Sample records for fluid bed retorting

  1. Combined fluidized bed retort and combustor

    DOEpatents

    Shang, Jer-Yu; Notestein, John E.; Mei, Joseph S.; Zeng, Li-Wen

    1984-01-01

    The present invention is directed to a combined fluidized bed retorting and combustion system particularly useful for extracting energy values from oil shale. The oil-shale retort and combustor are disposed side-by-side and in registry with one another through passageways in a partition therebetween. The passageways in the partition are submerged below the top of the respective fluid beds to preclude admixing or the product gases from the two chambers. The solid oil shale or bed material is transported through the chambers by inclining or slanting the fluidizing medium distributor so that the solid bed material, when fluidized, moves in the direction of the downward slope of the distributor.

  2. Research continues on Julia Creek shale oil project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-09-01

    CSR Limited and the CSIRO Division of Mineral Engineering in Australia are working jointly on the development of a new retorting process for Julia Creek oil shale. This paper describes the retorting process which integrates a fluid bed combustor with a retort in which heat is transferred from hot shale ash to cold raw shale. The upgrading of shale oil into transport fuels is also described.

  3. Oil-shale program

    NASA Astrophysics Data System (ADS)

    Bader, B. E.

    1981-10-01

    The principal activities of the Sandia National Laboratories in the Department of Energy Oil shale program during the period April 1 to June 30, 1981 are discussed. Currently, Sandia's activities are focused upon: the development and use of analytical and experimental modeling techniques to describe and predict the retort properties and retorting process parameters that are important to the preparation, operation, and stability of in situ retorts, and the development, deployment, and field use of instrumentation, data acquisition, and process monitoring systems to characterize and evaluate in site up shale oil recovery operations. In-house activities and field activities (at the Geokinetics Oil Shale Project and the Occidental Oil Shale Project) are described under the headings: bed preparation, bed characterization, retorting process, and structural stability.

  4. Staged fluidized bed

    DOEpatents

    Mallon, R.G.

    1983-05-13

    The invention relates to oil shale retorting and more particularly to staged fluidized bed oil shale retorting. Method and apparatus are disclosed for narrowing the distribution of residence times of any size particle and equalizing the residence times of large and small particles in fluidized beds. Particles are moved up one fluidized column and down a second fluidized column with the relative heights selected to equalize residence times of large and small particles. Additional pairs of columns are staged to narrow the distribution of residence times and provide complete processing of the material.

  5. Apparatus for oil shale retorting

    DOEpatents

    Lewis, Arthur E.; Braun, Robert L.; Mallon, Richard G.; Walton, Otis R.

    1986-01-01

    A cascading bed retorting process and apparatus in which cold raw crushed shale enters at the middle of a retort column into a mixer stage where it is rapidly mixed with hot recycled shale and thereby heated to pyrolysis temperature. The heated mixture then passes through a pyrolyzer stage where it resides for a sufficient time for complete pyrolysis to occur. The spent shale from the pyrolyzer is recirculated through a burner stage where the residual char is burned to heat the shale which then enters the mixer stage.

  6. Fluid outlet at the bottom of an in situ oil shale retort

    DOEpatents

    Hutchins, Ned M.

    1984-01-01

    Formation is excavated from within the boundaries of a retort site in formation containing oil shale for forming at least one retort level void extending horizontally across the retort site, leaving at least one remaining zone of unfragmented formation within the retort site. A production level drift is excavated below the retort level void, leaving a lower zone of unfragmented formation between the retort level void and the production level drift. A plurality of raises are formed between the production level drift and the retort level void for providing product withdrawal passages distributed generally uniformly across the horizontal cross section of the retort level void. The product withdrawal passages are backfilled with a permeable mass of particles. Explosive placed within the remaining zone of unfragmented formation above the retort level void is detonated for explosively expanding formation within the retort site toward at least the retort level void for forming a fragmented permeable mass of formation particles containing oil shale within the boundaries of the retort site. During retorting operations products of retorting are conducted from the fragmented mass in the retort through the product withdrawal passages to the production level void. The products are withdrawn from the production level void.

  7. Effects of retorting factors on combustion properties of shale char. 3. Distribution of residual organic matters.

    PubMed

    Han, Xiangxin; Jiang, Xiumin; Cui, Zhigang; Liu, Jianguo; Yan, Junwei

    2010-03-15

    Shale char, formed in retort furnaces of oil shale, is classified as a dangerous waste containing several toxic compounds. In order to retort oil shale to produce shale oil as well as treat shale char efficiently and in an environmentally friendly way, a novel kind of comprehensive utilization system was developed to use oil shale for shale oil production, electricity generation (shale char fired) and the extensive application of oil shale ash. For exploring the combustion properties of shale char further, in this paper organic matters within shale chars obtained under different retorting conditions were extracted and identified using a gas chromatography-mass spectrometry (GC-MS) method. Subsequently, the effects of retorting factors, including retorting temperature, residence time, particle size and heating rate, were analyzed in detail. As a result, a retorting condition with a retorting temperature of 460-490 degrees C, residence time of <40 min and a middle particle size was recommended for both keeping nitrogenous organic matters and aromatic hydrocarbons in shale char and improving the yield and quality of shale oil. In addition, shale char obtained under such retorting condition can also be treated efficiently using a circulating fluidized bed technology with fractional combustion. (c) 2009 Elsevier B.V. All rights reserved.

  8. Process for oil shale retorting using gravity-driven solids flow and solid-solid heat exchange

    DOEpatents

    Lewis, A.E.; Braun, R.L.; Mallon, R.G.; Walton, O.R.

    1983-09-21

    A cascading bed retorting process and apparatus are disclosed in which cold raw crushed shale enters at the middle of a retort column into a mixer stage where it is rapidly mixed with hot recycled shale and thereby heated to pyrolysis temperature. The heated mixture then passes through a pyrolyzer stage where it resides for a sufficient time for complete pyrolysis to occur. The spent shale from the pyrolyzer is recirculated through a burner stage where the residual char is burned to heat the shale which then enters the mixer stage.

  9. Process for oil shale retorting using gravity-driven solids flow and solid-solid heat exchange

    DOEpatents

    Lewis, Arthur E.; Braun, Robert L.; Mallon, Richard G.; Walton, Otis R.

    1986-01-01

    A cascading bed retorting process and apparatus in which cold raw crushed shale enters at the middle of a retort column into a mixer stage where it is rapidly mixed with hot recycled shale and thereby heated to pyrolysis temperature. The heated mixture then passes through a pyrolyzer stage where it resides for a sufficient time for complete pyrolysis to occur. The spent shale from the pyrolyzer is recirculated through a burner stage where the residual char is burned to heat the shale which then enters the mixer stage.

  10. Israeli co-retorting of coal and oil shale would break even at 22/barrel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Work is being carried out at the Hebrew University of Jerusalem on co-retorting of coal and oil shale. The work is funded under a cooperative agreement with the US Department of Energy. The project is exploring the conversion of US eastern high-sulfur bituminous coal in a split-stage, fluidized-bed reactor. Pyrolysis occurs in the first stage and char combustion in the second stage. These data for coal will be compared with similar data from the same reactor fueled by high-sulfur eastern US oil shale and Israeli oil shales. The project includes research at three major levels: pyrolysis in lab-scale fluidized-bed reactor;more » retorting in split-stage, fluidized-bed bench-scale process (1/4 tpd); and scale-up, preparation of full-size flowchart, and economic evaluation. In the past year's research, a preliminary economic evaluation was completed for a scaled-up process using a feed of high-sulfur coal and carbonate-containing Israeli oil shale. A full-scale plant in Israel was estimated to break even at an equivalent crude oil price of $150/ton ($22/barrel).« less

  11. RETORT ASSEMBLY

    DOEpatents

    Loomis, C.C.; Ash, W.J.

    1957-11-26

    An improved retort assembly useful in the thermal reduction of volatilizable metals such as magnesium and calcium is described. In this process a high vacuum is maintained in the retort, however the retort must be heated to very high temperatures while at the same time the unloading end must bo cooled to condense the metal vapors, therefore the retention of the vacuum is frequently difficult due to the thermal stresses involved. This apparatus provides an extended condenser sleeve enclosed by the retort cover which forms the vacuum seal. Therefore, the seal is cooled by the fluid in the condenser sleeve and the extreme thermal stresses found in previous designs together with the deterioration of the sealing gasket caused by the high temperatures are avoided.

  12. SPOUTED BED DESIGN CONSIDERATIONS FOR COATED NUCLEAR FUEL PARTICLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, Douglas W.

    High Temperature Gas Cooled Reactors (HTGRs) are fueled with tristructural isotropic (TRISO) coated nuclear fuel particles embedded in a carbon-graphite fuel body. TRISO coatings consist of four layers of pyrolytic carbon and silicon carbide that are deposited on uranium ceramic fuel kernels (350µm – 500µm diameters) in a concatenated series of batch depositions. Each layer has dedicated functions such that the finished fuel particle has its own integral containment to minimize and control the release of fission products into the fuel body and reactor core. The TRISO coatings are the primary containment structure in the HTGR reactor and must havemore » very high uniformity and integrity. To ensure high quality TRISO coatings, the four layers are deposited by chemical vapor deposition (CVD) using high purity precursors and are applied in a concatenated succession of batch operations before the finished product is unloaded from the coating furnace. These depositions take place at temperatures ranging from 1230°C to 1550°C and use three different gas compositions, while the fuel particle diameters double, their density drops from 11.1 g/cm3 to 3.0 g/cm3, and the bed volume increases more than 8-fold. All this is accomplished without the aid of sight ports or internal instrumentation that could cause chemical contamination within the layers or mechanical damage to thin layers in the early stages of each layer deposition. The converging section of the furnace retort was specifically designed to prevent bed stagnation that would lead to unacceptably high defect fractions and facilitate bed circulation to avoid large variability in coating layer dimensions and properties. The gas injection nozzle was designed to protect precursor gases from becoming overheated prior to injection, to induce bed spouting and preclude bed stagnation in the bottom of the retort. Furthermore, the retort and injection nozzle designs minimize buildup of pyrocarbon and silicon carbide on the retort wall and manage nozzle orifice accretions. The equipment and operating methods have yielded very good reproducibility in the TRISO coated particles batches.« less

  13. Oil shale combustor model developed by Greek researchers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-09-01

    Work carried out in the Department of Chemical Engineering at the University of Thessaloniki, Thessaloniki, Greece has resulted in a model for the combustion of retorted oil shale in a fluidized bed combustor. The model is generally applicable to any hot-solids retorting process, whereby raw oil shale is retorted by mixing with a hot solids stream (usually combusted spent shale), and then the residual carbon is burned off the spent shale in a fluidized bed. Based on their modelling work, the following conclusions were drawn by the researchers. (1) For the retorted particle size distribution selected (average particle diameter 1600more » microns) complete carbon conversion is feasible at high pressures (2.7 atmosphere) and over the entire temperature range studied (894 to 978 K). (2) Bubble size was found to have an important effect, especially at conditions where reaction rates are high (high temperature and pressure). (3) Carbonate decomposition increases with combustor temperature and residence time. Complete carbon conversion is feasible at high pressures (2.7 atmosphere) with less than 20 percent carbonate decomposition. (4) At the preferred combustor operating conditions (high pressure, low temperature) the main reaction is dolomite decomposition while calcite decomposition is negligible. (5) Recombination of CO/sub 2/ with MgO occurs at low temperatures, high pressures, and long particle residence times.« less

  14. Fuel Gas Demonstration Plant Program. Volume I. Demonstration plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-01-01

    The objective of this project is for Babcock Contractors Inc. (BCI) to provide process designs, and gasifier retort design for a fuel gas demonstration plant for Erie Mining Company at Hoyt Lake, Minnesota. The fuel gas produced will be used to supplement natural gas and fuel oil for iron ore pellet induration. The fuel gas demonstration plant will consist of five stirred, two-stage fixed-bed gasifier retorts capable of handling caking and non-caking coals, and provisions for the installation of a sixth retort. The process and unit design has been based on operation with caking coals; however, the retorts have beenmore » designed for easy conversion to handle non-caking coals. The demonstration unit has been designed to provide for expansion to a commercial plant (described in Commercial Plant Package) in an economical manner.« less

  15. Method for retorting oil shale

    DOEpatents

    Shang, Jer-Yu; Lui, A.P.

    1985-08-16

    The recovery of oil from oil shale is provided in a fluidized bed by using a fluidizing medium of a binary mixture of carbon dioxide and 5 steam. The mixture with a steam concentration in the range of about 20 to 75 volume percent steam provides an increase in oil yield over that achievable by using a fluidizing gas of carbon dioxide or steam alone when the mixture contains higher steam concentrations. The operating parameters for the fluidized bed retorted are essentially the same as those utilized with other gaseous fluidizing mediums with the significant gain being in the oil yield recovered which is attributable solely to the use of the binary mixture of carbon dioxide and steam. 2 figs.

  16. Oil shale retorting and combustion system

    DOEpatents

    Pitrolo, Augustine A.; Mei, Joseph S.; Shang, Jerry Y.

    1983-01-01

    The present invention is directed to the extraction of energy values from l shale containing considerable concentrations of calcium carbonate in an efficient manner. The volatiles are separated from the oil shale in a retorting zone of a fluidized bed where the temperature and the concentration of oxygen are maintained at sufficiently low levels so that the volatiles are extracted from the oil shale with minimal combustion of the volatiles and with minimal calcination of the calcium carbonate. These gaseous volatiles and the calcium carbonate flow from the retorting zone into a freeboard combustion zone where the volatiles are burned in the presence of excess air. In this zone the calcination of the calcium carbonate occurs but at the expense of less BTU's than would be required by the calcination reaction in the event both the retorting and combustion steps took place simultaneously. The heat values in the products of combustion are satisfactorily recovered in a suitable heat exchange system.

  17. Process concept of retorting of Julia Creek oil shale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sitnai, O.

    1984-06-01

    A process is proposed for the above ground retorting of the Julia Creek oil shale in Queensland. The oil shale characteristics, process description, chemical reactions of the oil shale components, and the effects of variable and operating conditions on process performance are discussed. The process contains a fluidized bed combustor which performs both as a combustor of the spent shales and as a heat carrier generator for the pyrolysis step. 12 references, 5 figures, 5 tables.

  18. Combuston method of oil shale retorting

    DOEpatents

    Jones, Jr., John B.; Reeves, Adam A.

    1977-08-16

    A gravity flow, vertical bed of crushed oil shale having a two level injection of air and a three level injection of non-oxygenous gas and an internal combustion of at least residual carbon on the retorted shale. The injection of air and gas is carefully controlled in relation to the mass flow rate of the shale to control the temperature of pyrolysis zone, producing a maximum conversion of the organic content of the shale to a liquid shale oil. The parameters of the operation provides an economical and highly efficient shale oil production.

  19. Solar heated oil shale pyrolysis process

    NASA Technical Reports Server (NTRS)

    Qader, S. A. (Inventor)

    1985-01-01

    An improved system for recovery of a liquid hydrocarbon fuel from oil shale is presented. The oil shale pyrolysis system is composed of a retort reactor for receiving a bed of oil shale particules which are heated to pyrolyis temperature by means of a recycled solar heated gas stream. The gas stream is separated from the recovered shale oil and a portion of the gas stream is rapidly heated to pyrolysis temperature by passing it through an efficient solar heater. Steam, oxygen, air or other oxidizing gases can be injected into the recycle gas before or after the recycle gas is heated to pyrolysis temperature and thus raise the temperature before it enters the retort reactor. The use of solar thermal heat to preheat the recycle gas and optionally the steam before introducing it into the bed of shale, increases the yield of shale oil.

  20. Oil shale retort apparatus

    DOEpatents

    Reeves, Adam A.; Mast, Earl L.; Greaves, Melvin J.

    1990-01-01

    A retorting apparatus including a vertical kiln and a plurality of tubes for delivering rock to the top of the kiln and removal of processed rock from the bottom of the kiln so that the rock descends through the kiln as a moving bed. Distributors are provided for delivering gas to the kiln to effect heating of the rock and to disturb the rock particles during their descent. The distributors are constructed and disposed to deliver gas uniformly to the kiln and to withstand and overcome adverse conditions resulting from heat and from the descending rock. The rock delivery tubes are geometrically sized, spaced and positioned so as to deliver the shale uniformly into the kiln and form symmetrically disposed generally vertical paths, or "rock chimneys", through the descending shale which offer least resistance to upward flow of gas. When retorting oil shale, a delineated collection chamber near the top of the kiln collects gas and entrained oil mist rising through the kiln.

  1. Mass and heat transfer in crushed oil shale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carley, J.F.; Straub, J.S.; Ott, L.L.

    1984-04-01

    Heat and mass transfer between gases and oil-shale particles are both important for all proposed retorting processes. Past studies of transfer in packed beds, which have disagreed substantially in their results, have nearly all been done with beds of regular particles of uniform size, whereas oil-shale retorting involves particles of diverse shapes and widely ranging sizes. To resolve these questions, we have made 349 runs in which we measured mass-transfer rates from naphthalene particles of diverse shapes buried in packed beds through which air was passed at room temperature. This technique permits calculation of the mass-transfer coefficient for each activemore » particle in the bed rather than, as in most past studies, for the bed as a whole. The data were analyzed in two ways: (1) by the traditional correlation of Colburn j/sub D/ vs Reynolds number and (2) by multiple regression of the mass-transfer coefficient on air rate, traditional correlation of Colburn j/sub D/ vs Reynolds number and (3) by multiple regression of the mass-transfer coefficient on air rate, sizes of active and inert particles, void fraction, and temperature. Principal findings are: (1) local Reynolds number should be based on active particle size rather than average size for the bed; (2) no appreciable differences were seen between shallow beds and deep ones; (3) mass transfer was 26% faster for spheres and lozenges buried in shale than for all-sphere beds; (4) orientation of lozenges in shale beds has little effect on mass-transfer rate; (5) a useful summarizing equation for either mass or heat transfer in shale beds is log j.epsilon = -.0747 - .6344 log Re + .0592 log/sup 2/Re where j = either j/sub D/ or j/sub H/, the Chilton-Colburn j-factors for mass and heat transfer, Re = the Reynolds number defined for packed beds, and epsilon = the void fraction in the bed. 12 references, 15 figures.« less

  2. Mass and heat transfer in crushed oil shale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carley, J.F.; Ott, L.L.; Swecker, J.L.

    1995-03-01

    Studies of heat and mass transfer in packed beds, which disagree substantially in their findings, have nearly all been done with beds of regular particles of uniform size, whereas oil-shale retorting involves particles of diverse irregular shapes and sizes. The authors, in 349 runs, measured mass-transfer rates front naphthalene particles buried in packed beds by passing through air at room temperature. An exact catalog between convection of heat and mass makes it possible to infer heat-transfer coefficients from measured mass-transfer coefficients and fluid properties. Some beds consisted of spheres, naphthalene and inert, of the same, contrasting or distributed sizes. Inmore » some runs, naphthalene spheres were buried in beds of crushed shale, some in narrow screen ranges and others with a wide size range. In others, naphthalene lozenges of different shapes were buried in beds of crushed shale in various bed axis orientations. This technique permits calculation of the mass-transfer coefficient for each active particle in the bed rather than, as in most past studies, for the bed as a whole. The data are analyzed by the traditional correlation of Colburn j{sub D} vs. Reynolds number and by multiple regression of the mass-transfer coefficient on air rate, sizes of active and inert particles, void fraction, and temperature. Principal findings are: local Reynolds number should be based on the active-particle size, not the average for the whole bed; differences between shallow and deep beds are not appreciable; mass transfer is 26% faster for spheres and lozenges buried in shale than in all-sphere beds; orientation of lozenges in shale beds has little or no effect on mass-transfer rate; and for mass or heat transfer in shale beds, log(j{center_dot}{epsilon}) = {minus}0.0747 - 0.6344 log N{sub Re} + 0. 0592 log {sup 2} N{sub Re}.« less

  3. Geology and phosphate resources of the Hawley Creek area, Lemhi County, Idaho

    USGS Publications Warehouse

    Oberlindacher, Peter; Hovland, Robert David

    1979-01-01

    Phosphate resources occur within the Retort Phosphatic Shale Member of the Permian Phosphoria Formation in the Hawley Creek area, near Leadore, in east-central Idaho. About 12 square miles (31 km2 ) of the Retort Member and enclosing rocks were mapped at a scale of 1:12,000 to evaluate the leasable Federal mineral resources. The Retort has an average thickness of 73 feet (22.3 m) and 12.9 linear miles (20.8 linear km) of outcrop within the area mapped. Rock samples taken from a bulldozer trench were analyzed for phosphate content and for minor trace elements. Analyses show a cumulative thickness of 8.7 feet ( 2.7 m) of medium-grade phosphate rock ( 24 to 31 percent P2O5) and 33.4 feet (10.2 m) of low-grade phosphate rock (16 to 24 percent P2O5). Minor elements in the Retort include uranium, vanadium, fluorine, cadmium, chromium, nickel, molybdenum, silver, and rare earths. These minor elements are potential byproducts of any future phosphate production in the Hawley Creek area. In addition, analyses of six phosphate rock samples taken from a prospect trench show a cumulative thickness of 14.9 ft (4.5 m) at 17.6 percent P2O5. Indicated phosphate resources are calculated for phosphate beds under less than 600 feet (183.0 m) of overburden. Approximately 36.5 feet (11.1 m), representing 50 percent of the total Retort Member, were measured in trench CP-71. There are 80.42 million short tons (72.96 million metric tons) of medium-grade phosphate rock, and 308.76 million short tons ( 280.10 million metric tons) of low-grade phosphate rock in the Retort Member within the map area. Because the thickness and grade of the phosphate beds for each block are based on the recovered section from CP-71, the calculated phosphate resource estimates represent a minimum. Other mineral resources in the area are thorium (35 ppm) in a Precambrian (?) granite body located immediately west of the Hawley Creek area; oil and gas accumulations may occur beneath the Medicine Lodge thrust system in this part of the Beaverhead Mountains. Paleozoic, Mesozoic, and Cenozoic rocks are present in the Hawley Creek area. Fold axes and thrust faults have a dominant northwest trend. These thrusts and folds are probably associated with the northeast-oriented stress field that existed in Late Cretaceous time. Evidence of younger, high-angle normal and reverse faults in the area also exists.

  4. Method for establishing a combustion zone in an in situ oil shale retort having a pocket at the top

    DOEpatents

    Cha, Chang Y.

    1980-01-01

    An in situ oil shale retort having a top boundary of unfragmented formation and containing a fragmented permeable mass has a pocket at the top, that is, an open space between a portion of the top of the fragmented mass and the top boundary of unfragmented formation. To establish a combustion zone across the fragmented mass, a combustion zone is established in a portion of the fragmented mass which is proximate to the top boundary. A retort inlet mixture comprising oxygen is introduced to the fragmented mass to propagate the combustion zone across an upper portion of the fragmented mass. Simultaneously, cool fluid is introduced to the pocket to prevent overheating and thermal sloughing of formation from the top boundary into the pocket.

  5. Leachate migration from an in-situ oil-shale retort near Rock Springs, Wyoming

    USGS Publications Warehouse

    Glover, Kent C.

    1988-01-01

    Hydrogeologic factors influencing leachate movement from an in-situ oil-shale retort near Rock Springs, Wyoming, were investigated through models of ground-water flow and solute transport. Leachate, indicated by the conservative ion thiocyanate, has been observed ? mile downgradient from the retort. The contaminated aquifer is part of the Green River Formation and consists of thin, permeable layers of tuff and sandstone interbedded with oil shale. Most solute migration has occurred in an 8-foot sandstone at the top of the aquifer. Ground-water flow in the study area is complexly three dimensional and is characterized by large vertical variations in hydraulic head. The solute-transport model was used to predict the concentration of thiocyanate at a point where ground water discharges to the land surface. Leachate with peak concentrations of thiocyanate--45 milligrams per liter or approximately one-half the initial concentration of retort water--was estimated to reach the discharge area during January 1985. This report describes many of th3 advantages, as well as the problems, of site-specific studies. Data such as the distribution of thin, permeable beds or fractures might introduce an unmanageable degree of complexity to basin-wide studies but can be incorporated readily into site-specific models. Solute migration in the study area occurs primarily in thin, permeable beds rather than in oil-shale strata. Because of this behavior, leachate traveled far greater distances than might otherwise have been expected. The detail possible in site-specific models permits more accurate prediction of solute transport than is possible with basin-wide models. A major problem in site-specific studies is identifying model boundaries that permit the accurate estimation of aquifer properties. If the quantity of water flowing through a study area cannot be determined prior to modeling, the hydraulic conductivity and ground-water velocity will be poorly estimated.

  6. Leachate migration from an in situ oil-shale retort near Rock Springs, Wyoming

    USGS Publications Warehouse

    Glover, K.C.

    1986-01-01

    Geohydrologic factors influencing leachate movement from an in situ oil shale retort near Rock Springs, Wyoming, were investigated by developing models of groundwater flow and solute transport. Leachate, indicated by the conservative ion thiocyanate, has been observed 1/2 mi downgradient from the retort. The contaminated aquifer is part of the Green River Formation and consists of thin, permeable layers of tuff and sandstone interbedded with oil shale. Most solute migration has occurred in an 8-ft sandstone at the top of the aquifer. Groundwater flow in the study area is complexly 3-D and is characterized by large vertical variations in hydraulic head. The solute transport model was used to predict the concentration of thiocyanate at a point where groundwater discharges to the land surface. Leachates with peak concentrations of thiocyanate--45 mg/L or approximately one-half the initial concentration of retort water--were estimated to reach the discharge area during January 1985. Advantages as well as the problems of site specific studies are described. Data such as the distribution of thin permeable beds or fractures may introduce an unmanageable degree of complexity to basin-wide studies but can be incorporated readily in site specific models. Solute migration in the study area primarily occurs in thin permeable beds rather than in oil shale strata. Because of this behavior, leachate traveled far greater distances than might otherwise have been expected. The detail possible in site specific models permits more accurate prediction of solute transport than is possible with basin-wide models. A major problem in site specific studies is identifying model boundaries that permit the accurate estimation of aquifer properties. If the quantity of water flowing through a study area cannot be determined prior to modeling, the hydraulic conductivity and groundwater velocity will be estimated poorly. (Author 's abstract)

  7. TREATMENT OF FISSION PRODUCT WASTE

    DOEpatents

    Huff, J.B.

    1959-07-28

    A pyrogenic method of separating nuclear reactor waste solutions containing aluminum and fission products as buring petroleum coke in an underground retort, collecting the easily volatile gases resulting as the first fraction, he uminum chloride as the second fraction, permitting the coke bed to cool and ll contain all the longest lived radioactive fission products in greatly reduced volume.

  8. Direct Reduction of Iron Ore

    NASA Astrophysics Data System (ADS)

    Small, M.

    1981-04-01

    In the search for a pure, available iron source, steelmakers are focusing their attention on Directly Reduced Iron (DRI). This material is produced by the reaction of a low gangue iron ore with a hydrocarbonaceous substance. Commercially, DRI is generated in four different reactors: shaft (moving-bed), rotary kiln, fluidized bed, and retort (fixed-bed). Annual worldwide production capacity approaches 33 million metric tons. Detailed assessments have been made of the uses of DRI, especially as a substitute for scrap in electric furnace (EF) steelmaking. DRI is generally of a quality superior to current grades of scrap, with steels produced more efficiently in the EF and containing lower levels of impurities. However, present economics favor EF steel production with scrap. But this situation could change within this decade because of a developing scarcity of good quality scrap.

  9. Method for rubblizing an oil shale deposit for in situ retorting

    DOEpatents

    Lewis, Arthur E.

    1977-01-01

    A method for rubblizing an oil shale deposit that has been formed in alternate horizontal layers of rich and lean shale, including the steps of driving a horizontal tunnel along the lower edge of a rich shale layer of the deposit, sublevel caving by fan drilling and blasting of both rich and lean overlying shale layers at the distal end of the tunnel to rubblize the layers, removing a substantial amount of the accessible rubblized rich shale to permit the overlying rubblized lean shale to drop to tunnel floor level to form a column of lean shale, performing additional sublevel caving of rich and lean shale towards the proximate end of the tunnel, removal of a substantial amount of the additionally rubblized rich shale to allow the overlying rubblized lean shale to drop to tunnel floor level to form another column of rubblized lean shale, similarly performing additional steps of sublevel caving and removal of rich rubble to form additional columns of lean shale rubble in the rich shale rubble in the tunnel, and driving additional horizontal tunnels in the deposit and similarly rubblizing the overlying layers of rich and lean shale and forming columns of rubblized lean shale in the rich, thereby forming an in situ oil shale retort having zones of lean shale that remain permeable to hot retorting fluids in the presence of high rubble pile pressures and high retorting temperatures.

  10. Method for closing a drift between adjacent in situ oil shale retorts

    DOEpatents

    Hines, Alex E.

    1984-01-01

    A row of horizontally spaced-apart in situ oil shale retorts is formed in a subterranean formation containing oil shale. Each row of retorts is formed by excavating development drifts at different elevations through opposite side boundaries of a plurality of retorts in the row of retorts. Each retort is formed by explosively expanding formation toward one or more voids within the boundaries of the retort site to form a fragmented permeable mass of formation particles containing oil shale in each retort. Following formation of each retort, the retort development drifts on the advancing side of the retort are closed off by covering formation particles within the development drift with a layer of crushed oil shale particles having a particle size smaller than the average particle size of oil shale particles in the adjacent retort. In one embodiment, the crushed oil shale particles are pneumatically loaded into the development drift to pack the particles tightly all the way to the top of the drift and throughout the entire cross section of the drift. The closure between adjacent retorts provided by the finely divided oil shale provides sufficient resistance to gas flow through the development drift to effectively inhibit gas flow through the drift during subsequent retorting operations.

  11. Determining Permissible Oxygen and Water Vapor Transmission Rate for Non-Retort Military Ration Packaging

    DTIC Science & Technology

    2011-11-01

    OXYGEN AND WATER VAPOR TRANSMISSION RATE FOR NON- RETORT MILITARY RATION PACKAGING by Danielle Froio Alan Wright Nicole Favreau and Sarah...ANSI Std. Z39.18 RETORT STORAGE SHELF LIFE RETORT POUCHES SENSORY ANALYSIS OXYGEN CRACKERS PACKAGING SENSORY... Packaging for MRE. (a) MRE Retort Pouch Quad-Laminate Structure; (b) MRE Non- retort Pouch Tri-Laminate Structure

  12. Solar retorting of oil shale

    DOEpatents

    Gregg, David W.

    1983-01-01

    An apparatus and method for retorting oil shale using solar radiation. Oil shale is introduced into a first retorting chamber having a solar focus zone. There the oil shale is exposed to solar radiation and rapidly brought to a predetermined retorting temperature. Once the shale has reached this temperature, it is removed from the solar focus zone and transferred to a second retorting chamber where it is heated. In a second chamber, the oil shale is maintained at the retorting temperature, without direct exposure to solar radiation, until the retorting is complete.

  13. Method for maximizing shale oil recovery from an underground formation

    DOEpatents

    Sisemore, Clyde J.

    1980-01-01

    A method for maximizing shale oil recovery from an underground oil shale formation which has previously been processed by in situ retorting such that there is provided in the formation a column of substantially intact oil shale intervening between adjacent spent retorts, which method includes the steps of back filling the spent retorts with an aqueous slurry of spent shale. The slurry is permitted to harden into a cement-like substance which stabilizes the spent retorts. Shale oil is then recovered from the intervening column of intact oil shale by retorting the column in situ, the stabilized spent retorts providing support for the newly developed retorts.

  14. Water mist injection in oil shale retorting

    DOEpatents

    Galloway, T.R.; Lyczkowski, R.W.; Burnham, A.K.

    1980-07-30

    Water mist is utilized to control the maximum temperature in an oil shale retort during processing. A mist of water droplets is generated and entrained in the combustion supporting gas flowing into the retort in order to distribute the liquid water droplets throughout the retort. The water droplets are vaporized in the retort in order to provide an efficient coolant for temperature control.

  15. 4. VIEW OF AREA EXCAVATED FOR ACCESS TO MERCURY RETORT. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW OF AREA EXCAVATED FOR ACCESS TO MERCURY RETORT. VIEW SOUTH FROM RETORT. (OCTOBER, 1995) - McCormick Group Mine, Mercury Retort, East slope of Buckskin Mountain, Paradise Valley, Humboldt County, NV

  16. Environmental research on a modified in situ oil shale task process. Progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-05-01

    This report summarizes the progress of the US Department of Energy's Oil Shale Task Force in its research program at the Occidental Oil Shale, Inc. facility at Logan Wash, Colorado. More specifically, the Task Force obtained samples from Retort 3E and Retort 6 and submitted these samples to a variety of analyses. The samples collected included: crude oil (Retort 6); light oil (Retort 6); product water (Retort 6); boiler blowdown (Retort 6); makeup water (Retort 6); mine sump water; groundwater; water from Retorts 1 through 5; retort gas (Retort 6); mine air; mine dust; and spent shale core (Retort 3E).more » The locations of the sampling points and methods used for collection and storage are discussed in Chapter 2 (Characterization). These samples were then distributed to the various laboratories and universities participating in the Task Force. For convenience in organizing the data, it is useful to group the work into three categories: Characterization, Leaching, and Health Effects. While many samples still have not been analyzed and much of the data remains to be interpreted, there are some preliminary conclusions the Task Force feels will be helpful in defining future needs and establishing priorities. It is important to note that drilling agents other than water were used in the recovery of the core from Retort 3E. These agents have been analyzed (see Table 12 in Chapter 2) for several constituents of interest. As a result some of the analyses of this core sample and leachates must be considered tentative.« less

  17. Determination of polar organic solutes in oil-shale retort water

    USGS Publications Warehouse

    Leenheer, J.A.; Noyes, T.I.; Stuber, H.A.

    1982-01-01

    A variety of analytical methods were used to quantitatively determine polar organic solutes in process retort water and a gas-condensate retort water produced in a modified in situ oil-shale retort. Specific compounds accounting for 50% of the dissolved organic carbon were identified in both retort waters. In the process water, 42% of the dissolved organic carbon consisted of a homologous series of fatty acids from C2 to C10. Dissolved organic carbon percentages for other identified compound classes were as follows: aliphatic dicarboxylic acids, 1.4%; phenols, 2.2%; hydroxypyridines, 1.1%; aliphatic amides, 1.2%. In the gas-condensate retort water, aromatic amines were most abundant at 19.3% of the dissolved organic carbon, followed by phenols (17.8%), nitriles (4.3%), aliphatic alcohols (3.5%), aliphatic ketones (2.4%), and lactones (1.3%). Steam-volatile organic solutes were enriched in the gas-condensate retort water, whereas nonvolatile acids and polyfunctional neutral compounds were predominant organic constituents of the process retort water.

  18. Characterization of in situ oil shale retorts prior to ignition

    DOEpatents

    Turner, Thomas F.; Moore, Dennis F.

    1984-01-01

    Method and system for characterizing a vertical modified in situ oil shale retort prior to ignition of the retort. The retort is formed by mining a void at the bottom of a proposed retort in an oil shale deposit. The deposit is then sequentially blasted into the void to form a plurality of layers of rubble. A plurality of units each including a tracer gas cannister are installed at the upper level of each rubble layer prior to blasting to form the next layer. Each of the units includes a receiver that is responsive to a coded electromagnetic (EM) signal to release gas from the associated cannister into the rubble. Coded EM signals are transmitted to the receivers to selectively release gas from the cannisters. The released gas flows through the retort to an outlet line connected to the floor of the retort. The time of arrival of the gas at a detector unit in the outlet line relative to the time of release of gas from the cannisters is monitored. This information enables the retort to be characterized prior to ignition.

  19. Fluid bed material transfer method

    DOEpatents

    Pinske, Jr., Edward E.

    1994-01-01

    A fluidized bed apparatus comprising a pair of separated fluid bed enclosures, each enclosing a fluid bed carried on an air distributor plate supplied with fluidizing air from below the plate. At least one equalizing duct extending through sidewalls of both fluid bed enclosures and flexibly engaged therewith to communicate the fluid beds with each other. The equalizing duct being surrounded by insulation which is in turn encased by an outer duct having expansion means and being fixed between the sidewalls of the fluid bed enclosures.

  20. Method for attenuating seismic shock from detonating explosive in an in situ oil shale retort

    DOEpatents

    Studebaker, Irving G.; Hefelfinger, Richard

    1980-01-01

    In situ oil shale retorts are formed in formation containing oil shale by excavating at least one void in each retort site. Explosive is placed in a remaining portion of unfragmented formation within each retort site adjacent such a void, and such explosive is detonated in a single round for explosively expanding formation within the retort site toward such a void for forming a fragmented permeable mass of formation particles containing oil shale in each retort. This produces a large explosion which generates seismic shock waves traveling outwardly from the blast site through the underground formation. Sensitive equipment which could be damaged by seismic shock traveling to it straight through unfragmented formation is shielded from such an explosion by placing such equipment in the shadow of a fragmented mass in an in situ retort formed prior to the explosion. The fragmented mass attenuates the velocity and magnitude of seismic shock waves traveling toward such sensitive equipment prior to the shock wave reaching the vicinity of such equipment.

  1. Effects of organic wastes on water quality from processing of oil shale from the Green River Formation, Colorado, Utah, and Wyoming

    USGS Publications Warehouse

    Leenheer, J.A.; Noyes, T.I.

    1986-01-01

    A series of investigations were conducted during a 6-year research project to determine the nature and effects of organic wastes from processing of Green River Formation oil shale on water quality. Fifty percent of the organic compounds in two retort wastewaters were identified as various aromatic amines, mono- and dicarboxylic acids phenols, amides, alcohols, ketones, nitriles, and hydroxypyridines. Spent shales with carbonaceous coatings were found to have good sorbent properties for organic constituents of retort wastewaters. However, soils sampled adjacent to an in situ retort had only fair sorbent properties for organic constituents or retort wastewater, and application of retort wastewater caused disruption of soil structure characteristics and extracted soil organic matter constituents. Microbiological degradation of organic solutes in retort wastewaters was found to occur preferentially in hydrocarbons and fatty acid groups of compounds. Aromatic amines did not degrade and they inhibited bacterial growth where their concentrations were significant. Ammonia, aromatic amines, and thiocyanate persisted in groundwater contaminated by in situ oil shale retorting, but thiosulfate was quantitatively degraded one year after the burn. Thiocyanate was found to be the best conservative tracer for retort water discharged into groundwater. Natural organic solutes, isolated from groundwater in contact with Green River Formation oil shale and from the White River near Rangely, Colorado, were readily distinguished from organic constituents in retort wastewaters by molecular weight and chemical characteristic differences. (USGS)

  2. Bacterial physiological diversity in the rhizosphere of range plants in response to retorted shale stress. [Agropyron smithii Rydb; Atriplex canescens (Pursh) Nutt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metzger, W.C.; Klein, D.A.; Redente, E.F.

    1986-10-01

    Bacterial populations were isolated from the soil-root interface and root-free regions of Agropyron smithii Rydb. and Atriplex canescens (Pursh) Nutt. grown in soil, retorted shale, or soil over shale. Bacteria isolated from retorted shale exhibited a wider range of tolerance to alkalinity and salinity and decreased growth on amino acid substrates compared with bacteria from soil and soil-over-shale environments. Exoenzyme production was only slightly affected by growth medium treatment. Viable bacterial populations were higher in the rhizosphere and rhizoplane of plants grown in retorted shale than in plants grown in soil or soil over shale. In addition, a greater numbermore » of physiological groups of rhizosphere bacteria was observed in retorted shale, compared with soil alone. Two patterns of community similarity were observed in comparisons of bacteria from soil over shale with those from soil and retorted-shale environments. Root-associated populations from soil over shale had a higher proportion of physiological groups in common with those from the soil control than those from the retorted-shale treatment. However, in non-rhizosphere populations, bacterial groups from soil over shale more closely resembled the physiological groups from retorted shale.« less

  3. Methods for minimizing plastic flow of oil shale during in situ retorting

    DOEpatents

    Lewis, Arthur E.; Mallon, Richard G.

    1978-01-01

    In an in situ oil shale retorting process, plastic flow of hot rubblized oil shale is minimized by injecting carbon dioxide and water into spent shale above the retorting zone. These gases react chemically with the mineral constituents of the spent shale to form a cement-like material which binds the individual shale particles together and bonds the consolidated mass to the wall of the retort. This relieves the weight burden borne by the hot shale below the retorting zone and thereby minimizes plastic flow in the hot shale. At least a portion of the required carbon dioxide and water can be supplied by recycled product gases.

  4. Geochemistry of Israeli oil shales: a review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirav, M.; Ginzburg, D.

    1983-01-01

    The oil shales of Israel are widely distributed throughout the country and have current reserves of about 3500 million tons located in the following deposits: Zin, Oron, Ef'e, Hartuv, and Nabi-Musa. The geochemistry and chemical analysis of these shales are discussed, along with the calorific value, oil yield, and trace elements. The main components influencing the quality of the oil shales are organic matter, carbonate, clay minerals, and apatite. Compositional variations within the organic matter are responsible for changes in the relative calorific value and retorted oil yield while fluidized bed combustion is affected by the inorganic components. (JMT)

  5. 3. VIEW EAST OF TAILINGS OF MERCURY RETORT. SCOOP FOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW EAST OF TAILINGS OF MERCURY RETORT. SCOOP FOR EXTRACTING MERCURY VISIBLE IN CENTER OF PHOTOGRAPH. (OCTOBER, 1995) - McCormick Group Mine, Mercury Retort, East slope of Buckskin Mountain, Paradise Valley, Humboldt County, NV

  6. Occidental vertical modified in situ process for the recovery of oil from oil shale. Phase II. Quarterly progress report, September 1-November 30, 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDermott, William F.

    1979-12-01

    The major activities at OOSI's Logan Wash site during the quarter were: driving the access drifts towards the underground locations for Retorts 7 and 8; manway raise boring; constructing the change house; rubbling the first lift of Mini-Retort (MR)1; preparing the Mini-Retorts for tracer testing; coring of Retort 3E; and beginning the DOE instrumentation program.

  7. EVALUATION OF THE EFFECTS OF WEATHERING ON A 50-YEAR OLD RETORTED OIL-SHALE WASTE PILE, RULISON EXPERIMENTAL RETORT, COLORADO.

    USGS Publications Warehouse

    Tuttle, Michele L.W.; Dean, Walter E.; Ackerman, Daniel J.; ,

    1985-01-01

    An oil-shale mine and experimental retort were operated near Rulison, Colorado by the U. S. Bureau of Mines from 1926 to 1929. Samples from seven drill cores from a retorted oil-shale waste pile were analyzed to determine 1) the chemical and mineral composition of the retorted oil shale and 2) variations in the composition that could be attributed to weathering. Unweathered, freshly-mined samples of oil shale from the Mahogany zone of the Green River Formation and slope wash collected away from the waste pile were also analyzed for comparison. The waste pile is composed of oil shale retorted under either low-temperature (400-500 degree C) or high-temperature (750 degree C) conditions. The results of the analyses show that the spent shale within the waste pile contains higher concentrations of most elements relative to unretorted oil shale.

  8. The study of heat penetration of kimchi soup on stationary and rotary retorts.

    PubMed

    Cho, Won-Il; Park, Eun-Ji; Cheon, Hee Soon; Chung, Myong-Soo

    2015-03-01

    The aim of this study was to determine the heat-penetration characteristics using stationary and rotary retorts to manufacture Kimchi soup. Both heat-penetration tests and computer simulation based on mathematical modeling were performed. The sterility was measured at five different positions in the pouch. The results revealed only a small deviation of F 0 among the different positions, and the rate of heat transfer was increased by rotation of the retort. The thermal processing of retort-pouched Kimchi soup was analyzed mathematically using a finite-element model, and optimum models for predicting the time course of the temperature and F 0 were developed. The mathematical models could accurately predict the actual heat penetration of retort-pouched Kimchi soup. The average deviation of the temperature between the experimental and mathematical predicted model was 2.46% (R(2)=0.975). The changes in nodal temperature and F 0 caused by microbial inactivation in the finite-element model predicted using the NISA program were very similar to that of the experimental data of for the retorted Kimchi soup during sterilization with rotary retorts. The correlation coefficient between the simulation using the NISA program and the experimental data was very high, at 99%.

  9. The Study of Heat Penetration of Kimchi Soup on Stationary and Rotary Retorts

    PubMed Central

    Cho, Won-Il; Park, Eun-Ji; Cheon, Hee Soon; Chung, Myong-Soo

    2015-01-01

    The aim of this study was to determine the heat-penetration characteristics using stationary and rotary retorts to manufacture Kimchi soup. Both heat-penetration tests and computer simulation based on mathematical modeling were performed. The sterility was measured at five different positions in the pouch. The results revealed only a small deviation of F0 among the different positions, and the rate of heat transfer was increased by rotation of the retort. The thermal processing of retort-pouched Kimchi soup was analyzed mathematically using a finite-element model, and optimum models for predicting the time course of the temperature and F0 were developed. The mathematical models could accurately predict the actual heat penetration of retort-pouched Kimchi soup. The average deviation of the temperature between the experimental and mathematical predicted model was 2.46% (R2=0.975). The changes in nodal temperature and F0 caused by microbial inactivation in the finite-element model predicted using the NISA program were very similar to that of the experimental data of for the retorted Kimchi soup during sterilization with rotary retorts. The correlation coefficient between the simulation using the NISA program and the experimental data was very high, at 99%. PMID:25866751

  10. Study of the Use of Oxygen-Absorbing Packaging Material to Prolong Shelf-Life of Rations

    DTIC Science & Technology

    2010-05-28

    technology can be used for retortable items (MRE 28 “Italian” entrée, chicken pesto with noodles ) since it maintained the 4 product shelf-life and...packages that have head spacing issues (e.g., retort item or those containing olive oil). Products included chicken pest with noodles (retorted entrée...of the MRE applesauce, they did not prevent the darkening problem. It is suspected that the retort processing step for applesauce manufacture may

  11. In situ oil shale retort with a generally T-shaped vertical cross section

    DOEpatents

    Ricketts, Thomas E.

    1981-01-01

    An in situ oil shale retort is formed in a subterranean formation containing oil shale. The retort contains a fragmented permeable mass of formation particles containing oil shale and has a production level drift in communication with a lower portion of the fragmented mass for withdrawing liquid and gaseous products of retorting during retorting of oil shale in the fragmented mass. The principal portion of the fragmented mass is spaced vertically above a lower production level portion having a generally T-shaped vertical cross section. The lower portion of the fragmented mass has a horizontal cross sectional area smaller than the horizontal cross sectional area of the upper principal portion of the fragmented mass above the production level.

  12. Trace element partitioning during the retorting of Julia Creek oil shale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patterson, J.H.; Dale, L.S.; Chapman, J.f.

    1987-05-01

    A bulk sample of oil shale from the Julia Creek deposit in Queensland was retorted under Fischer assay conditions at temperatures ranging from 250 to 550 /sup 0/C. The distributions of the trace elements detected in the shale oil and retort water were determined at each temperature. Oil distillation commenced at 300 /sup 0/C and was essentially complete at 500 /sup 0/C. A number of trace elements were progressively mobilized with increasing retort temperature up to 450 /sup 0/C. The following trace elements partitioned mainly to the oil: vanadium, arsenic, selenium, iron, nickel, titanium, copper, cobalt, and aluminum. Elements thatmore » also partitioned to the retort waters included arsenic, selenium, chlorine, and bromine. Element mobilization is considered to be caused by the volatilization of organometallic compounds, sulfide minerals, and sodium halides present in the oil shale. The results have important implications for shale oil refining and for the disposal of retort waters. 22 references, 5 tables.« less

  13. Method and apparatus for enhancing the desulfurization of hot coal gas in a fluid-bed coal gasifier

    DOEpatents

    Grindley, T.

    1988-04-05

    A process and apparatus for providing additional desulfurization of the hot gas produced in a fluid-bed coal gasifier, within the gasifier is described. A fluid-bed of iron oxide is located inside the gasifier above the gasification bed in a fluid-bed coal gasifier in which in-bed desulfurization by lime/limestone takes place. The product gases leave the gasification bed typically at 1600 to 1800 F and are partially quenched with water to 1000 to 1200 F before entering the iron oxide bed. The iron oxide bed provides additional desulfurization beyond that provided by the lime /limestone. 1 fig.

  14. Method for enhancing the desulfurization of hot coal gas in a fluid-bed coal gasifier

    DOEpatents

    Grindley, Thomas

    1989-01-01

    A process and apparatus for providing additional desulfurization of the hot gas produced in a fluid-bed coal gasifier, within the gasifier. A fluid-bed of iron oxide is located inside the gasifier above the gasification bed in a fluid-bed coal gasifier in which in-bed desulfurization by lime/limestone takes place. The product gases leave the gasification bed typically at 1600.degree. to 1800.degree. F. and are partially quenched with water to 1000.degree. to 1200.degree. F. before entering the iron oxide bed. The iron oxide bed provides additional desulfurization beyond that provided by the lime/limestone.

  15. Brazing retort manifold design concept may minimize air contamination and enhance uniform gas flow

    NASA Technical Reports Server (NTRS)

    Ruppe, E. P.

    1966-01-01

    Brazing retort manifold minimizes air contamination, prevents gas entrapment during purging, and provides uniform gas flow into the retort bell. The manifold is easily cleaned and turbulence within the bell is minimized because all manifold construction lies outside the main enclosure.

  16. Active magnetic regenerator method and apparatus

    DOEpatents

    DeGregoria, Anthony J.; Zimm, Carl B.; Janda, Dennis J.; Lubasz, Richard A.; Jastrab, Alexander G.; Johnson, Joseph W.; Ludeman, Evan M.

    1993-01-01

    In an active magnetic regenerator apparatus having a regenerator bed of material exhibiting the magnetocaloric effect, flow of heat transfer fluid through the bed is unbalanced, so that more fluid flows through the bed from the hot side of the bed to the cold side than from the cold side to the hot side. The excess heat transfer fluid is diverted back to the hot side of the bed. The diverted fluid may be passed through a heat exchanger to draw heat from a fluid to be cooled. The apparatus may be operated at cryogenic temperatures, and the heat transfer fluid may be helium gas and the fluid to be cooled may be hydrogen gas, which is liquified by the device. The apparatus can be formed in multiple stages to allow a greater span of cooling temperatures than a single stage, and each stage may be comprised of two bed parts. Where two bed parts are employed in each stage, a portion of the fluid passing from the hot side to the cold side of a first bed part which does not have a magnetic field applied thereto is diverted back to the cold side of the other bed part in the stage, where it is passed through to the hot side. The remainder of the fluid from the cold side of the bed part of the first stage is passed to the hot side of the bed part of the second stage.

  17. Relationship between fluid bed aerosol generator operation and the aerosol produced

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carpenter, R.L.; Yerkes, K.

    1980-12-01

    The relationships between bed operation in a fluid bed aerosol generator and aerosol output were studied. A two-inch diameter fluid bed aerosol generator (FBG) was constructed using stainless steel powder as a fluidizing medium. Fly ash from coal combustion was aerosolized and the influence of FBG operating parameters on aerosol mass median aerodynamic diameter (MMAD), geometric standard deviation (sigma/sub g/) and concentration was examined. In an effort to extend observations on large fluid beds to small beds using fine bed particles, minimum fluidizing velocities and elutriation constant were computed. Although FBG minimum fluidizing velocity agreed well with calculations, FBG elutriationmore » constant did not. The results of this study show that the properties of aerosols produced by a FBG depend on fluid bed height and air flow through the bed after the minimum fluidizing velocity is exceeded.« less

  18. Method of operating an oil shale kiln

    DOEpatents

    Reeves, Adam A.

    1978-05-23

    Continuously determining the bulk density of raw and retorted oil shale, the specific gravity of the raw oil shale and the richness of the raw oil shale provides accurate means to control process variables of the retorting of oil shale, predicting oil production, determining mining strategy, and aids in controlling shale placement in the kiln for the retorting.

  19. Determining the locus of a processing zone in an in situ oil shale retort by sound monitoring

    DOEpatents

    Elkington, W. Brice

    1978-01-01

    The locus of a processing zone advancing through a fragmented permeable mass of particles in an in situ oil shale retort in a subterranean formation containing oil shale is determined by monitoring for sound produced in the retort, preferably by monitoring for sound at at least two locations in a plane substantially normal to the direction of advancement of the processing zone. Monitoring can be effected by placing a sound transducer in a well extending through the formation adjacent the retort and/or in the fragmented mass such as in a well extending into the fragmented mass.

  20. Explosively produced fracture of oil shale

    NASA Astrophysics Data System (ADS)

    Morris, W. A.

    1982-05-01

    Rock fragmentation research in oil shale to develop the blasting technologies and designs required to prepare a rubble bed for a modified in situ retort is reported. Experimental work is outlined, proposed studies in explosive characterization are detailed and progress in numerical calculation techniques to predict fracture of the shale is described. A detailed geologic characterization of two Anvil Points experiment sites is related to previous work at Colony Mine. The second section focuses on computer modeling and theory. The latest generation of the stress wave code SHALE, its three dimensional potential, and the slide line package for it are described. A general stress rate equation that takes energy dependence into account is discussed.

  1. Desulfurized gas production from vertical kiln pyrolysis

    DOEpatents

    Harris, Harry A.; Jones, Jr., John B.

    1978-05-30

    A gas, formed as a product of a pyrolysis of oil shale, is passed through hot, retorted shale (containing at least partially decomposed calcium or magnesium carbonate) to essentially eliminate sulfur contaminants in the gas. Specifically, a single chambered pyrolysis vessel, having a pyrolysis zone and a retorted shale gas into the bottom of the retorted shale zone and cleaned product gas is withdrawn as hot product gas near the top of such zone.

  2. Four dimensional X-ray imaging of deformation modes in organic-rich Green River Shale retorted under uniaxial compression

    NASA Astrophysics Data System (ADS)

    Kobchenko, M.; Pluymakers, A.; Cordonnier, B.; Tairova, A.; Renard, F.

    2017-12-01

    Time-lapse imaging of fracture network development in organic-rich shales at elevated temperatures while kerogen is retorted allows characterizing the development of microfractures and the onset of primary migration. When the solid organic matter is transformed to hydrocarbons with lower molecular weight, the local pore-pressure increases and drives the propagation of hydro-fractures sub-parallel to the shale lamination. On the scale of samples of several mm size, these fractures can be described as mode I opening, where fracture walls dilate in the direction of minimal compression. However, so far experiments coupled to microtomography in situ imaging have been performed on samples where no load was imposed. Here, an external load was applied perpendicular to the sample laminations and we show that this stress state slows down, but does not stop, the propagation of fracture along bedding. Conversely, microfractures also propagate sub-perpendicular to the shale lamination, creating a percolating network in three dimensions. To monitor this process we have used a uniaxial compaction rig combined with in-situ heating from 50 to 500 deg C, while capturing three-dimensional X-ray microtomography scans at a voxel resolution of 2.2 μm; Data were acquired at beamline ID19 at the European Synchrotron Radiation Facility. In total ten time-resolved experiments were performed at different vertical loading conditions, with and without lateral passive confinement and different heating rates. At high external load the sample fails by symmetric bulging, while at lower external load the reaction-induced fracture network develops with the presence of microfractures both sub-parallel and sub-perpendicular to the bedding direction. In addition, the variation of experimental conditions allows the decoupling of the effects of the hydrocarbon decomposition reaction on the deformation process from the influence of thermal stress heating on the weakening and failure mode of immature shale.

  3. Mercury isotope fractionation during ore retorting in the Almadén mining district, Spain

    USGS Publications Warehouse

    Gray, John E.; Pribil, Michael J.; Higueras, Pablo L.

    2013-01-01

    Almadén, Spain, is the world's largest mercury (Hg) mining district, which has produced over 250,000 metric tons of Hg representing about 30% of the historical Hg produced worldwide. The objective of this study was to measure Hg isotopic compositions of cinnabar ore, mine waste calcine (retorted ore), elemental Hg (Hg0(L)), and elemental Hg gas (Hg0(g)), to evaluate potential Hg isotopic fractionation. Almadén cinnabar ore δ202Hg varied from − 0.92 to 0.15‰ (mean of − 0.56‰, σ = 0.35‰, n = 7), whereas calcine was isotopically heavier and δ202Hg ranged from − 0.03‰ to 1.01‰ (mean of 0.43‰, σ = 0.44‰, n = 8). The average δ202Hg enrichment of 0.99‰ between cinnabar ore and calcines generated during ore retorting indicated Hg isotopic mass dependent fractionation (MDF). Mass independent fractionation (MIF) was not observed in any of the samples in this study. Laboratory retorting experiments of cinnabar also were carried out to evaluate Hg isotopic fractionation of products generated during retorting such as calcine, Hg0(L), and Hg0(g). Calcine and Hg0(L) generated during these retorting experiments showed an enrichment in δ202Hg of as much as 1.90‰ and 0.67‰, respectively, compared to the original cinnabar ore. The δ202Hg for Hg0(g) generated during the retorting experiments was as much as 1.16‰ isotopically lighter compared to cinnabar, thus, when cinnabar ore was roasted, the resultant calcines formed were isotopically heavier, whereas the Hg0(g) generated was isotopically lighter in Hg isotopes.

  4. Review of samples of water, sediment, tailings, and biota at the Little Bonanza mercury mine, San Luis Obispo County, California

    USGS Publications Warehouse

    Rytuba, James J.; Hothem, Roger L.; Goldstein, Daniel N.; Brussee, Brianne E.; May, Jason T.

    2011-01-01

    Sample Sites and Methods Samples were collected to assess the concentrations of Hg and biogeochemically relevant constituents in tailings and wasterock piles at the Little Bonanza Hg mine. Tailings are present adjacent to a three-pipe retort used to process the Hg ore. The tailings occur in the upper 15 cm of the soil adjacent to the retort and slag from the retort is present on the surface. An area of disturbed soil and rock uphill from the retort was likely formed during construction of a dam that provided water for mining activities. Wasterock in these piles was sampled. The largest amount of tailings is exposed to the west of the retort in the bank of WF Las Tablas Creek. Water, sediment, and biota were sampled from WF Las Tablas Creek, which flows through the mine area. Sample-site locations are shown in figures 10 and 11 and listed in table 1. Samples were collected when streamflow was low and no precipitation had occurred.

  5. Revegetation studies on Tosco II and USBM retorted oil shales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kilkelly, M.K.; Harbert, H.P.; Berg, W.A.

    1981-01-01

    In 1973 studies on the revegetation of processed oil shales were initiated. The objectives of these studies were to investigate the vegetative stabilization of processed oil shales and to follow moisture and soluble salt movement in the retorted shale profile. Studies involving TOSCO II and USBM retorted shales were established at both a low-elevation (Anvil Points) and a high-elevation (Piceance Basin). Treatments included leaching and various depths of soil cover. After seven growing seasons a good vegetative cover remains with differences between treatments insignificant, with the exception of the TOSCO retorted shale south-aspect, which consistently supported less perennial vegetative covermore » than other treatments. With time, a shift from perennial grasses to dominance by shrubs was observed, especially on south-aspect slopes. 6 refs.« less

  6. Preparation of grout for stabilization of abandoned in-situ oil shale retorts

    DOEpatents

    Mallon, Richard G.

    1982-01-01

    A process for the preparation of grout from burned shale by treating the burned shale in steam at approximately 700.degree. C. to maximize the production of the materials alite and larnite. Oil shale removed to the surface during the preparation of an in-situ retort is first retorted on the surface and then the carbon is burned off, leaving burned shale. The burned shale is treated in steam at approximately 700.degree. C. for about 70 minutes. The treated shale is then ground and mixed with water to produce a grout which is pumped into an abandoned, processed in-situ retort, flowing into the void spaces and then bonding up to form a rigid, solidified mass which prevents surface subsidence and leaching of the spent shale by ground water.

  7. Preparation of grout for stabilization of abandoned in-situ oil shale retorts. [Patent application

    DOEpatents

    Mallon, R.G.

    1979-12-07

    A process is described for the preparation of grout from burned shale by treating the burned shale in steam at approximately 700/sup 0/C to maximize the production of the materials alite and larnite. Oil shale removed to the surface during the preparation of an in-situ retort is first retorted on the surface and then the carbon is burned off, leaving burned shale. The burned shale is treated in steam at approximately 700/sup 0/C for about 70 minutes. The treated shale is then ground and mixed with water to produce a grout which is pumped into an abandoned, processed in-situ retort, flowing into the void spaces and then bonding up to form a rigid, solidified mass which prevents surface subsidence and leaching of the spent shale by ground water.

  8. Retort beef aroma that gives preferable properties to canned beef products and its aroma components.

    PubMed

    Migita, Koshiro; Iiduka, Takao; Tsukamoto, Kie; Sugiura, Sayuri; Tanaka, Genichiro; Sakamaki, Gousuke; Yamamoto, Yasufumi; Takeshige, Yusuke; Miyazawa, Toshio; Kojima, Ayako; Nakatake, Tomoko; Okitani, Akihiro; Matsuishi, Masanori

    2017-12-01

    The objective of this study is to identify the properties and responsible compounds for the aromatic roast odor (retort beef aroma) that commonly occurs in canned beef products and could contribute to their palatability. The optimal temperature for generating retort beef aroma was 121°C. An untrained panel evaluated both uncured corned beef and canned yamato-ni beef and found that they had an aroma that was significantly (P < 0.01) similar to the odor of 121°C-heated beef than 100°C-heated beef. The panel also noted that the aroma of 121°C-heated beef tended to be (P < 0.1) preferable than that of 100°C-heated beef. These results suggest that retort beef aroma is one constituent of palatability in canned beef. GC-MS (gas chromatography-mass spectrometry) analysis of the volatile fraction obtained from 100°C- and 121°C-heated beef showed that the amounts of pyrazine, 2-methylpyrazine and diacetyl were higher in the 121°C-heated beef than in the 100°C-heated beef. GC-sniffing revealed that the odor quality of pyrazines was similar to that of retort beef aroma. Therefore, pyrazines were suggested to be a candidate responsible for the retort beef aroma. Analysis of commercial uncured corned beef and cured corned beef confirmed the presence of pyrazine, 2-methylpyrazine and 2,6-dimethylpyrazine. © 2017 Japanese Society of Animal Science.

  9. The Importance of Splat Events to the Spatiotemporal Structure of Near-Bed Fluid Velocity and Bed Load Motion Over Bed Forms: Laboratory Experiments Downstream of a Backward Facing Step

    NASA Astrophysics Data System (ADS)

    Leary, K. C. P.; Schmeeckle, M. W.

    2017-12-01

    Flow separation/reattachment on the lee side of alluvial bed forms is known to produce a complex turbulence field, but the spatiotemporal details of the associated patterns of bed load sediment transported remain largely unknown. Here we report turbulence-resolving, simultaneous measurements of bed load motion and near-bed fluid velocity downstream of a backward facing step in a laboratory flume. Two synchronized high-speed video cameras simultaneously observed bed load motion and the motion of neutrally buoyant particles in a laser light sheet 6 mm above the bed at 250 frames/s downstream of a 3.8 cm backward facing step. Particle Imaging Velocimetry (PIV) and Acoustic Doppler Velocimetry (ADV) were used to characterize fluid turbulent patterns, while manual particle tracking techniques were used to characterize bed load transport. Octant analysis, conducted using ADV data, coupled with Markovian sequence probability analysis highlights differences in the flow near reattachment versus farther downstream. Near reattachment, three distinct flow patterns are apparent. Farther downstream we see the development of a dominant flow sequence. Localized, intermittent, high-magnitude transport events are more apparent near flow reattachment. These events are composed of streamwise and cross-stream fluxes of comparable magnitudes. Transport pattern and fluid velocity data are consistent with the existence of permeable "splat events," wherein a volume of fluid moves toward and impinges on the bed (sweep) causing a radial movement of fluid in all directions around the point of impingement (outward interaction). This is congruent with flow patterns, identified with octant analysis, proximal to flow reattachment.

  10. Method for explosive expansion toward horizontal free faces for forming an in situ oil shale retort

    DOEpatents

    Ricketts, Thomas E.

    1980-01-01

    Formation is excavated from within a retort site in formation containing oil shale for forming a plurality of vertically spaced apart voids extending horizontally across different levels of the retort site, leaving a separate zone of unfragmented formation between each pair of adjacent voids. Explosive is placed in each zone, and such explosive is detonated in a single round for forming an in situ retort containing a fragmented permeable mass of formation particles containing oil shale. The same amount of formation is explosively expanded upwardly and downwardly toward each void. A horizontal void excavated at a production level has a smaller horizontal cross-sectional area than a void excavated at a lower level of the retort site immediately above the production level void. Explosive in a first group of vertical blast holes is detonated for explosively expanding formation downwardly toward the lower void, and explosive in a second group of vertical blast holes is detonated in the same round for explosively expanding formation upwardly toward the lower void and downwardly toward the production level void for forming a generally T-shaped bottom of the fragmented mass.

  11. Overview of the Development of Australian Combat Ration Packs

    DTIC Science & Technology

    2014-12-01

    g) Variety B Serve Size (g) Retort Meal Chilli Con Carne 1 x 250 FD Meal Veal Italienne 1 x 110 Instant Oriental Noodles 1 x 74 White Rice 2 x 125...retort pouch meal freeze dried meal flexible retort pouch meal light meals (soup, noodles , steak bar, canned fish)  noodles steak bar...Items Common to all HWRP Menus Cracked Pepper Vita Wheat 1x36 g instant coffee 1x3.5 g tea bags# 1x2.5 g cheddar cheese (canned) 1x56 g cappuccino

  12. Integrated oil production and upgrading using molten alkali metal

    DOEpatents

    Gordon, John Howard

    2016-10-04

    A method that combines the oil retorting process (or other process needed to obtain/extract heavy oil or bitumen) with the process for upgrading these materials using sodium or other alkali metals. Specifically, the shale gas or other gases that are obtained from the retorting/extraction process may be introduced into the upgrading reactor and used to upgrade the oil feedstock. Also, the solid materials obtained from the reactor may be used as a fuel source, thereby providing the heat necessary for the retorting/extraction process. Other forms of integration are also disclosed.

  13. Effect of combination processing on the microbial, chemical and sensory quality of ready-to-eat (RTE) vegetable pulav

    NASA Astrophysics Data System (ADS)

    Kumar, R.; George, Johnsy; Rajamanickam, R.; Nataraju, S.; Sabhapathy, S. N.; Bawa, A. S.

    2011-12-01

    Effect of irradiation in combination with retort processing on the shelf life and safety aspects of an ethnic Indian food product like vegetable pulav was investigated. Gamma irradiation of RTE vegetable pulav was carried out at different dosage rates with 60Co followed by retort processing. The combination processed samples were analysed for microbiological, chemical and sensory characteristics. Microbiological analysis indicated that irradiation in combination with retort processing has significantly reduced the microbial loads whereas the chemical and sensory analysis proved that this combination processing is effective in retaining the properties even after storage for one year at ambient conditions. The results also indicated that a minimum irradiation dosage at 4.0 kGy along with retort processing at an F0 value of 2.0 is needed to achieve the desired shelf life with improved organoleptic qualities.

  14. Method for forming an in situ oil shale retort with horizontal free faces

    DOEpatents

    Ricketts, Thomas E.; Fernandes, Robert J.

    1983-01-01

    A method for forming a fragmented permeable mass of formation particles in an in situ oil shale retort is provided. A horizontally extending void is excavated in unfragmented formation containing oil shale and a zone of unfragmented formation is left adjacent the void. An array of explosive charges is formed in the zone of unfragmented formation. The array of explosive charges comprises rows of central explosive charges surrounded by a band of outer explosive charges which are adjacent side boundaries of the retort being formed. The powder factor of each outer explosive charge is made about equal to the powder factor of each central explosive charge. The explosive charges are detonated for explosively expanding the zone of unfragmented formation toward the void for forming the fragmented permeable mass of formation particles having a reasonably uniformly distributed void fraction in the in situ oil shale retort.

  15. Composition and Variation of Macronutrients, Immune Proteins, and Human Milk Oligosaccharides in Human Milk From Nonprofit and Commercial Milk Banks.

    PubMed

    Meredith-Dennis, Laura; Xu, Gege; Goonatilleke, Elisha; Lebrilla, Carlito B; Underwood, Mark A; Smilowitz, Jennifer T

    2018-02-01

    When human milk is unavailable, banked milk is recommended for feeding premature infants. Milk banks use processes to eliminate pathogens; however, variability among methods exists. Research aim: The aim of this study was to compare the macronutrient (protein, carbohydrate, fat, energy), immune-protective protein, and human milk oligosaccharide (HMO) content of human milk from three independent milk banks that use pasteurization (Holder vs. vat techniques) or retort sterilization. Randomly acquired human milk samples from three different milk banks ( n = 3 from each bank) were analyzed for macronutrient concentrations using a Fourier transform mid-infrared spectroscopy human milk analyzer. The concentrations of IgA, IgM, IgG, lactoferrin, lysozyme, α-lactalbumin, α antitrypsin, casein, and HMO were analyzed by mass spectrometry. The concentrations of protein and fat were significantly ( p < .05) less in the retort sterilized compared with the Holder and vat pasteurized samples, respectively. The concentrations of all immune-modulating proteins were significantly ( p < .05) less in the retort sterilized samples compared with vat and/or Holder pasteurized samples. The total HMO concentration and HMOs containing fucose, sialic acid, and nonfucosylated neutral sugars were significantly ( p < .05) less in retort sterilized compared with Holder pasteurized samples. Random milk samples that had undergone retort sterilization had significantly less immune-protective proteins and total and specific HMOs compared with samples that had undergone Holder and vat pasteurization. These data suggest that further analysis of the effect of retort sterilization on human milk components is needed prior to widespread adoption of this process.

  16. Coal fired fluid bed module for a single elevation style fluid bed power plant

    DOEpatents

    Waryasz, Richard E.

    1979-01-01

    A fluidized bed for the burning of pulverized fuel having a specific waterwall arrangement that comprises a structurally reinforced framework of wall tubes. The wall tubes are reversely bent from opposite sides and then bonded together to form tie rods that extend across the bed to support the lateral walls thereof.

  17. On a criterion of incipient motion and entrainment into suspension of a particle from cuttings bed in shear flow of non-Newtonian fluid

    NASA Astrophysics Data System (ADS)

    Ignatenko, Yaroslav; Bocharov, Oleg; May, Roland

    2017-10-01

    Solids transport is a major issue in high angle wells. Bed-load forms by sediment while transport and accompanied by intermittent contact with stream-bed by rolling, sliding and bouncing. The study presents the results of a numerical simulation of a laminar steady-state flow around a particle at rest and in free motion in a shear flow of Herschel-Bulkley fluid. The simulation was performed using the OpenFOAM open-source CFD package. A criterion for particle incipient motion and entrainment into suspension from cuttings bed (Shields criteria) based on forces and torques balance is discussed. Deflection of the fluid parameters from the ones of Newtonian fluid leads to decreasing of the drag and lift forces and the hydrodynamic moment. Thus, the critical shear stress (Shields parameter) for the considered non-Newtonian fluid must be greater than the one for a Newtonian fluid.

  18. In-situ laser retorting of oil shale

    NASA Technical Reports Server (NTRS)

    Bloomfield, H. S. (Inventor)

    1977-01-01

    Oil shale formations are retorted in situ and gaseous hydrocarbon products are recovered by drilling two or more wells into an oil shale formation underneath the surface of the ground. A high energy laser beam is directed into the well and fractures the region of the shale formation. A compressed gas is forced into the well that supports combustion in the flame front ignited by the laser beam, thereby retorting the oil shale. Gaseous hydrocarbon products which permeate through the fractured region are recovered from one of the wells that were not exposed to the laser system.

  19. Effect of retorted-oil shale leachate on a blue-green alga (Anabaena flos-aquae)

    USGS Publications Warehouse

    McKnight, Diane M.; Pereira, Wilfred E.; Rostad, Colleen E.; Stiles, Eric A.

    1983-01-01

    In the event of the development of the large oil shale reserves of Colorado, Utah, and Wyoming, one of the main environmental concerns will be disposal of retorted-oil shale which will be generated in greater volume than the original volume oI the mined oil shale. Investigators have found that leachates of retorted-oil shale are alkaline and have large concentrations of dissolved solids, molybdenum, boron, and fluoride (STOLLENWERK & RUNNELS 1981). STOLLENWERK & RUNNELS (1981) concluded that drainage from waste shale piles could have deleterious effects on the water quality of streams in northwestern Colorado.

  20. System for utilizing oil shale fines

    DOEpatents

    Harak, Arnold E.

    1982-01-01

    A system is provided for utilizing fines of carbonaceous materials such as particles or pieces of oil shale of about one-half inch or less diameter which are rejected for use in some conventional or prior surface retorting process, which obtains maximum utilization of the energy content of the fines and which produces a waste which is relatively inert and of a size to facilitate disposal. The system includes a cyclone retort (20) which pyrolyzes the fines in the presence of heated gaseous combustion products, the cyclone retort having a first outlet (30) through which vapors can exit that can be cooled to provide oil, and having a second outlet (32) through which spent shale fines are removed. A burner (36) connected to the spent shale outlet of the cyclone retort, burns the spent shale with air, to provide hot combustion products (24) that are carried back to the cyclone retort to supply gaseous combustion products utilized therein. The burner heats the spent shale to a temperature which forms a molten slag, and the molten slag is removed from the burner into a quencher (48) that suddenly cools the molten slag to form granules that are relatively inert and of a size that is convenient to handle for disposal in the ground or in industrial processes.

  1. Talaromyces sayulitensis, Acidiella bohemica and Penicillium citrinum in Brazilian oil shale by-products.

    PubMed

    de Goes, Kelly C G P; da Silva, Josué J; Lovato, Gisele M; Iamanaka, Beatriz T; Massi, Fernanda P; Andrade, Diva S

    2017-12-01

    Fine shale particles and retorted shale are waste products generated during the oil shale retorting process. These by-products are small fragments of mined shale rock, are high in silicon and also contain organic matter, micronutrients, hydrocarbons and other elements. The aims of this study were to isolate and to evaluate fungal diversity present in fine shale particles and retorted shale samples collected at the Schist Industrialization Business Unit (Six)-Petrobras in São Mateus do Sul, State of Paraná, Brazil. Combining morphology and internal transcribed spacer (ITS) sequence, a total of seven fungal genera were identified, including Acidiella, Aspergillus, Cladosporium, Ochroconis, Penicillium, Talaromyces and Trichoderma. Acidiella was the most predominant genus found in the samples of fine shale particles, which are a highly acidic substrate (pH 2.4-3.6), while Talaromyces was the main genus in retorted shale (pH 5.20-6.20). Talaromyces sayulitensis was the species most frequently found in retorted shale, and Acidiella bohemica in fine shale particles. The presence of T. sayulitensis, T. diversus and T. stolli in oil shale is described herein for the first time. In conclusion, we have described for the first time a snapshot of the diversity of filamentous fungi colonizing solid oil shale by-products from the Irati Formation in Brazil.

  2. Shielded fluid stream injector for particle bed reactor

    DOEpatents

    Notestein, John E.

    1993-01-01

    A shielded fluid-stream injector assembly is provided for particle bed reactors. The assembly includes a perforated pipe injector disposed across the particle bed region of the reactor and an inverted V-shaped shield placed over the pipe, overlapping it to prevent descending particles from coming into direct contact with the pipe. The pipe and shield are fixedly secured at one end to the reactor wall and slidably secured at the other end to compensate for thermal expansion. An axially extending housing aligned with the pipe and outside the reactor and an in-line reamer are provided for removing deposits from the inside of the pipe. The assembly enables fluid streams to be injected and distributed uniformly into the particle bed with minimized clogging of injector ports. The same design may also be used for extraction of fluid streams from particle bed reactors.

  3. Characterization of oil shale, isolated kerogen, and post-pyrolysis residues using advanced 13 solid-state nuclear magnetic resonance spectroscopy

    USGS Publications Warehouse

    Cao, Xiaoyan; Birdwell, Justin E.; Chappell, Mark A.; Li, Yuan; Pignatello, Joseph J.; Mao, Jingdong

    2013-01-01

    Characterization of oil shale kerogen and organic residues remaining in postpyrolysis spent shale is critical to the understanding of the oil generation process and approaches to dealing with issues related to spent shale. The chemical structure of organic matter in raw oil shale and spent shale samples was examined in this study using advanced solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. Oil shale was collected from Mahogany zone outcrops in the Piceance Basin. Five samples were analyzed: (1) raw oil shale, (2) isolated kerogen, (3) oil shale extracted with chloroform, (4) oil shale retorted in an open system at 500°C to mimic surface retorting, and (5) oil shale retorted in a closed system at 360°C to simulate in-situ retorting. The NMR methods applied included quantitative direct polarization with magic-angle spinning at 13 kHz, cross polarization with total sideband suppression, dipolar dephasing, CHn selection, 13C chemical shift anisotropy filtering, and 1H-13C long-range recoupled dipolar dephasing. The NMR results showed that, relative to the raw oil shale, (1) bitumen extraction and kerogen isolation by demineralization removed some oxygen-containing and alkyl moieties; (2) unpyrolyzed samples had low aromatic condensation; (3) oil shale pyrolysis removed aliphatic moieties, leaving behind residues enriched in aromatic carbon; and (4) oil shale retorted in an open system at 500°C contained larger aromatic clusters and more protonated aromatic moieties than oil shale retorted in a closed system at 360°C, which contained more total aromatic carbon with a wide range of cluster sizes.

  4. 21 CFR 113.3 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... steam into the closed retort and the time when the retort reaches the required processing temperature..., school, penal, or other organization) processing of food, including pet food. Persons engaged in the... flames to achieve sterilization temperatures. A holding period in a heated section may follow the initial...

  5. Migration through soil of organic solutes in an oil-shale process water

    USGS Publications Warehouse

    Leenheer, J.A.; Stuber, H.A.

    1981-01-01

    The migration through soil of organic solutes in an oil-shale process water (retort water) was studied by using soil columns and analyzing leachates for various organic constituents. Retort water extracted significant quantities of organic anions leached from ammonium-saturated-soil organic matter, and a distilled-water rinse, which followed retort-water leaching, released additional organic acids from the soil. After being corrected for organic constitutents extracted from soil by retort water, dissolved-organic-carbon fractionation analyses of effluent fractions showed that the order of increasing affinity of six organic compound classes for the soil was as follows: hydrophilic neutrals nearly equal to hydrophilic acids, followed by the sequence of hydrophobic acids, hydrophilic bases, hydrophobic bases, and hydrophobic neutrals. Liquid-chromatographic analysis of the aromatic amines in the hydrophobic- and hydrophilic-base fractions showed that the relative order of the rates of migration through the soil column was the same as the order of migration on a reversed-phase, octadecylsilica liquid-chromatographic column.

  6. Innovative food processing technology using ohmic heating and aseptic packaging for meat.

    PubMed

    Ito, Ruri; Fukuoka, Mika; Hamada-Sato, Naoko

    2014-02-01

    Since the Tohoku earthquake, there is much interest in processed foods, which can be stored for long periods at room temperature. Retort heating is one of the main technologies employed for producing it. We developed the innovative food processing technology, which supersede retort, using ohmic heating and aseptic packaging. Electrical heating involves the application of alternating voltage to food. Compared with retort heating, which uses a heat transfer medium, ohmic heating allows for high heating efficiency and rapid heating. In this paper we ohmically heated chicken breast samples and conducted various tests on the heated samples. The measurement results of water content, IMP, and glutamic acid suggest that the quality of the ohmically heated samples was similar or superior to that of the retort-heated samples. Furthermore, based on the monitoring of these samples, it was observed that sample quality did not deteriorate during storage. © 2013. Published by Elsevier Ltd on behalf of The American Meat Science Association. All rights reserved.

  7. Lethality of Rendang packaged in multilayer retortable pouch with sterilization process

    NASA Astrophysics Data System (ADS)

    Praharasti, A. S.; Kusumaningrum, A.; Frediansyah, A.; Nurhikmat, A.; Khasanah, Y.; Suprapedi

    2017-01-01

    Retort Pouch had become a choice to preserve foods nowadays, besides the used of the can. Both had their own advantages, and Retort Pouch became more popular for the reason of cheaper and easier to recycle. General Method usually used to estimate the lethality of commercial heat sterilization process. Lethality value wa s used for evaluating the efficacy of the thermal process. This study aimed to find whether different layers of pouch materials affect the lethality value and to find differences lethality in two types of multilayer retort pouch, PET/Aluminum Foil/Nylon/RCPP and PET/Nylon/Modified Aluminum/CPP. The result showed that the different layer arrangement was resulted different Sterilization Value (SV). PET/Nylon/Modified Aluminum/CPP had better heat penetration, implied by the higher value of lethality. PET/Nylon/Modified Aluminum/CPP had the lethality value of 6,24 minutes, whereas the lethality value of PET/Aluminum Foil/Nylon/RCPP was 3,54 minutes.

  8. Electrowinning apparatus and process

    DOEpatents

    Buschmann, Wayne E [Boulder, CO

    2012-06-19

    Apparatus and processes are disclosed for electrowinning metal from a fluid stream. A representative apparatus comprises at least one spouted bed reactor wherein each said reactor includes an anolyte chamber comprising an anode and configured for containing an anolyte, a catholyte chamber comprising a current collector and configured for containing a particulate cathode bed and a flowing stream of an electrically conductive metal-containing fluid, and a membrane separating said anolyte chamber and said catholyte chamber, an inlet for an electrically conductive metal-containing fluid stream; and a particle bed churning device configured for spouting particle bed particles in the catholyte chamber independently of the flow of said metal-containing fluid stream. In operation, reduced heavy metals or their oxides are recovered from the cathode particles.

  9. Co-Production of Electricity and Hydrogen Using a Novel Iron-based Catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hilaly, Ahmad; Georgas, Adam; Leboreiro, Jose

    2011-09-30

    The primary objective of this project was to develop a hydrogen production technology for gasification applications based on a circulating fluid-bed reactor and an attrition resistant iron catalyst. The work towards achieving this objective consisted of three key activities: Development of an iron-based catalyst suitable for a circulating fluid-bed reactor; Design, construction, and operation of a bench-scale circulating fluid-bed reactor system for hydrogen production; Techno-economic analysis of the steam-iron and the pressure swing adsorption hydrogen production processes. This report describes the work completed in each of these activities during this project. The catalyst development and testing program prepared and iron-basedmore » catalysts using different support and promoters to identify catalysts that had sufficient activity for cyclic reduction with syngas and steam oxidation and attrition resistance to enable use in a circulating fluid-bed reactor system. The best performing catalyst from this catalyst development program was produced by a commercial catalyst toll manufacturer to support the bench-scale testing activities. The reactor testing systems used during material development evaluated catalysts in a single fluid-bed reactor by cycling between reduction with syngas and oxidation with steam. The prototype SIP reactor system (PSRS) consisted of two circulating fluid-bed reactors with the iron catalyst being transferred between the two reactors. This design enabled demonstration of the technical feasibility of the combination of the circulating fluid-bed reactor system and the iron-based catalyst for commercial hydrogen production. The specific activities associated with this bench-scale circulating fluid-bed reactor systems that were completed in this project included design, construction, commissioning, and operation. The experimental portion of this project focused on technical demonstration of the performance of an iron-based catalyst and a circulating fluid-bed reactor system for hydrogen production. Although a technology can be technically feasible, successful commercial deployment also requires that a technology offer an economic advantage over existing commercial technologies. To effective estimate the economics of this steam-iron process, a techno-economic analysis of this steam iron process and a commercial pressure swing adsorption process were completed. The results from this analysis described in this report show the economic potential of the steam iron process for integration with a gasification plant for coproduction of hydrogen and electricity.« less

  10. Solar heated fluidized bed gasification system

    NASA Technical Reports Server (NTRS)

    Qader, S. A. (Inventor)

    1981-01-01

    A solar-powered fluidized bed gasification system for gasifying carbonaceous material is presented. The system includes a solar gasifier which is heated by fluidizing gas and steam. Energy to heat the gas and steam is supplied by a high heat capacity refractory honeycomb which surrounds the fluid bed reactor zone. The high heat capacity refractory honeycomb is heated by solar energy focused on the honeycomb by solar concentrator through solar window. The fluid bed reaction zone is also heated directly and uniformly by thermal contact of the high heat capacity ceramic honeycomb with the walls of the fluidized bed reactor. Provisions are also made for recovering and recycling catalysts used in the gasification process. Back-up furnace is provided for start-up procedures and for supplying heat to the fluid bed reaction zone when adequate supplies of solar energy are not available.

  11. Depth resolved granular transport driven by shearing fluid flow

    NASA Astrophysics Data System (ADS)

    Allen, Benjamin; Kudrolli, Arshad

    2017-02-01

    We investigate granular transport by a fluid flow under steady-state driving conditions, from the bed-load regime to the suspension regime, with an experimental system based on a conical rheometer. The mean granular volume fraction ϕg, the mean granular velocity ug, and the fluid velocity uf are obtained as a function of depth inside the bed using refractive index matching and particle-tracking techniques. A torque sensor is utilized to measure the applied shear stress to complement estimates obtained from measured strain rates high above the bed where ϕg≈0 . The flow is found to be transitional at the onset of transport and the shear stress required to transport grains rises sharply as grains are increasingly entrained by the fluid flow. A significant slip velocity between the fluid and the granular phases is observed at the bed surface before the onset of transport as well as in the bed-load transport regime. We show that ug decays exponentially deep into the bed for ϕg>0.45 with a decay constant which is described by a nonlocal rheology model of granular flow that neglects fluid stress. Further, we show that uf and ug can be described using the applied shear stress and the Krieger-Dougherty model for the effective viscosity in the suspension regime, where 0 <ϕg<0.45 and where ug≈uf .

  12. Physiological responses to prolonged bed rest and fluid immersion in humans

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.

    1984-01-01

    For many centuries, physicians have used prolonged rest in bed and immersion in water in the treatment of ailments and disease. Both treatments have positive remedial effects. However, adverse physiological responses become evident when patients return to their normal daily activities. The present investigation is concerned with an analysis of the physiological changes during bed rest and the effects produced by water immersion. It is found that abrupt changes in body position related to bed rest cause acute changes in fluid compartment volumes. Attention is given to fluid shifts and body composition, renal function and diuresis, calcium and phosphorus metabolism, and orthostatic tolerance. In a discussion of water immersion, fluid shifts are considered along with cardiovascular-respiratory responses, renal function, and natriuretic and diuretic factors.

  13. Effects of exercise on fluid exchange and body composition in man during 14-day bed rest

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Bernauer, E. M.; Juhos, L. T.; Young, H. L.; Morse, J. T.; Staley, R. W.

    1977-01-01

    A description is presented of an investigation in which body composition, fluid intake, and fluid and electrolyte losses were measured in seven normal, healthy men during three 2-wk bed-rest periods, separated by two 3-wk recovery periods. During bed rest the subjects remained in the horizontal position continuously. During the dietary control periods, body mass decreased significantly with all three regimens, including no exercise, isometric exercise, and isotonic excercise. During bed rest, body mass was essentially unchanged with no exercise, but decreased significantly with isotonic and isometric exercise. With one exception, there were no statistically significant changes in body density, lean body mass, or body fat content by the end of each of the three bed-rest periods.

  14. Multi-stage circulating fluidized bed syngas cooling

    DOEpatents

    Liu, Guohai; Vimalchand, Pannalal; Guan, Xiaofeng; Peng, WanWang

    2016-10-11

    A method and apparatus for cooling hot gas streams in the temperature range 800.degree. C. to 1600.degree. C. using multi-stage circulating fluid bed (CFB) coolers is disclosed. The invention relates to cooling the hot syngas from coal gasifiers in which the hot syngas entrains substances that foul, erode and corrode heat transfer surfaces upon contact in conventional coolers. The hot syngas is cooled by extracting and indirectly transferring heat to heat transfer surfaces with circulating inert solid particles in CFB syngas coolers. The CFB syngas coolers are staged to facilitate generation of steam at multiple conditions and hot boiler feed water that are necessary for power generation in an IGCC process. The multi-stage syngas cooler can include internally circulating fluid bed coolers, externally circulating fluid bed coolers and hybrid coolers that incorporate features of both internally and externally circulating fluid bed coolers. Higher process efficiencies can be realized as the invention can handle hot syngas from various types of gasifiers without the need for a less efficient precooling step.

  15. Method and apparatus for chemically altering fluids in continuous flow

    DOEpatents

    Heath, W.O.; Virden, J.W. Jr.; Richardson, R.L.; Bergsman, T.M.

    1993-10-19

    The present invention relates to a continuous flow fluid reactor for chemically altering fluids. The reactor operates on standard frequency (50 to 60 Hz) electricity. The fluid reactor contains particles that are energized by the electricity to form a corona throughout the volume of the reactor and subsequently a non-equilibrium plasma that interacts with the fluid. Particles may form a fixed bed or a fluid bed. Electricity may be provided through electrodes or through an inductive coil. Fluids include gases containing exhaust products and organic fuels requiring oxidation. 4 figures.

  16. Method and apparatus for chemically altering fluids in continuous flow

    DOEpatents

    Heath, William O.; Virden, Jr., Judson W.; Richardson, R. L.; Bergsman, Theresa M.

    1993-01-01

    The present invention relates to a continuous flow fluid reactor for chemically altering fluids. The reactor operates on standard frequency (50 to 60 Hz) electricity. The fluid reactor contains particles that are energized by the electricity to form a corona throughout the volume of the reactor and subsequently a non-equilibrium plasma that interacts with the fluid. Particles may form a fixed bed or a fluid bed. Electricity may be provided through electrodes or through an inductive coil. Fluids include gases containing exhaust products and organic fuels requiring oxidation.

  17. FIELD STUDIES ON USBM AND TOSCO II RETORTED OIL SHALES: VEGETATION, MOISTURE, SALINITY, AND RUNOFF, 1977-1980

    EPA Science Inventory

    Field studies were initiated in 1973 to investigate the vegetative stabilization of processed oil shales and to follow moisture and soluble salt movement within the soil/shale profile. Research plots with two types of retorted shales (TOSCO II and USBM) with leaching and soil cov...

  18. 120. VIEW, LOOKING SOUTHEAST, OF TELLURIDE IRON WORKS RETORT USED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    120. VIEW, LOOKING SOUTHEAST, OF TELLURIDE IRON WORKS RETORT USED FOR FLASHING MERCURY OFF OF GOLD TO CREATE SOFT INGOTS CALLED "SPONGES." AT RIGHT ARE SAFES FOR STORING 22-POUND SPONGES WORTH OVER $60,000 EACH, CA. 1985. - Shenandoah-Dives Mill, 135 County Road 2, Silverton, San Juan County, CO

  19. Yield and Production Properties of Wood chips and Particles Torrefied in a Crucible Furnace Retort

    Treesearch

    Thomas L. Eberhardt; Chi-Leung So; Karen G. Reed

    2016-01-01

    Biomass preprocessing by torrefaction improves feedstock consistency and thereby improves the efficiency of biofuels operations, including pyrolysis, gasification, and combustion. A crucible furnace retort was fabricated of sufficient size to handle a commercially available wood chip feedstock. Varying the torrefaction times and temperatures provided an array of...

  20. 1. Distant view shows Engine Room Building behind cranes. Retort ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Distant view shows Engine Room Building behind cranes. Retort rings in foreground were once located in Engine Room Building. See photo WA-131-A-2. Building on left is Machine Shop. Boiler Building is in front of stack. - Pacific Creosoting Plant, Engine Room Building, 5350 Creosote Place, Northeast, Bremerton, Kitsap County, WA

  1. 9 CFR 318.308 - Deviations in processing.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) Deviations in processing (or process deviations) must be handled according to: (1)(i) A HACCP plan for canned..., containers in the retort intake valve and in transfer valves between retort shells at the time of a jam or... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Deviations in processing. 318.308...

  2. 9 CFR 381.308 - Deviations in processing.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., containers in the retort intake valve and in transfer valves between retort shells at the time of a jam or... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Deviations in processing. 381.308... Deviations in processing. (a) Whenever the actual process is less than the process schedule or when any...

  3. Fluid forces or impacts: What governs the entrainment of soil particles in sediment transport mediated by a Newtonian fluid?

    NASA Astrophysics Data System (ADS)

    Pähtz, Thomas; Durán, Orencio

    2017-07-01

    In steady sediment transport, the deposition of transported particles is balanced by the entrainment of soil bed particles by the action of fluid forces or particle-bed impacts. Here we propose a proxy to determine the role of impact entrainment relative to entrainment by the mean turbulent flow: the "bed velocity" Vb, which is an effective near-bed-surface value of the average horizontal particle velocity that generalizes the classical slip velocity, used in studies of aeolian saltation transport, to sediment transport in an arbitrary Newtonian fluid. We study Vb for a wide range of the particle-fluid-density ratio s , Galileo number Ga , and Shields number Θ using direct sediment transport simulations with the numerical model of Durán et al. [Phys. Fluids 24, 103306 (2012), 10.1063/1.4757662], which couples the discrete element method for the particle motion with a continuum Reynolds-averaged description of hydrodynamics. We find that transport is fully sustained through impact entrainment (i.e., Vb is constant in natural units) when the "impact number" Im =Ga √{s +0.5 }≳20 or Θ ≳5 /Im . These conditions are obeyed for the vast majority of transport regimes, including steady turbulent bedload, which has long been thought to be sustained solely through fluid entrainment. In fact, we find that transport is fully sustained through fluid entrainment (i.e., Vb scales with the near-bed horizontal fluid velocity) only for sufficiently viscous bedload transport at grain scale (i.e., for Im ≲20 and Θ ≲1 /Im ). Finally, we do not find a strong correlation between Vb, or the classical slip velocity, and the transport-layer-averaged horizontal particle velocity vx¯, which challenges the long-standing consensus that predominant impact entrainment is responsible for a linear scaling of the transport rate with Θ . For turbulent bedload in particular, vx¯ increases with Θ despite Vb remaining constant, which we propose is linked to the formation of a liquidlike bed on top of the static-bed surface.

  4. Nonlinear flow response of soft hair beds

    NASA Astrophysics Data System (ADS)

    Alvarado, José; Comtet, Jean; de Langre, Emmanuel; Hosoi, A. E.

    2017-10-01

    We are `hairy' on the inside: beds of passive fibres anchored to a surface and immersed in fluids are prevalent in many biological systems, including intestines, tongues, and blood vessels. These hairs are soft enough to deform in response to stresses from fluid flows. Yet fluid stresses are in turn affected by hair deformation, leading to a coupled elastoviscous problem that is poorly understood. Here we investigate a biomimetic model system of elastomer hair beds subject to shear-driven Stokes flows. We characterize this system with a theoretical model that accounts for the large-deformation flow response of hair beds. Hair bending results in a drag-reducing nonlinearity because the hair tip lowers towards the base, widening the gap through which fluid flows. When hairs are cantilevered at an angle subnormal to the surface, flow against the grain bends hairs away from the base, narrowing the gap. The flow response of angled hair beds is axially asymmetric and amounts to a rectification nonlinearity. We identify an elastoviscous parameter that controls nonlinear behaviour. Our study raises the hypothesis that biological hairy surfaces function to reduce fluid drag. Furthermore, angled hairs may be incorporated in the design of integrated microfluidic components, such as diodes and pumps.

  5. Electrical capacitance volume tomography (ECVT) applied to bubbling fluid beds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, J., Mei, J.

    2012-01-01

    These presentation visuals illustrate the apparatus and method for applying Electrical Capacitance Volume Tomography (ECVT) to bubbling fluid beds to their solid fraction and bubble properties. Results are compared to estimated values.

  6. In Vitro Studies Evaluating Leaching of Mercury from Mine Waste Calcine Using Simulated Human Body Fluids

    PubMed Central

    2010-01-01

    In vitro bioaccessibility (IVBA) studies were carried out on samples of mercury (Hg) mine-waste calcine (roasted Hg ore) by leaching with simulated human body fluids. The objective was to estimate potential human exposure to Hg due to inhalation of airborne calcine particulates and hand-to-mouth ingestion of Hg-bearing calcines. Mine waste calcines collected from Hg mines at Almadén, Spain, and Terlingua, Texas, contain Hg sulfide, elemental Hg, and soluble Hg compounds, which constitute primary ore or compounds formed during Hg retorting. Elevated leachate Hg concentrations were found during calcine leaching using a simulated gastric fluid (as much as 6200 μg of Hg leached/g sample). Elevated Hg concentrations were also found in calcine leachates using a simulated lung fluid (as much as 9200 μg of Hg leached/g), serum-based fluid (as much as 1600 μg of Hg leached/g), and water of pH 5 (as much as 880 μg of Hg leached/g). The leaching capacity of Hg is controlled by calcine mineralogy; thus, calcines containing soluble Hg compounds contain higher leachate Hg concentrations. Results indicate that ingestion or inhalation of Hg mine-waste calcine may lead to increased Hg concentrations in the human body, especially through the ingestion pathway. PMID:20491469

  7. In vitro studies evaluating leaching of mercury from mine waste calcine using simulated human body fluids.

    PubMed

    Gray, John E; Plumlee, Geoffrey S; Morman, Suzette A; Higueras, Pablo L; Crock, James G; Lowers, Heather A; Witten, Mark L

    2010-06-15

    In vitro bioaccessibility (IVBA) studies were carried out on samples of mercury (Hg) mine-waste calcine (roasted Hg ore) by leaching with simulated human body fluids. The objective was to estimate potential human exposure to Hg due to inhalation of airborne calcine particulates and hand-to-mouth ingestion of Hg-bearing calcines. Mine waste calcines collected from Hg mines at Almaden, Spain, and Terlingua, Texas, contain Hg sulfide, elemental Hg, and soluble Hg compounds, which constitute primary ore or compounds formed during Hg retorting. Elevated leachate Hg concentrations were found during calcine leaching using a simulated gastric fluid (as much as 6200 microg of Hg leached/g sample). Elevated Hg concentrations were also found in calcine leachates using a simulated lung fluid (as much as 9200 microg of Hg leached/g), serum-based fluid (as much as 1600 microg of Hg leached/g), and water of pH 5 (as much as 880 microg of Hg leached/g). The leaching capacity of Hg is controlled by calcine mineralogy; thus, calcines containing soluble Hg compounds contain higher leachate Hg concentrations. Results indicate that ingestion or inhalation of Hg mine-waste calcine may lead to increased Hg concentrations in the human body, especially through the ingestion pathway.

  8. In vitro studies evaluating leaching of mercury from mine waste calcine using simulated human body fluids

    USGS Publications Warehouse

    Gray, John E.; Plumlee, Geoffrey S.; Morman, Suzette A.; Higueras, Pablo L.; Crock, James G.; Lowers, Heather A.; Witten, Mark L.

    2010-01-01

    In vitro bioaccessibility (IVBA) studies were carried out on samples of mercury (Hg) mine-waste calcine (roasted Hg ore) by leaching with simulated human body fluids. The objective was to estimate potential human exposure to Hg due to inhalation of airborne calcine particulates and hand-to-mouth ingestion of Hg-bearing calcines. Mine waste calcines collected from Hg mines at Almadén, Spain, and Terlingua, Texas, contain Hg sulfide, elemental Hg, and soluble Hg compounds, which constitute primary ore or compounds formed during Hg retorting. Elevated leachate Hg concentrations were found during calcine leaching using a simulated gastric fluid (as much as 6200 μg of Hg leached/g sample). Elevated Hg concentrations were also found in calcine leachates using a simulated lung fluid (as much as 9200 μg of Hg leached/g), serum-based fluid (as much as 1600 μg of Hg leached/g), and water of pH 5 (as much as 880 μg of Hg leached/g). The leaching capacity of Hg is controlled by calcine mineralogy; thus, calcines containing soluble Hg compounds contain higher leachate Hg concentrations. Results indicate that ingestion or inhalation of Hg mine-waste calcine may lead to increased Hg concentrations in the human body, especially through the ingestion pathway.

  9. High-Flux, High Performance H2O2 Catalyst Bed for ISTAR

    NASA Technical Reports Server (NTRS)

    Ponzo, J.

    2005-01-01

    On NASA's ISTAR RBCC program packaging and performance requirements exceeded traditional H2O2 catalyst bed capabilities. Aerojet refined a high performance, monolithic 90% H202 catalyst bed previously developed and demonstrated. This approach to catalyst bed design and fabrication was an enabling technology to the ISTAR tri-fluid engine. The catalyst bed demonstrated 55 starts at throughputs greater than 0.60 lbm/s/sq in for a duration of over 900 seconds in a physical envelope approximately 114 of traditional designs. The catalyst bed uses photoetched plates of metal bonded into a single piece monolithic structure. The precise control of the geometry and complete mixing results in repeatable, quick starting, high performing catalyst bed. Three different beds were designed and tested, with the best performing bed used for tri-fluid engine testing.

  10. 40 CFR Appendix 7 to Subpart A of... - API Recommended Practice 13B-2

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... facilitate cleaning and funnel-shaped top to catch falling drops. For compliance monitoring under the NPDES... condenser. b. Pack the retort body with steel wool. c. Apply lubricant/sealant to threads of retort cup and... the clean and dry liquid receiver. This is mass (C), grams. Place the receiver below condenser outlet...

  11. 40 CFR Appendix 7 to Subpart A of... - API Recommended Practice 13B-2

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... facilitate cleaning and funnel-shaped top to catch falling drops. For compliance monitoring under the NPDES... condenser. b. Pack the retort body with steel wool. c. Apply lubricant/sealant to threads of retort cup and... the clean and dry liquid receiver. This is mass (C), grams. Place the receiver below condenser outlet...

  12. Comparison of Ocular Outcomes in Two 14-Day Bed Rest Studies

    NASA Technical Reports Server (NTRS)

    Cromwell, Ronita L.; Zanello, S. B.; Yarbough, P. O.; Tabbi, G.; Vizzeri, G.

    2012-01-01

    Reports of astronauts' visual changes have raised concern about ocular health during long-duration spaceflight. Some of these findings include globe flattening with hyperopic shifts, choroidal folds, optic disc edema, retinal nerve fiber layer (RNFL) thickening, and cotton wool spots. While the etiology remains unknown, it is hypothesized that, in predisposed individuals, hypertension in the brain may follow cephalad fluid shifts during spaceflight. This possible mechanism of ocular changes may also apply to analogous cases of idiopathic intracranial hypertension (IIH) or pseudotumor cerebri on Earth patients. Head-down t ilt (HDT) bed rest is a spaceflight analog that induces cephalad fluid shifts. Previous studies of the HDT position demonstrated body fluid shifts associated with changes in intraocular pressure (IOP) but the conditions of bed rest varied among experiments, making it difficult to compare data and draw conclusions. For these reasons, vision evaluation of bed rest subjects was implemented for NASA bed rest studies since 2010, in an attempt to monitor vision health in subjects subjected to bed rest. Vision monitoring is thus currently performed in all NASA-conducted bed rest campaigns

  13. Physiology of Fluid and Electrolyte Responses During Inactivity: Water Immersion and Bed Rest

    NASA Technical Reports Server (NTRS)

    Greenleaf, John E.

    1984-01-01

    This manuscript emphasizes the physiology of fluid-electrolyte-hormonal responses during the prolonged inactivity of bed rest and water immersion. An understanding of the total mechanism of adaptation (deconditioning) should provide more insight into the conditioning process. Findings that need to be confirmed during bed rest and immersion are: (1) the volume and tissues of origin of fluid shifted to the thorax and head; (2) interstitial fluid pressure changes in muscle and subcutaneous tissue, particularly during immersion; and (3) the composition of the incoming presumably interstitial fluid that contributes to the early hypervolemia. Better resolution of the time course and source of the diuretic fluid is needed. Important data will be forthcoming when hypotheses are tested involving the probable action of the emerging diuretic and natriuretic hormones, between themselves and among vasopressin and aldosterone, on diuresis and blood pressure control.

  14. Method and apparatus for improving heat transfer in a fluidized bed

    DOEpatents

    Lessor, Delbert L.; Robertus, Robert J.

    1990-01-01

    An apparatus contains a fluidized bed that includes particles of different triboelectrical types, each particle type acquiring an opposite polarity upon contact. The contact may occur between particles of the two types or between particles of etiher type and structure or fluid present in the apparatus. A fluidizing gas flow is passed through the particles to produce the fluidized bed. Immersed within the bed are electrodes. An alternating EMF source connected to the electrodes applies an alternating electric field across the fluidized bed to cause particles of the first type to move relative to particles of the second type and relative to the gas flow. In a heat exchanger incorporating the apparatus, the electrodes are conduits conveying a fluid to be heated. The two particle types alternately contact each conduit to transfer heat from a hot gas flow to the second fluid within the conduit.

  15. Technical note: Evaluation of a crucible furnace retort for laboratory torrefactions of wood chips

    Treesearch

    Thomas L. Eberhardt; Karen G. Reed

    2014-01-01

    Torrefaction is a thermal process that improves biomass performance as a fuel by property enhancements such as decreased moisture uptake and increased carbon density. Most studies to date have used very small amounts of finely ground biomass. This study reports the testing of a crucible furnace retort that was fabricated to produce intermediate quantities of torrefied...

  16. Shale-oil-recovery systems incorporating ore beneficiation. Final report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, M.A.; Klumpar, I.V.; Peterson, C.R.

    This study analyzed the recovery of oil from oil shale by use of proposed systems which incorporate beneficiation of the shale ore (that is concentration of the kerogen before the oil-recovery step). The objective was to identify systems which could be more attractive than conventional surface retorting of ore. No experimental work was carried out. The systems analyzed consisted of beneficiation methods which could increase kerogen concentrations by at least four-fold. Potentially attractive low-enrichment methods such as density separation were not examined. The technical alternatives considered were bounded by the secondary crusher as input and raw shale oil as output.more » A sequence of ball milling, froth flotation, and retorting concentrate is not attractive for Western shales compared to conventional ore retorting; transporting the concentrate to another location for retorting reduces air emissions in the ore region but cost reduction is questionable. The high capital and energy cost s results largely from the ball milling step which is very inefficient. Major improvements in comminution seem achievable through research and such improvements, plus confirmation of other assumptions, could make high-enrichment beneficiation competitive with conventional processing. 27 figures, 23 tables.« less

  17. Optimization of thermal processing of canned mussels.

    PubMed

    Ansorena, M R; Salvadori, V O

    2011-10-01

    The design and optimization of thermal processing of solid-liquid food mixtures, such as canned mussels, requires the knowledge of the thermal history at the slowest heating point. In general, this point does not coincide with the geometrical center of the can, and the results show that it is located along the axial axis at a height that depends on the brine content. In this study, a mathematical model for the prediction of the temperature at this point was developed using the discrete transfer function approach. Transfer function coefficients were experimentally obtained, and prediction equations fitted to consider other can dimensions and sampling interval. This model was coupled with an optimization routine in order to search for different retort temperature profiles to maximize a quality index. Both constant retort temperature (CRT) and variable retort temperature (VRT; discrete step-wise and exponential) were considered. In the CRT process, the optimal retort temperature was always between 134 °C and 137 °C, and high values of thiamine retention were achieved. A significant improvement in surface quality index was obtained for optimal VRT profiles compared to optimal CRT. The optimization procedure shown in this study produces results that justify its utilization in the industry.

  18. Withdrawal of gases and liquids from an in situ oil shale retort

    DOEpatents

    Siegel, Martin M.

    1982-01-01

    An in situ oil shale retort is formed within a subterranean formation containing oil shale. The retort contains a fragmented permeable mass of formation particles containing oil shale. A production level drift extends below the fragmented mass, leaving a lower sill pillar of unfragmented formation between the production level drift and the fragmented mass. During retorting operations, liquid and gaseous products are recovered from a lower portion of the fragmented mass. A liquid outlet line extends from a lower portion of the fragmented mass through the lower sill pillar for conducting liquid products to a sump in the production level drift. Gaseous products are withdrawn from the fragmented mass through a plurality of gas outlet lines distributed across a horizontal cross-section of a lower portion of the fragmented mass. The gas outlet lines extend from the fragmented mass through the lower sill pillar and into the production level drift. The gas outlet lines are connected to a gas withdrawal manifold in the production level drift, and gaseous products are withdrawn from the manifold separately from withdrawal of liquid products from the sump in the production level drift.

  19. Fast fluidized bed steam generator

    DOEpatents

    Bryers, Richard W.; Taylor, Thomas E.

    1980-01-01

    A steam generator in which a high-velocity, combustion-supporting gas is passed through a bed of particulate material to provide a fluidized bed having a dense-phase portion and an entrained-phase portion for the combustion of fuel material. A first set of heat transfer elements connected to a steam drum is vertically disposed above the dense-phase fluidized bed to form a first flow circuit for heat transfer fluid which is heated primarily by the entrained-phase fluidized bed. A second set of heat transfer elements connected to the steam drum and forming the wall structure of the furnace provides a second flow circuit for the heat transfer fluid, the lower portion of which is heated by the dense-phase fluidized bed and the upper portion by the entrained-phase fluidized bed.

  20. Numerical simulation of turbulence and sediment transport of medium sand

    NASA Astrophysics Data System (ADS)

    Schmeeckle, M. W.

    2012-12-01

    Eleven numerical simulations, ranging from no transport to bedload to vigorous suspension transport, are presented of a combined large eddy simulation (LES) and distinct element model (DEM) of an initially flat bed of medium sand. The fluid and particles are fully coupled in momentum. The friction coefficient, defined here as the squared ratio of the friction velocity to the depth-averaged velocity, is in good agreement with well-known rough bed relations at no transport and increases with the intensity of bedload transport. The friction coefficient nearly doubles in value at the onset of sediment suspension owing to a rapid increase of the depth over which particles and fluid exchange momentum. The friction coefficient decreases with increasing suspension intensity because of increasingly stable stratification. Fluid Reynolds stress and time-averaged velocity profiles in the bedload regime agree well with previous experiments and simulations. Also consistent with previous studies of suspended sediment, there is an increase in slope of the lower portion of the velocity profile that has been modeled in the past using stably stratified eddy viscosity closures or an adjusted von Karman constant. Stokes numbers in the simulations, using an estimated lagrangian integral time scale, are less than unity. As such, particles faithfully follow the fluid, except for particle settling and grain-grain interactions near the bed. Fluid-particle velocity correlation coefficients approach one in portions of the flow where volumetric sediment concentrations are below about ten percent. Bedload entrainment is critically connected to vertical velocity fluctuations. When a fluid packet approaches the bed from the interior of the flow (i.e. a sweep), fluid is forced into the bed, and at the edges of the sweep, fluid is forced out of the bed. Much of the particle entrainment occurs at these sweep edges. Fluid velocity statistics following the particles reveal that moving bedload particles are preferentially concentrated in zones of upward fluid velocity. This may explain previous observations noting a rapid vertical rise at the beginning of saltation trajectories. The simulations described here have no lift forces. Because of the short particle time scales relative to that of the turbulent structures, high transport stage bedload entrainment zones involve mutual interaction between turbulence structures and bed deformation. These deformation structures appear as depressed areas of the bed at the center of the sweep and raised areas of entraining particles at the edges of the sweep penetration. Suspended sediment entrainment structures are similar to these bedload entrainment structures but have much larger scales. Preferential concentration of suspended grains in zones of upward moving fluid dampens turbulence intensities and momentum transport. Much of the suspended transport takes place within this highly concentrated near-bed zone of damped turbulence. Particle-fluid correlation coefficients are relatively low in the lower portion of this highly concentrated suspended sediment zone, owing to particle-particle interactions. As such, Rouse-like profiles utilizing eddy viscosity closures, adjusted according to flux Richardson numbers, do not adequately describe the physics of this zone.

  1. Two stage fluid bed-plasma gasification process for solid waste valorisation: Technical review and preliminary thermodynamic modelling of sulphur emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrin, Shane, E-mail: shane.morrin@ucl.ac.uk; Advanced Plasma Power, South Marston Business park, Swindon, SN3 4DE; Lettieri, Paola, E-mail: p.lettieri@ucl.ac.uk

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer We investigate sulphur during MSW gasification within a fluid bed-plasma process. Black-Right-Pointing-Pointer We review the literature on the feed, sulphur and process principles therein. Black-Right-Pointing-Pointer The need for research in this area was identified. Black-Right-Pointing-Pointer We perform thermodynamic modelling of the fluid bed stage. Black-Right-Pointing-Pointer Initial findings indicate the prominence of solid phase sulphur. - Abstract: Gasification of solid waste for energy has significant potential given an abundant feed supply and strong policy drivers. Nonetheless, significant ambiguities in the knowledge base are apparent. Consequently this study investigates sulphur mechanisms within a novel two stage fluid bed-plasma gasification process.more » This paper includes a detailed review of gasification and plasma fundamentals in relation to the specific process, along with insight on MSW based feedstock properties and sulphur pollutant therein. As a first step to understanding sulphur partitioning and speciation within the process, thermodynamic modelling of the fluid bed stage has been performed. Preliminary findings, supported by plant experience, indicate the prominence of solid phase sulphur species (as opposed to H{sub 2}S) - Na and K based species in particular. Work is underway to further investigate and validate this.« less

  2. Nonlinear flow response of soft hair beds

    NASA Astrophysics Data System (ADS)

    Alvarado, José

    2017-11-01

    We are hairy inside: beds of passive fibers anchored to a surface and immersed in fluids are prevalent in many biological systems, including intestines, tongues, and blood vessels. Such hairs are soft enough to deform in response to stresses from fluid flows. Fluid stresses are in turn affected by hair deformation, leading to a coupled elastoviscous problem which is poorly understood. Here we investigate a biomimetic model system of elastomer hair beds subject to shear- driven Stokes flows. We characterize this system with a theoretical model which accounts for the large-deformation flow response of hair beds. Hair bending results in a drag-reducing nonlinearity because the hair tip lowers toward the base, widening the gap through which fluid flows. When hairs are cantilevered at an angle subnormal to the surface, flow against the grain bends hairs away from the base, narrowing the gap. The flow response of angled hair beds is axially asymmetric and amounts to a rectification nonlinearity. We identify an elastoviscous parameter which controls nonlinear behavior. Our study raises the hypothesis that biological hairy surfaces function to reduce fluid drag. Furthermore, angled hairs may be incorporated in the design of integrated microfluidic components, such as diodes and pumps. J.A. acknowledges support the U. S. Army Research Office under Grant Number W911NF-14-1-0396.

  3. Shale oil recovery process

    DOEpatents

    Zerga, Daniel P.

    1980-01-01

    A process of producing within a subterranean oil shale deposit a retort chamber containing permeable fragmented material wherein a series of explosive charges are emplaced in the deposit in a particular configuration comprising an initiating round which functions to produce an upward flexure of the overburden and to initiate fragmentation of the oil shale within the area of the retort chamber to be formed, the initiating round being followed in a predetermined time sequence by retreating lines of emplaced charges developing further fragmentation within the retort zone and continued lateral upward flexure of the overburden. The initiating round is characterized by a plurality of 5-spot patterns and the retreating lines of charges are positioned and fired along zigzag lines generally forming retreating rows of W's. Particular time delays in the firing of successive charges are disclosed.

  4. Study report on modification of the long term circulatory model for the simulation of bed rest

    NASA Technical Reports Server (NTRS)

    Leonard, J. I.; Grounds, D. J.

    1977-01-01

    Modifications were made of the circulatory, fluid, and electrolyte control model which was based on the model of Guyton. The modifications included separate leg compartments and the addition of gravity dependency. It was found that these modifications allowed for more accurate bed rest simulation by simulating changes in the orthostatic gradient and simulating the response to the fluid shifts associated with bed rest.

  5. Hormonal regulation of fluid and electrolytes during prolonged bed rest - Implications for microgravity

    NASA Technical Reports Server (NTRS)

    Greenleaf, John E.

    1989-01-01

    The results of studies on the physiological changes of body fluids and electrolytes during bed rest with and without exercise training are overviewed to determine the effect of exercise and to assess the role of hormonal regulation in fluid-electrolyte responses to hypogravity. Special attention is given to fluid shifts observed in spacecraft personnel during space missions. It is concluded that, despite an apparent uncoupling of prominent hormonal interactions during bed-rest deconditioning (and, possibly, during microgravity), the exercise-training-induced hypervolemia helps to counter the hypohydrostatic-induced dehydration. Thus, it was found that, after nearly a year of spaceflight during which one cosmonaut exercised for about 4 hr per day, the water balance and physiological functioning were not disturbed significantly.

  6. Squeeze-film flow between a flat impermeable bearing and an anisotropic porous bed

    NASA Astrophysics Data System (ADS)

    Karmakar, Timir; Raja Sekhar, G. P.

    2018-04-01

    We consider a theoretical model of the squeeze film in the presence of a porous bed. The gap between the porous bed and the bearing is assumed to be filled with a Newtonian fluid. We use the Navier-Stokes equation in the fluid region and the Darcy equation in the fluid filled porous region. Lubrication approximation is used to derive the corresponding evolution equation for the film thickness. We use G. S. Beavers and D. D. Joseph ["Boundary conditions at a naturally permeable wall," J. Fluid. Mech. 30, 197-207 (1967)] and M. Le Bars and M. G. Worster ["Interfacial conditions between a pure fluid and a porous medium: Implications for binary alloy solidification," J. Fluid. Mech. 550, 149-173 (2006)] condition at the liquid porous interface and present a detailed analysis on the corresponding impact. We assume that the porous bed is anisotropic in nature with permeabilities K2 and K1 along the principal axes. Accordingly, the anisotropic angle ϕ is taken as the angle between the horizontal direction and principal axis with permeability K2. We show that the anisotropic permeability ratio and the anisotropic angle make a significant influence on the contact time, flux, velocity, etc. Contact time to meet the porous bed when a bearing approaches under a constant prescribed load is estimated. We present some important findings (relevant to the knee joint) based on the anisotropic properties of the human cartilage. For a prescribed constant load, we have estimated the time duration, during which a healthy human knee remains fluid lubricated.

  7. Differences in fundamental and functional properties of HPMC co-processed fillers prepared by fluid-bed coating and spray drying.

    PubMed

    Dong, QianQian; Zhou, MiaoMiao; Lin, Xiao; Shen, Lan; Feng, Yi

    2018-07-01

    This study aimed to develop novel co-processed tablet fillers based on the principle of particle engineering for direct compaction and to compare the characteristics of co-processed products obtained by fluid-bed coating and co-spray drying, respectively. Water-soluble mannitol and water-insoluble calcium carbonate were selected as representative fillers for this study. Hydroxypropyl methylcellulose (HPMC), serving as a surface property modifier, was distributed on the surface of primary filler particles via the two co-processing methods. Both fundamental and functional properties of the products were comparatively investigated. The results showed that functional properties of the fillers, like flowability, compactibility, and drug-loading capacity, were effectively improved by both co-processing methods. However, fluid-bed coating showed greater advantages over co-spray drying in some aspects, which was mainly attributed to the remarkable differences in some fundamental properties of co-processed powders, like particle size, surface topology, and particle structure. For example, the more irregular surface and porous structure induced by fluid-bed coating could contribute to better compaction properties and lower lubricant sensitivity due to the increasing contact area and mechanical interlocking between particles under pressure. More effective surface distribution of HPMC during fluid-bed coating was also a contributor. In addition, such a porous agglomerate structure could also reduce the separation of drug and excipients after mixing, resulting in the improvement in drug loading capacity and tablet uniformity. In summary, fluid-bed coating appears to be more promising for co-processing than spray drying in some aspects, and co-processed excipients produced by it have a great prospect for further investigations and development. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Coupled large eddy simulation and discrete element model of bedload motion

    NASA Astrophysics Data System (ADS)

    Furbish, D.; Schmeeckle, M. W.

    2011-12-01

    We combine a three-dimensional large eddy simulation of turbulence to a three-dimensional discrete element model of turbulence. The large eddy simulation of the turbulent fluid is extended into the bed composed of non-moving particles by adding resistance terms to the Navier-Stokes equations in accordance with the Darcy-Forchheimer law. This allows the turbulent velocity and pressure fluctuations to penetrate the bed of discrete particles, and this addition of a porous zone results in turbulence structures above the bed that are similar to previous experimental and numerical results for hydraulically-rough beds. For example, we reproduce low-speed streaks that are less coherent than those over smooth-beds due to the episodic outflow of fluid from the bed. Local resistance terms are also added to the Navier-Stokes equations to account for the drag of individual moving particles. The interaction of the spherical particles utilizes a standard DEM soft-sphere Hertz model. We use only a simple drag model to calculate the fluid forces on the particles. The model reproduces an exponential distribution of bedload particle velocities that we have found experimentally using high-speed video of a flat bed of moving sand in a recirculating water flume. The exponential distribution of velocity results from the motion of many particles that are nearly constantly in contact with other bed particles and come to rest after short distances, in combination with a relatively few particles that are entrained further above the bed and have velocities approaching that of the fluid. Entrainment and motion "hot spots" are evident that are not perfectly correlated with the local, instantaneous fluid velocity. Zones of the bed that have recently experienced motion are more susceptible to motion because of the local configuration of particle contacts. The paradigm of a characteristic saltation hop length in riverine bedload transport has infused many aspects of geomorphic thought, including even bedrock erosion. In light of our theoretical, experimental, and numerical findings supporting the exponential distribution of bedload particle motion, the idea of a characteristic saltation hop should be scrapped or substantially modified.

  9. WATER COOLED RETORT COVER

    DOEpatents

    Ash, W.J.; Pozzi, J.F.

    1962-05-01

    A retort cover is designed for use in the production of magnesium metal by the condensation of vaporized metal on a collecting surface. The cover includes a condensing surface, insulating means adjacent to the condensing surface, ind a water-cooled means for the insulating means. The irrangement of insulation and the cooling means permits the magnesium to be condensed at a high temperature and in massive nonpyrophoric form. (AEC)

  10. Quality of ready to serve tilapia fish curry with PUFA in retortable pouches.

    PubMed

    Dhanapal, K; Reddy, G V S; Nayak, B B; Basu, S; Shashidhar, K; Venkateshwarlu, G; Chouksey, M K

    2010-09-01

    Studies on the physical, chemical, and microbiological qualities of fresh tilapia meat revealed its suitability for the preparation of ready to eat fish curry packed in retort pouches. Studies on the fatty acid profile of tilapia meat suggest fortification with polyunsaturated fatty acid (PUFA) to increase the nutritional value. Based on the commercial sterility, sensory evaluation, color, and texture profile analysis F(0) value of 6.94 and cook value of 107.24, with a total process time of 50.24 min at 116 °C was satisfactory for the development of tilapia fish curry in retort pouches. Thermally processed ready to eat south Indian type tilapia fish curry fortified with PUFA was developed and its keeping quality studied at ambient temperature. During storage, a slight increase in the fat content of fish meat was observed, with no significant change in the contents of moisture, protein, and ash. The thiobarbituric acid (TBA) values of fish curry significantly increased during storage. Fish curry fortified with 1% cod liver oil and fish curry without fortification (control) did not show any significant difference in the levels of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), during thermal processing and storage. Sensory analysis revealed that fortification of fish curry with cod liver oil had no impact on the quality. Tilapia fish curry processed at 116 °C and F(0) value of 7.0 (with or without fortification of cod liver oil) was fit for consumption, even after a period of 1-y storage in retort pouch. Tilapia is a lean variety of fish with white flesh and therefore an ideal choice as raw material for the development of ready to serve fish products such as fish curry in retort pouches for both domestic and international markets. Ready to eat thermal processed (116 °C and F(0) value of 7.0) south Indian type tilapia fish curry enriched with PUFA and packed in retort pouch was acceptable for consumption even after a storage period of 1 y at ambient temperature.

  11. Assessment of the long-term stability of retort pouch foods to support extended duration spaceflight.

    PubMed

    Catauro, Patricia M; Perchonok, Michele H

    2012-01-01

    To determine the suitability of retort processed foods to support long-duration spaceflight, a series of 36-mo accelerated shelf life studies were performed on 13 representative retort pouch products. Combined sensory evaluations, physical properties assessments, and nutritional analyses were employed to determine shelf life endpoints for these foods, which were either observed during the analysis or extrapolated via mathematical projection. Data obtained through analysis of these 13 products were later used to estimate the shelf life values of all retort-processed spaceflight foods. In general, the major determinants of shelf life appear to be the development of off-flavor and off-color in products over time. These changes were assumed to be the result of Maillard and oxidation reactions, which can be initiated or accelerated as a result of the retort process and product formulation. Meat products and other vegetable entrées are projected to maintain their quality the longest, between 2 and 8 y, without refrigeration. Fruit and dessert products (1.5 to 5 y), dairy products (2.5 to 3.25 y), and starches, vegetable, and soup products (1 to 4 y) follow. Aside from considerable losses in B and C vitamin content, nutritional value of most products was maintained throughout shelf life. Fortification of storage-labile vitamins was proposed as a countermeasure to ensure long-term nutritive value of these products. The use of nonthermal sterilization technologies was also recommended, as a means to improve initial quality of these products and extend their shelf life for use in long-duration missions. Data obtained also emphasize the importance of low temperature storage in maintaining product quality. Retort sterilized pouch products are garnering increased commercial acceptance, largely due to their improved convenience and quality over metal-canned products. Assessment of the long-term stability of these products with ambient storage can identify potential areas for improvement, and ultimately increase consumer satisfaction with these technologies. Journal of Food Science © 2011 Institute of Food Technologists® No claim to original US government works.

  12. On-line monitoring of fluid bed granulation by photometric imaging.

    PubMed

    Soppela, Ira; Antikainen, Osmo; Sandler, Niklas; Yliruusi, Jouko

    2014-11-01

    This paper introduces and discusses a photometric surface imaging approach for on-line monitoring of fluid bed granulation. Five granule batches consisting of paracetamol and varying amounts of lactose and microcrystalline cellulose were manufactured with an instrumented fluid bed granulator. Photometric images and NIR spectra were continuously captured on-line and particle size information was extracted from them. Also key process parameters were recorded. The images provided direct real-time information on the growth, attrition and packing behaviour of the batches. Moreover, decreasing image brightness in the drying phase was found to indicate granule drying. The changes observed in the image data were also linked to the moisture and temperature profiles of the processes. Combined with complementary process analytical tools, photometric imaging opens up possibilities for improved real-time evaluation fluid bed granulation. Furthermore, images can give valuable insight into the behaviour of excipients or formulations during product development. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Peering inside the granular bed: illuminating feedbacks between bed-load transport and bed-structure evolution

    NASA Astrophysics Data System (ADS)

    Houssais, M.; Jerolmack, D. J.; Martin, R. L.

    2013-12-01

    The threshold of motion is perhaps the most important quantity to determine for understanding rates of bed load transport, however it is a moving target. Decades of research show that it changes in space and in time within a river, and is highly variable among different systems; however, these differences are not mechanistically understood. Recent researchers have proposed that the critical Shields stress is strongly dependent on the local configuration of the sediment bed [Frey and Church, 2011]. Critical Shields stress has been observed to change following sediment-transporting flood events in natural rivers [e.g., Turowski et al., 2011], while small-scale laboratory experiments have produced declining bed load transport rates associated with slow bed compaction [Charru et al., 2004]. However, no direct measurements have been made of the evolving bed structure under bed load transport, so the connection between granular controls and the threshold of motion remains uncertain. A perspective we adopt is that granular effects determine the critical Shields stress, while the fluid supplies a distribution of driving stresses. In order to isolate the granular effect, we undertake laminar bed load transport experiments using plastic beads sheared by a viscous oil in a small, annular flume. The fluid and beads are refractive index matched, and the fluid impregnated with a fluorescing powder. When illuminated with a planar laser sheet, we are able to image slices of the granular bed while also tracking the overlying sediment transport. We present the first results showing how bed load transport influences granular packing, and how changes in packing influence the threshold of motion to feed back on bed load transport rates. This effect may account for much of the variability observed in the threshold of motion in natural streams, and by extension offers a plausible explanation for hysteresis in bed load transport rates observed during floods. Charru, F., H. Mouilleron, and O. Eiff, Erosion and deposition of particles on a bed sheared by a viscous flow, Journal of Fluid Mech., 519, 55-80, 2004 Frey, P. and Church, M. (2011), Bedload: a granular phenomenon. Earth Surf. Process. Landforms, 36: 58-69. doi: 10.1002/esp.2103 Turowski, J. M., A. Badoux, and D. Rickenmann (2011), Start and end of bedload transport in gravel-bed streams, Geophys. Res. Lett., 38, L04401, doi:10.1029/2010GL046558.

  14. Heat pump apparatus

    DOEpatents

    Nelson, Paul A.; Horowitz, Jeffrey S.

    1983-01-01

    A heat pump apparatus including a compact arrangement of individual tubular reactors containing hydride-dehydride beds in opposite end sections, each pair of beds in each reactor being operable by sequential and coordinated treatment with a plurality of heat transfer fluids in a plurality of processing stages, and first and second valves located adjacent the reactor end sections with rotatable members having multiple ports and associated portions for separating the hydride beds at each of the end sections into groups and for simultaneously directing a plurality of heat transfer fluids to the different groups. As heat is being generated by a group of beds, others are being regenerated so that heat is continuously available for space heating. As each of the processing stages is completed for a hydride bed or group of beds, each valve member is rotated causing the heat transfer fluid for the heat processing stage to be directed to that bed or group of beds. Each of the end sections are arranged to form a closed perimeter and the valve member may be rotated repeatedly about the perimeter to provide a continuous operation. Both valves are driven by a common motor to provide a coordinated treatment of beds in the same reactors. The heat pump apparatus is particularly suitable for the utilization of thermal energy supplied by solar collectors and concentrators but may be used with any source of heat, including a source of low-grade heat.

  15. Bed inventory overturn in a circulating fluid bed riser with pant-leg structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jinjing Li; Wei Wang; Hairui Yang

    2009-05-15

    The special phenomenon, nominated as bed inventory overturn, in circulating fluid bed (CFB) riser with pant-leg structure was studied with model calculation and experimental work. A compounded pressure drop mathematic model was developed and validated with the experimental data in a cold experimental test rig. The model calculation results agree well with the measured data. In addition, the intensity of bed inventory overturn is directly proportional to the fluidizing velocity and is inversely proportional to the branch point height. The results in the present study provide significant information for the design and operation of a CFB boiler with pant-leg structure.more » 15 refs., 10 figs., 1 tab.« less

  16. Heterogeneous decomposition of silane in a fixed bed reactor

    NASA Technical Reports Server (NTRS)

    Iya, S. K.; Flagella, R. N.; Dipaolo, F. S.

    1982-01-01

    Heterogeneous decomposition of silane in a fluidized bed offers an attractive route for the low-cost production of silicon for photovoltaic application. To obtain design data for a fluid bed silane pyrolysis reactor, deposition experiments were conducted in a small-scale fixed bed apparatus. Data on the decomposition mode, plating rate, and deposition morphology were obtained in the temperature range 600-900 C. Conditions favorable for heterogeneous decomposition with good deposition morphology were identified. The kinetic rate data showed the reaction to be first order with an activation energy of 38.8 kcal/mol, which agrees well with work done by others. The results are promising for the development of an economically attractive fluid bed process.

  17. Effect of high pressure-high temperature process on meat product quality

    NASA Astrophysics Data System (ADS)

    Duranton, Frédérique; Marée, Elvire; Simonin, Hélène; Chéret, Romuald; de Lamballerie, Marie

    2011-03-01

    High pressure/high temperature (HPHT) processing is an innovative way to sterilize food and has been proposed as an alternative to conventional retorting. By using elevated temperatures and adiabatic compression, it allows the inactivation of vegetative microorganisms and pathogen spores. Even though the microbial inactivation has been widely studied, the effect of such process on sensorial attributes of food products, especially meat products, remains rare. The aim of this study was to investigate the potential of using HPHT process (500 MPa/115 °C) instead of conventional retorting to stabilize Toulouse sausages while retaining high organoleptic quality. The measurements of texture, color, water-holding capacity and microbial stability were investigated. It was possible to manufacture stable products at 500 MPa/115 °C/30 min. However, in these conditions, no improvement of the quality was found compared with conventional retorting.

  18. Method of design for vertical oil shale retorting vessels and retorting therewith

    DOEpatents

    Reeves, Adam A.

    1978-01-03

    A method of designing the gas flow parameters of a vertical shaft oil shale retorting vessel involves determining the proportion of gas introduced in the bottom of the vessel and into intermediate levels in the vessel to provide for lateral distribution of gas across the vessel cross section, providing mixing with the uprising gas, and determining the limiting velocity of the gas through each nozzle. The total quantity of gas necessary for oil shale treatment in the vessel may be determined and the proportion to be injected into each level is then determined based on the velocity relation of the orifice velocity and its feeder manifold gas velocity. A limitation is placed on the velocity of gas issuing from an orifice by the nature of the solid being treated, usually physical tests of gas velocity impinging the solid.

  19. Occidental vertical modified in situ process for the recovery of oil from oil shale. Phase II. Quarterly progress report, September 1, 1980-November 30, 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-01-01

    The major activities at OOSI's Logan Wash site during the quarter were: mining the voids at all levels for Retorts 7 and 8; blasthole drilling; tracer testing MR4; conducting the start-up and burner tests on MR3; continuing the surface facility construction; and conducting Retorts 7 and 8 related Rock Fragmentation tests. Environmental monitoring continued during the quarter, and the data and analyses are discussed. Sandia National Laboratory and Laramie Energy Technology Center (LETC) personnel were active in the DOE support of the MR3 burner and start-up tests. In the last section of this report the final oil inventory for Retortmore » 6 production is detailed. The total oil produced by Retort 6 was 55,696 barrels.« less

  20. Process for oil shale retorting

    DOEpatents

    Jones, John B.; Kunchal, S. Kumar

    1981-10-27

    Particulate oil shale is subjected to a pyrolysis with a hot, non-oxygenous gas in a pyrolysis vessel, with the products of the pyrolysis of the shale contained kerogen being withdrawn as an entrained mist of shale oil droplets in a gas for a separation of the liquid from the gas. Hot retorted shale withdrawn from the pyrolysis vessel is treated in a separate container with an oxygenous gas so as to provide combustion of residual carbon retained on the shale, producing a high temperature gas for the production of some steam and for heating the non-oxygenous gas used in the oil shale retorting process in the first vessel. The net energy recovery includes essentially complete recovery of the organic hydrocarbon material in the oil shale as a liquid shale oil, a high BTU gas, and high temperature steam.

  1. Mercury reduction in Munhena, Mozambique: homemade solutions and the social context for change.

    PubMed

    Spiegel, Samuel J; Savornin, Olivier; Shoko, Dennis; Veiga, Marcello M

    2006-01-01

    The health and environmental impacts of artisanal gold mining are of growing concern in Munhena, Mozambique, where more than 12,000 people are involved in such activities. Gold is extracted using mercury amalgamation, posing a considerable threat to human and environmental health. A pilot project ascertained the feasibility of reducing mercury use and emissions by promoting control measures utilizing local resources. Retorts were fabricated with local materials. Training workshops introduced the homemade retorts, and a portable mercury monitor revealed effective mercury reduction. Barriers to widespread technology adoption include poverty, lack of knowledge and trust, and the free supply of mercury from private gold buyers. Homemade retorts are inexpensive and effective, and miners could benefit by building community amalgamation centers. The government could play a greater role in gold purchasing to reduce mercury pollution.

  2. Application of petroleum demulsification technology to shale oil emulsions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, R.E.

    1983-01-01

    Demulsification, the process of emulsion separation, of water-in-oil shale oil emulsions produced by several methods was accomplished using commercial chemical demulsifiers which are used typically for petroleum demulsification. The shale oil emulsions were produced from Green River shale by one in situ and three different above-ground retorts, an in situ high pressure/high temperature steam process, and by washing both retort-produced and hydrotreated shale oils.

  3. Geotechnical Properties of Oil Shale Retorted by the PARAHO and TOSCO Processes.

    DTIC Science & Technology

    1979-11-01

    literature search was restricted to the Green River formation of oil shale in the tri-state area of Colorado (Piceance Basin ), Utah ( Uinta Basin ), and...it is preheated by combustion gases as it travels downward by gravity. Air and recycling gas are injected at midheight and are burned, bringing the oil ...REFERENCES..................................38 TABLES 1-5 APPENDIX A: OIL SHALE RETORTING PROCESSES................Al Tosco Process Gas Combustion

  4. Retortable Laminate/Polymeric Food Tubes for Specialized Feeding

    DTIC Science & Technology

    2012-06-01

    on commercial off-the-shelf materials and not military unique. A market survey of commercially available laminated tubes revealed that they are all...on commercial off-the-shelf materials and not military unique. A market survey of commercially available laminated tubes revealed that they are...available materials and not be uniquely military. We surveyed the market for laminated retortable tubes and were not able to find any application

  5. Reduction of Aspergillus spp. and aflatoxins in peanut sauce processing by oil-less frying of chilli powder and retort processing.

    PubMed

    Farawahida, A H; Jinap, S; Nor-Khaizura, M A R; Samsudin, N I P

    2017-12-01

    Among the many roles played by small and medium enterprises (SMEs) in the food industry is the production of heritage foods such as peanut sauce. Unfortunately, the safety of peanut sauce is not always assured as the processing line is not controlled. Peanut sauce is usually made of peanuts and chilli, and these commodities are normally contaminated with Aspergillus spp. and aflatoxins (AFs). Hence, the objective of this study was to evaluate the practices related to reduction of AF hazard and the effect of interventions in peanut sauce processing. Peanut samples were collected from each step of peanut sauce processing from a small peanut sauce company according to four designs: (1) control; (2) oil-less frying of chilli powder; (3) addition of retort processing; and (4) combination of oil-less frying of chilli powder and retort processing. Oil-less frying of chilli powder (Design 2) reduced total AFs by 33-41%, retort processing (Design 3) reduced total AFs by 49%, while combination of these two thermal processes (Design 4) significantly reduced total AFs, by 57%. The present work demonstrated that Design 4 yielded the highest reduction of total AFs and is therefore recommended to be employed by SME companies.

  6. A feasibility study for high-temperature titanium reduction from TiCl4 using a magnesiothermic process

    NASA Astrophysics Data System (ADS)

    Ivanov, S. L.; Zablotsky, D.

    2018-05-01

    The current industrial practice for titanium extraction is a complex procedure, which produces a porous reaction mass of sintered titanium particulates fused to a steel retort wall with magnesium and MgCl2 trapped in the interstices. The reactor temperature is limited to approx. 900 °C due to the formation of fusible TiFe eutectic, which corrodes the retort and degrades the quality of titanium sponge. Here we examine the theoretical foundations and technological possibilities to design a shielded retort of niobium-zirconium alloy NbZr(1%), which is resistant to corrosion by titanium at high temperature. We consider the reactor at a temperature of approx. 1150 °C. Supplying stoichiometric quantities of reagents enables the reaction in the gas phase, whereas the exothermic process sustains the combustion of the reaction zone. When the pathway to the condenser is open, vacuum separation and evacuation of vaporized magnesium dichloride and excess magnesium into the water-cooled condenser take place. As both the reaction and the evacuation occur within seconds, the yield of the extraction is improved. We anticipate new possibilities for designing a device combining the retort function to conduct the reduction in the gas phase with fast vacuum separation of the reaction products and distillation of magnesium dichloride.

  7. Geological setting of oil shales in the Permian phosphoria formation and some of the geochemistry of these rocks

    USGS Publications Warehouse

    Maughan, E.K.

    1983-01-01

    Recent studies of the Meade Peak and the Retort Phosphatic Shale Members of the Phosphoria Formation have investigated the organic carbon content and some aspects of hydrocarbon generation from these rocks. Phosphorite has been mined from the Retort and Meade Peak members in southeastern Idaho, northern Utah, western Wyoming and southwestern Montana. Organic carbon-rich mudstone beds associated with the phosphorite in these two members also were natural sources of petroleum. These mudstone beds were differentially buried throughout the region so that heating of these rocks has been different from place to place. Most of the Phosphoria source beds have been deeply buried and naturally heated to catagenetically form hydrocarbons. Deepest burial was in eastern Idaho and throughout most of the northeastern Great Basin where high ambient temperatures have driven the catagenesis to its limit and beyond to degrade or to destroy the hydrocarbons. In southwest Montana, however, burial in some areas has been less than 2 km, ambient temperatures remained low and the kerogen has not produced hydrocarbons (2). In these areas in Montana, the kerogen in the carbonaceous mudstone has retained the potential for hydrocarbon generation and the carbon-rich Retort Member is an oil shale from which hydrocarbons can be synthetically extracted. The Phosphoria Formation was deposited in a foreland basin between the Cordilleran geosyncline and the North American craton. This foreland basin, which coincides with the area of deposition of the two organic carbon-rich mudstone members of the Phosphoria, has been named the Sublett basin (Maughan, 1979). The basin has a northwest-southeast trending axis and seems to have been deepest in central Idaho where deep-water sedimentary rocks equivalent to the Phosphoria Formation are exceptionally thick. The depth of the basin was increasingly shallower away from central Idaho toward the Milk River uplift - a land area in Montana, the ancestral Rocky Mountains. The basin is composed of land areas in Colorado, the Humboldt highland in northeastern Nevada and intervening carbonate shelves in Utah and Wyoming. The phosphorites and the carbonaceous mudstones were deposited on the foreslope between the carbonate and littoral sand deposits on the shelf and the dominantly cherty mudstone sediments in the axial part of the basin. Paleomagnetic evidence indicates that in the Permian the region would have been within the northern hemispheric trade wind belt; and wind-direction studies determined from studies of sand dunes, indicate that the prevailing winds from the Milk River uplift would have blown offshore across the Phosphoria sea. Offshore winds would have carried surface water away from the shore and generated upwelling in the sea in eastern Idaho and adjacent areas in Montana, Wyoming and Utah. Prior to deposition of the Phosphoria, the region was the site of extensive deposition of shallow-water carbonate sediments. Equivalent rocks in the northern part of the basin are dominantly sandstone derived from the adjacent Milk River uplift and similar sandstone strata in the southeastern sector were derived from the ancestral Rocky Mountains uplift. Tectonic subsidence of the Sublett basin in part of the region seems to have provided a sea-floor profile favorable for upwelling circulation and the shift in deposition from regional carbonates and local sandstone into a more complex depositional pattern that included the accumulation of the mudstone-chert-phosphorite facies that comprises the Phosphoria Formation. High biological productivity and the accumulation of sapropel on the sea floor is associated with contemporary coastal upwelling (1) and similar environmental and depositional conditions are attributed to the rich accumulations of organic matter in the Phosphoria Formation. Sapropelic mudstone and phosphorite composing the Meade Peak Member are approximately 60 m thick near the center of the Sublett basin. The Meade

  8. Simulated microgravity [bed rest] has little influence on taste, odor or trigeminal sensitivity

    NASA Technical Reports Server (NTRS)

    Vickers, Z. M.; Rice, B. L.; Rose, M. S.; Lane, H. W.

    2001-01-01

    Anecdotal evidence suggests that astronauts' perceptions of foods in space flight may differ from their perceptions of the same foods on Earth. Fluid shifts toward the head experienced in space may alter the astronauts' sensitivity to odors and tastes, producing altered perceptions. Our objective was to determine whether head-down bed rest, which produces similar fluid shifts, would produce changes in sensitivity to taste, odor or trigeminal sensations. Six subjects were rested three times prior to bed rest, three times during bed rest and two times after bed rest to determine their threshold sensitivity to the odors isoamylbutyrate and menthone, the tastants sucrose, sodium chloride, citric acid, quinine and monosodium glutamate, and to capsaicin. Thresholds were measured using a modified staircase procedure. Self-reported congestion was also recorded at each test time. Thresholds for monosodium glutamate where slightly higher during bed rest. None of the other thresholds were altered by bed rest.

  9. Magnetic refrigeration system with separated inlet and outlet flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Auringer, Jon Jay; Boeder, Andre Michael; Chell, Jeremy Jonathan

    An active magnetic regenerative (AMR) refrigerator apparatus can include at least one AMR bed with a first end and a second end and a first heat exchanger (HEX) with a first end and a second end. The AMR refrigerator can also include a first pipe that fluidly connects the first end of the first HEX to the first end of the AMR bed and a second pipe that fluidly connects the second end of the first HEX to the first end of the AMR bed. The first pipe can divide into two or more sub-passages at the AMR bed. Themore » second pipe can divide into two or more sub-passages at the AMR bed. The sub-passages of the first pipe and the second pipe can interleave at the AMR bed.« less

  10. Influence of irrigation and weathering reactions on the composition of percolates from retorted oil shale in field lysimeters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garland, T. R.; Wildung, R. E.; Harbert, H. P.

    1979-04-01

    Major cations, anions, trace elements and dissolved organic C were measured in percolate from retorted oil shale collected from irrigated lysimeters in the field at Anvil Points, Colorado, over a two year period. The investigations indicated that chemical equilibrium was not established over the monitoring period and major changes occurred in percolate composition as a function of applied water volume and water residence time in the shale. Field and laboratory studies indicated that several factors contributed to changes in the chemistry of the shale on weathering, including recarbonization of the surface horizons with atmospheric CO/sub 2/ and the activities ofmore » microorganisms in surface and subsurface horizons. However, the principal mechanism responsible for the decreases in pH and salt concentrations appeared to be the conversion of major quantities of sulfide in the retorted shale to sulfate through a thiosulfate intermediate.« less

  11. Field studies on USBM and TOSCO II retorted oil shales: vegetation, moisture, salinity, and runoff, 1977-1980. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kilkelly, M.K.; Berg, W.A.; Harbert, H.P. III

    1981-08-01

    Field studies were initiated in 1973 to investigate the vegetative stabilization of processed oil shales and to follow moisture and soluble salt movement within the soil/shale profile. Research plots with two types of retorted shales (TOSCO II and USBM) with leaching and soil cover treatments were established at two locations: low-elevation (Anvil Points) and high-elevation (Piceance Basin) in western Colorado. Vegetation was established by intensive management including leaching, N and P fertilization, seeding, mulching, and irrigation. After seven growing seasons, a good vegetative cover remained with few differences between treatments, with the exception of the TOSCO retorted shale, south-aspect, whichmore » consistently supported less perennial vegetative cover than other treatments. With time, a shift from perennial grasses to dominance by shrubs was observed. Rodent activity on some treatments had a significantly negative effect on vegetative cover.« less

  12. Gas seal for an in situ oil shale retort and method of forming thermal barrier

    DOEpatents

    Burton, III, Robert S.

    1982-01-01

    A gas seal is provided in an access drift excavated in a subterranean formation containing oil shale. The access drift is adjacent an in situ oil shale retort and is in gas communication with the fragmented permeable mass of formation particles containing oil shale formed in the in situ oil shale retort. The mass of formation particles extends into the access drift, forming a rubble pile of formation particles having a face approximately at the angle of repose of fragmented formation. The gas seal includes a temperature barrier which includes a layer of heat insulating material disposed on the face of the rubble pile of formation particles and additionally includes a gas barrier. The gas barrier is a gas-tight bulkhead installed across the access drift at a location in the access drift spaced apart from the temperature barrier.

  13. Coupling scales for modelling heavy metal vaporization from municipal solid waste incineration in a fluid bed by CFD.

    PubMed

    Soria, José; Gauthier, Daniel; Flamant, Gilles; Rodriguez, Rosa; Mazza, Germán

    2015-09-01

    Municipal Solid Waste Incineration (MSWI) in fluidized bed is a very interesting technology mainly due to high combustion efficiency, great flexibility for treating several types of waste fuels and reduction in pollutants emitted with the flue gas. However, there is a great concern with respect to the fate of heavy metals (HM) contained in MSW and their environmental impact. In this study, a coupled two-scale CFD model was developed for MSWI in a bubbling fluidized bed. It presents an original scheme that combines a single particle model and a global fluidized bed model in order to represent the HM vaporization during MSW combustion. Two of the most representative HM (Cd and Pb) with bed temperatures ranging between 923 and 1073K have been considered. This new approach uses ANSYS FLUENT 14.0 as the modelling platform for the simulations along with a complete set of self-developed user-defined functions (UDFs). The simulation results are compared to the experimental data obtained previously by the research group in a lab-scale fluid bed incinerator. The comparison indicates that the proposed CFD model predicts well the evolution of the HM release for the bed temperatures analyzed. It shows that both bed temperature and bed dynamics have influence on the HM vaporization rate. It can be concluded that CFD is a rigorous tool that provides valuable information about HM vaporization and that the original two-scale simulation scheme adopted allows to better represent the actual particle behavior in a fluid bed incinerator. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Computational Flow Modeling of Hydrodynamics in Multiphase Trickle-Bed Reactors

    NASA Astrophysics Data System (ADS)

    Lopes, Rodrigo J. G.; Quinta-Ferreira, Rosa M.

    2008-05-01

    This study aims to incorporate most recent multiphase models in order to investigate the hydrodynamic behavior of a TBR in terms of pressure drop and liquid holdup. Taking into account transport phenomena such as mass and heat transfer, an Eulerian k-fluid model was developed resulting from the volume averaging of the continuity and momentum equations and solved for a 3D representation of the catalytic bed. Computational fluid dynamics (CFD) model predicts hydrodynamic parameters quite well if good closures for fluid/fluid and fluid/particle interactions are incorporated in the multiphase model. Moreover, catalytic performance is investigated with the catalytic wet oxidation of a phenolic pollutant.

  15. Evaluation of Propylene Glycol-Based Fluids for Constellation Habitats and Vehicles

    NASA Technical Reports Server (NTRS)

    Lee, Steve

    2009-01-01

    Two fluid life tests have been conducted to evaluate propylene glycol-based fluids for use in Constellation habitats and vehicles. The first test was conducted from November 2008 to January 2009 to help determine the compatibility of the propylene glycol-based fluid selected for Orion at the time. When the first test uncovered problems with the fluid selection, an investigation and selection of a new fluid were conducted. A second test was started in March 2010 to evaluate the new selection. For the first test, the fluid was subjected to a thermal fluid loop that had flight-like properties, as compared to Orion. The fluid loop had similar wetted materials, temperatures, flow rates, and aluminum wetted surface area to fluid volume ratio. The test was designed to last for 10 years, the life expectancy of the lunar habitat. However, the test lasted less than two months. System filters became clogged with precipitate, rendering the fluid system inoperable. Upon examination of the precipitate, it was determined that the precipitate composition contained aluminum, which could have only come from materials in the test stand, as aluminum is not part of the original fluid composition. Also, the fluid pH was determined to have increased from 10.1, at the first test sample, to 12.2, at the completion of the test. This high of a pH is corrosive to aluminum and was certainly a contributing factor to the development of precipitate. Due to the problems encountered during this test, the fluid was rejected as a coolant candidate for Orion. A new propylene glycol-based fluid was selected by the Orion project for use in the Orion vehicle. The Orion project has conducted a series of screening tests to help verify that there will be no problems with the new fluid selection. To compliment testing performed by the Orion project team, a new life test was developed to test the new fluid. The new test bed was similar to the original test bed, but with some improvements based on experience gained from the earlier test bed. The surface area of both aluminum and nickel in the test bed were designed to be similar to that of the Orion fluid loop, since the Orion fluid loop was expected to have high concentrations of both metals in the system. Also, additional sample materials were added to the test bed to match recent updates to materials selections for Orion. At the time of this paper publication, approximately five months of testing will have been completed. This paper gives a status of the testing completed to date.

  16. Ignition technique for an in situ oil shale retort

    DOEpatents

    Cha, Chang Y.

    1983-01-01

    A generally flat combustion zone is formed across the entire horizontal cross-section of a fragmented permeable mass of formation particles formed in an in situ oil shale retort. The flat combustion zone is formed by either sequentially igniting regions of the surface of the fragmented permeable mass at successively lower elevations or by igniting the entire surface of the fragmented permeable mass and controlling the rate of advance of various portions of the combustion zone.

  17. EMERGING TECHNOLOGY BULLETIN: SPOUTED BED REACTOR

    EPA Science Inventory

    The Spouted Bed Reactor (SBR) technology utilizes the unique attributes of the "spouting " fluidization regime, which can provide heat transfer rates comparable to traditional fluid beds, while providing robust circulation of highly heterogeneous solids, concurrent with very agg...

  18. Coupling scales for modelling heavy metal vaporization from municipal solid waste incineration in a fluid bed by CFD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soria, José, E-mail: jose.soria@probien.gob.ar; Gauthier, Daniel; Flamant, Gilles

    2015-09-15

    Highlights: • A CFD two-scale model is formulated to simulate heavy metal vaporization from waste incineration in fluidized beds. • MSW particle is modelled with the macroscopic particle model. • Influence of bed dynamics on HM vaporization is included. • CFD predicted results agree well with experimental data reported in literature. • This approach may be helpful for fluidized bed reactor modelling purposes. - Abstract: Municipal Solid Waste Incineration (MSWI) in fluidized bed is a very interesting technology mainly due to high combustion efficiency, great flexibility for treating several types of waste fuels and reduction in pollutants emitted with themore » flue gas. However, there is a great concern with respect to the fate of heavy metals (HM) contained in MSW and their environmental impact. In this study, a coupled two-scale CFD model was developed for MSWI in a bubbling fluidized bed. It presents an original scheme that combines a single particle model and a global fluidized bed model in order to represent the HM vaporization during MSW combustion. Two of the most representative HM (Cd and Pb) with bed temperatures ranging between 923 and 1073 K have been considered. This new approach uses ANSYS FLUENT 14.0 as the modelling platform for the simulations along with a complete set of self-developed user-defined functions (UDFs). The simulation results are compared to the experimental data obtained previously by the research group in a lab-scale fluid bed incinerator. The comparison indicates that the proposed CFD model predicts well the evolution of the HM release for the bed temperatures analyzed. It shows that both bed temperature and bed dynamics have influence on the HM vaporization rate. It can be concluded that CFD is a rigorous tool that provides valuable information about HM vaporization and that the original two-scale simulation scheme adopted allows to better represent the actual particle behavior in a fluid bed incinerator.« less

  19. Analysis and control of the METC fluid bed gasifier. Quarterly progress report, January--March 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-03-01

    This document summarizes work performed for the period 10/1/94 to 3/31/95. In this work, three components will form the basis for design of a control scheme for the Fluidized Bed Gasifier (FBG) at METC: (1) a control systems analysis based on simple linear models derived from process data, (2) review of the literature on fluid bed gasifier operation and control, and (3) understanding of present FBG operation and real world considerations. Below we summarize work accomplished to data in each of these areas.

  20. Collected Works of Mao Tse-Tung (1917-1949), Volume 4

    DTIC Science & Technology

    1978-10-10

    Spanking of children had not been com- pletely stopped, but it was reduced. (There should be no spanking at all.) The children had become more...intelligent. In the past, when spanked or scolded by their parents, they seldom retorted, but now more of them re- torted. (If the parents did not... spank or scold them, the children would not be retorting.) About 1 percent of the women married 3 times in the 4-1/2 years after the uprising

  1. Heat transfer simulation and retort program adjustment for thermal processing of wheat based Haleem in semi-rigid aluminum containers.

    PubMed

    Vatankhah, Hamed; Zamindar, Nafiseh; Shahedi Baghekhandan, Mohammad

    2015-10-01

    A mixed computational strategy was used to simulate and optimize the thermal processing of Haleem, an ancient eastern food, in semi-rigid aluminum containers. Average temperature values of the experiments showed no significant difference (α = 0.05) in contrast to the predicted temperatures at the same positions. According to the model, the slowest heating zone was located in geometrical center of the container. The container geometrical center F0 was estimated to be 23.8 min. A 19 min processing time interval decrease in holding time of the treatment was estimated to optimize the heating operation since the preferred F0 of some starch or meat based fluid foods is about 4.8-7.5 min.

  2. Reducing mode circulating fluid bed combustion

    DOEpatents

    Lin, Yung-Yi; Sadhukhan, Pasupati; Fraley, Lowell D.; Hsiao, Keh-Hsien

    1986-01-01

    A method for combustion of sulfur-containing fuel in a circulating fluid bed combustion system wherein the fuel is burned in a primary combustion zone under reducing conditions and sulfur captured as alkaline sulfide. The reducing gas formed is oxidized to combustion gas which is then separated from solids containing alkaline sulfide. The separated solids are then oxidized and recycled to the primary combustion zone.

  3. Mechanical Properties of Gas Shale During Drilling Operations

    NASA Astrophysics Data System (ADS)

    Yan, Chuanliang; Deng, Jingen; Cheng, Yuanfang; Li, Menglai; Feng, Yongcun; Li, Xiaorong

    2017-07-01

    The mechanical properties of gas shale significantly affect the designs of drilling, completion, and hydraulic fracturing treatments. In this paper, the microstructure characteristics of gas shale from southern China containing up to 45.1% clay were analyzed using a scanning electron microscope. The gas shale samples feature strongly anisotropic characteristics and well-developed bedding planes. Their strength is controlled by the strength of both the matrix and the bedding planes. Conventional triaxial tests and direct shear tests are further used to study the chemical effects of drilling fluids on the strength of shale matrix and bedding planes, respectively. The results show that the drilling fluid has a much larger impact on the strength of the bedding plane than that of the shale matrix. The impact of water-based mud (WBM) is much larger compared with oil-based mud. Furthermore, the borehole collapse pressure of shale gas wells considering the effects of drilling fluids are analyzed. The results show that the collapse pressure increases gradually with the increase of drilling time, especially for WBM.

  4. Analysis and control of the METC fluid bed gasifier. Quarterly report, April 1995--June 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-06-01

    This document summarizes work performed for the period 4/1/95 to 7/31/95 on contract no. DE-FG21-94MC31384 (Work accomplished during the period 10/1/94 to 3/31/94 was summarized in the previous technical progress report included in the appendix of this report). In this work, three components will form the basis for design of a control scheme for the Fluidized Bed Gasifier (FBG) at METC: (1) a control systems analysis based on simple linear models derived from process data, (2) review of the literature on fluid bed gasifier operation and control, and (3) understanding of present FBG operation and real world considerations. Tasks accomplishedmore » during the present reporting period include: (1) Completion of a literature survey on Fluid Bed Gasifier control, (2) Observation of the FBG during the week of July 17 to July 21, and (3) Suggested improvements to the control of FBG backpressure and MGCR pressure.« less

  5. Hydrologic-information needs for oil-shale development, northwestern Colorado

    USGS Publications Warehouse

    Taylor, O.J.

    1982-01-01

    Hydrologic information is not adequate for proper development of the large oil-shale reserves of Piceance basin in northwestern Colorado. Exploratory drilling and aquifer testing are needed to define the hydrologic system, to provide wells for aquifer testing, to design mine-drainage techniques, and to explore for additional water supplies. Sampling networks are needed to supply hydrologic data on the quantity and quality of surface water, ground water, and springs. A detailed sampling network is proposed for the White River basin because of expected impacts related to water supplies and waste disposal. Emissions from oil-shale retorts to the atmosphere need additional study because of possible resulting corrosion problems and the destruction of fisheries. Studies of the leachate materials and the stability of disposed retorted shale piles are needed to insure that these materials will not cause problems. Hazards related to in-situ retorts, and the wastes related to oil-shale development in general also need further investigation. (USGS)

  6. Method and apparatus for igniting an in situ oil shale retort

    DOEpatents

    Burton, Robert S.; Rundberg, Sten I.; Vaughn, James V.; Williams, Thomas P.; Benson, Gregory C.

    1981-01-01

    A technique is provided for igniting an in situ oil shale retort having an open void space over the top of a fragmented mass of particles in the retort. A conduit is extended into the void space through a hole in overlying unfragmented formation and has an open end above the top surface of the fragmented mass. A primary air pipe having an open end above the open end of the conduit and a liquid atomizing fuel nozzle in the primary air pipe above the open end of the primary air pipe are centered in the conduit. Fuel is introduced through the nozzle, primary air through the pipe, and secondary air is introduced through the conduit for vortical flow past the open end of the primary air pipe. The resultant fuel and air mixture is ignited for combustion within the conduit and the resultant heated ignition gas impinges on the fragmented mass for heating oil shale to an ignition temperature.

  7. CO2 Sequestration within Spent Oil Shale

    NASA Astrophysics Data System (ADS)

    Foster, H.; Worrall, F.; Gluyas, J.; Morgan, C.; Fraser, J.

    2013-12-01

    Worldwide deposits of oil shales are thought to represent ~3 trillion barrels of oil. Jordanian oil shale deposits are extensive and of high quality, and could represent 100 billion barrels of oil, leading to much interest and activity in the development of these deposits. The exploitation of oil shales has raised a number of environmental concerns including: land use, waste disposal, water consumption, and greenhouse gas emissions. The dry retorting of oil shales can overcome a number of the environmental impacts, but this leaves concerns over management of spent oil shale and CO2 production. In this study we propose that the spent oil shale can be used to sequester CO2 from the retorting process. Here we show that by conducting experiments using high pressure reaction facilities, we can achieve successful carbonation of spent oil shale. High pressure reactor facilities in the Department of Earth Sciences, Durham University, are capable of reacting solids with a range of fluids up to 15 MPa and 350°C, being specially designed for research with supercritical fluids. Jordanian spent oil shale was reacted with high pressure CO2 in order to assess whether there is potential for sequestration. Fresh and reacted materials were then examined by: Inductively Coupled Plasma Mass Spectrometry (ICP-MS), Thermogravimetric Analysis (TGA), X-Ray Fluorescence (XRF) and X-Ray Diffraction (XRD) methods. Jordanian spent oil shale was found to sequester up to 5.8 wt % CO2, on reacting under supercritical conditions, which is 90% of the theoretical carbonation. Jordanian spent oil shale is composed of a large proportion of CaCO3, which on retorting decomposes, forming CaSO4 and Ca-oxides which are the focus of carbonation reactions. A factorially designed experiment was used to test different factors on the extent of carbonation, including: pressure; temperature; duration; and the water content. Analysis of Variance (ANOVA) techniques were then used to determine the significance of each of these. Results show that the duration; temperature; pressure; and the interactions between these significantly affect the extent of carbonation. Reactions carried out for at least 4 hours show significantly more carbonation than those under supercritical conditions for 2 hours or less. However, reacting for 24 hours does not show a significant increase in the extent of reaction, indicating that the reaction has reached equilibrium within a few hours. Maximum carbonation occurred within 4 hours, at higher temperatures and pressures of 80°C and 100 bar although results also show that there is a significant amount of carbonation achieved within 30 minutes, at 40°C and 70 bar. The magnitude of the CO2 sequestration achieved was sufficient that it could lower CO2 emissions by up to 30 kg CO2 /bbl, thereby bringing the emissions from oil shale processing in line with those from conventional oil extraction methods. The determination of optimum conditions to allow for: maximum carbonation, oil recovery and sufficient calcination, is also of importance and is currently under investigation.

  8. Acoustic emission of rock mass under the constant-rate fluid injection

    NASA Astrophysics Data System (ADS)

    Shadrin Klishin, AV, VI

    2018-03-01

    The authors study acoustic emission in coal bed and difficult-to-cave roof under injection of fluid by pumps at a constant rate. The functional connection between the roof hydrofracture length and the total number of AE pulses is validated, it is also found that the coal bed hydroloosening time, injection rate and time behavior of acoustic emission activity depend on the fluid injection volume required until the fluid breakout in a roadway through growing fractures. In the formulas offered for the practical application, integral parameters that characterize permeability and porosity of rock mass and process parameters of the technology are found during test injection.

  9. Exercise Effects on the Course of Gray Matter Changes Over 70 Days of Bed Rest

    NASA Technical Reports Server (NTRS)

    Koppelmans, V.; Ploutz-Snyder, L.; DeDios, Y. E.; Wood, S. J.; Reuter-Lorenz, P. A.; Kofman, I.; Bloomberg, J. J.; Mulavara, A. P.; Seidler, R. D.

    2014-01-01

    Long duration spaceflight affects posture control, locomotion, and manual control. The microgravity environment is an important causal factor for spaceflight induced sensorimotor changes through direct effects on peripheral changes that result from reduced vestibular stimulation and body unloading. Effects of microgravity on sensorimotor function have been investigated on earth using bed rest studies. Long duration bed rest serves as a space-flight analogue because it mimics microgravity in body unloading and bodily fluid shifts. It has been hypothesized that the cephalad fluid shift that has been observed in microgravity could potentially affect central nervous system function and structure, and thereby indirectly affect sensorimotor or cognitive functioning. Preliminary results of one of our ongoing studies indeed showed that 70 days of long duration head down-tilt bed rest results in focal changes in gray matter volume from pre-bed rest to various time points during bed rest. These gray matter changes that could reflect fluid shifts as well as neuroplasticity were related to decrements in motor skills such as maintenance of equilibrium. In consideration of the health and performance of crewmembers both inand post-flight we are currently conducting a study that investigates the potential preventive effects of exercise on gray matter and motor performance changes that we observed over the course of bed rest. Numerous studies have shown beneficial effects of aerobic exercise on brain structure and cognitive performance in healthy and demented subjects over a large age range. We therefore hypothesized that an exercise intervention in bed rest could potentially mitigate or prevent the effects of bed rest on the central nervous system. Here we present preliminary outcomes of our study.

  10. Wave Driven Fluid-Sediment Interactions over Rippled Beds

    NASA Astrophysics Data System (ADS)

    Foster, Diane; Nichols, Claire

    2008-11-01

    Empirical investigations relating vortex shedding over rippled beds to oscillatory flows date back to Darwin in 1883. Observations of the shedding induced by oscillating forcing over fixed beds have shown vortical structures to reach maximum strength at 90 degrees when the horizontal velocity is largest. The objective of this effort is to examine the vortex generation and ejection over movable rippled beds in a full-scale, free surface wave environment. Observations of the two-dimensional time-varying velocity field over a movable sediment bed were obtained with a submersible Particle Image Velocimetry (PIV) system in two wave flumes. One wave flume was full scale and had a natural sand bed and the other flume had an artificial sediment bed with a specific gravity of 1.6. Full scale observations over an irregularly rippled bed show that the vortices generated during offshore directed flow over the steeper bed form slope were regularly ejected into the water column and were consistent with conceptual models of the oscillatory flow over a backward facing step. The results also show that vortices remain coherent during ejection when the background flow stalls (i.e. both the velocity and acceleration temporarily approach zero). These results offer new insight into fluid sediment interaction over rippled beds.

  11. Experimental Exploration of Scale Effects and Factors Controlling Bed Load Sediment Entrainment

    NASA Astrophysics Data System (ADS)

    Fathel, S. L.; Furbish, D. J.; Schmeeckle, M. W.

    2015-12-01

    Detailed measurements of individual sand grains moving on a streambed allow us to obtain a deeper understanding of the characteristics of incipient motion and evaluate spatial and temporal trends in particle entrainment. We use bed load particle motions measured from high-speed imaging (250 Hz) of uniform, coarse grained sand from two flume experiments, which have different mean fluid velocities near the bed. Particle tracking reveals more than 6,000 entrainment events in 5 seconds (Run 1) and over 5,000 events in 2 seconds (Run 2). We manually track particles, at sub-pixel resolution, from entrainment to either disentrainment or until the particle leaves the frame. Within these experiments we find that over 90% of all initial motions contain a cross-stream component of motion where approximately a third of the motions may be cross-stream dominated, and furthermore, up to 7% of the motions may be negative (i.e. move backwards). We propose that the variability in the direction of initial motion is, in part, a product of the bed topography, where we find that with increasing mean fluid velocity, the initial motion of the sand particles are less sensitive to bed topography, and are more likely to be dominated by the fluid. The high resolution of this data set, containing positions of particles measured start-to-stop, allows us to calculate the characteristic timescale required for a particle to become streamwise, or fluid, dominated in these systems. We also evaluate these data to further show whether the nature of entrainment is a memoryless, uncorrelated process, a correlated process related to the number of particles already in motion (i.e., possibly reflecting collective entrainment), or some combination of the two. This work suggests that the probability of entrainment depends on physical factors such as bed microtopography and the magnitude of the fluid velocity, in addition to varying with space and time scales.

  12. A model for complex flows of soft glassy materials with application to flows through fixed fiber beds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkar, Arijit; Koch, Donald L., E-mail: dlk15@cornell.edu

    2015-11-15

    The soft glassy rheology (SGR) model has successfully described the time dependent simple shear rheology of a broad class of complex fluids including foams, concentrated emulsions, colloidal glasses, and solvent-free nanoparticle-organic hybrid materials (NOHMs). The model considers a distribution of mesoscopic fluid elements that hop from trap to trap at a rate which is enhanced by the work done to strain the fluid element. While an SGR fluid has a broad exponential distribution of trap energies, the rheology of NOHMs is better described by a narrower energy distribution and we consider both types of trap energy distributions in this study.more » We introduce a tensorial version of these models with a hopping rate that depends on the orientation of the element relative to the mean stress field, allowing a range of relative strengths of the extensional and simple shear responses of the fluid. As an application of these models we consider the flow of a soft glassy material through a dilute fixed bed of fibers. The dilute fixed bed exhibits a range of local linear flows which alternate in a chaotic manner with time in a Lagrangian reference frame. It is amenable to an analytical treatment and has been used to characterize the strong flow response of many complex fluids including fiber suspensions, dilute polymer solutions and emulsions. We show that the accumulated strain in the fluid elements has an abrupt nonlinear growth at a Deborah number of order one in a manner similar to that observed for polymer solutions. The exponential dependence of the hopping rate on strain leads to a fluid element deformation that grows logarithmically with Deborah number at high Deborah numbers. SGR fluids having a broad range of trap energies flowing through fixed beds can exhibit a range of rheological behaviors at small Deborah numbers ranging from a yield stress, to a power law response and finally to Newtonian behavior.« less

  13. Composition of fluid inclusions in Permian salt beds, Palo Duro Basin, Texas, U.S.A.

    USGS Publications Warehouse

    Roedder, E.; d'Angelo, W. M.; Dorrzapf, A.F.; Aruscavage, P. J.

    1987-01-01

    Several methods have been developed and used to extract and chemically analyze the two major types of fluid inclusions in bedded salt from the Palo Duro Basin, Texas. Data on the ratio K: Ca: Mg were obtained on a few of the clouds of tiny inclusions in "chevron" salt, representing the brines from which the salt originally crystallized. Much more complete quantitative data (Na, K, Ca, Mg, Sr, Cl, SO4 and Br) were obtained on ??? 120 individual "large" (mostly ???500 ??m on an edge, i.e., ??? ??? 1.6 ?? 10-4 g) inclusions in recrystallized salt. These latter fluids have a wide range of compositions, even in a given piece of core, indicating that fluids of grossly different composition were present in these salt beds during the several (?) stages of recrystallization. The analytical results indicating very large inter-and intra-sample chemical variation verify the conclusion reached earlier, from petrography and microthermometry, that the inclusion fluids in salt and their solutes are generally polygenetic. The diversity in composition stems from the combination of a variety of sources for the fluids (Permian sea, meteoric, and groundwater, as well as later migrating ground-, formation, or meteoric waters of unknown age), and a variety of subsequent geochemical processes of dissolution, precipitation and rock-water interaction. The compositional data are frequently ambiguous but do provide constraints and may eventually yield a coherent history of the events that produced these beds. Such an understanding of the past history of the evaporite sequence of the Palo Duro Basin should help in predicting the future role of the fluids in the salt if a nuclear waste repository is sited there. ?? 1987.

  14. CFD analysis of hydrodynamic studies of a bubbling fluidized bed

    NASA Astrophysics Data System (ADS)

    Rao, B. J. M.; Rao, K. V. N. S.; Ranga Janardhana, G.

    2018-03-01

    Fluidization velocity is one of the most important parameter to characterize the hydrodynamic studies of fluidized bed asit determines different flow regimes. Computational Fluid Dynamics simulations are carriedfor a cylindrical bubbling fluidized bed with a static bed height 1m with 0.150m diameter of gasification chamber. The parameter investigated is fluidization velocity in range of 0.05m/s to 0.7m/s. Sand with density 2600kg/m3 and with a constant particle diameter of sand 385μm is employed for all the simulations. Simulations are conducted using the commercial Computational Fluid Dynamics software, ANSYS-FLUENT.The bubbling flow regime is appeared above the air inlet velocity of 0.2m/s. Bubbling character is increased with increase in inlet air velocities indicated by asymmetrical fluctuations of volume fractions in radial directions at different bed heights

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burge, S.W.

    Erosion has been identified as one of the significant design issues in fluid beds. A cooperative R&D venture of industry, research, and government organizations was recently formed to meet the industry need for a better understanding of erosion in fluid beds. Research focussed on bed hydrodynamics, which are considered to be the primary erosion mechanism. As part of this work, ANL developed an analytical model (FLUFIX) for bed hydrodynamics. Partial validation was performed using data from experiments sponsored by the research consortium. Development of a three-dimensional fluid bed hydrodynamic model was part of Asea-Babcock`s in-kind contribution to the R&D venture.more » This model, FORCE2, was developed by Babcock & Wilcox`s Research and Development Division existing B&W program and on the gas-solids modeling and was based on an existing B&W program and on the gas-solids modeling technology developed by ANL and others. FORCE2 contains many of the features needed to model plant size beds and, therefore can be used along with the erosion technology to assess metal wastage in industrial equipment. As part of the development efforts, FORCE2 was partially validated using ANL`s two-dimensional model, FLUFIX, and experimental data. Time constraints as well as the lack of good hydrodynamic data, particularly at the plant scale, prohibited a complete validation of FORCE2. This report describes this initial validation of FORCE2.« less

  16. A new intelligent bed care system for hospital and home patients.

    PubMed

    Yonezawa, Yoshiharu; Miyamoto, Yasuaki; Maki, Hiromichi; Ogawa, Hidekuni; Ninomiya, Ishio; Sada, Kouji; Hamada, Shingo; Caldwell, W Morton

    2005-01-01

    An intelligent bed-care system has been developed for monitoring patient movements and behavior in the hospital and at home in order to prevent injuries from falls, a major problem in health care facilities. Falls, as well as patient activity immediately preceding falls (i.e. exiting the bed), are especially dangerous when infusion extubation also occurs. This new system detects in-bed infusion fluid leaks, bleeding due to infusion-tube pullout, and urine resulting from incontinence. It employs stainless steel tape and wire noncontacting electrodes, several linear integrated circuits, and a low-power, 8-bit single-chip microcomputer The electrodes are installed between the bed mattress and sheet to record changes in an always-present alternating current (AC) voltage, which is induced on the patient's body by electrostatic coupling from a 100-V, 60-Hz alternating current power line around the bed. The microcomputer uses changes in the induced alternating current voltage to detect the patient's movements before and after leaving the bed, as well as any fluid leakage. The microcomputer alerts the nursing station, via the nurse call system or personal handy phone (PHS), that the patient is in an active state; has a dangerous posture on the bed; is contaminating the sheet due to leaking, bleeding or incontinence; or is out of bed.

  17. Long Duration Head-Down Tilt Bed Rest Studies: Safety Considerations Regarding Vision Health

    NASA Technical Reports Server (NTRS)

    Cromwell, Ronita L.; Zanello, S. B.; Yarbough, P. O.; Ploutz-Snyder, Robert; Taibbi, G.; Vizzeri, G.

    2012-01-01

    Visual symptoms reported in astronauts returning from long duration missions in low Earth orbit, including hyperopic shift, choroidal folds, globe flattening and papilledema, are thought to be related to fluid shifts within the body due to microgravity exposure. Because of this possible relation to fluid shifts, safety considerations have been raised regarding the ocular health of head-down tilt (HDT) bed rest subjects. HDT is a widely used ground ]based analog that simulates physiological changes of spaceflight, including fluid shifts. Thus, vision monitoring has been performed in bed rest subjects in order to evaluate the safety of HDT with respect to vision health. Here we report ocular outcomes in 9 healthy subjects (age range: 27-48 years; Male/Female ratio: 8/1) completing bed rest Campaign 11, an integrated, multidisciplinary 70-day 6 degrees HDT bed rest study. Vision examinations were performed on a weekly basis, and consisted of office-based (2 pre- and 2 post-bed rest) and in-bed testing. The experimental design was a repeated measures design, with measurements for both eyes taken for each subject at each planned time point. Findings for the following tests were all reported as normal in each testing session for every subject: modified Amsler grid, red dot test, confrontational visual fields, color vision and fundus photography. Overall, no statistically significant differences were observed for any of the measures, except for both near and far visual acuity, which increased during the course of the study. This difference is not considered clinically relevant as may result from the effect of learning. Intraocular pressure results suggest a small increase at the beginning of the bed rest phase (p=0.059) and lesser increase at post-bed rest with respect to baseline (p=0.046). These preliminary results provide the basis for further analyses that will include correlations between intraocular pressure change pre- and post-bed rest, and optical coherence tomography measurements of the retina.

  18. Creepy landscapes : river sediment entrainment develops granular flow rheology on creeping bed.

    NASA Astrophysics Data System (ADS)

    Prancevic, J.; Chatanantavet, P.; Ortiz, C. P.; Houssais, M.; Durian, D. J.; Jerolmack, D. J.

    2015-12-01

    To predict rates of river sediment transport, one must first address the zeroth-order question: when does sediment move? The concept and determination of the critical fluid shear stress remains hazy, as observing particle motion and determining sediment flux becomes increasingly hard in its vicinity. To tackle this problem, we designed a novel annular flume experiment - reproducing an infinite river channel - where the refractive index of particles and the fluid are matched. The fluid is dyed with a fluorescent powder and a green laser sheet illuminates the fluid only, allowing us to observe particle displacements in a vertical plane. Experiments are designed to highlight the basic granular interactions of sediment transport while suppressing the complicating effects of turbulence; accordingly, particles are uniform spheres and Reynolds numbers are of order 1. We have performed sediment transport measurements close to the onset of particle motion, at steady state, and over long enough time to record averaged rheological behavior of particles. We find that particles entrained by a fluid exhibit successively from top to bottom: a suspension regime, a dense granular flow regime, and - instead of a static bed - a creeping regime. Data from experiments at a range of fluid stresses can be collapsed onto one universal rheologic curve that indicates the effective friction is a monotonic function of a dimensionless number called the viscous number. These data are in remarkable agreement with the local rheology model proposed by Boyer et al., which means that dense granular flows, suspensions and bed-load transport are unified under a common frictional flow law. Importantly, we observe slow creeping of the granular bed even in the absence of bed load, at fluid stresses that are below the apparent critical value. This last observation challenges the classical definition of the onset of sediment transport, and points to a continuous transition from quasi-static deformation to granular flow. These results provide a new perspective to connect the transport laws for soil creep, landslides/debris flows and river transport. Although our experiments are highly idealized, evidence from other studies suggest that our observations may be directly relevant to natural systems. Finally we show that our findings are robust for mixed grain sizes.

  19. Formation of modern and Paleozoic stratiform barite at cold methane seeps on continental margins

    USGS Publications Warehouse

    Torres, M.E.; Bohrmann, G.; Dube, T.E.; Poole, F.G.

    2003-01-01

    Stratiform (bedded) Paleozoic barite occurs as large conformable beds within organic- and chert-rich sediments; the beds lack major sulfide minerals and are the largest and most economically significant barite deposits in the geologic record. Existing models for the origin of bedded barite fail to explain all their characteristics: the deposits display properties consistent with an exhalative origin involving fluid ascent to the seafloor, but they lack appreciable polymetallic sulfide minerals and the corresponding strontium isotopic composition to support a hydrothermal vent source. A new mechanism of barite formation, along structurally controlled sites of cold fluid seepage in continental margins, involves barite remobilization in organic-rich, highly reducing sediments, transport of barium-rich fluids, and barite precipitation at cold methane seeps. The lithologic and depositional framework of Paleozoic and cold seep barite, as well as morphological, textural, and chemical characteristics of the deposits, and associations with chemosymbiotic fauna, all support a cold seep origin for stratiform Paleozoic barite. This understanding is highly relevant to paleoceanographic and paleotectonic studies, as well as to economic geology.

  20. Catalytic converter with fluid injector for catalyst-free enclosure of catalyst bed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrew, S.P.S.

    1984-09-25

    A fluid injection lozenge comprises two tubes supporting a perforate member forming a cage enclosing the space between the tubes. Each tube has a series of perforations along its length so that a fluid can be injected, through the tube, into the enclosed space. The lozenges are of use in catalytic converters of either the axial or radial flow design. In the case of a radial flow converter, a plurality of tubes are provided, preferably connected in pairs by the perforate members, to form a squirrel cage structure, disposed in the catalyst bed.

  1. Steady-state heat transfer in transversely heated porous media with application to focused solar energy collectors

    NASA Technical Reports Server (NTRS)

    Nichols, L. D.

    1976-01-01

    A fluid flowing in a porous medium heated transversely to the fluid flow is considered. This configuration is applicable to a focused solar energy collector for use in an electric power generating system. A fluidized bed can be regarded as a porous medium with special properties. The solutions presented are valid for describing the effectiveness of such a fluidized bed for collecting concentrated solar energy to heat the working fluid of a heat engine. Results indicate the advantage of high thermal conductivity in the transverse direction and high operating temperature of the porous medium.

  2. Towards establishing the rheology of a sediment bed

    NASA Astrophysics Data System (ADS)

    Biegert, Edward; Vowinckel, Bernhard; Meiburg, Eckart

    2017-11-01

    In order to gain a better understanding of erosion, we have conducted numerical simulations of particle-resolved flows similar to the experiments of Aussillous et al. (2013), which involve laminar pressure-driven flows over erodible sediment beds. These simulations allow us to resolve velocity profiles and stresses of the fluid-particle mixtures within and above the sediment bed, which can be difficult or impossible to measure experimentally. Thus, we can begin investigating the rheology of the fluid-particle mixtures. In particular, we compare the effective viscosity as a function of volume fraction to existing models, such as those of Eilers (1943), Morris and Boulay (1999), and Boyer et al. (2011).

  3. Improved mechanical properties of retorted carrots by ultrasonic pre-treatments.

    PubMed

    Day, Li; Xu, Mi; Øiseth, Sofia K; Mawson, Raymond

    2012-05-01

    The use of ultrasound pre-processing treatment, compared to blanching, to enhance mechanical properties of non-starchy cell wall materials was investigated using carrot as an example. The mechanical properties of carrot tissues were measured by compression and tensile testing after the pre-processing treatment prior to and after retorting. Carrot samples ultrasound treated for 10 min at 60 °C provided a higher mechanical strength (P<0.05) to the cell wall structure than blanching for the same time period. With the addition of 0.5% CaCl(2) in the pre-treatment solution, both blanching and ultrasound treatment showed synergistic effect on enhancing the mechanical properties of retorted carrot pieces. At a relatively short treatment time (10 min at 60 °C) with the use of 0.5% CaCl(2), ultrasound treatment achieved similar enhancement to the mechanical strength of retorted carrots to blanching for a much longer time period (i.e. 40 min). The mechanism involved appears to be related to the stress responses present in all living plant matter. However, there is a need to clarify the relative importance of the potential stress mechanisms in order to get a better understanding of the processing conditions likely to be most effective. The amount of ultrasound treatment required is likely to involve low treatment intensities and there are indications from the structural characterisation and mechanical property analyses that the plant cell wall tissues were more elastic than that accomplished using low temperature long time blanching. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  4. Fluid bed gasification – Plasma converter process generating energy from solid waste: Experimental assessment of sulphur species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrin, Shane, E-mail: shane.morrin@ucl.ac.uk; Advanced Plasma Power, Swindon, Wiltshire SN3 4DE; Lettieri, Paola, E-mail: p.lettieri@ucl.ac.uk

    2014-01-15

    Highlights: • We investigate gaseous sulphur species whilst gasifying sulphur-enriched wood pellets. • Experiments performed using a two stage fluid bed gasifier – plasma converter process. • Notable SO{sub 2} and relatively low COS levels were identified. • Oxygen-rich regions of the bed are believed to facilitate SO{sub 2}, with a delayed release. • Gas phase reducing regions above the bed would facilitate more prompt COS generation. - Abstract: Often perceived as a Cinderella material, there is growing appreciation for solid waste as a renewable content thermal process feed. Nonetheless, research on solid waste gasification and sulphur mechanisms in particularmore » is lacking. This paper presents results from two related experiments on a novel two stage gasification process, at demonstration scale, using a sulphur-enriched wood pellet feed. Notable SO{sub 2} and relatively low COS levels (before gas cleaning) were interesting features of the trials, and not normally expected under reducing gasification conditions. Analysis suggests that localised oxygen rich regions within the fluid bed played a role in SO{sub 2}’s generation. The response of COS to sulphur in the feed was quite prompt, whereas SO{sub 2} was more delayed. It is proposed that the bed material sequestered sulphur from the feed, later aiding SO{sub 2} generation. The more reducing gas phase regions above the bed would have facilitated COS – hence its faster response. These results provide a useful insight, with further analysis on a suite of performed experiments underway, along with thermodynamic modelling.« less

  5. High-pressure thermal sterilization: food safety and food quality of baby food puree.

    PubMed

    Sevenich, Robert; Kleinstueck, Elke; Crews, Colin; Anderson, Warwick; Pye, Celine; Riddellova, Katerina; Hradecky, Jaromir; Moravcova, Eliska; Reineke, Kai; Knorr, Dietrich

    2014-02-01

    The benefits that high-pressure thermal sterilization offers as an emerging technology could be used to produce a better overall food quality. Due to shorter dwell times and lower thermal load applied to the product in comparison to the thermal retorting, lower numbers and quantities of unwanted food processing contaminants (FPCs), for example, furan, acrylamide, HMF, and MCPD-esters could be formed. Two spore strains were used to test the technique; Geobacillus stearothermophilus and Bacillus amyloliquefaciens, over the temperature range 90 to 121 °C at 600 MPa. The treatments were carried out in baby food puree and ACES-buffer. The treatments at 90 and 105 °C showed that G. stearothermophilus is more pressure-sensitive than B. amyloliquefaciens. The formation of FPCs was monitored during the sterilization process and compared to the amounts found in retorted samples of the same food. The amounts of furan could be reduced between 81% to 96% in comparison to retorting for the tested temperature pressure combination even at sterilization conditions of F₀-value in 7 min. © 2014 Institute of Food Technologists®

  6. DATA QUALITY OBJECTIVES FOR SELECTING WASTE SAMPLES FOR THE BENCH STEAM REFORMER TEST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BANNING DL

    2010-08-03

    This document describes the data quality objectives to select archived samples located at the 222-S Laboratory for Fluid Bed Steam Reformer testing. The type, quantity and quality of the data required to select the samples for Fluid Bed Steam Reformer testing are discussed. In order to maximize the efficiency and minimize the time to treat Hanford tank waste in the Waste Treatment and Immobilization Plant, additional treatment processes may be required. One of the potential treatment processes is the fluid bed steam reformer (FBSR). A determination of the adequacy of the FBSR process to treat Hanford tank waste is required.more » The initial step in determining the adequacy of the FBSR process is to select archived waste samples from the 222-S Laboratory that will be used to test the FBSR process. Analyses of the selected samples will be required to confirm the samples meet the testing criteria.« less

  7. Trickle-bed root culture bioreactor design and scale-up: growth, fluid-dynamics, and oxygen mass transfer.

    PubMed

    Ramakrishnan, Divakar; Curtis, Wayne R

    2004-10-20

    Trickle-bed root culture reactors are shown to achieve tissue concentrations as high as 36 g DW/L (752 g FW/L) at a scale of 14 L. Root growth rate in a 1.6-L reactor configuration with improved operational conditions is shown to be indistinguishable from the laboratory-scale benchmark, the shaker flask (mu=0.33 day(-1)). These results demonstrate that trickle-bed reactor systems can sustain tissue concentrations, growth rates and volumetric biomass productivities substantially higher than other reported bioreactor configurations. Mass transfer and fluid dynamics are characterized in trickle-bed root reactors to identify appropriate operating conditions and scale-up criteria. Root tissue respiration goes through a minimum with increasing liquid flow, which is qualitatively consistent with traditional trickle-bed performance. However, liquid hold-up is much higher than traditional trickle-beds and alternative correlations based on liquid hold-up per unit tissue mass are required to account for large changes in biomass volume fraction. Bioreactor characterization is sufficient to carry out preliminary design calculations that indicate scale-up feasibility to at least 10,000 liters.

  8. The Role of Grain Dynamics in the Onset of Sediment Transport

    NASA Astrophysics Data System (ADS)

    Clark, A., IV; Shattuck, M. D.; Ouellette, N. T.; O'Hern, C.

    2016-12-01

    Despite decades of research, the grain-scale mechanisms that control the onset of sediment transport are still not well understood. A large collection of data, known as the Shields curve, shows that Θ c, which is the minimum dimensionless shear stress at the bed for grains to move, is primarily a function of the shear Reynolds number Re*. To understand this collapse, it is typically assumed that the onset of grain motion is determined by the conditions at which fluid forces violate static equilibrium for surface grains. Re* compares the grain size to the size of the viscous sublayer in the fluid flow, so the relevant fluid lift and drag forces vary with Re*. A complimentary approach, which remains relatively unexplored, is to ask instead when mobilized grains can stop. In this case, Re* is the ratio of two important time scales related to grain motion: (1) the time for a grain to equilibrate to the fluid flow and (2) the time for the shear stress to accelerate a grain over the characteristic bed roughness. Thus, Re* controls whether grains are accelerated significantly between collisions with the bed. To test how this effect relates to the Shields curve, we perform simulations of granular beds sheared by a model fluid flow, where Re* is varied only through the fluid-grain coupling, which alters the grain dynamics. We find good qualitative agreement with the Shields curve, and the quantitative discrepancies are consistent with lift forces calculations at varying Re*. Our results suggest that the onset of sediment transport may be better described as when mobile grains are able to stop, which varies significantly with Re*, and theoretical descriptions that account for this effect may be more successful than those that consider only static equilibrium.

  9. Effect of Superficial Gas Velocity on the Solid Temperature Distribution in Gas Fluidized Beds with Heat Production

    PubMed Central

    2017-01-01

    The hydrodynamics and heat transfer of cylindrical gas–solid fluidized beds for polyolefin production was investigated with the two-fluid model (TFM) based on the kinetic theory of granular flow (KTGF). It was found that the fluidized bed becomes more isothermal with increasing superficial gas velocity. This is mainly due to the increase of solids circulation and improvement in gas solid contact. It was also found that the average Nusselt number weakly depends on the gas velocity. The TFM results were qualitatively compared with simulation results of computational fluid dynamics combined with the discrete element model (CFD-DEM). The TFM results were in very good agreement with the CFD-DEM outcomes, so the TFM can be a reliable source for further investigations of fluidized beds especially large lab-scale reactors PMID:29187774

  10. Effect of γ-irradiation on commercial polypropylene based mono and multi-layered retortable food packaging materials

    NASA Astrophysics Data System (ADS)

    George, Johnsy; Kumar, R.; Sajeevkumar, V. A.; Sabapathy, S. N.; Vaijapurkar, S. G.; Kumar, D.; Kchawahha, A.; Bawa, A. S.

    2007-07-01

    Irradiation processing of food in the prepackaged form may affect chemical and physical properties of the plastic packaging materials. The effect of γ-irradiation doses (2.5-10.0 kGy) on polypropylene (PP)-based retortable food packaging materials, were investigated using Fourier transform infrared (FTIR) spectroscopic analysis, which revealed the changes happening to these materials after irradiation. The mechanical properties decreased with irradiation while oxygen transmission rate (OTR) was not affected significantly. Colour measurement indicated that Nylon 6 containing multilayer films became yellowish after irradiation. Thermal characterization revealed the changes in percentage crystallinity.

  11. Vortex model of open channel flows with gravel beds

    NASA Astrophysics Data System (ADS)

    Belcher, Brian James

    Turbulent structures are known to be important physical processes in gravel-bed rivers. A number of limitations exist that prohibit the advancement and prediction of turbulence structures for optimization of civil infrastructure, biological habitats and sediment transport in gravel-bed rivers. This includes measurement limitations that prohibit characterization of size and strength of turbulent structures in the riverine environment for different case studies as well as traditional numerical modeling limitations that prohibit modeling and prediction of turbulent structure for heterogeneous beds under high Reynolds number flows using the Navier-Stokes equations. While these limitations exist, researchers have developed various theories for the structure of turbulence in boundary layer flows including large eddies in gravel-bed rivers. While these theories have varied in details and applicable conditions, a common hypothesis has been a structural organization in the fluid which links eddies formed at the wall to coherent turbulent structures such as large eddies which may be observed vertically across the entire flow depth in an open channel. Recently physics has also seen the advancement of topological fluid mechanical ideas concerned with the study of vortex structures, braids, links and knots in velocity vector fields. In the present study the structural organization hypothesis is investigated with topological fluid mechanics and experimental results which are used to derive a vortex model for gravel-bed flows. Velocity field measurements in gravel-bed flow conditions in the laboratory were used to characterize temporal and spatial structures which may be attributed to vortex motions and reconnection phenomena. Turbulent velocity time series data were measured with ADV and decomposed using statistical decompositions to measure turbulent length scales. PIV was used to measure spatial velocity vector fields which were decomposed with filtering techniques for flow visualization. Under the specific conditions of a turbulent burst the fluid domain is organized as a braided flow of vortices connected by prime knot patterns of thin-cored flux tubes embedded on an abstract vortex surface itself having topology of a Klein bottle. This model explains observed streamline patterns in the vicinity of a strong turbulent burst in a gravel-bed river as a coherent structure in the turbulent velocity field. KEY WORDS: Open channel flow, turbulence, gravel-bed rivers, coherent structures, velocity distributions

  12. Bed-rest studies: Fluid and electrolyte responses

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.

    1983-01-01

    Confinement in the horizontal position for 2 to 3 weeks results in a chronic decrease in plasma volume, increased interstitial fluid volume, and unchanged or slightly increased extracellular fluid volume. Concentrations of blood electrolytes, glucose, and nitrogenous constituents remain within normal limits of variability when maintenance levels of isometric or isotonic exercise are performed for 1 hr/day. Hematocrit and plasma osmolality can be elevated significantly throughout bed rest (BR). Significant diuresis occurs on the first day, and increases in urine Na and Ca continue throughout BR, although voluntary fluid intake is unchanged. Urine Na and K are evaluated during the second week of BR in spite of stabilization of PV and extracellular volume. The initial diuresis probably arises from the extracellular fluid while subsequent urine loss above control levels must come from the intracellular fluid. Preservation of the extracellular volume takes precedance over maintenance of the intracellular fluid volume. The functioning of a natriuretic factor (hormone) to account for the continued increased loss of Na in the urine is suggested.

  13. Does fluid infiltration affect the motion of sediment grains? - A 3-D numerical modelling approach using SPH

    NASA Astrophysics Data System (ADS)

    Bartzke, Gerhard; Rogers, Benedict D.; Fourtakas, Georgios; Mokos, Athanasios; Canelas, Ricardo B.; Huhn, Katrin

    2017-04-01

    With experimental techniques it is difficult to measure flow characteristics, e.g. the velocity of pore water flow in sediments, at a sufficient resolution and in a non-intrusive way. As a result, the effect of fluid flow at the surface and in the interior of a sediment bed on particle motion is not yet fully understood. Numerical models may help to overcome these problems. In this study Smoothed Particle Hydrodynamics (SPH) was chosen since it is ideally suited to simulate flows in sediment beds, at a high temporal and spatial resolution. The solver chosen is DualSPHysics 4.0 (www.dual.sphysics.org), since this is validated for a range of flow conditions. For the present investigation a 3D numerical flow channel was generated with a length of 15.0 cm, a width of 0.5 cm and a height of 4.0 cm. The entire domain was flooded with 8 million fluid particles, while 400 mobile sediment particles were deposited under applied gravity (grain diameter D50=10 mm) to generate randomly packed beds. Periodic boundaries were applied to the sidewalls to mimic an endless flow. To drive the flow, an acceleration perpendicular to the bed was applied to the fluid, reaching a target value of 0.3 cm/s, simulating 12 seconds of real time. Comparison of the model results to the law of the wall showed that flow speeds decreased logarithmically from the top of the domain towards the surface of the beds, indicating a fully developed boundary layer. Analysis of the fluid surrounding the sediment particles revealed critical threshold velocities, subsequently resulting in the initiation of motion due to drag. Sediment flux measurements indicated that with increasing simulation time a larger quantity of sediment particles was transported at the direct vicinity of the bed, whereas the amount of transported particles along with flow speed values, within the pore spaces, decreased with depth. Moreover, sediment - sediment particle collisions at the sediment surface lead to the opening of new pore spaces. As a result, higher quantities of fluid particles infiltrated through the larger interstices between the sediment particles, which successively increased the potential for the initiation of motion of sediment particles located in the deeper horizons. This effect has been underestimated in prior studies and highlights the importance of sediment - sediment particle collision and fluid infiltration as an important characteristic that can eventually help to better understand the development of the shear layer but also various sediment morphological features.

  14. Formulating food protein-stabilized indomethacin nanosuspensions into pellets by fluid-bed coating technology: physical characterization, redispersibility, and dissolution.

    PubMed

    He, Wei; Lu, Yi; Qi, Jianping; Chen, Lingyun; Yin, Lifang; Wu, Wei

    2013-01-01

    Drug nanosuspensions are very promising for enhancing the dissolution and bioavailability of drugs that are poorly soluble in water. However, the poor stability of nanosuspensions, reflected in particle growth, aggregation/agglomeration, and change in crystallinity state greatly limits their applications. Solidification of nanosuspensions is an ideal strategy for addressing this problem. Hence, the present work aimed to convert drug nanosuspensions into pellets using fluid-bed coating technology. Indomethacin nanosuspensions were prepared by the precipitation-ultrasonication method using food proteins (soybean protein isolate, whey protein isolate, β-lactoglobulin) as stabilizers. Dried nanosuspensions were prepared by coating the nanosuspensions onto pellets. The redispersibility, drug dissolution, solid-state forms, and morphology of the dried nanosuspensions were evaluated. The mean particle size for the nanosuspensions stabilized using soybean protein isolate, whey protein isolate, and β-lactoglobulin was 588 nm, 320 nm, and 243 nm, respectively. The nanosuspensions could be successfully layered onto pellets with high coating efficiency. Both the dried nanosuspensions and nanosuspensions in their original amorphous state and not influenced by the fluid-bed coating drying process could be redispersed in water, maintaining their original particle size and size distribution. Both the dried nanosuspensions and the original drug nanosuspensions showed similar dissolution profiles, which were both much faster than that of the raw crystals. Fluid-bed coating technology has potential for use in the solidification of drug nanosuspensions.

  15. Climbing ability of teneral and sclerotized adult bed bugs and assessment of adhesive properties of the exoskeletal fluid using atomic force microscopy.

    PubMed

    Hinson, Kevin R; Reukov, Vladimir; Benson, Eric P; Zungoli, Patricia A; Bridges, William C; Ellis, Brittany R; Song, Jinbo

    2017-01-01

    We observed that teneral adults (<1 h post-molt) of Cimex lectularius L. appeared more adept at climbing a smooth surface compared to sclerotized adults. Differences in climbing ability on a smooth surface based on sclerotization status were quantified by measuring the height to which bed bugs climbed when confined within a glass vial. The average maximum height climbed by teneral (T) bed bugs (n = 30, height climbed = 4.69 cm) differed significantly (P< 0.01) from recently sclerotized (RS) bed bugs (n = 30, height climbed = 1.73 cm at ~48 h post molt), sclerotized group 1 (S1) bed bugs (n = 30, S1 = 2.42 cm at >72 h), and sclerotized group 2 (S2) bed bugs (n = 30, height climbed = 2.64 cm at >72 h post molt). When heights from all climbing events were summed, teneral bed bugs (650.8 cm climbed) differed significantly (P< 0.01) from recently sclerotized (82 cm climbed) and sclerotized (group 1 = 104.6 cm climbed, group 2 = 107.8 cm climbed) bed bugs. These findings suggested that the external surface of teneral bed bug exoskeletons possess an adhesive property. Using atomic force microscopy (AFM), we found that adhesion force of an exoskeletal (presumably molting) fluid decreased almost five-fold from 88 to 17 nN within an hour of molting. Our findings may have implications for laboratory safety and the effectiveness of bed bug traps, barriers, and biomimetic-based adhesives.

  16. Preferential Flow Paths and Recirculation-Disrupting Jets in the Leeside of Self-Forming Coarse-Grained Laboratory Bedforms

    NASA Astrophysics Data System (ADS)

    Lichtner, D.; Christensen, K. T.; Best, J.; Blois, G.

    2014-12-01

    Exchange of fluid in the near-subsurface of a streambed is influenced by turbulence in the free flow, as well as by bed topography and permeability. Macro-roughness elements such as bedforms are known to produce pressure gradients that drive fluid into the streambed on their stoss sides and out of the bed on their lee sides. To study the modification of the near-bed flow field by self-forming permeable bedforms, laboratory experiments were conducted in a 5 mm wide flume filled with 1.3 mm glass beads. The narrow width of the flume permitted detailed examination of the fluid exiting the bed immediately downstream of a bedform. Dense 2-D velocity field measurements were gathered using particle image velocimetry (PIV). In up to 8% of instantaneous PIV realizations, the flow at the near-bed presented a component perpendicular to the streambed, indicating flow across the interface. At the downstream side of the bedform, such flow disrupted the mean recirculation pattern that is typically observed in finer sediment beds. It is hypothesized that the coarse grain size and the resulting high bed permeability promote such near-surface jet events. A qualitative analysis of raw image frames indicated that an in-place jostling of sediment is associated with these jets thus suggesting that subsurface flow may be characterized by impulsive events. These observations are relevant to hyporheic exchange rates in coarse sediments and can have strong morphodynamic implications as they can explain the lack of ripples and characteristics of dunes in high permeability gravels. Overall, further study of the flow structure over highly permeable streambeds is needed to understand subsurface exchange and bedform initiation.

  17. Bacteria and Bioactivity in Holder Pasteurized and Shelf-Stable Human Milk Products

    PubMed Central

    2017-01-01

    Abstract Background: Historically, Holder pasteurization has been used to pasteurize donor human milk available in a hospital setting. There is extensive research that provides an overview of the impact of Holder pasteurization on bioactive components of human milk. A shelf-stable (SS) human milk product, created using retort processing, recently became available; however, to our knowledge, little has been published about the effect of retort processing on human milk. Objective: We aimed to assess the ability of retort processing to eliminate bacteria and to quantify the difference in lysozyme and secretory immunoglobulin A (sIgA) activity between Holder pasteurized (HP) and SS human milk. Methods: Milk samples from 60 mothers were pooled. From this pool, 36 samples were taken: 12 samples were kept raw, 12 samples were HP, and 12 samples were retort processed to create an SS product. All samples were analyzed for total aerobic bacteria, coliform bacteria, Bacillus cereus, sIgA activity, and lysozyme activity. Raw samples served as the control. Results: One raw sample and 3 HP samples contained B. cereus at the time of culture. There were no detectable bacteria in SS samples at the time of culture. Raw samples had significantly greater lysozyme and sIgA activity than HP and SS samples (P < 0.0001). HP samples retained significantly more lysozyme and sIgA activity (54% and 87%, respectively) than SS samples (0% and 11%, respectively). Conclusions: Human milk processed using Holder pasteurization should continue to be screened for the presence of B. cereus. Clinicians should be aware of the differences in the retention of lysozyme and sIgA activity in HP and SS products when making feeding decisions for medically fragile or immunocompromised infants to ensure that patients are receiving the maximum immune protection. PMID:29955718

  18. The influence of pressure on petroleum generation and maturation as suggested by aqueous pyrolysis

    USGS Publications Warehouse

    Price, L.C.; Wenger, L.M.

    1992-01-01

    Because fluid pressures are transient in sedimentary basins over geologic time, the effect of increasing fluid pressure on organic-matter metamorphism is difficult to determine, and conflicting opinions exist concerning its influence. Properly-performed aqueous-pyrolysis experiments can closely simulate hydrocarbon generation and maturation in nature, and thus offer an excellent way to study the influence of pressure. Such experiments, carried out on the Retort Phosphatic Shale Member of the Lower Permian Phosphoria Formation (type II-S organic matter) at different constant temperatures, demonstrated that increasing pressure significantly retards all aspects of organic matter metamorphism, including hydrocarbon generation, maturation and thermal destruction. This conclusion results from detailed quantitative and qualitative analyses of all products from hydrocarbon generation, from the C1 to C4 hydrocarbon gases to the asphaltenes, and also from analyses of the reacted rocks. We have documented that our aqueous-pyrolysis experiments closely simulated natural hydrocarbon generation and maturation. Thus the data taken as a function of pressure have relevance to the influence of normal and abnormal fluid pressures as related to: 1) depths and temperatures of mainstage hydrocarbon generation; 2) the thermal destruction of deposits of gas or light oil, or their preservation to unexpectedly high maturation ranks; and 3) the persistence of measurable to moderate concentrations of C15+ hydrocarbons in fine-grained rocks even to ultra-high maturation ranks. ?? 1992.

  19. Geochemistry and diagenesis of Miocene lacustrine siliceous sedimentary and pyroclastic rocks, Mytilinii basin, Samos Island, Greece

    USGS Publications Warehouse

    Stamatakis, M.G.; Hein, J.R.; Magganas, A.C.

    1989-01-01

    A Late Miocene non-marine stratigraphic sequence composed of limestone, opal-CT-bearing limestone, porcelanite, marlstone, diatomaceous marlstone, dolomite, and tuffite crops out on eastern Samos Island. This lacustrine sequence is subdivided into the Hora Beds and the underlying Pythagorion Formation. The Hora Beds is overlain by the clastic Mytilinii series which contains Turolian (Late Miocene) mammalian fossils. The lacustrine sequence contains volcanic glass and the silica polymorphs opal-A, opal-CT, and quartz. Volcanic glass predominantly occurs in tuffaceous rocks from the lower and upper parts of the lacustrine sequence. Opal-A (diatom frustules) is confined to layers in the upper part of the Hora Beds. Beds rich in opal-CT underlie those containing opal-A. The occurrence of opal-CT is extensive, encompassing the lower Hora Beds and the sedimentary rocks and tuffs of the Pythagorion Formation. A transition zone between the opal-A and opal-CT zones is identified by X-ray diffraction patterns that are intermediate between those of opal-CT and opal-A, perhaps due to a mixture of the two polymorphs. Diagenesis was not advanced enough for opal-CT to transform to quartz or for volcanic glass to transform to opal-C. Based on geochemical and mineralogical data, we suggest that the rate of diagenetic transformation of opal-A to opal-CT was mainly controlled by the chemistry of pore fluids. Pore fluids were characterized by high salinity, moderately high alkalinity, and high magnesium ion activity. These pore fluid characteristics are indicated by the presence of evaporitic salts (halite, sylvite, niter), high boron content in biogenic silica, and by dolomite in both the opal-A and opal-CT-bearing beds. The absence of authigenic K-feldspar, borosilicates, and zeolites also support these pore fluid characteristics. Additional factors that influenced the rate of silica diagenesis were host rock lithology and the relatively high heat flow in the Aegean region from Miocene to Holocene. ?? 1989.

  20. Computer-aided-engineering system for modeling and analysis of ECLSS integration testing

    NASA Technical Reports Server (NTRS)

    Sepahban, Sonbol

    1987-01-01

    The accurate modeling and analysis of two-phase fluid networks found in environmental control and life support systems is presently undertaken by computer-aided engineering (CAE) techniques whose generalized fluid dynamics package can solve arbitrary flow networks. The CAE system for integrated test bed modeling and analysis will also furnish interfaces and subsystem/test-article mathematical models. Three-dimensional diagrams of the test bed are generated by the system after performing the requisite simulation and analysis.

  1. Flow-synchronous field motion refrigeration

    DOEpatents

    Hassen, Charles N.

    2017-08-22

    An improved method to manage the flow of heat in an active regenerator in a magnetocaloric or an electrocaloric heat-pump refrigeration system, in which heat exchange fluid moves synchronously with the motion of a magnetic or electric field. Only a portion of the length of the active regenerator bed is introduced to or removed from the field at one time, and the heat exchange fluid flows from the cold side toward the hot side while the magnetic or electric field moves along the active regenerator bed.

  2. Numerical simulation of transient temperature profiles for canned apple puree in semi-rigid aluminum based packaging during pasteurization.

    PubMed

    Shafiekhani, Soraya; Zamindar, Nafiseh; Hojatoleslami, Mohammad; Toghraie, Davood

    2016-06-01

    Pasteurization of canned apple puree was simulated for a 3-D geometry in a semi-rigid aluminum based container which was heated from all sides at 378 K. The computational fluid dynamics code Ansys Fluent 14.0 was used and the governing equations for energy, momentum, and continuity were computed using a finite volume method. The food model was assumed to have temperature-dependent properties. To validate the simulation, the apple puree was pasteurized in a water cascading retort. The effect of the mesh structures was studied for the temperature profiles during thermal processing. The experimental temperature in the slowest heating zone in the container was compared with the temperature predicted by the model and the difference was not significant. The study also investigated the impact of head space (water-vapor) on heat transfer.

  3. Paraho environmental data. Part I. Process characterization. Par II. Air quality. Part III. Water quality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heistand, R.N.; Atwood, R.A.; Richardson, K.L.

    1980-06-01

    From 1973 to 1978, Development Engineering, Inc. (DEI), a subsidiary of Paraho Development Corporation, demostrated the Paraho technology for surface oil shale retorting at Anvil Points, Colorado. A considerable amount of environmentally-related research was also conducted. This body of data represents the most comprehensive environmental data base relating to surface retorting that is currently available. In order to make this information available, the DOE Office of Environment has undertaken to compile, assemble, and publish this environmental data. The compilation has been prepared by DEI. This report includes the process characterization, air quality, and water quality categories.

  4. Double Retort System for Materials Compatibility Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    V. Munne; EV Carelli

    2006-02-23

    With Naval Reactors (NR) approval of the Naval Reactors Prime Contractor Team (NRPCT) recommendation to develop a gas cooled reactor directly coupled to a Brayton power conversion system as the Space Nuclear Power Plant (SNPP) for Project Prometheus (References a and b) there was a need to investigate compatibility between the various materials to be used throughout the SNPP. Of particular interest was the transport of interstitial impurities from the nickel-base superalloys, which were leading candidates for most of the piping and turbine components to the refractory metal alloys planned for use in the reactor core. This kind of contaminationmore » has the potential to affect the lifetime of the core materials. This letter provides technical information regarding the assembly and operation of a double retort materials compatibility testing system and initial experimental results. The use of a double retort system to test materials compatibility through the transfer of impurities from a source to a sink material is described here. The system has independent temperature control for both materials and is far less complex than closed loops. The system is described in detail and the results of three experiments are presented.« less

  5. Fluid-bed air-supply system

    DOEpatents

    Atabay, Keramettin

    1979-01-01

    The air-supply system for a fluidized-bed furnace includes two air conduits for the same combustion zone. The conduits feed separate sets of holes in a distributor plate through which fluidizing air flows to reach the bed. During normal operation, only one conduit and set of holes is used, but the second conduit and set of holes is employed during start-up.

  6. Manufacturing Solid Dosage Forms from Bulk Liquids Using the Fluid-bed Drying Technology.

    PubMed

    Qi, Jianping; Lu, Y I; Wu, Wei

    2015-01-01

    Solid dosage forms are better than liquid dosage forms in many ways, such as improved physical and chemical stability, ease of storage and transportation, improved handling properties, and patient compliance. Therefore, it is required to transform dosage forms of liquid origins into solid dosage forms. The functional approaches are to absorb the liquids by solid excipients or through drying. The conventional drying technologies for this purpose include drying by heating, vacuum-, freeze- and spray-drying, etc. Among these drying technologies, fluidbed drying emerges as a new technology that possesses unique advantages. Fluid-bed drying or coating is highly efficient in solvent removal, can be performed at relatively low temperatures, and is a one-step process to manufacture formulations in pellet forms. In this article, the status of the art of manufacturing solid dosage forms from bulk liquids by fluid-bed drying technology was reviewed emphasizing on its application in solid dispersion, inclusion complexes, self-microemulsifying systems, and various nanoscale drug delivery systems.

  7. Analysis and control of the METC fluid bed gasifier. Quarterly report, July 1--September 30, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-12-31

    In this work, three components will form the basis for design of a control scheme for the Fluidized Bed Gasifier (FBG) at METC: (1) a control systems analysis based on simple linear models derived from process data; (2) review of the literature on fluid bed gasifier operation and control; and (3) understanding of present FBG operation and real world considerations. Tasks accomplished during the present reporting period include: (1) observation of the FBG during the week of July 17 to July 21; (2) suggested improvements to the control of FBG backpressure and MGCR pressure; and (3) data collection from FBGmore » run No. 11 and transfer of data to USC.« less

  8. Climbing ability of teneral and sclerotized adult bed bugs and assessment of adhesive properties of the exoskeletal fluid using atomic force microscopy

    PubMed Central

    Zungoli, Patricia A.; Bridges, William C.; Ellis, Brittany R.; Song, Jinbo

    2017-01-01

    We observed that teneral adults (<1 h post-molt) of Cimex lectularius L. appeared more adept at climbing a smooth surface compared to sclerotized adults. Differences in climbing ability on a smooth surface based on sclerotization status were quantified by measuring the height to which bed bugs climbed when confined within a glass vial. The average maximum height climbed by teneral (T) bed bugs (n = 30, height climbed = 4.69 cm) differed significantly (P< 0.01) from recently sclerotized (RS) bed bugs (n = 30, height climbed = 1.73 cm at ~48 h post molt), sclerotized group 1 (S1) bed bugs (n = 30, S1 = 2.42 cm at >72 h), and sclerotized group 2 (S2) bed bugs (n = 30, height climbed = 2.64 cm at >72 h post molt). When heights from all climbing events were summed, teneral bed bugs (650.8 cm climbed) differed significantly (P< 0.01) from recently sclerotized (82 cm climbed) and sclerotized (group 1 = 104.6 cm climbed, group 2 = 107.8 cm climbed) bed bugs. These findings suggested that the external surface of teneral bed bug exoskeletons possess an adhesive property. Using atomic force microscopy (AFM), we found that adhesion force of an exoskeletal (presumably molting) fluid decreased almost five-fold from 88 to 17 nN within an hour of molting. Our findings may have implications for laboratory safety and the effectiveness of bed bug traps, barriers, and biomimetic-based adhesives. PMID:29244819

  9. Bed-rest studies - Fluid and electrolyte responses

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.

    1983-01-01

    Confinement in the horizontal position for 2 to 3 weeks results in a chronic decrease in plasma volume, increased interstitial fluid volume, and unchanged or slightly increased extracellular fluid volume. Concentrations of blood electrolytes, glucose, and nitrogenous constituents remain within normal limits of variability when maintenance levels of isometric or isotonic exercise are performed for 1 hr/day. Hematocrit and plasma osmolality can be elevated significantly throughout bed rest (BR). Significant diuresis occurs on the first day, and increases in urine Na and Ca continue throughout BR, although voluntary fluid intake is unchanged. Urine Na and K are evaluated during the second week of BR in spite of stabilization of PV and extracellular volume. The initial diuresis probably arises from extracellular fluid while subsequent urine loss above control levels must come from the intracellular fluid. Preservation of the extracellular volume takes precedance over maintenance of the intracellular fluid volume. The functioning of a natriuretic factor (hormone) to account for the continued increased loss of Na in the urine is suggested. Previously announced in STAR as N83-24160

  10. Comparison of Ocular Outcomes in Two 14-Day Bed Rest Studies

    NASA Technical Reports Server (NTRS)

    Cromwell, R. L.; Zanello, S. B.; Yarbough, P. O.; Taibbi, G.; Vizzeri, G.

    2011-01-01

    Reports of astronauts visual changes raised concern about ocular health during long-duration spaceflight. Some of these findings included hyperopic shifts, choroidal folds, optic disc edema, retinal nerve fiber layer (RNFL) thickening, and cotton wool spots. While the etiology remains unknown, hypotheses speculate that hypertension in the brain caused by cephalad fluid shifts during spaceflight is a possible mechanism for these ocular changes. Head-down tilt (HDT) bed rest is a spaceflight analog that induces cephalad fluid shifts. In addition, previous studies of the HDT position demonstrated body fluid shifts associated with changes in intraocular pressure (IOP). For these reasons, vision monitoring of HDT bed rest subjects was implemented for NASA bed rest studies. Subjects selected for these studies were healthy adults (14 males and 5 females). Average age was 37.5 plus or minus 9.1 years, weight was 77.4 plus or minus 11.3 Kg, and height was 173.4 plus or minus 7.2 14 cm. Controlled conditions followed for all NASA bed rest studies were implemented. These conditions included factors such as eating a standardized diet, maintaining a strict sleep wake cycle, and remaining in bed for 24 hours each day. In one study, subjects maintained a horizontal (0 degree) position while in bed and were exercised six days per week with an integrated resistance and aerobic training (iRAT) program. In the other study, subjects were placed at 6 degrees HDT while in bed and did not engage in exercise. All subjects underwent pre- and post bed rest vision testing. While the battery of vision tests for each study was not identical, measures common to both studies will be presented. These measures included IOP and measures that provided an indication of optic disc swelling as derived from optical coherence tomography (OCT) testing: average retinal nerve fiber layer (RNFL) thickness (millimeters), disc area (square millimeters), rim area (square millimters), and average cup to disc (C/D) ratio. For all measures, there was no significant difference between subject groups for pre-bed rest testing. Post bed rest values also remained similar between groups. Comparison of pre- to post bed rest testing within each group did not demonstrate any statistical differences. These preliminary results from 14-day bed rest studies suggest that the combination of exercise and horizontal bed rest as compared to 6 degrees HDT bed rest did not produce differences in the ocular response with regard to IOP and optic disc parameters. The ocular measures reported here only included pre- and post bed rest time points. Further investigation is needed to examine both the acute response and long term adaptation of structural and functional ocular parameters in the bed rest platform and determine its usefulness for studying spaceflight phenomena. From a clinical perspective, the ability to study ocular responses in the controlled environment of the bed rest platform can provide valuable information for the care of patients restricted to bed rest.

  11. Formulating food protein-stabilized indomethacin nanosuspensions into pellets by fluid-bed coating technology: physical characterization, redispersibility, and dissolution

    PubMed Central

    He, Wei; Lu, Yi; Qi, Jianping; Chen, Lingyun; Yin, Lifang; Wu, Wei

    2013-01-01

    Background Drug nanosuspensions are very promising for enhancing the dissolution and bioavailability of drugs that are poorly soluble in water. However, the poor stability of nanosuspensions, reflected in particle growth, aggregation/agglomeration, and change in crystallinity state greatly limits their applications. Solidification of nanosuspensions is an ideal strategy for addressing this problem. Hence, the present work aimed to convert drug nanosuspensions into pellets using fluid-bed coating technology. Methods Indomethacin nanosuspensions were prepared by the precipitation-ultrasonication method using food proteins (soybean protein isolate, whey protein isolate, β-lactoglobulin) as stabilizers. Dried nanosuspensions were prepared by coating the nanosuspensions onto pellets. The redispersibility, drug dissolution, solid-state forms, and morphology of the dried nanosuspensions were evaluated. Results The mean particle size for the nanosuspensions stabilized using soybean protein isolate, whey protein isolate, and β-lactoglobulin was 588 nm, 320 nm, and 243 nm, respectively. The nanosuspensions could be successfully layered onto pellets with high coating efficiency. Both the dried nanosuspensions and nanosuspensions in their original amorphous state and not influenced by the fluid-bed coating drying process could be redispersed in water, maintaining their original particle size and size distribution. Both the dried nanosuspensions and the original drug nanosuspensions showed similar dissolution profiles, which were both much faster than that of the raw crystals. Conclusion Fluid-bed coating technology has potential for use in the solidification of drug nanosuspensions. PMID:23983465

  12. Fluid driven fracture mechanics in highly anisotropic shale: a laboratory study with application to hydraulic fracturing

    NASA Astrophysics Data System (ADS)

    Gehne, Stephan; Benson, Philip; Koor, Nick; Enfield, Mark

    2017-04-01

    The finding of considerable volumes of hydrocarbon resources within tight sedimentary rock formations in the UK led to focused attention on the fundamental fracture properties of low permeability rock types and hydraulic fracturing. Despite much research in these fields, there remains a scarcity of available experimental data concerning the fracture mechanics of fluid driven fracturing and the fracture properties of anisotropic, low permeability rock types. In this study, hydraulic fracturing is simulated in a controlled laboratory environment to track fracture nucleation (location) and propagation (velocity) in space and time and assess how environmental factors and rock properties influence the fracture process and the developing fracture network. Here we report data on employing fluid overpressure to generate a permeable network of micro tensile fractures in a highly anisotropic shale ( 50% P-wave velocity anisotropy). Experiments are carried out in a triaxial deformation apparatus using cylindrical samples. The bedding planes are orientated either parallel or normal to the major principal stress direction (σ1). A newly developed technique, using a steel guide arrangement to direct pressurised fluid into a sealed section of an axially drilled conduit, allows the pore fluid to contact the rock directly and to initiate tensile fractures from the pre-defined zone inside the sample. Acoustic Emission location is used to record and map the nucleation and development of the micro-fracture network. Indirect tensile strength measurements at atmospheric pressure show a high tensile strength anisotropy ( 60%) of the shale. Depending on the relative bedding orientation within the stress field, we find that fluid induced fractures in the sample propagate in two of the three principal fracture orientations: Divider and Short-Transverse. The fracture progresses parallel to the bedding plane (Short-Transverse orientation) if the bedding plane is aligned (parallel) with the direction of σ1. Conversely, the crack plane develops perpendicular to the bedding plane, if the bedding plane is orientated normal to σ1. Fracture initiation pressures are higher in the Divider orientation ( 24MPa) than in the Short-Transverse orientation ( 14MPa) showing a tensile strength anisotropy ( 42%) comparable to ambient tensile strength results. We then use X-Ray Computed Tomography (CT) 3D-images to evaluate the evolved fracture network in terms of fracture pattern, aperture and post-test water permeability. For both fracture orientations, very fine, axial fractures evolve over the entire length of the sample. For the fracturing in the Divider orientation, it has been observed, that in some cases, secondary fractures are branching of the main fracture. Test data from fluid driven fracturing experiments suggest that fracture pattern, fracture propagation trajectories and fracturing fluid pressure (initiation and propagation pressure) are predominantly controlled by the interaction between the anisotropic mechanical properties of the shale and the anisotropic stress environment. The orientation of inherent rock anisotropy relative to the principal stress directions seems to be the main control on fracture orientation and required fracturing pressure.

  13. Biparticle fluidized bed reactor

    DOEpatents

    Scott, Charles D.; Marasco, Joseph A.

    1995-01-01

    A fluidized bed reactor system utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves.

  14. Biparticle fluidized bed reactor

    DOEpatents

    Scott, Charles D.; Marasco, Joseph A.

    1996-01-01

    A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary and tertiary particulate phases, continuously introduced and removed simultaneously in the cocurrent and countercurrent mode, act in a role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Means for introducing and removing the sorbent phases include feed screw mechanisms and multivane slurry valves.

  15. Biparticle fluidized bed reactor

    DOEpatents

    Scott, C.D.; Marasco, J.A.

    1995-04-25

    A fluidized bed reactor system utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves. 3 figs.

  16. Biparticle fluidized bed reactor

    DOEpatents

    Scott, C.D.

    1993-12-14

    A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase is described. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves. 3 figures.

  17. Biparticle fluidized bed reactor

    DOEpatents

    Scott, C.D.; Marasco, J.A.

    1996-02-27

    A fluidized bed reactor system is described which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary and tertiary particulate phases, continuously introduced and removed simultaneously in the cocurrent and countercurrent mode, act in a role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Means for introducing and removing the sorbent phases include feed screw mechanisms and multivane slurry valves. 3 figs.

  18. Biparticle fluidized bed reactor

    DOEpatents

    Scott, Charles D.

    1993-01-01

    A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves.

  19. Sediment transport and fluid mud layer formation in the macro-tidal Chikugo river estuary during a fortnightly tidal cycle

    NASA Astrophysics Data System (ADS)

    Azhikodan, Gubash; Yokoyama, Katsuhide

    2018-03-01

    The erosion and deposition dynamics of fine sediment in a highly turbid estuarine channel were successfully surveyed during the period from August 29 to September 12, 2009 using an echo sounder in combination with a high-resolution acoustic Doppler current profiler. Field measurements were conducted focusing on the tide driven dynamics of suspended sediment concentration (SSC), and fluid mud at the upstream of the macrotidal Chikugo river estuary during semidiurnal and fortnightly tidal cycles. Morphological evolution was observed especially during the spring tide over a period of two weeks. The elevation of the channel bed was stable during neap tide, but it underwent fluctuations when the spring tide occurred owing to the increase in the velocity and shear stress. Two days of time lag were observed between the maximum SSC and peak tidal flow, which resulted in the asymmetry between neap-to-spring and spring-to-neap transitions. During the spring tide, a hysteresis loop was observed between shear stress and SSC, and its direction was different during flood and ebb tides. Although both fine sediments and flocs were dominant during flood tides, only fine sediments were noticed during ebb tides. Hence, the net elevation change in the bed was positive, and sedimentation took place during the semilunar tidal cycle. Finally, a bed of consolidated mud was deposited on the initial bed, and the height of the channel bed increased by 0.9 m during the two-week period. The observed hysteretic effect between shear stress and SSC during the spring tides, and the asymmetrical neap-spring-neap tidal cycle influenced the near-bed sediment dynamics of the channel, and led to the formation of a fluid mud layer at the bottom of the river.

  20. Long-duration head-down bed rest: project overview, vital signs, and fluid balance.

    PubMed

    Meck, Janice V; Dreyer, Sherlene A; Warren, L Elisabeth

    2009-05-01

    Spaceflight has profound effects on the human body. Many of these effects can be induced with head-down bed rest, which has been a useful ground-based analog. With limited resources aboard the International Space Station for human research, the bed rest analog will be a primary platform on which countermeasures will be developed and tested for lunar and Mars mission scenarios. NASA Johnson Space Center, in conjunction with the University of Texas Medical Branch (UTMB), has created the NASA Flight Analogs Project (FAP), a research program with the overall objective of using head-down bed rest to evaluate, compare, and refine candidate countermeasures to spaceflight deconditioning. This paper serves as an overview and describes the standard conditions, the standard set of subject screening criteria, and the standard set of measurements for all FAP bed rest subjects. Heart rate and diastolic pressures decreased transiently at the onset of bed rest. Fluid balance showed an early diuresis, which stabilized within 3 d. In this supplement, detailed results from multiple disciplines are presented in a series of reports. The following reports describe multi-disciplinary results from the standard measurements by which the responses to bed rest will be assessed and by which countermeasures will be evaluated. The data presented in this overview are meant to serve as a context in which to view the data presented in the discipline specific manuscripts. The dietary support and behavioral health papers provide additional information regarding those aspects of implementing bed rest studies successfully.

  1. Analysis of the effectiveness of steam retorting of oil shale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobs, H.R.; Pensel, R.W.; Udell, K.S.

    A numerical model is developed to describe the retorting of oil shale using superheated steam. The model describes not only the temperature history of the shale but predicts the evolution of shale oil from kerogen decomposition and the breakdown of the carbonates existing in the shale matrix. The heat transfer coefficients between the water and the shale are determined from experiments utilizing the model to reduce the data. Similarly the model is used with thermogravimetric analysis experiments to develop an improved kinetics expression for kerogen decomposition in a steam environment. Numerical results are presented which indicate the effect of oilmore » shale particle size and steam temperature on oil production.« less

  2. Meals for the Elderly

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The aim of Skylab's multi-agency cooperative project was to make simple but nutritious space meals available to handicapped and otherwise homebound senior adults, unable to take advantage of existing meal programs sponsored by federal, state and private organizations. As a spinoff of Meal Systems for the Elderly, commercial food processing firms are now producing astronaut type meals for public distribution. Company offers variety of freeze dried foods which are reconstituted by addition of water, and "retort pouch" meals which need no reconstitution, only heating. The retort pouch is an innovative flexible package that combines the advantage of boil-in bag and metal can. Foods retain their flavor, minerals and vitamins can be stored without refrigeration and are lightweight for easy transportation.

  3. Deleterious Thermal Effects due to Randomized Flow Paths in Pebble Bed, and Particle Bed Style Reactors

    NASA Technical Reports Server (NTRS)

    Moran, Robert P.

    2013-01-01

    Reactor fuel rod surface area that is perpendicular to coolant flow direction (+S) i.e. perpendicular to the P creates areas of coolant stagnation leading to increased coolant temperatures resulting in localized changes in fluid properties. Changes in coolant fluid properties caused by minor increases in temperature lead to localized reductions in coolant mass flow rates leading to localized thermal instabilities. Reductions in coolant mass flow rates result in further increases in local temperatures exacerbating changes to coolant fluid properties leading to localized thermal runaway. Unchecked localized thermal runaway leads to localized fuel melting. Reactor designs with randomized flow paths are vulnerable to localized thermal instabilities, localized thermal runaway, and localized fuel melting.

  4. The numerical approach adopted in toba computer code for mass and heat transfer dynamic analysis of metal hydride hydrogen storage beds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El Osery, I.A.

    1983-12-01

    Modelling studies of metal hydride hydrogen storage beds is a part of an extensive R and D program conducted in Egypt on hydrogen energy. In this context two computer programs; namely RET and RET1; have been developed. In RET computer program, a cylindrical conduction bed model is considered and an approximate analytical solution is used for solution of the associated mass and heat transfer problem. This problem is solved in RET1 computer program numerically allowing more flexibility in operating conditions but still limited to cylindrical configuration with only two alternatives for heat exchange; either fluid is passing through tubes imbeddedmore » in the solid alloy matrix or solid rods are surrounded by annular fluid tubes. The present computer code TOBA is more flexible and realistic. It performs the mass and heat transfer dynamic analysis of metal hydride storage beds using a variety of geometrical and operating alternatives.« less

  5. Solids feed nozzle for fluidized bed

    DOEpatents

    Zielinski, Edward A.

    1982-01-01

    The vertical fuel pipe of a fluidized bed extends up through the perforated support structure of the bed to discharge granulated solid fuel into the expanded bed. A cap, as a deflecting structure, is supported above the discharge of the fuel pipe and is shaped and arranged to divert the carrier fluid and granulated fuel into the combusting bed. The diverter structure is spaced above the end of the fuel pipe and provided with a configuration on its underside to form a venturi section which generates a low pressure in the stream into which the granules of solid fuel are drawn to lengthen their residence time in the combustion zone of the bed adjacent the fuel pipe.

  6. Entrainment of bed sediment by debris flows: results from large-scale experiments

    USGS Publications Warehouse

    Reid, Mark E.; Iverson, Richard M.; Logan, Matthew; LaHusen, Richard G.; Godt, Jonathan W.; Griswold, Julie P.

    2011-01-01

    When debris flows grow by entraining sediment, they can become especially hazardous owing to increased volume, speed, and runout. To investigate the entrainment process, we conducted eight largescale experiments in the USGS debris-flow flume. In each experiment, we released a 6 m3 water-saturated debris flow across a 47-m long, ~12-cm thick bed of partially saturated sediment lining the 31º flume. Prior to release, we used low-intensity overhead sprinkling and real-time monitoring to control the bed-sediment wetness. As each debris flow descended the flume, we measured the evolution of flow thickness, basal total normal stress, basal pore-fluid pressure, and sediment scour depth. When debris flows traveled over relatively dry sediment, net scour was minimal, but when debris flows traveled over wetter sediment (volumetric water content > 0.22), debris-flow volume grew rapidly and flow speed and runout were enhanced. Data from scour sensors showed that entrainment occurred by rapid (5-10 cm/s), progressive scour rather than by mass failure at depth. Overriding debris flows rapidly generated high basal pore-fluid pressures when they loaded and deformed bed sediment, and in wetter beds these pressures approached lithostatic levels. Reduction of intergranular friction within the bed sediment thereby enhanced scour efficiency, entrainment, and runout.

  7. 7 CFR 3201.36 - Concrete and asphalt release fluids.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Concrete and asphalt release fluids. 3201.36 Section... PROCUREMENT Designated Items § 3201.36 Concrete and asphalt release fluids. (a) Definition. Products that are... asphalt) and the container (e.g., wood or metal forms, truck beds, roller surfaces). (b) Minimum biobased...

  8. 7 CFR 3201.36 - Concrete and asphalt release fluids.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Concrete and asphalt release fluids. 3201.36 Section... PROCUREMENT Designated Items § 3201.36 Concrete and asphalt release fluids. (a) Definition. Products that are... asphalt) and the container (e.g., wood or metal forms, truck beds, roller surfaces). (b) Minimum biobased...

  9. 7 CFR 2902.36 - Concrete and asphalt release fluids.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false Concrete and asphalt release fluids. 2902.36 Section... PROCUREMENT Designated Items § 2902.36 Concrete and asphalt release fluids. (a) Definition. Products that are... asphalt) and the container (e.g., wood or metal forms, truck beds, roller surfaces). (b) Minimum biobased...

  10. 7 CFR 3201.36 - Concrete and asphalt release fluids.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Concrete and asphalt release fluids. 3201.36 Section... PROCUREMENT Designated Items § 3201.36 Concrete and asphalt release fluids. (a) Definition. Products that are... asphalt) and the container (e.g., wood or metal forms, truck beds, roller surfaces). (b) Minimum biobased...

  11. Two-dimensional lift-up problem for a rigid porous bed

    NASA Astrophysics Data System (ADS)

    Chang, Y.; Huang, L. H.; Yang, F. P. Y.

    2015-05-01

    The present study analytically reinvestigates the two-dimensional lift-up problem for a rigid porous bed that was studied by Mei, Yeung, and Liu ["Lifting of a large object from a porous seabed," J. Fluid Mech. 152, 203 (1985)]. Mei, Yeung, and Liu proposed a model that treats the bed as a rigid porous medium and performed relevant experiments. In their model, they assumed the gap flow comes from the periphery of the gap, and there is a shear layer in the porous medium; the flow in the gap is described by adhesion approximation [D. J. Acheson, Elementary Fluid Dynamics (Clarendon, Oxford, 1990), pp. 243-245.] and the pore flow by Darcy's law, and the slip-flow condition proposed by Beavers and Joseph ["Boundary conditions at a naturally permeable wall," J. Fluid Mech. 30, 197 (1967)] is applied to the bed interface. In this problem, however, the gap flow initially mainly comes from the porous bed, and the shear layer may not exist. Although later the shear effect becomes important, the empirical slip-flow condition might not physically respond to the shear effect, and the existence of the vertical velocity affects the situation so greatly that the slip-flow condition might not be appropriate. In contrast, the present study proposes a more general model for the problem, applying Stokes flow to the gap, the Brinkman equation to the porous medium, and Song and Huang's ["Laminar poroelastic media flow," J. Eng. Mech. 126, 358 (2000)] complete interfacial conditions to the bed interface. The exact solution to the problem is found and fits Mei's experiments well. The breakout phenomenon is examined for different soil beds, mechanics that cannot be illustrated by Mei's model are revealed, and the theoretical breakout times obtained using Mei's model and our model are compared. The results show that the proposed model is more compatible with physics and provides results that are more precise.

  12. Coupled incompressible Smoothed Particle Hydrodynamics model for continuum-based modelling sediment transport

    NASA Astrophysics Data System (ADS)

    Pahar, Gourabananda; Dhar, Anirban

    2017-04-01

    A coupled solenoidal Incompressible Smoothed Particle Hydrodynamics (ISPH) model is presented for simulation of sediment displacement in erodible bed. The coupled framework consists of two separate incompressible modules: (a) granular module, (b) fluid module. The granular module considers a friction based rheology model to calculate deviatoric stress components from pressure. The module is validated for Bagnold flow profile and two standardized test cases of sediment avalanching. The fluid module resolves fluid flow inside and outside porous domain. An interaction force pair containing fluid pressure, viscous term and drag force acts as a bridge between two different flow modules. The coupled model is validated against three dambreak flow cases with different initial conditions of movable bed. The simulated results are in good agreement with experimental data. A demonstrative case considering effect of granular column failure under full/partial submergence highlights the capability of the coupled model for application in generalized scenario.

  13. Commercially sterilized mussel meats (Mytilus chilensis): a study on process yield.

    PubMed

    Almonacid, S; Bustamante, J; Simpson, R; Urtubia, A; Pinto, M; Teixeira, A

    2012-06-01

    The processing steps most responsible for yield loss in the manufacture of canned mussel meats are the thermal treatments of precooking to remove meats from shells, and thermal processing (retorting) to render the final canned product commercially sterile for long-term shelf stability. The objective of this study was to investigate and evaluate the impact of different combinations of process variables on the ultimate drained weight in the final mussel product (Mytilu chilensis), while verifying that any differences found were statistically and economically significant. The process variables selected for this study were precooking time, brine salt concentration, and retort temperature. Results indicated 2 combinations of process variables producing the widest difference in final drained weight, designated best combination and worst combination with 35% and 29% yield, respectively. Significance of this difference was determined by employing a Bootstrap methodology, which assumes an empirical distribution of statistical error. A difference of nearly 6 percentage points in total yield was found. This represents a 20% increase in annual sales from the same quantity of raw material, in addition to increase in yield, the conditions for the best process included a retort process time 65% shorter than that for the worst process, this difference in yield could have significant economic impact, important to the mussel canning industry. © 2012 Institute of Food Technologists®

  14. An evaluation of fluid bed drying of aqueous granulations.

    PubMed

    Hlinak, A J; Saleki-Gerhardt, A

    2000-01-01

    The purpose of the work described was twofold: (a) to apply heat and mass balance approaches to evaluate the fluid bed drying cycle of an aqueous granulation, and (b) to determine the effect of the temperature and relative humidity of the drying air on the ability to meet a predetermined moisture content specification. Water content determinations were performed using Karl Fischer titration, and Computrac and Mark 1 moisture analyzers. The water vapor sorption isotherms were measured using a gravimetric moisture sorption apparatus with vacuum-drying capability. Temperature, relative humidity, and air flow were measured during the drying cycle of a production-scale fluid bed dryer. Heat and mass balance equations were used to calculate the evaporation rates. Evaporation rates calculated from heat and mass balance equations agreed well with the experimental data, whereas equilibrium moisture content values provided useful information for determination of the upper limit for inlet air humidity. Increasing the air flow rate and inlet temperature reduced the drying time through the effect on the primary driving force. As expected, additional drying of granules during the equilibration period did not show a significant impact on reducing the final moisture content of granules. Reducing the drying temperature resulted in measurement of higher equilibrium moisture content for the granules, which was in good agreement with the water vapor sorption data. Heat and mass balance equations can be used to successfully model the fluid bed drying cycle of aqueous granulations. The water vapor sorption characteristics of granules dictate the final moisture content at a given temperature and relative humidity.

  15. In line NIR quantification of film thickness on pharmaceutical pellets during a fluid bed coating process.

    PubMed

    Lee, Min-Jeong; Seo, Da-Young; Lee, Hea-Eun; Wang, In-Chun; Kim, Woo-Sik; Jeong, Myung-Yung; Choi, Guang J

    2011-01-17

    Along with the risk-based approach, process analytical technology (PAT) has emerged as one of the key elements to fully implement QbD (quality-by-design). Near-infrared (NIR) spectroscopy has been extensively applied as an in-line/on-line analytical tool in biomedical and chemical industries. In this study, the film thickness on pharmaceutical pellets was examined for quantification using in-line NIR spectroscopy during a fluid-bed coating process. A precise monitoring of coating thickness and its prediction with a suitable control strategy is crucial to the quality assurance of solid dosage forms including dissolution characteristics. Pellets of a test formulation were manufactured and coated in a fluid-bed by spraying a hydroxypropyl methylcellulose (HPMC) coating solution. NIR spectra were acquired via a fiber-optic probe during the coating process, followed by multivariate analysis utilizing partial least squares (PLS) calibration models. The actual coating thickness of pellets was measured by two separate methods, confocal laser scanning microscopy (CLSM) and laser diffraction particle size analysis (LD-PSA). Both characterization methods gave superb correlation results, and all determination coefficient (R(2)) values exceeded 0.995. In addition, a prediction coating experiment for 70min demonstrated that the end-point can be accurately designated via NIR in-line monitoring with appropriate calibration models. In conclusion, our approach combining in-line NIR monitoring with CLSM and LD-PSA can be applied as an effective PAT tool for fluid-bed pellet coating processes. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. In-bed tube bank for a fluidized-bed combustor

    DOEpatents

    Hemenway, Jr., Lloyd F.

    1990-01-01

    An in-bed tube bank (10) for a fluidized bed combustor. The tube bank (10) of the present invention comprises one or more fluid communicating boiler tubes (30) which define a plurality of selectively spaced boiler tube sections (32). The tube sections (32) are substantially parallel to one another and aligned in a common plane. The tube bank (10) further comprises support members (34) for joining adjacent tube sections (32), the support members (34) engaging and extending along a selected length of the tube sections (32) and spanning the preselected space therebetween.

  17. Laboratory study of the effects of combustion gases on retorting of Green River oil shale with superheated steam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyler, A.L.; Bullen, E.A.; Jacobs, H.R.

    The leached zone of the Parachute Creek member of the Piceance Basin in the Green River Formation has a unique natural porosity that makes it a likely source for in-situ production of oil from oil shale by injection of superheated steam. The Equity Oil Co. of Salt Lake City, in cooperation with the U. S. Department of Energy, carried out field tests using surface generated steam. Difficulties in delivering steam of sufficiently high temperature to the formation resulted in an experiment which was only marginally successful yielding less than 1 percent of the estimated 300,000 barrels of oil in place.more » In 1981, personnel at Sandia National Laboratory suggested that a downhole steam generator which could produce steam at temperatures in excess of 1000/sup 0/F (538/sup 0/C) at depth could well solve the temperature problem. In order to evaluate the effects of combustion gases which would be injected along with steam, should a downhole steam generator be used, laboratory studies have been completed using steam diluted with CO/sub 2/ and with CO/sub 2/ and N/sub 2/ as the heating medium. Results of experiments in an autoclave reactor and in a laboratory retort are reported. The temperature, residence time, and partial pressure of steam are the parameters which effect oil yield and oil quality. Oil properties are reported for several experimental conditions and include oil yield, boiling point distributions, pour points, gravity, and elemental and hydrocarbon-type analyses. Both the autoclave and laboratory retort experiments indicate that CO/sub 2/ and N/sub 2/ do not take a reactive part in the formation of oils except as they dilute the steam. However, the presence of CO/sub 2/ in the gaseous atmosphere during retorting does promote a low-temperature transformation of dolomite to calcite in the inorganic matrix of the oil shale.« less

  18. Spatial and stratigraphic distribution of water in oil shale of the Green River Formation using Fischer Assay, Piceance Basin, northwestern Colorado

    USGS Publications Warehouse

    Johnson, Ronald C.; Mercier, Tracey J.; Brownfield, Michael E.

    2014-01-01

    The spatial and stratigraphic distribution of water in oil shale of the Eocene Green River Formation in the Piceance Basin of northwestern Colorado was studied in detail using some 321,000 Fischer assay analyses in the U.S. Geological Survey oil-shale database. The oil-shale section was subdivided into 17 roughly time-stratigraphic intervals, and the distribution of water in each interval was assessed separately. This study was conducted in part to determine whether water produced during retorting of oil shale could provide a significant amount of the water needed for an oil-shale industry. Recent estimates of water requirements vary from 1 to 10 barrels of water per barrel of oil produced, depending on the type of retort process used. Sources of water in Green River oil shale include (1) free water within clay minerals; (2) water from the hydrated minerals nahcolite (NaHCO3), dawsonite (NaAl(OH)2CO3), and analcime (NaAlSi2O6.H20); and (3) minor water produced from the breakdown of organic matter in oil shale during retorting. The amounts represented by each of these sources vary both stratigraphically and areally within the basin. Clay is the most important source of water in the lower part of the oil-shale interval and in many basin-margin areas. Nahcolite and dawsonite are the dominant sources of water in the oil-shale and saline-mineral depocenter, and analcime is important in the upper part of the formation. Organic matter does not appear to be a major source of water. The ratio of water to oil generated with retorting is significantly less than 1:1 for most areas of the basin and for most stratigraphic intervals; thus water within oil shale can provide only a fraction of the water needed for an oil-shale industry.

  19. Spatial and stratigraphic distribution of water in oil shale of the Green River Formation using Fischer assay, Piceance Basin, northwestern Colorado

    USGS Publications Warehouse

    Johnson, Ronald C.; Mercier, Tracey J.; Brownfield, Michael E.

    2014-01-01

    The spatial and stratigraphic distribution of water in oil shale of the Eocene Green River Formation in the Piceance Basin of northwestern Colorado was studied in detail using some 321,000 Fischer assay analyses in the U.S. Geological Survey oil-shale database. The oil-shale section was subdivided into 17 roughly time-stratigraphic intervals, and the distribution of water in each interval was assessed separately. This study was conducted in part to determine whether water produced during retorting of oil shale could provide a significant amount of the water needed for an oil-shale industry. Recent estimates of water requirements vary from 1 to 10 barrels of water per barrel of oil produced, depending on the type of retort process used. Sources of water in Green River oil shale include (1) free water within clay minerals; (2) water from the hydrated minerals nahcolite (NaHCO3), dawsonite (NaAl(OH)2CO3), and analcime (NaAlSi2O6.H20); and (3) minor water produced from the breakdown of organic matter in oil shale during retorting. The amounts represented by each of these sources vary both stratigraphically and areally within the basin. Clay is the most important source of water in the lower part of the oil-shale interval and in many basin-margin areas. Nahcolite and dawsonite are the dominant sources of water in the oil-shale and saline-mineral depocenter, and analcime is important in the upper part of the formation. Organic matter does not appear to be a major source of water. The ratio of water to oil generated with retorting is significantly less than 1:1 for most areas of the basin and for most stratigraphic intervals; thus water within oil shale can provide only a fraction of the water needed for an oil-shale industry.

  20. Enhanced dissolution, stability and physicochemical characterization of ATRA/2-hydroxypropyl-β-cyclodextrin inclusion complex pellets prepared by fluid-bed coating technique.

    PubMed

    Chen, Zhongjian; Lu, Yi; Qi, Jianping; Wu, Wei

    2013-02-01

    The aim of this work was to prepare stable all-trans-retinoic acid (ATRA)/2-hydroxypropyl-β-cyclodextrin (HPCD) inclusion complex pellets with industrial feasible technology, the fluid-bed coating technique, using PVP K30 simultaneously as binder and reprecipitation retarder. The coating process was fluent with high coating efficiency. In vitro dissolution of the inclusion complex pellets in 5% w/v Cremopher EL solution was dramatically enhanced with no reprecipitation observed, and significantly improved stability against humidity (92.5% and 75% RH) and illumination (4500 lx ± 500 lx) was achieved by HPCD inclusion. Differential scanning calorimetry and powder X-ray diffractometry confirmed the absence of crystallinity of ATRA. Fourier transform-infrared spectrometry revealed interaction between ATRA and HPCD adding evidence on inclusion of ATRA moieties into HPCD cavities. Solid-state (13)C NMR spectrometry indicated possible inclusion of ATRA through the polyene chain, which was the main reason for the enhanced photostability. It is concluded that the fluid-bed coating technique has the potential use in the industrial preparation of ATRA/HPCD inclusion complex pellets.

  1. An Eulerian two-phase model for steady sheet flow using large-eddy simulation methodology

    NASA Astrophysics Data System (ADS)

    Cheng, Zhen; Hsu, Tian-Jian; Chauchat, Julien

    2018-01-01

    A three-dimensional Eulerian two-phase flow model for sediment transport in sheet flow conditions is presented. To resolve turbulence and turbulence-sediment interactions, the large-eddy simulation approach is adopted. Specifically, a dynamic Smagorinsky closure is used for the subgrid fluid and sediment stresses, while the subgrid contribution to the drag force is included using a drift velocity model with a similar dynamic procedure. The contribution of sediment stresses due to intergranular interactions is modeled by the kinetic theory of granular flow at low to intermediate sediment concentration, while at high sediment concentration of enduring contact, a phenomenological closure for particle pressure and frictional viscosity is used. The model is validated with a comprehensive high-resolution dataset of unidirectional steady sheet flow (Revil-Baudard et al., 2015, Journal of Fluid Mechanics, 767, 1-30). At a particle Stokes number of about 10, simulation results indicate a reduced von Kármán coefficient of κ ≈ 0.215 obtained from the fluid velocity profile. A fluid turbulence kinetic energy budget analysis further indicates that the drag-induced turbulence dissipation rate is significant in the sheet flow layer, while in the dilute transport layer, the pressure work plays a similar role as the buoyancy dissipation, which is typically used in the single-phase stratified flow formulation. The present model also reproduces the sheet layer thickness and mobile bed roughness similar to measured data. However, the resulting mobile bed roughness is more than two times larger than that predicted by the empirical formulae. Further analysis suggests that through intermittent turbulent motions near the bed, the resolved sediment Reynolds stress plays a major role in the enhancement of mobile bed roughness. Our analysis on near-bed intermittency also suggests that the turbulent ejection motions are highly correlated with the upward sediment suspension flux, while the turbulent sweep events are mostly associated with the downward sediment deposition flux.

  2. Numerical modelling of bedload sediment transport

    NASA Astrophysics Data System (ADS)

    Langlois, Vincent J.

    2010-05-01

    We present a numerical study of sediment transport in the bedload regime. Classical bedload transport laws only describe the variation of the vertically integrated flux of grains as a function of the Shields number. However, these relations are only valid if the moving layer of the bed is at equilibrium with the external flow. Besides, they do not contain enough information for many geomorphological applications. For instance, understanding inertial effects in the moving bed requires models that are able to account for the variability of hydrodynamical conditions, and the discrete nature of the sediment material. We developped a numerical modelling of the behaviour of a three-dimensional bed of grains sheared by a unidirectional fluid flow. These simulations are based on a combination of discrete and continuum approaches: sediment particles are modelled by hard spheres interacting through simple contact forces, whereas the fluid flow is described by a 'mean field' model. Both the drag exerted on grains by the fluid and the retroactive effect of the presence of grains on the flow are accounted for, allowing the system to converge to its equilibrium state (no assumption is made on the fluid velocity profile inside the layer of moving grains). Above the motion threshold, the variation of the flux of grains in the steady state is found to vary like the cube of the Shields number (as predicted by Bagnold). Besides, our simulations allow us to obtain new insights into the detailed mechanisms of bedload transport, by giving access to non-integral quantities, such as the trajectories of each individual grains, the detailed velocity and packing fraction profiles inside the granular bed, etc. It is therefore possible to investigate some effects that are not accounted for in usual continuum models, such as the polydispersity of grains, the ageing of the bed, the response to a variation of the flowrate, etc.

  3. Experimental Bedrock Channel Incision: Scaling, Sculpture and Sediment Transport

    NASA Astrophysics Data System (ADS)

    Johnson, J. P.; Whipple, K. X.

    2004-12-01

    Abrasion by sediment in turbulent flows often sculpts bedrock channels into dramatic forms; quantifying the feedbacks between fluid flow, sediment impacts, and channel morphology is needed to refine models of fluvial incision into bedrock. We present data from laboratory flume experiments funded by the National Center for Earth-Surface Dynamics and conducted at St. Anthony Falls Laboratory, University of Minnesota that show how the spatial and temporal distribution of erosion is strongly coupled to the evolving topography of the bed. These experiments focus on the high Froude number and tool-starved end of parameter space, where bed cover tends to be negligible. Independent variables include flume slope, water flux and sediment flux and size distribution. Sediment moves energetically as bedload, suspended load, or locally transitional between transport modes. Quantitative measurements of the evolving bed topography show that the synthetic brittle "bedrock" in the flume (cured sand-cement mixture) eroded to form narrow incised channels with tight scoops and potholes. The experimental erosional forms are similar in morphology, and sometimes in scale, to those observed in natural bedrock rivers in southeast Utah and other field settings. The experiments demonstrate that both the mean and distribution of measured erosion rates change as the bed topography evolves, even with constant water and sediment discharges. Even starting with a plane bed geometry, erosion and sediment transport very quickly become localized in interconnected topographic lows. Positive feedback develops between the evolving topography and the fluid velocity and sediment transport fields, resulting in the incision of an inner channel. Once formed, the erosion rate in the axis of the inner channel decreases as local bed shear stresses and fluid velocities are reduced by increasing wall drag, and sediment fluxes through the channel but causes less incision (no deposition). Decreasing the sediment flux (all else held equal) causes renewed incision, but of an even narrower inner channel; increasing the sediment flux leads to inner channel deposition. Where erosion is most vigorous, sediment generally moving as saltating bedload becomes locally suspended by upward-directed mean flow. For example, swirling clouds of "bedload" particles are continuously suspended by vortices developed within potholes such that the upward flux of particles out of the potholes balance the total sediment flux through the flume. Potholes spontaneously form where average bed slope and fluid velocities were highest, dramatically accelerating the local erosion rate. Our experimental potholes are smaller in scale but morphologically strikingly similar to many observed in the field, and include features such as corkscrew grooves down the outside walls and a protruding horn at the pothole center. More generally, abrasion becomes focused in places where the flow is spatially accelerated, such as in scoops and bends with high curvature. The knife-edge margins and spatial distribution of erosional forms indicate abrupt transitions in erosional efficiency that are tightly coupled to near-bed fluid flow patterns, which in turn are strongly influenced by the erosional forms themselves. Our experiments suggest that, in highly sculpted bedrock channels, naturally developed bed roughness presents a physical length scale that is important to controlling the interaction between sediment impacts and the bed, rather than a length scale based explicitly on sediment transport and average flow conditions such as the saltation hop length.

  4. Integration of stripping of fines slurry in a coking and gasification process

    DOEpatents

    DeGeorge, Charles W.

    1980-01-01

    In an integrated fluid coking and gasification process wherein a stream of fluidized solids is passed from a fluidized bed coking zone to a second fluidized bed and wherein entrained solid fines are recovered by a wet scrubbing process and wherein the resulting solids-liquid slurry is stripped to remove acidic gases, the stripped vapors of the stripping zone are sent to the gas cleanup stage of the gasification product gas. The improved stripping integration is particularly useful in the combination coal liquefaction process, fluid coking of bottoms of the coal liquefaction zone and gasification of the product coke.

  5. Zero-G life support for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Kolodney, Matthew; Dall-Bauman, L.

    1992-01-01

    Optimal design of spacecraft environmental control and life support systems (ECLSS) for long duration missions requires an understanding of microgravity and its long-term influence on ECLSS performance characteristics. This understanding will require examination of the fundamental processes associated with air revitalization and water recovery in a microgravity environment. Short term testing can be performed on NASA's reduced gravity aircraft (a KC-135), but longer tests will need to be conducted on the shuttle or Space Station Freedom. Conceptual designs have been prepared for ECLSS test beds that will allow extended testing of equipment under microgravity conditions. Separate designs have been formulated for air revitalization and water recovery test beds. In order to allow testing of a variety of hardware with minimal alteration of the beds themselves, the designs include storage tanks, plumbing, and limited instrumentation that would be expected to be common to all air (or water) treatment equipment of interest. In the interest of minimizing spacecraft/test bed interface requirements, the beds are designed to recycle process fluids to the greatest extent possible. In most cases, only cooling water and power interfaces are required. A volume equal to that of two SSF lockers was allowed for each design. These bed dimensions would limit testing to equipment with a 0.5- to 1.5-person-equivalent throughput. The mass, volume, and power requirements for the air revitalization test bed are estimated at 125-280 kg, 1.0- 1.4 cubic meters, and 170 min 1070 W. Corresponding ranges for the water recovery test bed are 325-375 kg, 1.0- 1.1 cubic meters, and 350-850 W. These figures include individual test articles and accompanying hardware as well as the tanks, plumbing, and instrumentation included in the bed designs. Process fluid weight (i.e., water weight) is also included.

  6. Method for in situ heating of hydrocarbonaceous formations

    DOEpatents

    Little, William E.; McLendon, Thomas R.

    1987-01-01

    A method for extracting valuable constituents from underground hydrocarbonaceous deposits such as heavy crude tar sands and oil shale is disclosed. Initially, a stratum containing a rich deposit is hydraulically fractured to form a horizontally extending fracture plane. A conducting liquid and proppant is then injected into the fracture plane to form a conducting plane. Electrical excitations are then introduced into the stratum adjacent the conducting plate to retort the rich stratum along the conducting plane. The valuable constituents from the stratum adjacent the conducting plate are then recovered. Subsequently, the remainder of the deposit is also combustion retorted to further recover valuable constituents from the deposit. Various R.F. heating systems are also disclosed for use in the present invention.

  7. Design of Complex Systems to Achieve Passive Safety: Natural Circulation Cooling of Liquid Salt Pebble Bed Reactors

    NASA Astrophysics Data System (ADS)

    Scarlat, Raluca Olga

    This dissertation treats system design, modeling of transient system response, and characterization of individual phenomena and demonstrates a framework for integration of these three activities early in the design process of a complex engineered system. A system analysis framework for prioritization of experiments, modeling, and development of detailed design is proposed. Two fundamental topics in thermal-hydraulics are discussed, which illustrate the integration of modeling and experimentation with nuclear reactor design and safety analysis: thermal-hydraulic modeling of heat generating pebble bed cores, and scaled experiments for natural circulation heat removal with Boussinesq liquids. The case studies used in this dissertation are derived from the design and safety analysis of a pebble bed fluoride salt cooled high temperature nuclear reactor (PB-FHR), currently under development in the United States at the university and national laboratories level. In the context of the phenomena identification and ranking table (PIRT) methodology, new tools and approaches are proposed and demonstrated here, which are specifically relevant to technology in the early stages of development, and to analysis of passive safety features. A system decomposition approach is proposed. Definition of system functional requirements complements identification and compilation of the current knowledge base for the behavior of the system. Two new graphical tools are developed for ranking of phenomena importance: a phenomena ranking map, and a phenomena identification and ranking matrix (PIRM). The functional requirements established through this methodology were used for the design and optimization of the reactor core, and for the transient analysis and design of the passive natural circulation driven decay heat removal system for the PB-FHR. A numerical modeling approach for heat-generating porous media, with multi-dimensional fluid flow is presented. The application of this modeling approach to the PB-FHR annular pebble bed core cooled by fluoride salt mixtures generated a model that is called Pod. Pod. was used to show the resilience of the PB-FHR core to generation of hot spots or cold spots, due to the effect of buoyancy on the flow and temperature distribution in the packed bed. Pod. was used to investigate the PB-FHR response to ATWS transients. Based on the functional requirements for the core, Pod. was used to generate an optimized design of the flow distribution in the core. An analysis of natural circulation loops cooled by single-phase Boussinesq fluids is presented here, in the context of reactor design that relies on natural circulation decay heat removal, and design of scaled experiments. The scaling arguments are established for a transient natural circulation loop, for loops that have long fluid residence time, and negligible contribution of fluid inertia to the momentum equation. The design of integral effects tests for the loss of forced circulation (LOFC) for PB-FHR is discussed. The special case of natural circulation decay heat removal from a pebble bed reactor was analyzed. A way to define the Reynolds number in a multi-dimensional pebble bed was identified. The scaling methodology for replicating pebble bed friction losses using an electrically resistance heated annular pipe and a needle valve was developed. The thermophysical properties of liquid fluoride salts lead to design of systems with low flow velocities, and hence long fluid residence times. A comparison among liquid coolants for the performance of steady state natural circulation heat removal from a pebble bed was performed. Transient natural circulation experimental data with simulant fluids for fluoride salts is given here. The low flow velocity and the relatively high viscosity of the fluoride salts lead to low Reynolds number flows, and a low Reynolds number in conjunction with a sufficiently high coefficient of thermal expansion makes the system susceptible to local buoyancy effects Experiments indicate that slow exchange of stagnant fluid in static legs can play a significant role in the transient response of natural circulation loops. The effect of non-linear temperature profiles on the hot or cold legs or other segments of the flow loop, which may develop during transient scenarios, should be considered when modeling the performance of natural circulation loops. The data provided here can be used for validation of the application of thermal-hydraulic systems codes to the modeling of heat removal by natural circulation with liquid fluoride salts and its simulant fluids.

  8. Physiological responses to prolonged bed rest and fluid immersion in man: A compendium of research (1974 - 1980)

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Silverstein, L.; Bliss, J.; Langenheim, V.; Rosson, H.; Chao, C.

    1982-01-01

    Water immersion and prolonged bed rest reproduce nearly all the physiological responses observed in astronauts in the weightless state. Related to actual weightlessness, given responses tend to occur sooner in immersion and later in bed rest. Much research was conducted on humans using these two techniques, especially by Russian scientists. Abstracts and annotations of reports that appeared in the literature from January 1974 through December 1980 are compiled and discussed.

  9. CFD-DEM Onset of Motion Analysis for Application to Bed Scour Risk Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sitek, M. A.; Lottes, S. A.

    This CFD study with DEM was done as a part of the Federal Highway Administration’s (FHWA’s) effort to improve scour design procedures. The Computational Fluid Dynamics-Discrete Element Method (CFD-DEM) model, available in CD-Adapco’s StarCCM+ software, was used to simulate multiphase systems, mainly those which combine fluids and solids. In this method the motion of discrete solids is accounted for by DEM, which applies Newton's laws of motion to every particle. The flow of the fluid is determined by the local averaged Navier–Stokes equations that can be solved using the traditional CFD approach. The interactions between the fluid phase and solidsmore » phase are modeled by use of Newton's third law. The inter-particle contact forces are included in the equations of motion. Soft-particle formulation is used, which allows particles to overlap. In this study DEM was used to model separate sediment grains and spherical particles laying on the bed with the aim to analyze their movement due to flow conditions. Critical shear stress causing the incipient movement of the sediment was established and compared to the available experimental data. An example of scour around a cylindrical pier is considered. Various depths of the scoured bed and flow conditions were taken into account to gain a better understanding of the erosion forces existing around bridge foundations. The decay of these forces with increasing scour depth was quantified with a ‘decay function’, which shows that particles become increasingly less likely to be set in motion by flow forces as a scour hole increases in depth. Computational and experimental examples of the scoured bed around a cylindrical pier are presented.« less

  10. Modules for estimating solid waste from fossil-fuel technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowther, M.A.; Thode, H.C. Jr.; Morris, S.C.

    1980-10-01

    Solid waste has become a subject of increasing concern to energy industries for several reasons. Increasingly stringent air and water pollution regulations result in a larger fraction of residuals in the form of solid wastes. Control technologies, particularly flue gas desulfurization, can multiply the amount of waste. With the renewed emphasis on coal utilization and the likelihood of oil shale development, increased amounts of solid waste will be produced. In the past, solid waste residuals used for environmental assessment have tended only to include total quantities generated. To look at environmental impacts, however, data on the composition of the solidmore » wastes are required. Computer modules for calculating the quantities and composition of solid waste from major fossil fuel technologies were therefore developed and are described in this report. Six modules have been produced covering physical coal cleaning, conventional coal combustion with flue gas desulfurization, atmospheric fluidized-bed combustion, coal gasification using the Lurgi process, coal liquefaction using the SRC-II process, and oil shale retorting. Total quantities of each solid waste stream are computed together with the major components and a number of trace elements and radionuclides.« less

  11. Numerical modeling of oil shale fragmentation experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuszmaul, J.S.

    The economic development of modified in situ oil shale retorting will benefit from the ability to design a blasting scheme that creates a rubble bed of uniform permeability. Preparing such a design depends upon successfully predicting how a given explosive charge and firing sequence will fracture the oil shale. Numerical models are used to predict the extent of damage caused by a particular explosive charge. Recent single-blastwell cratering tests provided experimental measurements of the extent of damage induced by an explosion. Measuring rock damage involved crater excavation, rubble screening, crater elevation surveys, and posttest extraction of cores. These measurements weremore » compared to the damage calculated by the numerical model. Core analyses showed that the damage varied greatly from layer to layer. The numerical results also show this effect, indicating that rock damage is highly dependent on oil shale grade. The computer simulation also calculated particle velocities and dynamic stress amplitudes in the rock; predicted values agree with experimental measurements. Calculated rock fragmentation compared favorably with fragmentation measured by crater excavation and by core analysis. Because coring provides direct inspection of rock fragmentation, the use of posttest coring in future experiments is recommended.« less

  12. Geochemistry of Israeli oil shales - A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirav, M.; Ginzbury, D.

    1983-02-01

    The oil shales in Israel are widely distributed throughout the country. Outcrops are rare and the information is based on boreholes data. The oil shale sequence is of UpperCampanian - Maastrichtian age and belongs to the Chareb Formation. In places, part of the phosphorite layer below the oil shales is also rich in kerogen. The host rocks are biomicritic limestones and marls, in which the organic matter is generally homogeneously and finely dispersed. The occurrence of authigenic feldspar and the preservation of the organic matter (up to 26% of the total rock) indicate euxinic hypersaline conditions which prevailed in themore » relative closed basins of deposition during the Maastrichtian. Current reserves of oil shales in Israel are about 3,500 million tons, located in the following deposits: Zin, Oron, Ef'e, Hartuv and Nabi-Musa. The 'En Bokek deposit, although thoroughly investigated, is of limited reserves and is not considered for future exploitation. Other potential areas, in the Northern Negev and along the Coastal Plain are under investigation. Future successful utilization of the Israeli oil shales, either by fluidizid-bed combustion or by retorting will contribute to the state's energy balance.« less

  13. Sedimentary exhalative nickel-molybdenum ores in south China

    USGS Publications Warehouse

    Lott, D.A.; Coveney, R.M.; Murowchick, J.B.; Grauch, R.I.

    1999-01-01

    Unique bedded Ni-Mo ores hosted by black shales were discovered in localized paleobasins along the Yangzte platform of southern China in 1971. Textural evidence and radiometric dates imply ore formation during sedimentation of black shales that grade into readily combustible beds, termed stone coals, which contain 10 to 15 percent organic carbon. Studies of 427 fluid inclusions indicate extreme variation in hydrothermal brine salinities that were contained by Proterozoic dolostones underlying the ore zone in Hunan and Guizhou. Variations of fluid inclusion salinities, which range from 0.1 to 21.6 wt percent NaCl equiv, are attributed to differences in the compositions of brines in strata underlying the ore bed, complicated by the presence of seawater and dilute fluids that represent condensates of vapors generated by boiling of mineralizing fluids or Cambrian meteoric water. The complex processes of ore deposition led to scattered homogenization temperatures ranging from 100??to 187??C within the Hunan ore zone and from 65??to 183??C within the Guizhou ore zone. While living organisms probably did not directly accumulate metals in situ in sufficient amounts to explain the unusually high grades of the deposits, sulfur isotope ratios indicate that bacteria, now preserved as abundant microfossils, provided sufficient sulfide for the ores by reduction of seawater sulfate. Such microbiota may have depended on vent fluids and transported organic matter for key nutrients and are consistent with a sedex origin for the ores. Vent fluids interacted with organic remains, including rounded fragments of microbial mats that were likely transported to the site of ore deposition by the action of waves and bottom currents prior to replacement by ore minerals.

  14. 16 CFR 1633.9 - Glossary of terms.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... on top of mattress. Designed to absorb moisture/body fluids thereby reducing skin irritation, can be one time use. (b) Basket pad. Cushion for use in an infant basket. (c) Bunk beds. A tier of beds... drawn together at intervals by any other method which produces a series of depressions on the surface...

  15. Physiology Of Prolonged Bed Rest

    NASA Technical Reports Server (NTRS)

    Greenleaf, John E.

    1991-01-01

    Report describes physiological effects of prolonged bed rest. Rest for periods of 24 hours or longer deconditions body to some extent; healing proceeds simultaneously with deconditioning. Report provides details on shifts in fluid electrolytes and loss of lean body mass, which comprises everything in body besides fat - that is, water, muscle, and bone. Based on published research.

  16. CFD modeling of space-time evolution of fast pyrolysis products in a bench-scale fluidized-bed reactor

    USDA-ARS?s Scientific Manuscript database

    A model for the evolution of pyrolysis products in a fluidized bed has been developed. In this study the unsteady constitutive transport equations for inert gas flow and decomposition kinetics were modeled using the commercial computational fluid dynamics (CFD) software FLUENT-12. The model system d...

  17. Focal Gray Matter Plasticity as a Function of Long Duration Head-down Tilt Bed Rest

    NASA Technical Reports Server (NTRS)

    Koppelmans, Vincent; Erdeniz, Burak; DeDios, Yiri; Wood, Scott; Reuter-Lorenz, Patricia; Kofman, Igor; Bloomberg, Jacob; Mulavara, Ajitkumar; Seidler, Rachael

    2014-01-01

    Long duration spaceflight (i.e., 22 days or longer) has been associated with changes in sensorimotor systems, resulting in difficulties that astronauts experience with posture control, locomotion, and manual control. The microgravity environment is an important causal factor for spaceflight induced sensorimotor changes. Whether these sensorimotor changes may be related to structural and functional brain changes is yet unknown. However, increased intracranial pressure that by itself has been related to microgravity-induced bodily fluid shifts: [1] has been associated with white matter microstructural damage, [2] Thus, it is possible that spaceflight may affect brain structure and thereby cognitive functioning. Long duration head-down tilt bed rest has been suggested as an exclusionary analog to study microgravity effects on the sensorimotor system, [3] Bed rest mimics microgravity in body unloading and bodily fluid shifts. In consideration of the health and performance of crewmembers both in- and post-flight, we are conducting a prospective longitudinal 70-day bed rest study as an analog to investigate the effects of microgravity on brain structure, and [4] Here we present results of the first eight subjects.

  18. Two-compartmental population balance modeling of a pulsed spray fluidized bed granulation based on computational fluid dynamics (CFD) analysis.

    PubMed

    Liu, Huolong; Li, Mingzhong

    2014-11-20

    In this work a two-compartmental population balance model (TCPBM) was proposed to model a pulsed top-spray fluidized bed granulation. The proposed TCPBM considered the spatially heterogeneous granulation mechanisms of the granule growth by dividing the granulator into two perfectly mixed zones of the wetting compartment and drying compartment, in which the aggregation mechanism was assumed in the wetting compartment and the breakage mechanism was considered in the drying compartment. The sizes of the wetting and drying compartments were constant in the TCPBM, in which 30% of the bed was the wetting compartment and 70% of the bed was the drying compartment. The exchange rate of particles between the wetting and drying compartments was determined by the details of the flow properties and distribution of particles predicted by the computational fluid dynamics (CFD) simulation. The experimental validation has shown that the proposed TCPBM can predict evolution of the granule size and distribution within the granulator under different binder spray operating conditions accurately. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Fluid bed gasification--plasma converter process generating energy from solid waste: experimental assessment of sulphur species.

    PubMed

    Morrin, Shane; Lettieri, Paola; Chapman, Chris; Taylor, Richard

    2014-01-01

    Often perceived as a Cinderella material, there is growing appreciation for solid waste as a renewable content thermal process feed. Nonetheless, research on solid waste gasification and sulphur mechanisms in particular is lacking. This paper presents results from two related experiments on a novel two stage gasification process, at demonstration scale, using a sulphur-enriched wood pellet feed. Notable SO2 and relatively low COS levels (before gas cleaning) were interesting features of the trials, and not normally expected under reducing gasification conditions. Analysis suggests that localised oxygen rich regions within the fluid bed played a role in SO2's generation. The response of COS to sulphur in the feed was quite prompt, whereas SO2 was more delayed. It is proposed that the bed material sequestered sulphur from the feed, later aiding SO2 generation. The more reducing gas phase regions above the bed would have facilitated COS--hence its faster response. These results provide a useful insight, with further analysis on a suite of performed experiments underway, along with thermodynamic modelling. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Continuum Statistics of the Bed Topography in a Sandy River

    NASA Astrophysics Data System (ADS)

    McElroy, B.; Jerolmack, D.; Mohrig, D.

    2005-12-01

    Temporal and spatial variabilities in the bed geometry of sandy rivers contain information about processes of sediment transport that has not been fully appreciated. This is primarily due to a disparity between the dynamic nature of the sediment-fluid interface and the relatively static methods of surveying bed elevation, e.g. single profiles or point measurements. High resolution topographic data is paramount to understanding the dynamic behavior of sandy beds. We present and analyze a data set collected on a 2cm x 2cm grid at 1 minute intervals and with a vertical precision of ~1mm. This was accomplished by using Lambert-Beer's Law for attenuation of light to transform low-altitude aerial photographs into digital elevation models. Forty successive models were generated for a 20 m by 30 m section of channel bottom of the N. Loup River, Nebraska. To calculate the average, whole bed translation rate, or celerity, cross-correlations between a reference bed topography and its proceeding configurations were determined. Time differences between models were related to the shift lengths that produced correlation maxima for each model pair. The result is a celerity of ~3.8cm/s with a correlation coefficient of 0.992. Bed topography also deforms while it translates, and this can be seen as a secular decrease of correlation maxima. The form of this decrease in correlation is exponential, and from it an interface half-life is defined. In this case, the bed had become extensively reorganized within ~40 minutes, the time necessary to translate the bed one wavelength of the dominant roughness element. Although the bed is continuously deforming, its roughness is statistically stationary. Essentially, a mean roughness is maintained as the bed creates new realizations of itself. The dynamic nature of the whole bed and similarly transient behavior of individual elements suggests the utility of a holistic approach to studying the feedback between bed topography, fluid flow, and sediment transport. Furthermore, it raises questions about the usefulness of detailed analysis of flow and transport over individual forms.

  1. Liquid membrane coated ion-exchange column solids

    DOEpatents

    Barkey, Dale P.

    1988-01-01

    This invention relates to a method for improving the performance of liquid membrane separations by coating a liquid membrane onto solid ion-exchange resin beads in a fixed bed. Ion-exchange beads fabricated from an ion-exchange resin are swelled with water and are coated with a liquid membrane material that forms a film over the beads. The beads constitute a fixed bed ion-exchange column. Fluid being treated that contains the desired ion to be trapped by the ion-exchange particle is passed through the column. A carrier molecule, contained in the liquid membrane ion-exchange material, is selective for the desired ion in the fluid. The carrier molecule forms a complex with the desired ion, transporting it through the membrane and thus separating it from the other ions. The solution is fed continuously until breakthrough occurs at which time the ion is recovered, and the bed is regenerated.

  2. Liquid membrane coated ion-exchange column solids

    DOEpatents

    Barkey, Dale P.

    1989-01-01

    This invention relates to a method for improving the performance of liquid embrane separations by coating a liquid membrane onto solid ion-exchange resin beads in a fixed bed. Ion-exchange beads fabricated from an ion-exchange resin are swelled with water and are coated with a liquid membrane material that forms a film over the beads. The beads constitute a fixed bed ion-exchange column. Fluid being treated that contains the desired ion to be trapped by the ion-exchange particle is passed through the column. A carrier molecule, contained in the liquid membrane ion-exchange material, is selected for the desired ion in the fluid. The carrier molecule forms a complex with the desired ion, transporting it through the membrane and thus separating it from the other ions. The solution is fed continuously until breakthrough occurs at which time the ion is recovered, and the bed is regenerated.

  3. Onset of sediment transport is a continuous transition driven by fluid shear and granular creep.

    PubMed

    Houssais, Morgane; Ortiz, Carlos P; Durian, Douglas J; Jerolmack, Douglas J

    2015-03-09

    Fluid-sheared granular transport sculpts landscapes and undermines infrastructure, yet predicting the onset of sediment transport remains notoriously unreliable. For almost a century, this onset has been treated as a discontinuous transition at which hydrodynamic forces overcome gravity-loaded grain-grain friction. Using a custom laminar-shear flume to image slow granular dynamics deep into the bed, here we find that the onset is instead a continuous transition from creeping to granular flow. This transition occurs inside the dense granular bed at a critical viscous number, similar to granular flows and colloidal suspensions and inconsistent with hydrodynamic frameworks. We propose a new phase diagram for sediment transport, where 'bed load' is a dense granular flow bounded by creep below and suspension above. Creep is characteristic of disordered solids and reminiscent of soil diffusion on hillslopes. Results provide new predictions for the onset and dynamics of sediment transport that challenge existing models.

  4. Isotopic Variability of Mercury in Ore, Mine-Waste Calcine, and Leachates of Mine-Waste Calcine from Areas Mined for Mercury

    PubMed Central

    2009-01-01

    The isotopic composition of mercury (Hg) was determined in cinnabar ore, mine-waste calcine (retorted ore), and leachates obtained from water leaching experiments of calcine from two large Hg mining districts in the U.S. This study is the first to report significant mass-dependent Hg isotopic fractionation between cinnabar ore and resultant calcine. Data indicate that δ202Hg values relative to NIST 3133 of calcine (up to 1.52‰) in the Terlingua district, Texas, are as much as 3.24‰ heavier than cinnabar (−1.72‰) prior to retorting. In addition, δ202Hg values obtained from leachates of Terlingua district calcines are isotopically similar to, or as much as 1.17‰ heavier than associated calcines, most likely due to leaching of soluble, byproduct Hg compounds formed during ore retorting that are a minor component in the calcines. As a result of the large fractionation found between cinnabar and calcine, and because calcine is the dominant source of Hg contamination from the mines studied, δ202Hg values of calcine may be more environmentally important in these mined areas than the primary cinnabar ore. Measurement of the Hg isotopic composition of calcine is necessary when using Hg isotopes for tracing Hg sources from areas mined for Hg, especially mine water runoff. PMID:19848142

  5. Isotopic variability of mercury in ore, mine-waste calcine, and leachates of mine-waste calcine from areas mined for mercury

    USGS Publications Warehouse

    Stetson, S.J.; Gray, J.E.; Wanty, R.B.; Macalady, D.L.

    2009-01-01

    The isotopic composition of mercury (Hg) was determined in cinnabar ore, mine-waste calcine (retorted ore), and leachates obtained from water leaching experiments of calcine from two large Hg mining districts in the U.S. This study is the first to report significant mass-dependent Hg isotopic fractionation between cinnabar ore and resultant calcine. Data indicate that ??202Hg values relative to NIST 3133 of calcine (up to 1.52???) in the Terlingua district, Texas, are as much as 3.24??? heavier than cinnabar (-1.72???) prior to retorting. In addition, ??202Hg values obtained from leachates of Terlingua district calcines are isotopically similar to, or as much as 1.17??? heavier than associated calcines, most likely due to leaching of soluble, byproduct Hg compounds formed during ore retorting that are a minor component in the calcines. As a result of the large fractionation found between cinnabar and calcine, and because calcine is the dominant source of Hg contamination from the mines studied, ??202Hg values of calcine may be more environmentally important in these mined areas than the primary cinnabar ore. Measurement of the Hg isotopic composition of calcine is necessary when using Hg isotopes for tracing Hg sources from areas mined for Hg, especially mine water runoff. ?? 2009 American Chemical Society.

  6. High temperature thermal energy storage, including a discussion of TES integrated into power plants

    NASA Technical Reports Server (NTRS)

    Turner, R. H.

    1978-01-01

    Storage temperatures of 260 C and above are considered. Basic considerations concerning energy thermal storage are discussed, taking into account general aspects of thermal energy storage, thermal energy storage integrated into power plants, thermal storage techniques and technical considerations, and economic considerations. A description of system concepts is provided, giving attention to a survey of proposed concepts, storage in unpressurized fluids, water storage in pressurized containers, the use of an underground lined cavern for water storage, a submerged thin insulated steel shell under the ocean containing pressurized water, gas passage through solid blocks, a rock bed with liquid heat transport fluid, hollow steel ingots, heat storage in concrete or sand, sand in a fluidized bed, sand poured over pipes, a thermal energy storage heat exchanger, pipes or spheres filled with phase change materials (PCM), macroencapsulated PCM with heat pipe concept for transport fluid, solid PCM removed from heat transfer pipes by moving scrapers, and the direct contact between PCM and transport fluid.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Y.; Huang, L. H.; Yang, F. P. Y.

    The present study analytically reinvestigates the two-dimensional lift-up problem for a rigid porous bed that was studied by Mei, Yeung, and Liu [“Lifting of a large object from a porous seabed,” J. Fluid Mech. 152, 203 (1985)]. Mei, Yeung, and Liu proposed a model that treats the bed as a rigid porous medium and performed relevant experiments. In their model, they assumed the gap flow comes from the periphery of the gap, and there is a shear layer in the porous medium; the flow in the gap is described by adhesion approximation [D. J. Acheson, Elementary Fluid Dynamics (Clarendon, Oxford,more » 1990), pp. 243-245.] and the pore flow by Darcy’s law, and the slip-flow condition proposed by Beavers and Joseph [“Boundary conditions at a naturally permeable wall,” J. Fluid Mech. 30, 197 (1967)] is applied to the bed interface. In this problem, however, the gap flow initially mainly comes from the porous bed, and the shear layer may not exist. Although later the shear effect becomes important, the empirical slip-flow condition might not physically respond to the shear effect, and the existence of the vertical velocity affects the situation so greatly that the slip-flow condition might not be appropriate. In contrast, the present study proposes a more general model for the problem, applying Stokes flow to the gap, the Brinkman equation to the porous medium, and Song and Huang’s [“Laminar poroelastic media flow,” J. Eng. Mech. 126, 358 (2000)] complete interfacial conditions to the bed interface. The exact solution to the problem is found and fits Mei’s experiments well. The breakout phenomenon is examined for different soil beds, mechanics that cannot be illustrated by Mei’s model are revealed, and the theoretical breakout times obtained using Mei’s model and our model are compared. The results show that the proposed model is more compatible with physics and provides results that are more precise.« less

  8. Fluidized bed heat treating system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ripley, Edward B; Pfennigwerth, Glenn L

    Systems for heat treating materials are presented. The systems typically involve a fluidized bed that contains granulated heat treating material. In some embodiments a fluid, such as an inert gas, is flowed through the granulated heat treating medium, which homogenizes the temperature of the heat treating medium. In some embodiments the fluid may be heated in a heating vessel and flowed into the process chamber where the fluid is then flowed through the granulated heat treating medium. In some embodiments the heat treating material may be liquid or granulated heat treating material and the heat treating material may be circulatedmore » through a heating vessel into a process chamber where the heat treating material contacts the material to be heat treated. Microwave energy may be used to provide the source of heat for heat treating systems.« less

  9. Staged cascade fluidized bed combustor

    DOEpatents

    Cannon, Joseph N.; De Lucia, David E.; Jackson, William M.; Porter, James H.

    1984-01-01

    A fluid bed combustor comprising a plurality of fluidized bed stages interconnected by downcomers providing controlled solids transfer from stage to stage. Each stage is formed from a number of heat transfer tubes carried by a multiapertured web which passes fluidizing air to upper stages. The combustor cross section is tapered inwardly from the middle towards the top and bottom ends. Sorbent materials, as well as non-volatile solid fuels, are added to the top stages of the combustor, and volatile solid fuels are added at an intermediate stage.

  10. Combining microwave resonance technology to multivariate data analysis as a novel PAT tool to improve process understanding in fluid bed granulation.

    PubMed

    Lourenço, Vera; Herdling, Thorsten; Reich, Gabriele; Menezes, José C; Lochmann, Dirk

    2011-08-01

    A set of 192 fluid bed granulation batches at industrial scale were in-line monitored using microwave resonance technology (MRT) to determine moisture, temperature and density of the granules. Multivariate data analysis techniques such as multiway partial least squares (PLS), multiway principal component analysis (PCA) and multivariate batch control charts were applied onto collected batch data sets. The combination of all these techniques, along with off-line particle size measurements, led to significantly increased process understanding. A seasonality effect could be put into evidence that impacted further processing through its influence on the final granule size. Moreover, it was demonstrated by means of a PLS that a relation between the particle size and the MRT measurements can be quantitatively defined, highlighting a potential ability of the MRT sensor to predict information about the final granule size. This study has contributed to improve a fluid bed granulation process, and the process knowledge obtained shows that the product quality can be built in process design, following Quality by Design (QbD) and Process Analytical Technology (PAT) principles. Copyright © 2011. Published by Elsevier B.V.

  11. Gas flow through through a porous mantle: implications of fluidisation

    NASA Astrophysics Data System (ADS)

    Bentley, Mark; Koemle, Norbert; Kargl, Guenter; Huetter, Mag. Erika Sonja

    Understanding the interaction of dust and gas in the upper layers of a cometary mantle is critical for understanding cometary evolution. The state of knowledge of conditions in these layers is currently rather low, and a wide range of flow conditions and phenomena can be imagined. A model is presented here that examines the conditions under which so-called "fluidized beds" might be possible in a cometary mantle. This phenomenon, well studied in industry, occurs when the weight of a bed of particles is equal to the gas drag of a gas or fluid flowing upwards through it. Wherever fluidisation occurs in a cometary mantle, it could change the dominant heat transfer mechanism by removing intimate particle contacts (creating an expanded bed) or allowing particle convection in the now fluid-like mantle. There are also implications for the stability of the Rosetta lander, Philae, if such a state were to occur in the vicinity of the deployed anchor. A two-fluid model is used, with necessarily restricted geometries, to demonstrate the conditions (gravity, pressure, gas velocity, particle size etc.) under which fluidisation could occur, and the scientific results and implications for the Rosetta mission are explored.

  12. Granule size control and targeting in pulsed spray fluid bed granulation.

    PubMed

    Ehlers, Henrik; Liu, Anchang; Räikkönen, Heikki; Hatara, Juha; Antikainen, Osmo; Airaksinen, Sari; Heinämäki, Jyrki; Lou, Honxiang; Yliruusi, Jouko

    2009-07-30

    The primary aim of the study was to investigate the effects of pulsed liquid feed on granule size. The secondary aim was to increase knowledge of this technique in granule size targeting. Pulsed liquid feed refers to the pump changing between on- and off-positions in sequences, called duty cycles. One duty cycle consists of one on- and off-period. The study was performed with a laboratory-scale top-spray fluid bed granulator with duty cycle length and atomization pressure as studied variables. The liquid feed rate, amount and inlet air temperature were constant. The granules were small, indicating that the powder has only undergone ordered mixing, nucleation and early growth. The effect of atomizing pressure on granule size depends on inlet air relative humidity, with premature binder evaporation as a reason. The duty cycle length was of critical importance to the end product attributes, by defining the extent of intermittent drying and rewetting. By varying only the duty cycle length, it was possible to control granule nucleation and growth, with a wider granule size target range in increased relative humidity. The present study confirms that pulsed liquid feed in fluid bed granulation is a useful tool in end product particle size targeting.

  13. Piroxicam/2-hydroxypropyl-beta-cyclodextrin inclusion complex prepared by a new fluid-bed coating technique.

    PubMed

    Zhang, Xingwang; Wu, Danni; Lai, Jie; Lu, Yi; Yin, Zongning; Wu, Wei

    2009-02-01

    This work was aimed at investigating the feasibility of fluid-bed coating as a new method to prepare cyclodextrin inclusion complex. The inclusion complex of the model drug piroxicam (PIX) and 2-hydroxypropyl-beta-cyclodextrin (HPCD) in aqueous ethanol solution was sprayed and deposited onto the surface of the pellet substrate upon removal of the solvent. The coating process was fluent with high coating efficiency. Scanning electron microscopy revealed a coarse pellet surface, and a loosely packed coating structure. Significantly enhanced dissolution, over 90% at 5 min, was observed at stoichiometric PIX/HPCD molar ratio (1/1) and at a ratio with excessive HPCD (1/2). Differential scanning calorimetry and powder X-ray diffractometry confirmed absence of crystallinity of PIX at PIX/HPCD molar ratio of 1/1 and 1/2. Fourier transform-infrared spectrometry and Raman spectrometry revealed interaction between PIX and HPCD adding evidence on inclusion of PIX moieties into HPCD cavities. Solid-state (13)C NMR spectrometry indicated possible inclusion of PIX through the pyridine ring. It is concluded that fluid-bed coating has potential to be used as a new technique to prepare cyclodextrin inclusion complex.

  14. Advanced Thermal Storage for Central Receivers with Supercritical Coolants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, Bruce D.

    2010-06-15

    The principal objective of the study is to determine if supercritical heat transport fluids in a central receiver power plant, in combination with ceramic thermocline storage systems, offer a reduction in levelized energy cost over a baseline nitrate salt concept. The baseline concept uses a nitrate salt receiver, two-tank (hot and cold) nitrate salt thermal storage, and a subcritical Rankine cycle. A total of 6 plant designs were analyzed, as follows: Plant Designation Receiver Fluid Thermal Storage Rankine Cycle Subcritical nitrate salt Nitrate salt Two tank nitrate salt Subcritical Supercritical nitrate salt Nitrate salt Two tank nitrate salt Supercritical Lowmore » temperature H2O Supercritical H2O Two tank nitrate salt Supercritical High temperature H2O Supercritical H2O Packed bed thermocline Supercritical Low temperature CO2 Supercritical CO2 Two tank nitrate salt Supercritical High temperature CO2 Supercritical CO2 Packed bed thermocline Supercritical Several conclusions have been drawn from the results of the study, as follows: 1) The use of supercritical H2O as the heat transport fluid in a packed bed thermocline is likely not a practical approach. The specific heat of the fluid is a strong function of the temperatures at values near 400 °C, and the temperature profile in the bed during a charging cycle is markedly different than the profile during a discharging cycle. 2) The use of supercritical CO2 as the heat transport fluid in a packed bed thermocline is judged to be technically feasible. Nonetheless, the high operating pressures for the supercritical fluid require the use of pressure vessels to contain the storage inventory. The unit cost of the two-tank nitrate salt system is approximately $24/kWht, while the unit cost of the high pressure thermocline system is nominally 10 times as high. 3) For the supercritical fluids, the outer crown temperatures of the receiver tubes are in the range of 700 to 800 °C. At temperatures of 700 °C and above, intermetallic compounds can precipitate between, and within, the grains of nickel alloys. The precipitation leads to an increase in tensile strength, and a decrease in ductility. Whether the proposed tube materials can provide the required low cycle fatigue life for the supercritical H2O and CO2 receivers is an open question. 4) A ranking of the plants, in descending order of technical and economic feasibility, is as follows: i) Supercritical nitrate salt and baseline nitrate salt: equal ratings ii) Low temperature supercritical H2O iii) Low temperature supercritical CO2 iv) High temperature supercritical CO2 v) High temperature supercritical H2O 5) The two-tank nitrate salt thermal storage systems are strongly preferred over the thermocline systems using supercritical heat transport fluids.« less

  15. Experimental Study of the Roles of Mechanical and Hydrologic Properties in the Initiation of Natural Hydraulic Fractures

    NASA Astrophysics Data System (ADS)

    French, M. E.; Goodwin, L. B.; Boutt, D. F.; Lilydahl, H.

    2008-12-01

    Natural hydraulic fractures (NHFs) are inferred to form where pore fluid pressure exceeds the least compressive stress; i.e., where the hydraulic fracture criterion is met. Although it has been shown that mechanical heterogeneities serve as nuclei for NHFs, the relative roles of mechanical anisotropy and hydrologic properties in initiating NHFs in porous granular media have not been fully explored. We designed an experimental protocol that produces a pore fluid pressure high enough to exceed the hydraulic fracture criterion, allowing us to initiate NHFs in the laboratory. Initially, cylindrical samples 13 cm long and 5 cm in diameter are saturated, σ1 is radial, and σ3 is axial. By dropping the end load (σ3) and pore fluid pressure simultaneously at the end caps, we produce a large pore fluid pressure gradient parallel to the long axis of the sample. This allows us to meet the hydraulic fracture criterion without separating the sample from its end caps. The time over which the pore fluid remains elevated is a function of hydraulic diffusivity. An initial test with a low diffusivity sandstone produced NHFs parallel to bedding laminae that were optimally oriented for failure. To evaluate the relative importance of mechanical heterogeneities such as bedding versus hydraulic properties, we are currently investigating variably cemented St. Peter sandstone. This quartz arenite exhibits a wide range of primary structures, from well developed bedding laminae to locally massive sandstone. Diagenesis has locally accentuated these structures, causing degree of cementation to vary with bedding, and the sandstone locally exhibits concretions that form elliptical rather than tabular heterogeneities. Bulk permeability varies from k=10-12 m2 to k=10-15 m2 and porosity varies from 5% to 28% in this suite of samples. Variations in a single sample are smaller, with permeability varying no more than an order of magnitude within a single core. Air minipermeameter and tracer tests document this variability at the cm scale. Experiments will be performed with σ3 and the pore pressure gradient both perpendicular and parallel to sub-cm scale bedding. The results of these tests will be compared to those of structurally homogeneous samples and samples with elliptical heterogeneities.

  16. Apparatus and method for igniting an in situ oil shale retort

    DOEpatents

    Chambers, Carlon C.

    1981-01-01

    A method and apparatus for conducting such method are disclosed for igniting a fragmented permeable mass of formation particles in an in situ oil shale retort. The method is conducted by forming a hole through unfragmented formation to the fragmented mass. An oxygen-containing gas is introduced into the hole. A fuel is introduced into a portion of the hole spaced apart from the fragmented mass. The fuel and oxygen-containing gas mix forming a combustible mixture which is ignited for establishing a combustion zone in a portion of the hole spaced apart from the fragmented mass. The hot gas generated in the combustion zone is conducted from the hole into the fragmented mass for heating a portion of the fragmented mass above an ignition temperature of oil shale.

  17. Analog and numerical experiments investigating force chain influences on bed conditions in granular flows

    NASA Astrophysics Data System (ADS)

    Estep, J.; Dufek, J.

    2013-12-01

    Granular flows are fundamental processes in several terrestrial and planetary natural events; including surficial flows on volcanic edifices, debris flows, landslides, dune formation, rock falls, sector collapses, and avalanches. Often granular flows can be two-phase, whereby interstitial fluids occupy void space within the particulates. The mobility of granular flows has received significant attention, however the physics that govern their internal behavior remain poorly understood. Here we extend upon previous research showing that force chains can transmit extreme localized forces to the substrates of free surface granular flows, and we combine experimental and computational approaches to further investigate the forces at the bed of simplified granular flows. Analog experiments resolve discrete bed forces via a photoelastic technique, while numerical experiments validate laboratory tests using discrete element model (DEM) simulations. The current work investigates (1) the role of distributed grain sizes on force transmission via force chains, and (2) how the inclusion of interstitial fluids effects force chain development. We also include 3D numerical simulations to apply observed 2D characteristics into real world perspective, and ascertain if the added dimension alters force chain behavior. Previous research showed that bed forces generated by force chain structures can transiently greatly exceed (by several 100%) the bed forces predicted from continuum approaches, and that natural materials are more prone to excessive bed forces than photoelastic materials due to their larger contact stiffnesses. This work suggests that force chain activity may play an important role in the bed physics of dense granular flows by influencing substrate entrainment. Photoelastic experiment image showing force chains in gravity driven granular flow.

  18. Local fluid shifts and edema in humans during simulated microgravity

    NASA Technical Reports Server (NTRS)

    Hargens, Alan R.

    1991-01-01

    Local fluid shifts and edema in humans during simulated microgravity is studied. Recent results and significance and future plans on the following research topics are discussed: mechanisms of headward edema formation during head-down tilt; postural responses of head and foot microcirculations and their sensitivity to bed rest; and transcapillary fluid transport associated with lower body negative pressure (LBNP) with and without saline ingestion.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rode, J.R.; Brzezeina, P.; Strach, F.

    This paper discusses the engineering considerations related to the design of a new 110 MWe atmospheric fluidized bed boiler (CFB) and boiler island auxiliaries for installation at the CEZ, a.s. (Czech Republic Utility) Ledvice Power Station. The plant is located in the northwest Bohemia area of the Czech Republic in the foothills of the Krusne Hory Mountains, between the towns of Bilina and Teplice. The type of fuel to be burned in the CFB is brown coal which requires unique design considerations in as well as the particular boiler operational parameters. The impetus behind the addition of this new CFBmore » at the plant is that the existing pulverized coal fired steam generator which was put in service in 1969 is unable to meet new regulations and laws regarding compliance with the protection of the environment and will be replaced once the new CFB unit is brought into service. A technical-economic study conducted by CEZ, a.s. evaluated CFB technology as the most advantageous from a long-term standpoint. The following variations were considered in the study: boiler retrofit and construction of new ash handling equipment; implementation of the combined cycle based upon natural gas; and reconstruction of the boiler equipment with transition to atmospheric fluid-bed combustion. The selection of the supplier of fluid-bed boiler was performed with an emphasis of the bidders` references as for the construction and operation of fluid-bed boilers with the outputs of min. 300 t/hr.« less

  20. Reactor for in situ measurements of spatially resolved kinetic data in heterogeneous catalysis

    NASA Astrophysics Data System (ADS)

    Horn, R.; Korup, O.; Geske, M.; Zavyalova, U.; Oprea, I.; Schlögl, R.

    2010-06-01

    The present work describes a reactor that allows in situ measurements of spatially resolved kinetic data in heterogeneous catalysis. The reactor design allows measurements up to temperatures of 1300 °C and 45 bar pressure, i.e., conditions of industrial relevance. The reactor involves reactants flowing through a solid catalyst bed containing a sampling capillary with a side sampling orifice through which a small fraction of the reacting fluid (gas or liquid) is transferred into an analytical device (e.g., mass spectrometer, gas chromatograph, high pressure liquid chromatograph) for quantitative analysis. The sampling capillary can be moved with μm resolution in or against flow direction to measure species profiles through the catalyst bed. Rotation of the sampling capillary allows averaging over several scan lines. The position of the sampling orifice is such that the capillary channel through the catalyst bed remains always occupied by the capillary preventing flow disturbance and fluid bypassing. The second function of the sampling capillary is to provide a well which can accommodate temperature probes such as a thermocouple or a pyrometer fiber. If a thermocouple is inserted in the sampling capillary and aligned with the sampling orifice fluid temperature profiles can be measured. A pyrometer fiber can be used to measure the temperature profile of the solid catalyst bed. Spatial profile measurements are demonstrated for methane oxidation on Pt and methane oxidative coupling on Li/MgO, both catalysts supported on reticulated α -Al2O3 foam supports.

  1. CHEMICALLY ACTIVE FLUID-BED PROCESS FOR SULPHUR REMOVAL DURING GASIFICATION OF HEAVY FUEL OIL - SECOND PHASE

    EPA Science Inventory

    The report describes the second phase of studies on the CAFB process for desulfurizing gasification of heavy fuel oil in a bed of hot lime. The first continuous pilot plant test with U.S. limestone BCR 1691 experienced local stone sintering and severe production of sticky dust du...

  2. Flow, turbulence, and drag associated with engineered log jams in a fixed-bed experimental channel

    USDA-ARS?s Scientific Manuscript database

    Engineered log jams (ELJs) have become attractive alternatives for river restoration and bank stabilization programs. Yet the effects of ELJs on turbulent flow and the fluid forces acting on the ELJs are not well known, and such information could inform design criteria. In this study, a fixed-bed ph...

  3. Recent advances in fluidized bed drying

    NASA Astrophysics Data System (ADS)

    Haron, N. S.; Zakaria, J. H.; Mohideen Batcha, M. F.

    2017-09-01

    Fluidized bed drying are very well known to yield high heat and mass transfer and hence adopted to many industrial drying processes particularly agricultural products. In this paper, recent advances in fluidized bed drying were reviewed and focus is given to the drying related to the usage of Computational Fluid Dynamics (CFD). It can be seen that usage of modern computational tools such as CFD helps to optimize the fluidized bed dryer design and operation for lower energy consumption and thus better thermal efficiency. Among agricultural products that were reviewed in this paper were oil palm frond, wheat grains, olive pomace, coconut, pepper corn and millet.

  4. Thermal Analysis of Fluidized Bed and Fixed Bed Latent Heat Thermal Storage System

    NASA Astrophysics Data System (ADS)

    Beemkumar, N.; Karthikeyan, A.; Shiva Keshava Reddy, Kota; Rajesh, Kona; Anderson, A.

    2017-05-01

    Thermal energy storage technology is essential because its stores available energy at low cost. Objective of the work is to store the thermal energy in a most efficient method. This work is deal with thermal analysis of fluidized bed and fixed bed latent heat thermal storage (LHTS) system with different encapsulation materials (aluminium, brass and copper). D-Mannitol has been used as phase change material (PCM). Encapsulation material which is in orbicular shape with 4 inch diameter and 2 mm thickness orbicular shaped product is used. Therminol-66 is used as a heat transfer fluid (HTF). Arrangement of encapsulation material is done in two ways namely fluidized bed and fixed bed thermal storage system. Comparison was made between the performance of fixed bed and fluidized bed with different encapsulation material. It is observed that from the economical point of view aluminium in fluidized bed LHTS System has highest efficiency than copper and brass. The thermal energy storage system can be analyzed with fixed bed by varying mass flow rate of oil paves a way to find effective heat energy transfer.

  5. Hydrocarbon recovery from diatomite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scinta, J.

    1984-05-15

    Supercritical extraction of diatomaceous earth results in a much more significant improvement in hydrocarbon recovery over Fischer retorting than achievable with tar sands. Process and apparatus for supercritical extraction of diatomaceous earth are disclosed.

  6. 40 CFR 146.3 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... point before the waste fluids drain into the underlying soils. For a dry well, it is likely to be the.... Stratum (plural strata) means a single sedimentary bed or layer, regardless of thickness, that consists of... (Hydrocompaction); oxidation of organic matter in soils; or added load on the land surface. Subsurface fluid...

  7. 40 CFR 146.3 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... point before the waste fluids drain into the underlying soils. For a dry well, it is likely to be the.... Stratum (plural strata) means a single sedimentary bed or layer, regardless of thickness, that consists of... (Hydrocompaction); oxidation of organic matter in soils; or added load on the land surface. Subsurface fluid...

  8. Technology requirements to be addressed by the NASA Lewis Research Center Cryogenic Fluid Management Facility program

    NASA Technical Reports Server (NTRS)

    Aydelott, J. C.; Rudland, R. S.

    1985-01-01

    The NASA Lewis Research Center is responsible for the planning and execution of a scientific program which will provide advance in space cryogenic fluid management technology. A number of future space missions were identified that require or could benefit from this technology. These fluid management technology needs were prioritized and a shuttle attached reuseable test bed, the cryogenic fluid management facility (CFMF), is being designed to provide the experimental data necessary for the technology development effort.

  9. Association Between Cardiovascular and Intraocular Pressure Changes in a 14-Day 6 deg Head Down Tilt (HDT) Bed Rest Study: Possible Implications in Retinal Anatomy

    NASA Technical Reports Server (NTRS)

    Cromwell, Ronita; Zanello, Susana; Yarbough, Patrice; Ploutz-Snyder, Robert; Taibbi, Giovanni; Vizzeri, Gianmarco

    2013-01-01

    Visual symptoms and intracranial pressure increase reported in astronauts returning from long duration missions in low Earth-orbit are thought to be related to fluid shifts within the body due to microgravity exposure. Because of this possible relation to fluid shifts, studies conducted in head-down tilt (HDT) bed rest are being monitored for potential changes in ocular health. These measures will also serve to determine whether HDT is a suitable ground-based analog to model subclinical cardiovascular and ocular changes that could shed light on the etiology of the VIIP syndrome observed in spaceflight. Sixteen healthy normotensive (12M, 4F, age range 29-54 years), non-smoker and normal weight subjects, volunteered to participate in a 14 day 6 deg head HDT study conducted at the NASA Flight Analogs Research Unit (FARU). This facility provides standard bed rest conditions (diet, wake/sleep time, time allowed in sunlight) during the time that the subjects stay at the FARU. Cardiovascular parameters were obtained in supine posture at BR-5, BR+0, and BR+3 and ocular monitoring was performed weekly. Intraocular pressure (IOP) increased from pre-bed rest BR-3) to the third day into bed rest (BR+3). Values reached a plateau towards the end of the bed rest phase (BR10) and decreased within the first three days of recovery (BR+2) returning to levels comparable to baseline at BR-3. As expected, most cardiovascular parameters were affected by 14 days of HDT bed rest. Plasma volume decreased as a result of bed rest but recovered to baseline levels by BR+3. Indications of cardiovascular deconditioning included increase in both systolic and diastolic blood pressure and heart rate, and a decrease in stroke volume and cardiac output between BR-5 and BR+3. Due to the experimental design of this study, we were not able to test the hypothesis that fluid shifts might be involved in the IOP increase during the bed rest phase, since cardiovascular measures were not available for those time points. There was no correlation between the largest change in IOP (BR-3 versus BR3) and cardiovascular measure changes between baseline (BR-5) and post bed rest (BR+2). While no clinically relevant visual changes were observed during the study, measurement of various retinal parameters was performed with optical coherence tomography (OCT). A decrease in central subfield retinal thickness was observed between BR+2 and baseline at BR-10, but no association was observed with IOP changes. This work investigates the time course of changes in IOP during 14-day HDT bed rest in an attempt to characterize HDT bed rest as a model of the VIIP syndrome and delve into its etiology.

  10. Sorting waves and associated eigenvalues

    NASA Astrophysics Data System (ADS)

    Carbonari, Costanza; Colombini, Marco; Solari, Luca

    2017-04-01

    The presence of mixed sediment always characterizes gravel bed rivers. Sorting processes take place during bed load transport of heterogeneous sediment mixtures. The two main elements necessary to the occurrence of sorting are the heterogeneous character of sediments and the presence of an active sediment transport. When these two key ingredients are simultaneously present, the segregation of bed material is consistently detected both in the field [7] and in laboratory [3] observations. In heterogeneous sediment transport, bed altimetric variations and sorting always coexist and both mechanisms are independently capable of driving the formation of morphological patterns. Indeed, consistent patterns of longitudinal and transverse sorting are identified almost ubiquitously. In some cases, such as bar formation [2] and channel bends [5], sorting acts as a stabilizing effect and therefore the dominant mechanism driving pattern formation is associated with bed altimetric variations. In other cases, such as longitudinal streaks, sorting enhances system instability and can therefore be considered the prevailing mechanism. Bedload sheets, first observed by Khunle and Southard [1], represent another classic example of a morphological pattern essentially triggered by sorting, as theoretical [4] and experimental [3] results suggested. These sorting waves cause strong spatial and temporal fluctuations of bedload transport rate typical observed in gravel bed rivers. The problem of bed load transport of a sediment mixture is formulated in the framework of a 1D linear stability analysis. The base state consists of a uniform flow in an infinitely wide channel with active bed load transport. The behaviour of the eigenvalues associated with fluid motion, bed evolution and sorting processes in the space of the significant flow and sediment parameters is analysed. A comparison is attempted with the results of the theoretical analysis of Seminara Colombini and Parker [4] and Stecca, Siviglia and Blom [6]. [1] Kuhnle, R.A. and Southard, J.B. 1988. Bed Load Transport Fluctuations in a Gravel Bed Laboratory Channel. Water Resources Research, 24(2), 247-260. [2] Lanzoni, S. and Tubino, M. 1999. Grain sorting and bar instability. Journal of Fluid Mechanics. 393, 149-174. [3] Recking, A., Frey, P., Paquier, A. and Belleudy, P. 2009. An experimental investigation of mechanisms involved in bed load sheet production and migration. Journal of Geophysical Research, 114, F03010. [4] Seminara, G., Colombini, M. and Parker, G. 1996. Nearly pure sorting waves and formation of bedload sheets. Journal of Fluid Mechanics. 312, (1996), 253-278. [5] Seminara, G., Solari, L. and Tubino, M. 1997. Finite amplitude scour and grain sorting in wide channel bends. XXVII IAHR Congress, San Francisco, 1445-1450. [6] Stecca, G., Siviglia, A. and Blom, A. 2014. Mathematical analysis of the Saint-Venant-Hirano model for mixed-sediment morphodynamics. Water Resources Research, 50, 7563-7589. [7] Whiting, P.J., Dietrich, W.E., Leopold, L. B., Drake, T. G. and Shreve, R.L. 1988. Bedload sheets in heterogeneous sediment. Geology, 16, 105-108.

  11. Effects Of Exercise During Prolonged Bed Rest

    NASA Technical Reports Server (NTRS)

    Arnaud, S.; Berry, P; Cohen, M.; Danelis, J.; Deroshia, C.; Greenleaf, J.; Harris, B.; Keil, L.; Bernauer, E.; Bond, M.; hide

    1992-01-01

    Report describes experiment to investigate effects of isotonic and isokinetic leg exercises in counteracting effects of bed rest upon physical and mental conditions of subjects. Data taken on capacity for work, endurance and strength, tolerance to sitting up, equilibrium, posture, gait, atrophy, mineralization and density of bones, endocrine analyses concerning vasoactivity and fluid and electrolyte balances, intermediary metabolism of muscles, mood, and performance.

  12. Technology test bed review

    NASA Technical Reports Server (NTRS)

    Mcconnaughey, H. V.

    1992-01-01

    The topics are presented in viewgraph form and include the following: (1) Space Shuttle Main Engine (SSME) technology test bed (TTB) history; (2) TTB objectives; (3) TTB major accomplishments; (4) TTB contributions to SSME; (5) major impacts of 3001 testing; (6) some challenges to computational fluid dynamics (CFD); (7) the high pressure fuel turbopump (HPFTP); and (8) 3001 lessons learned in design and operations.

  13. Modeling the impact of bubbling bed hydrodynamics on tar yield and its fluctuations during biomass fast pyrolysis

    DOE PAGES

    Xiong, Qingang; Ramirez, Emilio; Pannala, Sreekanth; ...

    2015-10-09

    The impact of bubbling bed hydrodynamics on temporal variations in the exit tar yield for biomass fast pyrolysis was investigated using computational simulations of an experimental laboratory-scale reactor. A multi-fluid computational fluid dynamics model was employed to simulate the differential conservation equations in the reactor, and this was combined with a multi-component, multi-step pyrolysis kinetics scheme for biomass to account for chemical reactions. The predicted mean tar yields at the reactor exit appear to match corresponding experimental observations. Parametric studies predicted that increasing the fluidization velocity should improve the mean tar yield but increase its temporal variations. Increases in themore » mean tar yield coincide with reducing the diameter of sand particles or increasing the initial sand bed height. However, trends in tar yield variability are more complex than the trends in mean yield. The standard deviation in tar yield reaches a maximum with changes in sand particle size. As a result, the standard deviation in tar yield increases with the increases in initial bed height in freely bubbling state, while reaches a maximum in slugging state.« less

  14. Adherence to the items in a bundle for the prevention of ventilator-associated pneumonia.

    PubMed

    Sachetti, Amanda; Rech, Viviane; Dias, Alexandre Simões; Fontana, Caroline; Barbosa, Gilberto da Luz; Schlichting, Dionara

    2014-01-01

    To assess adherence to a ventilator care bundle in an intensive care unit and to determine the impact of adherence on the rates of ventilator-associated pneumonia. A total of 198 beds were assessed for 60 days using a checklist that consisted of the following items: bed head elevation to 30 to 45º; position of the humidifier filter; lack of fluid in the ventilator circuit; oral hygiene; cuff pressure; and physical therapy. Next, an educational lecture was delivered, and 235 beds were assessed for the following 60 days. Data were also collected on the incidence of ventilator-acquired pneumonia. Adherence to the following ventilator care bundle items increased: bed head elevation from 18.7% to 34.5%; lack of fluid in the ventilator circuit from 55.6% to 72.8%; oral hygiene from 48.5% to 77.8%; and cuff pressure from 29.8% to 51.5%. The incidence of ventilator-associated pneumonia was statistically similar before and after intervention (p=0.389). The educational intervention performed in this study increased the adherence to the ventilator care bundle, but the incidence of ventilator-associated pneumonia did not decrease in the small sample that was assessed.

  15. Novel method for screening of enteric film coatings properties with magnetic resonance imaging.

    PubMed

    Dorożyński, Przemysław; Jamróz, Witold; Niwiński, Krzysztof; Kurek, Mateusz; Węglarz, Władysław P; Jachowicz, Renata; Kulinowski, Piotr

    2013-11-18

    The aim of the study is to present the concept of novel method for fast screening of enteric coating compositions properties without the need of preparation of tablets batches for fluid bed coating. Proposed method involves evaluation of enteric coated model tablets in specially designed testing cell with application of MRI technique. The results obtained in the testing cell were compared with results of dissolution studies of mini-tablets coated in fluid bed apparatus. The method could be useful in early stage of formulation development for screening of film coating properties that will shorten and simplify the development works. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Analysis and control of the METC fluid bed gasifier. Final report (includes technical progress report for October 1994--January 1995), September 1994--September 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-09-01

    This document presents a modeling and control study of the Fluid Bed Gasification (FBG) unit at the Morgantown Energy Technology Center (METC). The work is performed under contract no. DE-FG21-94MC31384. The purpose of this study is to generate a simple FBG model from process data, and then use the model to suggest an improved control scheme which will improve operation of the gasifier. The work first developes a simple linear model of the gasifier, then suggests an improved gasifier pressure and MGCR control configuration, and finally suggests the use of a multivariable control strategy for the gasifier.

  17. Using Fully Coupled Hydro-Geomechanical Numerical Test Bed to Study Reservoir Stimulation with Low Hydraulic Pressure

    DOE Data Explorer

    Fu, Pengcheng; Johnson, Scott M.; Carrigan, Charles R.

    2012-01-31

    This paper documents our effort to use a fully coupled hydro-geomechanical numerical test bed to study using low hydraulic pressure to stimulate geothermal reservoirs with existing fracture network. In this low pressure stimulation strategy, fluid pressure is lower than the minimum in situ compressive stress, so the fractures are not completely open but permeability improvement can be achieved through shear dilation. We found that in this low pressure regime, the coupling between the fluid phase and the rock solid phase becomes very simple, and the numerical model can achieve a low computational cost. Using this modified model, we study the behavior of a single fracture and a random fracture network.

  18. Method and apparatus for hydrocarbon recovery from tar sands

    DOEpatents

    Westhoff, J.D.; Harak, A.E.

    1988-05-04

    A method and apparatus for utilizing tar sands having a broad range of bitumen content is disclosed. More particularly, tar sands are pyrolyzed in a cyclone retort with high temperature gases recycled from the cyclone retort to produce oil and hydrocarbon products. The spent tar sands are then burned at 2000/degree/F in a burner to remove residual char and produce a solid waste that is easily disposable. The process and apparatus have the advantages of being able to utilize tar sands having a broad range of bitumen content and the advantage of producing product gases that are free from combustion gases and thereby have a higher heating value. Another important advantage is rapid pyrolysis of the tar sands in the cyclone so as to effectively utilize smaller sized reactor vessels for reducing capitol and operating costs. 1 fig., 1 tab.

  19. Method and apparatus for hydrocarbon recovery from tar sands

    DOEpatents

    Westhoff, James D.; Harak, Arnold E.

    1989-01-01

    A method and apparatus for utilizing tar sands having a broad range of bitumen content is disclosed. More particularly, tar sands are pyrolyzed in a cyclone retort with high temperature gases recycled from the cyclone retort to produce oil and hydrocarbon products. The spent tar sands are then burned at 2000.degree. F. in a burner to remove residual char and produce a solid waste that is easily disposable. The process and apparatus have the advantages of being able to utilize tar sands having a broad range of bitumen content and the advantage of producing product gases that are free from combustion gases and thereby have a higher heating value. Another important advantage is rapid pyrolysis of the tar sands in the cyclone so as to effectively utilize smaller sized reactor vessels for reducing capitol and operating costs.

  20. Developing technologies for synthetic fuels

    NASA Astrophysics Data System (ADS)

    Sprow, F. B.

    1981-05-01

    After consideration of a likely timetable for the development of a synthetic fuels industry and its necessary supporting technology, the large variety of such fuels and their potential roles is assessed along with their commercialization outlook. Among the fuel production methods considered are: (1) above-ground retorting of oil shale; (2) in-situ shale retorting; (3) open pit mining of tar sands; (4) in-situ steam stimulation of tar sands; (5) coal gasification; (6) methanol synthesis from carbon monoxide and hydrogen; and (7) direct coal liquefaction by the hydrogenation of coal. It is shown that while the U.S. has very limited resource bases for tar sands and heavy crudes, the abundance of shale in the western states and the abundance and greater geographical dispersion of coal will make these the two most important resources of a future synthetic fuels industry.

  1. Simulation of granular and gas-solid flows using discrete element method

    NASA Astrophysics Data System (ADS)

    Boyalakuntla, Dhanunjay S.

    2003-10-01

    In recent years there has been increased research activity in the experimental and numerical study of gas-solid flows. Flows of this type have numerous applications in the energy, pharmaceuticals, and chemicals process industries. Typical applications include pulverized coal combustion, flow and heat transfer in bubbling and circulating fluidized beds, hopper and chute flows, pneumatic transport of pharmaceutical powders and pellets, and many more. The present work addresses the study of gas-solid flows using computational fluid dynamics (CFD) techniques and discrete element simulation methods (DES) combined. Many previous studies of coupled gas-solid flows have been performed assuming the solid phase as a continuum with averaged properties and treating the gas-solid flow as constituting of interpenetrating continua. Instead, in the present work, the gas phase flow is simulated using continuum theory and the solid phase flow is simulated using DES. DES treats each solid particle individually, thus accounting for its dynamics due to particle-particle interactions, particle-wall interactions as well as fluid drag and buoyancy. The present work involves developing efficient DES methods for dense granular flow and coupling this simulation to continuum simulations of the gas phase flow. Simulations have been performed to observe pure granular behavior in vibrating beds. Benchmark cases have been simulated and the results obtained match the published literature. The dimensionless acceleration amplitude and the bed height are the parameters governing bed behavior. Various interesting behaviors such as heaping, round and cusp surface standing waves, as well as kinks, have been observed for different values of the acceleration amplitude for a given bed height. Furthermore, binary granular mixtures (granular mixtures with two particle sizes) in a vibrated bed have also been studied. Gas-solid flow simulations have been performed to study fluidized beds. Benchmark 2D fluidized bed simulations have been performed and the results have been shown to satisfactorily compare with those published in the literature. A comprehensive study of the effect of drag correlations on the simulation of fluidized beds has been performed. It has been found that nearly all the drag correlations studied make similar predictions of global quantities such as the time-dependent pressure drop, bubbling frequency and growth. In conclusion, discrete element simulation has been successfully coupled to continuum gas-phase. Though all the results presented in the thesis are two-dimensional, the present implementation is completely three dimensional and can be used to study 3D fluidized beds to aid in better design and understanding. Other industrially important phenomena like particle coating, coal gasification etc., and applications in emerging areas such as nano-particle/fluid mixtures can also be studied through this type of simulation. (Abstract shortened by UMI.)

  2. Explicit Two-Phase Modeling of the Initiation of Saltation over Heterogeneous Sand Beds

    NASA Astrophysics Data System (ADS)

    Turney, F. A.; Kok, J. F.; Martin, R. L.; Burr, D. M.; Bridges, N.; Ortiz, C. P.; Smith, J. K.; Emery, J. P.; Van Lew, J. T.

    2016-12-01

    The initiation of aeolian sediment transport is key in understanding the geomorphology of arid landscapes and emission of mineral dust into the atmosphere. Despite its importance, the process of saltation initiation remains poorly understood, and current models are highly simplified. Previous models of the initiation of aeolian saltation have assumed the particle bed to be monodisperse and homogeneous in arrangement, ignoring the distribution of particle thresholds created by different bed geometries and particle sizes. In addition, mean wind speeds are often used in place of a turbulent wind field, ignoring the distribution of wind velocities at the particle level. Furthermore, the transition from static bed to steady state saltation is often modeled as resulting directly from fluid lifting, while in reality particles need to hop and roll along the surface before attaining enough height and momentum to initiate the cascade of particle splashes that characterizes saltation. We simulate the initiation of saltation with a coupled two-phase CFD-DEM model that overcomes the shortcomings of previous models by explicitly modeling particle-particle and particle-fluid interactions at the particle scale. We constrain our model against particle trajectories taken from high speed video of initiation at the Titan Wind Tunnel at NASA Ames. Results give us insight into the probability that saltation will be initiated, given stochastic variations in bed properties and wind velocity.

  3. Effects of pressure drop and superficial velocity on the bubbling fluidized bed incinerator.

    PubMed

    Wang, Feng-Jehng; Chen, Suming; Lei, Perng-Kwei; Wu, Chung-Hsing

    2007-12-01

    Since performance and operational conditions, such as superficial velocity, pressure drop, particles viodage, and terminal velocity, are difficult to measure on an incinerator, this study used computational fluid dynamics (CFD) to determine numerical solutions. The effects of pressure drop and superficial velocity on a bubbling fluidized bed incinerator (BFBI) were evaluated. Analytical results indicated that simulation models were able to effectively predict the relationship between superficial velocity and pressure drop over bed height in the BFBI. Second, the models in BFBI were simplified to simulate scale-up beds without excessive computation time. Moreover, simulation and experimental results showed that minimum fluidization velocity of the BFBI must be controlled in at 0.188-3.684 m/s and pressure drop was mainly caused by bed particles.

  4. Induced venous pooling and cardiorespiratory responses to exercise after bed rest

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.; Sandler, H.; Webb, P.; Annis, J. F.

    1982-01-01

    Venous pooling induced by a specially constructed garment is investigated as a possible means for reversing the reduction in maximal oxygen uptake regularly observed following bed rest. Experiments involved a 15-day period of bed rest during which four healthy male subjects, while remaining recumbent in bed, received daily 210-min venous pooling treatments from a reverse gradient garment supplying counterpressure to the torso. Results of exercise testing indicate that while maximal oxygen uptake endurance time and plasma volume were reduced and maximal heart rate increased after bed rest in the control group, those parameters remained essentially unchanged for the group undergoing venous pooling treatment. Results demonstrate the importance of fluid shifts and venous pooling within the cardiovascular system in addition to physical activity to the maintenance of cardiovascular conditioning.

  5. Effluent characterization from a conical pressurized fluid bed

    NASA Technical Reports Server (NTRS)

    Priem, R. J.; Rollbuhler, R. J.; Patch, R. W.

    1977-01-01

    To obtain useable corrosion and erosion results it was necessary to have data with several levels of particulate matter in the hot gases. One level of particulate loading was as low as possible so that ideally no erosion and only corrosion occurred. A conical fluidized bed was used to obtain some degree of filtration through the top of the bed which would not be highly fluidized. This would minimize the filtration required for the hot gases or conversely the amount of particulate matter in the hot gases after a given level of filtration by cyclones and/or filters. The data obtained during testing characterized the effluent from the bed at different test conditions. A range of bed heights, coal flows, air flows, limestone flows, and pressure are represented. These tests were made to determine the best operating conditions prior to using the bed to determine erosion and corrosion rates of typical turbine blade materials.

  6. Onset of sediment transport is a continuous transition driven by fluid shear and granular creep

    PubMed Central

    Houssais, Morgane; Ortiz, Carlos P.; Durian, Douglas J.; Jerolmack, Douglas J.

    2015-01-01

    Fluid-sheared granular transport sculpts landscapes and undermines infrastructure, yet predicting the onset of sediment transport remains notoriously unreliable. For almost a century, this onset has been treated as a discontinuous transition at which hydrodynamic forces overcome gravity-loaded grain–grain friction. Using a custom laminar-shear flume to image slow granular dynamics deep into the bed, here we find that the onset is instead a continuous transition from creeping to granular flow. This transition occurs inside the dense granular bed at a critical viscous number, similar to granular flows and colloidal suspensions and inconsistent with hydrodynamic frameworks. We propose a new phase diagram for sediment transport, where ‘bed load’ is a dense granular flow bounded by creep below and suspension above. Creep is characteristic of disordered solids and reminiscent of soil diffusion on hillslopes. Results provide new predictions for the onset and dynamics of sediment transport that challenge existing models. PMID:25751296

  7. Physiology of prolonged bed rest

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.

    1988-01-01

    Bed rest has been a normal procedure used by physicians for centuries in the treatment of injury and disease. Exposure of patients to prolonged bed rest in the horizontal position induces adaptive deconditioning responses. While deconditioning responses are appropriate for patients or test subjects in the horizontal position, they usually result in adverse physiological responses (fainting, muscular weakness) when the patient assume the upright posture. These deconditioning responses result from reduction in hydrostatic pressure within the cardiovascular system, virtual elimination of longitudinal pressure on the long bones, some decrease in total body metabolism, changes in diet, and perhaps psychological impact from the different environment. Almost every system in the body is affected. An early stimulus is the cephalic shift of fluid from the legs which increases atrial pressure and induces compensatory responses for fluid and electrolyte redistribution. Without countermeasures, deterioration in strength and muscle function occurs within 1 wk while increased calcium loss may continue for months. Research should also focus on drug and carbohydrate metabolism.

  8. CFD modelling of liquid-solid transport in the horizontal eccentric annuli

    NASA Astrophysics Data System (ADS)

    Sayindla, Sneha; Challabotla, Niranjan Reddy

    2017-11-01

    In oil and gas drilling operations, different types of drilling fluids are used to transport the solid cuttings in an annulus between drill pipe and well casing. The inner pipe is often eccentric and flow inside the annulus can be laminar or turbulent regime. In the present work, Eulerian-Eulerian granular multiphase CFD model is developed to systematically investigate the effect of the rheology of the drilling fluid type (Newtonian and non-Newtonian), drill pipe eccentricity and inner pipe rotation on the efficiency of cuttings transport. Both laminar and turbulent flow regimes were considered. Frictional pressure drop is computed and compared with the flow loop experimental results reported in the literature. The results confirm that the annular frictional pressure loss in a fully eccentric annulus are significantly lesser than the concentric annulus. Inner pipe rotation improve the efficiency of the cuttings transport in laminar flow regime. Cuttings transport velocity and concentration distribution were analysed to predict the different flow patterns such as stationary bed, moving bed, heterogeneous and homogeneous bed formation.

  9. Effects of process parameters on solid self-microemulsifying particles in a laboratory scale fluid bed.

    PubMed

    Mukherjee, Tusharmouli; Plakogiannis, Fotios M

    2012-01-01

    The purpose of this study was to select the critical process parameters of the fluid bed processes impacting the quality attribute of a solid self-microemulsifying (SME) system of albendazole (ABZ). A fractional factorial design (2(4-1)) with four parameters (spray rate, inlet air temperature, inlet air flow, and atomization air pressure) was created by MINITAB software. Batches were manufactured in a laboratory top-spray fluid bed at 625-g scale. Loss on drying (LOD) samples were taken throughout each batch to build the entire moisture profiles. All dried granulation were sieved using mesh 20 and analyzed for particle size distribution (PSD), morphology, density, and flow. It was found that as spray rate increased, sauter-mean diameter (D(s)) also increased. The effect of inlet air temperature on the peak moisture which is directly related to the mean particle size was found to be significant. There were two-way interactions between studied process parameters. The main effects of inlet air flow rate and atomization air pressure could not be found as the data were inconclusive. The partial least square (PLS) regression model was found significant (P < 0.01) and predictive for optimization. This study established a design space for the parameters for solid SME manufacturing process.

  10. Influence of in line monitored fluid bed granulation process parameters on the stability of Ethinylestradiol.

    PubMed

    Roßteuscher-Carl, Katrin; Fricke, Sabine; Hacker, Michael C; Schulz-Siegmund, Michaela

    2015-12-30

    Ethinylestradiol (EE) as a highly active and low dosed compound is prone to oxidative degradation. The stability of the drug substance is therefore a critical parameter that has to be considered during drug formulation. Beside the stability of the drug substance, granule particle size and moisture are critical quality attributes (CQA) of the fluid bed granulation process which influence the tableting ability of the resulting granules. Both CQA should therefore be monitored during the production process by process analytic technology (PAT) according to ICH Q8. This work focusses on the effects of drying conditions on the stability of EE in a fluid-bed granulation process. We quantified EE degradation products 6-alpha-hydroxy-EE, 6-beta-hydroxy-EE, 9(11)-dehydro-EE and 6-oxo-EE during long time storage and accelerated conditions. PAT-tools that monitor granule particle size (Spatial filtering technology) and granule moisture (Microwave resonance technology) were applied and compared with off-line methods. We found a relevant influence of residual granule moisture and thermic stress applied during granulation on the storage stability of EE, whereas no degradation was found immediately after processing. Hence we conclude that drying parameters have a relevant influence on long term EE stability. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Fluid flow through a high cell density fluidized-bed during centrifugal bioreactor culture.

    PubMed

    Detzel, Christopher J; Van Wie, Bernard J; Ivory, Cornelius F

    2010-01-01

    An increasing demand for products such as tissues, proteins, and antibodies from mammalian cell suspension cultures is driving interest in increasing production through high-cell density bioreactors. The centrifugal bioreactor (CCBR) retains cells by balancing settling forces with surface drag forces due to medium throughput and is capable of maintaining cell densities above 10(8) cells/mL. This article builds on a previous study where the fluid mechanics of an empty CCBR were investigated showing fluid flow is nonuniform and dominated by Coriolis forces, raising concerns about nutrient and cell distribution. In this article, we demonstrate that the previously reported Coriolis forces are still present in the CCBR, but masked by the presence of cells. Experimental dye injection observations during culture of 15 microm hybridoma cells show a continual uniform darkening of the cell bed, indicating the region of the reactor containing cells is well mixed. Simulation results also indicate the cell bed is well mixed during culture of mammalian cells ranging in size from 10 to 20 microm. However, simulations also allow for a slight concentration gradient to be identified and attributed to Coriolis forces. Experimental results show cell density increases from 0.16 to 0.26 when centrifugal force is doubled by increasing RPM from 650 to 920 at a constant inlet velocity of 6.5 cm/s; an effect also observed in the simulation. Results presented in this article indicate cells maintained in the CCBR behave as a high-density fluidized bed of cells providing a homogeneous environment to ensure optimal growth conditions. (c) 2010 American Institute of Chemical Engineers

  12. Fluid Flow through a High Cell Density Fluidized-Bed during Centrifugal Bioreactor Culture

    PubMed Central

    Detzel, Christopher J.; Van Wie, Bernard J.; Ivory, Cornelius F.

    2010-01-01

    An increasing demand for products such as tissues, proteins, and antibodies from mammalian cell suspension cultures is driving interest in increasing production through high-cell density bioreactors. The centrifugal bioreactor (CCBR) retains cells by balancing settling forces with surface drag forces due to medium throughput and is capable of maintaining cell densities above 108 cells/mL. This article builds on a previous study where the fluid mechanics of an empty CCBR were investigated showing fluid flow is nonuniform and dominated by Coriolis forces, raising concerns about nutrient and cell distribution. In this article, we demonstrate that the previously reported Coriolis forces are still present in the CCBR, but masked by the presence of cells. Experimental dye injection observations during culture of 15 μm hybridoma cells show a continual uniform darkening of the cell bed, indicating the region of the reactor containing cells is well mixed. Simulation results also indicate the cell bed is well mixed during culture of mammalian cells ranging in size from 10 to 20 μm. However, simulations also allow for a slight concentration gradient to be identified and attributed to Coriolis forces. Experimental results show cell density increases from 0.16 to 0.26 when centrifugal force is doubled by increasing RPM from 650 to 920 at a constant inlet velocity of 6.5 cm/s; an effect also observed in the simulation. Results presented in this article indicate cells maintained in the CCBR behave as a high-density fluidized bed of cells providing a homogeneous environment to ensure optimal growth conditions. PMID:20205172

  13. Breakage and drying behaviour of granules in a continuous fluid bed dryer: Influence of process parameters and wet granule transfer.

    PubMed

    De Leersnyder, F; Vanhoorne, V; Bekaert, H; Vercruysse, J; Ghijs, M; Bostijn, N; Verstraeten, M; Cappuyns, P; Van Assche, I; Vander Heyden, Y; Ziemons, E; Remon, J P; Nopens, I; Vervaet, C; De Beer, T

    2018-03-30

    Although twin screw granulation has already been widely studied in recent years, only few studies addressed the subsequent continuous drying which is required after wet granulation and still suffers from a lack of detailed understanding. The latter is important for optimisation and control and, hence, a cost-effective practical implementation. Therefore, the aim of the current study is to increase understanding of the drying kinetics and the breakage and attrition phenomena during fluid bed drying after continuous twin screw granulation. Experiments were performed on a continuous manufacturing line consisting of a twin-screw granulator, a six-segmented fluid bed dryer, a mill, a lubricant blender and a tablet press. Granulation parameters were fixed in order to only examine the effect of drying parameters (filling time, drying time, air flow, drying air temperature) on the size distribution and moisture content of granules (both of the entire granulate and of size fractions). The wet granules were transferred either gravimetrically or pneumatically from the granulator exit to the fluid bed dryer. After a certain drying time, the moisture content reached an equilibrium. This drying time was found to depend on the applied airflow, drying air temperature and filling time. The moisture content of the granules decreased with an increasing drying time, airflow and drying temperature. Although smaller granules dried faster, the multimodal particle size distribution of the granules did not compromise uniform drying of the granules when the target moisture content was achieved. Extensive breakage of granules was observed during drying. Especially wet granules were prone to breakage and attrition during pneumatic transport, either in the wet transfer line or in the dry transfer line. Breakage and attrition of granules during transport and drying should be anticipated early on during process and formulation development by performing integrated experiments on the granulator, dryer and mill. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Diffuse-flow hydrothermal field in an oceanic fracture zone setting, Northeast Pacific: Deposit composition

    USGS Publications Warehouse

    Hein, J.R.; Koski, R.A.; Embley, R.W.; Reid, J.; Chang, S.-W.

    1999-01-01

    This is the first reported occurrence of an active hydrothermal field in an oceanic fracture zone setting. The hydrothermal field occurs in a pull-apart basin within the Blanco Fracture Zone (BFZ), which has four distinct mineral deposit types: (1) barite mounds and chimneys, (2) barite stockwork breccia, (3) silica-barite beds, and (4) silica, barite, and Fe-Mn oxyhydroxide in sediments. All deposit types contain minor amounts of sulfides. In barite stockwork, silica-barite beds, and mineralized sediment, Ba, Ph, Ag, S, Au, Zn, Cu, Hg, TI, As, Mo, Sb, U, Cd, and Cu are enriched relative to unmineralized rocks and sediments of the BFZ. Fe and Mn are not enriched in the barite stockwork or silica-barite beds, but along with P, Co, and Mg are enriched in the mineralized sediments. Silver contents in deposits of the hydrothermal field range up to 86 ppm, gold to 0.7 ppm, zinc to 3.2%, copper to 0.8%, and barium to 22%. Mineralization occurred by diffuse, low to intermediate temperature (mostly <250??C) discharge of hydrothermal fluids through pillow lavas and ponds of mixed volcaniclastic and biosiliceous sediments. Bacterial mats were mineralized by silica, barite, and minor Fe hydroxides, or less commonly, by Mn oxyhydroxides. Pervasive mineralization of bacterial mats resulted in formation of silica-barite beds. Silica precipitated from hydrothermal fluids by conductive cooling and mixing with seawater. Sulfate, U, and rare earth elements (REEs) in barite were derived from seawater, whereas the REE content of hydrothermal silica deposits and mineralized sediments is associated with the aluminosilicate detrital fraction. Fe-, Zn-, Cu-, Pb-, and Hg-sulfide minerals, Ba in barite, and Eu in all mineralized deposits were derived from hydrothermal fluids. Manganese oxides and associated elements (Co, Sb, Mo, W, Cl, and Cu) and Fe oxides and associated elements (Be, B, P, and Mo) precipitated as the result of mixing of hydrothermal fluids with seawater. ?? 2001 Canadian Institute of Mining, Metallurgy and Petroleum. All rights reserved.

  15. Late Noachian fluvial erosion on Mars: Cumulative water volumes required to carve the valley networks and grain size of bed-sediment

    NASA Astrophysics Data System (ADS)

    Rosenberg, Eliott N.; Head, James W., III

    2015-11-01

    Our goal is to quantify the cumulative water volume that was required to carve the Late Noachian valley networks on Mars. We employ an improved methodology in which fluid/sediment flux ratios are based on empirical data, not assumed. We use a large quantity of data from terrestrial rivers to assess the variability of actual fluid/sediment flux sediment ratios. We find the flow depth by using an empirical relationship to estimate the fluid flux from the estimated channel width, and then using estimated grain sizes (theoretical sediment grain size predictions and comparison with observations by the Curiosity rover) to find the flow depth to which the resulting fluid flux corresponds. Assuming that the valley networks contained alluvial bed rivers, we find, from their current slopes and widths, that the onset of suspended transport occurs near the sand-gravel boundary. Thus, any bed sediment must have been fine gravel or coarser, whereas fine sediment would be carried downstream. Subsequent to the cessation of fluvial activity, aeolian processes have partially redistributed fine-grain particles in the valleys, often forming dunes. It seems likely that the dominant bed sediment size was near the threshold for suspension, and assuming that this was the case could make our final results underestimates, which is the same tendency that our other assumptions have. Making this assumption, we find a global equivalent layer (GEL) of 3-100 m of water to be the most probable cumulative volume that passed through the valley networks. This value is similar to the ∼34 m water GEL currently on the surface and in the near-surface in the form of ice. Note that the amount of water required to carve the valley networks could represent the same water recycled through a surface valley network hydrological system many times in separate or continuous precipitation/runoff/collection/evaporation/precipitation cycles.

  16. Facies-controlled fluid migration patterns and subsequent reservoir collapse by depressurization - the Entrada Sandstone, Utah

    NASA Astrophysics Data System (ADS)

    Sundal, A.; Skurtveit, E.; Midtkandal, I.; Hope, I.; Larsen, E.; Kristensen, R. S.; Braathen, A.

    2016-12-01

    The thick and laterally extensive Middle Jurassic Entrada Sandstone forms a regionally significant reservoir both in the subsurface and as outcrops in Utah. Individual layers of fluvial sandstone within otherwise fine-grained aeolian dunes and silty inter-dune deposits of the Entrada Earthy Member are of particular interest as CO2 reservoir analogs to study injectivity, reservoir-caprock interaction and bypass systems. Detailed mapping of facies and deformation structures, including petrographic studies and core plug tests, show significant rock property contrasts between layers of different sedimentary facies. Beds representing fluvial facies appear as white, medium-grained, well-sorted and cross-stratified sandstone, displaying high porosity, high micro-scale permeability, low tensile strength, and low seismic velocity. Subsequent to deposition, these beds were structurally deformed and contain a dense network of deformation bands, especially in proximity to faults and injectites. Over- and underlying low-permeability layers of inter-dune aeolian facies contain none or few deformation bands, display significantly higher rock strengths and high seismic velocities compared to the fluvial inter-beds. Permeable units between low-permeability layers are prone to become over-pressured during burial, and the establishment of fluid escape routes during regional tectonic events may have caused depressurization and selective collapse of weak layers. Through-cutting, vertical sand pipes display large clasts of stratified sandstone suspended in remobilized sand matrix, and may have served as permeable fluid conduits and pressure vents before becoming preferentially cemented and plugged. Bleached zones around faults and fractures throughout the succession indicate leakage and migration of reducing fluids. The fluvial beds are porous and would appear in wireline logs and seismic profiles as excellent reservoirs; whereas due to dense populations of deformation bands they may in fact display reduced horizontal and vertical permeability locally. Facies-related differences in geomechanical properties, pressure distribution and selective structural collapse have significant implications for injectivity and reservoir behavior.

  17. Apparatus and method for controlling heat transfer between a fluidized bed and tubes immersed therein

    DOEpatents

    Hodges, James L.; Cerkanowicz, Anthony E.

    1983-01-01

    In a fluidized bed of solid particles having one or more heat exchange tubes immersed therein, the rate of heat transfer between the fluidized particles and a fluid flowing through the immersed heat exchange tubes is controlled by rotating an arcuate shield apparatus about each tube to selectively expose various portions of the tube to the fluidized particles.

  18. Apparatus and method for controlling heat transfer between a fluidized bed and tubes immersed therein

    DOEpatents

    Hodges, James L.; Cerkanowicz, Anthony E.

    1982-01-01

    In a fluidized bed of solid particles having one or more heat exchange tubes immersed therein, the rate of heat transfer between the fluidized particles and a fluid flowing through the immersed heat exchange tubes is controlled by rotating an arcuate shield apparatus about each tube to selectively expose various portions of the tube to the fluidized particles.

  19. Body Fluid Regulation and Hemopoiesis in Space Flight

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In this session, Session JA2, the discussion focuses on the following topics: Bodymass and Fluid Distribution During Longterm Spaceflight with and without Countermeasures; Plasma Volume, Extracellular Fluid Volume, and Regulatory Hormones During Long-Term Space Flight; Effect of Microgravity and its Ground-Based Models on Fluid Volumes and Hemocirculatory Volumes; Seventeen Weeks of Horizontal Bed Rest, Lower Body Negative Pressure Testing, and the Associated Plasma Volume Response; Evaporative Waterloss in Space Theoretical and Experimental Studies; Erythropoietin Under Real and Simulated Micro-G Conditions in Humans; and Vertebral Bone Marrow Changes Following Space Flight.

  20. Agglomerating combustor-gasifier method and apparatus for coal gasification

    DOEpatents

    Chen, Joseph L. P.; Archer, David H.

    1976-09-21

    A method and apparatus for gasifying coal wherein the gasification takes place in a spout fluid bed at a pressure of about 10 to 30 atmospheres and a temperature of about 1800.degree. to 2200.degree.F and wherein the configuration of the apparatus and the manner of introduction of gases for combustion and fluidization is such that agglomerated ash can be withdrawn from the bottom of the apparatus and gas containing very low dust loading is produced. The gasification reaction is self-sustaining through the burning of a stoichiometric amount of coal with air in the lower part of the apparatus to form the spout within the fluid bed. The method and apparatus are particularly suitable for gasifying coarse coal particles.

  1. High temperature fluid-bed heat recovery for aluminum melting furnace

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1982-12-01

    The objective of the study was to establish whether technical problems would be encountered in increasing the inlet temperature of the fluid bed heat exchanger unit at Alcoa above the 1100/sup 0/F target of the current contract. Specifically, the temperature range of up to, and potentially above, 1600/sup 0/F were investigated to establish the benefits of higher temperature, trade offs required, and plans to achieve that technology goal. The benefits are tabulated and are very significant, particularly at the temperature range of 1600 to 1800/sup 0/F. Relative to 1100/sup 0/F the heat recovery is increased by 24 to 29% atmore » 1600 and 1800/sup 0/F respectively.« less

  2. 1. VIEW NORTH OF PARADISE MILL FOUNDATION AND TAILINGS (FEATURE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW NORTH OF PARADISE MILL FOUNDATION AND TAILINGS (FEATURE P-7). PHOTO TAKEN FROM MERCURY RETORT. (OCTOBER, 1995) - McCormick Group Mine, Paradise Mill, East slope of Buckskin Mountain, Paradise Valley, Humboldt County, NV

  3. 30 CFR 57.22103 - Open flames (I-A, II-A, III, and V-A mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... welding, cutting, and other maintenance operations, and for igniting underground retorts in a Subcategory... after the initital test has been conducted as an alternative to the ten-minute interval testing...

  4. 2015 Subpoena and Information Request from EPA to Mercury Recyclers

    EPA Pesticide Factsheets

    EPA issued formal requests for information to five companies believed to be the primary recyclers/retorters and distributors of mercury in the United States to gain a better understanding of the mercury recycling marketplace.

  5. Application of biomass pyrolytic polygeneration technology using retort reactors.

    PubMed

    Yang, Haiping; Liu, Biao; Chen, Yingquan; Chen, Wei; Yang, Qing; Chen, Hanping

    2016-01-01

    To introduce application status and illustrate the good utilisation potential of biomass pyrolytic polygeneration using retort reactors, the properties of major products and the economic viability of commercial factories were investigated. The capacity of one factory was about 3000t of biomass per year, which was converted into 1000t of charcoal, 950,000Nm(3) of biogas, 270t of woody tar, and 950t of woody vinegar. Charcoal and fuel gas had LHV of 31MJ/kg and 12MJ/m(3), respectively, indicating their potential for use as commercial fuels. The woody tar was rich in phenols, while woody vinegar contained large quantities of water and acetic acid. The economic analysis showed that the factory using this technology could be profitable, and the initial investment could be recouped over the factory lifetime. This technology offered a promising means of converting abundant agricultural biomass into high-value products. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Method for loading explosive laterally from a borehole

    DOEpatents

    Ricketts, Thomas E.

    1981-01-01

    There is provided a method for forming an in situ oil shale retort in a subterranean formation containing oil shale. At least one void is excavated in the formation, leaving zones of unfragmented formation adjacent the void. An array of main blastholes is formed in the zone of unfragmented formation and at least one explosive charge which is shaped for forming a high velocity gas jet is placed into a main blasthole with the axis of the gas jet extending transverse to the blasthole. The shaped charge is detonated for forming an auxiliary blasthole in the unfragmented formation adjacent a side wall of the main blasthole. The auxiliary blasthole extends laterally away from the main blasthole. Explosive is placed into the main blasthole and into the auxiliary blasthole and is detonated for explosively expanding formation towards the free face for forming a fragmented permeable mass of formation particles in the in situ oil shale retort.

  7. High liquid yield process for retorting various organic materials including oil shale

    DOEpatents

    Coburn, Thomas T.

    1990-01-01

    This invention is a continuous retorting process for various high molecular weight organic materials, including oil shale, that yields an enhanced output of liquid product. The organic material, mineral matter, and an acidic catalyst, that appreciably adsorbs alkenes on surface sites at prescribed temperatures, are mixed and introduced into a pyrolyzer. A circulating stream of olefin enriched pyrolysis gas is continuously swept through the organic material and catalyst, whereupon, as the result of pyrolysis, the enhanced liquid product output is provided. Mixed spent organic material, mineral matter, and cool catalyst are continuously withdrawn from the pyrolyzer. Combustion of the spent organic material and mineral matter serves to reheat the catalyst. Olefin depleted pyrolysis gas, from the pyrolyzer, is enriched in olefins and recycled into the pyrolyzer. The reheated acidic catalyst is separated from the mineral matter and again mixed with fresh organic material, to maintain the continuously cyclic process.

  8. A high liquid yield process for retorting various organic materials including oil shale

    DOEpatents

    Coburn, T.T.

    1988-07-26

    This invention is a continuous retorting process for various high molecular weight organic materials, including oil shale, that yields an enhanced output of liquid product. The organic material, mineral matter, and an acidic catalyst, that appreciably adsorbs alkenes on surface sites at prescribed temperatures, are mixed and introduced into a pyrolyzer. A circulating stream of olefin enriched pyrolysis gas is continuously swept through the organic material and catalyst, whereupon, as the result of pyrolysis, the enhanced liquid product output is provided. Mixed spent organic material, mineral matter, and cool catalyst are continuously withdrawn from the pyrolyzer. Combustion of the spent organic material and mineral matter serves to reheat the catalyst. Olefin depleted pyrolysis gas, from the pyrolyzer, is enriched in olefins and recycled into the pyrolyzer. The reheated acidic catalyst is separated from the mineral matter and again mixed with fresh organic material, to maintain the continuously cyclic process. 2 figs.

  9. Heat penetration attributes of milkfish (Chanos chanos) thermal processed in flexible pouches: a comparative study between steam application and water immersion.

    PubMed

    Adepoju, Mary A; Omitoyin, Bamidele O; Mohan, Chitradurga O; Zynudheen, Aliyam A

    2017-05-01

    The difference in the heating penetration characteristics of product processed in retort by steam-air application and water immersion was studied. Fresh milkfish ( Chanos chanos ) packed in dry pack and in oil medium, both in flexible pouches, was thermal processed to minimum F 0 value of 7.77 at 121.1°C. Heat penetration values were recorded for each minute of processing with the aid Ellab (TM 9608, Denmark) temperature recorder. Retort come up time to achieve 121.1°C was observed to be less in steam-air which invariably led to a lower Ball's process time (B) and the total process time (T) observed in steam-air as compared to water immersion. Obtained data were plotted on a semi-logarithmic paper with temperature deficit on x -axis against time on the y -axis.

  10. A novel energy-efficient pyrolysis process: self-pyrolysis of oil shale triggered by topochemical heat in a horizontal fixed bed.

    PubMed

    Sun, You-Hong; Bai, Feng-Tian; Lü, Xiao-Shu; Li, Qiang; Liu, Yu-Min; Guo, Ming-Yi; Guo, Wei; Liu, Bao-Chang

    2015-02-06

    This paper proposes a novel energy-efficient oil shale pyrolysis process triggered by a topochemical reaction that can be applied in horizontal oil shale formations. The process starts by feeding preheated air to oil shale to initiate a topochemical reaction and the onset of self-pyrolysis. As the temperature in the virgin oil shale increases (to 250-300°C), the hot air can be replaced by ambient-temperature air, allowing heat to be released by internal topochemical reactions to complete the pyrolysis. The propagation of fronts formed in this process, the temperature evolution, and the reaction mechanism of oil shale pyrolysis in porous media are discussed and compared with those in a traditional oxygen-free process. The results show that the self-pyrolysis of oil shale can be achieved with the proposed method without any need for external heat. The results also verify that fractured oil shale may be more suitable for underground retorting. Moreover, the gas and liquid products from this method were characterised, and a highly instrumented experimental device designed specifically for this process is described. This study can serve as a reference for new ideas on oil shale in situ pyrolysis processes.

  11. A Novel Energy-Efficient Pyrolysis Process: Self-pyrolysis of Oil Shale Triggered by Topochemical Heat in a Horizontal Fixed Bed

    PubMed Central

    Sun, You-Hong; Bai, Feng-Tian; Lü, Xiao-Shu; Li, Qiang; Liu, Yu-Min; Guo, Ming-Yi; Guo, Wei; Liu, Bao-Chang

    2015-01-01

    This paper proposes a novel energy-efficient oil shale pyrolysis process triggered by a topochemical reaction that can be applied in horizontal oil shale formations. The process starts by feeding preheated air to oil shale to initiate a topochemical reaction and the onset of self-pyrolysis. As the temperature in the virgin oil shale increases (to 250–300°C), the hot air can be replaced by ambient-temperature air, allowing heat to be released by internal topochemical reactions to complete the pyrolysis. The propagation of fronts formed in this process, the temperature evolution, and the reaction mechanism of oil shale pyrolysis in porous media are discussed and compared with those in a traditional oxygen-free process. The results show that the self-pyrolysis of oil shale can be achieved with the proposed method without any need for external heat. The results also verify that fractured oil shale may be more suitable for underground retorting. Moreover, the gas and liquid products from this method were characterised, and a highly instrumented experimental device designed specifically for this process is described. This study can serve as a reference for new ideas on oil shale in situ pyrolysis processes. PMID:25656294

  12. Method of and apparatus for preheating pressurized fluidized bed combustor and clean-up subsystem of a gas turbine power plant

    DOEpatents

    Cole, Rossa W.; Zoll, August H.

    1982-01-01

    In a gas turbine power plant having a pressurized fluidized bed combustor, gas turbine-air compressor subsystem and a gas clean-up subsystem interconnected for fluid flow therethrough, a pipe communicating the outlet of the compressor of the gas turbine-air compressor subsystem with the interior of the pressurized fluidized bed combustor and the gas clean-up subsystem to provide for flow of compressed air, heated by the heat of compression, therethrough. The pressurized fluidized bed combustor and gas clean-up subsystem are vented to atmosphere so that the heated compressed air flows therethrough and loses heat to the interior of those components before passing to the atmosphere.

  13. Effect Of Leg Exercise On Vascular Volumes During Bed Rest

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Vernikos, J.; Wade, C. E.; Barnes, P. R.

    1993-01-01

    Report describes experiments on effects of no-exercise regimen and of two leg-exercise regimens on volumes of plasma, volumes of red blood cells, densities of bodies, and water balances of 19 men (32 to 42 years old) confined to minus 6 degrees-head-down bed rest for 30 days. Purpose of study to determine whether either or both exercise regimens maintain plasma volume and to relate levels of hypovolemia to body fluid balances. Results showed during bed rest, plasma volume maintained in isotomic group but not in other two groups, and no significant differences in body densities, body weights, or water balances among three groups. Concludes isotonic-exercise regimen better than isokinetic-exercise regimen for maintaining plasma volume during prolonged exposure to bed rest.

  14. Idealized debris flow in flume with bed driven by a conveyor belt

    USGS Publications Warehouse

    Ling, Chi-Hai; Chen, Cheng-lung

    1989-01-01

    The generalized viscoplastic fluid (GVF) model is used to derive the theoretical expressions of two-dimensional velocities and surface profile for debris flow established in a flume with bed driven by a conveyor belt. The rheological parameters of the GVF model are evaluated through the comparison of theoretical results with measured data. A slip velocity of the established (steady) nonuniform flow on the moving bed (i.e., the conveyor belt) is observed, and a relation between the slip velocity and the velocity gradient at the bed is derived. Two belts, one rough and the other smooth, were tested. The flow profile in the flume is found to be linear and dependent on the roughness of the belt, but not much on its speed.

  15. Physiological responses of women to simulated weightlessness: A review of the first female bed-rest study

    NASA Technical Reports Server (NTRS)

    Sandler, H.; Winter, D. L.

    1978-01-01

    Subjects were exposed to centrifugation, to lower body negative pressure (LBNP), and to exericse stress both before and after bed rest. Areas studied were centrifugation tolerance, fluid electrolyte changes and hematology, tolerance to LBNP, physical working capacity, biochemistries, blood fibrinolytic activity, female metabolic and hormonal responses, circadian alterations, and gynecology. Results were compared with the responses observed in similarly bed-rested male subjects. The bed-rested females showed deconditioning responses similar to those of the males, although with some differences. Results indicate that women are capable of coping with exposure to weightlessness and, moreover, that they may be more sensitive subjects for evaluating countermeasures to weightlessness and developing criteria for assessing applicants for shuttle voyages.

  16. Gasification system

    DOEpatents

    Haldipur, Gaurang B.; Anderson, Richard G.; Cherish, Peter

    1985-01-01

    A method and system for injecting coal and process fluids into a fluidized bed gasification reactor. Three concentric tubes extend vertically upward into the fluidized bed. Coal particulates in a transport gas are injected through an inner tube, and an oxygen rich mixture of oxygen and steam are injected through an inner annulus about the inner tube. A gaseous medium relatively lean in oxygen content, such as steam, is injected through an annulus surrounding the inner annulus.

  17. Gasification system

    DOEpatents

    Haldipur, Gaurang B.; Anderson, Richard G.; Cherish, Peter

    1983-01-01

    A method and system for injecting coal and process fluids into a fluidized bed gasification reactor. Three concentric tubes extend vertically upward into the fluidized bed. Coal particulates in a transport gas are injected through an inner tube, and an oxygen rich mixture of oxygen and steam are injected through an inner annulus about the inner tube. A gaseous medium relatively lean in oxygen content, such as steam, is injected through an annulus surrounding the inner annulus.

  18. Effect of salmon type and presence/absence of bone on color, sensory characteristics, and consumer acceptability of pureed and chunked infant food products.

    PubMed

    DeSantos, F A; Ramamoorthi, L; Bechtel, P; Smiley, S; Brewer, M S

    2010-08-01

    Salmon-based infant food (puree) and toddler food (puree plus chunks) were manufactured from pink salmon, with and without bone, and from Sockeye salmon, with and without bone, to contain 45% salmon, 55% water, and 5% starch. Products were retort processed at 118 to 121 degrees C for 55 min in a steam-jacketed still retort. A trained descriptive panel (n = 7) evaluated infant and toddler foods separately. Instrumental color, pH, and water activity were also determined. Infant and toddler foods were also evaluated by a consumer panel (n = 104) of parents for product acceptability. During the manufacturing process (cooking, homogenization, retort processing), salmon infant food from pink salmon lost much of its characteristic pink color while that from sockeye salmon retained a greater amount. Bitterness was more evident in samples with bones. In the toddler food formulation containing chunks, the odor and flavor characteristics were influenced primarily by the type of salmon. The presence of bone affected visual pink color and lightness, and salmon odor only. Consumers scored products made with sockeye salmon as more acceptable despite the fact that they had more off-flavor than products from pink salmon. The appearance and thickness of the pureed infant food was more acceptable than the toddler food with chunks despite the chunky toddler product having more acceptable salmon flavor. This indicates that the color and appearance of the prototypes were the main drivers for liking. Of the total number of parents surveyed, 73% would feed this salmon product to their children.

  19. Sensing fluid pressure during plucking events in a natural bedrock channel and experimental flume

    NASA Astrophysics Data System (ADS)

    Wilkinson, C.; Harbor, D. J.; Keel, D.; Levy, S.; Kuehner, J. P.

    2016-12-01

    River channel erosion by plucking is believed to be the dominant erosional process in channels with fractured or jointed bedrock. However, despite its significance as an erosional mechanism, plucking is poorly studied in both laboratory and natural channels. In previous flume studies, model bedrock was plucked by fluid forces alone in nonuniform flow near jumps and waves even where blocks do not protrude into the flow. Here we develop sensor systems to test the hypothesis that bed fluid pressure gradients lift "pluckable" bedrock blocks in a natural field setting and a hydraulic flume. The field setting closely mimics the previous flume setup; the instrumented block is downstream of a roughly 1m step and exhibits no protrusion into the flow. The presence of the step promotes nonuniform flow which changes pressure in the bedrock crack network; slabs of bedrock that have slid downstream and sediment that has been pushed upstream 3-4 m under the bed and in the cracks suggest the influence of pressure differences throughout the crack network and below the bed. In this initial deployment, we evaluate a sensor that monitors movement and simultaneous pressure above and below the block. Sensors are emplaced in a 26kg, 45-cm-long, 20-cm-wide block broken from a 4.5-m-long, 11-cm-thick sandstone bed with a dense network of cracks nearly parallel to flow direction and include a tri-axial accelerometer/gyroscope and two fluid pressure sensors. The electronics are housed in a custom-designed 3D-printed ABS waterproof capsule that is mounted in a vertical hole through the rock. A concurrent flume study develops the sensors necessary to investigate the longitudinal pressure difference below a step using multiple analog sensors (0-1 psi gauge pressure) mounted flush to a false floor under the center of a 30x14-cm test zone. The 15-mm-wide sensors are aligned along the flow centerline and are placed under 25 1-cm-thick "pluckable" bedrock blocks constructed with a proprietary plaster cement. Measured mean pressure and transmission of pressure pulses under the test bed are compared to the visual record of plucking. In addition, conducting runs with blocks removed permits simulation of the mean and varying pressure conditions above the modeled "pluckable" layer as a hydraulic jump is moved downstream through the step.

  20. The Numerical Simulation of Time Dependent Flow Structures Over a Natural Gravel Surface.

    NASA Astrophysics Data System (ADS)

    Hardy, R. J.; Lane, S. N.; Ferguson, R. I.; Parsons, D. R.

    2004-05-01

    Research undertaken over the last few years has demonstrated the importance of the structure of gravel river beds for understanding the interaction between fluid flow and sediment transport processes. This includes the observation of periodic high-speed fluid wedges interconnected by low-speed flow regions. Our understanding of these flows has been enhanced significantly through a series of laboratory experiments and supported by field observations. However, the potential of high resolution three dimensional Computational Fluid Dynamics (CFD) modeling has yet to be fully developed. This is largely the result of the problems of designing numerically stable meshes for use with complex bed topographies and that Reynolds averaged turbulence schemes are applied. This paper develops two novel techniques for dealing with these issues. The first is the development and validation of a method for representing the complex surface topography of gravel-bed rivers in high resolution three-dimensional computational fluid dynamic models. This is based upon a porosity treatment with a regular structured grid and the application of a porosity modification to the mass conservation equation in which: fully blocked cells are assigned a porosity of zero; fully unblocked cells are assigned a porosity of one; and partly blocked cells are assigned a porosity of between 0 and 1, according to the percentage of the cell volume that is blocked. The second is the application of Large Eddy Simulation (LES) which enables time dependent flow structures to be numerically predicted over the complex bed topographies. The regular structured grid with the embedded porosity algorithm maintains a constant grid cell size throughout the domain implying a constant filter scale for the LES simulation. This enables the prediction of coherent structures, repetitive quasi-cyclic large-scale turbulent motions, over the gravel surface which are of a similar magnitude and frequency to those previously observed in both flume and field studies. These structures are formed by topographic forcing within the domain and are scaled with the flow depth. Finally, this provides the numerical framework for the prediction of sediment transport within a time dependent framework. The turbulent motions make a significant contribution to the turbulent shear stress and the pressure fluctuations which significantly affect the forces acting on the bed and potentially control sediment motion.

  1. Advanced thermal energy management: A thermal test bed and heat pipe simulation

    NASA Technical Reports Server (NTRS)

    Barile, Ronald G.

    1986-01-01

    Work initiated on a common-module thermal test simulation was continued, and a second project on heat pipe simulation was begun. The test bed, constructed from surplus Skylab equipment, was modeled and solved for various thermal load and flow conditions. Low thermal load caused the radiator fluid, Coolanol 25, to thicken due to its temperature avoided by using a regenerator-heat-exchanger. Other possible solutions modeled include a radiator heater and shunting heat from the central thermal bus to the radiator. Also, module air temperature can become excessive with high avionics load. A second preoject concerning advanced heat pipe concepts was initiated. A program was written which calculates fluid physical properties, liquid and vapor pressure in the evaporator and condenser, fluid flow rates, and thermal flux. The program is directed to evaluating newer heat pipe wicks and geometries, especially water in an artery surrounded by six vapor channels. Effects of temperature, groove and slot dimensions, and wick properties are reported.

  2. 77 FR 25206 - Proposed Extension of Existing Information Collection; Underground Retorts

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-27

    ... (those that operate within a combustible ore and either liberate methane or have the potential to liberate methane based on the history of the mine or the geological area in which the mine is located). At...

  3. Effect of dietary sodium on fluid/electrolyte regulation during bed rest

    NASA Technical Reports Server (NTRS)

    Williams, W. Jon; Schneider, Suzanne M.; Gretebeck, Randall J.; Lane, Helen W.; Stuart, Charles A.; Whitson, Peggy A.

    2003-01-01

    BACKGROUND: A negative fluid balance during bed rest (BR) is accompanied by decreased plasma volume (PV) which contributes to cardiovascular deconditioning. HYPOTHESIS: We hypothesized that increasing dietary sodium while controlling fluid intake would increase plasma osmolality (POSM), stimulate fluid conserving hormones, and reduce fluid/electrolyte (F/E) losses during BR; conversely, decreasing dietary sodium would decrease POSM, suppress fluid conserving hormones, and increase F/E losses. METHODS: We controlled fluid intake (30 ml x kg(-1) x d(-1)) in 17 men who consumed either a 4.0 +/- 0.06 g x d(-1) (174 mmol x d(-1)) (CONT; n = 6), 1.0 +/- 0.02 g x d(-1) (43 mmol x d(-1)) (LS; n = 6), or 10.0 +/- 0.04 g x d(-1) (430 mmol x d(-1)) (HS; n = 5) sodium diet before, during, and after 21 d of 6 degrees head-down BR. PV, total body water, urine volume and osmolality, POSM, and F/E controlling hormone concentrations were measured. RESULTS: In HS subjects, plasma renin activity (-92%), plasma/urinary aldosterone (-59%; -64%), and PV (-15.0%; 6.0 ml x kg(-1); p < 0.05) decreased while plasma atrial natriuretic peptide (+34%) and urine antidiuretic hormone (+24%) increased during BR (p < 0.05) compared with CONT. In LS, plasma renin activity (+166%), plasma aldosterone (+167%), plasma antidiuretic hormone (+19%), and urinary aldosterone (+335%) increased with no change in PV compared with CONT (p < 0.05). Total body water did not change in any of the subjects. CONCLUSIONS: Contrary to our hypothesis, increasing dietary sodium while controlling fluid intake during BR resulted in a greater loss of PV compared with the CONT subjects. Reducing dietary sodium while controlling fluid intake did not alter the PV response during BR compared with CONT subjects.

  4. Numerical investigation of flow and heat transfer in a novel configuration multi-tubular fixed bed reactor for propylene to acrolein process

    NASA Astrophysics Data System (ADS)

    Jiang, Bin; Hao, Li; Zhang, Luhong; Sun, Yongli; Xiao, Xiaoming

    2015-01-01

    In the present contribution, a numerical study of fluid flow and heat transfer performance in a pilot-scale multi-tubular fixed bed reactor for propylene to acrolein oxidation reaction is presented using computational fluid dynamics (CFD) method. Firstly, a two-dimensional CFD model is developed to simulate flow behaviors, catalytic oxidation reaction, heat and mass transfer adopting porous medium model on tube side to achieve the temperature distribution and investigate the effect of operation parameters on hot spot temperature. Secondly, based on the conclusions of tube-side, a novel configuration multi-tubular fixed-bed reactor comprising 790 tubes design with disk-and-doughnut baffles is proposed by comparing with segmental baffles reactor and their performance of fluid flow and heat transfer is analyzed to ensure the uniformity condition using molten salt as heat carrier medium on shell-side by three-dimensional CFD method. The results reveal that comprehensive performance of the reactor with disk-and-doughnut baffles is better than that of with segmental baffles. Finally, the effects of operating conditions to control the hot spots are investigated. The results show that the flow velocity range about 0.65 m/s is applicable and the co-current cooling system flow direction is better than counter-current flow to control the hottest temperature.

  5. A Comparison of Tandem Walk Performance Between Bed Rest Subjects and Astronauts

    NASA Technical Reports Server (NTRS)

    Miller, Chris; Peters, Brian; Kofman, Igor; Philips, Tiffany; Batson, Crystal; Cerisano, Jody; Fisher, Elizabeth; Mulavara, Ajitkumar; Feiveson, Alan; Reschke, Millard; hide

    2015-01-01

    Astronauts experience a microgravity environment during spaceflight, which results in a central reinterpretation of both vestibular and body axial-loading information by the sensorimotor system. Subjects in bed rest studies lie at 6deg head-down in strict bed rest to simulate the fluid shift and gravity-unloading of the microgravity environment. However, bed rest subjects still sense gravity in the vestibular organs. Therefore, bed rest isolates the axial-unloading component, thus allowing for the direct study of its effects. The Tandem Walk is a standard sensorimotor test of dynamic postural stability. In a previous abstract, we compared performance on a Tandem Walk test between bed rest control subjects, and short- and long-duration astronauts both before and after flight/bed rest using a composite index of performance, called the Tandem Walk Parameter (TWP), that takes into account speed, accuracy, and balance control. This new study extends the previous data set to include bed rest subjects who performed exercise countermeasures. The purpose of this study was to compare performance during the Tandem Walk test between bed rest subjects (with and without exercise), short-duration (Space Shuttle) crewmembers, and long-duration International Space Station (ISS) crewmembers at various time points during their recovery from bed rest or spaceflight.

  6. Flow instability in particle-bed nuclear reactors

    NASA Technical Reports Server (NTRS)

    Kerrebrock, J. L.; Kalamas, J.

    1993-01-01

    A three-dimensional model of the stability of the particle-bed reactor is presented, in which the fluid has mobility in three dimensions. The model accurately represents the stability at low Re numbers as well as the effects of the cold and hot frits and of the heat conduction and radiation in the particle bed. The model can be easily extended to apply to the cylindrical geometry of particle-bed reactors. Exemplary calculations are carried out, showing that a particle bed without a cold frit would be subject to instability if operated at the high-temperature ratios used for nuclear rockets and at power densities below about 4 MW/l; since the desired power density for such a reactor is about 40 MW/l, the operation at design exit temperature but at reduced power could be hazardous. Calculations show however that it might be possible to remove the instability problem by appropriate combinations of cold and hot frits.

  7. Proceedings of the First Joint NASA Cardiopulmonary Workshop

    NASA Technical Reports Server (NTRS)

    Fortney, Suzanne M. (Editor); Hargens, Alan R. (Editor)

    1991-01-01

    The topics covered include the following: flight echocardiography, pulmonary function, central hemodynamics, glycerol hyperhydration, spectral analysis, lower body negative pressure countermeasures, orthostatic tolerance, autonomic function, cardiac deconditioning, fluid and renal responses to head-down tilt, local fluid regulation, endocrine regulation during bed rest, autogenic feedback, and chronic cardiovascular measurements. The program ended with a general discussion of weightlessness models and countermeasures.

  8. Multiphase Flow Technology Impacts on Thermal Control Systems for Exploration

    NASA Technical Reports Server (NTRS)

    McQuillen, John; Sankovic, John; Lekan, Jack

    2006-01-01

    The Two-Phase Flow Facility (TPHIFFy) Project focused on bridging the critical knowledge gap by developing and demonstrating critical multiphase fluid products for advanced life support, thermal management and power conversion systems that are required to enable the Vision for Space Exploration. Safety and reliability of future systems will be enhanced by addressing critical microgravity fluid physics issues associated with flow boiling, condensation, phase separation, and system stability. The project included concept development, normal gravity testing, and reduced gravity aircraft flight campaigns, in preparation for the development of a space flight experiment implementation. Data will be utilized to develop predictive models that could be used for system design and operation. A single fluid, two-phase closed thermodynamic loop test bed was designed, assembled and tested. The major components in this test bed include: a boiler, a condenser, a phase separator and a circulating pump. The test loop was instrumented with flow meters, thermocouples, pressure transducers and both high speed and normal speed video cameras. A low boiling point surrogate fluid, FC-72, was selected based on scaling analyses using preliminary designs for operational systems. Preliminary results are presented which include flow regime transitions and some observations regarding system stability.

  9. Advancing Autonomous Operations for Deep Space Vehicles

    NASA Technical Reports Server (NTRS)

    Haddock, Angie T.; Stetson, Howard K.

    2014-01-01

    Starting in Jan 2012, the Advanced Exploration Systems (AES) Autonomous Mission Operations (AMO) Project began to investigate the ability to create and execute "single button" crew initiated autonomous activities [1]. NASA Marshall Space Flight Center (MSFC) designed and built a fluid transfer hardware test-bed to use as a sub-system target for the investigations of intelligent procedures that would command and control a fluid transfer test-bed, would perform self-monitoring during fluid transfers, detect anomalies and faults, isolate the fault and recover the procedures function that was being executed, all without operator intervention. In addition to the development of intelligent procedures, the team is also exploring various methods for autonomous activity execution where a planned timeline of activities are executed autonomously and also the initial analysis of crew procedure development. This paper will detail the development of intelligent procedures for the NASA MSFC Autonomous Fluid Transfer System (AFTS) as well as the autonomous plan execution capabilities being investigated. Manned deep space missions, with extreme communication delays with Earth based assets, presents significant challenges for what the on-board procedure content will encompass as well as the planned execution of the procedures.

  10. Role of evaporitic sulfates in iron skarn mineralization: a fluid inclusion and sulfur isotope study from the Xishimen deposit, Handan-Xingtai district, North China Craton

    NASA Astrophysics Data System (ADS)

    Wen, Guang; Bi, Shi-Jian; Li, Jian-Wei

    2017-04-01

    The Xishimen iron skarn deposit in the Handan-Xingtai district, North China Craton, contains 256 Mt @ 43 % Fe (up to 65 %). The mineralization is dominated by massive magnetite ore along the contact zone between the early Cretaceous Xishimen diorite stock and middle Ordovician dolomite and dolomitic limestones with numerous intercalations of evaporitic beds. Minor lenticular magnetite-dominated bodies also occur in the carbonate rocks proximal to the diorite stock. Hydrothermal alteration is characterized by extensive albitization within the diorite stock and extreme development of magnesian skarn along the contact zone consisting of diopside, forsterite, serpentine, tremolite, phlogopite, and talc. Magmatic quartz and amphibole from the diorite and hydrothermal diopside from the skarns contain abundant primary or pseudosecondary fluid inclusions, most of which have multiple daughter minerals dominated by halite, sylvite, and opaque phases. Scanning electron microscopy (SEM) and laser Raman spectrometry confirm that pyrrhotite is the predominant opaque phase in most fluid inclusions, in both the magmatic and skarn minerals. These fluid inclusions have total homogenization temperatures of 416-620 °C and calculated salinities of 42.4-74.5 wt% NaCl equiv. The fluid inclusion data thus document a high-temperature, high-salinity, ferrous iron-rich, reducing fluid exsolved from a cooling magma likely represented by the Xishimen diorite stock. Pyrite from the iron ore has δ34S values ranging from 14.0 to 18.6 ‰, which are significantly higher than typical magmatic values (δ34S = 0 ± 5 ‰). The sulfur isotope data thus indicate an external source for the sulfur, most likely from the evaporitic beds in the Ordovician carbonate sequences that have δ34S values of 24 to 29 ‰. We suggest that sulfates from the evaporitic beds have played a critically important role by oxidizing ferrous iron in the magmatic-hydrothermal fluid, leading to precipitation of massive magnetite ore. A synthesis of available data suggests that oxidation of Fe2+-rich, magmatic-hydrothermal fluids by external sulfates could have been a common process in many of the world's iron skarn deposits and other magnetite-dominated ores, such as iron oxide-copper-gold (IOCG) and iron oxide-apatite (IOA) systems.

  11. Hexagonal boron nitride catalyst in a fixed-bed reactor for exothermic propane oxidation dehydrogenation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Jinshu; Lin, Jinhan; Xu, Mingliang

    Hexagonal boron nitride (h-BN) with high thermal conductivity is potentially an effective catalyst for highly exothermic propane oxidative dehydrogenation (ODH) reaction. Here, we report our experimental and theoretic studies of such a catalyst for propane ODH in a fixed-bed reactor. Based on the computational fluid dynamics calculation (CFD) results, the catalyst bed temperature increases by less than 1°C in the h-BN catalyst bed which is much smaller than that (8°C) in the VO x/γ-Al 2O 3 catalyst bed at a similar propane conversion (25%) using a micro-tubular reactor with a diameter of 6 mm. Even in an industrially relevant reactormore » with an inner diameter of 60 mm, a uniform temperature profile can still be maintained using the h-BN catalyst bed due to its excellent thermal conductivity as opposed to a temperature gradient of 47°C in the VO x/γ-Al 2O 3 catalyst bed. The results reported here provide useful information for potential application of h-BN catalyst in propane ODH.« less

  12. Evaluation of a Reverse Gradient Garment for prevention of bed-rest deconditioning

    NASA Technical Reports Server (NTRS)

    Sandler, H.; Dolkas, D.; Newsom, B.; Webb, P.; Annis, J.; Pace, N.; Grunbaum, B. W.

    1983-01-01

    A Reverse Gradient Garment (RGG) was used to intermittently induce venous pooling in the extremities of a magnitude similar to that seen in going from a lying to standing position during the course of a 15-d period of horizontal bed rest. Venous pooling failed to improve bed-rest-induced losses in +2.5 Gz and +3.0 Gz centrifugation tolerance or to prevent increased heart-rate responses to lower-body negative pressure (LBNP). Four subjects served as controls, four were treated. Tests during the 7-d recovery period showed fluid/electrolyte and body composition values to have returned to pre-bed-rest levels with continued depression of acceleration tolerance times (56% decreased at +2.5 Gz and 74% decreased at +3.0 Gz compared to pre-bed-rest levels) and exaggerated blood insulin response on glucose tolerance testing (blood insulin for treated group increased 95% at 1 h before bed rest and 465% during recovery). This study demonstrates that the physiologic changes after bed rest persist for significant periods of time. Acceleration tolerance time proved to be a sensitive test for the deconditioning process.

  13. Hexagonal boron nitride catalyst in a fixed-bed reactor for exothermic propane oxidation dehydrogenation

    DOE PAGES

    Tian, Jinshu; Lin, Jinhan; Xu, Mingliang; ...

    2018-04-17

    Hexagonal boron nitride (h-BN) with high thermal conductivity is potentially an effective catalyst for highly exothermic propane oxidative dehydrogenation (ODH) reaction. Here, we report our experimental and theoretic studies of such a catalyst for propane ODH in a fixed-bed reactor. Based on the computational fluid dynamics calculation (CFD) results, the catalyst bed temperature increases by less than 1°C in the h-BN catalyst bed which is much smaller than that (8°C) in the VO x/γ-Al 2O 3 catalyst bed at a similar propane conversion (25%) using a micro-tubular reactor with a diameter of 6 mm. Even in an industrially relevant reactormore » with an inner diameter of 60 mm, a uniform temperature profile can still be maintained using the h-BN catalyst bed due to its excellent thermal conductivity as opposed to a temperature gradient of 47°C in the VO x/γ-Al 2O 3 catalyst bed. The results reported here provide useful information for potential application of h-BN catalyst in propane ODH.« less

  14. CFM technologies for space transportation: Multipurpose hydrogen testbed system definition and tank procurement

    NASA Technical Reports Server (NTRS)

    Fox, E. C.; Kiefel, E. R.; Mcintosh, G. L.; Sharpe, J. B.; Sheahan, D. R.; Wakefield, M. E.

    1993-01-01

    The development of a test bed tank and system for evaluating cryogenic fluid management technologies in a simulated upper stage liquid hydrogen tank is covered. The tank is 10 ft long and is 10 ft in diameter, and is an ASME certified tank constructed of 5083 aluminum. The tank is insulated with a combination of sprayed on foam insulation, covered by 45 layers of double aluminized mylar separated by dacron net. The mylar is applied by a continuous wrap system adapted from commercial applications, and incorporates variable spacing between the mylar to provide more space between those layers having a high delta temperature, which minimizes heat leak. It also incorporates a unique venting system which uses fewer large holes in the mylar rather than the multitude of small holes used conventionally. This significantly reduces radiation heat transfer. The test bed consists of an existing vacuum chamber at MSFC, the test bed tank and its thermal control system, and a thermal shroud (which may be heated) surrounding the tank. Provisions are made in the tank and chamber for inclusion of a variety of cryogenic fluid management experiments.

  15. Extension of a coarse grained particle method to simulate heat transfer in fluidized beds

    DOE PAGES

    Lu, Liqiang; Morris, Aaron; Li, Tingwen; ...

    2017-04-18

    The heat transfer in a gas-solids fluidized bed is simulated with computational fluid dynamic-discrete element method (CFD-DEM) and coarse grained particle method (CGPM). In CGPM fewer numerical particles and their collisions are tracked by lumping several real particles into a computational parcel. Here, the assumption is that the real particles inside a coarse grained particle (CGP) are made from same species and share identical physical properties including density, diameter and temperature. The parcel-fluid convection term in CGPM is calculated using the same method as in DEM. For all other heat transfer mechanisms, we derive in this study mathematical expressions thatmore » relate the new heat transfer terms for CGPM to those traditionally derived in DEM. This newly derived CGPM model is verified and validated by comparing the results with CFD-DEM simulation results and experiment data. The numerical results compare well with experimental data for both hydrodynamics and temperature profiles. Finally, the proposed CGPM model can be used for fast and accurate simulations of heat transfer in large scale gas-solids fluidized beds.« less

  16. Extension of a coarse grained particle method to simulate heat transfer in fluidized beds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Liqiang; Morris, Aaron; Li, Tingwen

    The heat transfer in a gas-solids fluidized bed is simulated with computational fluid dynamic-discrete element method (CFD-DEM) and coarse grained particle method (CGPM). In CGPM fewer numerical particles and their collisions are tracked by lumping several real particles into a computational parcel. Here, the assumption is that the real particles inside a coarse grained particle (CGP) are made from same species and share identical physical properties including density, diameter and temperature. The parcel-fluid convection term in CGPM is calculated using the same method as in DEM. For all other heat transfer mechanisms, we derive in this study mathematical expressions thatmore » relate the new heat transfer terms for CGPM to those traditionally derived in DEM. This newly derived CGPM model is verified and validated by comparing the results with CFD-DEM simulation results and experiment data. The numerical results compare well with experimental data for both hydrodynamics and temperature profiles. Finally, the proposed CGPM model can be used for fast and accurate simulations of heat transfer in large scale gas-solids fluidized beds.« less

  17. Inclined, collisional sediment transport

    NASA Astrophysics Data System (ADS)

    Berzi, Diego; Fraccarollo, Luigi

    2013-10-01

    We apply the constitutive relations of kinetic theory of granular gases to the transport of cohesionless sediments driven by a gravitational liquid turbulent stream in steady uniform conditions. The sediment-laden flow forms self-equilibrated mechanisms of resistance at the bed surface, below which the sediments are at rest. This geo-physical process takes place quite often in streams at moderate slope and may be interpreted through tools common to fluid mechanics and particle physics. Taking into account the viscous dissipation of the fluctuation energy of the particles, and using approximate methods of integration of the governing differential equations, permit to obtain a set of simple formulas for predicting how depths and flow rates adjust to the angle of inclination of the bed, without requiring additional tuning parameters besides the particle and fluid properties. The agreement with laboratory experiments performed with either plastic cylinders or gravel in water is remarkable. We also provide quantitative criteria to determine the range of validity of the theory, i.e., the values of the Shields number and the angle of inclination of the bed for which the particle stresses can be mostly ascribed to collisional exchange of momentum.

  18. 77 FR 47668 - Agency Information Collection Activities; Submission for OMB Review; Comment Request; Underground...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-09

    ... extract oil from shale in underground metal and nonmetal I-A and I-B mines (those that operate in a... underground oil shale mines. The standard requires that, prior to ignition of underground retorts, mine...

  19. Deleterious Thermal Effects Due To Randomized Flow Paths in Pebble Bed, and Particle Bed Style Reactors

    NASA Technical Reports Server (NTRS)

    Moran, Robert P.

    2013-01-01

    A review of literature associated with Pebble Bed and Particle Bed reactor core research has revealed a systemic problem inherent to reactor core concepts which utilize randomized rather than structured coolant channel flow paths. For both the Pebble Bed and Particle Bed Reactor designs; case studies reveal that for indeterminate reasons, regions within the core would suffer from excessive heating leading to thermal runaway and localized fuel melting. A thermal Computational Fluid Dynamics model was utilized to verify that In both the Pebble Bed and Particle Bed Reactor concepts randomized coolant channel pathways combined with localized high temperature regions would work together to resist the flow of coolant diverting it away from where it is needed the most to cooler less resistive pathways where it is needed the least. In other words given the choice via randomized coolant pathways the reactor coolant will take the path of least resistance, and hot zones offer the highest resistance. Having identified the relationship between randomized coolant channel pathways and localized fuel melting it is now safe to assume that other reactor concepts that utilize randomized coolant pathways such as the foam core reactor are also susceptible to this phenomenon.

  20. 40 CFR 52.729 - Control strategy: Carbon monoxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., the Illinois Environmental Protection Agency requested that the Marathon Oil Company in Robinson... conditions. This SIP revision limits the Marathon Oil Company's CO emissions from its fluid bed catalytic...

  1. 40 CFR 52.729 - Control strategy: Carbon monoxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., the Illinois Environmental Protection Agency requested that the Marathon Oil Company in Robinson... conditions. This SIP revision limits the Marathon Oil Company's CO emissions from its fluid bed catalytic...

  2. Intestinal pseudo-obstruction

    MedlinePlus

    ... Staying in bed for long periods of time (bedridden). Taking drugs that slow intestinal movements. These include ... be tried: Colonoscopy may be used to remove air from the large intestine. Fluids can be given ...

  3. Shallow fluid pressure transients caused by seismogenic normal faults

    NASA Astrophysics Data System (ADS)

    Fleischmann, Karl Henry

    1993-10-01

    Clastic dikes, induced by paleo-seismic slip along the Jonesboro Fault, can be used to estimate the magnitude of shallow fluid pressure transients. Fractures show evidence of two phases of seismically induced dilation by escaping fluids. Initial dilation and propagation through brittle rocks was caused by expulsion of trapped reducing fluids from beneath a clay cap. Second phase fluids were thixotropic clays which flowed vertically from clay beds upwards into the main fracture. Using the differential dilation and fracture trace lengths, the fluid pressure pulse is estimated to have ranged from 0.312-0.49 MPa, which is approximately equal to the vertical load during deformation. Field observations in adjacent rocks record evidence of large-magnitude seismic events, which are consistent with the large nature of the fluid pressure fluctuation.

  4. Metamorphosed Plio-Pleistocene evaporites and the origins of hypersaline brines in the Salton Sea geothermal system, California: Fluid inclusion evidence

    NASA Astrophysics Data System (ADS)

    McKibben, Michael A.; Williams, Alan E.; Okubo, Susumu

    1988-05-01

    The Salton Sea geothermal system (SSGS) occurs in Plio-Pleistocene deltaic-lacustrine-evaporite sediments deposited in the Salton Trough, an active continental rift zone. Temperatures up to 365°C and hypersaline brines with up to 26 wt.% TDS are encountered at 1-3 km depth in the sediments, which are undergoing active greenschist facies hydrothermal metamorphism. Previous models for the origins of the Na-Ca-K-Cl brines have assumed that the high salinities were derived mainly from the downward percolation of cold, dense brines formed by low-temperature dissolution of shallow non-marine evaporites. New drillcores from the central part of the geothermal field contain metamorphosed, bedded evaporites at 1 km depth consisting largely of hornfelsic anhydrite interbedded with anhydrite-cemented solution-collapse shale breccias. Fluid inclusions trapped within the bedded and breccia-cementing anhydrite homogenize at 300°C (identical to the measured downhole temperature) and contain saline Na-Ca-K-Cl brines. Some of the inclusions contain up to 50 vol.% halite, sylvite and carbonate crystals at room temperature, and some halite crystals persist to above 300°C upon laboratory heating. The data are consistent with the trapping of halite-saturated Na-Ca-K-Cl fluids during hydrothermal metamorphism of the evaporites and accompanying solution collapse of interbedded shales. We conclude that many of the salt crystals in inclusions are the residuum of bedded evaporitic salt that was dissolved during metamorphism by heated connate fluids. Therefore, the high salinities of the Salton Sea geothermal brines are derived in part from the in situ hydrothermal metamorphism and dissolution of halides and CaSO 4 from relatively deeply-buried lacustrine evaporites. This fact places important constraints on modeling fluid-flow in the SSGS, as brines need not have migrated over great distances. The brines have been further modified to their present complex Na-Ca-K-Fe-Mn-Cl compositions by on-going sediment metamorphism and water-rock interaction.

  5. A Chlorine-Centric Perspective on Fluid-Mediated Processes at Convergent Plate Boundaries

    NASA Astrophysics Data System (ADS)

    Selverstone, J.

    2014-12-01

    The release and migration of metamorphic fluids from subducting slabs into overlying mantle is widely recognized as a major mechanism in producing arc geochemical signatures and returning fluid-mobile elements to earth's crust and surface environments. Although the magnitudes of many geochemical fluxes are well constrained, the processes whereby mass transfer occurs in different portions of the subduction system are less well known. Chlorine stable isotopes provide a new perspective on some of these processes: Cl is hydrophilic, but decarbonation reactions favor Cl retention in minerals. Cl also shows less isotopic fractionation than other fluid-sensitive systems and may thus preserve evidence of specific fluid sources and/or fluid mixing events. Detailed studies of sedimentary sequences show that individual beds are isotopically homogeneous but large heterogeneities in δ37Cl exist across beds on a cm to m scale and vary as a function of depositional environment. Compositionally correlative medium-, high-, and ultrahigh-pressure metamorphic sequences in the Alps record decreases of 30-50% in Cl contents in the earliest stages of metamorphism, but little change thereafter. No statistically significant change in isotopic composition occurs during prograde metamorphism of individual horizons, and the same large degree of isotopic heterogeneity (up to 6‰) persists throughout the prograde devolatilization history of the rocks. Likewise, analysis of HP/UHP serpentinites and altered oceanic crust show that heterogeneous protolith compositions are preserved during transport to sub-arc depths, despite large-scale devolatilization. However, upward transport of rocks within the subduction channel results in highly localized interaction with isotopically distinct, Cl-bearing fluid packets. Overlying forearc wedge rocks also record heterogeneous and channelized interaction with distinct fluid components with different δ37Cl. Within-layer fluid compartmentalization during continuous devolatilization reactions must thus be reconciled with discontinuous, cross-layer fluid percolation out of the slab and into the wedge. The resulting implications of the chlorine data for recent mechanical models of slab-to-wedge fluid transport will be discussed.

  6. Enhanced oral bioavailability of paclitaxel by solid dispersion granulation.

    PubMed

    Shanmugam, Srinivasan; Im, Ho Taek; Sohn, Young Taek; Kim, Yong-Il; Park, Jae-Hyun; Park, Eun-Seok; Woo, Jong Soo

    2015-01-01

    The main objective of this study was to develop novel orally administrable tablets containing solid dispersion granules (SDG) of amorphous paclitaxel (PTX) prepared by fluid bed technology, and to evaluate its in vitro dissolution and in vivo pharmacokinetics (PK) in beagle dogs. The SDG were prepared using optimized composition by fluid bed technology, and characterized for solid-state properties. The release study of SDG tablet (SDG-T) in simulated gastric fluid showed a rapid release of PTX, reaching maximum dissolution within 20 min. Finally, the PK profile of SDG-T and a reference formulation Oraxol™ (oral solution formulation used in Phase I clinical study) at a dose of 60 mg orally with co-administration of P-gp inhibitor HM38101, and Taxol® at a dose of 10 mg intravenously (i.v.) was investigated in beagle dogs. The mean absolute BA% of PTX following SDG-T and Oraxol™ solution was 8.23 and 6.22% in comparison to i.v. administration of Taxol®. The relative BA% of PTX from SDG-T in comparison to Oraxol™ solution was 132.25% at a dose of 60 mg following oral administration. In conclusion, we have successfully prepared PTX tablets with solid dispersion granules (SDG) of amorphous PTX using fluid bed technology that could provide plasma PTX concentration in the range of 10-150 ng/mL for a period of 24 h following oral administration in dogs with a P-gp inhibitor. Hence, this could be a promising formulation for PTX oral delivery and could be used in our intended clinical studies following pre-clinical efficacy studies.

  7. Chemohypersensitivity and autonomic modulation of venous capacitance in the pathophysiology of acute decompensated heart failure.

    PubMed

    Burchell, Amy E; Sobotka, Paul A; Hart, Emma C; Nightingale, Angus K; Dunlap, Mark E

    2013-06-01

    Heart failure is increasing in prevalence around the world, with hospitalization and re-hospitalization as a result of acute decompensated heart failure (ADHF) presenting a huge social and economic burden. The mechanism for this decompensation is not clear. Whilst in some cases it is due to volume expansion, over half of patients with an acute admission for ADHF did not experience an increase in total body weight. This calls into question the current treatment strategy of targeting salt and water retention in ADHF. An alternative hypothesis proposed by Fallick et al. is that an endogenous fluid shift from the splanchnic bed is implicated in ADHF, rather than an exogenous fluid gain. The hypothesis states further that this shift is triggered by an increase in sympathetic tone causing vasoconstriction in the splanchnic bed, a mechanism that can translocate blood rapidly into the effective circulating volume, generating the raised venous pressure and congestion seen in ADHF. This hypothesis encourages a new clinical paradigm which focuses on the underlying mechanisms of congestion, and highlights the importance of fluid redistribution and neurohormonal activation in its pathophysiology. In this article, we consider the concept that ADHF is attributable to episodic sympathetic hyperactivity, resulting in fluid shifts from the splanchnic bed. Chemosensitivity is a pathologic autonomic mechanism associated with mortality in patients with systolic heart failure. Tonic and episodic activity of the peripheral chemoreceptors may underlie the syndrome of acute decompensation without total body salt and water expansion. We suggest in this manuscript that chemosensitivity in response to intermittent hypoxia, such as experienced in sleep disordered breathing, may explain the intermittent sympathetic hyperactivity underlying renal sodium retention and acute volume redistribution from venous storage sites. This hypothesis provides an alternative structure to guide novel diagnostic and treatment strategies for ADHF.

  8. DEMONSTRATION BULLETIN: SOILTECH ANAEROBIC THERMAL PROCESSOR: OUTBOARD MARINE CORPORATION SITE

    EPA Science Inventory

    The ATP system is designed to desorb, collect, and recondense contaminants. The kiln contains four separate internal thermal zones: preheat, retort, combustion, and cooling. In the preheat zone, water and volatile organic compounds are vaporized. Hot solids and heavy hydrocarbons...

  9. Effect of the particle to fluid density ratio on bedform development: An application of PTV

    NASA Astrophysics Data System (ADS)

    McKenna Neuman, C. L.; Gordon, M. D.

    2009-05-01

    The particle to fluid density ratio plays a key role in sediment transport and strongly governs the relative importance of the transport mode. In aeolian systems, this ratio is three orders of magnitude larger than for the transport of sedimentary particles in water, such that saltation is the dominant mode for diameters (250 microns) commonly found in ripples and dunes. The partitioning of fluid momentum to saltators, and therefore to the surface upon impact, is extremely important to the entrainment of sediment, the maintenance of transport, and the scaling of aeolian bedforms. This paper demonstrates the use of Particle Tracking Velocimetry in measuring the partitioning of momentum associated with particle collisions on beds of quartz sand (2630 kg m-3) typical of aeolian dunes, and acrylic particles (1210 kg m-3) similar to blowing snow (920 kg m-3). The experiments were carried out in the boundary layer wind tunnel at Trent University on full beds that were 13.8 m in length and 0.71 m in width. In the majority of experiments, the wind speeds were either at or just above the threshold for saltation so that we could distinguish discrete particle trajectories. Surface ripples formed in the majority of experiments and passed through the camera's field of view so that the height, length and rate of migration could be measured in relation to the distributions of particle impact speed and angle, as well as those for the number, speed and angle of the particles ejected. Although similar in height, the ripples comprised of acrylic particles were 2 to 4 times longer, much more asymmetric, and migrated significantly faster than those in sand. The particle impact and ejection speeds were very similar, although the sand particles approached and left the bed at substantially larger angles than observed for the lighter acrylic particles of similar diameter. In a separate experiment, glass beads were flung onto each bed material at 4 ms-1 in still air. It was discovered that 90 per cent of the impact energy was lost to the acrylic bed, as compared to 78 per cent for the sand bed. This evidence suggests that at smaller density ratios than investigated here, ballistic ripples likely cannot be maintained in air.

  10. Development of Human Muscle Protein Measurement with MRI

    NASA Technical Reports Server (NTRS)

    Lin, Chen; Evans, Harlan; Leblanc, Adrian D.

    1997-01-01

    It is known that micro-gravity has a strong influence on the human musculoskeletal system. A number of studies have shown that significant changes in skeletal muscles occur in both space flight and bedrest simulation. In our 5 week bedrest study, the cross-sectional area of soleus-gastrocnemius decreased about 12% while the cross-sectional area of anterior calf muscles decreased about 4%. Using volume measurements, these losses increased after 17 weeks to approximately 30% and 21% respectively. Significant muscle atrophy was also found on the SL-J crew members after only 8 days in space. It is important that these effects are fully understood so that countermeasures can be developed. The same knowledge might also be useful in preventing muscle atrophy related to other medical problems. A major problem with anatomical measurements of muscle during bed rest and microgravity is the influence of fluid shifts and water balance on the measurement of muscle volume, especially when the exposure duration is short and the atrophy is relatively small. Fluid shifts were documented in Skylab by visual observations of blood vessel distention, rapid changes in limb volume, center of mass measurements and subjective descriptions such as puffy faces and head fullness. It has been reported that the muscle water content of biopsied soleus muscles decreased following 8 hours of head down tilt bed rest. Three aspects of fluid shifts that can affect volume measurements are: first, the shift of fluid that occurs whenever there is a change from upright to a recumbent position and vice versa; second, the potential for fluid accumulation in the lower limbs resulting from muscle damage caused by overextending atrophied muscle or swelling caused by deconditioned precapillary sphincter muscles during reambulation; third, the net change of hydration level during and after bed rest or spaceflight. Because of these transitory fluid shifts, muscle protein is expected to represent muscle capacity better than does muscle volume. The purpose of this study is to test the feasibility of using MRI to quantify of muscle protein and water content changes in muscle.

  11. Renal function alterations during skeletal muscle disuse in simulated microgravity

    NASA Technical Reports Server (NTRS)

    Tucker, Bryan J.

    1992-01-01

    This project was to examine the alterations in renal functions during skeletal muscle disuse in simulated microgravity. Although this area could cover a wide range of investigative efforts, the limited funding resulted in the selection of two projects. These projects would result in data contributing to an area of research deemed high priority by NASA and would address issues of the alterations in renal response to vasoactive stimuli during conditions of skeletal muscle disuse as well as investigate the contribution of skeletal muscle disuse, conditions normally found in long term human exposure to microgravity, to the balance of fluid and macromolecules within the vasculature versus the interstitium. These two projects selected are as follows: investigate the role of angiotensin 2 on renal function during periods of simulated microgravity and skeletal muscle disuse to determine if the renal response is altered to changes in circulating concentrations of angiotensin 2 compared to appropriate controls; and determine if the shift of fluid balance from vasculature to the interstitium, the two components of extracellular fluid volume, that occur during prolonged exposure to microgravity and skeletal muscle disuse is a result, in part, to alterations in the fluid and macromolecular balance in the peripheral capillary beds, of which the skeletal muscle contains the majority of recruitment capillaries. A recruitment capillary bed would be most sensitive to alterations in Starling forces and fluid and macromolecular permeability.

  12. Cardiovascular Adaptations to Long Duration Head-Down Tilt Bed Rest

    NASA Technical Reports Server (NTRS)

    Platts, Steven H.; Martin, David S.; Perez, Sondar A.; Ribeiro, Christine; Stenger, Michael B.; Summers, Richard; Meck, Janice V.

    2008-01-01

    INTRODUCTION: Orthostatic hypotension is a serious risk for crewmembers returning from spaceflight. Numerous cardiovascular mechanisms have been proposed to account for this problem, including vascular and cardiac dysfunction, which we studied during bed rest. METHODS: Thirteen subjects were studied before and during bed rest. Statistical analysis was limited to the first 49-60 days of bed rest, and compared to pre-bed rest data. Ultrasound data were collected on vascular and cardiac structure and function. Tilt testing was conducted for 30 minutes or until presyncopal symptoms intervened. RESULTS: Plasma volume was significantly reduced by day 7 of bed rest. Flow-mediated dilation in the leg was significantly increased at bed rest day 49. Arterial responses to nitroglycerin differed in the arm and leg, but did not change as a result of bed rest. Intimal-medial thickness markedly decreased at bed rest days 21, 35 and 49. Several cardiac functional parameters including isovolumic relaxation time, ejection time and myocardial performance index were significantly increased (indicating a decrease in cardiac function) during bed rest. There was a trend for decreased orthostatic tolerance following 60 days of bed rest. DISCUSSION: These data suggest that 6 head-down tilt bed rest alters cardiovascular structure and function in a pattern similar to short duration spaceflight. Additionally, the vascular alterations are primarily seen in the lower body, while vessels of the upper body are unaffected. KEY WORDS: spaceflight, orthostatic intolerance, hypotension, fluid-shift, plasma volume

  13. Characteristic and antioxidant activity of retorted gelatin hydrolysates from cobia (Rachycentron canadum) skin.

    PubMed

    Yang, Jing-Iong; Ho, Hsin-Yi; Chu, Yuh-Jwo; Chow, Chau-Jen

    2008-09-01

    Alkali-pretreated cobia (Rachycentron canadum) skin was extracted in a retort (121°C) for 30min to obtain a retorted skin gelatin hydrolysate (RSGH). The molecular mass distributions and antioxidant activities of cobia RSGH and enzyme-treated RSGHs (ET-RSGHs) derived from bromelain, papain, pancreatin, and trypsin digestion were then characterized. The molecular mass distribution of the RSGH ranged mainly between 20,000 and 700Da and those of ET-RSGHs ranged between 6500 and 700Da. The DPPH (α,α-diphenyl-β-picrylhydrazyl) radical scavenging effects (%) of 10mg/ml of RSGH and 10mg/ml of the four ET-RSGHs were 55% and 51-61%, respectively. The lipid peroxidation inhibition (%) of RSGH and ET-RSGHs (10mg/ml) were 58% and 60-71% on the fifth day in a linoleic acid model system, respectively. The 3Kd-ET-RSGHs, obtained by using a series of centrifugal ultrafiltration filters (molecular weight cut-offs of 10, 5, and 3kDa done sequentially with decreasing pore size), exhibited dramatically improved antioxidant activity, with most of the molecular mass ranging below 700Da. Compared to 10mg/ml of the RSGH, 10mg/ml of 3Kd-ET-RSGHs exhibited 45-65% more scavenging of DPPH radical and 24-38% more inhibition of lipid peroxidation. The peptides with molecular masses below 700Da in the ET-RSGHs or 3Kd-ET-RSGHs significantly affect the antioxidant properties. These peptides are composed of a small number of amino acids or free amino acids and have the potential to be added as antioxidants in foods. Copyright © 2008 Elsevier Ltd. All rights reserved.

  14. Effect of Pre-cooking Conditions on the Quality Characteristics of Ready-To-Eat Samgyetang

    PubMed Central

    2015-01-01

    The aim of this study was to examine the effectiveness of pre-cooking conditions on the quality characteristics of ready-to-eat (RTE) Samgyetang. Raw chickens were steamed under the different conditions of 50℃/30 min (T1), 65℃/30 min (T2), 85℃/30 min (T3), and 90℃/10 min (T4) prior to retorting at 120℃ for 65 min. The results showed that pre-cooking conditions in all treated samples could reduce fat contents in breast and leg meats by 8.5-11.7% and 10.0-11.0% compared to the control, even though there were no significant differences among treatments (p>0.05). The L* and b* values of breast and leg meats treated with the higher temperature and longer time conditions were significantly higher than the control (p<0.05), while a* values tended to decrease despite of not to a significant extent (p>0.05). Moreover, apparent viscosity and water soluble protein showed insignificant differences (p>0.05) among the samples as a result of the retorting process, which might have more negative influences on the quality. T2 samples obtained significantly the highest average Quantitative Descriptive Analysis (QDA) score and transmittance value, representing the most clear broth among the samples, compared to the control. On the other hand, T3 showed the highest cooking loss among the treatments and the lowest QDA scores among the samples. In conclusion, pre-cooking treatment prior to retorting in manufacturing Samgyetang is a plausible way to reduce its fat content. A pre-cooking condition at either 65℃ for 30 min, or 90℃ for 10 min are recommended for producing Samgyetang with optimum quality. PMID:26761871

  15. Parallel-Processing Test Bed For Simulation Software

    NASA Technical Reports Server (NTRS)

    Blech, Richard; Cole, Gary; Townsend, Scott

    1996-01-01

    Second-generation Hypercluster computing system is multiprocessor test bed for research on parallel algorithms for simulation in fluid dynamics, electromagnetics, chemistry, and other fields with large computational requirements but relatively low input/output requirements. Built from standard, off-shelf hardware readily upgraded as improved technology becomes available. System used for experiments with such parallel-processing concepts as message-passing algorithms, debugging software tools, and computational steering. First-generation Hypercluster system described in "Hypercluster Parallel Processor" (LEW-15283).

  16. Multi-scale fracture networks within layered shallow water tight carbonates

    NASA Astrophysics Data System (ADS)

    Panza, Elisa; Agosta, Fabrizio; Rustichelli, Andrea; Vinciguerra, Sergio; Zambrano, Miller; Prosser, Giacomo; Tondi, Emanuele

    2015-04-01

    The work is aimed at deciphering the contribution of background deformation and persistent fracture zones on the fluid flow properties of tight platform carbonates. Taking advantage of 3D exposures present in the Murge area of southern Italy, the fracture networks crosscutting at different scales the layered Cretaceous limestone of the Altamura Fm. were analyzed. The rock multi-layer is characterized by 10's of cm-thick, sub-horizontal, laterally continuous carbonate beds. Each bed commonly represents a shallowing-upward peritidal cycle made up of homogeneous micritic limestones grading upward to cm-thick stromatolitic limestones and/or fenestral limestones. The bed interfaces are formed by sharp maximum flooding surfaces. Porosity measurements carried out on 40 limestone samples collected from a single carbonate bed show values ranging between 0,5% and 5,5%. Background deformation includes both stratabound and non-stratabound fractures. The former elements consist of bed-perpendicular joints and sheared joints, which are confined within a single bed and often displace small, bed-parallel stylolites. Non-stratabound fractures consist of incipient, cm offset, sub-vertical strike-slip faults, which crosscut the bed interfaces. The aforementioned elements are often confined within individual bed-packages, which are identified by presence of pronounced surfaces locally marked by veneers of reddish clayey paleosoils. Persistent fracture zones consist of 10's of m-high, 10's of cm-offset strike-slip faults that offset the bed-package interfaces and are confined within individual bed-packages association. Laterally discontinuous, cm- to a few m-thick paleokarstic breccia levels separate the different bed-packages associations. Persistent fracture zones include asymmetric fractured damage zones and mm-thick veneers of discontinuous fault rocks. The fracture networks that pervasively crosscut the study limestone multi-layer are investigated by mean of scanline and scanarea methodologies. The dimensional, spatial and scaling properties of both stratabound and non-stratabound fractures are documented along single beds and bed-packages, respectively. Persistent fracture zones are studied from individual bed-package associations. By computing the intensity, height distribution, aspect ratio, aperture of each fracture/fault set, DFN (Discrete Fracture Network) models are built for the aforementioned different scales of observation. DFN models of single beds and bed-packages include stratabound and non-stratabound fractures. Differently, the DFN model of a bed-packages association also includes persistent fracture zones and related damage zones. To check the results of our computations, we also build up a smaller scale, 1m3 geocellular volume in which fractures are inserted one at time in the model. All DFN models do not include the matrix porosity. Porosity and 3D permeability (Kx, Ky, Kz) values are obtained as outputs of the DFN models. The results are consistent with the most prominet set of non-stratabound fractures being the major control on the petrophysical properties of both single beds and bed-packages. As expected, the persistent fractures zones strongly affect both porosity and permeability of the bed-packages association. The results of ongoing laboratory analyses on representative limestone samples not only will provide a quantitative assessment of the physical properties of the matrix in terms of porosity and permeability, but also will shed new light on the geometry, density and anisotropy of microfractures and their role on fluid flow properties.

  17. Fractured-aquifer hydrogeology from geophysical logs; the passaic formation, New Jersey

    USGS Publications Warehouse

    Morin, R.H.; Carleton, G.B.; Poirier, S.

    1997-01-01

    The Passaic Formation consists of gradational sequences of mudstone, siltstone, and sandstone, and is a principal aquifer in central New Jersey. Ground-water flow is primarily controlled by fractures interspersed throughout these sedimentary rocks and characterizing these fractures in terms of type, orientation, spatial distribution, frequency, and transmissivity is fundamental towards understanding local fluid-transport processes. To obtain this information, a comprehensive suite of geophysical logs was collected in 10 wells roughly 46 m in depth and located within a .05 km2 area in Hopewell Township, New Jersey. A seemingly complex, heterogeneous network of fractures identified with an acoustic televiewer was statistically reduced to two principal subsets corresponding to two distinct fracture types: (1) bedding-plane partings and (2) high-angle fractures. Bedding-plane partings are the most numerous and have an average strike of N84??W and dip of 20??N. The high-angle fractures are oriented subparallel to these features, with an average strike of N79??E and dip of 71??S, making the two fracture types roughly orthogonal. Their intersections form linear features that also retain this approximately east-west strike. Inspection of fluid temperature and conductance logs in conjunction with flowmeter measurements obtained during pumping allows the transmissive fractures to be distinguished from the general fracture population. These results show that, within the resolution capabilities of the logging tools, approximately 51 (or 18 percent) of the 280 total fractures are water producing. The bedding-plane partings exhibit transmissivities that average roughly 5 m2/day and that generally diminish in magnitude and frequency with depth. The high-angle fractures have average transmissivities that are about half those of the bedding-plane partings and show no apparent dependence upon depth. The geophysical logging results allow us to infer a distinct hydrogeologic structure within this aquifer that is defined by fracture type and orientation. Fluid flow near the surface is controlled primarily by the highly transmissive, subhorizontal bedding-plane partings. As depth increases, the high-angle fractures apparently become more dominant hydrologically.The Passaic Formation consists of gradational sequences of mudstone, siltstone, and sandstone, and is a principal aquifer in central New Jersey. Ground-water flow is primarily controlled by fractures interspersed throughout these sedimentary rocks and characterizing these fractures in terms of type, orientation, spatial distribution, frequency, and transmissivity is fundamental towards understanding local fluid-transport processes. To obtain this information, a comprehensive suite of geophysical logs was collected in 10 wells roughly 46 m in depth and located within a .05 km2 area in Hopewell Township, New Jersey. A seemingly complex, heterogeneous network of fractures identified with an acoustic televiewer was statistically reduced to two principal subsets corresponding to two distinct fracture types: (1) bedding-plane partings and (2) high-angle fractures. Bedding-plane partings are the most numerous and have an average strike of N84?? W and dip of 20?? N. The high-angle fractures are oriented subparallel to these features, with an average strike of N79?? E and dip of 71?? S, making the two fracture types roughly orthogonal. Their intersections form linear features that also retain this approximately east-west strike. Inspection of fluid temperature and conductance logs in conjunction with flowmeter measurements obtained during pumping allows the transmissive fractures to be distinguished from the general fracture population. These results show that, within the resolution capabilities of the logging tools, approximately 51 (or 18 percent) of the 280 total fractures are water producing. The bedding-plane partings exhibit transmissivities that average roughly 5 m2/day and that generally dimi

  18. The vesicomyid bivalve habitat at cold seeps supports heterogeneous and dynamic macrofaunal assemblages

    NASA Astrophysics Data System (ADS)

    Guillon, Erwan; Menot, Lénaïck; Decker, Carole; Krylova, Elena; Olu, Karine

    2017-02-01

    The high biodiversity found at cold seeps, despite elevated concentrations of methane and hydrogen sulfide, is attributed to multiple sources of habitat heterogeneity. In addition to geological and geochemical processes, biogenic habitats formed by large symbiont-bearing taxa, such as bivalves and siboglinid tubeworms, or by microbial mats drive the biodiversity of small-sized fauna. However, because these habitat-forming species also depend on geochemical gradients, the respective influence of abiotic and biotic factors in structuring associated macrofaunal communities is often unresolved. The giant pockmark Regab located at 3200 m depth on the Congo margin is characterized by different fluid-flow regimes, providing a mosaic of the most common biogenic habitats encountered at seeps: microbial mats, mussel beds, and vesicomyid clam beds; the latter being distributed along a gradient of environmental conditions from the center to the periphery of the pockmark. Here, we examined the structure of macrofaunal communities in biogenic habitats formed in soft sediment to (1) determine the influence of the habitats on the associated macrofaunal communities (inter-habitat comparison), (2) describe how macrofaunal communities vary among vesicomyid clam beds (intra-habitat comparison) and (3) assess the inter-annual variation in vesicomyid beds based on repeated sampling at a three-year interval. The highest densities were found in the microbial mat communities in intermediate fluid-flow areas, but they had low diversity - also observed in the sediment close to mussel beds. In contrast, vesicomyid beds harbored the highest diversity. The vesicomyid beds did not show a homogeneous macrofaunal community across sampled areas; instead, density and composition of macrofauna varied according to the location of the beds inside the pockmark. The clam bed sampled in the most active, central part of the pockmark resembled bacterial mat communities by the presence of highly sulfide-tolerant species living at the sediment surface, along with vesicomyid juveniles. This similarity suggests a gradual change in community composition from mats to clam beds. Inter-annual comparisons of the different clam beds highlighted that the most active central site had a more variable community than its peripheral counterparts. Finally, a rapid shift in community structure, particularly in polychaete families, in experimentally reduced oxygen concentrations in the central part of Regab, suggests that high beta-diversity communities can withstand intense variation in geochemical conditions. These community dynamics are likely related to the diversity and to the plasticity of the vesicomyids themselves, because they can cope with high spatial and temporal environmental variability at a very local scale.

  19. 43 CFR 3935.10 - Accounting records.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... processing plant and retort; (3) Mineral products produced and sold; (4) Shale oil products, shale gas, and... mined or processed and of all products including synthetic petroleum, shale oil, shale gas, and shale..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MANAGEMENT OF OIL SHALE EXPLORATION AND LEASES...

  20. 43 CFR 3935.10 - Accounting records.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... processing plant and retort; (3) Mineral products produced and sold; (4) Shale oil products, shale gas, and... mined or processed and of all products including synthetic petroleum, shale oil, shale gas, and shale..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MANAGEMENT OF OIL SHALE EXPLORATION AND LEASES...

  1. 43 CFR 3935.10 - Accounting records.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... processing plant and retort; (3) Mineral products produced and sold; (4) Shale oil products, shale gas, and... mined or processed and of all products including synthetic petroleum, shale oil, shale gas, and shale..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MANAGEMENT OF OIL SHALE EXPLORATION AND LEASES...

  2. METHOD OF CHEMICAL ANALYSIS FOR OIL SHALE WASTES

    EPA Science Inventory

    Several methods of chemical analysis are described for oil shale wastewaters and retort gases. These methods are designed to support the field testing of various pollution control systems. As such, emphasis has been placed on methods which are rapid and sufficiently rugged to per...

  3. 9 CFR 318.304 - Operations in the thermal processing area.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... factor over the specified thermal processing operation times. Temperature/time recording devices shall... minimum initial temperatures and operating procedures for thermal processing equipment, shall be posted in... available to the thermal processing system operator and the inspector. (b) Process indicators and retort...

  4. 9 CFR 318.304 - Operations in the thermal processing area.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... factor over the specified thermal processing operation times. Temperature/time recording devices shall... minimum initial temperatures and operating procedures for thermal processing equipment, shall be posted in... available to the thermal processing system operator and the inspector. (b) Process indicators and retort...

  5. 9 CFR 318.304 - Operations in the thermal processing area.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... factor over the specified thermal processing operation times. Temperature/time recording devices shall... minimum initial temperatures and operating procedures for thermal processing equipment, shall be posted in... available to the thermal processing system operator and the inspector. (b) Process indicators and retort...

  6. 9 CFR 318.304 - Operations in the thermal processing area.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... factor over the specified thermal processing operation times. Temperature/time recording devices shall... minimum initial temperatures and operating procedures for thermal processing equipment, shall be posted in... available to the thermal processing system operator and the inspector. (b) Process indicators and retort...

  7. 9 CFR 318.302 - Thermal processing.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Thermal processing. 318.302 Section 318.302 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE... retort come-up operating procedures and critical factors. (2) Letters or other written communications...

  8. A study of pyrolysis of oil shale of the Leningrad deposit by solid heat carrier

    NASA Astrophysics Data System (ADS)

    Gerasimov, G. Ya; Khaskhachikh, V. V.; Potapov, O. P.

    2017-11-01

    The investigation of the oil shale pyrolysis with a solid heat carrier was carried out using the experimental retorting system that simulates the Galoter industrial process. This system allows verifying both fractional composition of the oil shale and solid heat carrier, and their ratio and temperature. The oil shale of the Leningradsky deposit was used in the work, and quartz sand was used as the solid heat carrier. It is shown that the yield of the shale oil under the pyrolysis with solid heat carrier exceeds by more than 20% the results received in the standard Fisher retort. Using ash as the solid heat carrier results in a decrease in the yield of oil and gas with simultaneous increase in the amount of the solid residue. This is due to the chemical interaction of the acid components of the vapor-gas mixture with the oxides of alkaline-earth metals that are part of the ash.

  9. A computational continuum model of poroelastic beds

    PubMed Central

    Zampogna, G. A.

    2017-01-01

    Despite the ubiquity of fluid flows interacting with porous and elastic materials, we lack a validated non-empirical macroscale method for characterizing the flow over and through a poroelastic medium. We propose a computational tool to describe such configurations by deriving and validating a continuum model for the poroelastic bed and its interface with the above free fluid. We show that, using stress continuity condition and slip velocity condition at the interface, the effective model captures the effects of small changes in the microstructure anisotropy correctly and predicts the overall behaviour in a physically consistent and controllable manner. Moreover, we show that the performance of the effective model is accurate by validating with fully microscopic resolved simulations. The proposed computational tool can be used in investigations in a wide range of fields, including mechanical engineering, bio-engineering and geophysics. PMID:28413355

  10. Real-time imaging as an emerging process analytical technology tool for monitoring of fluid bed coating process.

    PubMed

    Naidu, Venkata Ramana; Deshpande, Rucha S; Syed, Moinuddin R; Wakte, Pravin S

    2018-07-01

    A direct imaging system (Eyecon TM ) was used as a Process Analytical Technology (PAT) tool to monitor fluid bed coating process. Eyecon TM generated real-time onscreen images, particle size and shape information of two identically manufactured laboratory-scale batches. Eyecon TM has accuracy of measuring the particle size increase of ±1 μm on particles in the size range of 50-3000 μm. Eyecon TM captured data every 2 s during the entire process. The moving average of D90 particle size values recorded by Eyecon TM were calculated for every 30 min to calculate the radial coating thickness of coated particles. After the completion of coating process, the radial coating thickness was found to be 11.3 and 9.11 μm, with a standard deviation of ±0.68 and 1.8 μm for Batch 1 and Batch 2, respectively. The coating thickness was also correlated with percent weight build-up by gel permeation chromatography (GPC) and dissolution. GPC indicated weight build-up of 10.6% and 9.27% for Batch 1 and Batch 2, respectively. In conclusion, weight build-up of 10% can also be correlated with 10 ± 2 μm increase in the coating thickness of pellets, indicating the potential applicability of real-time imaging as an endpoint determination tool for fluid bed coating process.

  11. Moisture and drug solid-state monitoring during a continuous drying process using empirical and mass balance models.

    PubMed

    Fonteyne, Margot; Gildemyn, Delphine; Peeters, Elisabeth; Mortier, Séverine Thérèse F C; Vercruysse, Jurgen; Gernaey, Krist V; Vervaet, Chris; Remon, Jean Paul; Nopens, Ingmar; De Beer, Thomas

    2014-08-01

    Classically, the end point detection during fluid bed drying has been performed using indirect parameters, such as the product temperature or the humidity of the outlet drying air. This paper aims at comparing those classic methods to both in-line moisture and solid-state determination by means of Process Analytical Technology (PAT) tools (Raman and NIR spectroscopy) and a mass balance approach. The six-segmented fluid bed drying system being part of a fully continuous from-powder-to-tablet production line (ConsiGma™-25) was used for this study. A theophylline:lactose:PVP (30:67.5:2.5) blend was chosen as model formulation. For the development of the NIR-based moisture determination model, 15 calibration experiments in the fluid bed dryer were performed. Six test experiments were conducted afterwards, and the product was monitored in-line with NIR and Raman spectroscopy during drying. The results (drying endpoint and residual moisture) obtained via the NIR-based moisture determination model, the classical approach by means of indirect parameters and the mass balance model were then compared. Our conclusion is that the PAT-based method is most suited for use in a production set-up. Secondly, the different size fractions of the dried granules obtained during different experiments (fines, yield and oversized granules) were compared separately, revealing differences in both solid state of theophylline and moisture content between the different granule size fractions. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Cross-bedding Related Anisotropy and its Role in the Orientation of Joints in an Aeolian Sandstone

    NASA Astrophysics Data System (ADS)

    Deng, S.; Cilona, A.; Mapeli, C.; Panfilau, A.; Aydin, A.; Prasad, M.

    2014-12-01

    Previous research revealed that the cross-bedding related anisotropy in aeolian sandstones affects the orientation of compaction bands, also known as anticracks. We hypothesize that cross-bedding should a have similar influence on the orientation of the joints within the same rock at the same location. To test this hypothesis, we investigated the relationship between the cross-beds and the cross-bed package confined joints in the Jurassic aeolian Aztec Sandstone cropping out in the Valley of Fire State Park, Nevada. The field data demonstrates that the cross-bed package confined joints occur at high-angle to bedding and trend roughly parallel to the dip direction of the cross-beds. This shows that the cross-bed orientation and the associated anisotropy also exert a strong control on the formation and orientation of the joints. In order to characterize the anisotropy due to cross-bedding in the Aztec Sandstone, we measured the P-wave velocities parallel and perpendicular to bedding from 11 samples in the laboratory using a bench-top ultrasonic assembly. The measured P-wave anisotropy is about 13% on average. Based on these results, a numerical model based on the generalized Hooke's law for anisotropic materials is analyzed assuming the cross-bedded sandstone to be transversely isotropic. Using this model, we tested various cross-bed orientations as well as different strain boundary conditions (uniaxial, axisymmetric and triaxial). It is possible to define a boundary condition under which the modeled results roughly match with the observed relationship between cross-bed package confined joints and cross-beds. These results have important implications for fluid flow through aeolian sandstones in reservoirs and aquifers.

  13. Flowmeter for pressure-driven chromatography systems

    DOEpatents

    Paul, Phillip H.; Arnold, Don W.

    2003-01-01

    A flowmeter for accurately measuring the flowrate of fluids in high pressure chromatography systems. The flowmeter is a porous bed of a material, the porous bed having a porosity in the range of about 0.1 to 0.6 and a pore size in the range of about 50 nm to 1 .mu.m, disposed between a high pressure pumping means and a chromatography column. The flowmeter is provided with pressure measuring means at both the inlet and outlet of the porous bed for measuring the pressure drop through the porous bed. This flowmeter system provides not only the ability to measure accurately flowrates in the range of .mu.L/min to nL/min but also to provide a signal that can be used for a servo loop or feedback control system for high pressure pumping systems.

  14. Flowmeter for pressure-driven chromatography systems

    DOEpatents

    Paul, Phillip H.; Arnold, Don W.

    2002-01-01

    A flowmeter for accurately measuring the flowrate of fluids in high pressure chromatography systems. The flowmeter is a porous bed of a material, the porous bed having a porosity in the range of about 0.1 to 0.6 and a pore size in the range of about 50 nm to 1 .mu.m, disposed between a high pressure pumping means and a chromatography column. The flowmeter is provided with pressure measuring means at both the inlet and outlet of the porous bed for measuring the pressure drop through the porous bed. This flowmeter system provides not only the ability to measure accurately flowrates in the range of .mu.L/min to nL/min but also to provide a signal that can be used for a servo loop or feedback control system for high pressure pumping systems.

  15. Biomimetic model systems of rigid hair beds: Part II - Experiment

    NASA Astrophysics Data System (ADS)

    Jammalamadaka, Mani S. S.; Hood, Kaitlyn; Hosoi, Anette

    2017-11-01

    Crustaceans - such as lobsters, crabs and stomapods - have hairy appendages that they use to recognize and track odorants in the surrounding fluid. An array of rigid hairs impedes flow at different rates depending on the spacing between hairs and the Reynolds number, Re. At larger Reynolds number (Re>1), fluid travels through the hairs rather than around them, a phenomenon called leakiness. Crustaceans flick their appendages at different speeds in order to manipulate the leakiness between the hairs, allowing the hairs to either detect the odors in a sample of fluid or collect a new sample. Theoretical and numerical studies predict that there is a fast flow region near the hairs that moves closer to the hairs as Re increases. Here, we test this theory experimentally. We 3D printed rigid hairs with an aspect ratio of 30:1 in rectangular arrays with different hair packing fractions. We custom built an experimental setup which establishes poiseuille flow at intermediate Re, Re <=200. We track the flow dynamics through the hair beds using tracer particles and Particle Imaging Velocimetry. We will then compare the modelling predictions with the experimental outcomes.

  16. Fluid shifts and endocrine responses during chair rest and water immersion in man

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Shvartz, E.; Kravik, S.; Keil, L. C.

    1980-01-01

    The effects of external water pressure on intercompartmental fluid volume shifts and endocrine responses in man are investigated. Extracellular fluid volumes and plasma and urine electrolyte and endocrine responses of four male subjects were measured during eight hours of head-out water immersion and 16 hours of recovery bed rest and compared to responses obtained during eight hours of chair rest and 16 hours of bed rest without external hydrostatic pressure obtained in the same subjects five months later. Immersion is found to result in a substantial diuresis with respect to chair rest, accounted for by decreases in extracellular volume. A negative water balance during immersion and a positive water balance during chair rest were observed to be accompanied by a shift of extracellular volume to the intracellular compartment, as well as the suppression of plasma arginine vasopressin and renin activities in both regimes. The vasopressin and renin activity decreases are attributed to the increased central blood volume, and half of the plasma loss in immersed subjects is attributed to the effects of external water pressure.

  17. Wellbore stability analysis and its application in the Fergana basin, central Asia

    NASA Astrophysics Data System (ADS)

    Chuanliang, Yan; Jingen, Deng; Baohua, Yu; Hailong, Liu; Fucheng, Deng; Zijian, Chen; Lianbo, Hu; Haiyan, Zhu; Qin, Han

    2014-02-01

    Wellbore instability is one of the major problems hampering the drilling speed in the Fergana basin. Comprehensive analysis of the geological and engineering data in this area indicates that the Fergana basin is characterized by high in situ stress and plenty of natural fractures, especially in the formations which are rich in bedding structure and have several high-pressure systems. Complex accidents such as wellbore collapse, sticking, well kick and lost circulation happen frequently. Tests and theoretical analysis reveals that the wellbore instability in the Fergana basin was influenced by multiple interactive mechanisms dominated by the instability of the bedding shale. Selecting a proper drilling fluid density and improving the sealing characteristic of the applied drilling fluid is the key to preventing wellbore instability in the Fergana basin. The mechanical mechanism of wellbore instability in the Fergana basin was analysed and a method to determine the proper drilling fluid density was proposed. The research results were successfully used to guide the drilling work of the Jida-4 well; compared with the Jida-3 well, the drilling cycle of the Jida-4 well was reduced by 32%.

  18. Investigation of Multiphase Flow in a Packed Bed Reactor Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Lian, Yongsheng; Motil, Brian; Rame, Enrique

    2016-01-01

    In this paper we study the two-phase flow phenomena in a packed bed reactor using an integrated experimental and numerical method. The cylindrical bed is filled with uniformly sized spheres. In the experiment water and air are injected into the bed simultaneously. The pressure distribution along the bed will be measured. The numerical simulation is based on a two-phase flow solver which solves the Navier-Stokes equations on Cartesian grids. A novel coupled level set and moment of fluid method is used to construct the interface. A sequential method is used to position spheres in the cylinder. Preliminary experimental results showed that the tested flow rates resulted in pulse flow. The numerical simulation revealed that air bubbles could merge into larger bubbles and also could break up into smaller bubbles to pass through the pores in the bed. Preliminary results showed that flow passed through regions where the porosity is high. Comparison between the experimental and numerical results in terms of pressure distributions at different flow injection rates will be conducted. Comparison of flow phenomena under terrestrial gravity and microgravity will be made.

  19. Burial, thermal, and petroleum generation history of the Upper Cretaceous Steele Member of the Cody Shale (Shannon Sandstone Bed Horizon), Powder River Basin, Wyoming (Chapter A). Bulletin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nuccio, V.F.

    The purposes of the study are to (1) present burial histories representative of the northwestern and southwestern parts of the Powder River Basin (south of lat 45 N.), (2) show the maximum level of thermal maturity for the Steele Member and its Shannon Sandstone Bed, and (3) show the source-rock potential and timing of petroleum generation for the Steele. It is hoped that data presented in the study will also lead to a better understanding of the burial and temperature history of the Shannon Sandstone Bed, an understanding crucial for diagenetic studies, fluid-flow modeling, and reservoir-rock characterization.

  20. Body fluid alterations during head-down bed rest in men at moderate altitude

    NASA Technical Reports Server (NTRS)

    Loeppky, J. A.; Roach, R. C.; Selland, M. A.; Scotto, P.; Luft, F. C.; Luft, U. C.

    1993-01-01

    To determine the effects of hypoxia on fluid balance responses to simulated zero-gravity, measurements were made in six subjects before and during -5 deg continuous head-down bed rest (HDBR) over 8 d at 10,678 ft. The same subjects were studied again at this altitude without HDBR as a control (CON) using a cross-over design. During this time, they maintained normal upright day-time activities, sleeping in the horizontal position at night. Fluid balance changes during HDBR in hypoxia were more pronounced than similar measurements previously reported from HDBR studies at sea level. Plasma volume loss was slightly greater and the diuresis and natriuresis were doubled in magnitude as compared to previous studies in normoxia and sustained for 4 d during hypoxia. These changes were associated with an immediate but transient rise in plasma atrial natriuretic peptide (ANP) to day 4 of 140 percent in HDBR and 41 percent in CON (p less than 0.005), followed by a decline towards baseline. Differences were less striking between HDBR and CON for plasma antidiuretic hormone and aldosterone, which were transiently reduced by HDBR. Plasma catecholamines showed a similar pattern to ANP in both HDBR and CON, suggesting that elevated ANP and catecholamines together accounted for the enhanced fluid shifts with HDBR during hypoxia.

  1. CFD-DEM modeling the effect of column size and bed height on minimum fluidization velocity in micro fluidized beds with Geldart B particles

    DOE PAGES

    Xu, Yupeng; Li, Tingwen; Musser, Jordan; ...

    2017-06-07

    The fluidization behavior of Geldart B particles in micro fluidized beds is investigated numerically using Computational Fluid Dynamics coupled with Discrete Element Method (CFD-DEM) available in the open-source Multiphase Flow with Interphase eXchanges (MFIX) code. The effects of different bed inner diameters (D) of 8 mm, 12 mm, 16 mm and various initial static bed heights (H) were examined. It is found that both decreasing the column diameter and increasing the bed height in a micro fluidized bed increases the minimum fluidization velocity (Umf). The observed overshoot in pressure drop that occurs before the onset of fluidization decreases in magnitudemore » with increasing column diameter, however there is less sensitivity to bed height. Overall, the numerical results agree qualitatively with existing theoretical correlations and experimental studies. The simulations show that both column diameter and particle-wall friction contribute to the variation in minimum fluidization velocity. Finally, these two factors are coupled and hard to separate. The detailed influences of wall friction on minimum fluidization velocity are then investigated for a prescribed column diameter of 8 mm by varying the wall friction from 0 to 0.4.« less

  2. Fluidized bed combustor and tube construction therefor

    DOEpatents

    De Feo, Angelo; Hosek, William

    1981-01-01

    A fluidized bed combustor comprises a reactor or a housing which has a windbox distributor plate adjacent the lower end thereof which contains a multiplicity of hole and air discharge nozzles for discharging air and coal into a fluidized bed which is maintained above the distributor plate and below a take-off connection or flue to a cyclone separator in which some of the products of combustion are treated to remove the dust which is returned into the fluidized bed. A windbox is spaced below the fluidized bed and it has a plurality of tubes passing therethrough with the passage of combustion air and fluidizing air which passes through an air space so that fluidizing air is discharged into the reaction chamber fluidized bed at the bottom thereof to maintain the bed in a fluidized condition. A fluid, such as air, is passed through the tubes which extend through the windbox and provide a preheating of the combustion air and into an annular space between telescoped inner and outer tubes which comprise heat exchanger tubes or cooling tubes which extend upwardly through the distributor plate into the fluidized bed. The heat exchanger tubes are advantageously arranged so that they may be exposed in groups within the reactor in a cluster which is arranged within holding rings.

  3. Tube construction for fluidized bed combustor

    DOEpatents

    De Feo, Angelo; Hosek, William

    1984-01-01

    A fluidized bed combustor comprises a reactor or a housing which has a windbox distributor plate adjacent the lower end thereof which contains a multiplicity of hole and air discharge nozzles for discharging air and coal into a fluidized bed which is maintained above the distributor plate and below a take-off connection or flue to a cyclone separator in which some of the products of combustion are treated to remove the dust which is returned into the fluidized bed. A windbox is spaced below the fluidized bed and it has a plurality of tubes passing therethrough with the passage of combustion air and fluidizing air which passes through an air space so that fluidizing air is discharged into the reaction chamber fluidized bed at the bottom thereof to maintain the bed in a fluidized condition. A fluid, such as air, is passed through the tubes which extend through the windbox and provide a preheating of the combustion air and into an annular space between telescoped inner and outer tubes which comprise heat exchanger tubes or cooling tubes which extend upwardly through the distributor plate into the fluidized bed. The heat exchanger tubes are advantageously arranged so that they may be exposed in groups within the reactor in a cluster which is arranged within holding rings.

  4. CFD-DEM modeling the effect of column size and bed height on minimum fluidization velocity in micro fluidized beds with Geldart B particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Yupeng; Li, Tingwen; Musser, Jordan

    The fluidization behavior of Geldart B particles in micro fluidized beds is investigated numerically using Computational Fluid Dynamics coupled with Discrete Element Method (CFD-DEM) available in the open-source Multiphase Flow with Interphase eXchanges (MFIX) code. The effects of different bed inner diameters (D) of 8 mm, 12 mm, 16 mm and various initial static bed heights (H) were examined. It is found that both decreasing the column diameter and increasing the bed height in a micro fluidized bed increases the minimum fluidization velocity (Umf). The observed overshoot in pressure drop that occurs before the onset of fluidization decreases in magnitudemore » with increasing column diameter, however there is less sensitivity to bed height. Overall, the numerical results agree qualitatively with existing theoretical correlations and experimental studies. The simulations show that both column diameter and particle-wall friction contribute to the variation in minimum fluidization velocity. Finally, these two factors are coupled and hard to separate. The detailed influences of wall friction on minimum fluidization velocity are then investigated for a prescribed column diameter of 8 mm by varying the wall friction from 0 to 0.4.« less

  5. Buoyancy-induced mixing during wash and elution steps in expanded bed adsorption.

    PubMed

    Fee, C J; Liten, A D

    2001-01-01

    Buoyancy-induced mixing occurs during expanded bed adsorption processes when the feed stream entering the bottom of the system has a lower density than that of the fluid above it. In the absence of a headspace, mixing in the expanded bed can be modeled as a single, well-mixed vessel, with first-order dynamics. In the presence of a headspace, the system exhibits second-order dynamics for the densities typically encountered in protein chromatography, and can be modeled as two well-mixed vessels (the expanded bed and the headspace) arranged in series. In this paper, the mixing dynamics of the expanded bed are described and a mathematical model of the system is presented. Experimental measurements of density changes during the dilution of sucrose and salt solutions in a STREAMLINE 25 column are presented. These show excellent agreement with predictions using the model. A number of strategies for wash and elution in expanded mode, both in the presence and absence of headspace, are discussed.

  6. Numerical simulation of a full-loop circulating fluidized bed under different operating conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Yupeng; Musser, Jordan M.; Li, Tingwen

    Both experimental and computational studies of the fluidization of high-density polyethylene (HDPE) particles in a small-scale full-loop circulating fluidized bed are conducted. Experimental measurements of pressure drop are taken at different locations along the bed. The solids circulation rate is measured with an advanced Particle Image Velocimetry (PIV) technique. The bed height of the quasi-static region in the standpipe is also measured. Comparative numerical simulations are performed with a Computational Fluid Dynamics solver utilizing a Discrete Element Method (CFD-DEM). This paper reports a detailed and direct comparison between CFD-DEM results and experimental data for realistic gas-solid fluidization in a full-loopmore » circulating fluidized bed system. The comparison reveals good agreement with respect to system component pressure drop and inventory height in the standpipe. In addition, the effect of different drag laws applied within the CFD simulation is examined and compared with experimental results.« less

  7. Cryopolymers

    NASA Technical Reports Server (NTRS)

    1995-01-01

    NASA's Technology Transfer Office (TTO) at Stennis Space Center worked with a small tire recycling company, Cryopolymers, Inc. in St. Francisville, La., to improve its process for recycling used tires. Stennis helped Cryopolymers make better use of the cryogens, or super-cold fluids, used in its recycling process. First, the tires are frozen, then broken down and made into a material called 'crumb,' which can be used in asphalt road beds, agricultural hoses, and truck bed liners. TTO based this assistance on NASA's experience using cryogens in the testing of Space Shuttle Main Engines.

  8. Alumina Calcination in the Fluid-Flash Calciner

    NASA Astrophysics Data System (ADS)

    Fish, William M.

    In the mid 40's, Alcoa turned to fluidized solids techniques as a means of improving the efficiency of the alumina calcining process. This paper traces calciner development from the first pilot operation in 1946 through the first plant fluid-bed unit in 1952, the early "fluid-flash" calciner designs in 1960, the first 300 ton/day fluid-flash calciner at Alcoa's Bauxite, Arkansas plant in 1963, the 600 ton/day calciners installed in Suriname and Australia in 1965 and 1966, up to the 1500 ton/day Mark III calciners now operating in Jamaica, Australia and the United States. These Mark III fluid-flash calciners have provided a 30 to 40 percent fuel saving in addition to major savings in capital investment and maintenance costs.

  9. 9 CFR 318.308 - Deviations in processing.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) Deviations in processing (or process deviations) must be handled according to: (1)(i) A HACCP plan for canned...) of this section. (c) [Reserved] (d) Procedures for handling process deviations where the HACCP plan... accordance with the following procedures: (a) Emergency stops. (1) When retort jams or breakdowns occur...

  10. 9 CFR 381.308 - Deviations in processing.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) must be handled according to: (1)(i) A HACCP plan for canned product that addresses hazards associated... (d) of this section. (c) [Reserved] (d) Procedures for handling process deviations where the HACCP... accordance with the following procedures: (a) Emergency stops. (1) When retort jams or breakdowns occur...

  11. 118. VIEW, LOOKING SOUTHWEST OF GOLD AMALGAMATION ROOM, SHOWING AMALGAMATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    118. VIEW, LOOKING SOUTHWEST OF GOLD AMALGAMATION ROOM, SHOWING AMALGAMATION BARREL AT CENTER FOREGROUND, BULLION FURNACE IN LARGE HOOD BEHIND IT, AND GOLD RETORT IN BACKGROUND HOOD. NOTE OVERHEAD MONORAIL FOR MATERIALS HANDLING. - Shenandoah-Dives Mill, 135 County Road 2, Silverton, San Juan County, CO

  12. 43 CFR 3935.10 - Accounting records.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... processing plant and retort; (3) Mineral products produced and sold; (4) Shale oil products, shale gas, and... mined or processed and of all products including synthetic petroleum, shale oil, shale gas, and shale..., DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) MANAGEMENT OF OIL SHALE EXPLORATION AND LEASES Production...

  13. A "Retort Courteous."

    ERIC Educational Resources Information Center

    Kingsbury, Mary E.

    1979-01-01

    Responds to article by Pauline Wilson (School Library Journal, v25 n6 Feb 1979) in terms of defining the role of children's librarians, clarifying the goals of children's services, making a case for such services, improving the impression made by children's librarians, determining appropriate preparation, and understanding and achieving quality…

  14. 43 CFR 3922.20 - Application contents.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., and transportation methods, including: (1) A description of the mining, retorting, or in situ mining... applications must be filed in the proper BLM State Office. No specific form of application is required, but the... is substantially identical to a technology or method currently in use to produce marketable...

  15. 43 CFR 3922.20 - Application contents.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., and transportation methods, including: (1) A description of the mining, retorting, or in situ mining... applications must be filed in the proper BLM State Office. No specific form of application is required, but the... is substantially identical to a technology or method currently in use to produce marketable...

  16. 43 CFR 3922.20 - Application contents.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., and transportation methods, including: (1) A description of the mining, retorting, or in situ mining... applications must be filed in the proper BLM State Office. No specific form of application is required, but the... is substantially identical to a technology or method currently in use to produce marketable...

  17. 43 CFR 3922.20 - Application contents.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., and transportation methods, including: (1) A description of the mining, retorting, or in situ mining... applications must be filed in the proper BLM State Office. No specific form of application is required, but the... is substantially identical to a technology or method currently in use to produce marketable...

  18. The Effects of Long Duration Bed Rest on Functional Mobility and Balance: Relationship to Resting State Motor Cortex Connectivity

    NASA Technical Reports Server (NTRS)

    Erdeniz, B.; Koppelmans, V.; Bloomberg, J. J.; Kofman, I. S.; DeDios, Y. E.; Riascos-Castaneda, R. F.; Wood, S. J.; Mulavara, A. P.; Seidler, R. D.

    2014-01-01

    NASA offers researchers from a variety of backgrounds the opportunity to study bed rest as an experimental analog for space flight. Extended exposure to a head-down tilt position during long duration bed rest can resemble many of the effects of a low-gravity environment such as reduced sensory inputs, body unloading and increased cephalic fluid distribution. The aim of our study is to a) identify changes in brain function that occur with prolonged bed rest and characterize their recovery time course; b) assess whether and how these changes impact behavioral and neurocognitive performance. Thus far, we completed data collection from six participants that include task based and resting state fMRI. The data have been acquired through the bed rest facility located at the University of Texas Medical Branch (Galveston, TX). Subjects remained in bed with their heads tilted down 6 degrees below their feet for 70 consecutive days. Behavioral measures and neuroimaging assessments were obtained at seven time points: a) 7 and 12 days before bed rest; b) 7, 30, and 65 days during bed rest; and c) 7 and 12 days after bed rest. Functional connectivity magnetic resonance imaging (FcMRI) analysis was performed to assess the connectivity of motor cortex in and out of bed rest. We found a decrease in motor cortex connectivity with vestibular cortex and the cerebellum from pre bed rest to in bed rest. We also used a battery of behavioral measures including the functional mobility test and computerized dynamic posturography collected before and after bed rest. We will report the preliminary results of analyses relating brain and behavior changes. Furthermore, we will also report the preliminary results of a spatial working memory task and vestibular stimulation during in and out of bed rest.

  19. The Flu (For Kids)

    MedlinePlus

    ... town. If your doctor says you have the flu, start taking these steps to feel better: Rest in bed or on the couch. Drink lots of liquids, like water, chicken broth, and other fluids. Take the medicine your ...

  20. Petrology and geochemistry of samples from bed-contact zones in Tunnel Bed 5, U12g-Tunnel, Nevada Test Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connolly, J.R.; Keil, K.; Mansker, W.L.

    1984-10-01

    This report summarizes the detailed geologic characterization of samples of bed-contact zones and surrounding nonwelded bedded tuffs, both within Tunnel Bed 5, that are exposed in the G-Tunnel complex beneath Rainier Mesa on the Nevada Test Site (NTS). Original planning studies treated the bed-contact zones in Tunnel Bed 5 as simple planar surfaces of relatively high permeability. Detailed characterization, however, indicates that these zones have a finite thickness, are depositional in origin, vary considerably over short vertical and horizontal distances, and are internally complex. Fluid flow in a sequence of nonwelded zeolitized ash-flow or bedded tuffs and thin intervening reworkedmore » zones appears to be a porous-medium phenomenon, regardless of the presence of layering. There are no consistent differences in either bulk composition or detailed mineralogy between bedded tuffs and bed-contact zones in Tunnel Bed 5. Although the original bulk composition of Tunnel Bed 5 was probably peralkaline, extensive zeolitization has resulted in a present peraluminous bulk composition of both bedded tuffs and bed-contact zones. The major zeolite present, clinoptilolite, is intermediate (Ca:K:Na = 26:35:39) and effectively uniform in composition. This composition is similar to that of clinoptilolite from the tuffaceous beds of Calico Hills above the static water level in hole USW G-1, but somewhat different from that reported for zeolites from below the static water level in USW G-2. Tunnel Bed 5 also contains abundant hydrous manganese oxides. The similarity in composition of the clinoptilolites from Tunnel Bed 5 and those above the static water level at Yucca Mountain indicates that many of the results of nuclide-migration experiments in Tunnel Bed 5 would be transferrable to zeolitized nonwelded tuffs above the static water level at Yucca Mountain.« less

  1. Heat transfer in freeboard region of fluidized beds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biyikli, S.; Tuzla, K.; Chen, J.C.

    1983-10-01

    This research involved the study of heat transfer and fluid mechanic characteristics around a horizontal tube in the freeboard region of fluidized beds. Heat transfer coefficients were experimetnally measured for different bed temperatures, particle sizes, gas flow rates, and tube elevations in the freeboard region of air fluidized beds at atmospheric pressure. Local heat transfer coefficients were found to vary significantly with angular position around the tube. Average heat transfer coefficients were found to decrease with increasing freeboard tube elevation and approach the values for gas convection plus radiation for any given gas velocity. For a fixed tube elevation, heatmore » transfer coefficients generally increased with increasing gas velocity and with high particle entrainment they can approach the magnitudes found for immersed tubes. Heat transfer coefficients were also found to increase with increasing bed temperature. It was concluded that this increase is partly due to increase of radiative heat transfer and partly due to change of thermal properties of the fluidizing gas and particles. To investigate the fluid mechanic behavior of gas and particles around a freeboard tube, transient particle tube contacts were measured with a special capacitance probe in room temperature experiments. The results indicated that the tube surface experiences alternating dense and lean phase contacts. Quantitative information for local characteristics was obtained from the capacitance signals and used to develop a phenomenological model for prediction of the heat transfer coefficients around freeboard tubes. The packet renewal theory was modified to account for the dense phase heat transfer and a new model was suggested for the lean phase heat transfer. Finally, an empirical freeboard heat transfer correlation was developed from functional analysis of the freeboard heat transfer data using nondimensional groups representing gas velocity and tube elevation.« less

  2. Kinetic theory-based numerical modeling and analysis of bi-disperse segregated mixture fluidized bed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konan, N. A.; Huckaby, E. D.

    We discuss a series of continuum Euler-Euler simulations of an initially mixed bi-disperse fluidized bed which segregates under certain operating conditions. The simulations use the multi-phase kinetic theory-based description of the momentum and energy exchanges between the phases by Simonin’s Group [see e.g. Gourdel, Simonin and Brunier (1999). Proceedings of 6th International Conference on Circulating Fluidized Beds, Germany, pp. 205-210]. The discussion and analysis of the results focus on the fluid-particle momentum exchange (i.e. drag). Simulations using mono- and poly-disperse fluid-particle drag correlations are analyzed for the Geldart D-type size bi-disperse gas-solid experiments performed by Goldschmidt et al. [Powder Tech.,more » pp. 135-159 (2003)]. The poly-disperse gas-particle drag correlations account for the local particle size distribution by using an effective mixture diameter when calculating the Reynolds number and then correcting the resulting force coefficient. Simulation results show very good predictions of the segregation index for bidisperse beds with the mono-disperse drag correlations contrary to the poly-disperse drag correlations for which the segregation rate is systematically under-predicted. The statistical analysis of the results shows a clear separation in the distribution of the gas-particle mean relaxation times of the small and large particles with simulations using the mono-disperse drag. In contrast, the poly-disperse drag simulations have a significant overlap and also a smaller difference in the mean particle relaxation times. This results in the small and large particles in the bed to respond to the gas similarly without enough relative time lag. The results suggest that the difference in the particle response time induce flow dynamics favorable to a force imbalance which results in the segregation.« less

  3. Kinetic theory-based numerical modeling and analysis of bi-disperse segregated mixture fluidized bed

    DOE PAGES

    Konan, N. A.; Huckaby, E. D.

    2017-06-21

    We discuss a series of continuum Euler-Euler simulations of an initially mixed bi-disperse fluidized bed which segregates under certain operating conditions. The simulations use the multi-phase kinetic theory-based description of the momentum and energy exchanges between the phases by Simonin’s Group [see e.g. Gourdel, Simonin and Brunier (1999). Proceedings of 6th International Conference on Circulating Fluidized Beds, Germany, pp. 205-210]. The discussion and analysis of the results focus on the fluid-particle momentum exchange (i.e. drag). Simulations using mono- and poly-disperse fluid-particle drag correlations are analyzed for the Geldart D-type size bi-disperse gas-solid experiments performed by Goldschmidt et al. [Powder Tech.,more » pp. 135-159 (2003)]. The poly-disperse gas-particle drag correlations account for the local particle size distribution by using an effective mixture diameter when calculating the Reynolds number and then correcting the resulting force coefficient. Simulation results show very good predictions of the segregation index for bidisperse beds with the mono-disperse drag correlations contrary to the poly-disperse drag correlations for which the segregation rate is systematically under-predicted. The statistical analysis of the results shows a clear separation in the distribution of the gas-particle mean relaxation times of the small and large particles with simulations using the mono-disperse drag. In contrast, the poly-disperse drag simulations have a significant overlap and also a smaller difference in the mean particle relaxation times. This results in the small and large particles in the bed to respond to the gas similarly without enough relative time lag. The results suggest that the difference in the particle response time induce flow dynamics favorable to a force imbalance which results in the segregation.« less

  4. Focal Gray Matter Plasticity as a Function of Long Duration Head Down Tilted Bed Rest: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Koppelmans, V.; Erdeniz, B.; DeDios, Y. E.; Wood, S. J.; Reuter-Lorenz, P. A.; Kofman, I.; Bloomberg, J. J.; Mulavara, A. P.; Seidler, R. D.

    2014-01-01

    Long duration spaceflight (i.e., 22 days or longer) has been associated with changes in sensorimotor systems, resulting in difficulties that astronauts experience with posture control, locomotion, and manual control. The microgravity environment is an important causal factor for spaceflight induced sensorimotor changes. Whether these sensorimotor changes are solely related to peripheral changes from reduced vestibular stimulation, body unloading, body fluid shifts or that they may be related to structural and functional brain changes is yet unknown. However, a recent study reported associations between microgravity and flattening of the posterior eye globe and protrusion of the optic nerve [1] possibly as the result of increased intracranial pressure due to microgravity induced bodily fluid shifts [3]. Moreover, elevated intracranial pressure has been related to white matter microstructural damage [2]. Thus, it is possible that spaceflight may affect brain structure and thereby cognitive functioning. Long duration head down tilt bed rest has been suggested as an exclusionary analog to study microgravity effects on the sensorimotor system [4]. Bed rest mimics microgravity in body unloading and bodily fluid shifts. In consideration of the health and performance of crewmembers both in- and post-flight, we are conducting a prospective longitudinal 70-day bed rest study as an analog to investigate the effects of microgravity on brain structure [5]. Here we present results of the first six subjects. Six subjects were assessed at 12 and 7 days before-, at 7, 30, and 70 days in-, and at 8 and 12 days post 70 days of bed rest at the NASA bed rest facility in UTMB, Galveston, TX, USA. At each time point structural MRI scans (i.e., high resolution T1-weighted imaging and Diffusion Tensor Imaging (DTI)) were obtained using a 3T Siemens scanner. Focal changes over time in gray matter density were assessed using the voxel based morphometry 8 (VBM8) toolbox under SPM. Longitudinal processing in VBM8 includes linear registration of each scan to the mean of the subject and subsequently transforming all scans in to MNI space by applying the warp from the mean subject to MNI to the individual gray matter segmentations. Modulation was applied so that all images represented the volume of the original structure in native space. Voxel wise analysis was carried out on the gray matter images after smoothing, using a flexible factorial design with family wise error correction. Focal changes in white matter microstructural integrity were assessed using tract based spatial statistics (TBSS) as part of FMRIB software library (FSL). TBSS registers all DTI scans to standard space. It subsequently creates a study specific white matter skeleton of the major white matter tracts. For each subject, for each DTI metric (i.e. fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD)), the maximum value in a line perpendicular to the skeleton tract is projected to the skeleton. Non-parametric permutation based t-tests and ANOVA's were used for voxel-wise comparison of the skeletons. For both VBM and TBSS, comparison of pre bed rest measurements did not show significant differences. VBM analysis revealed decreased gray matter density in bilateral areas including the frontal medial cortex, the insular cortex and the caudate (see Figure) from 'pre to in bed rest'. Over the same time period, there was an increase in gray matter density in the cerebellum, occipital-, and parietal cortex, including the precuneus (see Figure). The majority of these changes did not recover from 'during to post bed rest'. TBSS analysis did not reveal significant changes in white matter microstructural integrity after correction for multiple comparisons. Uncorrected analyses (p<.015) revealed an increase in RD in the cerebellum and brainstem from pre bed rest to the first week in bed rest that did not recover post bed rest. Extended bed rest, which is an analog for microgravity, can result in gray matter changes and potentially in microstructural white matter changes in areas that are important for neuro motor behavior and cognition. These changes did not recover at two weeks post bed rest. Whether the effects of bed rest wear off at longer times post bed rest, and if they are associated with behavior are important questions that warrant further research.

  5. Characterization and evaluation of the novel agarose-nickel composite matrix for possible use in expanded bed adsorption of bio-products.

    PubMed

    Rezvani, Azita; Jahanshahi, Mohsen; Najafpour, Ghasem D

    2014-02-28

    Agarose-nickel (Ag-Ni) composite matrix was evaluated for its use in expanded bed adsorption (EBA). Bovine serum albumin (BSA) and lysozyme were used as model proteins in batch and column adsorption studies. Accordingly, Reactive Green 19 (RG19) dye-ligand was covalently immobilized onto the support matrix to prepare affinity adsorbent for protein adsorption. Results were then compared with data obtained from Streamline commercial matrix. In batch experiments RG19 derivatives of Ag-Ni (RG19-Ag-Ni) exhibited high adsorption rate; and also a higher binding capacity of BSA (31.4mg/ml adsorbent) was observed for Ag-Ni compared to the commercial adsorbent. More than 70% of the adsorption capacity was achieved within 30min which is a reasonable contact time for EBA operations. The equilibrium adsorption data well agreed with Langmuir isotherm model. The expanded bed adsorption studies showed a reasonable breakthrough behavior at high flow rates and a higher dynamic binding capacity (DBC) was obtained for novel matrix in compare to streamline at the same fluid velocity. DBC at 10% breakthrough reached 66% of the saturated adsorption capacity at the high flow velocity of 450cm/h which indicates the favorable column efficiency. Additionally, two different Ag-Ni size fractions (75-150 and 150-300μm) were examined to investigate the expanded bed performance dependency on the adsorbent particle size with respect to the hydrodynamic stability and adsorption properties using lysozyme as model protein. Interestingly, the small ones showed less axial dispersion coefficient (<1.0×10(-5)m(2)/s) which resulted in higher bed stability in high fluid viscosities. Overall, the adsorption experiments results demonstrated that small size fraction of Ag-Ni matrices acts more effectively for expanded bed adsorption of bio-molecules. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Assessing the Potential for Sediment Gravity-Driven Underflows at the Currently Active Mouth of the Huanghe Delta

    NASA Astrophysics Data System (ADS)

    Mullane, M.; Kumpf, L. L.; Kineke, G. C.

    2017-12-01

    The Huanghe (Yellow River), once known for extremely high suspended-sediment concentrations (SSCs) that could produce hyperpycnal plumes (10s of g/l), has experienced a dramatic reduction in sediment load following the construction of several reservoirs, namely the Xiaolangdi reservoir completed in 1999. Except for managed flushing events, SSC in the lower river is now on the order of 1 g/l or less. Adaptations of the Chezy equation for gravity-driven transport show that dominant parameters driving hyperpycnal underflows include concentration (and therefore density), thickness of a sediment-laden layer and bed slope. The objectives of this research were to assess the potential for gravity-driven underflows given modern conditions at the active river mouth. Multiple shore-normal transects were conducted during research cruises in mid-July of 2016 and 2017 using a Knudsen dual-frequency echosounder to collect bathymetric data and to document the potential presence of fluid mud layers. An instrumented profiling tripod equipped with a CTD, optical backscatterance sensor and in-situ pump system were used to sample water column parameters. SSCs were determined from near-bottom and surface water samples. Echosounder data were analyzed for bed slopes at the delta-front and differences in depth of return for the two frequencies (50 and 200 kHz), which could indicate fluid muds. Bathymetric data analysis yielded bed slope measurements near or above threshold values to produce gravity-driven underflows (0.46°). The maximum observed thickness of a potential fluid mud layer was 0.7 m, and the highest sampled near-bed SSCs were nearly 14 g/l for both field campaigns. These results indicate that the modern delta maintains potential for sediment gravity-driven underflows, even during ambient conditions prior to maximum summer discharge. These results will inform future work quantitatively comparing the contributions of all sediment dispersal mechanisms near the active Huanghe delta environment, including advection of the buoyant river plume and wave resuspension and transport by tidal currents.

  7. Radiant energy and insensible water loss in the premature newborn infant nursed under a radiant warmer.

    PubMed

    Baumgart, S

    1982-10-01

    Radiant warmers are a powerful and efficient source of heat serving to warm the cold-stressed infant acutely and to provide uninterrupted maintenance of body temperature despite a multiplicity of nursing, medical, and surgical procedures required to care for the critically ill premature newborn in today's intensive care nursery. A recognized side-effect of radiant warmer beds is the now well-documented increase in insensible water loss through evaporation from an infant's skin. Particularly the very-low-birth-weight, severely premature, and critically ill neonate is subject to this increase in evaporative water loss. The clinician caring for the infant is faced with the difficult problem of fluid and electrolyte balance, which requires vigilant monitoring of all parameters of fluid homeostasis. Compounding these difficulties, other portions of the electromagnetic spectrum (for example, phototherapy) may affect an infant's fluid metabolism by mechanisms that are not well understood. The role of plastic heat shielding in reducing large insensible losses in infants nursed on radiant warmer beds is currently under intense investigation. Apparently, convective air currents and not radiant heat energy may be the cause of the observed increase in insensible water loss in the intensive care nursery. A thin plastic blanket may be effective in reducing evaporative water loss by diminishing an infant's exposure to convective air currents while being nursed on an open radiant warmer bed. A rigid plastic body hood, although effective as a radiant heat shield, is not as effective in preventing exposure to convection in the intensive care nursery and, therefore, is not as effective as the thin plastic blanket in reducing insensible water loss. Care should be exercised in determining the effect of heat shielding on all parameters of heat exchange (convection, evaporation, and radiation) before application is made to the critically ill premature infant nursed on an open radiant warmer bed.

  8. 21 CFR 113.87 - Operations in the thermal processing room.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Section 113.87 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION THERMALLY PROCESSED LOW-ACID FOODS PACKAGED IN HERMETICALLY SEALED... Food and Drug Administration. (b) A system for product traffic control in the retort room shall be...

  9. 21 CFR 113.87 - Operations in the thermal processing room.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Section 113.87 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION THERMALLY PROCESSED LOW-ACID FOODS PACKAGED IN HERMETICALLY SEALED... Administration. (b) A system for product traffic control in the retort room shall be estab-lished to prevent...

  10. 121. FRONT ELEVATION OF TELLURIDE IRON WORKS 2.5 BY 4FOOT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    121. FRONT ELEVATION OF TELLURIDE IRON WORKS 2.5 BY 4-FOOT RETORT, USED TO FLASH MERCURY FROM GOLD. MERCURY VAPOR THEN CONDENSED ON INSIDE OF HOOD AND WAS COLLECTED FOR REUSE. - Shenandoah-Dives Mill, 135 County Road 2, Silverton, San Juan County, CO

  11. CONTROL OF SULFUR EMISSIONS FROM OIL SHALE RETORTING USING SPEND SHALE ABSORPTION

    EPA Science Inventory

    The paper gives results of a detailed engineering evaluation of the potential for using an absorption on spent shale process (ASSP) for controlling sulfur emissions from oil shale plants. The evaluation analyzes the potential effectiveness and cost of absorbing SO2 on combusted s...

  12. Assessment of TAMU Rack Material in Poly Tray Racks using Spray Retort

    DTIC Science & Technology

    2009-07-01

    FOR ADVANCED FOOD TECHNOLOGY The School of Enviromental and Biological Science Rutgers, The State University of New Jersey New Brunswick, New Jersey...A003 Mr. Henderikus B. Bruins Rutgers, The State University of New Jersey The Center for Advanced Food Technology School of Enviromental and

  13. Letters of a Slave Turned Union Soldier.

    ERIC Educational Resources Information Center

    Humanities, 1990

    1990-01-01

    Discusses the influx of Black soldiers into the Union army following the Emancipation Proclamation. Concentrates on the case of Private Spotswood Rice. Provides a short history of Rice, including copies of Rice's letters to his enslaved daughters, the daughter's slaveholders, and an angry retort from the slaveowner to the federal commander in…

  14. 9 CFR 381.300 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... of air from a retort before the start of process timing. (x) Water activity. The ratio of the water vapor pressure of the product to the vapor pressure of pure water at the same temperature. ... throughout the entire thermal process. (d) Canned product. A poultry food product with a water activity above...

  15. 9 CFR 381.300 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... of air from a retort before the start of process timing. (x) Water activity. The ratio of the water vapor pressure of the product to the vapor pressure of pure water at the same temperature. ... throughout the entire thermal process. (d) Canned product. A poultry food product with a water activity above...

  16. 9 CFR 318.300 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... of air from a retort before the start of process timing. (x) Water activity. The ratio of the water vapor pressure of the product to the vapor pressure of pure water at the same temperature. ... with a water activity above 0.85 which receives a thermal process either before or after being packed...

  17. 9 CFR 318.300 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... of air from a retort before the start of process timing. (x) Water activity. The ratio of the water vapor pressure of the product to the vapor pressure of pure water at the same temperature. ... with a water activity above 0.85 which receives a thermal process either before or after being packed...

  18. 9 CFR 381.300 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... of air from a retort before the start of process timing. (x) Water activity. The ratio of the water vapor pressure of the product to the vapor pressure of pure water at the same temperature. ... throughout the entire thermal process. (d) Canned product. A poultry food product with a water activity above...

  19. 9 CFR 318.300 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... of air from a retort before the start of process timing. (x) Water activity. The ratio of the water vapor pressure of the product to the vapor pressure of pure water at the same temperature. ... with a water activity above 0.85 which receives a thermal process either before or after being packed...

  20. 9 CFR 318.300 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... of air from a retort before the start of process timing. (x) Water activity. The ratio of the water vapor pressure of the product to the vapor pressure of pure water at the same temperature. ... with a water activity above 0.85 which receives a thermal process either before or after being packed...

  1. 9 CFR 381.300 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... of air from a retort before the start of process timing. (x) Water activity. The ratio of the water vapor pressure of the product to the vapor pressure of pure water at the same temperature. ... throughout the entire thermal process. (d) Canned product. A poultry food product with a water activity above...

  2. 9 CFR 381.300 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... of air from a retort before the start of process timing. (x) Water activity. The ratio of the water vapor pressure of the product to the vapor pressure of pure water at the same temperature. ... throughout the entire thermal process. (d) Canned product. A poultry food product with a water activity above...

  3. 9 CFR 318.300 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... of air from a retort before the start of process timing. (x) Water activity. The ratio of the water vapor pressure of the product to the vapor pressure of pure water at the same temperature. ... with a water activity above 0.85 which receives a thermal process either before or after being packed...

  4. 7 CFR 98.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., READY-TO-EAT (MRE's), MEATS, AND MEAT PRODUCTS MRE's, Meats, and Related Meat Food Products § 98.2... acceptable one meal serving, retorted pouched or 18-24 serving hermetically-sealed tray packed meat, or meal... operational food rations, and as an item of general issue by the military. Meat. This includes the edible part...

  5. A computational investigation of the interstitial flow induced by a variably thick blanket of very fine sand covering a coarse sand bed

    NASA Astrophysics Data System (ADS)

    Bartzke, Gerhard; Huhn, Katrin; Bryan, Karin R.

    2017-10-01

    Blanketed sediment beds can have different bed mobility characteristics relative to those of beds composed of uniform grain-size distribution. Most of the processes that affect bed mobility act in the direct vicinity of the bed or even within the bed itself. To simulate the general conditions of analogue experiments, a high-resolution three-dimensional numerical `flume tank' model was developed using a coupled finite difference method flow model and a discrete element method particle model. The method was applied to investigate the physical processes within blanketed sediment beds under the influence of varying flow velocities. Four suites of simulations, in which a matrix of uniform large grains (600 μm) was blanketed by variably thick layers of small particles (80 μm; blanket layer thickness approx. 80, 350, 500 and 700 μm), were carried out. All beds were subjected to five predefined flow velocities ( U 1-5=10-30 cm/s). The fluid profiles, relative particle distances and porosity changes within the bed were determined for each configuration. The data show that, as the thickness of the blanket layer increases, increasingly more small particles accumulate in the indentations between the larger particles closest to the surface. This results in decreased porosity and reduced flow into the bed. In addition, with increasing blanket layer thickness, an increasingly larger number of smaller particles are forced into the pore spaces between the larger particles, causing further reduction in porosity. This ultimately causes the interstitial flow, which would normally allow entrainment of particles in the deeper parts of the bed, to decrease to such an extent that the bed is stabilized.

  6. Discrete Element Modeling of the Mobilization of Coarse Gravel Beds by Finer Gravel Particles

    NASA Astrophysics Data System (ADS)

    Hill, K. M.; Tan, D.

    2012-12-01

    Recent research has shown that the addition of fine gravel particles to a coarse bed will mobilize the coarser bed, and that the effect is sufficiently strong that a pulse of fine gravel particles can mobilize an impacted coarser bed. Recent flume experiments have demonstrated that the degree of bed mobilization by finer particles is primarily dependent on the particle size ratio of the coarse and fine particles, rather than absolute size of either particle, provided both particles are sufficiently large. However, the mechanism behind the mobilization is not understood. It has previously been proposed that the mechanism is driven by a combination of geometric effects and hydraulic effects. For example, it has been argued that smaller particles fill in gaps along the bed, resulting in a smoother bed over which the larger particles are less likely to be disentrained and a reduced near-bed flow velocity and subsequent increased drag on protruding particles. Altered near-bed turbulence has also been cited as playing an important role. We perform simulations using the discrete element method with one-way fluid-solid coupling to conduct simulations of mobilization of a gravel bed by fine gravel particles. By independently and artificially controlling average and fluctuating velocity profiles, we systematically investigate the relative role that may be played by particle-particle interactions, average near-bed velocity profiles, and near-bed turbulence statistics. The simulations indicate that the relative importance of these mechanisms changes with the degree of mobilization of the bed. For higher bed mobility similar to bed sheets, particle-particle interactions, plays a significant role in an apparent rheology in the bed sheets, not unlike that observed in a dense granular flow of particles of different sizes. For conditions closer to a critical shear stress for bedload transport, the near-bed velocity profiles and turbulence statistics become increasingly important.

  7. Design and evaluation of fluidized bed heat recovery for diesel engine systems

    NASA Technical Reports Server (NTRS)

    Hamm, J. R.; Newby, R. A.; Vidt, E. J.; Lippert, T. E.

    1985-01-01

    The potential of utilizing fluidized bed heat exchangers in place of conventional counter-flow heat exchangers for heat recovery from adiabatic diesel engine exhaust gas streams was studied. Fluidized bed heat recovery systems were evaluated in three different heavy duty transport applications: (1) heavy duty diesel truck; (2) diesel locomotives; and (3) diesel marine pushboat. The three applications are characterized by differences in overall power output and annual utilization. For each application, the exhaust gas source is a turbocharged-adiabatic diesel core. Representative subposed exhaust gas heat utilization power cycles were selected for conceptual design efforts including design layouts and performance estimates for the fluidized bed heat recovery heat exchangers. The selected power cycles were: organic rankine with RC-1 working fluid, turbocompound power turbine with steam injection, and stirling engine. Fuel economy improvement predictions are used in conjunction with capital cost estimates and fuel price data to determine payback times for the various cases.

  8. Effect of finite container size on granular jet formation

    NASA Astrophysics Data System (ADS)

    von Kann, Stefan; Joubaud, Sylvain; Caballero-Robledo, Gabriel A.; Lohse, Detlef; van der Meer, Devaraj

    2010-04-01

    When an object is dropped into a bed of fine, loosely packed sand, a surprisingly energetic jet shoots out of the bed. In this work we study the effect that boundaries have on the granular jet formation. We did this by (i) decreasing the depth of the sand bed and (ii) reducing the container diameter to only a few ball diameters. These confinements change the behavior of the ball inside the bed, the void collapse, and the resulting jet height and shape. We map the parameter space of impact with Froude number, ambient pressure, and container dimensions as parameters. From these results we propose an explanation for the thick-thin structure of the jet reported by several groups ([J. R. Royer , Nat. Phys. 1, 164 (2005)], [G. Caballero , Phys. Rev. Lett. 99, 018001 (2007)], and [J. O. Marston , Phys. Fluids 20, 023301 (2008)]).

  9. Insights from in-situ X-ray computed tomography during axial impregnation of unidirectional fiber beds

    DOE PAGES

    Larson, Natalie M.; Zok, Frank W.

    2017-12-27

    In-situ X-ray computed tomography during axial impregnation of unidirectional fiber beds is used to study coupled effects of fluid velocity, fiber movement and preferred flow channeling on permeability. Here, in order to interpret the experimental measurements, a new computational tool for predicting axial permeability of very large 2D arrays of non-uniformly packed fibers is developed. The results show that, when the impregnation velocity is high, full saturation is attained behind the flow front and the fibers rearrange into a less uniform configuration with higher permeability. In contrast, when the velocity is low, fluid flows preferentially in the narrowest channels betweenmore » fibers, yielding unsaturated permeabilities that are lower than those in the saturated state. Lastly, these insights combined with a new computational tool will enable improved prediction of permeability, ultimately for use in optimization of composite manufacturing via liquid impregnation.« less

  10. Insights from in-situ X-ray computed tomography during axial impregnation of unidirectional fiber beds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, Natalie M.; Zok, Frank W.

    In-situ X-ray computed tomography during axial impregnation of unidirectional fiber beds is used to study coupled effects of fluid velocity, fiber movement and preferred flow channeling on permeability. Here, in order to interpret the experimental measurements, a new computational tool for predicting axial permeability of very large 2D arrays of non-uniformly packed fibers is developed. The results show that, when the impregnation velocity is high, full saturation is attained behind the flow front and the fibers rearrange into a less uniform configuration with higher permeability. In contrast, when the velocity is low, fluid flows preferentially in the narrowest channels betweenmore » fibers, yielding unsaturated permeabilities that are lower than those in the saturated state. Lastly, these insights combined with a new computational tool will enable improved prediction of permeability, ultimately for use in optimization of composite manufacturing via liquid impregnation.« less

  11. Dynamic bed reactor

    DOEpatents

    Stormo, Keith E.

    1996-07-02

    A dynamic bed reactor is disclosed in which a compressible open cell foam matrix is periodically compressed and expanded to move a liquid or fluid through the matrix. In preferred embodiments, the matrix contains an active material such as an enzyme, biological cell, chelating agent, oligonucleotide, adsorbent or other material that acts upon the liquid or fluid passing through the matrix. The active material may be physically immobilized in the matrix, or attached by covalent or ionic bonds. Microbeads, substantially all of which have diameters less than 50 microns, can be used to immobilize the active material in the matrix and further improve reactor efficiency. A particularly preferred matrix is made of open cell polyurethane foam, which adsorbs pollutants such as polychlorophenol or o-nitrophenol. The reactors of the present invention allow unidirectional non-laminar flow through the matrix, and promote intimate exposure of liquid reactants to active agents such as microorganisms immobilized in the matrix.

  12. Quantifying fluid and bed dynamics for characterizing benthic physical habitat in large rivers

    USGS Publications Warehouse

    Gaeuman, D.; Jacobson, R.B.

    2007-01-01

    Sturgeon use benthic habitats in and adjacent to main channels where environmental conditions can include bedload sediment transport and high near-bed flow velocities. Bed velocity measurements obtained with acoustic Doppler instruments provide a means to assess the concentration and velocity of sediment moving near the streambed, and are thus indicative of the bedload sediment transport rate, the near-bed flow velocity, and the stability of the substrate. Acoustic assessments of benthic conditions in the Missouri River were conducted at scales ranging from the stream reach to individual bedforms. Reach-scale results show that spatially-averaged bed velocities in excess of 0.5 m s-1 frequently occur in the navigation channel. At the local scale, bed velocities are highest near bedform crests, and lowest in the troughs. Low-velocity zones can persist in areas with extremely high mean bed velocities. Use of these low-velocity zones may allow sturgeon to make use of portions of the channel where the average conditions near the bed are severe. To obtain bed velocity measurements of the highest possible quality, it is necessary to extract bottom-track and GPS velocity information from the raw ADCP data files on a ping-by-ping basis. However, bed velocity measured from a point can also be estimated using a simplified method that is more easily implemented in the context of routine monitoring. The method requires only the transect distance and direction data displayed in standard ADCP data-logging software. Bed velocity estimates obtained using this method are usually within 5-10% of estimates obtained from ping-by-ping processing. ?? 2007 Blackwell Verlag.

  13. Water resources and potential hydrologic effects of oil-shale development in the southeastern Uinta Basin, Utah and Colorado

    USGS Publications Warehouse

    Lindskov, K.L.; Kimball, B.A.

    1984-01-01

    Proposed oil-shale mining in northeastern Utah is expected to impact the water resources of a 3,000-square-mile area. This report summarizes a comprehensive hydrologic investigation of the area which resulted in 13 published reports. Hydrologic information obtained during 1974-80 was used to evaluate the availability of water and to evaluate potential impacts of an oil-shale industry on the water resources.The study area is the southeastern part of the Uinta Basin, Utah and Colorado, where the hydrology is extremely variable. The normal annual precipitation averages 11 inches and varies with altitude. It ranges from less than 8 inches at altitudes below 5,000 feet along the White and Green Rivers to more than 20 inches where altitudes exceed 9,000 feet on the Roan Plateau.The White and Green Rivers are large streams that flow through the area. They convey an average flow of 4.3 million acre-feet per year from outside drainage areas of about 34,000 square miles, which is more than 150 times as much flow as that originating within the area. Streams originating in areas where precipitation is less than 10 inches are ephemeral. Mean annual runoff from the study area is about 28,000 acre-feet and ranges from less than 0.1 to 1.6 inches, depending on the location. At any given site, runoff varies greatly-from year to year and season to season. Potential evapotranspiration is large, exceeding precipitation in all years. Three major aquifers occur in the area. They are alluvial deposits of small areal extent along the major stream valleys; the bird's-nest aquifer of the Parachute Creek Member of the Green River Formation, which is limited to the central part of the study area; and the Douglas Creek aquifer of the Douglas Creek Member of the Green River Formation, which underlies most of the area. Total recoverable water in storage in the three aquifers is about 18 million acre-feet. Yields of individual wells and interference between wells limit the maximum practical withdrawal to about 20,000 acre-feet per year.An oil-shale industry in the southeastern Uinta Basin with a peak production of 400,000 barrels of oil per day would require a water supply of about 70,000 acre-feet per year. Sources of water supply considered for such an industry were: diversion from the natural flow of the White River, a proposed reservoir on the White River, diversion from the White River combined with proposed off-stream storage in Hells Hole Canyon, diversion from the Green River, and conjunctive use of ground and surface water.The proposed reservoir on the White River would trap about 90 percent of the sediment moving in the river and in turn would release almost sediment-free water. Possible impacts are changes in channel gradient in the downstream 18 miles of the White River and changes in bank stability. In some parts of the area, annual sheet-erosion rates are as great as 2.2 acre-feet per square mile but sediment yield to the White River is less than might be expected because the runoff is small. If process water from retort operations or water used in the construction of surface facilities is discharged into a normally dry streambed, increased channel erosion and sediment in tributary streams could result in increased sediment loads in the White River. In addition, sediment yields from retorted-shale piles with minimum slopes could exceed 0.1 acrefoot per square mile during a common storm. Thus, without safeguards, the useful life of any proposed reservoir or holding pond could be decreased considerably.Leachate water from retorted-shale piles has large concentrations of sodium and sulfate, and the chemical composition of retort waters differs considerably from that of the natural waters of the area. The retort waters contain a greater concentration of dissolved solids and more organic carbon and nutrients. Without proper disposal or impoundment of retort and leachate waters, the salinity of downstream waters in the Colorado River Basin would be increased.

  14. Experimental simulation of gravity currents in erodible bed

    NASA Astrophysics Data System (ADS)

    Bateman, A.; La Roca, M.; Medina, V.

    2009-04-01

    Gravity currents are commonly met in nature, when a flow of denser fluid moves into a less dense one. A typical example of a gravity current is given by the sea water which flows into the bottom of a river during the summer, in correspondence of the estuary, when the river's discharge attains low values. In this case, dangerous consequences can occur, because of the polluting of the aquifer caused by the salty water. Density currents also occurs in lakes and reservoirs, because of a change in temperature or because a flood, both can produce some environmental impacts that are of interest to the local water Agency of the different countries. Of particular relevance is also the interaction of the gravity current with the movement of the sediments from the bottom of the bed. The international state of the art is particularly concerned with experimental and numerical investigation on gravity currents on fixed and porous bed [1-2-3], while, to the authors' knowledge, the interaction of a gravity current with an erodible bed is still an open field of investigation. In this paper experiments concerning with the propagation of a gravity current over fixed and erodible bed are presented. The experiments, conducted at the laboratory of Hydraulics of the Universitat Politecnica de Catalunya (actually in the Prof. Bateman's blue room), were concerned with a transparent tank 2 m long, 0.2 m wide and 0.3 m deep, partly filled with salty water and partly with fresh water, up to a depth of 0.28 m. The salty water, whose density was in the range 1050

  15. Experimental and numerical investigation of a packed-bed thermal energy storage device

    NASA Astrophysics Data System (ADS)

    Yang, Bei; Wang, Yan; Bai, Fengwu; Wang, Zhifeng

    2017-06-01

    This paper presents a pilot-scale setup built to study a packed bed thermal energy storage device based on ceramic balls randomly poured into a cylindrical tank while using air as heat transfer fluid. Temperature distribution of ceramic balls throughout the packed bed is investigated both experimentally and numerically. Method of characteristic is adopted to improve the numerical computing efficiency, and mesh independence is verified to guarantee the accuracy of numerical solutions and the economy of computing time cost at the same time. Temperature in tests is as high as over 600 °C, and modeling prediction shows good agreements with experimental results under various testing conditions when heat loss is included and thermal properties of air are considered as temperature dependent.

  16. Experimental Study and CFD Simulation of a 2D Circulating Fluidized Bed

    NASA Astrophysics Data System (ADS)

    Kallio, S.; Guldén, M.; Hermanson, A.

    Computational fluid dynamics (CFD) gains popularity in fluidized bed modeling. For model validation, there is a need of detailed measurements under well-defined conditions. In the present study, experiments were carried out in a 40 em wide and 3 m high 2D circulating fluidized bed. Two experiments were simulated by means of the Eulerian multiphase models of the Fluent CFD software. The vertical pressure and solids volume fraction profiles and the solids circulation rate obtained from the simulation were compared to the experimental results. In addition, lateral volume fraction profiles could be compared. The simulated CFB flow patterns and the profiles obtained from simulations were in general in a good agreement with the experimental results.

  17. METHOD FOR SENSING DEGREE OF FLUIDIZATION IN FLUIDIZED BED

    DOEpatents

    Levey, R.P. Jr.; Fowler, A.H.

    1961-12-12

    A method is given for detecting, indicating, and controlling the degree of fluidization in a fluid-bed reactor into which powdered material is fed. The method comprises admitting of gas into the reactor, inserting a springsupported rod into the powder bed of the reactor, exciting the rod to vibrate at its resonant frequency, deriving a signal responsive to the amplitude of vibi-ation of the rod and spring, the signal being directiy proportional to the rate of flow of the gas through the reactor, displaying the signal to provide an indication of the degree of fluidization within the reactor, and controlling the rate of gas flow into the reactor until said signal stabilizes at a constant value to provide substantially complete fluidization within the reactor. (AEC)

  18. Dense granular flow rheology in turbulent bedload transport: from particle-scale simulations to continuous modelling

    NASA Astrophysics Data System (ADS)

    Maurin, R.; Chauchat, J.; Frey, P.

    2016-12-01

    Considering a granular bed submitted to a surface fluid flow, bedload transport is classically defined by opposition to suspension and aeolian saltation, as the part of the load in contact with the granular bed. The granular rheology in bedload transport is characteristic of the granular bed response to the fluid shear stress, and is fundamental both for the phenomenon understanding and for upscaling in the framework of two-phase continuous modelling. Using a validated coupled fluid-Discrete Element Model for turbulent bedload transport, the granular rheology is characterized by computing locally the granular stress tensor as a function of the depth for a serie of simulations varying the Shields number, the particle diameter and the specific density. The obtained results are analyzed in the framework of the mu(I) rheology and exhibit a collapse of the data over a wide range of inertial numbers. This shows the relevancy in modelling the granular phase in bedload transport using the mu(I) rheology. By pragmatically fitting the classical expression of the solid volume fraction and the shear to normal granular stress ratio with the results obtained, a parametrization of the mu(I) rheology is proposed for bedload transport, and tested using a 1D two-phase continuous model. The latter is shown to reproduce accurately the dense granular depth profiles, and the classical behavior in terms of dimensionless sediment transport rate as a function of the Shields number. The proposed rheology therefore represents an important step for upscaling in the framework of two-phase continuous modelling of bedload transport.

  19. Real-time process monitoring in a semi-continuous fluid-bed dryer - microwave resonance technology versus near-infrared spectroscopy.

    PubMed

    Peters, Johanna; Teske, Andreas; Taute, Wolfgang; Döscher, Claas; Höft, Michael; Knöchel, Reinhard; Breitkreutz, Jörg

    2018-02-15

    The trend towards continuous manufacturing in the pharmaceutical industry is associated with an increasing demand for advanced control strategies. It is a mandatory requirement to obtain reliable real-time information on critical quality attributes (CQA) during every process step as the decision on diversion of material needs to be performed fast and automatically. Where possible, production equipment should provide redundant systems for in-process control (IPC) measurements to ensure continuous process monitoring even if one of the systems is not available. In this paper, two methods for real-time monitoring of granule moisture in a semi-continuous fluid-bed drying unit are compared. While near-infrared (NIR) spectroscopy has already proven to be a suitable process analytical technology (PAT) tool for moisture measurements in fluid-bed applications, microwave resonance technology (MRT) showed difficulties to monitor moistures above 8% until recently. The results indicate, that the newly developed MRT sensor operating at four resonances is capable to compete with NIR spectroscopy. While NIR spectra were preprocessed by mean centering and first derivative before application of partial least squares (PLS) regression to build predictive models (RMSEP = 0.20%), microwave moisture values of two resonances sufficed to build a statistically close multiple linear regression (MLR) model (RMSEP = 0.07%) for moisture prediction. Thereby, it could be verified that moisture monitoring by MRT sensor systems could be a valuable alternative to NIR spectroscopy or could be used as a redundant system providing great ease of application. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Mathematical modeling of fluid-electrolyte alterations during weightlessness

    NASA Technical Reports Server (NTRS)

    Leonard, J. I.

    1984-01-01

    Fluid electrolyte metabolism and renal endocrine control as it pertains to adaptation to weightlessness were studied. The mathematical models that have been particularly useful are discussed. However, the focus of the report is on the physiological meaning of the computer studies. A discussion of the major ground based analogs of weightlessness are included; for example, head down tilt, water immersion, and bed rest, and a comparison of findings. Several important zero g phenomena are described, including acute fluid volume regulation, blood volume regulation, circulatory changes, longer term fluid electrolyte adaptations, hormonal regulation, and body composition changes. Hypotheses are offered to explain the major findings in each area and these are integrated into a larger hypothesis of space flight adaptation. A conceptual foundation for fluid electrolyte metabolism, blood volume regulation, and cardiovascular regulation is reported.

  1. Paleo-fluid flow in folded, poorly lithified Quaternary sediments revealed by diagenetic concretions developed during the growth of Quattro Castella Anticline (Northern Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Pizzati, Mattia; Balsamo, Fabrizio; Iacumin, Paola; Swennen, Rudy; Storti, Fabrizio

    2017-04-01

    Diagenetic concretions and mineral masses may provide a useful tool to better understand paleo-fluid flows in transforming porous media. Moreover, the selective cementation responsible of diagenetic alterations formation, plays a key role in diminishing sediments porosity and permeability and hence reservoir quality. In compressive settings of a fold-and-thrust-belt, the presence of deep or blind thrusts could lead to the generation of folds which may influence syn-kinematic sedimentation, deep fluids migration and shallow fluid flow pattern. In this contribution we present a multidisciplinary field and laboratory study on carbonate concretions developed in Quaternary poorly lithified, shallow marine syn-kinematic sediments of the Quattro Castella Anticline in Northern Apennines (Italy). The study site is located along the Enza River, where shallow marine to continental sediments are exposed along the forelimb of the fold nucleated during Late Miocene and still active today. Field mapping was aimed to link bedding attitude of syn-kinematic sediments with the geometry, arrangement, shape and size of concretionary bodies. The studied concretions are both tabular (i.e. parallel to sediment bedding) and elongate single or coalescent concretionary bodies (i.e. plunging at different angle to bedding dip throughout the stratigraphic section). Concretions dimensions range from a few centimeters in single elongate concretions, up to a few meters in tabular and coalescent ones. In situ permeability measurements and laboratory grain size analyses were performed along the studied section to constrain the petrophysical properties of sediments hosting carbonate concretions. Carbon and oxygen stable isotopes analyses on carbonate concretions (performed both on hand specimens and also on thin sections), together with petrographic and cathodoluminescence observations, were used to better constrain the diagenetic environment in which calcite precipitation occurred. Our results indicate that the growing anticline promoted the development of a local topographic and hydraulic gradient which induced cement precipitation in the form of carbonate concretions in syn-kinematic sediments. Such diagenetic alterations can be a good marker to reconstruct the paleo-fluid flow history in structurally complex siliciclastic reservoirs.

  2. Evaluation of positive G sub Z tolerance following simulated weightlessness (bedrest)

    NASA Technical Reports Server (NTRS)

    Jacobson, L. B.; Hyatt, K. H.; Sullivan, R. W.; Cantor, S. A.; Sandler, H.; Rositano, S. A.; Mancini, R. E.

    1973-01-01

    The magnitude of physiologic changes which are known to occur in human subjects exposed to varying levels of + G sub Z acceleration following bed rest simulation of weightlessness was studied. Bed rest effects were documented by fluid and electrolyte balance studies, maximal exercise capability, 70 deg passive tilt and lower body negative pressure tests and the ability to endure randomly prescribed acceleration profiles of +2G sub Z, +3G sub Z, and +4G sub Z. Six healthy male volunteers were studied during two weeks of bed rest after adequate control observations, followed by two weeks of recovery, followed by a second two-week period of bed rest at which time an Air Force cutaway anti-G suit was used to determine its effectiveness as a countermeasure for observed cardiovascular changes during acceleration. Results showed uniform and significant changes in all measured parameters as a consequence of bed rest including a reduced ability to tolerate +G sub Z acceleration. The use of anti-G suits significantly improved subject tolerance to all G exposures and returned measured parameters such as heart rate and blood pressure towards or to pre-bed-rest (control) values in four of the six cases.

  3. Fluidization of spherocylindrical particles

    NASA Astrophysics Data System (ADS)

    Mahajan, Vinay V.; Nijssen, Tim M. J.; Fitzgerald, Barry W.; Hofman, Jeroen; Kuipers, Hans; Padding, Johan T.

    2017-06-01

    Multiphase (gas-solid) flows are encountered in numerous industrial applications such as pharmaceutical, food, agricultural processing and energy generation. A coupled computational fluid dynamics (CFD) and discrete element method (DEM) approach is a popular way to study such flows at a particle scale. However, most of these studies deal with spherical particles while in reality, the particles are rarely spherical. The particle shape can have significant effect on hydrodynamics in a fluidized bed. Moreover, most studies in literature use inaccurate drag laws because accurate laws are not readily available. The drag force acting on a non-spherical particle can vary considerably with particle shape, orientation with the flow, Reynolds number and packing fraction. In this work, the CFD-DEM approach is extended to model a laboratory scale fluidized bed of spherocylinder (rod-like) particles. These rod-like particles can be classified as Geldart D particles and have an aspect ratio of 4. Experiments are performed to study the particle flow behavior in a quasi-2D fluidized bed. Numerically obtained results for pressure drop and bed height are compared with experiments. The capability of CFD-DEM approach to efficiently describe the global bed dynamics for fluidized bed of rod-like particles is demonstrated.

  4. Hydro-fracture in the laboratory: matching diagnostic seismic signals to fracture networks

    NASA Astrophysics Data System (ADS)

    Gehne, S.; Benson, P. M.; Koor, N.; Dobson, K. J.; Enfield, M.; Barber, A.

    2017-12-01

    Hydraulic fracturing is a key process in both natural (e.g. dyke intrusion) and engineered environments (e.g. shale gas). To better understand this process, we present new data from simulated hydraulic fracturing in a controlled laboratory environment in order to track fracture nucleation (location) and propagation (velocity) in space and time to assess the fracture mechanics and developing fracture network. Fluid overpressure is used to generate a permeable network of micro tensile fractures in an anisotropic sandstone and a highly anisotropic shale. A newly developed technique, using a steel guide arrangement to direct pressurised fluid into a sealed section of an axially drilled conduit, allows the pore fluid to contact the rock directly and to initiate tensile fractures from a pre-defined zone inside the sample. Acoustic emission location is used to record and map the nucleation and development of the micro-fracture network. For both rock types, fractures progresses parallel to the bedding plane (short-transverse) if the bedding plane is aligned with the direction of σ1 requiring breakdown pressures of approximately 7 and 13MPa respectively at a confining pressure of 8MPa. The data also indicates a more ductile behaviour of the shale than expected. We use X-Ray Computed Tomography (CT) to evaluate the evolved fracture network in terms of fracture pattern and aperture. Hydraulic fracturing produces very planar fractures in the shale, with axial fractures over the entire length of the sample broadly following the bedding. In contrast, fractures in the sandstone are more diffuse, linking pore spaces as they propagate. However, secondary micro cracking, branching of the main fracture, are also observed. These new experiments suggest that fracture pattern, fracture propagation trajectories, and fracturing fluid pressures are predominantly controlled by the interaction between the anisotropic mechanical properties of the rock and the anisotropic stress environment.

  5. Numerical simulation of turbulence and sand-bed morphodynamics in natural waterways under live bed conditions

    NASA Astrophysics Data System (ADS)

    Khosronejad, Ali; Sotiropoulos, Fotis

    2012-11-01

    We develop and validate a 3D numerical model for coupled simulations of turbulence and sand-bed morphodynamics in natural waterways under live bed conditions. We employ the Fluid-Structure Interaction Curvilinear Immersed Boundary (FSI-CURVIB) method of Khosronejad et al. (Adv. in Water Res., 2011). The mobile channel bed is discretized with an unstructured triangular grid and treated as the sharp-interface immersed boundary embedded in a background curvilinear mesh. Transport of bed load and suspended load sediments are combined in the non-equilibrium from of the Exner-Poyla for the bed surface elevation, which evolves due to the spatio-temporally varying bed shear stress and velocity vector induced by the turbulent flow field. Both URANS and LES models are implemented to simulate the effects of turbulence. Simulations are carried out for a wide range of waterways, from small scale streams to large-scale rivers, and the simulated sand-waves are quantitatively compared to available measurements. It is shown that the model can accurately capture sand-wave formation, growth, and migration processes observed in nature. The simulated bed-forms are found to have amplitude and wave length scales ranging from the order of centimeters up to several meters. This work was supported by NSF Grants EAR-0120914 and EAR-0738726, and National Cooperative Highway Research Program Grant NCHRP-HR 24-33. Computational resources were provided by the University of Minnesota Supercomputing Institute.

  6. Turbulent particle transport in streams: can exponential settling be reconciled with fluid mechanics?

    PubMed

    McNair, James N; Newbold, J Denis

    2012-05-07

    Most ecological studies of particle transport in streams that focus on fine particulate organic matter or benthic invertebrates use the Exponential Settling Model (ESM) to characterize the longitudinal pattern of particle settling on the bed. The ESM predicts that if particles are released into a stream, the proportion that have not yet settled will decline exponentially with transport time or distance and will be independent of the release elevation above the bed. To date, no credible basis in fluid mechanics has been established for this model, nor has it been rigorously tested against more-mechanistic alternative models. One alternative is the Local Exchange Model (LEM), which is a stochastic advection-diffusion model that includes both longitudinal and vertical spatial dimensions and is based on classical fluid mechanics. The LEM predicts that particle settling will be non-exponential in the near field but will become exponential in the far field, providing a new theoretical justification for far-field exponential settling that is based on plausible fluid mechanics. We review properties of the ESM and LEM and compare these with available empirical evidence. Most evidence supports the prediction of both models that settling will be exponential in the far field but contradicts the ESM's prediction that a single exponential distribution will hold for all transport times and distances. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Toward a unifying constitutive relation for sediment transport across environments

    NASA Astrophysics Data System (ADS)

    Houssais, Morgane; Jerolmack, Douglas J.

    2017-01-01

    Landscape evolution models typically parse the environment into different process domains, each with its own sediment transport law: e.g., soil creep, landslides and debris flows, and river bed-load and suspended-sediment transport. Sediment transport in all environments, however, contains many of the same physical ingredients, albeit in varying proportions: grain entrainment due to a shear force, that is a combination of fluid flow, particle-particle friction and gravity. We present a new take on the perspective originally advanced by Bagnold, that views the long profile of a hillsope-river-shelf system as a continuous gradient of decreasing granular friction dominance and increasing fluid drag dominance on transport capacity. Recent advances in understanding the behavior and regime transitions of dense granular systems suggest that the entire span of granular-to-fluid regimes may be accommodated by a single-phase rheology. This model predicts a material-flow effective friction (or viscosity) that changes with the degree of shear rate and confining pressure. We present experimental results confirming that fluid-driven sediment transport follows this same rheology, for bed and suspended load. Surprisingly, below the apparent threshold of motion we observe that sediment particles creep, in a manner characteristic of glassy systems. We argue that this mechanism is relevant for both hillslopes and rivers. We discuss the possibilities of unifying sediment transport across environments and disciplines, and the potential consequences for modeling landscape evolution.

  8. State-of-the-art review of computational fluid dynamics modeling for fluid-solids systems

    NASA Astrophysics Data System (ADS)

    Lyczkowski, R. W.; Bouillard, J. X.; Ding, J.; Chang, S. L.; Burge, S. W.

    1994-05-01

    As the result of 15 years of research (50 staff years of effort) Argonne National Laboratory (ANL), through its involvement in fluidized-bed combustion, magnetohydrodynamics, and a variety of environmental programs, has produced extensive computational fluid dynamics (CFD) software and models to predict the multiphase hydrodynamic and reactive behavior of fluid-solids motions and interactions in complex fluidized-bed reactors (FBR's) and slurry systems. This has resulted in the FLUFIX, IRF, and SLUFIX computer programs. These programs are based on fluid-solids hydrodynamic models and can predict information important to the designer of atmospheric or pressurized bubbling and circulating FBR, fluid catalytic cracking (FCC) and slurry units to guarantee optimum efficiency with minimum release of pollutants into the environment. This latter issue will become of paramount importance with the enactment of the Clean Air Act Amendment (CAAA) of 1995. Solids motion is also the key to understanding erosion processes. Erosion rates in FBR's and pneumatic and slurry components are computed by ANL's EROSION code to predict the potential metal wastage of FBR walls, intervals, feed distributors, and cyclones. Only the FLUFIX and IRF codes will be reviewed in the paper together with highlights of the validations because of length limitations. It is envisioned that one day, these codes with user-friendly pre- and post-processor software and tailored for massively parallel multiprocessor shared memory computational platforms will be used by industry and researchers to assist in reducing and/or eliminating the environmental and economic barriers which limit full consideration of coal, shale, and biomass as energy sources; to retain energy security; and to remediate waste and ecological problems.

  9. Exergy optimization in a steady moving bed heat exchanger.

    PubMed

    Soria-Verdugo, A; Almendros-Ibáñez, J A; Ruiz-Rivas, U; Santana, D

    2009-04-01

    This work provides an energy and exergy optimization analysis of a moving bed heat exchanger (MBHE). The exchanger is studied as a cross-flow heat exchanger where one of the phases is a moving granular medium. The optimal MBHE dimensions and the optimal particle diameter are obtained for a range of incoming fluid flow rates. The analyses are carried out over operation data of the exchanger obtained in two ways: a numerical simulation of the steady-state problem and an analytical solution of the simplified equations, neglecting the conduction terms. The numerical simulation considers, for the solid, the convection heat transfer to the fluid and the diffusion term in both directions, and for the fluid only the convection heat transfer to the solid. The results are compared with a well-known analytical solution (neglecting conduction effects) for the temperature distribution in the exchanger. Next, the analytical solution is used to derive an expression for the exergy destruction. The optimal length of the MBHE depends mainly on the flow rate and does not depend on particle diameter unless they become very small (thus increasing sharply the pressure drop). The exergy optimal length is always smaller than the thermal one, although the difference is itself small.

  10. Granular Material Flows with Interstitial Fluid Effects

    NASA Technical Reports Server (NTRS)

    Hunt, Melany L.; Brennen, Christopher E.

    2004-01-01

    The research focused on experimental measurements of the rheological properties of liquid-solid and granular flows. In these flows, the viscous effects of the interstitial fluid, the inertia of the fluid and particles, and the collisional interactions of the particles may all contribute to the flow mechanics. These multiphase flows include industrial problems such as coal slurry pipelines, hydraulic fracturing processes, fluidized beds, mining and milling operation, abrasive water jet machining, and polishing and surface erosion technologies. In addition, there are a wide range of geophysical flows such as debris flows, landslides and sediment transport. In extraterrestrial applications, the study of transport of particulate materials is fundamental to the mining and processing of lunar and Martian soils and the transport of atmospheric dust (National Research Council 2000). The recent images from Mars Global Surveyor spacecraft dramatically depict the complex sand and dust flows on Mars, including dune formation and dust avalanches on the slip-face of dune surfaces. These Aeolian features involve a complex interaction of the prevailing winds and deposition or erosion of the sediment layer; these features make a good test bed for the verification of global circulation models of the Martian atmosphere.

  11. Liquid Oxygen/Liquid Methane Integrated Propulsion System Test Bed

    NASA Technical Reports Server (NTRS)

    Flynn, Howard; Lusby, Brian; Villemarette, Mark

    2011-01-01

    In support of NASA?s Propulsion and Cryogenic Advanced Development (PCAD) project, a liquid oxygen (LO2)/liquid methane (LCH4) Integrated Propulsion System Test Bed (IPSTB) was designed and advanced to the Critical Design Review (CDR) stage at the Johnson Space Center. The IPSTB?s primary objectives are to study LO2/LCH4 propulsion system steady state and transient performance, operational characteristics and to validate fluid and thermal models of a LO2/LCH4 propulsion system for use in future flight design work. Two phase thermal and dynamic fluid flow models of the IPSTB were built to predict the system performance characteristics under a variety of operating modes and to aid in the overall system design work. While at ambient temperature and simulated altitude conditions at the White Sands Test Facility, the IPSTB and its approximately 600 channels of system instrumentation would be operated to perform a variety of integrated main engine and reaction control engine hot fire tests. The pressure, temperature, and flow rate data collected during this testing would then be used to validate the analytical models of the IPSTB?s thermal and dynamic fluid flow performance. An overview of the IPSTB design and analytical model development will be presented.

  12. 21 CFR 113.40 - Equipment and procedures.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... ensure a supply of clean, dry air. (3) Pressure gages. Each retort should be equipped with a pressure... should have adequate filter systems to ensure a supply of clean, dry air. (3) Pressure gages. (i) Each... controllers should have adequate filter systems to ensure a supply of clean, dry air. (3) Pressure gages. Each...

  13. Retort to Religious Critics of RET.

    ERIC Educational Resources Information Center

    Nardi, Thomas J.

    This paper is concerned with people who contact clergymen for counseling who could benefit from the short-term directive therapeutic approach of Rational Emotive Therapy (RET) and the reluctance of clergymen to use RET. The integration of the precepts of Christianity and the concepts of RET is considered. This paper is specifically a response to…

  14. Overview of the technology and status of oil sands development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Detamore, R.J.

    1981-01-01

    In conjunction with the increasing emphasis upon alternate energy sources, interest in the oil sands resource is discussed. This paper reviews the primary established oil sands recovery techniques including surface mining, surface retorting, in situ thermal and nonthermal in situ, and presents an overview of their application in specific projects.

  15. 9 CFR 318.305 - Equipment and procedures for heat processing systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... ensure a supply of clean, dry air. The recorder timing mechanism shall be accurate. (i) Chart-type... filter systems to ensure a supply of clean, dry air. (ii) Pressure recording device. Each retort shall be... section. (2) Cooling canal water shall be chlorinated or treated with a chemical approved by the...

  16. 9 CFR 381.305 - Equipment and procedures for heat processing systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... supply of clean, dry air. The recorder timing mechanism shall be accurate. (i) Chart-type devices... filter systems to ensure a supply of clean, dry air. (ii) Pressure recording device. Each retort shall be... cooling except as provided for in paragraphs (h) (2) and (3) of this section. (2) Cooling canal water...

  17. Volatile Removal Assembly Flight Experiment and KC-135 Packed Bed Experiment: Results and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Holder, Donald W.; Parker, David

    2000-01-01

    The Volatile Removal Assembly (VRA) is a high temperature catalytic oxidation process that will be used as the final treatment for recycled water aboard the International Space Station (ISS). The multiphase nature of the process had raised concerns as to the performance of the VRA in a microgravity environment. To address these concerns, two experiments were designed. The VRA Flight Experiment (VRAFE) was designed to test a full size VRA under controlled conditions in microgravity aboard the SPACEHAB module and in a 1 -g environment and compare the performance results. The second experiment relied on visualization of two-phase flow through small column packed beds and was designed to fly aboard NASA's microgravity test bed plane (KC-135). The objective of the KC-135 experiment was to understand the two-phase fluid flow distribution in a packed bed in microgravity. On Space Transportation System (STS) flight 96 (May 1999), the VRA FE was successfully operated and in June 1999 the KC-135 packed bed testing was completed. This paper provides an overview of the experiments and a summary of the results and findings.

  18. Modelling and simulation of wood chip combustion in a hot air generator system.

    PubMed

    Rajika, J K A T; Narayana, Mahinsasa

    2016-01-01

    This study focuses on modelling and simulation of horizontal moving bed/grate wood chip combustor. A standalone finite volume based 2-D steady state Euler-Euler Computational Fluid Dynamics (CFD) model was developed for packed bed combustion. Packed bed combustion of a medium scale biomass combustor, which was retrofitted from wood log to wood chip feeding for Tea drying in Sri Lanka, was evaluated by a CFD simulation study. The model was validated by the experimental results of an industrial biomass combustor for a hot air generation system in tea industry. Open-source CFD tool; OpenFOAM was used to generate CFD model source code for the packed bed combustion and simulated along with an available solver for free board region modelling in the CFD tool. Height of the packed bed is about 20 cm and biomass particles are assumed to be spherical shape with constant surface area to volume ratio. Temperature measurements of the combustor are well agreed with simulation results while gas phase compositions have discrepancies. Combustion efficiency of the validated hot air generator is around 52.2 %.

  19. Rock-bed thermocline storage: A numerical analysis of granular bed behavior and interaction with storage tank

    NASA Astrophysics Data System (ADS)

    Sassine, Nahia; Donzé, Frédéric-Victor; Bruch, Arnaud; Harthong, Barthélemy

    2017-06-01

    Thermal Energy Storage (TES) systems are central elements of various types of power plants operated using renewable energy sources. Packed bed TES can be considered as a cost-effective solution in concentrated solar power plants (CSP). Such a device is made up of a tank filled with a granular bed through which heat-transfer fluid circulates. However, in such devices, the tank might be subjected to catastrophic failure induced by a mechanical phenomenon known as thermal ratcheting. Thermal stresses are accumulated during cycles of loading and unloading until the failure happens. This paper aims at studying the evolution of tank wall stresses over granular bed thermal cycles, taking into account both thermal and mechanical loads, with a numerical model based on the discrete element method (DEM). Simulations were performed to study two different thermal configurations: (i) the tank is heated homogenously along its height or (ii) with a vertical gradient of temperature. Then, the resulting loading stresses applied on the tank are compared as well the response of the internal granular material.

  20. Periodic Trajectories in Aeolian Sand Transport

    NASA Astrophysics Data System (ADS)

    Valance, A.; Jenkins, J. T.

    2014-12-01

    Saltation is the primary mode of aeolian sand transport and refers to the hoping motion of grains over the bed [1]. We develop a simple model for steady, uniform transport in aeolian saltation over a horizontal bed that is based on the computation of periodic particle trajectories in a turbulent shearing flow [2]. The wind and the particles interact through drag, and the particles collide with the bed. We consider collisions with a rigid, bumpy bed, from which the particles rebound, and an erodible particle bed, for which a collision involves both rebound and particle ejection. The difference in the nature of the collisions results in qualitative differences in the nature of the solutions for the periodic trajectories and, in particular, to differences in the dependence of the particle flow rate on the strength of the turbulent shearing. We also discuss the pertinence of this model to describe bedload transport in water. References:[1] R. A. Bagnold, « The physics of blown sand and desert dunes » , Methuen, New York (1941).[2] J.T Jenkins and A. Valance. Periodic trajectories in Aeolian saltation transport. Physics of Fluids, 2014, 26, pp. 073301

  1. 40 CFR 57.102 - Eligibility.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., but not the cost of compliance). (i) Retrofit control technologies. (A) Sulfuric acid plant in conjunction with an adequately demonstrated replacement technology or process modification; (B) Magnesium... burning in conjunction with acid plant; (D) Electric Furnace; (E) Noranda process; (F) Fluid bed roaster...

  2. 40 CFR 57.102 - Eligibility.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., but not the cost of compliance). (i) Retrofit control technologies. (A) Sulfuric acid plant in conjunction with an adequately demonstrated replacement technology or process modification; (B) Magnesium... burning in conjunction with acid plant; (D) Electric Furnace; (E) Noranda process; (F) Fluid bed roaster...

  3. 40 CFR 57.102 - Eligibility.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., but not the cost of compliance). (i) Retrofit control technologies. (A) Sulfuric acid plant in conjunction with an adequately demonstrated replacement technology or process modification; (B) Magnesium... burning in conjunction with acid plant; (D) Electric Furnace; (E) Noranda process; (F) Fluid bed roaster...

  4. 40 CFR 57.102 - Eligibility.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., but not the cost of compliance). (i) Retrofit control technologies. (A) Sulfuric acid plant in conjunction with an adequately demonstrated replacement technology or process modification; (B) Magnesium... burning in conjunction with acid plant; (D) Electric Furnace; (E) Noranda process; (F) Fluid bed roaster...

  5. 40 CFR 57.102 - Eligibility.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., but not the cost of compliance). (i) Retrofit control technologies. (A) Sulfuric acid plant in conjunction with an adequately demonstrated replacement technology or process modification; (B) Magnesium... burning in conjunction with acid plant; (D) Electric Furnace; (E) Noranda process; (F) Fluid bed roaster...

  6. Deployable Emergency Shutoff Device Blocks High-Velocity Fluid Flows

    NASA Technical Reports Server (NTRS)

    Nabors, Sammy A.

    2015-01-01

    NASA's Marshall Space Flight Center has developed a device and method for blocking the flow of fluid from an open pipe. Motivated by the sea-bed oil-drilling catastrophe in the Gulf of Mexico in 2010, NASA innovators designed the device to plug, control, and meter the flow of gases and liquids. Anchored with friction fittings, spikes, or explosively activated fasteners, the device is well-suited for harsh environments and high fluid velocities and pressures. With the addition of instrumentation, it can also be used as a variable area flow metering valve that can be set based upon flow conditions. With robotic additions, this patent-pending innovation can be configured to crawl into a pipe then anchor and activate itself to block or control fluid flow.

  7. Numerical investigation of fluid mud motion using a three-dimensional hydrodynamic and two-dimensional fluid mud coupling model

    NASA Astrophysics Data System (ADS)

    Yang, Xiaochen; Zhang, Qinghe; Hao, Linnan

    2015-03-01

    A water-fluid mud coupling model is developed based on the unstructured grid finite volume coastal ocean model (FVCOM) to investigate the fluid mud motion. The hydrodynamics and sediment transport of the overlying water column are solved using the original three-dimensional ocean model. A horizontal two-dimensional fluid mud model is integrated into the FVCOM model to simulate the underlying fluid mud flow. The fluid mud interacts with the water column through the sediment flux, current, and shear stress. The friction factor between the fluid mud and the bed, which is traditionally determined empirically, is derived with the assumption that the vertical distribution of shear stress below the yield surface of fluid mud is identical to that of uniform laminar flow of Newtonian fluid in the open channel. The model is validated by experimental data and reasonable agreement is found. Compared with numerical cases with fixed friction factors, the results simulated with the derived friction factor exhibit the best agreement with the experiment, which demonstrates the necessity of the derivation of the friction factor.

  8. Preliminary CFD study of Pebble Size and its Effect on Heat Transfer in a Pebble Bed Reactor

    NASA Astrophysics Data System (ADS)

    Jones, Andrew; Enriquez, Christian; Spangler, Julian; Yee, Tein; Park, Jungkyu; Farfan, Eduardo

    2017-11-01

    In pebble bed reactors, the typical pebble diameter used is 6cm, and within each pebble is are thousands of nuclear fuel kernels. However, efficiency of the reactor does not solely depend on the number of kernels of fuel within each graphite sphere, but also depends on the type and motion of the coolant within the voids between the spheres and the reactor itself. In this work a physical analysis of the pebble bed nuclear reactor's fluid dynamics is undertaken using Computational Fluid Dynamics software. The primary goal of this work is to observe the relationship between the different pebble diameters in an idealized alignment and the thermal transport efficiency of the reactor. The model constructed of our idealized argument will consist on stacked 8 pebble columns that fixed at the inlet on the reactor. Two different pebble sizes 4 cm and 6 cm will be studied and helium will be supplied as coolant with a fixed flow rate of 96 kg/s, also a fixed pebble surface temperatures will be used. Comparison will then be made to evaluate the efficiency of coolant to transport heat due to the varying sizes of the pebbles. Assistant Professor for the Department of Civil and Construction Engineering PhD.

  9. Detection of seminal fluid proteins in the bed bug, Cimex lectularius, using two-dimensional gel electrophoresis and mass spectrometry

    PubMed Central

    REINHARDT, K.; WONG, C. H.; GEORGIOU, A. S.

    2008-01-01

    SUMMARY The global increase of the human parasite, the common bed bug Cimex lectularius, calls for specific pest control target sites. The bed bug is also a model species for sexual conflict theory which suggests seminal fluids may be highly diverse. The species has a highly unusual sperm biology and seminal proteins may have unique functions. 1-D PAGE gels showed 40 to 50% band sharing between C. lectularius and another cimicid species, Afrocimex constrictus. However, adult, sexually rested C. lectularius males were found to store 5 to 7μg of seminal protein and with only 60μg of protein we obtained informative 2-D PAGE gels. These showed 79% shared protein spots between two laboratory populations, and more than half of the shared protein spots were detected in the mated female. Further analysis using liquid chromatography electrospray ionisation tandem mass spectrometry revealed that 26.5% of the proteins had matches among arthropods in data bases and 14.5% matched Drosophila proteins. These included ubiquitous proteins but also those more closely associated with reproduction such as moj 29, ubiquitin, the stress-related elongation factor EF-1alpha, a protein disulfide isomerase and an antioxidant, Peroxiredoxin 6. PMID:19091156

  10. Dynamics of hard sphere colloidal dispersions

    NASA Technical Reports Server (NTRS)

    Zhu, J. X.; Chaikin, Paul M.; Phan, S.-E.; Russel, W. B.

    1994-01-01

    Our objective is to perform on homogeneous, fully equilibrated dispersions the full set of experiments characterizing the transition from fluid to solid and the properties of the crystalline and glassy solid. These include measurements quantifying the nucleation and growth of crystallites, the structure of the initial fluid and the fully crystalline solid, and Brownian motion of particles within the crystal, and the elasticity of the crystal and the glass. Experiments are being built and tested for ideal microgravity environment. Here we describe the ground based effort, which exploits a fluidized bed to create a homogeneous, steady dispersion for the studies. The differences between the microgravity environment and the fluidized bed is gauged by the Peclet number Pe, which measures the rate of convection/sedimentation relative to Brownian motion. We have designed our experiment to accomplish three types of measurements on hard sphere suspensions in a fluidized bed: the static scattering intensity as a function of angle to determine the structure factor, the temporal autocorrelation function at all scattering angles to probe the dynamics, and the amplitude of the response to an oscillatory forcing to deduce the low frequency viscoelasticity. Thus the scattering instrument and the colloidal dispersion were chosen such as that the important features of each physical property lie within the detectable range for each measurement.

  11. Application of computational fluid dynamics for the simulation of cryogenic molecular sieve bed absorber of hydrogen isotopes recovery system for Indian LLCB-TBM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gayathri Devi, V.; Sircar, A.; Sarkar, B.

    One of the most challenging tasks in the design of the fuel cycle system lies in the effective design of Tritium Extraction System (TES) which involves proper extraction and purification of tritium in the fuel cycle of the fusion reactor. Indian Lead Lithium cooled Ceramic Breeder Test Blanket Module (LLCB-TBM) would extract hydrogen isotopes through Cryogenic Molecular Sieve Bed (CMSB) adsorber system. A prototype Hydrogen Isotopes Recovery System (HIRS) is being developed to validate the concepts for tritium extraction by adsorption mass transfer mechanism. In this study, a design model has been developed and analyzed to simulate the adsorption massmore » transfer kinetics in a fixed bed adsorption column. The simulation leads primarily to effective design of HIRS, which is a state-of-the-art technology. The paper describes the process simulation approach and the results of Computational Fluid Dynamics (CFD) analysis. The effects of different operating conditions are studied to investigate their influence on the hydrogen isotopes adsorption capacity. The results of the present simulation study would be used to understand the best optimized transport phenomenon before realizing the TES as a system for LLCB-TBM. (authors)« less

  12. Particle Flow Cell Formation at Minimum Fluidization Flow Rates in a Rectangular Gas-Fluidized Bed.

    DTIC Science & Technology

    1981-03-01

    G’ Fluid mass velocity based on voidage area. Ga Galileo number ( Archimedes number). Ge Hypothetical fluid mass velocity required to merely expand a...eighteen inches high above the distributor plate. All joints were glued together and wood screws added in mounting the distributor plate for additional...inch center to center intervals along its length. The air ports are located at the underside of the tube allowing the air to exhaust downward into the

  13. Physical Properties Data for Rock Salt

    DTIC Science & Technology

    1981-01-01

    11 M ineralogy and Petrology ..................................................... 14 Fluid Inclusions...14 1.4. Mineralog and Petrology ........................................................... 14...StatesGulfCoast arealso poorly known. Most oil- before it is no longer considered to be halite is a subject- well drilling is terminated when the salt beds are

  14. Slit-lamp technique of draining interface fluid following Descemet's stripping endothelial keratoplasty.

    PubMed

    Srinivasan, Sathish; Rootman, David S

    2007-09-01

    To describe a new slit-lamp technique for draining interface fluid to manage complete donor disc detachments following Descemet's stripping (automated) endothelial keratoplasty (DSEK/DSAEK). Interventional case series. Five DSEK/DSAEK patients presented on the first postoperative day with complete detachment of the donor lenticule. Slit-lamp biomicroscopy showed interface fluid preventing attachment of the donor disc to the host stromal bed. A new slit-lamp technique is described to drain the interface fluid. This technique involved completely filling the anterior chamber with an air bubble using a 30-gauge needle on a 3 ml syringe. Following this, a 0.12 forceps was used to open the inferior mid-peripheral corneal drainage slit to drain the interface fluid. This technique was successful in draining the interface fluid in all five patients, leading to immediate complete reattachment of the donor disc. Donor disc detachments following DSEK/DSAEK can be successfully managed by this slit-lamp technique of draining the interface fluid.

  15. Development of metoprolol tartrate extended-release matrix tablet formulations for regulatory policy consideration.

    PubMed

    Nellore, R V; Rekhi, G S; Hussain, A S; Tillman, L G; Augsburger, L L

    1998-01-02

    This research study was designed to develop model extended-release (ER) matrix tablet formulations for metoprolol tartrate (100 mg) sufficiently sensitive to manufacturing variable and to serve as the scientific basis for regulatory policy development on scale-up and post approval changes for modified-release dosage forms (SUPAC-MR). Several grades and levels of hydroxypropyl methylcellulose (Methocel K4M, K15M, K100M and K100LV), fillers and binders and studied. Three granulation processes were evaluated; direct compression, fluid-bed or high-shear granulation. Lubrication was performed in a V-blender and tablets were compressed on an instrumented rotary tablet press. Direct compression formulations exhibited poor flow, picking and sticking problems during tableting. High-shear granulation resulted in the formation of hard granules that were difficult to mill but yielded good tablets. Fluid-bed granulations were made using various binders and appeared to be satisfactory in terms of flow and tableting performance. In vitro drug release testing was performed in pH 6.8 phosphate buffer using USP apparatus 2 (paddle) at 50 rpm. At a fixed polymer level, drug release from the higher viscosity grades (K100M) was slower as compared to the lower viscosity grades (K100LV). In addition, release from K100LV was found to be more sensitive to polymer level changes. Increased in polymer level from 10 to 40% and/or filler change from lactose to dicalcium phosphate resulted in about 25-30% decrease in the amount of metoprolol release after 12 h. The results of this study led to the choice of Methocel K100LV as the hydrophilic matrix polymer and fluid-bed granulation as the process of choice for further evaluation of critical and non-critical formulation and processing variables.

  16. A Systematic Approach of Employing Quality by Design Principles: Risk Assessment and Design of Experiments to Demonstrate Process Understanding and Identify the Critical Process Parameters for Coating of the Ethylcellulose Pseudolatex Dispersion Using Non-Conventional Fluid Bed Process.

    PubMed

    Kothari, Bhaveshkumar H; Fahmy, Raafat; Claycamp, H Gregg; Moore, Christine M V; Chatterjee, Sharmista; Hoag, Stephen W

    2017-05-01

    The goal of this study was to utilize risk assessment techniques and statistical design of experiments (DoE) to gain process understanding and to identify critical process parameters for the manufacture of controlled release multiparticulate beads using a novel disk-jet fluid bed technology. The material attributes and process parameters were systematically assessed using the Ishikawa fish bone diagram and failure mode and effect analysis (FMEA) risk assessment methods. The high risk attributes identified by the FMEA analysis were further explored using resolution V fractional factorial design. To gain an understanding of the processing parameters, a resolution V fractional factorial study was conducted. Using knowledge gained from the resolution V study, a resolution IV fractional factorial study was conducted; the purpose of this IV study was to identify the critical process parameters (CPP) that impact the critical quality attributes and understand the influence of these parameters on film formation. For both studies, the microclimate, atomization pressure, inlet air volume, product temperature (during spraying and curing), curing time, and percent solids in the coating solutions were studied. The responses evaluated were percent agglomeration, percent fines, percent yield, bead aspect ratio, median particle size diameter (d50), assay, and drug release rate. Pyrobuttons® were used to record real-time temperature and humidity changes in the fluid bed. The risk assessment methods and process analytical tools helped to understand the novel disk-jet technology and to systematically develop models of the coating process parameters like process efficiency and the extent of curing during the coating process.

  17. Modelling heat transfer during flow through a random packed bed of spheres

    NASA Astrophysics Data System (ADS)

    Burström, Per E. C.; Frishfelds, Vilnis; Ljung, Anna-Lena; Lundström, T. Staffan; Marjavaara, B. Daniel

    2018-04-01

    Heat transfer in a random packed bed of monosized iron ore pellets is modelled with both a discrete three-dimensional system of spheres and a continuous Computational Fluid Dynamics (CFD) model. Results show a good agreement between the two models for average values over a cross section of the bed for an even temperature profiles at the inlet. The advantage with the discrete model is that it captures local effects such as decreased heat transfer in sections with low speed. The disadvantage is that it is computationally heavy for larger systems of pellets. If averaged values are sufficient, the CFD model is an attractive alternative that is easy to couple to the physics up- and downstream the packed bed. The good agreement between the discrete and continuous model furthermore indicates that the discrete model may be used also on non-Stokian flow in the transitional region between laminar and turbulent flow, as turbulent effects show little influence of the overall heat transfer rates in the continuous model.

  18. Numerical modeling of local scour around hydraulic structure in sandy beds by dynamic mesh method

    NASA Astrophysics Data System (ADS)

    Fan, Fei; Liang, Bingchen; Bai, Yuchuan; Zhu, Zhixia; Zhu, Yanjun

    2017-10-01

    Local scour, a non-negligible factor in hydraulic engineering, endangers the safety of hydraulic structures. In this work, a numerical model for simulating local scour was constructed, based on the open source code computational fluid dynamics model OpenFOAM. We consider both the bedload and suspended load sediment transport in the scour model and adopt the dynamic mesh method to simulate the evolution of the bed elevation. We use the finite area method to project data between the three-dimensional flow model and the two-dimensional (2D) scour model. We also improved the 2D sand slide method and added it to the scour model to correct the bed bathymetry when the bed slope angle exceeds the angle of repose. Moreover, to validate our scour model, we conducted and compared the results of three experiments with those of the developed model. The validation results show that our developed model can reliably simulate local scour.

  19. Bed forms created by simulated waves and currents in a large flume

    USGS Publications Warehouse

    Lacy, Jessica R.; Rubin, David M.; Ikeda, Hiroshi; Mokudai, Kuniyasu; Hanes, Daniel M.

    2007-01-01

    The morphology and evolution of bed forms created by combinations of waves and currents were investigated using an oscillating plate in a 4-m-wide flume. Current speed ranged from 0 to 30 cm/s, maximum oscillatory velocity ranged from 20 to 48 cm/s, oscillation period was 8 s (except for one run with 12 s period), and the median grain size was 0.27 mm. The angle between oscillations and current was 90°, 60°, or 45°. At the end of each run the sand bed was photographed and ripple dimensions were measured. Ripple wavelength was also determined from sonar images collected throughout the runs. Increasing the ratio of current to wave (i.e., oscillatory) velocity decreased ripple height and wavelength, in part because of the increased fluid excursion during the wave period. Increasing the ratio of current to waves, or decreasing the angle between current and waves, increased the three-dimensionality of bed forms. During the runs, ripple wavelength increased by a factor of about 2. The average number of wave periods for evolution of ripple wavelength to 90% of its final value was 184 for two-dimensional ripples starting from a flat bed. Bed form orientations at the end of each run were compared to four potential controlling factors: the directions of waves, current, maximum instantaneous bed shear stress, and maximum gross bed form normal transport (MGBNT). The directions of waves and of MGBNT were equally good predictors of bed form orientations, and were significantly better than the other two factors.

  20. When the "Asked for" Becomes the "Not Wanted:" A Grant Funder's Retort to a Foster Care Multiple Case Study

    ERIC Educational Resources Information Center

    Palladino, John M.; Giesler, Mark A.

    2012-01-01

    A significant population of foster care infants and toddlers access early special education services under the parameters of the Individuals with Disabilities Education Act (IDEA)-Part C. A dearth of literature exists about special education interventionists' services for this particular population. In response, we conducted a government-funded…

Top