Science.gov

Sample records for fluid bilayer structure

  1. Fluid bilayer structure determination by the combined use of x-ray and neutron diffraction. I. Fluid bilayer models and the limits of resolution.

    PubMed Central

    Wiener, M C; White, S H

    1991-01-01

    This is the first in a series of papers concerned with methods for the determination of the structures of fluid phospholipid bilayers in the liquid-crystalline (L alpha) phase. The basic approach is the joint refinement of quasimolecular models (King and White, 1986. Biophys. J. 49:1047-1054) using x-ray and neutron diffraction data. We present here (a) the rationale for quasimolecular models, (b) the nature of the resolution problem for thermally disordered bilayers, and (c) an analysis of the resolution of experiments in which Gaussian functions are used to describe the distribution of submolecular components. We show that multilamellar liquid-crystalline bilayers are best described by the convolution of a perfect lattice function with a thermally disordered bilayer unit cell. Lamellar diffraction measurements on such a system generally yield only 5-10 orders of diffraction data from which transbilayer profiles of the unit cell can be constructed. The canonical resolution of these transbilayer profiles, defined as the Bragg spacing divided by the index of the highest recorded diffraction order, is typically 5-10 A. Using simple model calculations, we show that the canonical resolution is a measure of the widths of the distributions of constituents of the unit cell rather than a measure of the spatial separation of the distributions. The widths provide a measure of the thermal motion of the bilayer constituents which can be described by Gaussian functions. The equilibrium positions of the centers of the distributions can be determined with a precision of 0.1-0.5 A based upon typical experimental errors. Images FIGURE 1 PMID:2015381

  2. Fluid bilayer structure determination: Joint refinement in composition space using X-ray and neutron diffraction data

    SciTech Connect

    White, S.H.; Wiener, M.C.

    1994-12-31

    Experimentally-determined structural models of fluid lipid bilayers are essential for verifying molecular dynamics simulations of bilayers and for understanding the structural consequences of peptide interactions. The extreme thermal motion of bilayers precludes the possibility of atomic-level structural models. Defining {open_quote}the structure{close_quote} of a bilayer as the time-averaged transbilayer distribution of the water and the principal lipid structural groups such as the carbonyls and double-bonds (quasimolecular fragments), one can represent the bilayer structure as a sum of Gaussian functions referred to collectively as the quasimolecular structure. One method of determining the structure is by neutron diffraction combined with exhaustive specific deuteration. This method is impractical because of the expense of the chemical syntheses and the limited amount of neutron beam time currently available. We have therefore developed the composition space refinement method for combining X-ray and minimal neutron diffraction data to arrive at remarkably detailed and accurate structures of fluid bilayers. The composition space representation of the bilayer describes the probability of occupancy per unit length across the width of the bilayer of each quasimolecular component and permits the joint refinement of X-ray and neutron lamellar diffraction data by means of a single quasimolecular structure that is fitted simultaneously to both data sets. Scaling of each component by the appropriate neutron or X-ray scattering length maps the composition-space profile to the appropriate scattering length space for comparison to experimental data. The difficulty with the method is that fluid bilayer structures are generally only marginally determined by the experimental data. This means that the space of possible solutions must be extensively explored in conjunction with a thorough analysis of errors.

  3. Nanometric Gap Structure with a Fluid Lipid Bilayer for the Selective Transport and Detection of Biological Molecules.

    PubMed

    Ando, Koji; Tanabe, Masashi; Morigaki, Kenichi

    2016-08-01

    The biological membrane is a natural biosensing platform that can detect specific molecules with extremely high sensitivity. We developed a biosensing methodology by combining a model biological membrane and a nanometer-sized gap structure on a glass substrate. The model membrane comprised lithographically patterned polymeric and fluid lipid bilayers. The polymeric bilayer was bonded to a poly(dimethylsiloxane) (PDMS) sheet by using an adhesion layer with a defined thickness (lipid vesicles). Extruded lipid vesicles having a biotin moiety on the surface were used as the adhesion layer in conjunction with the biotin-streptavidin linkage. A gap structure was formed between the fluid bilayer and PDMS (nanogap junction). The thickness of the gap structure was several tens of nanometers, as determined by the thickness of the adhesion layer. The nanogap junction acted as a sensitive biosensing platform. From a mixture of proteins (cholera toxin and albumin), the target protein (cholera toxin) was selectively transported into the gap by the specific binding to a glycolipid (GM1) in the fluid bilayer and lateral diffusion. The target protein molecules were then detected with an elevated signal-to-noise ratio due to the reduced background noise in the nanometric gap. The combination of selective transport and reduced background noise drastically enhanced the sensitivity toward the target protein. The nanogap junction should have broad biomedical applications by realizing highly selective and sensitive biosensing in samples having diverse coexisting molecules. PMID:27427950

  4. Structure of a fluid dioleoylphosphatidylcholine bilayer determined by joint refinement of x-ray and neutron diffraction data. II. Distribution and packing of terminal methyl groups.

    PubMed Central

    Wiener, M C; White, S H

    1992-01-01

    We continue in this paper the presentation of theoretical and experimental methods for the joint refinement of neutron and x-ray lamellar diffraction data for the analysis of fluid (L alpha phase) bilayer structure (Wiener, M. C., and S. H. White. 1991 a, b, c. Biophys. J. 59:162-173 and 174-185; Biochemistry. 30:6997-7008; Wiener, M. C., G. I. King, and S. H. White. Biophys. J. 60: 568-576). We show how to obtain the distribution and packing of the terminal methyls in the interior of a fluid dioleoylphosphatidylcholine bilayer (66% RH) by combining x-ray and neutron scattering-length transbilayer profiles with no a priori assumptions about the functional form of the distribution. We find that the methyls can be represented by a Gaussian function with 1/e-halfwidth of 2.95 +/- 0.28 A situated at the bilayer center. There is substantial mixing of the methyls and methylenes in the bilayer center. The Gaussian representation of the methyl distribution is narrower and has a different shape than predicted by several simulations of fluid bilayers (Gruen, D. W. R., and E. H. B. de Lacey. 1984. Surfactants in Solution, Vol. 1. Plenum Publishing Corp., New York. 279-306; de Loof, H., et al. 1991. Biochemistry. 30:2099-2133) but this may be due to the smaller area/lipid of our experiments and the presence of the double-bonds. Determination of the absolute specific volume of DOPC and an analysis of bulk alkane volumetric data over a range of hydrostatic pressures lead to estimates of methylene and methyl volumes at the bilayer center of 27 +/- 1 A3 and 57.2 +/- 3.6 A3, respectively. This result provides direct confirmation of the common assumption that the molecular packing of methyl and methylene groups in bilayers is the same as in bulk liquid alkanes. Images FIGURE 2 PMID:1547330

  5. Fusion and fission of fluid amphiphilic bilayers.

    PubMed

    Gotter, Martin; Strey, Reinhard; Olsson, Ulf; Wennerström, Håkan

    2005-01-01

    The system water-oil (n-decane)-nonionic surfactant (C12E5) forms bilayer phases in a large concentration region, but, for a given oil-to-surfactant ratio, only in a narrow temperature range. In addition to the anisotropic lamellar phase (Lalpha) there is also, at slightly higher temperature, a sponge or L3-phase where the bilayers build up an isotropic structure extending macroscopically in three dimensions. In this phase the bilayer mid-surface has a mean curvature close to zero and a negative Euler characteristic. In this paper we study how the bilayers in the lamellar and the sponge phase respond dynamically to sudden temperature changes. The monolayer spontaneous curvature depends sensitively on temperature and a change of temperature thus provides a driving force for a change in bilayer topology. The equilibration therefore involves kinetic steps of fusion/fission of bilayers. Such dynamic processes have previously been monitored by temperature jump experiments using light scattering in the sponge phase. These experiments revealed an extraordinarily strong dependence of the relaxation time on the bilayer volume fraction phi. At phi < 0.1 the relaxation times are so slow that experiments using deuterium nuclear magnetic resonance (2H-NMR) appear feasible. We here report on the first experiments concerned with the dynamics of the macroscopic phase transition sponge-lamellae by 2H-NMR. We find that the sponge-to-lamellae transition occurs through a nucleation process followed by domain growth involving bilayer fission at domain boundaries. In contrast, the lamellae-to-sponge transformation apparently occurs through a succession of uncorrelated bilayer fusion events. PMID:15715316

  6. Structure and Dynamics of a Fluid Phase Bilayer on a Solid Support as Observed by a Molecular Dynamics Computer Simulation

    PubMed Central

    Roark, Matthew; Feller, Scott E.

    2009-01-01

    Simulations of a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine lipid bilayer interacting with a solid surface of hydroxylated nanoporous amorphous silica have been carried out over a range of lipid-solid substrate distances. The porous solid surface allowed the water layer to dynamically adjust is thickness, maintaining equal pressures above and below the membrane bilayer. Qualitative estimates of the force between the surfaces leads to an estimated lipid-silicon distance in very good agreement with the results of neutron scattering experiments. Detailed analysis of the simulation at the separation suggested by experiment shows that for this type of solid support the water layer between surfaces is very narrow, consisting only of bound waters hydrating the lipid headgroups and hydrophilic silica surface. The reduced hydration, however, has only minor effects on the headgroup hydration, the orientation of water molecules at the interface, and the membrane dipole potential. While these structural properties were not sensitive to the presence of the solid substrate, the calculated diffusion coefficient for translation of the lipid molecules was altered significantly by the silica surface. PMID:18850686

  7. Structure of a fluid dioleoylphosphatidylcholine bilayer determined by joint refinement of x-ray and neutron diffraction data. III. Complete structure.

    PubMed Central

    Wiener, M C; White, S H

    1992-01-01

    We present in this paper the complete structure of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) in the L alpha phase (66% RH, 23 degrees C) obtained by the joint refinement of neutron and x-ray lamellar diffraction data. The structural details obtained have previously required a large number of neutron diffraction experiments, using numerous specifically-deuterated phospholipid isomorphs (Büldt et al., 1978. Nature (Lond.). 271:182-184). The joint-refinement approach minimizes specific deuteration by utilizing independent neutron and x-ray data sets. The method yields a quasimolecular structure consisting of a series of multiatomic fragments that are each represented by one or several Gaussian distributions whose positions and widths can be determined to within 0.06 to 0.52 A exclusive of the methylene region. The image of DOPC at 66% RH (5.36 +/- 0.08 waters per lipid) is consistent with many aspects of bilayer structure previously determined by structural and spectroscopic studies. The most striking feature of the structure is the large amount of transbilayer thermal motion suggested by the widths and overlaps of the Gaussian envelopes of the quasimolecular fragments. We discuss the "dynamic bilayer thickness" which describes the minimum effective thickness of the hydrocarbon permeability barrier in terms of the thermal motion of the water. A gradient of thermal motion exists that increases in either direction away from the glycerol backbone which is the most constrained portion of the bilayer. The steric interactions between headgroups of apposed bilayers, expected at the hydration level of our experiments, are clearly revealed. A useful consequence of the quasimolecular structure is that average boundaries within bilayers calculated using composition and volumetric data and ad hoc assumptions can be related to the positions of the principal structural groups. Several measures of "bilayer thickness" in common use can be identified as the positions of the

  8. Formation of an ordered phase by ceramides and diacylglycerols in a fluid phosphatidylcholine bilayer--Correlation with structure and hydrogen bonding capacity.

    PubMed

    Ekman, Peik; Maula, Terhi; Yamaguchi, Shou; Yamamoto, Tetsuya; Nyholm, Thomas K M; Katsumura, Shigeo; Slotte, J Peter

    2015-10-01

    Ceramides and diacylglycerols are lipids with a large hydrophobic part (acyl chains and long-chain base) whereas their polar function (hydroxyl group) is small. They need colipids with large head groups to coexist in bilayer membranes. In this study, we have determined how saturated and unsaturated ceramides and acyl-chain matched diacylglycerols form ordered domains in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine bilayers as a function of bilayer concentration. The formation of ordered domains was determined from lifetime analysis of trans-parinaric acid. Ceramides formed ordered domains with equal average tPA lifetime at lower bilayer concentration when compared to acyl-chain matched diacylglycerols. This was true for both saturated (16:0) and mono-unsaturated (18:1) species. This finding suggested that hydrogen bonding among ceramides contributed to their more efficient ordered phase formation, since diacylglycerols do not form similar hydrogen bonding networks. The role of hydrogen bonding in ordered domain formation was further verified by using palmitoyl ceramide analogs with 2N and 3OH methylated long-chain bases. These analogs do not form hydrogen bonds from the 2NH or the 3OH, respectively. While methylation of the 3OH did not affect ordered phase formation compared to native palmitoyl ceramide, 2NH methylation markedly attenuated ceramide ordered phase formation. We conclude that in addition to acyl chain length, saturation, molecular order, and lack of large head group, also hydrogen bonding involving the 2NH is crucial for efficient formation of ceramide-rich domains in fluid phosphatidylcholine bilayers.

  9. Structure of a fluid dioleoylphosphatidylcholine bilayer determined by joint refinement of x-ray and neutron diffraction data. I. Scaling of neutron data and the distributions of double bonds and water.

    PubMed Central

    Wiener, M. C.; King, G. I.; White, S. H.

    1991-01-01

    We described in two previous papers a method for the joint refinement of the structure of fluid bilayers using neutron and x-ray diffraction data (Wiener, M. C., and S. H. White 1991a, b. Biophys. J. 59: 162-173 and 174-185). An essential part of the method is the appropriate scaling of the diffraction data. Here we describe the scaling of the neutron data and the determination of the transbilayer distribution of double bonds in liquid-crystalline (L alpha phase) phospholipid bilayers of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). The distribution was determined by neutron diffraction of oriented multilayers (66% RH) of DOPC specifically deuterated at the 9- and 10-position of both acyl chains. The double-bond distribution is described accurately by a pair of Gaussian functions each located at a position Zcc = 7.88 +/- 0.09 A from the bilayer center with 1/e-halfwidths of Acc = 4.29 +/- 0.16 A. Previously, we determined the transbilayer distribution of bromine atoms in a specifically halogenated lipid, 1-oleoyl-2-9,10-dibromostearoyl-sn-glycero-3-phosphocholine (OBPC), and showed it to be an isomorphous replacement for DOPC (Wiener, M. C., and S. H. White, 1991c. Biochemistry. In press). A comparison of the double-bond and bromine profiles indicates that the positions of the centers of the deuterated double bond and the brominated methylene Gaussian distributions are equal within experimental error and that each label undergoes similar average thermal motions with respect to the bilayer normal. The observation that the average position of a label on both acyl chains (the deuterated double bonds) is similar to the average position of a label on the 2-chain alone (the brominated methylenes) indicates that the maximum separation along the bilayer normal between the double bonds of the acyl chains is 1 A or less. The fully-resolved transbilayer water distribution, previously determined at lower resolution (Jacobs, R. E., and S. H. White. 1989. Biochemistry. 28

  10. Structure and Orientational Texture of Self-Organizing Lipid Bilayers

    SciTech Connect

    Watkins, E. B.; Miller, C. E.; Majewski, J.; Mulder, D. J.; Kuhl, T. L.

    2009-06-12

    The structure of single supported dipalmitoyl-phosphatidylcholine bilayers prepared by vesicle fusion or Langmuir-Blodgett-Schaeffer (LBS) deposition techniques was characterized by x-ray reflectivity and grazing incidence diffraction in bulk water. LBS bilayers display symmetric leaflets similar to monolayer structures, while vesicle fusion yields more inhomogeneous bilayers. Diffraction establishes that lipids are always coupled across the bilayer even when leaflets are deposited independently and suggests the existence of orientational texture.

  11. Fluid Phase Lipid Areas and Bilayer Thicknesses of Commonly Used Phosphatidylcholines as a Function of Temperature

    SciTech Connect

    Kucerka, Norbert; Nieh, Mu-Ping; Katsaras, John

    2011-01-01

    The structural parameters of fluid phase bilayers composed of phosphatidylcholines with fully saturated, mixed, and branched fatty acid chains, at several temperatures, have been determined by simultaneously analyzing small-angle neutron and X-ray scattering data. Bilayer parameters, such as area per lipid and overall bilayer thickness have been obtained in conjunction with intrabilayer structural parameters (e.g. hydrocarbon region thickness). The results have allowed us to assess the effect of temperature and hydrocarbon chain composition on bilayer structure. For example, we found that for all lipids there is, not surprisingly, an increase in fatty acid chain trans-gauche isomerization with increasing temperature. Moreover, this increase in trans-gauche isomerization scales with fatty acid chain length in mixed chain lipids. However, in the case of lipids with saturated fatty acid chains, trans-gauche isomerization is increasingly tempered by attractive chain-chain van der Waals interactions with increasing chain length. Finally, our results confirm a strong dependence of lipid chain dynamics as a function of double bond position along fatty acid chains.

  12. Membrane fusion promoters and inhibitors have contrasting effects on lipid bilayer structure and undulations.

    PubMed

    McIntosh, T J; Kulkarni, K G; Simon, S A

    1999-04-01

    It has been established that the fusion of both biological membranes and phospholipid bilayers can be modulated by altering their lipid composition (Chernomordik et al., 1995 .J. Membr. Biol. 146:3). In particular, when added exogenously between apposing membranes, monomyristoylphosphatidylcholine (MMPC) inhibits membrane fusion, whereas glycerol monoleate (GMO), oleic acid (OA), and arachidonic acid (AA) promote fusion. This present study uses x-ray diffraction to investigate the effects of MMPC, GMO, OA, and AA on the bending and stability of lipid bilayers when bilayers are forced together with applied osmotic pressure. The addition of 10 and 30 mol% MMPC to egg phosphatidylcholine (EPC) bilayers maintains the bilayer structure, even when the interbilayer fluid spacing is reduced to approximately 3 A, and increases the repulsive pressure between bilayers so that the fluid spacing in excess water increases by 5 and 15 A, respectively. Thus MMPC increases the undulation pressure, implying that the addition of MMPC promotes out-of-plane bending and decreases the adhesion energy between bilayers. In contrast, the addition of GMO has minor effects on the undulation pressure; 10 and 50 mol% GMO increase the fluid spacing of EPC in excess water by 0 and 2 A, respectively. However, x-ray diffraction indicates that, at small interbilayer separations, GMO, OA, or AA converts the bilayer to a structure containing hexagonally packed scattering units approximately 50 A in diameter. Thus GMO, OA, or AA destabilizes bilayer structure as apposing bilayers are brought into contact, which could contribute to their role in promoting membrane fusion.

  13. Efficient tunable generic model for self-assembling fluid bilayer membranes

    NASA Astrophysics Data System (ADS)

    Deserno, Markus

    2005-03-01

    We present a new model for the simulation of generic lipid bilayers in the mesoscopic regime (between a few nanometers and many tens of nanometers), which is very robust, versatile, and extremely efficient, since it avoids the need for an embedding solvent. Based entirely on simple pair potentials, it features a wide region of unassisted self assembly into fluid bilayers without the need for careful parameter tuning. The resulting membranes display the correct continuum elastic behavior with bending constants in the experimentally relevant range. It can be readily used to study events like bilayer fusion, bilayer melting, lipid mixtures, rafts, and protein-bilayer interactions.

  14. Investigating the Structure of Multicomponent Gel-Phase Lipid Bilayers.

    PubMed

    Hartkamp, Remco; Moore, Timothy C; Iacovella, Christopher R; Thompson, Michael A; Bulsara, Pallav A; Moore, David J; McCabe, Clare

    2016-08-23

    Single- and multicomponent lipid bilayers of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC), 1,2-distearoyl-sn-glycero-3-phosphatidylcholine (DSPC), isostearyl isostearate, and heptadecanoyl heptadecanoate in the gel phase are studied via molecular dynamics simulations. It is shown that the structural properties of multicomponent bilayers can deviate strongly from the structures of their single-component counterparts. Specifically, the lipid mixtures are shown to adopt a compact packing by offsetting the positioning depths at which different lipid species are located in the bilayer. This packing mechanism affects the area per lipid, the bilayer height, and the chain tilt angles and has important consequences for other bilayer properties, such as interfacial hydrogen bonding and bilayer permeability. In particular, the simulations suggest that bilayers containing isostearyl isostearate or heptadecanoyl heptadecanoate are less permeable than pure 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine or DSPC bilayers. Furthermore, hydrogen-bond analysis shows that the residence times of lipid-water hydrogen bonds depend strongly on the bilayer composition, with longer residence times for bilayers that have a higher DSPC content. The findings illustrate and explain the fundamental differences between the properties of single- and multicomponent bilayers. PMID:27558724

  15. Controlling the Electronic Structure of Bilayer Graphene

    NASA Astrophysics Data System (ADS)

    Ohta, Taisuke; Bostwick, Aaron; McChesney, Jessica; Seyller, Thomas; Horn, Karsten; Rotenberg, Eli

    2007-03-01

    Carbon-based materials such as carbon nanotubes, graphite intercalation compounds, fullerenes, and ultrathin graphite films exhibit many exotic phenomena such as superconductivity and an anomalous quantum Hall effect. These findings have caused renewed interest in the electronic structure of ultrathin layers of graphene: a single honeycomb carbon layer that is the building block for these materials. There is a strong motivation to incorporate graphene multilayers into atomic-scale devices, spurred on by rapid progress in their fabrication and manipulation. We have synthesized bilayer graphene thin films deposited on insulating silicon carbide and characterized their electronic band structure using angle-resolved photoemission. By selectively adjusting the carrier concentration in each layer, changes in the Coulomb potential led to control of the gap between valence and conduction bands [1]. This control over the band structure suggests the potential application of bilayer graphene to switching functions in atomic scale electronic devices. [1] T. Ohta, A. Bostwick, T. Seyller, K. Horn, E. Rotenberg, Science, 313, 951 (2006).

  16. Acyl chain composition and coexisting fluid phases in lipid bilayers

    NASA Astrophysics Data System (ADS)

    Gu, Yongwen; Bradley, Miranda; Mitchell, Drake

    2011-10-01

    At room temperature phospholipid bilayers enriched in sphingolipids and cholesterol may form a solid phase as well as two coexisting fluid phases. These are the standard fluid phase, or the liquid-disordered phase, ld, and the liquid-ordered phase, lo, which is commonly associated with lipid rafts. Ternary mixtures of palmitoyl-oleoyl-phosphocholine (POPC; 16:0,18:1 PC), sphingomyelin (SPM), and cholesterol (Chol) form coexisting lo, ld and solid phases over a wide range of molar ratios. We are examining the ability of two fluorescent probes to detect these 2 phases: NBD linked to di-16:0 PE which partitions strongly into the lo phase and NBD linked to di-18:1 PE which partitions strongly into the ld phase. We are also examining the effect of the highly polyunsaturated phospholipid stearoyl-docosahexanoyl-phosphocholine (SDPC; 18:0, 22:6 PC) on the ternary phase diagram of POPC/SPM/Chol with particular focus on the functionally important lo/ld coexistence region. We report on the fluorescence lifetime and anisotropy decay dynamics of these two fluorescent probes.

  17. Structure of sphingomyelin bilayers and complexes with cholesterol forming membrane rafts.

    PubMed

    Quinn, Peter J

    2013-07-30

    Sphingomyelin and cholesterol are of interest to biologists because they interact to form condensed structures said to be responsible for a variety of functions that membranes perform. Synchrotron X-ray diffraction methods have been used to investigate the structure of bilayers of D-erythro palmitoyl-sphingomyelin and complexes formed by palmitoyl- and egg-sphingomyelin with cholesterol in aqueous multibilayer dispersions. D-erythro palmitoyl sphingomyelin bilayers exist in two conformers that are distinguished by their lamellar repeat spacing, bilayer thickness, and polar group hydration. The distinction is attributed to hydrogen bonding to water or to intermolecular hydrogen bonds that are disrupted by the formation of ripple structure. The coexisting bilayer structures of pure palmitoyl sphingomyelin are observed in the presence of cholesterol-rich bilayers that are characterized by different bilayer parameters. The presence of cholesterol preferentially affects the conformer of D-erythro sphingomyelin with thicker, more hydrated bilayers. Coexisting bilayers of sphingomyelin and complexes with cholesterol are in register and remain coupled at temperatures at least up to 50 °C. Cholesterol forms a complex of 1.8 mols of sphingomyelin per cholesterol at 37 °C that coexists with bilayers of pure sphingomyelin up to 50 °C. Redistribution of the two lipids takes place on cooling below the fluid- to gel-phase transition temperature, resulting in the withdrawal of sphingomyelin into gel phase and the formation of coexisting bilayers of equimolar proportions of the two lipids. Cholesterol-rich bilayers fit a stripe model at temperatures less than 37 °C characterized by alternating rows of sphingomyelin and cholesterol molecules. A quasicrystalline array models the arrangement at higher temperatures in which each cholesterol molecule is surrounded by seven hydrocarbon chains, each of which is in contact with two cholesterol molecules. The thickness of bilayer

  18. The effect of temperature on supported dipalmitoylphosphatidylcholine (DPPC) bilayers: structure and lubrication performance.

    PubMed

    Wang, Min; Zander, Thomas; Liu, Xiaoyan; Liu, Chao; Raj, Akanksha; Wieland, D C Florian; Garamus, Vasil M; Willumeit-Römer, Regine; Claesson, Per Martin; Dėdinaitė, Andra

    2015-05-01

    Phospholipids fulfill an important role in joint lubrication. They, together with hyaluronan and glycoproteins, are the biolubricants that sustain low friction between cartilage surfaces bathed in synovial fluid. In this work we have investigated how the friction force and load bearing capacity of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) bilayers on silica surfaces are affected by temperature, covering the temperature range 25-52°C. Friction forces have been determined utilizing the AFM colloidal probe technique, which showed that DPPC bilayers are able to provide low friction forces over the whole temperature interval. However, the load bearing capacity is improved at higher temperatures. We interpret this finding as being a consequence of lower rigidity and higher self-healing capacity of the DPPC bilayer in the liquid disordered state compared to the gel state. The corresponding structure of solid supported DPPC bilayers at the silica-liquid interface has been followed using X-ray reflectivity measurements, which suggests that the DPPC bilayer is in the gel phase at 25°C and 39°C and in the liquid disordered state at 55°C. Well-defined bilayer structures were observed for both phases. The deposited DPPC bilayers were also imaged using AFM PeakForce Tapping mode, and these measurements indicated a less homogeneous layer at temperatures below 37°C.

  19. Modeling liquid crystal bilayer structures with minimal surfaces.

    PubMed

    Enlow, J D; Enlow, R L; McGrath, K M; Tate, M W

    2004-01-22

    This paper describes a new convenient and accurate method of calculating x-ray diffraction integrated intensities from detailed cubic bilayer structures. The method is employed to investigate the structure of a particular surfactant system (didodecyldimethylammonium bromide in a solution of oil and heavy water), for which single-crystal experimental data have recently been collected. The diffracted peak intensities correlate well with theoretical structures based on mathematical minimal surfaces. Optimized electron density profiles of the bilayer are presented, providing new insight into key features of the bilayer structure.

  20. The Molecular Structure of a Phosphatidylserine Bilayer Determined by Scattering and Molecular Dynamics Simulations

    SciTech Connect

    Pan, Jianjun; Cheng, Xiaolin; Monticelli, Luca; Heberle, Frederick A; Kucerka, Norbert; Tieleman, D. Peter; Katsaras, John

    2014-01-01

    Phosphatidylserine (PS) lipids play essential roles in biological processes, including enzyme activation and apoptosis. We report on the molecular structure and atomic scale interactions of a fluid bilayer composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylserine (POPS). A scattering density profile model, aided by molecular dynamics (MD) simulations, was developed to jointly refine different contrast small-angle neutron and X-ray scattering data, which yielded a lipid area of 62.7 A2 at 25 C. MD simulations with POPS lipid area constrained at different values were also performed using all-atom and aliphatic united-atom models. The optimal simulated bilayer was obtained using a model-free comparison approach. Examination of the simulated bilayer, which agrees best with the experimental scattering data, reveals a preferential interaction between Na+ ions and the terminal serine and phosphate moieties. Long-range inter-lipid interactions were identified, primarily between the positively charged ammonium, and the negatively charged carboxylic and phosphate oxygens. The area compressibility modulus KA of the POPS bilayer was derived by quantifying lipid area as a function of surface tension from area-constrained MD simulations. It was found that POPS bilayers possess a much larger KA than that of neutral phosphatidylcholine lipid bilayers. We propose that the unique molecular features of POPS bilayers may play an important role in certain physiological functions.

  1. Ethanol effects on binary and ternary supported lipid bilayers with gel/fluid domains and lipid rafts.

    PubMed

    Marquês, Joaquim T; Viana, Ana S; De Almeida, Rodrigo F M

    2011-01-01

    Ethanol-lipid bilayer interactions have been a recurrent theme in membrane biophysics, due to their contribution to the understanding of membrane structure and dynamics. The main purpose of this study was to assess the interplay between membrane lateral heterogeneity and ethanol effects. This was achieved by in situ atomic force microscopy, following the changes induced by sequential ethanol additions on supported lipid bilayers formed in the absence of alcohol. Binary phospholipid mixtures with a single gel phase, dipalmitoylphosphatidylcholine (DPPC)/cholesterol, gel/fluid phase coexistence DPPC/dioleoylphosphatidylcholine (DOPC), and ternary lipid mixtures containing cholesterol, mimicking lipid rafts (DOPC/DPPC/cholesterol and DOPC/sphingomyelin/cholesterol), i.e., with liquid ordered/liquid disordered (ld/lo) phase separation, were investigated. For all compositions studied, and in two different solid supports, mica and silicon, domain formation or rearrangement accompanied by lipid bilayer thinning and expansion was observed. In the case of gel/fluid coexistence, low ethanol concentrations lead to a marked thinning of the fluid but not of the gel domains. In the case of ld/lo all the bilayer thins simultaneously by a similar extent. In both cases, only the more disordered phase expanded significantly, indicating that ethanol increases the proportion of disordered domains. Water/bilayer interfacial tension variation and freezing point depression, inducing acyl chain disordering (including opening and looping), tilting, and interdigitation, are probably the main cause for the observed changes. The results presented herein demonstrate that ethanol influences the bilayer properties according to membrane lateral organization. PMID:20955684

  2. Structural Determinants of Drug Partitioning in Surrogates of Phosphatidylcholine Bilayer Strata

    PubMed Central

    Lukacova, Viera; Natesan, Senthil; Peng, Ming; Tandlich, Roman; Wang, Zhanbin; Lynch, Sandra; Subramaniam, Rajesh; Balaz, Stefan

    2013-01-01

    The knowledge of drug concentrations in bilayer headgroups, core, and at the interface between them is a prerequisite for quantitative modeling of drug interactions with many membrane-bound transporters, metabolizing enzymes and receptors, which have the binding sites located in the bilayer. This knowledge also helps understand the rates of trans-bilayer transport because balanced interactions of drugs with the bilayer strata lead to high rates, while excessive affinities for any stratum cause a slowdown. Experimental determination of bilayer location is so tedious and costly that the data are only available for some fifty compounds. To extrapolate these valuable results to more compounds at a higher throughput, surrogate phases have been used to obtain correlates of the drug affinities for individual strata. We introduced a novel system, consisting of a diacetyl phosphatidylcholine (DAcPC) solution with the water content of the fluid bilayer as the headgroup surrogate and n-hexadecane (C16) representing the core. The C16/DAcPC partition coefficients were measured for 113 selected compounds, containing structural fragments that are frequently occurring in approved drugs. The data were deconvoluted into the ClogP-based fragment solvation characteristics and processed using a solvatochromic correlation. Increased H-bond donor ability and excess molar refractivity of compounds promote solvation in the DAcPC phase as compared to bulk water, contrary to H-bond acceptor ability, dipolarity/polarizability, and volume. The results show that aromates have more balanced distribution in bilayer strata, and thus faster trans-bilayer transport, than similar alkanes. This observation is in accordance with the frequent occurrence of aromatic rings in approved drugs and with the role of rigidity of drug molecules in promoting intestinal absorption. Bilayer locations, predicted using the C16/DAcPC system, are in excellent agreement with available experimental data, in contrast to

  3. Cyclic and Linear Monoterpenes in Phospholipid Membranes: Phase Behavior, Bilayer Structure, and Molecular Dynamics.

    PubMed

    Pham, Quoc Dat; Topgaard, Daniel; Sparr, Emma

    2015-10-13

    Monoterpenes are abundant in essential oils extracted from plants. These relatively small and hydrophobic molecules have shown important biological functions, including antimicrobial activity and membrane penetration enhancement. The interaction between the monoterpenes and lipid bilayers is considered important to the understanding of the biological functions of monoterpenes. In this study, we investigated the effect of cyclic and linear monoterpenes on the structure and dynamics of lipids in model membranes. We have studied the ternary system 1,2-dimyristoyl-sn-glycero-3-phosphocholine-monoterpene-water as a model with a focus on dehydrated conditions. By combining complementary techniques, including differential scanning calorimetry, solid-state nuclear magnetic resonance, and small- and wide-angle X-ray scattering, bilayer structure, phase transitions, and lipid molecular dynamics were investigated at different water contents. Monoterpenes cause pronounced melting point depression and phase segregation in lipid bilayers, and the extent of these effects depends on the hydration conditions. The addition of a small amount of thymol to the fluid bilayer (volume fraction of 0.03 in the bilayer) leads to an increased order in the acyl chain close to the bilayer interface. The findings are discussed in relation to biological systems and lipid formulations. PMID:26375869

  4. Theory of periodic structures in lipid bilayer membranes

    PubMed Central

    Falkovitz, Meira S.; Seul, Michael; Frisch, Harry L.; McConnell, Harden M.

    1982-01-01

    An approximate, new model for the structure of the periodic, undulated Pβ′, phase of phosphatidylcholine bilayers is proposed. The properties of this phase are deduced by minimizing a Landau-de Gennes expression for the bilayer free energy when this free energy contains a term favoring a spontaneous curvature of the membrane. The theoretical calculation leads to a model for the Pβ′ phase of phosphatidylcholine bilayers having a number of novel physical properties, including periodic variations in membrane “fluidity.” PMID:16593202

  5. Structural studies of polymer-cushioned lipid bilayers.

    PubMed

    Majewski, J; Wong, J Y; Park, C K; Seitz, M; Israelachvili, J N; Smith, G S

    1998-11-01

    The structure of softly supported polymer-cushioned lipid bilayers, prepared in two different ways at the quartz-solution interface, were determined using neutron reflectometry. The polymer cushion consisted of a thin layer of branched, cationic polyethyleneimine (PEI), and the bilayers were formed by adsorption of small unilamellar dimyristoylphosphatidylcholine (DMPC) vesicles. When vesicles were first allowed to adsorb to a bare quartz substrate, an almost perfect bilayer formed. When the polymer was then added to the aqueous solution, it appeared to diffuse beneath this bilayer, effectively lifting it from the substrate. In contrast, if the polymer layer is adsorbed first to the bare quartz substrate followed by addition of vesicles to the solution, there is very little interaction of the vesicles with the polymer layer, and the result is a complex structure most likely consisting of patchy multilayers or adsorbed vesicles.

  6. Effect of intra-membrane C60 fullerenes on the modulus of elasticity and the mechanical resistance of gel and fluid lipid bilayers

    NASA Astrophysics Data System (ADS)

    Zhou, Jihan; Liang, Dehai; Contera, Sonia

    2015-10-01

    Penetration and partition of C60 to the lipid bilayer core are both relevant to C60 toxicity, and useful to realise C60 biomedical potential. A key aspect is the effect of C60 on bilayer mechanical properties. Here, we present an experimental study on the mechanical effect of the incorporation of C60 into the hydrophobic core of fluid and gel phase zwitterionic phosphatidylcholine (PC) lipid bilayers. We demonstrate its incorporation inside the hydrophobic lipid core and the effect on the packing of the lipids and the vesicle size using a combination of infrared (IR) spectroscopy, atomic force microscopy (AFM) and laser light scattering. Using AFM we measured the Young's modulus of elasticity (E) of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) in the absence (presence) of intra-membranous C60 at 24.5 °C. E of fluid phase supported bilayers is not altered by C60, but E increases with incorporation of C60 in gel phase bilayers. The increase is higher for longer hydrocarbon chains: 1.6 times for DPPC and 2 times for DSPC. However the mechanical resistance of gel phase bilayers of curved bilayered structures decreases with the incorporation of C60. Our combined results indicate that C60 causes a decrease in gel phase lipid mobility, i.e. an increase in membrane viscosity.

  7. Tethered and Polymer Supported Bilayer Lipid Membranes: Structure and Function

    PubMed Central

    Andersson, Jakob; Köper, Ingo

    2016-01-01

    Solid supported bilayer lipid membranes are model systems to mimic natural cell membranes in order to understand structural and functional properties of such systems. The use of a model system allows for the use of a wide variety of analytical tools including atomic force microscopy, impedance spectroscopy, neutron reflectometry, and surface plasmon resonance spectroscopy. Among the large number of different types of model membranes polymer-supported and tethered lipid bilayers have been shown to be versatile and useful systems. Both systems consist of a lipid bilayer, which is de-coupled from an underlying support by a spacer cushion. Both systems will be reviewed, with an emphasis on the effect that the spacer moiety has on the bilayer properties. PMID:27249006

  8. Tethered and Polymer Supported Bilayer Lipid Membranes: Structure and Function.

    PubMed

    Andersson, Jakob; Köper, Ingo

    2016-01-01

    Solid supported bilayer lipid membranes are model systems to mimic natural cell membranes in order to understand structural and functional properties of such systems. The use of a model system allows for the use of a wide variety of analytical tools including atomic force microscopy, impedance spectroscopy, neutron reflectometry, and surface plasmon resonance spectroscopy. Among the large number of different types of model membranes polymer-supported and tethered lipid bilayers have been shown to be versatile and useful systems. Both systems consist of a lipid bilayer, which is de-coupled from an underlying support by a spacer cushion. Both systems will be reviewed, with an emphasis on the effect that the spacer moiety has on the bilayer properties. PMID:27249006

  9. Incorporation of surface tension into molecular dynamics simulation of an interface: a fluid phase lipid bilayer membrane.

    PubMed Central

    Chiu, S W; Clark, M; Balaji, V; Subramaniam, S; Scott, H L; Jakobsson, E

    1995-01-01

    In this paper we report on the molecular dynamics simulation of a fluid phase hydrated dimyristoylphosphatidylcholine bilayer. The initial configuration of the lipid was the x-ray crystal structure. A distinctive feature of this simulation is that, upon heating the system, the fluid phase emerged from parameters, initial conditions, and boundary conditions determined independently of the collective properties of the fluid phase. The initial conditions did not include chain disorder characteristic of the fluid phase. The partial charges on the lipids were determined by ab initio self-consistent field calculations and required no adjustment to produce a fluid phase. The boundary conditions were constant pressure and temperature. Thus the membrane was not explicitly required to assume an area/phospholipid molecule thought to be characteristic of the fluid phase, as is the case in constant volume simulations. Normal to the membrane plane, the pressure was 1 atmosphere, corresponding to the normal laboratory situation. Parallel to the membrane plane a negative pressure of -100 atmospheres was applied, derived from the measured surface tension of a monolayer at an air-water interface. The measured features of the computed membrane are generally in close agreement with experiment. Our results confirm the concept that, for appropriately matched temperature and surface pressure, a monolayer is a close approximation to one-half of a bilayer. Our results suggest that the surface area per phospholipid molecule for fluid phosphatidylcholine bilayer membranes is smaller than has generally been assumed in computational studies at constant volume. Our results confirm that the basis of the measured dipole potential is primarily water orientations and also suggest the presence of potential barriers for the movement of positive charges across the water-headgroup interfacial region of the phospholipid. Images FIGURE 2 PMID:8534794

  10. Structure and thermotropic phase behavior of fluorinated phospholipid bilayers: a combined attenuated total reflection FTIR spectroscopy and imaging ellipsometry study.

    PubMed

    Schuy, Steffen; Faiss, Simon; Yoder, Nicholas C; Kalsani, Venkateshwarlu; Kumar, Krishna; Janshoff, Andreas; Vogel, Reiner

    2008-07-17

    Lipid bilayers consisting of lipids with terminally perfluoroalkylated chains have remarkable properties. They exhibit increased stability and phase-separated nanoscale patterns in mixtures with nonfluorinated lipids. In order to understand the bilayer properties that are responsible for this behavior, we have analyzed the structure of solid-supported bilayers composed of 1,2-dipalmitoyl- sn-glycero-3-phosphocholine (DPPC) and of a DPPC analogue with 6 terminal perfluorinated methylene units (F6-DPPC). Polarized attenuated total reflection Fourier-transform infrared spectroscopy indicates that for F6-DPPC, the tilt of the lipid acyl chains to the bilayer normal is increased to 39 degrees as compared to 21 degrees for native DPPC, for both lipids in the gel phase. This substantial increase of the tilt angle is responsible for a decrease of the bilayer thickness from 5.4 nm for DPPC to 4.5 nm for F6-DPPC, as revealed by temperature-controlled imaging ellipsometry on microstructured lipid bilayers and solution atomic force microscopy. During the main phase transition from the gel to the fluid phase, both the relative bilayer thickness change and the relative area change are substantially smaller for F6-DPPC than for DPPC. In light of these structural and thermotropic data, we propose a model in which the higher acyl-chain tilt angle in F6-DPPC is the result of a conformational rearrangement to minimize unfavorable fluorocarbon-hydrocarbon interactions in the center of the bilayer due to chain staggering.

  11. Hierarchically structured porous cadmium selenide polycrystals using polystyrene bilayer templates.

    PubMed

    Park, Jin Young; Hendricks, Nicholas R; Carter, Kenneth R

    2012-09-18

    In this study, a novel approach is demonstrated to fabricate hierarchically structured cadmium selenide (CdSe) layers with size-tunable nano/microporous morphologies achieved using polystyrene (PS) bilayered templates (top layer: colloidal template) via potentiostatic electrochemical deposition. The PS bilayer template is made in two steps. First, various PS patterns (stripes, ellipsoids, and circles) are prepared as the bottom layers through imprint lithography. In a second step, a top template is deposited that consists of a self-assembled layer of colloidal 2D packed PS particles. Electrochemical growth of CdSe crystals in the voids and selective removal of the PS bilayered templates give rise to hierarchically patterned 2D hexagonal porous CdSe structures. This simple and facile technique provides various unconventional porous CdSe films, arising from the effect of the PS bottom templates.

  12. Exchange bias training effect in coupled all ferromagnetic bilayer structures.

    PubMed

    Binek, Ch; Polisetty, S; He, Xi; Berger, A

    2006-02-17

    Exchange coupled bilayers of soft and hard ferromagnetic thin films show remarkable analogies to conventional antiferromagnetic/ferromagnetic exchange bias heterostructures. Not only do all these ferromagnetic bilayers exhibit a tunable exchange bias effect, they also show a distinct training behavior upon cycling the soft layer through consecutive hysteresis loops. In contrast with conventional exchange bias systems, such all ferromagnetic bilayer structures allow the observation of training induced changes in the bias-setting hardmagnetic layer by means of simple magnetometry. Our experiments show unambiguously that the exchange bias training effect is driven by deviations from equilibrium in the pinning layer. A comparison of our experimental data with predictions from a theory based upon triggered relaxation phenomena shows excellent agreement.

  13. Stacking-dependent electronic structure of bilayer silicene

    SciTech Connect

    Fu, Huixia; Zhang, Jin; Ding, Zijing; Li, Hui E-mail: smeng@iphy.ac.cn; Meng, Sheng E-mail: smeng@iphy.ac.cn

    2014-03-31

    Bilayer silicene (BLS) is a class of material that possibly holds both topological and superconducting properties; however, its structure is not fully understood. By scanning stacking modes and lattice constants using first principles calculations, several meta-stable configurations are identified, including a slightly faulted-AA packing structure, named slide-2AA. Different from the metallic properties of conventional AA and AB stacking forms, band structure of slide-2AA bilayer presents a sizeable indirect energy gap of ∼1.16 eV. A metal-semiconductor phase transition along the sliding pathway with a small energy barrier is also observed, indicating its electronic properties can be easily tuned by applying small shear force along the BLS surface plane. Such unique quantitative relationship of structure and electronic properties has profound implications in nanoelectronics and electromechanical devices.

  14. Organization and Structure of Branched Amphipathic Oligopeptide Bilayers.

    PubMed

    Jia, Zhiguang; Whitaker, Susan K; Tomich, John M; Chen, Jianhan

    2016-09-27

    A class of self-assembling branched amphiphilic peptide capsules (BAPCs) was recently developed that could serve as a new drug delivery vehicle. BAPCs can encapsulate solutes up to ∼12 kDa during assembly, are unusually stable, and are readily taken up by cells with low cytotoxicity. Coarse-grained simulations have supported that BAPCs are defined by bilayers that resemble those formed by diacyl phospholipids. Here, atomistic simulations were performed to characterize the structure and organization of bilayers formed by three branched amphiphilic peptides (BAPs): bis(Ac-FLIVIGSII)-K-K4-CO-NH2, bis(Ac-CHA-LIVIGSII)-K-K4-CO-NH2, and bis(Ac-FLIVI)-K-K4-CO-NH2. The results show BAPs form a network of intra- and intermolecular backbone hydrogen bonds within the same leaflet in addition to hydrophobic side-chain interactions. The terminal residues of two leaflets form an interdigitation region locking two leaflets together. The phenyl groups in bis(Ac-FLIVIGSII)-K-K4-CO-NH2 and bis(Ac-FLIVI)-K-K4-CO-NH2 are tightly packed near the bilayer center but do not formed ordered structures with specific π-π stacking. Replacing phenyl groups with the cyclohexane side chain only slightly increases the level of disorder in bilayer structures and thus should not significantly affect the stability, consistent with experimental results on bis(Ac-CHA-LIVIGSII)-K-K4-CO-NH2 BAPCs. Self-assembly simulations further suggest that leaflet interdigitation likely occurs at early stages of BAPC formation. Atomistic simulations also reveal that the BAPC bilayers are highly permeable to water. This prediction was validated using fluorescence measurements of encapsulated self-quenching dye upon transferring BAPCs to buffers with different salt concentrations. Improved understanding of the organization and structure of BAPC bilayers at the atomic level will provide a basis for future rational modifications of BAP sequence to improve BAPC properties as a new class of delivery vehicle. PMID

  15. One-dimensional lipid bilayers on carbon nanotubes: Structure and properties

    NASA Astrophysics Data System (ADS)

    Artyukhin, Alexander Borisovich

    In this work we report design, assembly, and properties of one-dimensional lipid bilayers wrapped around polymer-coated carbon nanotubes. We propose to use this platform as a tool for interfacing nanomaterials with biological systems. We start by presenting a new general procedure for noncovalent modification of carbon nanotubes based on polyelectrolyte layer-by-layer assembly. We confirm formation of multilayer polymer structures around individual carbon nanotubes by transmission electron microscopy and confocal fluorescence microscopy, and demonstrate that sign of the outmost polymer layer controls surface properties of the multilayer assembly. We study how rigidity of a polymer chain influences its ability to adsorb onto high curvature substrates, such as carbon nanotubes. We then build the one-dimensional lipid bilayer structure by spontaneous assembly of lipid molecules in a continuous nanoshell around a template of a carbon nanotube wrapped with hydrophilic polymer cushion layers. We demonstrate that such one-dimensional lipid membranes are fluid and can heal defects, even over repeated damage-recovery cycles. Measured diffusion coefficients of lipid molecules in our polymer-supported bilayers are about 3 orders of magnitude lower than typical values for fluid lipid membranes, which we attribute to strong electrostatic polyelectrolyte-lipid interactions. To explore the potential for device integration of one-dimensional bilayers we investigate effect of polyelectrolyte multilayers on electrical properties of carbon nanotube transistors. We demonstrate that complex interaction of adsorbed species with the device substrate can produce significant and sometimes unexpected side effects on device characteristics. Finally, we fabricate transistors with suspended carbon nanotube channels and devise a method to transfer them in liquid. It allows us to assemble one-dimensional lipid membranes on carbon nanotube devices, characterize their electrical properties, and

  16. Superlattice structures in twisted bilayers of folded graphene.

    PubMed

    Schmidt, Hennrik; Rode, Johannes C; Smirnov, Dmitri; Haug, Rolf J

    2014-01-01

    The electronic properties of bilayer graphene strongly depend on relative orientation of the two atomic lattices. Whereas Bernal-stacked graphene is most commonly studied, a rotational mismatch between layers opens up a whole new field of rich physics, especially at small interlayer twist. Here we report on magnetotransport measurements on twisted graphene bilayers, prepared by folding of single layers. These reveal a strong dependence on the twist angle, which can be estimated by means of sample geometry. At small rotation, superlattices with a wavelength in the order of 10 nm arise and are observed by friction atomic force microscopy. Magnetotransport measurements in this small-angle regime show the formation of satellite Landau fans. These are attributed to additional Dirac singularities in the band structure and discussed with respect to the wide range of interlayer coupling models.

  17. Formation and finite element analysis of tethered bilayer lipid structures.

    PubMed

    Kwak, Kwang Joo; Valincius, Gintaras; Liao, Wei-Ching; Hu, Xin; Wen, Xuejin; Lee, Andrew; Yu, Bo; Vanderah, David J; Lu, Wu; Lee, L James

    2010-12-01

    Rapid solvent exchange of an ethanolic solution of diphytanoyl phosphatidylcholine (DPhyPC) in the presence of a mixed self-assembled monolayer (SAM) [thiolipid/β-mercaptoethanol (βME) (3/7 mol/mol) on Au] shows a transition from densely packed tethered bilayer lipid membranes [(dp)tBLMs], to loosely packed tethered bilayer lipid membranes [(lp)tBLMs], and tethered bilayer liposome nanoparticles (tBLNs) with decreasing DPhyPC concentration. The tethered lipidic constructs in the aqueous medium were analyzed by atomic force microscopy (AFM) and electrochemical impedance spectroscopy (EIS). Finite element analysis (FEA) was applied to interpret spectral EIS features without referring to equivalent circuit modeling. Using structural data obtained earlier from neutron reflectometry and dielectric constants of lipid bilayers, we reproduced experimentally observed features of the electrochemical impedance (EI) spectra of complex surface constructs involving small pinhole defects, large membrane-free patches, and bound liposomes. We demonstrated by FEA that highly insulating (dp)tBLMs with low-defect density exhibit EI spectra in the shape of a perfect semicircle with or without low-frequency upward "tails" in the Cole-Cole representation. Such EI spectra were observed at DPhyPC concentrations of >5 × 10(-3) mol L(-1). While AFM was not able to visualize very small lateral defects in such films, EI spectra unambiguously signaled their presence by increased low frequency "tails". Using FEA we demonstrate that films with large diameter visible defects (>25 nm by AFM) produce EI spectral features consisting of two semicircles of comparable size. Such films were typically obtained at DPhyPC concentrations of <5 × 10(-3) mol L(-1). At DPhyPC concentrations of <1.0 × 10(-3) mol L(-1) the planar bilayer structures were replaced by ellipsoidal liposomes with diameters ranging from 50 to 500 nm as observed in AFM images. Despite the distinct surface morphology change, the EI

  18. Formation and finite element analysis of tethered bilayer lipid structures.

    PubMed

    Kwak, Kwang Joo; Valincius, Gintaras; Liao, Wei-Ching; Hu, Xin; Wen, Xuejin; Lee, Andrew; Yu, Bo; Vanderah, David J; Lu, Wu; Lee, L James

    2010-12-01

    Rapid solvent exchange of an ethanolic solution of diphytanoyl phosphatidylcholine (DPhyPC) in the presence of a mixed self-assembled monolayer (SAM) [thiolipid/β-mercaptoethanol (βME) (3/7 mol/mol) on Au] shows a transition from densely packed tethered bilayer lipid membranes [(dp)tBLMs], to loosely packed tethered bilayer lipid membranes [(lp)tBLMs], and tethered bilayer liposome nanoparticles (tBLNs) with decreasing DPhyPC concentration. The tethered lipidic constructs in the aqueous medium were analyzed by atomic force microscopy (AFM) and electrochemical impedance spectroscopy (EIS). Finite element analysis (FEA) was applied to interpret spectral EIS features without referring to equivalent circuit modeling. Using structural data obtained earlier from neutron reflectometry and dielectric constants of lipid bilayers, we reproduced experimentally observed features of the electrochemical impedance (EI) spectra of complex surface constructs involving small pinhole defects, large membrane-free patches, and bound liposomes. We demonstrated by FEA that highly insulating (dp)tBLMs with low-defect density exhibit EI spectra in the shape of a perfect semicircle with or without low-frequency upward "tails" in the Cole-Cole representation. Such EI spectra were observed at DPhyPC concentrations of >5 × 10(-3) mol L(-1). While AFM was not able to visualize very small lateral defects in such films, EI spectra unambiguously signaled their presence by increased low frequency "tails". Using FEA we demonstrate that films with large diameter visible defects (>25 nm by AFM) produce EI spectral features consisting of two semicircles of comparable size. Such films were typically obtained at DPhyPC concentrations of <5 × 10(-3) mol L(-1). At DPhyPC concentrations of <1.0 × 10(-3) mol L(-1) the planar bilayer structures were replaced by ellipsoidal liposomes with diameters ranging from 50 to 500 nm as observed in AFM images. Despite the distinct surface morphology change, the EI

  19. The impact of cell-penetrating peptides on membrane bilayer structure during binding and insertion.

    PubMed

    Hirst, Daniel J; Lee, Tzong-Hsien; Kulkarni, Ketav; Wilce, Jacqueline A; Aguilar, Marie-Isabel

    2016-08-01

    We have studied the effect of penetratin and a truncated analogue on the bilayer structure using dual polarisation interferometry, to simultaneously measure changes in mass per unit area and birefringence (an optical parameter representing bilayer order) with high sensitivity during the binding and dissociation from the membrane. Specifically, we studied penetratin (RQIKIWFQNRRMKWKK), along with a shortened and biotinylated version known as R8K-biotin (RRMKWKKK(Biotin)-NH2). Overall both peptides bound only weakly to the neutral DMPC and POPC bilayers, while much higher binding was observed for the anionic DMPC/DMPG and POPC/POPG. The binding of penetratin to gel-phase DMPC/DMPG was adequately represented by a two-state model, whereas on the fluid-phase POPC/POPG it exhibited a distinctly different binding pattern, best represented by a three-state kinetic model. However, R8K-biotin did not bind well to DMPC/DMPG and showed a more transitory and superficial binding to POPC/POPG. Comparing the modelling results for both peptides binding to POPC/POPG suggests an important role for a securely bound intermediate prior to penetratin insertion and translocation. Overall these results further elucidate the mechanism of penetratin, and provide another example of the significance of the ability of DPI to measure structural changes and the use of kinetic analysis to investigate the stages of peptide-membrane interactions. PMID:27163492

  20. Stress Transfer and Structural Failure of Bilayered Material Systems

    NASA Astrophysics Data System (ADS)

    Prieto-Munoz, Pablo Arthur

    Bilayered material systems are common in naturally formed or artificially engineered structures. Understanding how loads transfer within these structural systems is necessary to predict failure and develop effective designs. Existing methods for evaluating the stress transfer in bilayered materials are limited to overly simplified models or require experimental calibration. As a result, these methods have failed to accurately account for such structural failures as the creep induced roofing panel collapse of Boston's I-90 connector tunnel, which was supported by adhesive anchors. The one-dimensional stress analyses currently used for adhesive anchor design cannot account for viscoelastic creep failure, and consequently results in dangerously under-designed structural systems. In this dissertation, a method for determining the two-dimensional stress and displacement fields for a generalized bilayered material system is developed, and proposes a closed-form analytical solution. A general linear-elastic solution is first proposed by decoupling the elastic governing equations from one another through the so-called plane assumption. Based on this general solution, an axisymmetric problem and a plane strain problem are formulated. These are applied to common bilayered material systems such as: (1) concrete adhesive anchors, (2) material coatings, (3) asphalt pavements, and (4) layered sedimentary rocks. The stress and displacement fields determined by this analytical analysis are validated through the use of finite element models. Through the correspondence principle, the linear-elastic solution is extended to consider time-dependent viscoelastic material properties, thus facilitating the analysis of adhesive anchors and asphalt pavements while incorporating their viscoelastic material behavior. Furthermore, the elastic stress analysis can explain the fracturing phenomenon of material coatings, pavements, and layered rocks, successfully predicting their fracture

  1. Periodic barrier structure in AA-stacked bilayer graphene

    NASA Astrophysics Data System (ADS)

    Redouani, Ilham; Jellal, Ahmed

    2016-06-01

    We study the charge carriers transport in an AA-stacked bilayer graphene modulated by a lateral one-dimensional multibarrier structure. We investigate the band structures of our system, that is made up of two shifted Dirac cones, for finite and zero gap. We use the boundary conditions to explicitly determine the transmission probability of each individual cone (τ =+/- 1) for single, double and finite periodic barrier structure. We find that the Klein tunneling is only possible when the band structure is gapless and can occur at normal incidence as a result of the Dirac nature of the quasiparticles. We observe that the band structure of the barriers can have more than one Dirac points for finite periodic barrier. The resonance peaks appear in the transmission probability, which correspond to the positions of new cones index like associated with τ =+/- 1. Two conductance channels through different cones (τ =+/- 1) are found where the total conductance has been studied and compared to the cases of single layer and AB-stacked bilayer graphene.

  2. Assessment of pseudo-bilayer structures in the heterogate germanium electron-hole bilayer tunnel field-effect transistor

    SciTech Connect

    Padilla, J. L. Alper, C.; Ionescu, A. M.; Medina-Bailón, C.; Gámiz, F.

    2015-06-29

    We investigate the effect of pseudo-bilayer configurations at low operating voltages (≤0.5 V) in the heterogate germanium electron-hole bilayer tunnel field-effect transistor (HG-EHBTFET) compared to the traditional bilayer structures of EHBTFETs arising from semiclassical simulations where the inversion layers for electrons and holes featured very symmetric profiles with similar concentration levels at the ON-state. Pseudo-bilayer layouts are attained by inducing a certain asymmetry between the top and the bottom gates so that even though the hole inversion layer is formed at the bottom of the channel, the top gate voltage remains below the required value to trigger the formation of the inversion layer for electrons. Resulting benefits from this setup are improved electrostatic control on the channel, enhanced gate-to-gate efficiency, and higher I{sub ON} levels. Furthermore, pseudo-bilayer configurations alleviate the difficulties derived from confining very high opposite carrier concentrations in very thin structures.

  3. X-ray structure determination of fully hydrated L alpha phase dipalmitoylphosphatidylcholine bilayers.

    PubMed Central

    Nagle, J F; Zhang, R; Tristram-Nagle, S; Sun, W; Petrache, H I; Suter, R M

    1996-01-01

    Bilayer form factors obtained from x-ray scattering data taken with high instrumental resolution are reported for multilamellar vesicles of L alpha phase lipid bilayers of dipalmitoylphosphatidylcholine at 50 degrees C under varying osmotic pressure. Artifacts in the magnitudes of the form factors due to liquid crystalline fluctuations have been eliminated by using modified Caillé theory. The Caillé fluctuation parameter eta 1 increases systematically with increasing lamellar D spacing and this explains why some higher order peaks are unobservable for the larger D spacings. The corrected form factors fall on one smooth continuous transform F(q); this shows that the bilayer does not change shape as D decreases from 67.2 A (fully hydrated) to 60.9 A. The distance between headgroup peaks is obtained from Fourier reconstruction of samples with four orders of diffraction and from electron density models that use 38 independent form factors. By combining these results with previous gel phase results, area AF per lipid molecule and other structural quantities are obtained for the fluid L alpha phase. Comparison with results that we derived from previous neutron diffraction data is excellent, and we conclude from diffraction studies that AF = 62.9 +/- 1.3 A2, which is in excellent agreement with a previous estimate from NMR data. PMID:8785298

  4. Electronic Structure and Optical Properties of Twisted Bilayer Black Phosphorus

    NASA Astrophysics Data System (ADS)

    Cao, Ting; Li, Zhenglu; Qiu, Diana Y.; Louie, Steven G.

    Using first-principles calculations, we find that the electronic structure and optical properties of bilayer black phosphorus can be modified significantly through changing the interlayer twist angle. We demonstrate the origin of these twist angle dependent effects, and connect our predicted results to experimental measurements. This work was supported by NSF Grant No. DMR15-1508412, and the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Computational resources have been provided by DOE at Lawrence Berkeley National Laboratory's NERSC facility.

  5. Band Structure Asymmetry of Bilayer Graphene Revealed by Infrared Spectroscopy

    SciTech Connect

    Li, Z.Q.; Henriksen, E.A.; Jiang, Z.; Hao, Zhao; Martin, Michael C.; Kim, P.; Stormer, H.L.; Basov, Dimitri N.

    2008-12-10

    We report on infrared spectroscopy of bilayer graphene integrated in gated structures. We observe a significant asymmetry in the optical conductivity upon electrostatic doping of electrons and holes. We show that this finding arises from a marked asymmetry between the valence and conduction bands, which is mainly due to the inequivalence of the two sublattices within the graphene layer and the next-nearest-neighbor interlayer coupling. From the conductivity data, the energy difference of the two sublattices and the interlayer coupling energy are directly determined.

  6. Influence of defects on the electronic structures of bilayer graphene

    NASA Astrophysics Data System (ADS)

    Kishimoto, Ken; Okada, Susumu

    2016-02-01

    Based on first-principles total-energy calculation, we investigate the electronic structures of bilayer graphene, one of which layers possesses atomic or topological defects, to explore the possibility of band gap engineering of graphene by means of physisorption of defective graphene. Our calculations show that the pristine graphene layer possesses a finite energy gap between bonding and antibonding π states because of the potential undulation caused by the other graphene layers with defects. We also found that the gap values strongly depend on the defect species and their mutual arrangement with respect to the pristine layer.

  7. Structure and dynamics of water and lipid molecules in charged anionic DMPG lipid bilayer membranes

    NASA Astrophysics Data System (ADS)

    Rønnest, A. K.; Peters, G. H.; Hansen, F. Y.; Taub, H.; Miskowiec, A.

    2016-04-01

    Molecular dynamics simulations have been used to investigate the influence of the valency of counter-ions on the structure of freestanding bilayer membranes of the anionic 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) lipid at 310 K and 1 atm. At this temperature, the membrane is in the fluid phase with a monovalent counter-ion and in the gel phase with a divalent counter-ion. The diffusion constant of water as a function of its depth in the membrane has been determined from mean-square-displacement calculations. Also, calculated incoherent quasielastic neutron scattering functions have been compared to experimental results and used to determine an average diffusion constant for all water molecules in the system. On extrapolating the diffusion constants inferred experimentally to a temperature of 310 K, reasonable agreement with the simulations is obtained. However, the experiments do not have the sensitivity to confirm the diffusion of a small component of water bound to the lipids as found in the simulations. In addition, the orientation of the dipole moment of the water molecules has been determined as a function of their depth in the membrane. Previous indirect estimates of the electrostatic potential within phospholipid membranes imply an enormous electric field of 108-109 V m-1, which is likely to have great significance in controlling the conformation of translocating membrane proteins and in the transfer of ions and molecules across the membrane. We have calculated the membrane potential for DMPG bilayers and found ˜1 V (˜2 ṡ 108 V m-1) when in the fluid phase with a monovalent counter-ion and ˜1.4 V (˜2.8 ṡ 108 V m-1) when in the gel phase with a divalent counter-ion. The number of water molecules for a fully hydrated DMPG membrane has been estimated to be 9.7 molecules per lipid in the gel phase and 17.5 molecules in the fluid phase, considerably smaller than inferred experimentally for 1,2-dimyristoyl-sn-glycero-3-phosphorylcholine (DMPC

  8. Structure of the ripple phase in lecithin bilayers.

    PubMed Central

    Sun, W J; Tristram-Nagle, S; Suter, R M; Nagle, J F

    1996-01-01

    The phases of the x-ray form factors are derived for the ripple (Pbeta') thermodynamic phase in the lecithin bilayer system. By combining these phases with experimental intensity data, the electron density map of the ripple phase of dimyristoyl-phosphatidylcholine is constructed. The phases are derived by fitting the intensity data to two-dimensional electron density models, which are created by convolving an asymmetric triangular ripple profile with a transbilayer electron density profile. The robustness of the model method is indicated by the result that many different models of the transbilayer profile yield essentially the same phases, except for the weaker, purely ripple (0,k) peaks. Even with this residual ambiguity, the ripple profile is well determined, resulting in 19 angstroms for the ripple amplitude and 10 degrees and 26 degrees for the slopes of the major and the minor sides, respectively. Estimates for the bilayer head-head spacings show that the major side of the ripple is consistent with gel-like structure, and the minor side appears to be thinner with lower electron density. Images Fig. 1 Fig. 2 PMID:8692934

  9. Irregular bilayer structure in vesicles prepared from Halobacterium cutirubrum lipids

    NASA Technical Reports Server (NTRS)

    Lanyi, J. K.

    1974-01-01

    Fluorescent probes were used to study the structure of the cell envelope of Halobacterium cutirubrum, and, in particular, to explore the effect of the heterogeneity of the lipids in this organism on the structure of the bilayers. The fluorescence polarization of perylene was followed in vesicles of unfractionated lipids and polar lipids as a function of temperature in 3.4 M solutions of NaCl, NaNO3, and KSCN, and it was found that vesicles of unfractionated lipids were more perturbed by chaotropic agents than polar lipids. The dependence of the relaxation times of perylene on temperature was studied in cell envelopes and in vesicles prepared from polar lipids, unfractionated lipids, and mixtures of polar and neutral lipids.

  10. Bilayer fractal structure with multiband left-handed characteristics.

    PubMed

    Du, Qiujiao; Liu, Jinsong; Yang, Hongwu; Yi, Xunong

    2011-08-20

    We present a bilayer fractal structure for the realization of multiband left-handed metamaterial at terahertz frequencies. The structure is composed of metallic H-fractal pairs separated by a dielectric layer. The electromagnetic properties of periodic H-fractal pairs have been investigated by numerical simulation. The period in the propagation direction is extremely small as compared to the wavelength at the operational frequency. Under the electromagnetic wave normal incidence, the material exhibits negative refraction simultaneously around the frequencies of 0.10 and 0.15 THz for parallel polarization, and around the frequencies of 0.19 and 0.38 THz for perpendicular polarization. The design provides a left-handed metamaterial suitable for multiband and compact devices at terahertz frequencies.

  11. Excitonic gap formation and condensation in the bilayer graphene structure

    NASA Astrophysics Data System (ADS)

    Apinyan, V.; Kopeć, T. K.

    2016-09-01

    We have studied the excitonic gap formation in the Bernal Stacked, bilayer graphene (BLG) structures at half-filling. Considering the local Coulomb interaction between the layers, we calculate the excitonic gap parameter and we discuss the role of the interlayer and intralayer Coulomb interactions and the interlayer hopping on the excitonic pair formation in the BLG. Particularly, we predict the origin of excitonic gap formation and condensation, in relation to the furthermost interband optical transition spectrum. The general diagram of excitonic phase transition is given, explaining different interlayer correlation regimes. The temperature dependence of the excitonic gap parameter is shown and the role of the chemical potential, in the BLG, is discussed in details.

  12. Structure and melting behavior of classical bilayer crystals of dipoles

    SciTech Connect

    Lu Xin; Wu Changqin; Micheli, Andrea; Pupillo, Guido

    2008-07-01

    We study the structure and melting of a classical bilayer system of dipoles in a setup where the dipoles are oriented perpendicular to the planes of the layers and the density of dipoles is the same in each layer. Due to the anisotropic character of the dipole-dipole interactions, we find that the ground-state configuration is given by two hexagonal crystals positioned on top of each other, independent of the interlayer spacing and dipolar density. For large interlayer distances these crystals are independent, while in the opposite limit of small interlayer distances the system behaves as a two-dimensional crystal of paired dipoles. Within the harmonic approximation for the phonon excitations, the melting temperature of these crystalline configurations displays a nonmonotonic dependence on the interlayer distance, which is associated with a re-entrant melting behavior in the form of solid-liquid-solid-liquid transitions at fixed temperature.

  13. Computation of mixed phosphatidylcholine-cholesterol bilayer structures by energy minimization.

    PubMed Central

    Vanderkooi, G

    1994-01-01

    The energetically preferred structures of dimyristoylphosphatidylcholine (DMPC)-cholesterol bilayers were determined at a 1:1 mole ratio. Crystallographic symmetry operations were used to generate planar bilayers of cholesterol and DMPC. Energy minimization was carried out with respect to bond rotations, rigid body motions, and the two-dimensional lattice constants. The lowest energy structures had a hydrogen bond between the cholesterol hydroxyl and the carbonyl oxygen of the sn-2 acyl chain, but the largest contribution to the intermolecular energy was from the nonbonded interactions between the flat alpha surface of cholesterol and the acyl chains of DMPC. Two modes of packing in the bilayer were found; in structure A (the global minimum), unlike molecules are nearest neighbors, whereas in structure B (second lowest energy) like-like intermolecular interactions predominate. Crystallographic close packing of the molecules in the bilayer was achieved, as judged from the molecular areas and the bilayer thickness. These energy-minimized structures are consistent with the available experimental data on mixed bilayers of lecithin and cholesterol, and may be used as starting points for molecular dynamics or other calculations on bilayers. PMID:8061195

  14. Organic conductor/high-Tc superconductor bilayer structures

    NASA Astrophysics Data System (ADS)

    Clevenger, Marvin B.; Jones, Christopher E.; Haupt, Steven G.; Zhao, Jianai; McDevitt, John T.

    1996-07-01

    Electrochemical techniques are exploited to fabricate conductive polymer/high Tc superconductor bilayer structures. SCanning electron microscopy and electrochemical techniques are utilized to characterize the electrodeposition of polypyrrole layers grown onto YBa2Cu3O7-(delta ) films. In such hybrid polymer/superconductor systems, it is found that when the polymer is oxidized to its conductive state, the transition temperatures (Tc) and critical currents (Jc) of the underlying superconductor film are suppressed. Reversible modulation of the values of the transition temperatures of up to 50K are noted for these structures. Upon reduction of the conductive polymer layer back to its non-conductive form, both Tc and Jc are found to return to values close to those acquired for the underivatized YBa2Cu3O7-(delta ) film. Moreover, measurements as a function of temperature of the polymer/superconductor interface resistance show dramatic decrease in this value at Tc. ALso, estimates of superconducting coherence lengths within the organic conductor samples suggest superconducting properties over macroscopically large distances within the organic materials can be expected. Collectively these results are consistent with the first observation of a conductive polymer proximity effect.

  15. Organic conductor/high-{Tc} superconductor bilayer structures

    SciTech Connect

    Clevenger, M.B.; Jones, C.E.; Haupt, S.G.; Zhao, J.; McDevitt, J.T.

    1996-12-31

    Electrochemical techniques are exploited to fabricate conducive polymer/high-{Tc} superconductor bilayer structures. Scanning electron microscopy and electrochemical techniques are utilized to characterize the electrodeposition of polypyrrole layers grown onto YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} films. In such hybrid polymer/superconductor systems, it is found that when the polymer is oxidized to its conductive state, the transition temperature ({Tc}) and critical currents (J{sub c}) of the underlying superconductor films are suppressed. Reversible modulation of the values of the transition temperatures of up to 50 K are noted for these structures. Upon reduction of the conductive polymer layer back to its non-conductive form, both {Tc} and J{sub c} are found to return to values close to those acquired for the underivatized YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} films. Moreover, measurements as a function of temperature of the polymer/superconductor interface resistance show dramatic decrease in this value at {Tc}. Also, estimates of superconducting coherence lengths within the organic conductor samples suggest superconducting properties over macroscopically large distances within the organic materials can be expected. Collectively these results are consistent with the first observation of a conductive polymer proximity effect.

  16. Oligomeric Structure of Colicin Ia Channel in Lipid Bilayer Membranes*

    PubMed Central

    Greig, Sarah L.; Radjainia, Mazdak; Mitra, Alok K.

    2009-01-01

    Colicin Ia is a soluble, harpoon-shaped bacteriocin which translocates across the periplasmic space of sensitive Escherichia coli cell by parasitizing an outer membrane receptor and forms voltage-gated ion channels in the inner membrane. This process leads to cell death, which has been thought to be caused by a single colicin Ia molecule. To directly visualize the three-dimensional structure of the channel, we generated two-dimensional crystals of colicin Ia inserted in lipid-bilayer membranes and determined a ∼17 three-dimensional model by electron crystallography. Supported by velocity sedimentation, chemical cross-linking and single-particle image analysis, the three-dimensional structure is a crown-shaped oligomer enclosing a ∼35 Å-wide extrabilayer vestibule. Our study suggests that lipid insertion instigates a global conformational change in colicin Ia and that more than one molecule participates in the channel architecture with the vestibule, possibly facilitating the known large scale peptide translocation upon channel opening. PMID:19357078

  17. Effect of monoglyceride structure and cholesterol content on water permeability of the droplet bilayer.

    PubMed

    Michalak, Zuzanna; Muzzio, Michelle; Milianta, Peter J; Giacomini, Rosario; Lee, Sunghee

    2013-12-23

    The process of water permeation across lipid membranes has significant implications for cellular physiology and homeostasis, and its study may lead to a greater understanding of the relationship between the structure of lipid bilayer and the role that lipid structure plays in water permeation. In this study, we formed a droplet interface bilayer (DIB) by contacting two aqueous droplets together in an immiscible solvent (squalane) containing bilayer-forming surfactant (monoglycerides). Using the DIB model, we present our results on osmotic water permeabilities and activation energy for water permeation of an associated series of unsaturated monoglycerides as the principal component of droplet bilayers, each having the same chain length but differing in the position and number of double bonds, in the absence and presence of a varying concentration of cholesterol. Our findings suggest that the tailgroup structure in a series of monoglyceride bilayers is seen to affect the permeability and activation energy for the water permeation process. Moreover, we have also established the insertion of cholesterol into the droplet bilayer, and have detected its presence via its effect on water permeability. The effect of cholesterol differs depending on the type of monoglyceride. We demonstrate that the DIB can be employed as a convenient model membrane to rapidly explore subtle structural effects on bilayer water permeability.

  18. Influence of Hydrophobic Mismatch on Structures and Dynamics of Gramicidin A and Lipid Bilayers

    PubMed Central

    Kim, Taehoon; Lee, Kyu Il; Morris, Phillip; Pastor, Richard W.; Andersen, Olaf S.; Im, Wonpil

    2012-01-01

    Gramicidin A (gA) is a 15-amino-acid antibiotic peptide with an alternating L-D sequence, which forms (dimeric) bilayer-spanning, monovalent cation channels in biological membranes and synthetic bilayers. We performed molecular dynamics simulations of gA dimers and monomers in all-atom, explicit dilauroylphosphatidylcholine (DLPC), dimyristoylphosphatidylcholine (DMPC), dioleoylphosphatidylcholine (DOPC), and 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) bilayers. The variation in acyl chain length among these different phospholipids provides a way to alter gA-bilayer interactions by varying the bilayer hydrophobic thickness, and to determine the influence of hydrophobic mismatch on the structure and dynamics of both gA channels (and monomeric subunits) and the host bilayers. The simulations show that the channel structure varied little with changes in hydrophobic mismatch, and that the lipid bilayer adapts to the bilayer-spanning channel to minimize the exposure of hydrophobic residues. The bilayer thickness, however, did not vary monotonically as a function of radial distance from the channel. In all simulations, there was an initial decrease in thickness within 4–5 Å from the channel, which was followed by an increase in DOPC and POPC or a further decrease in DLPC and DMPC bilayers. The bilayer thickness varied little in the monomer simulations—except one of three independent simulations for DMPC and all three DLPC simulations, where the bilayer thinned to allow a single subunit to form a bilayer-spanning water-permeable pore. The radial dependence of local lipid area and bilayer compressibility is also nonmonotonic in the first shell around gA dimers due to gA-phospholipid interactions and the hydrophobic mismatch. Order parameters, acyl chain dynamics, and diffusion constants also differ between the lipids in the first shell and the bulk. The lipid behaviors in the first shell around gA dimers are more complex than predicted from a simple mismatch

  19. Influence of hydrophobic mismatch on structures and dynamics of gramicidin a and lipid bilayers.

    PubMed

    Kim, Taehoon; Lee, Kyu Il; Morris, Phillip; Pastor, Richard W; Andersen, Olaf S; Im, Wonpil

    2012-04-01

    Gramicidin A (gA) is a 15-amino-acid antibiotic peptide with an alternating L-D sequence, which forms (dimeric) bilayer-spanning, monovalent cation channels in biological membranes and synthetic bilayers. We performed molecular dynamics simulations of gA dimers and monomers in all-atom, explicit dilauroylphosphatidylcholine (DLPC), dimyristoylphosphatidylcholine (DMPC), dioleoylphosphatidylcholine (DOPC), and 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) bilayers. The variation in acyl chain length among these different phospholipids provides a way to alter gA-bilayer interactions by varying the bilayer hydrophobic thickness, and to determine the influence of hydrophobic mismatch on the structure and dynamics of both gA channels (and monomeric subunits) and the host bilayers. The simulations show that the channel structure varied little with changes in hydrophobic mismatch, and that the lipid bilayer adapts to the bilayer-spanning channel to minimize the exposure of hydrophobic residues. The bilayer thickness, however, did not vary monotonically as a function of radial distance from the channel. In all simulations, there was an initial decrease in thickness within 4-5 Å from the channel, which was followed by an increase in DOPC and POPC or a further decrease in DLPC and DMPC bilayers. The bilayer thickness varied little in the monomer simulations-except one of three independent simulations for DMPC and all three DLPC simulations, where the bilayer thinned to allow a single subunit to form a bilayer-spanning water-permeable pore. The radial dependence of local lipid area and bilayer compressibility is also nonmonotonic in the first shell around gA dimers due to gA-phospholipid interactions and the hydrophobic mismatch. Order parameters, acyl chain dynamics, and diffusion constants also differ between the lipids in the first shell and the bulk. The lipid behaviors in the first shell around gA dimers are more complex than predicted from a simple mismatch model

  20. Octyl-beta-D-glucopyranoside partitioning into lipid bilayers: thermodynamics of binding and structural changes of the bilayer.

    PubMed

    Wenk, M R; Alt, T; Seelig, A; Seelig, J

    1997-04-01

    The interaction of the nonionic detergent octyl-beta-D-glucopyranoside (OG) with lipid bilayers was studied with high-sensitivity isothermal titration calorimetry (ITC) and solid-state 2H-NMR spectroscopy. The transfer of OG from the aqueous phase to lipid bilayers composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) can be investigated by employing detergent at concentrations below the critical micellar concentration; it can be defined by a surface partition equilibrium with a partition coefficient of K = 120 +/- 10 M-1, a molar binding enthalpy of delta H degrees D = 1.3 +/- 0.15 kcal/mol, and a free energy of binding of delta G degrees D = -5.2 kcal/mol. The heat of transfer is temperature dependent, with a molar heat capacity of delta CP = -75 cal K-1 mol-1. The large heat capacity and the near-zero delta H are typical for a hydrophobic binding equilibrium. The partition constant K decreased to approximately 100 M-1 for POPC membranes mixed with either negatively charged lipids or cholesterol, but was independent of membrane curvature. In contrast, a much larger variation was observed in the partition enthalpy. delta H degrees D increased by about 50% for large vesicles and by 75% for membranes containing 50 mol% cholesterol. Structural changes in the lipid bilayer were investigated with solid-state 2H-NMR. POPC was selectively deuterated at the headgroup segments and at different positions of the fatty acyl chains, and the measurement of the quadrupolar splittings provided information on the conformation and the order of the bilayer membrane. Addition of OG had almost no influence on the lipid headgroup region, even at concentrations close to bilayer disruption. In contrast, the fluctuations of fatty acyl chain segments located in the inner part of the bilayer increased strongly with increasing OG concentration. The 2H-NMR results demonstrate that the headgroup region is the most stable structural element of the lipid membrane, remaining intact

  1. Lipid bilayers in the gel phase become saturated by triton X-100 at lower surfactant concentrations than those in the fluid phase.

    PubMed

    Ahyayauch, Hasna; Collado, M Isabel; Alonso, Alicia; Goñi, Felix M

    2012-06-01

    It has been repeatedly observed that lipid bilayers in the gel phase are solubilized by lower concentrations of Triton X-100, at least within certain temperature ranges, or other nonionic detergents than bilayers in the fluid phase. In a previous study, we showed that detergent partition coefficients into the lipid bilayer were the same for the gel and the fluid phases. In this contribution, turbidity, calorimetry, and 31P-NMR concur in showing that bilayers in the gel state (at least down to 13-20°C below the gel-fluid transition temperature) become saturated with detergent at lower detergent concentrations than those in the fluid state, irrespective of temperature. The different saturation may explain the observed differences in solubilization. PMID:22713566

  2. Lipid Bilayers in the Gel Phase Become Saturated by Triton X-100 at Lower Surfactant Concentrations Than Those in the Fluid Phase

    PubMed Central

    Ahyayauch, Hasna; Collado, M. Isabel; Alonso, Alicia; Goñi, Felix M.

    2012-01-01

    It has been repeatedly observed that lipid bilayers in the gel phase are solubilized by lower concentrations of Triton X-100, at least within certain temperature ranges, or other nonionic detergents than bilayers in the fluid phase. In a previous study, we showed that detergent partition coefficients into the lipid bilayer were the same for the gel and the fluid phases. In this contribution, turbidity, calorimetry, and 31P-NMR concur in showing that bilayers in the gel state (at least down to 13–20°C below the gel-fluid transition temperature) become saturated with detergent at lower detergent concentrations than those in the fluid state, irrespective of temperature. The different saturation may explain the observed differences in solubilization. PMID:22713566

  3. Order Parameters of a Transmembrane Helix in a Fluid Bilayer: Case Study of a WALP Peptide

    PubMed Central

    Holt, Andrea; Rougier, Léa; Réat, Valérie; Jolibois, Franck; Saurel, Olivier; Czaplicki, Jerzy; Killian, J. Antoinette; Milon, Alain

    2010-01-01

    Abstract A new solid-state NMR-based strategy is established for the precise and efficient analysis of orientation and dynamics of transmembrane peptides in fluid bilayers. For this purpose, several dynamically averaged anisotropic constraints, including 13C and 15N chemical shift anisotropies and 13C-15N dipolar couplings, were determined from two different triple-isotope-labeled WALP23 peptides (2H, 13C, and 15N) and combined with previously published quadrupolar splittings of the same peptide. Chemical shift anisotropy tensor orientations were determined with quantum chemistry. The complete set of experimental constraints was analyzed using a generalized, four-parameter dynamic model of the peptide motion, including tilt and rotation angle and two associated order parameters. A tilt angle of 21° was determined for WALP23 in dimyristoylphosphatidylcholine, which is much larger than the tilt angle of 5.5° previously determined from 2H NMR experiments. This approach provided a realistic value for the tilt angle of WALP23 peptide in the presence of hydrophobic mismatch, and can be applied to any transmembrane helical peptide. The influence of the experimental data set on the solution space is discussed, as are potential sources of error. PMID:20441750

  4. Adsorption of α-Synuclein on Lipid Bilayers: Modulating the Structure and Stability of Protein Assemblies

    PubMed Central

    Haque, Farzin; Pandey, Anjan P.; Cambrea, Lee R.; Rochet, Jean-Christophe; Hovis, Jennifer S.

    2010-01-01

    The interaction of α-synuclein with phospholipid membranes has been examined using supported lipid bilayers and epi-fluorescence microscopy. The membranes contained phosphatidylcholine (PC) and phosphatidic acid (PA), which mix at physiological pH. Upon protein adsorption the lipids undergo fluid-fluid phase separation into PC-rich and PA-rich regions. The protein preferentially adsorbs to the PA-rich regions. The adsorption and subsequent aggregation of α-synuclein was probed by tuning several parameters: the charge on the lipids, the charge on the protein, and the screening environment. Conditions which promoted the greatest extent of adsorption resulted in structurally heterogeneous aggregates, while comparatively homogeneous aggregates were observed under conditions whereby adsorption did not occur as readily. Our observation that different alterations to the system lead to different degrees of aggregation and different aggregate structures poses a challenge for drug discovery. Namely, therapies aimed at neutralizing α-synuclein must target a broad range of potentially toxic, membrane-bound assemblies. PMID:20187615

  5. The Water Permeability and Pore Entrance Structure of Aquaporin-4 Depend on Lipid Bilayer Thickness.

    PubMed

    Tong, Jihong; Wu, Zhe; Briggs, Margaret M; Schulten, Klaus; McIntosh, Thomas J

    2016-07-12

    Aquaporin-4 (AQP4), the primary water channel in glial cells of the mammalian brain, plays a critical role in water transport in the central nervous system. Previous experiments have shown that the water permeability of AQP4 depends on the cholesterol content in the lipid bilayer, but it was not clear whether changes in permeability were due to direct cholesterol-AQP4 interactions or to indirect effects caused by cholesterol-induced changes in bilayer elasticity or bilayer thickness. To determine the effects resulting only from bilayer thickness, here we use a combination of experiments and simulations to analyze AQP4 in cholesterol-free phospholipid bilayers with similar elastic properties but different hydrocarbon core thicknesses previously determined by x-ray diffraction. The channel (unit) water permeabilities of AQP4 measured by osmotic-gradient experiments were 3.5 ± 0.2 × 10(-13) cm(3)/s (mean ± SE), 3.0 ± 0.3 × 10(-13) cm(3)/s, 2.5 ± 0.2 × 10(-13) cm(3)/s, and 0.9 ± 0.1 × 10(-13) cm(3)/s in bilayers containing (C22:1)(C22:1)PC, (C20:1)(C20:1)PC, (C16:0)(C18:1)PC, and (C13:0)(C13:0)PC, respectively. Channel permeabilities obtained by molecular dynamics (MD) simulations were 3.3 ± 0.1 × 10(-13) cm(3)/s and 2.5 ± 0.1 × 10(-13) cm(3)/s in (C22:1)(C22:1)PC and (C14:0)(C14:0)PC bilayers, respectively. Both the osmotic-gradient and MD-simulation results indicated that AQP4 channel permeability decreased with decreasing bilayer hydrocarbon thickness. The MD simulations also suggested structural modifications in AQP4 in response to changes in bilayer thickness. Although the simulations showed no appreciable changes to the radius of the pore located in the hydrocarbon region of the bilayers, the simulations indicated that there were changes in both pore length and α-helix organization near the cytoplasmic vestibule of the channel. These structural changes, caused by mismatch between the hydrophobic length of AQP4 and the bilayer hydrocarbon

  6. Structural Degradation and Swelling of Lipid Bilayer under the Action of Benzene.

    PubMed

    Odinokov, Alexey; Ostroumov, Denis

    2015-12-01

    Benzene and other nonpolar organic solvents can accumulate in the lipid bilayer of cellular membranes. Their effect on the membrane structure and fluidity determines their toxic properties and antibiotic action of the organic solvents on the bacteria. We performed molecular dynamics simulations of the interaction of benzene with the dimyristoylphosphatidylcholine (DMPC) bilayer. An increase in the membrane surface area and fluidity was clearly detected. Changes in the acyl chain ordering, tilt angle, and overall bilayer thickness were, however, much less marked. The dependence of all computed quantities on the benzene content showed two regimes separated by the solubility limit of benzene in water. When the amount of benzene exceeded this point, a layer of almost pure benzene started to grow between the membrane leaflets. This process corresponds to the nucleation of a new phase and provides a molecular mechanism for the mechanical rupture of the bilayer under the action of nonpolar compounds.

  7. Bilayer structure and physical dynamics of the cytochrome b5 dimyristoylphosphatidylcholine interaction.

    PubMed Central

    Chester, D W; Skita, V; Young, H S; Mavromoustakos, T; Strittmatter, P

    1992-01-01

    Cytochrome b5 is a microsomal membrane protein which provides reducing potential to delta 5-, delta 6-, and delta 9-fatty acid desaturases through its interaction with cytochrome b5 reductase. Low angle x-ray diffraction has been used to determine the structure of an asymmetrically reconstituted cytochrome b5:DMPC model membrane system. Differential scanning calorimetry and fluorescence anisotropy studies were performed to examine the bilayer physical dynamics of this reconstituted system. These latter studies allow us to constrain structural models to those which are consistent with physical dynamics data. Additionally, because the nonpolar peptide secondary structure remains unclear, we tested the sensitivity of our model to different nonpolar peptide domain configurations. In this modeling approach, the nonpolar peptide moiety was arranged in the membrane to meet such chemically determined criteria as protease susceptibility of carboxyl- and amino-termini, tyrosine availability for pH titration and tryptophan 109 location, et cetera. In these studies, we have obtained a reconstituted cytochrome b5:DMPC bilayer structure at approximately 6.3 A resolution and conclude that the nonpolar peptide does not penetrate beyond the bilayer midplane. Structural correlations with calorimetry, fluorescence anisotropy and acyl chain packing data suggest that asymmetric cytochrome b5 incorporation into the bilayer increases acyl chain order. Additionally, we suggest that the heme peptide:bilayer interaction facilitates a discreet heme peptide orientation which would be dependent upon phospholipid headgroup composition. Images FIGURE 1 FIGURE 2 FIGURE 7 PMID:1600082

  8. First-principles study of structural properties of SiO2 bilayers

    NASA Astrophysics Data System (ADS)

    Malashevich, Andrei; Ismail-Beigi, Sohrab; Altman, Eric I.

    Two dimensional (2D) materials draw a tremendous amount of interest because they exhibit unique physical properties due to reduced dimensionality. Recently, SiO2 2D bilayer systems were discovered. The structure of these bilayers is formed by two mirror-image planes of corner-sharing SiO4 tetrahedra and does not have a direct relation to bulk SiO2 systems. SiO2 bilayers may be obtained in crystalline or amorphous forms. In the crystalline form, the bilayers are constructed from six-membered rings of corner-sharing SiO4 tetrahedra. The amorphous form has rings of various sizes typically in the range from four to nine Si atoms in the ring. These structures may be of practical interest as atomically thin membranes and molecular sieves. In our work, we study the effect of strain and doping on the crystalline structure of SiO2 bilayers using density functional theory. We analyze the stability of structures depending on the ring size and establish strain and doping conditions that may render the structures with large ring sizes stable. This work is supported by the National Science Foundation through Grants MRSEC NSF DMR-1119826 and NSF DMR-1506800.

  9. Comparison of thermal fluctuations in foam films and bilayer structures

    NASA Astrophysics Data System (ADS)

    Ivanova, N. G.; Tsekov, R.

    2013-12-01

    In the frames of the DLVO theory the root mean square amplitude and correlation length of capillary waves in thin liquid films are calculated. Their dependencies on some important physical parameters are studied. Two models are considered: films with classical interfaces and films between lipid bilayers. The performed numerical analysis demonstrates essential difference in their behavior, which is due to the different elastic properties of the film surfaces in the models.

  10. Theoretical investigation of structural and optical properties of semi-fluorinated bilayer graphene

    NASA Astrophysics Data System (ADS)

    Xiao-Jiao, San; Bai, Han; Jing-Geng, Zhao

    2016-03-01

    We have studied the structural and optical properties of semi-fluorinated bilayer graphene using density functional theory. When the interlayer distance is 1.62 Å, the two graphene layers in AA stacking can form strong chemical bonds. Under an in-plane stress of 6.8 GPa, this semi-fluorinated bilayer graphene becomes the energy minimum. Our calculations indicate that the semi-fluorinated bilayer graphene with the AA stacking sequence and rectangular fluorinated configuration is a nonmagnetic semiconductor (direct gap of 3.46 eV). The electronic behavior at the vicinity of the Fermi level is mainly contributed by the p electrons of carbon atoms forming C=C double bonds. We compare the optical properties of the semi-fluorinated bilayer graphene with those of bilayer graphene stacked in the AA sequence and find that the semi-fluorinated bilayer graphene is anisotropic for the polarization vector on the basal plane of graphene and a red shift occurs in the [010] polarization, which makes the peak at the low-frequency region located within visible light. This investigation is useful to design polarization-dependence optoelectronic devices. Project supported by the Program of Educational Commission of Heilongjiang Province, China (Grant No. 12541131).

  11. Solvent-free model for self-assembling fluid bilayer membranes: Stabilization of the fluid phase based on broad attractive tail potentials

    NASA Astrophysics Data System (ADS)

    Cooke, Ira R.; Deserno, Markus

    2005-12-01

    We present a simple and highly adaptable method for simulating coarse-grained lipid membranes without explicit solvent. Lipids are represented by one head bead and two tail beads, with the interaction between tails being of key importance in stabilizing the fluid phase. Two such tail-tail potentials were tested, with the important feature in both cases being a variable range of attraction. We examined phase diagrams of this range versus temperature for both functional forms of the tail-tail attraction and found that a certain threshold attractive width was required to stabilize the fluid phase. Within the fluid-phase region we find that material properties such as area per lipid, orientational order, diffusion constant, interleaflet flip-flop rate, and bilayer stiffness all depend strongly and monotonically on the attractive width. For three particular values of the potential width we investigate the transition between gel and fluid phases via heating or cooling and find that this transition is discontinuous with considerable hysteresis. We also investigated the stretching of a bilayer to eventually form a pore and found excellent agreement with recent analytic theory.

  12. Structure and dynamics of a hydrated phospholipid bilayer in the presence of a silica substrate

    NASA Astrophysics Data System (ADS)

    McCune, Matthew; Kosztin, Ioan

    We study the structure and dynamics of a hydrated diyristoyl-phosphatidycholine (DMPC) lipid bilayer supported on a silica substrate using all-atom molecular dynamics (MD) simulation. A similar MD simulation of a freestanding DMPC bilayer is used as a reference to determine changes to both lipid and hydration water properties due to the introduction of the substrate. Long time (0.1 microsecond) MD trajectories were used to investigate the effect of the substrate on the structure and dynamics of the lipid bilayer by determining (i) the spatial distribution of water molecules and selected lipid atoms; (ii) the out of plane fluctuations of the lipid molecules; (iii) the dipole moment orientation of hydration waters; and (iv) the lateral mean-square-displacement of both lipid and water molecules. The obtained results suggest that (i) at equilibrium the space between the substrate and lipid bilayer is filled by only hydration water; (ii) the presence of the substrate has no major influence on the structure of hydration water layers and on the out-of-plane fluctuations of the lipids; and (iii) the silica substrate alters considerably the lateral diffusion of the lipids in the closest bilayer leaflet and the hydration waters between the substrate and DMPC membrane. The reported results appear to be consistent with previous MD and neutron scattering studies. Work supported by National Science Foundation Integrative Graduate Education and Research Traineeship (DGE-1069091). The computations were performed on the HPC resources at the University of Missouri Bioinformatics Consortium (UMBC).

  13. Electron density analysis of the effects of sugars on the structure of lipid bilayers at low hydration - a preliminary study

    SciTech Connect

    Lenné, T.; Kent, B.; Koster, K.L.; Garvey, C.J.; Bryant, G.

    2012-02-06

    Small angle X-ray scattering is used to study the effects of sugars on membranes during dehydration. Previous work has shown that the bilayer and chain-chain repeat spacings of DPPC bilayers are relatively unaffected by the presence of sugars. In this work we present a preliminary analysis of the electron density profiles of DPPC in the presence of sugars at low hydration. The difficulties of determining the correct phasing are discussed. Sugars and other small solutes have been shown to have an important role in improving the tolerance of a range of species to desiccation and freezing. In particular it has been shown that sugars can stabilize membranes in the fluid membrane phase during dehydration, and in the fully dehydrated state. Equivalently, at a particular hydration, the presence of sugars lowers the transition temperature between the fluid and gel phases. There are two competing models for explaining the effects of sugars on membrane phase transition temperatures. One, designated the water replacement hypothesis (WRH) states that sugars hydrogen bond to phospholipid headgroups, thus hindering the fluid-gel phase transition. One version of this model suggests that certain sugars (such as trehalose) achieve the measured effects by inserting between the phospholipid head groups. An alternative model explains the observed effects of sugars in terms of the sugars effect on the hydration repulsion that develops between opposing membranes during dehydration. The hydration repulsion leads to a lateral compressive stress in the bilayer which squeezes adjacent lipids more closely together, resulting in a transition to the gel phase. When sugars are present, their osmotic and volumetric effects reduce the hydration repulsion, reduce the compressive stress in the membranes, and therefore tend to maintain the average lateral separation between lipids. This model is called the hydration forces explanation (HFE). We recently showed that neither mono- nor di

  14. Wavevector filtering through single-layer and bilayer graphene with magnetic barrier structures

    NASA Astrophysics Data System (ADS)

    Masir, M. Ramezani; Vasilopoulos, P.; Peeters, F. M.

    2008-12-01

    We show that the angular range of the transmission through magnetic barrier structures can be efficiently controlled in single-layer and bilayer graphenes and this renders the structure's efficient wavevector filters. As the number of magnetic barriers increases, this range shrinks, the gaps in the transmission versus energy become wider, and the conductance oscillates with the Fermi energy.

  15. Inverse Proximity Effect in Superconductor-ferromagnet Bilayer Structures

    SciTech Connect

    Xia, Jing

    2010-04-05

    Measurements of the polar Kerr effect using a zero-area-loop Sagnac magnetometer on Pb/Ni and Al/(Co-Pd) proximity-effect bilayers show unambiguous evidence for the 'inverse proximity effect,' in which the ferromagnet (F) induces a finite magnetization in the superconducting (S) layer. To avoid probing the magnetic effects in the ferromagnet, the superconducting layer was prepared much thicker than the light's optical penetration depth. The sign and size of the effect, as well as its temperature dependence agree with recent predictions by Bergeret et al.[1].

  16. Electronic band structure effects in monolayer, bilayer, and hybrid graphene structures

    NASA Astrophysics Data System (ADS)

    Puls, Conor

    Since its discovery in 2005, graphene has been the focus of intense theoretical and experimental study owing to its unique two-dimensional band structure and related electronic properties. In this thesis, we explore the electronic properties of graphene structures from several perspectives including the magnetoelectrical transport properties of monolayer graphene, gap engineering and measurements in bilayer graphene, and anomalous quantum oscillation in the monolayer-bilayer graphene hybrids. We also explored the device implications of our findings, and the application of some experimental techniques developed for the graphene work to the study of a complex oxide, Ca3Ru2O7, exhibiting properties of strongly correlated electrons. Graphene's high mobility and ballistic transport over device length scales, make it suitable for numerous applications. However, two big challenges remain in the way: maintaining high mobility in fabricated devices, and engineering a band gap to make graphene compatible with logical electronics and various optical devices. We address the first challenge by experimentally evaluating mobilities in scalable monolayer graphene-based field effect transistors (FETs) and dielectric-covered Hall bars. We find that the mobility is limited in these devices, and is roughly inversely proportional to doping. By considering interaction of graphene's Dirac fermions with local charged impurities at the interface between graphene and the top-gate dielectric, we find that Coulomb scattering is responsible for degraded mobility. Even in the cleanest devices, a band gap is still desirable for electronic applications of graphene. We address this challenge by probing the band structure of bilayer graphene, in which a field-tunable energy band gap has been theoretically proposed. We use planar tunneling spectroscopy of exfoliated bilayer graphene flakes demonstrate both measurement and control of the energy band gap. We find that both the Fermi level and

  17. Experimental verification of lipid bilayer structure through multi-scale modeling.

    PubMed

    Perlmutter, Jason D; Sachs, Jonathan N

    2009-10-01

    Great progress has been made in applying coarse-grain molecular dynamics (CGMD) simulations to the investigation of membrane biophysics. In order to validate the accuracy of CGMD simulations of membranes, atomistic scale detail is necessary for direct comparison to structural experiments. Here, we present our strategy for verifying CGMD lipid bilayer simulations. Through reverse coarse graining and subsequent calculation of the bilayer electron density profile, we are able to compare the simulations to our experimental low angle X-ray scattering (LAXS) data. In order to determine the best match to the experimental data, atomistic simulations are run at a range of areas (in the NP(N)AT ensemble), starting from distinct configurations extracted from the CGMD simulation (run in the NPT ensemble). We demonstrate the effectiveness of this procedure with two small, single-component bilayers, and suggest that the greater utility of our algorithm will be for CGMD simulations of more complex structures. PMID:19616507

  18. Molecular structure and dynamical properties of niosome bilayers with and without cholesterol incorporation: A molecular dynamics simulation study

    NASA Astrophysics Data System (ADS)

    Ritwiset, Aksornnarong; Krongsuk, Sriprajak; Johns, Jeffrey Roy

    2016-09-01

    Niosomes are non-ionic surfactant vesicles having a bilayer structure formed by self-assembly of hydrated surfactants, usually with cholesterol incorporation. Stability and mechanical properties of niosomes strongly depend on type of non-ionic surfactants and compositions used. In this study we present the structural and dynamical properties of niosome bilayers composed of sorbitan monostearate (Span60) with 0% and 50% cholesterol compositions which are investigated by using molecular dynamics simulations. The simulations reveal that niosome bilayer without cholesterol prefer to form in the gel phase with a higher order structure, while in the presence of cholesterol the bilayer exhibits more fluidity having a less ordered structure. The niosome bilayer with 50% cholesterol inclusion shows an increase of area per lipid (∼11%) and thickness (∼39%) compared with the niosome bilayer without cholesterol. The Span60 tailgroup orientation of the niosome bilayers without cholesterol exhibits more tilt (34.5o ± 0.5) than that of the bilayer with 50% cholesterol (15.4o ± 0.8). Additionally, our results show that the addition of cholesterol to the bilayer causes the higher in lateral and transverse diffusion, as well as an increase in the hydrogen bond number between Span60 and water. Such characteristics not only enhance the niosome stability but also increase the fluidity, which are necessary for the niosomal drug delivery.

  19. Structure and dynamics of POPC bilayers in water solutions of room temperature ionic liquids

    NASA Astrophysics Data System (ADS)

    Benedetto, Antonio; Bingham, Richard J.; Ballone, Pietro

    2015-03-01

    Molecular dynamics simulations in the NPT ensemble have been carried out to investigate the effect of two room temperature ionic liquids (RTILs), on stacks of phospholipid bilayers in water. We consider RTIL compounds consisting of chloride ([bmim][Cl]) and hexafluorophosphate ([bmim][PF6]) salts of the 1-buthyl-3-methylimidazolium ([bmim]+) cation, while the phospholipid bilayer is made of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). Our investigations focus on structural and dynamical properties of phospholipid and water molecules that could be probed by inelastic and quasi-elastic neutron scattering measurements. The results confirm the fast incorporation of [bmim]+ into the lipid phase already observed in previous simulations, driven by the Coulomb attraction of the cation for the most electronegative oxygens in the POPC head group and by sizeable dispersion forces binding the neutral hydrocarbon tails of [bmim]+ and of POPC. The [bmim]+ absorption into the bilayer favours the penetration of water into POPC, causes a slight but systematic thinning of the bilayer, and further stabilises hydrogen bonds at the lipid/water interface that already in pure samples (no RTIL) display a lifetime much longer than in bulk water. On the other hand, the effect of RTILs on the diffusion constant of POPC (DPOPC) does not reveal a clearly identifiable trend, since DPOPC increases upon addition of [bmim][Cl] and decreases in the [bmim][PF6] case. Moreover, because of screening, the electrostatic signature of each bilayer is only moderately affected by the addition of RTIL ions in solution. The analysis of long wavelength fluctuations of the bilayers shows that RTIL sorption causes a general decrease of the lipid/water interfacial tension and bending rigidity, pointing to the destabilizing effect of RTILs on lipid bilayers.

  20. Structure and dynamics of POPC bilayers in water solutions of room temperature ionic liquids

    SciTech Connect

    Benedetto, Antonio; Bingham, Richard J.; Ballone, Pietro

    2015-03-28

    Molecular dynamics simulations in the NPT ensemble have been carried out to investigate the effect of two room temperature ionic liquids (RTILs), on stacks of phospholipid bilayers in water. We consider RTIL compounds consisting of chloride ([bmim][Cl]) and hexafluorophosphate ([bmim][PF{sub 6}]) salts of the 1-buthyl-3-methylimidazolium ([bmim]{sup +}) cation, while the phospholipid bilayer is made of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). Our investigations focus on structural and dynamical properties of phospholipid and water molecules that could be probed by inelastic and quasi-elastic neutron scattering measurements. The results confirm the fast incorporation of [bmim]{sup +} into the lipid phase already observed in previous simulations, driven by the Coulomb attraction of the cation for the most electronegative oxygens in the POPC head group and by sizeable dispersion forces binding the neutral hydrocarbon tails of [bmim]{sup +} and of POPC. The [bmim]{sup +} absorption into the bilayer favours the penetration of water into POPC, causes a slight but systematic thinning of the bilayer, and further stabilises hydrogen bonds at the lipid/water interface that already in pure samples (no RTIL) display a lifetime much longer than in bulk water. On the other hand, the effect of RTILs on the diffusion constant of POPC (D{sub POPC}) does not reveal a clearly identifiable trend, since D{sub POPC} increases upon addition of [bmim][Cl] and decreases in the [bmim][PF{sub 6}] case. Moreover, because of screening, the electrostatic signature of each bilayer is only moderately affected by the addition of RTIL ions in solution. The analysis of long wavelength fluctuations of the bilayers shows that RTIL sorption causes a general decrease of the lipid/water interfacial tension and bending rigidity, pointing to the destabilizing effect of RTILs on lipid bilayers.

  1. Structure and dynamics of POPC bilayers in water solutions of room temperature ionic liquids.

    PubMed

    Benedetto, Antonio; Bingham, Richard J; Ballone, Pietro

    2015-03-28

    Molecular dynamics simulations in the NPT ensemble have been carried out to investigate the effect of two room temperature ionic liquids (RTILs), on stacks of phospholipid bilayers in water. We consider RTIL compounds consisting of chloride ([bmim][Cl]) and hexafluorophosphate ([bmim][PF6]) salts of the 1-buthyl-3-methylimidazolium ([bmim](+)) cation, while the phospholipid bilayer is made of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). Our investigations focus on structural and dynamical properties of phospholipid and water molecules that could be probed by inelastic and quasi-elastic neutron scattering measurements. The results confirm the fast incorporation of [bmim](+) into the lipid phase already observed in previous simulations, driven by the Coulomb attraction of the cation for the most electronegative oxygens in the POPC head group and by sizeable dispersion forces binding the neutral hydrocarbon tails of [bmim](+) and of POPC. The [bmim](+) absorption into the bilayer favours the penetration of water into POPC, causes a slight but systematic thinning of the bilayer, and further stabilises hydrogen bonds at the lipid/water interface that already in pure samples (no RTIL) display a lifetime much longer than in bulk water. On the other hand, the effect of RTILs on the diffusion constant of POPC (DPOPC) does not reveal a clearly identifiable trend, since DPOPC increases upon addition of [bmim][Cl] and decreases in the [bmim][PF6] case. Moreover, because of screening, the electrostatic signature of each bilayer is only moderately affected by the addition of RTIL ions in solution. The analysis of long wavelength fluctuations of the bilayers shows that RTIL sorption causes a general decrease of the lipid/water interfacial tension and bending rigidity, pointing to the destabilizing effect of RTILs on lipid bilayers. PMID:25833602

  2. Particle/fluid interface replication as a means of producing topographically patterned surfaces: Substrates for supported lipid bilayers

    NASA Astrophysics Data System (ADS)

    Subramaniam, Anand; Lecuyer, Sigolene; Ramamurthi, Kumaran; Losick, Richard; Stone, Howard

    2010-03-01

    There is intense interest in the role of geometry in the thermodynamics and dynamics of such systems as lipid bilayers, membrane proteins and block copolymers. Topographically patterned surfaces that impose well-defined gradients of curvature on surface adsorbed layers are a potential model to study these geometrical effects. Here we report a method for producing topographically patterned surfaces by replicating a fluid-fluid interface studded with colloidal particles. With this method we have fabricated geometrically simple surfaces, such as arrays of spherical features on planar surfaces and also surfaces with complex geometries such as replicas of whole bacterial cells, tubular nanoclays, and even multi-walled carbon nanotubes. Furthermore, chemically heterogeneous surfaces composed of silica, polystyrene, epoxy or poly(dimethyl)siloxane (PDMS), and chemically homogeneous surfaces composed of PDMS or epoxy can be made. As an example of the potential applications of these surfaces, we show that lipid bilayers that are supported on all-PDMS topographically patterned substrates undergo curvature-modulated phase separation.

  3. General model of phospholipid bilayers in fluid phase within the single chain mean field theory.

    PubMed

    Guo, Yachong; Pogodin, Sergey; Baulin, Vladimir A

    2014-05-01

    Coarse-grained model for saturated phospholipids: 1,2-didecanoyl-sn-glycero-3-phosphocholine (DCPC), 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) and unsaturated phospholipids: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1,2- dioleoyl-sn-glycero-3-phosphocholine (DOPC) is introduced within the single chain mean field theory. A single set of parameters adjusted for DMPC bilayers gives an adequate description of equilibrium and mechanical properties of a range of saturated lipid molecules that differ only in length of their hydrophobic tails and unsaturated (POPC, DOPC) phospholipids which have double bonds in the tails. A double bond is modeled with a fixed angle of 120°, while the rest of the parameters are kept the same as saturated lipids. The thickness of the bilayer and its hydrophobic core, the compressibility, and the equilibrium area per lipid correspond to experimentally measured values for each lipid, changing linearly with the length of the tail. The model for unsaturated phospholipids also fetches main thermodynamical properties of the bilayers. This model is used for an accurate estimation of the free energies of the compressed or stretched bilayers in stacks or multilayers and gives reasonable estimates for free energies. The proposed model may further be used for studies of mixtures of lipids, small molecule inclusions, interactions of bilayers with embedded proteins.

  4. Particle-based simulations of bilayer membranes: self-assembly, structural analysis, and shock-wave damage

    NASA Astrophysics Data System (ADS)

    Steinhauser, Martin O.; Schindler, Tanja

    2016-08-01

    We report on the results of particle-based, coarse-grained molecular dynamics simulations of amphiphilic lipid molecules in aqueous environment where the membrane structures at equilibrium are subsequently exposed to strong shock waves, and their damage is analyzed. The lipid molecules self-assemble from unbiased random initial configurations to form stable bilayer membranes, including closed vesicles. During self-assembly of lipid molecules, we observe several stages of clustering, starting with many small clusters of lipids, gradually merging together to finally form one single bilayer membrane. We find that the clustering of lipids sensitively depends on the hydrophobic interaction h_c of the lipid tails in our model and on temperature T of the system. The self-assembled bilayer membranes are quantitatively analyzed at equilibrium with respect to their degree of order and their local structure. We also show that—by analyzing the membrane fluctuations and using a linearized theory— we obtain area compression moduli K_A and bending stiffnesses κ_B for our bilayer membranes which are within the experimental range of in vivo and in vitro measurements of biological membranes. We also discuss the density profile and the pair correlation function of our model membranes at equilibrium which has not been done in previous studies of particle-based membrane models. Furthermore, we present a detailed phase diagram of our lipid model that exhibits a sol-gel transition between quasi-solid and fluid domains, and domains where no self-assembly of lipids occurs. In addition, we present in the phase diagram the conditions for temperature T and hydrophobicity h_c of the lipid tails of our model to form closed vesicles. The stable bilayer membranes obtained at equilibrium are then subjected to strong shock waves in a shock tube setup, and we investigate the damage in the membranes due to their interaction with shock waves. Here, we find a transition from self

  5. High-resolution electron density profiles reveal influence of fatty acids on bilayer structure.

    PubMed Central

    Katsaras, J; Stinson, R H

    1990-01-01

    Small-angle x-ray diffraction studies were performed on gel phase-oriented bilayers of dipalmitoylphosphatidylcholine (DPPC) and DPPC containing 40 mol% of either palmitic acid (PA) or palmitic acid brominated at the 2-position (BPA). Oriented samples were prepared using a method developed by us, which is as simple as powder sample preparations while offering all the advantages of oriented samples made by traditional methods. Phases were determined using swelling experiments with structure factors plotted in reciprocal space, creating a relatively smooth curve as the amount of water between the bilayers was changed. Continuous Fourier transforms were also calculated to further test the consistency of the phase assignments. The diffraction data were used to calculate absolute electron density profiles for different bilayers to a resolution of 5-6 A. Analysis indicates the following: (a) The electron density profiles for the three preparations are virtually identical in the hydrocarbon chain region. (b) There is a decrease in the electron density of the glycerol backbone-headgroup region and d-space in DPPC-PA compared to DPPC. (c) The bromine of fatty-acid brominated at the 2-position is in the vicinity of the glycerol backbone. (d) The bilayer thickness of DPPC containing either brominated or unbrominated fatty acid remains relatively constant with increased levels of hydration, unlike DPPC bilayers. PMID:2306509

  6. Monolayer-to-bilayer transformation of silicenes and their structural analysis

    NASA Astrophysics Data System (ADS)

    Yaokawa, Ritsuko; Ohsuna, Tetsu; Morishita, Tetsuya; Hayasaka, Yuichiro; Spencer, Michelle J. S.; Nakano, Hideyuki

    2016-02-01

    Silicene, a two-dimensional honeycomb network of silicon atoms like graphene, holds great potential as a key material in the next generation of electronics; however, its use in more demanding applications is prevented because of its instability under ambient conditions. Here we report three types of bilayer silicenes that form after treating calcium-intercalated monolayer silicene (CaSi2) with a BF4- -based ionic liquid. The bilayer silicenes that are obtained are sandwiched between planar crystals of CaF2 and/or CaSi2, with one of the bilayer silicenes being a new allotrope of silicon, containing four-, five- and six-membered sp3 silicon rings. The number of unsaturated silicon bonds in the structure is reduced compared with monolayer silicene. Additionally, the bandgap opens to 1.08 eV and is indirect; this is in contrast to monolayer silicene which is a zero-gap semiconductor.

  7. Dependency of {gamma}-secretase complex activity on the structural integrity of the bilayer

    SciTech Connect

    Zhou, Hua; Zhou, Shuxia; Walian, Peter J.; Jap, Bing K.

    2010-11-12

    Research highlights: {yields} Partial solubilization of membranes with CHAPSO can increase {gamma}-secretase activity. {yields} Completely solubilized {gamma}-secretase is inactive. {yields} Purified {gamma}-secretase regains activity after reconstitution into lipid bilayers. {yields} A broad range of detergents can be used to successfully reconstitute {gamma}-secretase. -- Abstract: {gamma}-secretase is a membrane protein complex associated with the production of A{beta} peptides that are pathogenic in Alzheimer's disease. We have characterized the activity of {gamma}-secretase complexes under a variety of detergent solubilization and reconstitution conditions, and the structural state of proteoliposomes by electron microscopy. We found that {gamma}-secretase activity is highly dependent on the physical state or integrity of the membrane bilayer - partial solubilization may increase activity while complete solubilization will abolish it. The activity of well-solubilized {gamma}-secretase can be restored to near native levels when properly reconstituted into a lipid bilayer environment.

  8. Determination of the electronic structure of bilayer graphene from infrared spectroscopy results

    SciTech Connect

    Zhang, L. M.; Li, Z. Q.; Basov, D. N.; Fogler, M. M.; Hao, Z.; Martin, Michael C.

    2008-11-12

    We present an experimental study of the infrared conductivity, transmission, and reflection of a gated bilayer graphene and their theoretical analysis within the Slonczewski-Weiss-McClure (SWMc) model. The infrared response is shown to be governed by the interplay of the interband and the intraband transitions among the four bands of the bilayer. The position of the main conductivity peak at thecharge-neutrality point is determined by the interlayer tunneling frequency. The shift of this peak as a function of the gate voltage gives information about less known parameters of the SWMc model such as those responsible for the electron-hole and sublattice asymmetries. These parameter values are shown to be consistent with recent electronic structure calculations for the bilayer graphene and the SWMc parameters commonly used for the bulk graphite.

  9. Monolayer-to-bilayer transformation of silicenes and their structural analysis

    PubMed Central

    Yaokawa, Ritsuko; Ohsuna, Tetsu; Morishita, Tetsuya; Hayasaka, Yuichiro; Spencer, Michelle J. S.; Nakano, Hideyuki

    2016-01-01

    Silicene, a two-dimensional honeycomb network of silicon atoms like graphene, holds great potential as a key material in the next generation of electronics; however, its use in more demanding applications is prevented because of its instability under ambient conditions. Here we report three types of bilayer silicenes that form after treating calcium-intercalated monolayer silicene (CaSi2) with a BF4− -based ionic liquid. The bilayer silicenes that are obtained are sandwiched between planar crystals of CaF2 and/or CaSi2, with one of the bilayer silicenes being a new allotrope of silicon, containing four-, five- and six-membered sp3 silicon rings. The number of unsaturated silicon bonds in the structure is reduced compared with monolayer silicene. Additionally, the bandgap opens to 1.08 eV and is indirect; this is in contrast to monolayer silicene which is a zero-gap semiconductor. PMID:26847858

  10. Monomethylarsonate (MMAv) exerts stronger effects than arsenate on the structure and thermotropic properties of phospholipids bilayers.

    PubMed

    Suwalsky, Mario; Rivera, Cecilia; Sotomayor, Carlos P; Jemiola-Rzeminska, Malgorzata; Strzalka, Kazimierz

    2008-01-01

    Methylation of inorganic arsenic has been regarded as a detoxification mechanism because its metabolites monomethylarsonic acid (MMA(v)) and dimethylarsinic acid (DMA(v)) are supposed to be less toxic than inorganic arsenite and arsenate. In recent years, however, this interpretation has been questioned. Additionally, there are insufficient reports concerning the effects of arsenic compounds on cell membrane structure and functions. With the aim to better understand the molecular mechanisms of the interaction of MMA(v) and arsenate with cell membranes, we have utilized molecular models consisting in bilayers of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE), representative of phospholipid classes located in the outer and inner monolayers of many cell membranes including that of the human erythrocyte. The capacity of MMA(v) and arsenate to perturb the bilayer structures of DMPC and DMPE was evaluated by X-ray diffraction; the modifications of their thermotropic behavior were followed by differential scanning calorimetry (DSC), while DMPC large unilamellar vesicles (LUV) were studied by fluorescence spectroscopy. It was found that MMA(v) and arsenate did not structurally perturb DMPC bilayers; however, DMPE bilayers did suffer structural perturbations by MMA(v). DSC measurements also revealed that DMPE's thermotropic properties were significantly affected by arsenicals, where MMA(v) was more effective than arsenate, whilst only slight modifications were observed in the case of DMPC-MMA(v) system. PMID:17961907

  11. D IR Line Shapes for Determining the Structure of a Peptide in a Bilayer

    NASA Astrophysics Data System (ADS)

    Woys, Ann Marie; Lin, Y. S.; Skinner, J. S.; Zanni, M. T.; Reddy, A. S.; de Pablo, J. J.

    2010-06-01

    Structure of the antimicrobial peptide, ovispirin, on a lipid bilayer was determined using 2D IR spectroscopy and spectra calculated from molecular dynamics simulations. Ovispirin is an 18 residue amphipathic peptide that binds parallel to the membrane in a mostly alpha helical conformation. 15 of the 18 residues were ^1^3C^1^8O isotopically labeled on the backbone to isolate the amide I vibration at each position. 2D IR spectra were collected for each labeled peptide in 3:1 POPC/POPG vesicles, and peak width along the diagonal was measured. The diagonal line width is sensitive to the vibrator's electrostatic environment, which varies through the bilayer. We observe an oscillatory line width spanning 10 to 24 cm-1 and with a period of nearly 3.6 residues. To further investigate the position of ovispirin in a bilayer, molecular dynamics simulations determined the peptide depth to be just below the lipid headgroups. The trajectory of ovispirin at this depth was used to calculate 2D IR spectra, from which the diagonal line width is measured. Both experimental and simulated line widths are similar in periodicity and suggest a kink in the peptide backbone and the tilt in the bilayer. A. Woys, Y. S. Lin, A. S. Reddy, W. Xiong, J. J. de Pablo, J. S. Skinner, and M. T. Zanni, JACS 132, 2832-2838 (2010).

  12. A Bilayered Structure Comprised of Functionalized Carbon Nanotubes for Desalination by Membrane Distillation.

    PubMed

    Bhadra, Madhuleena; Roy, Sagar; Mitra, Somenath

    2016-08-01

    The development of a novel carbon nanotube (CNT) immobilized membrane comprised of a double-layer structure is presented for water desalination by membrane distillation. The bilayered structure is comprised of CNTs functionalized with a hydrophobic octadecyl amine group on the feed side and carboxylated CNTs on the permeate side. The latter is more hydrophilic. The hydrophobic CNTs provide higher water vapor permeation, while the hydrophilic CNTs facilitate the condensation of water vapor. Together, these led to superior performance, and flux in a direct contact membrane distillation mode was found to be as high as 121 kg/m(2)h at 80 °C. The bilayered membrane represented an enhancement of 70% over the unmodified membrane and 37% over a membrane which had a monolayered structure where only the feed side was CNT-modified. PMID:27387851

  13. A Bilayered Structure Comprised of Functionalized Carbon Nanotubes for Desalination by Membrane Distillation.

    PubMed

    Bhadra, Madhuleena; Roy, Sagar; Mitra, Somenath

    2016-08-01

    The development of a novel carbon nanotube (CNT) immobilized membrane comprised of a double-layer structure is presented for water desalination by membrane distillation. The bilayered structure is comprised of CNTs functionalized with a hydrophobic octadecyl amine group on the feed side and carboxylated CNTs on the permeate side. The latter is more hydrophilic. The hydrophobic CNTs provide higher water vapor permeation, while the hydrophilic CNTs facilitate the condensation of water vapor. Together, these led to superior performance, and flux in a direct contact membrane distillation mode was found to be as high as 121 kg/m(2)h at 80 °C. The bilayered membrane represented an enhancement of 70% over the unmodified membrane and 37% over a membrane which had a monolayered structure where only the feed side was CNT-modified.

  14. Effect of shear stress on electromagnetic behaviors in superconductor-ferromagnetic bilayer structure

    NASA Astrophysics Data System (ADS)

    Yong, Huadong; Zhao, Meng; Jing, Ze; Zhou, Youhe

    2014-09-01

    In this paper, the electromagnetic response and shielding behaviour of superconductor-ferromagnetic bilayer structure are studied. The magnetomechanical coupling in ferromagnetic materials is also considered. Based on the linear piezomagnetic coupling model and anti-plane shear deformation, the current density and magnetic field in superconducting strip are obtained firstly. The effect of shear stress on the magnetization of strip is discussed. Then, we consider the magnetic cloak for superconductor-ferromagnetic bilayer structure. The magnetic permeability of ferromagnetic material is obtained for perfect cloaking in uniform magnetic field with magnetomechanical coupling in ferromagnet. The simulation results show that the electromagnetic response in superconductors will change by applying the stress only to the ferromagnetic material. In addition, the performance of invisibility of structure for non-uniform field will be affected by mechanical stress. It may provide a method to achieve tunability of superconducting properties with mechanical loadings.

  15. Exchange-bias in amorphous ferromagnetic and polycrystalline antiferromagnetic bilayers: Structural study and micromagnetic modeling

    NASA Astrophysics Data System (ADS)

    Kohn, A.; Dean, J.; Kovacs, A.; Zeltser, A.; Carey, M. J.; Geiger, D.; Hrkac, G.; Schrefl, T.; Allwood, D.

    2011-04-01

    We study the role of the structure of antiferromagnetic polycrystalline metallic films in determining the magnetic properties of an exchange-coupled amorphous ferromagnetic layer. The bilayers are sputter-deposited, highly textured {111} Ir22Mn78 and Co65.5Fe14.5B20 thin films. We focus on structural characterization of Ir22Mn78 as a function of layer thickness in the range having the strongest influence over the exchange-bias field and training effect. We have used transmission electron microscopy to characterize defects in the form of interface steps and roughness, interdiffusion, twin- and grain-boundaries. Such defects can result in uncompensated magnetic spins in the antiferromagnet, which then contribute to exchange-bias. These experimental results form the basis of a general model, which uses finite element micromagnetic simulations. The model incorporates the experimental structural parameters of the bilayer by implementing a surface integral technique that allows numerical calculations to solve the transition from an amorphous to a granular structure. As a result, a detailed calculation of the underlying magnetic structure within the antiferromagnetic material is achieved. These calculations are in good agreement with micromagnetic imaging using Lorentz transmission electron microscopy and the macro-magnetic properties of these bilayers.

  16. Fluid control structures in microfluidic devices

    NASA Technical Reports Server (NTRS)

    Mathies, Richard A. (Inventor); Grover, William H. (Inventor); Skelley, Alison (Inventor); Lagally, Eric (Inventor); Liu, Chung N. (Inventor)

    2008-01-01

    Methods and apparatus for implementing microfluidic analysis devices are provided. A monolithic elastomer membrane associated with an integrated pneumatic manifold allows the placement and actuation of a variety of fluid control structures, such as structures for pumping, isolating, mixing, routing, merging, splitting, preparing, and storing volumes of fluid. The fluid control structures can be used to implement a variety of sample introduction, preparation, processing, and storage techniques.

  17. Fluid control structures in microfluidic devices

    DOEpatents

    Mathies, Richard A.; Grover, William H.; Skelley, Alison; Lagally, Eric; Liu, Chung N.

    2008-11-04

    Methods and apparatus for implementing microfluidic analysis devices are provided. A monolithic elastomer membrane associated with an integrated pneumatic manifold allows the placement and actuation of a variety of fluid control structures, such as structures for pumping, isolating, mixing, routing, merging, splitting, preparing, and storing volumes of fluid. The fluid control structures can be used to implement a variety of sample introduction, preparation, processing, and storage techniques.

  18. Ab-initio calculation of electronic structure and optical properties of AB-stacked bilayer α-graphyne

    NASA Astrophysics Data System (ADS)

    Behzad, Somayeh

    2016-09-01

    Monolayer α-graphyne is a new two-dimensional carbon allotrope with many special features. In this work the electronic properties of AA- and AB-stacked bilayers of this material and then the optical properties are studied, using first principle plane wave method. The electronic spectrum has two Dirac cones for AA stacked bilayer α-graphyne. For AB-stacked bilayer, the interlayer interaction changes the linear bands into parabolic bands. The optical spectra of the most stable AB-stacked bilayer closely resemble to that of the monolayer, except for small shifts of peak positions and increasing of their intensity. For AB-stacked bilayer, a pronounced peak has been found at low energies under the perpendicular polarization. This peak can be clearly ascribed to the transitions at the Dirac point as a result of the small degeneracy lift in the band structure.

  19. Structural, magnetic, and Magneto optical properties of Fe3O4/NiO bilayers on MgO(001)

    NASA Astrophysics Data System (ADS)

    Wollschläger, Joachim; Schemme, Tobias; Kuschel, Olga; Witziok, Matthäus; Kuschel, Timo; Kuepper, Karsten

    2016-02-01

    Ultrathin magnetite (Fe3O4) films are attractive for applications in the field of spintronics due to their ferrimagnetic behavior with assumed high degree of spin polarized electrons at the Fermi energy. For these applications, it is necessary to form epitactical bilayer structure combining ferrimagnetic magnetite with an antiferromagnetic layer. Therefore, here we study Fe3O4/NiO bilayers on MgO(001) substrates. Bilayers grown by reactive molecular beam epitaxy are stoichiometric and have well-developed surface and interface structures. The NiO layers are laterally pinned to the structure of the MgO(001) substrate while the magnetite films gradually relax. The interfaces show smooth morphologies and the films have very homogeneous film thickness necessary for spintronical applications. The magnetic and magneto optical properties of the Fe3O4/NiO bilayers were probed by the magneto optical Kerr effect. Compared to single Fe3O4 layers on MgO(001), the bilayers show complicated ferrimagnetic behavior depending on the azimuthal direction of the external applied field. The coercive field of the bilayers, however, is increased with the coercive field of single layer Fe3O4/MgO(001) structures making the Fe3O4/NiO bilayers attractive for spintronic applications.

  20. Superhard behaviour, low residual stress, and unique structure in diamond-like carbon films by simple bilayer approach

    SciTech Connect

    Dwivedi, Neeraj; Kumar, Sushil; Malik, Hitendra K.

    2012-07-15

    Simple bilayer approach is proposed for synthesizing hard and superhard diamond-like carbon (DLC) coatings with reduced residual stress. For this, M/DLC bilayer (M = Ti and Cu) structures are grown using hybrid system involving radio frequency (RF)-sputtering and RF-plasma enhanced chemical vapor deposition techniques. Ti/DLC bilayer deposited at negative self bias of 100 V shows superhard behaviour with hardness (H) as 49 GPa. Cu/DLC bilayer grown at self bias of 100 V exhibits hard behaviour with H as 22.8 GPa. The hardness of Ti/DLC (Cu/DLC) bilayer gets changed from superhard (hard) to hard (moderate hard) regime, when the self bias is raised to 300 V. Residual stress in Ti/DLC (Cu/DLC) bilayer is found to be significantly low that varies in the range of 1 GPa-1.65 GPa (0.8 GPa-1.6 GPa). The microstructure and morphology are studied by Raman spectroscopy, scanning electron microscopy (SEM), and atomic force microscopy (AFM). SEM and AFM pictures reveal the creation of nanostructured features in the deposited bilayers. Raman, SEM, and AFM analyses are correlated with the nano-mechanical properties. Owing to excellent nano-mechanical properties, these bilayers can find their direct industrial applications as hard and protective coatings.

  1. Direct Measurement of the Tunable Electronic Structure of Bilayer MoS2 by Interlayer Twist.

    PubMed

    Yeh, Po-Chun; Jin, Wencan; Zaki, Nader; Kunstmann, Jens; Chenet, Daniel; Arefe, Ghidewon; Sadowski, Jerzy T; Dadap, Jerry I; Sutter, Peter; Hone, James; Osgood, Richard M

    2016-02-10

    Using angle-resolved photoemission on micrometer-scale sample areas, we directly measure the interlayer twist angle-dependent electronic band structure of bilayer molybdenum-disulfide (MoS2). Our measurements, performed on arbitrarily stacked bilayer MoS2 flakes prepared by chemical vapor deposition, provide direct evidence for a downshift of the quasiparticle energy of the valence band at the Brillouin zone center (Γ̅ point) with the interlayer twist angle, up to a maximum of 120 meV at a twist angle of ∼40°. Our direct measurements of the valence band structure enable the extraction of the hole effective mass as a function of the interlayer twist angle. While our results at Γ̅ agree with recently published photoluminescence data, our measurements of the quasiparticle spectrum over the full 2D Brillouin zone reveal a richer and more complicated change in the electronic structure than previously theoretically predicted. The electronic structure measurements reported here, including the evolution of the effective mass with twist-angle, provide new insight into the physics of twisted transition-metal dichalcogenide bilayers and serve as a guide for the practical design of MoS2 optoelectronic and spin-/valley-tronic devices. PMID:26760447

  2. Direct Measurement of the Tunable Electronic Structure of Bilayer MoS2 by Interlayer Twist.

    PubMed

    Yeh, Po-Chun; Jin, Wencan; Zaki, Nader; Kunstmann, Jens; Chenet, Daniel; Arefe, Ghidewon; Sadowski, Jerzy T; Dadap, Jerry I; Sutter, Peter; Hone, James; Osgood, Richard M

    2016-02-10

    Using angle-resolved photoemission on micrometer-scale sample areas, we directly measure the interlayer twist angle-dependent electronic band structure of bilayer molybdenum-disulfide (MoS2). Our measurements, performed on arbitrarily stacked bilayer MoS2 flakes prepared by chemical vapor deposition, provide direct evidence for a downshift of the quasiparticle energy of the valence band at the Brillouin zone center (Γ̅ point) with the interlayer twist angle, up to a maximum of 120 meV at a twist angle of ∼40°. Our direct measurements of the valence band structure enable the extraction of the hole effective mass as a function of the interlayer twist angle. While our results at Γ̅ agree with recently published photoluminescence data, our measurements of the quasiparticle spectrum over the full 2D Brillouin zone reveal a richer and more complicated change in the electronic structure than previously theoretically predicted. The electronic structure measurements reported here, including the evolution of the effective mass with twist-angle, provide new insight into the physics of twisted transition-metal dichalcogenide bilayers and serve as a guide for the practical design of MoS2 optoelectronic and spin-/valley-tronic devices.

  3. Voltage-impulse-induced nonvolatile tunable magnetoelectric inductor based on multiferroic bilayer structure

    NASA Astrophysics Data System (ADS)

    Su, Hua; Tang, Xiaoli; Zhang, Huaiwu; Sun, Nian X.

    2016-07-01

    In this study, we developed a voltage-impulse-induced nonvolatile tunable magnetoelectric inductor, which used an amorphous magnetic ribbon/lead zirconate titanate (PZT) multiferroic bilayer structure as a magnetic core. The PZT substrate, which contained defect dipoles through acceptor doping, was used in the bilayer structure to obtain an asymmetric strain-E “butterfly” curve. Different and stable voltage-impulse-induced in-plane residual stain states could be obtained by applying specific voltage impulse excitation modes. These residual strain states induced a nonvolatile inductance variation in the inductor through strain-mediated magnetoelectric coupling. This method provided a promising approach to realize nonvolatile tunable inductors for miniaturized circuits and systems.

  4. Voltage-impulse-induced nonvolatile tunable magnetoelectric inductor based on multiferroic bilayer structure

    NASA Astrophysics Data System (ADS)

    Su, Hua; Tang, Xiaoli; Zhang, Huaiwu; Sun, Nian X.

    2016-07-01

    In this study, we developed a voltage-impulse-induced nonvolatile tunable magnetoelectric inductor, which used an amorphous magnetic ribbon/lead zirconate titanate (PZT) multiferroic bilayer structure as a magnetic core. The PZT substrate, which contained defect dipoles through acceptor doping, was used in the bilayer structure to obtain an asymmetric strain–E “butterfly” curve. Different and stable voltage-impulse-induced in-plane residual stain states could be obtained by applying specific voltage impulse excitation modes. These residual strain states induced a nonvolatile inductance variation in the inductor through strain-mediated magnetoelectric coupling. This method provided a promising approach to realize nonvolatile tunable inductors for miniaturized circuits and systems.

  5. Microfluidic anodization of aluminum films for the fabrication of nanoporous lipid bilayer support structures

    PubMed Central

    Bhattacharya, Jaydeep; Kisner, Alexandre; Offenhäusser, Andreas

    2011-01-01

    Summary Solid state nanoporous membranes show great potential as support structures for biointerfaces. In this paper, we present a technique for fabricating nanoporous alumina membranes under constant-flow conditions in a microfluidic environment. This approach allows the direct integration of the fabrication process into a microfluidic setup for performing biological experiments without the need to transfer the brittle nanoporous material. We demonstrate this technique by using the same microfluidic system for membrane fabrication and subsequent liposome fusion onto the nanoporous support structure. The resulting bilayer formation is monitored by impedance spectroscopy across the nanoporous alumina membrane in real-time. Our approach offers a simple and efficient methodology to investigate the activity of transmembrane proteins or ion diffusion across membrane bilayers. PMID:21977420

  6. Microfluidic anodization of aluminum films for the fabrication of nanoporous lipid bilayer support structures.

    PubMed

    Bhattacharya, Jaydeep; Kisner, Alexandre; Offenhäusser, Andreas; Wolfrum, Bernhard

    2011-01-01

    Solid state nanoporous membranes show great potential as support structures for biointerfaces. In this paper, we present a technique for fabricating nanoporous alumina membranes under constant-flow conditions in a microfluidic environment. This approach allows the direct integration of the fabrication process into a microfluidic setup for performing biological experiments without the need to transfer the brittle nanoporous material. We demonstrate this technique by using the same microfluidic system for membrane fabrication and subsequent liposome fusion onto the nanoporous support structure. The resulting bilayer formation is monitored by impedance spectroscopy across the nanoporous alumina membrane in real-time. Our approach offers a simple and efficient methodology to investigate the activity of transmembrane proteins or ion diffusion across membrane bilayers.

  7. Spherical nanoparticle supported lipid bilayers for the structural study of membrane geometry-sensitive molecules.

    PubMed

    Fu, Riqiang; Gill, Richard L; Kim, Edward Y; Briley, Nicole E; Tyndall, Erin R; Xu, Jie; Li, Conggang; Ramamurthi, Kumaran S; Flanagan, John M; Tian, Fang

    2015-11-11

    Many essential cellular processes including endocytosis and vesicle trafficking require alteration of membrane geometry. These changes are usually mediated by proteins that can sense and/or induce membrane curvature. Using spherical nanoparticle supported lipid bilayers (SSLBs), we characterize how SpoVM, a bacterial development factor, interacts with differently curved membranes by magic angle spinning solid-state NMR. Our results demonstrate that SSLBs are an effective system for structural and topological studies of membrane geometry-sensitive molecules.

  8. The effect of spin-orbit coupling in band structure and edge states of bilayer graphene

    SciTech Connect

    Sahdan, Muhammad Fauzi; Darma, Yudi

    2015-04-16

    Topological insulators are predicted to be useful ranging from spintronics to quantum computation. Graphene was first predicted to be the precursor of topological insulator by Kane-Mele. They developed a Hamiltonian model to describe the gap opening in graphene. In this work, we investigate the band structure of bilayer grapheme and also its edge states by using this model with analytical approach. The results of our calculation show that the gap opening occurs at K and K’ point in bilayer graphene.In addition, a pair of gapless edge modes occurs both in the zigzag and arm-chair configurations are no longer exist. There are gap created at the edge even though thery are very small.

  9. Construction and structural analysis of tethered lipid bilayer containing photosynthetic antenna proteins for functional analysis.

    PubMed

    Sumino, Ayumi; Dewa, Takehisa; Takeuchi, Toshikazu; Sugiura, Ryuta; Sasaki, Nobuaki; Misawa, Nobuo; Tero, Ryugo; Urisu, Tsuneo; Gardiner, Alastair T; Cogdell, Richard J; Hashimoto, Hideki; Nango, Mamoru

    2011-07-11

    The construction and structural analysis of a tethered planar lipid bilayer containing bacterial photosynthetic membrane proteins, light-harvesting complex 2 (LH2), and light-harvesting core complex (LH1-RC) is described and establishes this system as an experimental platform for their functional analysis. The planar lipid bilayer containing LH2 and/or LH1-RC complexes was successfully formed on an avidin-immobilized coverglass via an avidin-biotin linkage. Atomic force microscopy (AFM) showed that a smooth continuous membrane was formed there. Lateral diffusion of these membrane proteins, observed by a fluorescence recovery after photobleaching (FRAP), is discussed in terms of the membrane architecture. Energy transfer from LH2 to LH1-RC within the tethered membrane was observed by steady-state fluorescence spectroscopy, indicating that the tethered membrane can mimic the natural situation.

  10. Biopolymer-Lipid Bilayer Interaction Modulates the Physical Properties of Liposomes: Mechanism and Structure.

    PubMed

    Tan, Chen; Zhang, Yating; Abbas, Shabbar; Feng, Biao; Zhang, Xiaoming; Xia, Wenshui; Xia, Shuqin

    2015-08-19

    This study was conducted to elucidate the conformational dependence of the modulating ability of chitosan, a positively charged biopolymer, on a new type of liposome composed of mixed lipids including egg yolk phosphatidylcholine (EYPC) and nonionic surfactant (Tween 80). Analysis of the dynamic and structure of bilayer membrane upon interaction with chitosan by fluorescence and electron paramagnetic resonance techniques demonstrated that, in addition to providing a physical barrier for the membrane surface, the adsorption of chitosan extended and crimped chains rigidified the lipid membrane. However, the decrease in relative microviscosity and order parameter suggested that the presence of chitosan coils disturbed the membrane organization. It was also noted that the increase of fluidity in the lipid bilayer center was not pronounced, indicating the shallow penetration of coils into the hydrophobic interior of bilayer. Microscopic observations revealed that chitosan adsorption not only affected the morphology of liposomes but also modulated the particle aggregation and fusion. Especially, a number of very heterogeneous particles were visualized, which tended to confirm the role of chitosan coils as a "polymeric surfactant". In addition to particle deformation, the membrane permeability was also tuned. These findings may provide a new perspective to understand the physiological functionality of biopolymer and design biopolymer-liposome composite structures as delivery systems for bioactive components. PMID:26173584

  11. Investigation of the effect of bilayer membrane structures and fluctuation amplitudes on SANS/SAXS profile for short membrane wavelength

    SciTech Connect

    Lee, Victor; Hawa, Takumi

    2013-09-28

    The effect of bilayer membrane structures and fluctuation amplitudes on small angle neutron scattering (SANS) and small angle X-ray scattering (SAXS) profile is investigated based on harmonic motions of the surfactant bilayers with bending as well as thickness fluctuation motions. In this study we consider the case in which the wavelength of the bilayer membrane is shorter than the thickness of the membrane. We find that the thickness of the surfactant bilayer membrane, d{sub m}, affects both q{sub dip} and q{sub peak} of I(q,0) profile, and that the fluctuation amplitude, a, of the membrane changes the peak of I(q,0). A simple formula is derived to estimate the thickness of the bilayer based on the q{sub dip} of the profile obtained from the simulation. The resulting estimates of the thickness of the bilayer with harmonic motion showed accuracy within 1%. Moreover, the bilayer thicknesses estimated from the proposed formula show an excellent agreement with the SANS and SAXS experimental results available in the literatures. We also propose a curve fit model, which describes the relationship between the fluctuation amplitude and the normalized q{sub peak} ratio. The present results show the feasibility of the simple formula to estimate the fluctuation amplitude based on the SANS and SAXS profiles.

  12. Investigation of the effect of bilayer membrane structures and fluctuation amplitudes on SANS/SAXS profile for short membrane wavelength

    NASA Astrophysics Data System (ADS)

    Lee, Victor; Hawa, Takumi

    2013-09-01

    The effect of bilayer membrane structures and fluctuation amplitudes on small angle neutron scattering (SANS) and small angle X-ray scattering (SAXS) profile is investigated based on harmonic motions of the surfactant bilayers with bending as well as thickness fluctuation motions. In this study we consider the case in which the wavelength of the bilayer membrane is shorter than the thickness of the membrane. We find that the thickness of the surfactant bilayer membrane, dm, affects both qdip and qpeak of I(q,0) profile, and that the fluctuation amplitude, a, of the membrane changes the peak of I(q,0). A simple formula is derived to estimate the thickness of the bilayer based on the qdip of the profile obtained from the simulation. The resulting estimates of the thickness of the bilayer with harmonic motion showed accuracy within 1%. Moreover, the bilayer thicknesses estimated from the proposed formula show an excellent agreement with the SANS and SAXS experimental results available in the literatures. We also propose a curve fit model, which describes the relationship between the fluctuation amplitude and the normalized qpeak ratio. The present results show the feasibility of the simple formula to estimate the fluctuation amplitude based on the SANS and SAXS profiles.

  13. Atomistic resolution structure and dynamics of lipid bilayers in simulations and experiments.

    PubMed

    Ollila, O H Samuli; Pabst, Georg

    2016-10-01

    Accurate details on the sampled atomistic resolution structures of lipid bilayers can be experimentally obtained by measuring C-H bond order parameters, spin relaxation rates and scattering form factors. These parameters can be also directly calculated from the classical atomistic resolution molecular dynamics simulations (MD) and compared to the experimentally achieved results. This comparison measures the simulation model quality with respect to 'reality'. If agreement is sufficient, the simulation model gives an atomistic structural interpretation of the acquired experimental data. Significant advance of MD models is made by jointly interpreting different experiments using the same structural model. Here we focus on phosphatidylcholine lipid bilayers, which out of all model membranes have been studied mostly by experiments and simulations, leading to the largest available dataset. From the applied comparisons we conclude that the acyl chain region structure and rotational dynamics are generally well described in simulation models. Also changes with temperature, dehydration and cholesterol concentration are qualitatively correctly reproduced. However, the quality of the underlying atomistic resolution structural changes is uncertain. Even worse, when focusing on the lipid bilayer properties at the interfacial region, e.g. glycerol backbone and choline structures, and cation binding, many simulation models produce an inaccurate description of experimental data. Thus extreme care must be applied when simulations are applied to understand phenomena where the interfacial region plays a significant role. This work is done by the NMRlipids Open Collaboration project running at https://nmrlipids.blogspot.fi and https://github.com/NMRLipids. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg.

  14. Atomistic resolution structure and dynamics of lipid bilayers in simulations and experiments.

    PubMed

    Ollila, O H Samuli; Pabst, Georg

    2016-10-01

    Accurate details on the sampled atomistic resolution structures of lipid bilayers can be experimentally obtained by measuring C-H bond order parameters, spin relaxation rates and scattering form factors. These parameters can be also directly calculated from the classical atomistic resolution molecular dynamics simulations (MD) and compared to the experimentally achieved results. This comparison measures the simulation model quality with respect to 'reality'. If agreement is sufficient, the simulation model gives an atomistic structural interpretation of the acquired experimental data. Significant advance of MD models is made by jointly interpreting different experiments using the same structural model. Here we focus on phosphatidylcholine lipid bilayers, which out of all model membranes have been studied mostly by experiments and simulations, leading to the largest available dataset. From the applied comparisons we conclude that the acyl chain region structure and rotational dynamics are generally well described in simulation models. Also changes with temperature, dehydration and cholesterol concentration are qualitatively correctly reproduced. However, the quality of the underlying atomistic resolution structural changes is uncertain. Even worse, when focusing on the lipid bilayer properties at the interfacial region, e.g. glycerol backbone and choline structures, and cation binding, many simulation models produce an inaccurate description of experimental data. Thus extreme care must be applied when simulations are applied to understand phenomena where the interfacial region plays a significant role. This work is done by the NMRlipids Open Collaboration project running at https://nmrlipids.blogspot.fi and https://github.com/NMRLipids. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg. PMID:26809025

  15. HgCl2 disrupts the structure of the human erythrocyte membrane and model phospholipid bilayers.

    PubMed

    Suwalsky, M; Ungerer, B; Villena, F; Cuevas, F; Sotomayor, C P

    2000-10-01

    The structural effects of Hg(II) ions on the erythrocyte membrane were studied through the interactions of HgCl2 with human erythrocytes and their isolated resealed membranes. Studies were carried out by scanning electron microscopy and fluorescence spectroscopy, respectively. Hg(II) induced shape changes in erythrocytes, which took the form of echinocytes and stomatocytes. This finding means that Hg(II) locates in both the outer and inner monolayers of the erythrocyte membrane. Fluorescence spectroscopy results indicate strong interactions of Hg(II) ions with phospholipid amino groups, which also affected the packing of the lipid acyl chains at the deep hydrophobic core of the membrane. HgCl2 also interacted with bilayers of dimyristoylphosphatidylcholine and dimyristoylphosphatidylethanolamine, representative of phospholipid classes located in the outer and inner monolayers of the erythrocyte membrane, respectively. X-ray diffraction indicated that Hg(II) ions induced molecular disorder to both phospholipid bilayers, while fluorescence spectroscopy of dimyristoylphosphatidylcholine large unilamellar vesicles confirmed the interaction of Hg(II) ions with the lipid polar head groups. All these findings point to the important role of the phospholipid bilayers in the interaction of Hg(II) on cell membranes. PMID:11065190

  16. The stacking dependent electronic structure and optical properties of bilayer black phosphorus.

    PubMed

    Shu, Huabing; Li, Yunhai; Niu, Xianghong; Wang, Jinlan

    2016-02-17

    By employing density-functional theory, the G0W0 method and Bethe-Salpter equation, we explore quasi-particle energy bands, optical responses and excitons of bilayer black phosphorus (BBP) with four different stacking patterns. All the structures are direct band gap semiconductors and the band gap is highly dependent on the stacking pattern, with a maximum of 1.31 eV for AB-stacking and a minimum of 0.92 eV for AD-stacking. Such dependence can be well understood by the tight-binding model in terms of the interlayer hopping. More interestingly, stacking sensitive optical absorption and exciton binding energy are observed in BBPs. For x-polarized light, more red-shift of optical adsorption appears in AA-stacking and the strong exciton binding energy in the AA-stacking bilayer can be as large as 0.82 eV, that is ∼1.7 times larger than that of AD-stacking bilayer. PMID:26845322

  17. Acoustics of Fluid-Structure Interactions

    NASA Astrophysics Data System (ADS)

    Howe, M. S.

    1998-08-01

    Acoustics of Fluid-Structure Interactions addresses an increasingly important branch of fluid mechanics--the absorption of noise and vibration by fluid flow. This subject, which offers numerous challenges to conventional areas of acoustics, is of growing concern in places where the environment is adversely affected by sound. Howe presents useful background material on fluid mechanics and the elementary concepts of classical acoustics and structural vibrations. Using examples, many of which include complete worked solutions, he vividly illustrates the theoretical concepts involved. He provides the basis for all calculations necessary for the determination of sound generation by aircraft, ships, general ventilation and combustion systems, as well as musical instruments. Both a graduate textbook and a reference for researchers, Acoustics of Fluid-Structure Interactions is an important synthesis of information in this field. It will also aid engineers in the theory and practice of noise control.

  18. Direct determination of crystallographic phases for diffraction data from lipid bilayers. II. Refinement of phospholipid structures.

    PubMed Central

    Dorset, D L

    1991-01-01

    Using a systematic approach for the acceptance of crystallographic phase assignment, based on the evaluation of triplet structure invariants, electron and x-ray diffraction data from phospholipid multilamellar arrays are analyzed by direct methods. After calculation of Fourier maps with a partial set of phased structure factor magnitudes, the structure is refined in real space by flattening of the hydrocarbon region of the bilayer and an optimal solution is sought either by the calculation of [delta rho 4] suggested by Luzzati, where rho is the structure density or by a test of density smoothness [magnitude of delta rho/ delta r magnitude of], where r positions are located along the normal to the lamellar surface. Reanalyses of previously determined structures sometimes lead to new conclusions (e.g., a possible similarity of the electron density profile for DL-DMPE and L-DMPE, and a clear indication of the fatty acid adduct in the mixed L-DPPC/palmitic acid bilayer). Because of presumed secondary scattering perturbations (primarily to the least intense reflections), the refinements of the electron diffraction intensities are less easily evaluated than those carried out with x-ray diffraction data. PMID:1777564

  19. New structures of bilayer germanium nanosheets predicted by a particle swarm optimization method.

    PubMed

    Li, Dongdong; Li, Pengfei; Qu, Bingyan; Pan, B C; Zhang, B; He, H Y; Zhou, Rulong

    2016-09-28

    A global search for the stable structures of bilayer Ge (BLG) is performed, and the most stable and meta-stable BLG structures are predicted for the first time. Phonon-spectrum calculations and ab initio molecular dynamics simulations confirm their dynamical and thermal stability. The computed electronic structures suggest that the most stable structure is metal while the meta-stable structure of BLG is a semiconductor with an indirect band gap (0.32 eV at the level of PBE functional and 0.81 eV at the level of HSE06). By straining the layer plane of the meta-stable BLG, we observe a phase transition from semiconductor to metal. Furthermore, the adsorption of gas molecules of CO, CO2, NH3, NO and NO2 on the meta-stable structure is also studied. Our results show that the predicted meta-stable BLG also possesses a good feature in gas sensors. PMID:27602788

  20. How to quantify structural anomalies in fluids?

    PubMed

    Fomin, Yu D; Ryzhov, V N; Klumov, B A; Tsiok, E N

    2014-07-21

    Some fluids are known to behave anomalously. The so-called structural anomaly which means that the fluid becomes less structures under isothermal compression is among the most frequently discussed ones. Several methods for quantifying the degree of structural order are described in the literature and are used for calculating the region of structural anomaly. It is generally thought that all of the structural order determinations yield qualitatively identical results. However, no explicit comparison was made. This paper presents such a comparison for the first time. The results of some definitions are shown to contradict the intuitive notion of a fluid. On the basis of this comparison, we show that the region of structural anomaly can be most reliably determined from the behavior of the excess entropy. PMID:25053327

  1. Valley and band structure engineering of folded MoS(2) bilayers.

    PubMed

    Jiang, Tao; Liu, Hengrui; Huang, Di; Zhang, Shuai; Li, Yingguo; Gong, Xingao; Shen, Yuen-Ron; Liu, Wei-Tao; Wu, Shiwei

    2014-10-01

    Artificial structures made of stacked two-dimensional crystals have recently been the focus of intense research activity. As in twisted or stacked graphene layers, these structures can show unusual behaviours and new phenomena. Among the various layered compounds that can be exfoliated, transition-metal dichalcogenides exhibit interesting properties governed by their structural symmetry and interlayer coupling, which are highly susceptible to stacking. Here, we obtain-by folding exfoliated MoS2 monolayers-MoS2 bilayers with different stacking orders, as monitored by second harmonic generation and photoluminescence. Appropriate folding can break the inversion symmetry and suppress interlayer hopping, evoking strong valley and spin polarizations that are not achieved in natural MoS2 bilayers of Bernal stacking. It can also enlarge the indirect bandgap by more than 100 meV through a decrease in the interlayer coupling. Our work provides an effective and versatile means to engineer transition-metal dichalcogenide materials with desirable electronic and optical properties.

  2. Structural investigation of the bilayer iridate Sr3Ir2O7

    NASA Astrophysics Data System (ADS)

    Hogan, Tom; Bjaalie, Lars; Zhao, Liuyan; Belvin, Carina; Wang, Xiaoping; Van de Walle, Chris G.; Hsieh, David; Wilson, Stephen D.

    2016-04-01

    A complete structural solution of the bilayer iridate compound Sr3Ir2O7 presently remains outstanding. Previously reported structures for this compound vary and all fail to explain weak structural violations observed in neutron scattering measurements as well as the presence of a net ferromagnetic moment in the basal plane. In this paper, we present single crystal neutron diffraction and rotational anisotropy second harmonic generation measurements unveiling a lower, monoclinic symmetry inherent to Sr3Ir2O7 . Combined with density functional theory, our measurements identify the correct structural space group as No. 15 (C2/c) and provide clarity regarding the local symmetry of Ir4 + cations within this spin-orbit Mott material.

  3. Origin of Structural Transformation in Mono- and Bi-Layered Molybdenum Disulfide

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoli; Wang, Zhiguo; Li, Zhijie; Fu, Y. Q.

    2016-05-01

    Mono- and multi-layered molybdenum disulfide (MoS2) is considered to be one of the next generation anode materials for rechargeable ion batteries. Structural transformation from trigonal prismatic (2H) to octahedral (1T) upon lithium or sodium intercalation has been in-situ observed experimentally using transmission electron microscope during studies of their electrochemical dynamics processes. In this work, we explored the fundamental mechanisms of this structural transformation in both mono- and bi-layered MoS2 using density functional theory. For the intercalated MoS2, the Li and Na donate their electrons to the MoS2. Based on the theoretical analysis, we confirmed that, for the first time, electron transfer is dominant in initiating this structural transformation, and the results provide an in-depth understanding of the transformation mechanism induced by the electron doping. The critical values of electron concentrations for this structural transformation are decreased with increasing the layer thickness.

  4. Linking lipid architecture to bilayer structure and mechanics using self-consistent field modelling

    SciTech Connect

    Pera, H.; Kleijn, J. M.; Leermakers, F. A. M.

    2014-02-14

    To understand how lipid architecture determines the lipid bilayer structure and its mechanics, we implement a molecularly detailed model that uses the self-consistent field theory. This numerical model accurately predicts parameters such as Helfrichs mean and Gaussian bending modulus k{sub c} and k{sup ¯} and the preferred monolayer curvature J{sub 0}{sup m}, and also delivers structural membrane properties like the core thickness, and head group position and orientation. We studied how these mechanical parameters vary with system variations, such as lipid tail length, membrane composition, and those parameters that control the lipid tail and head group solvent quality. For the membrane composition, negatively charged phosphatidylglycerol (PG) or zwitterionic, phosphatidylcholine (PC), and -ethanolamine (PE) lipids were used. In line with experimental findings, we find that the values of k{sub c} and the area compression modulus k{sub A} are always positive. They respond similarly to parameters that affect the core thickness, but differently to parameters that affect the head group properties. We found that the trends for k{sup ¯} and J{sub 0}{sup m} can be rationalised by the concept of Israelachivili's surfactant packing parameter, and that both k{sup ¯} and J{sub 0}{sup m} change sign with relevant parameter changes. Although typically k{sup ¯}<0, membranes can form stable cubic phases when the Gaussian bending modulus becomes positive, which occurs with membranes composed of PC lipids with long tails. Similarly, negative monolayer curvatures appear when a small head group such as PE is combined with long lipid tails, which hints towards the stability of inverse hexagonal phases at the cost of the bilayer topology. To prevent the destabilisation of bilayers, PG lipids can be mixed into these PC or PE lipid membranes. Progressive loading of bilayers with PG lipids lead to highly charged membranes, resulting in J{sub 0}{sup m}≫0, especially at low ionic

  5. Molecular dynamics investigation of the structure of a fully hydrated gel-phase dipalmitoylphosphatidylcholine bilayer.

    PubMed Central

    Tu, K; Tobias, D J; Blasie, J K; Klein, M L

    1996-01-01

    We report the results of a constant pressure and temperature molecular dynamics simulation of a gel-phase dipalmitoylphosphatidylcholine bilayer with nw = 11.8 water molecules/lipid at 19 degrees C. The results of the simulation were compared in detail with a variety of x-ray and neutron diffraction data. The average positions of specific carbon atoms along the bilayer normal and the interlamellar spacing and electron density profile were in very good agreement with neutron and x-ray diffraction results. The area per lipid and the details of the in-plane hydrocarbon chain structure were in excellent agreement with wide-angle x-ray diffraction results. The only significant deviation is that the chains met in a pleated arrangement at the bilayer center, although they should be parallel. Novel discoveries made in the present work include the observation of a bimodal headgroup orientational distribution. Furthermore, we found that there are a significant number of gauche conformations near the ends of the hydrocarbon chains and, in addition to verifying a previous suggestion that there is partial rotational ordering in the hydrocarbon chains, that the two chains in a given molecule are inequivalent with respect to rotations. Finally, we have investigated the lipid/water interface and found that the water penetrates beneath the headgroups, but not as far as the carbonyl groups, that the phosphates are strongly hydrated almost exclusively at the nonesterified oxygen atoms, and that the hydration of the ammonium groups is more diffuse, with some water molecules concentrated in the grooves between the methyl groups. Images FIGURE 2 FIGURE 7 FIGURE 8 FIGURE 12 FIGURE 16 PMID:8789079

  6. Bilayer graphene formed by passage of current through graphite: evidence for a three-dimensional structure

    NASA Astrophysics Data System (ADS)

    Harris, Peter J. F.; Slater, Thomas J. A.; Haigh, Sarah J.; Hage, Fredrik S.; Kepaptsoglou, Despoina M.; Ramasse, Quentin M.; Brydson, Rik

    2014-11-01

    The passage of an electric current through graphite or few-layer graphene can result in a striking structural transformation, but there is disagreement about the precise nature of this process. Some workers have interpreted the phenomenon in terms of the sublimation and edge reconstruction of essentially flat graphitic structures. An alternative explanation is that the transformation actually involves a change from a flat to a three-dimensional structure. Here we describe detailed studies of carbon produced by the passage of a current through graphite which provide strong evidence that the transformed carbon is indeed three-dimensional. The evidence comes primarily from images obtained in the scanning transmission electron microscope using the technique of high-angle annular dark-field imaging, and from a detailed analysis of electron energy loss spectra. We discuss the possible mechanism of the transformation, and consider potential applications of ‘three-dimensional bilayer graphene’.

  7. New insight into probe-location dependent polarity and hydration at lipid/water interfaces: comparison between gel- and fluid-phases of lipid bilayers.

    PubMed

    Singh, Moirangthem Kiran; Shweta, Him; Khan, Mohammad Firoz; Sen, Sobhan

    2016-09-21

    Environment polarity and hydration at lipid/water interfaces play important roles in membrane biology, which are investigated here using a new homologous series of 4-aminophthalimide-based fluorescent molecules (4AP-Cn; n = 2-10, 12) having different lipophilicities (octanol/water partition coefficient - log P). We show that 4AP-Cn molecules probe a peculiar stepwise polarity (E) profile at the lipid/water interface of the gel-phase (Lβ') DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) bilayer at room temperature, which was not anticipated in earlier studies. However, the same molecules probe only a subtle but continuous polarity change at the interface of water and the fluid-phase (Lα) DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine) bilayer at room temperature. Fluorescence quenching experiments indicate that solutes with different log P values adsorb at different depths across DPPC/water and DOPC/water interfaces, which correlate with the polarity profiles observed at the interfaces. Molecular dynamics simulations performed on eight probe-lipid systems (four in each of the DPPC and DOPC bilayers - a total run of 2.6 μs) support experimental results, providing further information on the relative position and angle distributions as well as hydration of probes at the interfaces. Simulation results indicate that besides positions, probe orientations also play an important role in defining the local dielectric environment by controlling the probes' exposure to water at the interfaces especially of the gel-phase DPPC bilayer. The results suggest that 4AP-Cn probes are well suited for studying solvation properties at lipid/water interfaces of gel- and fluid-phases simultaneously. PMID:27147404

  8. New insight into probe-location dependent polarity and hydration at lipid/water interfaces: comparison between gel- and fluid-phases of lipid bilayers.

    PubMed

    Singh, Moirangthem Kiran; Shweta, Him; Khan, Mohammad Firoz; Sen, Sobhan

    2016-09-21

    Environment polarity and hydration at lipid/water interfaces play important roles in membrane biology, which are investigated here using a new homologous series of 4-aminophthalimide-based fluorescent molecules (4AP-Cn; n = 2-10, 12) having different lipophilicities (octanol/water partition coefficient - log P). We show that 4AP-Cn molecules probe a peculiar stepwise polarity (E) profile at the lipid/water interface of the gel-phase (Lβ') DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) bilayer at room temperature, which was not anticipated in earlier studies. However, the same molecules probe only a subtle but continuous polarity change at the interface of water and the fluid-phase (Lα) DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine) bilayer at room temperature. Fluorescence quenching experiments indicate that solutes with different log P values adsorb at different depths across DPPC/water and DOPC/water interfaces, which correlate with the polarity profiles observed at the interfaces. Molecular dynamics simulations performed on eight probe-lipid systems (four in each of the DPPC and DOPC bilayers - a total run of 2.6 μs) support experimental results, providing further information on the relative position and angle distributions as well as hydration of probes at the interfaces. Simulation results indicate that besides positions, probe orientations also play an important role in defining the local dielectric environment by controlling the probes' exposure to water at the interfaces especially of the gel-phase DPPC bilayer. The results suggest that 4AP-Cn probes are well suited for studying solvation properties at lipid/water interfaces of gel- and fluid-phases simultaneously.

  9. Resistive switching mechanism in delafossite-transition metal oxide (CuInO2-CuO) bilayer structure

    NASA Astrophysics Data System (ADS)

    Varandani, Deepak; Singh, Bharti; Mehta, Bodh R.; Singh, Mandeep; Singh, Vidya Nand; Gupta, Dasees

    2010-05-01

    This study reports reversible and unipolar resistive switching in oxide bilayer structure due to the conversion of rectifying CuInO2-CuO semiconductor heterojunction to metal-semiconductor CuInO2-Cu Ohmic contact. High resolution transmission electron microscopy and conducting atomic force microscopy studies establish that switching occurs due to formation of conducting Cu filaments in CuO layer with CuInO2 layer remaining unaffected. The bilayer structure, with CuO layer acting as the switching element and CuInO2 layer as the resistance controlling element, exhibits improved switching parameters in comparison to single CuO layer.

  10. Effects of Synthetic Amphiphilic alpha-Helical Peptides on the Electrochemical and Structural Properties of Supported Hybrid Bilayers on Gold

    SciTech Connect

    Smith,M.; Tong, J.; Genzer, J.; Fischer, D.; Kilpatrick, P.

    2006-01-01

    Amphiphilic {alpha}-helices were formed from designed synthetic peptides comprising alanine, phenylalanine, and lysine residues. The insertion of the -helical peptides into hybrid bilayers assembled on gold was studied by a variety of methods to assess the resulting structural characteristics, such as electrical resistance and molecular orientation. Self-assembled monolayers (SAMs) of dodecanethiol (DDT); octadecanethiol (ODT); and 1,2-dipalmitoyl-sn-glycero-3-phosphothioethanol (DPPTE) were formed on gold substrates with and without incorporated peptide. Supported hybrid bilayers and multilayers of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) were formed on SAMs by the 'paint-freeze' method of bilayer formation. Modeling of electrochemical impedance spectroscopy data using equivalent electrochemical circuits revealed that the addition of peptide decreased dramatically the resistive element of the bilayer films while maintaining the value of the capacitive element, indicating successful incorporation of peptide into a well-formed bilayer. Near-edge X-ray absorption fine structure spectroscopy data provided evidence that the molecules in the SAMs and hybrid multilayers were ordered even in the presence of peptide. The peptide insertion into the SAM was confirmed by observing the {pi}* resonance peak correlating with phenylalanine and a peak in the nitrogen K-edge regime attributable to the peptide bond.

  11. Engineering Electronic Structure of a Two-Dimensional Topological Insulator Bi(111) Bilayer on Sb Nanofilms by Quantum Confinement Effect.

    PubMed

    Bian, Guang; Wang, Zhengfei; Wang, Xiao-Xiong; Xu, Caizhi; Xu, SuYang; Miller, Thomas; Hasan, M Zahid; Liu, Feng; Chiang, Tai-Chang

    2016-03-22

    We report on the fabrication of a two-dimensional topological insulator Bi(111) bilayer on Sb nanofilms via a sequential molecular beam epitaxy growth technique. Our angle-resolved photoemission measurements demonstrate the evolution of the electronic band structure of the heterostructure as a function of the film thickness and reveal the existence of a two-dimensional spinful massless electron gas within the top Bi bilayer. Interestingly, our first-principles calculation extrapolating the observed band structure shows that, by tuning down the thickness of the supporting Sb films into the quantum dimension regime, a pair of isolated topological edge states emerges in a partial energy gap at 0.32 eV above the Fermi level as a consequence of quantum confinement effect. Our results and methodology of fabricating nanoscale heterostructures establish the Bi bilayer/Sb heterostructure as a platform of great potential for both ultra-low-energy-cost electronics and surface-based spintronics. PMID:26932368

  12. Bilayer Structure and Lipid Dynamics in a Model Stratum Corneum with Oleic Acid

    SciTech Connect

    Hoopes, Matthew I.; Noro, Massimo G.; Longo, Marjorie L.; Faller, Roland

    2011-03-31

    The stratum corneum is the uppermost layer of the skin and acts as a barrier to keep out contaminants and retain moisture. Understanding the molecular structure and behavior of this layer will provide guidance for optimizing its biological function. In this study we use a model mixture comprised of equimolar portions of ceramide NS (24:0), lignoceric acid, and cholesterol to model the effect of the addition of small amounts of oleic acid to the bilayer at 300 and 340 K. Five systems at each temperature have been simulated with concentrations between 0 and 0.1 mol % oleic acid. Our major finding is that subdiffusive behavior over the 200 ns time scale is evident in systems at 340 K, with cholesterol diffusion being enhanced with increased oleic acid. Importantly, cholesterol and other species diffuse faster when radial densities indicate nearest neighbors include more cholesterol. We also find that, with the addition of oleic acid, the bilayer midplane and interfacial densities are reduced and there is a 3% decrease in total thickness occurring mostly near the hydrophilic interface at 300 K with reduced overall density at 340 K. Increased interdigitation occurs independent of oleic acid with a temperature increase. Slight ordering of the long non-hydroxy fatty acid of the ceramide occurs near the hydrophilic interface as a function of the oleic acid concentration, but no significant impact on hydrogen bonding is seen in the chosen oleic acid concentrations.

  13. Mechanical behavior of bilayered small-diameter nanofibrous structures as biomimetic vascular grafts.

    PubMed

    Montini-Ballarin, Florencia; Calvo, Daniel; Caracciolo, Pablo C; Rojo, Francisco; Frontini, Patricia M; Abraham, Gustavo A; V Guinea, Gustavo

    2016-07-01

    To these days, the production of a small diameter vascular graft (<6mm) with an appropriate and permanent response is still challenging. The mismatch in the grafts mechanical properties is one of the principal causes of failure, therefore their complete mechanical characterization is fundamental. In this work the mechanical response of electrospun bilayered small-diameter vascular grafts made of two different bioresorbable synthetic polymers, segmented poly(ester urethane) and poly(L-lactic acid), that mimic the biomechanical characteristics of elastin and collagen is investigated. A J-shaped response when subjected to internal pressure was observed as a cause of the nanofibrous layered structure, and the materials used. Compliance values were in the order of natural coronary arteries and very close to the bypass gold standard-saphenous vein. The suture retention strength and burst pressure values were also in the range of natural vessels. Therefore, the bilayered vascular grafts presented here are very promising for future application as small-diameter vessel replacements. PMID:26872337

  14. Atomic structure and bonding of the interfacial bilayer between Au nanoparticles and epitaxially regrown MgAl{sub 2}O{sub 4} substrates

    SciTech Connect

    Zhu, Guo-zhen; Majdi, Tahereh; Preston, John S.; Shao, Yang; Bugnet, Matthieu; Botton, Gianluigi A.

    2014-12-08

    A unique metal/oxide interfacial bilayer formed between Au nanoparticles and MgAl{sub 2}O{sub 4} substrates following thermal treatment is reported. Associated with the formation of the bilayer was the onset of an abnormal epitaxial growth of the substrate under the nanoparticle. According to the redistribution of atoms and the changes of their electronic structure probed across the interface by a transmission electron microscopy, we suggest two possible atomic models of the interfacial bilayer.

  15. Structure of the Disulfide Bond Generating Membrane Protein DsbB in the Lipid Bilayer

    PubMed Central

    Tang, Ming; Nesbitt, Anna E.; Sperling, Lindsay J.; Berthold, Deborah A.; Schwieters, Charles D.; Gennis, Robert B.; Rienstra, Chad M.

    2013-01-01

    The integral membrane protein DsbB in Escherichia coli is responsible for oxidizing the periplasmic protein DsbA, which forms disulfide bonds in substrate proteins. We have developed a high-resolution structural model by combining experimental X-ray and solid-state NMR with molecular dynamics (MD) simulations. We embedded the high-resolution DsbB structure, derived from the joint calculation with X-ray reflections and solid-state NMR restraints, into the lipid bilayer and performed MD simulations to provide a mechanistic view of DsbB function in the membrane. Further, we revealed the membrane topology of DsbB by selective proton spin diffusion experiments, which directly probe the correlations of DsbB with water and lipid acyl chains. NMR data also support the model of a flexible periplasmic loop and an interhelical hydrogen bond between Glu26 and Tyr153. PMID:23416557

  16. The intrinsic electronic structure of bilayer manganites from Angle Resolved Photoemission

    NASA Astrophysics Data System (ADS)

    de Jong, Sanne; Kukreja, R.; Hossain, M. A.; Golden, M. S.; van Heumen, E.; Massee, F.; Huang, Y.; Boothroyd, A. T.; Pabhakaran, P.; Walter, A.; Bostwick, A.; Rotenberg, E.; Durr, H. A.

    2012-02-01

    The Colossal MagnetoResistant (CMR) manganites are one of the most studied condensed matter physics systems since decades. Yet, the mechanism behind the CMR effect and their electronic structure are still under hot debate. Recent angle resolved photoemission (ARPES) studies on the bilayer manganite La(2-2x)Sr(1+2x)Mn3O7, LSMO327, reported contradictory results [1]. Here we present an ARPES study unveiling the intrinsic k-- and temperature dependent electronic structure of LSMO327, while carefully steering away from the recently reported sample inhomogeneities [2] that have caused all the confusion. [4pt] [1] N. Mannella, Nature (2005); S. Sun Nature Phys. (2007); S. de Jong, PRB (2007)[0pt] [2] F. Massee, Nature Phys(2011)

  17. Structural, dynamic, and electrostatic properties of fully hydrated DMPC bilayers from molecular dynamics simulations accelerated with graphical processing units (GPUs).

    PubMed

    Ganesan, Narayan; Bauer, Brad A; Lucas, Timothy R; Patel, Sandeep; Taufer, Michela

    2011-11-15

    We present results of molecular dynamics simulations of fully hydrated DMPC bilayers performed on graphics processing units (GPUs) using current state-of-the-art non-polarizable force fields and a local GPU-enabled molecular dynamics code named FEN ZI. We treat the conditionally convergent electrostatic interaction energy exactly using the particle mesh Ewald method (PME) for solution of Poisson's Equation for the electrostatic potential under periodic boundary conditions. We discuss elements of our implementation of the PME algorithm on GPUs as well as pertinent performance issues. We proceed to show results of simulations of extended lipid bilayer systems using our program, FEN ZI. We performed simulations of DMPC bilayer systems consisting of 17,004, 68,484, and 273,936 atoms in explicit solvent. We present bilayer structural properties (atomic number densities, electron density profiles), deuterium order parameters (S(CD)), electrostatic properties (dipole potential, water dipole moments), and orientational properties of water. Predicted properties demonstrate excellent agreement with experiment and previous all-atom molecular dynamics simulations. We observe no statistically significant differences in calculated structural or electrostatic properties for different system sizes, suggesting the small bilayer simulations (less than 100 lipid molecules) provide equivalent representation of structural and electrostatic properties associated with significantly larger systems (over 1000 lipid molecules). We stress that the three system size representations will have differences in other properties such as surface capillary wave dynamics or surface tension related effects that are not probed in the current study. The latter properties are inherently dependent on system size. This contribution suggests the suitability of applying emerging GPU technologies to studies of an important class of biological environments, that of lipid bilayers and their associated integral

  18. Influence of the Human and Rat Islet Amyloid Polypeptides on Structure of Phospholipid Bilayers: Neutron Reflectometry and Fluorescence Microscopy Studies.

    PubMed

    Junghans, Ann; Watkins, Erik B; Majewski, Jaroslaw; Miranker, Andrew; Stroe, Izabela

    2016-05-01

    Neutron reflectivity (NR) and fluorescent microscopy (FM) were used to study the interactions of human (hIAPP) and rat (rIAPP) islet amyloid polypeptides with several formulations of supported model lipid bilayers at the solid-liquid interface. Aggregation and deposition of islet amyloid polypeptide is correlated with the pathology of many diseases, including Alzheimer's, Parkinson, and type II diabetes (T2DM). A central component of T2DM pathology is the deposition of fibrils in the endocrine pancreas, which is toxic to the insulin secreting β-cells. The molecular mechanism by which the cell death occurs is not yet understood, but existing evidence points toward interactions of IAPP oligomers with cellular membranes in a manner leading to loss of their integrity. Our NR and FM results showed that the human sequence variant, hIAPP, had little or no effect on bilayers composed of saturated-acyl chains like zwitterionic DPPC, anionic DPPG, and mixed 80:20 mol % DPPC:DPPG bilayers. In marked contrast, the bilayer structure and stability of anionic unsaturated DOPG were sensitive to protein interaction, and the bilayer was partly solubilized by hIAPP under the conditions used here. The rIAPP, which is considered less toxic, had no perturbing effects on any of the above membrane formulations. Understanding the conditions that result in membrane disruption by hIAPP can be crucial in developing counter strategies to fight T2DM and also physicochemically similar neurodegenerative diseases such as Alzheimer's. PMID:27065348

  19. Correlation Between Interfacial Structure and Toughness in SiC-Al Bilayers

    NASA Astrophysics Data System (ADS)

    Kong, Yaru; Guo, Qiang; Guo, Xiaolei; Fan, Genlian; Li, Zhiqiang; Xiong, Ding-Bang; Su, Yishi; Zhang, Jie; Zhang, Di

    2016-10-01

    Reinforcement surface modification is often used to improve the mechanical properties of particle-reinforced metal matrix composites, however, the extent to which such modifications affect the interfacial properties is yet to be revealed. In this study, we fabricated SiC-Al composite bilayers where the SiC underwent different surface treatments before Al deposition. Four-point bending tests showed that the samples made from acid-pickled and thermally oxidized SiC possessed substantially higher interfacial toughness than their untreated counterpart, a presumption inferred from mechanical tests on bulk SiCp-Al composites but never justified quantitatively. These findings were rationalized by the different interfacial constituents and structure in these samples.

  20. Effect of monoglycerides and fatty acids on a ceramide bilayer.

    PubMed

    Akinshina, Anna; Das, Chinmay; Noro, Massimo G

    2016-07-14

    Monoglycerides and unsaturated fatty acids, naturally present in trace amounts in the stratum corneum (top layer of skin) lipid matrix, are commonly used in pharmaceutical, cosmetic and health care formulations. However, a detailed molecular understanding of how the oil additives get incorporated into the skin lipids from topical application and, once incorporated, how they affect the properties and integrity of the lipid matrix remains unexplored. Using ceramide 2 bilayers as skin lipid surrogates, we use a series of molecular dynamics simulations with six different natural oil ingredients at multiple concentrations to investigate the effect of the oils on the properties and stability of the bilayers. The six oils: monoolein, monostearin, monoelaidin, oleic acid, stearic acid and linoleic acid - all having the same length of the alkyl chain, C18, but a varying degree of saturation, allow us to systematically address the effect of unsaturation in the additives. Our results show that at low oil concentration (∼5%) the mixed bilayers containing any of the oils and ceramide 2 (CER2) become more rigid than pure CER2 bilayers due to more efficient lipid packing. Better packing also results in the formation of larger numbers of hydrogen bonds between the lipids, which occurs at the expense of the hydrogen bonds between lipids and water. The mixed bilayers with saturated or trans-unsaturated oils remain stable over the whole range of oil concentration. In contrast, the presence of the oils with at least one cis-double bond leads to bilayer instability and complete loss of bilayer structure at the oil content of about 50-65%. Two cis-double bonds in the lipid tail induce bilayer disruption at even lower concentration (∼30%). The mixed bilayers remain in the gel phase (without melting to a fluid phase) until the phase transition to a non-bilayer phase occurs. We also demonstrate that the stability of the bilayer strongly correlates with the order parameter of the lipid

  1. Effect of monoglycerides and fatty acids on a ceramide bilayer.

    PubMed

    Akinshina, Anna; Das, Chinmay; Noro, Massimo G

    2016-07-14

    Monoglycerides and unsaturated fatty acids, naturally present in trace amounts in the stratum corneum (top layer of skin) lipid matrix, are commonly used in pharmaceutical, cosmetic and health care formulations. However, a detailed molecular understanding of how the oil additives get incorporated into the skin lipids from topical application and, once incorporated, how they affect the properties and integrity of the lipid matrix remains unexplored. Using ceramide 2 bilayers as skin lipid surrogates, we use a series of molecular dynamics simulations with six different natural oil ingredients at multiple concentrations to investigate the effect of the oils on the properties and stability of the bilayers. The six oils: monoolein, monostearin, monoelaidin, oleic acid, stearic acid and linoleic acid - all having the same length of the alkyl chain, C18, but a varying degree of saturation, allow us to systematically address the effect of unsaturation in the additives. Our results show that at low oil concentration (∼5%) the mixed bilayers containing any of the oils and ceramide 2 (CER2) become more rigid than pure CER2 bilayers due to more efficient lipid packing. Better packing also results in the formation of larger numbers of hydrogen bonds between the lipids, which occurs at the expense of the hydrogen bonds between lipids and water. The mixed bilayers with saturated or trans-unsaturated oils remain stable over the whole range of oil concentration. In contrast, the presence of the oils with at least one cis-double bond leads to bilayer instability and complete loss of bilayer structure at the oil content of about 50-65%. Two cis-double bonds in the lipid tail induce bilayer disruption at even lower concentration (∼30%). The mixed bilayers remain in the gel phase (without melting to a fluid phase) until the phase transition to a non-bilayer phase occurs. We also demonstrate that the stability of the bilayer strongly correlates with the order parameter of the lipid

  2. Long-range surface plasmons supported by a bilayer metallic structure for sensing applications.

    PubMed

    Zekriti, M; Nesterenko, Dmitry V; Sekkat, Z

    2015-03-10

    We show, both theoretically and experimentally, that long-range surface plasmons (LRSPs) are supported by asymmetric structure, consisting of a thin silver/gold bilayer metallic film sandwiched between a magnesium fluoride (i.e., MgF2) buffer layer and a sensing medium (water). The geometrical parameters of the structure are optimized to yield efficient excitation of LRSPs by using transfer matrix method based on Fresnel reflection. The excitation of LRSPs was performed by using a custom-made automated optical setup based on angular interrogation with the precision of 0.01°. We demonstrate that the bimetallic asymmetric structure achieves better minimum reflectivity resolution than monometallic (gold) asymmetric structure. Finally, figures of merit are compared for bimetallic, monometallic, and conventional SPR structures, and we found that the bimetallic asymmetric structure provides a higher figure of merit; e.g., more than double for monometallic LRSP configuration and 8 times as compared to the conventional surface plasmon resonance sensor. PMID:25968396

  3. Fluid-structure interaction in deformable microchannels

    NASA Astrophysics Data System (ADS)

    Chakraborty, Debadi; Prakash, J. Ravi; Friend, James; Yeo, Leslie

    2012-10-01

    A polydimethylsiloxane microfluidic device composed of a single microchannel with a thin flexible layer present over a short length along one side of the channel was fabricated and modelled in order to investigate the complex fluid-structure interaction that arises between a flowing fluid and a deformable wall. Experimental measurements of thin layer deformation and pressure drop are compared with predictions of two- and three-dimensional computational models that numerically solve the coupled set of equations governing both the elasticity of the thin layer and the fluid. It is shown that the two-dimensional model, which assumes the flexible thin layer comprises an infinitely wide elastic beam of finite thickness, reasonably approximates a three-dimensional model, and is in excellent agreement with experimental observations of the thin layer profile when the width of the thin layer is beyond a critical value, roughly twice the length of the thin layer.

  4. Coherent structures for front propagation in fluids

    NASA Astrophysics Data System (ADS)

    Mitchell, Kevin; Mahoney, John

    2014-03-01

    Our goal is to characterize the nature of reacting flows by identifying important ``coherent'' structures. We follow the recent work by Haller, Beron-Vera, and Farazmand which formalized the notion of lagrangian coherent structures (LCSs) in fluid flows. In this theory, LCSs were derived from the Cauchy-Green strain tensor. We adapt this perspective to analogously define coherent structures in reacting flows. By this we mean a fluid flow with a reaction front propagating through it such that the propagation does not affect the underlying flow. A reaction front might be chemical (Belousov-Zhabotinsky, flame front, etc.) or some other type of front (electromagnetic, acoustic, etc.). While the recently developed theory of burning invariant manifolds (BIMs) describes barriers to front propagation in time-periodic flows, this current work provides an important complement by extending to the aperiodic setting. Funded by NSF Grant CMMI-1201236.

  5. Gene structure and molecular phylogeny of the linker chains from the giant annelid hexagonal bilayer hemoglobins.

    PubMed

    Chabasse, Christine; Bailly, Xavier; Sanchez, Sophie; Rousselot, Morgane; Zal, Franck

    2006-09-01

    Giant extracellular hexagonal bilayer hemoglobin (HBL-Hb), found only in annelids, is an approximately 3500-kDa heteropolymeric structure involved in oxygen transport. The HBL-Hbs are comprised of globin and linker chains, the latter being required for the assembly of the quaternary structure. The linker chains, varying in size from 225 to 283 amino acids, have a conserved cysteine-rich domain within their N-terminal moiety that is homologous to the cysteine-rich modules constituting the ligand binding domain of the low-density lipoprotein receptor (LDLR) protein family found in many metazoans. We have investigated the gene structure of linkers from Arenicola marina, Alvinella pompejana, Nereis diversicolor, Lumbricus terrestris, and Riftia pachyptila. We found, contrary to the results obtained earlier with linker genes from N. diversicolor and L. terrestris, that in all of the foregoing cases, the linker LDL-A module is flanked by two phase 1 introns, as in the human LDLR gene, with two more introns in the 3' side whose positions varied with the species. In addition, we obtained 13 linker cDNAs that have been determined experimentally or found in the EST database LumbriBASE. A molecular phylogenetic analysis of the linker primary sequences demonstrated that they cluster into two distinct families of linker proteins. We propose that the common gene ancestor to annelid linker genes exhibited a four-intron and five-exon structure and gave rise to the two families subsequent to a duplication event. PMID:16838215

  6. Origin of Structural Transformation in Mono- and Bi-Layered Molybdenum Disulfide.

    PubMed

    Sun, Xiaoli; Wang, Zhiguo; Li, Zhijie; Fu, Y Q

    2016-01-01

    Mono- and multi-layered molybdenum disulfide (MoS2) is considered to be one of the next generation anode materials for rechargeable ion batteries. Structural transformation from trigonal prismatic (2H) to octahedral (1T) upon lithium or sodium intercalation has been in-situ observed experimentally using transmission electron microscope during studies of their electrochemical dynamics processes. In this work, we explored the fundamental mechanisms of this structural transformation in both mono- and bi-layered MoS2 using density functional theory. For the intercalated MoS2, the Li and Na donate their electrons to the MoS2. Based on the theoretical analysis, we confirmed that, for the first time, electron transfer is dominant in initiating this structural transformation, and the results provide an in-depth understanding of the transformation mechanism induced by the electron doping. The critical values of electron concentrations for this structural transformation are decreased with increasing the layer thickness. PMID:27225416

  7. Origin of Structural Transformation in Mono- and Bi-Layered Molybdenum Disulfide

    PubMed Central

    Sun, Xiaoli; Wang, Zhiguo; Li, Zhijie; Fu, Y. Q.

    2016-01-01

    Mono- and multi-layered molybdenum disulfide (MoS2) is considered to be one of the next generation anode materials for rechargeable ion batteries. Structural transformation from trigonal prismatic (2H) to octahedral (1T) upon lithium or sodium intercalation has been in-situ observed experimentally using transmission electron microscope during studies of their electrochemical dynamics processes. In this work, we explored the fundamental mechanisms of this structural transformation in both mono- and bi-layered MoS2 using density functional theory. For the intercalated MoS2, the Li and Na donate their electrons to the MoS2. Based on the theoretical analysis, we confirmed that, for the first time, electron transfer is dominant in initiating this structural transformation, and the results provide an in-depth understanding of the transformation mechanism induced by the electron doping. The critical values of electron concentrations for this structural transformation are decreased with increasing the layer thickness. PMID:27225416

  8. Interaction of ethanol with biological membranes: the formation of non-bilayer structures within the membrane interior and their significance.

    PubMed

    Gurtovenko, Andrey A; Anwar, Jamshed

    2009-02-19

    To gain a better understanding of how ethanol affects biological membranes, we have performed a series of atomic-scale molecular dynamics simulations of phospholipid membranes in aqueous solution with ethanol, whose concentration was varied from 2.5 to 30 mol % (lipid-free basis). At concentrations below the threshold value of approximately 12 mol % (30.5 v/v %) ethanol induces expansion of the membrane, accompanied by a drop in the membrane thickness as well as disordering and enhanced interdigitation of lipid acyl chains. These changes become more pronounced with increase in ethanol concentration, but the bilayer structure of the membrane is maintained. Above the threshold concentration the appearance of multiple transient defects in the lipid/water interface eventually gives rise to desorption and assembly of some of the lipids into non-bilayer structures within the membrane interior. These structures, being small and irregular, resemble inverted micelles and have a long-lived character. Furthermore, formation of the non-bilayer structures is accompanied by mixing of lipids that belong to the opposite membrane leaflets, thereby leading to irreversible changes in the membrane structure. Remarkably, this observation of the formation of non-bilayer structures within the membrane interior, being in good agreement with experimental data, is found to be robust with respect to both the simulation conditions (the system size and the presence of salt) and the type of lipids (phosphatidylcholine and phosphatidylethanolamine). We discuss the significance of these non-bilayer structures in relation with the well-known ability of ethanol to promote membrane hemifusion as well as with the possible role of the micelle-like structures as a delivery system for polar solutes and ions. The ethanol-induced "damage" to the bilayer structure also suggests that strong alcoholic beverages ( approximately 40 v/v %) might be potentially hazardous to the epithelial tissues of the human

  9. Fluid/structure interactions. Internal flows

    NASA Astrophysics Data System (ADS)

    Weaver, D. S.

    1991-05-01

    Flow-induced vibrations are found wherever structures are exposed to high velocity fluid flows. Internal flows are usually characterized by the close proximity of solid boundaries. There are surfaces against which separated flows may reattach, or from which pressure disturbances may be reflected resulting in acoustic resonance. When the fluid is a liquid, the close proximity of solid boundaries to a vibrating component can produce very high added mass effects. This paper presents three different experimental studies of flow-induced vibration problems associated with internal flows. The emphasis was on experimental techniques developed for understanding excitation mechanisms. In difficult flow-induced vibration problems, a useful experimental technique is flow visualization using a large scale model and strobe light triggered by the phenomenon being observed. This should be supported by point measurements of velocity and frequency spectra. When the flow excitation is associated with acoustic resonance, the sound can be fed back to enhance or eliminate the instability. This is potentially a very useful tool for studying and controlling fluid-structure interaction problems. Some flow-induced vibration problems involve a number of different excitation mechanisms and care must be taken to ensure that the mechanisms are properly identified. Artificially imposing structural vibrations or acoustic fields may induce flow structures not naturally present in the system.

  10. Structural properties of archaeal lipid bilayers: small-angle X-ray scattering and molecular dynamics simulation study.

    PubMed

    Polak, Andraž; Tarek, Mounir; Tomšič, Matija; Valant, Janez; Ulrih, Nataša Poklar; Jamnik, Andrej; Kramar, Peter; Miklavčič, Damijan

    2014-07-22

    Aeropyrum pernix is an aerobic hyperthermophilic archaeon that grows in harsh environmental conditions and as such possesses unique structural and metabolic features. Its membrane interfaces with the extreme environment and is the first line of defense from external factors. Therefore, lipids composing this membrane have special moieties that increase its stability. The membrane of A. pernix is composed predominantly of two polar lipids 2,3-di-O-sesterterpanyl-sn-glicerol-1-phospho-1'(2'-O-α-D-glucosyl)-myo-inositol (AGI) and 2,3-di-O-sesterterpanyl-sn-glicerol-1-phospho-myo-inositol (AI). Both have methyl branches in their lipid tails and ether linkages and carbohydrates in their headgroup. These moieties significantly affect the structure and dynamics of the bilayer. To provide a molecular level insight into these characteristics, we used here Molecular Dynamics (MD) simulations of lipid bilayers of composition similar to those of the archaeal membranes. First, we show that the electron density profiles along the normal to the bilayers derived from the simulations are in good agreement with the profiles obtained by the small-angle X-ray scattering (SAXS) technique, which provides confidence in the force fields used. Analyses of the simulation data show that the archaeal lipid bilayers are less hydrated than conventional phosphatidylcholine (PC) lipids and that their structure is not affected by the salt present in the surrounding solution. Furthermore, the lateral pressure in their hydrophobic core, due to the presence of the branched tails, is much higher than that at PC-based lipid bilayers. Both the methyl branched tails and the special headgroup moieties contribute to slow drastically the lateral diffusion of the lipids. Furthermore, we found that the lipid head groups associate via hydrogen bonding, which affects their reorientational dynamics. All together, our data provide links between the microscopic properties of these membranes and their overall

  11. Helicity and singular structures in fluid dynamics

    PubMed Central

    Moffatt, H. Keith

    2014-01-01

    Helicity is, like energy, a quadratic invariant of the Euler equations of ideal fluid flow, although, unlike energy, it is not sign definite. In physical terms, it represents the degree of linkage of the vortex lines of a flow, conserved when conditions are such that these vortex lines are frozen in the fluid. Some basic properties of helicity are reviewed, with particular reference to (i) its crucial role in the dynamo excitation of magnetic fields in cosmic systems; (ii) its bearing on the existence of Euler flows of arbitrarily complex streamline topology; (iii) the constraining role of the analogous magnetic helicity in the determination of stable knotted minimum-energy magnetostatic structures; and (iv) its role in depleting nonlinearity in the Navier-Stokes equations, with implications for the coherent structures and energy cascade of turbulence. In a final section, some singular phenomena in low Reynolds number flows are briefly described. PMID:24520175

  12. Structures, dynamics, and water permeation free energy across bilayers of Lipid A and its analog studied with molecular dynamics simulation.

    PubMed

    Wei, Tao; Huang, Tiefan; Qiao, Baofu; Zhang, Mo; Ma, Heng; Zhang, Lin

    2014-11-20

    Fundamental studies of the supramolecular layer structures, dynamics and water permeation free energy of hexa-acyl-chain Lipid A and its analogue of tetra-acyl chains would be useful for polymer membranes design for endotoxin removal in water treatment, drug delivery and other biotechnologies. In this work, we studied their supramolecular bilayer by using molecular dynamics simulations and efficient free energy computations. Our simulation accuracy was verified by the agreement between the bilayer structural properties (structure factor, bilayer thickness, and the area per lipid) and lateral diffusion coefficient in our simulation and experimental measurements. More importantly, our simulation for the first time illustrated hexagonal compact packing of the hydrocarbon acyl chains within a leaflet of Lipid A membrane (at 298 K and water content of 40 wt %), which is consistent with experiments. In contrast, Lipid A analogue is found with less ordered ripple structures at the same condition. Our study also demonstrated slower dynamics and larger and broader free energy barrier (∼23 kJ/mol) for water permeation for Lipid A, compared with that of Lipid A analogue. Moreover, the analysis of dynamics showed that highly hydrated hydrophilic diglucosamine backbone is structurally stable, whereas the interdigitated hydrophobic acyl chain tails inside the membrane with faster dynamics screen the aqueous environment from the lipid interior and also reinforce the membrane's structural stability.

  13. Lipid bilayers covalently anchored to carbon nanotubes.

    PubMed

    Dayani, Yasaman; Malmstadt, Noah

    2012-05-29

    The unique physical and electrical properties of carbon nanotubes make them an exciting material for applications in various fields such as bioelectronics and biosensing. Due to the poor water solubility of carbon nanotubes, functionalization for such applications has been a challenge. Of particular need are functionalization methods for integrating carbon nanotubes with biomolecules and constructing novel hybrid nanostructures for bionanoelectronic applications. We present a novel method for the fabrication of dispersible, biocompatible carbon nanotube-based materials. Multiwalled carbon nanotubes (MWCNTs) are covalently modified with primary amine-bearing phospholipids in a carbodiimide-activated reaction. These modified carbon nanotubes have good dispersibility in nonpolar solvents. Fourier transform infrared (FTIR) spectroscopy shows peaks attributable to the formation of amide bonds between lipids and the nanotube surface. Simple sonication of lipid-modified nanotubes with other lipid molecules leads to the formation of a uniform lipid bilayer coating the nanotubes. These bilayer-coated nanotubes are highly dispersible and stable in aqueous solution. Confocal fluorescence microscopy shows labeled lipids on the surface of bilayer-modified nanotubes. Transmission electron microscopy (TEM) shows the morphology of dispersed bilayer-coated MWCNTs. Fluorescence quenching of lipid-coated MWCNTs confirms the bilayer configuration of the lipids on the nanotube surface, and fluorescence anisotropy measurements show that the bilayer is fluid above the gel-to-liquid transition temperature. The membrane protein α-hemolysin spontaneously inserts into the MWCNT-supported bilayer, confirming the biomimetic membrane structure. These biomimetic nanostructures are a promising platform for the integration of carbon nanotube-based materials with biomolecules.

  14. A computer simulation of free-volume distributions and related structural properties in a model lipid bilayer.

    PubMed Central

    Xiang, T X

    1993-01-01

    A novel combined approach of molecular dynamics (MD) and Monte Carlo simulations is developed to calculate various free-volume distributions as a function of position in a lipid bilayer membrane at 323 K. The model bilayer consists of 2 x 100 chain molecules with each chain molecule having 15 carbon segments and one head group and subject to forces restricting bond stretching, bending, and torsional motions. At a surface density of 30 A2/chain molecule, the probability density of finding effective free volume available to spherical permeants displays a distribution with two exponential components. Both pre-exponential factors, p1 and p2, remain roughly constant in the highly ordered chain region with average values of 0.012 and 0.00039 A-3, respectively, and increase to 0.049 and 0.0067 A-3 at the mid-plane. The first characteristic cavity size V1 is only weakly dependent on position in the bilayer interior with an average value of 3.4 A3, while the second characteristic cavity size V2 varies more dramatically from a plateau value of 12.9 A3 in the highly ordered chain region to 9.0 A3 in the center of the bilayer. The mean cavity shape is described in terms of a probability distribution for the angle at which the test permeant is in contact with one of and does not overlap with anyone of the chain segments in the bilayer. The results show that (a) free volume is elongated in the highly ordered chain region with its long axis normal to the bilayer interface approaching spherical symmetry in the center of the bilayer and (b) small free volume is more elongated than large free volume. The order and conformational structures relevant to the free-volume distributions are also examined. It is found that both overall and internal motions have comparable contributions to local disorder and couple strongly with each other, and the occurrence of kink defects has higher probability than predicted from an independent-transition model. Images FIGURE 1 PMID:8241390

  15. An engineered dimeric protein pore that spans adjacent lipid bilayers

    PubMed Central

    Mantri, Shiksha; Sapra, K. Tanuj; Cheley, Stephen; Sharp, Thomas H.; Bayley, Hagan

    2013-01-01

    The bottom-up construction of artificial tissues is an underexplored area of synthetic biology. An important challenge is communication between constituent compartments of the engineered tissue and between the engineered tissue and additional compartments, including extracellular fluids, further engineered tissue and living cells. Here we present a dimeric transmembrane pore that can span two adjacent lipid bilayers and thereby allow aqueous compartments to communicate. Two heptameric staphylococcal α-hemolysin (αHL) pores were covalently linked in an aligned cap-to-cap orientation. The structure of the dimer, (α7)2, was confirmed by biochemical analysis, transmission electron microscopy (TEM) and single-channel electrical recording. We show that one of two β barrels of (α7)2 can insert into the lipid bilayer of a small unilamellar vesicle, while the other spans a planar lipid bilayer. (α7)2 pores spanning two bilayers were also observed by TEM. PMID:23591892

  16. The structure of unsupported, self-assembled phospholipid bilayers on an artificially nano-patterned surface

    NASA Astrophysics Data System (ADS)

    Smith, Gregory; Jung, Seung-Yong; Browning, James; Keum, Jong; Lavrik, Nickolay; Collier, Pat

    2012-02-01

    We present neutron reflectivity measurements of the in-situ microscopic architecture of phospholipid molecules at the interface between a regularly nano-patterned surface and an aqueous sub-phase using neutron reflectometry. 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC) single bilayers were deposited on a patterned silicon substrate. The substrate was patterned with a rectangular array of nano-scaled holes using e-beam nano-lithographic techniques. The goal of these experiments is to produce a set of small freely-suspended bilayers spanning the nanostructured surface. We compare results for films deposited by vesicle adsorption or by the Langmuir--Shafer (L-S) technique. Initial data analysis shows that there are well formed bilayers on the surface. Detailed analysis of the reflectivity curves will be presented to confirm details of the architecture of these bilayer films. Bilayers prepared in this way may serve as model single bilayer systems with freely suspended areas for the study of membrane functionality in biological and biomimetic materials and systems.

  17. Effect of magnesium ion concentration on two-dimensional structure of DNA-functionalized nanoparticles on supported lipid bilayer

    NASA Astrophysics Data System (ADS)

    Isogai, Takumi; Akada, Eri; Nakada, Sakiko; Yoshida, Naoya; Tero, Ryugo; Harada, Shunta; Ujihara, Toru; Tagawa, Miho

    2016-03-01

    The effect of divalent cations on lipid-bilayer-assisted DNA-functionalized nanoparticle (DNA-NP) assembly has been studied. We previously reported the lateral diffusion of DNA-NPs on planar lipid bilayer patches, owing to the mobility of lipid molecules in a supported lipid bilayer (SLB), and the resultant two-dimensional (2D) assembly of DNA-NPs. We here report the structural change of the assembled 2D DNA-NP lattices by magnesium ion concentration control on a successfully formed uniform SLB. In the magnesium-free buffer solution, DNA-NPs on SLB loosely assembled into quasi-hexagonal ordered lattices. In buffer solution containing 1 mM magnesium acetate, the interparticle distance of DNA-NPs decreased and the lattice structure became disordered. In buffer solution containing 5 mM magnesium acetate, the structure of DNA-NP arrays changed markedly and square lattices appeared. It is suggested that magnesium ions affected DNA molecules, which linked nanoparticles, and enabled the control of the structure of DNA-NP 2D arrays.

  18. Structural Dynamics of an Isolated-Voltage Sensor Domain in Lipid Bilayer

    PubMed Central

    Chakrapani, Sudha; Cuello, Luis G.; Cortes, Marien D.; Perozo, Eduardo

    2009-01-01

    Summary A strong interplay between the voltage-sensor domain (VSD) and the pore domain (PD) underlies voltage-gated channel functions. In a few voltage-sensitive proteins, the VSD has been shown to function without a canonical PD, although its structure and oligomeric state remain unknown. Here using EPR spectroscopy we show that the isolated-VSD of KvAP can remain monomeric in reconstituted bilayer and retain a transmembrane conformation. We find that water-filled crevices extend deep into the membrane around S3, a scaffold conducive to transport of proton/cations is intrinsic to the VSD. Differences in solvent accessibility in comparison to the full-length KvAP, allowed us to define an interacting footprint of the PD on the VSD. This interaction is centered around S1 and S2 and shows a rotation of 70–100° relative to Kv1.2-Kv2.1 chimera. Sequence-conservation patterns in Kv channels, Hv channels and voltage-sensitive phosphatases reveal several near-universal features suggesting a common molecular architecture for all VSDs. PMID:18334215

  19. Influence of DPH on the Structure and Dynamics of a DPPC Bilayer

    PubMed Central

    Repáková, Jarmila; Holopainen, Juha M.; Morrow, Michael R.; McDonald, Mark C.; Čapková, Pavla; Vattulainen, Ilpo

    2005-01-01

    We have conducted extensive molecular dynamics (MD) simulations together with differential scanning calorimetry (DSC) and nuclear magnetic resonance (NMR) experiments to quantify the influence of free 1,6-diphenyl-1,3,5-hexatriene (DPH) fluorescent probes on the structure and dynamics of a dipalmitoylphosphatidylcholine bilayer. Atomistic MD simulations show that in the membrane-water interface the influence of DPH is minor, whereas in the acyl-chain region DPH gives rise to major perturbations. In the latter case, DPH is found to influence a wide range of membrane properties, such as the packing and ordering of hydrocarbon tails and the lateral diffusion of lipid molecules. The effects are prominent but of local nature, i.e., the changes observed in the properties of lipid molecules are significant in the vicinity of DPH, but reduce rapidly as the distance from the probe increases. Long-range perturbations due to DPH are hence not expected. Detailed DSC and 2H NMR measurements support this view. DSC shows only subtle perturbation to the cooperative behavior of the membrane system in the presence of DPH, and 2H NMR shows that DPH gives rise to a slight increase in the lipid chain order, in agreement with MD simulations. Potential effects of other probes such as pyrene are briefly discussed. PMID:15722435

  20. Fluid Structure Interaction in a Turbine Blade

    NASA Technical Reports Server (NTRS)

    Gorla, Rama S. R.

    2004-01-01

    An unsteady, three dimensional Navier-Stokes solution in rotating frame formulation for turbomachinery applications is presented. Casting the governing equations in a rotating frame enabled the freezing of grid motion and resulted in substantial savings in computer time. The turbine blade was computationally simulated and probabilistically evaluated in view of several uncertainties in the aerodynamic, structural, material and thermal variables that govern the turbine blade. The interconnection between the computational fluid dynamics code and finite element structural analysis code was necessary to couple the thermal profiles with the structural design. The stresses and their variations were evaluated at critical points on the Turbine blade. Cumulative distribution functions and sensitivity factors were computed for stress responses due to aerodynamic, geometric, mechanical and thermal random variables.

  1. Structure and dynamics of electrorheological fluids

    SciTech Connect

    Martin, J.E.; Odinek, J.; Halsey, T.C.; Kamien, R.

    1998-01-01

    We have used two-dimensional light scattering to study the structure and dynamics of a single-scattering electrorheological fluid in the quiescent state and in steady and oscillatory shear. Studies of the quiescent fluid show that particle columns grow in two stages. Particles first chain along the electric field, causing scattering lobes to appear orthogonal to the field, and then aggregate into columns, causing the scattering lobes to move to smaller angles. Column formation can be understood in terms of a thermal coarsening model we present, whereas the early-time scattering in the direction parallel to the field can be compared to the theory of line liquids. In simple shear the scattering lobes are inclined in the direction of fluid vorticity, in detailed agreement with the independent droplet model of the shear thinning viscosity. In oscillatory shear the orientation of the scattering lobes varies nonsinusoidally. This nonlinear dynamics is described by a kinetic chain model, which provides a theory of the nonlinear shear rheology in arbitrary shear flows. {copyright} {ital 1998} {ital The American Physical Society}

  2. Tethered bilayer membranes as a complementary tool for functional and structural studies: The pyolysin case.

    PubMed

    Preta, Giulio; Jankunec, Marija; Heinrich, Frank; Griffin, Sholeem; Sheldon, Iain Martin; Valincius, Gintaras

    2016-09-01

    We demonstrate the use of tethered bilayer lipid membranes (tBLMs) as an experimental platform for functional and structural studies of membrane associated proteins by electrochemical techniques. The reconstitution of the cholesterol-dependent cytolysin (CDC) pyolysin (PLO) from Trueperella pyogenes into tBLMs was followed in real-time by electrochemical impedance spectroscopy (EIS). Changes of the EIS parameters of the tBLMs upon exposure to PLO solutions were consistent with the dielectric barrier damage occurring through the formation of water-filled pores in membranes. Parallel experiments involving a mutant version of PLO, which is able to bind to the membranes but does not form oligomer pores, strengthen the reliability of this methodology, since no change in the electrochemical impedance was observed. Complementary atomic force microscopy (AFM) and neutron reflectometry (NR) measurements revealed structural details of the membrane bound PLO, consistent with the structural transformations of the membrane bound toxins found for other cholesterol dependent cytolysins. In this work, using the tBLMs platform we also observed a protective effect of the dynamin inhibitor Dynasore against pyolysin as well as pneumolysin. An effect of Dynasore in tBLMs, which was earlier observed in experiments with live cells, confirms the biological relevance of the tBLMs models, as well as demonstrates the potential of the electrochemical impedance spectroscopy to quantify membrane damage by the pore forming toxins. In conclusion, tBLMs are a reliable and complementary method to explore the activity of CDCs in eukaryotic cells and to develop strategies to limit the toxic effects of CDCs. PMID:27211243

  3. A Critical Comparison of Biomembrane Force Fields: Structure and Dynamics of Model DMPC, POPC, and POPE Bilayers.

    PubMed

    Pluhackova, Kristyna; Kirsch, Sonja A; Han, Jing; Sun, Liping; Jiang, Zhenyan; Unruh, Tobias; Böckmann, Rainer A

    2016-04-28

    Atomistic molecular dynamics simulations have become an important source of information for the structure and dynamics of biomembranes at molecular detail difficult to access in experiments. A number of force fields for lipid membrane simulations have been derived in the past; the choice of the most suitable force field is, however, frequently hampered by the availability of parameters for specific lipids. Additionally, the comparison of different quantities among force fields is often aggravated by varying simulation parameters. Here, we compare four atomistic lipid force fields, namely, the united-atom GROMOS54a7 and the all-atom force fields CHARMM36, Slipids, and Lipid14, for a broad range of structural and dynamical properties of saturated and monounsaturated phosphatidylcholine bilayers (DMPC and POPC) as well as for monounsaturated phosphatidylethanolamine bilayers (POPE). Additionally, the ability of the different force fields to describe the gel-liquid crystalline phase transition is compared and their computational efficiency estimated. Moreover, membrane properties like the water flux across the lipid bilayer and lipid acyl chain protrusion probabilities are compared.

  4. Dynamics and Emergent Structures in Active Fluids

    NASA Astrophysics Data System (ADS)

    Baskaran, Aparna

    2014-03-01

    In this talk, we consider an active fluid of colloidal sized particles, with the primary manifestation of activity being a self-replenishing velocity along one body axis of the particle. This is a minimal model for varied systems such as bacterial colonies, cytoskeletal filament motility assays vibrated granular particles and self propelled diffusophoretic colloids, depending on the nature of interaction among the particles. Using microscopic Brownian dynamics simulations, coarse-graining using the tools of non-equilibrium statistical mechanics and analysis of macroscopic hydrodynamic theories, we characterize emergent structures seen in these systems, which are determined by the symmetry of the interactions among the active units, such as propagating density waves, dense stationary bands, asters and phase separated isotropic clusters. We identify a universal mechanism, termed ``self-regulation,'' as the underlying physics that leads to these structures in diverse systems. Support from NSF through DMR-1149266 and DMR-0820492.

  5. Nanoscale Structure at Mineral-Fluid Interfaces

    NASA Astrophysics Data System (ADS)

    Sturchio, N. C.; Sturchio, N. C.; Fenter, P.; Cheng, L.; Park, C.; Zhang, Z.; Zhang, Z.; Nagy, K. L.; Schlegel, M. L.

    2001-12-01

    The nature of nanoparticles and their role in the natural environment is currently a subject of renewed interest. The high surface area (and surface area-to-volume ratio) of nanoparticles exerts a widespread influence on geochemical reactions and transport processes. A thorough understanding of the nanoscale world remains largely hypothetical, however, because of the challenges associated with characterizing nanoscale structures and processes. Recent insights gained from high-resolution synchrotron x-ray reflectivity measurements at the solid-fluid interfaces of macroscopic (i.e., mm-scale) mineral particles may provide relevant guidelines for expected nanoparticle surface structures. For example, at calcite-water and barite-water interfaces, undercoordinated surface cations bond with water species of variable protonation, and modest relaxations (to several hundredths of a nanometer) affect the outermost unit cells [1,2]. Undercoordinated tetrahedral ions at aluminosilicate surfaces also bond with water species, whereas interstitial or interlayer alkali or alkaline earth ions at the surface may readily exchange with hydronium or other ions; modest relaxations also affect the outermost unit cells [3,4]. Modulation of liquid water structure out to about one nanometer has been observed at the (001) cleavage surface of muscovite in deionized water, and may be present at other mineral-fluid interfaces [4]. Dissolution mechanisms at the orthoclase-water interface have been clarified by combining x-ray reflectivity and scanning force microscopy measurements [5]. Further progress in understanding nanoscale structures and processes at macroscopic mineral-water interfaces is likely to benefit nanoparticle studies. [1] Fenter et al. (2000) Geochim. Cosmochim. Acta 64, 1221-1228. [2] Fenter et al. (2001) J. Phys. Chem. B 105(34), 8112-8119. [3] Fenter et al. (2000) Geochim. Cosmochim. Acta 64, 3663-3673. [4] Cheng et al. (2001) Phys. Rev. Lett., (in press). [5] Teng et al

  6. Structural impact of cations on lipid bilayer models: nanomechanical properties by AFM-force spectroscopy.

    PubMed

    Redondo-Morata, Lorena; Giannotti, Marina I; Sanz, Fausto

    2014-02-01

    Atomic Force Microscopy (AFM) has become an invaluable tool for studying the micro- and nanoworlds. As a stand-alone, high-resolution imaging technique and force transducer, it defies most other surface instrumentation in ease of use, sensitivity and versatility. The main strength of AFM relies on the possibility to operate in an aqueous environment on a wide variety of biological samples, from single molecules - DNA or proteins - to macromolecular assemblies like biological membranes. Understanding the effect of mechanical stress on membranes is of primary importance in biophysics, since cells are known to perform their function under a complex combination of forces. In the later years, AFM-based Force-Spectroscopy (AFM-FS) has provided a new vista on membrane mechanics in a confined area within the nanometer realm, where most of the specific molecular interactions take place. Lipid membranes are electrostatically charged entities that physiologically coexist with electrolyte solutions. Thus, specific interactions with ions are a matter of considerable interest. The distribution of ions in the solution and their interaction with the membranes are factors that substantially modify the structure and dynamics of the cell membranes. Furthermore, signaling processes are modified by the membrane capability of retaining ions. Supported Lipid Bilayers (SLBs) are a versatile tool to investigate phospholipid membranes mimicking biological surfaces. In the present contribution, we review selected experiments on the mechanical stability of SLBs as models of lipid membranes by means of AFM-FS, with special focus on the effect of cations and ionic strength in the overall nanomechanical stability. PMID:24341385

  7. Structural topology of phospholamban pentamer in lipid bilayers by a hybrid solution and solid-state NMR method

    PubMed Central

    Verardi, Raffaello; Shi, Lei; Traaseth, Nathaniel J.; Walsh, Naomi; Veglia, Gianluigi

    2011-01-01

    Phospholamban (PLN) is a type II membrane protein that inhibits the sarcoplasmic reticulum Ca2+-ATPase (SERCA), thereby regulating calcium homeostasis in cardiac muscle. In membranes, PLN forms pentamers that have been proposed to function either as a storage for active monomers or as ion channels. Here, we report the T-state structure of pentameric PLN solved by a hybrid solution and solid-state NMR method. In lipid bilayers, PLN adopts a pinwheel topology with a narrow hydrophobic pore, which excludes ion transport. In the T state, the cytoplasmic amphipathic helices (domains Ia) are absorbed into the lipid bilayer with the transmembrane domains arranged in a left-handed coiled-coil configuration, crossing the bilayer with a tilt angle of approximately 11° with respect to the membrane normal. The tilt angle difference between the monomer and pentamer is approximately 13°, showing that intramembrane helix–helix association forces dominate over the hydrophobic mismatch, driving the overall topology of the transmembrane assembly. Our data reveal that both topology and function of PLN are shaped by the interactions with lipids, which fine-tune the regulation of SERCA. PMID:21576492

  8. Permeability of fluid-phase phospholipid bilayers: assessment and useful correlations for permeability screening and other applications.

    PubMed

    Nitsche, Johannes M; Kasting, Gerald B

    2013-06-01

    Permeability data (P(lip/w) ) for liquid crystalline phospholipid bilayers composed of egg lecithin and dimyristoylphosphatidylcholine (DMPC) are analyzed in terms of a mathematical model that accounts for free surface area and chain-ordering effects in the bilayer as well as size and lipophilicity of the permeating species. Free surface area and chain ordering are largely determined by temperature and cholesterol content of the membrane, molecular size is represented by molecular weight, and lipophilicity of the barrier region is represented by the 1,9-decadiene/water partition coefficient, following earlier work by Xiang, Anderson, and coworkers. A correlating variable χ = MW(n) σ/(1 -σ) is used to link the results from different membrane systems, where different values of n are tried, and σ denotes a reduced phospholipid density. The group (1 -σ)/σ is a measure of free surface area, but can also be interpreted in terms of free volume. A single exponential function of χ is developed that is able to correlate 39 observations of P(lip/w) for different compounds in egg lecithin at low density, and 22 observations for acetic acid in DMPC at higher densities, spanning nine orders of magnitude to within an rms error for log 10 P(lip/w) of 0.20. The best fit found for n = 0.87 ultimately makes χ much closer to the ratio of molecular to free volumes than surface areas. The results serve as a starting point for estimating passive permeability of cell membranes to nonionized solutes as a function of temperature and cholesterol content of the membrane.

  9. Fluid sloshing and fluid-structure interaction 1995. PVP-Volume 314

    SciTech Connect

    Ma, D.C.; Tani, J.; Brochard, D.; Fujita, K.

    1995-11-01

    In recognition of the importance of fluid sloshing and fluid-structure interaction, the 1995 Joint ASME/JSME Pressure Vessels and Piping Conference, held July 23--27 in Honolulu, Hawaii, has organized five technical sessions in various technical areas of fluid sloshing and fluid-structure interaction. This volume contains the twenty-one papers presented in the five sessions. The subjects cover sloshing suppression submerged components, flow-induced sloshing, waste storage tanks, spent fuel facilities, fluid-piping interaction, added mass, etc. This publication is a direct result of continuing interests and cooperation in the research and development concerning fluid sloshing and fluid-structure interaction between the American and Japanese Society of Mechanical Engineers. Papers have been processed separately for inclusion on the database.

  10. Reconstitution of KCNE1 into lipid bilayers: comparing the structural, dynamic, and activity differences in micelle and vesicle environments.

    PubMed

    Coey, Aaron T; Sahu, Indra D; Gunasekera, Thusitha S; Troxel, Kaylee R; Hawn, Jaclyn M; Swartz, Max S; Wickenheiser, Marilyn R; Reid, Ro-jay; Welch, Richard C; Vanoye, Carlos G; Kang, Congbao; Sanders, Charles R; Lorigan, Gary A

    2011-12-20

    KCNE1 (minK), found in the human heart and cochlea, is a transmembrane protein that modulates the voltage-gated potassium KCNQ1 channel. While KCNE1 has previously been the subject of extensive structural studies in lyso-phospholipid detergent micelles, key observations have yet to be confirmed and refined in lipid bilayers. In this study, a reliable method for reconstituting KCNE1 into lipid bilayer vesicles composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho(1'-rac-glycerol) (sodium salt) (POPG) was developed. Microinjection of the proteoliposomes into Xenopus oocytes expressing the human KCNQ1 (K(V)7.1) voltage-gated potassium channel led to nativelike modulation of the channel. Circular dichroism spectroscopy demonstrated that the percent helicity of KCNE1 is significantly higher for the protein reconstituted in lipid vesicles than for the previously described structure in 1.0% 1-myristoyl-2-hydroxy-sn-glycero-3-phospho(1'-rac-glycerol) (sodium salt) (LMPG) micelles. SDSL electron paramagnetic resonance spectroscopic techniques were used to probe the local structure and environment of Ser28, Phe54, Phe57, Leu59, and Ser64 of KCNE1 in both POPC/POPG vesicles and LMPG micelles. Spin-labeled KCNE1 cysteine mutants at Phe54, Phe57, Leu59, and Ser64 were found to be located inside POPC/POPG vesicles, whereas Ser28 was found to be located outside the membrane. Ser64 was shown to be water inaccessible in vesicles but found to be water accessible in LMPG micelle solutions. These results suggest that key components of the micelle-derived structure of KCNE1 extend to the structure of this protein in lipid bilayers but also demonstrate the need to refine this structure using data derived from the bilayer-reconstituted protein to more accurately define its native structure. This work establishes the basis for such future studies.

  11. Simulation of Fluid-Structure and Fluid-Mediated Structure-Structure Interactions in Stokes Regime Using Immersed Boundary Method

    PubMed Central

    Baghalnezhad, Masoud; Mirzaee, Iraj

    2014-01-01

    The Stokes flow induced by the motion of an elastic massless filament immersed in a two-dimensional fluid is studied. Initially, the filament is deviated from its equilibrium state and the fluid is at rest. The filament will induce fluid motion while returning to its equilibrium state. Two different test cases are examined. In both cases, the motion of a fixed-end massless filament induces the fluid motion inside a square domain. However, in the second test case, a deformable circular string is placed in the square domain and its interaction with the Stokes flow induced by the filament motion is studied. The interaction between the fluid and deformable body/bodies can become very complicated from the computational point of view. An immersed boundary method is used in the present study. In order to substantiate the accuracy of the numerical method employed, the simulated results associated with the Stokes flow induced by the motion of an extending star string are compared well with those obtained by the immersed interface method. The results show the ability and accuracy of the IBM method in solving the complicated fluid-structure and fluid-mediated structure-structure interaction problems happening in a wide variety of engineering and biological systems. PMID:24711736

  12. Simulation of fluid-structure and fluid-mediated structure-structure interactions in Stokes regime using immersed boundary method.

    PubMed

    Baghalnezhad, Masoud; Dadvand, Abdolrahman; Mirzaee, Iraj

    2014-01-01

    The Stokes flow induced by the motion of an elastic massless filament immersed in a two-dimensional fluid is studied. Initially, the filament is deviated from its equilibrium state and the fluid is at rest. The filament will induce fluid motion while returning to its equilibrium state. Two different test cases are examined. In both cases, the motion of a fixed-end massless filament induces the fluid motion inside a square domain. However, in the second test case, a deformable circular string is placed in the square domain and its interaction with the Stokes flow induced by the filament motion is studied. The interaction between the fluid and deformable body/bodies can become very complicated from the computational point of view. An immersed boundary method is used in the present study. In order to substantiate the accuracy of the numerical method employed, the simulated results associated with the Stokes flow induced by the motion of an extending star string are compared well with those obtained by the immersed interface method. The results show the ability and accuracy of the IBM method in solving the complicated fluid-structure and fluid-mediated structure-structure interaction problems happening in a wide variety of engineering and biological systems.

  13. Gelled Complex Fluids: Combining Unique Structures with Mechanical Stability.

    PubMed

    Stubenrauch, Cosima; Gießelmann, Frank

    2016-03-01

    Gelled complex fluids are soft materials in which the microstructure of the complex fluid is combined with the mechanical stability of a gel. To obtain a gelled complex fluid one either adds a gelator to a complex fluid or replaces the solvent in a gel by a complex fluid. The most prominent example of a "natural" gelled complex fluid is the cell. There are various strategies by which one can form a gelled complex fluid; one such strategy is orthogonal self-assembly, that is, the independent but simultaneous formation of two coexisting self-assembled structures within one system. The aim of this Review is to describe the structure and potential applications of various man-made gelled complex fluids and to clarify whether or not the respective system is formed by orthogonal self-assembly.

  14. Structuralization induced by the photothermal effect in magnetic fluid film

    NASA Astrophysics Data System (ADS)

    Timko, M.; Kopčanský, P.; Repašan, M.; Koneracká, M.; Hnatič, M.; Džarová, A.; Štelina, J.; Musil, C.; Ayrjan, E.

    2008-05-01

    The structuralization of magnetic particles after illumination was experimentally observed in two types of a magnetic fluid based on mineral oil with the magnetite particles covered by monolayer surfactant and kerosene-based magnetic fluid sterically stabilized by a double layer consisting of oleic acid and dodecylbenzensulphonic acid (DBS). This contribution presents a detailed theoretical description of the thermodiffusion process in magnetic fluids, simulation of the structuralization in magnetic fluid with a negative Soret constant, and confirmaton of the negative value of this constant for a kerosene-based magnetic fluid.

  15. The development of a bilayer structure of poly(propylene carbonate)/poly(3-hydroxybutyrate) blends from the demixed melt.

    PubMed

    Zhang, Shujing; Sun, Xiaoli; Ren, Zhongjie; Li, Huihui; Yan, Shouke

    2015-12-28

    The miscibility of poly(propylene carbonate) (PPC) and poly(3-hydroxybutyrate) (PHB) blends was analyzed by differential scanning calorimetry (DSC) and polarized optical microscopy (POM). The results indicated that the blends are immiscible at most blending compositions, and a miscible blend can be obtained when the PHB content is as low as 10 wt%. The morphology of the PPC/PHB (70/30) blend film was characterized by POM, scanning electron micrography (SEM) and Fourier transform infrared spectroscopy (FTIR), and the development of a PPC-top and microporous PHB-bottom bilayer structure can be revealed. Different from the normal case, phase separation can take place on the normal direction of the film surface in the PPC/PHB (70/30) blend at 190 °C, attributed to the different surface energies of the two components. The continuous segregation of PPC to the top-layer can result in the crystallization of PHB at the bottom layer and conversely promote the complete development of a bilayer structure. Since the isotropic PPC layer is transparent with no birefringence, the PHB spherulite with a microporous structure at the bottom layer can be observed directly by POM. Moreover, the microporous structure of the bottom layer should be attributed to the solution cast procedure. Thus, some unique crystalline patterns may be created in the demixed crystalline/amorphous polymer blends, which differ greatly from those obtained from the miscible blend systems. PMID:26577534

  16. Ultrafast electron crystallography of heterogeneous structures: Gold-graphene bilayer and ligand-encapsulated nanogold on graphene

    NASA Astrophysics Data System (ADS)

    Liang, Wenxi; Schäfer, Sascha; Zewail, Ahmed H.

    2012-07-01

    Here, we report studies of structures comprising a nanoscale gold-graphene bilayer and ligand-encapsulated nanogold on graphene multilayers. The observed time scale for the heating dynamics of the gold layer is significantly slower, when compared to previous results on free-standing gold films, and is independent of the level of carrier excitation. A model is proposed which incorporates the local carrier excitation in the gold layer, carrier relaxation in the graphene layer and heating of the gold layer by thermal conduction. When gold is isolated from graphene by ligand encapsulation, the carriers become again localized, consistent with the two phase description.

  17. Fluid, solid and fluid-structure interaction simulations on patient-based abdominal aortic aneurysm models.

    PubMed

    Kelly, Sinead; O'Rourke, Malachy

    2012-04-01

    This article describes the use of fluid, solid and fluid-structure interaction simulations on three patient-based abdominal aortic aneurysm geometries. All simulations were carried out using OpenFOAM, which uses the finite volume method to solve both fluid and solid equations. Initially a fluid-only simulation was carried out on a single patient-based geometry and results from this simulation were compared with experimental results. There was good qualitative and quantitative agreement between the experimental and numerical results, suggesting that OpenFOAM is capable of predicting the main features of unsteady flow through a complex patient-based abdominal aortic aneurysm geometry. The intraluminal thrombus and arterial wall were then included, and solid stress and fluid-structure interaction simulations were performed on this, and two other patient-based abdominal aortic aneurysm geometries. It was found that the solid stress simulations resulted in an under-estimation of the maximum stress by up to 5.9% when compared with the fluid-structure interaction simulations. In the fluid-structure interaction simulations, flow induced pressure within the aneurysm was found to be up to 4.8% higher than the value of peak systolic pressure imposed in the solid stress simulations, which is likely to be the cause of the variation in the stress results. In comparing the results from the initial fluid-only simulation with results from the fluid-structure interaction simulation on the same patient, it was found that wall shear stress values varied by up to 35% between the two simulation methods. It was concluded that solid stress simulations are adequate to predict the maximum stress in an aneurysm wall, while fluid-structure interaction simulations should be performed if accurate prediction of the fluid wall shear stress is necessary. Therefore, the decision to perform fluid-structure interaction simulations should be based on the particular variables of interest in a given

  18. Structural and kinetic molecular dynamics study of electroporation in cholesterol-containing bilayers.

    PubMed

    Fernández, M Laura; Marshall, Guillermo; Sagués, Francesc; Reigada, Ramon

    2010-05-27

    We present a numerical study of pore formation in lipid bilayers containing cholesterol (Chol) and subjected to a transverse electric field. Molecular dynamics simulations of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DOPC) membranes reveal the formation of a pore when an electric field of 325 mV/nm is applied. The minimum electric field needed for membrane permeabilization strongly increases with the addition of cholesterol above 10 mol %, reaching 750 mV/nm for 40 mol % Chol. Analysis of simulations of DOPC/Chol bilayers suggests this is caused by a substantial increment of membrane cohesion. Simulations also show that pore formation kinetics is much slower at high Chol contents.

  19. Actin Assembly at Model-Supported Lipid Bilayers

    PubMed Central

    Heath, George R.; Johnson, Benjamin R.G.; Olmsted, Peter D.; Connell, Simon D.; Evans, Stephen D.

    2013-01-01

    We report on the use of supported lipid bilayers to reveal dynamics of actin polymerization from a nonpolymerizing subphase via cationic phospholipids. Using varying fractions of charged lipid, lipid mobility, and buffer conditions, we show that dynamics at the nanoscale can be used to control the self-assembly of these structures. In the case of fluid-phase lipid bilayers, the actin adsorbs to form a uniform two-dimensional layer with complete surface coverage whereas gel-phase bilayers induce a network of randomly oriented actin filaments, of lower coverage. Reducing the pH increased the polymerization rate, the number of nucleation events, and the total coverage of actin. A model of the adsorption/diffusion process is developed to provide a description of the experimental data and shows that, in the case of fluid-phase bilayers, polymerization arises equally due to the adsorption and diffusion of surface-bound monomers and the addition of monomers directly from the solution phase. In contrast, in the case of gel-phase bilayers, polymerization is dominated by the addition of monomers from solution. In both cases, the filaments are stable for long times even when the G-actin is removed from the supernatant—making this a practical approach for creating stable lipid-actin systems via self-assembly. PMID:24268147

  20. Effect of interface roughness on exchange coupling in polycrystalline Co/CoO bilayer structure: An in-situ investigation

    NASA Astrophysics Data System (ADS)

    Kumar, Dileep; Singh, Sadhana; Gupta, Ajay

    2016-08-01

    The effect of interface roughness on exchange-bias (EB) properties of polycrystalline Co/CoO bilayer structure has been studied in-situ. Isothermal annealing of a 135 Å thick Co layer under the partial pressure of pure oxygen at 573 K results in the formation of a 35 Å thick CoO layer, the surface roughness of which increases with the increasing annealing time. Bilayers were characterized in-situ using magneto-optic Kerr effect, reflection high energy electron diffraction, and x-ray reflectivity for their magnetic and structural properties during each stage of bilayer growth. Combined analysis revealed that the increase in the roughness from 7 ±0.5 Å to 13 ±Å causes the exchange bias field (HEB) to decrease from 171 Oe to 81 Oe, whereas coercivity (HC) increases up to 616 Oe. In contrast to some earlier studies on polycrystalline films, where HEB increased with roughness due to the increase in the uncompensated spins at ferromagnetic-antiferromagnetic (AFM) layer interface, in the present case, dependence of HEB and HC on the roughness is attributed to the disorder at the interface of AFM layer, which leads to a decrease in HEB due to weakening of the effective spin coupling at the interface. Present in-situ experiments make it possible to study the variations in EB properties with the interface roughness in a single sample, and thus avoiding the possibility of the sample to sample variation in the morphological properties along with the change in the interface roughness.

  1. Characterization of fluid transport in microscale structures

    SciTech Connect

    Paul, P.H.

    1998-01-01

    A new tool for imaging both scalar transport and velocity fields in liquid flows through microscale structures is described. The technique employs an ultraviolet laser pulse to write a pattern into the flow by uncaging a fluorescent dye. This is followed, at selected time delays, by flood illumination with a pulse of visible light which excites the uncaged dye. The resulting fluorescence image collected onto a sensitive CCD camera. The instrument is designed as an oil immersion microscope to minimize the beam steering effects. The caged fluorescent dye is seeded in trace quantities throughout the active fluid, thus images with high contrast and minimal distortion due to any molecular diffusion history can be obtained at any point within the microchannel by selectivity activating the dye in the immediate region of interest. The author reports images of pressure- and electrokinetically-driven steady flow within round cross section capillaries having micron scale inner diameters. The author also demonstrates the ability to recover the velocity profile from a time sequence of these scalar images by direct inversion of the conserved scalar advection-convection equation.

  2. Molecular Dynamics of a Water-Lipid Bilayer Interface

    NASA Technical Reports Server (NTRS)

    Wilson, Michael A.; Pohorille, Andrew

    1994-01-01

    We present results of molecular dynamics simulations of a glycerol 1-monooleate bilayer in water. The total length of analyzed trajectories is 5ns. The calculated width of the bilayer agrees well with the experimentally measured value. The interior of the membrane is in a highly disordered fluid state. Atomic density profile, orientational and conformational distribution functions, and order parameters indicate that disorder increases toward the center of the bilayer. Analysis of out-of-plane thermal fluctuations of the bilayer surfaces occurring at the time scale of the present calculations reveals that the distribution of modes agrees with predictions of the capillary wave model. Fluctuations of both bilayer surfaces are uncorrelated, yielding Gaussian distribution of instantaneous widths of the membrane. Fluctuations of the width produce transient thinning defects in the bilayer which occasionally span almost half of the membrane. The leading mechanism of these fluctuations is the orientational and conformational motion of head groups rather than vertical motion of the whole molecules. Water considerably penetrates the head group region of the bilayer but not its hydrocarbon core. The total net excess dipole moment of the interfacial water points toward the aqueous phase, but the water polarization profile is non-monotonic. Both water and head groups significantly contribute to the surface potential across the interface. The calculated sign of the surface potential is in agreement with that from experimental measurements, but the value is markedly overestimated. The structural and electrical properties of the water-bilayer system are discussed in relation to membrane functions, in particular transport of ions and nonelectrolytes across membranes.

  3. Stabilising lamellar stacks of lipid bilayers with soft confinement and steric effects.

    PubMed

    Bougis, K; Leite Rubim, R; Ziane, N; Peyencet, J; Bentaleb, A; Février, A; Oliveira, C L P; Andreoli de Oliveira, E; Navailles, L; Nallet, F

    2015-07-01

    Structure and interactions stabilising the lamellar stack of mixed lipid bilayers in their fluid state are investigated by means of small-angle X-ray scattering. The (electrically neutral) bilayers are composed of a mixtures of lecithin, a zwitterionic phospholipid, and Simulsol, a non-ionic cosurfactant with an ethoxylated polar head. The soft confinement of the bilayer hydrophilic components is varied by changing hydration and bilayer composition, as well as the length of the cosurfactant polar head. Structural transitions are observed at low hydration, in the stacking order for the longer cosurfactant, and in the mixed bilayers for the shorter one. At higher hydration, the swelling of the lamellar stacks occurs with a significant, but continuous evolution in the mixed bilayer structure. The bilayer structural changes are discussed in analogy with the so-called "brush-to-mushroom" transition induced by lateral confinement, relevant for long linear polymers grafted onto rigid surfaces, taking also into account the role of vertical confinement.

  4. Coexistence of a Two-States Organization for a Cell-Penetrating Peptide in Lipid Bilayer

    PubMed Central

    Plénat, Thomas; Boichot, Sylvie; Dosset, Patrice; Milhiet, Pierre-Emmanuel; Le Grimellec, Christian

    2005-01-01

    Primary amphipathic cell-penetrating peptides transport cargoes across cell membranes with high efficiency and low lytic activity. These primary amphipathic peptides were previously shown to form aggregates or supramolecular structures in mixed lipid-peptide monolayers, but their behavior in lipid bilayers remains to be characterized. Using atomic force microscopy, we have examined the interactions of P(α), a primary amphipathic cell-penetrating peptide which remains α-helical whatever the environment, with dipalmitoylphosphatidylcholine (DPPC) bilayers. Addition of P(α) at concentrations up to 5 mol % markedly modified the supported bilayers topography. Long and thin filaments lying flat at the membrane surface coexisted with deeply embedded peptides which induced a local thinning of the bilayer. On the other hand, addition of P(α) only exerted very limited effects on the corresponding liposome's bilayer physical state, as estimated from differential scanning calorimetry and diphenylhexatriene fluorescence anisotropy experiments. The use of a gel-fluid phase separated supported bilayers made of a dioleoylphosphatidylcholine/dipalmitoylphosphatidylcholine mixture confirmed both the existence of long filaments, which at low peptide concentration were preferentially localized in the fluid phase domains and the membrane disorganizing effects of 5 mol % P(α). The simultaneous two-states organization of P(α), at the membrane surface and deeply embedded in the bilayer, may be involved in the transmembrane carrier function of this primary amphipathic peptide. PMID:16199494

  5. Off-easy-plane antiferromagnetic spin canting in coupled FePt/NiO bilayer structure with perpendicular exchange bias

    NASA Astrophysics Data System (ADS)

    Gao, Tenghua; Itokawa, Nobuhide; Wang, Jian; Yu, Youxing; Harumoto, Takashi; Nakamura, Yoshio; Shi, Ji

    2016-08-01

    We report on the investigation of perpendicular exchange bias in FePt (001 ) /NiO (1 ¯1 ¯1 ) orthogonal exchange couple with FePt partially L 10 ordered. From initial magnetization curve measurement and magnetic domain imaging, we find that, for the as-grown bilayer structure, the FePt layer experiences a small-angle magnetization rotation when it is magnetized near to saturation in film normal direction. After field cooling, the bilayer structure shows a significant enhancement of perpendicular magnetic anisotropy, indicating the field mediated coupling between the spins across the FePt/NiO interface. According to Koon's theoretical calculation on the basis of lowest energy ferromagnetic/antiferromagnetic coupling configuration for compensated spins at antiferromagnetic side, we consider slightly slanted Ni spins at the interface off the (1 ¯1 ¯1 ) easy plane can stabilize the spin coupling between FePt and NiO and result in the observed exchange bias in this paper. This consideration was further confirmed by stripe domain width calculation.

  6. Hexagonal bilayer structures formed by three out of the four subunits of the extracellular hemoglobin of Lumbricus terrestris

    SciTech Connect

    Kapp, O.H.; Mainwaring, M.G.; Vinogradov, S.N.; Crewe, A.V.

    1987-05-01

    A fraction of the extracellular hemoglobin of Lumbricus terrestris, obtained by gel filtration at neutral pH subsequent to dissociation either at pH 9.8 or at pH 4.0 or at pH 7.0 in 10 mM sodium phosphotungstate, consisting of the three subunits D1 (31 kDa), D2 (37 kDa) and T (50 kDa), produced two peaks when subjected to FPLC on a Superose 6 column at neutral pH. Peak I, eluting at a slightly greater volume than the native hemoglobin, consisted of reassociated hexagonal bilayer structures when examined by scanning transmission electron microscopy. The dimensions of the three reassociated hexagonal bilayer structures were 25 nm x 16 nm. Although the latter are smaller than the dimensions of the native hemoglobin, 30 nm x 20 nm, the diameter of the central cavity remained unchanged. Subtraction of the digitized and averaged images of the reassociated forms from those of the native hemoglobin suggested that the spatial localization of the fourth subunit, subunit M (16.7 kDa), was limited primarily to the periphery of the molecule.

  7. All-atom simulations and free-energy calculations of coiled-coil peptides with lipid bilayers: binding strength, structural transition, and effect on lipid dynamics

    PubMed Central

    Woo, Sun Young; Lee, Hwankyu

    2016-01-01

    Peptides E and K, which are synthetic coiled-coil peptides for membrane fusion, were simulated with lipid bilayers composed of lipids and cholesterols at different ratios using all-atom models. We first calculated free energies of binding from umbrella sampling simulations, showing that both E and K peptides tend to adsorb onto the bilayer surface, which occurs more strongly in the bilayer composed of smaller lipid headgroups. Then, unrestrained simulations show that K peptides more deeply insert into the bilayer with partially retaining the helical structure, while E peptides less insert and predominantly become random coils, indicating the structural transition from helices to random coils, in quantitative agreement with experiments. This is because K peptides electrostatically interact with lipid phosphates, as well as because hydrocarbons of lysines of K peptide are longer than those of glutamic acids of E peptide and thus form stronger hydrophobic interactions with lipid tails. This deeper insertion of K peptide increases the bilayer dynamics and a vacancy below the peptide, leading to the rearrangement of smaller lipids. These findings help explain the experimentally observed or proposed differences in the insertion depth, binding strength, and structural transition of E and K peptides, and support the snorkeling effect. PMID:26926570

  8. A Method of Simulating Fluid Structure Interactions for Deformable Decelerators

    NASA Astrophysics Data System (ADS)

    Gidzak, Vladimyr Mykhalo

    A method is developed for performing simulations that contain fluid-structure interactions between deployable decelerators and a high speed compressible flow. The problem of coupling together multiple physical systems is examined with discussion of the strength of coupling for various methods. A non-monolithic strongly coupled option is presented for fluid-structure systems based on grid deformation. A class of algebraic grid deformation methods is then presented with examples of increasing complexity. The strength of the fluid-structure coupling is validated against two analytic problems, chosen to test the time dependent behavior of structure on fluid interactions, and of fluid on structure interruptions. A one-dimentional material heating model is also validated against experimental data. Results are provided for simulations of a wind tunnel scale disk-gap-band parachute with comparison to experimental data. Finally, a simulation is performed on a flight scale tension cone decelerator, with examination of time-dependent material stress, and heating.

  9. ATR-IR spectroscopic study of the structural changes in the hydrophobic region of ICPAN/DPPC bilayers

    NASA Astrophysics Data System (ADS)

    Cieślik-Boczula, Katarzyna; Czarnik-Matusewicz, Bogusława; Perevozkina, Margarita; Filarowski, Aleksander; Boens, Noël; De Borggraeve, Wim M.; Koll, Aleksander

    2008-04-01

    Structural changes in the hydrophobic region in the self-aggregates of the long hydrocarbon chain ICPAN ((( N, N-dimethyl- N-octyl-2-ammonioethyl)-3-(3,5-di- tert-butyl-4-hydroxyphenyl)propionate bromide)) homologues and their interaction with a DPPC (dipalmitoylophosphatidylcholine) bilayer were the subject of detailed investigation using ATR infrared spectroscopy. On the base of analysis of the bands assigned to CH 2 stretching, scissoring, and rocking and CH wagging vibrations it was revealed that the hydrophobic parts ICPANs adopt a gauche-rich disordering structure. Moreover, it was shown that the micellar- or lamellar-like character of these structures depends on the hydrocarbon chain length. Results obtained from the ICPAN/DPPC mixtures indicate an increase in the conformational disorder in hydrophobic part compare to pure DPPC film. This effect depends on the length of the aliphatic chain of ICPAN homologues and on the relative concentrations of DPPC and ICPAN.

  10. Fluid-structure interaction -- 1996. PVP-Volume 337

    SciTech Connect

    Wang, C.Y.; Ma, D.C.; Shin, Y.W.; Kulak, R.F.; Chang, F.C.; Kaneko, S.; Brochard, D.; Moody, F.J.

    1996-12-01

    This special volume contains papers on various topics of interest to the pressure vessel and piping industries. These papers are presented in nine sessions covering three topics. The titles of these three sessions are: (1) fluid-structure interaction and structural mechanics; (2) sloshing and fluid-structure interaction; and (3) transient thermal hydraulics, heat transfer, and coupled vessel-piping structural response. Separate abstracts were prepared for most of the papers in this volume.

  11. Solving Fluid Structure Interaction Problems with an Immersed Boundary Method

    NASA Technical Reports Server (NTRS)

    Barad, Michael F.; Brehm, Christoph; Kiris, Cetin C.

    2016-01-01

    An immersed boundary method for the compressible Navier-Stokes equations can be used for moving boundary problems as well as fully coupled fluid-structure interaction is presented. The underlying Cartesian immersed boundary method of the Launch Ascent and Vehicle Aerodynamics (LAVA) framework, based on the locally stabilized immersed boundary method previously presented by the authors, is extended to account for unsteady boundary motion and coupled to linear and geometrically nonlinear structural finite element solvers. The approach is validated for moving boundary problems with prescribed body motion and fully coupled fluid structure interaction problems. Keywords: Immersed Boundary Method, Higher-Order Finite Difference Method, Fluid Structure Interaction.

  12. Structure and dehydration of layered perovskite niobate with bilayer hydrates prepared by exfoliation/self-assembly process

    SciTech Connect

    Chen Yufeng; Zhao Xinhua; Ma Hui; Ma Shulan; Huang Gailing; Makita, Yoji; Bai Xuedong; Yang Xiaojing

    2008-07-15

    The crystals of an H-form niobate of HCa{sub 2}Nb{sub 3}O{sub 10}.xH{sub 2}O (x=0.5) being tetragonal symmetry (space group P4/mbm) with unit cell parameters a=5.4521(6) and c=14.414(2) A were exfoliated into nanosheets with the triple-layered perovskite structure. The colloid suspension of the nanosheets was put into dialysis membrane tubing and allowed self-assembly in a dilute KCl solution. By this method, a novel layered K-form niobate KCa{sub 2}Nb{sub 3}O{sub 10}.xH{sub 2}O (x=1.3, typically) with bilayer hydrates in the interlayer was produced. The Rieveld refinement and transmission electron microscope (TEM)/selected-area electron diffraction (SAED) observation indicated that the orientations of the a-/b-axis of each nanosheet as well as the c-axis are uniform, and the self-assembled compound had the same symmetry, tetragonal (P4/mbm) with a=5.453(2) and c=16.876(5) A, as the H-form precursor; the exfoliation/self-assembly process does not markedly affect the two-dimensional lattice of the layer. The large basal spacing resulted from the interlayer K{sup +} ions solvated by two layers of water molecules. The interlayer bilayers-water was gradually changed to monolayer when the temperatures higher than 100 deg. C, and all the water molecules lost when over 600 deg. C. Accompanying the dehydration, the crystal structure transformed from tetragonal to orthorhombic symmetry. Water molecules may take an important role for the layer layered compound to adjust the unit cell to tetragonal symmetry. - Graphical abstract: The structure of layered perovskite niobate KCa{sub 2}Nb{sub 3}O{sub 10}.xH{sub 2}O (x=1.3) having a bilayers-hydrates interlayer, obtained via the exfoliation of an H-form precursor and the self-assembly of Ca{sub 2}Nb{sub 3}O{sub 10}{sup -} nanosheets, was first discussed in detail and determined to be tetragonal symmetry (P4/mbm). The dehydration resulted in the structural transformation to orthorhombic structure.

  13. Structure-Enhanced Yield Shear Stress in Electrorheological Fluids

    NASA Astrophysics Data System (ADS)

    Tao, R.; Lan, Y. C.; Xu, X.

    A new technology, compression-assisted aggregation, is developed to enhance the strength of electrorheological (ER) fluids. The yield shear stress of ER fluids depends on the fluid microstructure. The unassisted electric-field induced ER structure mainly consists of single chains, whose weak points are at their ends. This new technology produces a structure consisting of robust thick columns with strong ends. As the weak points of the original ER structure are greatly enforced, the new structure makes ER fluids super-strong: At a moderate electric field and moderate pressure the yield shear stress of ER fluids at 35% volume fraction exceeds 100 kPa, well above any requirement for major industrial applications.

  14. Polymer bulk heterojunction solar cells with PEDOT:PSS bilayer structure as hole extraction layer.

    PubMed

    Kim, Wanjung; Kim, Namhun; Kim, Jung Kyu; Park, Insun; Choi, Yeong Suk; Wang, Dong Hwan; Chae, Heeyeop; Park, Jong Hyeok

    2013-06-01

    A high current density obtained in a limited, nanometer-thick region is important for high efficiency polymer solar cells (PSCs). The conversion of incident photons to charge carriers only occurs in confined active layers; therefore, charge-carrier extraction from the active layer within the device by using solar light has an important impact on the current density and the related to power conversion efficiency. In this study, we observed a surprising result, that is, extracting the charge carrier generated in the active layer of a PSC device, with a thickness-controlled PEDOT:PSS bilayer that acted as a hole extraction layer (HEL), yielded a dramatically improved power conversion efficiency in two different model systems (P3HT:PC₆₀BM and PCDTBT:PC₇₀BM). To understand this phenomenon, we conducted optical strength simulation, photocurrent-voltage measurements, incident photon to charge carrier efficiency measurements, ultraviolet photoelectron spectroscopy, and AFM studies. The results revealed that approximately 60 nm was the optimum PEDOT:PSS bilayer HEL thickness in PSCs for producing the maximum power conversion efficiency.

  15. Pre-resonance-stimulated Raman scattering for water bilayer structure on laser-induced plasma bubble surface.

    PubMed

    Li, Zhanlong; Li, Hongdong; Fang, Wenhui; Wang, Shenghan; Sun, Chenglin; Li, Zuowei; Men, Zhiwei

    2015-07-15

    Pre-resonance-stimulated Raman scattering (PSRS) from water molecules in the air/water interfacial regions was studied when the laser-induced plasma bubble was generated at the interfaces. A characteristically lower Raman shift of OH-stretching vibrational modes of water molecules at around 3000  cm(-1) (370 meV) was observed, in which the mechanisms were possibly attributed to the strong hydrogen bond in a well-ordered water bilayer structure that was formed on a laser-induced plasma bubble surface. Simultaneously, the PSRS of ice Ih at about 3100  cm(-1) was obtained, which also belonged to the strong hydrogen bond effect in ice Ih structure.

  16. [Highly Efficient Bilayer-Structure Yellow-Green OLED with MADN Hole-Transport Layer and the Impedance Spectroscopy Analysis].

    PubMed

    Zhang, Xiao-wen; Mo, Bing-jie; Liu, Li-ming; Wang, Hong-hang; Chen, Er-wei; Xu, Ji-wen; Wang, Hua

    2015-12-01

    Abstract Highly efficient bilayer-structure yellow-green organic light-emitting device (OLED) has been demonstrated based on MADN as hole-transport layer (HTL) and host-guest coped system of [Alq₃: 0.7 Wt% rubrene] as emitting and electron-trans- port layer. The device gives yellow-green emission through incomplete energy transfer from the host of Alq₃ to the guest of ru- brene. An electroluminescent peak of 560 nm, 1931 CIE color coordinates of (0.46, 0.52) and a maximum current efficiency of 7.63 cd · A⁻¹ (which has been enhanced by 30% in comparison with the counterpart having conventional NPB HTL) are ob- served. The hole-transporting characteristics of MADN and NPB have been systematically investigated by constructing hole-only devices and employing impedance spectroscopy analysis. Our results indicate that MADN can be served as an effective hole-trans- port material and its hole-transporting ability is slightly inferior to NPB. This overcomes the shortcoming of hole transporting more quickly than electron in OLED and improves carrier balance in the emitting layer. Consequently, the device current efficien- cy is promoted. In addition, the current efficiency of bilayer-structure OLED with MADN as HTL is comparable to that of conv- entinol trilayer-structure device with MADN as HTL and Alq₃ as electron-transport layer. This indicates that the simplified bi- layer-structure device can be achieved without sacrificing current efficiency. The emitting layer of [Alq: 0.7 Wt% rubrene possesses superior elecron-transporting ability.

  17. [Highly Efficient Bilayer-Structure Yellow-Green OLED with MADN Hole-Transport Layer and the Impedance Spectroscopy Analysis].

    PubMed

    Zhang, Xiao-wen; Mo, Bing-jie; Liu, Li-ming; Wang, Hong-hang; Chen, Er-wei; Xu, Ji-wen; Wang, Hua

    2015-12-01

    Abstract Highly efficient bilayer-structure yellow-green organic light-emitting device (OLED) has been demonstrated based on MADN as hole-transport layer (HTL) and host-guest coped system of [Alq₃: 0.7 Wt% rubrene] as emitting and electron-trans- port layer. The device gives yellow-green emission through incomplete energy transfer from the host of Alq₃ to the guest of ru- brene. An electroluminescent peak of 560 nm, 1931 CIE color coordinates of (0.46, 0.52) and a maximum current efficiency of 7.63 cd · A⁻¹ (which has been enhanced by 30% in comparison with the counterpart having conventional NPB HTL) are ob- served. The hole-transporting characteristics of MADN and NPB have been systematically investigated by constructing hole-only devices and employing impedance spectroscopy analysis. Our results indicate that MADN can be served as an effective hole-trans- port material and its hole-transporting ability is slightly inferior to NPB. This overcomes the shortcoming of hole transporting more quickly than electron in OLED and improves carrier balance in the emitting layer. Consequently, the device current efficien- cy is promoted. In addition, the current efficiency of bilayer-structure OLED with MADN as HTL is comparable to that of conv- entinol trilayer-structure device with MADN as HTL and Alq₃ as electron-transport layer. This indicates that the simplified bi- layer-structure device can be achieved without sacrificing current efficiency. The emitting layer of [Alq: 0.7 Wt% rubrene possesses superior elecron-transporting ability. PMID:26964197

  18. Data supporting beta-amyloid dimer structural transitions and protein–lipid interactions on asymmetric lipid bilayer surfaces using MD simulations on experimentally derived NMR protein structures

    PubMed Central

    Cheng, Sara Y.; Chou, George; Buie, Creighton; Vaughn, Mark W.; Compton, Campbell; Cheng, Kwan H.

    2016-01-01

    This data article supports the research article entitled “Maximally Asymmetric Transbilayer Distribution of Anionic Lipids Alters the Structure and interaction with Lipids of an Amyloidogenic Protein Dimer Bound to the Membrane Surface” [1]. We describe supporting data on the binding kinetics, time evolution of secondary structure, and residue-contact maps of a surface-absorbed beta-amyloid dimer protein on different membrane surfaces. We further demonstrate the sorting of annular and non-annular regions of the protein/lipid bilayer simulation systems, and the correlation of lipid-number mismatch and surface area per lipid mismatch of asymmetric lipid membranes. PMID:27054174

  19. Data supporting beta-amyloid dimer structural transitions and protein-lipid interactions on asymmetric lipid bilayer surfaces using MD simulations on experimentally derived NMR protein structures.

    PubMed

    Cheng, Sara Y; Chou, George; Buie, Creighton; Vaughn, Mark W; Compton, Campbell; Cheng, Kwan H

    2016-06-01

    This data article supports the research article entitled "Maximally Asymmetric Transbilayer Distribution of Anionic Lipids Alters the Structure and interaction with Lipids of an Amyloidogenic Protein Dimer Bound to the Membrane Surface" [1]. We describe supporting data on the binding kinetics, time evolution of secondary structure, and residue-contact maps of a surface-absorbed beta-amyloid dimer protein on different membrane surfaces. We further demonstrate the sorting of annular and non-annular regions of the protein/lipid bilayer simulation systems, and the correlation of lipid-number mismatch and surface area per lipid mismatch of asymmetric lipid membranes.

  20. Enhanced resistive switching and multilevel behavior in bilayered HfAlO/HfAlO{sub x} structures for non-volatile memory applications

    SciTech Connect

    Faita, F. L.; Silva, J. P. B.; Pereira, M.; Gomes, M. J. M.

    2015-12-14

    In this work, hafnium aluminum oxide (HfAlO) thin films were deposited by ion beam sputtering deposition technique on Si substrate. The presence of oxygen vacancies in the HfAlO{sub x} layer deposited in oxygen deficient environment is evidenced from the photoluminescence spectra. Furthermore, HfAlO(oxygen rich)/HfAlO{sub x}(oxygen poor) bilayer structures exhibit multilevel resistive switching (RS), and the switching ratio becomes more prominent with increasing the HfAlO layer thickness. The bilayer structure with HfAlO/HfAlO{sub x} thickness of 30/40 nm displays the enhanced multilevel resistive switching characteristics, where the high resistance state/intermediate resistance state (IRS) and IRS/low resistance state resistance ratios are ≈10{sup 2} and ≈5 × 10{sup 5}, respectively. The switching mechanisms in the bilayer structures were investigated by the temperature dependence of the three resistance states. This study revealed that the multilevel RS is attributed to the coupling of ionic conduction and the metallic conduction, being the first associated to the formation and rupture of conductive filaments related to oxygen vacancies and the second with the formation of a metallic filament. Moreover, the bilayer structures exhibit good endurance and stability in time.

  1. Preparation and characterization of YBa[sub 2]Cu[sub 3]O[sub 7[minus]delta]/polypyrrole bilayer structures

    SciTech Connect

    Haupt, S.G.; Riley, D.R.; Grassi, J.; Lo, Rung-Kuang; Zhao, Jianai; Zhou, J.P.; McDevitt, J.T. )

    1994-11-02

    Electrochemical techniques are exploited to fabricate conductive polymer/high-T[sub c] superconductor bilayer structures. Scanning electron microscopy, atomic force microscopy, and electrochemical techniques are utilized to characterize the electrodeposition of polyrrole layers grown onto YBa[sub 2]Cu[sub 3]O[sub 7[minus][delta

  2. Structures of High Density Molecular Fluids

    SciTech Connect

    Baer, B; Cynn, H; Iota, V; Yoo, C-S

    2002-02-01

    The goal of this proposal is to develop an in-situ probe for high density molecular fluids. We will, therefore, use Coherent Anti-Stokes Raman Spectroscopy (CARS) applied to laser heated samples in a diamond-anvil cell (DAC) to investigate molecular fluids at simultaneous conditions of high temperatures (T > 2000K) and high pressures (P > 10 GPa.) Temperatures sufficient to populate vibrational levels above the ground state will allow the vibrational potential to be mapped by CARS. A system capable of heating and probing these samples will be constructed. Furthermore, the techniques that enable a sample to be sufficiently heated and probed while held at static high pressure in a diamond-anvil-cell will be developed. This will be an in-situ investigation of simple molecules under conditions relevant to the study of detonation chemistry and the Jovain planet interiors using state of the art non-linear spectroscopy, diamond-anvil-cells, and laser heating technology.

  3. Suppression of photo-bias induced instability for amorphous indium tungsten oxide thin film transistors with bi-layer structure

    NASA Astrophysics Data System (ADS)

    Liu, Po-Tsun; Chang, Chih-Hsiang; Chang, Chih-Jui

    2016-06-01

    This study investigates the instability induced by bias temperature illumination stress (NBTIS) for an amorphous indium-tungsten-oxide thin film transistor (a-IWO TFT) with SiO2 backchannel passivation layer (BPL). It is found that this electrical degradation phenomenon can be attributed to the generation of defect states during the BPL process, which deteriorates the photo-bias stability of a-IWO TFTs. A method proposed by adding an oxygen-rich a-IWO thin film upon the a-IWO active channel layer could effectively suppress the plasma damage to channel layer during BPL deposition process. The bi-layer a-IWO TFT structure with an oxygen-rich back channel exhibits superior electrical reliability of device under NBTIS.

  4. Characteristic length scale of the magnon accumulation in Fe3O4/Pt bilayer structures by incoherent thermal excitation

    NASA Astrophysics Data System (ADS)

    Anadón, A.; Ramos, R.; Lucas, I.; Algarabel, P. A.; Morellón, L.; Ibarra, M. R.; Aguirre, M. H.

    2016-07-01

    The dependence of Spin Seebeck effect (SSE) with the thickness of the magnetic materials is studied by means of incoherent thermal excitation. The SSE voltage signal in Fe3O4/Pt bilayer structure increases with the magnetic material thickness up to 100 nm, approximately, showing signs of saturation for larger thickness. This dependence is well described in terms of a spin current pumped in the platinum film by the magnon accumulation in the magnetic material. The spin current is generated by a gradient of temperature in the system and detected by the Pt top contact by means of inverse spin Hall effect. Calculations in the frame of the linear response theory adjust with a high degree of accuracy the experimental data, giving a thermal length scale of the magnon accumulation (Λ) of 17 ± 3 nm at 300 K and Λ = 40 ± 10 nm at 70 K.

  5. Supersonic Parachute Aerodynamic Testing and Fluid Structure Interaction Simulation

    NASA Astrophysics Data System (ADS)

    Lingard, J. S.; Underwood, J. C.; Darley, M. G.; Marraffa, L.; Ferracina, L.

    2014-06-01

    The ESA Supersonic Parachute program expands the knowledge of parachute inflation and flying characteristics in supersonic flows using wind tunnel testing and fluid structure interaction to develop new inflation algorithms and aerodynamic databases.

  6. Interaction of n-octyl β,D-glucopyranoside with giant magnetic-fluid-loaded phosphatidylcholine vesicles: direct visualization of membrane curvature fluctuations as a function of surfactant partitioning between water and lipid bilayer.

    PubMed

    Ménager, Christine; Guemghar, Dihya; Cabuil, Valérie; Lesieur, Sylviane

    2010-10-01

    The present study deals with the morphological modifications of giant dioleoyl phosphatidylcholine vesicles (DOPC GUVs) induced by the nonionic surfactant n-octyl β,D-glucopyranoside at sublytic levels, i.e., in the first steps of the vesicle-to-micelle transition process, when surfactant inserts into the vesicle bilayer without disruption. Experimental conditions were perfected to exactly control the surfactant bilayer composition of the vesicles, in line with former work focused on the mechanical properties of the membrane of magnetic-fluid-loaded DOPC GUVs submitted to a magnetic field. The purpose here was to systematically examine, in the absence of any external mechanical constraint, the dynamics of giant vesicle shape and membrane deformations as a function of surfactant partitioning between the aqueous phase and the lipid membrane, beforehand established by turbidity measurements from small unilamellar vesicles. PMID:20825201

  7. Reduced Order Models for Fluid-Structure Interaction Phenomena

    NASA Astrophysics Data System (ADS)

    Gallardo, Daniele

    With the advent of active flow control devices for regulating the structural responses of systems involving fluid-structure interaction phenomena, there is a growing need of efficient models that can be used to control the system. The first step is then to be able to model the system in an efficient way based on reduced-order models. This is needed so that accurate predictions of the system evolution could be performed in a fast manner, ideally in real time. However, existing reduced-order models of fluid-structure interaction phenomena that provide closed-form solutions are applicable to only a limited set of scenarios while for real applications high-fidelity experiments or numerical simulations are required, which are unsuitable as efficient or reduced-order models. This thesis proposes a novel reduced-order and efficient model for fluid-structure interaction phenomena. The model structure employed is such that it is generic for different fluid-structure interaction problems. Based on this structure, the model is first built for a given fluid-structure interaction problem based on a database generated through high-fidelity numerical simulations while it can subsequently be used to predict the structural response over a wide set of flow conditions for the fluid-structure interaction problem at hand. The model is tested on two cases: a cylinder suspended in a low Reynolds number flow that includes the lock-in region and an airfoil subjected to plunge oscillations in a high Reynolds number regime. For each case, in addition to training profile we also present validation profiles that are used to determine the performance of the reduced-order model. The reduced-order model devised in this study proved to be an effective and efficient modeling method for fluid-structure interaction phenomena and it shown its applicability in very different kind of scenarios.

  8. Twisting bilayer graphene superlattices.

    PubMed

    Lu, Chun-Chieh; Lin, Yung-Chang; Liu, Zheng; Yeh, Chao-Hui; Suenaga, Kazu; Chiu, Po-Wen

    2013-03-26

    Bilayer graphene is an intriguing material in that its electronic structure can be altered by changing the stacking order or the relative twist angle, yielding a new class of low-dimensional carbon system. Twisted bilayer graphene can be obtained by (i) thermal decomposition of SiC; (ii) chemical vapor deposition (CVD) on metal catalysts; (iii) folding graphene; or (iv) stacking graphene layers one atop the other, the latter of which suffers from interlayer contamination. Existing synthesis protocols, however, usually result in graphene with polycrystalline structures. The present study investigates bilayer graphene grown by ambient pressure CVD on polycrystalline Cu. Controlling the nucleation in early stage growth allows the constituent layers to form single hexagonal crystals. New Raman active modes are shown to result from the twist, with the angle determined by transmission electron microscopy. The successful growth of single-crystal bilayer graphene provides an attractive jumping-off point for systematic studies of interlayer coupling in misoriented few-layer graphene systems with well-defined geometry.

  9. Fluid-Structure Interactions with Flexible and Rigid Bodies

    NASA Astrophysics Data System (ADS)

    Daily, David Jesse

    Fluid structure interactions occur to some extent in nearly every type of fluid flow. Understanding how structures interact with fluids and visa-versa is of vital importance in many engineering applications. The purpose of this research is to explore how fluids interact with flexible and rigid structures. A computational model was used to model the fluid structure interactions of vibrating synthetic vocal folds. The model simulated the coupling of the fluid and solid domains using a fluid-structure interface boundary condition. The fluid domain used a slightly compressible flow solver to allow for the possibility of acoustic coupling with the subglottal geometry and vibration of the vocal fold model. As the subglottis lengthened, the frequency of vibration decreased until a new acoustic mode could form in the subglottis. Synthetic aperture particle image velocimetry (SAPIV) is a three-dimensional particle tracking technique. SAPIV was used to image the jet of air that emerges from vibrating human vocal folds (glottal jet) during phonation. The three-dimensional reconstruction of the glottal jet found faint evidence of flow characteristics seen in previous research, such as axis-switching, but did not have sufficient resolution to detect small features. SAPIV was further applied to reconstruct the smaller flow characteristics of the glottal jet of vibrating synthetic vocal folds. Two- and four-layer synthetic vocal fold models were used to determine how the glottal jet from the synthetic models compared to the glottal jet from excised human vocal folds. The two- and four-layer models clearly exhibited axis-switching which has been seen in other 3D analyses of the glottal jet. Cavitation in a quiescent fluid can break a rigid structure such as a glass bottle. A new cavitation number was derived to include acceleration and pressure head at cavitation onset. A cavitation stick was used to validate the cavitation number by filling it with different depths and hitting

  10. AN INCOMPRESSIBLE ALE METHOD FOR FLUID-STRUCTURE INTERACTION

    SciTech Connect

    Dunn, T A

    2004-12-01

    Multi-disciplinary analysis is becoming more and more important to tackle todays complex engineering problems. Therefore, computational tools must be able to handle the complex multi-physics requirements of these problems. A computer code may need to handle the physics associated with fluid dynamics, structural mechanics, heat transfer, chemistry, electro-magnetics, or a variety of other disciplines--all coupled in a highly non-linear system. The objective of this project was to couple an incompressible fluid dynamics package to a solid mechanics code. The code uses finite-element methods and is useful for three-dimensional transient problems with fluid-structure interaction. The code is designed for efficient performance on large multi-processor machines. An ALE finite element method was developed to investigate fluid-structure interaction. The write-up contains information about the method, the problem formulation, and some results from example test problems.

  11. Solvent effect on phosphatidylcholine headgroup dynamics as revealed by the energetics and dynamics of two gel-state bilayer headgroup structures at subzero temperatures.

    PubMed Central

    Hsieh, C. H.; Wu, W. G.

    1995-01-01

    The packing and dynamics of lipid bilayers at the phosphocholine headgroup region within the temperature range of -40 to -110 degrees C have been investigated by solid-state nuclear magnetic resonance (NMR) measurements of selectively deuterium-labeled H2O/dimyristoylphosphatidylcholine (DMPC) bilayers. Two coexisting signals with 2H NMR quadrupolar, splittings of 36.1 and 9.3 (or smaller) kHz were detected from the -CD3 of choline methyl group. These two signals have been assigned to two coexisting gel-state headgroup structures with fast rotational motion of -CD3 and -N(CD3)3 group, respectively, with a threefold symmetry. The largest quadrupolar splitting of the NMR signal detected from the -CD2 of C alpha and C beta methylene segment was found to be 115.2 kHz, which is 10% lower than its static value of 128.2 kHz. Thus, there are extensive motions of the entire choline group of gel-state phosphatidylcholine bilayers even at a subzero temperature of -110 degrees C. These results strongly support the previous suggestion (E. J. Dufourc, C. Mayer, J. Stohrer, G. Althoff, and G. Kothe, 1992, Biophys. J. 61:42-57) that 31P chemical shift tensor elements of DMPC determined under similar conditions are not the rigid static values. The free energy difference between the two gel-state headgroup structures was determined to be 26.3 +/- 0.9 kJ/mol for fully hydrated bilayers. Furthermore, two structures with similar free energy difference were also detected for "frozen" phosphorylcholine chloride solution in a control experiment, leading to the conclusion that the two structures may be governed solely by the energetics of fully hydrated phosphocholine headgroup. The intermolecular interactions among lipids, however, stabilize the static headgroup structure as evidenced by the apparently lower free energy difference between the two structures for partially hydrated lipid bilayers. Evidence is also presented to suggest that one of the headgroup structures with

  12. Lipid bilayer vesicle generation using microfluidic jetting.

    PubMed

    Coyne, Christopher W; Patel, Karan; Heureaux, Johanna; Stachowiak, Jeanne; Fletcher, Daniel A; Liu, Allen P

    2014-01-01

    Bottom-up synthetic biology presents a novel approach for investigating and reconstituting biochemical systems and, potentially, minimal organisms. This emerging field engages engineers, chemists, biologists, and physicists to design and assemble basic biological components into complex, functioning systems from the bottom up. Such bottom-up systems could lead to the development of artificial cells for fundamental biological inquiries and innovative therapies(1,2). Giant unilamellar vesicles (GUVs) can serve as a model platform for synthetic biology due to their cell-like membrane structure and size. Microfluidic jetting, or microjetting, is a technique that allows for the generation of GUVs with controlled size, membrane composition, transmembrane protein incorporation, and encapsulation(3). The basic principle of this method is the use of multiple, high-frequency fluid pulses generated by a piezo-actuated inkjet device to deform a suspended lipid bilayer into a GUV. The process is akin to blowing soap bubbles from a soap film. By varying the composition of the jetted solution, the composition of the encompassing solution, and/or the components included in the bilayer, researchers can apply this technique to create customized vesicles. This paper describes the procedure to generate simple vesicles from a droplet interface bilayer by microjetting. PMID:24637415

  13. Lipid Bilayer Vesicle Generation Using Microfluidic Jetting

    PubMed Central

    Coyne, Christopher W.; Patel, Karan; Heureaux, Johanna; Stachowiak, Jeanne; Fletcher, Daniel A.; Liu, Allen P.

    2014-01-01

    Bottom-up synthetic biology presents a novel approach for investigating and reconstituting biochemical systems and, potentially, minimal organisms. This emerging field engages engineers, chemists, biologists, and physicists to design and assemble basic biological components into complex, functioning systems from the bottom up. Such bottom-up systems could lead to the development of artificial cells for fundamental biological inquiries and innovative therapies1,2. Giant unilamellar vesicles (GUVs) can serve as a model platform for synthetic biology due to their cell-like membrane structure and size. Microfluidic jetting, or microjetting, is a technique that allows for the generation of GUVs with controlled size, membrane composition, transmembrane protein incorporation, and encapsulation3. The basic principle of this method is the use of multiple, high-frequency fluid pulses generated by a piezo-actuated inkjet device to deform a suspended lipid bilayer into a GUV. The process is akin to blowing soap bubbles from a soap film. By varying the composition of the jetted solution, the composition of the encompassing solution, and/or the components included in the bilayer, researchers can apply this technique to create customized vesicles. This paper describes the procedure to generate simple vesicles from a droplet interface bilayer by microjetting. PMID:24637415

  14. Lipid bilayer vesicle generation using microfluidic jetting.

    PubMed

    Coyne, Christopher W; Patel, Karan; Heureaux, Johanna; Stachowiak, Jeanne; Fletcher, Daniel A; Liu, Allen P

    2014-02-21

    Bottom-up synthetic biology presents a novel approach for investigating and reconstituting biochemical systems and, potentially, minimal organisms. This emerging field engages engineers, chemists, biologists, and physicists to design and assemble basic biological components into complex, functioning systems from the bottom up. Such bottom-up systems could lead to the development of artificial cells for fundamental biological inquiries and innovative therapies(1,2). Giant unilamellar vesicles (GUVs) can serve as a model platform for synthetic biology due to their cell-like membrane structure and size. Microfluidic jetting, or microjetting, is a technique that allows for the generation of GUVs with controlled size, membrane composition, transmembrane protein incorporation, and encapsulation(3). The basic principle of this method is the use of multiple, high-frequency fluid pulses generated by a piezo-actuated inkjet device to deform a suspended lipid bilayer into a GUV. The process is akin to blowing soap bubbles from a soap film. By varying the composition of the jetted solution, the composition of the encompassing solution, and/or the components included in the bilayer, researchers can apply this technique to create customized vesicles. This paper describes the procedure to generate simple vesicles from a droplet interface bilayer by microjetting.

  15. Anomalous structure and dynamics of the Gaussian-core fluid.

    PubMed

    Krekelberg, William P; Kumar, Tanuj; Mittal, Jeetain; Errington, Jeffrey R; Truskett, Thomas M

    2009-03-01

    It is known that there are thermodynamic states for which the Gaussian-core fluid displays anomalous properties such as expansion upon isobaric cooling (density anomaly) and increased single-particle mobility upon isothermal compression (self-diffusivity anomaly). Here, we investigate how temperature and density affect its short-range translational structural order, as characterized by the two-body excess entropy. We find that there is a wide range of conditions for which the short-range translational order of the Gaussian-core fluid decreases upon isothermal compression (structural order anomaly). As we show, the origin of the structural anomaly is qualitatively similar to that of other anomalous fluids (e.g., water or colloids with short-range attractions) and is connected to how compression affects static correlations at different length scales. Interestingly, we find that the self-diffusivity of the Gaussian-core fluid obeys a scaling relationship with the two-body excess entropy that is very similar to the one observed for a variety of simple liquids. One consequence of this relationship is that the state points for which structural, self-diffusivity, and density anomalies of the Gaussian-core fluid occur appear as cascading regions on the temperature-density plane; a phenomenon observed earlier for models of waterlike fluids. There are, however, key differences between the anomalies of Gaussian-core and waterlike fluids, and we discuss how those can be qualitatively understood by considering the respective interparticle potentials of these models. Finally, we note that the self-diffusivity of the Gaussian-core fluid obeys different scaling laws depending on whether the two-body or total excess entropy is considered. This finding, which deserves more comprehensive future study, appears to underscore the significance of higher-body correlations for the behavior of fluids with bounded interactions. PMID:19391927

  16. From lanosterol to cholesterol: structural evolution and differential effects on lipid bilayers.

    PubMed Central

    Miao, Ling; Nielsen, Morten; Thewalt, Jenifer; Ipsen, John H; Bloom, Myer; Zuckermann, Martin J; Mouritsen, Ole G

    2002-01-01

    Cholesterol is an important molecular component of the plasma membranes of mammalian cells. Its precursor in the sterol biosynthetic pathway, lanosterol, has been argued by Konrad Bloch (Bloch, K. 1965. Science. 150:19-28; 1983. CRC Crit. Rev. Biochem. 14:47-92; 1994. Blonds in Venetian Paintings, the Nine-Banded Armadillo, and Other Essays in Biochemistry. Yale University Press, New Haven, CT.) to also be a precursor in the molecular evolution of cholesterol. We present a comparative study of the effects of cholesterol and lanosterol on molecular conformational order and phase equilibria of lipid-bilayer membranes. By using deuterium NMR spectroscopy on multilamellar lipid-sterol systems in combination with Monte Carlo simulations of microscopic models of lipid-sterol interactions, we demonstrate that the evolution in the molecular chemistry from lanosterol to cholesterol is manifested in the model lipid-sterol membranes by an increase in the ability of the sterols to promote and stabilize a particular membrane phase, the liquid-ordered phase, and to induce collective order in the acyl-chain conformations of lipid molecules. We also discuss the biological relevance of our results, in particular in the context of membrane domains and rafts. PMID:11867458

  17. Ultrasensitive organic phototransistors with multispectral response based on thin-film/single-crystal bilayer structures

    NASA Astrophysics Data System (ADS)

    Pinto, R. M.; Gouveia, W.; Neves, A. I. S.; Alves, H.

    2015-11-01

    We report on highly efficient organic phototransistors (OPTs) based on thin-film/single-crystal planar bilayer junctions between 5,6,11,12-tetraphenyltetracene (rubrene) and [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM). The OPTs show good field-effect characteristics in the dark, with high hole-mobility (4-5 cm2 V-1 s-1), low-contact resistance (20 kΩ cm), and low-operating voltage (≤5 V). Excellent sensing capabilities allow for light detection in the 400-750 nm range, with photocurrent/dark current ratio as high as 4 × 104, responsivity on the order of 20 AW-1 at 27 μW cm-2, and an external quantum efficiency of 52 000%. Photocurrent generation is attributed to enhanced electron and hole transfer at the interface between rubrene and PC61BM, and fast response times are observed as a consequence of the high-mobility of the interfaces. The optoelectronic properties exhibited in these OPTs outperform those typically provided by a-Si based devices, enabling future applications where multifunctionality in a single-device is sought.

  18. Ultrasensitive organic phototransistors with multispectral response based on thin-film/single-crystal bilayer structures

    SciTech Connect

    Pinto, R. M.; Gouveia, W.; Neves, A. I. S.; Alves, H.

    2015-11-30

    We report on highly efficient organic phototransistors (OPTs) based on thin-film/single-crystal planar bilayer junctions between 5,6,11,12-tetraphenyltetracene (rubrene) and [6,6]-phenyl-C{sub 61}-butyric acid methyl ester (PC{sub 61}BM). The OPTs show good field-effect characteristics in the dark, with high hole-mobility (4–5 cm{sup 2} V{sup −1} s{sup −1}), low-contact resistance (20 kΩ cm), and low-operating voltage (≤5 V). Excellent sensing capabilities allow for light detection in the 400–750 nm range, with photocurrent/dark current ratio as high as 4 × 10{sup 4}, responsivity on the order of 20 AW{sup −1} at 27 μW cm{sup −2}, and an external quantum efficiency of 52 000%. Photocurrent generation is attributed to enhanced electron and hole transfer at the interface between rubrene and PC{sub 61}BM, and fast response times are observed as a consequence of the high-mobility of the interfaces. The optoelectronic properties exhibited in these OPTs outperform those typically provided by a-Si based devices, enabling future applications where multifunctionality in a single-device is sought.

  19. Intercalation of bovine serum albumin coated gold clusters between phospholipid bilayers: temperature-dependent behavior of lipid-AuQC@BSA assemblies with red emission and superlattice structure.

    PubMed

    Söptei, Balázs; Mihály, Judith; Visy, Júlia; Wacha, András; Bóta, Attila

    2014-04-10

    A method has been developed to encapsulate bovine serum albumin (BSA)-coated gold quantum clusters (AuQC@BSA) in a multilamellar system of dipalmitoylphosphatidylcholine (DPPC). Results have shown that intercalation of AuQC@BSA particles into lipid bilayers occurs in the presence of CaCl2. Intense red photoluminescence emission was observed after encapsulation of the clusters. A well-defined structure was found with periodic distances drastically larger than that in the pure DPPC/water system. Although Ca(2+) ions can change the dipole characteristics of the lipid bilayer surface, leading to unbinding between the bilayers of multilamellar DPPC/water system, the repulsion is shielded in the presence of AuQC@BSA particles. A coherent superlattice structure evolves due to mixed Ca(2+)-DPPC and Ca(2+)-AuQC@BSA interactions. Studies at different temperatures have suggested a correlation between the luminescence properties of the clusters and phase transition of the lipid layers. The temperature-dependent behavior assumes the connection between the coating and the lipid bilayer surface. Temperature-dependent features of lipid intercalated Au clusters provide new opportunities in their application.

  20. Electronic structures and elastic properties of monolayer and bilayer transition metal dichalcogenides MX2 (M = Mo, W; X = O, S, Se, Te): A comparative first-principles study

    NASA Astrophysics Data System (ADS)

    Zeng, Fan; Zhang, Wei-Bing; Tang, Bi-Yu

    2015-09-01

    First-principle calculations with different exchange-correlation functionals, including LDA, PBE, and vdW-DF functional in the form of optB88-vdW, have been performed to investigate the electronic and elastic properties of two-dimensional transition metal dichalcogenides (TMDCs) with the formula of MX2(M = Mo, W; X = O, S, Se, Te) in both monolayer and bilayer structures. The calculated band structures show a direct band gap for monolayer TMDCs at the K point except for MoO2 and WO2. When the monolayers are stacked into a bilayer, the reduced indirect band gaps are found except for bilayer WTe2, in which the direct gap is still present at the K point. The calculated in-plane Young moduli are comparable to that of graphene, which promises possible application of TMDCs in future flexible and stretchable electronic devices. We also evaluated the performance of different functionals including LDA, PBE, and optB88-vdW in describing elastic moduli of TMDCs and found that LDA seems to be the most qualified method. Moreover, our calculations suggest that the Young moduli for bilayers are insensitive to stacking orders and the mechanical coupling between monolayers seems to be negligible. Project supported by the Construct Program of the Key Discipline in Hunan Province, China and Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province, China.

  1. Structural considerations in designing magnetorheological fluid mounts

    NASA Astrophysics Data System (ADS)

    Nguyen, The; Ciocanel, Constantin; Elahinia, Mohammad

    2010-04-01

    Modern vehicles have been increasingly equipped with advanced technologies such as hybrid and cylinder-on-demand to enhance fuel efficiency. These technologies also come with vibration problems due to the switching between the power sources or the variation of the number of active cylinders. To mitigate these vibrations, a large variety of vibration isolators have been proposed, ranging from passive to active isolators. Semi-active mounts are often preferred to other solutions because of their overall low power requirement in operation as well as relatively simpler configurations. Among the semi-active categories, the magnetorheological fluid (MRF) mounts have been proven to be a viable solution for modern vehicle vibration isolation. These mounts can change their stiffness and damping characteristic without involving moving parts, by controlling the yield stress of the MRF housed inside the mount by means of magnetic field. This study looked into several innovative designs for MRF mounts. The characteristics of the mount depend significantly on the compliances of the rubber, the number and arrangement of the fluid chambers and the number of flow passages connecting the chambers. These parameters provide the designers with various options to design the mounts to function in various conditions and over a wide range of frequencies. Different values of the aforementioned parameters were selected to form specific designs with certain characteristics. Mathematical models have been developed for each design and MATLAB/Simulink was used to simulate the response of each mount to certain excitations. As the hydraulic and magnetorheological (MR) effects are dominant in the mount, the elastomer behavior is considered linear. A discussion of the advantages and disadvantages of each design, based on the simulated response, is presented. The outcomes of this study can be a useful reference for MRF mount designers and leads to the development of a general MRF mount design

  2. Fluid-structure interaction in compliant insect wings.

    PubMed

    Eberle, A L; Reinhall, P G; Daniel, T L

    2014-06-01

    Insect wings deform significantly during flight. As a result, wings act as aeroelastic structures wherein both the driving motion of the structure and the aerodynamic loading of the surrounding fluid potentially interact to modify wing shape. We explore two key issues associated with the design of compliant wings: over a range of driving frequencies and phases of pitch-heave actuation, how does wing stiffness influence (1) the lift and thrust generated and (2) the relative importance of fluid loading on the shape of the wing? In order to examine a wide range of parameters relevant to insect flight, we develop a computationally efficient, two-dimensional model that couples point vortex methods for fluid force computations with structural finite element methods to model the fluid-structure interaction of a wing in air. We vary the actuation frequency, phase of actuation, and flexural stiffness over a range that encompasses values measured for a number of insect taxa (10-90 Hz; 0-π rad; 10(-7)-10(-5) N m(2)). We show that the coefficients of lift and thrust are maximized at the first and second structural resonant frequencies of the system. We also show that even in regions of structural resonance, fluid loading never contributes more than 20% to the development of flight forces. PMID:24855064

  3. Dithionite penetration through phospholipid bilayers as a measure of defects in lipid molecular packing.

    PubMed

    Langner, M; Hui, S W

    1993-04-01

    The permeability of dithionite through bilayers was utilized to probe the structural defects in the bilayers of these lipids through their respective gel-fluid and bilayer-hexagonal phase transitions. The water soluble dithionite ion penetrates intact bilayers very slowly. The rate of irreversible quenching of the fluorescence of NBD-PE labelled liposomes may thus be used as an indicator of the permeability of this ion through bilayers. The quenching rate has a fast and a slow component, the fast one corresponds to the quenching of fluorophores immediately accessible to the quencher, i.e. those on the outer surface of liposomes. The slower component represents the average rate of penetration of the quencher through the bilayer, to quench those fluorophores at the inner shells of the multilamellar vesicles. Both rates may be approximated by a single exponential function. The slow exponent is simply related to the permeability. The permeability of DMPC as a function of temperature shows a peak at the gel-fluid phase transition at 24 degrees C, but returns to about the pre-transition value at temperatures above the phase transition. The permeability of egg PE shows a hump at 45 degrees C before the hexagonal phase transition at 65 degrees C is reached and becomes infinite at the hexagonal phase transition as all fluorophores are immediately accessible to the quencher. We believe that the permeability measured by this method relates more to the molecular packing defects which maximizes at the gel-fluid phase transition temperatures just below the bilayer-hexagonal phase transition, rather than the general packing order which simply changes with structural phases.

  4. SPAR improved structure/fluid dynamic analysis capability

    NASA Technical Reports Server (NTRS)

    Oden, J. T.; Pearson, M. L.

    1983-01-01

    The capability of analyzing a coupled dynamic system of flowing fluid and elastic structure was added to the SPAR computer code. A method, developed and adopted for use in SPAR utilizes the existing assumed stress hybrid plan element in SPAR. An operational mode was incorporated in SPAR which provides the capability for analyzing the flaw of a two dimensional, incompressible, viscous fluid within rigid boundaries. Equations were developed to provide for the eventual analysis of the interaction of such fluids with an elastic solid.

  5. Code System for Fluid-Structure Interaction Analysis.

    2001-05-30

    Version 00 PELE-IC is a two-dimensional semi-implicit Eulerian hydrodynamics program for the solution of incompressible flow coupled to flexible structures. The code was developed to calculate fluid-structure interactions and bubble dynamics of a pressure-suppression system following a loss-of-coolant accident (LOCA). The fluid, structure, and coupling algorithms have been verified by calculation of benchmark problems and air and steam blowdown experiments. The code is written for both plane and cylindrical coordinates. The coupling algorithm is generalmore » enough to handle a wide variety of structural shapes. The concepts of void fractions and interface orientation are used to track the movement of free surfaces, allowing great versatility in following fluid-gas interfaces both for bubble definition and water surface motion without the use of marker particles.« less

  6. PELE-IC. Fluid-Structure Interaction Analysis

    SciTech Connect

    McMaster, W.H.; Gong, E.Y.

    1992-01-13

    PELE-IC is a two-dimensional semi-implicit Eulerian hydrodynamics program for the solution of incompressible flow coupled to flexible structures. The code was developed to calculate fluid-structure interactions and bubble dynamics of a pressure-suppression system following a loss-of-coolant accident (LOCA). The fluid, structure, and coupling algorithms have been verified by calculation of benchmark problems and air and steam blowdown experiments. The code is written for both plane and cylindrical coordinates. The coupling algorithm is general enough to handle a wide variety of structural shapes. The concepts of void fractions and interface orientation are used to track the movement of free surfaces, allowing great versatility in following fluid-gas interfaces both for bubble definition and water surface motion without the use of marker particles.

  7. Shear modulus of structured electrorheological fluid mixtures.

    PubMed

    Shitara, Kyohei; Sakaue, Takahiro

    2016-05-01

    Some immiscible blends under a strong electric field often exhibit periodic structures, bridging the gap between two electrodes. Upon shear, the structures tilt, and exhibit an elastic response which is mostly governed by the electric energy. Assuming a two-dimensional stripe structure, we calculate the Maxwell stress, and derive an expression for the shear modulus, demonstrating how it depends on the external electric field, the composition, and the dielectric properties of the blend. We also suggest the notion of effective interfacial tension, which renormalizes the effect of the electric field. This leads to a simple derivation of the scaling law for the selection of the wavelength of the structure formed under an electric field. PMID:27300947

  8. Shear modulus of structured electrorheological fluid mixtures

    NASA Astrophysics Data System (ADS)

    Shitara, Kyohei; Sakaue, Takahiro

    2016-05-01

    Some immiscible blends under a strong electric field often exhibit periodic structures, bridging the gap between two electrodes. Upon shear, the structures tilt, and exhibit an elastic response which is mostly governed by the electric energy. Assuming a two-dimensional stripe structure, we calculate the Maxwell stress, and derive an expression for the shear modulus, demonstrating how it depends on the external electric field, the composition, and the dielectric properties of the blend. We also suggest the notion of effective interfacial tension, which renormalizes the effect of the electric field. This leads to a simple derivation of the scaling law for the selection of the wavelength of the structure formed under an electric field.

  9. Fluid structure interaction solver coupled with volume of fluid method for two-phase flow simulations

    NASA Astrophysics Data System (ADS)

    Cerroni, D.; Fancellu, L.; Manservisi, S.; Menghini, F.

    2016-06-01

    In this work we propose to study the behavior of a solid elastic object that interacts with a multiphase flow. Fluid structure interaction and multiphase problems are of great interest in engineering and science because of many potential applications. The study of this interaction by coupling a fluid structure interaction (FSI) solver with a multiphase problem could open a large range of possibilities in the investigation of realistic problems. We use a FSI solver based on a monolithic approach, while the two-phase interface advection and reconstruction is computed in the framework of a Volume of Fluid method which is one of the more popular algorithms for two-phase flow problems. The coupling between the FSI and VOF algorithm is efficiently handled with the use of MEDMEM libraries implemented in the computational platform Salome. The numerical results of a dam break problem over a deformable solid are reported in order to show the robustness and stability of this numerical approach.

  10. A structural study of the bovine vaginal fluid at estrus.

    PubMed

    Rutllant, J; López-Gatius, F; Camón, J; López-Béjar, M; López-Plana, C

    1999-01-01

    The present study describes the structural components of the bovine vaginal fluid at estrus by scanning electron microscopy (SEM) following critical point- and freeze-drying preparation procedures. Confocal scanning laser microscopy (CLSM) was also used to evaluate the structural integrity of samples, and a control sample was assessed by adding sperm to the vaginal fluid. Samples were collected from 10 cows at the time of artificial insemination, prepared for SEM by using critical point- and freeze-drying procedures, gold coated, and observed by SEM. Mesh size and filament thickness were measured with an image analyzer. Of the 10 samples processed, 4 were considered altered following critical point drying. Compaction and lack of filaments were observed in these samples. A small area of one sample showed a honey comb-like structure when freeze drying was used. Nonoriented filaments with different thicknesses and with a network-like structure were observed throughout the remainder of the samples. Filaments throughout all samples were also observed by CSLM. After critical point drying, the mesh area ranged from 0.8 to 101.4 microns 2; the minor axis from 0.7 to 10.8 microns; and filament thickness from 40 to 442 nm. Using freeze drying, the mesh area ranged from 0.9 to 493.8 microns 2; the minor axis from 0.7 to 27.5 microns; and filament thickness from 40 to 800 nm. When samples were freeze dried, mesh values were similar to the interstrand channels observed by CSLM. In sperm-vaginal fluid samples, following critical point- or freeze-drying procedures, spermatozoa were oriented randomly in the vaginal fluid and did not seem to alter filamentous structure. Our data suggest that the freeze-drying procedure better preserves the true structural dimensions of the vaginal fluid. Furthermore, the filamentous structure of the vaginal fluid does not appear to impede sperm transport. PMID:10390865

  11. Order-disorder structural transition in a confined fluid

    NASA Astrophysics Data System (ADS)

    de la Calleja-Mora, E. M.; Krott, Leandro B.; Barbosa, M. C.

    2016-05-01

    In this paper we analyze the amorphous/solid to disordered liquid structural phase transitions of an anomalous confined fluid in terms of their fractal dimensions. The model studied is composed by particles interaction through a two-length scales potential confined by two infinite plates. This fluid that in the bulk exhibits water-like anomalies under confinement forms layers of particles. We show that the fluid at the contact layer forms at high densities structures and transitions that can be mapped into fractal dimensions. The multi-fractal singularity spectrum is obtained in all these cases and it is used as the order parameter to quantify the structural transitions for each stage on the confined liquid. This mapping shows that the fractal dimension increases with the density and with the temperature.

  12. Fluid-structure interaction of reticulated porous wings

    NASA Astrophysics Data System (ADS)

    Strong, Elizabeth; Jawed, Mohammad; Reis, Pedro

    Insects of the orders Neuroptera and Hymenoptera locomote via flapping flight with reticulated wings that have porous structures that confers them with remarkable lightweight characteristics. Yet these porous wings still perform as contiguous plates to provide the necessary aerodynamic lift and drag required for flight. Even though the fluid flow past the bulk of these insects may be in high Reynolds conditions, viscosity can dominate over inertia in the flow through the porous sub-features. Further considering the flexibility of these reticulated wings yields a highly nonlinear fluid-structure interaction problem. We perform a series of dynamically-scaled precision model experiments to gain physical insight into this system. Our experiments are complemented with computer simulations that combine the Discrete Elastic Rods method and a model for the fluid loading that takes into account the `leakiness' through the porous structure. Our results are anticipated to find applications in micro-air vehicle aerodynamics.

  13. Interfacial patterns in magnetorheological fluids: Azimuthal field-induced structures

    NASA Astrophysics Data System (ADS)

    Dias, Eduardo O.; Lira, Sérgio A.; Miranda, José A.

    2015-08-01

    Despite their practical and academic relevance, studies of interfacial pattern formation in confined magnetorheological (MR) fluids have been largely overlooked in the literature. In this work, we present a contribution to this soft matter research topic and investigate the emergence of interfacial instabilities when an inviscid, initially circular bubble of a Newtonian fluid is surrounded by a MR fluid in a Hele-Shaw cell apparatus. An externally applied, in-plane azimuthal magnetic field produced by a current-carrying wire induces interfacial disturbances at the two-fluid interface, and pattern-forming structures arise. Linear stability analysis, weakly nonlinear theory, and a vortex sheet approach are used to access early linear and intermediate nonlinear time regimes, as well as to determine stationary interfacial shapes at fully nonlinear stages.

  14. Interfacial patterns in magnetorheological fluids: Azimuthal field-induced structures.

    PubMed

    Dias, Eduardo O; Lira, Sérgio A; Miranda, José A

    2015-08-01

    Despite their practical and academic relevance, studies of interfacial pattern formation in confined magnetorheological (MR) fluids have been largely overlooked in the literature. In this work, we present a contribution to this soft matter research topic and investigate the emergence of interfacial instabilities when an inviscid, initially circular bubble of a Newtonian fluid is surrounded by a MR fluid in a Hele-Shaw cell apparatus. An externally applied, in-plane azimuthal magnetic field produced by a current-carrying wire induces interfacial disturbances at the two-fluid interface, and pattern-forming structures arise. Linear stability analysis, weakly nonlinear theory, and a vortex sheet approach are used to access early linear and intermediate nonlinear time regimes, as well as to determine stationary interfacial shapes at fully nonlinear stages. PMID:26382499

  15. Fluid-Structure Interaction in Internal Physiological Flows

    NASA Astrophysics Data System (ADS)

    Heil, Matthias; Hazel, Andrew L.

    2011-01-01

    We provide a selective review of recent progress in the analysis of several physiological and physiologically inspired fluid-structure interaction problems, our aim being to explain the underlying physical mechanisms that cause the observed behaviors. Specifically, we discuss recent studies of self-excited oscillations in collapsible tubes, focusing primarily on studies of an idealized model system, the Starling resistor -- a device used in most laboratory experiments. We next review studies of a particular physiological, flow-induced oscillation: vocal-fold oscillations during phonation. Finally, we discuss the closure and reopening of pulmonary airways, physiological fluid-structure interaction problems that also involve the airways' liquid lining.

  16. Smart Fluids in Hydrology: Use of Non-Newtonian Fluids for Pore Structure Characterization

    NASA Astrophysics Data System (ADS)

    Abou Najm, M. R.; Atallah, N. M.; Selker, J. S.; Roques, C.; Stewart, R. D.; Rupp, D. E.; Saad, G.; El-Fadel, M.

    2015-12-01

    Classic porous media characterization relies on typical infiltration experiments with Newtonian fluids (i.e., water) to estimate hydraulic conductivity. However, such experiments are generally not able to discern important characteristics such as pore size distribution or pore structure. We show that introducing non-Newtonian fluids provides additional unique flow signatures that can be used for improved pore structure characterization while still representing the functional hydraulic behavior of real porous media. We present a new method for experimentally estimating the pore structure of porous media using a combination of Newtonian and non-Newtonian fluids. The proposed method transforms results of N infiltration experiments using water and N-1 non-Newtonian solutions into a system of equations that yields N representative radii (Ri) and their corresponding percent contribution to flow (wi). This method allows for estimating the soil retention curve using only saturated experiments. Experimental and numerical validation comparing the functional flow behavior of different soils to their modeled flow with N representative radii revealed the ability of the proposed method to represent the water retention and infiltration behavior of real soils. The experimental results showed the ability of such fluids to outsmart Newtonian fluids and infer pore size distribution and unsaturated behavior using simple saturated experiments. Specifically, we demonstrate using synthetic porous media that the use of different non-Newtonian fluids enables the definition of the radii and corresponding percent contribution to flow of multiple representative pores, thus improving the ability of pore-scale models to mimic the functional behavior of real porous media in terms of flow and porosity. The results advance the knowledge towards conceptualizing the complexity of porous media and can potentially impact applications in fields like irrigation efficiencies, vadose zone hydrology, soil

  17. Study of the influence of semiconductor material parameters on acoustic wave propagation modes in GaSb/AlSb bi-layered structures by Legendre polynomial method

    NASA Astrophysics Data System (ADS)

    Othmani, Cherif; Takali, Farid; Njeh, Anouar; Ben Ghozlen, Mohamed Hédi

    2016-09-01

    The propagation of Rayleigh-Lamb waves in bi-layered structures is studied. For this purpose, an extension of the Legendre polynomial (LP) method is proposed to formulate the acoustic wave equation in the bi-layered structures induced by thin film Gallium Antimonide (GaSb) and with Aluminum Antimonide (AlSb) substrate in moderate thickness. Acoustic modes propagating along a bi-layer plate are shown to be quite different than classical Lamb modes, contrary to most of the multilayered structures. The validation of the LP method is illustrated by a comparison between the associated numerical results and those obtained using the ordinary differential equation (ODE) method. The convergency of the LP method is discussed through a numerical example. Moreover, the influences of thin film GaSb parameters on the characteristics Rayleigh-Lamb waves propagation has been studied in detail. Finally, the advantages of the Legendre polynomial (LP) method to analyze the multilayered structures are described. All the developments performed in this work were implemented in Matlab software.

  18. Magnetism and electronic structure of (001)- and (111)-oriented LaTiO3 bilayers sandwiched in LaScO3 barriers

    NASA Astrophysics Data System (ADS)

    Weng, Yakui; Dong, Shuai

    2015-05-01

    In this study, the magnetism and electronic structure of LaTiO3 bilayers along both the (001) and (111) orientations are calculated using the density functional theory. The band insulator LaScO3 is chosen as the barrier layer and substrate to obtain the isolating LaTiO3 bilayer. For both the (001)- and (111)-oriented cases, LaTiO3 demonstrates the G-type antiferromagnetism as the ground state, similar to the bulk material. However, the electronic structure is significantly changed. The occupied bands of Ti are much narrower in the (111) case, giving a nearly flat band. As a result, the exchange coupling between nearest-neighbor Ti ions is reformed in these superlattices, which will affect the Néel temperature significantly.

  19. Magnetism and electronic structure of (001)- and (111)-oriented LaTiO{sub 3} bilayers sandwiched in LaScO{sub 3} barriers

    SciTech Connect

    Weng, Yakui; Dong, Shuai

    2015-05-07

    In this study, the magnetism and electronic structure of LaTiO{sub 3} bilayers along both the (001) and (111) orientations are calculated using the density functional theory. The band insulator LaScO{sub 3} is chosen as the barrier layer and substrate to obtain the isolating LaTiO{sub 3} bilayer. For both the (001)- and (111)-oriented cases, LaTiO{sub 3} demonstrates the G-type antiferromagnetism as the ground state, similar to the bulk material. However, the electronic structure is significantly changed. The occupied bands of Ti are much narrower in the (111) case, giving a nearly flat band. As a result, the exchange coupling between nearest-neighbor Ti ions is reformed in these superlattices, which will affect the Néel temperature significantly.

  20. Construction of a patterned hydrogel-fibrous mat bilayer structure to mimic choroid and Bruch's membrane layers of retina.

    PubMed

    Komez, Aylin; Baran, Erkan T; Erdem, Uzeyir; Hasirci, Nesrin; Hasirci, Vasif

    2016-09-01

    Deterioration of retina and death of the retinal cells due to age, diabetes, or occlusion can cause retinal degeneration which leads to loss of vision. In this study, it is aimed to design a bilayered matrix to mimic the choroid and the Bruch's membrane of the retinal tissue. As choroid, a microchanneled network resembling a fractal tree design was fabricated by photolithography over photo-cross-linkable methacrylated hyaluronic acid hydrogel. Gelatin or collagen was immobilized into the microchannels to enhance adherence of Human Umbilical Vein Endothelial Cells (HUVEC). At late culture periods (2 weeks), formation of tubular structures due to proliferation of the attached cells was observed. As Bruch's membrane, an electrospun fibroin nanofiber mat was produced to grow retinal pigment epithelium (RPE) cells on. Cellular interactions between RPE and HUVEC in the microchannels were investigated in a coculture model in a noncontact mode. It was deduced that by combining the RPE layer on the highly permeable Bruch's membrane with the choroid layer populated by HUVECs, a retinal substitute which might have a potential for use in the treatment of retinal diseases is possible. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2166-2177, 2016. PMID:27102366

  1. Improved fluid-structure coupling. [BWR

    SciTech Connect

    McMaster, W.H.; Gong, E.Y.; Landram, C.S.

    1981-01-01

    In the computer code PELE-IC, an incompressible Eulerian hydrodynamic algorithm was coupled to a Lagrangian finite element shell algorithm for the analysis of pressure suppression in boiling water reactors. This effort also required the development of a free surface algorithm capable of handling expanding gas bubbles. These algorithms have been improved to strengthen the coupling and to add the capability for following the more complex free surfaces resulting from steam condensation. These improvements have also permitted more economical 2D calculations and have made it feasible to develop a 3D version. A compressible option using the acoustic approximation has also been added, furthering the usefulness of the code. The coupling improvements were made in three areas which are identified as (1) preferential coupling, (2) merged cell coupling, and (3) free surface-structure coupling, and are described. These algorithms have been additionally implemented in a three dimensional version of the code called PELE3D. This version has a free surface capability to follow expanding and contracting bubbles and is coupled to a curved rigid surface.

  2. Integrated approach for active coupling of structures and fluids

    NASA Technical Reports Server (NTRS)

    Guruswamy, Guru P.

    1989-01-01

    Strong coupling of structure and fluids is common in many engineering environments, particularly when the flow is nonlinear and very sensitive to structural motions. Such coupling can give rise to physically important phenomena, such as a dip in the transonic flutter boundary of a wing. The coupled phenomenon can be analyzed in closed form for simple cases that are defined by linear structural and fluid equations of motion. However, complex cases defined by nonlinear equations pose a more difficult task for solution. It is important to understand these nonlinear coupled problems, since they may lead to physically important new phenomena. Flow discontinuities, such as a shock wave, and structural discontinuities, such as a hinge line of a control surface of a wing, can magnify the coupled effects and give rise to new phenomena. To study such a strongly coupled phenomenon, an integrated approach is presented in this paper. The aerodynamic and structural equations of motion are simultaneously integrated by a time-accurate numerical scheme. The theoretical simulation is done using the time-accurate unsteady transonic aerodynamic equations coupled with modal structural equations of motion. As an example, the coupled effect of shock waves and hinge-line discontinuities are studied for aeroelastically flexible wings with active control surfaces. The simulation in this study is modeled in the time domain and can be extended to simulate accurately other systems where fluids and structures are strongly coupled.

  3. Decay of dipolar vortex structures in a stratified fluid

    NASA Astrophysics Data System (ADS)

    Flór, J. B.; van Heijst, G. J. F.; Delfos, R.

    1995-02-01

    In this paper the viscous decay of dipolar vortex structures in a linearly stratified fluid is investigated experimentally, and a comparison of the experimental results with simple theoretical models is made. The dipoles are generated by a pulsed horizontal injection of fluid. In a related experimental study by Flór and van Heijst [J. Fluid Mech. 279, 101 (1994)], it was shown that, after the emergence of the pancake-shaped vortex structure, the flow is quasi-two-dimensional and decays due to the vertical diffusion of vorticity and entrainment of ambient irrotational fluid. This results in an expansion of the vortex structure. Two decay models with the horizontal flow based on the viscously decaying Lamb-Chaplygin dipole, are presented. In a first model, the thickness and radius of the dipole are assumed constant, and in a second model also the increasing thickness of the vortex structure is taken into account. The models are compared with experimental data obtained from flow visualizations and from digital analysis of particle-streak photographs. Although both models neglect entrainment and the decay is modeled by diffusion only, a reasonable agreement with the experiments is obtained.

  4. Children's Working Memory: Its Structure and Relationship to Fluid Intelligence

    ERIC Educational Resources Information Center

    Hornung, Caroline; Brunner, Martin; Reuter, Robert A. P.; Martin, Romain

    2011-01-01

    Working memory (WM) has been predominantly studied in adults. The insights provided by these studies have led to the development of competing theories on the structure of WM and conflicting conclusions on how strongly WM components are related to higher order thinking skills such as fluid intelligence. However, it remains unclear whether and to…

  5. Reconciling structural and thermodynamic predictions using all-atom and coarse-grain force fields: the case of charged oligo-arginine translocation into DMPC bilayers.

    PubMed

    Hu, Yuan; Sinha, Sudipta Kumar; Patel, Sandeep

    2014-10-16

    Using the translocation of short, charged cationic oligo-arginine peptides (mono-, di-, and triarginine) from bulk aqueous solution into model DMPC bilayers, we explore the question of the similarity of thermodynamic and structural predictions obtained from molecular dynamics simulations using all-atom and Martini coarse-grain force fields. Specifically, we estimate potentials of mean force associated with translocation using standard all-atom (CHARMM36 lipid) and polarizable and nonpolarizable Martini force fields, as well as a series of modified Martini-based parameter sets. We find that we are able to reproduce qualitative features of potentials of mean force of single amino acid side chain analogues into model bilayers. In particular, modifications of peptide-water and peptide-membrane interactions allow prediction of free energy minima at the bilayer-water interface as obtained with all-atom force fields. In the case of oligo-arginine peptides, the modified parameter sets predict interfacial free energy minima as well as free energy barriers in almost quantitative agreement with all-atom force field based simulations. Interfacial free energy minima predicted by a modified coarse-grained parameter set are -2.51, -4.28, and -5.42 for mono-, di-, and triarginine; corresponding values from all-atom simulations are -0.83, -3.33, and -3.29, respectively, all in units of kcal/mol. We found that a stronger interaction between oligo-arginine and the membrane components and a weaker interaction between oligo-arginine and water are crucial for producing such minima in PMFs using the polarizable CG model. The difference between bulk aqueous and bilayer center states predicted by the modified coarse-grain force field are 11.71, 14.14, and 16.53 kcal/mol, and those by the all-atom model are 6.94, 8.64, and 12.80 kcal/mol; those are of almost the same order of magnitude. Our simulations also demonstrate a remarkable similarity in the structural aspects of the ensemble of

  6. Fluid flow in the osteocyte mechanical environment: a fluid-structure interaction approach.

    PubMed

    Verbruggen, Stefaan W; Vaughan, Ted J; McNamara, Laoise M

    2014-01-01

    Osteocytes are believed to be the primary sensor of mechanical stimuli in bone, which orchestrate osteoblasts and osteoclasts to adapt bone structure and composition to meet physiological loading demands. Experimental studies to quantify the mechanical environment surrounding bone cells are challenging, and as such, computational and theoretical approaches have modelled either the solid or fluid environment of osteocytes to predict how these cells are stimulated in vivo. Osteocytes are an elastic cellular structure that deforms in response to the external fluid flow imposed by mechanical loading. This represents a most challenging multi-physics problem in which fluid and solid domains interact, and as such, no previous study has accounted for this complex behaviour. The objective of this study is to employ fluid-structure interaction (FSI) modelling to investigate the complex mechanical environment of osteocytes in vivo. Fluorescent staining of osteocytes was performed in order to visualise their native environment and develop geometrically accurate models of the osteocyte in vivo. By simulating loading levels representative of vigorous physiological activity ([Formula: see text] compression and 300 Pa pressure gradient), we predict average interstitial fluid velocities [Formula: see text] and average maximum shear stresses [Formula: see text] surrounding osteocytes in vivo. Interestingly, these values occur in the canaliculi around the osteocyte cell processes and are within the range of stimuli known to stimulate osteogenic responses by osteoblastic cells in vitro. Significantly our results suggest that the greatest mechanical stimulation of the osteocyte occurs in the cell processes, which, cell culture studies have indicated, is the most mechanosensitive area of the cell. These are the first computational FSI models to simulate the complex multi-physics mechanical environment of osteocyte in vivo and provide a deeper understanding of bone mechanobiology.

  7. Smart Fluids in Hydrology: Use of Non-Newtonian Fluids for Pore Structure Characterization

    NASA Astrophysics Data System (ADS)

    Abou Najm, Majdi; Atallah, Nabil; Selker, John; Roques, Clément; Stewart, Ryan; Rupp, David; Saad, George; El-Fadel, Mutasem

    2016-04-01

    Classic porous media characterization relies on typical infiltration experiments with Newtonian fluids (i.e., water) to estimate hydraulic conductivity. However, such experiments are generally not able to discern important characteristics such as pore size distribution or pore structure. We show that introducing non-Newtonian fluids provides additional unique flow signatures that can be used for improved pore structure characterization. We present a new method that transforms results of N infiltration experiments using water and N-1 non-Newtonian solutions into a system of equations that yields N representative radii (Ri) and their corresponding percent contribution to flow (wi). Those radii and weights are optimized in terms of flow and porosity to represent the functional hydraulic behavior of real porous media. The method also allows for estimating the soil retention curve using only saturated experiments. Experimental and numerical validation revealed the ability of the proposed method to represent the water retention and functional infiltration behavior of real soils. The experimental results showed the ability of such fluids to outsmart Newtonian fluids and infer pore size distribution and unsaturated behavior using simple saturated experiments. Specifically, we demonstrate using synthetic porous media composed of different combinations of sizes and numbers of capillary tubes that the use of different non-Newtonian fluids enables the prediction of the pore structure. The results advance the knowledge towards conceptualizing the complexity of porous media and can potentially impact applications in fields like irrigation efficiencies, vadose zone hydrology, soil-root-plant continuum, carbon sequestration into geologic formations, soil remediation, petroleum reservoir engineering, oil exploration and groundwater modeling.

  8. High fill factor and thermal stability of bilayer organic photovoltaic cells with an inverted structure

    NASA Astrophysics Data System (ADS)

    Wang, Zhongqiang; Hong, Ziruo; Zhuang, Taojun; Chen, Guo; Sasabe, Hisahiro; Yokoyama, Daisuke; Kido, Junji

    2015-02-01

    In this study, we fabricated planar heterojunction photovoltaic cells with inverted device structures based on tetraphenyldibenzoperiflanthene and fullerene-70 (C70). With proper designs of device architecture and selection of electrode buffers, a high fill factor and power conversion efficiency were obtained due to large shunt resistance (Rsh) and efficient carrier collection. Optical simulation reveals that field-dependent recombination is depressed in the inverted structure cells because of less light absorption in short wavelength range, resulting in high fill factor. More importantly, high thermal stability of inverted structure cells was demonstrated via utilizing stable electrode buffers.

  9. Effect of divalent cations on the structure of dipalmitoylphosphatidylcholine and phosphatidylcholine/phosphatidylglycerol bilayers: An 2H-NMR study

    SciTech Connect

    Zidovetzki, R.; Atiya, A.W.; De Boeck, H. )

    1989-01-01

    The interactions of CaCl2 or MgCl2 with multilamellar phospholipid bilayers were studied by 2H-NMR. Two model membrane systems were used: (1) dipalmitoylphosphatidylcholine (DPPC) bilayers and (2) bilayers composed of a mixture of phosphatidylcholine and phosphatidylglycerol at a molar ratio of 5:1. Addition of 0.25 M CaCl2 to DPPC bilayers resulted in significant uniform increase of the order parameters of the lipid side chains; the effect of 0.25 M MgCl2 was insignificant. Both phosphatidylcholine and phosphatidylglycerol components of the mixed bilayers were affected by the presence of 0.25 M CaCl2 and, to a much smaller degree, by MgCl2. The addition of Ca2+ induced significantly larger increase of the order parameters of the phosphatidylcholine component. The results are consistent with the long-range effects of Ca2+ binding on the packing of the lipid membranes.

  10. Study of structure of the TiO{sub 2}–MoO{sub 3} bilayer films by Raman spectroscopy

    SciTech Connect

    Santos, Elias de Barros; Sigoli, Fernando Aparecido; Mazali, Italo Odone

    2014-12-15

    Highlights: • TiO{sub 2}–MoO{sub 3} bilayer thin films were easily prepared by dip-coating technique. • Ti and Mo metallo-organic compounds were used as source of its respective oxide. • TiO{sub 2} in anatase phase and orthorhombic phase of α-MoO{sub 3} were identified. • The bilayer structure was investigated by Raman spectroscopy. - Abstract: In this work, TiO{sub 2}–MoO{sub 3} films were easily prepared by dip-coating technique and metallo-organic decomposition process (MOD). Raman analyses indicate the formation of TiO{sub 2} in anatase phase and orthorhombic phase of α-MoO{sub 3}. It was observed that the Raman bands intensities attributed to TiO{sub 2} and MoO{sub 3} oxides were dependent on the number of decomposition–deposition cycles (DDC). The different number of DDC generates films with different thicknesses and the Raman signal was sensitive to this variation. Raman analyses provided qualitative information about the bilayer structure of the bi-component TiO{sub 2}–MoO{sub 3} films, which was confirmed by scanning electron microscopy. In this direction, the dip-coating technique and MOD process can be an efficient strategy to facile preparation of many samples to be used in applications.

  11. Effect of benzyl alcohol on lipid bilayers. A comparisons of bilayer systems.

    PubMed Central

    Ebihara, L; Hall, J E; MacDonald, R C; McIntosh, T J; Simon, S A

    1979-01-01

    The effect of the small anesthetic molecule, benzyl alcohol, on the structure of various bilayer system has been studied by optical, electrical, and x-ray diffraction techniques. We find that the modifications in bilayer thickness caused by benzyl alcohol differ dramatically for planar (or black lipid) bilayers containing solvent, planar bilayers containing little or no solvent, and vesicular bilayers. Benzyl alcohol increases the thickness of planar bilayers containing n-alkane solvents, yet decreases the thickness of "solvent-free" planar bilayers. The effect of benzyl alcohol on vesicular bilayers below the phase transition temperature also depends on whether solvent is present in the bilayers. Without solvent, gel-state bilayers are reduced in thickness by benzyl alcohol, whereas in the presence of solvent, the thickness is unchanged. Above the phase transition temperature, benzyl alcohol has no measurable effect on vesicular bilayer thickness, whether solvent is present or not. These results indicate that different model membrane systems respond quite differently to a particular anesthetic. PMID:263698

  12. Fluid-thermal-structural study of aerodynamically heated leading edges

    NASA Technical Reports Server (NTRS)

    Deuchamphai, Pramote; Thornton, Earl A.; Wieting, Allan R.

    1988-01-01

    A finite element approach for integrated fluid-thermal-structural analysis of aerodynamically heated leading edges is presented. The Navier-Stokes equations for high speed compressible flow, the energy equation, and the quasi-static equilibrium equations for the leading edge are solved using a single finite element approach in one integrated, vectorized computer program called LIFTS. The fluid-thermal-structural coupling is studied for Mach 6.47 flow over a 3-in diam cylinder for which the flow behavior and the aerothermal loads are calibrated by experimental data. Issues of the thermal-structural response are studied for hydrogen-cooled, super thermal conducting leading edges subjected to intense aerodynamic heating.

  13. Finite element solution of transient fluid-structure interaction problems

    NASA Technical Reports Server (NTRS)

    Everstine, Gordon C.; Cheng, Raymond S.; Hambric, Stephen A.

    1991-01-01

    A finite element approach using NASTRAN is developed for solving time-dependent fluid-structure interaction problems, with emphasis on the transient scattering of acoustic waves from submerged elastic structures. Finite elements are used for modeling both structure and fluid domains to facilitate the graphical display of the wave motion through both media. For the liquid, the use of velocity potential as the fundamental unknown results in a symmetric matrix equation. The approach is illustrated for the problem of transient scattering from a submerged elastic spherical shell subjected to an incident tone burst. The use of an analogy between the equations of elasticity and the wave equation of acoustics, a necessary ingredient to the procedure, is summarized.

  14. Adaptivity and smart algorithms for fluid-structure interaction

    NASA Technical Reports Server (NTRS)

    Oden, J. Tinsley

    1990-01-01

    This paper reviews new approaches in CFD which have the potential for significantly increasing current capabilities of modeling complex flow phenomena and of treating difficult problems in fluid-structure interaction. These approaches are based on the notions of adaptive methods and smart algorithms, which use instantaneous measures of the quality and other features of the numerical flowfields as a basis for making changes in the structure of the computational grid and of algorithms designed to function on the grid. The application of these new techniques to several problem classes are addressed, including problems with moving boundaries, fluid-structure interaction in high-speed turbine flows, flow in domains with receding boundaries, and related problems.

  15. Simulation and modeling techniques for parachute fluid-structure interactions

    NASA Astrophysics Data System (ADS)

    Stein, Keith Robert

    This thesis is on advanced flow simulation and modeling techniques for fluid-structure interactions (FSI) encountered in parachute systems. The main fluid dynamics solver is based on the Deforming-Spatial-Domain/Stabilized Space-Time (DSD/SST) finite element formulation of the Navier-Stokes equations of incompressible flows. The DSD/SST formulation, which was introduced earlier for flow computations involving moving boundaries and interfaces, gives us the capability to handle parachute structural deformations. The structural dynamics solver is based on a total Lagrangian finite element formulation of the equilibrium equations for a "tension structure" composed of membranes, cables, and concentrated masses. The fluid and structure are coupled iteratively within a nonlinear iteration loop, with multiple nonlinear iterations improving the convergence of the coupled system. Unstructured mesh generation and mesh moving techniques for handling of parachute deformations are developed and/or adapted to address the challenges posed by the coupled problem. The FSI methodology was originally implemented on the Thinking Machines CM-5 supercomputer and is now actively used on the CRAY T3E-1200. Applications to a variety of round and cross parachutes used by the US Army are presented, and different stages of the parachute operations, including inflation and terminal descent, are modeled.

  16. High frequency flow-structural interaction in dense subsonic fluids

    NASA Technical Reports Server (NTRS)

    Liu, Baw-Lin; Ofarrell, J. M.

    1995-01-01

    Prediction of the detailed dynamic behavior in rocket propellant feed systems and engines and other such high-energy fluid systems requires precise analysis to assure structural performance. Designs sometimes require placement of bluff bodies in a flow passage. Additionally, there are flexibilities in ducts, liners, and piping systems. A design handbook and interactive data base have been developed for assessing flow/structural interactions to be used as a tool in design and development, to evaluate applicable geometries before problems develop, or to eliminate or minimize problems with existing hardware. This is a compilation of analytical/empirical data and techniques to evaluate detailed dynamic characteristics of both the fluid and structures. These techniques have direct applicability to rocket engine internal flow passages, hot gas drive systems, and vehicle propellant feed systems. Organization of the handbook is by basic geometries for estimating Strouhal numbers, added mass effects, mode shapes for various end constraints, critical onset flow conditions, and possible structural response amplitudes. Emphasis is on dense fluids and high structural loading potential for fatigue at low subsonic flow speeds where high-frequency excitations are possible. Avoidance and corrective measure illustrations are presented together with analytical curve fits for predictions compiled from a comprehensive data base.

  17. Structural Analysis of Nanoscale Self-Assembled Discoidal Lipid Bilayers by Solid-State NMR Spectroscopy

    PubMed Central

    Li, Ying; Kijac, Aleksandra Z.; Sligar, Stephen G.; Rienstra, Chad M.

    2006-01-01

    Nanodiscs are an example of discoidal nanoscale self-assembled lipid/protein particles similar to nascent high-density lipoproteins, which reduce the risk of coronary artery disease. The major protein component of high-density lipoproteins is human apolipoprotein A-I, and the corresponding protein component of Nanodiscs is membrane scaffold protein 1 (MSP1), a 200-residue lipid-binding domain of human apolipoprotein A-I. Here we present magic-angle spinning (MAS) solid-state NMR studies of uniformly 13C,15N-labeled MSP1 in polyethylene glycol precipitated Nanodiscs. Two-dimensional MAS 13C-13C correlation spectra show excellent microscopic order of MSP1 in precipitated Nanodiscs. Secondary isotropic chemical shifts throughout the protein are consistent with a predominantly helical structure. Moreover, the backbone conformations of prolines derived from their 13C chemical shifts are consistent with the molecular belt model but not the picket fence model of lipid-bound MSP1. Overall comparison of experimental spectra and 13C chemical shifts predicted from several structural models also favors the belt model. Our study thus supports the belt model of Nanodisc structure and demonstrates the utility of MAS NMR to study the structure of high molecular weight lipid-protein complexes. PMID:16905610

  18. Design guide for calculating fluid damping for circular cylindrical structures. [LMFBR

    SciTech Connect

    Chen, S.S.

    1983-06-01

    Fluid damping plays an important role for structures submerged in fluid, subjected to flow, or conveying fluid. This design guide presents a summary of calculational procedures and design data for fluid damping for circular cylinders vibrating in quiescent fluid, crossflow, and parallel flow.

  19. Fluid Structure Interaction Simulations of Pediatric Ventricular Assist Device Operation

    NASA Astrophysics Data System (ADS)

    Long, Chris; Marsden, Alison; Bazilevs, Yuri

    2011-11-01

    Pediatric ventricular assist devices (PVADs) are used for mechanical circulatory support in children with failing hearts. They can be used to allow the heart to heal naturally or to extend the life of the patient until transplant. A PVAD has two chambers, blood and air, separated by a flexible membrane. The air chamber is pressurized, which drives the membrane and pumps the blood. The primary risk associated with these devices is stroke or embolism from thrombogenesis. Simulation of these devices is difficult due to a complex coupling of two fluid domains and a thin membrane, requiring fluid-structure interaction modeling. The goal of this work is to accurately simulate the hemodynamics of a PVAD. We perform FSI simulations using an Arbitrary Lagrangian-Eulerian (ALE) finite element framework to account for large motions of the membrane and the fluid domains. The air, blood, and membrane are meshed as distinct subdomains, and a method for non-matched discretizations at the fluid-structure interface is presented. The use of isogeometric analysis to model the membrane mechanics is also discussed, and the results of simulations are presented.

  20. Stacked-disc structure for fluid filter or valve silencer

    NASA Technical Reports Server (NTRS)

    Hagler, Jr., Ray (Inventor)

    1983-01-01

    A stacked-disc structure is comprised of a stack of annular discs (13) scalloped along the outer edge to provide lobes (13a) and etched on one side to provide lands (13a). A web (13d) is retained in the lobes to strengthen the discs so that they will not collapse due to high fluid pressure. The stack of discs is retained by a housing (10) having a fluted interior wall to retain the ends of the lobes. End plates (11 and 12) secure the stack of discs with a spacer (14) at one end having lands (14a) on lobes which match the lobes of the stacked discs to allow fluid to flow into, or out of, the spaces between the lobes of the stacked discs. The spaces between the lands on the etched discs provide passages for fluid flow into or out of the hollow core of the stack. The height of the lands (i.e., depth of the etch) determines the size of the smallest particle that will be permitted to flow through. The stacked-disc structure may be connected to the inlet of a valve, or be incorporated into the valve housing on the inlet side of the valve seat to assure substantially constant fluid velocity, and thereby reduce valve noise when the valve is operated.

  1. Simulating Pediatric Ventricular Assist Device Operation Using Fluid Structure Interaction

    NASA Astrophysics Data System (ADS)

    Long, Chris; Bazilevs, Yuri; Marsden, Alison

    2012-11-01

    Ventricular Assist Devices (VADs) provide mechanical circulatory support to patients in heart failure. They are primarily used to extend life until cardiac transplant, but also show promise as a ``bridge-to-recovery'' device in pediatric patients. Commercially available pediatric pumps are pulsatile displacement pumps, with two distinct chambers for air and blood separated by a thin, flexible membrane. The air chamber pneumatically drives the membrane, which drives blood through the other chamber via displacement. The primary risk factor associated with these devices is stroke or embolism due to thrombogenesis in the blood chamber, occurring in as many as 40% of patients. Our goal is to perform simulations that accurately model the hemodynamics of the device, as well as the non-linear membrane buckling. We apply a finite-element based fluid solver, with an Arbitrary Lagrangian-Eulerian (ALE) framework to account for mesh motion. Isogeometric Analysis with a Kirchhoff-Love shell formulation is used on the membrane, and two distinct fluid subdomains are used for the air and blood chambers. The Fluid Structure Interaction (FSI) problem is solved simultaneously, using a Matrix Free method to model the interactions at the fluid-structure boundary. Methods and results are presented.

  2. Reduced order modeling of fluid/structure interaction.

    SciTech Connect

    Barone, Matthew Franklin; Kalashnikova, Irina; Segalman, Daniel Joseph; Brake, Matthew Robert

    2009-11-01

    This report describes work performed from October 2007 through September 2009 under the Sandia Laboratory Directed Research and Development project titled 'Reduced Order Modeling of Fluid/Structure Interaction.' This project addresses fundamental aspects of techniques for construction of predictive Reduced Order Models (ROMs). A ROM is defined as a model, derived from a sequence of high-fidelity simulations, that preserves the essential physics and predictive capability of the original simulations but at a much lower computational cost. Techniques are developed for construction of provably stable linear Galerkin projection ROMs for compressible fluid flow, including a method for enforcing boundary conditions that preserves numerical stability. A convergence proof and error estimates are given for this class of ROM, and the method is demonstrated on a series of model problems. A reduced order method, based on the method of quadratic components, for solving the von Karman nonlinear plate equations is developed and tested. This method is applied to the problem of nonlinear limit cycle oscillations encountered when the plate interacts with an adjacent supersonic flow. A stability-preserving method for coupling the linear fluid ROM with the structural dynamics model for the elastic plate is constructed and tested. Methods for constructing efficient ROMs for nonlinear fluid equations are developed and tested on a one-dimensional convection-diffusion-reaction equation. These methods are combined with a symmetrization approach to construct a ROM technique for application to the compressible Navier-Stokes equations.

  3. Application of integrated fluid-thermal-structural analysis methods

    NASA Technical Reports Server (NTRS)

    Wieting, Allan R.; Dechaumphai, Pramote; Bey, Kim S.; Thornton, Earl A.; Morgan, Ken

    1988-01-01

    Hypersonic vehicles operate in a hostile aerothermal environment which has a significant impact on their aerothermostructural performance. Significant coupling occurs between the aerodynamic flow field, structural heat transfer, and structural response creating a multidisciplinary interaction. Interfacing state-of-the-art disciplinary analysis methods is not efficient, hence interdisciplinary analysis methods integrated into a single aerothermostructural analyzer are needed. The NASA Langley Research Center is developing such methods in an analyzer called LIFTS (Langley Integrated Fluid-Thermal-Structural) analyzer. The evolution and status of LIFTS is reviewed and illustrated through applications.

  4. Label-Free Electrochemiluminescence Aptasensor for 2,4,6-Trinitrotoluene Based on Bilayer Structure of Luminescence Functionalized Graphene Hybrids.

    PubMed

    Li, Guixin; Yu, Xiuxia; Liu, Danqing; Liu, Xiaoying; Li, Fang; Cui, Hua

    2015-11-01

    The electrochemiluminescence (ECL) behavior of N-(aminobutyl)-N-(ethylisoluminol)/hemin dual-functionalized graphene hybrids (A-H-GNs) and luminol-functionalized silver/graphene oxide composite (luminol-AgNPs-GO) was investigated under cyclic voltammetry and pulse potential. It was found that A-H-GNs and luminol-AgNPs-GO exhibited excellent ECL activity. On this basis, a label-free ECL aptasensor for 2,4,6-trinitrotoluene (TNT) detection was developed based on bilayer structure of luminescence functionalized graphene hybrids consisting of A-H-GNs and luminol-AgNPs-GO. First, positively charged chitosan-coated A-H-GNs were modified on the surface of indium-doped tin oxide electrode by simple dripping and drying in the air; after that, the modified electrode was immersed in negatively charged luminol-AgNPs-GO modified with aptamer (apta-biotin-SA-luminol-AgNPs-GO) to form apta-biotin-SA-luminol-AgNPs-GO/CS-A-H-GNs/ITO electrode (i.e., aptasensor) by electrostatic interaction. In the presence of TNT, a remarkable decrease in ECL signals was observed due to the formation of aptamer-TNT complex. TNT could be detected based on the inhibition effect. The aptasensor exhibits a wide dynamic range from 1.0 × 10(-12) to 1.0 × 10(-9) g/mL, with a low detection limit of 6.3 × 10(-13) g/mL for the determination of TNT, which is superior to most previously reported bioassays for TNT. Moreover, the proposed aptasensor has been successfully applied to the detection of TNT in environmental water. It is sensitive, selective, and simple, avoiding complicated labeling and purification procedures. Due to the wide target recognition range of aptamer, this strategy provides a promising way to develop new aptasensor for other analytes.

  5. Parallel adaptive fluid-structure interaction simulation of explosions impacting on building structures

    SciTech Connect

    Deiterding, Ralf; Wood, Stephen L

    2013-01-01

    We pursue a level set approach to couple an Eulerian shock-capturing fluid solver with space-time refinement to an explicit solid dynamics solver for large deformations and fracture. The coupling algorithms considering recursively finer fluid time steps as well as overlapping solver updates are discussed in detail. Our ideas are implemented in the AMROC adaptive fluid solver framework and are used for effective fluid-structure coupling to the general purpose solid dynamics code DYNA3D. Beside simulations verifying the coupled fluid-structure solver and assessing its parallel scalability, the detailed structural analysis of a reinforced concrete column under blast loading and the simulation of a prototypical blast explosion in a realistic multistory building are presented.

  6. Bilayer Membrane Modulation of Membrane Type 1 Matrix Metalloproteinase (MT1-MMP) Structure and Proteolytic Activity.

    PubMed

    Cerofolini, Linda; Amar, Sabrina; Lauer, Janelle L; Martelli, Tommaso; Fragai, Marco; Luchinat, Claudio; Fields, Gregg B

    2016-01-01

    Cell surface proteolysis is an integral yet poorly understood physiological process. The present study has examined how the pericellular collagenase membrane-type 1 matrix metalloproteinase (MT1-MMP) and membrane-mimicking environments interplay in substrate binding and processing. NMR derived structural models indicate that MT1-MMP transiently associates with bicelles and cells through distinct residues in blades III and IV of its hemopexin-like domain, while binding of collagen-like triple-helices occurs within blades I and II of this domain. Examination of simultaneous membrane interaction and triple-helix binding revealed a possible regulation of proteolysis due to steric effects of the membrane. At bicelle concentrations of 1%, enzymatic activity towards triple-helices was increased 1.5-fold. A single mutation in the putative membrane interaction region of MT1-MMP (Ser466Pro) resulted in lower enzyme activation by bicelles. An initial structural framework has thus been developed to define the role(s) of cell membranes in modulating proteolysis. PMID:27405411

  7. The Lipid Bilayer Modulates the Structure and Function of an ATP-binding Cassette Exporter.

    PubMed

    Zoghbi, Maria E; Cooper, Rebecca S; Altenberg, Guillermo A

    2016-02-26

    ATP-binding cassette exporters use the energy of ATP hydrolysis to transport substrates across membranes by switching between inward- and outward-facing conformations. Essentially all structural studies of these proteins have been performed with the proteins in detergent micelles, locked in specific conformations and/or at low temperature. Here, we used luminescence resonance energy transfer spectroscopy to study the prototypical ATP-binding cassette exporter MsbA reconstituted in nanodiscs at 37 °C while it performs ATP hydrolysis. We found major differences when comparing MsbA in these native-like conditions with double electron-electron resonance data and the crystal structure of MsbA in the open inward-facing conformation. The most striking differences include a significantly smaller separation between the nucleotide-binding domains and a larger fraction of molecules with associated nucleotide-binding domains in the nucleotide-free apo state. These studies stress the importance of studying membrane proteins in an environment that approaches physiological conditions.

  8. Bilayer Membrane Modulation of Membrane Type 1 Matrix Metalloproteinase (MT1-MMP) Structure and Proteolytic Activity

    PubMed Central

    Cerofolini, Linda; Amar, Sabrina; Lauer, Janelle L.; Martelli, Tommaso; Fragai, Marco; Luchinat, Claudio; Fields, Gregg B.

    2016-01-01

    Cell surface proteolysis is an integral yet poorly understood physiological process. The present study has examined how the pericellular collagenase membrane-type 1 matrix metalloproteinase (MT1-MMP) and membrane-mimicking environments interplay in substrate binding and processing. NMR derived structural models indicate that MT1-MMP transiently associates with bicelles and cells through distinct residues in blades III and IV of its hemopexin-like domain, while binding of collagen-like triple-helices occurs within blades I and II of this domain. Examination of simultaneous membrane interaction and triple-helix binding revealed a possible regulation of proteolysis due to steric effects of the membrane. At bicelle concentrations of 1%, enzymatic activity towards triple-helices was increased 1.5-fold. A single mutation in the putative membrane interaction region of MT1-MMP (Ser466Pro) resulted in lower enzyme activation by bicelles. An initial structural framework has thus been developed to define the role(s) of cell membranes in modulating proteolysis. PMID:27405411

  9. The interaction of N-oleylethanolamine with phospholipid bilayers.

    PubMed

    Epps, D E; Cardin, A D

    1987-10-16

    Long chain acylamides of ethanolamine were previously found to increase in the infarcted canine myocardium. Subsequent in vitro experiments established a number of interesting biological and physiological properties of these compounds including alteration of rabbit skeletal sarcoplasmic reticulum function and inhibition of permeability dependent calcium release from heart mitochondria. These results suggested an interaction between the N-acylethanolamines and biological membranes. In the present work we show that the most potent species in previous studies, N-oleylethanolamine, forms stable complexes with phospholipid vesicles, lowers diphenylhexatriene polarization ratios in dimyristoylphosphatidylcholine and dipalmitoylphosphatidylcholine uni- and multilamellar bilayer vesicles, and also produces a concentration dependent decrease in the phase transitions of these lipid structures. In addition studies with parinaric acids also suggested that N-oleylethanolamine partitions preferentially into more fluid areas of the bilayer. The results are discussed in terms of possible effects on biological membranes.

  10. SiO2/bi-layer GZO/Ag structures for near-infrared broadband wide-angle perfect absorption

    NASA Astrophysics Data System (ADS)

    Zhu, Chaoting; Li, Jia; Yang, Ye; Huang, Jinhua; Lu, Yuehui; Zhao, Xunna; Tan, Ruiqin; Dai, Ning; Song, Weijie

    2016-10-01

    In this work, near-infrared (NIR) perfect absorbers with a silicon dioxide (SiO2)/gallium-doped zinc oxide (GZO)/silver (Ag) multi-layer structure were designed and experimentally demonstrated. The results show that a broadband perfect absorption (PA) from 1.24 µm to 1.49 µm was achieved by adopting bi-layer GZO thin films with different carrier concentrations. This absorption remained higher than 97% for incident angles up to 60°. The perfect NIR absorber reported here has a simple structure as well as broadband and wide-angle absorption features, which is promising for practical applications.

  11. Automating the parallel processing of fluid and structural dynamics calculations

    NASA Technical Reports Server (NTRS)

    Arpasi, Dale J.; Cole, Gary L.

    1987-01-01

    The NASA Lewis Research Center is actively involved in the development of expert system technology to assist users in applying parallel processing to computational fluid and structural dynamic analysis. The goal of this effort is to eliminate the necessity for the physical scientist to become a computer scientist in order to effectively use the computer as a research tool. Programming and operating software utilities have previously been developed to solve systems of ordinary nonlinear differential equations on parallel scalar processors. Current efforts are aimed at extending these capabilties to systems of partial differential equations, that describe the complex behavior of fluids and structures within aerospace propulsion systems. This paper presents some important considerations in the redesign, in particular, the need for algorithms and software utilities that can automatically identify data flow patterns in the application program and partition and allocate calculations to the parallel processors. A library-oriented multiprocessing concept for integrating the hardware and software functions is described.

  12. Automating the parallel processing of fluid and structural dynamics calculations

    NASA Technical Reports Server (NTRS)

    Arpasi, Dale J.; Cole, Gary L.

    1987-01-01

    The NASA Lewis Research Center is actively involved in the development of expert system technology to assist users in applying parallel processing to computational fluid and structural dynamic analysis. The goal of this effort is to eliminate the necessity for the physical scientist to become a computer scientist in order to effectively use the computer as a research tool. Programming and operating software utilities have previously been developed to solve systems of ordinary nonlinear differential equations on parallel scalar processors. Current efforts are aimed at extending these capabilities to systems of partial differential equations, that describe the complex behavior of fluids and structures within aerospace propulsion systems. This paper presents some important considerations in the redesign, in particular, the need for algorithms and software utilities that can automatically identify data flow patterns in the application program and partition and allocate calculations to the parallel processors. A library-oriented multiprocessing concept for integrating the hardware and software functions is described.

  13. Effects of annealing time on the structure, morphology, and stress of gold-chromium bilayer film

    NASA Astrophysics Data System (ADS)

    Zhang, Hong; Jin, Yun-Xia; Wang, Hu; Kong, Fang-Yu; Huang, Hao-Peng; Cui, Yun

    2016-10-01

    In this work, a 200-nm-thick gold film with a 10-nm-thick chromium layer used as an adhesive layer is fabricated on fused silica by the electron beam evaporation method. The effects of annealing time at 300 °C on the structure, morphology and stress of the film are studied. We find that chromium could diffuse to the surface of the film by formatting a solid solution with gold during annealing. Meanwhile, chromium is oxidized on the surface and diffused downward along the grain grooves in the gold film. The various operant mechanisms that change the residual stresses of gold films for different annealing times are discussed. Project supported by the National Natural Science Foundation of China (Grant No. 61405225).

  14. Fluid and structural measurements to advance gas turbine technology

    NASA Technical Reports Server (NTRS)

    Hartmann, M. J.

    1980-01-01

    In the present paper, the current status of fluid and structural measurements is reviewed, and some potential improvements in gas turbine machinery, directly associated with the new measuring capability are discussed. Some considerations concerning the impact of the new capability on the methods and approaches that will be used in the further development of advanced technology, in general, and to aeropropulsion gas turbine machinery, in particular, are presented.

  15. Effects of Polyhexamethylene Biguanide and Polyquaternium-1 on Phospholipid Bilayer Structure and Dynamics.

    PubMed

    Horner, Ian J; Kraut, Nadine D; Hurst, Jerod J; Rook, Alyssa M; Collado, Crystal M; Atilla-Gokcumen, G Ekin; Maziarz, E Peter; Liu, X Michael; Merchea, Mohinder M; Bright, Frank V

    2015-08-20

    Multipurpose solutions (MPS) are a single solution that functions to simultaneously rinse, disinfect, clean, and store soft contact lenses. Several commercial MPS products contain polyhexamethylene biguanide (PHMB) and/or polyquaternium-1 (PQ-1) as antimicrobial agents. In this paper we have created an in vitro small unilamellar vesicle (SUV) model of the corneal epithelial surface, and we have assessed the interactions of PHMB and PQ-1 with several model biomembranes by using fluorescence spectroscopy, dynamic light scattering (DLS), and liquid chromatography-mass spectrometry (LC-MS). Steady-state and time-resolved fluorescence were used to assess the membrane acyl chain and polar headgroup region local microenvironment as a function of added PHMB or PQ-1. DLS was used to detect and quantify SUV aggregation induced by PHMB and PQ-1. LC-MS was used to determine the liposomal composition from any precipitated materials in comparison to the as-prepared SUVs. The results are consistent with PHMB adsorbing onto and PQ-1 intercalating into the biomembrane structure. The differences between the two interaction mechanisms have substantial impacts on the biomembrane dynamics and stability.

  16. Effects of Polyhexamethylene Biguanide and Polyquaternium-1 on Phospholipid Bilayer Structure and Dynamics.

    PubMed

    Horner, Ian J; Kraut, Nadine D; Hurst, Jerod J; Rook, Alyssa M; Collado, Crystal M; Atilla-Gokcumen, G Ekin; Maziarz, E Peter; Liu, X Michael; Merchea, Mohinder M; Bright, Frank V

    2015-08-20

    Multipurpose solutions (MPS) are a single solution that functions to simultaneously rinse, disinfect, clean, and store soft contact lenses. Several commercial MPS products contain polyhexamethylene biguanide (PHMB) and/or polyquaternium-1 (PQ-1) as antimicrobial agents. In this paper we have created an in vitro small unilamellar vesicle (SUV) model of the corneal epithelial surface, and we have assessed the interactions of PHMB and PQ-1 with several model biomembranes by using fluorescence spectroscopy, dynamic light scattering (DLS), and liquid chromatography-mass spectrometry (LC-MS). Steady-state and time-resolved fluorescence were used to assess the membrane acyl chain and polar headgroup region local microenvironment as a function of added PHMB or PQ-1. DLS was used to detect and quantify SUV aggregation induced by PHMB and PQ-1. LC-MS was used to determine the liposomal composition from any precipitated materials in comparison to the as-prepared SUVs. The results are consistent with PHMB adsorbing onto and PQ-1 intercalating into the biomembrane structure. The differences between the two interaction mechanisms have substantial impacts on the biomembrane dynamics and stability. PMID:26239890

  17. The structural role of cholesterol in cell membranes: from condensed bilayers to lipid rafts.

    PubMed

    Krause, Martin R; Regen, Steven L

    2014-12-16

    CONSPECTUS: Defining the two-dimensional structure of cell membranes represents one of the most daunting challenges currently facing chemists, biochemists, and biophysicists. In particular, the time-averaged lateral organization of the lipids and proteins that make up these natural enclosures has yet to be established. As the classic Singer-Nicolson model of cell membranes has evolved over the past 40 years, special attention has focused on the structural role played by cholesterol, a key component that represents ca. 30% of the total lipids that are present. Despite extensive studies with model membranes, two fundamental issues have remained a mystery: (i) the mechanism by which cholesterol condenses low-melting lipids by uncoiling their acyl chains and (ii) the thermodynamics of the interaction between cholesterol and high- and low-melting lipids. The latter bears directly on one of the most popular notions in modern cell biology, that is, the lipid raft hypothesis, whereby cholesterol is thought to combine with high-melting lipids to form "lipid rafts" that float in a "sea" of low-melting lipids. In this Account, we first describe a chemical approach that we have developed in our laboratories that has allowed us to quantify the interactions between exchangeable mimics of cholesterol and low- and high-melting lipids in model membranes. In essence, this "nearest-neighbor recognition" (NNR) method involves the synthesis of dimeric forms of these lipids that contain a disulfide moiety as a linker. By means of thiolate-disulfide interchange reactions, equilibrium mixtures of dimers are then formed. These exchange reactions are initiated either by adding dithiothreitol to a liposomal dispersion to generate a small amount of thiol monomer or by including a small amount of thiol monomer in the liposomes at pH 5.0 and then raising the pH to 7.4. We then show how such NNR measurements have allowed us to distinguish between two very different mechanisms that have been

  18. Thermodynamic and structural properties of confined discrete-potential fluids

    NASA Astrophysics Data System (ADS)

    Benavides, A. L.; del Pino, L. A.; Gil-Villegas, A.; Sastre, F.

    2006-11-01

    The thermodynamic and structural behaviors of confined discrete-potential fluids are analyzed by computer simulations, studying in a systematic way the effects observed by varying the density, temperature, and parameters of the potentials that characterize the molecule-molecule interactions. The Gibbs ensemble simulation technique for confined fluids [A. Z. Panagiotopoulos, Mol. Phys. 62, 701 (1987)] is applied to a fluid confined between two parallel hard walls. Two different systems have been considered, both formed by spherical particles that differ by the interparticle pair potential: a square well plus square shoulder or a square shoulder plus square well interaction. These model interactions can describe in an effective way pair potentials of real molecular and colloidal systems. Results are compared with the simpler reference systems of square-shoulder and square-well fluids, both under confinement. From the adsorption characterization through the use of density profiles, it is possible to obtain specific values of the interparticle potential parameters that result in a positive to negative adsorption transition.

  19. Chain-melting phase transition and short-range molecular interactions in phospholipid foam bilayers.

    PubMed

    Exerowa, Dotchi

    2002-02-25

    Occurrence of two-dimensional chain melting phase transition in foam bilayers was established for the first time. Microscopic horizontal foam bilayers [Newton black films (NBF)] were investigated by the microinterferometric method of Scheludko-Exerowa. The foam bilayers were formed from water-ethanol solutions of dimyristoylphosphatidylcholine (DMPC) and dipalmitoylphosphatidylcholine (DPPC) and egg phosphatidylcholine (Egg PC) and samples of amniotic fluid (AF) at different temperatures. The influence of temperature on the foam bilayer thickness h(w) and on the critical concentration Cc for formation of foam bilayer was studied. It was shown that in the range of the main phase transition the temperature dependence of h(w) and C(c) changed specifically in the case of DMPC and DPPC foam bilayers. The thickness of the foam bilayers increased with decreasing temperature in the range of the main phase transition due to the melting of hydrocarbon tails of phospholipid molecules. These changes took place at the temperatures of the bulk chain-melting phase transitions, as determined by differential scanning calorimetry (DSC) for both aqueous, and water/ethanol DMPC, DPPC, and DPPC dispersions. An effect of the 'disperse medium' on h(w) was found for foam bilayers from DPPC. The results that foam bilayers could have different thickness at different temperatures disproved the current concept that NBF acquired constant thickness at concentrations higher than C(el,cr). The data for Cc were analysed on the basis of the hole-nucleation theory of bilayer stability of Kashchiev and Exerowa. This theory considered the amphiphile bilayer as a two-dimensional ordered system with short-range molecular interactions between the first neighbour molecules (as in a crystal). The short-range molecular interactions were presented by the parameter binding energy Q of an amphiphile molecule in the bilayer. The binding energy Q of two neighbouring phospholipids was calculated for the gel (30

  20. Time-Dependent Thermally-Driven Interfacial Flows in Multilayered Fluid Structures

    NASA Technical Reports Server (NTRS)

    Haj-Hariri, Hossein; Borhan, A.

    1996-01-01

    A computational study of thermally-driven convection in multilayered fluid structures will be performed to examine the effect of interactions among deformable fluid-fluid interfaces on the structure of time-dependent flow in these systems. Multilayered fluid structures in two models configurations will be considered: the differentially heated rectangular cavity with a free surface, and the encapsulated cylindrical liquid bridge. An extension of a numerical method developed as part of our recent NASA Fluid Physics grant will be used to account for finite deformations of fluid-fluid interfaces.

  1. Fluid transport and coherent structures of translating and flapping wings.

    PubMed

    Eldredge, Jeff D; Chong, Kwitae

    2010-03-01

    The Lagrangian coherent structures (LCSs) of simple wing cross sections in various low Reynolds number motions are extracted from high-fidelity numerical simulation data and examined in detail. The entrainment process in the wake of a translating ellipse is revealed by studying the relationship between attracting structures in the wake and upstream repelling structures, with the help of blocks of tracer particles. It is shown that a series of slender lobes in the repelling LCS project upstream from the front of the ellipse and "pull" fluid into the wake. Each lobe is paired with a corresponding wake vortex, into which the constituent fluid particles are folded. Flexible and rigid foils in flapping motion are studied, and the resulting differences in coherent structures are used to elucidate their differences in force generation. The clarity with which these flow structures are revealed, compared to the vorticity or velocity fields, provides new insight into the vortex shedding mechanisms that play an important role in unsteady aerodynamics. PMID:20370299

  2. Transient thermal hydraulics, heat transfer, fluid-structure interaction, and structural dynamics. PVP-Vol. 270

    SciTech Connect

    Shin, Y.W.; Wang, C.Y.; Chang, F.C. ); Katze, D.; Moody, F.J.

    1994-01-01

    This symposium addresses transient effects of thermal-hydraulics and heat transfer on structural responses and fluid-structure interactions. Thermal hydraulics, or simply fluid dynamics and heat transfer, in industrial process systems will, in general, generate loads on the structures. Depending on the magnitude and how the structures respond, the feedback effects on the thermal hydraulics may become significant and special consideration would be required. In such situations, thermal hydraulics analysis, independent of the structural dynamics analysis, or vice versa, would be undesirable and often the fluid-structure interaction becomes a necessary consideration. This publication volume presents a collection of papers addressing various aspects of these topics. Separate abstracts were prepared for 21 papers in this conference.

  3. Characterising the structure of photosynthetic biofilms using fluid dynamic gauging.

    PubMed

    Salley, B; Gordon, P W; McCormick, A J; Fisher, A C; Wilson, D I

    2012-01-01

    A new configuration of the fluid dynamic gauging technique for measuring soft layers on surfaces was used to monitor the growth of a cyanobacterium, Synechococcus sp. WH 5701, on stainless steel (SS), glass and an indium tin oxide (ITO) on a polyethylene terephthalate (PET) substratum. The biofilm thickness increased steadily over 4 weeks and exhibited noticeable changes in microstructure and strength. The biofilms all exhibited a two-layer structure, with a compact layer next to the substratum and a loose layer above. Biofilms on ITO or SS exhibited cohesive failure when removed by fluid shear whereas those on glass exhibited adhesive failure. The technique is able to elucidate various aspects of biofilm behaviour, as illustrated by the action of a biocide (NaOCl) on a mature biofilm. PMID:22329680

  4. Fluid Structure Interaction of Parachutes in Supersonic Planetary Entry

    NASA Technical Reports Server (NTRS)

    Sengupta, Anita

    2011-01-01

    A research program to provide physical insight into disk-gap-band parachute operation in the supersonic regime on Mars was conducted. The program included supersonic wind tunnel tests, computational fluid dynamics and fluid structure interaction simulations. Specifically, the nature and cause of the "area oscillation" phenomenon were investigated to determine the scale, aerodynamic, and aero-elastic dependence of the supersonic parachute collapse and re-inflation event. A variety of non-intrusive, temporally resolved, and high resolution diagnostic techniques were used to interrogate the flow and generate validation datasets. The results of flow visualization, particle image velocimetry, load measurements, and photogrammetric reconstruction will be presented. Implications to parachute design, use, and verification will also be discussed.

  5. Electrostatics of cell membrane recognition: structure and activity of neutral and cationic rigid push-pull rods in isoelectric, anionic, and polarized lipid bilayer membranes.

    PubMed

    Sakai, N; Gerard, D; Matile, S

    2001-03-21

    Design, synthesis, and structural and functional studies of rigid-rod ionophores of different axial electrostatic asymmetry are reported. The employed design strategy emphasized presence of (a) a rigid scaffold to minimize the conformational complexity, (b) a unimolecular ion-conducting pathway to minimize the suprastructural complexity and monitor the function, (c) an extended fluorophore to monitor structure, (d) variable axial rod dipole, and (e) variable terminal charges to create axial asymmetry. Studies in isoelectric, anionic, and polarized bilayer membranes confirmed a general increase in activity of uncharged rigid push-pull rods in polarized bilayers. The similarly increased activity of cationic rigid push-pull rods with an electrostatic asymmetry comparable to that of alpha-helical bee toxin melittin (positive charge near negative axial dipole terminus) is shown by fluorescence-depth quenching experiments to originate from the stabilization of transmembrane rod orientation by the membrane potential. The reduced activity of rigid push-pull rods having an electrostatic asymmetry comparable to that in alpha-helical natural antibiotics (a positive charge near the positive axial dipole terminus) is shown by structural studies to originate from rod "ejection" by membrane potentials comparable to that found in mammalian plasma membranes. This structural evidence for cell membrane recognition by asymmetric rods is unprecedented and of possible practical importance with regard to antibiotic resistance.

  6. Dependence of reactive metal layer on resistive switching in a bi-layer structure Ta/HfOx filament type resistive random access memory

    NASA Astrophysics Data System (ADS)

    Lee, Daeseok; Woo, Jiyong; Park, Sangsu; Cha, Euijun; Lee, Sangheon; Hwang, Hyunsang

    2014-02-01

    The dependence of reactive metal layer on resistive switching characteristics is investigated in a bi-layer structural Ta/HfOx filament type resistive random access memory (ReRAM). By increasing the oxygen absorption rate of the reactive metal layer, formation of an induced resistive switching region that led to significant changes in the resistive switching characteristics of the ReRAM was observed. Electrical and physical analyses showed that the induced TaOx-resistive switching region can result in self-compliance behavior, uniform resistive switching, and a gradual set process, which can be utilized for low power and analog operations.

  7. Assembly of RNA nanostructures on supported lipid bilayers.

    PubMed

    Dabkowska, Aleksandra P; Michanek, Agnes; Jaeger, Luc; Rabe, Michael; Chworos, Arkadiusz; Höök, Fredrik; Nylander, Tommy; Sparr, Emma

    2015-01-14

    The assembly of nucleic acid nanostructures with controlled size and shape has large impact in the fields of nanotechnology, nanomedicine and synthetic biology. The directed arrangement of nano-structures at interfaces is important for many applications. In spite of this, the use of laterally mobile lipid bilayers to control RNA three-dimensional nanostructure formation on surfaces remains largely unexplored. Here, we direct the self-assembly of RNA building blocks into three-dimensional structures of RNA on fluid lipid bilayers composed of cationic 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) or mixtures of zwitterionic 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC) and cationic sphingosine. We demonstrate the stepwise supramolecular assembly of discrete building blocks through specific and selective RNA-RNA interactions, based on results from quartz crystal microbalance with dissipation (QCM-D), ellipsometry, fluorescence recovery after photobleaching (FRAP) and total internal reflection fluorescence microscopy (TIRF) experiments. The assembly can be controlled to give a densely packed single layer of RNA polyhedrons at the fluid lipid bilayer surface. We show that assembly of the 3D structure can be modulated by sequence specific interactions, surface charge and changes in the salt composition and concentration. In addition, the tertiary structure of the RNA polyhedron can be controllably switched from an extended structure to one that is dense and compact. The versatile approach to building up three-dimensional structures of RNA does not require modification of the surface or the RNA molecules, and can be used as a bottom-up means of nanofabrication of functionalized bio-mimicking surfaces.

  8. Preferential interaction of the Alzheimer peptide Aβ-(1-42) with Omega-3-containing lipid bilayers: structure and interaction studies.

    PubMed

    Emendato, Alessandro; Spadaccini, Roberta; De Santis, Augusta; Guerrini, Remo; D'Errico, Gerardino; Picone, Delia

    2016-02-01

    Many age-related neurodegenerative diseases, including Alzheimer Disease (AD), are elicited by an interplay of genetic, environmental, and dietary factors. Food rich in Omega-3 phospholipids seems to reduce the AD incidence. To investigate the molecular basis of this beneficial effect, we have investigated by CD and ESR studies the interaction between the Alzheimer peptide Aβ-(1-42) and biomimetic lipid bilayers. The inclusion of 1,2-didocosahexaenoyl-sn-glycero-3-phosphocholine does not change significantly the bilayers organization, but favors its Aβ-(1-42) interaction. The Omega-3 lipid amount modulates the effect intensity, suggesting a peptide selectivity for membranes containing polyunsatured fatty acids (PUFA) and providing hints for the mechanism and therapy of AD. PMID:26821608

  9. Photon correlation spectroscopy of bilayer lipid membranes.

    PubMed

    Crilly, J F; Earnshaw, J C

    1983-02-01

    Light scattering by thermal fluctuations on simple monoglyceride bilayer membranes has been used to investigate the viscoelastic properties of these structures. Spectroscopic analysis of these fluctuations (capillary waves) permits the nonperturbative measurement of the interfacial tension and a shear interfacial viscosity acting normal to the membrane plane. The methods were established by studies of solvent and nonsolvent bilayers of glycerol monooleate (GMO). Changes in the tension of GMO/n-decane membranes induced by altering the composition of the parent solution were detected and quantified. In a test of the reliability of the technique controlled variations of the viscosity of the aqueous bathing solution were accurately monitored. The technique was applied to solvent-free bilayers formed from dispersions of GMO in squalane. The lower tensions observed attested to the comparative absence of solvent in such bilayers. In contrast to the solvent case, the solvent-free membranes exhibited a significant transverse shear viscosity, indicative of the enhanced intermolecular interactions within the bilayer.

  10. General aspects of peptide selectivity towards lipid bilayers and cell membranes studied by variation of the structural parameters of amphipathic helical model peptides.

    PubMed

    Dathe, Margitta; Meyer, Jana; Beyermann, Michael; Maul, Björn; Hoischen, Christian; Bienert, Michael

    2002-02-01

    Model compounds of modified hydrophobicity (Eta), hydrophobic moment (mu) and angle subtended by charged residues (Phi) were synthesized to define the general roles of structural motifs of cationic helical peptides for membrane activity and selectivity. The peptide sets were based on a highly hydrophobic, non-selective KLA model peptide with high antimicrobial and hemolytic activity. Variation of the investigated parameters was found to be a suitable method for modifying peptide selectivity towards either neutral or highly negatively charged lipid bilayers. Eta and mu influenced selectivity preferentially via modification of activity on 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC) bilayers, while the size of the polar/hydrophobic angle affected the activity against 1-palmitoyl-2-oleoylphosphatidyl-DL-glycerol (POPG). The influence of the parameters on the activity determining step was modest in both lipid systems and the activity profiles were the result of the parameters' influence on the second less pronounced permeabilization step. Thus, the activity towards POPC vesicles was determined by the high permeabilizing efficiency, however, changes in the structural parameters preferentially influenced the relatively moderate affinity. In contrast, intensive peptide accumulation via electrostatic interactions was sufficient for the destabilization of highly negatively charged POPG lipid membranes, but changes in the activity profile, as revealed by the modification of Phi, seem to be preferentially caused by variation of the low permeabilizing efficiency. The parameters proved very effective also in modifying antimicrobial and hemolytic activity. However, their influence on cell selectivity was limited. A threshold value of hydrophobicity seems to exist which restricted the activity modifying potential of mu and Phi on both lipid bilayers and cell membranes.

  11. Probing Structural Dynamics and Topology of the KCNE1 Membrane Protein in Lipid Bilayers via Site-Directed Spin Labeling and Electron Paramagnetic Resonance Spectroscopy.

    PubMed

    Sahu, Indra D; Craig, Andrew F; Dunagan, Megan M; Troxel, Kaylee R; Zhang, Rongfu; Meiberg, Andrew G; Harmon, Corrinne N; McCarrick, Robert M; Kroncke, Brett M; Sanders, Charles R; Lorigan, Gary A

    2015-10-20

    KCNE1 is a single transmembrane protein that modulates the function of voltage-gated potassium channels, including KCNQ1. Hereditary mutations in the genes encoding either protein can result in diseases such as congenital deafness, long QT syndrome, ventricular tachyarrhythmia, syncope, and sudden cardiac death. Despite the biological significance of KCNE1, the structure and dynamic properties of its physiologically relevant native membrane-bound state are not fully understood. In this study, the structural dynamics and topology of KCNE1 in bilayered lipid vesicles was investigated using site-directed spin labeling (SDSL) and electron paramagnetic resonance (EPR) spectroscopy. A 53-residue nitroxide EPR scan of the KCNE1 protein sequence including all 27 residues of the transmembrane domain (45-71) and 26 residues of the N- and C-termini of KCNE1 in lipid bilayered vesicles was analyzed in terms of nitroxide side-chain motion. Continuous wave-EPR spectral line shape analysis indicated the nitroxide spin label side-chains located in the KCNE1 TMD are less mobile when compared to the extracellular region of KCNE1. The EPR data also revealed that the C-terminus of KCNE1 is more mobile when compared to the N-terminus. EPR power saturation experiments were performed on 41 sites including 18 residues previously proposed to reside in the transmembrane domain (TMD) and 23 residues of the N- and C-termini to determine the topology of KCNE1 with respect to the 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (POPG) lipid bilayers. The results indicated that the transmembrane domain is indeed buried within the membrane, spanning the width of the lipid bilayer. Power saturation data also revealed that the extracellular region of KCNE1 is solvent-exposed with some of the portions partially or weakly interacting with the membrane surface. These results are consistent with the previously published solution NMR

  12. Centrosymmetric bilayers in the 0.75 A resolution structure of a designed alpha-helical peptide, D,L-Alpha-1.

    PubMed Central

    Patterson, W. R.; Anderson, D. H.; DeGrado, W. F.; Cascio, D.; Eisenberg, D.

    1999-01-01

    We report the 0.75 A crystal structure of a racemic mixture of the 12-residue designed peptide "Alpha-1" (Acetyl-ELLKKLLEELKG), the L-enantiomer of which is described in the accompanying paper. Equivalent solutions of the centrosymmetric bilayers were determined by two direct phasing programs in space groups P1 and P1bar. The unit cell contains two L-alpha-helices and two D-alpha-helices. The columnar-sheet bilayer motif seen in L-Alpha-1 is maintained in the D,L-Alpha-1 structure except that each sheet of head-to-tail helices is composed of one enantiomer and is related to its neighboring sheets by inversion symmetry. Comparison to the L-Alpha-1 structure provides further insight into peptide design. The high resolution and small asymmetric unit allowed building an intricate model (R = 13.1%, Rfree = 14.5%) that incorporates much of the discrete disorder of peptide and solvent. Ethanolamine and 2-methyl-2,4-pentanediol (MPD) molecules bind near helix termini. Rigid body analysis identifies sites of restricted displacements and torsions. Side-chain discrete disorder propagates into the backbone of one helix but not the other. Although no side chain in Alpha-1 is rigid, the environments in the crystal restrict some of them to no or only one active torsion. PMID:10422829

  13. The structure of the CD3 ζζ transmembrane dimer in POPC and raft-like lipid bilayer: a molecular dynamics study.

    PubMed

    Petruk, Ariel Alcides; Varriale, Sonia; Coscia, Maria Rosaria; Mazzarella, Lelio; Merlino, Antonello; Oreste, Umberto

    2013-11-01

    Plasma membrane lipids significantly affect assembly and activity of many signaling networks. The present work is aimed at analyzing, by molecular dynamics simulations, the structure and dynamics of the CD3 ζζ dimer in palmitoyl-oleoyl-phosphatidylcholine bilayer (POPC) and in POPC/cholesterol/sphingomyelin bilayer, which resembles the raft membrane microdomain supposed to be the site of the signal transducing machinery. Both POPC and raft-like environment produce significant alterations in structure and flexibility of the CD3 ζζ with respect to nuclear magnetic resonance (NMR) model: the dimer is more compact, its secondary structure is slightly less ordered, the arrangement of the Asp6 pair, which is important for binding to the Arg residue in the alpha chain of the T cell receptor (TCR), is stabilized by water molecules. Different interactions of charged residues with lipids at the lipid-cytoplasm boundary occur when the two environments are compared. Furthermore, in contrast to what is observed in POPC, in the raft-like environment correlated motions between transmembrane and cytoplasmic regions are observed. Altogether the data suggest that when the TCR complex resides in the raft domains, the CD3 ζζ dimer assumes a specific conformation probably necessary to the correct signal transduction.

  14. Shock-driven fluid-structure interaction for civil design

    SciTech Connect

    Wood, Stephen L; Deiterding, Ralf

    2011-11-01

    The multiphysics fluid-structure interaction simulation of shock-loaded structures requires the dynamic coupling of a shock-capturing flow solver to a solid mechanics solver for large deformations. The Virtual Test Facility combines a Cartesian embedded boundary approach with dynamic mesh adaptation in a generic software framework of flow solvers using hydrodynamic finite volume upwind schemes that are coupled to various explicit finite element solid dynamics solvers (Deiterding et al., 2006). This paper gives a brief overview of the computational approach and presents first simulations that utilize the general purpose solid dynamics code DYNA3D for complex 3D structures of interest in civil engineering. Results from simulations of a reinforced column, highway bridge, multistory building, and nuclear reactor building are presented.

  15. Computational modeling of fluid structural interaction in arterial stenosis

    NASA Astrophysics Data System (ADS)

    Bali, Leila; Boukedjane, Mouloud; Bahi, Lakhdar

    2013-12-01

    Atherosclerosis affects the arterial blood vessels causing stenosis because of which the artery hardens resulting in loss of elasticity in the affected region. In this paper, we present: an approach to model the fluid-structure interaction through such an atherosclerosis affected region of the artery, The blood is assumed as an incompressible Newtonian viscous fluid, and the vessel wall was treated as a thick-walled, incompressible and isotropic material with uniform mechanical properties. The numerical simulation has been studied in the context of The Navier-Stokes equations for an interaction with an elastic solid. The study of fluid flow and wall motion was initially carried out separately, Discretized forms of the transformed wall and flow equations, which are coupled through the boundary conditions at their interface, are obtained by control volume method and simultaneously to study the effects of wall deformability, solutions are obtained for both rigid and elastic walls. The results indicate that deformability of the wall causes an increase in the time average of pressure drop, but a decrease in the maximum wall shear stress. Displacement and stress distributions in the wall are presented.

  16. Fluid-Structure interaction modeling in deformable porous arteries

    NASA Astrophysics Data System (ADS)

    Zakerzadeh, Rana; Zunino, Paolo

    2015-11-01

    A computational framework is developed to study the coupling of blood flow in arteries interacting with a poroelastic arterial wall featuring possibly large deformations. Blood is modeled as an incompressible, viscous, Newtonian fluid using the Navier-Stokes equations and the arterial wall consists of a thick material which is modeled as a Biot system that describes the mechanical behavior of a homogeneous and isotropic elastic skeleton, and connecting pores filled with fluid. Discretization via finite element method leads to the system of nonlinear equations and a Newton-Raphson scheme is adopted to solve the resulting nonlinear system through consistent linearization. Moreover, interface conditions are imposed on the discrete level via mortar finite elements or Nitsche's coupling. The discrete linearized coupled FSI system is solved by means of a splitting strategy, which allows solving the Navier-Stokes and Biot equations separately. The numerical results investigate the effects of proroelastic parameters on the pressure wave propagation in arteries, filtration of incompressible fluids through the porous media, and the structure displacement. The fellowship support from the Computational Modeling & Simulation PhD program at University of Pittsburgh for Rana Zakerzadeh is gratefully acknowledged.

  17. Density and structural anomalies in soft-repulsive dimeric fluids.

    PubMed

    Munaó, Gianmarco; Saija, Franz

    2016-04-14

    We report Monte Carlo results for the fluid structure of a system of dimeric particles interacting via a core-softened potential. More specifically, dimers interact through a repulsive pair potential of an inverse-power form, modified in such a way that the repulsion strength is softened for a given range of distances. The aim of such a study is to investigate how both the elongation of the dimers and the softness of the potential affect some features of the model. Our results show that the dimeric fluid exhibits both density and structural anomalies, even if the interaction is not characterized by two length scales. Upon increasing the aspect ratio of the dimers, such anomalies are progressively hindered, with the structural anomaly surviving even after the disappearance of the density anomaly. These results shed light on the peculiar behaviour of molecular systems of non-spherical shape, showing how geometrical and interaction parameters play a fundamental role in determining the presence of anomalies.

  18. Structure of ternary additive hard-sphere fluid mixtures

    NASA Astrophysics Data System (ADS)

    Malijevský, Alexander; Malijevský, Anatol; Yuste, Santos B.; Santos, Andrés; López de Haro, Mariano

    2002-12-01

    Monte Carlo simulations on the structural properties of ternary fluid mixtures of additive hard spheres are reported. The results are compared with those obtained from a recent analytical approximation [S. B. Yuste, A. Santos, and M. López de Haro, J. Chem. Phys. 108, 3683 (1998)] to the radial distribution functions of hard-sphere mixtures and with the results derived from the solution of the Ornstein-Zernike integral equation with both the Martynov-Sarkisov and the Percus-Yevick closures. Very good agreement between the results of the first two approaches and simulation is observed, with a noticeable improvement over the Percus-Yevick predictions especially near contact.

  19. Fluid Structure Modelling of Blood Flow in Vessels.

    PubMed

    Moatamedi, M; Souli, M; Al-Bahkali, E

    2014-12-01

    This paper describes the capabilities of fluid structure interaction based multi-physics numerical modelling in solving problems related to vascular biomechanics. In this research work, the onset of a pressure pulse was simulated at the entrance of a three dimensional straight segment of the blood vessel like circular tube and the resulting dynamic response in the form of a propagating pulse wave through the wall was analysed and compared. Good agreement was found between the numerical results and the theoretical description of an idealized artery. Work has also been done on implementing the material constitutive models specific for vascular applications.

  20. Fluid Structure Modelling of Blood Flow in Vessels.

    PubMed

    Moatamedi, M; Souli, M; Al-Bahkali, E

    2014-12-01

    This paper describes the capabilities of fluid structure interaction based multi-physics numerical modelling in solving problems related to vascular biomechanics. In this research work, the onset of a pressure pulse was simulated at the entrance of a three dimensional straight segment of the blood vessel like circular tube and the resulting dynamic response in the form of a propagating pulse wave through the wall was analysed and compared. Good agreement was found between the numerical results and the theoretical description of an idealized artery. Work has also been done on implementing the material constitutive models specific for vascular applications. PMID:26336693

  1. Structural and Collisional Relaxations in Liquids and Supercritical Fluids

    SciTech Connect

    Bencivenga, F.; Krisch, M.; Monaco, G.; Sette, F.; Cunsolo, A.; Ruocco, G.; Vispa, A.

    2007-02-23

    The dynamic structure factor S(Q,{omega}) of both associated (water and ammonia) and simple fluids (nitrogen and neon) has been determined by high-resolution inelastic x-ray scattering in the 2-14 nm{sup -1} momentum transfer range. A line-shape analysis with a generalized hydrodynamic model was used to study the involved relaxation process and to characterize its strength and time scale. We observe that in the liquid phase such a process is governed by rearrangements of intermolecular bonds, whereas in the supercritical region it assumes a collisional nature.

  2. Assembly of RNA nanostructures on supported lipid bilayers

    PubMed Central

    Dabkowska, Aleksandra P.; Michanek, Agnes; Jaeger, Luc; Rabe, Michael; Chworos, Arkadiusz; Höök, Fredrik; Nylander, Tommy; Sparr, Emma

    2014-01-01

    The assembly of nucleic acid nanostructures with controlled size and shape has large impact in the fields of nanotechnology, nanomedicine and synthetic biology. The directed arrangement of nanostructures at interfaces is important for many applications. In spite of this, the use of laterally mobile lipid bilayers to control RNA three-dimensional nanostructure formation on surfaces remains largely unexplored. Here, we direct the self-assembly of RNA building blocks into three-dimensional structures of RNA on fluid lipid bilayers composed of cationic 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) or mixtures of zwitterionic 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC) and cationic sphingosine. We demonstrate the stepwise supramolecular assembly of discrete building blocks through specific and selective RNA-RNA interactions, based on results from quartz crystal microbalance with dissipation (QCM-D), ellipsometry, fluorescence recovery after photobleaching (FRAP) and total internal reflection fluorescence microscopy (TIRF) experiments. The assembly can be controlled to give a densely packed single layer of RNA polyhedrons at the fluid lipid bilayer surface. We show that assembly of the 3D structure can be modulated by sequence specific interactions, surface charge and changes in the salt composition and concentration. In addition, the tertiary structure of the RNA polyhedron can be controllably switched from an extended structure to one that is dense and compact. The versatile approach to building up three-dimensional structures of RNA does not require modification of the surface or the RNA molecules, and can be used as a bottom-up means of nanofabrication of functionalized bio-mimicking surfaces. PMID:25417592

  3. Automatable lipid bilayer formation for ion channel studies

    NASA Astrophysics Data System (ADS)

    Poulos, Jason L.; Bang, Hyunwoo; Jeon, Tae-Joon; Schmidt, Jacob J.

    2008-08-01

    Transmembrane proteins and ion channels are important drug targets and have been explored as single molecule sensors. For these proteins to function normally they must be integrated within lipid bilayers; however, the labor and skill required to create artificial lipid bilayers have the limited the possible applications utilizing these proteins. In order to reduce the complexity and cost of lipid bilayer formation and measurement, we have modified a previously published lipid bilayer formation technique using mechanically contacted monolayers so that the process is automatable, requiring minimal operator input. Measurement electronics are integrated with the fluid handling system, greatly reducing the time and operator feedback characteristically required of traditional bilayer experiments. To demonstrate the biological functionality of the resultant bilayers and the system's capabilities as a membrane platform, the ion channel gramicidin A was incorporated and measured with this system.

  4. Structure of hard-hypersphere fluids in odd dimensions

    NASA Astrophysics Data System (ADS)

    Rohrmann, René D.; Santos, Andrés

    2007-11-01

    The structural properties of single component fluids of hard hyperspheres in odd space dimensionalities d are studied with an analytical approximation method that generalizes the rational function approximation earlier introduced in the study of hard-sphere fluids [S. B. Yuste and A. Santos, Phys. Rev. A 43, 5418 (1991)]. The theory makes use of the exact form of the radial distribution function to first order in density and extends it to finite density by assuming a rational form for a function defined in Laplace space, the coefficients being determined by simple physical requirements. Fourier transform in terms of reverse Bessel polynomials constitute the mathematical framework of this approximation, from which an analytical expression for the static structure factor is obtained. In its most elementary form, the method recovers the solution of the Percus-Yevick closure to the Ornstein-Zernike equation for hyperspheres at odd dimensions. The present formalism allows one to go beyond by yielding solutions with thermodynamic consistency between the virial and compressibility routes to any desired equation of state. Excellent agreement with available computer simulation data at d=5 and d=7 is obtained.

  5. Discrete Data Transfer Technique for Fluid-Structure Interaction

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.

    2007-01-01

    This paper presents a general three-dimensional algorithm for data transfer between dissimilar meshes. The algorithm is suitable for applications of fluid-structure interaction and other high-fidelity multidisciplinary analysis and optimization. Because the algorithm is independent of the mesh topology, we can treat structured and unstructured meshes in the same manner. The algorithm is fast and accurate for transfer of scalar or vector fields between dissimilar surface meshes. The algorithm is also applicable for the integration of a scalar field (e.g., coefficients of pressure) on one mesh and injection of the resulting vectors (e.g., force vectors) onto another mesh. The author has implemented the algorithm in a C++ computer code. This paper contains a complete formulation of the algorithm with a few selected results.

  6. Development of a Fluid Structures Interaction Test Technique for Fabrics

    NASA Technical Reports Server (NTRS)

    Zilliac, Gregory G.; Heineck, James T.; Schairer, Edward T.; Mosher, Robert N.; Garbeff, Theodore Joseph

    2012-01-01

    Application of fluid structures interaction (FSI) computational techniques to configurations of interest to the entry, descent and landing (EDL) community is limited by two factors - limited characterization of the material properties for fabrics of interest and insufficient experimental data to validate the FSI codes. Recently ILC Dover Inc. performed standard tests to characterize the static stress-strain response of four candidate fabrics for use in EDL applications. The objective of the tests described here is to address the need for a FSI dataset for CFD validation purposes. To reach this objective, the structural response of fabrics was measured in a very simple aerodynamic environment with well controlled boundary conditions. Two test series were undertaken. The first series covered a range of tunnel conditions and the second focused on conditions that resulted in fabric panel buckling.

  7. Behavior of Bilayer Leaflets in Asymmetric Model Membranes: Atomistic Simulation Studies

    DOE PAGESBeta

    Tian, Jianhui; Nickels, Jonathan; Katsaras, John; Cheng, Xiaolin

    2016-04-27

    Spatial organization within lipid bilayers is an important feature for a range of biological processes. Leaflet compositional asymmetry and lateral lipid organization are just two of the ways in which membrane structure appears to be more complex than initially postulated by the fluid mosaic model. This raises the question of how the phase behavior in one bilayer leaflet may affect the apposing leaflet and how one begins to construct asymmetric model systems to investigate these interleaflet interactions. In this paper, we report on all-atom molecular dynamics simulations (a total of 4.1 μs) of symmetric and asymmetric bilayer systems composed ofmore » liquid-ordered (Lo) or liquid-disordered (Ld) leaflets, based on the nanodomain-forming POPC/DSPC/cholesterol system. We begin by analyzing an asymmetric bilayer with leaflets derived from simulations of symmetric Lo and Ld bilayers. In this system, we observe that the properties of the Lo and Ld leaflets are similar to those of the Lo and Ld leaflets in corresponding symmetric systems. However, it is not obvious that mixing the equilibrium structures of their symmetric counterparts is the most appropriate way to construct asymmetric bilayers nor that these structures will manifest interleaflet couplings that lead to domain registry/antiregistry. We therefore constructed and simulated four additional asymmetric bilayer systems by systematically adding or removing lipids in the Ld leaflet to mimic potential density fluctuations. We find that the number of lipids in the Ld leaflet affects its own properties, as well as those of the apposing Lo leaflet. Collectively, the simulations reveal the presence of weak acyl chain interdigitation across bilayer leaflets, suggesting that interdigitation alone does not contribute significantly to the interleaflet coupling in nonphase-separated bilayers of this chemical composition. Finally, however, the properties of both leaflets appear to be sensitive to changes in in

  8. An investigation of dentinal fluid flow in dental pulp during food mastication: simulation of fluid-structure interaction.

    PubMed

    Su, Kuo-Chih; Chuang, Shu-Fen; Ng, Eddie Yin-Kwee; Chang, Chih-Han

    2014-06-01

    This study uses fluid-structure interaction (FSI) simulation to investigate the relationship between the dentinal fluid flow in the dental pulp of a tooth and the elastic modulus of masticated food particles and to investigate the effects of chewing rate on fluid flow in the dental pulp. Three-dimensional simulation models of a premolar tooth (enamel, dentine, pulp, periodontal ligament, cortical bone, and cancellous bone) and food particle were created. Food particles with elastic modulus of 2,000 and 10,000 MPa were used, respectively. The external displacement loading (5 μm) was gradually directed to the food particle surface for 1 and 0.1 s, respectively, to simulate the chewing of food particles. The displacement and stress on tooth structure and fluid flow in the dental pulp were selected as evaluation indices. The results show that masticating food with a high elastic modulus results in high stress and deformation in the tooth structure, causing faster dentinal fluid flow in the pulp in comparison with that obtained with soft food. In addition, fast chewing of hard food particles can induce faster fluid flow in the pulp, which may result in dental pain. FSI analysis is shown to be a useful tool for investigating dental biomechanics during food mastication. FSI simulation can be used to predict intrapulpal fluid flow in dental pulp; this information may provide the clinician with important concept in dental biomechanics during food mastication.

  9. Negative Coulomb Drag in Double Bilayer Graphene.

    PubMed

    Li, J I A; Taniguchi, T; Watanabe, K; Hone, J; Levchenko, A; Dean, C R

    2016-07-22

    We report on an experimental measurement of Coulomb drag in a double quantum well structure consisting of bilayer-bilayer graphene, separated by few layer hexagonal boron nitride. At low temperatures and intermediate densities, a novel negative drag response with an inverse sign is observed, distinct from the momentum and energy drag mechanisms previously reported in double monolayer graphene. By varying the device aspect ratio, the negative drag component is suppressed and a response consistent with pure momentum drag is recovered. In the momentum drag dominated regime, excellent quantitative agreement with the density and temperature dependence predicted for double bilayer graphene is found. PMID:27494491

  10. Negative Coulomb Drag in Double Bilayer Graphene.

    PubMed

    Li, J I A; Taniguchi, T; Watanabe, K; Hone, J; Levchenko, A; Dean, C R

    2016-07-22

    We report on an experimental measurement of Coulomb drag in a double quantum well structure consisting of bilayer-bilayer graphene, separated by few layer hexagonal boron nitride. At low temperatures and intermediate densities, a novel negative drag response with an inverse sign is observed, distinct from the momentum and energy drag mechanisms previously reported in double monolayer graphene. By varying the device aspect ratio, the negative drag component is suppressed and a response consistent with pure momentum drag is recovered. In the momentum drag dominated regime, excellent quantitative agreement with the density and temperature dependence predicted for double bilayer graphene is found.

  11. Berry phase transition in twisted bilayer graphene

    NASA Astrophysics Data System (ADS)

    Rode, Johannes C.; Smirnov, Dmitri; Schmidt, Hennrik; Haug, Rolf J.

    2016-09-01

    The electronic dispersion of a graphene bilayer is highly dependent on rotational mismatch between layers and can be further manipulated by electrical gating. This allows for an unprecedented control over electronic properties and opens up the possibility of flexible band structure engineering. Here we present novel magnetotransport data in a twisted bilayer, crossing the energetic border between decoupled monolayers and coupled bilayer. In addition a transition in Berry phase between π and 2π is observed at intermediate magnetic fields. Analysis of Fermi velocities and gate induced charge carrier densities suggests an important role of strong layer asymmetry for the observed phenomena.

  12. Negative Coulomb Drag in Double Bilayer Graphene

    NASA Astrophysics Data System (ADS)

    Li, J. I. A.; Taniguchi, T.; Watanabe, K.; Hone, J.; Levchenko, A.; Dean, C. R.

    2016-07-01

    We report on an experimental measurement of Coulomb drag in a double quantum well structure consisting of bilayer-bilayer graphene, separated by few layer hexagonal boron nitride. At low temperatures and intermediate densities, a novel negative drag response with an inverse sign is observed, distinct from the momentum and energy drag mechanisms previously reported in double monolayer graphene. By varying the device aspect ratio, the negative drag component is suppressed and a response consistent with pure momentum drag is recovered. In the momentum drag dominated regime, excellent quantitative agreement with the density and temperature dependence predicted for double bilayer graphene is found.

  13. Small-angle and wide-angle X-ray scattering study on the bilayer structure of synthetic and bovine heart cardiolipins

    NASA Astrophysics Data System (ADS)

    Takahashi, Hiroshi; Hayakawa, Tomohiro; Ito, Kazuki; Takata, Masaki; Kobayashi, Toshihide

    2010-10-01

    Cardiolipin (CL) is a membrane phospholipid containing four fatty acid chains. CL plays an important role in energy transformation in mitochondria. The disorder of CL biosynthesis is involved in a genetic disease, Barth syndrome. Alteration of fatty acid composition of CLs has been found in Barth syndrome patients, i.e., the decrease of unsaturated fatty acid chains. In this study, we investigated how the degree of saturation alters the structure of CL bilayers by using X-ray scattering. Bovine heart CL and two synthetic CLs were compared. Fatty acid compositions of these three CLs have different saturation. Small-angle X-ray scattering data showed that the decrease of the number of double bonds in the unsaturated fatty acid chains causes to thicken the CL bilayers. In addition, wide-angle X-ray scattering data suggested that the decrease reduces the degree of disorder of the hydrophobic region in a liquid crystalline phase. These results may be related to the dysfunction of mitochondria in Barth syndrome.

  14. A New Modular Approach for Tightly Coupled Fluid/Structure Analysis

    NASA Technical Reports Server (NTRS)

    Guruswamy, Guru

    2003-01-01

    Static aeroelastic computations are made using a C++ executive suitable for closely coupled fluid/structure interaction studies. The fluid flow is modeled using the Euler/Navier Stokes equations and the structure is modeled using finite elements. FORTRAN based fluids and structures codes are integrated under C++ environment. The flow and structural solvers are treated as separate object files. The data flow between fluids and structures is accomplished using I/O. Results are demonstrated for transonic flow over partially flexible surface that is important for aerospace vehicles. Use of this development to accurately predict flow induced structural failure will be demonstrated.

  15. A high performance transparent resistive switching memory made from ZrO2/AlON bilayer structure

    NASA Astrophysics Data System (ADS)

    Tsai, Tsung-Ling; Chang, Hsiang-Yu; Lou, Jesse Jen-Chung; Tseng, Tseung-Yuen

    2016-04-01

    In this study, the switching properties of an indium tin oxide (ITO)/zirconium oxide (ZrO2)/ITO single layer device and those of a device with an aluminum oxynitride (AlON) layer were investigated. The devices with highly transparent characteristics were fabricated. Compared with the ITO/ZrO2/ITO single layer device, the ITO/ZrO2/AlON/ITO bilayer device exhibited a larger ON/OFF ratio, higher endurance performance, and superior retention properties by using a simple two-step forming process. These substantial improvements in the resistive switching properties were attributed to the minimized influence of oxygen migration through the ITO top electrode (TE), which can be realized by forming an asymmetrical conductive filament with the weakest part at the ZrO2/AlON interface. Therefore, in the ITO/ZrO2/AlON/ITO bilayer device, the regions where conductive filament formation and rupture occur can be effectively moved from the TE interface to the interior of the device.

  16. Fabrication of TERFENOL-D/PZT bilayer structures for the study of voltage control of magnetization easy axis

    NASA Astrophysics Data System (ADS)

    Viswan, Ravindranath; Kim, Sang-Hyun; Jeong, Jong-Ryul; Shin, Sung-Chul

    Polycrystalline TERFENOL-D/PbZr 0.52Ti 0.48O 3 (PZT) bilayer films were deposited using RF magnetron sputtering on Pt(1 1 1)/MgO(1 0 0) substrates for the purpose of studying voltage control of magnetization easy axis. TERFENOL-D films deposited at 500 °C on PZT show in-plane anisotropy. In our samples where the voltage is applied perpendicular to the PZT film plane, TERFENOL-D films with perpendicular magnetic anisotropy are only suitable for the above mentioned study. TERFENOL-D/PZT bilayer films with perpendicular magnetic anisotropy can be obtained by annealing in a perpendicular magnetic field at temperatures between 200 and 350 °C. However, deposition and annealing of TERFENOL-D films at high-temperatures (⩾350 °C) causes degradation of the ferroelectric properties of PZT. In order to preserve the good switching characteristics of PZT films and to observe this effect at low voltages, TERFENOL-D films have to be deposited and annealed at low temperatures (<350 °C).

  17. Fluid Structural Analysis of Urine Flow in a Stented Ureter.

    PubMed

    Gómez-Blanco, J Carlos; Martínez-Reina, F Javier; Cruz, Domingo; Pagador, J Blas; Sánchez-Margallo, Francisco M; Soria, Federico

    2016-01-01

    Many urologists are currently studying new designs of ureteral stents to improve the quality of their operations and the subsequent recovery of the patient. In order to help during this design process, many computational models have been developed to simulate the behaviour of different biological tissues and provide a realistic computational environment to evaluate the stents. However, due to the high complexity of the involved tissues, they usually introduce simplifications to make these models less computationally demanding. In this study, the interaction between urine flow and a double-J stented ureter with a simplified geometry has been analysed. The Fluid-Structure Interaction (FSI) of urine and the ureteral wall was studied using three models for the solid domain: Mooney-Rivlin, Yeoh, and Ogden. The ureter was assumed to be quasi-incompressible and isotropic. Data obtained in previous studies from ex vivo and in vivo mechanical characterization of different ureters were used to fit the mentioned models. The results show that the interaction between the stented ureter and urine is negligible. Therefore, we can conclude that this type of models does not need to include the FSI and could be solved quite accurately assuming that the ureter is a rigid body and, thus, using the more simple Computational Fluid Dynamics (CFD) approach.

  18. Bicuspid aortic valve hemodynamics: a fluid-structure interaction study

    NASA Astrophysics Data System (ADS)

    Chandra, Santanu; Seaman, Clara; Sucosky, Philippe

    2011-11-01

    The bicuspid aortic valve (BAV) is a congenital defect in which the aortic valve forms with two leaflets instead of three. While calcific aortic valve disease (CAVD) also develops in the normal tricuspid aortic valve (TAV), its progression in the BAV is more rapid. Although studies have suggested a mechano-potential root for the disease, the native BAV hemodynamics remains largely unknown. This study aimed at characterizing BAV hemodynamics and quantifying the degree of wall-shear stress (WSS) abnormality on BAV leaflets. Fluid-structure interaction models validated with particle-image velocimetry were designed to predict the flow and leaflet dynamics in idealized TAV and BAV anatomies. Valvular function was quantified in terms of the effective orifice area. The regional leaflet WSS was characterized in terms of oscillatory shear index, temporal shear magnitude and temporal shear gradient. The predictions indicate the intrinsic degree of stenosis of the BAV anatomy, reveal drastic differences in shear stress magnitude and pulsatility on BAV and TAV leaflets and confirm the side- and site-specificity of the leaflet WSS. Given the ability of abnormal fluid shear stress to trigger valvular inflammation, these results support the existence of a mechano-etiology of CAVD in the BAV.

  19. The asymptotic structure of a slender coiling fluid thread

    NASA Astrophysics Data System (ADS)

    Blount, Maurice; Lister, John

    2010-11-01

    The buckling of a viscous fluid thread as it falls through air onto a stationary surface is a well-known breakfast-time phenomenon which exhibits a rich variety of dynamical regimes [1]. Since the bending resistance of a slender thread is small, bending motion is largely confined to a short region of coiling near the surface. If the height of fall is large enough, then the thread above the coiling region forms a `tail' that falls nearly vertically under gravity but is deflected slightly due to forces exerted on it by the coil. Although it is possible to use force balances in the coil to estimate scalings for the coiling frequency, we analyse the solution structure of the entire thread in the asymptotic limit of a very slender thread and thereby include the dynamic interaction between the coil and the tail. Quantitative predictions of the coiling frequency are obtained which demonstrate the existence of leading-order corrections to scalings previously derived. In particular, we show that in the regime where the deflection of the tail is governed by a balance between centrifugal acceleration, hoop stress and gravity, the tail behaves as a flexible circular pendulum that is forced by bending stress exerted by the coil. The amplitude of the response is calculated and the previously observed resonance when the coiling frequency coincides with one of the eigenfrequencies of a free flexible pendulum is thereby explained. [1] N.M. Ribe et al., J. Fluid Mech. 555, 275-297.

  20. Fluid Structural Analysis of Urine Flow in a Stented Ureter

    PubMed Central

    Gómez-Blanco, J. Carlos; Martínez-Reina, F. Javier; Cruz, Domingo; Pagador, J. Blas; Sánchez-Margallo, Francisco M.; Soria, Federico

    2016-01-01

    Many urologists are currently studying new designs of ureteral stents to improve the quality of their operations and the subsequent recovery of the patient. In order to help during this design process, many computational models have been developed to simulate the behaviour of different biological tissues and provide a realistic computational environment to evaluate the stents. However, due to the high complexity of the involved tissues, they usually introduce simplifications to make these models less computationally demanding. In this study, the interaction between urine flow and a double-J stented ureter with a simplified geometry has been analysed. The Fluid-Structure Interaction (FSI) of urine and the ureteral wall was studied using three models for the solid domain: Mooney-Rivlin, Yeoh, and Ogden. The ureter was assumed to be quasi-incompressible and isotropic. Data obtained in previous studies from ex vivo and in vivo mechanical characterization of different ureters were used to fit the mentioned models. The results show that the interaction between the stented ureter and urine is negligible. Therefore, we can conclude that this type of models does not need to include the FSI and could be solved quite accurately assuming that the ureter is a rigid body and, thus, using the more simple Computational Fluid Dynamics (CFD) approach. PMID:27127535

  1. Electronic structure evolution of single bilayer Bi(1 1 1) film on 3D topological insulator Bi2Se x Te3-x surfaces

    NASA Astrophysics Data System (ADS)

    Lei, Tao; Jin, Kyung-Hwan; Zhang, Nian; Zhao, Jia-Li; Liu, Chen; Li, Wen-Jie; Wang, Jia-Ou; Wu, Rui; Qian, Hai-Jie; Liu, Feng; Ibrahim, Kurash

    2016-06-01

    The electronic state evolution of single bilayer (1BL) Bi(1 1 1) deposited on three-dimensional (3D) Bi2Se x Te3-x topological insulators at x  =  0, 1.26, 2, 2.46, 3 is systematically investigated by angle-resolved photoemission spectroscopy (ARPES). Our results indicate that the electronic structures of epitaxial Bi films are strongly influenced by the substrate especially the topmost sublayer near the Bi films, manifesting in two main aspects. First, the Se atoms cause a stronger charge transfer effect, which induces a giant Rashba-spin splitting, while the low electronegativity of Te atoms induces a strong hybridization at the interface. Second, the lattice strain notably modifies the band dispersion of the surface bands. Furthermore, our experimental results are elucidated by first-principles band structure calculations.

  2. The Structure of Herpesvirus Fusion Glycoprotein B-Bilayer Complex Reveals the Protein-Membrane and Lateral Protein-Protein Interaction

    PubMed Central

    Maurer, Ulrike E.; Zeev-Ben-Mordehai, Tzviya; Pandurangan, Arun Prasad; Cairns, Tina M.; Hannah, Brian P.; Whitbeck, J. Charles; Eisenberg, Roselyn J.; Cohen, Gary H.; Topf, Maya; Huiskonen, Juha T.; Grünewald, Kay

    2013-01-01

    Summary Glycoprotein B (gB) is a key component of the complex herpesvirus fusion machinery. We studied membrane interaction of two gB ectodomain forms and present an electron cryotomography structure of the gB-bilayer complex. The two forms differed in presence or absence of the membrane proximal region (MPR) but showed an overall similar trimeric shape. The presence of the MPR impeded interaction with liposomes. In contrast, the MPR-lacking form interacted efficiently with liposomes. Lateral interaction resulted in coat formation on the membranes. The structure revealed that interaction of gB with membranes was mediated by the fusion loops and limited to the outer membrane leaflet. The observed intrinsic propensity of gB to cluster on membranes indicates an additional role of gB in driving the fusion process forward beyond the transient fusion pore opening and subsequently leading to fusion pore expansion. PMID:23850455

  3. Assembly of nothing: equilibrium fluids with designed structured porosity.

    PubMed

    Lindquist, Beth A; Jadrich, Ryan B; Truskett, Thomas M

    2016-03-14

    Controlled micro- to meso-scale porosity is a common materials design goal with possible applications ranging from molecular gas adsorption to particle size selective permeability or solubility. Here, we use inverse methods of statistical mechanics to design an isotropic pair interaction that, in the absence of an external field, assembles particles into an inhomogeneous fluid matrix surrounding pores of prescribed size ordered in a lattice morphology. The pore size can be tuned via modification of temperature or particle concentration. Moreover, modulating density reveals a rich series of microphase-separated morphologies including pore- or particle-based lattices, pore- or particle-based columns, and bicontinuous or lamellar structures. Sensitivity of pore assembly to the form of the designed interaction potential is explored. PMID:26883309

  4. Noncollinear Fe spin structure in (Sm-Co)/Fe exchange-spring bilayers: layer-resolved {sup 57}Fe Mssbauer spectroscopy and electronic structure calculations.

    SciTech Connect

    Uzdin, V. M.; Vega, A.; Khrenov, A.; Keune, W.; Kuncser, V. E.; Jiang, J. S.; Bader, S. D.

    2012-01-01

    Magnetization reversal in nanoscale (Sm-Co)/Fe (hard/soft) bilayer exchange-spring magnets with in-plane uniaxial magnetic anisotropy was investigated by magnetometry, conversion-electron Moessbauer spectroscopy (CEMS) and atomistic Fe spin-structure calculations. Magnetization loops along the easy direction exhibit signatures typical of exchange-spring magnets. In-field CEMS at inclined {gamma}-ray incidence onto thin (2 nm) {sup 57}Fe probe layers embedded at various depths in the 20-nm-thick natural (soft) Fe layer provides depth-dependent information (via the line-intensity ratio R{sub 23} as a function of the applied field H) about the in-plane rotation of Fe spins. A minimum in the R{sub 23}-vs-H dependence at (H{sub min}, R{sub min}) determines the field where Fe magnetic moments roughly adopt an average perpendicular orientation during their reversal from positive to negative easy-axis orientation. A monotonic decrease of H{sub min} with distance from the hard/soft interface is observed. Rotation of Fe spins takes place even in the interface region in applied fields far below the field of irreversible switching, H{sub irr}, of the hard phase. Formation of an Fe-Co alloy is detected in the interface region. For comparison, the noncollinear Fe spin structure during reversal and the resulting R{sub 23} ratio were obtained by electronic-structure calculations based on a quantum-mechanical Hamiltonian for itinerant electrons. The coupling at the hard/soft interface is described by the uniaxial exchange-anisotropy field, hint, as a parameter. Our calculated R{sub 23} ratios as a function of the (reduced) applied field h exhibit similar features as observed in the experiment, in particular a minimum at (h{sub min}, R{sub min}). R{sub min} is found to increase with hint, thus providing a measure of the interface coupling. Evidence is provided for the existence of fluctuations of the interface coupling. The calculations also show that the Fe spin spiral formed

  5. Proceedings of the 1985 pressure vessels and piping conference. Volume PVP-98-7. Fluid-structure dynamics

    SciTech Connect

    Ma, D.C.; Moody, F.J.

    1985-01-01

    Fluid-structure dynamics is an important subject in various fields such as nuclear power, petrochemical, offshore, and aerospace industries. The term ''fluid-structure dynamics'' covers the structural response, fluid transients and their interactions (fluid-structure interactions) of fluid-structure systems can be either: (1) fluid contained within structures; or (2) structures surrounded by fluid. Examples of (1) are pressure waves in piping and seismic response of liquid-storage tanks. Examples of (2) are fluid-induced vibration and dynamic response of submerged components. The response of fluid-structure systems can be either vibrational in nature or highly transient depending on the characteristics of external loadings. The aim of this volume is to provide a forum for bringing together recent research activities in various areas of fluid-structure dynamics. It is hoped that this volume will be beneficial for future research and upgrade the current analysis and design methodology of fluid-structure systems under dynamic loadings.

  6. Structural cooling fluid tube for supporting a turbine component and supplying cooling fluid to transition section

    SciTech Connect

    Charron, Richard; Pierce, Daniel

    2015-08-11

    A shaft cover support for a gas turbine engine is disclosed. The shaft cover support not only provides enhanced support to a shaft cover of the gas turbine engine, but also includes a cooling fluid chamber for passing fluids from a rotor air cooling supply conduit to an inner ring cooling manifold. Furthermore, the shaft cover support may include a cooling shield supply extending from the cooling fluid chamber between the radially outward inlet and the radially inward outlet on the radially extending region and in fluid communication with the cooling fluid chamber for providing cooling fluids to a transition section. The shaft cover support may also provide additional stiffness and reduce interference of the flow from the compressor. In addition, the shaft cover support accommodates a transition section extending between compressor and turbine sections of the gas turbine engine.

  7. The interaction of polyphenols with bilayers: conditions for increasing bilayer adhesion.

    PubMed Central

    Huh, N W; Porter, N A; McIntosh, T J; Simon, S A

    1996-01-01

    Because proteins and other molecules with a high polyphenol content are commonly involved in adhesion processes, we are investigating the interactions between polyphenols and biological materials. A naturally occurring polyphenol that binds a variety of proteins and lipids is tannic acid (TA), which contains five digallic acid residues covalently linked to a central D-glucose. A previous study has shown that TA increases the adhesion between apposing phosphatidylcholine (PC) bilayers and over a very narrow concentration range collapses the interbilayer fluid space from about 15 A to 5 A. To determine the chemical requirements a polyphenolic molecule must possess to increase bilayer adhesion, we have synthesized several simpler TA analogs that vary in their size, shape, and number of gallic acid and hydroxyl groups. X-ray diffraction, absorbance, binding, and differential scanning calorimetry measurements were used to investigate the interaction of these polyphenolic molecules with egg PC (EPC) and dipalmitoyl PC (DPPC) bilayers. Of these synthetic polyphenols, only penta-O-galloyl-alpha-D-glucose (PGG) was able to completely mimic the effects of TA by collapsing the interbilayer fluid space from 15 A to 5 A, decreasing the dipole potential by about 300 mV, increasing the transition enthalpy of DPPC liposomes, and inducing an interdigitated phase in DPPC. Binding studies indicated that the fluid space was reduced to 5 A at an EPC:PGG mole ratio of 5:1. We conclude that these polyphenols collapse the fluid space of PC bilayers because they 1) are amphipathic and partition into the bilayers interfacial region, 2) are long enough to span the interbilayer space, 3) contain several gallic acids distributed so that they can partition simultaneously into apposing bilayers, and 4) have sufficient gallic acid residues to interact with all lipid headgroups and cover the bilayer surface. Under these conditions we conclude that the polyphenols from interbilayer bridges. We

  8. The Many Roles of Lagrangian Coherent Structures in Fluid Mixing

    NASA Astrophysics Data System (ADS)

    Ouellette, N. T.

    2014-12-01

    Understanding, characterizing, and modeling hydrodynamic mixing and transport in unsteady and turbulent flows remains a tremendous challenge despite decades of work. A wide array of techniques have been applied to mixing, ranging from statistical mechanics to stochastic modeling to decompositions of the flow field into discrete coherent structures. Recent years have seen significant progress in applying the tools and methods of dynamical systems theory to turbulent mixing. Such methods are usually applied in the Lagrangian framework, and are based on studying advection directly. Using data from quasi-two-dimensional laboratory experiments and numerical simulations, I will discuss the roles played by one particular mixing diagnostic: so-called Lagrangian Coherent Structures (LCSs). LCSs are defined to be distinguished material lines that are the dominant barriers to fluid transport and that organize advection. Here, I will demonstrate that they also play other roles. In particular, I will show that they separate regions of the flow field with distinct spectral dynamics, that they act as aligning structures for transported anisotropic particles, and that they can be attractors for self-motile particles.

  9. Fluid-structure interactions in compressible cavity flows

    SciTech Connect

    Wagner, Justin L.; Casper, Katya Marie; Beresh, Steven J.; Hunter, Patrick S.; Spillers, Russell Wayne; Henfling, John F.; Mayes, Randall L.

    2015-06-08

    Experiments were performed to understand the complex fluid-structure interactions that occur during aircraft internal store carriage. A cylindrical store was installed in a rectangular cavity having a length-to-depth ratio of 3.33 and a length-to-width ratio of 1. The Mach number ranged from 0.6 to 2.5 and the incoming boundary layer was turbulent. Fast-response pressure measurements provided aeroacoustic loading in the cavity, while triaxial accelerometers provided simultaneous store response. Despite occupying only 6% of the cavity volume, the store significantly altered the cavity acoustics. The store responded to the cavity flow at its natural structural frequencies, and it exhibited a directionally dependent response to cavity resonance. Specifically, cavity tones excited the store in the streamwise and wall-normal directions consistently, whereas a spanwise response was observed only occasionally. Also, the streamwise and wall-normal responses were attributed to the longitudinal pressure waves and shear layer vortices known to occur during cavity resonance. Although the spanwise response to cavity tones was limited, broadband pressure fluctuations resulted in significant spanwise accelerations at store natural frequencies. As a result, the largest vibrations occurred when a cavity tone matched a structural natural frequency, although energy was transferred more efficiently to natural frequencies having predominantly streamwise and wall-normal motions.

  10. Fluid-structure interactions in compressible cavity flows

    DOE PAGESBeta

    Wagner, Justin L.; Casper, Katya Marie; Beresh, Steven J.; Hunter, Patrick S.; Spillers, Russell Wayne; Henfling, John F.; Mayes, Randall L.

    2015-06-08

    Experiments were performed to understand the complex fluid-structure interactions that occur during aircraft internal store carriage. A cylindrical store was installed in a rectangular cavity having a length-to-depth ratio of 3.33 and a length-to-width ratio of 1. The Mach number ranged from 0.6 to 2.5 and the incoming boundary layer was turbulent. Fast-response pressure measurements provided aeroacoustic loading in the cavity, while triaxial accelerometers provided simultaneous store response. Despite occupying only 6% of the cavity volume, the store significantly altered the cavity acoustics. The store responded to the cavity flow at its natural structural frequencies, and it exhibited a directionallymore » dependent response to cavity resonance. Specifically, cavity tones excited the store in the streamwise and wall-normal directions consistently, whereas a spanwise response was observed only occasionally. Also, the streamwise and wall-normal responses were attributed to the longitudinal pressure waves and shear layer vortices known to occur during cavity resonance. Although the spanwise response to cavity tones was limited, broadband pressure fluctuations resulted in significant spanwise accelerations at store natural frequencies. As a result, the largest vibrations occurred when a cavity tone matched a structural natural frequency, although energy was transferred more efficiently to natural frequencies having predominantly streamwise and wall-normal motions.« less

  11. Functional One-Dimensional Lipid Bilayers on Carbon Nanotube Templates

    SciTech Connect

    Artyukhin, A; Shestakov, A; Harper, J; Bakajin, O; Stroeve, P; Noy, A

    2004-07-23

    We present one-dimensional (1-D) lipid bilayer structures that integrate carbon nanotubes with a key biological environment-phospholipid membrane. Our structures consist of lipid bilayers wrapped around carbon nanotubes modified with a hydrophilic polymer cushion layer. Despite high bilayer curvature, the lipid membrane maintains its fluidity and can sustain repeated damage-recovery cycles. We also present the first evidence of spontaneous insertion of pore-forming proteins into 1-D lipid bilayers. These structures could lead to the development of new classes of biosensors and bioelectronic devices.

  12. Parallel Three-Dimensional Computation of Fluid Dynamics and Fluid-Structure Interactions of Ram-Air Parachutes

    NASA Technical Reports Server (NTRS)

    Tezduyar, Tayfun E.

    1998-01-01

    This is a final report as far as our work at University of Minnesota is concerned. The report describes our research progress and accomplishments in development of high performance computing methods and tools for 3D finite element computation of aerodynamic characteristics and fluid-structure interactions (FSI) arising in airdrop systems, namely ram-air parachutes and round parachutes. This class of simulations involves complex geometries, flexible structural components, deforming fluid domains, and unsteady flow patterns. The key components of our simulation toolkit are a stabilized finite element flow solver, a nonlinear structural dynamics solver, an automatic mesh moving scheme, and an interface between the fluid and structural solvers; all of these have been developed within a parallel message-passing paradigm.

  13. Bathroom greywater recycling using polyelectrolyte-complex bilayer membrane: Advanced study of membrane structure and treatment efficiency.

    PubMed

    Oh, K S; Poh, P E; Chong, M N; Chan, E S; Lau, E V; Saint, C P

    2016-09-01

    Polyelectrolyte-complex bilayer membrane (PCBM) was fabricated using biodegradable chitosan and alginate polymers for subsequent application in the treatment of bathroom greywater. In this study, the properties of PCBMs were studied and it was found that the formation of polyelectrolyte network reduced the molecular weight cut-off (MWCO) from 242kDa in chitosan membrane to 2.71kDa in PCBM. The decrease in MWCO of PCBM results in better greywater treatment efficiency, subsequently demonstrated in a greywater filtration study where treated greywater effluent met the household reclaimed water standard of <2 NTU turbidity and <30ppm total suspended solids (TSS). In addition, a further 20% improvement in chemical oxygen demand (COD) removal was achieved as compared to a single layer chitosan membrane. Results from this study show that the biodegradable PCBM is a potential membrane material in producing clean treated greywater for non-potable applications. PMID:27185127

  14. Bathroom greywater recycling using polyelectrolyte-complex bilayer membrane: Advanced study of membrane structure and treatment efficiency.

    PubMed

    Oh, K S; Poh, P E; Chong, M N; Chan, E S; Lau, E V; Saint, C P

    2016-09-01

    Polyelectrolyte-complex bilayer membrane (PCBM) was fabricated using biodegradable chitosan and alginate polymers for subsequent application in the treatment of bathroom greywater. In this study, the properties of PCBMs were studied and it was found that the formation of polyelectrolyte network reduced the molecular weight cut-off (MWCO) from 242kDa in chitosan membrane to 2.71kDa in PCBM. The decrease in MWCO of PCBM results in better greywater treatment efficiency, subsequently demonstrated in a greywater filtration study where treated greywater effluent met the household reclaimed water standard of <2 NTU turbidity and <30ppm total suspended solids (TSS). In addition, a further 20% improvement in chemical oxygen demand (COD) removal was achieved as compared to a single layer chitosan membrane. Results from this study show that the biodegradable PCBM is a potential membrane material in producing clean treated greywater for non-potable applications.

  15. Fluid Analysis and Improved Structure of an ATEG Heat Exchanger Based on Computational Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Tang, Z. B.; Deng, Y. D.; Su, C. Q.; Yuan, X. H.

    2015-06-01

    In this study, a numerical model has been employed to analyze the internal flow field distribution in a heat exchanger applied for an automotive thermoelectric generator based on computational fluid dynamics. The model simulates the influence of factors relevant to the heat exchanger, including the automotive waste heat mass flow velocity, temperature, internal fins, and back pressure. The result is in good agreement with experimental test data. Sensitivity analysis of the inlet parameters shows that increase of the exhaust velocity, compared with the inlet temperature, makes little contribution (0.1 versus 0.19) to the heat transfer but results in a detrimental back pressure increase (0.69 versus 0.21). A configuration equipped with internal fins is proved to offer better thermal performance compared with that without fins. Finally, based on an attempt to improve the internal flow field, a more rational structure is obtained, offering a more homogeneous temperature distribution, higher average heat transfer coefficient, and lower back pressure.

  16. A non-magnetic spacer layer effect on spin layers (7/2,3) in a bi-layer ferromagnetic dendrimer structure: Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Jabar, A.; Tahiri, N.; Bahmad, L.; Benyoussef, A.

    2016-11-01

    A bi-layer system consisting of layers of spins (7/2, 3) in a ferromagnetic dendrimer structure, separated by a non-magnetic spacer, is studied by Monte Carlo simulations. The effect of the RKKY interactions is investigated and discussed for such system. It is shown that the magnetic properties in the two magnetic layers depend strongly on the thickness of the magnetic and non-magnetic layers. The total magnetizations and susceptibilities are studied as a function of the reduced temperature. The effect of the reduced exchange interactions as well as the reduced crystal field is outlined. On other hand, the critical temperature is discussed as a function of the magnetic layer values. To complete this study we presented and discussed the magnetic hysteresis cycles.

  17. Minimal continuum theories of structure formation in dense active fluids

    NASA Astrophysics Data System (ADS)

    Dunkel, Jörn; Heidenreich, Sebastian; Bär, Markus; Goldstein, Raymond E.

    2013-04-01

    Self-sustained dynamical phases of living matter can exhibit remarkable similarities over a wide range of scales, from mesoscopic vortex structures in microbial suspensions and motility assays of biopolymers to turbulent large-scale instabilities in flocks of birds or schools of fish. Here, we argue that, in many cases, the phenomenology of such active states can be efficiently described in terms of fourth- and higher-order partial differential equations. Structural transitions in these models can be interpreted as Landau-type kinematic transitions in Fourier (wavenumber) space, suggesting that microscopically different biological systems can share universal long-wavelength features. This general idea is illustrated through numerical simulations for two classes of continuum models for incompressible active fluids: a Swift-Hohenberg-type scalar field theory, and a minimal vector model that extends the classical Toner-Tu theory and appears to be a promising candidate for the quantitative description of dense bacterial suspensions. We discuss how microscopic symmetry-breaking mechanisms can enter macroscopic continuum descriptions of collective microbial motion near surfaces, and conclude by outlining future applications.

  18. Hamilton's Principle for External Viscous FLUID-STRUCTURE Interaction

    NASA Astrophysics Data System (ADS)

    BENAROYA, H.; WEI, T.

    2000-11-01

    Hamilton's principle is extended so as to be able to model external flow-structure interaction. This is accomplished by using Reynold's Transport theorem. In this form Hamilton's principle is hybrid in the sense that it has an analytical part as well as a part that depends on experimentally derived functions. Examples are presented. The discussion on implications and extensions is extensive. In this work, a general theory is developed for the case where the configuration is not prescribed at the end times of the variational principle. This leads to a single governing equation of motion. This limitation can be removed by prescribing the end times, as usually done. This is outlined in the present paper, and will be the subject of a future paper.A detailed discussion is also presented of the experimental work performed in parallel with and in support of the theoretical developments. As a true fluid-structural model, it is necessary to fully couple the dynamics. This has been the foundation of our formulation.

  19. Direct differentiation of the quasi-incompressible fluid formulation of fluid-structure interaction using the PFEM

    NASA Astrophysics Data System (ADS)

    Zhu, Minjie; Scott, Michael H.

    2016-07-01

    Accurate and efficient response sensitivities for fluid-structure interaction (FSI) simulations are important for assessing the uncertain response of coastal and off-shore structures to hydrodynamic loading. To compute gradients efficiently via the direct differentiation method (DDM) for the fully incompressible fluid formulation, approximations of the sensitivity equations are necessary, leading to inaccuracies of the computed gradients when the geometry of the fluid mesh changes rapidly between successive time steps or the fluid viscosity is nonzero. To maintain accuracy of the sensitivity computations, a quasi-incompressible fluid is assumed for the response analysis of FSI using the particle finite element method and DDM is applied to this formulation, resulting in linearized equations for the response sensitivity that are consistent with those used to compute the response. Both the response and the response sensitivity can be solved using the same unified fractional step method. FSI simulations show that although the response using the quasi-incompressible and incompressible fluid formulations is similar, only the quasi-incompressible approach gives accurate response sensitivity for viscous, turbulent flows regardless of time step size.

  20. Unsteady dissipative structures in non-Newtonian fluid flow through a porous medium

    SciTech Connect

    Azizov, Kh.F.

    1995-05-01

    The nonuniform space-time pressure and velocity distributions in an initially nonempty stratum with constant initial pressure created by pumping a non-Newtonian fluid through the boundary of the stratum are investigated. The injected fluid and the fluid present in the stratum before injection have identical physical properties. The conditions of formation of traveling fronts and localized structures are analyzed as functions of the nonlinearity of the rheological law of the fluid and the injection regime.

  1. Intercalation of small hydrophobic molecules in lipid bilayers containing cholesterol

    SciTech Connect

    Worcester, D.L.; Hamacher, K.; Kaiser, H.; Kulasekere, R.; Torbet, J.

    1994-12-31

    Partitioning of small hydrophobic molecules into lipid bilayers containing cholesterol has been studied using the 2XC diffractometer at the University of Missouri Research Reactor. Locations of the compounds were determined by Fourier difference methods with data from both deuterated and undeuterated compounds introduced into the bilayers from the vapor phase. Data fitting procedures were developed for determining how well the compounds were localized. The compounds were found to be localized in a narrow region at the center of the hydrophobic layer, between the two halves of the bilayer. The structures are therefore intercalated structures with the long axis of the molecules in the plane of the bilayer.

  2. Liquid to quasicrystal transition in bilayer water

    NASA Astrophysics Data System (ADS)

    Johnston, Jessica C.; Kastelowitz, Noah; Molinero, Valeria

    2010-10-01

    The phase behavior of confined water is a topic of intense and current interest due to its relevance in biology, geology, and materials science. Nevertheless, little is known about the phases that water forms even when confined in the simplest geometries, such as water confined between parallel surfaces. Here we use molecular dynamics simulations to compute the phase diagram of two layers of water confined between parallel non hydrogen bonding walls. This study shows that the water bilayer forms a dodecagonal quasicrystal, as well as two previously unreported bilayer crystals, one tiled exclusively by pentagonal rings. Quasicrystals, structures with long-range order but without periodicity, have never before been reported for water. The dodecagonal quasicrystal is obtained from the bilayer liquid through a reversible first-order phase transition and has diffusivity intermediate between that of the bilayer liquid and ice phases. The water quasicrystal and the ice polymorphs based on pentagons are stabilized by compression of the bilayer and are not templated by the confining surfaces, which are smooth. This demonstrates that these novel phases are intrinsically favored in bilayer water and suggests that these structures could be relevant not only for confined water but also for the wetting and properties of water at interfaces.

  3. Solute effects on the colloidal and phase behavior of lipid bilayer membranes: ethanol-dipalmitoylphosphatidylcholine mixtures.

    PubMed Central

    Vierl, U; Löbbecke, L; Nagel, N; Cevc, G

    1994-01-01

    By means of the scanning differential calorimetry, x-ray diffractometry, and the dynamic light scattering, we have systematically studied the phase and packing properties of dipalmitoylphosphatidylcholine vesicles or multibilayers in the presence of ethanol. We have also determined the partial ternary phase diagram of such dipalmitoylphosphatidylcholine/water/ethanol mixtures. The directly measured variability of the structural bilayer parameters implies that ethanol binding to the phospholipid bilayers increases the lateral as well as the transverse repulsion between the lipid molecules. This enlarges the hydrocarbon tilt (by up to 23 degrees) and molecular area (by < or = 40%). Ethanol-phospholid association also broadens the interface and, thus, promotes lipid headgroup solvation. This results in excessive swelling (by 130%) of the phosphatidylcholine bilayers in aqueous ethanol solutions. Lateral bilayer expansion, moreover, provokes a successive interdigitation of the hydrocarbon chains in the systems with bulk ethanol concentrations of 0.4-1.2 M. The hydrocarbon packing density as well as the propensity for the formation of lamellar gel phases simultaneously increase. The pretransition temperature of phosphatidylcholine bilayers is more sensitive to the addition of alcohol (initial shift: delta Tp = 22 degrees C/mol) than the subtransition temperature (delta Ts reversible 5 degrees C/mol), whereas the chain-melting phase transition temperature is even less affected (delta Tm = 1.8 degrees C/mol). After an initial decrease of 3 degrees for the bulk ethanol concentrations below 1.2 M, the Tm value increases by 2.5 degrees above this limiting concentration. The gel-phase phosphatidylcholine membranes below Tm are fully interdigitated above this limiting concentration. The chain tilt on the fringe of full chain interdigitation is zero and increases with higher ethanol concentrations. Above Tm, some of the lipid molecules are solubilized by the bound ethanol

  4. Viscoelastic deformation of lipid bilayer vesicles.

    PubMed

    Wu, Shao-Hua; Sankhagowit, Shalene; Biswas, Roshni; Wu, Shuyang; Povinelli, Michelle L; Malmstadt, Noah

    2015-10-01

    Lipid bilayers form the boundaries of the cell and its organelles. Many physiological processes, such as cell movement and division, involve bending and folding of the bilayer at high curvatures. Currently, bending of the bilayer is treated as an elastic deformation, such that its stress-strain response is independent of the rate at which bending strain is applied. We present here the first direct measurement of viscoelastic response in a lipid bilayer vesicle. We used a dual-beam optical trap (DBOT) to stretch 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) giant unilamellar vesicles (GUVs). Upon application of a step optical force, the vesicle membrane deforms in two regimes: a fast, instantaneous area increase, followed by a much slower stretching to an eventual plateau deformation. From measurements of dozens of GUVs, the average time constant of the slower stretching response was 0.225 ± 0.033 s (standard deviation, SD). Increasing the fluid viscosity did not affect the observed time constant. We performed a set of experiments to rule out heating by laser absorption as a cause of the transient behavior. Thus, we demonstrate here that the bending deformation of lipid bilayer membranes should be treated as viscoelastic.

  5. Fully nonlinear simulation for fluid/structure impact: A review

    NASA Astrophysics Data System (ADS)

    Sun, Shili; Wu, Guoxiong

    2014-09-01

    This paper presents a review of the work on fluid/structure impact based on inviscid and imcompressible liquid and irrotational flow. The focus is on the velocity potential theory together with boundary element method (BEM). Fully nonlinear boundary conditions are imposed on the unknown free surface and the wetted surface of the moving body. The review includes (1) vertical and oblique water entry of a body at constant or a prescribed varying speed, as well as free fall motion, (2) liquid droplets or column impact as well as wave impact on a body, (3) similarity solution of an expanding body. It covers two dimensional (2D), axisymmetric and three dimensional (3D) cases. Key techniques used in the numerical simulation are outlined, including mesh generation on the multivalued free surface, the stretched coordinate system for expanding domain, the auxiliary function method for decoupling the mutual dependence of the pressure and the body motion, and treatment for the jet or the thin liquid film developed during impact.

  6. Structural and fluid-chemical properties of fault zones

    SciTech Connect

    Bruhn, R.L. . Dept. of Geology and Geophysics)

    1992-01-01

    Fault fluids are mostly NaCl-CO[sub 2]-H[sub 2]O mixtures that originate by metamorphism, escape of connate water from wall rock, circulation of meteoric water, and perhaps contain components derived form igneous and subcrustal sources. Rupturing extends downward into metamorphic terrains undergoing greenschist and amphibolite facies metamorphism, where mineral alteration triggered by fluid pressure transients may extend several hundred meters to perhaps several kilometers into the wall rock. Fluid flowing into regions of lower temperature and/or pressure causes retrograde metamorphic alteration of fault and wall rock, and cementation of fractures. Fault permeability is heterogeneous because irregular, discontinuous lenses of cataclastic and gouge are encased in a heterogeneous damage layer characterized by intense fracturing and hydrothermal alteration. Permeability is also controlled by the geometry of corrugated slip surfaces which create anisotropic flow channels with greatest permeability parallel to long-axes of corrugations. Mineral assemblages and fluid inclusions provide evidence for fluid pressure cycling. Fluid pressure drops when permeability is enhanced by rupturing and subsequently increases as fractures deform, heal and become cemented with alteration minerals. Rates of hydrothermal alteration are comparable to, and sometimes faster, than those of mechanically induced permeability reduction. Effects of fluid chemistry on fault mechanics are not as well understood as fluid pressure effects. Frictional properties of fault surfaces are changed by chemical corrosion, cementation, and pressure solution. Strengthening by fluid pressure drop during dilatant fracturing may be partially offset by a decrease in fluid bulk modulus triggered by effervescence of CO[sub 2].

  7. Assembly of RNA nanostructures on supported lipid bilayers

    NASA Astrophysics Data System (ADS)

    Dabkowska, Aleksandra P.; Michanek, Agnes; Jaeger, Luc; Rabe, Michael; Chworos, Arkadiusz; Höök, Fredrik; Nylander, Tommy; Sparr, Emma

    2014-12-01

    The assembly of nucleic acid nanostructures with controlled size and shape has large impact in the fields of nanotechnology, nanomedicine and synthetic biology. The directed arrangement of nano-structures at interfaces is important for many applications. In spite of this, the use of laterally mobile lipid bilayers to control RNA three-dimensional nanostructure formation on surfaces remains largely unexplored. Here, we direct the self-assembly of RNA building blocks into three-dimensional structures of RNA on fluid lipid bilayers composed of cationic 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) or mixtures of zwitterionic 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC) and cationic sphingosine. We demonstrate the stepwise supramolecular assembly of discrete building blocks through specific and selective RNA-RNA interactions, based on results from quartz crystal microbalance with dissipation (QCM-D), ellipsometry, fluorescence recovery after photobleaching (FRAP) and total internal reflection fluorescence microscopy (TIRF) experiments. The assembly can be controlled to give a densely packed single layer of RNA polyhedrons at the fluid lipid bilayer surface. We show that assembly of the 3D structure can be modulated by sequence specific interactions, surface charge and changes in the salt composition and concentration. In addition, the tertiary structure of the RNA polyhedron can be controllably switched from an extended structure to one that is dense and compact. The versatile approach to building up three-dimensional structures of RNA does not require modification of the surface or the RNA molecules, and can be used as a bottom-up means of nanofabrication of functionalized bio-mimicking surfaces.The assembly of nucleic acid nanostructures with controlled size and shape has large impact in the fields of nanotechnology, nanomedicine and synthetic biology. The directed arrangement of nano-structures at interfaces is important for many applications. In spite of

  8. Optimization of poly(L-lactic acid)/segmented polyurethane electrospinning process for the production of bilayered small-diameter nanofibrous tubular structures.

    PubMed

    Montini Ballarin, F; Caracciolo, P C; Blotta, E; Ballarin, V L; Abraham, G A

    2014-09-01

    The present study is focused on the electrospinning process as a versatile technique to obtain nanofibrous tubular structures for potential applications in vascular tissue engineering. A bilayered scaffolding structure composed of poly(L-lactic acid) (PLLA)/bioresorbable segmented polyurethane (SPEU) blends for small-diameter (5mm) vascular bypass grafts was obtained by multilayering electrospinning. Polymer blend ratios were chosen to mimic the media and adventitia layers. The influence of the different electrospinning parameters into the fiber formation, fiber morphology and fiber mean diameter for PLLA, SPEU and two PLLA/SPEU blends were studied. Flat and two-parallel plate collectors were used to analyze the effect of the electrostatic field on the PLLA nanofiber alignment in the rotating mandrel. Membrane topography resulted in random or aligned nanofibrous structures depending on the auxiliary collector setup used. Finally, composition, surface hydrophilicity, thermal properties and morphology of nanofibrous scaffolds were characterized and discussed. Since the development of tissue engineered microvascular prostheses is still a challenge, the prepared scaffolding tubular structures are promising candidates for vascular tissue engineering.

  9. Structure-rheology relationship in a sheared lamellar fluid

    NASA Astrophysics Data System (ADS)

    Jaju, S. J.; Kumaran, V.

    2016-03-01

    The structure-rheology relationship in the shear alignment of a lamellar fluid is studied using a mesoscale model which provides access to the lamellar configurations and the rheology. Based on the equations and free energy functional, the complete set of dimensionless groups that characterize the system are the Reynolds number (ρ γ ˙L2/μ ) , the Schmidt number (μ /ρ D ) , the Ericksen number (μ γ ˙/B ) , the interface sharpness parameter r , the ratio of the viscosities of the hydrophilic and hydrophobic parts μr, and the ratio of the system size and layer spacing (L /λ ) . Here, ρ and μ are the fluid density and average viscosity, γ ˙ is the applied strain rate, D is the coefficient of diffusion, B is the compression modulus, μr is the maximum difference in the viscosity of the hydrophilic and hydrophobic parts divided by the average viscosity, and L is the system size in the cross-stream direction. The lattice Boltzmann method is used to solve the concentration and momentum equations for a two dimensional system of moderate size (L /λ =32 ) and for a low Reynolds number, and the other parameters are systematically varied to examine the qualitative features of the structure and viscosity evolution in different regimes. At low Schmidt numbers where mass diffusion is faster than momentum diffusion, there is fast local formation of randomly aligned domains with "grain boundaries," which are rotated by the shear flow to align along the extensional axis as time increases. This configuration offers a high resistance to flow, and the layers do not align in the flow direction even after 1000 strain units, resulting in a viscosity higher than that for an aligned lamellar phase. At high Schmidt numbers where momentum diffusion is fast, the shear flow disrupts layers before they are fully formed by diffusion, and alignment takes place by the breakage and reformation of layers by shear, resulting in defects (edge dislocations) embedded in a background of

  10. On the microscopic and mesoscopic perturbations of lipid bilayers upon interaction with the MPER domain of the HIV glycoprotein gp41.

    PubMed

    Oliva, Rosario; Emendato, Alessandro; Vitiello, Giuseppe; De Santis, Augusta; Grimaldi, Manuela; D'Ursi, Anna Maria; Busi, Elena; Del Vecchio, Pompea; Petraccone, Luigi; D'Errico, Gerardino

    2016-08-01

    The effect of the 665-683 fragment of the HIV fusion glycoprotein 41, corresponding to the MPER domain of the protein and named gp41MPER, on the microscopic structure and mesoscopic arrangement of palmitoyl oleoyl phosphatidylcholine (POPC) and POPC/sphingomyelin (SM)/cholesterol (CHOL) lipid bilayers is analyzed. The microscopic structuring of the bilayers has been studied by Electron Spin Resonance (ESR) spectroscopy, using glycerophosphocholines spin-labelled in different positions along the acyl chain. Transitions of the bilayer liquid crystalline state have been also monitored by Differential Scanning Calorimetry (DSC). Changes of the bilayers morphology have been studied by determining the dimension of the liposomes through Dynamic Light Scattering (DLS) measurements. The results converge in showing that the sample preparation procedure, the bilayer composition and the peptide/lipid ratio critically tune the lipid response to the peptide/membrane interaction. When gp41MPER is added to preformed liposomes, it positions at the bilayer interface and the lipid perturbation is limited to the more external segments. In contrast, if the peptide is mixed with the lipids during the liposome preparation, it assumes a trans-membrane topology. This happens at all peptide/lipid ratios for fluid POPC bilayers, while in the case of rigid POPC/SM/CHOL membranes a minimum ratio has to be reached, thus suggesting peptide self-aggregation to occur. Peptide insertion results in a dramatic increase of the lipid ordering and bilayer stiffening, which reflect in significant changes in liposome average dimension and distribution. The biological implications of these findings are discussed. PMID:27179640

  11. Thermophysical Fluid Dynamics: the Key to the Structures of Fluid Objects

    NASA Astrophysics Data System (ADS)

    Houben, H.

    2013-12-01

    It has become customary to model the hydrodynamics of fluid planets like Jupiter and Saturn by spinning up general circulation models until they reach a statistical steady state. This approach is physically sound, based on the thermodynamic expectation that the system will eventually achieve a state of maximum entropy, but the models have not been specifically designed for this purpose. Over the course of long integrations, numerical artifacts can drive the system to a state that does not correspond to the physically realistic end state. A different formulation of the governing equations promises better results. The equations of motion are recast as scalar conservation laws in which the diabatic and irreversible terms (both entropy-changing) are clearly identified. The balance between these terms defines the steady state of the system analytically, without the need for any temporal integrations. The conservation of mass in this system is trivial. Conservation of angular momentum replaces the zonal momentum equation and determines the zonal wind from a balance between the tidal torque and frictional dissipation. The principle of wave-mean flow non-interaction is preserved. Bernoulli's Theorem replaces the energy equation. The potential temperature structure is determined by the balance between work done against friction and heat transfer by convection and radiation. An equation of state and the traditional momentum equations in the meridional plane are sufficient to complete the model. Based on the assumption that the final state vertical and meridional winds are small compared to the zonal wind (in any case they are impossible to predict ab initio as they are driven by wave flux convergences), these last equations determine the pressure and density (and hence gravity) fields of the basic state. The thermal wind relation (in its most general form with the axial derivative of the zonal wind balancing the baroclinicity) is preserved. The model is not hydrostatic (in

  12. Multi-dimensional arbitrary Lagrangian-Eulerian method for dynamic fluid-structure interaction. [LMFBR

    SciTech Connect

    Wang, C.Y.; Zeuch, W.R.

    1982-01-01

    This paper describes an arbitrary Lagrangian-Eulerian method for analyzing fluid-structure interactions in fast-reactor containment with complex internal structures. The fluid transient can be calculated either implicitly or explicitly, using a finite-difference mesh with vertices that may be moved with the fluid (Lagrangian), held fixed (Eulerian), or moved in any other prescribed manner (hybrid Lagrangian Eulerian). The structural response is computed explicitly by two nonlinear, elastic-plastic finite-element modules formulated in corotational coordinates. Interaction between fluid and structure is accounted for by enforcing the interface boundary conditions. The method has convincing advantages in treating complicated phenomena such as flow through perforated structures, large material distortions, flow around corners and irregularities, and highly contorted fluid boundaries. Several sample problems are given to illustrate the effectiveness of this arbitrary Lagrangian-Eulerian method.

  13. Main phase transitions in supported lipid single-bilayer.

    PubMed

    Charrier, A; Thibaudau, F

    2005-08-01

    We have studied the phase transitions of a phospholipidic single-bilayer supported on a mica substrate by real-time temperature-controlled atomic force microscopy. We show the existence of two phase transitions in this bilayer that we attribute to two gel (L(beta))/fluid (L(alpha)) transitions, corresponding to the independent melting of each leaflet of the bilayer. The ratio of each phase with temperature and the large broadening of the transitions' widths have been interpreted through a basic thermodynamic framework in which the surface tension varies during the transitions. The experimental data can be fit with such a model using known thermodynamic parameters. PMID:15879467

  14. Fluid flow and particle transport in mechanically ventilated airways. Part I. Fluid flow structures.

    PubMed

    Van Rhein, Timothy; Alzahrany, Mohammed; Banerjee, Arindam; Salzman, Gary

    2016-07-01

    A large eddy simulation-based computational study of fluid flow and particle transport in upper tracheobronchial airways is carried out to investigate the effect of ventilation parameters on pulmonary fluid flow. Respiratory waveforms commonly used by commercial mechanical ventilators are used to study the effect of ventilation parameters and ventilation circuit on pulmonary fluid dynamics. A companion paper (Alzahrany et al. in Med Biol Eng Comput, 2014) reports our findings on the effect of the ventilation parameters and circuit on particle transport and aerosolized drug delivery. The endotracheal tube (ETT) was found to be an important geometric feature and resulted in a fluid jet that caused an increase in turbulence and created a recirculation zone with high wall shear stress in the main bronchi. Stronger turbulence was found in lower airways than would be found under normal breathing conditions due to the presence of the jet caused by the ETT. The pressure-controlled sinusoidal waveform induced the lowest wall shear stress on the airways wall. PMID:26563199

  15. Bilayer Graphene Electromechanical Systems

    NASA Astrophysics Data System (ADS)

    Champagne, Alexandre; Storms, Matthew; Yigen, Serap; Reulet, Bertrand

    Bilayer graphene is an outstanding electromechanical system, and its electronic and mechanical properties, as well as their coupling, are widely tunable. To the best of our knowledge, simultaneous charge transport and mechanical spectroscopy (via RF mixing) has not been realized in bilayer graphene. We present data showing clear electromechanical resonances in three suspended bilayer devices whose length range from 1 to 2 microns. We first describe the low-temperature current annealing of the devices which is crucial to achieve the transconductance, I -VG , necessary to implement a RF mixing detection method. We describe our RF mixing circuit and data. We measure clear mechanical resonances ranging in frequency from 50 to 140 MHz. We show that we can smoothly tune the resonance frequencies of our bilayer resonators with mechanical strain applied via a backgate voltage. We measure quality factors up to 4000. We briefly discuss the effects of the RF driving power on the dispersion of the mechanical resonance. We aim to use these high quality mechanical resonance as a mechanical sensor of the bilayer quantum Hall phase transitions. We show initial data of a bilayer mechanical resonance as a function of magnetic field and quantum Hall phase transitions.

  16. Testing of the GROMOS Force-Field Parameter Set 54A8: Structural Properties of Electrolyte Solutions, Lipid Bilayers, and Proteins.

    PubMed

    Reif, Maria M; Winger, Moritz; Oostenbrink, Chris

    2013-02-12

    The GROMOS 54A8 force field [Reif et al. J. Chem. Theory Comput.2012, 8, 3705-3723] is the first of its kind to contain nonbonded parameters for charged amino acid side chains that are derived in a rigorously thermodynamic fashion, namely a calibration against single-ion hydration free energies. Considering charged moieties in solution, the most decisive signature of the GROMOS 54A8 force field in comparison to its predecessor 54A7 can probably be found in the thermodynamic equilibrium between salt-bridged ion pair formation and hydration. Possible shifts in this equilibrium might crucially affect the properties of electrolyte solutions or/and the stability of (bio)molecules. It is therefore important to investigate the consequences of the altered description of charged oligoatomic species in the GROMOS 54A8 force field. The present study focuses on examining the ability of the GROMOS 54A8 force field to accurately model the structural properties of electrolyte solutions, lipid bilayers, and proteins. It is found that (i) aqueous electrolytes involving oligoatomic species (sodium acetate, methylammonium chloride, guanidinium chloride) reproduce experimental salt activity derivatives for concentrations up to 1.0 m (1.0-molal) very well, and good agreement between simulated and experimental data is also reached for sodium acetate and methylammonium chloride at 2.0 m concentration, while not even qualitative agreement is found for sodium chloride throughout the whole range of examined concentrations, indicating a failure of the GROMOS 54A7 and 54A8 force-field parameter sets to correctly account for the balance between ion-ion and ion-water binding propensities of sodium and chloride ions; (ii) the GROMOS 54A8 force field reproduces the liquid crystalline-like phase of a hydrated DPPC bilayer at a pressure of 1 bar and a temperature of 323 K, the area per lipid being in agreement with experimental data, whereas other structural properties (volume per lipid, bilayer

  17. Testing of the GROMOS Force-Field Parameter Set 54A8: Structural Properties of Electrolyte Solutions, Lipid Bilayers, and Proteins

    PubMed Central

    2013-01-01

    The GROMOS 54A8 force field [Reif et al. J. Chem. Theory Comput.2012, 8, 3705–3723] is the first of its kind to contain nonbonded parameters for charged amino acid side chains that are derived in a rigorously thermodynamic fashion, namely a calibration against single-ion hydration free energies. Considering charged moieties in solution, the most decisive signature of the GROMOS 54A8 force field in comparison to its predecessor 54A7 can probably be found in the thermodynamic equilibrium between salt-bridged ion pair formation and hydration. Possible shifts in this equilibrium might crucially affect the properties of electrolyte solutions or/and the stability of (bio)molecules. It is therefore important to investigate the consequences of the altered description of charged oligoatomic species in the GROMOS 54A8 force field. The present study focuses on examining the ability of the GROMOS 54A8 force field to accurately model the structural properties of electrolyte solutions, lipid bilayers, and proteins. It is found that (i) aqueous electrolytes involving oligoatomic species (sodium acetate, methylammonium chloride, guanidinium chloride) reproduce experimental salt activity derivatives for concentrations up to 1.0 m (1.0-molal) very well, and good agreement between simulated and experimental data is also reached for sodium acetate and methylammonium chloride at 2.0 m concentration, while not even qualitative agreement is found for sodium chloride throughout the whole range of examined concentrations, indicating a failure of the GROMOS 54A7 and 54A8 force-field parameter sets to correctly account for the balance between ion–ion and ion–water binding propensities of sodium and chloride ions; (ii) the GROMOS 54A8 force field reproduces the liquid crystalline-like phase of a hydrated DPPC bilayer at a pressure of 1 bar and a temperature of 323 K, the area per lipid being in agreement with experimental data, whereas other structural properties (volume per lipid

  18. A loosely-coupled scheme for the interaction between a fluid, elastic structure and poroelastic material

    NASA Astrophysics Data System (ADS)

    Bukač, M.

    2016-05-01

    We model the interaction between an incompressible, viscous fluid, thin elastic structure and a poroelastic material. The poroelastic material is modeled using the Biot's equations of dynamic poroelasticity. The fluid, elastic structure and the poroelastic material are fully coupled, giving rise to a nonlinear, moving boundary problem with novel energy estimates. We present a modular, loosely coupled scheme where the original problem is split into the fluid sub-problem, elastic structure sub-problem and poroelasticity sub-problem. An energy estimate associated with the stability of the scheme is derived in the case where one of the coupling parameters, β, is equal to zero. We present numerical tests where we investigate the effects of the material properties of the poroelastic medium on the fluid flow. Our findings indicate that the flow patterns highly depend on the storativity of the poroelastic material and cannot be captured by considering fluid-structure interaction only.

  19. Physicochemical studies on the interaction of serum albumin with pulmonary surfactant extract in films and bulk bilayer phase.

    PubMed

    Nag, Kaushik; Vidyashankar, Sangeetha; Devraj, Ravi; Fritzen Garcia, Mauricia; Panda, Amiya K

    2010-12-15

    Functionality, structure and composition of the adsorbed films of bovine lipid extract surfactant (BLES), in the absence and presence of bovine serum albumin (BSA), at the air-buffer interface was characterized through surface tension, atomic force microscopy and time of flight secondary ion mass spectrometric methods. Gel and fluid domains of BLES films were found to be altered significantly in the presence of BSA. Differential scanning calorimetric studies on BLES dispersions in presence of BSA revealed that the perturbations of the lipid bilayer structures were significant only at higher amount of BSA. FTIR studies on the BLES dispersions in buffer solution revealed that BSA could affect the lipid head-group hydrations in bilayer as well as the methylene and methyl vibration modes of fatty acyl chains of the phospholipids present in BLES. Serum albumin could perturb the film structure at pathophysiological concentration while higher amount of BSA was required in perturbing the bilayer structures. The studies suggest a connected perturbed bilayer to monolayer transition model for surfactant inactivation at the alveolar-air interface in dysfunctional surfactants.

  20. Adsorption-induced changes of the structure of the tethered chain layers in a simple fluid.

    PubMed

    Borówko, M; Sokołowski, S; Staszewski, T

    2014-06-21

    We use density functional theory to study the influence of fluid adsorption on the structure of grafted chain layer. The chains are modeled as freely jointed spheres. The chain segments and spherical molecules of the fluid interact via the Lennard-Jones potential. The fluid molecules are attracted by the substrate. We calculate the excess adsorption isotherms, the average height of tethered chains, and the force acting on selected segments of the chains. The parameters that were varied include the length of grafted chains, the grafting density, the parameters characterizing fluid-chain and fluid-surface interactions, the bulk fluid density, and temperature. We show that depending on the density of the bulk fluid the height of the bonded layer increases, remains constant, or decreases with increasing temperature.

  1. Sloshing, fluid-structure interaction and structural response due to shock and impact loads 1994. PVP-Vol. 272

    SciTech Connect

    Ma, D.C. ); Shin, Y.S.; Brochard, D.; Fujita, K.

    1994-01-01

    This volume is comprised of papers presented in two symposia at the 1994 ASME Pressure Vessels and Piping Conference. These sessions, sponsored by the Fluid-Structure Interaction and Seismic Engineering Technical Committees, provided a forum for the discussion of recent advances in sloshing, fluid-structure interaction, and structural dynamics produced by high energy excitations. The papers presented at the four technical sessions on Sloshing and Fluid-Structure Interaction represent a broad spectrum of fluid-structure systems: sloshing, fluid-structure interaction, and dynamic and seismic response of various fluid-structure systems such as reactor components, liquid storage tanks, submerged structures and piping systems, etc. The paper presented at the session on Structural Dynamics Produced by High-Energy Excitations cover underwater explosion effects on submerged structures, bubble loading phenomena, finite element mesh refinements on failure predictions, penetration and impact problems, and dynamic design of blast containment vessels. Also included are numerical analysis, design, and testing to understand difficult transient response phenomena. Separate abstracts were prepared for 24 papers in this volume.

  2. Structural cooling fluid tube for supporting a turbine component and supplying cooling fluid

    SciTech Connect

    Charron, Richard; Pierce, Daniel

    2015-02-24

    A shaft cover support for a gas turbine engine is disclosed. The shaft cover support not only provides enhanced support to a shaft cover of the gas turbine engine, but also includes a cooling fluid chamber for passing fluids from a rotor air cooling supply conduit to an inner ring cooling manifold. As such, the shaft cover support accomplishes in a single component what was only partially accomplished in two components in conventional configurations. The shaft cover support may also provide additional stiffness and reduce interference of the flow from the compressor. In addition, the shaft cover support accommodates a transition section extending between compressor and turbine sections of the engine. The shaft cover support has a radially extending region that is offset from the inlet and outlet that enables the shaft cover support to surround the transition, thereby reducing the overall length of this section of the engine.

  3. Silicate-COH melt and fluid structure, their physicochemical properties, and partitioning of nominally refractory oxides between melts and fluids

    NASA Astrophysics Data System (ADS)

    Mysen, Bjorn O.

    2012-09-01

    Structural characterization of silicate melts and aqueous fluids equilibrated at pressures and temperatures corresponding to the Earth's interior requires measurements in-situ while the samples are at the pressure and temperature of interest. To this end, structure and structure-property relations of melts and coexisting fluids in silicate-COH systems have been determined at temperatures up to 1000 °C and at pressures to ~ 2.0 GPa. The water component of silicate-H2O systems shows aqueous fluids, supercritical fluids, and hydrous melts to comprise molecular H2O (H2O0) and OH-groups, bonded to Si4+ and likely Al3+. The abundance-ratio, OH/H2O0, is positively correlated with temperature. The extent of hydrogen bonding diminishes with temperature and cannot be detected at above ~ 450 °C and ~ 0.4 GPa. Its ∆H is near 10 kJ/mol for water dissolved in hydrous melt as compared with ≥ 20 kJ/mol for pure H2O. Hydrogen bonding cannot, therefore, be the cause of property behavior in hydrous magmatic systems because the temperature in hydrous magmatic systems exceeds 600 °C. In SiO2-H2O fluid, silicate solute comprises Q0 and Q1 species with a ∆H of the polymerization reaction of ~ 15 kJ/mol assuming no pressure effect. In the Qn-notations, the value of n indicates the number of bridging oxygen in a silicate or aluminosilicate polymeric species. In chemically more complex alkali aluminosilicate systems, the silicate speciation in melts, in aqueous fluid, and in supercritical fluids comprises the same Q-species, but their abundance and proportions differ with the more polymerized species dominant in melt. Silicate-water interaction in the fluids, melts and supercritical fluids is described with the expression, 12Q3 + 13H2O ⇋ 2Q2 + 6Q1 + 4Q0 with ∆H = 400-450 kJ/mol. The solubility of geochemically important trace elements such as, for example, HFSE in silicate-saturated aqueous fluid under deep crustal and upper mantle pressure and temperature conditions is orders

  4. Structural evolution and membrane interaction of the 40-residue β amyloid peptides: differences in the initial proximity between peptides and the membrane bilayer studied by solid-state nuclear magnetic resonance spectroscopy.

    PubMed

    Qiang, Wei; Akinlolu, Rumonat D; Nam, Mimi; Shu, Nicolas

    2014-12-01

    Interactions between the β amyloid (Aβ) peptides and cellular membranes have severe consequences such as neuronal cell disruption and therefore may play important roles in Alzheimer's disease. Understanding the structural basis behind such interactions, however, is hindered by the complexity of the Aβ-membrane systems. In particular, because the Aβ peptides are partially incorporated in the membrane bilayer after enzymatic cleavage, there are multiple possibilities in terms of the initial proximity between the peptides and membranes. Structural studies using in vitro model systems with either externally added or preincorporated Aβ in membrane bilayers resulted in distinct evolution pathways. Previous work has shown that the externally added Aβ formed long and mature filaments, while preincorporated Aβ generated short and curvy fibrils. In this study, we perform detailed characterizations on the structural evolution and membrane interaction for these two pathways, using a combination of solid-state nuclear magnetic resonance spectroscopy and other techniques. For the externally added Aβ, we determined the residue-specific structural evolution during the fibrillation process. While the entire fibrillation process for the externally added Aβ was slow, the preincorporated Aβ generated Aβ-lipid complexes rapidly. Specific interactions between the lipids and peptides were observed, suggesting the colocalization of lipids and peptides within the complex. Formation of such a complex induced molecular-level changes in the lipid bilayer, which may serve as a possible mechanism of membrane disruption. PMID:25397729

  5. Bicontinuous Fluid Structure with Low Cohesive Energy: Molecular Basis for Exceptionally Low Interfacial Tension of Complex Coacervate Fluids.

    PubMed

    Huang, Kuo-Ying; Yoo, Hee Young; Jho, YongSeok; Han, Songi; Hwang, Dong Soo

    2016-05-24

    An exceptionally low interfacial tension of a dense fluid of concentrated polyelectrolyte complexes, phase-separated from a biphasic fluid known as complex coacervates, represents a unique and highly sought-after materials property that inspires novel applications from superior coating to wet adhesion. Despite extensive studies and broad interest, the molecular and structural bases for the unique properties of complex coacervates are unclear. Here, a microphase-separated complex coacervate fluid generated by mixing a recombinant mussel foot protein-1 (mfp-1) as the polycation and hyaluronic acid (HA) as the polyanion at stoichiometric ratios was macroscopically phase-separated into a dense complex coacervate and a dilute supernatant phase to enable separate characterization of the two fluid phases. Surprisingly, despite up to 4 orders of magnitude differing density of the polyelectrolytes, the diffusivity of water in these two phases was found to be indistinguishable. The presence of unbound, bulk-like, water in the dense fluid can be reconciled with a water population that is only weakly perturbed by the polyelectrolyte interface and network. This hypothesis was experimentally validated by cryo-TEM of the macroscopically phase-separated dense complex coacervate phase that was found to be a bicontinuous and biphasic nanostructured network, in which one of the phases was confirmed by staining techniques to be water and the other polyelectrolyte complexes. We conclude that a weak cohesive energy between water-water and water-polyelectrolytes manifests itself in a bicontinuous network, and is responsible for the exceptionally low interfacial energy of this complex fluid phase with respect to virtually any surface within an aqueous medium.

  6. Stability of Numerical Interface Conditions for Fluid/Structure Interaction

    SciTech Connect

    Banks, J W; Sjogreen, B

    2009-08-13

    In multi physics computations, where a compressible fluid is coupled with a linearly elastic solid, it is standard to enforce continuity of the normal velocities and of the normal stresses at the interface between the fluid and the solid. In a numerical scheme, there are many ways that the velocity- and stress-continuity can be enforced in the discrete approximation. This paper performs a normal mode analysis to investigate the stability of different numerical interface conditions for a model problem approximated by upwind type of finite difference schemes. The analysis shows that depending on the ratio of densities between the solid and the fluid, some numerical interface conditions are stable up to the maximal CFL-limit, while other numerical interface conditions suffer from a severe reduction of the stable CFL-limit. The paper also presents a new interface condition, obtained as a simplified charcteristic boundary condition, that is proved to not suffer from any reduction of the stable CFL-limit. Numerical experiments in one space dimension show that the new interface condition is stable also for computations with the non-linear Euler equations of compressible fluid flow coupled with a linearly elastic solid.

  7. Growth, structure, and magnetism of single-crystalline NixMn100-x films and NiMn/Co bilayers on Cu(001)

    NASA Astrophysics Data System (ADS)

    Tieg, C.; Kuch, W.; Wang, S. G.; Kirschner, J.

    2006-09-01

    The growth and structure of single-crystalline NixMn100-x films on Cu(001) were studied for concentrations of x⩾13 and thicknesses of 0 15 monolayer (ML). Medium energy electron diffraction (MEED) curves revealed a layer-by-layer growth mode at a substrate temperature of T=300K for alloy films with 40structure, which is characterized by an in-plane orientation of the bulk c axis. We show that Co grows layer by layer and assumes a p(1×1) structure on equiatomic c(2×2) NiMn/Cu(001) . Using Co/Cu(001) as a substrate for equiatomic NiMn leads to a non-layer-by-layer growth of the alloy film and a diffuse LEED pattern with weak c(2×2) spots. The investigation of such bilayer structures by magneto-optical Kerr effect measurements (MOKE) indicates the presence of an antiferromagnetic (AFM) order in NixMn100-x films with x close to the equiatomic composition and thicknesses above 8 ML at 300K , as concluded from the coercivity enhancement.

  8. Equilibrium Configurations of Lipid Bilayer Membranes and Carbon Nanostructures

    NASA Astrophysics Data System (ADS)

    Ivaïlo, M. Mladenov; Peter, A. Djondjorov; Mariana, Ts. Hadzhilazova; Vassil, M. Vassilev

    2013-02-01

    The present article concerns the continuum modelling of the mechanical behaviour and equilibrium shapes of two types of nano-scale objects: fluid lipid bilayer membranes and carbon nanostructures. A unified continuum model is used to handle four different case studies. Two of them consist in representing in analytic form cylindrical and axisymmetric equilibrium configurations of single-wall carbon nanotubes and fluid lipid bilayer membranes subjected to uniform hydrostatic pressure. The third one is concerned with determination of possible shapes of junctions between a single-wall carbon nanotube and a fiat graphene sheet or another single-wall carbon nanotube. The last one deals with the mechanical behaviour of closed fluid lipid bilayer membranes (vesicles) adhering onto a fiat homogeneous rigid substrate subjected to micro-injection and uniform hydrostatic pressure.

  9. Effect of pressure on the interlayer transport and the electronic structure in the organic quasi-two-dimensional bilayer metal θ-(BETS)4HgBr4(C6H5Cl)

    NASA Astrophysics Data System (ADS)

    Lyubovskii, R. B.; Pesotskii, S. I.; Zhilyaeva, E. I.; Lyubovskaya, R. N.

    2016-01-01

    The behavior of the interlayer resistance and the magnetoresistance in the organic quasi-twodimensional bilayer metal θ-(BETS)4HgBr4(C6H5Cl) is studied at normal pressure and a hydrostatic pressure of 10 kbar. The interlayer transport under atmospheric pressure is found to occur in an incoherent mode. The applied pressure does not change the electronic structure of the conducting layers and causes a transition to a weakly coherent mode at low temperatures.

  10. Structural characterization of the voltage sensor domain and voltage-gated K+- channel proteins vectorially-oriented within a single bilayer membrane at the solid/vapor and solid/liquid interfaces via neutron interferometry

    PubMed Central

    Gupta, S.; Dura, J.A.; Freites, J.A.; Tobias, D.J.; Blasie, J. K.

    2012-01-01

    The voltage-sensor domain (VSD) is a modular 4-helix bundle component that confers voltage sensitivity to voltage-gated cation channels in biological membranes. Despite extensive biophysical studies and the recent availability of x-ray crystal structures for a few voltage-gated potassium (Kv-) channels and a voltage-gate sodium (Nav-) channel, a complete understanding of the cooperative mechanism of electromechanical coupling, interconverting the closed-to-open states (i.e. non-conducting to cation conducting) remains undetermined. Moreover, the function of these domains is highly dependent on the physical-chemical properties of the surrounding lipid membrane environment. The basis for this work was provided by a recent structural study of the VSD from a prokaryotic Kv-channel vectorially-oriented within a single phospholipid (POPC; 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) membrane investigated by x-ray interferometry at the solid/moist He (or solid/vapor) and solid/liquid interfaces thus achieving partial to full hydration, respectively (Gupta et. al. Phys. Rev E. 2011, 84). Here, we utilize neutron interferometry to characterize this system in substantially greater structural detail at the sub-molecular level, due to its inherent advantages arising from solvent contrast variation coupled with the deuteration of selected sub-molecular membrane components, especially important for the membrane at the solid/liquid interface. We demonstrate the unique vectorial orientation of the VSD and the retention of its molecular conformation manifest in the asymmetric profile structure of the protein within the profile structure of this single bilayer membrane system. We definitively characterize the asymmetric phospholipid bilayer solvating the lateral surfaces of the VSD protein within the membrane. The profile structures of both the VSD protein and phospholipid bilayer depend upon the hydration state of the membrane. We also determine the distribution of water and

  11. Dependence of inverse-spin Hall effect and spin-rectified voltage on tantalum thickness in Ta/CoFeB bilayer structure

    SciTech Connect

    Kim, Sang-Il; Seo, Min-Su; Park, Seung-Young; Kim, Dong-Jun; Park, Byong-Guk

    2015-01-19

    Ta-layer thickness (t{sub Ta}) dependence of the measured DC voltage V from the inverse-spin Hall effect (ISHE) in Ta/CoFeB bilayer structure is experimentally investigated using the ferromagnetic resonance in the TE{sub 011} resonant cavity. The ISHE signals excluding the spin-rectified effect (SRE) were separated from the fitted curve of V against t{sub Ta}. For t{sub Ta} ≈ λ{sub Ta} (Ta-spin diffusion length = 2.7 nm), the deviation in ISHE voltage V{sub ISH} between the experimental and theoretical values is significantly increased because of the large SRE contribution, which also results in a large deviation in the spin Hall angle θ{sub SH} (from 10% to 40%). However, when t{sub Ta} ≫ λ{sub Ta}, the V{sub ISH} values are consistent with theoretical values because the SRE terms become negligible, which subsequently improves the accuracy of the obtained θ{sub SH} within 4% deviation. The results will provide an outline for an accurate estimation of the θ{sub SH} for materials with small λ value, which would be useful for utilizing the spin Hall effect in a 3-terminal spintronic devices in which magnetization can be controlled by in-plane current.

  12. The influence of oscillating electromagnetic fields on membrane structure and function: Synthetic liposome and natural membrane bilayer systems with direct application to the controlled delivery of chemical agents

    SciTech Connect

    Liburdy, R.P.; de Manincor, D.; Fingado, B.

    1989-09-01

    Investigations have been conducted to determine if an imposed electromagnetic field can influence membrane transport, and ion and drug permeability in both synthetic and natural cell membrane systems. Microwave fields enhance accumulation of sodium in the lymphocyte and induce protein shedding at Tc. Microwaves also trigger membrane permeability of liposome systems under specific field exposure conditions. Sensitivity varies in a defined way in bilayers displaying a membrane structural phase transition temperature, Tc; maximal release was observed at or near Tc. Significantly, liposome systems without a membrane phase transition were also found to experience permeability increases but, in contrast, this response was temperature independent. The above results indicate that field-enhanced drug release occurs in liposome vesicles that possess a Tc as well as non-Tc liposomes. Additional studies extend non-Tc liposome responses to the in vivo case in which microwaves trigger Gentamicin release from a liposome depot'' placed subcutaneously in the rat hind leg. In addition, evidence is provided that cell surface sequestered liposomes can be triggered by microwave fields to release drugs directly into target cells. 24 refs., 6 figs.

  13. Structure of single-supported DMPC lipid bilayer membranes as a function of hydration level studied by neutron reflectivity and Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Miskowiec, A.; Schnase, P.; Bai, M.; Taub, H.; Hansen, F. Y.; Dubey, M.; Singh, S.; Majewski, J.

    2012-02-01

    We have recently been investigating the diffusion of water on single-supported DMPC lipid bilayer membranes at different levels of hydration, using high-resolution quasielastic neutron scattering (QNS). To aid in the interpretation of these QNS studies, we have conducted neutron reflectivity (NR) measurements on SPEAR at LANSCE to characterize the structure of similarly prepared samples. Protonated DMPC membranes were deposited onto SiO2-coated Si(100) substrates and characterized by Atomic Force Microscopy (AFM) at different levels of hydration. We find reasonable agreement between the membrane thickness determined by NR and AFM at room temperature. We also find consistency between the scattering length density (SLD) profile in the vicinity of the upper leaflet of the supported DMPC membrane and that found in a molecular dynamics simulation of a freestanding membrane at 303 K. However, the fit to the reflectivity curve can be improved by modifying the SLD profile near the leaflet closest to the SiO2 surface.

  14. Structural characterization of hemoglobins from Monilifera and Frenulata tubeworms (Siboglinids): first discovery of giant hexagonal-bilayer hemoglobin in the former "Pogonophora" group.

    PubMed

    Meunier, Cédric; Andersen, Ann C; Bruneaux, Matthieu; Le Guen, Dominique; Terrier, Peran; Leize-Wagner, Emmanuelle; Zal, Franck

    2010-01-01

    Siboglinids are symbiotic polychete annelids having hemoglobins as essential oxygen- and sulfide-carriers for their endosymbiotic bacteria. We analyzed the structure of the hemoglobins from two species of siboglinids: the monilifera Sclerolinum contortum and the frenulata Oligobrachia webbi (i.e. haakonmosbiensis) from Norwegian cold seeps. Measured by Multi-Angle Laser Light Scattering (MALLS), Sclerolinum shows a 3190+/-50 kDa hexagonal bilayer hemoglobin (HBL-Hb) and a 461+/-46 kDa ring-Hb, just as vestimentifera, whereas Oligobrachia has a 409+/-3.7 kDa ring-Hb only. Electrospray Ionization-Mass Spectrometry (ESI-MS) showed Sclerolinum HBL-Hb composed of seven monomeric globins (15-16 kDa), three disulfide-bonded globin heterodimers and three linkers. The heterodimers always contain globin-b (15814.4+/-1.5 Da). Sclerolinum ring-Hb is composed of globins and dimers with identical masses as its HBL-Hb, but lacks linkers. Oligobrachia ring-Hb has three globin monomers (14-15 kDa) only, with no disulfide-bonded dimers. Comparison of Sclerolinum hemoglobins between Storegga and Haakon Mosby Mud Volcano, using the normalized height of deconvoluted ESI-MS peaks, shows differences in globin monomers abundances that could reflect genetic differences or differential gene expression between distinct seep populations. The discovery of HBL-Hb in Sclerolinum is a new element supporting the hypothesis of monilifera being phylogenetically more closely related to vestimentifera, than to frenulata.

  15. In situ Raman spectroscopic investigation of the structure of subduction-zone fluids

    USGS Publications Warehouse

    Mibe, Kenji; Chou, I.-Ming; Bassett, William A.

    2008-01-01

    In situ Raman spectra of synthetic subduction-zone fluids (KAlSi3O8-H2O system) were measured to 900?? and 2.3 GPa using a hydrothermal diamond-anvil cell. The structures of aqueous fluid and hydrous melt become closer when conditions approach the second critical endpoint. Almost no three-dimensional network was observed in the supercritical fluid above 2 GPa although a large amount of silicate component is dissolved, suggesting that the physical and chemical properties of these phases change drastically at around the second critical endpoint. Our experimental results indicate that the fluids released from a subducting slab change from aqueous fluid to supercritical fluid with increasing depth under the volcanic arcs. Copyright 2008 by the American Geophysical Union.

  16. Modelling of fluid-structure interaction with multiphase viscous flows using an immersed-body method

    NASA Astrophysics Data System (ADS)

    Yang, P.; Xiang, J.; Fang, F.; Pavlidis, D.; Latham, J.-P.; Pain, C. C.

    2016-09-01

    An immersed-body method is developed here to model fluid-structure interaction for multiphase viscous flows. It does this by coupling a finite element multiphase fluid model and a combined finite-discrete element solid model. A coupling term containing the fluid stresses is introduced within a thin shell mesh surrounding the solid surface. The thin shell mesh acts as a numerical delta function in order to help apply the solid-fluid boundary conditions. When used with an advanced interface capturing method, the immersed-body method has the capability to solve problems with fluid-solid interfaces in the presence of multiphase fluid-fluid interfaces. Importantly, the solid-fluid coupling terms are treated implicitly to enable larger time steps to be used. This two-way coupling method has been validated by three numerical test cases: a free falling cylinder in a fluid at rest, elastic membrane and a collapsing column of water moving an initially stationary solid square. A fourth simulation example is of a water-air interface with a floating solid square being moved around by complex hydrodynamic flows including wave breaking. The results show that the immersed-body method is an effective approach for two-way solid-fluid coupling in multiphase viscous flows.

  17. Nonlinear dynamics of fluid-structure systems. Annual technical report

    SciTech Connect

    Moon, F.C.; Muntean, G.

    1994-01-01

    We are investigating the nonlinear dynamics of a row of cylindrical tubes excited by the cross flow of fluid. Both experimental and analytical/numerical studies have been conducted. The goal of this research is to look for low dimensional dynamic models in flow- induced vibrations using modern methods of dynamical systems and chaos theory. The experimental study uses a 25 cm {times} 25 cm wind tunnel with flow velocity in the range of 15 m/sec. The use of a wind tunnel to explore dynamic phenomenon compliments the work of Chen at Argonne National Laboratory who also is conducting experiments with a water tunnel. The principal nonlinearities studies are impact constraints due to gaps in the cylinder supports and nonlinear fluid forces.

  18. Spontaneous curvature of bilayer membranes from molecular simulations: Asymmetric lipid densities and asymmetric adsorption

    NASA Astrophysics Data System (ADS)

    RóŻycki, Bartosz; Lipowsky, Reinhard

    2015-02-01

    Biomimetic and biological membranes consist of molecular bilayers with two leaflets which are typically exposed to different aqueous environments and may differ in their molecular density or composition. Because of these asymmetries, the membranes prefer to curve in a certain manner as quantitatively described by their spontaneous curvature. Here, we study such asymmetric membranes via coarse-grained molecular dynamics simulations. We consider two mechanisms for the generation of spontaneous curvature: (i) different lipid densities within the two leaflets and (ii) leaflets exposed to different concentrations of adsorbing particles. We focus on membranes that experience no mechanical tension and describe two methods to compute the spontaneous curvature. The first method is based on the detailed structure of the bilayer's stress profile which can hardly be measured experimentally. The other method starts from the intuitive view that the bilayer represents a thin fluid film bounded by two interfaces and reduces the complexity of the stress profile to a few membrane parameters that can be measured experimentally. For the case of asymmetric adsorption, we introduce a simulation protocol based on two bilayers separated by two aqueous compartments with different adsorbate concentrations. The adsorption of small particles with a size below 1 nm is shown to generate large spontaneous curvatures up to about 1/(24 nm). Our computational approach is quite general: it can be applied to any molecular model of bilayer membranes and can be extended to other mechanisms for the generation of spontaneous curvatures as provided, e.g., by asymmetric lipid composition or depletion layers of solute molecules.

  19. Modified Immersed Finite Element Method For Fully-Coupled Fluid-Structure Interations.

    PubMed

    Wang, Xingshi; Zhang, Lucy T

    2013-12-01

    In this paper, we develop a "modified" immersed finite element method (mIFEM), a non-boundary-fitted numerical technique, to study fluid-structure interactions. Using this method, we can more precisely capture the solid dynamics by solving the solid governing equation instead of imposing it based on the fluid velocity field as in the original immersed finite element (IFEM). Using the IFEM may lead to severe solid mesh distortion because the solid deformation is been over-estimated, especially for high Reynolds number flows. In the mIFEM, the solid dynamics is solved using appropriate boundary conditions generated from the surrounding fluid, therefore produces more accurate and realistic coupled solutions. We show several 2-D and 3-D testing cases where the mIFEM has a noticeable advantage in handling complicated fluid-structure interactions when the solid behavior dominates the fluid flow.

  20. An added-mass partition algorithm for fluid-structure interactions of compressible fluids and nonlinear solids

    NASA Astrophysics Data System (ADS)

    Banks, J. W.; Henshaw, W. D.; Kapila, A. K.; Schwendeman, D. W.

    2016-01-01

    We describe an added-mass partitioned (AMP) algorithm for solving fluid-structure interaction (FSI) problems involving inviscid compressible fluids interacting with nonlinear solids that undergo large rotations and displacements. The computational approach is a mixed Eulerian-Lagrangian scheme that makes use of deforming composite grids (DCG) to treat large changes in the geometry in an accurate, flexible, and robust manner. The current work extends the AMP algorithm developed in Banks et al. [1] for linearly elasticity to the case of nonlinear solids. To ensure stability for the case of light solids, the new AMP algorithm embeds an approximate solution of a nonlinear fluid-solid Riemann (FSR) problem into the interface treatment. The solution to the FSR problem is derived and shown to be of a similar form to that derived for linear solids: the state on the interface being fundamentally an impedance-weighted average of the fluid and solid states. Numerical simulations demonstrate that the AMP algorithm is stable even for light solids when added-mass effects are large. The accuracy and stability of the AMP scheme is verified by comparison to an exact solution using the method of analytical solutions and to a semi-analytical solution that is obtained for a rotating solid disk immersed in a fluid. The scheme is applied to the simulation of a planar shock impacting a light elliptical-shaped solid, and comparisons are made between solutions of the FSI problem for a neo-Hookean solid, a linearly elastic solid, and a rigid solid. The ability of the approach to handle large deformations is demonstrated for a problem of a high-speed flow past a light, thin, and flexible solid beam.

  1. Control of the active site structure of giant bilayer hemoglobin from the Annelid Eisenia foetida using hierarchic assemblies

    SciTech Connect

    Girasole, Marco; Arcovito, Alessandro; Marconi, Augusta; Davoli, Camilla; Congiu-Castellano, Agostina; Bellelli, Andrea; Amiconi, Gino

    2005-12-05

    The active site structure of the oxygenated derivative of the main subassemblies (whole protein, dodecamers, and trimers) of the giant haemoglobin from Eisenia foetida has been characterized by x-ray absorption near edge structure spectroscopy. The data revealed a remarkable effect of the hierarchic assemblies on the active site of the subunit. Specifically, the whole protein has the same site structure of the dodecamer, while a sharp conformational transition occurs when the dodecamer is disassembled into trimers (and monomers) revealing that constraints due to the protein matrix determine the active site geometry and, consequently, the protein function in these large complexes.

  2. Image enhancement and segmentation of fluid-filled structures in 3D ultrasound images

    NASA Astrophysics Data System (ADS)

    Chalana, Vikram; Dudycha, Stephen; McMorrow, Gerald

    2003-05-01

    Segmentation of fluid-filled structures, such as the urinary bladder, from three-dimensional ultrasound images is necessary for measuring their volume. This paper describes a system for image enhancement, segmentation and volume measurement of fluid-filled structures on 3D ultrasound images. The system was applied for the measurement of urinary bladder volume. Results show an average error of less than 10% in the estimation of the total bladder volume.

  3. Manipulation of fluids in three-dimensional porous photonic structures with patterned surface properties

    DOEpatents

    Aizenberg, Joanna; Burgess, Ian B.; Mishchenko, Lidiya; Hatton, Benjamin; Loncar, Marko

    2016-03-08

    A three-dimensional porous photonic structure, whose internal pore surfaces can be provided with desired surface properties in a spatially selective manner with arbitrary patterns, and methods for making the same are described. When exposed to a fluid (e.g., via immersion or wicking), the fluid can selectively penetrate the regions of the structure with compatible surface properties. Broad applications, for example in security, encryption and document authentication, as well as in areas such as simple microfluidics and diagnostics, are anticipated.

  4. Implementation of Interaction Algorithm to Non-Matching Discrete Interfaces Between Structure and Fluid Mesh

    NASA Technical Reports Server (NTRS)

    Chen, Shu-Po

    1999-01-01

    This paper presents software for solving the non-conforming fluid structure interfaces in aeroelastic simulation. It reviews the algorithm of interpolation and integration, highlights the flexibility and the user-friendly feature that allows the user to select the existing structure and fluid package, like NASTRAN and CLF3D, to perform the simulation. The presented software is validated by computing the High Speed Civil Transport model.

  5. An adaptive level set method for shock-driven fluid-structure interaction

    SciTech Connect

    Deiterding, Ralf

    2007-01-01

    The fluid-structure interaction simulation of shock- and detonation-loaded structures requires numerical methods that can cope with large deformations as well as local topology changes. A robust, level-set-based shock-capturing fluid solver is described that allows coupling to any solid mechanics solver. As computational example, the elastic response of a thin steel panel, modeled with both shell and beam theory, to a shock wave in air is considered.

  6. Bilayer graphene quantum dot defined by topgates

    SciTech Connect

    Müller, André; Kaestner, Bernd; Hohls, Frank; Weimann, Thomas; Pierz, Klaus; Schumacher, Hans W.

    2014-06-21

    We investigate the application of nanoscale topgates on exfoliated bilayer graphene to define quantum dot devices. At temperatures below 500 mK, the conductance underneath the grounded gates is suppressed, which we attribute to nearest neighbour hopping and strain-induced piezoelectric fields. The gate-layout can thus be used to define resistive regions by tuning into the corresponding temperature range. We use this method to define a quantum dot structure in bilayer graphene showing Coulomb blockade oscillations consistent with the gate layout.

  7. Supported lipid bilayer/carbon nanotube hybrids

    NASA Astrophysics Data System (ADS)

    Zhou, Xinjian; Moran-Mirabal, Jose M.; Craighead, Harold G.; McEuen, Paul L.

    2007-03-01

    Carbon nanotube transistors combine molecular-scale dimensions with excellent electronic properties, offering unique opportunities for chemical and biological sensing. Here, we form supported lipid bilayers over single-walled carbon nanotube transistors. We first study the physical properties of the nanotube/supported lipid bilayer structure using fluorescence techniques. Whereas lipid molecules can diffuse freely across the nanotube, a membrane-bound protein (tetanus toxin) sees the nanotube as a barrier. Moreover, the size of the barrier depends on the diameter of the nanotube-with larger nanotubes presenting bigger obstacles to diffusion. We then demonstrate detection of protein binding (streptavidin) to the supported lipid bilayer using the nanotube transistor as a charge sensor. This system can be used as a platform to examine the interactions of single molecules with carbon nanotubes and has many potential applications for the study of molecular recognition and other biological processes occurring at cell membranes.

  8. Design of Asymmetric Peptide Bilayer Membranes.

    PubMed

    Li, Sha; Mehta, Anil K; Sidorov, Anton N; Orlando, Thomas M; Jiang, Zhigang; Anthony, Neil R; Lynn, David G

    2016-03-16

    Energetic insights emerging from the structural characterization of peptide cross-β assemblies have enabled the design and construction of robust asymmetric bilayer peptide membranes. Two peptides differing only in their N-terminal residue, phosphotyrosine vs lysine, coassemble as stacks of antiparallel β-sheets with precisely patterned charged lattices stabilizing the bilayer leaflet interface. Either homogeneous or mixed leaflet composition is possible, and both create nanotubes with dense negative external and positive internal solvent exposed surfaces. Cross-seeding peptide solutions with a preassembled peptide nanotube seed leads to domains of different leaflet architecture within single nanotubes. Architectural control over these cross-β assemblies, both across the bilayer membrane and along the nanotube length, provides access to highly ordered asymmetric membranes for the further construction of functional mesoscale assemblies.

  9. Fluid flow structure around the mixer in a reactor with mechanical mixing

    SciTech Connect

    Lecheva, A.; Zheleva, I.

    2015-10-28

    Fluid flow structure around the mixer in a cylindrical reactor with mechanical mixing is studied and numerical results are presented in this article. The model area is complex because of the presence of convex corners of the mixer in the fluid flow. Proper boundary conditions for the vorticity calculated on the base of the stream function values near solid boundaries of the examined area are presented. The boundary value problem of motion of swirling incompressible viscous fluid in a vertical tank reactor with a mixer is solved numerically. The calculations are made by a computer code, written in MATLAB. The complex structure of the flow around the mixing disk is described and commented.

  10. Fully-Coupled Fluid/Structure Vibration Analysis Using MSC/NASTRAN

    NASA Technical Reports Server (NTRS)

    Fernholz, Christian M.; Robinson, Jay H.

    1996-01-01

    MSC/NASTRAN's performance in the solution of fully-coupled fluid/structure problems is evaluated. NASTRAN is used to perform normal modes (SOL 103) and forced-response analyses (SOL 108, 111) on cylindrical and cubic fluid/structure models. Bulk data file cards unique to the specification of a fluid element are discussed and analytic partially-coupled solutions are derived for each type of problem. These solutions are used to evaluate NASTRAN's solutions for accuracy. Appendices to this work include NASTRAN data presented in fringe plot form, FORTRAN source code listings written in support of this work, and NASTRAN data file usage requirements for each analysis.

  11. Fluid flow structure around the mixer in a reactor with mechanical mixing

    NASA Astrophysics Data System (ADS)

    Lecheva, A.; Zheleva, I.

    2015-10-01

    Fluid flow structure around the mixer in a cylindrical reactor with mechanical mixing is studied and numerical results are presented in this article. The model area is complex because of the presence of convex corners of the mixer in the fluid flow. Proper boundary conditions for the vorticity calculated on the base of the stream function values near solid boundaries of the examined area are presented. The boundary value problem of motion of swirling incompressible viscous fluid in a vertical tank reactor with a mixer is solved numerically. The calculations are made by a computer code, written in MATLAB. The complex structure of the flow around the mixing disk is described and commented.

  12. Development of an integrated BEM approach for hot fluid structure interaction: BEST-FSI: Boundary Element Solution Technique for Fluid Structure Interaction

    NASA Technical Reports Server (NTRS)

    Dargush, G. F.; Banerjee, P. K.; Shi, Y.

    1992-01-01

    As part of the continuing effort at NASA LeRC to improve both the durability and reliability of hot section Earth-to-orbit engine components, significant enhancements must be made in existing finite element and finite difference methods, and advanced techniques, such as the boundary element method (BEM), must be explored. The BEM was chosen as the basic analysis tool because the critical variables (temperature, flux, displacement, and traction) can be very precisely determined with a boundary-based discretization scheme. Additionally, model preparation is considerably simplified compared to the more familiar domain-based methods. Furthermore, the hyperbolic character of high speed flow is captured through the use of an analytical fundamental solution, eliminating the dependence of the solution on the discretization pattern. The price that must be paid in order to realize these advantages is that any BEM formulation requires a considerable amount of analytical work, which is typically absent in the other numerical methods. All of the research accomplishments of a multi-year program aimed toward the development of a boundary element formulation for the study of hot fluid-structure interaction in Earth-to-orbit engine hot section components are detailed. Most of the effort was directed toward the examination of fluid flow, since BEM's for fluids are at a much less developed state. However, significant strides were made, not only in the analysis of thermoviscous fluids, but also in the solution of the fluid-structure interaction problem.

  13. Bilayer-thickness-mediated interactions between integral membrane proteins.

    PubMed

    Kahraman, Osman; Koch, Peter D; Klug, William S; Haselwandter, Christoph A

    2016-04-01

    Hydrophobic thickness mismatch between integral membrane proteins and the surrounding lipid bilayer can produce lipid bilayer thickness deformations. Experiment and theory have shown that protein-induced lipid bilayer thickness deformations can yield energetically favorable bilayer-mediated interactions between integral membrane proteins, and large-scale organization of integral membrane proteins into protein clusters in cell membranes. Within the continuum elasticity theory of membranes, the energy cost of protein-induced bilayer thickness deformations can be captured by considering compression and expansion of the bilayer hydrophobic core, membrane tension, and bilayer bending, resulting in biharmonic equilibrium equations describing the shape of lipid bilayers for a given set of bilayer-protein boundary conditions. Here we develop a combined analytic and numerical methodology for the solution of the equilibrium elastic equations associated with protein-induced lipid bilayer deformations. Our methodology allows accurate prediction of thickness-mediated protein interactions for arbitrary protein symmetries at arbitrary protein separations and relative orientations. We provide exact analytic solutions for cylindrical integral membrane proteins with constant and varying hydrophobic thickness, and develop perturbative analytic solutions for noncylindrical protein shapes. We complement these analytic solutions, and assess their accuracy, by developing both finite element and finite difference numerical solution schemes. We provide error estimates of our numerical solution schemes and systematically assess their convergence properties. Taken together, the work presented here puts into place an analytic and numerical framework which allows calculation of bilayer-mediated elastic interactions between integral membrane proteins for the complicated protein shapes suggested by structural biology and at the small protein separations most relevant for the crowded membrane

  14. Light Driven Formation and Rupture of Droplet Bilayers

    PubMed Central

    Dixit, Sanhita S.; Kim, Hanyoup; Vasilyev, Arseny; Eid, Aya; Faris, Gregory W.

    2010-01-01

    We demonstrate optical manipulation of nanoliter aqueous droplets containing surfactant or lipid molecules and immersed in an organic liquid using near infrared light. The resulting emulsion droplets are manipulated using both the thermocapillary effect and convective fluid motion. Droplet pair-interactions induced in the emulsion upon optical initiation and control provide direct observations of the coalescence steps in intricate detail. Droplet-droplet adhesion (bilayer formation) is observed under several conditions. Selective bilayer rupture is also realized using the same infrared laser. The technique provides a novel approach to study thin film drainage and interface stability in emulsion dynamics. The formation of stable lipid bilayers at the adhesion interface between interacting water droplets can provide an optical platform to build droplet-based lipid bilayer assays. The technique also has relevance for understanding and improving microfluidics applications by devising Petri dish based droplet assays requiring no substrate fabrication. PMID:20361732

  15. Structural stability of a 1D compressible viscoelastic fluid model

    NASA Astrophysics Data System (ADS)

    Huo, Xiaokai; Yong, Wen-An

    2016-07-01

    This paper is concerned with a compressible viscoelastic fluid model proposed by Öttinger. Although the model has a convex entropy, the Hessian matrix of the entropy does not symmetrize the system of first-order partial differential equations due to the non-conservative terms in the constitutive equation. We show that the corresponding 1D model is symmetrizable hyperbolic and dissipative and satisfies the Kawashima condition. Based on these, we prove the global existence of smooth solutions near equilibrium and justify the compatibility of the model with the Navier-Stokes equations.

  16. Structuralization of Magnetic Nanoparticles Induced by Laser Heating in Magnetic Fluids

    NASA Astrophysics Data System (ADS)

    Kopčanský, P.; Timko, M.; Tomčo, L.; Koneracká, M.; Štelina, J.; Musil, C.

    2010-01-01

    The structuralization of magnetic particles in magnetic fluids due to the thermodiffusion induced by laser light illumination was experimentally observed in two types of magnetic fluids: one based on a mineral oil with magnetite particles covered by a monolayer of oleic acid as a surfactant and the other a kerosene-based magnetic fluid sterically stabilized by a double layer consisting of oleic acid and dodecylbenzenesulphonic acid (DBS). Forced Rayleigh scattering (FRS) showed different behaviors of magnetic particle structuralization in the observed magnetic fluids. While for the case of mineral oil-based magnetic fluids, there was observed a positive thermodiffusion ( S > 0), an indication of negative thermodiffusion ( S < 0) was observed in magnetic fluids based on kerosene. This was also confirmed by the time-dependent decay of a grating of magnetic particles. Numerical simulation of aggregation for the case of negative thermodiffusion was confirmed by the observed aggregation after laser illumination in kerosene-based magnetic fluids and enabled an estimated value of the negative Soret constant in the magnetic fluid studied ( S ≈ -10-2 K -1).

  17. Strongly coupled partitioned approach for fluid structure interaction in free surface flows

    NASA Astrophysics Data System (ADS)

    Facci, Andrea Luigi; Ubertini, Stefano

    2016-06-01

    In this paper we describe and validate a methodology for the numerical simulation of the fluid structure interaction in free surface flows. Specifically, this study concentrates on the vertical impact of a rigid body on the water surface, (i.e. on the hull slamming problem). The fluid flow is modeled through the volume of fluid methodology, and the structure dynamics is described by the Newton's second law. An iterative algorithm guarantees the tight coupling between the fluid and solid solvers, allowing the simulations of lightweight (i.e. buoyant) structures. The methodology is validated comparing numerical results to experimental data on the free fall of different rigid wedges. The correspondence between numerical results and independent experimental findings from literature evidences the reliability and the accuracy of the proposed approach.

  18. Exact coherent structures: from fluid turbulence to cardiac arrhythmias

    NASA Astrophysics Data System (ADS)

    Grigoriev, Roman; Marcotte, Christopher; Byrne, Gregory

    2014-03-01

    Ventricular fibrillation, a life threatening cardiac arrhythmia, is an example of spatiotemporally chaotic state dominated by multiple interacting spiral waves. Recent studies of weak fluid turbulence suggest that spatiotemporal chaos in general can be understood as a walk among exact unstable regular solutions (exact coherent states, ECS) of nonlinear evolution equations. Several classes of ECS are believed to play a dominant role; most typically these are equilibria and periodic orbits or relative equilibria and relative periodic orbits for systems with global continuous symmetries. Numerical methods originally developed in the context of fluid turbulence can also be applied to models of cardiac dynamics which possess translational and rotational symmetries and, indeed, allowed us to identify relative equilibria and periodic orbits describing isolated spirals with, respectively, fixed and drifting cores. In order to find regular solutions featuring multiple interacting spirals a new approach is required that takes into consideration the dynamics of slowly drifting cores associated with local, rather than global, symmetries. We describe how local symmetries can be reduced and more general types of ECS computed that dominate spiral wave chaos in models of cardiac tissue.

  19. Band gap opening in bilayer silicene by alkali metal intercalation.

    PubMed

    Liu, Hongsheng; Han, Nannan; Zhao, Jijun

    2014-11-26

    Recently, bilayer and multilayer silicene have attracted increased attention following the boom of silicene, which holds great promise for future applications in microelectronic devices. Herein we systematically investigate all stacking configurations of bilayer silicene and the corresponding electronic properties. Strong coupling is found between two silicene layers, which destroys the Dirac cones in the band structures of pristine silicene and makes bilayer silicene sheets metallic. However, intercalation of alkali metal (especially potassium) can effectively decouple the interaction between two silicene layers. In the K-intercalated bilayer silicene (KSi4), the Dirac cones are recovered with a small band gap of 0.27 eV located about 0.55 eV below the Fermi level. Furthermore, intercalation of K(+) cations in bilayer silicene (K(+)Si4) results in a semiconductor with a moderate band gap of 0.43 eV, making it ideal for microelectronic applications.

  20. A Finite Element Procedure for Calculating Fluid-Structure Interaction Using MSC/NASTRAN

    NASA Technical Reports Server (NTRS)

    Chargin, Mladen; Gartmeier, Otto

    1990-01-01

    This report is intended to serve two purposes. The first is to present a survey of the theoretical background of the dynamic interaction between a non-viscid, compressible fluid and an elastic structure is presented. Section one presents a short survey of the application of the finite element method (FEM) to the area of fluid-structure-interaction (FSI). Section two describes the mathematical foundation of the structure and fluid with special emphasis on the fluid. The main steps in establishing the finite element (FE) equations for the fluid structure coupling are discussed in section three. The second purpose is to demonstrate the application of MSC/NASTRAN to the solution of FSI problems. Some specific topics, such as fluid structure analogy, acoustic absorption, and acoustic contribution analysis are described in section four. Section five deals with the organization of the acoustic procedure flowchart. Section six includes the most important information that a user needs for applying the acoustic procedure to practical FSI problems. Beginning with some rules concerning the FE modeling of the coupled system, the NASTRAN USER DECKs for the different steps are described. The goal of section seven is to demonstrate the use of the acoustic procedure with some examples. This demonstration includes an analytic verification of selected FE results. The analytical description considers only some aspects of FSI and is not intended to be mathematically complete. Finally, section 8 presents an application of the acoustic procedure to vehicle interior acoustic analysis with selected results.

  1. Immobilized lipid-bilayer materials

    DOEpatents

    Sasaki, Darryl Y.; Loy, Douglas A.; Yamanaka, Stacey A.

    2000-01-01

    A method for preparing encapsulated lipid-bilayer materials in a silica matrix comprising preparing a silica sol, mixing a lipid-bilayer material in the silica sol and allowing the mixture to gel to form the encapsulated lipid-bilayer material. The mild processing conditions allow quantitative entrapment of pre-formed lipid-bilayer materials without modification to the material's spectral characteristics. The method allows for the immobilization of lipid membranes to surfaces. The encapsulated lipid-bilayer materials perform as sensitive optical sensors for the detection of analytes such as heavy metal ions and can be used as drug delivery systems and as separation devices.

  2. The effect of tail-length mismatch in binary DMPC/DSPC lipid bilayers

    NASA Astrophysics Data System (ADS)

    Ashkar, Rana; Nagao, Michihiro; Butler, Paul

    2014-03-01

    Bilayer heterogeneity has been long hypothesized to drive raft formation and promote complex functionality in lipid membranes. The highly dynamic nature of the membrane however is thought to play a critical role in this delicate balance between structure and performance. To probe the effect of lateral heterogeneity on membrane dynamics, we investigate the thermal response of unilamellar-vesicle systems of mixed dimyristoylphosphatidylcholine (DMPC) and distearoylphosphatidylcholine (DSPC) with DMPC/DSPC ratios of 50/50 and 70/30. Both lipids experience a transition from an ordered gel phase, with stiff stretched tails, to a melted fluid phase, with more coiled flexible tails, as they are heated through their melting temperature, Tm(DMPC) ~ 21 °C and Tm(DSPC) ~ 51 °C. The distinct Tm's of the two lipids provide a broad gel-fluid phase with a significant mismatch (~ 20 Å) between the tail-lengths of the DMPC and DSPC molecules. The structural properties of the vesicles were determined by small-angle neutron and x-ray scattering and the collective lipid dynamics in the bilayer were investigated by neutron spin-echo (NSE) spectroscopy on selectively deuterated samples. The NSE results indicate a slowdown of thickness fluctuations in the gel-fluid coexistence phase and an intriguingly strong enhancement in the thickness fluctuation amplitude for T >Tm(DSPC) compared to our previous work on single component vesicles.

  3. Influence Of Nanoparticles Diameter On Structural Properties Of Magnetic Fluid In Magnetic Field

    NASA Astrophysics Data System (ADS)

    Kúdelčík, Jozef; Bury, Peter; Hardoň, Štefan; Kopčanský, Peter; Timko, Milan

    2015-07-01

    The properties of magnetic fluids depend on the nanoparticle diameter, their concentration and the carrier liquid. The structural changes in magnetic fluids with different nanoparticle diameter based on transformer oils TECHNOL and MOGUL under the effect of a magnetic field and temperature were studied by acoustic spectroscopy. At a linear and jump changes of the magnetic field at various temperatures a continuous change was observed of acoustic attenuation caused by aggregation of the magnetic nanoparticles to structures. From the anisotropy of acoustic attenuation and using the Taketomi theory the basic parameters of the structures are calculated and the impact of nanoparticle diameters on the size of structures is confirmed.

  4. Three Dimensional Viscous Finite Element Formulation For Acoustic Fluid Structure Interaction

    PubMed Central

    Cheng, Lei; White, Robert D.; Grosh, Karl

    2010-01-01

    A three dimensional viscous finite element model is presented in this paper for the analysis of the acoustic fluid structure interaction systems including, but not limited to, the cochlear-based transducers. The model consists of a three dimensional viscous acoustic fluid medium interacting with a two dimensional flat structure domain. The fluid field is governed by the linearized Navier-Stokes equation with the fluid displacements and the pressure chosen as independent variables. The mixed displacement/pressure based formulation is used in the fluid field in order to alleviate the locking in the nearly incompressible fluid. The structure is modeled as a Mindlin plate with or without residual stress. The Hinton-Huang’s 9-noded Lagrangian plate element is chosen in order to be compatible with 27/4 u/p fluid elements. The results from the full 3d FEM model are in good agreement with experimental results and other FEM results including Beltman’s thin film viscoacoustic element [2] and two and half dimensional inviscid elements [21]. Although it is computationally expensive, it provides a benchmark solution for other numerical models or approximations to compare to besides experiments and it is capable of modeling any irregular geometries and material properties while other numerical models may not be applicable. PMID:20174602

  5. Biophysical properties of cationic lipophosphoramidates: Vesicle morphology, bilayer hydration and dynamics.

    PubMed

    Loizeau, Damien; Jurkiewicz, Piotr; Aydogan, Gokcan; Philimonenko, Anatoly A; Mahfoudhi, Selim; Hozák, Pavel; Maroto, Alicia; Couthon-Gourvès, Hélène; Jaffrès, Paul-Alain; Deschamps, Laure; Giamarchi, Philippe; Hof, Martin

    2015-12-01

    Cationic lipids are used to deliver genetic material to living cells. Their proper biophysical characterization is needed in order to design and control this process. In the present work we characterize some properties of recently synthetized cationic lipophosphoramidates. The studied compounds share the same structure of their hydrophobic backbone, but differ in their hydrophilic cationic headgroup, which is formed by a trimethylammonium, a trimethylarsonium or a dicationic moiety. Dynamic light scattering and cryo-transmission electron microscopy proves that the studied lipophosphoramidates create stable unilamellar vesicles. Fluorescence of polarity probe, Laurdan, analyzed using time-dependent fluorescence shift method (TDFS) and generalized polarization (GP) gives important information about the phase, hydration and dynamics of the lipophosphoramidate bilayers. While all of the compounds produced lipid bilayers that were sufficiently fluid for their potential application in gene therapy, their polarity/hydration and mobility was lower than for the standard cationic lipid - DOTAP. Mixing cationic lipophosphoramidates with DOPC helps to reduce this difference. The structure of the cationic headgroup has an important and complex influence on bilayer hydration and mobility. Both TDFS and GP methods are suitable for the characterization of cationic amphiphiles and can be used for screening of the newly synthesized compounds.

  6. Passive fluidic diode for simple fluids using nested nanochannel structures.

    PubMed

    Mo, Jingwen; Li, Long; Wang, Jun; Li, Zhigang

    2016-03-01

    In this paper, we propose a moving part-free fluidic diode for simple fluids using nested nanochannels, which contain inner and outer channels of different lengths. Molecular dynamics simulations show that the fluidic diode accepts water flows in the forward direction and blocks flows in the backward direction in a wide range of pressure drops. The anisotropic flow rates are generated by the distinct activation pressures in different directions. In the forward direction, the activation pressure is low, which is determined by the infiltration pressure of the inner channel. In the backward direction, the activation pressure is quite high due to the capillary effects when flows are released from the inner to the outer channel. The pressure drop range for the fluidic diode can be varied by changing the channel size or surface wettability. The fluidic diode offers an alternative way for flow control in integrated micro- and nanofluidic devices. PMID:27078441

  7. Fetal Renal Structure and the Genesis of Amniotic Fluid Disorders

    PubMed Central

    Naeye, Richard L.; Blanc, William A.

    1972-01-01

    Newborn recipient twins in the transplacental transfusion syndrome have dilated renal tubules, enlarged bladders and an increased urinary output in the early neonatal period, suggesting that increased fetal micturition is responsible for hydramnios in the syndrome. There is the possibility that such micturition contributes to hydramnios in other disorders as well. In the present study, renal tubules were found to be dilated in single-born infants with a diverse group of disorders having hydramnios as a common feature. Many of the neonates had hypoplastic lungs, an abnormality whose role in the hydramnios is undetermined. Renal tubular lumina were of normal size in neonates associated with oligohydramnios due to chronic leak of amniotic fluid. Donor members of parabiotic transplacental transfusion pairs had contracted renal tubules which helps to explain their oligohydramnios. ImagesFig 1Fig 2Fig 3Fig 4 PMID:4558222

  8. Soft particles at fluid interfaces: wetting, structure, and rheology

    NASA Astrophysics Data System (ADS)

    Isa, Lucio

    Most of our current knowledge concerning the behavior of colloidal particles at fluid interfaces is limited to model spherical, hard and uniform objects. Introducing additional complexity, in terms of shape, composition or surface chemistry or by introducing particle softness, opens up a vast range of possibilities to address new fundamental and applied questions in soft matter systems at fluid interfaces. In this talk I will focus on the role of particle softness, taking the case of core-shell microgels as a paradigmatic example. Microgels are highly swollen and cross-linked hydrogel particles that, in parallel with their practical applications, e.g. for emulsion stabilization and surface patterning, are increasingly used as model systems to capture fundamental properties of bulk materials. Most microgel particles develop a core-shell morphology during synthesis, with a more cross-linked core surrounded by a corona of loosely linked and dangling polymer chains. I will first discuss the difference between the wetting of a hard spherical colloid and a core-shell microgel at an oil-water interface, pinpointing the interplay between adsorption at the interface and particle deformation. I will then move on to discuss the interplay between particle morphology and the microstructure and rheological properties of the interface. In particular, I will demonstrate that synchronizing the compression of a core-shell microgel-laden fluid interface with the deposition of the interfacial monolayer makes it possible to transfer the 2D phase diagram of the particles onto a solid substrate, where different positions correspond to different values of the surface pressure and the specific area. Using atomic force microscopy, we analyzed the microstructure of the monolayer and discovered a phase transition between two crystalline phases with the same hexagonal symmetry, but with two different lattice constants. The two phases correspond to shell-shell or core-core inter

  9. Passive fluidic diode for simple fluids using nested nanochannel structures

    NASA Astrophysics Data System (ADS)

    Mo, Jingwen; Li, Long; Wang, Jun; Li, Zhigang

    2016-03-01

    In this paper, we propose a moving part-free fluidic diode for simple fluids using nested nanochannels, which contain inner and outer channels of different lengths. Molecular dynamics simulations show that the fluidic diode accepts water flows in the forward direction and blocks flows in the backward direction in a wide range of pressure drops. The anisotropic flow rates are generated by the distinct activation pressures in different directions. In the forward direction, the activation pressure is low, which is determined by the infiltration pressure of the inner channel. In the backward direction, the activation pressure is quite high due to the capillary effects when flows are released from the inner to the outer channel. The pressure drop range for the fluidic diode can be varied by changing the channel size or surface wettability. The fluidic diode offers an alternative way for flow control in integrated micro- and nanofluidic devices.

  10. Passive fluidic diode for simple fluids using nested nanochannel structures.

    PubMed

    Mo, Jingwen; Li, Long; Wang, Jun; Li, Zhigang

    2016-03-01

    In this paper, we propose a moving part-free fluidic diode for simple fluids using nested nanochannels, which contain inner and outer channels of different lengths. Molecular dynamics simulations show that the fluidic diode accepts water flows in the forward direction and blocks flows in the backward direction in a wide range of pressure drops. The anisotropic flow rates are generated by the distinct activation pressures in different directions. In the forward direction, the activation pressure is low, which is determined by the infiltration pressure of the inner channel. In the backward direction, the activation pressure is quite high due to the capillary effects when flows are released from the inner to the outer channel. The pressure drop range for the fluidic diode can be varied by changing the channel size or surface wettability. The fluidic diode offers an alternative way for flow control in integrated micro- and nanofluidic devices.

  11. Sterically stabilized water based magnetic fluids: Synthesis, structure and properties

    NASA Astrophysics Data System (ADS)

    Bica, Doina; Vékás, Ladislau; Avdeev, Mikhail V.; Marinică, Oana; Socoliuc, Vlad; Bălăsoiu, Maria; Garamus, Vasil M.

    2007-04-01

    Magnetic fluids (MFs), prepared by chemical co-precipitation followed by double layer steric and electrostatic (combined) stabilization of magnetite nanoparticles dispersed in water, are presented. Several combinations of surfactants with different chain lengths (lauric acid (LA), myristic acid (MA), oleic acid (OA) and dodecyl-benzene-sulphonic acid (DBS)) were used, such as LA+LA, MA+MA, LA+DBS, MA+DBS, OA+DBS, OA+OA and DBS+DBS. Static light scattering, transmission electron microscopy, small angle neutron scattering, magnetic and magneto-rheological measurements revealed that MFs with MA+MA or LA+LA biocompatible double layer covered magnetite nanoparticles are the most stable colloidal systems among the investigated samples, and thus suitable for biomedical applications.

  12. 14 CFR 25.1182 - Nacelle areas behind firewalls, and engine pod attaching structures containing flammable fluid...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... pod attaching structures containing flammable fluid lines. 25.1182 Section 25.1182 Aeronautics and..., and engine pod attaching structures containing flammable fluid lines. (a) Each nacelle area... fluid lines, must meet each requirement of §§ 25.1103(b), 25.1165 (d) and (e), 25.1183, 25.1185(c),...

  13. 14 CFR 25.1182 - Nacelle areas behind firewalls, and engine pod attaching structures containing flammable fluid...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... pod attaching structures containing flammable fluid lines. 25.1182 Section 25.1182 Aeronautics and..., and engine pod attaching structures containing flammable fluid lines. (a) Each nacelle area... fluid lines, must meet each requirement of §§ 25.1103(b), 25.1165 (d) and (e), 25.1183, 25.1185(c),...

  14. 14 CFR 25.1182 - Nacelle areas behind firewalls, and engine pod attaching structures containing flammable fluid...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... pod attaching structures containing flammable fluid lines. 25.1182 Section 25.1182 Aeronautics and..., and engine pod attaching structures containing flammable fluid lines. (a) Each nacelle area... fluid lines, must meet each requirement of §§ 25.1103(b), 25.1165 (d) and (e), 25.1183, 25.1185(c),...

  15. Fluid-Structure Interaction Modeling of High-Aspect Ratio Nuclear Fuel Plates Using COMSOL

    SciTech Connect

    Curtis, Franklin G; Ekici, Kivanc; Freels, James D

    2013-01-01

    The High Flux Isotope Reactor at the Oak Ridge National Lab is in the research stage of converting its fuel from high-enriched uranium to low-enriched uranium. Due to different physical properties of the new fuel and changes to the internal fuel plate design, the current safety basis must be re-evaluated through rigorous computational analyses. One of the areas being explored is the fluid-structure interaction phenomenon due to the interaction of thin fuel plates (50 mils thickness) and the cooling fluid (water). Detailed computational fluid dynamics and fluid-structure interaction simulations have only recently become feasible due to improved numerical algorithms and advancements in computing technology. For many reasons including the already built-in fluid-structure interaction module, COMSOL has been chosen for this complex problem. COMSOL's ability to solve multiphysics problems using a fully-coupled and implicit solution algorithm is crucial in obtaining a stable and accurate solution. Our initial findings show that COMSOL can accurately model such problems due to its ability to closely couple the fluid dynamics and the structural dynamics problems.

  16. Analyses of fluid-structure interaction and structural response of reactor vessels to a postulated accident

    SciTech Connect

    Wang, C.Y.

    1993-08-01

    This paper describes fluid-structure-interaction and structure response analyses of a reactor vessel subjected to loadings associated with postulated accidents, using the improved hybrid Lagrangian-Eulerian code ALICE-II. The objective of the present analyses is to study the cover response and potential for missile generation in response to a fuel-coolant interaction in the core region. Three calculations were performed using the cover weight as a parameter. To study the effect of the cavity water outside the reactor vessel, vessel response calculations for both wet- and dry-cavity designs are compared. Results indicate that for all cases studied and for the design parameters assumed, the calculated cover displacements are all smaller than the bolts` ultimate displacement and no missile generation of the closure head is predicted. Also, solutions reveal that the cavity water of the wet-cavity design plays an important role of restraining the downward displacement of the bottom head. Based on these studies, the analyses predict that the structure integrity is maintained throughout the postulated accident for the wet-cavity design.

  17. Structure and dynamics of helix-0 of the N-BAR domain in lipid micelles and bilayers.

    PubMed

    Löw, Christian; Weininger, Ulrich; Lee, Hwankyu; Schweimer, Kristian; Neundorf, Ines; Beck-Sickinger, Annette G; Pastor, Richard W; Balbach, Jochen

    2008-11-01

    Bin/Amphiphysin/Rvs-homology (BAR) domains generate and sense membrane curvature by binding the negatively charged membrane to their positively charged concave surfaces. N-BAR domains contain an N-terminal extension (helix-0) predicted to form an amphipathic helix upon membrane binding. We determined the NMR structure and nano-to-picosecond dynamics of helix-0 of the human Bin1/Amphiphysin II BAR domain in sodium dodecyl sulfate and dodecylphosphocholine micelles. Molecular dynamics simulations of this 34-amino acid peptide revealed electrostatic and hydrophobic interactions with the detergent molecules that induce helical structure formation from residues 8-10 toward the C-terminus. The orientation in the micelles was experimentally confirmed by backbone amide proton exchange. The simulation and the experiment indicated that the N-terminal region is disordered, and the peptide curves to adopted the micelle shape. Deletion of helix-0 reduced tubulation of liposomes by the BAR domain, whereas the helix-0 peptide itself was fusogenic. These findings support models for membrane curving by BAR domains in which helix-0 increases the binding affinity to the membrane and enhances curvature generation. PMID:18658220

  18. Development of an integrated BEM approach for hot fluid structure interaction

    NASA Technical Reports Server (NTRS)

    Dargush, Gary F.; Banerjee, Prasanta K.; Honkala, Keith A.

    1991-01-01

    The development of a boundary element formulation for the study of hot fluid-structure interaction in earth-to-orbit engine hot section components is described. The initial primary thrust of the program to date was directed quite naturally toward the examination of fluid flow, since boundary element methods for fluids are at a much less developed state. This required the development of integral formulations for both the solid and fluid, and some preliminary infrastructural enhancements to a boundary element code to permit coupling of the fluid-structure problem. Boundary element formulations are implemented in two dimensions for both the solid and the fluid. The solid is modeled as an uncoupled thermoelastic medium under plane strain conditions, while several formulations are investigated for the fluid. For example, both vorticity and primitive variable approaches are implemented for viscous, incompressible flow, and a compressible version is developed. All of the above boundary element implementations are incorporated in a general purpose two-dimensional code. Thus, problems involving intricate geometry, multiple generic modeling regions, and arbitrary boundary conditions are all supported.

  19. "Nanocrystal bilayer for tandem catalysis"

    SciTech Connect

    Yamada, Yusuke; Tsung, Chia Kuang; Huang, Wenyu; Huo, Ziyang; E.Habas, Susan E; Soejima, Tetsuro; Aliaga, Cesar E; Samorjai, Gabor A; Yang, Peidong

    2011-01-24

    Supported catalysts are widely used in industry and can be optimized by tuning the composition and interface of the metal nanoparticles and oxide supports. Rational design of metal-metal oxide interfaces in nanostructured catalysts is critical to achieve better reaction activities and selectivities. We introduce here a new class of nanocrystal tandem catalysts that have multiple metal-metal oxide interfaces for the catalysis of sequential reactions. We utilized a nanocrystal bilayer structure formed by assembling platinum and cerium oxide nanocube monolayers of less than 10 nm on a silica substrate. The two distinct metal-metal oxide interfaces, CeO2-Pt and Pt-SiO2, can be used to catalyse two distinct sequential reactions. The CeO2-Pt interface catalysed methanol decomposition to produce CO and H2, which were subsequently used for ethylene hydroformylation catalysed by the nearby Pt-SiO2 interface. Consequently, propanal was produced selectively from methanol and ethylene on the nanocrystal bilayer tandem catalyst. This new concept of nanocrystal tandem catalysis represents a powerful approach towards designing high-performance, multifunctional nanostructured catalysts

  20. First step in folding of nonconstitutive membrane proteins: spontaneous insertion of a polypeptide into a lipid bilayer and formation of helical structure

    NASA Astrophysics Data System (ADS)

    Reshetnyak, Yana; Karabadzhak, Alexander; Weerakkody, Dhammika; Engelman, Donald; Markin, Vladislav; Andreev, Oleg

    2011-03-01

    There are two questions we would like to address: 1) what is the molecular mechanism of a polypeptide insertion into a lipid bilayer and formation of transmembrane helix? 2) Are there any transient changes of a lipid bilayer in process of a polypeptide insertion and folding? As a convenient system we are studying pHLIP (pH (Low) Insertion Peptide) insertion into a membrane and folding, which is modulated by pH. The insertion of pHLIP occurs with rapid (0.1 sec) interfacial helix formation followed by a much slower (100 sec) insertion pathway to form a transmembrane helix. The reverse process of unfolding and peptide exit from the bilayer core proceeds much faster than folding/insertion and through different intermediate states. Our kinetic studies with pHLIP variants indicate that insertion can occur 100 times faster and with less number of intermediate states. To study changes, which might occur with a lipid bilayer in a process of peptide insertion and folding, we employed stopped-flow SAXS. Supported by grant from the NIH RO1133890 to OAA, DME, YRK.

  1. A gridless technique for fluid/structural dynamic coupling on flexible membranes

    SciTech Connect

    Wolfe, W.P.; Nelsen, J.M.; Baty, R.S.; Laguna, G.A.; Mello, F.J.; Hailey, C.E.; Snyder, N.T.

    1996-01-01

    A gridless method has been developed for the simulation of coupled fluid/structural interactions over arbitrary bodies. This method uses Eulerian-based points arbitrarily distributed over the computational domain with no formal connectivity as typically required for a traditional grid. Comparisons are made with known exact solutions for simple two-dimensional model problems. Methods of improving the accuracy of the current implementation by using higher order approximations have been implemented. Accuracy improvement by using point adaption has been investigated. Plane strain and axisymmetric shells have been added to the code structural code PRONTO2D for future fluid/structural calculations. To date, coupled fluid/structure calculations have not been made.

  2. Effects of fluid-structure interaction on the aerodynamics of an insect wing

    NASA Astrophysics Data System (ADS)

    Nguyen, Anh Tuan; Han, Jae-Hung

    2016-04-01

    In this paper, an insect wing structure is modeled based on data obtained from measurements on real hawkmoth (Manduca Sexta) wings. The aerodynamics of insect wings is simulated by an extended unsteady vortex-lattice method. The finite-element model of a flexible hawkmoth wing is built and validated. A computer program, which couples the finite-element model with the aerodynamic model, is used to study the effects of fluid-structure interaction. Some important features due to the fluid-structure interaction in hovering and forward flight are observed in the present study.

  3. Electromagnetic resonant modes of dielectric sphere bilayers

    SciTech Connect

    Andueza, A. Pérez-Conde, J.; Sevilla, J.

    2015-05-28

    Sphere bilayers have been proposed as promising structures for electromagnetic management in photonic crystal devices. These arrangements are made of two intertwined subsets of spheres of different size and refractive index, one subset filling the interstitial sites of the other. We present a systematic study of the electromagnetic resonant modes of the bilayers, in comparison with those of the constituent subsets of spheres. Three samples were built with glass and Teflon spheres and their transmission spectra measured in the microwave range (10–25 GHz). Simulations with finite integration time-domain method are in good agreement with experiments. Results show that the bilayer presents the same resonances as one of the subsets but modified by the presence of the other in its resonant frequencies and in the electric field distributions. As this distortion is not very large, the number of resonances in a selected spectral region is determined by the dominant subset. The degree of freedom that offers the bilayer could be useful to fine tune the resonances of the structure for different applications. A map of modes useful to guide this design is also presented. Scale invariance of Maxwell equations allows the translation of these results in the microwave range to the visible region; hence, some possible applications are discussed in this framework.

  4. [Recent findings in fetal lung development: structure, surfactant, lung fluid].

    PubMed

    Schwartze, H

    1990-01-01

    A great deal of lung development takes place after birth; new alveoli continue to develop until 8-11 years. However, the differentiation of epithelial cells is characteristic of the fetal lung from 24 weeks of gestation onwards: this is the point at which the surfactant containing type II cells can first be identified. Lung blood flow and the metabolic rate of type II cells increase in parallel rates the last 20% of the gestation period. The timely synthesis of surfactant depends on the availability of the fetal hormones T3, cortisol and prolactin, whereas this synthesis is inhibited by insulin and testosterone. Endogenous surfactant consists of 80% phosphatidylcholine and 10% protein. A sufficient quantity of surfactant is only available at term. Nowadayx, surfactant deficiency can be treated successfully with various exogenous surfactant preparations. Fetal lung liquid contributes about one half to the amniotic fluid. It is partly secreted by an active transport system. Secretion is inhibited by the stimulation of beta-adrenergic receptors in the lung tissue. The epithelial surface of the alveoli is a barrier which limits protein penetration considerably; lung liquid contains minimal amounts of protein. Under pathological conditions (RDS, haemorrhagic lung oedema) the alveolar barrier is disturbed so that plasma protein penetrate into the air spaces and form hyaline membranes.

  5. The structure of fluid fluoroform, chlorodifluoromethane, and dichlorodifluoromethane by neutron diffraction

    NASA Astrophysics Data System (ADS)

    Hall, C. D.; Johnson, K. A.; Burgess, A. N.; Winterton, N.; Howells, W. S.

    Neutron diffraction has been used to study the structure of liquid fluoroform, dichlorodifluoromethane, and chlorodifluoromethane at 153 K. Accurate values of the intramolecular atomic separations have been found from the radial distribution functions. In addition, information regarding the intermolecular liquid structure of the three fluids has been obtained. Molecular dynamics simulations are underway to interpret these observations.

  6. Stochastic Eulerian Lagrangian methods for fluid-structure interactions with thermal fluctuations

    SciTech Connect

    Atzberger, Paul J.

    2011-04-20

    We present approaches for the study of fluid-structure interactions subject to thermal fluctuations. A mixed mechanical description is utilized combining Eulerian and Lagrangian reference frames. We establish general conditions for operators coupling these descriptions. Stochastic driving fields for the formalism are derived using principles from statistical mechanics. The stochastic differential equations of the formalism are found to exhibit significant stiffness in some physical regimes. To cope with this issue, we derive reduced stochastic differential equations for several physical regimes. We also present stochastic numerical methods for each regime to approximate the fluid-structure dynamics and to generate efficiently the required stochastic driving fields. To validate the methodology in each regime, we perform analysis of the invariant probability distribution of the stochastic dynamics of the fluid-structure formalism. We compare this analysis with results from statistical mechanics. To further demonstrate the applicability of the methodology, we perform computational studies for spherical particles having translational and rotational degrees of freedom. We compare these studies with results from fluid mechanics. The presented approach provides for fluid-structure systems a set of rather general computational methods for treating consistently structure mechanics, hydrodynamic coupling, and thermal fluctuations.

  7. Numerical simulation of the fluid-structure interaction between air blast waves and soil structure

    NASA Astrophysics Data System (ADS)

    Umar, S.; Risby, M. S.; Albert, A. Luthfi; Norazman, M.; Ariffin, I.; Alias, Y. Muhamad

    2014-03-01

    Normally, an explosion threat on free field especially from high explosives is very dangerous due to the ground shocks generated that have high impulsive load. Nowadays, explosion threats do not only occur in the battlefield, but also in industries and urban areas. In industries such as oil and gas, explosion threats may occur on logistic transportation, maintenance, production, and distribution pipeline that are located underground to supply crude oil. Therefore, the appropriate blast resistances are a priority requirement that can be obtained through an assessment on the structural response, material strength and impact pattern of material due to ground shock. A highly impulsive load from ground shocks is a dynamic load due to its loading time which is faster than ground response time. Of late, almost all blast studies consider and analyze the ground shock in the fluid-structure interaction (FSI) because of its influence on the propagation and interaction of ground shock. Furthermore, analysis in the FSI integrates action of ground shock and reaction of ground on calculations of velocity, pressure and force. Therefore, this integration of the FSI has the capability to deliver the ground shock analysis on simulation to be closer to experimental investigation results. In this study, the FSI was implemented on AUTODYN computer code by using Euler-Godunov and the arbitrary Lagrangian-Eulerian (ALE). Euler-Godunov has the capability to deliver a structural computation on a 3D analysis, while ALE delivers an arbitrary calculation that is appropriate for a FSI analysis. In addition, ALE scheme delivers fine approach on little deformation analysis with an arbitrary motion, while the Euler-Godunov scheme delivers fine approach on a large deformation analysis. An integrated scheme based on Euler-Godunov and the arbitrary Lagrangian-Eulerian allows us to analyze the blast propagation waves and structural interaction simultaneously.

  8. LOCA hydroloads calculations with multidimensional nonlinear fluid/structure interaction. Volume 3. Fluid/structure interaction studies using 3-D STEALTH/WHAMSE. Final report. [PWR

    SciTech Connect

    Santee, G.E. Jr.; Chang, F.H.; Mortensen, G.A.; Brockett, G.F.; Gross, M.B.; Belytschko, T.B.

    1982-11-01

    This report, the third in a series of reports for RP-1065, describes the final step in the stepwise approach for developing the three-dimensional, nonlinear, fluid-structure interaction methodology to assess the hydroloads on a large PWR during the subcooled portions of a hypothetical LOCA. The final step in the methodology implements enhancements and special modifications to the STEALTH 3D computer program and the WHAMSE 3D computer program. After describing the enhancements, the individual and the coupled computer programs are assessed by comparing calculational results with either analytical solutions or with experimental data. The coupled 3D STEALTH/WHAMSE computer program is then applied to the simulation of HDR Test V31.1 to further assess the program and to investigate the role that fluid-structure interaction plays in the hydrodynamic loading of reactor internals during subcooled blowdown.

  9. Structured spheres generated by an in-fibre fluid instability.

    PubMed

    Kaufman, Joshua J; Tao, Guangming; Shabahang, Soroush; Banaei, Esmaeil-Hooman; Deng, Daosheng S; Liang, Xiangdong; Johnson, Steven G; Fink, Yoel; Abouraddy, Ayman F

    2012-07-26

    From drug delivery to chemical and biological catalysis and cosmetics, the need for efficient fabrication pathways for particles over a wide range of sizes, from a variety of materials, and in many different structures has been well established. Here we harness the inherent scalability of fibre production and an in-fibre Plateau-Rayleigh capillary instability for the fabrication of uniformly sized, structured spherical particles spanning an exceptionally wide range of sizes: from 2 mm down to 20 nm. Thermal processing of a multimaterial fibre controllably induces the instability, resulting in a well-ordered, oriented emulsion in three dimensions. The fibre core and cladding correspond to the dispersed and continuous phases, respectively, and are both frozen in situ on cooling, after which the particles are released when needed. By arranging a variety of structures and materials in a macroscopic scaled-up model of the fibre, we produce composite, structured, spherical particles, such as core-shell particles, two-compartment 'Janus' particles, and multi-sectioned 'beach ball' particles. Moreover, producing fibres with a high density of cores allows for an unprecedented level of parallelization. In principle, 10(8) 50-nm cores may be embedded in metres-long, 1-mm-diameter fibre, which can be induced to break up simultaneously throughout its length, into uniformly sized, structured spheres. PMID:22810590

  10. Fluid-structure interaction in abdominal aortic aneurysms: Structural and geometrical considerations

    NASA Astrophysics Data System (ADS)

    Mesri, Yaser; Niazmand, Hamid; Deyranlou, Amin; Sadeghi, Mahmood Reza

    2015-08-01

    Rupture of the abdominal aortic aneurysm (AAA) is the result of the relatively complex interaction of blood hemodynamics and material behavior of arterial walls. In the present study, the cumulative effects of physiological parameters such as the directional growth, arterial wall properties (isotropy and anisotropy), iliac bifurcation and arterial wall thickness on prediction of wall stress in fully coupled fluid-structure interaction (FSI) analysis of five idealized AAA models have been investigated. In particular, the numerical model considers the heterogeneity of arterial wall and the iliac bifurcation, which allows the study of the geometric asymmetry due to the growth of the aneurysm into different directions. Results demonstrate that the blood pulsatile nature is responsible for emerging a time-dependent recirculation zone inside the aneurysm, which directly affects the stress distribution in aneurismal wall. Therefore, aneurysm deviation from the arterial axis, especially, in the lateral direction increases the wall stress in a relatively nonlinear fashion. Among the models analyzed in this investigation, the anisotropic material model that considers the wall thickness variations, greatly affects the wall stress values, while the stress distributions are less affected as compared to the uniform wall thickness models. In this regard, it is confirmed that wall stress predictions are more influenced by the appropriate structural model than the geometrical considerations such as the level of asymmetry and its curvature, growth direction and its extent.

  11. Characterization of fluid micro-structures in porous media and their relation to wettability

    NASA Astrophysics Data System (ADS)

    Karpyn, Z. T.; Piri, M.; Singh, G.; Landry, C. J.

    2009-12-01

    Uncertainties in the quantification of transport properties associated with porous soil systems often make the prediction of fluid residence and migration a difficult task. Movement and trapping of immiscible fluids in permeable formations respond to a complex combination of fluid properties, rock properties, the interactions between these fluids and the solid surface, and boundary conditions. This work includes implementation of a sophisticated experimental approach using x-rays and visualization techniques to map the distribution of immiscible liquid structures inside porous samples at the end of various displacement scenarios. We investigate the effect of flowing conditions and wettability on the evolution of fluid micro-structures and trapping in porous media using x-ray microtomography. Core-flooding experiments were conducted to monitor fluid distribution in artificial permeable samples made of solid spherical glass and polyethylene beads (0.43-0.60mm in diameter), which represent a hydrophilic and hydrophobic media, respectively. We present detailed characterizations of the trapped non-wetting phase clusters for the entire body of the cores allowing a more rigorous analysis of the responsible displacement mechanisms. Fluid injection rates and wetting characteristics were found to affect the mobilization and trapping of fluid phases in these porous systems. The degree of sensitivity to various flowing conditions and rock-fluid interactions is of crucial importance to understand immiscible transport mechanisms in natural soil environments. Results from this work are expected to provide a powerful calibration mechanism for physically-based multiphase flow models, which will in turn help in the generalization and extrapolation of experimental observations. Three-dimensional visualization of an oil cluster trapped in the pore space of a granular glass bead pack saturated with brine.

  12. Fluid-loaded vibration of thin structures due to turbulent excitation

    NASA Astrophysics Data System (ADS)

    Tomko, Jason Robert

    Flow-induced structural acoustics involves the study of the vibration of a structure induced by a fluid flow as well as the resulting sound generated and radiated by the motion of the system. The thesis examines several aspects of flow-induced structural vibration for fluid-loaded systems. A new method, termed Magnitude-Phase Identification, is derived to experimentally obtain a modal decomposition of the vibration of a structure using two-point measurements. MPI was used to measure the auto-spectral density of various modes for a non-fluid-loaded, rectangular, clamped plate excited by a spatially-homogeneous turbulent boundary layer. These results agreed well with theory. Using MPI, it was shown that when both fluid-loading and a spatially non-homogeneous wall pressure field is applied to a structure that the mode shapes become dependent on the forcing field, an effect which does not occur when either characteristic is applied individually. Furthermore, the resulting mode shapes are potentially highly asymmetric. It was shown through a discretized string model that these results can be attributed to the increased damping induced by fluid loading. Internal acoustic wall pressure fields due to a ducted rotor were measured, and it was shown that the acoustic effects of the rotor can be approximated by replacing the rotor with a continuous ring of dipoles located at the blade tip. The finite length of the duct was accounted for through use of a method of images. The theoretical results from this model match well with the measured values. Lastly, the vibration of a fluid-loaded duct excited by an internal rotor is measured through use of MPI. The resulting vibration field appears similar to the field examined earlier due to fluid loading, with a decrease in the coherent vibration magnitude for increasing spatial separation from the reference location.

  13. Profile structures of the voltage-sensor domain and the voltage-gated K+-channel vectorially oriented in a single phospholipid bilayer membrane at the solid-vapor and solid-liquid interfaces determined by x-ray interferometry

    PubMed Central

    Gupta, S.; Liu, J.; Strzalka, J.; Blasie, J. K.

    2011-01-01

    One subunit of the prokaryotic voltage-gated potassium ion channel from Aeropyrum pernix (KvAP) is comprised of six transmembrane α helices, of which S1–S4 form the voltage-sensor domain (VSD) and S5 and S6 contribute to the pore domain (PD) of the functional homotetramer. However, the mechanism of electromechanical coupling interconverting the closed-to-open (i.e., nonconducting-to-K+-conducting) states remains undetermined. Here, we have vectorially oriented the detergent (OG)-solubilized VSD in single monolayers by two independent approaches, namely “directed-assembly” and “self-assembly,” to achieve a high in-plane density. Both utilize Ni coordination chemistry to tether the protein to an alkylated inorganic surface via its C-terminal His6 tag. Subsequently, the detergent is replaced by phospholipid (POPC) via exchange, intended to reconstitute a phospholipid bilayer environment for the protein. X-ray interferometry, in which interference with a multilayer reference structure is used to both enhance and phase the specular x-ray reflectivity from the tethered single membrane, was used to determine directly the electron density profile structures of the VSD protein solvated by detergent versus phospholipid, and with either a moist He (moderate hydration) or bulk aqueous buffer (high hydration) environment to preserve a native structure conformation. Difference electron density profiles, with respect to the multilayer substrate itself, for the VSD-OG monolayer and VSD-POPC membranes at both the solid-vapor and solid-liquid interfaces, reveal the profile structures of the VSD protein dominating these profiles and further indicate a successful reconstitution of a lipid bilayer environment. The self-assembly approach was similarly extended to the intact full-length KvAP channel for comparison. The spatial extent and asymmetry in the profile structures of both proteins confirm their unidirectional vectorial orientation within the reconstituted membrane and

  14. Nanoparticle-lipid bilayer interactions studied with lipid bilayer arrays.

    PubMed

    Lu, Bin; Smith, Tyler; Schmidt, Jacob J

    2015-05-01

    The widespread environmental presence and commercial use of nanoparticles have raised significant health concerns as a result of many in vitro and in vivo assays indicating toxicity of a wide range of nanoparticle species. Many of these assays have identified the ability of nanoparticles to damage cell membranes. These interactions can be studied in detail using artificial lipid bilayers, which can provide insight into the nature of the particle-membrane interaction through variation of membrane and solution properties not possible with cell-based assays. However, the scope of these studies can be limited because of the low throughput characteristic of lipid bilayer platforms. We have recently described an easy to use, parallel lipid bilayer platform which we have used to electrically investigate the activity of 60 nm diameter amine and carboxyl modified polystyrene nanoparticles (NH2-NP and COOH-NP) with over 1000 lipid bilayers while varying lipid composition, bilayer charge, ionic strength, pH, voltage, serum, particle concentration, and particle charge. Our results confirm recent studies finding activity of NH2-NP but not COOH-NP. Detailed analysis shows that NH2-NP formed pores 0.3-2.3 nm in radius, dependent on bilayer and solution composition. These interactions appear to be electrostatic, as they are regulated by NH2-NP surface charge, solution ionic strength, and bilayer charge. The ability to rapidly measure a large number of nanoparticle and membrane parameters indicates strong potential of this bilayer array platform for additional nanoparticle bilayer studies.

  15. On the sampling criterion for structural radiation in fluid.

    PubMed

    Veronesi, Giorgio; Nijman, Eugène J M

    2016-05-01

    When experimentally investigating the sound radiating from vibrating structures the surface is discretised into elemental areas also referred to as patches in which the surface vibrations are considered uniform. In many cases the structural Nyquist criterion imposes very small patch sizes which turn the experimental analysis into an overwhelmingly elaborate and error-prone task. The possibility to use a coarse sampling scheme for the surface velocity can greatly enhance the practical feasibility of such experimental investigations. Here the special case of a simply supported baffled plate excited by a broadband point force is considered. It is shown that accurate approximations of the radiated power may be obtained well beyond the frequency limit imposed by the structural Nyquist sampling criterion, provided the complex-valued vibration field is averaged over each patch. This is due to the fact that the structural wave components with wavenumbers greater than the acoustic wavenumber tend to be averaged out, owing to the mutual canceling of areas which vibrate out-of-phase within each patch, leaving only those components that contribute significantly to the radiated sound. It turns out, however, that this canceling process is not complete and that an error is introduced by the spatial aliasing. An analytical expression is derived allowing one to quantify this error and to optimise the patch size given a desired accuracy level and frequency range for the assessment of the radiated power. The proposed sampling criterion not only allows one to significantly reduce the measurement efforts when the radiation of vibro-acoustic systems are experimentally investigated but can also be applied to reduce the size of numerical models for weakly coupled structural-acoustic systems. PMID:27250189

  16. The Strong Stability and Instability of a Fluid-Structure Semigroup

    SciTech Connect

    Avalos, George

    2007-03-15

    The strong stability problem for a fluid-structure interactive partial differential equation (PDE) is considered. The PDE comprises a coupling of the linearized Stokes equations to the classical system of elasticity, with the coupling occurring on the boundary interface between the fluid and solid media. Because of the nature of the unbounded coupling between fluid and structure, the resolvent of the associated semigroup generator will not be a compact operator. In consequence, the classical solution to the stability problem, by means of the Nagy-Foias decomposition, will not avail here. Moreover, it is not practicable to write down explicitly the resolvent of the fluid-structure generator; this situation thus makes it problematic to use the well-known semigroup stability result of Arendt-Batty and Lyubich-Phong. When a locally supported boundary dissipative mechanism is in place, we derive here a result of strong decay for this fluid-structure PDE. In the absence of said dissipative mechanism, we show the lack of asymptotic decay for solutions corresponding to arbitrary initial data of finite energy.

  17. A Phase-Field Method for Simulating Fluid-Structure Interactions in Multi-Phase Flow

    NASA Astrophysics Data System (ADS)

    Zheng, Xiaoning; Karniadakis, George

    2015-11-01

    We investigate two-phase flow instabilities by numerical simulations of fluid structure interactions in two-phase flow. The first case is a flexible pipe conveying two fluids, which exhibits self-sustained oscillations at high Reynolds number and tension related parameter. Well-defined two-phase flow patterns, i.e., slug flow and bubbly flow, are observed. The second case is external two-phase cross flow past a circular cylinder, which induces a Kelvin-Helmholtz instability due to density stratification. We solve the Navier-Stokes equation coupled with the Cahn-Hilliard equation and the structure equation in an arbitrary Lagrangian Eulerian (ALE) framework. For the fluid solver, a spectral/hp element method is employed for spatial discretization and backward differentiation for time discretization. For the structure solver, a Galerkin method is used in Lagrangian coordinates for spatial discretization and the Newmark- β scheme for time discretization.

  18. A circuit model for defective bilayer graphene transistors

    NASA Astrophysics Data System (ADS)

    Umoh, Ime J.; Moktadir, Zakaria; Hang, Shuojin; Kazmierski, Tom J.; Mizuta, Hiroshi

    2016-05-01

    This paper investigates the behaviour of a defective single-gate bilayer graphene transistor. Point defects were introduced into pristine graphene crystal structure using a tightly focused helium ion beam. The transfer characteristics of the exposed transistors were measured ex-situ for different defect concentrations. The channel peak resistance increased with increasing defect concentration whilst the on-off ratio showed a decreasing trend for both electrons and holes. To understand the electrical behaviour of the transistors, a circuit model for bilayer graphene is developed which shows a very good agreement when validated against experimental data. The model allowed parameter extraction of bilayer transistor and can be implemented in circuit level simulators.

  19. Fluid structure interaction modelling for the vibration of tube bundles, part I: analysis of the fluid flow in a tube bundle

    SciTech Connect

    Desbonnets, Quentin; Broc, Daniel

    2012-07-01

    It is well known that a fluid may strongly influence the dynamic behaviour of a structure. Many different physical phenomena may take place, depending on the conditions: fluid flow, fluid at rest, little or high displacements of the structure. Inertial effects can take place, with lower vibration frequencies, dissipative effects also, with damping, instabilities due to the fluid flow (Fluid Induced Vibration). In this last case the structure is excited by the fluid. Tube bundles structures are very common in the nuclear industry. The reactor cores and the steam generators are both structures immersed in a fluid which may be submitted to a seismic excitation or an impact. In this case the structure moves under an external excitation, and the movement is influence by the fluid. The main point in such system is that the geometry is complex, and could lead to very huge sizes for a numerical analysis. Homogenization models have been developed based on the Euler equations for the fluid. Only inertial effects are taken into account. A next step in the modelling is to build models based on the homogenization of the Navier-Stokes equations. The papers presents results on an important step in the development of such model: the analysis of the fluid flow in a oscillating tube bundle. The analysis are made from the results of simulations based on the Navier-Stokes equations for the fluid. Comparisons are made with the case of the oscillations of a single tube, for which a lot of results are available in the literature. Different fluid flow pattern may be found, depending in the Reynolds number (related to the velocity of the bundle) and the Keulegan Carpenter number (related to the displacement of the bundle). A special attention is paid to the quantification of the inertial and dissipative effects, and to the forces exchanges between the bundle and the fluid. The results of such analysis will be used in the building of models based on the homogenization of the Navier

  20. Pressure correlations at a fluid/structure interface

    NASA Technical Reports Server (NTRS)

    Trevino, George

    1995-01-01

    The structure of pressure-pressure correlations at the interface of an incompressible steady-state turbulent flow with a rigid boundary was investigated. For the sake of completeness, the absolute value of the correlation between two random varying functions is herein defined as a number greater than or equal to zero and less than or equal to unity which is a measure of that fraction of one of the functions that 'follows' the second function (or vice versa). It was found that the soughtafter correlations can be determined by consideration of the high Re Navier-Stokes equation, but that the complexity of boundary layer turbulence, in particular the inhomogeneity perpendicular to the boundary and the anisotropy due to convective flow gradients, makes the structure of said correlations extremely difficult to assess. One of the earlier researchers in this field described the quantity under present consideration as 'a quantity which is beyond assessment.' Nonetheless, it was found that under some rather simplifying assumptions the determination of the required structure necessitates the formulation of the related structure of second order two-point correlations of turbulent velocity gradients, as well as third order two-point correlations of velocity gradients. The presence of these latter gradients is due to the nonlinearity in the turbulence ('turbulence self-interaction'). Both of these correlations are scaled, although not similarly, by factors dependent upon the magnitude of the convective flow, which can be modeled using a log law approximation. Fourth order correlations, although present, can be ignored, since they constitute 'higher order terms.' In a slightly more complex situation, it was found that convective flow gradients also have to be incorporated. At the moment, no definitive algebraic information peculiar to pressure-pressure correlations is available in the most highly idealized cases.

  1. Structure and stability of isotropic states of hard platelet fluids.

    PubMed

    Cheung, David L; Anton, Lucian; Allen, Michael P; Masters, Andrew J; Phillips, Jonathan; Schmidt, Matthias

    2008-10-01

    We study the thermodynamics and the pair structure of hard, infinitely thin, circular platelets in the isotropic phase. Monte Carlo simulation results indicate a rich spatial structure of the spherical expansion components of the direct correlation function, including nonmonotonical variation of some of the components with density. Integral equation theory is shown to reproduce the main features observed in simulations. The hypernetted chain closure, as well as its extended versions that include the bridge function up to second and third order in density, perform better than both the Percus-Yevick closure and Verlet bridge function approximation. Using a recent fundamental measure density functional theory, an analytic expression for the direct correlation function is obtained as the sum of the Mayer bond and a term proportional to the density and the intersection length of two platelets. This is shown to give a reasonable estimate of the structure found in simulations, but to fail to capture the nonmonotonic variation with density. We also carry out a density functional stability analysis of the isotropic phase with respect to nematic ordering and show that the limiting density is consistent with that where the Kerr coefficient vanishes. As a reference system, we compare to simulation results for hard oblate spheroids with small, but nonzero elongations, demonstrating that the case of vanishingly thin platelets is approached smoothly.

  2. In vitro flow assessment: from PC-MRI to computational fluid dynamics including fluid-structure interaction

    NASA Astrophysics Data System (ADS)

    Kratzke, Jonas; Rengier, Fabian; Weis, Christian; Beller, Carsten J.; Heuveline, Vincent

    2016-04-01

    Initiation and development of cardiovascular diseases can be highly correlated to specific biomechanical parameters. To examine and assess biomechanical parameters, numerical simulation of cardiovascular dynamics has the potential to complement and enhance medical measurement and imaging techniques. As such, computational fluid dynamics (CFD) have shown to be suitable to evaluate blood velocity and pressure in scenarios, where vessel wall deformation plays a minor role. However, there is a need for further validation studies and the inclusion of vessel wall elasticity for morphologies being subject to large displacement. In this work, we consider a fluid-structure interaction (FSI) model including the full elasticity equation to take the deformability of aortic wall soft tissue into account. We present a numerical framework, in which either a CFD study can be performed for less deformable aortic segments or an FSI simulation for regions of large displacement such as the aortic root and arch. Both of the methods are validated by means of an aortic phantom experiment. The computational results are in good agreement with 2D phase-contrast magnetic resonance imaging (PC-MRI) velocity measurements as well as catheter-based pressure measurements. The FSI simulation shows a characteristic vessel compliance effect on the flow field induced by the elasticity of the vessel wall, which the CFD model is not capable of. The in vitro validated FSI simulation framework can enable the computation of complementary biomechanical parameters such as the stress distribution within the vessel wall.

  3. Simulation Studies of Alamethicin-Bilayer Interactions

    PubMed Central

    Biggin, P. C.; Breed, J.; Son, H. S.; Sansom, M. S. P.

    1997-01-01

    Alamethicin is an α-helical peptide that forms voltage-activated ion channels. Experimental data suggest that channel formation occurs via voltage-dependent insertion of alamethicin helices into lipid bilayers, followed by self-assembly of inserted helices to form a parallel helix bundle. Changes in the kink angle of the alamethicin helix about its central proline residue have also been suggested to play a role in channel gating. Alamethicin helices generated by simulated annealing and restrained molecular dynamics adopt a kink angle similar to that in the x-ray crystal structure, even if such simulations start with an idealized unkinked helix. This suggests that the kinked helix represents a stable conformation of the molecule. Molecular dynamics simulations in the presence of a simple bilayer model and a transbilayer voltage difference are used to explore possible mechanisms of helix insertion. The bilayer is represented by a hydrophobicity potential. An alamethicin helix inserts spontaneously in the absence of a transbilayer voltage. Application of a cis positive voltage decreases the time to insertion. The helix kink angle fluctuates during the simulations. Insertion of the helix is associated with a decrease in the mean kink angle, thus helping the alamethicin molecule to span the bilayer. The simulation results are discussed in terms of models of alamethicin channel gating. ImagesFIGURE 1FIGURE 6 PMID:9017192

  4. Three-dimensional structure of fluid conduits sustaining an active deep marine cold seep

    NASA Astrophysics Data System (ADS)

    Hornbach, M. J.; Ruppel, C.; Van Dover, C. L.

    2007-03-01

    Cold seeps in deep marine settings emit fluids to the overlying ocean and are often associated with such seafloor flux indicators as chemosynthetic biota, pockmarks, and authigenic carbonate rocks. Despite evidence for spatiotemporal variability in the rate, locus, and composition of cold seep fluid emissions, the shallow subseafloor plumbing systems have never been clearly imaged in three dimensions. Using a novel, high-resolution approach, we produce the first three-dimensional image of possible fluid conduits beneath a cold seep at a study site within the Blake Ridge gas hydrate province. Complex, dendritic features diverge upward toward the seafloor from feeder conduits at depth and could potentially draw flow laterally by up to 103 m from the known seafloor seep, a pattern similar to that suggested for some hydrothermal vents. The biodiversity, community structure, and succession dynamics of chemosynthetic communities at cold seeps may largely reflect these complexities of subseafloor fluid flow.

  5. Three-dimensional structure of fluid conduits sustaining an active deep marine cold seep

    USGS Publications Warehouse

    Hornbach, M.J.; Ruppel, C.; Van Dover, C.L.

    2007-01-01

    Cold seeps in deep marine settings emit fluids to the overlying ocean and are often associated with such seafloor flux indicators as chemosynthetic biota, pockmarks, and authigenic carbonate rocks. Despite evidence for spatiotemporal variability in the rate, locus, and composition of cold seep fluid emissions, the shallow subseafloor plumbing systems have never been clearly imaged in three dimensions. Using a novel, high-resolution approach, we produce the first three-dimensional image of possible fluid conduits beneath a cold seep at a study site within the Blake Ridge gas hydrate province. Complex, dendritic features diverge upward toward the seafloor from feeder conduits at depth and could potentially draw flow laterally by up to 103 m from the known seafloor seep, a pattern similar to that suggested for some hydrothermal vents. The biodiversity, community structure, and succession dynamics of chemosynthetic communities at cold seeps may largely reflect these complexities of subseafloor fluid flow.

  6. Surface tension effects on the phase transition of a DPPC bilayer with and without protein: a molecular dynamics simulation.

    PubMed

    Kong, Xian; Qin, Shanshan; Lu, Diannan; Liu, Zheng

    2014-05-14

    While the surface tension of a cell membrane, or a plasma membrane, regulates cell functions, little is known about its effect on the conformational changes of the lipid bilayer and hence the resulting changes in the cell membrane. To obtain some insights into the phase transition of the lipid bilayer as a function of surface tension, we used a 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) bilayer as a model lipid bilayer and aquaporin (AqpZ), a transmembrane channel protein for water, as a model embedded protein. A coarse-grained molecular dynamics simulation was applied to illustrate the phase transition behavior of the pure DPPC bilayer and aquaporin-embedded DPPC bilayer under different surface tensions. It was shown that an increased surface tension reduced the phase transition temperature of the DPPC bilayer. As for the DPPC bilayer in gel form, no significant changes occurred in the structure of the bilayer in response to the surface tension. Once in a liquid crystal state, both the structure and properties of the DPPC bilayer, such as area per lipid, lipid order parameters, bilayer thickness and lateral diffusion coefficients, were responsive to the magnitude of surface tension in a linear way. The presence of aquaporin attenuated the compact alignment of the lipid bilayer, hindered the parallel movement, and thus made the DPPC bilayer less sensitive to the surface tension.

  7. Fluid-Structure Interactions for Micro-interlocked Regions of the Cement-Bone Interface

    PubMed Central

    Mann, Kenneth A.; Miller, Mark A

    2013-01-01

    Experimental tests and computational modeling were used to explore the fluid dynamics at the trabeculae-cement interlock regions found in the tibial component of total knee replacements (TKR). A cement-bone construct of the proximal tibia was created to simulate the immediate post-operative condition. Gap distributions along nine trabeculae-cement regions ranged from 0 to 50.4µm (mean=12 µm). Micro-motions ranged from 0.56 to 4.7µm with a 1 MPa compressive load to the cement. Fluid-structure analysis between trabeculae and cement used idealized models with parametric evaluation of loading direction, gap closing fraction, gap thickness, loading frequency, and fluid viscosity. The highest fluid shear stresses (926 Pa) along the trabecular surface were found for conditions with very thin gaps and large closing fractions; much larger than reported physiological levels (~ 1–5 Pa). A second fluid-structure model was created with provision for bone resorption using a constitutive model with resorption velocity proportional to fluid shear rate. A lower cut-off was used, below which bone resorption would not occur (50 1/s). Results showed that there was initially high shear rates (> 1000 1/s) that diminished after initial trabecular resorption. Resorption continued in high shear rate regions, resulting in a final shape with bone left deep in the cement layer, and is consistent with morphology found in postmortem retrievals. Small gaps between the trabecular surface and cement in the immediate post-operative state, produce fluid flow conditions that appear to be supra-physiologic; these may cause fluid induced lysis of trabeculae in the micro-interlock regions. PMID:23480611

  8. Viscosity of magnetorheological fluids using Iron-silicon nanoparticles.

    PubMed

    Kim, Jong Hee; Kim, CheolGi; Lee, Seung Goo; Hong, Tae Min; Choi, Joon Hong

    2013-09-01

    Fe-6.5Si fine particles were mechanically fabricated by a milling method for use in magnetorheological fluids. Oleic acid was used as a surfactant for the dispersed substance for preparing the hydrophobic fluid with silicon oil as a dispersing medium. Further, oleic acid and sodium dodecyl benzene sulfonate were used as surfactants, forming a bilayer structure, for preparing the hydrophilic fluid with polyethylene glycol as a dispersing medium. The adsorption of oleic acid onto the Fe-Si particles was achieved by oxidizing the particle surface with trimethylamine N-oxide dihydrate. In order to make a comparative examination of the fluid properties, ferromagnetic nanoparticles were synthesized by chemical precipitation and the subsequent process was accompanied under the same conditions as applied for the magnetorheological fluid. The fluid particles were characterized by magnetization measurements. The viscosity of the fluids was obtained at various concentrations under an external field. The viscosity values of the magnetorheological fluid were higher than those of the ferromagnetic fluid. Moreover, they increased considerably by using silicon oil as the dispersing medium as well as under an applied magnetic field and at higher fluid concentrations. The magnetorheological fluids may be effectively resistant to a strong impact from outside when the appropriate fluid concentration is used and a magnetic field is applied for increasing the shear strength of the fluids. PMID:24205598

  9. Nonlinear dynamic fluid-structure interaction calculations with coupled finite element and finite volume programs

    SciTech Connect

    Lewis, M.W.; Kashiwa, B.A.; Meier, R.W.; Bishop, S.

    1994-08-01

    Two- and three-dimensional fluid-structure interaction computer programs for the simulation of nonlinear dynamics were developed and applied to a number of problems. The programs were created by coupling Arbitrary Lagrangian-Eulerian finite volume fluid dynamics programs with strictly Lagrangian finite element structural dynamics programs. The resulting coupled programs can use either fully explicit or implicit time integration. The implicit time integration is accomplished by iterations of the fluid dynamics pressure solver and the structural dynamics system solver. The coupled programs have been used to solve problems involving incompressible fluids, membrane and shell elements, compressible multiphase flows, explosions in both air and water, and large displacements. In this paper, we present the approach used for the coupling and describe test problems that verify the two-dimensional programs against an experiment and an analytical linear problem. The experiment involves an explosion underwater near an instrumented thin steel plate. The analytical linear problem is the vibration of an infinite cylinder surrounded by an incompressible fluid to a given radius.

  10. Nonlinear dynamic fluid-structure interaction calculations with coupled finite element and finite volume programs

    NASA Astrophysics Data System (ADS)

    Lewis, M. W.; Kashiwa, B. A.; Meier, R. W.; Bishop, S.

    1994-07-01

    Two- and three-dimensional fluid-structure interaction computer programs for the simulation of nonlinear dynamics were developed and applied to a number of problems. The programs were created by coupling Arbitrary Lagrangian-Eulerian finite volume fluid dynamics programs with strictly Lagrangian finite element structural dynamics programs. The resulting coupled programs can use either fully explicit or implicit time integration. The implicit time integration is accomplished by iterations of the fluid dynamics pressure solver and the structural dynamics system solver. The coupled programs have been used to solve problems involving incompressible fluids, membrane and shell elements, compressible multiphase flows, explosions in both air and water, and large displacements. In this paper, we present the approach used for the coupling and describe test problems that verify the two-dimensional programs against an experiment and an analytical linear problem. The experiment involves an explosion underwater near an instrumented thin steel plate. The analytical linear problem is the vibration of an infinite cylinder surrounded by an incompressible fluid to a given radius.

  11. Existence of a Steady Flow of Stokes Fluid Past a Linear Elastic Structure Using Fictitious Domain

    NASA Astrophysics Data System (ADS)

    Halanay, Andrei; Murea, Cornel Marius; Tiba, Dan

    2016-06-01

    We use fictitious domain method with penalization for the Stokes equation in order to obtain approximate solutions in a fixed larger domain including the domain occupied by the structure. The coefficients of the fluid problem, excepting the penalizing term, are independent of the deformation of the structure. It is easy to check the inf-sup condition and the coercivity of the Stokes problem in the fixed domain. Subtracting the structure equations from the fictitious fluid equations in the structure domain, we obtain a weak formulation in a fixed domain, where the continuity of the stress at the interface does not appear explicitly. Existence of a solution is proved when the structure displacement is generated by a finite number of modes.

  12. Fluid-Structure Interaction Study on a Pre-Buckled Deformable Flat Ribbon

    NASA Astrophysics Data System (ADS)

    Fovargue, Lauren; Shams, Ehsan; Watterson, Amy; Corson, Dave; Filardo, Benjamin; Zimmerman, Daniel; Shan, Bob; Oberai, Assad

    2015-11-01

    A Fluid-Structure Interaction study is conducted for the flow over a deformable flat ribbon. This mechanism, which is called ribbon frond, maybe used as a device for pumping water and/or harvesting energy in rivers. We use a lower dimensional mathematical model, which represents the ribbon as a pre-buckled structure. The surface forces from the fluid flow, dictate the deformation of the ribbon, and the ribbon in turn imposes boundary conditions for the incompressible Navier-Stokes equations. The mesh motion is handled using an Arbitrary Lagrangian-Eulerian (ALE) scheme and the fluid-structure coupling is handled by iterating over the staggered governing equations for the structure, the fluid and the mesh. Simulations are conducted at three different free stream velocities. The results, including the frequency of oscillations, show agreement with experimental data. The vortical structures near the surface of the ribbon and its deformation are highly correlated. It is observed that the ribbon motion exhibits deviation from a harmonic motion, especially at lower free stream velocities. The behavior of the ribbon is compared to swimming animals, such as eels, in order to better understand its performance. The authors acknowledge support from ONR SBIR Phase II, contract No. N0001412C0604 and USDA, NIFA SBIR Phase I, contract No. 2013-33610-20836 and NYSERDA PON 2569, contract No. 30364.

  13. Fluid and structural dynamic design considerations of the HYLIFE nozzle plate

    SciTech Connect

    Pitts, J.H.; Ojalvo, I.U.

    1981-02-01

    The basic concept of the High Yield Lithium Injection Fusion Energy (HYLIFE) reaction chamber involves a falling liquid-metal (lithium) jet array that absorbs 90% of the energy released from inertial confinement fusion reactions. The key element of the chamber that produces the jet array is the nozzle plate. This paper describes the design and analysis of a nozzle plate which can withstand the structural loads and permit the fluid jet array to be reestablished for a 1-Hz fusion reaction frequency. The shape of the nozzle plate and jet array is dictated by considerations of fluid dynamics and neutron-shielding. A vertical jet array, rather than a single annulus, is used because this design enhances fluid momentum interchange and dissipation of the kinetic energy that occurs when the jets disassemble. Less net outward-directed momentum results than with a single liquid annular flow configuration, thus producing lower stresses in the structural components.

  14. Structural Transition in a Fluid of Spheroids: A Low-Density Vestige of Jamming.

    PubMed

    Cohen, A P; Dorosz, S; Schofield, A B; Schilling, T; Sloutskin, E

    2016-03-01

    A thermodynamically equilibrated fluid of hard spheroids is a simple model of liquid matter. In this model, the coupling between the rotational degrees of freedom of the constituent particles and their translations may be switched off by a continuous deformation of a spheroid of aspect ratio t into a sphere (t=1). We demonstrate, by experiments, theory, and computer simulations, that dramatic nonanalytic changes in structure and thermodynamics of the fluids take place, as the coupling between rotations and translations is made to vanish. This nonanalyticity, reminiscent of a second-order liquid-liquid phase transition, is not a trivial consequence of the shape of an individual particle. Rather, free volume considerations relate the observed transition to a similar nonanalyticity at t=1 in structural properties of jammed granular ellipsoids. This observation suggests a deep connection to exist between the physics of jamming and the thermodynamics of simple fluids. PMID:26991202

  15. Renormalizing a viscous fluid model for large scale structure formation

    NASA Astrophysics Data System (ADS)

    Führer, Florian; Rigopoulos, Gerasimos

    2016-02-01

    Using the Stochastic Adhesion Model (SAM) as a simple toy model for cosmic structure formation, we study renormalization and the removal of the cutoff dependence from loop integrals in perturbative calculations. SAM shares the same symmetry with the full system of continuity+Euler equations and includes a viscosity term and a stochastic noise term, similar to the effective theories recently put forward to model CDM clustering. We show in this context that if the viscosity and noise terms are treated as perturbative corrections to the standard eulerian perturbation theory, they are necessarily non-local in time. To ensure Galilean Invariance higher order vertices related to the viscosity and the noise must then be added and we explicitly show at one-loop that these terms act as counter terms for vertex diagrams. The Ward Identities ensure that the non-local-in-time theory can be renormalized consistently. Another possibility is to include the viscosity in the linear propagator, resulting in exponential damping at high wavenumber. The resulting local-in-time theory is then renormalizable to one loop, requiring less free parameters for its renormalization.

  16. Polarization-phase tomography of biological fluids polycrystalline structure

    NASA Astrophysics Data System (ADS)

    Dubolazov, A. V.; Vanchuliak, O. Ya.; Garazdiuk, M.; Sidor, M. I.; Motrich, A. V.; Kostiuk, S. V.

    2013-12-01

    Our research is aimed at designing an experimental method of Fourier's laser polarization phasometry of the layers of human effusion for an express diagnostics during surgery and a differentiation of the degree of severity (acute - gangrenous) appendectomy by means of statistical, correlation and fractal analysis of the coherent scattered field. A model of generalized optical anisotropy of polycrystal networks of albumin and globulin of the effusion of appendicitis has been suggested and the method of Fourier's phasometry of linear (a phase shift between the orthogonal components of the laser wave amplitude) and circular (the angle of rotation of the polarization plane) birefringence with a spatial-frequency selection of the coordinate distributions for the differentiation of acute and gangrenous conditions have been analytically substantiated. Comparative studies of the efficacy of the methods of direct mapping of phase distributions and Fourier's phasometry of a laser radiation field transformed by the dendritic and spherolitic networks of albumin and globulin of the layers of effusion of appendicitis on the basis of complex statistical, correlation and fractal analysis of the structure of phase maps.

  17. Boron doped Si rich oxide/SiO{sub 2} and silicon rich nitride/SiN{sub x} bilayers on molybdenum-fused silica substrates for vertically structured Si quantum dot solar cells

    SciTech Connect

    Lin, Ziyun Wu, Lingfeng; Jia, Xuguang; Zhang, Tian; Puthen-Veettil, Binesh; Yang, Terry Chien-Jen; Conibeer, Gavin; Perez-Wurfl, Ivan

    2015-07-28

    Vertically structured Si quantum dots (QDs) solar cells with molybdenum (Mo) interlayer on quartz substrates would overcome current crowding effects found in mesa-structured cells. This study investigates the compatibility between boron (B) doped Si QDs bilayers and Mo-fused silica substrate. Both Si/SiO{sub 2} and Si/SiN{sub x} based QDs bilayers were studied. The material compatibility under high temperature treatment was assessed by examining Si crystallinity, microstress, thin film adhesion, and Mo oxidation. It was observed that the presence of Mo interlayer enhanced the Si QDs size confinement, crystalline fraction, and QDs size uniformity. The use of B doping was preferred compared to phosphine (PH{sub 3}) doping studied previously in terms of better surface and interface properties by reducing oxidized spots on the film. Though crack formation due to thermal mismatch after annealing remained, methods to overcome this problem were proposed in this paper. Schematic diagram to fabricate full vertical structured Si QDs solar cells was also suggested.

  18. Imaging the internal structure of fluid upflow zones with detailed digital Parasound echosounder surveys

    NASA Astrophysics Data System (ADS)

    Spiess, V.; Zuehlsdorff, L.; von Lom-Keil, H.; Schwenk, T.

    2001-12-01

    Sites of venting fluids both with continuous and episodic supply often reveal complex surface and internal structures, which are difficult to image and cause problems to transfer results from local sampling towards a structural reconstruction and a quantification of (average) flux rates. Detailed acoustic and seismic surveys would be required to retrieve this information, but also an appropriate environment, where fluid migration can be properly imaged from contrasts to unaffected areas. Hemipelagic sediments are most suitable, since typically reflectors are coherent and of low lateral amplitude variation and structures are continuous over distances much longer than the scale of fluid migration features. During RV Meteor Cruise M473 and RV Sonne Cruise SO 149 detailed studies were carried out in the vicinity of potential fluid upflow zones in the Lower Congo Basin at 5oS in 3000 m water depth and at the Northern Cascadia Margin in 1000 m water depth. Unexpected sampling of massive gas hydrates from the sea floor as well as of carbonate concretions, shell fragments and different liveforms indicated active fluid venting in a typically hemipelagic realm. The acoustic signature of such zones includes columnar blanking, pockmark depressions at the sea floor, association with small offset faults (< 1m). A dedicated survey with closely spaced grid lines was carried out with the Parasound sediment echosounder (4 kHz), which data were digitally acquired with the ParaDigMA System for further processing and display, to image the spatial structure of the upflow zones. Due to the high data density amplitudes and other acoustic properties could be investigated in a 3D volume and time slices as well as reflector surfaces were analyzed. Pronounced lateral variations of reflection amplitudes within a complex pattern indicate potential pathways for fluid/gas migration and occurrences of near-surface gas hydrate deposits, which may be used to trace detailed surface evidence from side

  19. Nanoparticle-lipid bilayer interactions studied with lipid bilayer arrays

    NASA Astrophysics Data System (ADS)

    Lu, Bin; Smith, Tyler; Schmidt, Jacob J.

    2015-04-01

    The widespread environmental presence and commercial use of nanoparticles have raised significant health concerns as a result of many in vitro and in vivo assays indicating toxicity of a wide range of nanoparticle species. Many of these assays have identified the ability of nanoparticles to damage cell membranes. These interactions can be studied in detail using artificial lipid bilayers, which can provide insight into the nature of the particle-membrane interaction through variation of membrane and solution properties not possible with cell-based assays. However, the scope of these studies can be limited because of the low throughput characteristic of lipid bilayer platforms. We have recently described an easy to use, parallel lipid bilayer platform which we have used to electrically investigate the activity of 60 nm diameter amine and carboxyl modified polystyrene nanoparticles (NH2-NP and COOH-NP) with over 1000 lipid bilayers while varying lipid composition, bilayer charge, ionic strength, pH, voltage, serum, particle concentration, and particle charge. Our results confirm recent studies finding activity of NH2-NP but not COOH-NP. Detailed analysis shows that NH2-NP formed pores 0.3-2.3 nm in radius, dependent on bilayer and solution composition. These interactions appear to be electrostatic, as they are regulated by NH2-NP surface charge, solution ionic strength, and bilayer charge. The ability to rapidly measure a large number of nanoparticle and membrane parameters indicates strong potential of this bilayer array platform for additional nanoparticle bilayer studies.The widespread environmental presence and commercial use of nanoparticles have raised significant health concerns as a result of many in vitro and in vivo assays indicating toxicity of a wide range of nanoparticle species. Many of these assays have identified the ability of nanoparticles to damage cell membranes. These interactions can be studied in detail using artificial lipid bilayers, which

  20. Determining an Effective Shear Modulus in Tubular Organs for Fluid-Structure Interaction

    NASA Astrophysics Data System (ADS)

    Chisena, Robert; Brasseur, James; Costanzo, Francesco; Gregersen, Hans; Zhao, Jingbo

    2014-11-01

    Fluid-structure interaction (FSI) is central to the mechanics of fluid-filled tubular organs such as the intestine and esophagus. The motions of fluid chyme are driven by a muscularis wall layer of circular and longitudinal muscle fibers. The coupled motions of the fluid and elastic solid phases result from a local balance between active and passive muscle stress components, fluid pressure, and fluid viscous stresses. Model predictions depend on the passive elastic response of the muscularis layer, which is typically parameterized with an average isotropic elastic modulus (EM), currently measured in vivo and in vitro with estimates for total hoop stress within a distension experiment. We have shown that this approach contains serious error due to the overwhelming influence of incompressibility on the hydrostatic component. We present a new approach in which an effective shear modulus, containing only deviatoric contributions, is measured to overcome this serious error. Using in vitro measurements from pig intestines, we compare our new approach to the current method, showing vastly different predictions. We will also report on our current analysis which aims to determine the influence of residual stress on the EM measurements and comment on it use in FSI simulations.

  1. Transmission of steady and oscillatory fluid shear stress across epithelial and endothelial surface structures

    NASA Astrophysics Data System (ADS)

    Han, Yuefeng; Ganatos, Peter; Weinbaum, Sheldon

    2005-03-01

    The glycocalyx on the apical surface of vascular endothelial cells and the microvilli and cilia on kidney epithelial cells have been modeled as surface layers with a hexagonal arrangement of structural elements. These elements have been proposed to serve a mechanosensory function in the initiation of intracellular signaling by fluid shear stress. In this paper we examine the response of these surface layers when steady or oscillating shear is applied at their outer edge. In the case of steady shear, our results show that the deflection of the structural elements is proportional to the product of the applied shear stress and their length L and inversely proportional to the natural damped vibration frequency of the structural element ωc. A fluid velocity boundary layer develops at the outer edge of the surface layers when the dimensionless Brinkman parameter α =L/√KP , where KP is the Darcy permeability, is asymptotically large. In the case of oscillating shear, we find that the motions of both the fluid and structural elements are in a quasisteady state at physiological conditions. No attenuation or phase shift of the torque is induced by the hydrodynamic drag when the applied frequency ω <ωc or ωr(=ω/ωc)<1. However, the velocity at the tips of the structural element is π /2 out of phase with the applied shear in this frequency range, due to the elastic recoil of the element. Furthermore, the fluid velocity at the tips can also be out of phase with the applied shear at large α if the closely spaced structural elements of the glycocalyx on endothelial cells or microvilli on proximal tubule cells transport substantial fluid with them.

  2. Development of an integrated BEM approach for hot fluid structure interaction

    NASA Technical Reports Server (NTRS)

    Dargush, G. F.; Banerjee, P. K.; Shi, Y.

    1991-01-01

    The development of a comprehensive fluid-structure interaction capability within a boundary element computer code is described. This new capability is implemented in a completely general manner, so that quite arbitrary geometry, material properties and boundary conditions may be specified. Thus, a single analysis code can be used to run structures-only problems, fluids-only problems, or the combined fluid-structure problem. In all three cases, steady or transient conditions can be selected, with or without thermal effects. Nonlinear analyses can be solved via direct iteration or by employing a modified Newton-Raphson approach. A number of detailed numerical examples are included at the end of these two sections to validate the formulations and to emphasize both the accuracy and generality of the computer code. A brief review of the recent applicable boundary element literature is included for completeness. The fluid-structure interaction facility is discussed. Once again, several examples are provided to highlight this unique capability. A collection of potential boundary element applications that have been uncovered as a result of work related to the present grant is given. For most of those problems, satisfactory analysis techniques do not currently exist.

  3. Development of an integrated BEM approach for hot fluid structure interaction

    NASA Technical Reports Server (NTRS)

    Dargush, G. F.; Banerjee, P. K.

    1989-01-01

    The progress made toward the development of a boundary element formulation for the study of hot fluid-structure interaction in Earth-to-Orbit engine hot section components is reported. The convective viscous integral formulation was derived and implemented in the general purpose computer program GP-BEST. The new convective kernel functions, in turn, necessitated the development of refined integration techniques. As a result, however, since the physics of the problem is embedded in these kernels, boundary element solutions can now be obtained at very high Reynolds number. Flow around obstacles can be solved approximately with an efficient linearized boundary-only analysis or, more exactly, by including all of the nonlinearities present in the neighborhood of the obstacle. The other major accomplishment was the development of a comprehensive fluid-structure interaction capability within GP-BEST. This new facility is implemented in a completely general manner, so that quite arbitrary geometry, material properties and boundary conditions may be specified. Thus, a single analysis code (GP-BEST) can be used to run structures-only problems, fluids-only problems, or the combined fluid-structure problem. In all three cases, steady or transient conditions can be selected, with or without thermal effects. Nonlinear analyses can be solved via direct iteration or by employing a modified Newton-Raphson approach.

  4. A Parallel Monolithic Approach for Fluid-Structure Interaction in a Cerebral Aneurysm

    NASA Astrophysics Data System (ADS)

    Sahin, Mehmet; Eken, Ali

    2014-11-01

    A parallel fully-coupled approach has been developed for the fluid-structure interaction problem in a cerebral artery with aneurysm. An Arbitrary Lagrangian-Eulerian formulation based on the side-centered unstructured finite volume method is employed for the governing incompressible Navier-Stokes equations and the classical Galerkin finite element formulation is used to discretize the constitutive law for the Saint Venant-Kirchhoff material in a Lagrangian frame for the solid domain. The time integration method for the structure domain is based on the energy conserving mid-point method while the second-order backward difference is used within the fluid domain. The resulting large-scale algebraic linear equations are solved using a one-level restricted additive Schwarz preconditioner with a block-incomplete factorization within each partitioned sub-domains. The parallel implementation of the present fully coupled unstructured fluid-structure solver is based on the PETSc library. The proposed numerical algorithm is initially validated for several classical benchmark problems and then applied to a more complicated problem involving unsteady pulsatile blood flow in a cerebral artery with aneurysm as a realistic fluid-structure interaction problem encountered in biomechanics. The authors acknowledge financial support from Turkish National Scientific and Technical Research Council through Project Number 112M107.

  5. Microbial community structure across fluid gradients in the Juan de Fuca Ridge hydrothermal system.

    PubMed

    Anderson, Rika E; Beltrán, Mónica Torres; Hallam, Steven J; Baross, John A

    2013-02-01

    Physical and chemical gradients are dominant factors in shaping hydrothermal vent microbial ecology, where archaeal and bacterial habitats encompass a range between hot, reduced hydrothermal fluid and cold, oxidized seawater. To determine the impact of these fluid gradients on microbial communities inhabiting these systems, we surveyed bacterial and archaeal community structure among and between hydrothermal plumes, diffuse flow fluids, and background seawater in several hydrothermal vent sites on the Juan de Fuca Ridge using 16S rRNA gene diversity screening (clone libraries and terminal restriction length polymorphisms) and quantitative polymerase chain reaction methods. Community structure was similar between hydrothermal plumes and background seawater, where a number of taxa usually associated with low-oxygen zones were observed, whereas high-temperature diffuse fluids exhibited a distinct phylogenetic profile. SUP05 and Arctic96BD-19 sulfur-oxidizing bacteria were prevalent in all three mixing regimes where they exhibited overlapping but not identical abundance patterns. Taken together, these results indicate conserved patterns of redox-driven niche partitioning between hydrothermal mixing regimes and microbial communities associated with sinking particles and oxygen-deficient waters. Moreover, the prevalence of SUP05 and Arctic96BD-19 in plume and diffuse flow fluids indicates a more cosmopolitan role for these groups in the ecology and biogeochemistry of the dark ocean.

  6. Boundary velocity method for continuum shape sensitivity of nonlinear fluid-structure interaction problems

    NASA Astrophysics Data System (ADS)

    Liu, Shaobin; Canfield, Robert A.

    2013-07-01

    A Continuum Sensitivity Equation (CSE) method was developed in local derivative form for fluid-structure shape design problems. The boundary velocity method was used to derive the continuum sensitivity equations and sensitivity boundary conditions in local derivative form for a built-up joined beam structure under transient aerodynamic loads. For nonlinear problems, when the Newton-Raphson method is used, the tangent stiffness matrix yields the desired sensitivity coefficient matrix for solving the linear sensitivity equations in the Galerkin finite element formulation. For built-up structures with strain discontinuity, the local sensitivity variables are not continuous at the joints, requiring special treatment to assemble the elemental local sensitivities and the generalized force vector. The coupled fluid-structure physics and continuum sensitivity equations for gust response of a nonlinear joined beam with an airfoil model were posed and solved. The results were compared to the results obtained by finite difference (FD) method.

  7. Single DNA molecules on freestanding and supported cationic lipid bilayers: diverse conformational dynamics controlled by the local bilayer properties

    NASA Astrophysics Data System (ADS)

    Herold, Christoph; Schwille, Petra; Petrov, Eugene P.

    2016-02-01

    We present experimental results on the interaction of DNA macromolecules with cationic lipid membranes with different properties, including freestanding membranes in the fluid and gel state, and supported lipid membranes in the fluid state and under conditions of fluid-gel phase coexistence. We observe diverse conformational dynamics of membrane-bound DNA molecules controlled by the local properties of the lipid bilayer. In case of fluid-state freestanding lipid membranes, the behaviour of DNA on the membrane is controlled by the membrane charge density: whereas DNA bound to weakly charged membranes predominantly behaves as a 2D random coil, an increase in the membrane charge density leads to membrane-driven irreversible DNA collapse and formation of subresolution-sized DNA globules. On the other hand, electrostatic binding of DNA macromolecules to gel-state freestanding membranes leads to completely arrested diffusion and conformational dynamics of membrane-adsorbed DNA. A drastically different picture is observed in case of DNA interaction with supported cationic lipid bilayers: When the supported bilayer is in the fluid state, membrane-bound DNA molecules undergo 2D translational Brownian motion and conformational fluctuations, irrespectively of the charge density of the supported bilayer. At the same time, when the supported cationic membrane shows fluid-gel phase coexistence, membrane-bound DNA molecules are strongly attracted to micrometre-sized gel-phase domains enriched with the cationic lipid, which results in 2D compaction of the membrane-bound macromolecules. This DNA compaction, however, is fully reversible, and disappears as soon as the membrane is heated above the fluid-gel coexistence. We also discuss possible biological implications of our experimental findings.

  8. Linearized formulation for fluid-structure interaction: Application to the linear dynamic response of a pressurized elastic structure containing a fluid with a free surface

    NASA Astrophysics Data System (ADS)

    Schotté, J.-S.; Ohayon, R.

    2013-05-01

    To control the linear vibrations of structures partially filled with liquids is of prime importance in various industries such as aerospace, naval, civil and nuclear engineering. It is proposed here to investigate a linearized formulation adapted to a rational computation of the vibrations of such coupled systems. Its particularity is to be fully Lagrangian since it considers the fluid displacement field with respect to a static equilibrium configuration as the natural variable describing the fluid motion, as classically done in structural dynamics. As the coupled system considered here is weakly damped in the low frequency domain (low modal density), the analysis of the vibrations of the associated undamped conservative system constitutes the main objective of this paper. One originality of the present formulation is to take into account the effect of the pressurization of the tank on the dynamics of the system, particularly in the case of a compressible liquid. We propose here a new way of deriving the linearized equations of the coupled problem involving a deformable structure and an inner inviscid liquid with a free surface. A review of the classical case considering a heavy incompressible liquid is followed by an application to the new case involving a light compressible liquid. A solution procedure in the frequency domain is proposed and a numerical discretization using the finite element method is discussed. In order to reduce the computational costs, an appropriate reduced order matrix model using modal synthesis approach is also presented.

  9. Integral Membrane Proteins and Bilayer Proteomics

    PubMed Central

    Whitelegge, Julian P.

    2013-01-01

    Integral membrane proteins reside within the bilayer membranes that surround cells and organelles, playing critical roles in movement of molecules across them and the transduction of energy and signals. While their extreme amphipathicity presents technical challenges, biological mass spectrometry has been applied to all aspects of membrane protein chemistry and biology, including analysis of primary, secondary, tertiary and quaternary structure, as well as the dynamics that accompany functional cycles and catalysis. PMID:23301778

  10. Lipid bilayer membranes: Missing link in the comprehension of synovial lubrication?

    NASA Astrophysics Data System (ADS)

    Packard, Ross; Cowley, Leonie; Dubief, Yves

    2010-03-01

    The human body hosts an extremely efficient tribological system in its synovial joints that operate under very low friction and virtually no wear. It has long been assumed that the higher molecular weight molecules present in the synovial fluid (hyaluronic acid, lubricin) are solely responsible for the mechanical properties of joint. Smaller components, unsaturated phospholipids, have a virtually an undefined role, most probably because of the cancellation of their amphiphilic properties ex vivo caused by oxidation. Using experimental observations of multilamellar arrangements in synovial joints, we formulate the assumption that self-assembling structures provide the anisotropy necessary to synovial fluid to resist drainage under normal compression. Our molecular dynamics simulations demonstrate the tremendous mechanical properties of lipid bilayers and also highlight their weakening consistent with modifications resulting from injuries or joint prosthesis.

  11. Simulation of a pulsatile total artificial heart: Development of a partitioned Fluid Structure Interaction model

    NASA Astrophysics Data System (ADS)

    Sonntag, Simon J.; Kaufmann, Tim A. S.; Büsen, Martin R.; Laumen, Marco; Linde, Torsten; Schmitz-Rode, Thomas; Steinseifer, Ulrich

    2013-04-01

    Heart disease is one of the leading causes of death in the world. Due to a shortage in donor organs artificial hearts can be a bridge to transplantation or even serve as a destination therapy for patients with terminal heart insufficiency. A pusher plate driven pulsatile membrane pump, the Total Artificial Heart (TAH) ReinHeart, is currently under development at the Institute of Applied Medical Engineering of RWTH Aachen University.This paper presents the methodology of a fully coupled three-dimensional time-dependent Fluid Structure Interaction (FSI) simulation of the TAH using a commercial partitioned block-Gauss-Seidel coupling package. Partitioned coupling of the incompressible fluid with the slender flexible membrane as well as a high fluid/structure density ratio of about unity led inherently to a deterioration of the stability (‘artificial added mass instability’). The objective was to conduct a stable simulation with high accuracy of the pumping process. In order to achieve stability, a combined resistance and pressure outlet boundary condition as well as the interface artificial compressibility method was applied. An analysis of the contact algorithm and turbulence condition is presented. Independence tests are performed for the structural and the fluid mesh, the time step size and the number of pulse cycles. Because of the large deformation of the fluid domain, a variable mesh stiffness depending on certain mesh properties was specified for the fluid elements. Adaptive remeshing was avoided. Different approaches for the mesh stiffness function are compared with respect to convergence, preservation of mesh topology and mesh quality. The resulting mesh aspect ratios, mesh expansion factors and mesh orthogonalities are evaluated in detail. The membrane motion and flow distribution of the coupled simulations are compared with a top-view recording and stereo Particle Image Velocimetry (PIV) measurements, respectively, of the actual pump.

  12. Tunneling Plasmonics in Bilayer Graphene.

    PubMed

    Fei, Z; Iwinski, E G; Ni, G X; Zhang, L M; Bao, W; Rodin, A S; Lee, Y; Wagner, M; Liu, M K; Dai, S; Goldflam, M D; Thiemens, M; Keilmann, F; Lau, C N; Castro-Neto, A H; Fogler, M M; Basov, D N

    2015-08-12

    We report experimental signatures of plasmonic effects due to electron tunneling between adjacent graphene layers. At subnanometer separation, such layers can form either a strongly coupled bilayer graphene with a Bernal stacking or a weakly coupled double-layer graphene with a random stacking order. Effects due to interlayer tunneling dominate in the former case but are negligible in the latter. We found through infrared nanoimaging that bilayer graphene supports plasmons with a higher degree of confinement compared to single- and double-layer graphene, a direct consequence of interlayer tunneling. Moreover, we were able to shut off plasmons in bilayer graphene through gating within a wide voltage range. Theoretical modeling indicates that such a plasmon-off region is directly linked to a gapped insulating state of bilayer graphene, yet another implication of interlayer tunneling. Our work uncovers essential plasmonic properties in bilayer graphene and suggests a possibility to achieve novel plasmonic functionalities in graphene few-layers.

  13. Preliminary fluid inclusions study in the Bucium Rodu-Frasin Neogene volcanic structure, Metaliferi Mountains, Romania

    NASA Astrophysics Data System (ADS)

    Iatan, E. L.; Berbeleac, I.

    2012-04-01

    Bucium Rodu maar-diatreme and Frasin dome volcanic structures and related Au-Ag epithermal deposits are located in the northeastern part of the South Apuseni Mountains, and belong to Bucium-Rosia Montana-Baia de Aries metallogenic district, within so called "Golden Quadrilateral". The microthermometric measurements were carried out using double polished sections, on bipyramidal magmatic quartz phenocrysts and hydrothermal quartz phenocrysts. Depending on the clarity of the quartz, samples were polished down to 200 - 400 μm thick. A standard microscope for transmitted and reflected light was used for the sample petrography. Linkam THM SG600 heating-freezing stage, combined with a Nikon E 400 microscope and a Nikon DXM 1200F digital camera, were used to measure the fluid inclusions homogenization temperatures. The Frasin magmatic quartz phenocrysts, occurs as well-formed bipyramidal β -form quartz phenocrysts and contain apatite, zircon, melt inclusions and fluid inclusions. They reach up to 1 cm in diameter and their cracks are re-filled with carbonate, sericite and sulfides. The size of fluid inclusions ranges from very fine (2-3 μm) up to 25 μm. Primary and pseudosecondary fluid inclusions are not common, they occur in small groups with sizes ranging between 5-20 μm, having two phases: liquid and vapor. Based on the homogenization temperatures and phase proportions at room temperature, we could separate 2 types/fields of range for primary and pseudosecondary fluid inclusions as follows: 1. Liquid rich fluid inclusions (50-60 vol. % liquid) with Th=370-406°C and 2. Vapor rich fluid inclusions (10-30 vol. % liquid) with Th=420-519°C. All of the fluid inclusions homogenize by the disappearance of the vapor phase. Microthermometric data from hydrothermal quartz crystals were obtained from quartz phenocrysts of carbonate-quartz-base metal sulfides-gold veins of the dacite breccias. Primary fluid inclusions from hydrothermal quartz crystals have sizes up to 50

  14. Mesoscopic modeling of structural and thermodynamic properties of fluids confined by rough surfaces.

    PubMed

    Terrón-Mejía, Ketzasmin A; López-Rendón, Roberto; Gama Goicochea, Armando

    2015-10-21

    The interfacial and structural properties of fluids confined by surfaces of different geometries are studied at the mesoscopic scale using dissipative particle dynamics simulations in the grand canonical ensemble. The structure of the surfaces is modeled by a simple function, which allows us to simulate readily different types of surfaces through the choice of three parameters only. The fluids we have modeled are confined either by two smooth surfaces or by symmetrically and asymmetrically structured walls. We calculate structural and thermodynamic properties such as the density, temperature and pressure profiles, as well as the interfacial tension profiles for each case and find that a structural order-disorder phase transition occurs as the degree of surface roughness increases. However, the magnitude of the interfacial tension is insensitive to the structuring of the surfaces and depends solely on the magnitude of the solid-fluid interaction. These results are important for modern nanotechnology applications, such as in the enhanced recovery of oil, and in the design of porous materials with specifically tailored properties.

  15. Three-dimensional coupled fluid-structure simulation of pericardial bioprosthetic aortic valve function.

    PubMed

    Makhijani, V B; Yang, H Q; Dionne, P J; Thubrikar, M J

    1997-01-01

    A computational, three-dimensional coupled fluid-structure dynamics model was developed for a generic pericardial aortic valve in a rigid aortic root graft with physiologic sinuses. Valve geometry was based on that of the natural valve. Blood flow was modeled as pulsatile, laminar, Newtonian, incompressible flow. The structural model accounted for material and geometric nonlinearities and also simulated leaflet coaptation. A body fitted grid was used to subdivide the flow domain into computational finite volume cells. Shell finite elements were used to discretize the leaflet volume. A finite volume computational fluid dynamics code and finite element structure dynamics code were used to solve the flow and structure equations, respectively. The fluid flow and structural equations were coupled using an implicit "influence coefficient" technique. Physiologic ventricular and aortic pressure waveforms were prescribed as the flow boundary conditions. The aortic flow field, valve structural configuration, and leaflet stresses were computed at 2 msec intervals. Model predictions on aortic flow and transient variation in valve orifice area were in close agreement with corresponding experimental in vitro data. These findings suggest that the computer model has potential for being a powerful design tool for bioprosthetic aortic valves.

  16. Mesoscopic modeling of structural and thermodynamic properties of fluids confined by rough surfaces.

    PubMed

    Terrón-Mejía, Ketzasmin A; López-Rendón, Roberto; Gama Goicochea, Armando

    2015-10-21

    The interfacial and structural properties of fluids confined by surfaces of different geometries are studied at the mesoscopic scale using dissipative particle dynamics simulations in the grand canonical ensemble. The structure of the surfaces is modeled by a simple function, which allows us to simulate readily different types of surfaces through the choice of three parameters only. The fluids we have modeled are confined either by two smooth surfaces or by symmetrically and asymmetrically structured walls. We calculate structural and thermodynamic properties such as the density, temperature and pressure profiles, as well as the interfacial tension profiles for each case and find that a structural order-disorder phase transition occurs as the degree of surface roughness increases. However, the magnitude of the interfacial tension is insensitive to the structuring of the surfaces and depends solely on the magnitude of the solid-fluid interaction. These results are important for modern nanotechnology applications, such as in the enhanced recovery of oil, and in the design of porous materials with specifically tailored properties. PMID:26387742

  17. Fluid Flow through Porous Sandstone with Overprinting and Intersecting Geological Structures of Various Types

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Karimi-Fard, M.; Durlofsky, L.; Aydin, A.

    2010-12-01

    Impact of a wide variety of structural heterogeneities on fluid flow in an aeolian sandstone in the Valley of Fire State Park (NV), such as (1) dilatant fractures (joints), (2) shear fractures (faults), and (3) contraction/compaction structures (compaction bands), are considered. Each type of these structures has its own geometry, spacing, distribution, connectivity, and hydraulic properties, which either enhance or impede subsurface fluid flow. Permeability of these structures may, on average, be a few orders of magnitude higher or lower than those of the corresponding matrix rocks. In recent years, the influence of a single type of these heterogeneities on fluid flow has been studied individually, such as joints, compaction bands or faults. However, as different types of geological structures are commonly present together in the same rock volume, their combined effect requires a more detailed assessment. In this study, fluid flow simulations are performed using a special finite-volume discretization technique that was developed by Karimi-Fard et al. (2004; 2006). Using this approach, thin features such as fractures and compaction bands are represented as linear elements in unstructured 2D models and as planar elements in 3D models, which significantly reduces the total number of cells and simplifies grid generation. The cell geometric information and the cell-to-cell transmissibility obtained from this discretization technique are input to Stanford’s General Purpose Research Simulator (GPRS) for fluid flow simulation. To account for the effects of the various geological structures on subsurface flow, we perform permeability upscaling over regions corresponding to large-scale simulation grid blocks in order to obtain equivalent permeability components in two principal directions. We will focus on the following problems: (1) compaction bands of multisets; (2) compartmentalization of compaction bands of high-angle, low-angle and horizontal; (3) joints overprinting

  18. Electronic properties of asymmetrically doped twisted graphene bilayers

    NASA Astrophysics Data System (ADS)

    Trambly de Laissardière, Guy; Namarvar, Omid Faizy; Mayou, Didier; Magaud, Laurence

    2016-06-01

    Rotated graphene bilayers form an exotic class of nanomaterials with fascinating electronic properties governed by the rotation angle θ . For large rotation angles, the electron eigenstates are restricted to one layer and the bilayer behaves like two decoupled graphene layers. At intermediate angles, Dirac cones are preserved but with a lower velocity and van Hove singularities are induced at energies where the two Dirac cones intersect. At very small angles, eigenstates become localized in peculiar moiré zones. We analyze here the effect of an asymmetric doping for a series of commensurate rotated bilayers on the basis of tight-binding calculations of their band dispersions, density of states, participation ratio, and diffusive properties. While a small doping level preserves the θ dependence of the rotated bilayer electronic structure, larger doping induces a further reduction of the band velocity in the same way as a further reduction of the rotation angle.

  19. Four fluid model and numerical simulations of magnetic structures in the heliosheath

    NASA Astrophysics Data System (ADS)

    Avinash, K.; Cox, S. M.; Shaikh, D.; Zank, G. P.

    2007-12-01

    A magnetic hole/hump is a stable structure with small scale minima/maxima of the mean magnetic field in the centre. Such structure has been observed in inter-planetary magnetic field, planetary magneto sheath, cometary's plasma, and very recently in the heliosheath, as revealed by Voyager I observations. Recently, we have proposed a realistic three fluid model that comprises of three fluids in the model are electrons, heliosheath ions, and neutrals. Stationary, time independent solutions of this model consisting of holes, humps, trains of holes and humps etc. were found to be consistent with Voyager observations e.g. a few tens of ion gyro-radii width, large magnetic maxima/minima, oblique angles of propagation and well approximated by Gaussians. In the first part of the present work, we extend the three fluid model to a four fluid model consisting of electrons, pick up ions (PUI), solar wind ions (SWI), and neutrals. The PUIs are generated by neutrals via charge exchange with SWI. The kinetic pressure of PUI is nearly three to four times the pressure of SWI. Hence these are more suited to mediate small scale structures in heliosheath like shocks, magnetic holes/humps etc. We show that the constant energy exchange between these two fluid drives them non adiabatic. The modified adiabatic index, is calculated by solving the corresponding enthalpy equation. The PUI are found to be isothermal ( = 1) while SWI have 1.25. In the four fluid model, these effects are captured by including a modified equation of state for PUIs and SWIs. The phase space of time independent solutions in terms of the Mach numbers of PUI and SWI is constructed to delineate the parameter space which allows structure formation. In the second part of the present work, we examine the stability of our time independent solution by evolving them via a full set of modified Hall-MHD equations. The evolutions are examined using two codes e.g. a pseudo spectral code and a code based on finite difference

  20. Simplified fluid-structure coupled analysis of particle movement for designing of microfluidic cell sorter.

    PubMed

    Takagi, Yuto; Kotev, Vladimir; Yano, Ken'ich

    2015-01-01

    Recently, methods of the separation and selection of cells using a microfluidic device are receiving a lot of attention as the latest technology and those devices are called microfluidic cell sorter. Those methods have many advantages compared to conventional methods. There are a lot of researches on the microfluidic cell sorting but there isn't the automated design method of this device in spite of the necessary. To achieve the automated design of the microfluidic cell sorter, the analysis of the movement of cells in the microfluidic device and optimum design of the microfluidic cell sorter corresponding to kind of various cells are required. In the former case, the fluid-structure interaction analysis of fluid and cell movement is needed. However, it is very complex and needs a lot of computational time. Therefore, we focused on this problem in the fluid-structure interaction analysis for designing the microfluidic cell sorter. We assume cell is a sphere particle and propose the simplified fluid-structure coupled analysis which combines the CFD analysis with the motion equation of a sphere particle.

  1. Comparative Computer Simulation Study of Cholesterol in Hydrated Unary and Binary Lipid Bilayers and in an Anhydrous Crystal

    PubMed Central

    Plesnar, Elzbieta; Subczynski, Witold K.; Pasenkiewicz-Gierula, Marta

    2013-01-01

    Models created with molecular dynamics simulations are used to compare the organization and dynamics of cholesterol (Chol) molecules in three different environments: (1) a hydrated pure Chol bilayer that models the Chol bilayer domain, which is a pure Chol domain embedded in the bulk membrane; (2) a 2-palmitoyl-3-oleoyl-D-glycerol-1-phosphorylcholine bilayer saturated with cholesterol (POPC-Chol50) that models the bulk membrane; and (3) a Chol crystal. The computer model of the hydrated pure Chol bilayer is stable on the μs time scale. Some structural characteristics of Chol molecules in the Chol bilayer are similar to those in the POPC-Chol50 bilayer (e.g., tilt of Chol rings and chains), while others are similar to those in Chol crystals (e.g., surface area per Chol, bilayer thickness). The key result of this study is that the Chol bilayer has, unexpectedly, a dynamic structure, with Chol mobility similar to that in the POPC-Chol50 bilayer though slower. This is the major difference compared to Chol crystals, where Chol molecules are immobile. Also, water accessibility to Chol-OH groups in the Chol bilayer is not limited. On average, each Chol molecule makes 2.3 hydrogen bonds with water in the Chol bilayer, as compared with 1.7 hydrogen bonds in the POPC-Col50 bilayer. PMID:23848956

  2. Mechanism of unassisted ion transport across membrane bilayers

    NASA Technical Reports Server (NTRS)

    Wilson, M. A.; Pohorille, A.

    1996-01-01

    To establish how charged species move from water to the nonpolar membrane interior and to determine the energetic and structural effects accompanying this process, we performed molecular dynamics simulations of the transport of Na+ and Cl- across a lipid bilayer located between two water lamellae. The total length of molecular dynamics trajectories generated for each ion was 10 ns. Our simulations demonstrate that permeation of ions into the membrane is accompanied by the formation of deep, asymmetric thinning defects in the bilayer, whereby polar lipid head groups and water penetrate the nonpolar membrane interior. Once the ion crosses the midplane of the bilayer the deformation "switches sides"; the initial defect slowly relaxes, and a defect forms in the outgoing side of the bilayer. As a result, the ion remains well solvated during the process; the total number of oxygen atoms from water and lipid head groups in the first solvation shell remains constant. A similar membrane deformation is formed when the ion is instantaneously inserted into the interior of the bilayer. The formation of defects considerably lowers the free energy barrier to transfer of the ion across the bilayer and, consequently, increases the permeabilities of the membrane to ions, compared to the rigid, planar structure, by approximately 14 orders of magnitude. Our results have implications for drug delivery using liposomes and peptide insertion into membranes.

  3. Robustly Engineering Thermal Conductivity of Bilayer Graphene by Interlayer Bonding.

    PubMed

    Zhang, Xiaoliang; Gao, Yufei; Chen, Yuli; Hu, Ming

    2016-02-25

    Graphene and its bilayer structure are the two-dimensional crystalline form of carbon, whose extraordinary electron mobility and other unique features hold great promise for nanoscale electronics and photonics. Their realistic applications in emerging nanoelectronics usually call for thermal transport manipulation in a controllable and precise manner. In this paper we systematically studied the effect of interlayer covalent bonding, in particular different interlay bonding arrangement, on the thermal conductivity of bilayer graphene using equilibrium molecular dynamics simulations. It is revealed that, the thermal conductivity of randomly bonded bilayer graphene decreases monotonically with the increase of interlayer bonding density, however, for the regularly bonded bilayer graphene structure the thermal conductivity possesses unexpectedly non-monotonic dependence on the interlayer bonding density. The results suggest that the thermal conductivity of bilayer graphene depends not only on the interlayer bonding density, but also on the detailed topological configuration of the interlayer bonding. The underlying mechanism for this abnormal phenomenon is identified by means of phonon spectral energy density, participation ratio and mode weight factor analysis. The large tunability of thermal conductivity of bilayer graphene through rational interlayer bonding arrangement paves the way to achieve other desired properties for potential nanoelectronics applications involving graphene layers.

  4. Robustly Engineering Thermal Conductivity of Bilayer Graphene by Interlayer Bonding

    PubMed Central

    Zhang, Xiaoliang; Gao, Yufei; Chen, Yuli; Hu, Ming

    2016-01-01

    Graphene and its bilayer structure are the two-dimensional crystalline form of carbon, whose extraordinary electron mobility and other unique features hold great promise for nanoscale electronics and photonics. Their realistic applications in emerging nanoelectronics usually call for thermal transport manipulation in a controllable and precise manner. In this paper we systematically studied the effect of interlayer covalent bonding, in particular different interlay bonding arrangement, on the thermal conductivity of bilayer graphene using equilibrium molecular dynamics simulations. It is revealed that, the thermal conductivity of randomly bonded bilayer graphene decreases monotonically with the increase of interlayer bonding density, however, for the regularly bonded bilayer graphene structure the thermal conductivity possesses unexpectedly non-monotonic dependence on the interlayer bonding density. The results suggest that the thermal conductivity of bilayer graphene depends not only on the interlayer bonding density, but also on the detailed topological configuration of the interlayer bonding. The underlying mechanism for this abnormal phenomenon is identified by means of phonon spectral energy density, participation ratio and mode weight factor analysis. The large tunability of thermal conductivity of bilayer graphene through rational interlayer bonding arrangement paves the way to achieve other desired properties for potential nanoelectronics applications involving graphene layers. PMID:26911859

  5. Mechanism of unassisted ion transport across membrane bilayers.

    PubMed

    Wilson, M A; Pohorille, A

    1996-07-17

    To establish how charged species move from water to the nonpolar membrane interior and to determine the energetic and structural effects accompanying this process, we performed molecular dynamics simulations of the transport of Na+ and Cl- across a lipid bilayer located between two water lamellae. The total length of molecular dynamics trajectories generated for each ion was 10 ns. Our simulations demonstrate that permeation of ions into the membrane is accompanied by the formation of deep, asymmetric thinning defects in the bilayer, whereby polar lipid head groups and water penetrate the nonpolar membrane interior. Once the ion crosses the midplane of the bilayer the deformation "switches sides"; the initial defect slowly relaxes, and a defect forms in the outgoing side of the bilayer. As a result, the ion remains well solvated during the process; the total number of oxygen atoms from water and lipid head groups in the first solvation shell remains constant. A similar membrane deformation is formed when the ion is instantaneously inserted into the interior of the bilayer. The formation of defects considerably lowers the free energy barrier to transfer of the ion across the bilayer and, consequently, increases the permeabilities of the membrane to ions, compared to the rigid, planar structure, by approximately 14 orders of magnitude. Our results have implications for drug delivery using liposomes and peptide insertion into membranes.

  6. Electrical perturbations of ultrathin bilayers: role of ionic conductive layer.

    PubMed

    Nazaripoor, Hadi; Koch, Charles R; Bhattacharjee, Subir

    2014-12-16

    The effect of electrostatic force on the dynamics, morphological evolution, and drainage time of ultrathin liquid bilayers (<100 nm) are investigated for perfect dielectric-perfect dielectric (PD-PD) and ionic liquid-perfect dielectric (IL-PD) bilayers. The weakly nonlinear "thin film" equation is solved numerically to obtain spatiotemporal evolution of the liquid-liquid interface responses to transverse electric field. In order to predict the electrostatic component of conjoining/disjoining pressure acting on the interface for IL-PD bilayers, an analytical model is developed using the nonlinear Poisson-Boltzmann equation. It is found that IL-PD bilayers with electric permittivity ratio of layers (lower to top), εr, greater than one remain stable under an applied electric field. An extensive numerical study is carried out to generate a map based on εr and the initial mean thickness of the lower layer. This map is used to predict the formation of various structures on PD-PD bilayer interface and provides a baseline for unstable IL-PD bilayers. The use of an ionic liquid (IL) layer is found to reduce the size of the structures, but results in polydispersed and disordered pillars spread over the domain. The numerical predictions follow similar trend of experimental observation of Lau and Russel. (Lau, C. Y.; Russel, W. B. Fundamental Limitations on Ordered Electrohydrodynamic Patterning; Macromolecules 2011, 44, 7746-7751). PMID:25419880

  7. Development of an integrated BEM approach for hot fluid structure interaction

    NASA Technical Reports Server (NTRS)

    Dargush, Gary F.; Banerjee, Prasanta K.; Honkala, Keith A.

    1988-01-01

    In the present work, the boundary element method (BEM) is chosen as the basic analysis tool, principally because the definition of temperature, flux, displacement and traction are very precise on a boundary-based discretization scheme. One fundamental difficulty is, of course, that a BEM formulation requires a considerable amount of analytical work, which is not needed in the other numerical methods. Progress made toward the development of a boundary element formulation for the study of hot fluid-structure interaction in Earth-to-Orbit engine hot section components is reported. The primary thrust of the program to date has been directed quite naturally toward the examination of fluid flow, since boundary element methods for fluids are at a much less developed state.

  8. Mixed variational formulations of finite element analysis of elastoacoustic/slosh fluid-structure interaction

    NASA Technical Reports Server (NTRS)

    Felippa, Carlos A.; Ohayon, Roger

    1991-01-01

    A general three-field variational principle is obtained for the motion of an acoustic fluid enclosed in a rigid or flexible container by the method of canonical decomposition applied to a modified form of the wave equation in the displacement potential. The general principle is specialized to a mixed two-field principle that contains the fluid displacement potential and pressure as independent fields. This principle contains a free parameter alpha. Semidiscrete finite-element equations of motion based on this principle are displayed and applied to the transient response and free-vibrations of the coupled fluid-structure problem. It is shown that a particular setting of alpha yields a rich set of formulations that can be customized to fit physical and computational requirements. The variational principle is then extended to handle slosh motions in a uniform gravity field, and used to derive semidiscrete equations of motion that account for such effects.

  9. Electrically tunable negative refraction in core/shell-structured nanorod fluids.

    PubMed

    Su, Zhaoxian; Yin, Jianbo; Guan, Yanqing; Zhao, Xiaopeng

    2014-10-21

    We theoretically investigate optical refraction behavior in a fluid system which contains silica-coated gold nanorods dispersed in silicone oil under an external electric field. Because of the formation of a chain-like or lattice-like structure of dispersed nanorods along the electric field, the fluid shows a hyperbolic equifrequency contour characteristic and, as a result, all-angle broadband optical negative refraction for transverse magnetic wave propagation can be realized. We calculate the effective permittivity tensor of the fluid and verify the analysis using finite element simulations. We also find that the negative refractive index can vary with the electric field strength and external field distribution. Under a non-uniform external field, the gradient refraction behavior can be realized. PMID:25087913

  10. Mixed variational formulation of finite element analysis of acoustoelastic/slosh fluid-structure interaction

    NASA Technical Reports Server (NTRS)

    Felippa, C. A.; Ohayon, R.

    1990-01-01

    A general three-field variational principle is obtained for the motion of an acoustic fluid enclosed in a rigid or flexible container by the method of canonical decomposition applied to a modified form of the wave equation in the displacement potential. The general principle is specialized to a mixed two-field principle that contains the fluid displacement potential and pressure as independent fields. This principle contains a free parameter alpha. Semidiscrete finite-element equations of motion based on this principle are displayed and applied to the transient response and free-vibrations of the coupled fluid-structure problem. It is shown that a particular setting of alpha yields a rich set of formulations that can be customized to fit physical and computational requirements. The variational principle is then extended to handle slosh motions in a uniform gravity field, and used to derived semidiscrete equations of motion that account for such effects.

  11. Methods for simulation-based analysis of fluid-structure interaction.

    SciTech Connect

    Barone, Matthew Franklin; Payne, Jeffrey L.

    2005-10-01

    Methods for analysis of fluid-structure interaction using high fidelity simulations are critically reviewed. First, a literature review of modern numerical techniques for simulation of aeroelastic phenomena is presented. The review focuses on methods contained within the arbitrary Lagrangian-Eulerian (ALE) framework for coupling computational fluid dynamics codes to computational structural mechanics codes. The review treats mesh movement algorithms, the role of the geometric conservation law, time advancement schemes, wetted surface interface strategies, and some representative applications. The complexity and computational expense of coupled Navier-Stokes/structural dynamics simulations points to the need for reduced order modeling to facilitate parametric analysis. The proper orthogonal decomposition (POD)/Galerkin projection approach for building a reduced order model (ROM) is presented, along with ideas for extension of the methodology to allow construction of ROMs based on data generated from ALE simulations.

  12. Solvent-free simulations of heterogeneous lipid bilayers

    NASA Astrophysics Data System (ADS)

    Brannigan, Grace H.

    Two molecular implicit solvent models for fluid lipid bilayers are presented. The first represents lipids by rigid, asymmetric, soft spherocylinders. The three parameter potential between pairs of lipids gives rise to micelles, fluid bilayers, and gel-like bilayers. Fluid bilayers have compressibility moduli in agreement with experimental systems but display bending moduli at least three times larger than typical biological membranes without cholesterol. The second three parameter model represents lipids by flexible chains of beads; the hydrophobic effect is mimicked through a soft pair potential localized at the interface between hydrophobic and hydrophilic beads. Fluid bilayers composed of these molecules have both compressibility moduli and elastic moduli in agreement with experimental systems, as well as realistic interfacial tensions and stress profiles. Monte Carlo simulations are used to demonstrate self-assembly for both models. Phase behavior is studied for bilayers composed of the rigid model. Regions of solid, "hexatic", and fluid bilayer behavior are established by identification of phase boundaries. The main melting transition is found to be density driven; the melting temperature scales inversely with lipid length since thermal expansion increases with lipid aspect ratio. A plausible sub-transition is identified for longer molecules. The dependence of membrane elasticity on bilayer thickness is obtained by adjusting the length of the rigid molecules at constant temperature and surface tension. The bending modulus scales with the square of the membrane thickness, as expected, but the proportionality constant is an order of magnitude smaller than expected using continuum elastic theories or measured by experiments. The proportionality constant is found to be non-monotonic for bilayers composed of multiple lipid species; the thinnest membranes are not the most flexible. This is shown to be quantitatively consistent with the random quadratic mixing

  13. A Coupled Fluid-Structure Interaction Analysis of Solid Rocket Motor with Flexible Inhibitors

    NASA Technical Reports Server (NTRS)

    Yang, H. Q.; West, Jeff

    2014-01-01

    A capability to couple NASA production CFD code, Loci/CHEM, with CFDRC's structural finite element code, CoBi, has been developed. This paper summarizes the efforts in applying the installed coupling software to demonstrate/investigate fluid-structure interaction (FSI) between pressure wave and flexible inhibitor inside reusable solid rocket motor (RSRM). First a unified governing equation for both fluid and structure is presented, then an Eulerian-Lagrangian framework is described to satisfy the interfacial continuity requirements. The features of fluid solver, Loci/CHEM and structural solver, CoBi, are discussed before the coupling methodology of the solvers is described. The simulation uses production level CFD LES turbulence model with a grid resolution of 80 million cells. The flexible inhibitor is modeled with full 3D shell elements. Verifications against analytical solutions of structural model under steady uniform pressure condition and under dynamic condition of modal analysis show excellent agreements in terms of displacement distribution and eigen modal frequencies. The preliminary coupled result shows that due to acoustic coupling, the dynamics of one of the more flexible inhibitors shift from its first modal frequency to the first acoustic frequency of the solid rocket motor.

  14. Coupled BE/FE/BE approach for scattering from fluid-filled structures

    NASA Technical Reports Server (NTRS)

    Everstine, Gordon C.; Cheng, Raymond S.

    1990-01-01

    NASHUA is a coupled finite element/boundary element capability built around NASTRAN for calculating the low frequency far-field acoustic pressure field radiated or scattered by an arbitrary, submerged, three-dimensional, elastic structure subjected to either internal time-harmonic mechanical loads or external time-harmonic incident loadings. Described here are the formulation and use of NASHUA for solving such structural acoustics problems when the structure is fluid-filled. NASTRAN is used to generate the structural finite element model and to perform most of the required matrix operations. Both fluid domains are modeled using the boundary element capability in NASHUA, whose matrix formulation (and the associated NASTRAN DMAP) for evacuated structures can be used with suitable interpretation of the matrix definitions. After computing surface pressures and normal velocities, far-field pressures are evaluated using an asymptotic form of the Helmholtz exterior integral equation. The proposed numerical approach is validated by comparing the acoustic field scattered from a submerged fluid-filled spherical thin shell to that obtained with a series solution, which is also derived here.

  15. Studies of the structure and organization of cationic lipid bilayer membranes: calorimetric, spectroscopic, and x-ray diffraction studies of linear saturated P-O-ethyl phosphatidylcholines.

    PubMed Central

    Lewis, R N; Winter, I; Kriechbaum, M; Lohner, K; McElhaney, R N

    2001-01-01

    Differential scanning calorimetry, x-ray diffraction, and infrared and (31)P-nuclear magnetic resonance ((31)P-NMR) spectroscopy were used to examine the thermotropic phase behavior and organization of cationic model membranes composed of the P-O-ethyl esters of a homologous series of n-saturated 1,2-diacyl phosphatidylcholines (Et-PCs). Differential scanning calorimetry studies indicate that on heating, these lipids exhibit single highly energetic and cooperative endothermic transitions whose temperatures and enthalpies are higher than those of the corresponding phosphatidylcholines (PCs). Upon cooling, these Et-PCs exhibit two exothermic transitions at temperatures slightly below the single endotherm observed upon heating. These cooling exotherms have both been assigned to transitions between the liquid-crystalline and gel phases of these lipids by x-ray diffraction. The x-ray diffraction data also show that unlike the parent PCs, the chain-melting phase transition of these Et-PCs involves a direct transformation of a chain-interdigitated gel phase to the lamellar liquid-crystalline phase for the homologous series of n > or = 14. Our (31)P-NMR spectroscopic studies indicate that the rates of phosphate headgroup reorientation in both gel and liquid-crystalline phases of these lipids are comparable to those of the corresponding PC bilayers. However, the shape of the (31)P-NMR spectra observed in the interdigitated gel phase indicates that phosphate headgroup reorientation is subject to constraints that are not encountered in the non-interdigitated gel phases of parent PCs. The infrared spectroscopic data indicate that the Et-PCs adopt a very compact form of hydrocarbon chain packing in the interdigitated gel phase and that the polar/apolar interfacial regions of these bilayers are less hydrated than those of corresponding PC bilayers in both the gel and liquid-crystalline phases. Our results indicate that esterification of PC phosphate headgroups results in many

  16. Structural consequences of cohesion in gravitational instabilities triggered by fluid overpressure: Analytical derivation and experimental testing

    NASA Astrophysics Data System (ADS)

    Mourgues, R.; Costa, A. C. G.; Marques, F. O.; Lacoste, A.; Hildenbrand, A.

    2016-06-01

    The critical taper theory of Coulomb wedges has been classically applied to compressive regimes (accretionary prisms/fold-and-thrust belts), and more recently to gravitational instabilities. Following the initial hypothesis of the theory, we provide an alternative expression of the exact solution for a non-cohesive wedge by considering the balance of forces applied to the external surfaces. Then, we use this approach to derive a solution for the case of cohesive wedges. We show that cohesion has conspicuous structural effects, including a minimum length required for sliding and the formation of listric faults. The stabilizing effect of cohesion is accentuated in the foremost thin domain of the wedge, defining a required Minimum Failure Length (MFL), and producing sliding of a rigid mass above the detachment. This MFL decreases with less cohesion, a smaller coefficient of internal friction, larger fluid overpressure ratio, and steeper upper and basal surfaces for the wedge. Listricity of the normal faults depends on the fluid overpressure magnitude within the wedge. For moderate fluid overpressure, normal faults are curved close to the surface, and become straight at depth. In contrast, where fluid overpressure exceeds a critical value corresponding to the fluid pressure required to destabilize the surface of a noncohesive wedge, the state of stress changes and rotates at depth. The faults are straight close to the surface and listric at depth, becoming parallel to the upper surface if the wedge is thick enough. We tested some of these structural effects of a cohesive wedge on gravitational instabilities using analogue models where cohesive material was subjected to pore-fluid pressure. The shape of the faults obtained in the models is consistent with the predictions of the theory.

  17. Fluid-escape structures and slope instabilities along the French Guiana margin

    NASA Astrophysics Data System (ADS)

    Loncke, L.; Gaullier, V.; Basile, C.; Maillard, A.; Patriat, M.; Vendeville, B. C.; Folens, L.; Roest, W.

    2009-04-01

    Many of the world's passive margins are shear margins. Those margins present a very steep ocean-continent boundary which is expressed by high surface-slope gradients. In this type of margins, complex rift structures including wrench and strike-slip faults affect the continental crust. These rift basins usually trap organic matter, hence kerogen that later become hydrocarbons. Along the Guiana margin, late cretaceous black Shales provide additional organic matter. The French Guiana margin has been recently surveyed (GUYAPLAC cruise, 2003) allowing the discovery of a giant pockmark field likely caused by active degassing of deep reservoirs and expressed at the surface through giant elongated pock-marks. These pockmarks are systematically associated with massive slope instabilities and underlying polygonal fault network. Major seaward collapses seem to have affected the margin, and the breakup unconformity is tilted seaward. We believe that fluid overpressure above Cretaceous under-consolidated organic rocks may have destabilized part of the sedimentary cover, allowing massive escape of fluids toward the surface, as is suggested further North by geotechnical analyses made after leg ODP 207 (O'Regan & Moran, 2007). A compactional origin of fluids is also possible. In any case, the specific structural pattern of the Guiana transform margin, with a seaward tilted geometry and no marginal ridge, may favour particularly active fluid releases and slope instabilities (favoured by the decrease in sediment's strength related to high pore-fluid pressure). As suggested by O'Regan & Moran (2007) it is possible also that fluid migration occurs along the break-up unconformity, which crops out along the very steep continental slope. If this is correct, a great part of fossil hydrocarbon resources may escape to the surface along of the Guiana and Surinam continental margins. References: O'Regan M. & K. Moran, 2007. Compressibility, permeability and stress history of sediments from

  18. Computational and Spectroscopic Investigations of the Molecular Scale Structure and Dynamics of Geologically Important Fluids and Mineral-Fluid Interfaces

    SciTech Connect

    R. James Kirkpatrick; Andrey G. Kalinichev

    2008-11-25

    Research supported by this grant focuses on molecular scale understanding of central issues related to the structure and dynamics of geochemically important fluids, fluid-mineral interfaces, and confined fluids using computational modeling and experimental methods. Molecular scale knowledge about fluid structure and dynamics, how these are affected by mineral surfaces and molecular-scale (nano-) confinement, and how water molecules and dissolved species interact with surfaces is essential to understanding the fundamental chemistry of a wide range of low-temperature geochemical processes, including sorption and geochemical transport. Our principal efforts are devoted to continued development of relevant computational approaches, application of these approaches to important geochemical questions, relevant NMR and other experimental studies, and application of computational modeling methods to understanding the experimental results. The combination of computational modeling and experimental approaches is proving highly effective in addressing otherwise intractable problems. In 2006-2007 we have significantly advanced in new, highly promising research directions along with completion of on-going projects and final publication of work completed in previous years. New computational directions are focusing on modeling proton exchange reactions in aqueous solutions using ab initio molecular dynamics (AIMD), metadynamics (MTD), and empirical valence bond (EVB) approaches. Proton exchange is critical to understanding the structure, dynamics, and reactivity at mineral-water interfaces and for oxy-ions in solution, but has traditionally been difficult to model with molecular dynamics (MD). Our ultimate objective is to develop this capability, because MD is much less computationally demanding than quantum-chemical approaches. We have also extended our previous MD simulations of metal binding to natural organic matter (NOM) to a much longer time scale (up to 10 ns) for

  19. FOUR-FLUID MODEL AND NUMERICAL SIMULATIONS OF MAGNETIC STRUCTURES IN THE HELIOSHEATH

    SciTech Connect

    Avinash, K.; Cox, Sean M.; Shaikh, Dastgeer; Zank, G. P.

    2009-04-10

    The first part of this paper extends the three-fluid model of Avinash and Zank for magnetic structures in the heliosheath to a four-fluid model consisting of electrons, pick-up ions (PUIs), solar wind ions (SWIs), and neutral hydrogen. The PUIs are generated by neutrals via charge exchange with SWI. Since the kinetic pressure of PUI is nearly three to four times the pressure of SWI, these are more suited to mediate small-scale structures in the heliosheath such as magnetic holes (MH)/humps etc. The constant energy exchange between these two fluids drives them nonadiabatic. The PUIs are isothermal ({gamma} = 1) while SWIs are nonadiabatic with an index {gamma} {approx} 1.25. The four-fluid model captures these effects via a modified equation of state for PUI and SWI. The phase space of time-independent solutions in terms of the Mach numbers of PUI and SWI is constructed to delineate the parameter space which allows structure formation in the heliosheath. The second part of the paper examines the stability of the time-independent solutions computed in the first part by evolving them via a full system of Hall-MHD equations. The simulation results show that these solutions are not quite stable. As the structure propagates it develops growing oscillations in the wings. Concomitantly, there are changes in the amplitude and width of the structure. This instability could be due to local changes in the velocity of the structure and reflects an exchange between the kinetic and magnetic parts of the total energy. Our results about the presence of growing oscillations in the wings of solitary wave solutions are consistent with the recent analysis of MHs in the heliosheth by Burlaga et al. Their analysis also shows evidence for the presence of oscillations and instabilities in the wings of MHs in the heliosheath.

  20. Time-resolved photoresponse of nanometer-thick Nb/NiCu bilayers

    NASA Astrophysics Data System (ADS)

    Parlato, L.; Pepe, G. P.; Latempa, R.; De Lisio, C.; Altucci, C.; D'Acunto, P.; Peluso, G.; Barone, A.; Taneda, T.; Sobolewski, R.

    2005-07-01

    We present femtosecond optical time-resolved pump-probe investigations of superconducting hybrids structures consisting of Nb/NiCu bilayers with various thickness. Measurements performed on pure Nb and NiCu films are also given. The photoresponse experiments provide the quasiparticle relaxation times in bilayers of different thickness ratios. The study of the photoresponse as a function of the temperature reveals the spatial evolution of the superconductor order parameter across the bilayers.