation, and especially the axon guidance process. Cancer pathways associated with growth and proliferation were also enriched in AF. Taken together, the results of this study are the first to show the functions of microRNAs in AF during fetal development, providing novel insights into interpreting the roles of AF microRNAs in fetal development.
NASA Astrophysics Data System (ADS)
Bégué, Florence; Deering, Chad D.; Gravley, Darren M.; Chambefort, Isabelle; Kennedy, Ben M.
2017-10-01
The magmatic contribution into geothermal fluids in the central Taupo Volcanic Zone (TVZ), New Zealand, has been attributed to either andesitic, 'arc-type' fluids, or rhyolitic, 'rift-type' fluids to explain the compositional diversity of discharge waters. However, this model relies on outdated assumptions related to geochemical trends associated with the magma at depth of typical arc to back-arc settings. Current tectonic models have shown that the TVZ is situated within a rifting arc and hosts magmatic systems dominated by distinct rhyolite types, that are likely to have evolved under different conditions than the subordinate andesites. Therefore, a new appraisal of the existing models is required to further understand the origin of the spatial compositional diversity observed in the geothermal fluids and its relationship to the structural setting. Here, we use volatile concentrations (i.e. H2O, Cl, B) from rhyolitic and andesitic mineral-hosted melt inclusions to evaluate the magmatic contribution to the TVZ geothermal systems. The andesite and two different types of rhyolites (R1 and R2) are each distinct in Cl/H2O and B/Cl, which will affect volatile solubility and phase separation (vapor vs. hydrosaline liquid) of the exsolved volatile phase. Ultimately, these key differences in the magmatic volatile constituents will play a significant role in governing the concentration of Cl discharged into geothermal systems. We estimate bulk fluid compositions (B and Cl) in equilibrium with the different melt types to show the potential contribution of 'parent' fluids to the geothermal systems throughout the TVZ. The results of this analysis show that the variability in fluid compositions partly reflects degassing from previously unaccounted for distinct magma source compositions. We suggest the geothermal systems that appear to have an 'arc-type' andesitic fluid contribution are actually derived from a rhyolite melt in equilibrium with a highly crystalline andesite magma. This model is in better agreement with the current understanding of magma petrogenesis in the central TVZ and its atypical rifted-arc tectonic setting, and show that the central TVZ records an arc, not back-arc, fluid signature.
Lee, Hwan Young; Jung, Sang-Eun; Lee, Eun Hee; Yang, Woo Ick; Shin, Kyoung-Jin
2016-09-01
The ability to predict the type of tissues or cells from molecular profiles of crime scene samples has important practical implications in forensics. A previously reported multiplex assay using DNA methylation markers could only discriminate between 4 types of body fluids: blood, saliva, semen, and the body fluid which originates from female reproductive organ. In the present study, we selected 15 menstrual blood-specific CpG marker candidates based on analysis of 12 genome-wide DNA methylation profiles of vaginal fluid and menstrual blood. The menstrual blood-specificity of the candidate markers was confirmed by comparison with HumanMethylation450 BeadChip array data obtained for 58 samples including 12 blood, 12 saliva, 12 semen, 3 vaginal fluid, and 19 skin epidermis samples. Among 15CpG marker candidates, 3 were located in the promoter region of the SLC26A10 gene, and 2 of them (cg09696411 and cg18069290) showed high menstrual blood specificity. DNA methylation at the 2CpG markers was further tested by targeted bisulfite sequencing of 461 additional samples including 49 blood, 52 saliva, 34 semen, 125 vaginal fluid, and 201 menstrual blood. Because the 2 markers showed menstrual blood-specific methylation patterns, we modified our previous multiplex methylation SNaPshot reaction to include these 2 markers. In addition, a blood marker cg01543184 with cross reactivity to semen was replaced with cg08792630, and a semen-specific unmethylation marker cg17621389 was removed. The resultant multiplex methylation SNaPshot allowed positive identification of blood, saliva, semen, vaginal fluid and menstrual blood using the 9CpG markers which show a methylation signal only in the target body fluids. Because of the complexity in cell composition, menstrual bloods produced DNA methylation profiles that vary with menstrual cycle and sample collection methods, which are expected to provide more insight into forensic menstrual blood test. Moreover, because the developed multiplex methylation SNaPshot reaction includes the 4CpG markers of which specificities have been confirmed by multiple studies, it will facilitate confirmatory tests for body fluids that are frequently observed in forensic casework. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Oral fluid vs. Urine Analysis to Monitor Synthetic Cannabinoids and Classic Drugs Recent Exposure
Blandino, Vincent; Wetzel, Jillian; Kim, Jiyoung; Haxhi, Petrit; Curtis, Richard; Concheiro, Marta
2018-01-01
Background Urine is a common biological sample to monitor recent drug exposure, and oral fluid is an alternative matrix of increasing interest in clinical and forensic toxicology. Limited data are available about oral fluid vs. urine drug disposition, especially for synthetic cannabinoids. Objective To compare urine and oral fluid as biological matrices to monitor recent drug exposure among HIV-infected homeless individuals. Methods Seventy matched urine and oral fluid samples were collected from 13 participants. Cannabis, amphetamines, benzodiazepines, cocaine and opiates were analyzed in urine by the enzyme-multiplied-immunoassay-technique and in oral fluid by liquid chromatography tandem mass spectrometry (LC-MSMS). Eleven synthetic cannabinoids were analyzed in urine and in oral fluid by LC-MSMS. Results Five oral fluid samples were positive for AB-FUBINACA. In urine, 4 samples tested positive for synthetic cannabinoids PB-22, 5-Fluoro-PB-22, AB-FUBINACA, and metabolites UR-144 5-pentanoic acid and UR-144 4-hydroxypentyl. In only one case, oral fluid and urine results matched, both specimens being AB-FUBINACA positive. For cannabis, 40 samples tested positive in urine and 30 in oral fluid (85.7% match). For cocaine, 37 urine and 52 oral fluid samples were positive (75.7% match). Twenty-four urine samples were positive for opiates, and 25 in oral fluid (81.4% match). For benzodiazepines, 23 samples were positive in urine and 25 in oral fluid (85.7% match). Conclusion/Discussion These results offer new information about drugs disposition between urine and oral fluid. Oral fluid is a good alternative matrix to urine for monitoring cannabis, cocaine, opiates and benzodiazepines recent use; however, synthetic cannabinoids showed mixed results. PMID:29173162
Oral Fluid vs. Urine Analysis to Monitor Synthetic Cannabinoids and Classic Drugs Recent Exposure.
Blandino, Vincent; Wetzel, Jillian; Kim, Jiyoung; Haxhi, Petrit; Curtis, Richard; Concheiro, Marta
2017-01-01
Urine is a common biological sample to monitor recent drug exposure, and oral fluid is an alternative matrix of increasing interest in clinical and forensic toxicology. Limited data are available about oral fluid vs. urine drug disposition, especially for synthetic cannabinoids. To compare urine and oral fluid as biological matrices to monitor recent drug exposure among HIV-infected homeless individuals. Seventy matched urine and oral fluid samples were collected from 13 participants. Cannabis, amphetamines, benzodiazepines, cocaine and opiates were analyzed in urine by the enzyme-multipliedimmunoassay- technique and in oral fluid by liquid chromatography tandem mass spectrometry (LCMSMS). Eleven synthetic cannabinoids were analyzed in urine and in oral fluid by LC-MSMS. Five oral fluid samples were positive for AB-FUBINACA. In urine, 4 samples tested positive for synthetic cannabinoids PB-22, 5-Fluoro-PB-22, AB-FUBINACA, and metabolites UR-144 5-pentanoic acid and UR-144 4-hydroxypentyl. In only one case, oral fluid and urine results matched, both specimens being AB-FUBINACA positive. For cannabis, 40 samples tested positive in urine and 30 in oral fluid (85.7% match). For cocaine, 37 urine and 52 oral fluid samples were positive (75.7% match). Twenty-four urine samples were positive for opiates, and 25 in oral fluid (81.4% match). For benzodiazepines, 23 samples were positive in urine and 25 in oral fluid (85.7% match). These results offer new information about drugs disposition between urine and oral fluid. Oral fluid is a good alternative matrix to urine for monitoring cannabis, cocaine, opiates and benzodiazepines recent use; however, synthetic cannabinoids showed mixed results. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Béhar, A; Pujade-Lauraine, E; Maurel, A; Brun, M D; Chauvin, F F; Feuilhade de Chauvin, F; Oulid-Aissa, D; Hille, D
1997-06-01
Fluid retention is a phenomenon associated with taxoids. The principal objective of this study was to investigate the pathophysiological mechanism of docetaxel-induced fluid retention in advanced cancer patients. Docetaxel was administered as a 1 h intravenous infusion every 3 weeks, for at least 4-6 consecutive cycles, to patients with advanced breast (n = 21) or ovarian (n = 3) carcinoma, who had received previous chemotherapy, 21 for advanced disease. Phase II clinical trials have shown that 5 day corticosteroid comedication, starting 1 day before docetaxel infusion, significantly reduces the incidence and severity of fluid retention. This prophylactic corticosteroid regimen is currently recommended for patients receiving docetaxel but was not permitted in this study because of its possible interference with the underlying pathophysiology of the fluid retention. Fluid retention occurred in 21 of the 24 patients but was mainly mild to moderate, with only five patients experiencing severe fluid retention. Eighteen patients received symptomatic flavonoid treatment, commonly prescribed after the last cycle. Specific investigations for fluid retention confirmed a relationship between cumulative docetaxel dose and development of fluid retention. Capillary filtration test analysis showed a two-step process for fluid retention generation, with progressive congestion of the interstitial space by proteins and water starting between the second and the fourth cycle, followed by insufficient lymphatic drainage. A vascular protector such as micronized diosmine hesperidine with recommended corticosteroid premedication and benzopyrones may be useful in preventing and treating docetaxel-induced fluid retention.
Flexible Launch Vehicle Stability Analysis Using Steady and Unsteady Computational Fluid Dynamics
NASA Technical Reports Server (NTRS)
Bartels, Robert E.
2012-01-01
Launch vehicles frequently experience a reduced stability margin through the transonic Mach number range. This reduced stability margin can be caused by the aerodynamic undamping one of the lower-frequency flexible or rigid body modes. Analysis of the behavior of a flexible vehicle is routinely performed with quasi-steady aerodynamic line loads derived from steady rigid aerodynamics. However, a quasi-steady aeroelastic stability analysis can be unconservative at the critical Mach numbers, where experiment or unsteady computational aeroelastic analysis show a reduced or even negative aerodynamic damping.Amethod of enhancing the quasi-steady aeroelastic stability analysis of a launch vehicle with unsteady aerodynamics is developed that uses unsteady computational fluid dynamics to compute the response of selected lower-frequency modes. The response is contained in a time history of the vehicle line loads. A proper orthogonal decomposition of the unsteady aerodynamic line-load response is used to reduce the scale of data volume and system identification is used to derive the aerodynamic stiffness, damping, and mass matrices. The results are compared with the damping and frequency computed from unsteady computational aeroelasticity and from a quasi-steady analysis. The results show that incorporating unsteady aerodynamics in this way brings the enhanced quasi-steady aeroelastic stability analysis into close agreement with the unsteady computational aeroelastic results.
Predicting Athletes' Pre-Exercise Fluid Intake: A Theoretical Integration Approach.
Li, Chunxiao; Sun, Feng-Hua; Zhang, Liancheng; Chan, Derwin King Chung
2018-05-21
Pre-exercise fluid intake is an important healthy behavior for maintaining athletes’ sports performances and health. However, athletes’ behavioral adherence to fluid intake and its underlying psychological mechanisms have not been investigated. This prospective study aimed to use a health psychology model that integrates the self-determination theory and the theory of planned behavior for understanding pre-exercise fluid intake among athletes. Participants ( n = 179) were athletes from college sport teams who completed surveys at two time points. Baseline (Time 1) assessment comprised psychological variables of the integrated model (i.e., autonomous and controlled motivation, attitude, subjective norm, perceived behavioral control, and intention) and fluid intake (i.e., behavior) was measured prospectively at one month (Time 2). Path analysis showed that the positive association between autonomous motivation and intention was mediated by subjective norm and perceived behavioral control. Controlled motivation positively predicted the subjective norm. Intentions positively predicted pre-exercise fluid intake behavior. Overall, the pattern of results was generally consistent with the integrated model, and it was suggested that athletes’ pre-exercise fluid intake behaviors were associated with the motivational and social cognitive factors of the model. The research findings could be informative for coaches and sport scientists to promote athletes’ pre-exercise fluid intake behaviors.
Chan, B; Donzelli, P S; Spilker, R L
2000-06-01
The fluid viscosity term of the fluid phase constitutive equation and the interface boundary conditions between biphasic, solid and fluid domains have been incorporated into a mixed-penalty finite element formulation of the linear biphasic theory for hydrated soft tissue. The finite element code can now model a single-phase viscous incompressible fluid, or a single-phase elastic solid, as limiting cases of a biphasic material. Interface boundary conditions allow the solution of problems involving combinations of biphasic, fluid and solid regions. To incorporate these conditions, the volume-weighted mixture velocity is introduced as a degree of freedom at interface nodes so that the kinematic continuity conditions are satisfied by conventional finite element assembly techniques. Results comparing our numerical method with an independent, analytic solution for the problem of Couette flow over rigid and deformable porous biphasic layers show that the finite element code accurately predicts the viscous fluid flows and deformation in the porous biphasic region. Thus, the analysis can be used to model the interface between synovial fluid and articular cartilage in diarthrodial joints. This is an important step toward modeling and understanding the mechanisms of joint lubrication and another step toward fully modeling the in vivo behavior of a diarthrodial joint.
NASA Astrophysics Data System (ADS)
Athey, S. N.; Seaton, P. J.; Mead, R. N.
2016-02-01
Plastic is becoming increasingly more abundant in the marine environment. Plastic ingestion has been shown to be a source of exposure to a variety of harmful compounds, such as polycyclic aromatic hydrocarbons (PAHs), bisphenol A (BPA), and phthalates, which are known for their negative physiological effects on the endocrine system as well as their ability to adsorb and leach from plastic into the bodies of marine organisms. The physiological effects of these compounds on loggerhead sea turtles (Caretta caretta) still remain unknown. This study investigated the presence of toxicants on marine plastic samples collected from Bermuda, the Sargasso Sea, and the North Atlantic Ocean. Gas chromatography/triple quadruple mass spectrometry (GC/MS) analysis showed PAHs were present on many plastic debris samples. Plastic additives such as phthalates and (BPA) were also found. ΣPAH concentrations for anthracene, chrysene, benzo[b]fluoranthene, and benzo[k]fluoranthene for 2013 environmental plastic samples averaged 26.7ng/g of plastic. This study also examined the presence of these compounds in fluids from the stomach, small intestine, and large intestine from two adult loggerhead turtles. GC/MS analysis also showed the presence of BPA and phthalates on plastic samples, as well as in two out of the six gastrointestinal fluids samples. Average ΣPAH concentration for GI fluids for the loggerheads in the study was 58.7 ng/mL. This study showed plastic could be a significant source of PAHs in sea turtles and the first to detect PAHs in sea turtle GI fluid. Loggerhead sea turtles are a long living species and could accumulate high concentrations of these endocrine-disrupting chemicals throughout their lifetime.
Single Trial EEG Patterns for the Prediction of Individual Differences in Fluid Intelligence.
Qazi, Emad-Ul-Haq; Hussain, Muhammad; Aboalsamh, Hatim; Malik, Aamir Saeed; Amin, Hafeez Ullah; Bamatraf, Saeed
2016-01-01
Assessing a person's intelligence level is required in many situations, such as career counseling and clinical applications. EEG evoked potentials in oddball task and fluid intelligence score are correlated because both reflect the cognitive processing and attention. A system for prediction of an individual's fluid intelligence level using single trial Electroencephalography (EEG) signals has been proposed. For this purpose, we employed 2D and 3D contents and 34 subjects each for 2D and 3D, which were divided into low-ability (LA) and high-ability (HA) groups using Raven's Advanced Progressive Matrices (RAPM) test. Using visual oddball cognitive task, neural activity of each group was measured and analyzed over three midline electrodes (Fz, Cz, and Pz). To predict whether an individual belongs to LA or HA group, features were extracted using wavelet decomposition of EEG signals recorded in visual oddball task and support vector machine (SVM) was used as a classifier. Two different types of Haar wavelet transform based features have been extracted from the band (0.3 to 30 Hz) of EEG signals. Statistical wavelet features and wavelet coefficient features from the frequency bands 0.0-1.875 Hz (delta low) and 1.875-3.75 Hz (delta high), resulted in the 100 and 98% prediction accuracies, respectively, both for 2D and 3D contents. The analysis of these frequency bands showed clear difference between LA and HA groups. Further, discriminative values of the features have been validated using statistical significance tests and inter-class and intra-class variation analysis. Also, statistical test showed that there was no effect of 2D and 3D content on the assessment of fluid intelligence level. Comparisons with state-of-the-art techniques showed the superiority of the proposed system.
Lewis, A C; Kilburn, M R; Papageorgiou, I; Allen, G C; Case, C P
2005-06-15
The corrosion and dissolution of high- and low-carbon CoCrMo alloys, as used in orthopedic joint replacements, were studied by immersing samples in phosphate-buffered saline (PBS), water, and synovial fluid at 37 degrees C for up to 35 days. Bulk properties were analyzed with a fine ion beam microscope. Surface analyses by X-ray photoelectron spectroscopy and Auger electron spectroscopy showed surprisingly that synovial fluid produced a thin oxide/hydroxide layer. Release of ions into solution from the alloy also followed an unexpected pattern where synovial fluid, of all the samples, had the highest Cr concentration but the lowest Co concentration. The presence of carbide inclusions in the alloy did not affect the corrosion or the dissolution mechanisms, although the carbides were a significant feature on the metal surface. Only one mechanism was recognized as controlling the thickness of the oxide/hydroxide interface. The analysis of the dissolved metal showed two mechanisms at work: (1) a protein film caused ligand-induced dissolution, increasing the Cr concentration in synovial fluid, and was explained by the equilibrium constants; (2) corrosion at the interface increased the Co in PBS. The effect of prepassivating the samples (ASTM F-86-01) did not always have the desired effect of reducing dissolution. The release of Cr into PBS increased after prepassivation. The metal-synovial fluid interface did not contain calcium phosphate as a deposit, typically found where samples are exposed to calcium rich bodily fluids. (c) 2005 Wiley Periodicals, Inc.
Schutz, Peter W; Fauth, Clarissa T; Al-Rawahi, Ghada N; Pugash, Denise; White, Valerie A; Stockler, Sylvia; Dunham, Christopher P
2014-04-01
Herpes simplex virus encephalitis can manifest as a range of clinical presentations including classic adult, neonatal, and biphasic chronic-granulomatous herpes encephalitis. We report an infant with granulomatous herpes simplex virus type 2 encephalitis with a subacute course and multicystic encephalopathy. A 2-month-old girl presented with lethargy and hypothermia. Computed tomography scan of the head showed multicystic encephalopathy and calcifications. Cerebrospinal fluid analysis by polymerase chain reaction testing for herpes simplex virus 1 and 2, enterovirus, and cytomegalovirus was negative. Normal cerebrospinal fluid interferon-α levels argued against Aicardi-Goutières syndrome. The patient died 2 weeks after presentation. At autopsy, multicystic encephalopathy was confirmed with bilateral gliosis, granulomatous inflammation with multinucleated giant cells, and calcifications. Bilateral healing necrotizing retinitis suggested a viral etiology, but retina and brain were free of viral inclusions and immunohistochemically negative for herpes simplex virus-2 and cytomegalovirus. However, polymerase chain reaction analysis showed herpes simplex virus-2 DNA in four cerebral paraffin blocks. Subsequent repeat testing of the initial cerebrospinal fluid sample using a different polymerase chain reaction assay was weakly positive for herpes simplex virus-2 DNA. Granulomatous herpes simplex virus encephalitis in infants can present with subacute course and result in multicystic encephalopathy with mineralization and minimal cerebrospinal fluid herpes simplex virus DNA load. Infectious etiologies should be carefully investigated in the differential diagnosis of multicystic encephalopathy with mineralization, in particular if multinucleated giant cells are present. Copyright © 2014 Elsevier Inc. All rights reserved.
Morin, C; Gandy, J; Brazeilles, R; Moreno, L A; Kavouras, S A; Martinez, H; Salas-Salvadó, J; Bottin, J; Guelinckx, Isabelle
2018-06-01
This study aimed to identify and characterize patterns of fluid intake in children and adolescents from six countries: Argentina, Brazil, China, Indonesia, Mexico and Uruguay. Data on fluid intake volume and type amongst children (4-9 years; N = 1400) and adolescents (10-17 years; N = 1781) were collected using the validated 7-day fluid-specific record (Liq.In 7 record). To identify relatively distinct clusters of subjects based on eight fluid types (water, milk and its derivatives, hot beverages, sugar-sweetened beverages (SSB), 100% fruit juices, artificial/non-nutritive sweetened beverages, alcoholic beverages, other beverages), a cluster analysis (partitioning around k-medoids algorithm) was used. Clusters were then characterized according to their socio-demographics and lifestyle indicators. The six interpretable clusters identified were: low drinkers-SSB (n 523), low drinkers-water and milk (n 615), medium mixed drinkers (n 914), high drinkers-SSB (n 513), high drinkers-water (n 352) and very high drinkers-water (n 264). Country of residence was the dominant characteristic, followed by socioeconomic level, in all six patterns. This analysis showed that consumption of water and SSB were the primary drivers of the clusters. In addition to country, socio-demographic and lifestyle factors played a role in determining the characteristics of each cluster. This information highlights the need to target interventions in particular populations aimed at changing fluid intake behavior and improving health in children and adolescents.
Positive and negative effects of dielectric breakdown in transformer oil based magnetic fluids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jong-Chul, E-mail: jclee01@gwnu.ac.kr; Lee, Won-Ho; Lee, Se-Hee
The transformer oil based magnetic fluids can be considered as the next-generation insulation fluids because they offer exciting new possibilities to enhance dielectric breakdown voltage as well as heat transfer performance compared to pure transformer oils. In this study, we have investigated the dielectric breakdown strength of the fluids with the various volume concentrations of nanoparticles in accordance with IEC 156 standard and have tried to find the reason for changing the dielectric breakdown voltage of the fluids from the magnetic field analysis. It was found that the dielectric breakdown voltage of pure transformer oil is around 12 kV withmore » the gap distance of 1.5 mm. In the case of our transformer oil-based magnetic fluids with 0.08% < Φ < 0.6% (Φ means the volume concentration of magnetic nanoparticles), the dielectric breakdown voltage shows above 40 kV, which is 3.3 times higher positively than that of pure transformer oil. Negatively in the case when the volume concentration of magnetic nanoparticles is above 0.65%, the dielectric breakdown voltage decreases reversely. From the magnetic field analysis, the reason might be considered as two situations: the positive is for the conductive nanoparticles dispersed well near the electrodes, which play an important role in converting fast electrons to slow negatively charged particles, and the negative is for the agglomeration of the particles near the electrodes, which leads to the breakdown initiation.« less
Modeling Pumped Thermal Energy Storage with Waste Heat Harvesting
NASA Astrophysics Data System (ADS)
Abarr, Miles L. Lindsey
This work introduces a new concept for a utility scale combined energy storage and generation system. The proposed design utilizes a pumped thermal energy storage (PTES) system, which also utilizes waste heat leaving a natural gas peaker plant. This system creates a low cost utility-scale energy storage system by leveraging this dual-functionality. This dissertation first presents a review of previous work in PTES as well as the details of the proposed integrated bottoming and energy storage system. A time-domain system model was developed in Mathworks R2016a Simscape and Simulink software to analyze this system. Validation of both the fluid state model and the thermal energy storage model are provided. The experimental results showed the average error in cumulative fluid energy between simulation and measurement was +/- 0.3% per hour. Comparison to a Finite Element Analysis (FEA) model showed <1% error for bottoming mode heat transfer. The system model was used to conduct sensitivity analysis, baseline performance, and levelized cost of energy of a recently proposed Pumped Thermal Energy Storage and Bottoming System (Bot-PTES) that uses ammonia as the working fluid. This analysis focused on the effects of hot thermal storage utilization, system pressure, and evaporator/condenser size on the system performance. This work presents the estimated performance for a proposed baseline Bot-PTES. Results of this analysis showed that all selected parameters had significant effects on efficiency, with the evaporator/condenser size having the largest effect over the selected ranges. Results for the baseline case showed stand-alone energy storage efficiencies between 51 and 66% for varying power levels and charge states, and a stand-alone bottoming efficiency of 24%. The resulting efficiencies for this case were low compared to competing technologies; however, the dual-functionality of the Bot-PTES enables it to have higher capacity factor, leading to 91-197/MWh levelized cost of energy compared to 262-284/MWh for batteries and $172-254/MWh for Compressed Air Energy Storage.
NASA Astrophysics Data System (ADS)
Lambrecht, Glenn; Diamond, Larryn William
2014-09-01
Cathodoluminescence (CL) studies have previously shown that some secondary fluid inclusions in luminescent quartz are surrounded by dark, non-luminescent patches, resulting from fracture-sealing by late, trace-element-poor quartz. This finding has led to the tacit generalization that all dark CL patches indicate influx of low temperature, late-stage fluids. In this study we have examined natural and synthetic hydrothermal quartz crystals using CL imaging supplemented by in-situ elemental analysis. The results lead us to propose that all natural, liquid-water-bearing inclusions in quartz, whether trapped on former crystal growth surfaces (i.e., of primary origin) or in healed fractures (i.e., of pseudosecondary or secondary origin), are surrounded by three-dimensional, non-luminescent patches. Cross-cutting relations show that the patches form after entrapment of the fluid inclusions and therefore they are not diagnostic of the timing of fluid entrapment. Instead, the dark patches reveal the mechanism by which fluid inclusions spontaneously approach morphological equilibrium and purify their host quartz over geological time. Fluid inclusions that contain solvent water perpetually dissolve and reprecipitate their walls, gradually adopting low-energy euhedral and equant shapes. Defects in the host quartz constitute solubility gradients that drive physical migration of the inclusions over distances of tens of μm (commonly) up to several mm (rarely). Inclusions thus sequester from their walls any trace elements (e.g., Li, Al, Na, Ti) present in excess of equilibrium concentrations, thereby chemically purifying their host crystals in a process analogous to industrial zone refining. Non-luminescent patches of quartz are left in their wake. Fluid inclusions that contain no liquid water as solvent (e.g., inclusions of low-density H2O vapor or other non-aqueous volatiles) do not undergo this process and therefore do not migrate, do not modify their shapes with time, and are not associated with dark-CL zone-refined patches. This new understanding has implications for the interpretation of solids within fluid inclusions (e.g., Ti- and Al-minerals) and for the elemental analysis of hydrothermal and metamorphic quartz and its fluid inclusions by microbeam methods such as LA-ICPMS and SIMS. As Ti is a common trace element in quartz, its sequestration by fluid inclusions and its depletion in zone-refined patches impacts on applications of the Ti-in-quartz geothermometer.
Overview af MSFC's Applied Fluid Dynamics Analysis Group Activities
NASA Technical Reports Server (NTRS)
Garcia, Roberto; Griffin, Lisa; Williams, Robert
2004-01-01
This paper presents viewgraphs on NASA Marshall Space Flight Center's Applied Fluid Dynamics Analysis Group Activities. The topics include: 1) Status of programs at MSFC; 2) Fluid Mechanics at MSFC; 3) Relevant Fluid Dynamics Activities at MSFC; and 4) Shuttle Return to Flight.
Re-injection feasibility study of fracturing flow-back fluid in shale gas mining
NASA Astrophysics Data System (ADS)
Kang, Dingyu; Xue, Chen; Chen, Xinjian; Du, Jiajia; Shi, Shengwei; Qu, Chengtun; Yu, Tao
2018-02-01
Fracturing flow-back fluid in shale gas mining is usually treated by re-injecting into formation. After treatment, the fracturing flow-back fluid is injected back into the formation. In order to ensure that it will not cause too much damage to the bottom layer, feasibility evaluations of re-injection of two kinds of fracturing fluid with different salinity were researched. The experimental research of the compatibility of mixed water samples based on the static simulation method was conducted. Through the analysis of ion concentration, the amount of scale buildup and clay swelling rate, the feasibility of re-injection of different fracturing fluid were studied. The result shows that the swelling of the clay expansion rate of treated fracturing fluid is lower than the mixed water of treated fracturing fluid and the distilled water, indicating that in terms of clay expansion rate, the treated fracturing flow-back fluid is better than that of water injection after re-injection. In the compatibility test, the maximum amount of fouling in the Yangzhou oilfield is 12mg/L, and the maximum value of calcium loss rate is 1.47%, indicating that the compatibility is good. For the fracturing fluid with high salinity in the Yanchang oilfield, the maximum amount of scaling is 72mg/L, and the maximum calcium loss rate is 3.50%, indicating that the compatibility is better.
Wu, Cheng-Yeu; Young, David; Martel, Jan; Young, John D
2015-01-01
Analysis of the chemical composition of mineral particles found in the body is critical to understand the formation and effects of these entities in vivo. Yet, the possibility that biological fluids may modulate particle composition over time has not been examined. Materials & methods: Mineralo-organic nanoparticles similar to the ones that spontaneously form in human tissues were analyzed using electron microscopy, spectroscopy and proteomic analyses. We show that the mineralo-organic nanoparticles assimilate various ions and minerals during incubation in ionic solutions simulating body fluids. The particles undergo dissolution-reprecipitation reactions that affect the final protein composition of the particles. The reactions occurring at the mineral-water interface therefore modulate the ionic and organic composition of mineral nanoparticles formed in biological fluids, producing changes that may alter the effects of mineral particles and stones in vivo.
Experimental analysis of large capacity MR dampers with short- and long-stroke
NASA Astrophysics Data System (ADS)
Zemp, René; de la Llera, Juan Carlos; Weber, Felix
2014-12-01
The purpose of this article is to study and characterize experimentally two magneto-rheological dampers with short- and long-stroke, denoted hereafter as MRD-S and MRD-L. The latter was designed to improve the Earthquake performance of a 21-story reinforced concrete building equipped with two 160 ton tuned pendular masses. The MRD-L has a nominal force capacity of 300 kN and a stroke of ±1 m; the MRD-S has a nominal force capacity of 150 kN, and a stroke of ±0.1 m. The MRD-S was tested with two different magneto-rheological and one viscous fluid. Due to the presence of Eddy currents, both dampers show a time lag between current intensity and damper force as the magnetization on the damper changes in time. Experimental results from the MRD-L show a force drop-off behavior. A decrease in active-mode forces due to temperature increase is also analyzed for the MRD-S and the different fluids. Moreover, the observed increase in internal damper pressure due to energy dissipation is evaluated for the different fluids in both dampers. An analytical model to predict internal pressure increase in the damper is proposed that includes as a parameter the concentration of magnetic particles inside the fluid. Analytical dynamic pressure results are validated using the experimental tests. Finally, an extended Bingham fluid model, which considers compressibility of the fluid, is also proposed and validated using damper tests.
NASA Astrophysics Data System (ADS)
Smith, Zachary J.; Gao, Tingjuan; Lin, Tzu-Yin; Carrade-Holt, Danielle; Lane, Stephen M.; Matthews, Dennis L.; Dwyre, Denis M.; Wachsmann-Hogiu, Sebastian
2016-03-01
Cell counting in human body fluids such as blood, urine, and CSF is a critical step in the diagnostic process for many diseases. Current automated methods for cell counting are based on flow cytometry systems. However, these automated methods are bulky, costly, require significant user expertise, and are not well suited to counting cells in fluids other than blood. Therefore, their use is limited to large central laboratories that process enough volume of blood to recoup the significant capital investment these instruments require. We present in this talk a combination of a (1) low-cost microscope system, (2) simple sample preparation method, and (3) fully automated analysis designed for providing cell counts in blood and body fluids. We show results on both humans and companion and farm animals, showing that accurate red cell, white cell, and platelet counts, as well as hemoglobin concentration, can be accurately obtained in blood, as well as a 3-part white cell differential in human samples. We can also accurately count red and white cells in body fluids with a limit of detection ~3 orders of magnitude smaller than current automated instruments. This method uses less than 1 microliter of blood, and less than 5 microliters of body fluids to make its measurements, making it highly compatible with finger-stick style collections, as well as appropriate for small animals such as laboratory mice where larger volume blood collections are dangerous to the animal's health.
Sleep Apnea and Circadian Extracellular Fluid Change as Independent Factors for Nocturnal Polyuria.
Niimi, Aya; Suzuki, Motofumi; Yamaguchi, Yasuhiro; Ishii, Masaki; Fujimura, Tetsuya; Nakagawa, Tohru; Fukuhara, Hiroshi; Kume, Haruki; Igawa, Yasuhiko; Akishita, Masahiro; Homma, Yukio
2016-10-01
We investigated the relationships among nocturnal polyuria, sleep apnea and body fluid volume to elucidate the pathophysiology of nocturia in sleep apnea syndrome. We enrolled 104 consecutive patients who underwent polysomnography for suspected sleep apnea syndrome. Self-assessed symptom questionnaires were administered to evaluate sleep disorder and lower urinary tract symptoms, including nocturia. Voiding frequency and voided volume were recorded using a 24-hour frequency-volume chart. Body fluid composition was estimated in the morning and at night using bioelectric impedance analysis. Frequency-volume chart data were analyzed in 22 patients after continuous positive airway pressure therapy. Patients with nocturnal polyuria showed a higher apnea-hypopnea index (33.9 vs 24.2, p = 0.03) and a larger circadian change in extracellular fluid adjusted to lean body mass (0.22 vs -0.19, p = 0.019) than those without nocturnal polyuria. These relations were more evident in patients 65 years old or older than in those 64 years or younger. A multivariate linear regression model showed an independent relationship of nocturnal polyuria with the apnea-hypopnea index and the circadian change in extracellular fluid adjusted to lean body mass (p = 0.0012 and 0.022, respectively). Continuous positive airway pressure therapy significantly improved nocturnal polyuria and nocturia only in patients with nocturnal polyuria. This study identified sleep apnea and the circadian change in extracellular fluid as independent factors for nocturnal polyuria. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Current Results and Proposed Activities in Microgravity Fluid Dynamics
NASA Technical Reports Server (NTRS)
Polezhaev, V. I.
1996-01-01
The Institute for Problems in Mechanics' Laboratory work in mathematical and physical modelling of fluid mechanics develops models, methods, and software for analysis of fluid flow, instability analysis, direct numerical modelling and semi-empirical models of turbulence, as well as experimental research and verification of these models and their applications in technological fluid dynamics, microgravity fluid mechanics, geophysics, and a number of engineering problems. This paper presents an overview of the results in microgravity fluid dynamics research during the last two years. Nonlinear problems of weakly compressible and compressible fluid flows are discussed.
Walait, Ahsan; Siddiqui, A M; Rana, M A
2018-02-13
The present theoretical analysis deals with biomechanics of the self-propulsion of a swimming sheet with heat transfer through non-isothermal fluid filling an inclined human cervical canal. Partial differential equations arising from the mathematical modeling of the proposed model are solved analytically. Flow variables like pressure gradient, propulsive velocity, fluid velocity, time mean flow rate, fluid temperature, and heat-transfer coefficients are analyzed for the pertinent parameters. Striking features of the pumping characteristics are explored. Propulsive velocity of the swimming sheet becomes faster for lower Froude number, higher Reynolds number, and for a vertical channel. Temperature and peak value of the heat-transfer coefficients below the swimming sheet showed an increase by the increment of Brinkmann number, inclination, pressure difference over wavelength, and Reynolds number whereas these quantities decrease with increasing Froude number. Aforesaid parameters have shown opposite effects on the peak value of the heat-transfer coefficients below and above the swimming sheet. Relevance of the current results to the spermatozoa transport with heat transfer through non-isothermal cervical mucus filling an inclined human cervical canal is also explored.
Atomization and dense-fluid breakup regimes in liquid rocket engines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oefelein, Joseph; Dahms, Rainer Norbert Uwe
Until recently, modern theory has lacked a fundamentally based model to predict the operating pressures where classical sprays transition to dense-fluid mixing with diminished surface tension. In this paper, such a model is presented to quantify this transition for liquid-oxygen–hydrogen and n-decane–gaseous-oxygen injection processes. The analysis reveals that respective molecular interfaces break down not necessarily because of vanishing surface tension forces but instead because of the combination of broadened interfaces and a reduction in mean free molecular path. When this occurs, the interfacial structure itself enters the continuum regime, where transport processes rather than intermolecular forces dominate. Using this model,more » regime diagrams for the respective systems are constructed that show the range of operating pressures and temperatures where this transition occurs. The analysis also reveals the conditions where classical spray dynamics persists even at high supercritical pressures. As a result, it demonstrates that, depending on the composition and temperature of the injected fluids, the injection process can exhibit either classical spray atomization, dense-fluid diffusion-dominated mixing, or supercritical mixing phenomena at chamber pressures encountered in state-of-the-art liquid rocket engines.« less
Atomization and dense-fluid breakup regimes in liquid rocket engines
Oefelein, Joseph; Dahms, Rainer Norbert Uwe
2015-04-20
Until recently, modern theory has lacked a fundamentally based model to predict the operating pressures where classical sprays transition to dense-fluid mixing with diminished surface tension. In this paper, such a model is presented to quantify this transition for liquid-oxygen–hydrogen and n-decane–gaseous-oxygen injection processes. The analysis reveals that respective molecular interfaces break down not necessarily because of vanishing surface tension forces but instead because of the combination of broadened interfaces and a reduction in mean free molecular path. When this occurs, the interfacial structure itself enters the continuum regime, where transport processes rather than intermolecular forces dominate. Using this model,more » regime diagrams for the respective systems are constructed that show the range of operating pressures and temperatures where this transition occurs. The analysis also reveals the conditions where classical spray dynamics persists even at high supercritical pressures. As a result, it demonstrates that, depending on the composition and temperature of the injected fluids, the injection process can exhibit either classical spray atomization, dense-fluid diffusion-dominated mixing, or supercritical mixing phenomena at chamber pressures encountered in state-of-the-art liquid rocket engines.« less
Application of supercritical fluid carbon dioxide to the extraction and analysis of lipids.
Lee, Jae Won; Fukusaki, Eiichiro; Bamba, Takeshi
2012-10-01
Supercritical carbon dioxide (SCCO(2)) is an ecofriendly supercritical fluid that is chemically inert, nontoxic, noninflammable and nonpolluting. As a green material, SCCO(2) has desirable properties such as high density, low viscosity and high diffusivity that make it suitable for use as a solvent in supercritical fluid extraction, an effective and environment-friendly analytical method, and as a mobile phase for supercritical fluid chromatography, which facilitates high-throughput, high-resolution analysis. Furthermore, the low polarity of SCCO(2) is suitable for the extraction and analysis of hydrophobic compounds. The growing concern surrounding environmental pollution has triggered the development of green analysis methods based on the use of SCCO(2) in various laboratories and industries. SCCO(2) is becoming an effective alternative to conventional organic solvents. In this review, the usefulness of SCCO(2) in supercritical fluid extraction and supercritical fluid chromatography for the extraction and analysis of lipids is described.
The Fourth Annual Thermal and Fluids Analysis Workshop
NASA Technical Reports Server (NTRS)
1992-01-01
The Fourth Annual Thermal and Fluids Analysis Workshop was held from August 17-21, 1992, at NASA Lewis Research Center. The workshop consisted of classes, vendor demonstrations, and paper sessions. The classes and vendor demonstrations provided participants with the information on widely used tools for thermal and fluids analysis. The paper sessions provided a forum for the exchange of information and ideas among thermal and fluids analysts. Paper topics included advances and uses of established thermal and fluids computer codes (such as SINDA and TRASYS) as well as unique modeling techniques and applications.
Lehmann, Roland; Schmidt, André; Pastuschek, Jana; Müller, Mario M; Fritzsche, Andreas; Dieterle, Stefan; Greb, Robert R; Markert, Udo R; Slevogt, Hortense
2018-06-25
The proteomic analysis of complex body fluids by liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis requires the selection of suitable sample preparation techniques and optimal parameter settings in data analysis software packages to obtain reliable results. Proteomic analysis of follicular fluid, as a representative of a complex body fluid similar to serum or plasma, is difficult as it contains a vast amount of high abundant proteins and a variety of proteins with different concentrations. However, the accessibility of this complex body fluid for LC-MS/MS analysis is an opportunity to gain insights into the status, the composition of fertility-relevant proteins including immunological factors or for the discovery of new diagnostic and prognostic markers for, for example, the treatment of infertility. In this study, we compared different sample preparation methods (FASP, eFASP and in-solution digestion) and three different data analysis software packages (Proteome Discoverer with SEQUEST, Mascot and MaxQuant with Andromeda) combined with semi- and full-tryptic databank search options to obtain a maximum coverage of the follicular fluid proteome. We found that the most comprehensive proteome coverage is achieved by the eFASP sample preparation method using SDS in the initial denaturing step and the SEQUEST-based semi-tryptic data analysis. In conclusion, we have developed a fractionation-free methodical workflow for in depth LC-MS/MS-based analysis for the standardized investigation of human follicle fluid as an important representative of a complex body fluid. Taken together, we were able to identify a total of 1392 proteins in follicular fluid. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Hashim, Akasha; Khalid, Amir; Jaat, Norrizam; Sapit, Azwan; Razali, Azahari; Nizam, Akmal
2017-09-01
Efficiency of combustion engines are highly affected by the formation of air-fuel mixture prior to ignition and combustion process. This research investigate the mixture formation and spray characteristics of biodiesel blends under variant in high ambient and injection conditions using Computational Fluid Dynamics (CFD). The spray characteristics such as spray penetration length, spray angle and fluid flow were observe under various operating conditions. Results show that increase in injection pressure increases the spray penetration length for both biodiesel and diesel. Results also indicate that higher spray angle of biodiesel can be seen as the injection pressure increases. This study concludes that spray characteristics of biodiesel blend is greatly affected by the injection and ambient conditions.
Hammerli, Johannes; Rusk, Brian; Spandler, Carl; Emsbo, Poul; Oliver, Nicholas H.S.
2013-01-01
Bromine and chlorine are important halogens for fluid source identification in the Earth's crust, but until recently we lacked routine analytical techniques to determine the concentration of these elements in situ on a micrometer scale in minerals and fluid inclusions. In this study, we evaluate the potential of in situ Cl and Br measurements by LA-ICP-MS through analysis of a range of scapolite grains with known Cl and Br concentrations. We assess the effects of varying spot sizes, variable plasma energy and resolve the contribution of polyatomic interferences on Br measurements. Using well-characterised natural scapolite standards, we show that LA-ICP-MS analysis allows measurement of Br and Cl concentrations in scapolite, and fluid inclusions as small as 16 μm in diameter and potentially in sodalite and a variety of other minerals, such as apatite, biotite, and amphibole. As a demonstration of the accuracy and potential of Cl and Br analyses by LA-ICP-MS, we analysed natural fluid inclusions hosted in sphalerite and compared them to crush and leach ion chromatography Cl/Br analyses. Limit of detection for Br is ~8 μg g−1, whereas relatively high Cl concentrations (> 500 μg g−1) are required for quantification by LA-ICP-MS. In general, our LA-ICP-MS fluid inclusion results agree well with ion chromatography (IC) data. Additionally, combined cathodoluminescence and LA-ICP-MS analyses on natural scapolites within a well-studied regional metamorphic suite in South Australia demonstrate that Cl and Br can be quantified with a ~25 μm resolution in natural minerals. This technique can be applied to resolve a range of hydrothermal geology problems, including determining the origins of ore forming brines and ore deposition processes, mapping metamorphic and hydrothermal fluid provinces and pathways, and constraining the effects of fluid–rock reactions and fluid mixing.
Formation of magmatic brine lenses via focussed fluid-flow beneath volcanoes
NASA Astrophysics Data System (ADS)
Afanasyev, Andrey; Blundy, Jon; Melnik, Oleg; Sparks, Steve
2018-03-01
Many active or dormant volcanoes show regions of high electrical conductivity at depths of a few kilometres beneath the edifice. We explore the possibility that these regions represent lenses of high-salinity brine separated from a single-phase magmatic fluid containing H2O and NaCl. Since chloride-bearing fluids are highly conductive and have an exceptional capacity to transport metals, these regions can be an indication of an active hydrothermal ore-formation beneath volcanoes. To investigate this possibility we have performed hydrodynamic simulations of magma degassing into permeable rock. In our models the magma source is located at 7 km depth and the fluid salinity approximates that expected for fluids released from typical arc magmas. Our model differs from previous models of a similar process because it is (a) axisymmetric and (b) includes a static high-permeability pathway that links the magma source to the surface. This pathway simulates the presence of a volcanic conduit and/or plexus of feeder dykes that are typical of most volcanic systems. The presence of the conduit leads to a number of important hydrodynamic consequences, not observed in previous models. Importantly, we show that an annular brine lens capped by crystallised halite is likely to form above an actively degassing sub-volcanic magma body and can persist for more than 250 kyr after degassing ceases. Parametric analysis shows that brine lenses are more prevalent when the fluid is released at temperatures above the wet granite solidus, when magmatic fluid salinity is high, and when the high-permeability pathway is narrow. The calculated depth, form and electrical conductivity of our modelled system shares many features with published magnetotelluric images of volcano subsurfaces. The formation and persistence of sub-volcanic brine lenses has implications for geothermal systems and hydrothermal ore formation, although these features are not explored in the presented model.
NASA Astrophysics Data System (ADS)
Tang, Z. B.; Deng, Y. D.; Su, C. Q.; Yuan, X. H.
2015-06-01
In this study, a numerical model has been employed to analyze the internal flow field distribution in a heat exchanger applied for an automotive thermoelectric generator based on computational fluid dynamics. The model simulates the influence of factors relevant to the heat exchanger, including the automotive waste heat mass flow velocity, temperature, internal fins, and back pressure. The result is in good agreement with experimental test data. Sensitivity analysis of the inlet parameters shows that increase of the exhaust velocity, compared with the inlet temperature, makes little contribution (0.1 versus 0.19) to the heat transfer but results in a detrimental back pressure increase (0.69 versus 0.21). A configuration equipped with internal fins is proved to offer better thermal performance compared with that without fins. Finally, based on an attempt to improve the internal flow field, a more rational structure is obtained, offering a more homogeneous temperature distribution, higher average heat transfer coefficient, and lower back pressure.
Ferreira-Pêgo, Cíntia; Nissensohn, Mariela; Kavouras, Stavros A.; Babio, Nancy; Serra-Majem, Lluís; Martín Águila, Adys; Mauromoustakos, Andy; Álvarez Pérez, Jacqueline; Salas-Salvadó, Jordi
2016-01-01
We assess the repeatability and relative validity of a Spanish beverage intake questionnaire for assessing water intake from beverages. The present analysis was performed within the framework of the PREDIMED-PLUS trial. The study participants were adults (aged 55–75) with a BMI ≥27 and <40 kg/m2, and at least three components of Metabolic Syndrome (MetS). A trained dietitian completed the questionnaire. Participants provided 24-h urine samples, and the volume and urine osmolality were recorded. The repeatability of the baseline measurement at 6 and 1 year was examined by paired Student’s t-test comparisons. A total of 160 participants were included in the analysis. The Bland–Altman analysis showed relatively good agreement between total daily fluid intake assessed using the fluid-specific questionnaire, and urine osmolality and 24-h volume with parameter estimates of −0.65 and 0.22, respectively (R2 = 0.20; p < 0.001). In the repeatability test, no significant differences were found between neither type of beverage nor total daily fluid intake at 6 months and 1-year assessment, compared to baseline. The proposed fluid-specific assessment questionnaire designed to assess the consumption of water and other beverages in Spanish adult individuals was found to be relatively valid with good repeatability. PMID:27483318
Rapid fabrication of a silicon modification layer on silicon carbide substrate.
Bai, Yang; Li, Longxiang; Xue, Donglin; Zhang, Xuejun
2016-08-01
We develop a kind of magnetorheological (MR) polishing fluid for the fabrication of a silicon modification layer on a silicon carbide substrate based on chemical theory and actual polishing requirements. The effect of abrasive concentration in MR polishing fluid on material removal rate and removal function shape is investigated. We conclude that material removal rate will increase and tends to peak value as the abrasive concentration increases to 0.3 vol. %, and the removal function profile will become steep, which is a disadvantage to surface frequency error removal at the same time. The removal function stability is also studied and the results show that the prepared MR polishing fluid can satisfy actual fabrication requirements. An aspheric reflective mirror of silicon carbide modified by silicon is well polished by combining magnetorheological finishing (MRF) using two types of MR polishing fluid and computer controlled optical surfacing (CCOS) processes. The surface accuracy root mean square (RMS) is improved from 0.087λ(λ=632.8 nm) initially to 0.020λ(λ=632.8 nm) in 5.5 h total and the tool marks resulting from MRF are negligible. The PSD analysis results also shows that the final surface is uniformly polished.
Zheng, Yufang; Sparve, Erik; Bergström, Mats
2018-06-01
A UPLC-MS/MS method was developed to identify and quantitate 37 commonly abused drugs in oral fluid. Drugs of interest included amphetamines, benzodiazepines, cocaine, opiates, opioids, phencyclidine and tetrahydrocannabinol. Sample preparation and extraction are simple, and analysis times short. Validation showed satisfactory performance at relevant concentrations. The possibility of contaminated samples as well as the interpretation in relation to well-knows matrices, such as urine, will demand further study. Copyright © 2017 John Wiley & Sons, Ltd.
Hydromagnetic couple-stress nanofluid flow over a moving convective wall: OHAM analysis
NASA Astrophysics Data System (ADS)
Awais, M.; Saleem, S.; Hayat, T.; Irum, S.
2016-12-01
This communication presents the magnetohydrodynamics (MHD) flow of a couple-stress nanofluid over a convective moving wall. The flow dynamics are analyzed in the boundary layer region. Convective cooling phenomenon combined with thermophoresis and Brownian motion effects has been discussed. Similarity transforms are utilized to convert the system of partial differential equations into coupled non-linear ordinary differential equation. Optimal homotopy analysis method (OHAM) is utilized and the concept of minimization is employed by defining the average squared residual errors. Effects of couple-stress parameter, convective cooling process parameter and energy enhancement parameters are displayed via graphs and discussed in detail. Various tables are also constructed to present the error analysis and a comparison of obtained results with the already published data. Stream lines are plotted showing a difference of Newtonian fluid model and couplestress fluid model.
Kelly, S C; O'Rourke, M J
2010-01-01
This work reports on the implementation and validation of a two-system, single-analysis, fluid-structure interaction (FSI) technique that uses the finite volume (FV) method for performing simulations on abdominal aortic aneurysm (AAA) geometries. This FSI technique, which was implemented in OpenFOAM, included fluid and solid mesh motion and incorporated a non-linear material model to represent AAA tissue. Fully implicit coupling was implemented, ensuring that both the fluid and solid domains reached convergence within each time step. The fluid and solid parts of the FSI code were validated independently through comparison with experimental data, before performing a complete FSI simulation on an idealized AAA geometry. Results from the FSI simulation showed that a vortex formed at the proximal end of the aneurysm during systolic acceleration, and moved towards the distal end of the aneurysm during diastole. Wall shear stress (WSS) values were found to peak at both the proximal and distal ends of the aneurysm and remain low along the centre of the aneurysm. The maximum von Mises stress in the aneurysm wall was found to be 408kPa, and this occurred at the proximal end of the aneurysm, while the maximum displacement of 2.31 mm occurred in the centre of the aneurysm. These results were found to be consistent with results from other FSI studies in the literature.
[Latest advances in acute pancreatitis].
de-Madaria, Enrique
2013-10-01
The present article analyzes the main presentations on acute pancreatitis (AP) in Digestive Disease Week 2013. Perfusion computed tomography allows early diagnosis of pancreatic necrosis. Neutrophil gelatinase-associated lipocalin predicts the development of acute renal failure, severe AP and death. Factors associated with greater fluid sequestration in AP are alcoholic etiology, an elevated hematocrit, and the presence of criteria of systemic inflammatory response syndrome; fluid sequestration is associated with a worse outcome. True pseudocysts (fluid collections without necrosis for more than 4 weeks) are a highly infrequent complication in AP. Patients with necrotic collections have a poor prognosis, especially if associated with infection. A meta-analysis on fluid therapy suggests that early aggressive fluid administration is associated with higher mortality and more frequent respiratory complications. According to a meta-analysis, enteral nutrition initiated within 24 hours of admission improves the outcome of AP compared with later initiation of enteral nutrition. Pentoxifylline could be a promising alternative in AP; a double-blind randomized study showed that this drug reduced the length of hospital and intensive care unit stay, as well as the need for intensive care unit admission. The association of octreotide and celecoxib seems to reduce the frequency of organ damage compared with octreotide alone. Mild AP can be managed in the ambulatory setting through hospital-at-home units after a short, 24-hour admission. Copyright © 2013 Elsevier España, S.L. All rights reserved.
NASA Astrophysics Data System (ADS)
Dyja-Person, Vanessa; Tarantola, Alexandre; Richard, Antonin; Hibsch, Christian; Siebenaller, Luc; Boiron, Marie-Christine; Cathelineau, Michel; Boulvais, Philippe
2018-03-01
The ductile-brittle transition zone in extensional regimes can play the role of a hydrogeological barrier. Quartz veins developed within an orthogneiss body located in the detachment footwall of a Metamorphic Core Complex (MCC) in the Nevado-Filábride units (Betics, Spain). The detachment footwall is composed mainly of gneisses, schists and metacarbonates from the Bédar-Macael sub-unit. Schist and metacarbonate bodies show evidence of ductile deformation at the time the gneiss was already undergoing brittle deformation and vein opening during exhumation. The vein system provides the opportunity to investigate the origin, composition and PVTX conditions of the fluids that circulated in the detachment footwall while the footwall units were crossing the ductile-brittle transition. The analysis of fluid inclusions reveals the presence of a single type of fluid: 30-40 mass% NaCl > KCl > CaCl2 > MgCl2 brines, with trace amounts of CO2 and N2 and tens to thousands of ppm of metals such as Fe, Sr, Li, Zn, Ba, Pb and Cu. δDfluid values between -39.8 and -16.7‰ and δ18Ofluid values between 4.4 and 11.7 ± 0.5‰ show that the brines have undergone protracted interaction with the host orthogneissic body. Coupled salinity and Cl/Br ratios (200 to 4400) indicate that the brines originate from dissolution of Triassic metaevaporites by metamorphic fluids variably enriched in Br by interaction with graphitic schists. This study highlights the absence of any record of surficial fluids within the veins, despite the brittle deformation conditions prevailing in this orthogneiss body. The fact that fluids from the detachment footwall were isolated from surficial fluid reservoirs may result from the presence of overlying schists and metacarbonates that continued to be affected by ductile deformation during vein formation in the gneiss, preventing downward circulation of surface-derived fluids.
CT colonography after incomplete optical colonoscopy
Theis, Jake; Kim, David H.; Lubner, Meghan G.; del Rio, Alejandro Muñoz; Pickhardt, Perry J.
2017-01-01
Purpose To objectively compare the volume, density, and distribution of luminal fluid for same-day oral-contrast-enhanced CTC following incomplete optical colonoscopy (OC) versus deferred CTC on a separate day utilizing a dedicated CTC bowel preparation. Methods HIPAA-compliant, IRB-approved retrospective study compared 103 same-day CTC studies after incomplete OC (utilizing 30 ml oral diatrizoate) against 151 CTC examinations performed on a separate day after failed OC using a dedicated CTC bowel preparation (oral magnesium citrate/dilute barium/diatrizoate the evening before). A subgroup of 15 patients who had both same-day CTC and separate-day routine CTC was also identified and underwent separate analysis. CTC exams were analyzed for opacified fluid distribution within the GI tract, as well as density and volume. Data was analyzed utilizing Kruskal-Wallis and Wilcoxon Signed Rank tests. Results Opacified luminal fluid extended to the rectum in 56% (58/103) of same-day CTC versus 100% (151/151) of deferred separate-day CTC (p<0.0001). For same-day CTC, contrast failed to reach the colon in 11% (11/103) and failed to reach the left colon in 26% (27/103). Volumetric colonic fluid segmentation for fluid analysis (successful in 80 same-day and 147 separate-day cases) showed significantly more fluid in the same-day cohort (mean, 227 ml vs. 166 ml; p<0.0001); the actual difference is underestimated due to excluded cases. Mean colonic fluid attenuation was significantly lower in the same-day cohort (545 HU vs. 735 HU; p<0.0001). Similar findings were identified in the smaller cohort with direct intra-patient CTC comparison. Conclusions Dedicated CTC bowel preparation on a separate day following incomplete OC results in a much higher quality examination compared with same-day CTC. PMID:26830606
Equilibrium electrodeformation of a spheroidal vesicle in an ac electric field
NASA Astrophysics Data System (ADS)
Nganguia, H.; Young, Y.-N.
2013-11-01
In this work, we develop a theoretical model to explain the equilibrium spheroidal deformation of a giant unilamellar vesicle (GUV) under an alternating (ac) electric field. Suspended in a leaky dielectric fluid, the vesicle membrane is modeled as a thin capacitive spheroidal shell. The equilibrium vesicle shape results from the balance between mechanical forces from the viscous fluid, the restoring elastic membrane forces, and the externally imposed electric forces. Our spheroidal model predicts a deformation-dependent transmembrane potential, and is able to capture large deformation of a vesicle under an electric field. A detailed comparison against both experiments and small-deformation (quasispherical) theory showed that the spheroidal model gives better agreement with experiments in terms of the dependence on fluid conductivity ratio, permittivity ratio, vesicle size, electric field strength, and frequency. The spheroidal model also allows for an asymptotic analysis on the crossover frequency where the equilibrium vesicle shape crosses over between prolate and oblate shapes. Comparisons show that the spheroidal model gives better agreement with experimental observations.
Numerical analysis of azimuthal rotating spokes in a crossed-field discharge plasma
NASA Astrophysics Data System (ADS)
Kawashima, R.; Hara, K.; Komurasaki, K.
2018-03-01
Low-frequency rotating spokes are obtained in a cross-field discharge plasma using two-dimensional numerical simulations. A particle-fluid hybrid model is used to model the plasma flow in a configuration similar to a Hall thruster. It has been reported that the drift-diffusion approximation for an electron fluid results in an ill-conditioned matrix when solving for the potential because of the differences in the electron mobilities across the magnetic field and in the direction of the E × B drift. In this paper, we employ a hyperbolic approach that enables stable calculation, namely, better iterative convergence of the electron fluid model. Our simulation results show a coherent rotating structure propagating in the E × B direction with a phase velocity of 2500 m s‑1, which agrees with experimental data. The phase velocity obtained from the numerical simulations shows good agreement with that predicted by the dispersion relation of the gradient drift instability.
Concheiro, Marta; de Castro, Ana; Quintela, Oscar; López-Rivadulla, Manuel; Cruz, Angelines
2005-06-10
This paper describes the analytical methodology for the determination of MDMA, MDA, MDEA and MBDB in oral fluid. After a liquid-liquid extraction, the analysis was carried out by high performance liquid chromatography (HPLC), with fluorescence detection. The detector wavelength was fixed at 285 nm for excitation and 320 nm for emission. The mobile phase, a mixture of phosphate buffer (pH=5) and acetonitrile (75:25), and the column, Kromasil 100 C8 5 microm 250 mm x 4.6mm, allowed good separation of the compounds in an isocratic mode in only 10 min. The method was validated and showed good limits of detection (2 ng/mL) and quantitation (10 ng/mL) for all the amphetamine derivatives. No interfering substances were detected. A stability study of these compounds in oral fluid stored at three different temperatures (-18, 4 and 20 degrees C) over 10 weeks was conducted, showing a time-dependent degradation of the four compounds.
Overview of MSFC's Applied Fluid Dynamics Analysis Group Activities
NASA Technical Reports Server (NTRS)
Garcia, Roberto; Griffin, Lisa; Williams, Robert
2002-01-01
This viewgraph report presents an overview of activities and accomplishments of NASA's Marshall Space Flight Center's Applied Fluid Dynamics Analysis Group. Expertise in this group focuses on high-fidelity fluids design and analysis with application to space shuttle propulsion and next generation launch technologies. Topics covered include: computational fluid dynamics research and goals, turbomachinery research and activities, nozzle research and activities, combustion devices, engine systems, MDA development and CFD process improvements.
Trace element analyses of fluid-bearing diamonds from Jwaneng, Botswana
NASA Astrophysics Data System (ADS)
Schrauder, Marcus; Koeberl, Christian; Navon, Oded
1996-12-01
Fibrous diamonds from Botswana contain abundant micro-inclusions, which represent syngenetic mantle fluids under high pressure. The major element composition of the fluids within individual diamonds was found to be uniform, but a significant compositional variation exists between different diamond specimens. The composition of the fluids varies between a carbonatitic and a hydrous endmember. To constrain the composition of fluids in the mantle, the trace element contents of thirteen micro-inclusion-bearing fibrous diamonds from Botswana was studied using neutron activation analysis. The concentrations of incompatible elements (including K, Na, Br, Rb, Sr, Zr, Cs, Ba, Hf, Ta, Th, U, and the LREEs) in the fluids are higher than those of mantle-derived rocks and melt inclusions. The compatible elements (e.g., Cr, Co, Ni) have abundances that are similar to those of the primitive mantle. The concentrations of most trace elements decrease by a factor of two from the carbonate-rich fluids to the hydrous fluids. Several models may explain the observed elemental variations. Minerals in equilibrium with the fluid were most likely enriched in incompatible elements, which does not agree with derivation of the fluids by partial melting of common peridotites or eclogites. Fractional crystallization of a kimberlite-like magma at depth may yield carbonatitic fluids with low mg numbers (atomic ratio [Mg/(Mg+Fe)]) and high trace element contents. Fractionation of carbonates and additional phases (e.g., rutile, apatite, zircon) may, in general, explain the concentrations of incompatible elements in the fluids, which preferably partition into these phases. Alternatively, mixing of fluids with compositions similar to those of the two endmembers may explain the observed variation of the elemental contents. The fluids in fibrous diamonds might have equilibrated with mineral inclusions in eclogitic diamonds, while peridotitic diamonds do not show evidence of interaction with these fluids. The chemical composition of the fluids in fibrous diamonds indicates that, at p, T conditions that are characteristic for diamond formation, carbonatitic and hydrous fluids are efficient carriers of incompatible elements.
Wang, Li Kun; Heng, Paul Wan Sia; Liew, Celine Valeria
2015-04-01
Bottom spray fluid-bed coating is a common technique for coating multiparticulates. Under the quality-by-design framework, particle recirculation within the partition column is one of the main variability sources affecting particle coating and coat uniformity. However, the occurrence and mechanism of particle recirculation within the partition column of the coater are not well understood. The purpose of this study was to visualize and define particle recirculation within the partition column. Based on different combinations of partition gap setting, air accelerator insert diameter, and particle size fraction, particle movements within the partition column were captured using a high-speed video camera. The particle recirculation probability and voidage information were mapped using a visiometric process analyzer. High-speed images showed that particles contributing to the recirculation phenomenon were behaving as clustered colonies. Fluid dynamics analysis indicated that particle recirculation within the partition column may be attributed to the combined effect of cluster formation and drag reduction. Both visiometric process analysis and particle coating experiments showed that smaller particles had greater propensity toward cluster formation than larger particles. The influence of cluster formation on coating performance and possible solutions to cluster formation were further discussed. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Dynamics of viscous cosmologies in the full Israel-Stewart formalism
NASA Astrophysics Data System (ADS)
Lepe, Samuel; Otalora, Giovanni; Saavedra, Joel
2017-07-01
A detailed dynamical analysis for a bulk viscosity model in the full Israel-Stewart formalism for a spatially flat Friedmann-Robertson-Walker universe is performed. In our study we have considered the total cosmic fluid constituted by radiation, dark matter, and dark energy. The dark matter fluid is treated as an imperfect fluid which has a bulk viscosity that depends on its energy density in the usual form ξ (ρm)=ξ0ρm1 /2, whereas the other components are assumed to behave as perfect fluids with constant equation of state parameter. We show that the thermal history of the Universe is reproduced provided that the viscous coefficient satisfies the condition ξ0≪1 , either for a zero or a suitable nonzero coupling between dark energy and viscous dark matter. In this case, the final attractor is a dark-energy-dominated, accelerating universe, with an effective equation of state parameter in the quintessence-like, cosmological constant-like, or phantom-like regime, in agreement with observations. As our main result, we show that in order to obtain a viable cosmological evolution and at the same time alleviating the cosmological coincidence problem via the mechanism of scaling solution, an explicit interaction between dark energy and viscous dark matter seems inevitable. This result is consistent with the well-known fact that models where dark matter and dark energy interact with each other have been proposed to solve the coincidence problem. Furthermore, by insisting on above, we show that in the present context a phantom nature of this interacting dark energy fluid is also favored.
Béhar, A.; Pujade-Lauraine, E.; Maurel, A.; Brun, M. D.; Lagrue, G.; Feuilhade De Chauvin, F.; Oulid-Aissa, D.; Hille, D.
1997-01-01
Aims Fluid retention is a phenomenon associated with taxoids. The principal objective of this study was to investigate the pathophysiological mechanism of docetaxel-induced fluid retention in advanced cancer patients. Methods Docetaxel was administered as a 1 h intravenous infusion every 3 weeks, for at least 4–6 consecutive cycles, to patients with advanced breast (n=21) or ovarian (n=3) carcinoma, who had received previous chemotherapy, 21 for advanced disease. Phase II clinical trials have shown that 5 day corticosteroid comedication, starting 1 day before docetaxel infusion, significantly reduces the incidence and severity of fluid retention. This prophylactic corticosteroid regimen is currently recommended for patients receiving docetaxel but was not permitted in this study because of its possible interference with the underlying pathophysiology of the fluid retention. Results Fluid retention occurred in 21 of the 24 patients but was mainly mild to moderate, with only five patients experiencing severe fluid retention. Eighteen patients received symptomatic flavonoid treatment, commonly prescribed after the last cycle. Specific investigations for fluid retention confirmed a relationship between cumulative docetaxel dose and development of fluid retention. Capillary filtration test analysis showed a two-step process for fluid retention generation, with progressive congestion of the interstitial space by proteins and water starting between the second and the fourth cycle, followed by insufficient lymphatic drainage. Conclusions A vascular protector such as micronized diosmine hesperidine with recommended corticosteroid premedication and benzopyrones may be useful in preventing and treating docetaxel-induced fluid retention. PMID:9205828
Discrete differential geometry: The nonplanar quadrilateral mesh
NASA Astrophysics Data System (ADS)
Twining, Carole J.; Marsland, Stephen
2012-06-01
We consider the problem of constructing a discrete differential geometry defined on nonplanar quadrilateral meshes. Physical models on discrete nonflat spaces are of inherent interest, as well as being used in applications such as computation for electromagnetism, fluid mechanics, and image analysis. However, the majority of analysis has focused on triangulated meshes. We consider two approaches: discretizing the tensor calculus, and a discrete mesh version of differential forms. While these two approaches are equivalent in the continuum, we show that this is not true in the discrete case. Nevertheless, we show that it is possible to construct mesh versions of the Levi-Civita connection (and hence the tensorial covariant derivative and the associated covariant exterior derivative), the torsion, and the curvature. We show how discrete analogs of the usual vector integral theorems are constructed in such a way that the appropriate conservation laws hold exactly on the mesh, rather than only as approximations to the continuum limit. We demonstrate the success of our method by constructing a mesh version of classical electromagnetism and discuss how our formalism could be used to deal with other physical models, such as fluids.
NASA Technical Reports Server (NTRS)
Majumdar, Alok; Leclair, Andre; Moore, Ric; Schallhorn, Paul
2011-01-01
GFSSP stands for Generalized Fluid System Simulation Program. It is a general-purpose computer program to compute pressure, temperature and flow distribution in a flow network. GFSSP calculates pressure, temperature, and concentrations at nodes and calculates flow rates through branches. It was primarily developed to analyze Internal Flow Analysis of a Turbopump Transient Flow Analysis of a Propulsion System. GFSSP development started in 1994 with an objective to provide a generalized and easy to use flow analysis tool for thermo-fluid systems.
Thermohydrodynamic analysis of cryogenic liquid turbulent flow fluid film bearings
NASA Technical Reports Server (NTRS)
Andres, Luis San
1993-01-01
A thermohydrodynamic analysis is presented and a computer code developed for prediction of the static and dynamic force response of hydrostatic journal bearings (HJB's), annular seals or damper bearing seals, and fixed arc pad bearings for cryogenic liquid applications. The study includes the most important flow characteristics found in cryogenic fluid film bearings such as flow turbulence, fluid inertia, liquid compressibility and thermal effects. The analysis and computational model devised allow the determination of the flow field in cryogenic fluid film bearings along with the dynamic force coefficients for rotor-bearing stability analysis.
Decoupling the Role of Particle Inertia and Gravity on Particle Dispersion
NASA Technical Reports Server (NTRS)
Squires, Kyle D.
2002-01-01
Particle dispersion and the influence that particle momentum exchange has on the properties of a turbulent carrier flow in micro-gravity environments challenge present understanding and predictive schemes. The objective of this effort has been to develop and assess high-fidelity simulation tools for predicting particle transport within micro-gravity environments suspended in turbulent flows. The computational technique is based on Direct Numerical Simulation (DNS) of the incompressible Navier-Stokes equations. The particular focus of the present work is on the class of dilute flows in which particle volume fractions and inter-particle collisions are negligible. Particle motion is assumed to be governed by drag with particle relaxation times ranging from the Kolmogorov scale to the Eulerian timescale of the turbulence and particle mass loadings up to one. The velocity field was made statistically stationary by forcing the low wavenumbers of the flow. The calculations were performed using 96(exp 3) collocation points and the Taylor-scale Reynolds number for the stationary flow was 62. The effect of particles on the turbulence was included in the Navier-Stokes equations using the point-force approximation in which 96(exp 3) particles were used in the calculations. DNS results show that particles increasingly dissipate fluid kinetic energy with increased loading, with the reduction in kinetic energy being relatively independent of the particle relaxation time. Viscous dissipation in the fluid decreases with increased loading and is larger for particles with smaller relaxation times. Fluid energy spectra show that there is a non-uniform distortion of the turbulence with a relative increase in small-scale energy. The non-uniform distortion significantly affects the transport of the dissipation rate, with the production and destruction of dissipation exhibiting completely different behaviors. The spectrum of the fluid-particle energy exchange rate shows that the fluid drags particles at low wavenumbers while the converse is true at high wavenumbers for small particles. A spectral analysis shows that the increase of the high wavenumber portion of the fluid energy spectrum can be attributed to transfer of the fluid-particle covariance by the fluid turbulence. This in turn explains the relative increase of small-scale energy caused by small particles observed in the present simulations as well as those of others.
Cu-As Decoupling in Hydrothermal Systems: A Link Between Pyrite Chemistry and Fluid Composition
NASA Astrophysics Data System (ADS)
Reich, M.; Tardani, D.; Deditius, A.; Chryssoulis, S.; Wrage, J.; Sanchez-Alfaro, P.; Andrea, H.; Cinthia, J.
2016-12-01
Chemical zonations in pyrite have been recognized in most hydrothermal ore deposit types, showing in some cases marked oscillatory alternation of metals and metalloids in pyrite growth zones (e.g., of Cu-rich, As-(Au)-depleted zones and As-(Au)-rich, Cu-depleted zones). This decoupled geochemical behavior of Cu and As has been interpreted as a result of chemical changes in ore-forming fluids, although direct evidence connecting fluctuations in hydrothermal fluid composition with metal partitioning into pyrite growth zones is still lacking. Here we report a comprehensive trace element database of pyrite from an active hydrothermal system, the Tolhuaca Geothermal System (TGS) in southern Chile. We combined high-spatial resolution and X-ray mapping capabilities of electron microprobe analysis (EMPA) with low detection limits and depth-profiling capabilities of secondary-ion mass spectrometry (SIMS) in a suite of pyrite samples retrieved from a 1 km drill hole that crosses the argillic and propylitic alteration zones of the geothermal system. We show that the concentrations of precious metals (e.g., Au, Ag), metalloids (e.g., As, Sb, Se, Te), and base and heavy metals (e.g., Cu, Co, Ni, Pb) in pyrite at the TGS are significant. Among the elements analyzed, arsenic, Cu and Co are the most abundant with concentrations that vary from sub-ppm levels to a few wt. %. Pyrites from the deeper propylitic zone do not show significant zonation and high Cu-(Co)-As concentrations correlate with each other. In contrast, well-developed zonations were detected in pyrite from the shallow argillic alteration zone, where Cu(Co)-rich, As-depleted cores alternate with Cu(Co)-depleted, As-rich rims. These microanalytical data were contrasted with chemical data of fluid inclusion in quartz veins (high Cu/Na and low As/Na) and borehole fluids (low Cu/Na and high As/Na) reported at the TGS, showing a clear correspondence between Cu and As concentrations in pyrite-forming fluids and chemical zonation in pyrite. These observations provide direct evidence supporting the selective partitioning of metals into pyrite as a result of changes in ore-forming fluid composition, most likely due to separation of a single-phase fluid into a low-density vapor and a denser brine, capable to fractionate Cu and As.
RPA using a multiplexed cartridge for low cost point of care diagnostics in the field.
Ereku, Luck Tosan; Mackay, Ruth E; Craw, Pascal; Naveenathayalan, Angel; Stead, Thomas; Branavan, Manorharanehru; Balachandran, Wamadeva
2018-04-15
A point of care device utilising Lab-on-a-Chip technologies that is applicable for biological pathogens was designed, fabricated and tested showing sample in to answer out capabilities. The purpose of the design was to develop a cartridge with the capability to perform nucleic acid extraction and purification from a sample using a chitosan membrane at an acidic pH. Waste was stored within the cartridge with the use of sodium polyacrylate to solidify or gelate the sample in a single chamber. Nucleic acid elution was conducted using the RPA amplification reagents (alkaline pH). Passive valves were used to regulate the fluid flow and a multiplexer was designed to distribute the fluid into six microchambers for amplification reactions. Cartridges were produced using soft lithography of silicone from 3D printed moulds, bonded to glass substrates. The isothermal technique, RPA is employed for amplification. This paper shows the results from two separate experiments: the first using the RPA control nucleic acid, the second showing successful amplification from Chlamydia Trachomatis. Endpoint analysis conducted for the RPA analysis was gel electrophoresis that showed 143 base pair DNA was amplified successfully for positive samples whilst negative samples did not show amplification. End point analysis for Chlamydia Trachomatis samples was fluorescence detection that showed successful detection of 1 copy/μL and 10 copies/μL spiked in a MES buffer. Crown Copyright © 2018. Published by Elsevier Inc. All rights reserved.
HOW DOES ADDING AND REMOVING LIQUID FROM SOCKET BLADDERS AFFECT RESIDUAL LIMB FLUID VOLUME?
Sanders, JE; Cagle, JC; Harrison, DS; Myers, TR; Allyn, KJ
2015-01-01
Adding and removing liquid from socket bladders is a means for people with limb loss to accommodate residual limb volume change. Nineteen people with trans-tibial amputation using their regular prosthetic socket fitted with fluid bladders on the inside socket surface underwent cycles of bladder liquid addition and removal. In each cycle, subjects sat, stood, and walked for 90s with bladder liquid added and then sat, stood, and walking for 90s again with the bladder liquid removed. The amount of bladder liquid added was increased in each cycle. Bioimpedance analysis was implemented to measure residual limb fluid volume. Results showed that the preferred bladder liquid volume was 16.8 mL (s.d.8.4), corresponding to 1.7% (s.d.0.8%) of the average socket volume between the bioimpedance voltage-sensing electrodes. Limb fluid volume driven out of the residual limb when bladder liquid was added was typically not recovered upon subsequent bladder liquid removal. Fifteen of nineteen subjects experienced a gradual limb fluid volume loss over the test session. Care should be taken when implementing adjustable socket technologies in people with limb amputation. Reducing socket volume may accentuate limb fluid volume loss. PMID:24203546
NASA Astrophysics Data System (ADS)
Tong, Chao; Jin, Qinghui; Zhao, Jianlong
2008-03-01
In this article, a kind of microfluidic method based on MEMS technology combined with gold immunochromatographic assay (GICA) is developed and discussed. Compared to the traditional GICA, this method supplies us convenient, multi-channel, in-parallel, low cost and similar efficiency approach in the fields of alpha-fetopro-tei (AFP)detection. Firstly, we improved the adhesion between the model material SU-8 and Silicon wafer, optimized approaches of the fabrication of the SU-8 model systematically, and fabricate the PDMS micro fluid chip with good reproduction successfully. Secondly, Surface modification and antibody immobilization methods with the GICA on the PDMS micro fluid analysis chip are studied, we choose the PDMS material and transfer GICA to the PDMS micro fluid chip successfully after researching the antibody immobilization efficiency of different materials utilized in fabrication of the micro fluid chip. In order to improve the reaction efficiency of the immobilized antibody, we studied the characteristics of micro fluid without the gas drive, and the fluid velocity control in our design; we also design structure of grove to strengthen the ability of immobilizing the antibody. The stimulation of the structure shows that it achieves great improvement and experiments prove the design is feasible.
Squid-inspired vehicle design using coupled fluid-solid analytical modeling
NASA Astrophysics Data System (ADS)
Giorgio-Serchi, Francesco; Weymouth, Gabriel
2017-11-01
The need for enhanced automation in the marine and maritime fields is fostering research into robust and highly maneuverable autonomous underwater vehicles. To address these needs we develop design principles for a new generation of soft-bodied aquatic vehicles similar to octopi and squids. In particular, we consider the capability of pulsed-jetting bodies to boost thrust by actively modifying their external body-shape and in this way benefit of the contribution from added-mass variation. We present an analytical formulation of the coupled fluid-structure interaction between the elastic body and the ambient fluid. The model incorporates a number of new salient contributions to the soft-body dynamics. We highlight the role of added-mass variation effects of the external fluid in enhancing thrust and assess how the shape-changing actuation is impeded by a confinement-related unsteady inertial term and by an external shape-dependent fluid stiffness contribution. We show how the analysis of these combined terms has guided us to the design of a new prototype of a squid-inspired vehicle tuning of the natural frequency of the coupled fluid-solid system with the purpose of optimizing its actuation routine.
Goodson, Preston; Kumar, Amrita; Jain, Lucky; Kundu, Kousik; Murthy, Niren; Koval, Michael
2012-01-01
To define roles for reactive oxygen species (ROS) and epithelial sodium channel (ENaC) in maintaining lung fluid balance in vivo, we used two novel whole animal imaging approaches. Live X-ray fluoroscopy enabled quantification of air space fluid content of C57BL/6J mouse lungs challenged by intratracheal (IT) instillation of saline; results were confirmed by using conventional lung wet-to-dry weight ratios and Evans blue as measures of pulmonary edema. Visualization and quantification of ROS produced in lungs was performed in mice that had been administered a redox-sensitive dye, hydro-Cy7, by IT instillation. We found that inhibition of NADPH oxidase with a Rac-1 inhibitor, NSC23766, resulted in alveolar flooding, which correlated with a decrease in lung ROS production in vivo. Consistent with a role for Nox2 in alveolar fluid balance, Nox2−/− mice showed increased retention of air space fluid compared with wild-type controls. Interestingly, fluoroscopic analysis of C57BL/6J lungs IT instilled with LPS showed an acute stimulation of lung fluid clearance and ROS production in vivo that was abrogated by the ROS scavenger tetramethylpiperidine-N-oxyl (TEMPO). Acute application of LPS increased the activity of 20 pS nonselective ENaC channels in rat type 1 cells; the average number of channel and single-channel open probability (NPo) increased from 0.14 ± 0.04 to 0.62 ± 0.23. Application of TEMPO to the same cell-attached recording caused an immediate significant decrease in ENaC NPo to 0.04 ± 0.03. These data demonstrate that, in vivo, ROS has the capacity to stimulate lung fluid clearance by increasing ENaC activity. PMID:22160304
Goodson, Preston; Kumar, Amrita; Jain, Lucky; Kundu, Kousik; Murthy, Niren; Koval, Michael; Helms, My N
2012-02-15
To define roles for reactive oxygen species (ROS) and epithelial sodium channel (ENaC) in maintaining lung fluid balance in vivo, we used two novel whole animal imaging approaches. Live X-ray fluoroscopy enabled quantification of air space fluid content of C57BL/6J mouse lungs challenged by intratracheal (IT) instillation of saline; results were confirmed by using conventional lung wet-to-dry weight ratios and Evans blue as measures of pulmonary edema. Visualization and quantification of ROS produced in lungs was performed in mice that had been administered a redox-sensitive dye, hydro-Cy7, by IT instillation. We found that inhibition of NADPH oxidase with a Rac-1 inhibitor, NSC23766, resulted in alveolar flooding, which correlated with a decrease in lung ROS production in vivo. Consistent with a role for Nox2 in alveolar fluid balance, Nox2(-/-) mice showed increased retention of air space fluid compared with wild-type controls. Interestingly, fluoroscopic analysis of C57BL/6J lungs IT instilled with LPS showed an acute stimulation of lung fluid clearance and ROS production in vivo that was abrogated by the ROS scavenger tetramethylpiperidine-N-oxyl (TEMPO). Acute application of LPS increased the activity of 20 pS nonselective ENaC channels in rat type 1 cells; the average number of channel and single-channel open probability (NPo) increased from 0.14 ± 0.04 to 0.62 ± 0.23. Application of TEMPO to the same cell-attached recording caused an immediate significant decrease in ENaC NPo to 0.04 ± 0.03. These data demonstrate that, in vivo, ROS has the capacity to stimulate lung fluid clearance by increasing ENaC activity.
Fluid Film Bearing Code Development
NASA Technical Reports Server (NTRS)
1995-01-01
The next generation of rocket engine turbopumps is being developed by industry through Government-directed contracts. These turbopumps will use fluid film bearings because they eliminate the life and shaft-speed limitations of rolling-element bearings, increase turbopump design flexibility, and reduce the need for turbopump overhauls and maintenance. The design of the fluid film bearings for these turbopumps, however, requires sophisticated analysis tools to model the complex physical behavior characteristic of fluid film bearings operating at high speeds with low viscosity fluids. State-of-the-art analysis and design tools are being developed at the Texas A&M University under a grant guided by the NASA Lewis Research Center. The latest version of the code, HYDROFLEXT, is a thermohydrodynamic bulk flow analysis with fluid compressibility, full inertia, and fully developed turbulence models. It can predict the static and dynamic force response of rigid and flexible pad hydrodynamic bearings and of rigid and tilting pad hydrostatic bearings. The Texas A&M code is a comprehensive analysis tool, incorporating key fluid phenomenon pertinent to bearings that operate at high speeds with low-viscosity fluids typical of those used in rocket engine turbopumps. Specifically, the energy equation was implemented into the code to enable fluid properties to vary with temperature and pressure. This is particularly important for cryogenic fluids because their properties are sensitive to temperature as well as pressure. As shown in the figure, predicted bearing mass flow rates vary significantly depending on the fluid model used. Because cryogens are semicompressible fluids and the bearing dynamic characteristics are highly sensitive to fluid compressibility, fluid compressibility effects are also modeled. The code contains fluid properties for liquid hydrogen, liquid oxygen, and liquid nitrogen as well as for water and air. Other fluids can be handled by the code provided that the user inputs information that relates the fluid transport properties to the temperature.
Phenylquinoxalinone CFTR activator as potential prosecretory therapy for constipation
CIL, ONUR; PHUAN, PUAY-WAH; SON, JUNG-HO; ZHU, JIE S.; KU, COLTON K.; TABIB, NILOUFAR AKHAVAN; TEUTHORN, ANDREW P.; FERRERA, LORETTA; ZACHOS, NICHOLAS C.; LIN, RUXIAN; GALIETTA, LUIS J. V.; DONOWITZ, MARK; KURTH, MARK J.; VERKMAN, ALAN S.
2017-01-01
Constipation is a common condition for which current treatments can have limited efficacy. By high-throughput screening, we recently identified a phenylquinoxalinone activator of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel that stimulated intestinal fluid secretion and normalized stool output in a mouse model of opioid-induced constipation. Here, we report phenylquinoxalinone structure-activity analysis, mechanism of action, animal efficacy data in acute and chronic models of constipation, and functional data in ex vivo primary cultured human enterocytes. Structure-activity analysis was done on 175 phenylquinoxalinone analogs, including 15 synthesized compounds. The most potent compound, CFTRact-J027, activated CFTR with EC50 ~ 200 nM, with patch-clamp analysis showing a linear CFTR current-voltage relationship with direct CFTR activation. CFTRact-J027 corrected reduced stool output and hydration in a mouse model of acute constipation produced by scopolamine and in a chronically constipated mouse strain (C3H/HeJ). Direct comparison with the approved prosecretory drugs lubiprostone and linaclotide showed substantially greater intestinal fluid secretion with CFTRact-J027, as well as greater efficacy in a constipation model. As evidence to support efficacy in human constipation, CFTRact-J027 increased transepithelial fluid transport in enteroids generated from normal human small intestine. Also, CFTRact-J027 was rapidly metabolized in vitro in human hepatic microsomes, suggesting minimal systemic exposure upon oral administration. These data establish structure-activity and mechanistic data for phenylquinoxalinone CFTR activators, and support their potential efficacy in human constipation. PMID:27815136
Co-Production of Electricity and Hydrogen Using a Novel Iron-based Catalyst
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hilaly, Ahmad; Georgas, Adam; Leboreiro, Jose
2011-09-30
The primary objective of this project was to develop a hydrogen production technology for gasification applications based on a circulating fluid-bed reactor and an attrition resistant iron catalyst. The work towards achieving this objective consisted of three key activities: Development of an iron-based catalyst suitable for a circulating fluid-bed reactor; Design, construction, and operation of a bench-scale circulating fluid-bed reactor system for hydrogen production; Techno-economic analysis of the steam-iron and the pressure swing adsorption hydrogen production processes. This report describes the work completed in each of these activities during this project. The catalyst development and testing program prepared and iron-basedmore » catalysts using different support and promoters to identify catalysts that had sufficient activity for cyclic reduction with syngas and steam oxidation and attrition resistance to enable use in a circulating fluid-bed reactor system. The best performing catalyst from this catalyst development program was produced by a commercial catalyst toll manufacturer to support the bench-scale testing activities. The reactor testing systems used during material development evaluated catalysts in a single fluid-bed reactor by cycling between reduction with syngas and oxidation with steam. The prototype SIP reactor system (PSRS) consisted of two circulating fluid-bed reactors with the iron catalyst being transferred between the two reactors. This design enabled demonstration of the technical feasibility of the combination of the circulating fluid-bed reactor system and the iron-based catalyst for commercial hydrogen production. The specific activities associated with this bench-scale circulating fluid-bed reactor systems that were completed in this project included design, construction, commissioning, and operation. The experimental portion of this project focused on technical demonstration of the performance of an iron-based catalyst and a circulating fluid-bed reactor system for hydrogen production. Although a technology can be technically feasible, successful commercial deployment also requires that a technology offer an economic advantage over existing commercial technologies. To effective estimate the economics of this steam-iron process, a techno-economic analysis of this steam iron process and a commercial pressure swing adsorption process were completed. The results from this analysis described in this report show the economic potential of the steam iron process for integration with a gasification plant for coproduction of hydrogen and electricity.« less
NASA Astrophysics Data System (ADS)
Švecová, E.; Čopjaková, R.; Losos, Z.; Škoda, R.; Nasdala, L.; Cícha, J.
2016-12-01
The chemical variability, degree of radiation damage, and alteration of xenotime from the Písek granitic pegmatites (Czech Republic) were investigated by micro-chemical analysis and Raman spectroscopy. Dominant large xenotime-(Y) grains enriched in U, Th and Zr crystallized from a melt almost simultaneously with zircon, monazite and tourmaline. Xenotime is well to poorly crystalline depending on its U and Th contents. It shows complex secondary textures cutting magmatic growth zones as a result of its interaction with F,Ca,alkali-rich fluids during the hydrothermal stage of the pegmatite evolution. The magmatic xenotime underwent intense secondary alteration, from rims inwards, resulting in the formation of inclusion-rich well crystalline xenotime domains of near end-member composition. Two types of recrystallization were distinguished in relation to the type of inclusions: i) xenotime with coffinite-thorite, cheralite and monazite inclusions and ii) xenotime with zirconcheralite and zircon inclusions. Additionally, inner poorly crystalline U,Th-rich xenotime domains were locally altered, hydrated, depleted in P, Y, HREE, U, Si and radiogenic Pb, and enriched in fluid-borne cations (mainly Ca, F, Th, Zr, Fe). Interaction of radiation-damaged xenotime with hydrothermal fluids resulted in the disturbance of the U-Th-Pb system. Alteration of radiation-damaged xenotime was followed by intensive recrystallization indicating the presence of fluids >200 °C. Subsequently other types of xenotime formed as a consequence of fluid-driven alteration of magmatic monazite, and Y,REE,Ti,Nb-oxides or crystallized from hydrothermal fluids along cracks in magmatic monazite and xenotime.
The Effect of a Yield Stress on the Drainage of the Thin Film Between Two Colliding Newtonian Drops
NASA Astrophysics Data System (ADS)
Goel, Sachin; Ramachandran, Arun
2016-11-01
Coalescence of drops immersed in fluids possessing a yield stress has been of interest to many industries such as the oil extraction, cosmetics and food industries. Unfortunately, a theoretical understanding of the drainage of the thin film of Bingham fluid (a model yield stress fluid) that develops between two drops undergoing a collision is still lacking, with the exception of two prior studies that make ad-hoc assumptions about the film shape. In this work, we examine this problem via a combination of scaling analysis and numerical simulations based on the lubrication analysis. There are four key features of the film drainage process of Bingham fluids. First, the introduction of a yield stress in the suspending fluid retards the drainage process relative to Newtonian fluid of the same viscosity. Second, the drainage time shows a minimum with respect to the capillary number. Third, the effect of yield stress on the drainage process becomes more pronounced at higher capillary numbers and lower Hamaker constant. Lastly, below a critical height, drainage can be arrested completely due to the yield stress. This critical height scales as τ02R3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radiom, Milad, E-mail: milad.radiom@unige.ch; Ducker, William, E-mail: wducker@vt.edu; Robbins, Brian
The hydrodynamic interaction of two closely spaced micron-scale spheres undergoing Brownian motion was measured as a function of their separation. Each sphere was attached to the distal end of a different atomic force microscopy cantilever, placing each sphere in a stiff one-dimensional potential (0.08 Nm{sup −1}) with a high frequency of thermal oscillations (resonance at 4 kHz). As a result, the sphere’s inertial and restoring forces were significant when compared to the force due to viscous drag. We explored interparticle gap regions where there was overlap between the two Stokes layers surrounding each sphere. Our experimental measurements are the firstmore » of their kind in this parameter regime. The high frequency of oscillation of the spheres means that an analysis of the fluid dynamics would include the effects of fluid inertia, as described by the unsteady Stokes equation. However, we find that, for interparticle separations less than twice the thickness of the wake of the unsteady viscous boundary layer (the Stokes layer), the hydrodynamic interaction between the Brownian particles is well-approximated by analytical expressions that neglect the inertia of the fluid. This is because elevated frictional forces at narrow gaps dominate fluid inertial effects. The significance is that interparticle collisions and concentrated suspensions at this condition can be modeled without the need to incorporate fluid inertia. We suggest a way to predict when fluid inertial effects can be ignored by including the gap-width dependence into the frequency number. We also show that low frequency number analysis can be used to determine the microrheology of mixtures at interfaces.« less
Kim, Sun Min; Romero, Roberto; Lee, JoonHo; Chaemsaithong, Piya; Docheva, Nikolina; Yoon, Bo Hyun
2017-01-01
Objective Early neonatal sepsis is often due to intra-amniotic infection. The stomach of the neonate contains fluid swallowed before and during delivery. The presence of bacteria as well as neutrophils detected by culture or Gram stain in the gastric fluid during the first day of life is suggestive of exposure to bacteria or inflammation. We undertook this study to determine the relationship between gastric fluid analysis and amniotic fluid obtained by transabdominal amniocentesis in the detection of Ureaplasma species, the most frequent microorganisms responsible for intra-amniotic infection. Materials and Methods The study population consisted of 100 singleton pregnant women who delivered preterm neonates (<35weeks) within 7 days of amniocentesis. Gastric fluid of newborns was obtained by nasogastric intubation on the day of birth. Amniotic fluid and gastric fluid were cultured for genital Mycoplasmas and polymerase chain reaction (PCR) for Ureaplasma species was performed. Intra-amniotic inflammation was defined as an elevated amniotic fluid matrix metalloproteinase-8 concentration (> 23ng/mL). Results 1) Ureaplasma species were detected by culture or PCR in 18% (18/100) of amniotic fluid samples and in 5% (5/100) of gastric fluid samples; 2) among the amniotic fluid cases positive for Ureaplasma species, these microorganisms were identified in 27.8% (5/18) of gastric fluid samples; 3) none of the cases negative for Ureaplasma species in the amniotic fluid were found to be positive for these microorganisms in the gastric fluid; 4) patients with amniotic fluid positive for Ureaplasma species but with gastric fluid negative for these microorganisms had a significantly higher rate of intra-amniotic inflammation, acute histologic chorioamnionitis, and neonatal death than those with both amniotic fluid and gastric fluid negative for Ureaplasma species; and 5) no significant differences were observed in the rate of intra-amniotic inflammation, acute histologic chorioamnionitis, and neonatal death between patients with amniotic fluid positive for Ureaplasma species but with gastric fluid negative for these microorganisms and those with both amniotic fluid and gastric fluid positive for Ureaplasma species. Conclusions Gastric fluid analysis has 100% specificity in the identification of intra-amniotic infection with Ureaplasma species. However the detection of Ureaplasma species by culture or PCR in the gastric fluid of neonates at birth did not identify these microorganisms in two-thirds of cases with microbial invasion of the amniotic cavity. Thus, amniotic fluid analysis is superior to that of gastric fluid in the identification of intra-amniotic infection. PMID:26631980
Kim, Sun Min; Romero, Roberto; Lee, JoonHo; Chaemsaithong, Piya; Docheva, Nikolina; Yoon, Bo Hyun
2016-01-01
Early neonatal sepsis is often due to intra-amniotic infection. The stomach of the neonate contains fluid swallowed before and during delivery. The presence of bacteria as well as neutrophils detected by culture or Gram stain of the gastric fluid during the first day of life is suggestive of exposure to bacteria or inflammation. We undertook this study to determine the relationship between gastric fluid analysis and amniotic fluid obtained by transabdominal amniocentesis in the detection of Ureaplasma species, the most frequent microorganisms responsible for intra-amniotic infection. The study population consisted of 100 singleton pregnant women who delivered preterm neonates (<35 weeks) within 7 days of amniocentesis. Gastric fluid of newborns was obtained by nasogastric intubation on the day of birth. Amniotic fluid and gastric fluid were cultured for genital Mycoplasmas, and polymerase chain reaction (PCR) for Ureaplasma species was performed. Intra-amniotic inflammation was defined as an elevated amniotic fluid matrix metalloproteinase-8 concentration (>23 ng/mL). (1) Ureaplasma species were detected by culture or PCR in 18% (18/100) of amniotic fluid samples and in 5% (5/100) of gastric fluid samples; (2) among the amniotic fluid cases positive for Ureaplasma species, these microorganisms were identified in 27.8% (5/18) of gastric fluid samples; (3) none of the cases negative for Ureaplasma species in the amniotic fluid were found to be positive for these microorganisms in the gastric fluid; (4) patients with amniotic fluid positive for Ureaplasma species but with gastric fluid negative for these microorganisms had a significantly higher rate of intra-amniotic inflammation, acute histologic chorioamnionitis, and neonatal death than those with both amniotic fluid and gastric fluid negative for Ureaplasma species; and (5) no significant differences were observed in the rate of intra-amniotic inflammation, acute histologic chorioamnionitis, and neonatal death between patients with amniotic fluid positive for Ureaplasma species but with gastric fluid negative for these microorganisms and those with both amniotic fluid and gastric fluid positive for Ureaplasma species. Gastric fluid analysis has 100% specificity in the identification of intra-amniotic infection with Ureaplasma species. However, the detection of Ureaplasma species by culture or PCR in the gastric fluid of neonates at birth did not identify these microorganisms in two-thirds of cases with microbial invasion of the amniotic cavity. Thus, amniotic fluid analysis is superior to that of gastric fluid in the identification of intra-amniotic infection.
Numerical analysis on the action of centrifuge force in magnetic fluid rotating shaft seals
NASA Astrophysics Data System (ADS)
Zou, Jibin; Li, Xuehui; Lu, Yongping; Hu, Jianhui
2002-11-01
The magnetic fluid seal is suitable for high-speed rotating shaft seal applications. Centrifuge force will have evident influence on magnetic fluid rotating shaft seals. The seal capacity of the rotating shaft seal can be improved or increased by some measures. Through hydrodynamic analysis the moving status of the magnetic fluid is worked out. By numerical method, the magnetic field and the isobars in the magnetic fluid of a seal device are computed. Then the influence of the centrifuge force on the magnetic fluid seal is calculated quantitatively.
Treating inertia in passive microbead rheology.
Indei, Tsutomu; Schieber, Jay D; Córdoba, Andrés; Pilyugina, Ekaterina
2012-02-01
The dynamic modulus G(*) of a viscoelastic medium is often measured by following the trajectory of a small bead subject to Brownian motion in a method called "passive microbead rheology." This equivalence between the positional autocorrelation function of the tracer bead and G(*) is assumed via the generalized Stokes-Einstein relation (GSER). However, inertia of both bead and medium are neglected in the GSER so that the analysis based on the GSER is not valid at high frequency where inertia is important. In this paper we show how to treat both contributions to inertia properly in one-bead passive microrheological analysis. A Maxwell fluid is studied as the simplest example of a viscoelastic fluid to resolve some apparent paradoxes of eliminating inertia. In the original GSER, the mean-square displacement (MSD) of the tracer bead does not satisfy the correct initial condition. If bead inertia is considered, the proper initial condition is realized, thereby indicating an importance of including inertia, but the MSD oscillates at a time regime smaller than the relaxation time of the fluid. This behavior is rather different from the original result of the GSER and what is observed. What is more, the discrepancy from the GSER result becomes worse with decreasing bead mass, and there is an anomalous gap between the MSD derived by naïvely taking the zero-mass limit in the equation of motion and the MSD for finite bead mass as indicated by McKinley et al. [J. Rheol. 53, 1487 (2009)]. In this paper we show what is necessary to take the zero-mass limit of the bead safely and correctly without causing either the inertial oscillation or the anomalous gap, while obtaining the proper initial condition. The presence of a very small purely viscous element can be used to eliminate bead inertia safely once included in the GSER. We also show that if the medium contains relaxation times outside the window where the single-mode Maxwell behavior is observed, the oscillation can be attenuated inside the window. This attenuation is realized even in the absence of a purely viscous element. Finally, fluid inertia also affects the bead autocorrelation through the Basset force and the fluid dragged around with the bead. We show that the Basset force plays the same role as the purely viscous element in high-frequency regime, and the oscillation of MSD is suppressed if fluid density and bead density are comparable. © 2012 American Physical Society
Coaxial twin-shaft magnetic fluid seals applied in vacuum wafer-handling robot
NASA Astrophysics Data System (ADS)
Cong, Ming; Wen, Haiying; Du, Yu; Dai, Penglei
2012-07-01
Compared with traditional mechanical seals, magnetic fluid seals have unique characters of high airtightness, minimal friction torque requirements, pollution-free and long life-span, widely used in vacuum robots. With the rapid development of Integrate Circuit (IC), there is a stringent requirement for sealing wafer-handling robots when working in a vacuum environment. The parameters of magnetic fluid seals structure is very important in the vacuum robot design. This paper gives a magnetic fluid seal device for the robot. Firstly, the seal differential pressure formulas of magnetic fluid seal are deduced according to the theory of ferrohydrodynamics, which indicate that the magnetic field gradient in the sealing gap determines the seal capacity of magnetic fluid seal. Secondly, the magnetic analysis model of twin-shaft magnetic fluid seals structure is established. By analyzing the magnetic field distribution of dual magnetic fluid seal, the optimal value ranges of important parameters, including parameters of the permanent magnetic ring, the magnetic pole tooth, the outer shaft, the outer shaft sleeve and the axial relative position of two permanent magnetic rings, which affect the seal differential pressure, are obtained. A wafer-handling robot equipped with coaxial twin-shaft magnetic fluid rotary seals and bellows seal is devised and an optimized twin-shaft magnetic fluid seals experimental platform is built. Test result shows that when the speed of the two rotational shafts ranges from 0-500 r/min, the maximum burst pressure is about 0.24 MPa. Magnetic fluid rotary seals can provide satisfactory performance in the application of wafer-handling robot. The proposed coaxial twin-shaft magnetic fluid rotary seal provides the instruction to design high-speed vacuum robot.
Berger, M M; Gradwohl-Matis, I; Brunauer, A; Ulmer, H; Dünser, M W
2015-07-01
Perioperative fluid management plays a fundamental role in maintaining organ perfusion, and is considered to affect morbidity and mortality. Targets according to which fluid therapy should be administered are poorly defined. This systematic review aimed to identify specific targets for perioperative fluid therapy. The PubMed database (January 1993-December 2013) and reference lists were searched to identify clinical trials which evaluated specific targets of perioperative fluid therapy and reported clinically relevant perioperative endpoints in adult patients. Only studies in which targeted fluid therapy was the sole intervention were included into the main data analysis. A pooled data analysis was used to compare mortality between goal-directed fluid therapy and control interventions. Thirty-six clinical studies were selected. Sixteen studies including 1224 patients specifically evaluated targeted fluid therapy and were included into the main data analysis. Three specific targets for perioperative fluid therapy were identified: a systolic or pulse pressure variation <10-12%, an increase in stroke volume <10%, and a corrected flow time of 0.35-0.4 s in combination with an increase in stroke volume <10%. Targeting any one of these goals resulted in less postoperative complications (pooled data analysis: OR 0.53; CI95, 0.34-0.83; P=0.005) and a shorter length of intensive care unit/hospital stay, but no difference in postoperative mortality (pooled data analysis: OR 0.61; CI95, 0.33-1.11; P=0.12). This systematic review identified three goals for perioperative fluid administration, targeting of which appeared to be associated with less postoperative complications and shorter intensive care unit/hospital lengths of stay. Perioperative mortality remained unaffected.
Lourenço, Vera; Herdling, Thorsten; Reich, Gabriele; Menezes, José C; Lochmann, Dirk
2011-08-01
A set of 192 fluid bed granulation batches at industrial scale were in-line monitored using microwave resonance technology (MRT) to determine moisture, temperature and density of the granules. Multivariate data analysis techniques such as multiway partial least squares (PLS), multiway principal component analysis (PCA) and multivariate batch control charts were applied onto collected batch data sets. The combination of all these techniques, along with off-line particle size measurements, led to significantly increased process understanding. A seasonality effect could be put into evidence that impacted further processing through its influence on the final granule size. Moreover, it was demonstrated by means of a PLS that a relation between the particle size and the MRT measurements can be quantitatively defined, highlighting a potential ability of the MRT sensor to predict information about the final granule size. This study has contributed to improve a fluid bed granulation process, and the process knowledge obtained shows that the product quality can be built in process design, following Quality by Design (QbD) and Process Analytical Technology (PAT) principles. Copyright © 2011. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Hamdi, Basma; Mabrouk, Mohamed Tahar; Kairouani, Lakdar; Kheiri, Abdelhamid
2017-06-01
Different configurations of organic Rankine cycle (ORC) systems are potential thermodynamic concepts for power generation from low grade heat. The aim of this work is to investigate and optimize the performances of the three main ORC systems configurations: basic ORC, ORC with internal heat exchange (IHE) and regenerative ORC. The evaluation for those configurations was performed using seven working fluids with typical different thermodynamic behaviours (R245fa, R601a, R600a, R227ea, R134a, R1234ze and R1234yf). The optimization has been performed using a genetic algorithm under a comprehensive set of operative parameters such as the fluid evaporating temperature, the fraction of flow rate or the pressure at the steam extracting point in the turbine. Results show that there is no general best ORC configuration for all those fluids. However, there is a suitable configuration for each fluid. Contribution to the topical issue "Materials for Energy harvesting, conversion and storage II (ICOME 2016)", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui
NASA Astrophysics Data System (ADS)
Khan, A. A.; Mohiuddin, A. K. M.; Latif, M. A. A.
2018-01-01
This paper discusses the effect of aluminium oxide (Al203) addition to dielectric fluid during electrical discharge machining (EDM). Aluminium oxide was added to the dielectric used in the EDM process to improve its performance when machining the stainless steel AISI 304, while copper was used as the electrode. Effect of the concentration of Al203 (0.3 mg/L) in dielectric fluid was compared with EDM without any addition of Al203. Surface quality of stainless steel and the material removal rate were investigated. Design of the experiment (DOE) was used for the experimental plan. Statistical analysis was done using ANOVA and then appropriate model was designated. The experimental results show that with dispersing of aluminium oxide in dielectric fluid surface roughness was improved while the material removal rate (MRR) was increased to some extent. These indicate the improvement of EDM performance using aluminium oxide in dielectric fluid. It was also found that with increase in pulse on time both MRR and surface roughness increase sharply.
NASA Astrophysics Data System (ADS)
Sturrock, Colin P.; Catlos, Elizabeth J.; Miller, Nathan R.; Akgun, Aykut; Fall, András; Gabitov, Rinat I.; Yilmaz, Ismail Omer; Larson, Toti; Black, Karen N.
2017-08-01
Six limestone assemblages along the North Anatolian Fault (NAF) Niksar pull-apart basin in northern Turkey were analyzed for δ18OPDB and δ13CPDB using bulk isotope ratio mass spectrometry (IRMS). Matrix-vein differences in δ18OPDB (-2.1 to 6.3‰) and δ13CPDB (-0.9 to 4.6‰) suggest a closed fluid system and rock buffering. Veins in one travertine and two limestone assemblages were further subjected to cathodoluminescence, trace element (Laser Ablation Inductively Coupled Plasma Mass Spectrometry) and δ18OPDB (Secondary Ion Mass Spectrometry, SIMS) analyses. Fluid inclusions in one limestone sample yield Th of 83.8 ± 7.3 °C (±1σ, mean average). SIMS δ18OPDB values across veins show fine-scale variations interpreted as evolving thermal conditions during growth and limited rock buffering seen at a higher-resolution than IRMS. Rare earth element data suggest calcite veins precipitated from seawater, whereas the travertine has a hydrothermal source. The δ18OSMOW-fluid for the mineralizing fluid that reproduces Th is +2‰, in range of Cretaceous brines, as opposed to negative δ18OSMOW-fluid from meteoric, groundwater, and geothermal sites in the region and highly positive δ18OSMOW-fluid expected for mantle-derived fluids. Calcite veins at this location do not record evidence for deeply-sourced metamorphic and magmatic fluids, an observation that differs from what is reported for the NAF elsewhere along strike.
NASA Astrophysics Data System (ADS)
Camus, E.; Elizalde, J. D.; Morata, D.; Wechsler, C.
2017-12-01
In geothermal systems alteration minerals are evidence of hot fluid flow, being present even in absence of other surface manifestations. Because these minerals result from the interaction between geothermal fluids and surrounding host rocks, they will provide information about features of thermal fluids as temperature, composition and pH, allowing tracking their changes and evolution. In this work, we study the Licancura Geothermal field located in the Andean Cordillera in Northern Chile. The combination of Principal Components Analysis on ASTER-L1T imagery and X Ray Diffraction (XRD) allow us to interpret fluid conditions and the areas where fluid flow took place. Results from red, green, blue color composite imagery show the presence of three types of secondary paragenesis. The first one corresponds to hematite and goethite, mainly at the east of the area, in the zone of eroded Pliocene volcanic edifices. The second one, mainly at the center of the area, highlighting propylitic alteration, includes minerals such as chlorite, illite, calcite, zeolites, and epidote. The third paragenesis, spatially related to the intersection between faults, represents advanced argillic alteration, includes minerals as alunite, kaolinite, and jarosite. XRD analysis support results from remote sensing techniques. These results suggest an acid pH hydrothermal fluid reaching temperatures at surface up to 80-100°C, which used faults as a conduit, originating advanced argillic minerals. The same fluid was, probably, responsible for propylitic paragenesis. However, iron oxides paragenesis identified in the area of eroded volcanoes probably corresponds to other processes associated with weathering rather than geothermal activity. In this work, we propose the applicability of remote sensing techniques as a first level exploration tool useful for high-altitude geothermal fields. Detailed clay mineral studies (XRD and SEM) would allow us to a better characterization of the geothermal fluid flow and the defining fluid pathways in the Licancura geothermal field. This work is a contribution to the FONDAP-CONICYT 15090013 Project. E.C. thanks CONICYT for her Ph.D. grant.
NASA Astrophysics Data System (ADS)
Sabri, Farhad
Shells of revolution, particularly cylindrical and conical shells, are one of the basic structural elements in the aerospace structures. With the advent of high speed aircrafts, these shells can show dynamic instabilities when they are exposed to a supersonic flow. Therefore, aeroelastic analysis of these elements is one of the primary design criteria which aeronautical engineers are dealing with. This analysis can be done with the help of finite element method (FEM) coupled with the computational fluid dynamic (CFD) or by experimental methods but it is time consuming and very expensive. The purpose of this dissertation is to develop such a numerical tool to do aeroelastic analysis in a fast and precise way. Meanwhile during the design stage, where the different configurations, loading and boundary conditions may need to be analyzed, this numerical method can be used very easily with the high order of reliability. In this study structural modeling is a combination of linear Sanders thin shell theory and classical finite element method. Based on this hybrid finite element method, the shell displacements are found from the exact solutions of shell theory rather than approximating by polynomial function done in traditional finite element method. This leads to a precise and fast convergence. Supersonic aerodynamic modeling is done based on the piston theory and modified piston theory with the shell curvature term. The stress stiffening due to lateral pressure and axial compression are also taken into accounts. Fluid-structure interaction in the presence of inside quiescent fluid is modeled based on the potential theory. In this method, fluid is considered as a velocity potential variable at each node of the shell element where its motion is expressed in terms of nodal elastic displacements at the fluid-structure interface. This proposed hybrid finite element has capabilities to do following analysis: (i) Buckling and vibration of an empty or partially fluid filled circular cylindrical shell or truncated conical shell subjected to internal/external pressure and axial compression loading. This is a typical example of external liquid propellant tanks of space shuttles and re-entry vehicles where they may experience this kind of loading during the flight. In the current work, different end boundary conditions of a circular cylindrical shell with different filling ratios were analyzed. To the best author' knowledge this is the first study where this kind of complex loading and boundary conditions are treated together during such an analysis. Only static instability, divergence, was observed where it showed that the fluid filling ratio does not have any effect on the critical buckling pressure and axial compression. It only reduces the vibration frequencies. It also revealed that the pressurized shell loses its stability at a higher critical axial load. (ii) Aeroelastic analysis of empty or partially liquid filled circular cylindrical and conical shells. Different boundary conditions with different geometries of shells subjected to supersonic air flow are studied here. In all of cases shell loses its stability though the coupled mode flutter. The results showed that internal pressure has a stabilizing effect and increases the critical flutter speed. It is seen that the value of critical dynamic pressure changes rapidly and widely as the filling ratio increases from a low value. In addition, by increasing the length ratio the decrement of flutter speed is decreased and vanishes. This rapid change in critical dynamic pressure at low filling ratios and its almost steady behaviour at large filling ratios indicate that the fluid near the bottom of the shell is largely influenced by elastic deformation when a shell is subjected to external subsonic flow. Based on comparison with the existing numerical, analytical and experimental data and the power of capabilities of this hybrid finite element method to model different boundary conditions and complex loadings, this FEM package can be used effectively for the design of advanced aerospace structures. It provides the results at less computational cost compare to the commercial FEM software, which imposes some restrictions when such an analysis is done.
Conceptual Design and Analysis of Orbital Cryogenic Liquid Storage and Supply Systems.
1981-05-01
MCR -79-561, Martin Marietta Corporation, June 1979. 5. Tegart, J. R.: Hydrodynamic Analysis Report - Cryogenic Fluid Management...Experiment, MCR -79-563, Martin Marietta Corporation, June 1979, (Contract NAS3-2 1591). 6. Gille, J. P.: Thermal Analysis Report - Cryogenic Fluid Management...Analysis Report - Cryogenic Fluid Management Experiment, MCR -79-567, Martin Marietta Corporation, June 1979, (Contract NAS3-21591). 8. "Low
NASA Technical Reports Server (NTRS)
Ruf, Joseph; Holt, James B.; Canabal, Francisco
1999-01-01
This paper presents the status of analyses on three Rocket Based Combined Cycle configurations underway in the Applied Fluid Dynamics Analysis Group (TD64). TD64 is performing computational fluid dynamics analysis on a Penn State RBCC test rig, the proposed Draco axisymmetric RBCC engine and the Trailblazer engine. The intent of the analysis on the Penn State test rig is to benchmark the Finite Difference Navier Stokes code for ejector mode fluid dynamics. The Draco engine analysis is a trade study to determine the ejector mode performance as a function of three engine design variables. The Trailblazer analysis is to evaluate the nozzle performance in scramjet mode. Results to date of each analysis are presented.
NASA Astrophysics Data System (ADS)
Becker, Leif E.; Shelley, Michael J.
2000-11-01
First normal stress differences in shear flow are a fundamental property of Non-Newtonian fluids. Experiments involving dilute suspensions of slender fibers exhibit a sharp transition to non-zero normal stress differences beyond a critical shear rate, but existing continuum theories for rigid rods predict neither this transition nor the corresponding magnitude of this effect. We present the first conclusive evidence that elastic instabilities are predominantly responsible for observed deviations from the dilute suspension theory of rigid rods. Our analysis is based on slender body theory and the equilibrium equations of elastica. A straight slender body executing its Jeffery orbit in Couette flow is subject to axial fluid forcing, alternating between compression and tension. We present a stability analysis showing that elastic instabilities are possible for strong flows. Simulations give the fully non-linear evolution of this shape instability, and show that flexibility of the fibers alone is sufficient to cause both shear-thinning and significant first normal stress differences.
The influence of interfacial slip on two-phase flow in rough pores
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kucala, Alec; Martinez, Mario J.; Wang, Yifeng
The migration and trapping of supercritical CO 2 (scCO 2) in geologic carbon storage is strongly dependent on the geometry and wettability of the pore network in the reservoir rock. During displacement, resident fluids may become trapped in the pits of a rough pore surface forming an immiscible two-phase fluid interface with the invading fluid, allowing apparent slip flow at this interface. We present a two-phase fluid dynamics model, including interfacial tension, to characterize the impact of mineral surface roughness on this slip flow. We show that the slip flow can be cast in more familiar terms as a contact-anglemore » (wettability)-dependent effective permeability to the invading fluid, a nondimensional measurement which relates the interfacial slip to the pore geometry. The analysis shows the surface roughness-induced slip flow can effectively increase or decrease this effective permeability, depending on the wettability and roughness of the mineral surfaces. Configurations of the pore geometry where interfacial slip has a tangible influence on permeability have been identified. The results suggest that for large roughness features, permeability to CO 2 may be enhanced by approximately 30% during drainage, while the permeability to brine during reimbibition may be enhanced or diminished by 60%, depending on the contact angle with the mineral surfaces and degrees of roughness. For smaller roughness features, the changes in permeability through interfacial slip are small. As a result, a much larger range of effective permeabilities are suggested for general fluid pairs and contact angles, including occlusion of the pore by the trapped phase.« less
The influence of interfacial slip on two-phase flow in rough pores
Kucala, Alec; Martinez, Mario J.; Wang, Yifeng; ...
2017-08-01
The migration and trapping of supercritical CO 2 (scCO 2) in geologic carbon storage is strongly dependent on the geometry and wettability of the pore network in the reservoir rock. During displacement, resident fluids may become trapped in the pits of a rough pore surface forming an immiscible two-phase fluid interface with the invading fluid, allowing apparent slip flow at this interface. We present a two-phase fluid dynamics model, including interfacial tension, to characterize the impact of mineral surface roughness on this slip flow. We show that the slip flow can be cast in more familiar terms as a contact-anglemore » (wettability)-dependent effective permeability to the invading fluid, a nondimensional measurement which relates the interfacial slip to the pore geometry. The analysis shows the surface roughness-induced slip flow can effectively increase or decrease this effective permeability, depending on the wettability and roughness of the mineral surfaces. Configurations of the pore geometry where interfacial slip has a tangible influence on permeability have been identified. The results suggest that for large roughness features, permeability to CO 2 may be enhanced by approximately 30% during drainage, while the permeability to brine during reimbibition may be enhanced or diminished by 60%, depending on the contact angle with the mineral surfaces and degrees of roughness. For smaller roughness features, the changes in permeability through interfacial slip are small. As a result, a much larger range of effective permeabilities are suggested for general fluid pairs and contact angles, including occlusion of the pore by the trapped phase.« less
The influence of interfacial slip on two-phase flow in rough pores
NASA Astrophysics Data System (ADS)
Kucala, Alec; Martinez, Mario J.; Wang, Yifeng; Noble, David R.
2017-08-01
The migration and trapping of supercritical CO2 (scCO2) in geologic carbon storage is strongly dependent on the geometry and wettability of the pore network in the reservoir rock. During displacement, resident fluids may become trapped in the pits of a rough pore surface forming an immiscible two-phase fluid interface with the invading fluid, allowing apparent slip flow at this interface. We present a two-phase fluid dynamics model, including interfacial tension, to characterize the impact of mineral surface roughness on this slip flow. We show that the slip flow can be cast in more familiar terms as a contact-angle (wettability)-dependent effective permeability to the invading fluid, a nondimensional measurement which relates the interfacial slip to the pore geometry. The analysis shows the surface roughness-induced slip flow can effectively increase or decrease this effective permeability, depending on the wettability and roughness of the mineral surfaces. Configurations of the pore geometry where interfacial slip has a tangible influence on permeability have been identified. The results suggest that for large roughness features, permeability to CO2 may be enhanced by approximately 30% during drainage, while the permeability to brine during reimbibition may be enhanced or diminished by 60%, depending on the contact angle with the mineral surfaces and degrees of roughness. For smaller roughness features, the changes in permeability through interfacial slip are small. A much larger range of effective permeabilities are suggested for general fluid pairs and contact angles, including occlusion of the pore by the trapped phase.
Free Vibration Response Comparison of Composite Beams with Fluid Structure Interaction
2012-09-01
fluid damping to vibrating structures when in contact with a fluid medium such as water . The added mass effect changes the dynamic responses of the...200 words) The analysis of the dynamic response of a vibrating structure in contact with a fluid medium can be interpreted as an added mass effect...INTENTIONALLY LEFT BLANK v ABSTRACT The analysis of the dynamic response of a vibrating structure in contact with a fluid medium can be interpreted as
Analysis of lactate concentrations in canine synovial fluid.
Proot, J L J; de Vicente, F; Sheahan, D E
2015-01-01
To report synovial fluid lactate concentrations in normal and pathological canine joints. Controlled, prospective study. Lactate was measured in synovial fluid using a hand-held meter and the rest of the fluid was sent to a commercial laboratory for analysis. Samples were divided into four groups; group 1: control, group 2: osteoarthritis, group 3: immune-mediated inflammatory arthritis, and group 4: septic arthritis. Statistical analysis was performed to compare lactate concentrations between the four groups and to examine the predictive value of lactate in the diagnosis of septic arthritis. A correlation was sought between synovial fluid lactate and synovial fluid total nucleated cell count and total protein. Seventy-four samples were investigated from 55 dogs. Statistical analysis found that lactate concentrations were significantly higher in the septic arthritis group than in each of the other three groups. No significant correlation could be found between synovial fluid lactate concentrations and synovial fluid total nucleated cell count or synovial fluid total protein. Lactate concentration was found to be a useful predictor of septic arthritis, with a low concentration pointing towards exclusion rather than a high concentration to the diagnosis of septic arthritis. Synovial fluid lactate concentration is not a good marker for osteoarthritis or immune-mediated inflammatory arthritis, but it is significantly increased in septic arthritis and could help the clinician in ruling out this condition in a quick and cost-effective way.
Chemical reaction fouling model for single-phase heat transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panchal, C.B.; Watkinson, A.P.
1993-08-01
A fouling model was developed on the premise that the chemical reaction for generation of precursor can take place in the bulk fluid, in the thermalboundary layer, or at the fluid/wall interface, depending upon the interactive effects of flu id dynamics, heat and mass transfer, and the controlling chemical reaction. The analysis was used to examine the experimental data for fouling deposition of polyperoxides produced by autoxidation of indene in kerosene. The effects of fluid and wall temperatures for two flow geometries were analyzed. The results showed that the relative effects of physical parameters on the fouling rate would differmore » for the three fouling mechanisms; therefore, it is important to identify the controlling mechanism in applying the closed-flow-loop data to industrial conditions.« less
NASA Astrophysics Data System (ADS)
Kristian, P. L. Y.; Cari, C.; Sunarno, W.
2018-04-01
This study purposes to describe and analyse the students' concept understanding of dynamic fluid. The subjects of this research are 10 students of senior high school. The data collected finished the essay test that consists of 5 questions have been adapted to the indicators of learning. The data of this research is analysed using descriptive-qualitative approach by referring of the student's argumentations about their answer from the questions that given. The results showed that students still have incorrect understanding the concept of dynamic fluids, especially on the Bernoulli’s principle and its application. Based on the results of this research, the teachers should emphasize the concept understanding of the students therefore the students don not only understand the physics concept in mathematical form.
Quantitative analysis of trace element concentrations in some gem-quality diamonds
NASA Astrophysics Data System (ADS)
McNeill, J.; Pearson, D. G.; Klein-Ben David, O.; Nowell, G. M.; Ottley, C. J.; Chinn, I.
2009-09-01
The geochemical signature of diamond-forming fluids can be used to unravel diamond-forming processes and is of potential use in the detection of so-called 'conflict' diamonds. While fluid-rich fibrous diamonds can be analyzed by a variety of techniques, very few data have been published for fluid-poor, gem-quality diamonds because of their very low impurity levels. Here we present a new ICPMS-based (ICPMS: inductively coupled plasma mass spectrometry) method for the analysis of trace element concentrations within fluid-poor, gem-quality diamonds. The method employs a closed-system laser ablation cell. Diamonds are ablated and the products trapped for later pre-concentration into solutions that are analyzed by sector-field ICPMS. We show that our limits of quantification for a wide range of elements are at the sub-pg to low pg level. The method is applied to a suite of 10 diamonds from the Cullinan Mine (previously known as Premier), South Africa, along with other diamonds from Siberia (Mir and Udachnaya) and Venezuela. The concentrations of a wide range of elements for all the samples (expressed by weight in the solid) are very low, with rare earth elements along with Y, Nb, Cs ranging from 0.01 to 2 ppb. Large ion lithophile elements (LILE) such as Rb and Ba vary from 1 to 30 ppb. Ti ranges from ppb levels up to 2 ppm. From the combined, currently small data set we observe two kinds of diamond-forming fluids within gem diamonds. One group has enrichments in LILE over Nb, whereas a second group has normalized LILE abundances more similar to those of Nb. These two groups bear some similarity to different groups of fluid-rich diamonds, providing some supporting evidence of a link between the parental fluids for both fluid-inclusion-rich and gem diamonds.
The Fifth Annual Thermal and Fluids Analysis Workshop
NASA Technical Reports Server (NTRS)
1993-01-01
The Fifth Annual Thermal and Fluids Analysis Workshop was held at the Ohio Aerospace Institute, Brook Park, Ohio, cosponsored by NASA Lewis Research Center and the Ohio Aerospace Institute, 16-20 Aug. 1993. The workshop consisted of classes, vendor demonstrations, and paper sessions. The classes and vendor demonstrations provided participants with the information on widely used tools for thermal and fluid analysis. The paper sessions provided a forum for the exchange of information and ideas among thermal and fluids analysts. Paper topics included advances and uses of established thermal and fluids computer codes (such as SINDA and TRASYS) as well as unique modeling techniques and applications.
NASA Astrophysics Data System (ADS)
Ayers, John C.; Peters, Timothy J.
2018-02-01
Hydrothermal zircon grains have trace element characteristics such as low Th/U, high U, and high rare earth element (REE) concentrations that distinguish them from magmatic, metamorphic, and altered zircon grains, but it is unclear whether these characteristics result from distinctive fluid compositions or zircon/fluid fractionation effects. New experiments aimed at measuring zircon/fluid trace element partition coefficients Dz/f involved recrystallizing natural Mud Tank zircon with low trace element concentrations in the presence of H2O, 1 m NaOH, or 1 m HCl doped with ∼1000 ppm of rare earth elements (REE), Y, U and Th and ∼500 ppm of Li, B, P, Nb, Ba, Hf, and Ta. Experiments were run for 168 h at 1.5 GPa, 800-1000 °C, and fO2 = NNO in a piston cylinder apparatus using the double capsule method. LA-ICP-MS analysis shows that run product zircon crystals have much higher trace element concentrations than in Mud Tank zircon starting material. Dz/f values were estimated from run product zircon analyses and bulk composition using mass balance. Most elements behave incompatibly, with median Dz/f being highest for Hf = 8 and lowest for B = 0.02. Addition of NaOH or HCl had little influence on Dz/f values. Dz/f for LREE are anomalously high, likely due to contamination of run product zircon with quenched solutes enriched in incompatible elements, so DLREE were estimated using lattice strain theory. Brice curves for +3 ions yield zircon/fluid DLu/DLa of ∼800-5000. A Brice curve fit to +4 ions yielded DCe4+ values. Estimated concentrations of Ce3+ and Ce4+ show that the average Ce4+/Ce3+ in zircon of 27 is much higher than in fluid of 0.02. Th and U show little fractionation, with median DTh/DU = 0.7, indicating that the low Th/U in natural hydrothermal zircon is inherited from the fluid. Natural fluid compositions estimated from measured Dz/f and published compositions of hydrothermal zircon grains from aplite and eclogite reflect the mineralogy of the host rock, e.g., fluid in equilibrium with eclogite garnet is depleted in heavy REE relative to middle REE, and has low Th/U.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cartwright, I.
The pattern of [delta][sup 18]O values in layered Corella calc-silicate rocks adjacent to a scapolitized metadolerite dike at Timberu in the Mary Kathleen fold belt illustrates some of the complexities of two-dimensional metamorphic fluid flow. Fluids flowing from the dike ([delta][sup 18]O = 9-10%) into the calc-silicate rocks lowered calcite [delta][sup 18]O values form 19-20% to as low as 10.3%. Time-integrate advectite fluid fluxes varied from 0.72 to > 8.1 m[sup 3]/m[sup 2] over a 4.5-m lateral distance, and there are two distinct channels of higher fluid flux. If the duration of fluid flow was similar across the outcrop, intrinsicmore » permeabilities varied laterally by at least an order of magnitude. Fluid flow was largely focused across lithological layering, with rare excursions parallel to layering, suggesting that (up to 1 m) to those at the isotopic front ([approximately]1.2 m), indicating that the coefficients of transverse and longitudinal dispersion are of similar orders of magnitude. Localities in other terrains probably show similar complex patterns of isotopic resetting that in two dimensions correspond to the predictions of the advective-dispersive transport models, but which are difficult to interpret using a one-dimensional analysis. Transverse dispersion during channeled fluid flow will potentially reset O-isotope ratios adjacent to the channels and cause decoupling of geochemical parameters during advective and dispersive transport. 43 refs., 5 figs., 2 tabs.« less
NASA Astrophysics Data System (ADS)
Laurent, D.; Lopez, M.; Chauvet, A.; Imbert, P.; Sauvage, A. C.; Martine, B.; Thomas, M.
2014-12-01
During syn-sedimentary burial in basin, interstitial fluids initially trapped within the sedimentary pile are easily moving under overpressure gradient. Indeed, they have a significant role on deformation during basin evolution, particularly on fault reactivation. The Lodève Permian Basin (Hérault, France) is an exhumed half graben with exceptional outcrop conditions providing access to barite-sulfides mineralized systems and hydrocarbon trapped into rollover faults of the basin. Architectural studies shows a cyclic infilling of fault zone and associated S0-parallel veins according to three main fluid events during dextral/normal faulting. Contrasting fluid entrapment conditions are deduced from textural analysis, fluid inclusion microthermometry and sulfide isotope geothermometer: (i) the first stage is characterized by an implosion breccia cemented by silicifications and barite during abrupt pressure drop within fault zone; (ii) the second stage consists in succession of barite ribbons precipitated under overpressure fluctuations, derived from fault-valve action, with reactivation planes formed by sulphide-rich micro-shearing structures showing normal movement; and (iii) the third stage is associated to the formation of dextral strike-slip pull-apart infilling by large barite crystals and contemporary hydrocarbons under suprahydrostatic pressure values. Microthermometry, sulfide and strontium isotopic compositions of the barite-sulfides veins indicate that all stages were formed by mixing between deep basinal fluids at 230°C, derived from cinerite dewatering, and formation water from overlying sedimentary cover channelized trough fault planes. We conclude to a polyphase history of fluid trapping during Permian synrift formation of the basin: (i) a first event, associated with the dextral strike-slip motion on faults, leads to a first sealing of the fault zone; (ii) periodic reactivations of fault planes and bedding-controlled shearing form the main mineralized ore bodies by the single action of fluid overpressure fluctuations, undergoing changes in local stress distribution and (iii) a final tectonic activation of fault linked to last basinal fluid and hydrocarbon migration during which shear stress restoration on fault plane is faster than fluid pressure build-up.
Multiphase numerical analysis of heat pipe with different working fluids for solar applications
NASA Astrophysics Data System (ADS)
Aswath, S.; Netaji Naidu, V. H.; Padmanathan, P.; Raja Sekhar, Y.
2017-11-01
Energy crisis is a prognosis predicted in many cases with the indiscriminate encroachment of conventional energy sources for applications on a massive scale. This prediction, further emboldened by the marked surge in global average temperatures, attributed to climate change and global warming, the necessity to conserve the environment and explore alternate sources of energy is at an all-time high. Despite being among the lead candidates for such sources, solar energy is utilized far from its vast potential possibilities due to predominant economic constraints. Even while there is a growing need for solar panels at more affordable rates, the other options to harness better out of sun’s energy is to optimize and improvise existing technology. One such technology is the heat pipe used in Evacuated Tube Collectors (ETC). The applications of heat pipe have been gaining momentum in various fields since its inception and substantial volumes of research have explored optimizing and improving the technology which is proving effective in heat recovery and heat transfer better than conventional systems. This paper carries out a computational analysis on a comparative simulation between two working fluids within heat pipe of same geometry. It further endeavors to study the multiphase transitions within the heat pipe. The work is carried out using ANSYS Fluent with inputs taken from solar data for the location of Vellore, Tamil Nadu. A wickless, gravity-assisted heat pipe (GAHP) is taken for the simulation. Water and ammonia are used as the working fluids for comparative multiphase analysis to arrive at the difference in heat transfer at the condenser section. It is demonstrated that a heat pipe ETC with ammonia as working fluid showed higher heat exchange (temperature difference) as against that of water as working fluid. The multiphase model taken aided in study of phase transitions within both cases and supported the result of ammonia as fluid being a better candidate.
Cherpanath, Thomas G V; Hirsch, Alexander; Geerts, Bart F; Lagrand, Wim K; Leeflang, Mariska M; Schultz, Marcus J; Groeneveld, A B Johan
2016-05-01
Passive leg raising creates a reversible increase in venous return allowing for the prediction of fluid responsiveness. However, the amount of venous return may vary in various clinical settings potentially affecting the diagnostic performance of passive leg raising. Therefore we performed a systematic meta-analysis determining the diagnostic performance of passive leg raising in different clinical settings with exploration of patient characteristics, measurement techniques, and outcome variables. PubMed, EMBASE, the Cochrane Database of Systematic Reviews, and citation tracking of relevant articles. Clinical trials were selected when passive leg raising was performed in combination with a fluid challenge as gold standard to define fluid responders and non-responders. Trials were included if data were reported allowing the extraction of sensitivity, specificity, and area under the receiver operating characteristic curve. Twenty-three studies with a total of 1,013 patients and 1,034 fluid challenges were included. The analysis demonstrated a pooled sensitivity of 86% (95% CI, 79-92), pooled specificity of 92% (95% CI, 88-96), and a summary area under the receiver operating characteristic curve of 0.95 (95% CI, 0.92-0.98). Mode of ventilation, type of fluid used, passive leg raising starting position, and measurement technique did not affect the diagnostic performance of passive leg raising. The use of changes in pulse pressure on passive leg raising showed a lower diagnostic performance when compared with passive leg raising-induced changes in flow variables, such as cardiac output or its direct derivatives (sensitivity of 58% [95% CI, 44-70] and specificity of 83% [95% CI, 68-92] vs sensitivity of 85% [95% CI, 78-90] and specificity of 92% [95% CI, 87-94], respectively; p < 0.001). Passive leg raising retains a high diagnostic performance in various clinical settings and patient groups. The predictive value of a change in pulse pressure on passive leg raising is inferior to a passive leg raising-induced change in a flow variable.
Materials processing in a centrifuge - Numerical modeling of macrogravity effects
NASA Technical Reports Server (NTRS)
Ramachandran, N.; Downey, J. P.; Jones, J. C.; Curreri, P. A.
1992-01-01
The fluid mechanics associated with crystal growth processes on a centrifuge is investigated. A simple scaling analysis is used to examine the relative magnitudes of the forces acting on the system and good agreement is obtained with previous studies. A two-dimensional model of crystal growth on a centrifuge is proposed and calculations are undertaken to help in understanding the fundamental transport processes within the crystal growth cell. Results from three-dimensional calculations of actual centrifuge-based crystal growth systems are presented both for the thermodynamically stable and unstable configurations. The calculations show the existence of flow bifurcations in certain configurations but not in all instances. The numerical simulations also show that the centrifugal force is the dominant stabilizing force on fluid convection in the stable configuration. The stabilizing influence of the Coriolis force is found to be only secondary in nature. No significant impact of gravity gradient is found in the calculations. Simulations of unstable configurations show that the Coriolis force has a stabilizing influence on fluid motion by delaying the onset of unsteady convection. Detailed flow and thermal field characteristics are presented for all the different cases that are simulated.
Wilkins, Rodney; Menefee, Anne H; Clarens, Andres F
2016-12-06
Many of the environmental impacts associated with hydraulic fracturing of unconventional gas wells are tied to the large volumes of water that such operations require. Efforts to develop nonaqueous alternatives have focused on carbon dioxide as a tunable working fluid even though the full environmental and production impacts of a switch away from water have yet to be quantified. Here we report on a life cycle analysis of using either water or CO 2 for gas production in the Marcellus shale. The results show that CO 2 -based fluids, as currently conceived, could reduce greenhouse gas emissions by 400% (with sequestration credit) and water consumption by 80% when compared to conventional water-based fluids. These benefits are offset by a 44% increase in net energy use when compared to slickwater fracturing as well as logistical barriers resulting from the need to move and store large volumes of CO 2 . Scenario analyses explore the outlook for CO 2 , which under best-case conditions could eventually reduce life cycle energy, water, and greenhouse gas (GHG) burdens associated with fracturing. To achieve these benefits, it will be necessary to reduce CO 2 sourcing and transport burdens and to realize opportunities for improved energy recovery, averted water quality impacts, and carbon storage.
NASA Astrophysics Data System (ADS)
Navas, Javier; Sánchez-Coronilla, Antonio; Martín, Elisa I.; Gómez-Villarejo, Roberto; Teruel, Miriam; Gallardo, Juan Jesús; Aguilar, Teresa; Alcántara, Rodrigo; Fernández-Lorenzo, Concha; Martín-Calleja, Joaquín
2017-04-01
In this work, nanofluids were prepared using commercial Cu nanoparticles and a commercial high temperature-heat transfer Fluid (eutectic mixture of diphenyl oxide and biphenyl) as the base fluid, which is used in concentrating solar power (CSP) plants. Different properties such as density, viscosity, heat capacity and thermal conductivity were characterized. Nanofluids showed enhanced heat transfer efficiency. In detail, the incorporation of Cu nanoparticles led to an increase of the heat capacity up to 14%. Also, thermal conductivity was increased up to 13%. Finally, the performance of the nanofluids prepared increased up to 11% according to the Dittus-Boelter correlation. On the other hand, equilibrium molecular dynamics simulation was used to model the experimental nanofluid system studied. Thermodynamic properties such as heat capacity and thermal conductivity were calculated and the results were compared with experimental data. The analysis of the radial function distributions (RDFs) and the inspection of the spatial distribution functions (SDFs) indicate the important role that plays the metal-oxygen interaction in the system. Dynamic properties such as the diffusion coefficients of base fluid and nanofluid were computed according to Einstein relation by computing the mean square displacement (MSD). Supplementary online material is available in electronic form at http://www.epjap.org
Sun, Wei; Ma, Jie; Wu, Songfeng; Yang, Dong; Yan, Yujuan; Liu, Kehui; Wang, Jinglan; Sun, Longqin; Chen, Ning; Wei, Handong; Zhu, Yunping; Xing, Baocai; Zhao, Xiaohang; Qian, Xiaohong; Jiang, Ying; He, Fuchu
2010-02-05
Tissue interstitial fluid (TIF) forms the interface between circulating body fluids and intracellular fluid. Pathological alterations of liver cells could be reflected in TIF, making it a promising source of liver disease biomarkers. Mouse liver TIF was extracted, separated by SDS-PAGE, analyzed by linear ion trap mass spectrometer, and 1450 proteins were identified. These proteins may be secreted, shed from membrane vesicles, or represent cellular breakdown products. They show different profiling patterns, quantities, and possibly modification/cleavage of intracellular proteins. The high solubility and even distribution of liver TIF supports its suitability for proteome analysis. Comparison of mouse liver TIF data with liver tissue and plasma proteome data identified major proteins that might be released from liver to plasma and serve as blood biomarkers of liver origin. This result was partially supported by comparison of human liver TIF data with human liver and plasma proteome data. Paired TIFs from tumor and nontumor liver tissues of a hepatocellular carcinoma patient were analyzed and the profile of subtracted differential proteins supports the potential for biomarker discovery in TIF. This study is the first analysis of the liver TIF proteome and provides a foundation for further application of TIF in liver disease biomarker discovery.
NASA Technical Reports Server (NTRS)
Ruf, Joseph H.; Holt, James B.; Canabal, Francisco
2001-01-01
This paper presents the status of analyses on three Rocket Based Combined Cycle (RBCC) configurations underway in the Applied Fluid Dynamics Analysis Group (TD64). TD64 is performing computational fluid dynamics (CFD) analysis on a Penn State RBCC test rig, the proposed Draco axisymmetric RBCC engine and the Trailblazer engine. The intent of the analysis on the Penn State test rig is to benchmark the Finite Difference Navier Stokes (FDNS) code for ejector mode fluid dynamics. The Draco analysis was a trade study to determine the ejector mode performance as a function of three engine design variables. The Trailblazer analysis is to evaluate the nozzle performance in scramjet mode. Results to date of each analysis are presented.
Bubbling in unbounded coflowing liquids.
Gañán-Calvo, Alfonso M; Herrada, Miguel A; Garstecki, Piotr
2006-03-31
An investigation of the stability of low density and viscosity fluid jets and spouts in unbounded coflowing liquids is presented. A full parametrical analysis from low to high Weber and Reynolds numbers shows that the presence of any fluid of finite density and viscosity inside the hollow jet elicits a transition from an absolute to a convective instability at a finite value of the Weber number, for any value of the Reynolds number. Below that critical value of the Weber number, the absolute character of the instability leads to local breakup, and consequently to local bubbling. Experimental data support our model.
Transient Thermal Model and Analysis of the Lunar Surface and Regolith for Cryogenic Fluid Storage
NASA Technical Reports Server (NTRS)
Christie, Robert J.; Plachta, David W.; Yasan, Mohammad M.
2008-01-01
A transient thermal model of the lunar surface and regolith was developed along with analytical techniques which will be used to evaluate the storage of cryogenic fluids at equatorial and polar landing sites. The model can provide lunar surface and subsurface temperatures as a function of latitude and time throughout the lunar cycle and season. It also accounts for the presence of or lack of the undisturbed fluff layer on the lunar surface. The model was validated with Apollo 15 and Clementine data and shows good agreement with other analytical models.
Fluid dynamic instabilities: theory and application to pattern forming in complex media
Brun, P.-T.
2017-01-01
In this review article, we exemplify the use of stability analysis tools to rationalize pattern formation in complex media. Specifically, we focus on fluid flows, and show how the destabilization of their interface sets the blueprint of the patterns they eventually form. We review the potential use and limitations of the theoretical methods at the end, in terms of their applications to practical settings, e.g. as guidelines to design and fabricate structures while harnessing instabilities. This article is part of the themed issue ‘Patterning through instabilities in complex media: theory and applications’. PMID:28373378
Mobility of power-law and Carreau fluids through fibrous media.
Shahsavari, Setareh; McKinley, Gareth H
2015-12-01
The flow of generalized Newtonian fluids with a rate-dependent viscosity through fibrous media is studied, with a focus on developing relationships for evaluating the effective fluid mobility. Three methods are used here: (i) a numerical solution of the Cauchy momentum equation with the Carreau or power-law constitutive equations for pressure-driven flow in a fiber bed consisting of a periodic array of cylindrical fibers, (ii) an analytical solution for a unit cell model representing the flow characteristics of a periodic fibrous medium, and (iii) a scaling analysis of characteristic bulk parameters such as the effective shear rate, the effective viscosity, geometrical parameters of the system, and the fluid rheology. Our scaling analysis yields simple expressions for evaluating the transverse mobility functions for each model, which can be used for a wide range of medium porosity and fluid rheological parameters. While the dimensionless mobility is, in general, a function of the Carreau number and the medium porosity, our results show that for porosities less than ɛ≃0.65, the dimensionless mobility becomes independent of the Carreau number and the mobility function exhibits power-law characteristics as a result of the high shear rates at the pore scale. We derive a suitable criterion for determining the flow regime and the transition from a constant viscosity Newtonian response to a power-law regime in terms of a new Carreau number rescaled with a dimensionless function which incorporates the medium porosity and the arrangement of fibers.
Structural analysis of two different stent configurations.
Simão, M; Ferreira, J M; Mora-Rodriguez, J; Ramos, H M
2017-06-01
Two different stent configurations (i.e. the well known Palmaz-Schatz (PS) and a new stent configuration) are mechanically investigated. A finite element model was used to study the two geometries under combining loads and a computational fluid dynamic model based on fluid structure interaction was developed investigating the plaque and the artery wall reactions in a stented arterial segment. These models determine the stress and displacement fields of the two stents under internal pressure conditions. Results suggested that stent designs cause alterations in vascular anatomy that adversely affect arterial stress distributions within the wall, which have impact in the vessel responses such as the restenosis. The hemodynamic analysis shows the use of new stent geometry suggests better biofluid mechanical response such as the deformation and the progressive amount of plaque growth.
Scalar-fluid interacting dark energy: Cosmological dynamics beyond the exponential potential
NASA Astrophysics Data System (ADS)
Dutta, Jibitesh; Khyllep, Wompherdeiki; Tamanini, Nicola
2017-01-01
We extend the dynamical systems analysis of scalar-fluid interacting dark energy models performed in C. G. Boehmer et al., Phys. Rev. D 91, 123002 (2015), 10.1103/PhysRevD.91.123002 by considering scalar field potentials beyond the exponential type. The properties and stability of critical points are examined using a combination of linear analysis, computational methods and advanced mathematical techniques, such as center manifold theory. We show that the interesting results obtained with an exponential potential can generally be recovered also for more complicated scalar field potentials. In particular, employing power law and hyperbolic potentials as examples, we find late time accelerated attractors, transitions from dark matter to dark energy domination with specific distinguishing features, and accelerated scaling solutions capable of solving the cosmic coincidence problem.
Ambruosi, Barbara; Accogli, Gianluca; Douet, Cécile; Canepa, Sylvie; Pascal, Géraldine; Monget, Philippe; Moros Nicolás, Carla; Holmskov, Uffe; Mollenhauer, Jan; Robbe-Masselot, Catherine; Vidal, Olivier; Desantis, Salvatore; Goudet, Ghylène
2013-08-01
Oviductal environment affects preparation of gametes for fertilization, fertilization itself, and subsequent embryonic development. The aim of this study was to evaluate the effect of oviductal fluid and the possible involvement of deleted in malignant brain tumor 1 (DMBT1) on IVF in porcine and equine species that represent divergent IVF models. We first performed IVF after pre-incubation of oocytes with or without oviductal fluid supplemented or not with antibodies directed against DMBT1. We showed that oviductal fluid induces an increase in the monospermic fertilization rate and that this effect is canceled by the addition of antibodies, in both porcine and equine species. Moreover, pre-incubation of oocytes with recombinant DMBT1 induces an increase in the monospermic fertilization rate in the pig, confirming an involvement of DMBT1 in the fertilization process. The presence of DMBT1 in the oviduct at different stages of the estrus cycle was shown by western blot and confirmed by immunohistochemical analysis of ampulla and isthmus regions. The presence of DMBT1 in cumulus-oocyte complexes was shown by western blot analysis, and the localization of DMBT1 in the zona pellucida and cytoplasm of equine and porcine oocytes was observed using immunofluorescence analysis and confocal microscopy. Moreover, we showed an interaction between DMBT1 and porcine spermatozoa using surface plasmon resonance studies. Finally, a bioinformatic and phylogenetic analysis allowed us to identify the DMBT1 protein as well as a DMBT1-like protein in several mammals. Our results strongly suggest an important role of DMBT1 in the process of fertilization.
Ullah, Shahid; Helander, Anders; Beck, Olof
2017-08-28
Phosphatidylethanols (PEth) are formed from phosphatidylcholines and ethanol and are used as a specific and sensitive alcohol biomarker. An analytical method for analysis of PEth in oral fluid based on high-performance liquid chromatography coupled to a quadrupole tandem mass spectrometer (LC-MS/MS) was developed and validated and applied on samples collected from patients undergoing alcohol detoxification. A 200-μL aliquot of oral fluid, collected using the QuantisalTM device, was extracted with chloroform/methanol containing internal standard and subjected to LC-MS/MS analysis of three selected PEth forms (16:0/16:0, 16:0/18:1, and 16:0/18:2). Chromatographic separation was achieved on a UPLC BEH phenyl column, using a mobile phase consisting of acetonitrile and water containing 10 mmol/L ammonium hydrogen carbonate with 0.1% ammonia. The MS instrument was operated in negative electrospray ionization and selected reaction monitoring mode. The detection limit for PEth 16:0/16:0, 16:0/18:1, and 16:0/18:2 was ~0.1 ng/mL, and the extraction recoveries at 2.0 ng/mL were in the range of 99%-114%. Method linearity over a concentration range up to 200 ng/mL was ≥0.99. No significant deviation in results was observed in an analyte stability study of two different concentrations at two different temperatures over 3 months. In 35 oral fluid samples collected from patients undergoing alcohol detoxification, the highest concentration was observed for PEth 16:0/18:1 (Detected range, 0.51-55.3 ng/mL; mean, 8.5; median, 3.1). In addition, all three PEth forms were variably identified in a majority (63%) of the oral fluid samples. The PEth 16:0/18:1 values in oral fluid showed a weak positive correlation with the corresponding values in whole blood samples (r=0.50, p=0.026, n=20). The LC-MS/MS method could reliably detect and quantify PEth in oral fluid samples collected after alcohol exposure. The method was characterized by validation data with satisfactory recovery, sensitivity, accuracy, and imprecision, and applied for analysis of clinical samples. The results suggest that measurement of PEth in oral fluid can be used as a biomarker for alcohol consumption, and as such a non-invasive complement to analysis in blood. However, further studies are required to evaluate the test characteristics (e.g. sensitivity and half-life) in comparison with PEth in blood.
NASA Astrophysics Data System (ADS)
Yamagishi, A.
Microbial community in hydrothermal area at seafloor has been analyzed by culture-independent methods. Hydrothermal fluid from natural vents and vent chimneys have been analyzed by PCR (1-2). Hyperthermophilic microbes have been isolated from these environments (3-4). Though the analysis of these samples can provide the window to penetrate the microbial community under the seafloor, more direct analysis is desired for better understanding of the sub-seafloor microbial community In the ``Archaean Park Project'' supported by Special Coordination Fund, several holes were drilled and the holes were supported by casing pipes in the crater of the Suiyo seamount on the Izu-Bonin arc, West Pacific Ocean (about 1,400 m depth) in 2001 and 2002. Hydrothermal fluids were sampled from cased holes. The fluids were filtered to collect the microbial cells. The DNA was extracted and used to amplify 16S rDNA fragments by PCR (polymerase chain reaction) using a bacteria and an archaea specific primer sets. The PCR fragments were cloned and sequenced. FISH analysis revealed from 6 x103 to 2.5 x 106 bactrerial cells/ml in these hydrothermal fluids. PCR clone-analysis showed significant variation in bacterial sequences found in these samples. The species-patterns suggest that the contamination of ambient seawater to hydrothermal fluid samples is negligible. Difference in the dominant species depending on the location was found, suggesting that the bacterial community at sub-sea floor is not monotonous but has gradual shift from the hydrothermal center to peripheral area. The results suggest that there is chemo-autotrophic microbe-dependent biota under the hydrothermal system. References 1) Takai et al. Genetics 152: 1285-1297 (1999) 2) Takai et al. Appl. Environ. Microbioi. 67: 3618-3629 (2001) 3) Summit et al. Proc. Natl. Acad. Sci. 98: 2158-2163 (2001) 4) Amend, J. P. and Shodk, E. L. FEMS Microbiol. Rev. 25: 175-243 (2002)
The profile of high school students’ scientific literacy on fluid dynamics
NASA Astrophysics Data System (ADS)
Parno; Yuliati, L.; Munfaridah, N.
2018-05-01
This study aims to describe the profile of scientific literacy of high school students on Fluid Dynamics materials. Scientific literacy is one of the ability to solve daily problems in accordance with the context of materials related to science and technology. The study was conducted on 90 high school students in Sumbawa using survey design. Data were collected using an instrument of scientific literacy for high school students on dynamic fluid materials. Data analysis was conducted descriptively to determine the students’ profile of scientific literacy. The results showed that high school students’ scientific literacy on Fluid Dynamics materials was in the low category. The highest average is obtained on indicators of scientific literacy i.e. the ability to interpret data and scientific evidence. The ability of scientific literacy is related to the mastery of concepts and learning experienced by students, therefore it is necessary to use learning that can trace this ability such as Science, Technology, Engineering, and Mathematics (STEM).
Bekins, B.A.; Spivack, A.J.; Davis, E.E.; Mayer, L.A.
2007-01-01
Recent observations indicate that curious closed depressions in carbonate sediments overlying basement edifices are widespread in the equatorial Pacific. A possible mechanism for their creation is dissolution by fluids exiting basement vents from off-axis hydrothermal flow. Quantitative analysis based on the retrograde solubility of calcium carbonate and cooling of basement fluids during ascent provides an estimate for the dissolution capacity of the venting fluids. Comparison of the dissolution capacity and fluid flux with typical equatorial Pacific carbonate mass accumulation rates shows that this mechanism is feasible. By maintaining sediment-free basement outcrops, the process may promote widespread circulation of relatively unaltered seawater in the basement in an area where average sediment thicknesses are 300-500 m. The enhanced ventilation can explain several previously puzzling observations in this region, including anomalously low heat flux, relatively unaltered seawater in the basement, and aerobic and nitrate-reducing microbial activity at the base of the sediments. ?? 2007 The Geological Society of America.
A model for wave propagation in a porous solid saturated by a three-phase fluid.
Santos, Juan E; Savioli, Gabriela B
2016-02-01
This paper presents a model to describe the propagation of waves in a poroelastic medium saturated by a three-phase viscous, compressible fluid. Two capillary relations between the three fluid phases are included in the model by introducing Lagrange multipliers in the principle of virtual complementary work. This approach generalizes that of Biot for single-phase fluids and allows to determine the strain energy density, identify the generalized strains and stresses, and derive the constitutive relations of the system. The kinetic and dissipative energy density functions are obtained assuming that the relative flow within the pore space is of laminar type and obeys Darcy's law for three-phase flow in porous media. After deriving the equations of motion, a plane wave analysis predicts the existence of four compressional waves, denoted as type I, II, III, and IV waves, and one shear wave. Numerical examples showing the behavior of all waves as function of saturation and frequency are presented.
NASA Technical Reports Server (NTRS)
Pan, C. H. T.; Malanoski, S. B.
1972-01-01
A preliminary design study was performed to seek a fluid-film thrust bearing design intended to be part of a high-speed, hybrid (rolling element/fluid film) bearing configuration. The base line used is a design previously tested. To improve the accuracy of theoretical predictions of load capacity, flow rate, and friction power loss, an analytical procedure was developed to include curvature effects inherent in thrust bearings and to allow for the temperature rise in the fluid due to viscous heating. Also, a narrow-groove approximation in the treatment of the temperature field was formulated to apply the procedure to the Whipple thrust bearing. A comparative trade-off study was carried out assuming isothermal films; its results showed the shrouded-step design to be superior to the Whipple design for the intended application. An extensive parametric study was performed, employing isoviscous calculations, to determine the optimized design, which was subsequently recalculated allowing for temperature effects.
NASA Astrophysics Data System (ADS)
Minato, Shohei; Ghose, Ranajit; Tsuji, Takeshi; Ikeda, Michiharu; Onishi, Kozo
2017-10-01
Fluid-filled fractures and fissures often determine the pathways and volume of fluid movement. They are critically important in crustal seismology and in the exploration of geothermal and hydrocarbon reservoirs. We introduce a model for tube wave scattering and generation at dipping, parallel-wall fractures intersecting a fluid-filled borehole. A new equation reveals the interaction of tube wavefield with multiple, closely spaced fractures, showing that the fracture dip significantly affects the tube waves. Numerical modeling demonstrates the possibility of imaging these fractures using a focusing analysis. The focused traces correspond well with the known fracture density, aperture, and dip angles. Testing the method on a VSP data set obtained at a fault-damaged zone in the Median Tectonic Line, Japan, presents evidences of tube waves being generated and scattered at open fractures and thin cataclasite layers. This finding leads to a new possibility for imaging, characterizing, and monitoring in situ hydraulic properties of dipping fractures using the tube wavefield.
NASA Astrophysics Data System (ADS)
Heuser, G.; Arancibia, G.; Veloso, E. A.; Reich, M.; Morales, H.
2017-12-01
The Fe-Cu paragenetic assemblages at the Cretaceous Dominga IOCG deposit in northern Chile (2082 Mt at 23% Fe, 0.07% Cu) show a spatial and genetic affinity with major structural systems in the district: the Early Structural System (ESS), El Tofo Structural System (ETSS) and Intermediate Structural System (ISS), developed under different tectonic regimes, from transtension (ESS) to transpression (ETSS, ISS). The ESS is a NE-ENE-trending right-lateral strike slip duplex related to the formation of biotite-magnetite mineralization in Fe-rich bands parallel to bedding (stage I), and magnetite-apatite-actinolite-quartz hydrothermal breccia (stage II). The ETSS is a NNE left-lateral fault breccia related to K-feldspar veins and anhydrite-chalcopyrite hydrothermal breccia (stage III). The ISS is a NW-WNW left lateral strike slip duplex composed of calcite veins (stage IV). However, an understanding of fault-driven fluid flow mechanisms and their impact on the studied Fe-Cu deposit is still lacking. We analyzed representative textures from veins and hydrothermal breccias of stages II, III and IV. Microstructural analysis was made in thin/polished sections normal and parallel to the vein wall using optical and scanning electron microscopy techniques. Stage II shows euhedral magnetite with ilmenite lamellae exsolution textures and intergrowths between magnetite and anhedral mosaic quartz. Hydrothermal breccias contain euhedral quartz with double-terminated crystal shapes and concentric growth zoning surrounded by plumose quartz. Stage III exhibits zoned K-feldspar veins, banded plumose quartz veins, and mosaic subhedral anhydrite. Stage IV is characterized by banded veins of plumose and rhombic calcite, and dilational jogs with rhombic calcite. The observed microtextures suggest slow cooling of high temperature Fe-Cu-rich fluid, suspension in aqueous fluid during crystal growth, and boiling. Despite the different tectonic regimes, the paleo-fluids at the Dominga IOCG deposit were emplaced under similar conditions during the main activity of each structural system, i.e., 1) development of veins related to fluid overpressure and 2) episodic boiling triggered by abrupt pressure drop. Acknowledgements: CONICYT Ph.D. Scholarship, Millennium Nucleus for Metal Tracing Along Subduction NC 130065.
Hydraulic Fracturing Fluid Analysis for Regulatory Parameters - A Progress Report
This presentation is a progress report on the analysis of Hydraulic Fracturing Fluids for regulatory compounds outlined in the various US EPA methodologies. Fracturing fluids vary significantly in consistency and viscosity prior to fracturing. Due to the nature of the fluids the analytical challenges will have to be addressed. This presentation also outlines the sampling issues associated with the collection of dissolved gas samples.
NASA Astrophysics Data System (ADS)
Uunk, Bertram; Postma, Onno; Wijbrans, Jan; Brouwer, Fraukje
2017-04-01
Metamorphic minerals and veins commonly trap attending hydrous fluids in fluid inclusions, which yield a wealth of information on the history of the hosting metamorphic system. When these fluids are sufficiently saline, the KCl in the inclusions can be used as a K/Ar geochronologic system, potentially dating inclusion incorporation. Whilst primary fluid inclusions (PFIs) can date fluid incorporation during mineral or vein growth, secondary fluid inclusion trails (SFIs) can provide age constraints on later fluid flow events. At VU Amsterdam, a new in-vacuo crushing apparatus has been designed to extract fluid inclusions from minerals for 40Ar/39Ar analysis. Separates are crushed inside a crusher tube connected to a purification line and a quadrupole mass spectrometer. In-vacuo crushing is achieved by lifting and dropping a steel pestle using an externally controlled magnetic field. As the gas can be analyzed between different crushing steps, the setup permits stepwise crushing experiments. Additionally, crushed powder can be heated by inserting the crusher tube in an externally controlled furnace. Dating by 40Ar/39Ar stepwise crushing has the added advantage that, during neutron irradiation to produce 39Ar from 39K, 38Ar and 37Ar are also produced from 38Cl and 40Ca, respectively. Simultaneous analysis of these argon isotopes permits constraining the chemistry of the argon source sampled during the experiment. This allows a distinction between different fluid or crystal lattice sources. Garnet from three samples of the HP metamorphic Cycladic Blueschist Unit on Syros, Greece was stepwise crushed to obtain fluid inclusion ages. Initial steps for all three experiments yield significant components of excess argon, which are interpreted to originate from grain boundary fluids and secondary fluid inclusions trails. During subsequent steps, age results stabilize to a plateau age. One garnet from North Syros yields an unusually old 80 Ma plateau age. However, isochrons indicate the presence of excess argon in the PFIs and isochron ages overlap with other isotopic constraints on the age of garnet growth during eclogite metamorphism (55-50 Ma) in the underlying metabasite. Garnet from two samples from the center of Syros yields younger ages overlapping with greenschist overprinting (25-30 Ma). Further studies will indicate whether these younger ages reflect a young garnet growth age or a young fluid flow event affecting older garnet crystals. The stepwise crushing and heating approach shows to be effective in dating fluid inclusions in natural mineral systems. As many metamorphic processes occur under influence or in the presence of fluids, this method should greatly expand our possibilities to date crustal processes.
Analysis of Design Parameters Effects on Vibration Characteristics of Fluidlastic Isolators
NASA Astrophysics Data System (ADS)
Deng, Jing-hui; Cheng, Qi-you
2017-07-01
The control of vibration in helicopters which consists of reducing vibration levels below the acceptable limit is one of the key problems. The fluidlastic isolators become more and more widely used because the fluids are non-toxic, non-corrosive, nonflammable, and compatible with most elastomers and adhesives. In the field of the fluidlastic isolators design, the selection of design parameters is very important to obtain efficient vibration-suppressed. Aiming at getting the effect of design parameters on the property of fluidlastic isolator, a dynamic equation is set up based on the theory of dynamics. And the dynamic analysis is carried out. The influences of design parameters on the property of fluidlastic isolator are calculated. Dynamic analysis results have shown that fluidlastic isolator can reduce the vibration effectively. Analysis results also showed that the design parameters such as the fluid density, viscosity coefficient, stiffness (K1 and K2) and loss coefficient have obvious influence on the performance of isolator. The efficient vibration-suppressed can be obtained by the design optimization of parameters.
Globe stability during simulated vitrectomy with valved and non-valved trocar cannulas
Abulon, Dina Joy; Charles, Martin; Charles, Daniel E
2015-01-01
Purpose To compare the effects of valved and non-valved cannulas on intraocular pressure (IOP), fluid leakage, and vitreous incarceration during simulated vitrectomy. Methods Three-port pars plana incisions were generated in six rubber eyes using 23-, 25-, and 27-gauge valved and non-valved trocar cannulas. The models were filled with air and IOP was measured. Similar procedures were followed for 36 acrylic eyes filled with saline solution. Vitreous incarceration was analyzed in eleven rabbit and twelve porcine cadaver eyes. Results In the air-filled model, IOP loss was 89%–94% when two non-valved cannulas were unoccupied versus 1%–5% when two valved cannulas were unoccupied. In the fluid-filled model, with non-valved cannulas, IOP dropped while fluid leaked from the open ports. With two open ports, the IOP dropped to 20%–30% of set infusion pressure, regardless of infusion pressure and IOP compensation. The IOP was maintained in valved cannulas when one or two ports were left open, regardless of IOP compensation settings. There was no or minimal fluid leakage through open ports at any infusion pressure. Direct microscopic analysis of rabbit eyes showed that vitreous incarceration was significantly greater with 23-gauge non-valved than valved cannulas (P<0.005), and endoscopy of porcine eyes showed that vitreous incarceration was significantly greater with 23-gauge (P<0.05) and 27-gauge (P<0.05) non-valved cannulas. External observation of rabbit eyes showed vitreous prolapse through non-valved, but not valved, cannulas. Conclusion Valved cannulas surpassed non-valved cannulas in maintaining IOP, preventing fluid leakage, and reducing vitreous incarceration during simulated vitrectomy. PMID:26445520
Korczynski, Piotr; Mierzejewski, Michal; Krenke, Rafal; Safianowska, Aleksandra; Light, Richard W
2018-06-05
Introduction In contrast to tuberculous pleurisy (TP), no accurate and commonly accepted biochemical marker of malignant pleural effusion (MPE) has been established. Objectives We aimed to: 1) evaluate the ability of previously reported cancer ratio (CR) to discriminate MPEs and non-MPEs, 2) test whether age may have additional value in differentiating MPEs and non MPEs, and if so, 3) to combine LDH and age with other TP biomarkers in search of an index useful in the identification of MPE. Patients and methods A retrospective analysis of data from 140 patients with malignant (n=74), tuberculous (n=37) and parapneumonic (n=29) pleural effusions was performed. The diagnostic performance of a test to discriminate between MPEs and non-MPEs was evaluated using Receiver Operating Characteristic. Results Three ratios showed the largest AUC: serum LDH/pleural fluid soluble Fas ligand, age/pleural fluid ADA and serum LDH/pleural fluid IL-18 and were characterized by a high sensitivity (95, 93.2, 92.9% respectively) and fair specificity (64.8, 71.2, 58.5% respectively) in discrimination MPE from non-MPEs. AUC for CR was lower than for aforementioned values and showed 94.6% sensitivity and 68.2% specificity. Conclusions Our study showed a lower specificity of CR in discriminating MPEs and non-MPEs than previously reported. We demonstrated that combinations of serum LDH with other pleural fluid biomarkers of TP have a similar diagnostic performance. We also found that age might be an important factor differentiating between MPEs and non-MPEs and propose a new age/pleural fluid ADA ratio which has a discriminative potential similar to that of CR.
NASA Astrophysics Data System (ADS)
Meyer-Dombard, D. R.; Cardace, D.; Woycheese, K. M.; Vallalar, B.; Arcilla, C. A.
2017-12-01
Serpentinization in ophiolite-hosted regimes produces highly reduced, high pH fluids that are often characterized as having copious H2 and CH4 gas, little/no inorganic carbon, and limited electron acceptors. Subsurface microbial biomes shift as deeply-sourced fluids reach the oxygenated surface environment, where organisms capable of metabolizing O2 thrive (Woycheese et al., 2015). The relationship, connection, and communication between surface expressions (such as fluid seeps) and the subsurface biosphere is still largely unexplored. Our work in the Zambales and Palawan ophiolites (Philippines) defines surface habitats with geochemistry, targeted culturing efforts, and community analysis (Cardace et al., 2015; Woycheese et al., 2015). Fluids in the spring sources are largely `typical' and fall in the pH range of 9-11.5 with measurable gas escaping from the subsurface (H2 and CH4 > 10uM, CO2 > 1 mM; Cardace et al., 2015). Outflow channels extend from the source pools. These surface data encourage prediction of the subsurface metabolic landscape. To understand how carbon cycling in the subsurface and surface environments might be related, we focus on community analysis, culturing, and the geochemical context of the ecosystem. Shotgun metagenomic analyses indicate carbon cycling is reliant on methanogenesis, acetogenesis, sulfate reduction, and H2 and CH4 oxidation. Methyl coenzyme M reductase, and formylmethanofuran dehydrogenase were detected, and relative abundance increased near the near-anoxic spring source. In this tropical climate, cellulose is also a likely carbon source, possibly even in the subsurface. Enrichment cultures [pH 8-12] and strains [pH 8-10] from Zambales springs show degradation of cellulose and production of cellulase. DIC, DOC, and 13C of solid substrates show mixed autotrophic/heterotrophic activity. Results indicate a metabolically flexible surface community, and suggest details about carbon cycling in the subsurface.
Yang, Wenyan; Han, Wuxiao; Gao, Huiling; Zhang, Linlin; Wang, Shuai; Xing, Lili; Zhang, Yan; Xue, Xinyu
2018-01-25
As the concentration of different biomarkers in human body fluids are an important parameter of chronic disease, wearable biosensors for in situ analysis of body fluids with high sensitivity, real-time detection, flexibility and biocompatibility have significant potential therapeutic applications. In this paper, a flexible self-powered implantable electronic-skin (e-skin) for in situ body fluids analysis (urea/uric-acid) as a real-time kidney-disease diagnoser has been proposed based on the piezo-enzymatic-reaction coupling process of ZnO nanowire arrays. It can convert the mechanical energy of body movements into a piezoelectric impulse, and the outputting piezoelectric signal contains the urea/uric-acid concentration information in body fluids. This piezoelectric-biosensing process does not need an external electricity supply or battery. The e-skin was implanted under the abdominal skin of a mouse and provided in situ analysis of the kidney-disease parameters. These results provide a new approach for developing a self-powered in situ body fluids-analysis technique for chronic-disease diagnosis.
Calvo-Iglesias, Juan; Pérez-Estévez, Daniel; Lorenzo-Abalde, Silvia; Sánchez-Correa, Beatriz; Quiroga, María Isabel; Fuentes, José M.; González-Fernández, África
2016-01-01
The M22.8 monoclonal antibody (mAb) developed against an antigen expressed at the mussel larval and postlarval stages of Mytilus galloprovincialis was studied on adult samples. Antigenic characterization by Western blot showed that the antigen MSP22.8 has a restricted distribution that includes mantle edge tissue, extrapallial fluid, extrapallial fluid hemocytes, and the shell organic matrix of adult samples. Other tissues such as central mantle, gonadal tissue, digestive gland, labial palps, foot, and byssal retractor muscle did not express the antigen. Immunohistochemistry assays identified MSP22.8 in cells located in the outer fold epithelium of the mantle edge up to the pallial line. Flow cytometry analysis showed that hemocytes from the extrapallial fluid also contain the antigen intracellularly. Furthermore, hemocytes from hemolymph have the ability to internalize the antigen when exposed to a cell-free extrapallial fluid solution. Our findings indicate that hemocytes could play an important role in the biomineralization process and, as a consequence, they have been included in a model of shell formation. This is the first report concerning a protein secreted by the mantle edge into the extrapallial space and how it becomes part of the shell matrix framework in M. galloprovincialis mussels. PMID:27008638
Parry, Gareth J; Rodrigues, Cecilia M P; Aranha, Marcia M; Hilbert, Sarah J; Davey, Cynthia; Kelkar, Praful; Low, Walter C; Steer, Clifford J
2010-01-01
Amyotrophic lateral sclerosis is a progressive degenerative disease, which typically leads to death in 3 to 5 years. Neuronal cell death offers a potential target for therapeutic intervention. Ursodeoxycholic acid is a cytoprotective, endogenous bile acid that has been shown to be neuroprotective in experimental Huntington and Alzheimer diseases, retinal degeneration, and ischemic and hemorrhagic stroke. The objective of this research was to study the safety and the tolerability of ursodeoxycholic acid in amyotrophic lateral sclerosis and document effective and dose-dependent cerebrospinal fluid penetration. Eighteen patients were randomly assigned to receive ursodeoxycholic acid at doses of 15, 30, and 50 mg/kg of body weight per day. Serum and cerebrospinal fluid were obtained for analysis after 4 weeks of treatment. Treatment-emergent clinical and laboratory events were monitored weekly. Our data indicated that ursodeoxycholic acid is well tolerated by all subjects at all doses. We also showed that ursodeoxycholic acid is well absorbed after oral administration and crosses the blood-brain barrier in a dose-dependent manner. These results show excellent safety and tolerability of ursodeoxycholic acid. The drug penetrates the cerebrospinal fluid in a dose-dependent manner. A large, placebo-controlled clinical trial is needed to assess the efficacy of ursodeoxycholic acid in treating amyotrophic lateral sclerosis.
Static analysis of a sonar dome rubber window
NASA Technical Reports Server (NTRS)
Lai, J. L.
1978-01-01
The application of NASTRAN (level 16.0.1) to the static analysis of a sonar dome rubber window (SDRW) was demonstrated. The assessment of the conventional model (neglecting the enclosed fluid) for the stress analysis of the SDRW was made by comparing its results to those based on a sophisticated model (including the enclosed fluid). The fluid was modeled with isoparametric linear hexahedron elements with approximate material properties whose shear modulus was much smaller than its bulk modulus. The effect of the chosen material property for the fluid is discussed.
Overview of MSFC's Applied Fluid Dynamics Analysis Group Activities
NASA Technical Reports Server (NTRS)
Garcia, Roberto; Griffin, Lisa; Williams, Robert
2003-01-01
TD64, the Applied Fluid Dynamics Analysis Group, is one of several groups with high-fidelity fluids design and analysis expertise in the Space Transportation Directorate at Marshall Space Flight Center (MSFC). TD64 assists personnel working on other programs. The group participates in projects in the following areas: turbomachinery activities, nozzle activities, combustion devices, and the Columbia accident investigation.
Oscillation characteristics of endodontic files: numerical model and its validation.
Verhaagen, Bram; Lea, Simon C; de Bruin, Gerrit J; van der Sluis, Luc W M; Walmsley, A Damien; Versluis, Michel
2012-11-01
During a root canal treatment, an antimicrobial fluid is injected into the root canal to eradicate all bacteria from the root canal system. Agitation of the fluid using an ultrasonically vibrating miniature file results in a significant improvement in the cleaning efficacy over conventional syringe irrigation. Numerical analysis of the oscillation characteristics of the file, modeled as a tapered, driven rod, shows a sinusoidal wave pattern with an increase in amplitude and decrease in wavelength toward the free end of the file. Measurements of the file oscillation with a scanning laser vibrometer show good agreement with the numerical simulation. The numerical model of endodontic file oscillation has the potential for predicting the oscillation pattern and fracture likeliness of various file types and the acoustic streaming they induce during passive ultrasonic irrigation.
NASA Technical Reports Server (NTRS)
Helmick, Larry S.; Jones, William R., Jr.
1992-01-01
The oxidative stabilities of several perfluoropolyalkyl ethers (PFPAE) with related chemical structures were determined by thermal gravimetric analysis and correlated with their chemical structures. These results show that oxidative stability increases as the number of difluoroformal groups decreases and as trifluoromethyl substituents are added. They are also consistent with a recently proposed intramolecular disproportionation reaction mechanism involving coordination of successive ether oxygens to a Lewis acid. Since polytetrafluoroethylene contains no oxygen, it provides an indication of the upper limit to oxidative stability of PFPAE fluids. These results also show that oxidative decomposition of PFPAE fluids requires the presence of an active metal as well as air. Consequently, it may be possible to minimize decomposition and thus improve oxidative stability by passivating reactive metal surfaces.
NASA Technical Reports Server (NTRS)
Borgia, Andrea; Spera, Frank J.
1990-01-01
This work discusses the propagation of errors for the recovery of the shear rate from wide-gap concentric cylinder viscometric measurements of non-Newtonian fluids. A least-square regression of stress on angular velocity data to a system of arbitrary functions is used to propagate the errors for the series solution to the viscometric flow developed by Krieger and Elrod (1953) and Pawlowski (1953) ('power-law' approximation) and for the first term of the series developed by Krieger (1968). A numerical experiment shows that, for measurements affected by significant errors, the first term of the Krieger-Elrod-Pawlowski series ('infinite radius' approximation) and the power-law approximation may recover the shear rate with equal accuracy as the full Krieger-Elrod-Pawlowski solution. An experiment on a clay slurry indicates that the clay has a larger yield stress at rest than during shearing, and that, for the range of shear rates investigated, a four-parameter constitutive equation approximates reasonably well its rheology. The error analysis presented is useful for studying the rheology of fluids such as particle suspensions, slurries, foams, and magma.
NASA Astrophysics Data System (ADS)
Contreras, Arturo Javier
This dissertation describes a novel Amplitude-versus-Angle (AVA) inversion methodology to quantitatively integrate pre-stack seismic data, well logs, geologic data, and geostatistical information. Deterministic and stochastic inversion algorithms are used to characterize flow units of deepwater reservoirs located in the central Gulf of Mexico. A detailed fluid/lithology sensitivity analysis was conducted to assess the nature of AVA effects in the study area. Standard AVA analysis indicates that the shale/sand interface represented by the top of the hydrocarbon-bearing turbidite deposits generate typical Class III AVA responses. Layer-dependent Biot-Gassmann analysis shows significant sensitivity of the P-wave velocity and density to fluid substitution, indicating that presence of light saturating fluids clearly affects the elastic response of sands. Accordingly, AVA deterministic and stochastic inversions, which combine the advantages of AVA analysis with those of inversion, have provided quantitative information about the lateral continuity of the turbidite reservoirs based on the interpretation of inverted acoustic properties and fluid-sensitive modulus attributes (P-Impedance, S-Impedance, density, and LambdaRho, in the case of deterministic inversion; and P-velocity, S-velocity, density, and lithotype (sand-shale) distributions, in the case of stochastic inversion). The quantitative use of rock/fluid information through AVA seismic data, coupled with the implementation of co-simulation via lithotype-dependent multidimensional joint probability distributions of acoustic/petrophysical properties, provides accurate 3D models of petrophysical properties such as porosity, permeability, and water saturation. Pre-stack stochastic inversion provides more realistic and higher-resolution results than those obtained from analogous deterministic techniques. Furthermore, 3D petrophysical models can be more accurately co-simulated from AVA stochastic inversion results. By combining AVA sensitivity analysis techniques with pre-stack stochastic inversion, geologic data, and awareness of inversion pitfalls, it is possible to substantially reduce the risk in exploration and development of conventional and non-conventional reservoirs. From the final integration of deterministic and stochastic inversion results with depositional models and analogous examples, the M-series reservoirs have been interpreted as stacked terminal turbidite lobes within an overall fan complex (the Miocene MCAVLU Submarine Fan System); this interpretation is consistent with previous core data interpretations and regional stratigraphic/depositional studies.
Direction dependence of displacement time for two-fluid electroosmotic flow.
Lim, Chun Yee; Lam, Yee Cheong
2012-03-01
Electroosmotic flow that involves one fluid displacing another fluid is commonly encountered in various microfludic applications and experiments, for example, current monitoring technique to determine zeta potential of microchannel. There is experimentally observed anomaly in such flow, namely, the displacement time is flow direction dependent, i.e., it depends if it is a high concentration fluid displacing a low concentration fluid, or vice versa. Thus, this investigation focuses on the displacement flow of two fluids with various concentration differences. The displacement time was determined experimentally with current monitoring method. It is concluded that the time required for a high concentration solution to displace a low concentration solution is smaller than the time required for a low concentration solution to displace a high concentration solution. The percentage displacement time difference increases with increasing concentration difference and independent of the length or width of the channel and the voltage applied. Hitherto, no theoretical analysis or numerical simulation has been conducted to explain this phenomenon. A numerical model based on finite element method was developed to explain the experimental observations. Simulations showed that the velocity profile and ion distribution deviate significantly from a single fluid electroosmotic flow. The distortion of ion distribution near the electrical double layer is responsible for the displacement time difference for the two different flow directions. The trends obtained from simulations agree with the experimental findings.
Direction dependence of displacement time for two-fluid electroosmotic flow
Lim, Chun Yee; Lam, Yee Cheong
2012-01-01
Electroosmotic flow that involves one fluid displacing another fluid is commonly encountered in various microfludic applications and experiments, for example, current monitoring technique to determine zeta potential of microchannel. There is experimentally observed anomaly in such flow, namely, the displacement time is flow direction dependent, i.e., it depends if it is a high concentration fluid displacing a low concentration fluid, or vice versa. Thus, this investigation focuses on the displacement flow of two fluids with various concentration differences. The displacement time was determined experimentally with current monitoring method. It is concluded that the time required for a high concentration solution to displace a low concentration solution is smaller than the time required for a low concentration solution to displace a high concentration solution. The percentage displacement time difference increases with increasing concentration difference and independent of the length or width of the channel and the voltage applied. Hitherto, no theoretical analysis or numerical simulation has been conducted to explain this phenomenon. A numerical model based on finite element method was developed to explain the experimental observations. Simulations showed that the velocity profile and ion distribution deviate significantly from a single fluid electroosmotic flow. The distortion of ion distribution near the electrical double layer is responsible for the displacement time difference for the two different flow directions. The trends obtained from simulations agree with the experimental findings. PMID:22662083
Morgenstern, Christian; Cabric, Sabrina; Perka, Carsten; Trampuz, Andrej; Renz, Nora
2018-02-01
Analysis of joint aspirate is the standard preoperative investigation for diagnosis of periprosthetic joint infection (PJI). We compared the diagnostic performance of culture and multiplex polymerase chain reaction (PCR) of synovial fluid for diagnosis of PJI. Patients in whom aspiration of the prosthetic hip or knee joint was performed before revision arthroplasty were prospectively included. The performance of synovial fluid culture and multiplex PCR was compared by McNemar's chi-squared test. A total of 142 patients were included, 82 with knee and 60 with hip prosthesis. PJI was diagnosed in 77 patients (54%) and aseptic failure in 65 patients (46%). The sensitivity of synovial fluid culture and PCR was 52% and 60%, respectively, showing concordant results in 116 patients (82%). In patients with PJI, PCR missed 6 high-virulent pathogens (S. aureus, streptococci, E. faecalis, E. coli) which grew in synovial fluid culture, whereas synovial fluid culture missed 12 pathogens detected by multiplex PCR, predominantly low-virulent pathogens (Cutibacterium acnes and coagulase-negative staphylococci). In patients with aseptic failure, PCR detected 6 low-virulent organisms (predominantly C. acnes). While the overall performance of synovial fluid PCR was comparable to culture, PCR was superior for detection of low-virulent bacteria such as Cutibacterium spp. and coagulase-negative staphylococci. In addition, synovial fluid culture required several days for growth, whereas multiplex PCR provided results within 5hours in an automated manner. Copyright © 2017 Elsevier Inc. All rights reserved.
Iverson, R.M.; Denlinger, R.P.
2001-01-01
Rock avalanches, debris flows, and related phenomena consist of grain-fluid mixtures that move across three-dimensional terrain. In all these phenomena the same basic forces, govern motion, but differing mixture compositions, initial conditions, and boundary conditions yield varied dynamics and deposits. To predict motion of diverse grain-fluid masses from initiation to deposition, we develop a depth-averaged, threedimensional mathematical model that accounts explicitly for solid- and fluid-phase forces and interactions. Model input consists of initial conditions, path topography, basal and internal friction angles of solid grains, viscosity of pore fluid, mixture density, and a mixture diffusivity that controls pore pressure dissipation. Because these properties are constrained by independent measurements, the model requires little or no calibration and yields readily testable predictions. In the limit of vanishing Coulomb friction due to persistent high fluid pressure the model equations describe motion of viscous floods, and in the limit of vanishing fluid stress they describe one-phase granular avalanches. Analysis of intermediate phenomena such as debris flows and pyroclastic flows requires use of the full mixture equations, which can simulate interaction of high-friction surge fronts with more-fluid debris that follows. Special numerical methods (described in the companion paper) are necessary to solve the full equations, but exact analytical solutions of simplified equations provide critical insight. An analytical solution for translational motion of a Coulomb mixture accelerating from rest and descending a uniform slope demonstrates that steady flow can occur only asymptotically. A solution for the asymptotic limit of steady flow in a rectangular channel explains why shear may be concentrated in narrow marginal bands that border a plug of translating debris. Solutions for static equilibrium of source areas describe conditions of incipient slope instability, and other static solutions show that nonuniform distributions of pore fluid pressure produce bluntly tapered vertical profiles at the margins of deposits. Simplified equations and solutions may apply in additional situations identified by a scaling analysis. Assessment of dimensionless scaling parameters also reveals that miniature laboratory experiments poorly simulate the dynamics of full-scale flows in which fluid effects are significant. Therefore large geophysical flows can exhibit dynamics not evident at laboratory scales.
NASA Astrophysics Data System (ADS)
Iverson, Richard M.; Denlinger, Roger P.
2001-01-01
Rock avalanches, debris flows, and related phenomena consist of grain-fluid mixtures that move across three-dimensional terrain. In all these phenomena the same basic forces govern motion, but differing mixture compositions, initial conditions, and boundary conditions yield varied dynamics and deposits. To predict motion of diverse grain-fluid masses from initiation to deposition, we develop a depth-averaged, three-dimensional mathematical model that accounts explicitly for solid- and fluid-phase forces and interactions. Model input consists of initial conditions, path topography, basal and internal friction angles of solid grains, viscosity of pore fluid, mixture density, and a mixture diffusivity that controls pore pressure dissipation. Because these properties are constrained by independent measurements, the model requires little or no calibration and yields readily testable predictions. In the limit of vanishing Coulomb friction due to persistent high fluid pressure the model equations describe motion of viscous floods, and in the limit of vanishing fluid stress they describe one-phase granular avalanches. Analysis of intermediate phenomena such as debris flows and pyroclastic flows requires use of the full mixture equations, which can simulate interaction of high-friction surge fronts with more-fluid debris that follows. Special numerical methods (described in the companion paper) are necessary to solve the full equations, but exact analytical solutions of simplified equations provide critical insight. An analytical solution for translational motion of a Coulomb mixture accelerating from rest and descending a uniform slope demonstrates that steady flow can occur only asymptotically. A solution for the asymptotic limit of steady flow in a rectangular channel explains why shear may be concentrated in narrow marginal bands that border a plug of translating debris. Solutions for static equilibrium of source areas describe conditions of incipient slope instability, and other static solutions show that nonuniform distributions of pore fluid pressure produce bluntly tapered vertical profiles at the margins of deposits. Simplified equations and solutions may apply in additional situations identified by a scaling analysis. Assessment of dimensionless scaling parameters also reveals that miniature laboratory experiments poorly simulate the dynamics of full-scale flows in which fluid effects are significant. Therefore large geophysical flows can exhibit dynamics not evident at laboratory scales.
Fluid Transient Analysis during Priming of Evacuated Line
NASA Technical Reports Server (NTRS)
Bandyopadhyay, Alak; Majumdar, Alok K.; Holt, Kimberley
2017-01-01
Water hammer analysis in pipe lines, in particularly during priming into evacuated lines is important for the design of spacecraft and other in-space application. In the current study, a finite volume network flow analysis code is used for modeling three different geometrical configurations: the first two being straight pipe, one with atmospheric air and other with evacuated line, and the third case is a representation of a complex flow network system. The numerical results show very good agreement qualitatively and quantitatively with measured data available in the literature. The peak pressure and impact time in case of straight pipe priming in evacuated line shows excellent agreement.
Inferences from Microfractures and Geochemistry in Dynamic Shale-CO2 Packed Bed Experiments
NASA Astrophysics Data System (ADS)
Radonjic, M.; Olabode, A.
2016-12-01
Subsurface storage of large volumes of carbondioxide (CO2) is expected to have long term rock-fluid interactions impact on reservoir and seal rocks properties. Caprocks, particularly sedimentary types, are the ultimate hydraulic barrier in carbon sequestration. The mineralogical components of sedimentary rocks are geochemically active under enormous earth stresses, which generate high pressure and temperature conditions. It has been postulated that in-situ mineralization can lead to flow impedance in natural fractures in the presence of favorable geochemical and thermodynamic conditions. This experimental modelling research investigated the impact of in-situ geochemical precipitation on conductivity of fractures. Geochemical analyses were performed on four different samples of shale rocks, effluent fluids and recovered precipitates both before and after CO2-brine flooding of crushed shale rocks at moderately high temperature and pressure conditions. The results showed that most significant diagenetic changes in shale rocks after flooding with CO2-brine, reflected in the effluent fluid with predominantly calcium based minerals dissolving and precipitating under experimental conditions. Major and trace elements in the effluent (using ICP-OES analysis) indicated that multiple geochemical reactions are occurring with almost all of the constituent minerals participating. The geochemical composition of precipitates recovered after the experiments showed diagenetic carbonates and opal as the main constituents. The bulk rock showed little changes in composition except for sharper and more refined peaks on XRD analysis, suggesting that a significant portion of the amorphous content of the rocks have been removed via dissolution by the slightly acid CO2-brine fluid that was injected. Micro-indentation results captured slight reduction in the hardness of the shale rocks and this reduction appeared dependent on diagenetic quartz content. It can be inferred that convective reactive transport of dissolved minerals are involved in nanoscale precipitation-dissolution processes in shale. This reactive transport of dissolved minerals can occlude micro-fracture flow paths, thereby improving shale caprock seal integrity with respect to leakage risk under CO2 sequestration conditions.
Fluid flow dynamics in MAS systems
NASA Astrophysics Data System (ADS)
Wilhelm, Dirk; Purea, Armin; Engelke, Frank
2015-08-01
The turbine system and the radial bearing of a high performance magic angle spinning (MAS) probe with 1.3 mm-rotor diameter has been analyzed for spinning rates up to 67 kHz. We focused mainly on the fluid flow properties of the MAS system. Therefore, computational fluid dynamics (CFD) simulations and fluid measurements of the turbine and the radial bearings have been performed. CFD simulation and measurement results of the 1.3 mm-MAS rotor system show relatively low efficiency (about 25%) compared to standard turbo machines outside the realm of MAS. However, in particular, MAS turbines are mainly optimized for speed and stability instead of efficiency. We have compared MAS systems for rotor diameter of 1.3-7 mm converted to dimensionless values with classical turbomachinery systems showing that the operation parameters (rotor diameter, inlet mass flow, spinning rate) are in the favorable range. This dimensionless analysis also supports radial turbines for low speed MAS probes and diagonal turbines for high speed MAS probes. Consequently, a change from Pelton type MAS turbines to diagonal turbines might be worth considering for high speed applications. CFD simulations of the radial bearings have been compared with basic theoretical values proposing considerably smaller frictional loss values. The discrepancies might be due to the simple linear flow profile employed for the theoretical model. Frictional losses generated inside the radial bearings result in undesired heat-up of the rotor. The rotor surface temperature distribution computed by CFD simulations show a large temperature gradient over the rotor.
Farkona, Sofia; Soosaipillai, Antoninus; Filippou, Panagiota; Korbakis, Dimitrios; Serra, Stefano; Rückert, Felix; Diamandis, Eleftherios P; Blasutig, Ivan M
2017-12-01
CUB and zona pellucida-like domain-containing protein 1 (CUZD1) was identified as a pancreas-specific protein and was proposed as a candidate biomarker for pancreatic related disorders. CUZD1 protein levels in tissues and biological fluids have not been extensively examined. The purpose of the present study was to generate specific antibodies targeting CUZD1 to assess CUZD1 expression within tissues and biological fluids. Mouse monoclonal antibodies against CUZD1 were generated and used to perform immunohistochemical analyses and to develop a sensitive and specific enzyme-linked immunosorbent assay (ELISA). CUZD1 protein expression was assessed in various human tissue extracts and biological fluids and in gel filtration chromatography-derived fractions of pancreatic tissue extract, pancreatic juice and recombinant protein. Immunohistochemical staining of CUZD1 in pancreatic tissue showed that the protein is localized to the acinar cells and the lumen of the acini. Western blot analysis detected the protein in pancreatic tissue extract and pancreatic juice. The newly developed ELISA measured CUZD1 in high levels in pancreas and in much lower but detectable levels in several other tissues. In the biological fluids tested, CUZD1 expression was detected exclusively in pancreatic juice. The analysis of gel filtration chromatography-derived fractions of pancreatic tissue extract, pancreatic juice and recombinant CUZD1 suggested that the protein exists in high molecular weight protein complexes. This study describes the development of tools targeting CUZD1 protein, its tissue expression pattern and levels in several biological fluids. These new tools will facilitate future investigations aiming to delineate the role of CUZD1 in physiology and pathobiology. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
Value of fluid fertilizer in bio-energy production
USDA-ARS?s Scientific Manuscript database
In field trials, analysis of whole corn plants at V6 and ear leaves at mid-silk showed adequate levels of all macronutrients, which suggests that nutrient management was balanced both for conventional and intensively managed (twin-row) planting scenarios and the amount of stover removed from the fie...
Biernacka, Kinga; Karbowiak, Paweł; Wróbel, Paweł; Charęza, Tomasz; Czopowicz, Michał; Balka, Gyula; Goodell, Christa; Rauh, Rolf; Stadejek, Tomasz
2016-12-01
Recently oral fluid has become a novel sample type for pathogen nucleic acid and antibody detection, as it is easy to obtain with non-invasive procedures. The objective of the study was to analyze porcine reproductive and respiratory syndrome virus (PRRSV) and influenza A virus (IAV) circulation in growing pigs from three Polish production farms, using Real Time PCR and ELISA testing of oral fluid and serum. Oral fluids were collected every 2weeks, in the same 3-4 pens of pigs aged between 5 and 17weeks. Additionally, blood samples were collected every 4weeks from 4 pigs corresponding to the same pens as oral fluid and tested for the presence of PRRSV nucleic acid (pooled by 4) and antibodies. In farm A no PRRSV circulation was detected and only maternal antibodies were present. In farm B and farm C antibodies to PRRSV in serum and oral fluid were detected in most samples. In farm B PRRSV Type 1 was detected in 80.9% of oral fluid samples and in 58.3% of serum pools, and in farm C in 92.8% of oral fluid samples and 75% serum pools. Striking differences were observed between different pens in PRRSV detection patterns. In farms B and C ORF5 sequence analysis showed the presence of wild type strains which were about 84-85% identical to the modified live vaccine used. In all three farms two waves of IAV shedding with oral fluid were detected, in weaners and fatteners. Copyright © 2016 Elsevier Ltd. All rights reserved.
Infusion fluids contain harmful glucose degradation products
Bryland, Anna; Broman, Marcus; Erixon, Martin; Klarin, Bengt; Lindén, Torbjörn; Friberg, Hans; Wieslander, Anders; Kjellstrand, Per; Ronco, Claudio; Carlsson, Ola
2010-01-01
Purpose Glucose degradation products (GDPs) are precursors of advanced glycation end products (AGEs) that cause cellular damage and inflammation. We examined the content of GDPs in commercially available glucose-containing infusion fluids and investigated whether GDPs are found in patients’ blood. Methods The content of GDPs was examined in infusion fluids by high-performance liquid chromatography (HPLC) analysis. To investigate whether GDPs also are found in patients, we included 11 patients who received glucose fluids (standard group) during and after their surgery and 11 control patients receiving buffered saline (control group). Blood samples were analyzed for GDP content and carboxymethyllysine (CML), as a measure of AGE formation. The influence of heat-sterilized fluids on cell viability and cell function upon infection was investigated. Results All investigated fluids contained high concentrations of GDPs, such as 3-deoxyglucosone (3-DG). Serum concentration of 3-DG increased rapidly by a factor of eight in patients receiving standard therapy. Serum CML levels increased significantly and showed linear correlation with the amount of infused 3-DG. There was no increase in serum 3-DG or CML concentrations in the control group. The concentration of GDPs in most of the tested fluids damaged neutrophils, reducing their cytokine secretion, and inhibited microbial killing. Conclusions These findings indicate that normal standard fluid therapy involves unwanted infusion of GDPs. Reduction of the content of GDPs in commonly used infusion fluids may improve cell function, and possibly also organ function, in intensive-care patients. Electronic supplementary material The online version of this article (doi:10.1007/s00134-010-1873-x) contains supplementary material, which is available to authorized users. PMID:20397009
Magnetic Capture of a Molecular Biomarker from Synovial Fluid in a Rat Model of Knee Osteoarthritis
Yarmola, Elena G.; Shah, Yash; Arnold, David P.; Dobson, Jon; Allen, Kyle D.
2015-01-01
Biomarker development for osteoarthritis (OA) often begins in rodent models, but can be limited by an inability to aspirate synovial fluid from a rodent stifle (similar to the human knee). To address this limitation, we have developed a magnetic nanoparticle-based technology to collect biomarkers from a rodent stifle, termed magnetic capture. Using a common OA biomarker - the c-terminus telopeptide of type II collagen (CTXII) - magnetic capture was optimized in vitro using bovine synovial fluid and then tested in a rat model of knee OA. Anti-CTXII antibodies were conjugated to the surface of superparamagnetic iron oxide-containing polymeric particles. Using these anti-CTXII particles, magnetic capture was able to estimate the level of CTXII in 25 µL aliquots of bovine synovial fluid; and under controlled conditions, this estimate was unaffected by synovial fluid viscosity. Following in vitro testing, anti-CTXII particles were tested in a rat monoiodoacetate model of knee OA. CTXII could be magnetically captured from a rodent stifle without the need to aspirate fluid and showed 10 fold changes in CTXII levels from OA-affected joints relative to contralateral control joints. Combined, these data demonstrate the ability and sensitivity of magnetic capture for post-mortem analysis of OA biomarkers in the rat. PMID:26136062
Magnetic Capture of a Molecular Biomarker from Synovial Fluid in a Rat Model of Knee Osteoarthritis.
Yarmola, Elena G; Shah, Yash; Arnold, David P; Dobson, Jon; Allen, Kyle D
2016-04-01
Biomarker development for osteoarthritis (OA) often begins in rodent models, but can be limited by an inability to aspirate synovial fluid from a rodent stifle (similar to the human knee). To address this limitation, we have developed a magnetic nanoparticle-based technology to collect biomarkers from a rodent stifle, termed magnetic capture. Using a common OA biomarker--the c-terminus telopeptide of type II collagen (CTXII)--magnetic capture was optimized in vitro using bovine synovial fluid and then tested in a rat model of knee OA. Anti-CTXII antibodies were conjugated to the surface of superparamagnetic iron oxide-containing polymeric particles. Using these anti-CTXII particles, magnetic capture was able to estimate the level of CTXII in 25 μL aliquots of bovine synovial fluid; and under controlled conditions, this estimate was unaffected by synovial fluid viscosity. Following in vitro testing, anti-CTXII particles were tested in a rat monoiodoacetate model of knee OA. CTXII could be magnetically captured from a rodent stifle without the need to aspirate fluid and showed tenfold changes in CTXII levels from OA-affected joints relative to contralateral control joints. Combined, these data demonstrate the ability and sensitivity of magnetic capture for post-mortem analysis of OA biomarkers in the rat.
Kumagai, H.; Chouet, B.A.
1999-01-01
Long-period (LP) events have been widely observed in relation to magmatic and hydrothermal activities in volcanic areas. LP waveforms characterized by their harmonic signature have been interpreted as oscillations of a fluid-filled resonator, and mixtures of liquid and gas in the form of bubbly liquids have been mainly assumed for the fluid. To investigate the characteristic properties of the resonator system, we analyse waveforms of LP events observed at four different volcanoes in Hawaii, Alaska, Colombia and Japan using a newly developed spectral method. This method allows an estimation of the complex frequencies of decaying sinusoids based on an autoregressive model. The results of our analysis show a wide variety of Q factors, ranging from tens to several hundred. We compare these complex frequencies with those predicted by the fluid-filled crack model for various mixtures of liquid, gas and ash. Although the oscillations of LP events with Q smaller than 50 can be explained by various combinations of liquids and gases, we find that ash-laden gases are required to explain long-lasting oscillations with Q larger than 100. The complex frequencies of LP events yield useful information on the types of fluids. Temporal and spatial variations of the complex frequencies can be used as probes of fluid composition beneath volcanoes.
Seo, Jong-Geun; Kang, Kyunghun; Jung, Ji-Young; Park, Sung-Pa; Lee, Maan-Gee; Lee, Ho-Won
2014-12-01
In this pilot study, we analyzed relationships between quantitative EEG measurements and clinical parameters in idiopathic normal pressure hydrocephalus patients, along with differences in these quantitative EEG markers between cerebrospinal fluid tap test responders and nonresponders. Twenty-six idiopathic normal pressure hydrocephalus patients (9 cerebrospinal fluid tap test responders and 17 cerebrospinal fluid tap test nonresponders) constituted the final group for analysis. The resting EEG was recorded and relative powers were computed for seven frequency bands. Cerebrospinal fluid tap test nonresponders, when compared with responders, showed a statistically significant increase in alpha2 band power at the right frontal and centrotemporal regions. Higher delta2 band powers in the frontal, central, parietal, and occipital regions and lower alpha1 band powers in the right temporal region significantly correlated with poorer cognitive performance. Higher theta1 band powers in the left parietal and occipital regions significantly correlated with gait dysfunction. And higher delta1 band powers in the right frontal regions significantly correlated with urinary disturbance. Our findings may encourage further research using quantitative EEG in patients with ventriculomegaly as a potential electrophysiological marker for predicting cerebrospinal fluid tap test responders. This study additionally suggests that the delta, theta, and alpha bands are statistically correlated with the severity of symptoms in idiopathic normal pressure hydrocephalus patients.
Zhou, Jiachen; Smith, Scott; Giovannucci, Edward; Michaud, Dominique S.
2012-01-01
It has been hypothesized that high fluid intake may reduce contact time between carcinogens and bladder epithelium and consequently reduce carcinogenesis. Epidemiologic studies examining fluid intake and bladder cancer have been extremely inconsistent, ranging from strong inverse to strong positive associations. The authors reevaluated the association between fluid intake and bladder cancer among 47,909 participants in the prospective Health Professionals Follow-up Study over a period of 22 years. During follow-up (1986–2008), 823 incident bladder cancer cases were diagnosed. Information on fluid intake was collected by using the food frequency questionnaire at baseline and every 4 years thereafter. Cox proportional hazard regression analysis was used to adjust for risk factors for bladder cancer. Total fluid intake was inversely associated with bladder cancer when the analysis was based on the baseline diet (relative risk = 0.76, 95% confidence interval: 0.60, 0.97), comparing the highest total daily fluid intake quintile (>2,531 mL/day) with the lowest quintile (<1,290 mL/day) (Ptrend = 0.01). However, no association was detected when the analysis was based on recent diet or cumulative updated diet. The updated analysis for total fluid intake and bladder cancer was attenuated compared with the original findings from the first 10-year follow-up period. PMID:22355034
2013-08-01
earplug and earmuff showing HPD simulator elements for energy flow paths...unprotected or protected ear traditionally start with analysis of energy flow through schematic diagrams based on electroacoustic (EA) analogies between...Schröter, 1983; Schröter and Pösselt, 1986; Shaw and Thiessen, 1958, 1962; Zwislocki, 1957). The analysis method tracks energy flow through fluid and
NASA Astrophysics Data System (ADS)
Pons, A.; David, C.; Fortin, J.; Stanchits, S.; MenéNdez, B.; Mengus, J. M.
2011-03-01
To investigate the effect of compaction bands (CB) on fluid flow, capillary imbibition experiments were performed on Bentheim sandstone specimens (initial porosity ˜22.7%) using an industrial X-ray scanner. We used a three-step procedure combining (1) X-ray imaging of capillary rise in intact Bentheim sandstone, (2) formation of compaction band under triaxial tests, at 185 MPa effective pressure, with acoustic emissions (AE) recording for localization of the induced damage, and (3) again X-ray imaging of capillary rise in the damaged specimens after the unloading. The experiments were performed on intact cylindrical specimens, 5 cm in diameter and 10.5 cm in length, cored in different orientations (parallel or perpendicular to the bedding). Analysis of the images obtained at different stages of the capillary imbibition shows that the presence of CB slows down the imbibition and disturbs the geometry of water flow. In addition, we show that the CB geometry derived from X-ray density maps analysis is well correlated with the AE location obtained during triaxial test. The analysis of the water front kinetics was conducted using a simple theoretical model, which allowed us to confirm that compaction bands act as a barrier for fluid flow, not fully impermeable though. We estimate a contrast of permeability of a factor of ˜3 between the host rock and the compaction bands. This estimation of the permeability inside the compaction band is consistent with estimations done in similar sandstones from field studies but differs by 1 order of magnitude from estimations from previous laboratory measurements.
Periprosthetic joint infections: a clinical practice algorithm.
Volpe, Luigi; Indelli, Pier Francesco; Latella, Leonardo; Poli, Paolo; Yakupoglu, Jale; Marcucci, Massimiliano
2014-01-01
periprosthetic joint infection (PJI) accounts for 25% of failed total knee arthroplasties (TKAs) and 15% of failed total hip arthroplasties (THAs). The purpose of the present study was to design a multidisciplinary diagnostic algorithm to detect a PJI as cause of a painful TKA or THA. from April 2010 to October 2012, 111 patients with suspected PJI were evaluated. The study group comprised 75 females and 36 males with an average age of 71 years (range, 48 to 94 years). Eighty-four patients had a painful THA, while 27 reported a painful TKA. The stepwise diagnostic algorithm, applied in all the patients, included: measurement of serum C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR) levels; imaging studies, including standard radiological examination, standard technetium-99m-methylene diphosphonate (MDP) bone scan (if positive, confirmation by LeukoScan was obtained); and joint aspiration with analysis of synovial fluid. following application of the stepwise diagnostic algorithm, 24 out of our 111 screened patients were classified as having a suspected PJI (21.7%). CRP and ESR levels were negative in 84 and positive in 17 cases; 93.7% of the patients had a positive technetium-labeled bone scan, and 23% a positive LeukoScan. Preoperative synovial fluid analysis was positive in 13.5%; analysis of synovial fluid obtained by preoperative aspiration showed a leucocyte count of > 3000 cells μ/l in 52% of the patients. the present study showed that the diagnosis of PJI requires the application of a multimodal diagnostic protocol in order to avoid complications related to surgical revision of a misdiagnosed "silent" PJI. Level IV, therapeutic case series.
Convective and global stability analysis of a Mach 5.8 boundary layer grazing a compliant surface
NASA Astrophysics Data System (ADS)
Dettenrieder, Fabian; Bodony, Daniel
2016-11-01
Boundary layer transition on high-speed vehicles is expected to be affected by unsteady surface compliance. The stability properties of a Mach 5.8 zero-pressure-gradient laminar boundary layer grazing a nominally-flat thermo-mechanically compliant panel is considered. The linearized compressible Navier-Stokes equations describe small amplitude disturbances in the fluid while the panel deformations are described by the Kirchhoff-Love plate equation and its thermal state by the transient heat equation. Compatibility conditions that couple disturbances in the fluid to those in the solid yield simple algebraic and robin boundary conditions for the velocity and thermal states, respectively. A local convective stability analysis shows that the panel can modify both the first and second Mack modes when, for metallic-like panels, the panel thickness exceeds the lengthscale δ99 Rex- 0 . 5 . A global stability analysis, which permits finite panel lengths with clamped-clamped boundary conditions, shows a rich eigenvalue spectrum with several branches. Unstable modes are found with streamwise-growing panel deformations leading to Mach wave-type radiation. Stable global modes are also found and have distinctly different panel modes but similar radiation patterns. Air Force Office of Scientific Research.
Neptune Aerocapture Systems Analysis
NASA Technical Reports Server (NTRS)
Lockwood, Mary Kae
2004-01-01
A Neptune Aerocapture Systems Analysis is completed to determine the feasibility, benefit and risk of an aeroshell aerocapture system for Neptune and to identify technology gaps and technology performance goals. The high fidelity systems analysis is completed by a five center NASA team and includes the following disciplines and analyses: science; mission design; aeroshell configuration screening and definition; interplanetary navigation analyses; atmosphere modeling; computational fluid dynamics for aerodynamic performance and database definition; initial stability analyses; guidance development; atmospheric flight simulation; computational fluid dynamics and radiation analyses for aeroheating environment definition; thermal protection system design, concepts and sizing; mass properties; structures; spacecraft design and packaging; and mass sensitivities. Results show that aerocapture can deliver 1.4 times more mass to Neptune orbit than an all-propulsive system for the same launch vehicle. In addition aerocapture results in a 3-4 year reduction in trip time compared to all-propulsive systems. Aerocapture is feasible and performance is adequate for the Neptune aerocapture mission. Monte Carlo simulation results show 100% successful capture for all cases including conservative assumptions on atmosphere and navigation. Enabling technologies for this mission include TPS manufacturing; and aerothermodynamic methods and validation for determining coupled 3-D convection, radiation and ablation aeroheating rates and loads, and the effects on surface recession.
Shock-wave-like structures induced by an exothermic neutralization reaction in miscible fluids
NASA Astrophysics Data System (ADS)
Bratsun, Dmitry; Mizev, Alexey; Mosheva, Elena; Kostarev, Konstantin
2017-11-01
We report shock-wave-like structures that are strikingly different from previously observed fingering instabilities, which occur in a two-layer system of miscible fluids reacting by a second-order reaction A +B →S in a vertical Hele-Shaw cell. While the traditional analysis expects the occurrence of a diffusion-controlled convection, we show both experimentally and theoretically that the exothermic neutralization reaction can also trigger a wave with a perfectly planar front and nearly discontinuous change in density across the front. This wave propagates fast compared with the characteristic diffusion times and separates the motionless fluid and the area with anomalously intense convective mixing. We explain its mechanism and introduce a new dimensionless parameter, which allows to predict the appearance of such a pattern in other systems. Moreover, we show that our governing equations, taken in the inviscid limit, are formally analogous to well-known shallow-water equations and adiabatic gas flow equations. Based on this analogy, we define the critical velocity for the onset of the shock wave which is found to be in the perfect agreement with the experiments.
Zhu, Zhenzhou; Zhang, Rui; Zhan, Shaoying; He, Jingren; Barba, Francisco J; Cravotto, Giancarlo; Wu, Weizhong; Li, Shuyi
2017-10-22
The potential effects of three modern extraction technologies (cold-pressing, microwaves and subcritical fluids) on the recovery of oil from Chaenomelessinensis (Thouin) Koehne seeds have been evaluated and compared to those of conventional chemical extraction methods (Soxhlet extraction). This oil contains unsaturated fatty acids and polyphenols. Subcritical fluid extraction (SbFE) provided the highest yield-25.79 g oil/100 g dry seeds-of the three methods. Moreover, the fatty acid composition in the oil samples was analysed using gas chromatography-mass spectrometry. This analysis showed that the percentages of monounsaturated (46.61%), and polyunsaturated fatty acids (42.14%), after applying SbFE were higher than those obtained by Soxhlet, cold-pressing or microwave-assisted extraction. In addition, the oil obtained under optimized SbFE conditions (35 min extraction at 35 °C with four extraction cycles), showed significant polyphenol (527.36 mg GAE/kg oil), and flavonoid (15.32 mg RE/kg oil), content, had a good appearance and was of high quality.
Prediction of gravity-driven fingering in porous media
NASA Astrophysics Data System (ADS)
Beljadid, Abdelaziz; Cueto-Felgueroso, Luis; Juanes, Ruben
2017-11-01
Gravity-driven displacement of one fluid by another in porous media is often subject to a hydrodynamic instability, whereby fluid invasion takes the form of preferential flow paths-examples include secondary oil migration in reservoir rocks, and infiltration of rainfall water in dry soil. Here, we develop a continuum model of gravity-driven two-phase flow in porous media within the phase-field framework (Cueto-Felgueroso and Juanes, 2008). We employ pore-scale physics arguments to design the free energy of the system, which notably includes a nonlinear formulation of the high-order (square-gradient) term based on equilibrium considerations in the direction orthogonal to gravity. This nonlocal term plays the role of a macroscopic surface tension, which exhibits a strong link with capillary pressure. Our theoretical analysis shows that the proposed model enforces that fluid saturations are bounded between 0 and 1 by construction, therefore overcoming a serious limitation of previous models. Our numerical simulations show that the proposed model also resolves the pinning behavior at the base of the infiltration front, and the asymmetric behavior of the fingers at material interfaces observed experimentally.
Godreuil, Sylvain; Didelot, Marie-Noëlle; Perez, Colette; Leflèche, Anne; Boiron, Patrick; Reynes, Jacques; Laurent, Frédéric; Jean-Pierre, Hélène; Marchandin, Hélène
2003-01-01
Nocardia veterana is a recently characterized species within the genus Nocardia, and only three human clinical isolates have been reported for this species. We describe a case of ascitic fluid infection in an immunocompromised patient due to N. veterana. To our knowledge, this is the first report of a Nocardia sp. strain from ascitic fluid and the fourth report of N. veterana isolated from human samples. Chemotaxonomic methods showed the strain to belong to the genus Nocardia, and identification to the species level was done by 16S ribosomal DNA gene sequencing. The antibiotic susceptibility profile of N. veterana is reported here for the second time. The strain was deposited in the Collection of the Pasteur Institute and in the Culture Collection of the University of Göteborg (CIP 107497 and CCUG 46576). The corresponding 16S ribosomal DNA gene sequence is available from the GenBank database under accession number AY149599. A phylogenetic analysis was conducted and showed that N. veterana was most closely related to the recently characterized species Nocardia africana rather than to Nocardia vaccinii, as previously reported. PMID:12791927
Dark degeneracy and interacting cosmic components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aviles, Alejandro; Cervantes-Cota, Jorge L.
2011-10-15
We study some properties of the dark degeneracy, which is the fact that what we measure in gravitational experiments is the energy-momentum tensor of the total dark sector, and any split into components (as in dark matter and dark energy) is arbitrary. In fact, just one dark fluid is necessary to obtain exactly the same cosmological and astrophysical phenomenology as the {Lambda}CDM model. We work explicitly the first-order perturbation theory and show that beyond the linear order the dark degeneracy is preserved under some general assumptions. Then we construct the dark fluid from a collection of interacting fluids. Finally, wemore » try to break the degeneracy with a general class of couplings to baryonic matter. Nonetheless, we show that these interactions can also be understood in the context of the {Lambda}CDM model as between dark matter and baryons. For this last investigation we choose two independent parametrizations for the interactions, one inspired by electromagnetism and the other by chameleon theories. Then, we constrain them with a joint analysis of CMB and supernovae observational data.« less
Slip analysis of squeezing flow using doubly stratified fluid
NASA Astrophysics Data System (ADS)
Ahmad, S.; Farooq, M.; Javed, M.; Anjum, Aisha
2018-06-01
The non-isothermal flow is modeled and explored for squeezed fluid. The influence of velocity, thermal and solutal slip effects on transport features of squeezed fluid are analyzed through Darcy porous channel when fluid is moving due to squeezing of upper plate towards the stretchable lower plate. Dual stratification effects are illustrated in transport equations. A similarity analysis is performed and reduced governing flow equations are solved using moderated and an efficient convergent approach i.e. Homotopic technique. The significant effects of physical emerging parameters on flow velocity, temperature and fluid concentration are reporting through various plots. Graphical explanations for drag force, Nusselt and Sherwood numbers are stated and examined. The results reveal that minimum velocity field occurs near the plate, whereas it increases far away from the plate for strong velocity slip parameter. Furthermore, temperature and fluid concentration significantly decreases with increased slip effects. The current analysis is applicable in some advanced technological processes and industrial fluid mechanics.
Monitoring an EGS injection at Newberry Volcano using Magnetotelluric dimensionality analysis
NASA Astrophysics Data System (ADS)
Bowles-martinez, E.; Schultz, A.; Rose, K.; Urquhart, S.
2016-12-01
The sensitivity of magnetotelluric (MT) data to the presence of electrically conductive subsurface features makes it applicable for determining the extent of injected fluids in enhanced geothermal systems (EGS). We use MT to monitor fluid injection during tests of a proposed EGS site at Newberry Volcano in Central Oregon, USA. Newberry is a large shield volcano located where fault systems of the northern Basin and Range meet the Cascade Arc and the high lava plains. Its strong potential for geothermal energy has made it a target for energy exploration for over 40 years. MT measurements were made before, during, and after an EGS stimulation in 2014 in an effort to detect subsurface pathways taken by fluids that are attributable to stimulation. We begin by creating a baseline model from inverting over 200 wideband MT stations located in the western half of the volcano. This model is constrained by well logs, as well as by high resolution gravity and seismic velocity modeling. Our model shows conductive regions associated with the caldera's ring fault, likely showing where hydrothermal fluids or their mineral alteration products are present. However, as this is an EGS study, we are interested in detecting fluid intrusion into hot, dry rock. Therefore, our primary target is a resistive zone on the western flank of Newberry volcano that is interpreted as a series of hot intrusive sequences. Well bottom temperatures in this area have been measured in excess of 300 °C. The stimulation's effect on resistivity is subtle, in part because the injected fluid is fresh groundwater, the injected volume is modest, and the target depth is 2,000-3,000 m below ground level. We found that it is advantageous to look at the impedance tensor data directly to detect injected fluids. Because fluids and their associated change in resistivity are expected to be concentrated around the injection well, the injection will exhibit a highly three-dimensional resistivity structure. Therefore, we examine the impedance tensor for changes in dimensionality to mark the arrival of injected fluids. We then present a method of inverting MT data for changes in impedance rather than for resistivity.
Kimura, Hiroyuki; Ishibashi, Jun-Ichiro; Masuda, Harue; Kato, Kenji; Hanada, Satoshi
2007-04-01
International drilling projects for the study of microbial communities in the deep-subsurface hot biosphere have been expanded. Core samples obtained by deep drilling are commonly contaminated with mesophilic microorganisms in the drilling fluid, making it difficult to examine the microbial community by 16S rRNA gene clone library analysis. To eliminate mesophilic organism contamination, we previously developed a new method (selective phylogenetic analysis [SePA]) based on the strong correlation between the guanine-plus-cytosine (G+C) contents of the 16S rRNA genes and the optimal growth temperatures of prokaryotes, and we verified the method's effectiveness (H. Kimura, M. Sugihara, K. Kato, and S. Hanada, Appl. Environ. Microbiol. 72:21-27, 2006). In the present study we ascertained SePA's ability to eliminate contamination by archaeal rRNA genes, using deep-sea hydrothermal fluid (117 degrees C) and surface seawater (29.9 degrees C) as substitutes for deep-subsurface geothermal samples and drilling fluid, respectively. Archaeal 16S rRNA gene fragments, PCR amplified from the surface seawater, were denatured at 82 degrees C and completely digested with exonuclease I (Exo I), while gene fragments from the deep-sea hydrothermal fluid remained intact after denaturation at 84 degrees C because of their high G+C contents. An examination using mixtures of DNAs from the two environmental samples showed that denaturation at 84 degrees C and digestion with Exo I completely eliminated archaeal 16S rRNA genes from the surface seawater. Our method was quite useful for culture-independent community analysis of hyperthermophilic archaea in core samples recovered from deep-subsurface geothermal environments.
Kamataki, Akihisa; Ishida, Mutsuko; Komagamine, Masataka; Yoshida, Masaaki; Ando, Takanobu; Sawai, Takashi
2016-04-01
Rheumatoid arthritis (RA) is a chronic inflammatory disease. Most RA patients develop cartilage and bone destruction, and various proteinases are involved in the destruction of extracellular matrix of cartilage and bone. The aim of this study is to evaluate the utility of our newly developed method to measure total gelatinolytic activity. We adopted this method for measurement in synovial fluid from RA patients treated by the anti-rheumatic drug etanercept (ETN), a recombinant human soluble tumor necrosis factor receptor fusion protein, and compared the findings with clinical and laboratory data. Enzymatic activity of synovial fluid was analyzed by zymography using gelatin-coated film, and compared with the index of Disease Activity Score of 28 joints - C-reactive protein (DAS28-CRP), CRP and matrix metalloproteinase (MMP)-3 level before and after ETN therapy. Synovial fluids of 19 patients were collected before and after administration of ETN therapy. In nine of 19 patients, who showed a decrease in gelatin-degrading activity in synovial fluid, the index of DAS28-CRP (4.85-2.85, ΔDAS = -2.00) and CRP (3.30-0.94 mg/dL, ΔCRP = -2.36) was alleviated after ETN therapy, while cases with no change or an increase in gelatin-degrading activity showed a modest improvement in clinical data: DAS28-CRP (4.23-3.38, ΔDAS = -0.85) and CRP (1.70-0.74 mg/dL, ΔCRP = -0.96). Our newly developed method for measurement of gelatin-degrading activity in synovial fluid from RA patients is highly practicable and useful for predicting the effect of ETN therapy. © 2013 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.
Non-Newtonian Liquid Flow through Small Diameter Piping Components: CFD Analysis
NASA Astrophysics Data System (ADS)
Bandyopadhyay, Tarun Kanti; Das, Sudip Kumar
2016-10-01
Computational Fluid Dynamics (CFD) analysis have been carried out to evaluate the frictional pressure drop across the horizontal pipeline and different piping components, like elbows, orifices, gate and globe valves for non-Newtonian liquid through 0.0127 m pipe line. The mesh generation is done using GAMBIT 6.3 and FLUENT 6.3 is used for CFD analysis. The CFD results are verified with our earlier published experimental data. The CFD results show the very good agreement with the experimental values.
Wavelet analysis of polarization maps of polycrystalline biological fluids networks
NASA Astrophysics Data System (ADS)
Ushenko, Y. A.
2011-12-01
The optical model of human joints synovial fluid is proposed. The statistic (statistic moments), correlation (autocorrelation function) and self-similar (Log-Log dependencies of power spectrum) structure of polarization two-dimensional distributions (polarization maps) of synovial fluid has been analyzed. It has been shown that differentiation of polarization maps of joint synovial fluid with different physiological state samples is expected of scale-discriminative analysis. To mark out of small-scale domain structure of synovial fluid polarization maps, the wavelet analysis has been used. The set of parameters, which characterize statistic, correlation and self-similar structure of wavelet coefficients' distributions of different scales of polarization domains for diagnostics and differentiation of polycrystalline network transformation connected with the pathological processes, has been determined.
Xu, Chang; Zhang, Chao; Wang, Xiao-Long; Liu, Tong-Zu; Zeng, Xian-Tao; Li, Shen; Duan, Xiao-Wen
2015-07-01
Epidemiologic studies have suggested that daily fluid intake that achieves at least 2.5 L of urine output per day is protective against kidney stones. However, the precise quantitative nature of the association between fluid intake and kidney stone risk, as well as the effect of specific types of fluids on such risk, are not entirely clear.We conducted a systematic review and dose-response meta-analysis to quantitatively assess the association between fluid intake and kidney stone risk. Based on a literature search of the PubMed, Embase, and Cochrane Library databases, 15 relevant studies (10 cohort and 5 case-control studies) were selected for inclusion in the meta-analysis with 9601 cases and 351,081 total participants.In the dose-response meta-analysis, we found that each 500 mL increase in water intake was associated with a significantly reduced risk of kidney stone formation (relative risk (RR) = 0.93; 95% CI: 0.87, 0.98; P < 0.01). Protective associations were also found for an increasing intake of tea (RR = 0.96; 95% CI: 0.93, 0.99; P = 0.02) and alcohol (RR = 0.80, 95% CI: 0.75, 0.85; P < 0.01). A borderline reverse association were observed on coffee intake and risk of kidney stone (RR = 0.88; 95% CI: 0.76, 1.00; P = 0.05). The risk of kidney stones was not significantly related to intake of juice (RR = 1.02, 95% CI: 0.95, 1.10; P = 0.64), soda (RR = 1.03; 95% CI: 0.90, 1.17; P = 0.65), or milk (RR = 0.96; 95% CI: 0.88, 1.03; P = 0.21). Subgroup analysis and sensitivity analyses showed inconsistent results on coffee, alcohol, and milk intake.Increased water intake is associated with a reduced risk of kidney stones; increased consumption of tea and alcohol may reduce kidney stone risk. An average daily water intake was recommended for kidney stone prevention.
Xu, Chang; Zhang, Chao; Wang, Xiao-Long; Liu, Tong-Zu; Zeng, Xian-Tao; Li, Shen; Duan, Xiao-Wen
2015-01-01
Abstract Epidemiologic studies have suggested that daily fluid intake that achieves at least 2.5 L of urine output per day is protective against kidney stones. However, the precise quantitative nature of the association between fluid intake and kidney stone risk, as well as the effect of specific types of fluids on such risk, are not entirely clear. We conducted a systematic review and dose–response meta-analysis to quantitatively assess the association between fluid intake and kidney stone risk. Based on a literature search of the PubMed, Embase, and Cochrane Library databases, 15 relevant studies (10 cohort and 5 case–control studies) were selected for inclusion in the meta-analysis with 9601 cases and 351,081 total participants. In the dose–response meta-analysis, we found that each 500 mL increase in water intake was associated with a significantly reduced risk of kidney stone formation (relative risk (RR) = 0.93; 95% CI: 0.87, 0.98; P < 0.01). Protective associations were also found for an increasing intake of tea (RR = 0.96; 95% CI: 0.93, 0.99; P = 0.02) and alcohol (RR = 0.80, 95% CI: 0.75, 0.85; P < 0.01). A borderline reverse association were observed on coffee intake and risk of kidney stone (RR = 0.88; 95% CI: 0.76, 1.00; P = 0.05). The risk of kidney stones was not significantly related to intake of juice (RR = 1.02, 95% CI: 0.95, 1.10; P = 0.64), soda (RR = 1.03; 95% CI: 0.90, 1.17; P = 0.65), or milk (RR = 0.96; 95% CI: 0.88, 1.03; P = 0.21). Subgroup analysis and sensitivity analyses showed inconsistent results on coffee, alcohol, and milk intake. Increased water intake is associated with a reduced risk of kidney stones; increased consumption of tea and alcohol may reduce kidney stone risk. An average daily water intake was recommended for kidney stone prevention. PMID:26166074
Clinical and technical considerations in the analysis of gingival crevicular fluid.
Wassall, Rebecca R; Preshaw, Philip M
2016-02-01
Despite the technical challenges involved when collecting, processing and analyzing gingival crevicular fluid samples, research using gingival crevicular fluid has, and will continue to play, a fundamental role in expanding our understanding of periodontal pathogenesis and healing outcomes following treatment. A review of the literature, however, clearly demonstrates that there is considerable variation in the methods used for collection, processing and analysis of gingival crevicular fluid samples by different research groups around the world. Inconsistent or inadequate reporting impairs interpretation of results, prevents accurate comparison of data between studies and potentially limits the conclusions that can be made from a larger body of evidence. The precise methods used for collection and analysis of gingival crevicular fluid (including calibration studies required before definitive clinical studies) should be reported in detail, either in the methods section of published papers or as an online supplementary file, so that other researchers may reproduce the methodology. Only with clear and transparent reporting will the full impact of future gingival crevicular fluid research be realized. This paper discusses the complexities of gingival crevicular fluid collection and analysis and provides guidance to researchers working in this field. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
A refractometry-based glucose analysis of body fluids.
Zirk, Kai; Poetzschke, Harald
2007-05-01
In principle, refractometry appears to be a suitable method for the measurement of glucose concentrations in body fluids (such as blood and the intercellular fluid), even though the refractive index of the measured samples, as an additive property, is not specific. But, if certain conditions are fulfilled, the glucose content can be calculated using the refractive index in combination with values from a further measurement. This study describes the determination of the glucose content using refractometry in human blood serum derivates, which were selected - due to their ready availability - to be used as a model for interstitial fluid. Refractometry of body fluids requires the elimination of disturbing components from the measurement sample. First of all, a homogenous fluid (i.e. consisting of one phase) is required, so that all cells and components in suspension need to be separated out. Furthermore, certain dissolved macromolecular components which are known to disturb the measurement process must also be removed. In human serum samples which had been ultrafiltrated with a range of ultrafilters of different pore sizes, a comparative evaluation showed that only ultrafiltration through a filter with a separation limit of between 3 and 30kDa resulted in maximal reduction of the refractive index (compared to native serum), whereas ultrafilters with greater separation limits did not. The total content of osmotically active solutes (the tonicity) also exerts a clear influence. However, exemplary measurements in blood plasma fluid from one volunteer showed that the electrical conductivity is (without an additive component) directly proportional to the osmolality: physiological changes in the state of body hydration (hyperhydration and dehydration) do not lead to any considerable changes in the relation between ionised and uncharged solute particles, but instead result in a sufficiently clear dilution or concentration of the blood fluid's low molecular components. This finding allows the use of the--technically easy to measure--electrical conductivity as a measure for the tonicity of the measurement samples. Using measurements of these two parameters--refractive index and electrical conductivity--in blood serum obtained from a healthy volunteer, a two-dimensional calibration function (calibration matrix) for the assessment of the glucose content of ultrafiltrated human blood serum was constructed, and the measurement of blood glucose levels in non-diabetic (four females and four males) volunteers in comparison to a reference method was evaluated showing (as a proof of concept) a linear association. Assessment of the inaccuracy of these measurements made with the described measuring devices and methods showed a deviation from the reference values of less than 10%. An estimation of the maximum possible error showed relative deviations (maximum measurement uncertainties) of up to 20%.
Linear Instability Analysis of non-uniform Bubbly Mixing layer with Two-Fluid model
NASA Astrophysics Data System (ADS)
Sharma, Subash; Chetty, Krishna; Lopez de Bertodano, Martin
We examine the inviscid instability of a non-uniform adiabatic bubbly shear layer with a Two-Fluid model. The Two-Fluid model is made well-posed with the closure relations for interfacial forces. First, a characteristic analysis is carried out to study the well posedness of the model over range of void fraction with interfacial forces for virtual mass, interfacial drag, interfacial pressure. A dispersion analysis then allow us to obtain growth rate and wavelength. Then, the well-posed two-fluid model is solved using CFD to validate the results obtained with the linear stability analysis. The effect of the void fraction and the distribution profile on stability is analyzed.
NASA Technical Reports Server (NTRS)
Runyan, L. James; Zierten, Thomas A.; Hill, Eugene G.; Addy, Harold E., Jr.
1992-01-01
A wind tunnel investigation of the effect of aircraft ground deicing/anti-icing fluids on the aerodynamic characteristics of a Boeing 737-200ADV airplane was conducted. The test was carried out in the NASA Lewis Icing Research Tunnel. Fluids tested include a Newtonian deicing fluid, three non-Newtonian anti-icing fluids commercially available during or before 1988, and eight new experimental non-Newtonian fluids developed by four fluid manufacturers. The results show that fluids remain on the wind after liftoff and cause a measurable lift loss and drag increase. These effects are dependent on the high-lift configuration and on the temperature. For a configuration with a high-lift leading-edge device, the fluid effect is largest at the maximum lift condition. The fluid aerodynamic effects are related to the magnitude of the fluid surface roughness, particularly in the first 30 percent chord. The experimental fluids show a significant reduction in aerodynamic effects.
Silva, P; Crozier, S; Veidt, M; Pearcy, M J
2005-07-01
A hydrogel intervertebral disc (IVD) model consisting of an inner nucleus core and an outer anulus ring was manufactured from 30 and 35% by weight Poly(vinyl alcohol) hydrogel (PVA-H) concentrations and subjected to axial compression in between saturated porous endplates at 200 N for 11 h, 30 min. Repeat experiments (n=4) on different samples (N=2) show good reproducibility of fluid loss and axial deformation. An axisymmetric nonlinear poroelastic finite element model with variable permeability was developed using commercial finite element software to compare axial deformation and predicted fluid loss with experimental data. The FE predictions indicate differential fluid loss similar to that of biological IVDs, with the nucleus losing more water than the anulus, and there is overall good agreement between experimental and finite element predicted fluid loss. The stress distribution pattern indicates important similarities with the biological IVD that includes stress transference from the nucleus to the anulus upon sustained loading and renders it suitable as a model that can be used in future studies to better understand the role of fluid and stress in biological IVDs.
NASA Astrophysics Data System (ADS)
Babu, C. Rajesh; Kumar, P.; Rajamohan, G.
2017-07-01
Computation of fluid flow and heat transfer in an economizer is simulated by a porous medium approach, with plain tubes having a horizontal in-line arrangement and cross flow arrangement in a coal-fired thermal power plant. The economizer is a thermal mechanical device that captures waste heat from the thermal exhaust flue gasses through heat transfer surfaces to preheat boiler feed water. In order to evaluate the fluid flow and heat transfer on tubes, a numerical analysis on heat transfer performance is carried out on an 110 t/h MCR (Maximum continuous rating) boiler unit. In this study, thermal performance is investigated using the computational fluid dynamics (CFD) simulation using ANSYS FLUENT. The fouling factor ε and the overall heat transfer coefficient ψ are employed to evaluate the fluid flow and heat transfer. The model demands significant computational details for geometric modeling, grid generation, and numerical calculations to evaluate the thermal performance of an economizer. The simulation results show that the overall heat transfer coefficient 37.76 W/(m2K) and economizer coil side pressure drop of 0.2 (kg/cm2) are found to be conformity within the tolerable limits when compared with existing industrial economizer data.
Locomotion of microorganisms near a no-slip boundary in a viscoelastic fluid
NASA Astrophysics Data System (ADS)
Yazdi, Shahrzad; Ardekani, Arezoo M.; Borhan, Ali
2014-10-01
Locomotion of microorganisms plays a vital role in most of their biological processes. In many of these processes, microorganisms are exposed to complex fluids while swimming in confined domains, such as spermatozoa in mucus of mammalian reproduction tracts or bacteria in extracellular polymeric matrices during biofilm formation. Thus, it is important to understand the kinematics of propulsion in a viscoelastic fluid near a no-slip boundary. We use a squirmer model with a time-reversible body motion to analytically investigate the swimming kinematics in an Oldroyd-B fluid near a wall. Analysis of the time-averaged motion of the swimmer shows that both pullers and pushers in a viscoelastic fluid swim towards the no-slip boundary if they are initially located within a small domain of "attraction" in the vicinity of the wall. In contrast, neutral swimmers always move towards the wall regardless of their initial distance from the wall. Outside the domain of attraction, pullers and pushers are both repelled from the no-slip boundary. Time-averaged locomotion is most pronounced at a Deborah number of unity. We examine the swimming trajectories of different types of swimmers as a function of their initial orientation and distance from the no-slip boundary.
Analysis of solar water heater with parabolic dish concentrator and conical absorber
NASA Astrophysics Data System (ADS)
Rajamohan, G.; Kumar, P.; Anwar, M.; Mohanraj, T.
2017-06-01
This research focuses on developing novel technique for a solar water heating system. The novel solar system comprises a parabolic dish concentrator, conical absorber and water heater. In this system, the conical absorber tube directly absorbs solar radiation from the sun and the parabolic dish concentrator reflects the solar radiations towards the conical absorber tube from all directions, therefore both radiations would significantly improve the thermal collector efficiency. The working fluid water is stored at the bottom of the absorber tubes. The absorber tubes get heated and increases the temperature of the working fluid inside of the absorber tube and causes the working fluid to partially evaporate. The partially vaporized working fluid moves in the upward direction due to buoyancy effect and enters the heat exchanger. When fresh water passes through the heat exchanger, temperature of the vapour decreases through heat exchange. This leads to condensation of the vapour and forms liquid phase. The working fluid returns to the bottom of the collector absorber tube by gravity. Hence, this will continue as a cyclic process inside the system. The proposed investigation shows an improvement of collector efficiency, enhanced heat transfer and a quality water heating system.
Inorganic particle analysis of dental impression elastomers.
Carlo, Hugo Lemes; Fonseca, Rodrigo Borges; Soares, Carlos José; Correr, Américo Bortolazzo; Correr-Sobrinho, Lourenço; Sinhoreti, Mário Alexandre Coelho
2010-01-01
The aim of this study was to determine quantitatively and qualitatively the inorganic particle fraction of commercially available dental elastomers. The inorganic volumetric fraction of two addition silicones (Reprosil Putty/Fluid and Flexitime Easy Putty/Fluid), three condensation silicones (Clonage Putty/Fluid, Optosil Confort/Xantopren VL and Silon APS Putty/Fluid), one polyether (Impregum Soft Light Body) and one polysulfide (Permlastic Light Body) was accessed by weighing a previously determined mass of each material in water before and after burning samples at 600 ºC, during 3 h. Unsettled material samples were soaked in acetone and chloroform for removal of the organic portion. The remaining filler particles were sputter-coated with gold evaluation of their morphology and size, under scanning electron microscopy (SEM). Flexitime Easy Putty was the material with the highest results for volumetric particle fraction, while Impregum Soft had the lowest values. Silon 2 APS Fluid presented the lowest mean filler size values, while Clonage Putty had the highest values. SEM micrographs of the inorganic particles showed several morphologies - lathe-cut, spherical, spherical-like, sticks, and sticks mixed to lathe-cut powder. The results of this study revealed differences in particle characteristics among the elastometic materials that could lead to different results when testing mechanical properties.
Bed Erosion Process in Geophysical Viscoplastic Fluid
NASA Astrophysics Data System (ADS)
Luu, L. H.; Philippe, P.; Chambon, G.; Vigneaux, P.; Marly, A.
2017-12-01
The bulk behavior of materials involved in geophysical fluid dynamics such as snow avalanches or debris flows has often been modeled as viscoplastic fluid that starts to flow once its stress state overcomes a critical yield value. This experimental and numerical study proposes to interpret the process of erosion in terms of solid-fluid transition for these complex materials. The experimental setup consists in a closed rectangular channel with a cavity in its base. By means of high-resolution optical velocimetry (PIV), we properly examine the typical velocity profiles of a model elasto-viscoplastic flow (Carbopol) at the vicinity of the solid-fluid interface, separating a yielded flowing layer above from an unyielded dead zone below. In parallel, numerical simulations in this expansion-contraction geometry with Augmented Lagrangian and Finite-Differences methods intend to discuss the possibility to describe the specific flow related to the existence of a dead zone, with a simple Bingham rheology. First results of this comparative analysis show a good numerical ability to capture the main scalings and flow features, such as the non-monotonous evolution of the shear stress in the boundary layer between the central plug zone and the dead zone at the bottom of the cavity.
NASA Astrophysics Data System (ADS)
Marisarla, Soujanya; Ghia, Urmila; "Karman" Ghia, Kirti
2002-11-01
Towards a comprehensive aeroelastic analysis of a joined wing, fluid dynamics and structural analyses are initially performed separately. Steady flow calculations are currently performed using 3-D compressible Navier-Stokes equations. Flow analysis of M6-Onera wing served to validate the software for the fluid dynamics analysis. The complex flow field of the joined wing is analyzed and the prevailing fluid dynamic forces are computed using COBALT software. Currently, these forces are being transferred as fluid loads on the structure. For the structural analysis, several test cases were run considering the wing as a cantilever beam; these served as validation cases. A nonlinear structural analysis of the wing is being performed using ANSYS software to predict the deflections and stresses on the joined wing. Issues related to modeling, and selecting appropriate mesh for the structure were addressed by first performing a linear analysis. The frequencies and mode shapes of the deformed wing are obtained from modal analysis. Both static and dynamic analyses are carried out, and the results obtained are carefully analyzed. Loose coupling between the fluid and structural analyses is currently being examined.
NASA Astrophysics Data System (ADS)
Torres-Verdin, C.
2007-05-01
This paper describes the successful implementation of a new 3D AVA stochastic inversion algorithm to quantitatively integrate pre-stack seismic amplitude data and well logs. The stochastic inversion algorithm is used to characterize flow units of a deepwater reservoir located in the central Gulf of Mexico. Conventional fluid/lithology sensitivity analysis indicates that the shale/sand interface represented by the top of the hydrocarbon-bearing turbidite deposits generates typical Class III AVA responses. On the other hand, layer- dependent Biot-Gassmann analysis shows significant sensitivity of the P-wave velocity and density to fluid substitution. Accordingly, AVA stochastic inversion, which combines the advantages of AVA analysis with those of geostatistical inversion, provided quantitative information about the lateral continuity of the turbidite reservoirs based on the interpretation of inverted acoustic properties (P-velocity, S-velocity, density), and lithotype (sand- shale) distributions. The quantitative use of rock/fluid information through AVA seismic amplitude data, coupled with the implementation of co-simulation via lithotype-dependent multidimensional joint probability distributions of acoustic/petrophysical properties, yields accurate 3D models of petrophysical properties such as porosity and permeability. Finally, by fully integrating pre-stack seismic amplitude data and well logs, the vertical resolution of inverted products is higher than that of deterministic inversions methods.
Tong, Fang; Fu, Tong
2013-01-01
Objective To evaluate the differences in fluid intelligence tests between normal children and children with learning difficulties in China. Method PubMed, MD Consult, and other Chinese Journal Database were searched from their establishment to November 2012. After finding comparative studies of Raven measurements of normal children and children with learning difficulties, full Intelligent Quotation (FIQ) values and the original values of the sub-measurement were extracted. The corresponding effect model was selected based on the results of heterogeneity and parallel sub-group analysis was performed. Results Twelve documents were included in the meta-analysis, and the studies were all performed in mainland of China. Among these, two studies were performed at child health clinics, the other ten sites were schools and control children were schoolmates or classmates. FIQ was evaluated using a random effects model. WMD was −13.18 (95% CI: −16.50–−9.85). Children with learning difficulties showed significantly lower FIQ scores than controls (P<0.00001); Type of learning difficulty and gender differences were evaluated using a fixed-effects model (I2 = 0%). The sites and purposes of the studies evaluated here were taken into account, but the reasons of heterogeneity could not be eliminated; The sum IQ of all the subgroups showed considerable heterogeneity (I2 = 76.5%). The sub-measurement score of document A showed moderate heterogeneity among all documents, and AB, B, and E showed considerable heterogeneity, which was used in a random effect model. Individuals with learning difficulties showed heterogeneity as well. There was a moderate delay in the first three items (−0.5 to −0.9), and a much more pronounced delay in the latter three items (−1.4 to −1.6). Conclusion In the Chinese mainland, the level of fluid intelligence of children with learning difficulties was lower than that of normal children. Delayed development in sub-items of C, D, and E was more obvious. PMID:24236016
NASA Astrophysics Data System (ADS)
Kasch, N.; Kley, J.; Koester, J.; van Geldern, R.; Wehrer, M.; Wendler, J.
2010-12-01
Carbon capture and storage (CCS) in saline aquifers will induce fluid-rock interactions, with effects on the mineralogy and physical properties of the reservoir. These effects are difficult to study in real reservoirs. Outcrop analogues provide access to relatively large rock volumes, but it may be difficult to prove that CO2 was involved in the mineral reactions observed. We present circumstantial evidence for the presence of CO2-rich fluids during the alteration of Triassic Buntsandstein redbeds from Germany. Fluid-rock interaction there is evidenced by localized bleaching of the red sandstones in fringes of a few mm to a few cm width along joints and fine cracks. The fringes can be traced along individual joints for a few dm to m. 3D geometric analysis on a cm scale shows that the bleached cracks form a complex interconnected network. On the outcrop scale, bleaching is essentially restricted to one north-trending joint set which is parallel to Miocene basalt dikes in the area. In underground salt mines, the dikes have caused bleaching of potassium salt minerals along their contacts. In the same mines CO2 is found trapped within rock salt along north-trending fractures, sometimes causing violent gas eruptions during mining operations. Together, these observations suggest that bleaching along north-trending joints in the Buntsandstein is causally related to the migration of CO2-rich fluids associated with the basalt volcanism. Today, CO2 ascends in CO2-enriched waters. We analyzed 12 samples of such waters. Their δ18O values correspond to meteoric waters. The δ13C (DIC) values of four water samples show signatures typical of volcanogenic CO2. Five samples contain mixed signals of volcanogenic and carbonatic CO2 or biogenic CO2 from soil. Volcanogenic and carbonatic CO2 are restricted to waters interpreted to rise along NW-SE striking basement faults. The switch of preferential fluid channeling from N-trending fractures in Tertiary time to NW-trending fractures today is compatible with a coeval rotation of the largest horizontal stress from N to NW, corroborating the control of fluid pathways by the contemporary stress field. Geochemical analyses of the bleached fringes show that bleaching causes a decrease in Fe and Mn due to hematite dissolution. Using cathodoluminescence microscopy and -spectroscopy combined with electron microprobe analysis and stable carbon isotopes, we detected two major fluid-mineral interactions probably involving CO2: (1) precipitation of zoned, joint-filling calcites and pore-filling calcite cements, the latter replacing an earlier dolomite, and (2) alkali feldspar alteration. We interpret Fe-rich calcite crystal cores to reflect incorporation of iron released by coeval bleaching during the dolomite-calcite transformation. This recrystallisation was associated with a volume increase, possibly suggesting some degree of sealing and enhanced retention of CO2. On the other hand, feldspar alteration has a destructing effect on the feldspar grains, implying that bleaching creates pore space.
NASA Astrophysics Data System (ADS)
Marchesini, Barbara; Garofalo, Paolo S.; Viola, Giulio; Mattila, Jussi; Menegon, Luca
2017-04-01
Brittle faults are well known as preferential conduits for localised fluid flow in crystalline rocks. Their study can thus reveal fundamental details of the physical-chemical properties of the flowing fluid phase and of the mutual feedbacks between mechanical properties of faults and fluids. Crustal deformation at the brittle-ductile transition may occur by a combination of competing brittle fracturing and viscous flow processes, with short-lived variations in fluid pressure as a viable mechanism to produce this cyclicity switch. Therefore, a detailed study of the fluid phases potentially present in faults can help to better constrain the dynamic evolution of crustal strength within the seismogenic zone, as a function of varying fluid phase characteristics. With the aim to 1) better understand the complexity of brittle-ductile cyclicity under upper to mid-crustal conditions and 2) define the physical and chemical features of the involved fluid phase, we present the preliminary results of a recently launched (micro)structural and geochemical project. We study deformed quartz veins associated with brittle-ductile deformation zones on Olkiluoto Island, chosen as the site for the Finnish deep repository for spent nuclear fuel excavated in the Paleoproterozoic crust of southwestern Finland. The presented results stem from the study of brittle fault zone BFZ300, which is a mixed brittle and ductile deformation zone characterized by complex kinematics and associated with multiple generations of quartz veins, and which serves as a pertinent example of the mechanisms of fluid flow-deformation feedbacks during brittle-ductile cyclicity in nature. A kinematic and dynamic mesostructural study is being integrated with the detailed analysis of petrographic thin sections from the fault core and its immediate surroundings with the aim to reconstruct the mechanical deformation history along the entire deformation zone. Based on the observed microstructures, it was possible to recognize three distinct episodes of ductile deformation alternating with at least three brittle episodes. Preliminary fluid inclusion data show that, during crystallization and brittle-viscous deformation, quartz crystals hosted homogeneous and heterogeneous (boiling) aqueous fluids with a large salinity (11.7-0 wt% NaCleq) and Thtot (410-200 °C) range. Boiling occurred at 200-260 °C. Variations of fluid temperature and density (hence, viscosity) may thus have induced localized cyclic switches between brittle and ductile deformation in quartz, with implications on the bulk regional crustal strength. Preliminary EBSD analysis also supports the hypothesis of cyclic switches between brittle and viscous deformation.
The forward undulatory locomotion of Ceanorhabditis elegans in viscoelastic fluids
NASA Astrophysics Data System (ADS)
Shen, Amy; Ulrich, Xialing
2013-11-01
Caenorhabditis elegans is a soil dwelling roundworm that has served as model organisms for studying a multitude of biological and engineering phenomena. We study the undulatory locomotion of nematode in viscoelastic fluids with zero-shear viscosity varying from 0.03-75 Pa .s and relaxation times ranging from 0-350 s. We observe that the averaged normalized wavelength of swimming worm is essentially the same as that in Newtonian fluids. The undulatory frequency f shows the same reduction rate with respect to zero-shear viscosity in viscoelastic fluids as that found in the Newtonian fluids, meaning that the undulatory frequency is mainly controlled by the fluid viscosity. However, the moving speed Vm of the worm shows more distinct dependence on the elasticity of the fluid and exhibits a 4% drop with each 10-fold increase of the Deborah number De, a dimensionless number characterizing the elasticity of a fluid. To estimate the swimming efficiency coefficient and the ratio K =CN /CL of resistive coefficients of the worm in various viscoelastic fluids, we show that whereas it would take the worm around 7 periods to move a body length in a Newtonian fluid, it would take 27 periods to move a body length in a highly viscoelastic fluid.
Analysis of Critical Thinking Skills on The Topic of Static Fluid
NASA Astrophysics Data System (ADS)
Puspita, I.; Kaniawati, I.; Suwarma, I. R.
2017-09-01
This study aimed to know the critical thinking skills profil of senior high school students. This research using a descriptive study to analysis student test results of critical thinking skill of 40 students XI grade in one of the senior high school in Bogor District. The method used is survey research with sample determined by purposive sampling technique. The instrument used is test of critical thinking skill by 5 indicators on static fluid topics. Questions consist of 11 set. It is has been developed by researcher and validated by experts. The results showed students critical thinking skills are still low. Is almost every indicator of critical thinking skills only reaches less than 30%. 28% for elementary clarification, 10% for the basic for decisions/basic support, 6% for inference, 6% for advanced clarification, 4% for strategies and tactics.
Zhorzholiani, Sh T; Mironov, A A; Talygin, E A; Tsyganokov, Yu M; Agafonov, A M; Kiknadze, G I; Gorodkov, A Yu; Bokeriya, L A
2018-03-01
Analysis of the data of morphometry of aortic casts, aortography at different pressures, and multispiral computer tomography of the aorta with contrast and normal pulse pressure showed that geometric configuration of the flow channel of the aorta during the whole cardiac cycle corresponded to the conditions of self-organization of tornado-like quasipotential flow described by exact solutions of the Navier-Stokes equation and continuity of viscous fluid typical for this type of fluid flows. Increasing pressure in the aorta leads to a decrease in the degree of approximation of the channel geometry to the ratio of exact solution and increases the risk of distortions in the structure of the flow. A mechanism of evolution of tornado-like flow in the aorta was proposed.
NASA Astrophysics Data System (ADS)
Zhao, Xuemei; Li, Rui; Chen, Yu; Sia, Sheau Fung; Li, Donghai; Zhang, Yu; Liu, Aihua
2017-04-01
Additional hemodynamic parameters are highly desirable in the clinical management of intracranial aneurysm rupture as static medical images cannot demonstrate the blood flow within aneurysms. There are two ways of obtaining the hemodynamic information—by phase-contrast magnetic resonance imaging (PCMRI) and computational fluid dynamics (CFD). In this paper, we compared PCMRI and CFD in the analysis of a stable patient's specific aneurysm. The results showed that PCMRI and CFD are in good agreement with each other. An additional CFD study of two stable and two ruptured aneurysms revealed that ruptured aneurysms have a higher statistical average blood velocity, wall shear stress, and oscillatory shear index (OSI) within the aneurysm sac compared to those of stable aneurysms. Furthermore, for ruptured aneurysms, the OSI divides the positive and negative wall shear stress divergence at the aneurysm sac.
Ahlbrecht, Jonas; Martino, Filippo; Pul, Refik; Skripuletz, Thomas; Sühs, Kurt-Wolfram; Schauerte, Celina; Yildiz, Özlem; Trebst, Corinna; Tasto, Lars; Thum, Sabrina; Pfanne, Angelika; Roesler, Romy; Lauda, Florian; Hecker, Michael; Zettl, Uwe K; Tumani, Hayrettin; Thum, Thomas; Stangel, Martin
2016-08-01
MiRNA-181c, miRNA-633 and miRNA-922 have been reported to be deregulated in multiple sclerosis. To investigate the association between miRNA-181c, miRNA-633 and miRNA-922 and conversion from clinically isolated syndrome (CIS) to relapsing-remitting multiple sclerosis (RRMS); and to compare microRNAs in cerebrospinal fluid (CSF) and serum with regard to dysfunction of the blood-CSF barrier. CSF and serum miRNA-181c, miRNA-633 and miRNA-922 were retrospectively determined by quantitative real-time polymerase chain reaction in CIS patients with (CIS-RRMS) and without (CIS-CIS) conversion to RRMS within 1 year. Thirty of 58 CIS patients developed RRMS. Cerebrospinal fluid miRNA-922, serum miRNA-922 and cerebrospinal fluid miRNA-181c were significantly higher in CIS-RRMS compared to CIS-CIS (P=0.027, P=0.048, P=0.029, respectively). High levels of cerebrospinal fluid miRNA-181c were independently associated with conversion from CIS to RRMS in multivariate Cox regression analysis (hazard ratio 2.99, 95% confidence interval 1.41-6.34, P=0.005). A combination of high cerebrospinal fluid miRNA-181c, younger age and more than nine lesions on magnetic resonance imaging showed the highest specificity (96%) and positive predictive value (94%) for conversion from CIS to RRMS. MiRNA-181c was higher in serum than in cerebrospinal fluid (P <0.001), while miRNA-633 and miRNA-922 were no different in cerebrospinal fluid and serum. Cerebrospinal fluid/serum albumin quotients did not correlate with microRNAs in cerebrospinal fluid (all P>0.711). Cerebrospinal fluid miRNA-181c might serve as a biomarker for early conversion to RRMS. Moreover, our data suggest an intrathecal origin of microRNAs detected in the cerebrospinal fluid. © The Author(s), 2015.
Jin, Yinghui; Tian, Jinhui; Sun, Mei; Yang, Kehu
2011-02-01
The purpose of this systematic review was to establish whether warmed irrigation fluid temperature could decrease the drop of body temperature and incidence of shivering and hypothermia. Irrigation fluid, which is used in large quantities during endoscopic surgeries at room temperature, is considered to be associated with hypothermia and shivering. It remains controversial whether using warmed irrigation fluid to replace room-temperature irrigation fluid will decrease the drop of core body temperature and the occurrence of hypothermia. A comprehensive search (computerised database searches, footnote chasing, citation chasing) was undertaken to identify all the randomised controlled trials that explored temperature of irrigation fluid in endoscopic surgery. An approach involving meta-analysis was used. We searched PubMed, EMBASE, Cochrane Library, SCI, China academic journals full-text databases, Chinese Biomedical Literature Database, Chinese scientific journals databases and Chinese Medical Association Journals for trials that meet the inclusion criteria. Study quality was assessed using standards recommended by Cochrane Library Handbook 5.0.1. Disagreement was resolved by consensus. Thirteen randomised controlled trials including 686 patients were identified. The results showed that room-temperature irrigation fluid caused a greater drop of core body temperature in patients, compared to warmed irrigation fluid (p < 0.00001; I(2) = 85%). The occurrence of shivering [odds ratio (OR) 5.13, 95% CI: 2.95-10.19, p < 0.00001; I(2) = 0%] and hypothermia (OR 22.01, 95% CI: 2.03-197.08, p = 0.01; I(2) = 64%) in the groups having warmed irrigation fluid were lower than the group of studies having room-temperature fluid. In endoscopic surgeries, irrigation fluid is recommended to be warmed to decrease the drop of core body temperature and the risk of perioperative shivering and hypothermia. Warming irrigating fluid should be considered standard practice in all endoscopic surgeries. © 2011 Blackwell Publishing Ltd.
NASA Technical Reports Server (NTRS)
Lyell, M. J.; Roh, Michael
1991-01-01
The increasing number of research opportunities in a microgravity environment will benefit not only fundamental studies in fluid dynamics, but also technological applications such as those involving materials processing. In particular, fluid configurations which involve fluid-fluid interfaces would occur in a variety of experimental investigations. This work investigates the stability of a configuration involving fluid-fluid interfaces in the presence of a time-dependent forcing. Both periodic (g-jitter) and nonperiodic accelerations are considered. The fluid configuration is multilayered, and infinite in extent. The analysis is linear and inviscid, and the acceleration vector is oriented perpendicular to each interface. A Floquet analysis is employed in the case of the periodic forcing. In the problem of nonperiodic forcing, the resulting system of equations are integrated in time. Specific nondimensional parameters appear in each problem. The configuration behavior is investigated for a range of parameter values.
Accurate fluid force measurement based on control surface integration
NASA Astrophysics Data System (ADS)
Lentink, David
2018-01-01
Nonintrusive 3D fluid force measurements are still challenging to conduct accurately for freely moving animals, vehicles, and deforming objects. Two techniques, 3D particle image velocimetry (PIV) and a new technique, the aerodynamic force platform (AFP), address this. Both rely on the control volume integral for momentum; whereas PIV requires numerical integration of flow fields, the AFP performs the integration mechanically based on rigid walls that form the control surface. The accuracy of both PIV and AFP measurements based on the control surface integration is thought to hinge on determining the unsteady body force associated with the acceleration of the volume of displaced fluid. Here, I introduce a set of non-dimensional error ratios to show which fluid and body parameters make the error negligible. The unsteady body force is insignificant in all conditions where the average density of the body is much greater than the density of the fluid, e.g., in gas. Whenever a strongly deforming body experiences significant buoyancy and acceleration, the error is significant. Remarkably, this error can be entirely corrected for with an exact factor provided that the body has a sufficiently homogenous density or acceleration distribution, which is common in liquids. The correction factor for omitting the unsteady body force, {{{ {ρ f}} {1 - {ρ f} ( {{ρ b}+{ρ f}} )}.{( {{{{ρ }}b}+{ρ f}} )}}} , depends only on the fluid, {ρ f}, and body, {{ρ }}b, density. Whereas these straightforward solutions work even at the liquid-gas interface in a significant number of cases, they do not work for generalized bodies undergoing buoyancy in combination with appreciable body density inhomogeneity, volume change (PIV), or volume rate-of-change (PIV and AFP). In these less common cases, the 3D body shape needs to be measured and resolved in time and space to estimate the unsteady body force. The analysis shows that accounting for the unsteady body force is straightforward to non-intrusively and accurately determine fluid force in most applications.
Nagy, Balint; Nagy, Richard Gyula; Lazar, Levente; Schonleber, Julianna; Papp, Csaba; Rigo, Janos
2015-05-20
Aneuploidies are the most frequent chromosomal abnormalities at birth. Autosomal aneuploidies cause serious malformations like trisomy 21, trisomy 18 and trisomy 13. However sex chromosome aneuploidies are causing less severe syndromes. For the detection of these aneuploidies, the "gold standard" method is the cytogenetic analysis of fetal cells, karyograms show all numerical and structural abnormalities, but it takes 2-4 weeks to get the reports. Molecular biological methods were developed to overcome the long culture time, thus, FISH and quantitative fluorescent PCR were introduced. In this work we show our experience with a commercial kit for the detection of sex chromosome aneuploidies. We analyzed 20.173 amniotic fluid samples for the period of 2006-2013 in our department. A conventional cytogenetic analysis was performed on the samples. We checked the reliability of quantitative fluorescent PCR and DNA fragment analysis on those samples where sex chromosomal aneuploidy was diagnosed. From the 20.173 amniotic fluid samples we found 50 samples with sex chromosome aneuploidy. There were 19 samples showing 46, XO, 17 samples with 46, XXY, 9 samples with 47, XXX and 5 samples with 47, XYY karyotypes. The applied quantitative fluorescent PCR and DNA fragment analyses method are suitable to detect all abnormal sex chromosome aneuploidies. Quantitative fluorescent PCR is a fast and reliable method for detection of sex chromosome aneuploidies. Copyright © 2015. Published by Elsevier B.V.
Fluid Structure Interaction in a Cold Flow Test and Transient CFD Analysis of Out-of-Round Nozzles
NASA Technical Reports Server (NTRS)
Ruf, Joseph; Brown, Andrew; McDaniels, David; Wang, Ten-See
2010-01-01
This viewgraph presentation describes two nozzle fluid flow interactions. They include: 1) Cold flow nozzle tests with fluid-structure interaction at nozzle separated flow; and 2) CFD analysis for nozzle flow and side loads of nozzle extensions with various out-of-round cases.
NASA Astrophysics Data System (ADS)
Sayar, Ersin; Farouk, Bakhtier
2012-07-01
Coupled multifield analysis of a piezoelectrically actuated valveless micropump device is carried out for liquid (water) transport applications. The valveless micropump consists of two diffuser/nozzle elements; the pump chamber, a thin structural layer (silicon), and a piezoelectric layer, PZT-5A as the actuator. We consider two-way coupling of forces between solid and liquid domains in the systems where actuator deflection causes fluid flow and vice versa. Flow contraction and expansion (through the nozzle and the diffuser respectively) generate net fluid flow. Both structural and flow field analysis of the microfluidic device are considered. The effect of the driving power (voltage) and actuation frequency on silicon-PZT-5A bi-layer membrane deflection and flow rate is investigated. For the compressible flow formulation, an isothermal equation of state for the working fluid is employed. The governing equations for the flow fields and the silicon-PZT-5A bi-layer membrane motions are solved numerically. At frequencies below 5000 Hz, the predicted flow rate increases with actuation frequency. The fluid-solid system shows a resonance at 5000 Hz due to the combined effect of mechanical and fluidic capacitances, inductances, and damping. Time-averaged flow rate starts to drop with increase of actuation frequency above (5000 Hz). The velocity profile in the pump chamber becomes relatively flat or plug-like, if the frequency of pulsations is sufficiently large (high Womersley number). The pressure, velocity, and flow rate prediction models developed in the present study can be utilized to optimize the design of MEMS based micropumps.
He, Guo-qing; Xiong, Hao-ping; Chen, Qi-he; Ruan, Hui; Wang, Zhao-yue; Traoré, Lonseny
2005-01-01
Waste hops are good sources of flavonoids. Extraction of flavonoids from waste hops (SC-CO2 extracted hops) using supercritical fluids technology was investigated. Various temperatures, pressures and concentrations of ethanol (modifier) and the ratio (w/w) of solvent to material were tested in this study. The results of single factor and orthogonal experiments showed that at 50 °C, 25 MPa, the ratio of solvent to material (50%), ethanol concentration (80%) resulted in maximum extraction yield flavonoids (7.8 mg/g). HPLC-MS analysis of the extracts indicated that flavonoids obtained were xanthohumol, the principal prenylflavonoid in hops. PMID:16187413
Piombo, Marianna; Chiarello, Daniela; Corbetto, Marzia; Di Pino, Giovanni; Dicuonzo, Giordano; Angeletti, Silvia; Riva, Elisabetta; De Florio, Lucia; Capone, Fioravante; Di Lazzaro, Vincenzo
2015-01-01
A 45-year-old male noticed progressive weakness of the right lower limb with gait disturbance. Over the following months, motor deficits worsened, spreading to the right upper limb. Electromyography showed active denervation in the upper and lower limb muscles. A diagnosis of amyotrophic lateral sclerosis (ALS) was made. About 2 years after symptom onset, gradual improvement occurred. Cerebrospinal fluid analysis performed about 3 years after the beginning of symptoms identified Cronobacter sakazakii. Since no other possible causes were identified, we suggest that an almost completely reversible ALS-like syndrome had been triggered by Cronobacter infection in our immunocompetent patient. PMID:26955334
Onset of dissolution-driven instabilities in fluids with nonmonotonic density profile
NASA Astrophysics Data System (ADS)
Jafari Raad, Seyed Mostafa; Hassanzadeh, Hassan
2015-11-01
Analog systems have recently been used in several experiments in the context of convective mixing of C O2 . We generalize the nonmonotonic density dependence of the growth of instabilities and provide a scaling relation for the onset of instability. The results of linear stability analysis and direct numerical simulations show that these fluids do not resemble the dynamics of C O2 -water convective instabilities. A typical analog system, such as water-propylene glycol, is found to be less unstable than C O2 -water. These results provide a basis for further research and proper selection of analog systems and are essential to the interpretation of experiments.
NASA Astrophysics Data System (ADS)
Rachid, Hassan
2015-12-01
In the present study,we investigate the unsteady peristaltic transport of a viscoelastic fluid with fractional Burgers' model in an inclined tube. We suppose that the viscosity is variable in the radial direction. This analysis has been carried out under low Reynolds number and long-wavelength approximations. An analytical solution to the problem is obtained using a fractional calculus approach. Figures are plotted to show the effects of angle of inclination, Reynolds number, Froude number, material constants, fractional parameters, parameter of viscosity and amplitude ratio on the pressure gradient, pressure rise, friction force, axial velocity and on the mechanical efficiency.
Liu, Wei-hui; Wang, Tao; Yan, Hong-tao; Chen, Tao; Xu, Chuan; Ye, Ping; Zhang, Ning; Liu, Zheng-cai; Tang, Li-jun
2015-01-01
Aims Although we previously demonstrated abdominal paracentesis drainage (APD) preceding percutaneous catheter drainage (PCD) as the central step for treating patients with moderately severe (MSAP) or severe acute pancreatitis (SAP), the predictors leading to PCD after APD have not been studied. Methods Consecutive patients with MSAP or SAP were recruited between June 2011 and June 2013. As a step-up approach, all patients initially received medical management, later underwent ultrasound-guided APD before PCD, if necessary, followed by endoscopic necrosectomy through the path formed by PCD. APD primarily targeted fluid in the abdominal or pelvic cavities, whereas PCD aimed at (peri)pancreatic fluid. Results Of the 92 enrolled patients, 40 were managed with APD alone and 52 received PCD after APD (14 required necrosectomy after initial PCD). The overall mortality was 6.5%. Univariate analysis showed that among the 20 selected parameters, 13 factors significantly affected PCD intervention after APD. Multivariate analysis revealed that infected (peri)pancreatic collections (P = -0.001), maximum extent of necrosis of more than 30% of the pancreas (P = -0.024), size of the largest necrotic peri(pancreatic) collection (P = -0.007), and reduction of (peri)pancreatic fluid collections by <50% after APD (P = -0.008) were all independent predictors of PCD. Conclusions Infected (peri)pancreatic collections, a largest necrotic peri(pancreatic) collection of more than 100 ml, and reduction of (peri)pancreatic fluid collections by <50% after APD could effectively predict the need for PCD in the early course of the disease. PMID:25659143
Lim, Lee Moay; Tsai, Ni-Chin; Lin, Ming-Yen; Hwang, Daw-Yang; Lin, Hugo You-Hsien; Lee, Jia-Jung; Hwang, Shang-Jyh; Hung, Chi-Chih; Chen, Hung-Chun
2016-11-14
Chronic kidney disease (CKD) is frequently complicated with hyponatremia, probably because of fluid overload or diuretic usage. Hyponatremia in CKD population is associated with increased mortality, but the effect on renal outcome was unknown. We investigated whether hyponatremia is associated with fluid status and is a prognostic indicator for adverse outcomes in a CKD cohort of 4,766 patients with 1,009 diuretic users. We found that diuretic users had worse clinical outcomes compared with diuretic non-users. Hyponatremia (serum sodium <135 mEq/L) was associated with excessive volume and volume depletion, measured as total body water by bioimpedance analysis, in diuretic users, but not in diuretic non-users. Furthermore, in Cox survival analysis, hyponatremia was associated with an increased risk for renal replacement therapy (hazard ratio, 1.45; 95% CI, 1.13-1.85, P < 0.05) in diuretic users, but not in diuretic non-users (P for interaction <0.05); restricted cubic spline model also showed a similar result. Hyponatremia was not associated with all-cause mortality or cardiovascular event whereas hypernatremia (serum sodium >141 mEq/L) was associated with an increased risk for all-cause mortality. Thus, hyponatremia is an indicator of fluid imbalance and also a prognostic factor for renal replacement therapy in CKD patients treated with diuretics.
Lim, Lee Moay; Tsai, Ni-Chin; Lin, Ming-Yen; Hwang, Daw-Yang; Lin, Hugo You-Hsien; Lee, Jia-Jung; Hwang, Shang-Jyh; Hung, Chi-Chih; Chen, Hung-Chun
2016-01-01
Chronic kidney disease (CKD) is frequently complicated with hyponatremia, probably because of fluid overload or diuretic usage. Hyponatremia in CKD population is associated with increased mortality, but the effect on renal outcome was unknown. We investigated whether hyponatremia is associated with fluid status and is a prognostic indicator for adverse outcomes in a CKD cohort of 4,766 patients with 1,009 diuretic users. We found that diuretic users had worse clinical outcomes compared with diuretic non-users. Hyponatremia (serum sodium <135 mEq/L) was associated with excessive volume and volume depletion, measured as total body water by bioimpedance analysis, in diuretic users, but not in diuretic non-users. Furthermore, in Cox survival analysis, hyponatremia was associated with an increased risk for renal replacement therapy (hazard ratio, 1.45; 95% CI, 1.13–1.85, P < 0.05) in diuretic users, but not in diuretic non-users (P for interaction <0.05); restricted cubic spline model also showed a similar result. Hyponatremia was not associated with all-cause mortality or cardiovascular event whereas hypernatremia (serum sodium >141 mEq/L) was associated with an increased risk for all-cause mortality. Thus, hyponatremia is an indicator of fluid imbalance and also a prognostic factor for renal replacement therapy in CKD patients treated with diuretics. PMID:27841359
A Dynamic Analysis of Hydrodynamic Wave Journal Bearings
NASA Technical Reports Server (NTRS)
Ene, Nicoleta M.; Dimofte, Florin; Keith, Theo G.
2008-01-01
The purpose of this paper is to study the dynamic behavior of a three-wave journal bearing using a transient approach. The transient analysis permits the determination of the rotor behavior after the fractional frequency whirl appears. The journal trajectory is determined by solving a set of nonlinear equations of motion using the Runge-Katta method. The fluid film forces are computed by integrating the transient Reynolds equation at each time step location of the shaft with respect to the bearing. Because of the large values of the rotational speeds, turbulent effects were included in the computations. The influence of the temperature on the viscosity was also considered. Numerical results were compared to experimenta1 results obtained at the NASA Glenn Research Center. Comparisons of the theoretical results with experimental data were found to be in good agreement. The numerical and experimental results showed that the fluid film of a three-wave journal bearing having a diameter of 30 mm, a length of 27 mm, and a wave amplitude ratio greater than 0.15 is stable even at rotational speeds of 60,000 RPM. For lower wave amplitude ratios, the threshold speed at which the fluid film becomes unstable depends on the wave amplitude and on the supply pocket pressure. Even if the fluid film is unstable, the wave bearing maintains the whirl orbit inside the bearing clearance.
Hanrieder, Jörg; Zuberovic, Aida; Bergquist, Jonas
2009-04-24
Development of miniaturized analytical tools continues to be of great interest to face the challenges in proteomic analysis of complex biological samples such as human body fluids. In the light of these challenges, special emphasis is put on the speed and simplicity of newly designed technological approaches as well as the need for cost efficiency and low sample consumption. In this study, we present an alternative multidimensional bottom-up approach for proteomic profiling for fast, efficient and sensitive protein analysis in complex biological matrices. The presented setup was based on sample pre-fractionation using microscale in solution isoelectric focusing (IEF) followed by tryptic digestion and subsequent capillary electrophoresis (CE) coupled off-line to matrix assisted laser desorption/ionization time of flight tandem mass spectrometry (MALDI TOF MS/MS). For high performance CE-separation, PolyE-323 modified capillaries were applied to minimize analyte-wall interactions. The potential of the analytical setup was demonstrated on human follicular fluid (hFF) representing a typical complex human body fluid with clinical implication. The obtained results show significant identification of 73 unique proteins (identified at 95% significance level), including mostly acute phase proteins but also protein identities that are well known to be extensively involved in follicular development.
Kang, Chang-Wei; Wang, Yan; Tania, Marshella; Zhou, Huancheng; Gao, Yi; Ba, Te; Tan, Guo-Dong Sean; Kim, Sangho; Leo, Hwa Liang
2013-01-01
A myriad of bioreactor configurations have been investigated as extracorporeal medical support systems for temporary replacement of vital organ functions. In recent years, studies have demonstrated that the rotating bioreactors have the potential to be utilized as bioartificial liver assist devices (BLADs) owing to their advantage of ease of scalability of cell-culture volume. However, the fluid movement in the rotating chamber will expose the suspended cells to unwanted flow structures with abnormally high shear conditions that may result in poor cell stability and in turn lower the efficacy of the bioreactor system. In this study, we compared the hydrodynamic performance of our modified rotating bioreactor design with that of an existing rotating bioreactor design. Computational fluid dynamic analysis coupled with experimental results were employed in the optimization process for the development of the modified bioreactor design. Our simulation results showed that the modified bioreactor had lower fluid induced shear stresses and more uniform flow conditions within its rotating chamber than the conventional design. Experimental results revealed that the cells within the modified bioreactor also exhibited better cell-carrier attachment, higher metabolic activity, and cell viability compared to those in the conventional design. In conclusion, this study was able to provide important insights into the flow physics within the rotating bioreactors, and help enhanced the hydrodynamic performance of an existing rotating bioreactor for BLAD applications. © 2013 American Institute of Chemical Engineers.
NASA Astrophysics Data System (ADS)
Marsala, Achille; Wagner, Thomas
2016-08-01
Element mobility and fluid-rock interaction related to the formation of late-metamorphic quartz veins have been studied by combination of mineral chemistry, whole-rock geochemistry, mass balance analysis and fluid-mineral equilibria modeling. The quartz veins are hosted by very low-grade metasedimentary rocks of the fold-and-thrust belt of the Rhenish Massif (Germany). The veins record two stages of evolution, a massive vein filling assemblage with elongate-blocky quartz, chlorite, apatite and albite, and a later open space filling assemblage with euhedral crystals of quartz, ankerite-dolomite and minor calcite and sulfides. Detailed mass balance analysis of an alteration profile adjacent to a representative quartz vein demonstrates that element mobility is restricted to the proximal zone. The most important element changes are gain of Ca, Fe, Mg, Mn, P and CO2, and loss of Si, K and Na. The data demonstrate that wall-rock carbonation is one of the main alteration features, whereas mobility of Si, K and Na are related to dissolution of quartz and destruction of detrital feldspar and muscovite. The whole-rock geochemical data, in conjunction with fluid composition data and pressure-temperature estimates, were used as input for fluid-mineral equilibria modeling in the system Si-Al-Fe-Mg-Ca-Na-K-C-S-O-H-B-F-Cl. Modeling involved calculation of rock-buffered fluid compositions over the temperature interval 100-500 °C, and reaction-path simulations where a rock-buffered high-temperature fluid reacts with fresh host-rocks at temperatures of 400, 300 and 200 °C. Calculated rock-buffered fluid compositions demonstrate that retrograde silica solubility is a strong driving force for quartz leaching in the temperature-pressure window of 380-450 °C and 0.5 kbar. These conditions overlap with the estimated temperatures for the initial stage of vein formation. Reaction-path models show that high-temperature alteration can produce the observed silica leaching, suggesting that fast advection of external hot fluids from deeper crustal levels was essential for the early stage of vein formation. Fluid advection must have occurred as multiple pulses, which allowed for periods of influx of fluids that leached quartz, alternating with periods of cooling and quartz precipitation in the veins. Reaction-path models at high temperatures (300-400 °C) do not produce carbonate alteration, whereas fluid-rock reaction at 200 °C produces carbonate alteration, consistent with the temperature estimates for the late-stage vein carbonate assemblage. Comparison between modeling results and geochemical data suggests that the observed alteration features are the product of fluid-rock reaction under conditions where the external fluid gradually cooled down and evolved with time. The results of this study highlight the importance of late-orogenic fluid migration for the formation of quartz vein arrays in fold-and-thrust belts.
Encapsulation of anticancer drug and magnetic particles in biodegradable polymer nanospheres
NASA Astrophysics Data System (ADS)
Koneracká, M.; Múčková, M.; Závišová, V.; Tomašovičová, N.; Kopčanský, P.; Timko, M.; Juríková, A.; Csach, K.; Kavečanský, V.; Lancz, G.
2008-05-01
In this study, we have prepared PLGA (poly-D,L-lactide-co-glycolide) nanospheres loaded with biocompatible magnetic fluid and anticancer drug taxol by a modified nanoprecipitation technique and investigated their magnetic properties. A magnetic fluid, MF-PEG, with a biocompatible layer of polyethylene glycol (PEG), was chosen as a magnetic carrier. The PLGA, whose copolymer ratio of D,L-lactide to glycolide is 85:15, was utilized as a capsulation material. Taxol, as an important anticancer drug, was chosen for its significant role against a wide range of tumours. The morphology and particle size distributions of the prepared nanospheres were investigated by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) and showed a spherical shape of prepared nanospheres with size 250 nm. Infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and thermogravimetry (TGA) analysis confirmed incorporation of magnetic particles and taxol into the PLGA polymer. The results showed good encapsulation with magnetite content 21.5 wt% and taxol 0.5 wt%. Magnetic properties of magnetic fluids and taxol within the PLGA polymer matrix were investigated by SQUID magnetometry from 4.2 to 300 K. The SQUID measurements showed superparamagnetism of prepared nanospheres with a blocking temperature of 160 K and saturation magnetization 1.4 mT.
NASA Astrophysics Data System (ADS)
Kenis, I.; Muchez, Ph.; Verhaert, G.; Boyce, A.; Sintubin, M.
2005-08-01
Fluid inclusions in quartz veins of the High-Ardenne slate belt have preserved remnants of prograde and retrograde metamorphic fluids. These fluids were examined by petrography, microthermometry and Raman analysis to define the chemical and spatial evolution of the fluids that circulated through the metamorphic area of the High-Ardenne slate belt. The earliest fluid type was a mixed aqueous/gaseous fluid (H2O-NaCl-CO2-(CH4-N2)) occurring in growth zones and as isolated fluid inclusions in both the epizonal and anchizonal part of the metamorphic area. In the central part of the metamorphic area (epizone), in addition to this mixed aqueous/gaseous fluid, primary and isolated fluid inclusions are also filled with a purely gaseous fluid (CO2-N2-CH4). During the Variscan orogeny, the chemical composition of gaseous fluids circulating through the Lower Devonian rocks in the epizonal part of the slate belt, evolved from an earlier CO2-CH4-N2 composition to a later composition enriched in N2. Finally, a late, Variscan aqueous fluid system with a H2O-NaCl composition migrated through the Lower Devonian rocks. This latest type of fluid can be observed in and outside the epizonal metamorphic part of the High-Ardenne slate belt. The chemical composition of the fluids throughout the metamorphic area, shows a direct correlation with the metamorphic grade of the host rock. In general, the proportion of non-polar species (i.e. CO2, CH4, N2) with respect to water and the proportion of non-polar species other than CO2 increase with increasing metamorphic grade within the slate belt. In addition to this spatial evolution of the fluids, the temporal evolution of the gaseous fluids is indicative for a gradual maturation due to metamorphism in the central part of the basin. In addition to the maturity of the metamorphic fluids, the salinity of the aqueous fluids also shows a link with the metamorphic grade of the host-rock. For the earliest and latest fluid inclusions in the anchizonal part of the High-Ardenne slate belt the salinity varies respectively between 0 and 3.5 eq.wt% NaCl and between 0 and 2.7 eq.wt% NaCl, while in the epizonal part the salinity varies between 0.6 and 17 eq.wt% NaCl and between 3 and 10.6 eq.wt% for the earliest and latest aqueous fluid inclusions, respectively. Although high salinity fluids are often attributed to the original sedimentary setting, the increasing salinity of the fluids that circulated through the Lower Devonian rocks in the High-Ardenne slate belt can be directly attributed to regional metamorphism. More specifically the salinity of the primary fluid inclusions is related to hydrolysis reactions of Cl-bearing minerals during prograde metamorphism, while the salinity of the secondary fluid inclusions is rather related to hydration reactions during retrograde metamorphism. The temporal and spatial distribution of the fluids in the High-Ardenne slate belt are indicative for a closed fluid flow system present in the Lower Devonian rocks during burial and Variscan deformation, where fluids were in thermal and chemical equilibrium with the host rock. Such a closed fluid flow system is confirmed by stable isotope study of the veins and their adjacent host rock for which uniform δ180 values of both the veins and their host rock demonstrate a rock-buffered fluid flow system.
Emergent dark energy via decoherence in quantum interactions
NASA Astrophysics Data System (ADS)
Altamirano, Natacha; Corona-Ugalde, Paulina; Khosla, Kiran E.; Milburn, Gerard J.; Mann, Robert B.
2017-06-01
In this work we consider a recent proposal that gravitational interactions are mediated via classical information and apply it to a relativistic context. We study a toy model of a quantized Friedman-Robertson-Walker (FRW) universe with the assumption that any test particles must feel a classical metric. We show that such a model results in decoherence in the FRW state that manifests itself as a dark energy fluid that fills the spacetime. Analysis of the resulting fluid, shows the equation of state asymptotically oscillates around the value w = -1/3, regardless of the spatial curvature, which provides the bound between accelerating and decelerating expanding FRW cosmologies. Motivated with quantum-classical interactions this model is yet another example of theories with violation of energy-momentum conservation whose signature could have significant consequences for the observable universe.
Performance analysis of automobile radiator using carboxyl graphene nanofluids
NASA Astrophysics Data System (ADS)
Rao Ponangi, Babu; Sumanth, S.; Krishna, V.; Seetharam, T. R.; Seetharamu, K. N.
2018-04-01
A feasible solution to increase the effectiveness of the radiator will be the use of stabilized nanofluid. A mixture of small amount of solid particle, whose size is less than 100nm in the fluid phase, is termed as nanofluid. In current work, a small concentration of carboxyl-graphene nanostructure sheets/flakes are used as the solid medium, where conventional Ethylene glycol is used as the fluid medium. Visible checking method has been adopted, to check the stability of the nanofluid. The results showed the promising level of improvement in the values of Nusselt number and Effectiveness of the radiator, without changing the actual design of radiator. Examination of Pressure drop shows, a very small increase in its value even though the nanofluid has been used. About 19% improvement in the value of Effectiveness has been achieved at very small concentrations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zou, Ling; Zhao, Haihua; Kim, Seung Jun
In this study, the classical Welander’s oscillatory natural circulation problem is investigated using high-order numerical methods. As originally studied by Welander, the fluid motion in a differentially heated fluid loop can exhibit stable, weakly instable, and strongly instable modes. A theoretical stability map has also been originally derived from the stability analysis. Numerical results obtained in this paper show very good agreement with Welander’s theoretical derivations. For stable cases, numerical results from both the high-order and low-order numerical methods agree well with the non-dimensional flow rate analytically derived. The high-order numerical methods give much less numerical errors compared to themore » low-order methods. For stability analysis, the high-order numerical methods could perfectly predict the stability map, while the low-order numerical methods failed to do so. For all theoretically unstable cases, the low-order methods predicted them to be stable. The result obtained in this paper is a strong evidence to show the benefits of using high-order numerical methods over the low-order ones, when they are applied to simulate natural circulation phenomenon that has already gain increasing interests in many future nuclear reactor designs.« less
Analogue Hawking radiation in an exactly solvable model of BEC
NASA Astrophysics Data System (ADS)
Parola, Alberto; Tettamanti, Manuele; Cacciatori, Sergio L.
2017-09-01
Hawking radiation, the spontaneous emission of thermal photons from an event horizon, is one of the most intriguing and elusive predictions of field theory in curved spacetimes. A formally analogue phenomenon occurs at the supersonic transition of a fluid: in this respect, ultracold gases stand out among the most promising systems but the theoretical modelling of this effect has always been carried out in semiclassical approximation, borrowing part of the analysis from the gravitational analogy. Here we discuss the exact solution of a one-dimensional Bose gas flowing against an obstacle, showing that spontaneous phonon emission (the analogue of Hawking radiation) is predicted without reference to the gravitational analogy. Long after the creation of the obstacle, the fluid settles into a stationary state displaying the emission of sound waves (phonons) in the upstream direction. A careful analysis shows that a precise correspondence between this phenomenon and the spontaneous emission of radiation from an event horizon requires additional conditions to be met in future experiments aimed at identifying the occurrence of the Hawking-like mechanism in Bose-Einstein condensates.
NASA Astrophysics Data System (ADS)
Hammerli, J.; Rusk, B.; Spandler, C.; Oliver, N. H. S.; Emsbo, P.
2012-04-01
Chlorine and bromine are highly conservative elements, and are therefore widely used to trace the origin of fluids in sedimentary and hydrothermal/magmatic systems (e.g. Hanor & McIntosh, 2007; Nahnybida et al., 2009). Halogens are important ligands for metal transport in hydrothermal solutions and thus their behavior in hydrothermal environments is crucial for comprehending ore-forming processes. Besides fluid inclusions, scapolite-group minerals hold great potential as a tracer of igneous, metamorphic, and hydrothermal processes, as no Cl/Br fractionation in scapolite has been observed and therefore halogen ratios in scapolite are thought to mirror the halogen ratios in coexisting melts and fluids (Pan & Dong, 2003). Hence, Cl/Br ratios in fluid inclusions and minerals can be utilized to trace the origin of fluids and fluid-rock interaction pathways. Due to their high ionization energies, bromine and chlorine are not routinely measured by LA-ICP-MS and suitable standards are rare. Little is known about the potential interferences and analytical limitations of in-situ chlorine and bromine analysis by LA-ICP-MS. Nevertheless, Seo et al. (2011) showed that quantification of Br and Cl in single synthetic and natural fluid inclusions is possible. In this study, we have analyzed several scapolite grains of known bromine and chlorine concentrations by LA-ICP-MS and assess the capabilities and limitations of this method. The results show that Cl/Br ratios measured by LA-ICP-MS closely reproduce known values determined by microprobe (Cl), the Noble Gas Method (Br) and INAA (Br) (Kendrick, 2011; Lieftink et al., 1993) using laser ablation spot sizes from 24-120 μm. The well-characterized scapolite grains cover bromine concentrations from 50-883 ppm and chlorine concentrations from 3 to 4 wt.%. In order to further assess the method, we analyzed Cl/Br ratios in natural fluid inclusions hosted in sphalerite that were previously characterized by crush and leach ion chromatography. This is the first time that bulk crush and leach Cl/Br analyses can be compared with Cl/Br ratios within individual fluid inclusions. Our LA-ICP-MS measurements are in good agreement with bulk crush and leach analyses. For instance, molar Cl/Br ratios of single fluid inclusions (183±33) in sphalerite form East Tennessee match those obtained by crush and leach (206±8) Additionally, scapolite in samples from dykes of the Burstall granite, associated banded skarns and metasediments from the Mary Kathleen Fold Belt, Queensland, Australia are being studied. Scapolite is highly luminescent and therefore, cathodoluminescence images resolve chemical zoning in scapolite group minerals that, in combination with in-situ Cl/Br analyses, is a powerful tool to better understand fluid sources and fluid-rock interaction within various geological environments.
High resolution melt curve analysis based on methylation status for human semen identification.
Fachet, Caitlyn; Quarino, Lawrence; Karnas, K Joy
2017-03-01
A high resolution melt curve assay to differentiate semen from blood, saliva, urine, and vaginal fluid based on methylation status at the Dapper Isoform 1 (DACT1) gene was developed. Stains made from blood, saliva, urine, semen, and vaginal fluid were obtained from volunteers and DNA was isolated using either organic extraction (saliva, urine, and vaginal fluid) or Chelex ® 100 extraction (blood and semen). Extracts were then subjected to bisulfite modification in order to convert unmethylated cytosines to uracil, consequently creating sequences whose amplicons have melt curves that vary depending on their initial methylation status. When primers designed to amplify the promoter region of the DACT1 gene were used, DNA from semen samples was distinguishable from other fluids by a having a statistically significant lower melting temperature. The assay was found to be sperm-significant since semen from a vasectomized man produced a melting temperature similar to the non-semen body fluids. Blood and semen stains stored up to 5 months and tested at various intervals showed little variation in melt temperature indicating the methylation status was stable during the course of the study. The assay is a more viable method for forensic science practice than most molecular-based methods for body fluid stain identification since it is time efficient and utilizes instrumentation common to forensic biology laboratories. In addition, the assay is advantageous over traditional presumptive chemical methods for body fluid identification since results are confirmatory and the assay offers the possibility of multiplexing which may test for multiple body fluids simultaneously.
NASA Astrophysics Data System (ADS)
Ehsani, Abbas; Nejat, Amir
2017-05-01
An electromagnetic actuated micropump with flexible sequence of valves is presented and investigated in the present article. Two flexible valves are placed inside the microchannel in order to bidirectionalize flow, employing the idea of rectifying mechanism of lymphangion in the lymphatic transport system. A time-dependent magnetic field exerts force on the soft magnetorheological elastomer (SMRE) wall, and therefore, the enclosed fluid is forced to move. The valve series are embedded in such a way that prevent flow from leaving the left terminal, and stop fluid flow entering from the right terminal. Therefore some fluid move left to right, which is called VNet. The net volume is considered as the target design for the performance of the micropump. A fully coupled time-dependent magneto-fluid-solid interaction (MFSI) simulation of two-dimensional incompressible fluid flow is conducted. The finite element method is used to solve all physics involved. Simulation results indicate capability of the proposed mechanism to propel fluid in one direction. A parametric study is performed to investigate the effect of key geometric, magnetic, and structural parameters on the net transported volume. Results show that under optimum conditions the micropump is able to transmit a net volume of fluid nearly two times more than the basic design. The final model is able to pump 0.055 (μl) of water (at 25 °C) in 1 s. The proposed micropump can operate in a wide range of applications, such as artificial organs, organ-on-chip, and aerospace applications.
Numerical simulation based on core analysis of a single fracture in an Enhanced Geothermal System
NASA Astrophysics Data System (ADS)
Jarrahi, Miad; Holländer, Hartmut
2017-04-01
The permeability of reservoirs is widely affected by the presence of fractures dispersed within them, as they form superior paths for fluid flow. Core analysis studies the fractures characteristics and explains the fluid-rock interactions to provide the information of permeability and saturation of a hydraulic fracturing reservoir or an enhanced geothermal system (EGS). This study conducted numerical simulations of a single fracture in a Granite core obtained from a depth of 1890 m in borehole EPS1 from Soultz-sous-Forêts, France. Blaisonneau et al. (2016) designed the apparatus to investigate the complex physical phenomena on this cylindrical sample. The method of the tests was to percolate a fluid through a natural fracture contained in a rock sample, under controlled thermo-hydro-mechanical conditions. A divergent radial flow within the fracture occurred due to the injection of fluid into the center of the fracture. The tests were performed within a containment cell with a normal stress of 2.6, 4.9, 7.2 and 9.4 MPa loading on the sample perpendicular to the fracture plane. This experiment was numerically performed to provide an efficient numerical method by modeling single phase flow in between the fracture walls. Detailed morphological features of the fracture such as tortuosity and roughness, were obtained by image processing. The results included injection pressure plots with respect to injection flow rate. Consequently, by utilizing Hagen-Poiseuille's cubic law, the equivalent hydraulic aperture size, of the fracture was derived. Then, as the sample is cylindrical, to modify the Hagen-Poiseuille's cubic law for circular parallel plates, the geometric relation was applied to obtain modified hydraulic aperture size. Finally, intrinsic permeability of the fracture under each mechanical normal stress was evaluated based on modified hydraulic aperture size. The results were presented in two different scenarios, before and after reactive percolation test, to demonstrate the effect of chemical reactive flow. The fracture after percolation test showed larger equivalent aperture size and higher permeability. Additionally, the higher the normal stress, the lower permeability was investigated. This confirmed the permeability evolution due to chemical percolation and mechanical loading. All results showed good agreements with corresponding experimental results provided by Blaisonneau et al. (2016). Keyword: Core analysis, Hydraulic fracturing, Enhanced geothermal system, Permeability, Fluid-rock interactions.
A Unified Treatment of the Acoustic and Elastic Scattered Waves from Fluid-Elastic Media
NASA Astrophysics Data System (ADS)
Denis, Max Fernand
In this thesis, contributions are made to the numerical modeling of the scattering fields from fluid-filled poroelastic materials. Of particular interest are highly porous materials that demonstrate strong contrast to the saturating fluid. A Biot's analysis of porous medium serves as the starting point of the elastic-solid and pore-fluid governing equations of motion. The longitudinal scattering waves of the elastic-solid mode and the pore-fluid mode are modeled by the Kirchhoff-Helmholtz integral equation. The integral equation is evaluated using a series approximation, describing the successive perturbation of the material contrasts. To extended the series' validity into larger domains, rational fraction extrapolation methods are employed. The local Pade□ approximant procedure is a technique that allows one to extrapolate from a scattered field of small contrast into larger values, using Pade□ approximants. To ensure the accuracy of the numerical model, comparisons are made with the exact solution of scattering from a fluid sphere. Mean absolute error analyses, yield convergent and accurate results. In addition, the numerical model correctly predicts the Bragg peaks for a periodic lattice of fluid spheres. In the case of trabecular bones, the far-field scattering pressure attenuation is a superposition of the elastic-solid mode and the pore-fluid mode generated waves from the surrounding fluid and poroelastic boundaries. The attenuation is linearly dependent with frequency between 0.2 and 0.6MHz. The slope of the attenuation is nonlinear with porosity, and does not reflect the mechanical properties of the trabecular bone. The attenuation shows the anisotropic effects of the trabeculae structure. Thus, ultrasound can possibly be employed to non-invasively predict the principal structural orientation of trabecular bones.
Analysis of heat recovery of diesel engine using intermediate working fluid
NASA Astrophysics Data System (ADS)
Jin, Lei; Zhang, Jiang; Tan, Gangfeng; Liu, Huaming
2017-07-01
The organic Rankine cycle (ORC) is an effective way to recovery the engine exhaust heat. The thermal stability of the evaporation system is significant for the stable operation of the ORC system. In this paper, the performance of the designed evaporation system which combines with the intermediate fluid for recovering the exhaust waste heat from a diesel engine is evaluated. The thermal characteristics of the target diesel engine exhaust gas are evaluated based on the experimental data firstly. Then, the mathematical model of the evaporation system is built based on the geometrical parameters and the specific working conditions of ORC. Finally, the heat transfer characteristics of the evaporation system are estimated corresponding to three typical operating conditions of the diesel engine. The result shows that the exhaust temperature at the evaporator outlet increases slightly with the engine speed and load. In the evaporator, the heat transfer coefficient of the Rankine working fluid is slightly larger than the intermediate fluid. However, the heat transfer coefficient of the intermediate fluid in the heat exchanger is larger than the exhaust side. The heat transfer areas of the evaporator in both the two-phase zone and the preheated zone change slightly along with the engine working condition while the heat transfer areas of the overheated zone has changed obviously. The maximum heat transfer rate occurs in the preheating zone while the minimum value occurs in the overheating zone. In addition, the Rankine working fluid temperature at the evaporator outlet is not sensitively affected by the torque and speed of the engine and the organic fluid flow is relatively stable. It is concluded that the intermediate fluid could effectively reduce the physical changes of Rankine working fluid in the evaporator outlet due to changes in engine operating conditions.
Reilly, Carolyn Miller; Higgins, Melinda; Smith, Andrew; Culler, Steven D; Dunbar, Sandra B
2015-11-01
This paper presents a secondary in-depth analysis of five persons with heart failure randomized to receive an education and behavioral intervention on fluid restriction as part of a larger study. Using a single subject analysis design, time series analyses models were constructed for each of the five patients for a period of 180 days to determine correlations between daily measures of patient reported fluid intake, thoracic impedance, and weights, and relationships between patient reported outcomes of symptom burden and health related quality of life over time. Negative relationships were observed between fluid intake and thoracic impedance, and between impedance and weight, while positive correlations were observed between daily fluid intake and weight. By constructing time series analyses of daily measures of fluid congestion, trends and patterns of fluid congestion emerged which could be used to guide individualized patient care or future research endeavors. Employment of such a specialized analysis technique allows for the elucidation of clinically relevant findings potentially disguised when only evaluating aggregate outcomes of larger studies. Copyright © 2015 Elsevier Inc. All rights reserved.
Synovial Fluid Response to Extensional Flow: Effects of Dilution and Intermolecular Interactions
Haward, Simon J.
2014-01-01
In this study, a microfluidic cross-slot device is used to examine the extensional flow response of diluted porcine synovial fluid (PSF) samples using flow-induced birefringence (FIB) measurements. The PSF sample is diluted to 10× 20× and 30× its original mass in a phosphate-buffered saline and its FIB response measured as a function of the strain rate at the stagnation point of the cross-slots. Equivalent experiments are also carried out using trypsin-treated PSF (t-PSF) in which the protein content is digested away using an enzyme. The results show that, at the synovial fluid concentrations tested, the protein content plays a negligible role in either the fluid's bulk shear or extensional flow behaviour. This helps support the validity of the analysis of synovial fluid HA content, either by microfluidic or by other techniques where the synovial fluid is first diluted, and suggests that the HA and protein content in synovial fluid must be higher than a certain minimum threshold concentration before HA-protein or protein-protein interactions become significant. However a systematic shift in the FIB response as the PSF and t-PSF samples are progressively diluted indicates that HA-HA interactions remain significant at the concentrations tested. These interactions influence FIB-derived macromolecular parameters such as the relaxation time and the molecular weight distribution and therefore must be minimized for the best validity of this method as an analytical technique, in which non-interaction between molecules is assumed. PMID:24651529
Synovial fluid response to extensional flow: effects of dilution and intermolecular interactions.
Haward, Simon J
2014-01-01
In this study, a microfluidic cross-slot device is used to examine the extensional flow response of diluted porcine synovial fluid (PSF) samples using flow-induced birefringence (FIB) measurements. The PSF sample is diluted to 10× 20× and 30× its original mass in a phosphate-buffered saline and its FIB response measured as a function of the strain rate at the stagnation point of the cross-slots. Equivalent experiments are also carried out using trypsin-treated PSF (t-PSF) in which the protein content is digested away using an enzyme. The results show that, at the synovial fluid concentrations tested, the protein content plays a negligible role in either the fluid's bulk shear or extensional flow behaviour. This helps support the validity of the analysis of synovial fluid HA content, either by microfluidic or by other techniques where the synovial fluid is first diluted, and suggests that the HA and protein content in synovial fluid must be higher than a certain minimum threshold concentration before HA-protein or protein-protein interactions become significant. However a systematic shift in the FIB response as the PSF and t-PSF samples are progressively diluted indicates that HA-HA interactions remain significant at the concentrations tested. These interactions influence FIB-derived macromolecular parameters such as the relaxation time and the molecular weight distribution and therefore must be minimized for the best validity of this method as an analytical technique, in which non-interaction between molecules is assumed.
[Fish ovarian fluid contains protease inhibitors].
Minin, A A; Ozerova, S G
2015-01-01
Studies of the conditions under which fish egg is activated spontaneously without the sperm showed that the egg retains the ability for fertilization in the ovarian (coelomic) fluid, which surrounds it in the gonad cavity after ovulation. Earlier, we showed that, in artificial media, the spontaneous activation is suppressed by protease inhibitors. In this study, we investigated the presence of natural protease inhibitors in the ovarian fluid and showed that the ovarian fluid of zebrafish and loach contains protease inhibitors, in particular, type I serpin a, a protein inhibitor of trypsin proteases.
Hasegawa, Tetsuya; Sumita, Maho; Horitani, Yusuke; Tamai, Reo; Tanaka, Katsuhiro; Komori, Masayuki; Takenaka, Shigeo
2014-04-01
Epilepsy is a common neurological disorder with seizures, but diagnostic approaches in veterinary clinics remain limited. Cerebrospinal fluid (CSF) is a body fluid used for diagnosis in veterinary medicine. In this study, we explored canine epilepsy diagnostic biomarkers using gas chromatography-mass spectrometry (GC-MS)-based metabolic profiling of CSF and multivariate data analysis. Profiles for subjects with idiopathic epilepsy differed significantly from those of healthy controls and subjects with symptomatic epilepsy. Among 60 identified metabolites, the levels of 20 differed significantly among the three groups. Glutamic acid was significantly increased in idiopathic epilepsy, and some metabolites including ascorbic acid were changed in both forms of epilepsy. These findings show that metabolic profiles of CSF differ between idiopathic and symptomatic epilepsy and that metabolites including glutamic acid and ascorbic acid in CSF may be useful for diagnosis of canine epilepsy.
Taconnat, Laurence; Clarys, David; Vanneste, Sandrine; Bouazzaoui, Badiâa; Isingrini, Michel
2007-06-01
Cued-recall in episodic memory was investigated in relation to low and high cognitive support at retrieval, executive function level and fluid intelligence level in 81 healthy adults divided first into two age groups (young and elderly adults). The first analyses showed that age-related differences were greater when a low cognitive support was provided to recall the words. An individual index of loss of performance when the number of cues was decreased was then calculated. Hierarchical regression analysis revealed that the executive functions measure (perseverative errors on the Wisconsin Card Sorting Test) was a better candidate than the fluid intelligence measure (Cattell's culture fair test) to account for the age-related variance of the size of performance loss. These findings suggest that age differences in implementing strategic retrieval may be mainly due to a decline in executive functions.
Design of magneto-rheological mount for a cabin of heavy equipment vehicles
NASA Astrophysics Data System (ADS)
Yang, Soon-Yong; Do, Xuan Phu; Choi, Seung-Bok
2016-04-01
In this paper, magneto-rheological (MR) mount for a cabin of heavy equipment vehicles is designed for improving vibration isolation in both low and high frequency domains. The proposed mount consists of two principal parts of mount, rubber part and MR fluid path. The rubber part of existed mount and spring are used to change the stiffness and frequency characteristics for low vibration frequency range. The MR fluid path is a valve type structure using flow mode. In order to control the external magnetic field, a solenoid coil is placed in MR mount. Magnetic intensity analysis is then conducted to optimize dimensions using computer simulation. Experimental results show that magnetic field can reduce low frequency vibration. The results presented in this work indicate that proper application of MR fluid and rubber characteristic to devise MR mount can lead to the improvement of vibration control performance in both low and high frequency ranges.
Anisotropic charged stellar models in Generalized Tolman IV spacetime
NASA Astrophysics Data System (ADS)
Murad, Mohammad Hassan; Fatema, Saba
2015-01-01
With the presence of electric charge and pressure anisotropy some anisotropic stellar models have been developed. An algorithm recently presented by Herrera et al. (Phys. Rev. D 77, 027502 (2008)) to generate static spherically symmetric anisotropic solutions of Einstein's equations has been used to derive relativistic anisotropic charged fluid spheres. In the absence of pressure anisotropy the fluid spheres reduce to some well-known Generalized Tolman IV exact metrics. The astrophysical significance of the resulting equations of state (EOS) for a particular case (Wyman-Leibovitz-Adler) for the anisotropic charged matter distribution has been discussed. Physical analysis shows that the relativistic stellar structure obtained in this work may reasonably model an electrically charged compact star, whose energy density associated with the electric fields is on the same order of magnitude as the energy density of fluid matter itself like electrically charged bare strange quark stars.
Colliding nuclei to colliding galaxies: Illustrations using a simple colliding liquid-drop apparatus
NASA Astrophysics Data System (ADS)
Becchetti, F. D.; Mack, S. L.; Robinson, W. R.; Ojaruega, M.
2015-10-01
A simple apparatus suitable for observing the collisions between drops of fluids of various properties is described. Typical results are shown for experiments performed by undergraduate students using various types of fluids. The collisions take place under free-fall (zero-g) conditions, with analysis employing digital video. Two specific types of collisions are examined in detail, head-on collisions and peripheral, grazing collisions. The collisions for certain fluids illustrate many types of nuclear collisions and provide useful insight into these processes, including both fusion and non-fusion outcomes, often with the formation of exotic shapes or emission of secondary fragments. Collisions of other liquids show a more chaotic behavior, often resembling galactic collisions. As expected, the Weber number associated with a specific collision impact parameter is found to be the important quantity in determining the initial outcome of these colliding systems. The features observed resemble those reported by others using more elaborate experimental techniques.
Identification of molting fluid carboxypeptidase A (MF-CPA) in Bombyx mori.
Ote, Manabu; Mita, Kazuei; Kawasaki, Hideki; Daimon, Takaaki; Kobayashi, Masahiko; Shimada, Toru
2005-07-01
Using microarray analyses, we identified carboxypeptidase A (MF-CPA), which was induced during pupal ecdysis in the wing discs of Bombyx mori. Here, we report the functional characterization of MF-CPA. MF-CPA has amino acid sequence similarities with the proteins in the carboxypeptidase A/B subfamily, from human to nematode. The MF-CPA gene is expressed during the molting periods in the epithelial tissues. MF-CPA is detected in the molting fluid, which fills the space between the old and new cuticle during molting. By Western blot analysis, we show that MF-CPA is secreted as a zymogen and processed in the molting fluid. Recombinant MF-CPA expressed in the insect cells has carboxypeptidase A activity. We propose that MF-CPA degrades the proteins from the old cuticle during the molting periods and contributes to recycling of the amino acids.
Increased Urine Production Due to Leg Fluid Displacement Reduces Hours of Undisturbed Sleep.
Kiba, Keisuke; Hirayama, Akihide; Yoshikawa, Motokiyo; Yamamoto, Yutaka; Torimoto, Kazumasa; Shimizu, Nobutaka; Tanaka, Nobumichi; Fujimoto, Kiyohide; Uemura, Hirotsugu
2017-07-03
To investigate whether or not the leg fluid displacement observed when moving from the standing to recumbent position at bedtime reduces the hours of undisturbed sleep (HUS). Men aged 50 years or older who were hospitalized for urological diseases were investigated. Body water evaluation was performed three times with a bioelectric impedance method: (i) 17:00, (ii) 30 min after (short-term), and (iii) waking up (long-term). A frequency volume chart was used to evaluate the status of nocturnal urine production, and the factors affecting HUS were investigated. A total of 50 patients (mean age: 68 years) were enrolled. Short-term changes in extracellular fluid (ECF in the legs showed a significant positive correlation with urine production per unit of time at the first nocturnal voiding (UFN/HUS) (r = 0.45, P = 0.01). In the comparison between patients who had <3 HUS vs. those who had ≥3 HUS, the <3 HUS group showed significantly greater short-term changes in leg fluid volume, night-time water intake (17:00-06:00), and UFN/HUS. Multivariate analysis to assess the risk factors for <3 HUS indicated UFN/HUS as a risk factor in the overall model, and short-term changes in leg ECF and night-time water intake as risk factors in the model that only considered factors before sleep. Nocturnal leg fluid displacement may increase urine production leading up to first voiding after going to bed, and consequently, induce early awakening after falling asleep. © 2017 John Wiley & Sons Australia, Ltd.
Kinetics of gravity-driven water channels under steady rainfall.
Cejas, Cesare M; Wei, Yuli; Barrois, Remi; Frétigny, Christian; Durian, Douglas J; Dreyfus, Rémi
2014-10-01
We investigate the formation of fingered flow in dry granular media under simulated rainfall using a quasi-two-dimensional experimental setup composed of a random close packing of monodisperse glass beads. Using controlled experiments, we analyze the finger instabilities that develop from the wetting front as a function of fundamental granular (particle size) and fluid properties (rainfall, viscosity). These finger instabilities act as precursors for water channels, which serve as outlets for water drainage. We look into the characteristics of the homogeneous wetting front and channel size as well as estimate relevant time scales involved in the instability formation and the velocity of the channel fingertip. We compare our experimental results with that of the well-known prediction developed by Parlange and Hill [D. E. Hill and J. Y. Parlange, Soil Sci. Soc. Am. Proc. 36, 697 (1972)]. This model is based on linear stability analysis of the growth of perturbations arising at the interface between two immiscible fluids. Results show that, in terms of morphology, experiments agree with the proposed model. However, in terms of kinetics we nevertheless account for another term that describes the homogenization of the wetting front. This result shows that the manner we introduce the fluid to a porous medium can also influence the formation of finger instabilities. The results also help us to calculate the ideal flow rate needed for homogeneous distribution of water in the soil and minimization of runoff, given the grain size, fluid density, and fluid viscosity. This could have applications in optimizing use of irrigation water.
The Search for Surviving Direct Samples of Early Solar System Water
NASA Technical Reports Server (NTRS)
Zolensky, Michael
2016-01-01
We have become increasingly aware of the fundamental importance of water, and aqueous alteration, on primitive solar-system bodies. All classes of astromaterials studied show some degree of interaction with aqueous fluids. Nevertheless, we are still lacking fundamental information such as the location and timing of the aqueous alteration and the detailed nature of the aqueous fluids. Halite crystals in two meteorite regolith breccias were found to contain aqueous fluid inclusions (brines) trapped approx. 4.5 BYBP. Heating/freezing studies of the aqueous fluid inclusions in these halites demonstrated that they were trapped near 25 C. The initial results of our O and H isotopic measurements on these brine inclusions can be explained by a simple model mixing asteroidal and cometary water. We have been analyzing solids and organics trapped alongside the brines in the halites by FTIR, C-XANES, SXRD and Raman, as clues to the origin of the water. The organics show thermal effects that span the entire range witnessed by organics in all chondrite types. Since we identified water-soluble aromatics, including partially halogenated methanol, in some of the halite, we suspected amino acids were also present, but have thus far found that levels of amino acids were undetectable (which is very interesting). We have also been locating aqueous fluid inclusions in other astromaterials, principally carbonates in CI and CM chondrites. Although we have advanced slowly towards detailed analysis of these ancient brines, since they require techniques right at or just beyond current analytical capabilities, their eventual full characterization will completely open the window onto the origin and activity of early solar system water.
Preparation of curcumin nanoparticle by using reinforcement ionic gelation technique
NASA Astrophysics Data System (ADS)
Suryani, Halid, Nur Hatidjah Awaliyah; Akib, Nur Illiyyin; Rahmanpiu, Mutmainnah, Nina
2017-05-01
Curcumin, a polyphenolic compound present in curcuma longa has a wide range of activities including anti-inflammatory properties. The potency of curcumin is limited by its poor oral bioavailability because of its poor solubility in aqueous. Various methods have been tried to solve the problem including its encapsulation into nanoparticle. The aim of this study is to develop curcumin nanoparticle by using reinforcement ionic gelation technique and to evaluate the stability of curcumin nanoparticles in gastrointestinal fluid. Curcumin nanoparticles were prepared by using reinforcement ionic gelation technique with different concentrations of chitosan, trypolyphosphate, natrium alginate and calcium chloride. Curcumin nanoparticles were then characterized including particle size and zeta potential by using particle size analyzer and morphology using a transmission electron microscope, entrapment efficiency using UV-Vis Spectrophotometer and chemical structure analysis by Infra Red Spectrophotometer (FTIR). Furthermore, the stability of curcumin nanoparticles were evaluated on artificial gastric fluid and artificial intestinal fluids by measuring the amount of curcumin released in the medium at a time interval. The result revealed that curcumin nanoparticles can be prepared by reinforcement ionic gelation technique, the entrapment efficiency of curcumin nanoparticles were from 86.08 to 91.41%. The average of particle size was 272.9 nm and zeta potential was 12.05 mV. The morphology examination showed that the curcumin nanoparticles have spherical shape. The stability evaluation of curcumin nanoparticles showed that the nanoparticles were stable on artificial gastric fluid and artificial intestinal fluid. This result indicates that curcumin nanoparticles have the potential to be developed for oral delivery.
Simultaneous Aerodynamic Analysis and Design Optimization (SAADO) for a 3-D Flexible Wing
NASA Technical Reports Server (NTRS)
Gumbert, Clyde R.; Hou, Gene J.-W.
2001-01-01
The formulation and implementation of an optimization method called Simultaneous Aerodynamic Analysis and Design Optimization (SAADO) are extended from single discipline analysis (aerodynamics only) to multidisciplinary analysis - in this case, static aero-structural analysis - and applied to a simple 3-D wing problem. The method aims to reduce the computational expense incurred in performing shape optimization using state-of-the-art Computational Fluid Dynamics (CFD) flow analysis, Finite Element Method (FEM) structural analysis and sensitivity analysis tools. Results for this small problem show that the method reaches the same local optimum as conventional optimization. However, unlike its application to the win,, (single discipline analysis), the method. as I implemented here, may not show significant reduction in the computational cost. Similar reductions were seen in the two-design-variable (DV) problem results but not in the 8-DV results given here.
Apparatus and method for fluid analysis
Wilson, Bary W.; Peters, Timothy J.; Shepard, Chester L.; Reeves, James H.
2004-11-02
The present invention is an apparatus and method for analyzing a fluid used in a machine or in an industrial process line. The apparatus has at least one meter placed proximate the machine or process line and in contact with the machine or process fluid for measuring at least one parameter related to the fluid. The at least one parameter is a standard laboratory analysis parameter. The at least one meter includes but is not limited to viscometer, element meter, optical meter, particulate meter, and combinations thereof.
SPAR improved structure/fluid dynamic analysis capability
NASA Technical Reports Server (NTRS)
Oden, J. T.; Pearson, M. L.
1983-01-01
The capability of analyzing a coupled dynamic system of flowing fluid and elastic structure was added to the SPAR computer code. A method, developed and adopted for use in SPAR utilizes the existing assumed stress hybrid plan element in SPAR. An operational mode was incorporated in SPAR which provides the capability for analyzing the flaw of a two dimensional, incompressible, viscous fluid within rigid boundaries. Equations were developed to provide for the eventual analysis of the interaction of such fluids with an elastic solid.
Viscous fingering with partially miscible fluids
NASA Astrophysics Data System (ADS)
Fu, Xiaojing; Cueto-Felgueroso, Luis; Juanes, Ruben
2017-10-01
Viscous fingering—the fluid-mechanical instability that takes place when a low-viscosity fluid displaces a high-viscosity fluid—has traditionally been studied under either fully miscible or fully immiscible fluid systems. Here we study the impact of partial miscibility (a common occurrence in practice) on the fingering dynamics. Through a careful design of the thermodynamic free energy of a binary mixture, we develop a phase-field model of fluid-fluid displacements in a Hele-Shaw cell for the general case in which the two fluids have limited (but nonzero) solubility into one another. We show, by means of high-resolution numerical simulations, that partial miscibility exerts a powerful control on the degree of fingering: fluid dissolution hinders fingering while fluid exsolution enhances fingering. We also show that, as a result of the interplay between compositional exchange and the hydrodynamic pattern-forming process, stronger fingering promotes the system to approach thermodynamic equilibrium more quickly.
A Study on the Reliability of an On-Site Oral Fluid Drug Test in a Recreational Context
Gentili, Stefano; Tittarelli, Roberta; Mannocchi, Giulio
2016-01-01
The reliability of DrugWipe 5A on site test for principal drugs of abuse (cannabis, amphetamines, cocaine, and opiates) detection in oral fluid was assessed by comparing the on-site results with headspace solid-phase microextraction (HS-SPME) gas chromatography-mass spectrometry (GC-MS) analysis on samples extracted by the device collection pad. Oral fluid samples were collected at recreational settings (e.g., discos, pubs, and music bars) of Rome metropolitan area. Eighty-three club goers underwent the on-site drug screening test with one device. Independently from the result obtained, a second device was used just to collect another oral fluid sample subsequently extracted and analyzed in the laboratory following HS-SPME procedure, gas chromatographic separation by a capillary column, and MS detection by electron impact ionization. DrugWipe 5A on-site test showed 54 samples (65.1%) positive to one or more drugs of abuse, whereas 75 samples (90.4%) tested positive for one or more substances following GC-MS assay. Comparing the obtained results, the device showed sensitivity, specificity, and accuracy around 80% for amphetamines class. Sensitivity (67 and 50%) was obtained for cocaine and opiates, while both sensitivity and accuracy were unsuccessful (29 and 53%, resp.) for cannabis, underlying the limitation of the device for this latter drug class. PMID:27610266
Electrohydrodynamics of a compound vesicle under an AC electric field
NASA Astrophysics Data System (ADS)
Priti Sinha, Kumari; Thaokar, Rochish M.
2017-07-01
Compound vesicles are relevant as simplified models for biological cells as well as in technological applications such as drug delivery. Characterization of these compound vesicles, especially the inner vesicle, remains a challenge. Similarly their response to electric field assumes importance in light of biomedical applications such as electroporation. Fields lower than that required for electroporation cause electrodeformation in vesicles and can be used to characterize their mechanical and electrical properties. A theoretical analysis of the electrohydrodynamics of a compound vesicle with outer vesicle of radius R o and an inner vesicle of radius λ {{R}o} , is presented. A phase diagram for the compound vesicle is presented and elucidated using detailed plots of electric fields, free charges and electric stresses. The electrohydrodynamics of the outer vesicle in a compound vesicle shows a prolate-sphere and prolate-oblate-sphere shape transitions when the conductivity of the annular fluid is greater than the outer fluid, and vice-versa respectively, akin to single vesicle electrohydrodynamics reported in the literature. The inner vesicle in contrast shows sphere-prolate-sphere and sphere-prolate-oblate-sphere transitions when the inner fluid conductivity is greater and smaller than the annular fluid, respectively. Equations and methodology are provided to determine the bending modulus and capacitance of the outer as well as the inner membrane, thereby providing an easy way to characterize compound vesicles and possibly biological cells.
Fluid and structure coupling analysis of the interaction between aqueous humor and iris.
Wang, Wenjia; Qian, Xiuqing; Song, Hongfang; Zhang, Mindi; Liu, Zhicheng
2016-12-28
Glaucoma is the primary cause of irreversible blindness worldwide associated with high intraocular pressure (IOP). Elevated intraocular pressure will affect the normal aqueous humor outflow, resulting in deformation of iris. However, the deformation ability of iris is closely related to its material properties. Meanwhile, the passive deformation of the iris aggravates the pupillary block and angle closure. The nature of the interaction mechanism of iris deformation and aqueous humor fluid flow has not been fully understood and has been somewhat a controversial issue. The purpose here was to study the effect of IOP, localization, and temperature on the flow of the aqueous humor and the deformation of iris interacted by aqueous humor fluid flow. Based on mechanisms of aqueous physiology and fluid dynamics, 3D model of anterior chamber (AC) was constructed with the human anatomical parameters as a reference. A 3D idealized standard geometry of anterior segment of human eye was performed. Enlarge the size of the idealization geometry model 5 times to create a simulation device by using 3D printing technology. In this paper, particle image velocimetry technology is applied to measure the characteristic of fluid outflow in different inlet velocity based on the device. Numerically calculations were made by using ANSYS 14.0 Finite Element Analysis. Compare of the velocity distributions to confirm the validity of the model. The fluid structure interaction (FSI) analysis was carried out in the valid geometry model to study the aqueous flow and iris change. In this paper, the validity of the model is verified through computation and comparison. The results indicated that changes of gravity direction of model significantly affected the fluid dynamics parameters and the temperature distribution in anterior chamber. Increased pressure and the vertical position increase the velocity of the aqueous humor fluid flow, with the value increased of 0.015 and 0.035 mm/s. The results act on the iris showed that, gravity direction from horizontal to vertical decrease the equivalent stress in the normal IOP model, while almost invariably in the high IOP model. With the increased of the iris elasticity modulus, the equivalent strain and the total deformation of iris is decreased. The maximal value of equivalent strain of iris in high IOP model is higher than that of in normal IOP model. The maximum deformation of iris is lower in the high IOP model than in the normal IOP model. The valid model of idealization geometry of human eye could be helpful to study the relationship between localization, iris deformation and IOP. So far the FSI analysis was carried out in that idealization geometry model of anterior segment to study aqueous flow and iris change.
Fluid flow dynamics in MAS systems.
Wilhelm, Dirk; Purea, Armin; Engelke, Frank
2015-08-01
The turbine system and the radial bearing of a high performance magic angle spinning (MAS) probe with 1.3mm-rotor diameter has been analyzed for spinning rates up to 67kHz. We focused mainly on the fluid flow properties of the MAS system. Therefore, computational fluid dynamics (CFD) simulations and fluid measurements of the turbine and the radial bearings have been performed. CFD simulation and measurement results of the 1.3mm-MAS rotor system show relatively low efficiency (about 25%) compared to standard turbo machines outside the realm of MAS. However, in particular, MAS turbines are mainly optimized for speed and stability instead of efficiency. We have compared MAS systems for rotor diameter of 1.3-7mm converted to dimensionless values with classical turbomachinery systems showing that the operation parameters (rotor diameter, inlet mass flow, spinning rate) are in the favorable range. This dimensionless analysis also supports radial turbines for low speed MAS probes and diagonal turbines for high speed MAS probes. Consequently, a change from Pelton type MAS turbines to diagonal turbines might be worth considering for high speed applications. CFD simulations of the radial bearings have been compared with basic theoretical values proposing considerably smaller frictional loss values. The discrepancies might be due to the simple linear flow profile employed for the theoretical model. Frictional losses generated inside the radial bearings result in undesired heat-up of the rotor. The rotor surface temperature distribution computed by CFD simulations show a large temperature gradient over the rotor. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Peters, Todd (Editor); Saiz, John (Editor)
1997-01-01
This document contains papers presented at the Eighth Annual Thermal and Fluids Analysis Workshop (TFAWS) on Spacecraft Analysis and Design hosted by the NASA/Johnson Space Center (JSC) on September 8-11, 1997, and held at the University of Houston - Clear Lake (UHCL) in the Bayou Building. The Workshop was sponsored by NASA/JSC. Seminars were hosted and technical papers were provided in fluid and thermal dynamics. Seminars were given in GASP, SINDA, SINAPS Plus, TSS, and PHOENICS. Seventeen papers were presented.
Perilymph composition in scala tympani of the cochlea: influence of cerebrospinal fluid.
Hara, A; Salt, A N; Thalmann, R
1989-11-01
A commonly used technique to obtain cochlear perilymph for analysis has been the aspiration of samples through the round window membrane. The present study has investigated the influence of the volume withdrawn on sample composition in the guinea pig. Samples of less than 200 nl in volume taken through the round window showed relatively high glycine content, comparable to the level found in samples taken from scala vestibuli. If larger volumes are withdrawn, lower glycine levels are observed. This is consistent with cerebrospinal fluid (having a low glycine content) being drawn into scala tympani through the cochlear aqueduct and contaminating the sample. The existence of a concentration difference for glycine between scala tympani perilymph and cerebrospinal fluid suggests the physiologic communication across the cochlear aqueduct is relatively small in this species. The observation of considerable exchange between cerebrospinal fluid and perilymph, as reported in some studies, is more likely to be an artifact of the experimental procedures, rather than of physiologic significance. Alternative sampling procedures have been evaluated which allow larger volumes of uncontaminated scala tympani perilymph to be collected.
Microscopical analysis of synovial fluid wear debris from failing CoCr hip prostheses
NASA Astrophysics Data System (ADS)
Ward, M. B.; Brown, A. P.; Cox, A.; Curry, A.; Denton, J.
2010-07-01
Metal on metal hip joint prostheses are now commonly implanted in patients with hip problems. Although hip replacements largely go ahead problem free, some complications can arise such as infection immediately after surgery and aseptic necrosis caused by vascular complications due to surgery. A recent observation that has been made at Manchester is that some Cobalt Chromium (CoCr) implants are causing chronic pain, with the source being as yet unidentified. This form of replacement failure is independent of surgeon or hospital and so some underlying body/implant interface process is thought to be the problem. When the synovial fluid from a failed joint is examined particles of metal (wear debris) can be found. Transmission Electron Microscopy (TEM) has been used to look at fixed and sectioned samples of the synovial fluid and this has identified fine (< 100 nm) metal and metal oxide particles within the fluid. TEM EDX and Electron Energy Loss Spectroscopy (EELS) have been employed to examine the composition of the particles, showing them to be chromium rich. This gives rise to concern that the failure mechanism may be associated with the debris.
The effect of magnetohydrodynamic nano fluid flow through porous cylinder
NASA Astrophysics Data System (ADS)
Widodo, Basuki; Arif, Didik Khusnul; Aryany, Deviana; Asiyah, Nur; Widjajati, Farida Agustini; Kamiran
2017-08-01
This paper concerns about the analysis of the effect of magnetohydrodynamic nano fluid flow through horizontal porous cylinder on steady and incompressible condition. Fluid flow is assumed opposite gravity and induced by magnet field. Porous cylinder is assumed had the same depth of porous and was not absorptive. The First thing to do in this research is to build the model of fluid flow to obtain dimentional governing equations. The dimentional governing equations are consist of continuity equation, momentum equation, and energy equation. Furthermore, the dimensional governing equations are converted to non-dimensional governing equation by using non-dimensional parameters and variables. Then, the non-dimensional governing equations are transformed into similarity equations using stream function and solved using Keller-Box method. The result of numerical solution further is obtained by taking variation of magnetic parameter, Prandtl number, porosity parameter, and volume fraction. The numerical results show that velocity profiles increase and temperature profiles decrease when both of the magnetic and the porosity parameter increase. However, the velocity profiles decrease and the temperature profiles increase when both of the magnetic and the porosity parameter increase.
Field-sensitivity To Rheological Parameters
NASA Astrophysics Data System (ADS)
Freund, Jonathan; Ewoldt, Randy
2017-11-01
We ask this question: where in a flow is a quantity of interest Q quantitatively sensitive to the model parameters θ-> describing the rheology of the fluid? This field sensitivity is computed via the numerical solution of the adjoint flow equations, as developed to expose the target sensitivity δQ / δθ-> (x) via the constraint of satisfying the flow equations. Our primary example is a sphere settling in Carbopol, for which we have experimental data. For this Carreau-model configuration, we simultaneously calculate how much a local change in the fluid intrinsic time-scale λ, limit-viscosities ηo and η∞, and exponent n would affect the drag D. Such field sensitivities can show where different fluid physics in the model (time scales, elastic versus viscous components, etc.) are important for the target observable and generally guide model refinement based on predictive goals. In this case, the computational cost of solving the local sensitivity problem is negligible relative to the flow. The Carreau-fluid/sphere example is illustrative; the utility of field sensitivity is in the design and analysis of less intuitive flows, for which we provide some additional examples.
Liquid phase fluid dynamic (methanol) run in the LaPorte alternative fuels development unit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bharat L. Bhatt
1997-05-01
A fluid dynamic study was successfully completed in a bubble column at DOE's Alternative Fuels Development Unit (AFDU) in LaPorte, Texas. Significant fluid dynamic information was gathered at pilot scale during three weeks of Liquid Phase Methanol (LPMEOJP) operations in June 1995. In addition to the usual nuclear density and temperature measurements, unique differential pressure data were collected using Sandia's high-speed data acquisition system to gain insight on flow regime characteristics and bubble size distribution. Statistical analysis of the fluctuations in the pressure data suggests that the column was being operated in the churn turbulent regime at most of themore » velocities considered. Dynamic gas disengagement experiments showed a different behavior than seen in low-pressure, cold-flow work. Operation with a superficial gas velocity of 1.2 ft/sec was achieved during this run, with stable fluid dynamics and catalyst performance. Improvements included for catalyst activation in the design of the Clean Coal III LPMEOH{trademark} plant at Kingsport, Tennessee, were also confirmed. In addition, an alternate catalyst was demonstrated for LPMEOH{trademark}.« less
Effects of irregular cerebrospinal fluid production rate in human brain ventricular system
NASA Astrophysics Data System (ADS)
Hadzri, Edi Azali; Shamsudin, Amir Hamzah; Osman, Kahar; Abdul Kadir, Mohammed Rafiq; Aziz, Azian Abd
2012-06-01
Hydrocephalus is an abnormal accumulation of fluid in the ventricles and cavities in the brain. It occurs when the cerebrospinal fluid (CSF) flow or absorption is blocked or when excessive CSF is secreted. The excessive accumulation of CSF results in an abnormal widening of the ventricles. This widening creates potentially harmful pressure on the tissues of the brain. In this study, flow analysis of CSF was conducted on a three-dimensional model of the third ventricle and aqueduct of Sylvius, derived from MRI scans. CSF was modeled as Newtonian Fluid and its flow through the region of interest (ROI) was done using EFD. Lab software. Different steady flow rates through the Foramen of Monro, classified by normal and hydrocephalus cases, were modeled to investigate its effects. The results show that, for normal and hydrocephalus cases, the pressure drop of CSF flow across the third ventricle was observed to be linearly proportionally to the production rate increment. In conclusion, flow rates that cause pressure drop of 5 Pa was found to be the threshold for the initial sign of hydrocephalus.
NASA Astrophysics Data System (ADS)
Miehe, Christian; Mauthe, Steffen; Teichtmeister, Stephan
2015-09-01
This work develops new minimization and saddle point principles for the coupled problem of Darcy-Biot-type fluid transport in porous media at fracture. It shows that the quasi-static problem of elastically deforming, fluid-saturated porous media is related to a minimization principle for the evolution problem. This two-field principle determines the rate of deformation and the fluid mass flux vector. It provides a canonically compact model structure, where the stress equilibrium and the inverse Darcy's law appear as the Euler equations of a variational statement. A Legendre transformation of the dissipation potential relates the minimization principle to a characteristic three field saddle point principle, whose Euler equations determine the evolutions of deformation and fluid content as well as Darcy's law. A further geometric assumption results in modified variational principles for a simplified theory, where the fluid content is linked to the volumetric deformation. The existence of these variational principles underlines inherent symmetries of Darcy-Biot theories of porous media. This can be exploited in the numerical implementation by the construction of time- and space-discrete variational principles, which fully determine the update problems of typical time stepping schemes. Here, the proposed minimization principle for the coupled problem is advantageous with regard to a new unconstrained stable finite element design, while space discretizations of the saddle point principles are constrained by the LBB condition. The variational principles developed provide the most fundamental approach to the discretization of nonlinear fluid-structure interactions, showing symmetric systems in algebraic update procedures. They also provide an excellent starting point for extensions towards more complex problems. This is demonstrated by developing a minimization principle for a phase field description of fracture in fluid-saturated porous media. It is designed for an incorporation of alternative crack driving forces, such as a convenient criterion in terms of the effective stress. The proposed setting provides a modeling framework for the analysis of complex problems such as hydraulic fracture. This is demonstrated by a spectrum of model simulations.
Fluid replacement advice during work in fully encapsulated impermeable chemical protective suits.
Rubenstein, Candace D; DenHartog, Emiel A; Deaton, A Shawn; Bogerd, Cornelis P; DeKant, Saskia
2017-06-01
A major concern for responders to hazardous materials (HazMat) incidents is the heat strain that is caused by fully encapsulated impermeable chemical protective suits. In a research project, funded by the US Department of Defense, the thermal strain experienced when wearing these suits was studied. One particular area of interest was the fluid loss of responders during work in these suits as dehydration may be an additional health concern to the heat strain. 17 City of Raleigh firemen and 24 students were tested at two different labs. Subjects between the ages of 25 and 51 were used for human subject trials in a protocol approved by the local ethical committee. Six different Level A HazMat suits were evaluated in three climates: moderate (24°C, 50% RH, 20°C WBGT), warm-wet (32°C, 60% RH, 30°C WBGT), and hot-dry (45°C, 20% RH, 37°C WBGT, 200 W/m 2 radiant load) and at three walking speeds: 2.5 km/hr, 4 km/hr, and 5.5 km/hr. 4 km/hr was tested in all three climates and the other two walking speeds were tested in the moderate climate. Weight loss data was collected to determine fluid loss during these experiments. Working time ranged from as low as 20 min in the hot-dry condition to 60 min (the maximum) in the moderate climate, especially common at the lowest walking speed. The overall results from all experiments showed that fluid loss ranged from 0.2-2.2 L during these exposures, with the average fluid loss being 0.8 L, with 56% of the data between 0.5 L and 1 L of fluid loss. Further analysis showed that a suggestion of drinking 0.7 Liter per hour would safely hydrate over 50% of responders after one work-rest cycle. Applying this fluid volume over three work-rest cycles only put 11% of responders at risk of hypohydration vs. the 57% at risk with no fluid intake.
In situ experimental study of subduction zone fluids using diamond anvil cells
NASA Astrophysics Data System (ADS)
Bureau, H.; Foy, E.; Somogyi, A.; Munsch, P.; Simon, G.; Kubsky, S.
2008-12-01
Experiments carried out in diamond anvil cells combined with in situ synchrotron light source measurements represent the only one issue to observe and study fluid equilibria in real time, at the pressure and temperature conditions of the subduction zones. We will present new results recently obtained at the DIFFABS beam line (SOLEIL Synchrotron) aiming at studying equilibria between silica-rich hydrous melts and aqueous fluids in the presence of U, Th, Pb, Ba and Br. We used synchrotron X-Ray fluorescence analysis performed in situ in Bassett-modified hydrothermal diamond anvil cells in order to monitor the chemical transfers of the studied elements between the phases in equilibrium at different pressures (up to 1.6 GPa) and temperatures (up to 900°C). We have calculated the partition coefficients for each studied element (i): Difluid/melt = Cifluid/Cimelt. Results show that U and Th exhibit more affinities for the silica-rich hydrous fluids in the presence or absence of Br, considered here such as an analogue for Cl, (i.e. 0.4 < DUfluid/melt < 0.7 depending on P,T conditions). Br partitioning shows that whereas this halogen element has very strong affinity to the aqueous fluid during magma degassing (DBrfluid/melt >> 10 after decompression) this coefficient decreases with pressure suggesting that Br would not be immediately washed out from the subducted plate during dehydration but may be recycled deeper in the mantle. These new data combined with previous ones obtained for Pb, Ba (Bureau et al., 2007, HPR vol 27, p. 235) and Rb, Sr, Zr (Bureau et al., 2004, Eos Trans. AGU, 85(47), V11C-05), allow us to propose a general outline of the fluid phase transfers through the subduction factory: (1) at shallow level: their nature and composition, the impact of the presence of halogens and the fertilizing role of such fluids in the mantle wedge, where the generation of arc magmas takes place (2) deeper in the mantle: where hydrous silica-rich supercritical fluids may also favour a deep recycling of a fraction of volatiles and trace elements present in the subducted oceanic crust.
Overview of MSFC's Applied Fluid Dynamics Analysis Group Activities
NASA Technical Reports Server (NTRS)
Garcia, Roberto; Wang, Tee-See; Griffin, Lisa; Turner, James E. (Technical Monitor)
2001-01-01
This document is a presentation graphic which reviews the activities of the Applied Fluid Dynamics Analysis Group at Marshall Space Flight Center (i.e., Code TD64). The work of this group focused on supporting the space transportation programs. The work of the group is in Computational Fluid Dynamic tool development. This development is driven by hardware design needs. The major applications for the design and analysis tools are: turbines, pumps, propulsion-to-airframe integration, and combustion devices.
[Synovial fluid from aseptically failed total hip or knee arthroplasty is not toxic to osteoblasts].
Gallo, J; Zdařilová, A; Rajnochová Svobodová, A; Ulrichová, J; Radová, L; Smižanský, M
2010-10-01
A failure of total hip or knee artroplasty is associated with an increased production of joint fluid. This contains wear particles and host cells and proteins, and is assumed to be involved in the pathogenesis of aseptic loosening and periprosthetic osteolysis. This study investigated the effect of synovial fluid from patients with aseptically failed joint prostheses on osteoblast cultures. Synovial fluid samples were obtained from patients with failed total joint prostheses (TJP; n=36) and from control patient groups (n = 16) involving cases without TJP and osteoarthritis, without TJP but with osteoarthritis, and with stable TJP. The samples were treated in the standard manner and then cultured with the SaOS-2 cell line which shows the characteristics and behaviour of osteoblasts. Each fluid sample was also examined for the content of proteins, cells and selected cytokines (IL-1ß, TNF-α, IL-6, RANKL and OPG detected by ELISA). We tested the hypothesis assuming that the fluids from failed joints would show higher cytotoxicity to osteoblast culture and we also expected higher levels of IL-1ß, TNF-α, IL-6, and RANKL in patients with TJP failure and/ or with more severe bone loss. The statistical methods used included the Kruskal-Wallis ANOVA and Mann-Whitney U test. The fluids from failed TJPs showed the highest RANKL and the lowest OPG levels resulting in the highest RANKL/OPG ratio. However, there was no evidence suggesting that the joint fluids from failed TJPs would be more toxic to osteoblast culture than the fluids from control groups. In addition, no correlation was found between the fluid levels of molecules promoting inflammation and osteoclastic activity and the extent of bone loss in the hip (in terms of Saleh's classification) or the knee (AORI classification). In fact, the fluids from failed TJPs had higher protein levels in comparison with the controls, but the difference was not significant. The finding of high RANKL levels and low OPG concentrations is in agreement with the theory of aseptic loosening and periprosthetic osteolysis. The other cytokines, particularly TNF-α and IL-1ß, were found in low levels. This can be explained by the stage of particle disease at which the samples were taken for ELISA analysis. It is probable that the level of signal molecules reflects osteolytic process activity and is therefore not constant. The reason for no correlation found between cytokine levels and the extent of bone loss may also lie in the use of therapeutic classifications of bone defects that is apparently less sensitive to the biological activity of aseptic loosening and/or periprosthetic osteolysis. Synovial fluids from failed total hip or knee joint prostheses are not toxic to osteoblast cultures. Cytotoxicity indicators and levels of pro-inflammatory and pro-osteoclastic cytokines (IL-1ß, TNF-α, IL-6, RANKL and OPG) do not correlate well with the extent of periprosthetic bone loss. Key words: total joint replacement, arthroplasty, aseptic loosening, periprosthetic osteolysis, joint fluid, SaOS-2 cell line, cytotoxicity, cytokines, RANKL, OPG.
Thorsén, G; Bergquist, J
2000-08-18
A method is presented for the chiral analysis of amino acids in biological fluids using micellar electrokinetic chromatography (MEKC) and laser-induced fluorescence (LIF). The amino acids are derivatized with the chiral reagent (+/-)-1-(9-anthryl)-2-propyl chloroformate (APOC) and separated using a mixed micellar separation system. No tedious pre-purification of samples is required. The excellent separation efficiency and good detection capabilities of the MEKC-LIF system are exemplified in the analysis of urine and cerebrospinal fluid. This is the first time MEKC has been reported for chiral analysis of amino acids in biological fluids. The amino acids D-alanine, D-glutamine, and D-aspartic acid have been observed in cerebrospinal fluid, and D-alanine and D-glutamic acid in urine. To the best of our knowledge no measurements of either D-alanine in cerebrospinal fluid or D-glutamic acid in urine have been presented in the literature before.
Galea, Karen S; Searl, Alison; Sánchez-Jiménez, Araceli; Woldbæk, Torill; Halgard, Kristin; Thorud, Syvert; Steinsvåg, Kjersti; Krüger, Kirsti; Maccalman, Laura; Cherrie, John W; van Tongeren, Martie
2012-01-01
There are no recognized analytical methods for measuring oil mist and vapours arising from drilling fluids used in offshore petroleum drilling industry. To inform the future development of improved methods of analysis for oil mist and vapours this study assessed the inter- and intra-laboratory variability in oil mist and vapour analysis. In addition, sample losses during transportation and storage were assessed. Replicate samples for oil mist and vapour were collected using the 37-mm Millipore closed cassette and charcoal tube assembly. Sampling was conducted in a simulated shale shaker room, similar to that found offshore for processing drilling fluids. Samples were analysed at two different laboratories, one in Norway and one in the UK. Oil mist samples were analysed using Fourier transform infrared spectroscopy (FTIR), while oil vapour samples were analysed by gas chromatography (GC). The comparison of replicate samples showed substantial within- and between-laboratory variability in reported oil mist concentrations. The variability in oil vapour results was considerably reduced compared to oil mist, provided that a common method of calibration and quantification was adopted. The study also showed that losses can occur during transportation and storage of samples. There is a need to develop a harmonized method for the quantification of oil mist on filter and oil vapour on charcoal supported by a suitable proficiency testing scheme for laboratories involved in the analysis of occupational hygiene samples for the petroleum industry. The uncertainties in oil mist and vapour measurement have substantial implications in relation to compliance with occupational exposure limits and also in the reliability of any exposure-response information reported in epidemiological studies.
Isotopic constraints on ice age fluids in active geothermal systems: Reykjanes, Iceland
NASA Astrophysics Data System (ADS)
Pope, Emily C.; Bird, Dennis K.; Arnórsson, Stefán; Fridriksson, Thráinn; Elders, Wilfred A.; Fridleifsson, Gudmundur Ó.
2009-08-01
The Reykjanes geothermal system is located on the landward extension of the Mid-Atlantic Ridge in southwest Iceland, and provides an on-land proxy to high-temperature hydrothermal systems of oceanic spreading centers. Previous studies of elemental composition and salinity have shown that Reykjanes geothermal fluids are likely hydrothermally modified seawater. However, δD values of these fluids are as low as -23‰, which is indicative of a meteoric water component. Here we constrain the origin of Reykjanes hydrothermal solutions by analysis of hydrogen and oxygen isotope compositions of hydrothermal epidote from geothermal drillholes at depths between 1 and 3 km. δDEPIDOTE values from wells RN-8, -9, -10 and -17 collectively range from -60 to -78‰, and δ18OEPIDOTE in these wells are between -3.0 and 2.3‰. The δD values of epidote generally increase along a NE trend through the geothermal field, whereas δ18O values generally decrease, suggesting a southwest to northeast migration of the geothermal upflow zone with time that is consistent with present-day temperatures and observed hydrothermal mineral zones. For comparative analysis, the meteoric-water dominated Nesjavellir and Krafla geothermal systems, which have a δDFLUID of ˜ -79‰ and -89‰, respectively, show δDEPIDOTE values of -115‰ and -125‰. In contrast, δDEPIDOTE from the mixed meteoric-seawater Svartsengi geothermal system is -68‰; comparable to δDEPIDOTE from well RN-10 at Reykjanes. Stable isotope compositions of geothermal fluids in isotopic equilibrium with the epidotes at Reykjanes are computed using published temperature dependent hydrogen and oxygen isotope fractionation curves for epidote-water, measured isotope composition of the epidotes and temperatures approximated from the boiling point curve with depth. Calculated δD and δ18O of geothermal fluids are less than 0‰, suggesting that fluids of meteoric or glacial origin are a significant component of the geothermal solutions. Additionally, δDFLUID values in equilibrium with geothermal epidote are lower than those of modern-day fluids, whereas calculated δ18OFLUID values are within range of the observed fluid isotope composition. We propose that modern δDEPIDOTE and δDFLUID values are the result of diffusional exchange between hydrous alteration minerals that precipitated from glacially-derived fluids early in the evolution of the Reykjanes system and modern seawater-derived geothermal fluids. A simplified model of isotope exchange in the Reykjanes geothermal system, in which the average starting δDROCK value is -125‰ and the water to rock mass ratio is 0.25, predicts a δDFLUID composition within 1‰ of average measured values. This model resolves the discrepancy between fluid salinity and isotope composition of Reykjanes geothermal fluids, explains the observed disequilibrium between modern fluids and hydrothermal epidote, and suggests that rock-fluid interaction is the dominant control over the evolution of fluid isotope composition in the hydrothermal system.
ISS-CREAM Thermal and Fluid System Design and Analysis
NASA Technical Reports Server (NTRS)
Thorpe, Rosemary S.
2015-01-01
Thermal and Fluids Analysis Workshop (TFAWS), Silver Spring MD NCTS 21070-15. The ISS-CREAM (Cosmic Ray Energetics And Mass for the International Space Station) payload is being developed by an international team and will provide significant cosmic ray characterization over a long time frame. Cold fluid provided by the ISS Exposed Facility (EF) is the primary means of cooling for 5 science instruments and over 7 electronics boxes. Thermal fluid integrated design and analysis was performed for CREAM using a Thermal Desktop model. This presentation will provide some specific design and modeling examples from the fluid cooling system, complex SCD (Silicon Charge Detector) and calorimeter hardware, and integrated payload and ISS level modeling. Features of Thermal Desktop such as CAD simplification, meshing of complex hardware, External References (Xrefs), and FloCAD modeling will be discussed.
Linear and nonlinear analysis of fluid slosh dampers
NASA Astrophysics Data System (ADS)
Sayar, B. A.; Baumgarten, J. R.
1982-11-01
A vibrating structure and a container partially filled with fluid are considered coupled in a free vibration mode. To simplify the mathematical analysis, a pendulum model to duplicate the fluid motion and a mass-spring dashpot representing the vibrating structure are used. The equations of motion are derived by Lagrange's energy approach and expressed in parametric form. For a wide range of parametric values the logarithmic decrements of the main system are calculated from theoretical and experimental response curves in the linear analysis. However, for the nonlinear analysis the theoretical and experimental response curves of the main system are compared. Theoretical predictions are justified by experimental observations with excellent agreement. It is concluded finally that for a proper selection of design parameters, containers partially filled with viscous fluids serve as good vibration dampers.
Computational Fluid Dynamics Analysis of the Effect of Plaques in the Left Coronary Artery
Chaichana, Thanapong; Sun, Zhonghua; Jewkes, James
2012-01-01
This study was to investigate the hemodynamic effect of simulated plaques in left coronary artery models, which were generated from a sample patient's data. Plaques were simulated and placed at the left main stem and the left anterior descending (LAD) to produce at least 60% coronary stenosis. Computational fluid dynamics analysis was performed to simulate realistic physiological conditions that reflect the in vivo cardiac hemodynamics, and comparison of wall shear stress (WSS) between Newtonian and non-Newtonian fluid models was performed. The pressure gradient (PSG) and flow velocities in the left coronary artery were measured and compared in the left coronary models with and without presence of plaques during cardiac cycle. Our results showed that the highest PSG was observed in stenotic regions caused by the plaques. Low flow velocity areas were found at postplaque locations in the left circumflex, LAD, and bifurcation. WSS at the stenotic locations was similar between the non-Newtonian and Newtonian models although some more details were observed with non-Newtonian model. There is a direct correlation between coronary plaques and subsequent hemodynamic changes, based on the simulation of plaques in the realistic coronary models. PMID:22400051
NASA Astrophysics Data System (ADS)
Santoyo, E.; Verma, S. P.; Nieva, D.; Portugal, E.
1991-07-01
Studies related to hydrological structure of the Los Azufres geothermal field and its effects on the exploitation of the field for generation of electrical energy have included a program of sampling and chemical analysis of fluids discharged by a number of deep wells in continuous production. Chemical analysis of the gaseous phase includes monitoring of CO 2, H 2S, NH 3, H 2, He, N 2, CH 4 and 222Rn. Five wells in Los Azufres field were periodically sampled during 1983-1988. The monitoring program has shown considerable variability in the gas concentrations of fluids. Before mid-1985, the 'base-line' concentrations of the gases showed standard deviations between 8 and 28%. During the later period, the average concentrations of different gases ranged from 37% to much higher values above the 'base-line'. The largest variations are observed in He, CO 2 and 222Rn. This variability is interpreted in terms of (1) addition of 'excess steam', (2) a possible relationship with earthquake events that occurred in México during September 19-21, 1985, and early May to early June of 1987 and, (3) more recent variations (after mid-1987), increased exploitation of the field.
Angled injection: Hybrid fluid film bearings for cryogenic applications
NASA Technical Reports Server (NTRS)
SanAndres, Luis
1995-01-01
A computational bulk-flow analysis for prediction of the force coefficients of hybrid fluid film bearings with angled orifice injection is presented. Past measurements on water-lubricated hybrid bearings with angle orifice injection have demonstrated improved rotordynamic performance with virtual elimination of cross-coupled stiffness coefficients and nul or negative whirl frequency ratios. A simple analysis reveals that the fluid momentum exchange at the orifice discharge produces a pressure rise in the recess which retards the shear flow induced by journal rotation, and consequently, reduces cross-coupling forces. The predictions from the model correlate well with experimental measurements from a radial and 45 deg angled orifice injection, five recess water hybrid bearings (C = 125 microns) operating at 10.2, 17.4, and 24.6 krpm and with nominal supply pressures equal to 4, 5.5, and 7 MPa. An application example for a liquid oxygen six recess/pad hybrid journal bearing shows the advantages of tangential orifice injection on the rotordynamic force coefficients and stability indicator for forward whirl motions and without performance degradation on direct stiffness and damping coefficients. The computer program generated, 'hydrojet,' extends and complements previously developed codes.
NASA Astrophysics Data System (ADS)
Sun, F. Z.; Zhang, P.; Liang, Y. C.; Lu, L. H.
2014-09-01
In the non-critical phase-matching (NCPM) along the Θ =90° direction, ADP and DKDP crystals which have many advantages, including a large effective nonlinear optical coefficient, a small PM angular sensitivity and non beam walk-off, at the non-critical phase-matching become the competitive candidates in the inertial confinement fusion(ICF) facility, so the reasonable temperature control of crystals has become more and more important .In this paper, the fluid-solid coupling models of ADP crystal and DKDP crystal which both have anisotropic thermal conductivity in the states of vacuum and non-vacuum were established firstly, and then simulated using the fluid analysis software Fluent. The results through the analysis show that the crystal surface temperature distribution is a ring shape, the temperature gradients in the direction of the optical axis both the crystals are 0.02°C and 0.01°C due to the air, the lowest temperature points of the crystals are both at the center of surface, and the temperatures are lower than 0.09°C and 0.05°C compared in the vacuum and non-vacuum environment, then propose two designs for heating apparatus.
Protein Crystal Movements and Fluid Flows During Microgravity Growth
NASA Technical Reports Server (NTRS)
Boggon, Titus J.; Chayen, Naomi E.; Snell, Edward H.; Dong, Jun; Lautenschlager, Peter; Potthast, Lothar; Siddons, D. Peter; Stojanoff, Vivian; Gordon, Elspeth; Thompson, Andrew W.;
1998-01-01
The growth of protein crystals suitable for x-ray crystal structure analysis is an important topic. The quality (perfection) of protein crystals is now being evaluated by mosaicity analysis (rocking curves) and x-ray topographic images as well as the diffraction resolution limit and overall data quality. In yet another study, use of hanging drop vapour diffusion geometry on the IML-2 shuttle mission showed, again via CCD video monitoring, growing apocrustacyanin C(sub 1) protein crystal executing near cyclic movement, reminiscent of Marangoni convection flow of fluid, the crystals serving as "markers" of the fluid flow. A review is given here of existing results and experience over several microgravity missions. Some comment is given on gel protein crystal growth in attempts to 'mimic' the benefits of microgravity on Earth. Finally, the recent new results from our experiments on the shuttle mission LMS are described. These results include CCD video as well as interferometry during the mission, followed, on return to Earth, by reciprocal space mapping at the NSLS, Brookhaven, and full X-ray data collection on LMS and Earth control lysozyme crystals. Diffraction data recorded from LMS and ground control apocrustacyanin C(sub 1) crystals are also described.
Chaos analysis of viscoelastic chaotic flows of polymeric fluids in a micro-channel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, C. P.; Lam, Y. C., E-mail: myclam@ntu.edu.sg; BioSystems and Micromechanics
2015-07-15
Many fluids, including biological fluids such as mucus and blood, are viscoelastic. Through the introduction of chaotic flows in a micro-channel and the construction of maps of characteristic chaos parameters, differences in viscoelastic properties of these fluids can be measured. This is demonstrated by creating viscoelastic chaotic flows induced in an H-shaped micro-channel through the steady infusion of a polymeric fluid of polyethylene oxide (PEO) and another immiscible fluid (silicone oil). A protocol for chaos analysis was established and demonstrated for the analysis of the chaotic flows generated by two polymeric fluids of different molecular weight but with similar relaxationmore » times. The flows were shown to be chaotic through the computation of their correlation dimension (D{sub 2}) and the largest Lyapunov exponent (λ{sub 1}), with D{sub 2} being fractional and λ{sub 1} being positive. Contour maps of D{sub 2} and λ{sub 1} of the respective fluids in the operating space, which is defined by the combination of polymeric fluids and silicone oil flow rates, were constructed to represent the characteristic of the chaotic flows generated. It was observed that, albeit being similar, the fluids have generally distinct characteristic maps with some similar trends. The differences in the D{sub 2} and λ{sub 1} maps are indicative of the difference in the molecular weight of the polymers in the fluids because the driving force of the viscoelastic chaotic flows is of molecular origin. This approach in constructing the characteristic maps of chaos parameters can be employed as a diagnostic tool for biological fluids and, more generally, chaotic signals.« less
Episodic fluid expulsion and fluid pathways during high-pressure dehydration of serpentinite
NASA Astrophysics Data System (ADS)
Padrón-Navarta, J.; Garrido, C. J.; López Sánchez-Vizcaíno, V.; Gómez-Pugnaire, M.; Tommasi, A.; Marchesi, C.
2011-12-01
Our understanding of subduction zone processes is tightly connected to our knowledge of the cycling of volatiles in the Earth, namely the loci of devolatilization reactions and the fluid migration mechanism. The exact nature of fluid pathways at high-pressure conditions is poorly known and still highly speculative. The study of metamorphic terrains that record main dehydration reaction are, thus, an invaluable tool to decipher the mechanism for fluid expulsion. Among other dehydration reactions in subduction zones, the antigorite (Atg) breakdown is rather discontinuous, releases the largest amount of fluids (ca. 9 wt. %) and is considered to have important seismological implications. The antigorite dehydration front in the Cerro del Almirez (Betic Cordillera, Spain) offers, thus, an unique opportunity to investigate the dynamics of fluid expulsion through the study of micro- and macrotextures recorded in the prograde assemblage (chlorite harzburgite). Chl-harzburgites show two textures interspersed in decameter-sized domains: granoblastic and spinifex-like. Both were formed under similar P-T conditions (~1.6-1.9 GPa and 680-710°C)). We ascribe the change in texture to shifts of the growth rate due to temporal and spatial fluctuations of the affinity of the Atg-breakdown reaction. These fluctuations are driven by cyclic variations of the excess fluid pressure which are ultimately controlled by the hydrodynamics of deserpentinization fluid expulsion. Crystallization at a low affinity of the reaction, correspondig to the granoblastic texture, may be attained if fluids are slowly drained out from the dehydration front. During the advancement of the dehydration front, overpressured domains are left behind preserving highly metastable Atg-serpentinite domains. Brittle failure results in a sudden drop of the fluid pressure, and a displacement of Atg equilibrium towards the prograde products that crystallizes at a high affinity of the reaction (spinifex-like texture). Evidences of brittle failure are found along grain-size reduction zones (GSRZ), a few mm to meters wide, which form roughly planar conjugate structures and crosscut the metamorphic texture. GSRZ are characterized by (1) sharp, irregular shapes and abrupt terminations contacts with undeformed metaperidotite, (2) an important reduction of the olivine grain size (60-250 μm), and (3) decrease in the opx modal amount. Analysis of olivine crystal-preferred orientations in GSRZ shows similar patterns, but a higher dispersion than in neighboring metaperidotite. These structures are interpreted as due to hydrofracturing allowing for the formation of high permeability channelways for overpressured fluids. This textural bimodality (granofels and spinifex-like) and the record of brittle failure witness a unique example of feedback between cyclic metamorphic fluid expulsion, reaction rates, and deformation in the Atg-dehydrating system.
Recent Progress of Microfluidics in Translational Applications
Liu, Zongbin; Han, Xin
2016-01-01
Microfluidics, featuring microfabricated structures, is a technology for manipulating fluids at the micrometer scale. The small dimension and flexibility of microfluidic systems are ideal for mimicking molecular and cellular microenvironment, and show great potential in translational research and development. Here, the recent progress of microfluidics in biological and biomedical applications, including molecular analysis, cellular analysis, and chip-based material delivery and biomimetic design is presented. The potential future developments in the translational microfluidics field are also discussed. PMID:27091777
Electrostatic waves driven by electron beam in lunar wake plasma
NASA Astrophysics Data System (ADS)
Sreeraj, T.; Singh, S. V.; Lakhina, G. S.
2018-05-01
A linear analysis of electrostatic waves propagating parallel to the ambient field in a four component homogeneous, collisionless, magnetised plasma comprising fluid protons, fluid He++, electron beam, and suprathermal electrons following kappa distribution is presented. In the absence of electron beam streaming, numerical analysis of the dispersion relation shows six modes: two electron acoustic modes (modes 1 and 6), two fast ion acoustic modes (modes 2 and 5), and two slow ion acoustic modes (modes 3 and 4). The modes 1, 2 and 3 and modes 4, 5, and 6 have positive and negative phase speeds, respectively. With an increase in electron beam speed, the mode 6 gets affected the most and the phase speed turns positive from negative. The mode 6 thus starts to merge with modes 2 and 3 and generates the electron beam driven fast and slow ion acoustic waves unstable with a finite growth. The electron beam driven slow ion-acoustic waves occur at lower wavenumbers, whereas fast ion-acoustic waves occur at a large value of wavenumbers. The effect of various other parameters has also been studied. We have applied this analysis to the electrostatic waves observed in lunar wake during the first flyby of the ARTEMIS mission. The analysis shows that the low (high) frequency waves observed in the lunar wake could be the electron beam driven slow (fast) ion-acoustic modes.
Breakdown Characteristic Analysis of Paper- Oil Insulation under AC and DC Voltage
NASA Astrophysics Data System (ADS)
Anuar, N. F.; Jamail, N. A. M.; Rahman, R. A.; Kamarudin, M. S.
2017-08-01
This paper presents the study of breakdown characteristic of Kraft paper insulated with two different types of insulating fluid, which are Palm oil and Coconut oil. Palm oil and Coconut oil are chosen as the alternative fluid to the transformer oil because it has high potential and environmentally-friendly. The Segezha Kraft papers with various thicknesses (65.5 gsm, 75 gsm, 85gsm, 90 gsm) have been used in this research. High Voltage Direct Current (HVDC), High Voltage Alternating Current (HVAC) and carbon track and severity analysis is conducted to observe the sample of aging Kraft paper. These samples have been immersed using Palm oil and Coconut oil up to 90 days to observe the absorption rate. All samples started to reach saturation level at 70 days of immersion. HVDC and HVAC breakdown experiments have been done after the samples had reached the saturation level based on normal condition, immersed in Palm oil and immersed in Coconut oil. All samples immersed in liquid show different breakdown voltage reading compared to normal condition. The analysis of carbon track and severity on surface has been done using Analytical Scanning Electron Microscope (SEM) Analysis. The results of the experiment show that the sample of Kraft paper immersed in Palm oil was better than Coconut oil immersed sample. Therefore the sample condition was the main factor that determines the value of breakdown voltage test. Introduction
NASA Astrophysics Data System (ADS)
Fattah, K. A.; Lashin, A.
2016-05-01
Drilling fluid density/type is an important factor in drilling and production operations. Most of encountered problems during rotary drilling are related to drilling mud types and weights. This paper aims to investigate the effect of mud weight on filter cake properties and formation damage through two experimental approaches. In the first approach, seven water-based drilling fluid samples with same composition are prepared with different densities (9.0-12.0 lb/gal) and examined to select the optimum mud weight that has less damage. The second approach deals with investigating the possible effect of the different weighting materials (BaSO4 and CaCO3) on filter cake properties. High pressure/high temperature loss tests and Scanning Electron Microscopy (SEM) analyses were carried out on the filter cake (two selected samples). Data analysis has revealed that mud weigh of 9.5 lb/gal has the less reduction in permeability of ceramic disk, among the seven used mud densities. Above 10.5 ppg the effect of the mud weight density on formation damage is stabilized at constant value. Fluids of CaCO3-based weighting material, has less reduction in the porosity (9.14%) and permeability (25%) of the filter disk properties than the BaSO4-based fluid. The produced filter cake porosity increases (from 0.735 to 0.859) with decreasing of fluid density in case of drilling samples of different densities. The filtration loss tests indicated that CaCO3 filter cake porosity (0.52) is less than that of the BaSO4 weighted material (0.814). The thickness of the filter cake of the BaSO4-based fluid is large and can cause some problems. The SEM analysis shows that some major elements do occur on the tested samples (Ca, Al, Si, and Ba), with dominance of Ca on the expense of Ba for the CaCO3 fluid sample and vice versa. The less effect of 9.5 lb/gal mud sample is reflected in the well-produced inter-particle pore structure and relatively crystal size. A general recommendation is given to minimize the future utilization of Barium Sulfate as a drilling fluid.
Edmunds, Kelly L; Elrahman, Samira Abd; Bell, Diana J; Brainard, Julii; Dervisevic, Samir; Fedha, Tsimbiri P; Few, Roger; Howard, Guy; Lake, Iain; Maes, Peter; Matofari, Joseph; Minnigh, Harvey; Mohamedani, Ahmed A; Montgomery, Maggie; Morter, Sarah; Muchiri, Edward; Mudau, Lutendo S; Mutua, Benedict M; Ndambuki, Julius M; Pond, Katherine; Sobsey, Mark D; van der Es, Mike; Zeitoun, Mark; Hunter, Paul R
2016-06-01
To assess, within communities experiencing Ebola virus outbreaks, the risks associated with the disposal of human waste and to generate recommendations for mitigating such risks. A team with expertise in the Hazard Analysis of Critical Control Points framework identified waste products from the care of individuals with Ebola virus disease and constructed, tested and confirmed flow diagrams showing the creation of such products. After listing potential hazards associated with each step in each flow diagram, the team conducted a hazard analysis, determined critical control points and made recommendations to mitigate the transmission risks at each control point. The collection, transportation, cleaning and shared use of blood-soiled fomites and the shared use of latrines contaminated with blood or bloodied faeces appeared to be associated with particularly high levels of risk of Ebola virus transmission. More moderate levels of risk were associated with the collection and transportation of material contaminated with bodily fluids other than blood, shared use of latrines soiled with such fluids, the cleaning and shared use of fomites soiled with such fluids, and the contamination of the environment during the collection and transportation of blood-contaminated waste. The risk of the waste-related transmission of Ebola virus could be reduced by the use of full personal protective equipment, appropriate hand hygiene and an appropriate disinfectant after careful cleaning. Use of the Hazard Analysis of Critical Control Points framework could facilitate rapid responses to outbreaks of emerging infectious disease.
Pulmonary and Systemic Immune Response to Chronic Lunar Dust Inhalation
NASA Technical Reports Server (NTRS)
Crucian, Brian; Quiriarte, Heather; Nelman, Mayra; Lam, Chiu-wing; James, John T.; Sams, Clarence
2014-01-01
Background: Due to millennia of meteorite impact with virtually no erosive effects, the surface of the Moon is covered by a layer of ultra-fine, reactive Lunar dust. Very little is known regarding the toxicity of Lunar dust on human physiology. Given the size and electrostatic characteristics of Lunar dust, countermeasures to ensure non-exposure of astronauts will be difficult. To ensure astronaut safety during any future prolonged Lunar missions, it is necessary to establish the effect of chronic pulmonary Lunar dust exposure on all physiological systems. Methods: This study assessed the toxicity of airborne lunar dust exposure in rats on pulmonary and system immune system parameters. Rats were exposed to 0, 20.8, or 60.8 mg/m3 of lunar dust (6h/d; 5d/wk) for up to 13 weeks. Sacrifices occurred after exposure durations of 1day, 7 days, 4 weeks and 13 weeks post-exposure, when both blood and lung lavage fluid were collected for analysis. Lavage and blood assays included leukocyte distribution by flow cytometry, electron/fluorescent microscopy, and cytokine concentration. Cytokine production profiles following mitogenic stimulation were performed on whole blood only. Results: Untreated lavage fluid was comprised primarily of pulmonary macrophages. Lunar dust inhalation resulted in an influx of neutrophils and lymphocytes. Although the percentage of lymphocytes increased, the T cell CD4:CD8 ratio was unchanged. Cytokine analysis of the lavage fluid showed increased levels of IL-1b and TNFa. These alterations generally persisted through the 13 week sampling. Blood analysis showed few systemic effects from the lunar dust inhalation. By week 4, the peripheral granulocyte percentage was elevated in the treated rats. Plasma cytokine levels were unchanged in all treated rats compared to controls. Peripheral blood analysis showed an increased granulocyte percentage and altered cytokine production profiles consisting of increased in IL-1b and IL-6, and decreased IL-2 production. Conclusion: Lunar dust inhalation results in significant lung inflammation, and some systemic effects, that does not resolve through 13 weeks. Lunar dust may therefore represent a crew health risk during sortie or long-duration Lunar missions.
Jóźwik, Jagoda; Kałużna-Czaplińska, Joanna
2016-01-01
Currently, analysis of various human body fluids is one of the most essential and promising approaches to enable the discovery of biomarkers or pathophysiological mechanisms for disorders and diseases. Analysis of these fluids is challenging due to their complex composition and unique characteristics. Development of new analytical methods in this field has made it possible to analyze body fluids with higher selectivity, sensitivity, and precision. The composition and concentration of analytes in body fluids are most often determined by chromatography-based techniques. There is no doubt that proper use of knowledge that comes from a better understanding of the role of body fluids requires the cooperation of scientists of diverse specializations, including analytical chemists, biologists, and physicians. This article summarizes current knowledge about the application of different chromatographic methods in analyses of a wide range of compounds in human body fluids in order to diagnose certain diseases and disorders.
Detection of sialomucin complex (MUC4) in human ocular surface epithelium and tear fluid.
Pflugfelder, S C; Liu, Z; Monroy, D; Li, D Q; Carvajal, M E; Price-Schiavi, S A; Idris, N; Solomon, A; Perez, A; Carraway, K L
2000-05-01
To evaluate human ocular surface epithelium and tear fluid for the presence of sialomucin complex (MUC4), a high-molecular-weight heterodimeric glycoprotein composed of mucin (ASGP-1) and transmembrane (ASGP-2) subunits. Reverse transcription-polymerase chain reaction (RT-PCR) and Northern blot analysis assays were used to identify sialomucin complex RNA in ocular surface epithelia. Immunoprecipitation and immunoblot analysis were used to identify immunoreactive species in human tears and in the corneal and conjunctival epithelia using antibodies specific for carbohydrate and peptide epitopes on the sialomucin complex subunits. Immunofluorescence staining was used to detect sialomucin complex in frozen sections and impression cytology specimens of human cornea and conjunctival epithelia. ASGP-1- and ASGP-2-specific sequences were amplified from RNA extracted from both conjunctival and corneal epithelial biopsies by RT-PCR. Sialomucin complex transcripts were also detected in these tissues by Northern blot analysis, with a greater level of RNA detected in the peripheral than the central corneal epithelium. Sialomucin complex was immunoprecipitated from tear fluid samples and both corneal and conjunctival epithelia and detected by immunoblot analysis with specific anti-ASGP-1 and anti-ASGP-2 antibodies. The ASGP-1 peptide antibody HA-1 stained the full thickness of the corneal and conjunctival epithelia. In contrast, antibody 15H10, which reacts against a carbohydrate epitope on ASGP-1, stained only the superficial epithelial layers of these tissues. No staining was observed in the conjunctival goblet cells. Sialomucin complex was originally identified in rat mammary adenocarcinoma cells and has recently been shown to be produced by the ocular surface epithelia of rats. Furthermore, it has been identified as the rat homologue of human MUC4 mucin. The present studies show that it is expressed in the stratified epithelium covering the surface of the human eye and is present in human tear fluid. Expression of a carbohydrate-dependent epitope on the mucin subunit (ASGP-1) of sialomucin complex occurs in a differentiation-dependent fashion. Sialomucin complex joins MUC1 as another membrane mucin produced by the human ocular surface epithelia but is also found in the tear fluid, presumably in a soluble form, as found on the rat ocular surface.
Simple glucose reduction route for one-step synthesis of copper nanofluids
NASA Astrophysics Data System (ADS)
Shenoy, U. Sandhya; Shetty, A. Nityananda
2014-01-01
One-step method has been employed in the synthesis of copper nanofluids. Copper nitrate is reduced by glucose in the presence of sodium lauryl sulfate. The synthesized particles are characterized by X-ray diffraction technique for the phase structure; electron diffraction X-ray analysis for chemical composition; transmission electron microscopy and field emission scanning electron microscopy for the morphology; Fourier-transform infrared spectroscopy and ultraviolet-visible spectroscopy for the analysis of ingredients of the solution. Thermal conductivity, sedimentation and rheological measurements have also been carried out. It is found that the reaction parameters have considerable effect on the size of the particle formed and rate of the reaction. The techniques confirm that the synthesized particles are copper. The reported method showed promising increase in the thermal conductivity of the base fluid and is found to be reliable, simple and cost-effective method for preparing heat transfer fluids with higher stability.
Synthesis of kenaf cellulose carbamate and its smart electric stimuli-response.
Gan, Sinyee; Piao, Shang Hao; Choi, Hyoung Jin; Zakaria, Sarani; Chia, Chin Hua
2016-02-10
Cellulose carbamate (CC) was produced from kenaf core pulp (KCP) via a microwave reactor-assisted method. The formation of CC was confirmed by Fourier transform infrared spectroscopy and nitrogen content analysis. The degree of substitution, zeta potential and size distribution of CC were also determined. The CC was characterized with scanning electron microscopy, X-ray diffraction and thermogravimetry analysis. The CC particles were then dispersed in silicone oil to prepare CC-based anhydrous electric stimuli-responsive electrorheological (ER) fluids. Rhelogical measurement was carried out using rotational rheometer with a high voltage generator in both steady and oscillatory shear modes to examine the effect of electric field strength on the ER characteristics. The results showed that the increase in electric field strength has enhanced the ER properties of CC-based ER fluid due to the chain formation induced by electric polarization among the particles. Copyright © 2015 Elsevier Ltd. All rights reserved.
Aerodynamic Analysis of Morphing Blades
NASA Astrophysics Data System (ADS)
Harris, Caleb; Macphee, David; Carlisle, Madeline
2016-11-01
Interest in morphing blades has grown with applications for wind turbines and other aerodynamic blades. This passive control method has advantages over active control methods such as lower manufacturing and upkeep costs. This study has investigated the lift and drag forces on individual blades with experimental and computational analysis. The goal has been to show that these blades delay stall and provide larger lift-to-drag ratios at various angles of attack. Rigid and flexible airfoils were cast from polyurethane and silicone respectively, then lift and drag forces were collected from a load cell during 2-D testing in a wind tunnel. Experimental data was used to validate computational models in OpenFOAM. A finite volume fluid-structure-interaction solver was used to model the flexible blade in fluid flow. Preliminary results indicate delay in stall and larger lift-to-drag ratios by maintaining more optimal angles of attack when flexing. Funding from NSF REU site Grant EEC 1358991 is greatly appreciated.
Application of Control Volume Analysis to Cerebrospinal Fluid Dynamics
NASA Astrophysics Data System (ADS)
Wei, Timothy; Cohen, Benjamin; Anor, Tomer; Madsen, Joseph
2011-11-01
Hydrocephalus is among the most common birth defects and may not be prevented nor cured. Afflicted individuals face serious issues, which at present are too complicated and not well enough understood to treat via systematic therapies. This talk outlines the framework and application of a control volume methodology to clinical Phase Contrast MRI data. Specifically, integral control volume analysis utilizes a fundamental, fluid dynamics methodology to quantify intracranial dynamics within a precise, direct, and physically meaningful framework. A chronically shunted, hydrocephalic patient in need of a revision procedure was used as an in vivo case study. Magnetic resonance velocity measurements within the patient's aqueduct were obtained in four biomedical state and were analyzed using the methods presented in this dissertation. Pressure force estimates were obtained, showing distinct differences in amplitude, phase, and waveform shape for different intracranial states within the same individual. Thoughts on the physiological and diagnostic research and development implications/opportunities will be presented.
Zhang, Zhongheng; Lu, Baolong; Sheng, Xiaoyan; Jin, Ni
2011-12-01
Stroke volume variation (SVV) appears to be a good predictor of fluid responsiveness in critically ill patients. However, a wide range of its predictive values has been reported in recent years. We therefore undertook a systematic review and meta-analysis of clinical trials that investigated the diagnostic value of SVV in predicting fluid responsiveness. Clinical investigations were identified from several sources, including MEDLINE, EMBASE, WANFANG, and CENTRAL. Original articles investigating the diagnostic value of SVV in predicting fluid responsiveness were considered to be eligible. Participants included critically ill patients in the intensive care unit (ICU) or operating room (OR) who require hemodynamic monitoring. A total of 568 patients from 23 studies were included in our final analysis. Baseline SVV was correlated to fluid responsiveness with a pooled correlation coefficient of 0.718. Across all settings, we found a diagnostic odds ratio of 18.4 for SVV to predict fluid responsiveness at a sensitivity of 0.81 and specificity of 0.80. The SVV was of diagnostic value for fluid responsiveness in OR or ICU patients monitored with the PiCCO or the FloTrac/Vigileo system, and in patients ventilated with tidal volume greater than 8 ml/kg. SVV is of diagnostic value in predicting fluid responsiveness in various settings.
NASA Astrophysics Data System (ADS)
Varekamp, J. C.
2007-12-01
Hyperacid concentrated Chlorine-Sulfate brines occur in many young arc volcanoes, with pH values <1, high concentrations of volcanogenic elements (S, Cl, F, As, B) and the main rock forming elements (Ca, Al, Mg, K, Na, P). Sulfur isotope data and Silica thermometry from such fluids sampled over a ten year period from the Copahue volcanic system (Argentina) suggest reservoir temperatures of 175-300 oC, whereas the surface fluids do not exceed local boiling temperatures. These fluids are generated at much lower P-T conditions than fluids associated with a dehydrating subducted sediment complex below arc volcanoes, but their fundamental chemical compositions may have similarities. Incompatible trace element, major element concentrations and Pb isotope compositions of the fluids were used to determine the most likely rock protoliths for these fluids. Mean rock- normalized trace element diagrams then indicate which elements are quantitatively extracted from the rocks and which are left behind or precipitated in secondary phases. Most LILE show flat rock-normalized patterns, indicating close to congruent dissolution, whereas Ta-Nb-Ti show strong depletions in the rock-normalized diagrams. These HFSE are either left behind in the altered rock protolith or were precipitated along the way up. The behavior of U and Th is almost identical, suggesting that in these low pH fluids with abundant ligands Th is just as easily transported as U, which is not the case in more dilute, neutral fluids. Most analyzed fluids have steeper LREE patterns than the rocks and have negative Eu anomalies similar to the rocks. Fluids that interacted with newly intruded magma e.g., during the 2000 eruption, have much less pronounced Eu anomalies, which was most likely caused by the preferential dissolution of plagioclase when newly intruded magma interacted with the acid fluids. The fluids show a strong positive correlation between Y and Cd (similar to MORB basalts, Yi et al., JGR, 2000), suggesting that Cd is mainly a rock-derived element that may not show chalcophilic behavior. The fluids are strongly enriched (relative to rock) in As, Zn and Pb, suggesting that these elements were carried with the volcanic gas phase into the system. In summary, if these fluids are broadly similar to fluids from dehydrating subducted sediments, they tend to transport preferently the LILE, LREE, U as well as Th, while the HFSE are left behind.
Metabolic Effects of FecB Gene on Follicular Fluid and Ovarian Vein Serum in Sheep (Ovis aries)
Guo, Xiaofei; Wang, Xiangyu; Di, Ran; Liu, Qiuyue; Hu, Wenping; He, Xiaoyun; Yu, Jiarui; Zhang, Xiaosheng; Zhang, Jinlong; Broniowska, Katarzyna; Chen, Wei; Wu, Changxin; Chu, Mingxing
2018-01-01
The FecB gene has been discovered as an important gene in sheep for its high relationship with the ovulation rate, but its regulatory mechanism remains unknown. In the present study, liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) techniques were adopted to detect the metabolic effects of FecB gene in follicular fluid (FF) and ovarian vein serum (OVS) in Small Tail Han (STH) sheep. ANOVA and random forest statistical methods were employed for the identification of important metabolic pathways and biomarkers. Changes in amino acid metabolism, redox environment, and energy metabolism were observed in FF from the three FecB genotype STH ewes. Principal component analysis (PCA) and hierarchical clustering analysis (HCA) showed that metabolic effects of FecB gene are more pronounced in FF than in OVS. Therefore, the difference of the metabolic profile in FF is also affected by the FecB genotypes. In Spearman correlation analysis, key metabolites (e.g., glucose 6-phosphate, glucose 1-phosphate, aspartate, asparagine, glutathione oxidized (GSSG), cysteine-glutathione disulfide, γ-glutamylglutamine, and 2-hydrosybutyrate) in ovine FF samples showed a significant correlation with the ovulation rate. Our findings will help to explain the metabolic mechanism of high prolificacy ewes and benefit fertility identification. PMID:29439449
Abdul Aziz, M. S.; Abdullah, M. Z.; Khor, C. Y.
2014-01-01
An efficient simulation technique was proposed to examine the thermal-fluid structure interaction in the effects of solder temperature on pin through-hole during wave soldering. This study investigated the capillary flow behavior as well as the displacement, temperature distribution, and von Mises stress of a pin passed through a solder material. A single pin through-hole connector mounted on a printed circuit board (PCB) was simulated using a 3D model solved by FLUENT. The ABAQUS solver was employed to analyze the pin structure at solder temperatures of 456.15 K (183°C) < T < 643.15 K (370°C). Both solvers were coupled by the real time coupling software and mesh-based parallel code coupling interface during analysis. In addition, an experiment was conducted to measure the temperature difference (ΔT) between the top and the bottom of the pin. Analysis results showed that an increase in temperature increased the structural displacement and the von Mises stress. Filling time exhibited a quadratic relationship to the increment of temperature. The deformation of pin showed a linear correlation to the temperature. The ΔT obtained from the simulation and the experimental method were validated. This study elucidates and clearly illustrates wave soldering for engineers in the PCB assembly industry. PMID:25225638
Comparative Proteomic Analysis of Yak Follicular Fluid during Estrus
Guo, Xian; Pei, Jie; Ding, Xuezhi; Chu, Min; Bao, Pengjia; Wu, Xiaoyun; Liang, Chunnian; Yan, Ping
2016-01-01
The breeding of yaks is highly seasonal, there are many crucial proteins involved in the reproduction control program, especially in follicular development. In order to isolate differential proteins between mature and immature follicular fluid (FF) of yak, the FF from yak follicles with different sizes were sampled respectively, and two-dimensional gel electrophoresis (2-DE) of the proteins was carried out. After silver staining, the Image Master 2D platinum software was used for protein analysis and matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS) was performed for differential protein identification. The expression level of transferrin and enolase superfamily member 1 (ENOSF1) was determined by Western blotting for verification analysis. The results showed that 2-DE obtained an electrophoresis map of proteins from mature and immature yak FF with high resolution and repeatability. A comparison of protein profiles identified 12 differently expressed proteins, out of which 10 of them were upregulated while 2 were downregulated. Western blotting showed that the expression of transferrin and ENOSF1 was enhanced with follicular development. Both the obtained protein profiles and the differently expressed proteins identified in this study provided experimental data related to follicular development during yak breeding seasons. This study also laid the foundation for understanding the microenvironment during oocyte development. PMID:26954118
Numerical analysis of the formation process of aerosols in the alveoli
NASA Astrophysics Data System (ADS)
Haslbeck, Karsten; Seume, Jörg R.
2008-11-01
For a successful diagnosis of lung diseases through an analysis of non-volatile molecules in the exhaled breath, an exact understanding of the aerosol formation process is required. This process is modeled using Computational Fluid Dynamics (CFD). The model shows the interaction of the boundary surface between the streamed airway and the local epithelial liquid layer. A 2-D volume mesh of an alveolus is generated by taking into account the connection of the alveoli with the sacculi alveolares (SA). The Volume of Fluid (VOF) Method is used to model the interface between the gas and the liquid film. The non-Newtonian flow is modeled by the implementation of the Ostwald de Waele model. Surface tension is a function of the surfactant concentration. The VOF-Method allows the distribution of the concentration of the epithelial liquid layer at the surface to be traced in a transient manner. The simulations show the rupturing of the liquid film through the drop formation. Aerosol particles are ejected into the SA and do not collide with the walls. The quantity, the geometrical size as well as the velocity distributions of the generated aerosols are determined. The data presented in the paper provide the boundary conditions for future CFD analysis of the aerosol transport through the airways up to exhalation.
Aziz, M S Abdul; Abdullah, M Z; Khor, C Y
2014-01-01
An efficient simulation technique was proposed to examine the thermal-fluid structure interaction in the effects of solder temperature on pin through-hole during wave soldering. This study investigated the capillary flow behavior as well as the displacement, temperature distribution, and von Mises stress of a pin passed through a solder material. A single pin through-hole connector mounted on a printed circuit board (PCB) was simulated using a 3D model solved by FLUENT. The ABAQUS solver was employed to analyze the pin structure at solder temperatures of 456.15 K (183(°)C) < T < 643.15 K (370(°)C). Both solvers were coupled by the real time coupling software and mesh-based parallel code coupling interface during analysis. In addition, an experiment was conducted to measure the temperature difference (ΔT) between the top and the bottom of the pin. Analysis results showed that an increase in temperature increased the structural displacement and the von Mises stress. Filling time exhibited a quadratic relationship to the increment of temperature. The deformation of pin showed a linear correlation to the temperature. The ΔT obtained from the simulation and the experimental method were validated. This study elucidates and clearly illustrates wave soldering for engineers in the PCB assembly industry.
Review of computational fluid dynamics (CFD) researches on nano fluid flow through micro channel
NASA Astrophysics Data System (ADS)
Dewangan, Satish Kumar
2018-05-01
Nanofluid is becoming a promising heat transfer fluids due to its improved thermo-physical properties and heat transfer performance. Micro channel heat transfer has potential application in the cooling high power density microchips in CPU system, micro power systems and many such miniature thermal systems which need advanced cooling capacity. Use of nanofluids enhances the effectiveness of t=scu systems. Computational Fluid Dynamics (CFD) is a very powerful tool in computational analysis of the various physical processes. It application to the situations of flow and heat transfer analysis of the nano fluids is catching up very fast. Present research paper gives a brief account of the methodology of the CFD and also summarizes its application on nano fluid and heat transfer for microchannel cases.
Post-earthquake dilatancy recovery
NASA Technical Reports Server (NTRS)
Scholz, C. H.
1974-01-01
Geodetic measurements of the 1964 Niigata, Japan earthquake and of three other examples are briefly examined. They show exponentially decaying subsidence for a year after the quakes. The observations confirm the dilatancy-fluid diffusion model of earthquake precursors and clarify the extent and properties of the dilatant zone. An analysis using one-dimensional consolidation theory is included which agrees well with this interpretation.
[Isolation and identification of rumen bacteria for cellulolytic enzyme production].
Aihemaiti, Maierhaba; Zhen, Fan; Li, Yuezhong; Aibaidoula, Gulisimayi; Yimit, Wusiman
2013-05-04
We screened aerobic bacteria with cellulolytic activity from ruminal fluid of sheep, cattle and camel in Xinjiang. Fresh ruminal fluid was inoculated on sterilized sodium carboxymethylcellulose agar plates. Highly cellulolytic aerobic bacteria were screened out by using Congo red staining and liquid secondary screening culture media. The combination of morphological and biochemical test with 16SrDNA sequence analysis were used to classify the strains. Enzymatic activities of four strains with strong cellulose-decomposing abilities were studied under different culture conditions. Out 84 isolated cellulolytic strains, 40 exhibited strong abilities in decomposing cellulose. They are including 37 Gram-negative isolates and 3 Gram-positive strains. Identification of these 40 strains shows that they belong to 11 species of 6 genera, 16 strains in Stenotrophomonas maltophilia, 10 Ochrobactrum, 5 Sphingobacterium, 3 Microbacterium, 3 Paracoccus and 2 Pseudomonas. The results of the enzymatic studies of four strains with strong cellulolytic abilities indicates that the strains have the best enzyme producing property when straw powder was chosen as the carbon source; the pH at 5.5 -6.0 and temperature at 37 degrees C. The strains with highly cellulolytic abilities isolated from ruminal fluid show strong abilities in cellulose decomposition.
Li, Qing Kay; Shah, Punit; Li, Yan; Aiyetan, Paul O; Chen, Jing; Yung, Rex; Molena, Daniela; Gabrielson, Edward; Askin, Frederic; Chan, Daniel W; Zhang, Hui
2013-08-02
Cytological examination of cells from bronchoalveolar lavage (BAL) is commonly used for the diagnosis of lung cancer. Proteins released from lung cancer cells into BAL may serve as biomarkers for cancer detection. In this study, N-glycoproteins in eight cases of BAL fluid, as well as eight lung adenocarcinoma tissues and eight tumor-matched normal lung tissues, were analyzed using the solid-phase extraction of N-glycoprotein (SPEG), iTRAQ labeling, and liquid chromatography tandem mass spectrometry (LC-MS/MS). Of 80 glycoproteins found in BAL specimens, 32 were identified in both cancer BAL and cancer tissues, with levels of 25 glycoproteins showing at least a 2-fold difference between cancer and benign BAL. Among them, eight glycoproteins showed greater than 2-fold elevations in cancer BAL, including Neutrophil elastase (NE), Integrin alpha-M, Cullin-4B, Napsin A, lysosome-associated membrane protein 2 (LAMP2), Cathepsin D, BPI fold-containing family B member 2, and Neutrophil gelatinase-associated lipocalin. The levels of Napsin A in cancer BAL were further verified in independently collected 39 BAL specimens using an ELISA assay. Our study demonstrates that potential protein biomarkers in BAL fluid can be detected and quantified.
Europium containing red light-emitting fibers made by electrohydrodynamic casting
NASA Astrophysics Data System (ADS)
Gan, Yong X.; Panahi, Niousha; Yu, Christina; Gan, Jeremy B.; Cheng, Wanli
2018-05-01
Red light-emitting polymeric micro- and nanofibers were made by electrohydrodynamic co-casting of two fluids. One fluid contains a 10 wt% concentration europium (III) complex dissolved in a dimethylformamide (DMF) solvent. The europium complex, an Eu3+ compound with the nominal formula of Eu(BA)3phen/PAN, consists of polyacrylonitrile (PAN), 1,10-phenanthroline (phen), and benzoic acid (BA). The other fluid consists of iron metal oxide nanoparticles dispersed in a solution containing 10 wt% polyacrylonitrile polymer in DMF solvent. The two fluids were electrohydrodynamically co-cast onto a soft tissue paper using a stainless steel coaxial nozzle. The intensity of the electric field used for the co-casting was 1.5 kV/cm. Scanning electron microscopic observation on the fibers obtained from the co-casting was made. The size of the fibers ranges from several hundreds of nanometers to several microns. Energy dispersive X-ray spectroscopic analysis of the fibers confirmed that the major elements included C, O, Fe, and Eu. The fluorescence of the two types of fibers was tested under the excitation of a UV light source. It was found that when the europium complex-containing solution was the sheath fluid and the iron-containing solution was the core, the prepared fibers showed red light-emitting behavior under ultraviolet light. Time-dependent fluorescence shows the two-stage decaying behavior. The first stage lasts about 2000 s and the intensity of fluorescence decreases linearly. The second stage reveals the slow decaying behavior and it lasts longer than 3 h. Based on the bi-exponential data fitting using a processing MATLAB code, the fluorescence-related constants were extracted. A bi-exponential formula was proposed to describe the time-dependent fluorescence behavior of the fiber made by the europium complex-containing solution as the sheath fluid. The decaying in the fluorescence shows two different stages. The first stage lasts about 2000 s and it is characterized by a fast decaying model. The intensity of fluorescence decreases linearly. The second stage has a slow decaying feature. It takes over 3 h for the fluorescence to die out completely. Bi-exponential data fitting shows that the time constant for the decay of fluorescence is about 10,000 s.
1987-12-01
mRNA), lular viruses within a few hours in dif- and Sl-analysis showed that anti-IgM and ferent body fluids and may be used for phorbol esters...suppressed mRNA coding for general virus diagnosis. the secreted form of IgM, showing that Thiophilic adsorption for the puri- these additives affect...constructs were and can be an alternative method to pro- utilized containing the prokaryotic CAT - tein A affinity chromatography, especial- gene
Burgazli, Alvina; Eingorn, Maxim; Zhuk, Alexander
In this paper, we consider the Universe at the late stage of its evolution and deep inside the cell of uniformity. At these scales, the Universe is filled with inhomogeneously distributed discrete structures (galaxies, groups and clusters of galaxies). Supposing that the Universe contains also the cosmological constant and a perfect fluid with a negative constant equation of state (EoS) parameter [Formula: see text] (e.g., quintessence, phantom or frustrated network of topological defects), we investigate scalar perturbations of the Friedmann-Robertson-Walker metrics due to inhomogeneities. Our analysis shows that, to be compatible with the theory of scalar perturbations, this perfect fluid, first, should be clustered and, second, should have the EoS parameter [Formula: see text]. In particular, this value corresponds to the frustrated network of cosmic strings. Therefore, the frustrated network of domain walls with [Formula: see text] is ruled out. A perfect fluid with [Formula: see text] neither accelerates nor decelerates the Universe. We also obtain the equation for the nonrelativistic gravitational potential created by a system of inhomogeneities. Due to the perfect fluid with [Formula: see text], the physically reasonable solutions take place for flat, open and closed Universes. This perfect fluid is concentrated around the inhomogeneities and results in screening of the gravitational potential.
Biochemical markers of trisomy 21 in amniotic fluid.
Spencer, K; Muller, F; Aitken, D A
1997-01-01
In a study of amniotic fluid from 91 Down's syndrome cases and 240 controls, we have shown that the median values of four biochemical markers (AFP, total hCG, free beta hCG, and unconjugated oestriol) in the amniotic fluid of pregnancies affected by Down's syndrome on the whole reflect those observed in the maternal serum of affected cases. The median MOM for AFP was lower than average (0.56), as was that for unconjugated oestriol (0.55), whilst those for total hCG (1.82) and free beta hCG (2.10) were increased on average. The width of the distribution of marker levels in amniotic fluid is similar to that in serum for free beta hCG and total hCG but between 1.5 and 2 times wider for unconjugated oestriol and AFP. Analysis of data by fetal sex showed a significantly higher median MOM in female control cases compared with male controls for the analytes free beta hCG, total hCG, and unconjugated oestriol, but not for AFP. Amongst the Down's syndrome cases, this trend was not statistically significant and we cannot confirm a previous study which reported that elevated levels of amniotic fluid total and free beta hCG were associated only with female fetuses.
Alekhina, Irina A; Marie, Dominique; Petit, Jean Robert; Lukin, Valery V; Zubkov, Vladimir M; Bulat, Sergey A
2007-02-01
Decontamination of ice cores is a critical issue in phylogenetic studies of glacial ice and subglacial lakes. At the Vostok drill site, a total of 3650 m of ice core have now been obtained from the East Antarctic ice sheet. The ice core surface is coated with a hard-to-remove film of impure drilling fluid comprising a mixture of aliphatic and aromatic hydrocarbons and foranes. In the present study we used 16S rRNA gene sequencing to analyze the bacterial content of the Vostok drilling fluid sampled from four depths in the borehole. Six phylotypes were identified in three of four samples studied. The two dominant phylotypes recovered from the deepest (3400 and 3600 m) and comparatively warm (-10 degrees C and -6 degrees C, respectively) borehole horizons were from within the genus Sphingomonas, a well-known degrader of polyaromatic hydrocarbons. The remaining phylotypes encountered in all samples proved to be human- or soil-associated bacteria and were presumed to be drilling fluid contaminants of rare occurrence. The results obtained indicate the persistence of bacteria in extremely cold, hydrocarbon-rich environments. They show the potential for contamination of ice and subglacial water samples during lake exploration, and the need to develop a microbiological database of drilling fluid findings.
NASA Astrophysics Data System (ADS)
Mahdavi, Mahboobe; Tiari, Saeed; Qiu, Songgang
2016-11-01
Heat pipes are two-phase heat transfer devices, which operate based on evaporation and condensation of a working fluid inside a sealed container. In the current work, an experimental study was conducted to investigate the performance of a copper-water heat pipe. The performance was evaluated by calculating the corresponding thermal resistance as the ratio of temperature difference between evaporator and condenser to heat input. The effects of inclination angle and the amount of working fluid were studied on the equivalent thermal resistance. The results showed that if the heat pipe is under-filled with the working fluid, energy transferring capacity of the heat pipe decreases dramatically. However, overfilling heat pipe causes over flood and degrades heat pipe performance. The minimum thermal resistances were obtained for the case that 30% of the heat pipe volume was filled with working fluid. It was also found that in gravity-assisted orientations, the inclination angle does not have significant effect on the performance of the heat pipe. However, for gravity-opposed orientations, as the inclination angle increases, the temperature difference between the evaporator and condensation increases and higher thermal resistances are obtained. Authors appreciate the financial support by a research Grant from Temple University.
Equilibrium gas-oil ratio measurements using a microfluidic technique.
Fisher, Robert; Shah, Mohammad Khalid; Eskin, Dmitry; Schmidt, Kurt; Singh, Anil; Molla, Shahnawaz; Mostowfi, Farshid
2013-07-07
A method for measuring the equilibrium GOR (gas-oil ratio) of reservoir fluids using microfluidic technology is developed. Live crude oils (crude oil with dissolved gas) are injected into a long serpentine microchannel at reservoir pressure. The fluid forms a segmented flow as it travels through the channel. Gas and liquid phases are produced from the exit port of the channel that is maintained at atmospheric conditions. The process is analogous to the production of crude oil from a formation. By using compositional analysis and thermodynamic principles of hydrocarbon fluids, we show excellent equilibrium between the produced gas and liquid phases is achieved. The GOR of a reservoir fluid is a key parameter in determining the equation of state of a crude oil. Equations of state that are commonly used in petroleum engineering and reservoir simulations describe the phase behaviour of a fluid at equilibrium state. Therefore, to accurately determine the coefficients of an equation of state, the produced gas and liquid phases have to be as close to the thermodynamic equilibrium as possible. In the examples presented here, the GORs measured with the microfluidic technique agreed with GOR values obtained from conventional methods. Furthermore, when compared to conventional methods, the microfluidic technique was simpler to perform, required less equipment, and yielded better repeatability.
Analysis of Skylab fluid mechanics science demonstrations
NASA Technical Reports Server (NTRS)
Tegart, J. R.; Butz, J. R.
1975-01-01
The results of the data reduction and analysis of the Skylab fluid mechanics demonstrations are presented. All the fluid mechanics data available from the Skylab missions were identified and surveyed. The significant fluid mechanics phenomena were identified and reduced to measurable quantities wherever possible. Data correlations were performed using existing theories. Among the phenomena analyzed were: static low-g interface shapes, oscillation frequency and damping of a liquid drop, coalescence, rotating drop, liquid films and low-g ice melting. A survey of the possible applications of the results was made and future experiments are recommended.
2002-12-12
These are video microscope images of magnetorheological (MR) fluids, illuminated with a green light. Those on Earth, left, show the MR fluid forming columns or spikes structures. On the right, the fluids in microgravity aboard the International Space Station (ISS), formed broader columns.