Science.gov

Sample records for fluid catalytic cracking

  1. Multifunctional two-stage riser fluid catalytic cracking process.

    PubMed

    Zhang, Jinhong; Shan, Honghong; Chen, Xiaobo; Li, Chunyi; Yang, Chaohe

    This paper described the discovering process of some shortcomings of the conventional fluid catalytic cracking (FCC) process and the proposed two-stage riser (TSR) FCC process for decreasing dry gas and coke yields and increasing light oil yield, which has been successfully applied in 12 industrial units. Furthermore, the multifunctional two-stage riser (MFT) FCC process proposed on the basis of the TSR FCC process was described, which were carried out by the optimization of reaction conditions for fresh feedstock and cycle oil catalytic cracking, respectively, by the coupling of cycle oil cracking and light FCC naphtha upgrading processes in the second-stage riser, and the specially designed reactor for further reducing the olefin content of gasoline. The pilot test showed that it can further improve the product quality, increase the diesel yield, and enhance the conversion of heavy oil.

  2. Recent advances in the prediction, analysis and treatment of cyanides in fluid catalytic cracking units

    SciTech Connect

    Miller, R.F.; Nelsen, D.K.; Ebeling, K.L.; Morselander, E.H.; Kaminski, R.J.; Taylor, C.A. Jr.; Fekete, S.N.; Stephenson, R.A.

    1994-12-31

    Cracking of carbon steel vessels operated under pressure has been identified as a major problem in the refining industry in recent years. Although approximately one-half of these cracks appear to be caused by weld defects generated during the original manufacture or subsequent repair of the vessels, the remainder have been found to be caused by hydrogen entry into the steel promoted by the presence of cyanide ions in solution. This paper will cover the development of a mathematical model used to evaluate and predict cyanide generating conditions in Fluid Catalytic Cracking Units wherein the cyanide concentrations employed were determined via a unique, proprietary method which will also be discussed. Combining these new analytical techniques provides a reliable cyanide monitoring method and when used in combination with a Modified Ammonium Polysulfide Solution (MAPS) and organic filming inhibitors, if needed, a comprehensive corrosion protection program for Fluid Catalytic Cracking Units.

  3. Upgrading naphtha in a multiple riser fluid catalytic cracking operation employing a catalyst mixture

    SciTech Connect

    Herbst, J.A.; Owen, H.; Schipper, P.H.

    1989-05-16

    A process is described for producing gasoline comprising contacting a hydrocarbon feed having an initial boiling-point of at least 400/sup 0/F., a 50% boiling of at least 500/sup 0/F. and an end boiling point of at least 600/sup 0/F., in a first riser, with a two component catalyst under fluid catalytic cracking conditions. At least one component of the catalyst is stripped in a stripping unit to remove entrained hydrocarbons, and regenerated wherein the two component catalyst comprises a first catalyst component selected from the group consisting of an amorphous cracking catalyst and a large pore cracking catalyst, whereby a product comprising olefins and naphtha is produced. Ethylene introduced together with the two component catalyst to a second riser, for contacting ethylene with a second catalyst component which is a shape selective medium pore crystalline silicate zeolite to produce products heavier than ethylene and to increase the temperature of the catalyst to an optimum temperature for upgrading naphtha; and naphtha is introduced to the second riser, down stream of the point of ethylene introduction, for contact with the catalyst at the optimum temperature and the naphtha is upgraded to gasoline product.

  4. Economics for iso-olefin production using the fluid catalytic cracking unit

    SciTech Connect

    McClung, R.G.; Witoshkin, A.; Bogert, D.C.; Winkler, W.S.

    1993-12-31

    The Clean Air Act of 1990 requires use of oxygenates in some gasolines to improve both CO and hydrocarbon auto tailpipe emissions. Various oxygenates are currently being used by the refining industry. For the fully integrated refinery having a fluid catalytic cracking unit, the most commonly used oxygenates are methyl tertiary butyl ether (MTBE) and tertiary amyl ether (TAME). The FCC unit produces the isobutylene and iso-amylases need for manufacture of both MTBE and TAME. The economics for an assumed refinery processing scheme for several FCC cases are examined giving estimates of income and investments for each case. Up to one-third of the total gasoline pool can be made in reformulated gasoline using TAME and MTBE with the FCC unit as the sole source of feedstock. This processing route is much more economical than the alternative scheme using butane isomerization/iosbutane dehydrogenation.

  5. Stabilization of heavy metals on spent fluid catalytic cracking catalyst using marine clay.

    PubMed

    Sun, D D; Tay, J H; Qian, C E; Lai, D

    2001-01-01

    Spent fluid catalytic cracking catalyst is a hazardous solid waste generated by petroleum refineries containing vanadium and nickel. The marine clay was used as a matrix to stabilize vanadium and nickel and produce bricks which were then fired at various temperatures. TCLP leaching tests indicated that stabilizing brick had low metal leaching, with a maximum of 6.4 mg/l for vanadium and 19.8 microg/l for nickel. Compressive strength of stabilizing brick was found to range between 20 N/mm2 and 47 N/mm2. It is believed that stabilization and encapsulation mechanisms are responsible for the stabilization of vanadium and nickel. Encapsulation is a process whereby the marine clay matrix forms a physical barrier around the heavy metals which are thus prevented from leaching out into the environment. Incorporation involves the formation of bonds between the marine clay matrix and the heavy metals which thus become incorporated in the clay microstructure.

  6. Catalytic cracking process

    SciTech Connect

    Chiang, R.L.; Perigard, R.G.; Rabo, J.A.

    1989-08-08

    This patent describes a process for catalytic cracking of hydrocarbon feedstocks. It comprises contacting the hydrocarbon feedstock under conditions effective to crack the feedstock with a catalyst. The catalyst is prepared by a process comprising the following step: contacting a fluid mixture of a large pore zeolite having a SiO/sub 2/Al/sub 2/O/sub 3/ ratio of about 3.5 to less than about 20 and an inorganic oxide matrix, with a fluoro salt of the formula A/sub (n-m)/(MF/sub n/)/sub z/. Wherein A is an organic or inorganic ionic moiety; (MF/sub n/)/sub z/ is a fluoroanion moiety comprising the element M; M is an element selected from the group of elements for Groups VB, VIB, VII, IIIA, IVA and VA of the Periodic Table of Elements; n is the coordination number of M; m is the valence of M and z is the valence or charge associated with A, at an effective pH value greater than about 3, at effective conditions of temperature and time to produce a catalyst product, whereby the cracking activity of the zeolite is enhanced.

  7. Quenched catalytic cracking process

    SciTech Connect

    Krambeck, F.J.; Penick, J.E.; Schipper, P.H.

    1990-12-18

    This paper describes improvement in a fluidized catalytic cracking process wherein a fluidizable catalyst cracking catalyst and a hydrocarbon feed are charged to a reactor riser at catalytic riser cracking conditions to form catalytically cracked vapor product and spent catalyst which are discharged into a reactor vessel having a volume via a riser reactor outlet equipped with a separation means to produce a catalyst lean phase. It comprises: a majority of the cracked product, and a catalyst rich phase comprising a majority of the spend catalyst. The the catalyst rich phase is discharged into a dense bed of catalyst maintained below the riser outlet and the catalyst lean phase is discharged into the vessel for a time, and at a temperature, which cause unselective thermal cracking of the cracked product in the reactor volume before product is withdrawn from the vessel via a vessel outlet. The improvement comprises: addition, after riser cracking is completed, and after separation of cracked products from catalyst, of a quenching stream into the vessel above the dense bed of catalyst, via a quench stream addition point which allows the quench stream to contact at least a majority of the volume of the vessel above the dense bed.

  8. Catalytic cracking of hydrocarbons

    SciTech Connect

    Absil, R.P.L.; Bowes, E.; Green, G.J.; Marler, D.O.; Shihabi, D.S.; Socha, R.F.

    1992-02-04

    This patent describes an improvement in a catalytic cracking process in which a hydrocarbon feed is cracked in a cracking zone in the absence of added hydrogen and in the presence of a circulating inventory of solid acidic cracking a catalyst which acquires a deposit of coke that contains chemically bound nitrogen while the cracking catalyst is in the cracking zone, the coke catalyst being circulated to t regeneration zone to convert the coke catalyst to a regenerated catalyst with the formation of a flue gas comprising nitrogen oxides: the improvement comprises incorporating into the circulating catalyst inventory an amount of additive particles comprising a synthetic porous crystalline material containing copper metal or cations, to reduce the content of nitrogen oxides in the flue gas.

  9. Catalytic cracking process

    SciTech Connect

    Aufdembrink, B.A.; Degnan, T.F.; Kresge, C.T.

    1990-01-23

    This patent describes a process for catalytically cracking a petroleum fraction to lighter hydrocarbons. The process comprises providing a feedstock containing a petroleum fraction and then contacting the feedstock with a catalyst under catalytic cracking conditions. The catalyst composition includes a titanometallate layered metal oxide material comprising a layered metal oxide material comprising a layered metal oxide and pillars of a chalcogenide of at least one element selected from Groups IB, IIB, IIIA, IIIB, IVB, VA, VB, VIA, VIIA and VIIIA of the Periodic Table of Elements separating the layers of the metal oxides.

  10. High-Resolution Single-Molecule Fluorescence Imaging of Zeolite Aggregates within Real-Life Fluid Catalytic Cracking Particles**

    PubMed Central

    Ristanović, Zoran; Kerssens, Marleen M; Kubarev, Alexey V; Hendriks, Frank C; Dedecker, Peter; Hofkens, Johan; Roeffaers, Maarten B J; Weckhuysen, Bert M

    2015-01-01

    Fluid catalytic cracking (FCC) is a major process in oil refineries to produce gasoline and base chemicals from crude oil fractions. The spatial distribution and acidity of zeolite aggregates embedded within the 50–150 μm-sized FCC spheres heavily influence their catalytic performance. Single-molecule fluorescence-based imaging methods, namely nanometer accuracy by stochastic chemical reactions (NASCA) and super-resolution optical fluctuation imaging (SOFI) were used to study the catalytic activity of sub-micrometer zeolite ZSM-5 domains within real-life FCC catalyst particles. The formation of fluorescent product molecules taking place at Brønsted acid sites was monitored with single turnover sensitivity and high spatiotemporal resolution, providing detailed insight in dispersion and catalytic activity of zeolite ZSM-5 aggregates. The results point towards substantial differences in turnover frequencies between the zeolite aggregates, revealing significant intraparticle heterogeneities in Brønsted reactivity. PMID:25504139

  11. Fluid catalytic cracking: recent developments on the grand old lady of zeolite catalysis

    PubMed Central

    2015-01-01

    Fluid catalytic cracking (FCC) is one of the major conversion technologies in the oil refinery industry. FCC currently produces the majority of the world's gasoline, as well as an important fraction of propylene for the polymer industry. In this critical review, we give an overview of the latest trends in this field of research. These trends include ways to make it possible to process either very heavy or very light crude oil fractions as well as to co-process biomass-based oxygenates with regular crude oil fractions, and convert these more complex feedstocks in an increasing amount of propylene and diesel-range fuels. After providing some general background of the FCC process, including a short history as well as details on the process, reactor design, chemical reactions involved and catalyst material, we will discuss several trends in FCC catalysis research by focusing on ways to improve the zeolite structure stability, propylene selectivity and the overall catalyst accessibility by (a) the addition of rare earth elements and phosphorus, (b) constructing hierarchical pores systems and (c) the introduction of new zeolite structures. In addition, we present an overview of the state-of-the-art micro-spectroscopy methods for characterizing FCC catalysts at the single particle level. These new characterization tools are able to explain the influence of the harsh FCC processing conditions (e.g. steam) and the presence of various metal poisons (e.g. V, Fe and Ni) in the crude oil feedstocks on the 3-D structure and accessibility of FCC catalyst materials. PMID:26382875

  12. Fluid catalytic cracking: recent developments on the grand old lady of zeolite catalysis.

    PubMed

    Vogt, E T C; Weckhuysen, B M

    2015-10-21

    Fluid catalytic cracking (FCC) is one of the major conversion technologies in the oil refinery industry. FCC currently produces the majority of the world's gasoline, as well as an important fraction of propylene for the polymer industry. In this critical review, we give an overview of the latest trends in this field of research. These trends include ways to make it possible to process either very heavy or very light crude oil fractions as well as to co-process biomass-based oxygenates with regular crude oil fractions, and convert these more complex feedstocks in an increasing amount of propylene and diesel-range fuels. After providing some general background of the FCC process, including a short history as well as details on the process, reactor design, chemical reactions involved and catalyst material, we will discuss several trends in FCC catalysis research by focusing on ways to improve the zeolite structure stability, propylene selectivity and the overall catalyst accessibility by (a) the addition of rare earth elements and phosphorus, (b) constructing hierarchical pores systems and (c) the introduction of new zeolite structures. In addition, we present an overview of the state-of-the-art micro-spectroscopy methods for characterizing FCC catalysts at the single particle level. These new characterization tools are able to explain the influence of the harsh FCC processing conditions (e.g. steam) and the presence of various metal poisons (e.g. V, Fe and Ni) in the crude oil feedstocks on the 3-D structure and accessibility of FCC catalyst materials.

  13. Catalytic cracking of heavy oils

    SciTech Connect

    Otterstedt, J.E.; Gevert, B.; Sterte, J. )

    1987-08-01

    Of the many factors which influence product yields in a fluid catalytic cracker, the feed stock quality and the catalyst composition are of particular interest as they can be controlled only to a limited extent by the refiner. In the past decade there has been a trend towards using heavier feedstocks in the FCC-unit, which is expected to continue in the foreseeable future. It is therefore important to study how molecular types, characteristic not only of heavy petroleum oil but also of e.g. coal liquid, shale oil and biomass oil, respond to cracking over catalysts of different compositions.

  14. X-ray Fluorescence Tomography of Aged Fluid-Catalytic-Cracking Catalyst Particles Reveals Insight into Metal Deposition Processes

    PubMed Central

    Kalirai, Sam; Boesenberg, Ulrike; Falkenberg, Gerald; Meirer, Florian; Weckhuysen, Bert M

    2015-01-01

    Microprobe X-ray fluorescence tomography was used to investigate metal poison deposition in individual, intact and industrially deactivated fluid catalytic cracking (FCC) particles at two differing catalytic life-stages. 3 D multi-element imaging, at submicron resolution was achieved by using a large-array Maia fluorescence detector. Our results show that Fe, Ni and Ca have significant concentration at the exterior of the FCC catalyst particle and are highly co-localized. As concentrations increase as a function of catalytic life-stage, the deposition profiles of Fe, Ni, and Ca do not change significantly. V has been shown to penetrate deeper into the particle with increasing catalytic age. Although it has been previously suggested that V is responsible for damaging the zeolite components of FCC particles, no spatial correlation was found for V and La, which was used as a marker for the embedded zeolite domains. This suggests that although V is known to be detrimental to zeolites in FCC particles, a preferential interaction does not exist between the two. PMID:26613011

  15. High-resolution single-molecule fluorescence imaging of zeolite aggregates within real-life fluid catalytic cracking particles.

    PubMed

    Ristanović, Zoran; Kerssens, Marleen M; Kubarev, Alexey V; Hendriks, Frank C; Dedecker, Peter; Hofkens, Johan; Roeffaers, Maarten B J; Weckhuysen, Bert M

    2015-02-02

    Fluid catalytic cracking (FCC) is a major process in oil refineries to produce gasoline and base chemicals from crude oil fractions. The spatial distribution and acidity of zeolite aggregates embedded within the 50-150 μm-sized FCC spheres heavily influence their catalytic performance. Single-molecule fluorescence-based imaging methods, namely nanometer accuracy by stochastic chemical reactions (NASCA) and super-resolution optical fluctuation imaging (SOFI) were used to study the catalytic activity of sub-micrometer zeolite ZSM-5 domains within real-life FCC catalyst particles. The formation of fluorescent product molecules taking place at Brønsted acid sites was monitored with single turnover sensitivity and high spatiotemporal resolution, providing detailed insight in dispersion and catalytic activity of zeolite ZSM-5 aggregates. The results point towards substantial differences in turnover frequencies between the zeolite aggregates, revealing significant intraparticle heterogeneities in Brønsted reactivity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Improved high efficiency third stage separator cyclones for separation of fines from fluid catalytic cracking flue gas

    SciTech Connect

    Chitnis, G.K.; Schatz, K.W.; Bussey, B.K.

    1996-12-31

    Stairmand type small diameter (0.254 m) multicyclones were cold flow tested for fluid catalytic cracking third stage separator application. The gas discharge from the cyclone dust outlet into the common collection hopper was found to far exceed the hopper bleed rate (underflow). The excess gas reentrained dust from the hopper back into cyclones, which lowered collection efficiencies. Vortex {open_quotes}stabilization{close_quotes} using apex cones was unsuccessful whereas a Mobil proprietary cyclone modification was successful in minimizing excess gas discharge and dust reentrainment at the cyclone-hopper boundary. In tests at 700 {degrees}C, the modified cyclones captured all particles above 4 {mu}m. Mobil-Kellogg incorporated the modified cyclones in a new third stage separator design which is targeted for achieving lowest opacity and <50 mg/Nm{sup 3} emissions at the stack. The first such unit will be commercialized in Mobil`s newest catalytic cracker (M.W. Kellogg design) under construction in Altona, Australia in late 1996. 5 refs., 4 figs., 2 tabs.

  17. Multiphase flow modelling using non orthogonal collocated finite volumes : application to fluid catalytical cracking and large scale geophysical flows.

    NASA Astrophysics Data System (ADS)

    Martin, R. M.; Nicolas, A. N.

    2003-04-01

    A modeling approach of gas solid flow, taking into account different physical phenomena such as gas turbulence and inter-particle interactions is presented. Moment transport equations are derived for the second order fluctuating velocity tensor which allow to involve practical closures based on single phase turbulence modeling on one hand and kinetic theory of granular media on the other hand. The model is applied to fluid catalytic cracking processes and explosive volcanism. In the industry as well as in the geophysical community, multiphase flows are modeled using a finite volume approach and a multicorrector algorithm in time in order to determine implicitly the pressures, velocities and volume fractions for each phase. Pressures, and velocities are generally determined at mid-half mesh step from each other following the staggered grid approach. This ensures stability and prevents oscillations in pressure. It allows to treat almost all the Reynolds number ranges for all speeds and viscosities. The disadvantages appear when we want to treat more complex geometries or if a generalized curvilinear formulation of the conservation equations is considered. Too many interpolations have to be done and accuracy is then lost. In order to overcome these problems, we use here a similar algorithm in time and a Rhie and Chow interpolation (1983) of the collocated variables and essentially the velocities at the interface. The Rhie and Chow interpolation of the velocities at the finite volume interfaces allows to have no oscillations of the pressure without checkerboard effects and to stabilize all the algorithm. In a first predictor step, fluxes at the interfaces of the finite volumes are then computed using 2nd and 3rd order shock capturing schemes of MUSCL/TVD or Van Leer type, and the orthogonal stress components are treated implicitly while cross viscous/diffusion terms are treated explicitly. Pentadiagonal linear systems are solved in each geometrical direction (the so

  18. A novel "wastes-treat-wastes" technology: role and potential of spent fluid catalytic cracking catalyst assisted ozonation of petrochemical wastewater.

    PubMed

    Chen, Chunmao; Yu, Ji; Yoza, Brandon A; Li, Qing X; Wang, Gang

    2015-04-01

    Catalytic ozonation is a promising wastewater treatment technology. However, the high cost of the catalyst hinders its application. A novel "wastes-treat-wastes" technology was developed to reuse spent fluid catalytic cracking catalysts (sFCCc) for the ozonation of petrochemical wastewater in this study. Multivalent vanadium (V(4+) and V(5+)), iron (Fe(2+) and Fe(3+)) and nickel (Ni(2+)) oxides that are distributed on the surface of sFCCc and poisoned FCC catalysts are the catalytic components for ozonation. The sFCCc assisted catalytic ozonation (sFCCc-O) of nitrobenzene indicated that the sFCCc significantly promoted hydroxyl radical mediated oxidation. The degradation rate constant of nitrobenzene in sFCCc-O (0.0794 min(-1) at 298 K) was approximately doubled in comparison with that in single ozonation (0.0362 min(-1) at 298 K). The sFCCc-O of petrochemical wastewater increased chemical oxygen demand removal efficiency by three-fold relative to single ozonation. The number of oxygen-containing (Ox) polar contaminants in the effluent (253) from sFCCc-O treatment decreased to about 70% of the initial wastewater (353). The increased oxygen/carbon atomic ratio and decreased number of Ox polar contaminants indicated a high degree of degradation. The present study showed the role and potential of sFCCc for catalytic ozonation of petrochemical wastewater, particularly in an advantage of the cost-effectiveness through "wastes-treat-wastes".

  19. Corrosion of stainless steels in the riser during co-processing of bio-oils in a fluid catalytic cracking pilot plant

    DOE PAGES

    Brady, M. P.; Keiser, J. R.; Leonard, D. N.; ...

    2017-01-31

    Co-processing of bio-oils with conventional petroleum-based feedstocks is an attractive initial option to make use of renewable biomass as a fuel source while leveraging existing refinery infrastructures. But, bio-oils and their processing intermediates have high concentrations of organic oxygenates, which, among their other negative qualities, can result in increased corrosion issues. A range of stainless steel alloys (409, 410, 304L, 316L, 317L, and 201) was exposed at the base of the riser in a fluid catalytic cracking pilot plant while co-processing vacuum gas oil with pine-derived pyrolysis bio-oils that had been catalytically hydrodeoxygenated to ~ 2 to 28% oxygen. Wemore » studied the processing using a catalyst temperature of 704 °C, a reaction exit temperature of 520 °C, and total co-processing run times of 57–75 h. External oxide scaling 5–30 μm thick and internal attack 1–5 μm deep were observed in these short-duration exposures. The greatest extent of internal attack was observed for co-processing with the least stabilized bio-oil, and more so for types 409, 410, 304L, 316L, 317L stainless steel than for type 201. Finally, the internal attack involved porous Cr-rich oxide formation, associated with local Ni-metal enrichment and S-rich nanoparticles, primarily containing Cr or Mn. Implications for alloy selection and corrosion are discussed.« less

  20. Catalytic cracking of light coker gasoil

    SciTech Connect

    Farkhadova, G.T.; Guseinov, A.M.; Guseinova, S.B.; Maiorova, N.S.; Mkrtychev, A.A.; Rustamonv, M.I.

    1985-09-01

    Results are presented from experiments on the catalytic cracking of light gas-oil produced by delayed coking of a low-sulfur vacuum resid. A proposal is given for the utilization of these products. The physicochemical properties of the light gas-oil are analyzed. Results of the study show that cat cracking of vacuum gas-oil together with light coker gasoil in a two-stage unit gives substantial increases in the resources of cat cracker feed--in the capacity of the unit, and in the output of light products.

  1. Life and death of a single catalytic cracking particle

    PubMed Central

    Meirer, Florian; Kalirai, Sam; Morris, Darius; Soparawalla, Santosh; Liu, Yijin; Mesu, Gerbrand; Andrews, Joy C.; Weckhuysen, Bert M.

    2015-01-01

    Fluid catalytic cracking (FCC) particles account for 40 to 45% of worldwide gasoline production. The hierarchical complex particle pore structure allows access of long-chain feedstock molecules into active catalyst domains where they are cracked into smaller, more valuable hydrocarbon products (for example, gasoline). In this process, metal deposition and intrusion is a major cause for irreversible catalyst deactivation and shifts in product distribution. We used x-ray nanotomography of industrial FCC particles at differing degrees of deactivation to quantify changes in single-particle macroporosity and pore connectivity, correlated to iron and nickel deposition. Our study reveals that these metals are incorporated almost exclusively in near-surface regions, severely limiting macropore accessibility as metal concentrations increase. Because macropore channels are “highways” of the pore network, blocking them prevents feedstock molecules from reaching the catalytically active domains. Consequently, metal deposition reduces conversion with time on stream because the internal pore volume, although itself unobstructed, becomes largely inaccessible. PMID:26601160

  2. New Advances In Multiphase Flow Numerical Modelling Using A General Domain Decomposition and Non-orthogonal Collocated Finite Volume Algorithm: Application To Industrial Fluid Catalytical Cracking Process and Large Scale Geophysical Fluids.

    NASA Astrophysics Data System (ADS)

    Martin, R.; Gonzalez Ortiz, A.

    momentum exchange forces and the interphase heat exchanges are 1 treated implicitly to ensure stability. In order to reduce one more time the computa- tional cost, a decomposition of the global domain in N subdomains is introduced and all the previous algorithms applied to one block is performed in each block. At the in- terface between subdomains, an overlapping procedure is used. Another advantage is that different sets of equations can be solved in each block like fluid/structure interac- tions for instance. We show here the hydrodynamics of a two-phase flow in a vertical conduct as in industrial plants of fluid catalytical cracking processes with a complex geometry. With an initial Richardson number of 0.16 slightly higher than the critical Richardson number of 0.1, particles and water vapor are injected at the bottom of the riser. Countercurrents appear near the walls and gravity effects begin to dominate in- ducing an increase of particulate volumic fractions near the walls. We show here the hydrodynamics for 13s. 2

  3. JP-8 catalytic cracking for compact fuel processors

    NASA Astrophysics Data System (ADS)

    Campbell, Timothy J.; Shaaban, Aly H.; Holcomb, Franklin H.; Salavani, Reza; Binder, Michael J.

    In processing heavier hydrocarbons such as military logistic fuels (JP-4, JP-5, JP-8, and JP-100), kerosene, gasoline, and diesel to produce hydrogen for fuel cell use, several issues arise. First, these fuels have high sulfur content, which can poison and deactivate components of the reforming process and the fuel cell stack; second, these fuels may contain non-volatile residue (NVR), up to 1.5 vol.%, which could potentially accumulate in a fuel processor; and third is the high coking potential of heavy hydrocarbons. Catalytic cracking of a distillate fuel prior to reforming can resolve these issues. Cracking using an appropriate catalyst can convert the various heavy organosulfur species in the fuel to lighter sulfur species such as hydrogen sulfide (H 2S), facilitating subsequent sulfur adsorption on zinc oxide (ZnO). Cracking followed by separation of light cracked gas from heavies effectively eliminates non-volatile aromatic species. Catalytic cracking can also convert heavier hydrocarbons to lights (C 1-C 3) at high conversion, which reduces the potential for coke formation in the reforming process. In this study, two types of catalysts were compared for JP-8 cracking performance: commercially-available zeolite materials similar to catalysts formulated for fluidized catalytic cracking (FCC) processes, and a novel manganese/alumina catalyst, which was previously reported to provide high selectivity to lights and low coke yield. Experiments were designed to test each catalyst's effectiveness under the high space velocity conditions necessary for use in compact, lightweight fuel processor systems. Cracking conversion results, as well as sulfur and hydrocarbon distributions in the light cracked gas, are presented for the two catalysts to provide a performance comparison.

  4. 40 CFR 63.1564 - What are my requirements for metal HAP emissions from catalytic cracking units?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... emissions from catalytic cracking units? 63.1564 Section 63.1564 Protection of Environment ENVIRONMENTAL... Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Catalytic Cracking... requirements for metal HAP emissions from catalytic cracking units? (a) What emission limitations and...

  5. Catalytic cracking catalysts using silicoaluminophosphate molecular sieves

    SciTech Connect

    Pellet, R.J.; Coughlin, P.K.; Staniulis, M.T.; Long, G.N.; Rabo, J.A.

    1987-05-19

    A cracking catalyst is described comprising: a silicoaluminophosphate molecular sieve of U.S. Pat. No. 4,440,871 characterized in its calcined form by an adsorption of isobutane of at least 2 percent by weight at a pressure of 500 torr and a temperature of 20/sup 0/C and having an effective amount of the cations associated with the silicoaluminophosphate molecular sieve selected from the group consisting of H+, ammonium, Group IIA, groups IIIB to VIIB, cerium, lanthanum, praseodymium, neodymium, and promethium.

  6. Elasticity-Driven Backflow of Fluid-Driven Cracks

    NASA Astrophysics Data System (ADS)

    Lai, Ching-Yao; Zheng, Zhong; Dressaire, Emilie; Ramon, Guy; Huppert, Herbert E.; Stone, Howard A.

    2016-11-01

    Fluid-driven cracks are generated by the injection of pressurized fluid into an elastic medium. Once the injection pressure is released, the crack closes up due to elasticity and the fluid in the crack drains out of the crack through an outlet, which we refer to as backflow. We experimentally study the effects of crack size, elasticity of the matrix, and fluid viscosity on the backflow dynamics. During backflow, the volume of liquid remaining in the crack as a function of time exhibits a transition from a fast decay at early times to a power law behavior at late times. Our results at late times can be explained by scaling arguments balancing elastic and viscous stresses in the crack. This work may relate to the environmental issue of flowback in hydraulic fracturing. This work is supported by National Science Foundation via Grant CBET-1509347 and partially supported by Andlinger Center for Energy and the Environment at Princeton University.

  7. 40 CFR 63.1565 - What are my requirements for organic HAP emissions from catalytic cracking units?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... HAP emissions from catalytic cracking units? 63.1565 Section 63.1565 Protection of Environment... Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Catalytic Cracking Units, Catalytic Reforming Units, Sulfur Recovery Units, and Bypass Lines § 63.1565...

  8. 40 CFR 63.1565 - What are my requirements for organic HAP emissions from catalytic cracking units?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... HAP emissions from catalytic cracking units? 63.1565 Section 63.1565 Protection of Environment... Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Catalytic Cracking Units, Catalytic Reforming Units, Sulfur Recovery Units, and Bypass Lines § 63.1565...

  9. Evaluation of Catalytic and Thermal Cracking in a JP-8 Fueled Pulsed Detonation Engine (Postprint)

    DTIC Science & Technology

    2007-09-01

    Additionally, a zeolite catalytic coating is applied to the heat-exchanger surfaces to stimulate further cracking of the fuel and reduce coke deposition. To...concentric-counter-flow heat exchangers to elevate the fuel temperature levels sufficiently to induce thermal cracking. Additionally, a zeolite catalytic ...to elevate the fuel temperatures sufficiently to crack the fuel thermally with the assistance of a zeolite catalytic coating. II. Background

  10. 40 CFR Table 12 to Subpart Uuu of... - Initial Compliance With Organic HAP Emission Limits for Catalytic Cracking Units

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Emission Limits for Catalytic Cracking Units 12 Table 12 to Subpart UUU of Part 63 Protection of... Pollutants for Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery... HAP Emission Limits for Catalytic Cracking Units As stated in § 63.1565(b)(4), you shall meet...

  11. 40 CFR Table 2 to Subpart Uuu of... - Operating Limits for Metal HAP Emissions From Catalytic Cracking Units

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Emissions From Catalytic Cracking Units 2 Table 2 to Subpart UUU of Part 63 Protection of Environment... Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63... Catalytic Cracking Units As stated in § 63.1564(a)(2), you shall meet each operating limit in the...

  12. Catalytic activity in individual cracking catalyst particles imaged throughout different life stages by selective staining.

    PubMed

    Buurmans, Inge L C; Ruiz-Martínez, Javier; Knowles, William V; van der Beek, David; Bergwerff, Jaap A; Vogt, Eelco T C; Weckhuysen, Bert M

    2011-09-18

    Fluid catalytic cracking (FCC) is the major conversion process used in oil refineries to produce valuable hydrocarbons from crude oil fractions. Because the demand for oil-based products is ever increasing, research has been ongoing to improve the performance of FCC catalyst particles, which are complex mixtures of zeolite and binder materials. Unfortunately, there is limited insight into the distribution and activity of individual zeolitic domains at different life stages. Here we introduce a staining method to visualize the structure of zeolite particulates and other FCC components. Brønsted acidity maps have been constructed at the single particle level from fluorescence microscopy images. By applying a statistical methodology to a series of catalysts deactivated via industrial protocols, a correlation is established between Brønsted acidity and cracking activity. The generally applicable method has clear potential for catalyst diagnostics, as it determines intra- and interparticle Brønsted acidity distributions for industrial FCC materials.

  13. Catalytic activity in individual cracking catalyst particles imaged throughout different life stages by selective staining

    NASA Astrophysics Data System (ADS)

    Buurmans, Inge L. C.; Ruiz-Martínez, Javier; Knowles, William V.; van der Beek, David; Bergwerff, Jaap A.; Vogt, Eelco T. C.; Weckhuysen, Bert M.

    2011-11-01

    Fluid catalytic cracking (FCC) is the major conversion process used in oil refineries to produce valuable hydrocarbons from crude oil fractions. Because the demand for oil-based products is ever increasing, research has been ongoing to improve the performance of FCC catalyst particles, which are complex mixtures of zeolite and binder materials. Unfortunately, there is limited insight into the distribution and activity of individual zeolitic domains at different life stages. Here we introduce a staining method to visualize the structure of zeolite particulates and other FCC components. Brønsted acidity maps have been constructed at the single particle level from fluorescence microscopy images. By applying a statistical methodology to a series of catalysts deactivated via industrial protocols, a correlation is established between Brønsted acidity and cracking activity. The generally applicable method has clear potential for catalyst diagnostics, as it determines intra- and interparticle Brønsted acidity distributions for industrial FCC materials.

  14. Control of a catalytic fluid cracker

    SciTech Connect

    Arbel, A.; Huang, Z.; Rinard, I.; Shinnar, R.

    1993-12-13

    Control offers an important tool for savings in refineries, mainly by integration of process models into on-line control. This paper is part of a research effort to better understand problems of partial control; control of a Fluid Catalytic Cracker (FCC) is used as example. Goal is to understand better the control problems of an FCC in context of model based control of a refinery, and to understand the general problem of designing partial control systems.

  15. Process for the preparation of light hydrocarbon distillates by hydrocracking and catalytic cracking

    SciTech Connect

    DeVries, A.F.; Stork, W.H.J.

    1989-08-22

    This patent describes a process for the preparation of a gasoline range petroleum distillate from a vacuum heavy hydrocarbon oil distillate. It comprises: passing at least a portion of the vacuum heavy hydrocarbon oil distillate to a hydrocracking zone to hydrocrack the distillate into a product stream comprising a hydrocracked distillate residue having an initial boiling point of at least 300{sup 0}C; passing the hydrocracked distillate to a distillation separation zone to separate and recover the residue; passing the residue to a catalytic cracking zone to catalytically crack the residue; passing at least a portion of the vacuum heavy oil distillate prior to hydrocracking to the catalytic cracking to catalytically crack the vacuum heaving oil distillate; withdrawing the gasoline range petroleum distillate from the catalytic cracking zone.

  16. The Investigation of Reducing PAHs Emission from Coal Pyrolysis by Gaseous Catalytic Cracking

    PubMed Central

    Wang, Yulong; Zhao, Ruifang; Zhang, Chun; Li, Guanlong; Zhang, Jing; Li, Fan

    2014-01-01

    The catalytic cracking method of PAHs for the pyrolysis gaseous products is proposed to control their pollution to the environment. In this study, the Py-GC-MS is used to investigate in situ the catalytic effect of CaO and Fe2O3 on the 16 PAHs from Pingshuo coal pyrolysis under different catalytic temperatures and catalyst particle sizes. The results demonstrate that Fe2O3 is effective than that of CaO for catalytic cracking of 16 PAHs and that their catalytic temperature corresponding to the maximum PAHs cracking rates is different. The PAHs cracking rate is up to 60.59% for Fe2O3 at 600°C and is 52.88% at 700°C for CaO. The catalytic temperature and particle size of the catalysts have a significant effect on PAHs cracking rate and CaO will lose the capability of decreasing 16 PAHs when the temperature is higher than 900°C. The possible cracking process of 16 PAHs is deduced by elaborately analyzing the cracking effect of the two catalysts on 16 different species of PAHs. PMID:24963507

  17. Acoustic properties of a crack containing magmatic or hydrothermal fluids

    USGS Publications Warehouse

    Kumagai, H.; Chouet, B.A.

    2000-01-01

    We estimate the acoustic properties of a crack containing maginatic or hydrothermal fluids to quantify the source properties of long-period (LP) events observed in volcanic areas assuming that a crack-like structure is the source of LP events. The tails of synthetic waveforms obtained from a model of a fluid-driven crack are analyzed by the Sompi method to determine the complex frequencies of one of the modes of crack resonance over a wide range of the model parameters ??/a and ??f/??s, where ?? is the P wave velocity of the rock matrix, a is the sound speed of the fluid, and ??f and ??s are the densities of the fluid and rock matrix, respectively. The quality factor due to radiation loss (Qr) for the selected mode almost monotonically increases with increasing ??/a, while the dimensionless frequency (??) of the mode decreases with increasing ??/a and ??f/??s. These results are used to estimate Q and ?? for a crack containing various types of fluids (gas-gas mixtures, liquid-gas mixtures, and dusty and misty gases) for values of a, ??f, and quality factor due to intrinsic losses (Qi) appropriate for these types of fluids, in which Q is given by Q-1 = Qr-1 + Qi-1. For a crack containing such fluids, we obtain Q ranging from almost unity to several hundred, which consistently explains the wide variety of quality factors measured in LP events observed at various volcanoes. We underscore the importance of dusty and misty gases containing small-size particles with radii around 1 ??m to explain long-lasting oscillations with Q significantly larger than 100. Our results may provide a basis for the interpretation of spatial and temporal variations in the observed complex frequencies of LP events in terms of fluid compositions beneath volcanoes. Copyright 2000 by the American Geophysical Union.

  18. Formalization of hydrocarbon conversion scheme of catalytic cracking for mathematical model development

    NASA Astrophysics Data System (ADS)

    Nazarova, G.; Ivashkina, E.; Ivanchina, E.; Kiseleva, S.; Stebeneva, V.

    2015-11-01

    The issue of improving the energy and resource efficiency of advanced petroleum processing can be solved by the development of adequate mathematical model based on physical and chemical regularities of process reactions with a high predictive potential in the advanced petroleum refining. In this work, the development of formalized hydrocarbon conversion scheme of catalytic cracking was performed using thermodynamic parameters of reaction defined by the Density Functional Theory. The list of reaction was compiled according to the results of feedstock structural-group composition definition, which was done by the n-d-m-method, the Hazelvuda method, qualitative composition of feedstock defined by gas chromatography-mass spectrometry and individual composition of catalytic cracking gasoline fraction. Formalized hydrocarbon conversion scheme of catalytic cracking will become the basis for the development of the catalytic cracking kinetic model.

  19. Catalytic cracking unit with internal gross cut separator and quench injector

    SciTech Connect

    Quinn, G.P.; Kruse, L.W.; Gebhard, T.J.; Forgac, J.M.

    1992-02-11

    This patent describes a catalytic cracking unit. It comprises: a catalytic cracker, a disengager, an internal rough cut separator positioned inside the disengaging vessel and located in the upper dilute phase portion of the disengaging vessel for making a rough cut separation of the coked cracking catalyst particulates from the catalytically cracked oil, the internal rough cut separator having a product outlet for egress of catalytically cracked oil and having a catalyst outlet for egress of the coked cracking catalyst particulates; an oil quench injector extending into the upper dilute phase portion of the disengaging vessel at a location above and in proximity to the product outlet of the internal rough cut separator inside the disengaging vessel for inhibiting substantial thermal cracking of the catalytically cracked oil in the upper dilute phase portion of the disengaging vessel; at least one secondary internalcyclone positioned inside the disengaging vessel and having an inlet at an elevation above the rough cut separator; and the oil quench injector composes an oil quench line disposed in the disengaging vessel between the product outlet of the internal rough cut separator and the inlet of the secondary cyclone.

  20. Elastic Relaxation of Fluid-Driven Cracks and the Resulting Backflow.

    PubMed

    Lai, Ching-Yao; Zheng, Zhong; Dressaire, Emilie; Ramon, Guy Z; Huppert, Herbert E; Stone, Howard A

    2016-12-23

    Cracks filled with fluid propagation when the pressurized fluid is injected into the crack. Subsequently, when the fluid inlet is exposed to a lower pressure, the fluid flows backwards (backflow) and the crack closes due to the elastic relaxation of the solid. Here we study the dynamics of the crack closure during the backflow. We find that the crack radius remains constant and the fluid volume in the crack decreases with time in a power-law manner at late times. The balance between the viscous stresses in the fluid and elastic stresses in the fluid and the elastic stresses in the solid yields a scaling law that agrees with the experimental results for different fluid viscosities, Young's moduli of the solid, and initial radii of the cracks. Furthermore, we visualize the time-dependent crack shapes, and the convergence to a universal dimensionless shape demonstrates the self-similarity of the crack shapes during the backflow process.

  1. Elastic Relaxation of Fluid-Driven Cracks and the Resulting Backflow

    NASA Astrophysics Data System (ADS)

    Lai, Ching-Yao; Zheng, Zhong; Dressaire, Emilie; Ramon, Guy Z.; Huppert, Herbert E.; Stone, Howard A.

    2016-12-01

    Cracks filled with fluid propagation when the pressurized fluid is injected into the crack. Subsequently, when the fluid inlet is exposed to a lower pressure, the fluid flows backwards (backflow) and the crack closes due to the elastic relaxation of the solid. Here we study the dynamics of the crack closure during the backflow. We find that the crack radius remains constant and the fluid volume in the crack decreases with time in a power-law manner at late times. The balance between the viscous stresses in the fluid and elastic stresses in the fluid and the elastic stresses in the solid yields a scaling law that agrees with the experimental results for different fluid viscosities, Young's moduli of the solid, and initial radii of the cracks. Furthermore, we visualize the time-dependent crack shapes, and the convergence to a universal dimensionless shape demonstrates the self-similarity of the crack shapes during the backflow process.

  2. FIB-SEM Tomography Probes the Mesoscale Pore Space of an Individual Catalytic Cracking Particle

    PubMed Central

    2016-01-01

    The overall performance of a catalyst particle strongly depends on the ability of mass transport through its pore space. Characterizing the three-dimensional structure of the macro- and mesopore space of a catalyst particle and establishing a correlation with transport efficiency is an essential step toward designing highly effective catalyst particles. In this work, a generally applicable workflow is presented to characterize the transport efficiency of individual catalyst particles. The developed workflow involves a multiscale characterization approach making use of a focused ion beam-scanning electron microscope (FIB-SEM). SEM imaging is performed on cross sections of 10.000 μm2, visualizing a set of catalyst particles, while FIB-SEM tomography visualized the pore space of a large number of 8 μm3 cubes (subvolumes) of individual catalyst particles. Geometrical parameters (porosity, pore connectivity, and heterogeneity) of the material were used to generate large numbers of virtual 3D volumes resembling the sample’s pore space characteristics, while being suitable for computationally demanding transport simulations. The transport ability, defined as the ratio of unhindered flow over hindered flow, is then determined via transport simulations through the virtual volumes. The simulation results are used as input for an upscaling routine based on an analogy with electrical networks, taking into account the spatial heterogeneity of the pore space over greater length scales. This novel approach is demonstrated for two distinct types of industrially manufactured fluid catalytic cracking (FCC) particles with zeolite Y as the active cracking component. Differences in physicochemical and catalytic properties were found to relate to differences in heterogeneities in the spatial porosity distribution. In addition to the characterization of existing FCC particles, our method of correlating pore space with transport efficiency does also allow for an up-front evaluation of

  3. Laboratory Production of Biofuels and Biochemicals from a Rapeseed Oil through Catalytic Cracking Conversion.

    PubMed

    Ng, Siauw H; Shi, Yu; Heshka, Nicole E; Zhang, Yi; Little, Edward

    2016-09-02

    The work is based on a reported study which investigates the processability of canola oil (bio-feed) in the presence of bitumen-derived heavy gas oil (HGO) for production of transportation fuels through a fluid catalytic cracking (FCC) route. Cracking experiments are performed with a fully automated reaction unit at a fixed weight hourly space velocity (WHSV) of 8 hr(-1), 490-530 °C, and catalyst/oil ratios of 4-12 g/g. When a feed is in contact with catalyst in the fluid-bed reactor, cracking takes place generating gaseous, liquid, and solid products. The vapor produced is condensed and collected in a liquid receiver at -15 °C. The non-condensable effluent is first directed to a vessel and is sent, after homogenization, to an on-line gas chromatograph (GC) for refinery gas analysis. The coke deposited on the catalyst is determined in situ by burning the spent catalyst in air at high temperatures. Levels of CO2 are measured quantitatively via an infrared (IR) cell, and are converted to coke yield. Liquid samples in the receivers are analyzed by GC for simulated distillation to determine the amounts in different boiling ranges, i.e., IBP-221 °C (gasoline), 221-343 °C (light cycle oil), and 343 °C+ (heavy cycle oil). Cracking of a feed containing canola oil generates water, which appears at the bottom of a liquid receiver and on its inner wall. Recovery of water on the wall is achieved through washing with methanol followed by Karl Fischer titration for water content. Basic results reported include conversion (the portion of the feed converted to gas and liquid product with a boiling point below 221 °C, coke, and water, if present) and yields of dry gas (H2-C2's, CO, and CO2), liquefied petroleum gas (C3-C4), gasoline, light cycle oil, heavy cycle oil, coke, and water, if present.

  4. 40 CFR Table 14 to Subpart Uuu of... - Continuous Compliance With Operating Limits for Organic HAP Emissions From Catalytic Cracking Units

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Limits for Organic HAP Emissions From Catalytic Cracking Units 14 Table 14 to Subpart UUU of Part 63... Hazardous Air Pollutants for Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and... Compliance With Operating Limits for Organic HAP Emissions From Catalytic Cracking Units As stated in §...

  5. 40 CFR Table 7 to Subpart Uuu of... - Continuous Compliance With Operating Limits for Metal HAP Emissions From Catalytic Cracking Units

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Limits for Metal HAP Emissions From Catalytic Cracking Units 7 Table 7 to Subpart UUU of Part 63... Hazardous Air Pollutants for Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and... With Operating Limits for Metal HAP Emissions From Catalytic Cracking Units As stated in § 63.1564(c)(1...

  6. 40 CFR Table 7 to Subpart Uuu of... - Continuous Compliance With Operating Limits for Metal HAP Emissions From Catalytic Cracking Units

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Limits for Metal HAP Emissions From Catalytic Cracking Units 7 Table 7 to Subpart UUU of Part 63... Hazardous Air Pollutants for Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and... With Operating Limits for Metal HAP Emissions From Catalytic Cracking Units As stated in § 63.1564(c)(1...

  7. Blackened bronchoalveolar lavage fluid in crack smokers. A preliminary study.

    PubMed

    Greenebaum, E; Copeland, A; Grewal, R

    1993-11-01

    A retrospective study was performed on heavily pigmented pulmonary cytologic specimens from 14 hospital patients to determine the clinical features distinguishing these cases. The lavage fluid or sputum in each case was turbid and gray or black, exceeding the blackness usually seen in heavy tobacco smokers dwelling in the same urban environment. Excessive carbonaceous material was observed in the cytoplasm of pulmonary alveolar macrophages or the extracellular compartment of the smears. The latter feature is not seen in cigarette smokers. Many other pigmentary sources were ruled out, including melanin, hemosiderin, medicinal charcoal, India ink, and hematoxylin crystals. The common feature of the patients was that they recently or currently smoked the crack form of cocaine heavily; five patients also had positive toxicologic results for cocaine at admission. The authors suggest that blackened bronchoalveolar lavage fluid indicates the possibility of crack cocaine smoking and the associated sequelae, particularly when the carbonaceous material is present in the extracellular compartment.

  8. Catalytic cracking of bio-oil to organic liquid product (OLP).

    PubMed

    Hew, K L; Tamidi, A M; Yusup, S; Lee, K T; Ahmad, M M

    2010-11-01

    The main objective of this paper is to find the optimum operating condition to upgrade the EFB-derived pyrolysis oil (bio-oil) to liquid fuel, mainly gasoline using Taguchi Method. From the analysis that has been done, it is found that the optimum operating condition for heterogeneous catalytic cracking process is at 400 degrees C, 15min of reaction time using 30g of catalyst weight where operating at this condition produced the highest yield of gasoline fraction which is 91.67 wt.%. This observation proves that EFB-derived pyrolysis oil could be upgraded via heterogeneous catalytic cracking to produce gasoline.

  9. Asphaltene cracking in catalytic hydrotreating of heavy oil

    SciTech Connect

    Asaoka, S.; Nakata, S.; Shiroto, Y.; Takeuchi, C.

    1981-03-01

    A Boscan crude, an Athabasca bitumen and a Khafji vacuum residue were chosen as typical asphaltenic feedstocks for this study, since they contain a lot of asphaltenes as well as sulfur and their metal contents are considerably different from one another. Any changes on these asphaltenes caused by metals and sulfur removal should, therefore, be observed easier than on other asphaltenes similar to one another. Various measurements reported here vapor pressure osmometry, gel permeation chromatography, nuclear magnetic resonance, x-ray diffraction, small angle x-ray scattering and electron spin resonance are mainly for the asphaltenes isolated from these feedstocks and from their product oils. Further, the model of the asphaltene cracking mechanism is proposed from these results and is discussed in the correspondence with the activities and selectivities among demetallation, desulfurization and asphaltene cracking. The features of asphaltene cracking are summarized as follows: (1) the removal of vanadium and sulfur from asphaltenes; (2) the decrease of molecular weight of remaining asphaltene; (3) the decrease of unit number and no change of unit sheet weight; (4) no change of asphaltene macrostructure in the stacking portion (cracking occurring at the non-stacked portion); (5) no major change of asphaltene particle size; and (6) the change of vanadyl association type in remaining asphaltenes from free to bound state and the decrease of the dissociation energy of the vanadyl. According to these features, the model of asphaltene cracking previously proposed, was confirmed, where the main reactions are the destruction of asphaltene micelles caused by vanadium removal and the depolymerization of asphaltene molecules by removal of heteroatoms such as sulfur. By comparing the model with the reactivities and selectivities, it is shown that the contribution of the two reactions in the model for asphaltene cracking depends on the kinds of feedstocks.

  10. 40 CFR Table 13 to Subpart Uuu of... - Continuous Compliance With Organic HAP Emission Limits for Catalytic Cracking Units

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... catalytic cracking unit . . . Subject to this emission limit for your catalyst regenerator vent . . . If you... monoxide (CO) in 40 CFR 60.103 CO emissions from your catalyst regenerator vent or CO boiler serving the... i. CO emissions from your catalyst regenerator vent or CO boiler serving the catalytic cracking unit...

  11. 40 CFR Table 13 to Subpart Uuu of... - Continuous Compliance With Organic HAP Emission Limits for Catalytic Cracking Units

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... catalytic cracking unit . . . Subject to this emission limit for your catalyst regenerator vent . . . If you... monoxide (CO) in 40 CFR 60.103 CO emissions from your catalyst regenerator vent or CO boiler serving the... i. CO emissions from your catalyst regenerator vent or CO boiler serving the catalytic cracking unit...

  12. 40 CFR Table 13 to Subpart Uuu of... - Continuous Compliance With Organic HAP Emission Limits for Catalytic Cracking Units

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... catalytic cracking unit . . . Subject to this emission limit for your catalyst regenerator vent . . . If you... monoxide (CO) in 40 CFR 60.103 CO emissions from your catalyst regenerator vent or CO boiler serving the... i. CO emissions from your catalyst regenerator vent or CO boiler serving the catalytic cracking unit...

  13. Catalytic and thermal cracking processes of waste cooking oil for bio-gasoline synthesis

    NASA Astrophysics Data System (ADS)

    Dewanto, Muhammad Andry Rizki; Januartrika, Aulia Azka; Dewajani, Heny; Budiman, Arief

    2017-03-01

    Non-renewable energy resources such as fossil fuels, and coal were depleted as the increase of global energy demand. Moreover, environmental aspect becomes a major concern which recommends people to utilize bio-based resources. Waste cooking oil is one of the economical sources for biofuel production and become the most used raw material for biodiesel production. However, the products formed during frying, can affect the trans-esterification reaction and the biodiesel properties. Therefore, it needs to convert low-quality cooking oil directly into biofuel by both thermal and catalytic cracking processes. Thermal and catalytic cracking sometimes are regarded as prospective bio-energy conversion processes. This research was carried out in the packed bed reactor equipped with 2 stages preheater with temperature of reactor was variated in the range of 450-550°C. At the same temperature, catalytic cracking had been involved in this experiment, using activated ZSM-5 catalyst with 1 cm in length. The organic liquid product was recovered by three stages of double pipe condensers. The composition of cracking products were analyzed using GC-MS instrument and the caloric contents were analyzed using Bomb calorimeter. The results reveal that ZSM-5 was highly selective toward aromatic and long aliphatic compounds formation. The percentage recovery of organic liquid product from the cracking process varies start from 8.31% and the optimal results was 54.08%. The highest heating value of liquid product was resulted from catalytic cracking process at temperature of 450°C with value of 10880.48 cal/gr and the highest product yield with 54.08% recovery was achieved from thermal cracking process with temperature of 450°C.

  14. 40 CFR Table 8 to Subpart Uuu of... - Organic HAP Emission Limits for Catalytic Cracking Units

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... limit for each catalyst regenerator vent . . . 1. Subject to the NSPS for carbon monoxide (CO) in 40 CFR 60.103 CO emissions from the catalyst regenerator vent or CO boiler serving the catalytic cracking... in 40 CFR 60.103 a. CO emissions from the catalyst regenerator vent or CO boiler serving...

  15. 40 CFR Table 8 to Subpart Uuu of... - Organic HAP Emission Limits for Catalytic Cracking Units

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... limit for each catalyst regenerator vent . . . 1. Subject to the NSPS for carbon monoxide (CO) in 40 CFR 60.103 CO emissions from the catalyst regenerator vent or CO boiler serving the catalytic cracking... in 40 CFR 60.103 a. CO emissions from the catalyst regenerator vent or CO boiler serving...

  16. Thermodynamic analysis of a process for producing high-octane gasoline components from catalytic cracking gas

    NASA Astrophysics Data System (ADS)

    Ismailova, Z. R.; Pirieva, Kh. B.; Kasimov, A. A.; Dzhamalova, S. A.; Gadzhizade, S. M.; Nuriev, Sh. A.; Zeinalova, S. Kh.; Dzhafarov, R. P.

    2016-03-01

    The results from a thermodynamic analysis of high-octane gasoline component production from catalytic cracking gases using zeolite catalyst OMNIKAT-210P modified with Ni, Co, Cr are presented. The equilibrium constants of the reactions assumed to occur in this process are calculated, along with the equilibrium yield of the reactions.

  17. Visualizing Dealumination of a Single Zeolite Domain in a Real-Life Catalytic Cracking Particle.

    PubMed

    Kalirai, Sam; Paalanen, Pasi P; Wang, Jian; Meirer, Florian; Weckhuysen, Bert M

    2016-09-05

    Fluid catalytic cracking (FCC) catalysts play a central role in the chemical conversion of crude oil fractions. Using scanning transmission X-ray microscopy (STXM) we investigate the chemistry of one fresh and two industrially deactivated (ECAT) FCC catalysts at the single zeolite domain level. Spectro-microscopic data at the Fe L3 , La M5 , and Al K X-ray absorption edges reveal differing levels of deposited Fe on the ECAT catalysts corresponding with an overall loss in tetrahedral Al within the zeolite domains. Using La as a localization marker, we have developed a novel methodology to map the changing Al distribution of single zeolite domains within real-life FCC catalysts. It was found that significant changes in the zeolite domain size distributions as well as the loss of Al from the zeolite framework occur. Furthermore, inter- and intraparticle heterogeneities in the dealumination process were observed, revealing the complex interplay between metal-mediated pore accessibility loss and zeolite dealumination.

  18. 40 CFR Table 11 to Subpart Uuu of... - Requirements for Performance Tests for Organic HAP Emissions From Catalytic Cracking Units Not...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... existing catalytic cracking unit catalyst regenerator vent. a. Select sampling port's location and the... catalytic cracking unit catalyst regenerator vent if you use a continuous emission monitoring system... catalytic cracking unit catalyst regenerator vent if you use continuous parameter monitoring systems....

  19. Phosphorus modification increases catalytic activity and stability of ZSM-5 zeolite on supercritical catalytic cracking of n-dodecane

    NASA Astrophysics Data System (ADS)

    Ji, Yajun; Yang, Honghui; Zhang, Qiang; Yan, Wei

    2017-07-01

    Supercritical catalytic cracking of hydrocarbon fuel for active thermal protection of aircraft is a promising technique. The catalytic reaction with stable activity is crucial for practical application. Phosphorus-modified ZSM-5 zeolites (ZSM-5-P) were prepared by impregnation and applied in supercritical cracking of n-dodecane to enhance the stability of thermal protection. ZSM-5-P were characterized by XRD, N2 adsorption-desorption, SEM mapping, NH3-TPD and pyridine-absorbed FTIR. The acid amount of ZSM-5-P decreased with the increase of phosphorus content. The catalytic performance achieved maximum at phosphorus content of 0.5 wt% (ZSM-5-0.5P). Its gas generation rate (GGR) achieved 64.2%, and heat sink reached 3094 kJ/kg, which was 20.2% higher than that of unmodified catalyst (2576 kJ/kg). The carbon deposition decreased with the increase of phosphorus content. Besides, ZSM-5-0.5P and ZSM-5-1P maintained stable activity (over 50% for GGR) and high heat sinks (3000 kJ/kg) even after reaction for 60 min.

  20. Catalytic cracking catalysts for high octane gasoline products

    SciTech Connect

    Chiang, R.L.; Staniulis, M.T.

    1987-07-07

    This patent describes a cracking catalyst comprising a zeolite aluminosilicate having a mole ratio of oxides in the dehydrated state of (0.85-1.1)M/sub 2/n/O:Al/sub 2/O/sub 3:x/SiO/sub 2/ ''M'' is a cation having a valence of ''n;'' ''x'' has a value greater than 6.0 to about 7.0, has an x-ray powder diffraction pattern having at least the d-spacing of Table A; has extraneous silicon atoms in the crystal lattice in the form of framework SiO/sub 4/ tetrahedra; an inorganic oxide matrix; has an effective amount between greater than zero to less than 5 weight percent, based on weight percent, based on the weight of the aluminoscilate employed in the catalyst, expressed as the oxide, of at least one rare earth cation selected from the group consisting of cerium, lanthanum, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium; and less than 1.2 weight percent Na/sub 2/O based on the wright of the aluminosilicate employed in the catalyst.

  1. Selective conversion of bio-oil to light olefins: controlling catalytic cracking for maximum olefins.

    PubMed

    Gong, Feiyan; Yang, Zhi; Hong, Chenggui; Huang, Weiwei; Ning, Shen; Zhang, Zhaoxia; Xu, Yong; Li, Quanxin

    2011-10-01

    Light olefins are the basic building blocks for the petrochemical industry. In this work, selective production of light olefins from catalytic cracking of bio-oil was performed by using the La/HZSM-5 catalyst. With a nearly complete conversion of bio-oil, the maximum yield reached 0.28±0.02 kg olefins/(kg bio-oil), which was close to that from methanol. Addition of La into zeolite efficiently changed the total acid amount of HZSM-5, especially the acid distribution among the strong, medium and weak acid sites. A moderate increase of the number of the medium acid sites effectively enhanced the olefins selectivity and improved the catalyst stability. The comparison between the catalytic cracking and pyrolysis of bio-oil was studied. The mechanism of the conversion of bio-oil to light olefins was also discussed.

  2. Catalytic Cracking of Lactide and Poly(Lactic Acid) to Acrylic Acid at Low Temperatures

    PubMed Central

    Terrade, Frédéric G.; van Krieken, Jan; Verkuijl, Bastiaan J. V.

    2017-01-01

    Abstract Despite being a simple dehydration reaction, the industrially relevant conversion of lactic acid to acrylic acid is particularly challenging. For the first time, the catalytic cracking of lactide and poly(lactic acid) to acrylic acid under mild conditions is reported with up to 58 % yield. This transformation is catalyzed by strong acids in the presence of bromide or chloride salts and proceeds through simple SN2 and elimination reactions. PMID:28375546

  3. Effect of support on catalytic cracking of bio-oil over Ni/silica-alumina

    NASA Astrophysics Data System (ADS)

    Sunarno, Herman, Syamsu; Rochmadi, Mulyono, Panut; Budiman, Arief

    2017-03-01

    Depletion of petroleum and environmental problem have led to look for an alternative fuel sources In many ways, biomass is a potential renewable source. Among the many forms of biomass, oil palm empty fruit bunch (EFB) is a very attractive feedstock due to its abudance, low price and non-competitiveness with the food chain. EFB can be converted bio-oil by pyrolysis process. but this product can not be used directly as a transportation fuel, so it needs upgrading bio-oil through a catalytic cracking process. The catalyst plays an important role in the catalytic cracking process. The objective of this research is to study the effect of Ni concentrations (1,3,5 and 7 wt.%) on the characteristics of the catalyst Ni / Silica-Alumina and the performance test for the catalytic cracking of bio-oil. Preparation of the catalyst Ni / Silica-Alumina was done by impregnation at 80°C for 3 hours, then done to calcination and reduction at 500°C for 2 hours. The performance test was conducted on catalytic cracking temperature of 500°C. Results show that increasing concentration of Ni from 1 to 7 %, the pore diameter of the catalyst decreased from 35.71 to 32.70 A and surface area decreased from 209.78 to 188.53 m2/gram. With the increase of Ni concentration, the yield of oil reduced from 22.5 to 11.25 %, while the heating value of oil increased from 34.4 to 36.41MJ/kg.

  4. Task 3.9 -- Catalytic tar cracking. Semi-annual report, January 1--June 30, 1995

    SciTech Connect

    Young, B.C.; Timpe, R.C.

    1995-12-31

    Tar produced in the gasification of coal is deleterious to the operation of downstream equipment including fuel cells, gas turbines, hot-gas stream cleanup filters, and pressure swing adsorption systems. Catalytic cracking of tars to smaller hydrocarbons can be an effective means to remove these tars from gas streams and, in the process, generate useful products, e.g., methane gas, which is crucial to the operation of molten carbonate fuel cells. The objectives of this project are to investigate whether gasification tars can be cracked by synthetic nickel-substituted micamontmorillonite, zeolite, or dolomite material; and whether the tars can be cracked selectively by these catalysts to produce a desired liquid and/or gas stream. Results to date are presented in the cited papers.

  5. 40 CFR Table 12 to Subpart Uuu of... - Initial Compliance With Organic HAP Emission Limits for Catalytic Cracking Units

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... . . . 1. Subject to the NSPS for carbon monoxide (CO) in 40 CFR 60.103 CO emissions from your catalyst... catalyst regenerator vent or CO boiler serving the catalytic cracking unit must not exceed 500 ppmv (dry...

  6. Microporous and mesoporous ZSM-5 catalyst for catalytic cracking of C5 raffinate to light olefins.

    PubMed

    Lee, Joongwon; Hong, Ung Gi; Hwang, Sunhwan; Youn, Min Hye; Song, In Kyu

    2014-11-01

    ZSM5 catalysts (PAM(X)-ZSM5) with micropores and mesopores were prepared using polyacrylamide (PAM) as a soft template at different PAM content (X = 0, 0.12, 0.25, 0.53, 0.64, and 0.78 wt%), and they were applied to the production of light olefins (ethylene and propylene) through catalytic cracking of C5 raffinate. The effect of PAM content of PAM(X)-ZSM5 catalysts on the physicochemical properties and catalytic activities was investigated. N2 adsorption-desorption isotherms of PAM(X)-ZSM5 catalysts exhibited a broad hysteresis loop at high relative pressure, indicating the existence of mesopores in the catalysts. It was found that the catalytic performance of PAM(X)-ZSM5 catalysts was closely related to the mesoporosity of the catalysts. Conversion of C5 raffinate and yield for light olefins showed volcano-shaped trends with respect to mesopore/micropore volume ratio of the catalysts. Thus, an optimal PAM content was required to achieve maximum production of light olefins through catalytic cracking of C5 raffinate over microporous and mesoporous PAM(X)-ZSM5 catalysts.

  7. Hierarchical Macro-meso-microporous ZSM-5 Zeolite Hollow Fibers With Highly Efficient Catalytic Cracking Capability

    PubMed Central

    Liu, Jia; Jiang, Guiyuan; Liu, Ying; Di, Jiancheng; Wang, Yajun; Zhao, Zhen; Sun, Qianyao; Xu, Chunming; Gao, Jinsen; Duan, Aijun; Liu, Jian; Wei, Yuechang; Zhao, Yong; Jiang, Lei

    2014-01-01

    Zeolite fibers have attracted growing interest for a range of new applications because of their structural particularity while maintaining the intrinsic performances of the building blocks of zeolites. The fabrication of uniform zeolite fibers with tunable hierarchical porosity and further exploration of their catalytic potential are of great importance. Here, we present a versatile and facile method for the fabrication of hierarchical ZSM-5 zeolite fibers with macro-meso-microporosity by coaxial electrospinning. Due to the synergistic integration of the suitable acidity and the hierarchical porosity, high yield of propylene and excellent anti-coking stability were demonstrated on the as-prepared ZSM-5 hollow fibers in the catalytic cracking reaction of iso-butane. This work may also provide good model catalysts with uniform wall thickness and tunable porosity for studying a series of important catalytic reactions. PMID:25450726

  8. Hierarchical macro-meso-microporous ZSM-5 zeolite hollow fibers with highly efficient catalytic cracking capability.

    PubMed

    Liu, Jia; Jiang, Guiyuan; Liu, Ying; Di, Jiancheng; Wang, Yajun; Zhao, Zhen; Sun, Qianyao; Xu, Chunming; Gao, Jinsen; Duan, Aijun; Liu, Jian; Wei, Yuechang; Zhao, Yong; Jiang, Lei

    2014-12-02

    Zeolite fibers have attracted growing interest for a range of new applications because of their structural particularity while maintaining the intrinsic performances of the building blocks of zeolites. The fabrication of uniform zeolite fibers with tunable hierarchical porosity and further exploration of their catalytic potential are of great importance. Here, we present a versatile and facile method for the fabrication of hierarchical ZSM-5 zeolite fibers with macro-meso-microporosity by coaxial electrospinning. Due to the synergistic integration of the suitable acidity and the hierarchical porosity, high yield of propylene and excellent anti-coking stability were demonstrated on the as-prepared ZSM-5 hollow fibers in the catalytic cracking reaction of iso-butane. This work may also provide good model catalysts with uniform wall thickness and tunable porosity for studying a series of important catalytic reactions.

  9. Hierarchical Macro-meso-microporous ZSM-5 Zeolite Hollow Fibers With Highly Efficient Catalytic Cracking Capability

    NASA Astrophysics Data System (ADS)

    Liu, Jia; Jiang, Guiyuan; Liu, Ying; di, Jiancheng; Wang, Yajun; Zhao, Zhen; Sun, Qianyao; Xu, Chunming; Gao, Jinsen; Duan, Aijun; Liu, Jian; Wei, Yuechang; Zhao, Yong; Jiang, Lei

    2014-12-01

    Zeolite fibers have attracted growing interest for a range of new applications because of their structural particularity while maintaining the intrinsic performances of the building blocks of zeolites. The fabrication of uniform zeolite fibers with tunable hierarchical porosity and further exploration of their catalytic potential are of great importance. Here, we present a versatile and facile method for the fabrication of hierarchical ZSM-5 zeolite fibers with macro-meso-microporosity by coaxial electrospinning. Due to the synergistic integration of the suitable acidity and the hierarchical porosity, high yield of propylene and excellent anti-coking stability were demonstrated on the as-prepared ZSM-5 hollow fibers in the catalytic cracking reaction of iso-butane. This work may also provide good model catalysts with uniform wall thickness and tunable porosity for studying a series of important catalytic reactions.

  10. 40 CFR 63.1564 - What are my requirements for metal HAP emissions from catalytic cracking units?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... permissible hourly average Ni operating limit, percent-acfm-ppmw, i.e., your site-specific Ni operating limit....009 Where: Ni operating limit2 = Maximum permissible hourly average Ni operating limit, percent-ppmw... Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery...

  11. Catalytic cracking of the top phase fraction of bio-oil into upgraded liquid oil

    NASA Astrophysics Data System (ADS)

    Sunarno, Rochmadi, Mulyono, Panut; Budiman, Arief

    2016-06-01

    The energy consumption is increasing, while oil reserves as a primary energy resource are decreasing, so that is the reason seeking alternative energy source is inevitable. Biomass especially oil palm empty fruit bunches (EFB) which is abundant in Indonesia can be processed into bio-oil by pyrolysis process. The potential for direct substitution of bio-oil for petroleum may be limited due to the high viscosity, high oxygen content, low heating value, and corrosiveness. Consequently, upgrading of the bio-oil before use is inevitable to give a wider variety of applications of its liquid product. Furthermore, upgrading process to improve the quality of bio-oil by reduction of oxygenates involves process such as catalytic cracking. The objective of this research is to study the effect of operation temperature on yield and composition of upgraded liquid oil and to determine physical properties. Bio-oil derived from EFB was upgraded through catalytic cracking using series tubular reactor under atmospheric pressure on a silica-alumina catalyst. Results show that increasing temperature from 450 to 600 °C, resulting in decreasing of upgraded liquid oil (ULO) yield, decreasing viscosity and density of ULO, but increasing in calorimetric value of ULO. The increasing temperature of cracking also will increase the concentration of gasoline and kerosene in ULO.

  12. Catalytic cracking of the top phase fraction of bio-oil into upgraded liquid oil

    SciTech Connect

    Sunarno; Rochmadi,; Mulyono, Panut; Budiman, Arief

    2016-06-03

    The energy consumption is increasing, while oil reserves as a primary energy resource are decreasing, so that is the reason seeking alternative energy source is inevitable. Biomass especially oil palm empty fruit bunches (EFB) which is abundant in Indonesia can be processed into bio-oil by pyrolysis process. The potential for direct substitution of bio-oil for petroleum may be limited due to the high viscosity, high oxygen content, low heating value, and corrosiveness. Consequently, upgrading of the bio-oil before use is inevitable to give a wider variety of applications of its liquid product. Furthermore, upgrading process to improve the quality of bio-oil by reduction of oxygenates involves process such as catalytic cracking. The objective of this research is to study the effect of operation temperature on yield and composition of upgraded liquid oil and to determine physical properties. Bio-oil derived from EFB was upgraded through catalytic cracking using series tubular reactor under atmospheric pressure on a silica-alumina catalyst. Results show that increasing temperature from 450 to 600 °C, resulting in decreasing of upgraded liquid oil (ULO) yield, decreasing viscosity and density of ULO, but increasing in calorimetric value of ULO. The increasing temperature of cracking also will increase the concentration of gasoline and kerosene in ULO.

  13. Pattern formation during healing of fluid-filled cracks: an analog experiment

    SciTech Connect

    F. Renard; D. K. Dysthe; J. G. Feder; Paul Meakin; S.J.S. Morris; B. Jamtveit

    2009-11-01

    The formation and subsequent healing of cracks and crack networks may control such diverse phenomena as the strengthening of fault zones between earthquakes, fluid migrations in the Earth's crust, or the transport of radioactive materials in nuclear waste disposal. An intriguing pattern-forming process can develop during healing of fluid-filled cracks, where pockets of fluid remain permanently trapped in the solid as the crack tip is displaced driven by surface energy. Here, we present the results of analog experiments in which a liquid was injected into a colloidal inorganic gel to obtain penny-shaped cracks that were subsequently allowed to close and heal under the driving effect of interfacial tension. Depending on the properties of the gel and the injected liquid, two modes of healing were obtained. In the first mode, the crack healed completely through a continuous process. The second mode of healing was discontinuous and was characterized by a 'zipper-like' closure of a front that moved along the crack perimeter, trapping fluid that may eventually form inclusions trapped in the solid. This instability occurred only when the velocity of the crack tip decreased to zero. Our experiments provide a cheap and simple analog to reveal how aligned arrays of fluid inclusions may be captured along preexisting fracture planes and how small amounts of fluids can be permanently trapped in solids, modifying irreversibly their material properties.

  14. Catalytic and thermal cracking of coal-derived liquid in a fixed-bed reactor

    SciTech Connect

    Shamsi, A.

    1996-04-01

    A coal-derived liquid, obtained from the Coal Technology Corp.`s mild gasification process, was cracked over char produced from Pittsburgh No. 8 coal mixed with Plum Run dolomite in the Foster Wheeler carbonizer. For the purpose of comparison, calcined Plum Run dolomite (PRD), char produced from Pittsburgh No. 8 coal, and silicon carbide (an inert material) were also studied. Coal liquid feed was analyzed by sulfur-selective gas chromatography (GC), liquid chromatography (LC), and proton nuclear magnetic resonance (NMR) and for elemental composition. The gaseous products of cracking were analyzed for hydrocarbons using GC. Most sulfur in the feed was present in molecules heavier than dibenzothiophene and was distributed in a variety of structures. The surviving coal liquid was analyzed by LC. The results indicated that deoxygenation of phenols, dealkylation of aromatic compounds (AR), and condensation of aromatic structures are some of the reactions occurring on the surface of bed materials. Energies of activation for homogeneous and for heterogeneous pyrolysis of the coal liquid were calculated after separating the rate of thermal cracking from the sum of rates of thermal and catalytic cracking.

  15. Asphaltene cracking in catalytic hydrotreating of heavy oils. 2. study of changes in asphaltene structure during catalytic hydroprocessing

    SciTech Connect

    Sachio, A.; Chisato, T.; Shinichi, N.; Yoshimi, S.

    1983-04-01

    Characteristics in catalytic conversion of asphaltenes in petroleum heavy residues were studied in the hydrotreating process. A Boscan crude, an Athabasca bitumen, and a Khafji vacuum residue were tested as typical feedstocks. Various analyses were made to obtain the properties of asphaltenes before and after the reaction, e.g., changes of heteroatoms such as sulfur and metals, and decreases of molecular weight. The characteristic changes of asphaltene molecules were also investigated by electron spin resonance (ESR) and X-ray analyses. The association and coordination of vanadyl in asphaltenes were studied by the temperature dependence on the ESR spectra, and the sizes of the stacked crystallites and the aggregated asphaltene micelles were measured with X-ray diffraction and small-angle scattering. In the asphaltene cracking mechanism, it was clarified that the main reactions were the destruction of asphaltene micelles caused by vanadium removal and the depolymerization of asphaltene molecules by removal of heteroatoms such as sulfur.

  16. Decrepitation and crack healing of fluid inclusions in San Carlos olivine

    SciTech Connect

    Wanamaker, B.J. ); Wong, Tengfong ); Evans, B. )

    1990-09-10

    Fluid inclusions break, or decrepitate, when the fluid pressure exceeds the least principal lithostatic stress by a critical amount. After decrepitation, excess fluid pressure is relaxed, resulting in crack arrest; subsequently, crack healing may occur. The authors developed a linear elastic fracture mechanics model to analyze new data on decrepitation and crack arrest in San Carlos Olivine, compared the model with previous fluid inclusion investigations, and used it to interpret some natural decrepitation microstructures. The common experimental observation that smaller inclusions may sustain higher internal fluid pressures without decrepitating may be rationalized by assuming that flaws associated with the inclusion scale with the inclusion size. According to the model, the length of the crack formed by decrepitation depends on the lithostatic pressure at the initiation of cracking, the initial sizes of the flaw and the inclusion, and the critical stress intensity factor. Further experiments show that microcracks in San Carlos olivine heal within several days at 1,280 to 1,400{degree}C; healing rates depend on the crack geometry, temperature, and chemistry of the buffering gas. The regression distance of the crack tip during healing can be related to time through a power law with exponent n = 0.6. Chemical changes which become apparent after extremely long heat-treatments significantly affect the healing rates. Many of the inclusions in the San Carlos xenoliths stretched, decrepitated, and finally healed during uplift. The crack arrest model indicates that completely healed cracks had an initial fluid pressure of the order of 1 GPa. Using the crack arrest model and the healing kinetics, they estimate the ascent rate of these xenoliths to be between 0.001 and 0.1 m/s.

  17. A generalized equation for the resonance frequencies of a fluid-filled crack

    NASA Astrophysics Data System (ADS)

    Maeda, Yuta; Kumagai, Hiroyuki

    2017-01-01

    Although a model of the resonance of a rectangular fluid-filled crack (crack model) is one of the most frequently used source models of long-period seismic events at volcanoes, there has been no analytical solution for the resonance frequencies. We previously proposed an empirical expression for the resonance frequencies as a mathematical function of the crack length, aperture, and properties of the fluid and the surrounding elastic medium. However, the expression contained an empirical constant that had to be investigated numerically for each crack aspect ratio and oscillation mode, a requirement that prevented widespread use of the expression. In the present study, we examined the theoretical basis for the expression. We assumed that the ratio of the crack wall displacement to the fluid pressure near each crack edge varied as the square root of the distance from the edge. Using this assumption, we showed theoretically that the previously proposed empirical analytical expression was a good approximation (difference ≤ 2%) to another more complete expression. This theoretical expression is a closed form of a mathematical function of the crack model parameters and oscillation mode number; there are no empirical constants to be determined numerically. The expression thus enabled us to analytically compute the resonance frequencies for arbitrary rectangular cracks, and the results were in good agreement (difference ≤ 5%) with numerical solutions. Resonance frequencies of cracks can be very easily predicted using this expression. This predictive ability may enhance our quantitative understanding of the processes that generate long-period events at volcanoes.

  18. Development of a heterogeneous catalytic cracking reactor utilizing online mass spectrometry analysis.

    PubMed

    Benson, Tracy J; Holmes, William E; White, Mark G; French, W Todd; Alley, Earl G; Hernandez, Rafael

    2007-11-23

    A laboratory system has been designed, constructed, and validated that reduces the complexity, time required, and data variability associated with catalytic microreactors that require post reaction steps prior to product analysis. In this work, a Varian (Walnut Creek, CA, USA) 3600 GC (gas chromatography) system coupled with a Saturn quadrupole ion trap mass spectrometer was used to perform mass spectral analysis in real-time catalytic cracking reactions. As this was an integrated reactor/analyzer, the GC column was exposed to temperatures beyond the degradation point of the column, and so selective ion storage RF waveform was used to remove the siloxane masses from the spectra. This produced lower detection limits and full scan data for identification. Mass/charge segmentation of the mass spectrometer allowed the complete product identification for electron impact spectra. Hexane was reacted over H-ZSM-5 catalyst for instrument validation. This produced a series of alkanes, alkenes, and aromatics with distributions consistent with that reported for the cracking of hexane.

  19. The selective catalytic cracking of Fischer-Tropsch liquids to high value transportation fuels. Final report

    SciTech Connect

    Schwartz, M.M.; Reagon, W.J.; Nicholas, J.J.; Hughes, R.D.

    1994-11-01

    Amoco Oil Company, investigated a selective catalytic cracking process (FCC) to convert the Fischer-Tropsch (F-T) gasoline and wax fractions to high value transportation fuels. The primary tasks of this contract were to (1) optimize the catalyst and process conditions of the FCC process for maximum conversion of F-T wax into reactive olefins for later production of C{sub 4}{minus}C{sub 8} ethers, and (2) use the olefin-containing light naphtha obtained from FCC processing of the F-T wax as feedstock for the synthesis of ethers. The catalytic cracking of F-T wax feedstocks gave high conversions with low activity catalysts and low process severities. HZSM-5 and beta zeolite catalysts gave higher yields of propylene, isobutylene, and isoamylenes but a lower gasoline yield than Y zeolite catalysts. Catalyst selection and process optimization will depend on product valuation. For a given catalyst and process condition, Sasol and LaPorte waxes gave similar conversions and product selectivities. The contaminant iron F-T catalyst fines in the LaPorte wax caused higher coke and hydrogen yields.

  20. An Experimental Study of Penny-shaped Fluid-driven Cracks in an Elastic Matrix

    NASA Astrophysics Data System (ADS)

    Stone, Howard

    2015-11-01

    When a pressurized fluid is injected into an elastic matrix, the fluid generates a fracture that grows along a plane and forms a fluid-filled disc-like shape. For example, such problems occur in various natural and industrial applications involving the subsurface of Earth, such as hydraulic fracturing operations. We report a laboratory study of such a fluid-driven crack in a gelatin matrix, study the crack shape as a function of time, and investigate the influence of different experimental parameters such as the injection flow rate, Young's modulus of the matrix, and fluid viscosity. We find that the crack radius increases with time as a power law, which has been predicted both for the limit where viscous effects in the flow along the crack opening control the rate of crack propagation, as well as the limit where fracture toughness controls crack propagation. We vary experimental parameters to probe the physical limits and highlight that for our typical parameters both effects can be significant. Also, we measure the time evolution of crack shape, which has not been studied before. The rescaled crack shapes collapse at longer times, based on an appropriate scaling argument, and again we compare the scaling arguments in different physical limits. The gelatin system provides a useful laboratory model for further studies of fluid-driven cracks, some of which we will mention as they are inspired by the physics of hydraulic fracturing. This work is part of the PhD thesis of Ching-Yao Lai and is a collaboration with Drs. Zhong Zheng and Jason Wexler (Princeton University) and Professor Emilie Dressaire (NYU). Department of Mechanical and Aerospace Engineering.

  1. Catalytic reactor for promoting a chemical reaction on a fluid passing therethrough

    NASA Technical Reports Server (NTRS)

    Roychoudhury, Subir (Inventor); Pfefferle, William C. (Inventor)

    2001-01-01

    A catalytic reactor with an auxiliary heating structure for raising the temperature of a fluid passing therethrough whereby the catalytic reaction is promoted. The invention is a apparatus employing multiple electrical heating elements electrically isolated from one another by insulators that are an integral part of the flow path. The invention provides step heating of a fluid as the fluid passes through the reactor.

  2. 40 CFR Table 14 to Subpart Uuu of... - Continuous Compliance With Operating Limits for Organic HAP Emissions From Catalytic Cracking Units

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Limits for Organic HAP Emissions From Catalytic Cracking Units 14 Table 14 to Subpart UUU of Part 63... Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 14 Table 14 to Subpart UUU of Part 63—Continuous Compliance With Operating Limits for Organic HAP Emissions From Catalytic Cracking Units As...

  3. 40 CFR Table 14 to Subpart Uuu of... - Continuous Compliance With Operating Limits for Organic HAP Emissions From Catalytic Cracking Units

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Limits for Organic HAP Emissions From Catalytic Cracking Units 14 Table 14 to Subpart UUU of Part 63... Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 14 Table 14 to Subpart UUU of Part 63—Continuous Compliance With Operating Limits for Organic HAP Emissions From Catalytic Cracking Units As...

  4. Catalytic cracking of palm oil for the production of biofuels: optimization studies.

    PubMed

    Tamunaidu, Pramila; Bhatia, Subhash

    2007-12-01

    Oil palm is widely grown in Malaysia. Palm oil has attracted the attention of researchers to develop an 'environmentally friendly' and high quality fuel, free of nitrogen and sulfur. In the present study, the catalytic cracking of palm oil to biofuel was studied over REY catalyst in a transport riser reactor at atmospheric pressure. The effect of reaction temperature (400-500 degrees C), catalyst/palm oil ratio (5-10) and residence time (10-30s) was studied over the yield of bio-gasoline and gas as fuel. Design of experiments was used to study the effect of operating variables over conversion of palm oil and yield of hydrocarbon fuel. The response surface methodology was used to determine the optimum value of the operating variables for maximum yield of bio-gasoline fraction in the liquid product obtained.

  5. 40 CFR Table 5 to Subpart Uuu of... - Initial Compliance With Metal HAP Emission Limits for Catalytic Cracking Units

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... following table that applies to you. For each new and existing catalytic cracking unit catalyst regenerator...) of coke burn-off in the catalyst regenerator; if the discharged gases pass through an incinerator or... coke burn-off in the catalyst regenerator. As part of the Notification of Compliance Status, you...

  6. 40 CFR 63.1564 - What are my requirements for metal HAP emissions from catalytic cracking units?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... = Volumetric flow rate of exhaust gas from catalyst regenerator before adding air or gas streams. Example: You... unit catalyst regenerator, as determined from instruments in the catalytic cracking unit control room... unit catalyst regenerator flue gas as measured by Method 2 in appendix A to part 60 of this...

  7. 40 CFR Table 13 to Subpart Uuu of... - Continuous Compliance With Organic HAP Emission Limits for Catalytic Cracking Units

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... . . . Subject to this emission limit for your catalyst regenerator vent . . . If you must . . . You shall... emissions from your catalyst regenerator vent or CO boiler serving the catalytic cracking unit must not... ppmv (dry basis). 2. Not subject to the NSPS for CO in 40 CFR 60.103 i. CO emissions from your...

  8. 40 CFR 63.1564 - What are my requirements for metal HAP emissions from catalytic cracking units?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... = Volumetric flow rate of exhaust gas from catalyst regenerator before adding air or gas streams. Example: You... unit catalyst regenerator, as determined from instruments in the catalytic cracking unit control room... unit catalyst regenerator flue gas as measured by Method 2 in appendix A to part 60 of this...

  9. 40 CFR Table 13 to Subpart Uuu of... - Continuous Compliance With Organic HAP Emission Limits for Catalytic Cracking Units

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... . . . Subject to this emission limit for your catalyst regenerator vent . . . If you must . . . You shall... emissions from your catalyst regenerator vent or CO boiler serving the catalytic cracking unit must not... ppmv (dry basis). 2. Not subject to the NSPS for CO in 40 CFR 60.103 i. CO emissions from your...

  10. 40 CFR Table 9 to Subpart Uuu of... - Operating Limits for Organic HAP Emissions From Catalytic Cracking Units

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Operating Limits for Organic HAP Emissions From Catalytic Cracking Units 9 Table 9 to Subpart UUU of Part 63 Protection of Environment... Units Pt. 63, Subpt. UUU, Table 9 Table 9 to Subpart UUU of Part 63—Operating Limits for Organic...

  11. 40 CFR Table 9 to Subpart Uuu of... - Operating Limits for Organic HAP Emissions From Catalytic Cracking Units

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Operating Limits for Organic HAP Emissions From Catalytic Cracking Units 9 Table 9 to Subpart UUU of Part 63 Protection of Environment..., Subpt. UUU, Table 9 Table 9 to Subpart UUU of Part 63—Operating Limits for Organic HAP Emissions...

  12. 40 CFR Table 9 to Subpart Uuu of... - Operating Limits for Organic HAP Emissions From Catalytic Cracking Units

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Operating Limits for Organic HAP Emissions From Catalytic Cracking Units 9 Table 9 to Subpart UUU of Part 63 Protection of Environment... Units Pt. 63, Subpt. UUU, Table 9 Table 9 to Subpart UUU of Part 63—Operating Limits for Organic...

  13. 40 CFR Table 9 to Subpart Uuu of... - Operating Limits for Organic HAP Emissions From Catalytic Cracking Units

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Operating Limits for Organic HAP Emissions From Catalytic Cracking Units 9 Table 9 to Subpart UUU of Part 63 Protection of Environment... Units Pt. 63, Subpt. UUU, Table 9 Table 9 to Subpart UUU of Part 63—Operating Limits for Organic...

  14. 40 CFR Table 9 to Subpart Uuu of... - Operating Limits for Organic HAP Emissions From Catalytic Cracking Units

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Operating Limits for Organic HAP Emissions From Catalytic Cracking Units 9 Table 9 to Subpart UUU of Part 63 Protection of Environment..., Subpt. UUU, Table 9 Table 9 to Subpart UUU of Part 63—Operating Limits for Organic HAP Emissions...

  15. 40 CFR Table 2 to Subpart Uuu of... - Operating Limits for Metal HAP Emissions From Catalytic Cracking Units

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Operating Limits for Metal HAP Emissions From Catalytic Cracking Units 2 Table 2 to Subpart UUU of Part 63 Protection of Environment... Units Pt. 63, Subpt. UUU, Table 2 Table 2 to Subpart UUU of Part 63—Operating Limits for Metal...

  16. Hydrocarbon liquid production via the bioCRACK process and catalytic hydroprocessing of the product oil

    DOE PAGES

    Schwaiger, Nickolaus; Elliott, Douglas C.; Ritzberger, Jurgen; ...

    2015-01-01

    Continuous hydroprocessing of liquid phase pyrolysis bio-oil, provided by BDI-BioEnergy International bioCRACK pilot plant at OMV Refinery in Schwechat/Vienna Austria was investigated. These hydroprocessing tests showed promising results using catalytic hydroprocessing strategies developed for unfractionated bio-oil. A sulfided base metal catalyst (CoMo on Al2O3) was evaluated. The bed of catalyst was operated at 400 °C in a continuous-flow reactor at a pressure of 12.1 MPa with flowing hydrogen. The condensed liquid products were analyzed and found that the hydrocarbon liquid was significantly hydrotreated so that nitrogen and sulfur were below the level of detection (<0.05), while the residual oxygen rangedmore » from 0.7 to 1.2%. The density of the products varied from 0.71 g/mL up to 0.79 g/mL with a correlated change of the hydrogen to carbon atomic ratio from 2.1 down to 1.9. The product quality remained high throughout the extended tests suggesting minimal loss of catalyst activity through the test. These tests provided the data needed to assess the quality of liquid fuel products obtained from the bioCRACK process as well as the activity of the catalyst for comparison with products obtained from hydrotreated fast pyrolysis bio-oils from fluidized-bed operation.« less

  17. Hydrocarbon liquid production via the bioCRACK process and catalytic hydroprocessing of the product oil

    SciTech Connect

    Schwaiger, Nickolaus; Elliott, Douglas C.; Ritzberger, Jurgen; Wang, Huamin; Pucher, Peter; Siebenhofer, Matthaus

    2015-01-01

    Continuous hydroprocessing of liquid phase pyrolysis bio-oil, provided by BDI-BioEnergy International bioCRACK pilot plant at OMV Refinery in Schwechat/Vienna Austria was investigated. These hydroprocessing tests showed promising results using catalytic hydroprocessing strategies developed for unfractionated bio-oil. A sulfided base metal catalyst (CoMo on Al2O3) was evaluated. The bed of catalyst was operated at 400 °C in a continuous-flow reactor at a pressure of 12.1 MPa with flowing hydrogen. The condensed liquid products were analyzed and found that the hydrocarbon liquid was significantly hydrotreated so that nitrogen and sulfur were below the level of detection (<0.05), while the residual oxygen ranged from 0.7 to 1.2%. The density of the products varied from 0.71 g/mL up to 0.79 g/mL with a correlated change of the hydrogen to carbon atomic ratio from 2.1 down to 1.9. The product quality remained high throughout the extended tests suggesting minimal loss of catalyst activity through the test. These tests provided the data needed to assess the quality of liquid fuel products obtained from the bioCRACK process as well as the activity of the catalyst for comparison with products obtained from hydrotreated fast pyrolysis bio-oils from fluidized-bed operation.

  18. Phase field modeling of crack propagations in fluid-saturated porous media with anisotropic surface energy

    NASA Astrophysics Data System (ADS)

    Na, S.; Sun, W.; Yoon, H.; Choo, J.

    2016-12-01

    Directional mechanical properties of layered geomaterials such as shale are important on evaluating the onset and growth of fracture for engineering applications such as hydraulic fracturing, geologic carbon storage, and geothermal recovery. In this study, a continuum phase field modeling is conducted to demonstrate the initiation and pattern of cracks in fluid-saturated porous media. The discontinuity of sharp cracks is formulated using diffusive crack phase field modeling and the anisotropic surface energy is incorporated to account for the directional fracture toughness. In particular, the orientation of bedding in geomaterials with respect to the loading direction is represented by the directional critical energy release rate. Interactions between solid skeleton and fluid are also included to analyze the mechanical behavior of fluid-saturated geologic materials through the coupled hydro-mechanical model. Based on the linear elastic phase field modeling, we also addressed how the plasticity in crack phase field influences the crack patterns by adopting the elasto-plastic model with Drucker-Prager yield criterion. Numerical examples exhibit the features of anisotropic surface energy, the interactions between solid and fluid and the effects of plasticity on crack propagations.Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  19. An analytical formula for the longitudinal resonance frequencies of a fluid-filled crack

    NASA Astrophysics Data System (ADS)

    Maeda, Y.; Kumagai, H.

    2013-12-01

    The fluid-filled crack model (Chouet, 1986, JGR) simulates the resonances of a rectangular crack filled with an inviscid fluid embedded in a homogeneous isotropic elastic medium. The model demonstrates the existence of a slow wave, known as the crack wave, that propagates along the solid-fluid interfaces. The wave velocity depends on the crack stiffness. The model has been used to interpret the peak frequencies of long-period (LP) and very long period (VLP) seismic events at various volcanoes (Chouet and Matoza, 2013, JVGR). Up to now, crack model simulations have been performed using the finite difference (Chouet, 1986) and boundary integral (Yamamoto and Kawakatsu, 2008, GJI) methods. These methods require computationally extensive procedures to estimate the complex frequencies of crack resonance modes. Establishing an easier way to calculate the frequencies of crack resonances would help understanding of the observed frequencies. In this presentation, we propose a simple analytical formula for the longitudinal resonance frequencies of a fluid-filled crack. We first evaluated the analytical expression proposed by Kumagai (2009, Encyc. Complex. Sys. Sci.) through a comparison of the expression with the peak frequencies computed by a 2D version of the FDM code of Chouet (1986). Our comparison revealed that the equation of Kumagai (2009) shows discrepancies with the resonant frequencies computed by the FDM. We then modified the formula as fmL = (m-1)a/[2L(1+2ɛmLC)1/2], (1) where L is the crack length, a is the velocity of sound in the fluid, C is the crack stiffness, m is a positive integer defined such that the wavelength of the normal displacement on the crack surface is 2L/m, and ɛmL is a constant that depends on the longitudinal resonance modes. Excellent fits were obtained between the peak frequencies calculated by the FDM and by Eq. (1), suggesting that this equation is suitable for the resonant frequencies. We also performed 3D FDM computations of the

  20. Forecasting the zeolite-containing catalyst activity in catalytic cracking technology taking into account the feedstock composition

    NASA Astrophysics Data System (ADS)

    Ivashkina, Elena; Nazarova, Galina; Shafran, Tatyana; Stebeneva, Valeriya

    2017-08-01

    The effect of the feedstock composition and the process conditions on the current catalyst activity in catalytic cracking technology using a mathematical model is performed in this research. The mathematical model takes into account the catalyst deactivation by coke for primary and secondary cracking reactions. The investigation results have shown that the feedstock has significant effect on the yield and the content of coke on the catalyst. Thus, the relative catalyst activity is significantly reduced by 7.5-10.7 %. With increasing the catalytic cracking temperature due to the catalyst flow temperature rising, the coke content and the yield per feedstock increase and the catalyst activity decreases by 5.3-7.7%. Rising the process temperature together with the catalyst circulation ratio contributes to increase of the coke yield per feedstock in the catalytic cracking and decrease of the coke content on the catalyst. It is connected with the catalyst flow rising to the riser and the contact time decreasing in the reaction zone. Also, the catalyst activity decreases in the range of 3.8-5.5% relatively to the regenerated catalyst activity (83 %).

  1. A discontinuous finite element approach to cracking in coupled poro-elastic fluid flow models

    NASA Astrophysics Data System (ADS)

    Wilson, C. R.; Spiegelman, M. W.; Evans, O.; Ulven, O. I.; Sun, W.

    2016-12-01

    Reaction-driven cracking is a coupled process whereby fluid-induced reactions drive large volume changes in the host rock which produce stresses leading to crack propagation and failure. This in turn generates new surface area and fluid-flow pathways for subsequent reaction in a potentially self-sustaining system. This mechanism has has been proposed for the pervasive serpentinization and carbonation of peridotite, as well as applications to mineral carbon sequestration and hydrocarbon extraction. The key computational issue in this problem is implementing algorithms that adequately model the formation of discrete fractures. Here we present models using a discontinuous finite element method for modeling fracture formation (Radovitsky et al., 2011). Cracks are introduced along facets of the mesh by the relaxation of penalty parameters once a failure criterion is met. It is fully described in the weak form of the equations, requiring no modification of the underlying mesh structure and allowing fluid properties to be easily adjusted along cracked facets. To develop and test the method, we start by implementing the algorithm for the simplified Biot equations for poro-elasticity using the finite element model assembler TerraFERMA. We consider hydro-fracking around a borehole (Grassl et al., 2015), where elevated fluid pressure in the poro-elastic solid causes it to fail radially in tension. We investigate the effects of varying the Biot coefficient and adjusting the fluid transport properties in the vicinity of the crack and compare our results to related dual-graph models (Ulven & Sun, submitted). We discuss issues arising from this method, including the formation of null spaces and appropriate preconditioning and solution strategies. Initial results suggest that this method provides a promising way to incorporate cracking into our reactive fluid flow models and future work aims to integrate the mechanical and chemical aspects of this process.

  2. Normal compression wave scattering by a permeable crack in a fluid-saturated poroelastic solid

    NASA Astrophysics Data System (ADS)

    Song, Yongjia; Hu, Hengshan; Rudnicki, John W.

    2017-03-01

    A mathematical formulation is presented for the dynamic stress intensity factor (mode I) of a finite permeable crack subjected to a time-harmonic propagating longitudinal wave in an infinite poroelastic solid. In particular, the effect of the wave-induced fluid flow due to the presence of a liquid-saturated crack on the dynamic stress intensity factor is analyzed. Fourier sine and cosine integral transforms in conjunction with Helmholtz potential theory are used to formulate the mixed boundary-value problem as dual integral equations in the frequency domain. The dual integral equations are reduced to a Fredholm integral equation of the second kind. It is found that the stress intensity factor monotonically decreases with increasing frequency, decreasing the fastest when the crack width and the slow wave wavelength are of the same order. The characteristic frequency at which the stress intensity factor decays the fastest shifts to higher frequency values when the crack width decreases.

  3. Conversion of Isoprenoid Oil by Catalytic Cracking and Hydrocracking over Nanoporous Hybrid Catalysts

    PubMed Central

    Kimura, Toshiyuki; Liu, Chen; Li, Xiaohong; Maekawa, Takaaki; Asaoka, Sachio

    2012-01-01

    In order to produce petroleum alternatives from biomass, a significant amount of research has been focused on oils from microalgae due to their origin, which would not affect food availability. Nanoporous hybrid catalysts composed of ns Al2O3 and zeolites have been proven to be very useful compared to traditional catalysts in hydrotreating (HT), hydrocracking (HC), and catalytic cracking (CC) of large molecules. To evaluate the reaction scheme and products from model isoprenoid compounds of microalgae oil, nanoporous hybrid catalyst technologies (CC: ns Al2O3/H-USY and ns Al2O3/H-GaAlMFI; HC: [Ni-Mo/γ-Al2O3]/ns Al2O3/H-beta) were studied. The major product from CC on ns Al2O3/H-USY was highly aromatic gasoline, while the product from HC was half-isoparaffinic/olefinic kerosene. Although more than 50 wt% of the products from HT/CC on the USY catalyst was liquefied petroleum gas due to overcracking, the product from HT/CC on the MFI catalyst was high-octane-number gasoline. Delightfully, the product from HT/HC was kerosene and its average number was 11, with more than 80 wt% being isoparaffinic. As a result, it was demonstrated that hydrotreating may convert isoprenoid oil from microalgae over nanoporous hybrid catalysts into a variety of products. PMID:22791962

  4. Crack

    MedlinePlus

    ... are harmless, but sometimes producers add ingredients like amphetamines to make crack cheaper. These added ingredients raise ... For Kids For Parents MORE ON THIS TOPIC Amphetamines Drugs: What to Know Dealing With Addiction Cocaine ...

  5. Crack

    MedlinePlus

    ... is cocaine that has been processed into rock crystal form. Like cocaine, crack is a powerful and ... with things that cause powdered cocaine to form crystals. Many of these are harmless, but sometimes producers ...

  6. The effect of fluid composition, salinity, and acidity on subcritical crack growth in calcite crystals

    NASA Astrophysics Data System (ADS)

    Bergsaker, Anne Schad; Røyne, Anja; Ougier-Simonin, Audrey; Aubry, Jérôme; Renard, François

    2016-03-01

    Chemically activated processes of subcritical cracking in calcite control the time-dependent strength of this mineral, which is a major constituent of the Earth's brittle upper crust. Here experimental data on subcritical crack growth are acquired with a double torsion apparatus to characterize the influence of fluid pH (range 5-7.5) and ionic strength and species (Na2SO4, NaCl, MgSO4, and MgCl2) on the propagation of microcracks in calcite single crystals. The effect of different ions on crack healing has also been investigated by decreasing the load on the crack for durations up to 30 min and allowing it to relax and close. All solutions were saturated with CaCO3. The crack velocities reached during the experiments are in the range 10-9-10-2 m/s and cover the range of subcritical to close to dynamic rupture propagation velocities. Results show that for calcite saturated solutions, the energy necessary to fracture calcite is independent of pH. As a consequence, the effects of fluid salinity, measured through its ionic strength, or the variation of water activity have stronger effects on subcritical crack propagation in calcite than pH. Consequently, when considering the geological sequestration of CO2 into carbonate reservoirs, the decrease of pH within the range of 5-7.5 due to CO2 dissolution into water should not significantly alter the rate of fracturing of calcite. Increase in salinity caused by drying may lead to further reduction in cracking and consequently a decrease in brittle creep. The healing of cracks is found to vary with the specific ions present.

  7. The seismic properties of sintered glass-bead media: effects of thermal cracking and fluid saturation

    NASA Astrophysics Data System (ADS)

    Li, Y.; Jackson, I.; David, E.; Schmitt, D. R.

    2013-12-01

    The stiffness of rocks is significantly affected by the presence of cracks as well as pore fluids, the latter potentially increasing the effective stiffness of cracks. Reversible pore-fluid flow within the crack network, occurring during seismic wave propagation, may result in strongly frequency dependent seismic properties. Theoretical models for fluid flow induced seismic wave dispersion have been proposed but have so far not been subject to thorough experimental testing. Soda-lime-silica glass beads, of ~300 μm diameter were sintered near the glass transition temperature to produce a synthetic analogue for sedimentary rock with low porosity (~2%) and a simpler microstructure. Widely distributed cracks with uniformly low aspect ratio (~0.0007) and crack porosity ~0.2% were introduced by quenching heated cylindrical samples into liquid water at room temperature. Combined use of low-frequency (mHz-Hz) forced oscillation techniques at the Australian National University with ultrasonic pulse transmission methods (MHz) at the University of Alberta, is allowing a broadband measurement of seismic velocities and attenuation on a thermally cracked glass-bead sample. A recent upgrade of the data acquisition system on the apparatus for forced oscillation measurements is providing improved precision in determining shear and Young's moduli, measured at seismic frequencies, reveal a strong systematic variation with effective pressure (Peff=Pc-Pf) and some relaxation at longer oscillation periods tentatively attributed to fluid flow. Under water-saturated conditions, at low frequencies, both shear and Young's moduli are noticeably higher than under dry or argon-saturated conditions, possibly attributed to spatial restricted flow of water during forced-oscillation tests. Ongoing measurement of ultrasonic velocities should thus provide the 'intermediate' to 'high' frequency bounds on elastic moduli.

  8. Instability in Immiscible Fluids Displacement from Cracks and Porous Samples

    NASA Astrophysics Data System (ADS)

    Smirnov, N. N.; Nikitin, V. F.; Ivashnyov, O. E.

    2002-01-01

    problems of terrestrial engineering and technology. Surface tension affected flows in porous media could be much better understood in microgravity studies eliminating the masking effects of gravity. Saffman-Taylor instability of the interface could bring to formation and growth of "fingers" of gas penetrating the bulk fluid. The growth of fingers and their further coalescence could not be described by the linear analysis. Growth of fingers causes irregularity of the mixing zone. The tangential velocity difference on the interface separating fluids of different densities and viscousities could bring to a Kelvin-Helmholtz instability resulting in "diffusion of fingers" partial regularization of the displacement mixing zone. Thus combination of the two effects would govern the flow in the displacement process. fracture under a pressure differential displacing the high viscosity residual fracturing fluid. There are inherent instability and scalability problems associated with viscous fingering that play a key role in the cleanup procedure. Entrapment of residual fracturing fluid by the gas flow lowers down the quality of a fracture treatment leaving most of fluid in the hydraulic fracture thus decreasing the production rate. The gravity effects could play essential role in vertical hydraulic fractures as the problem is scale dependent. displacement of viscous fluid by a less viscous one in a two-dimensional channel with vertical breaks, and to determine characteristic size of entrapment zones. Extensive direct numerical simulations allow to investigate the sensitivity of the displacement process to variation of values of the main governing parameters. were found for the two limiting cases: infinitely wide cell, and narrow cell with an infinitely small gap between the finger and the side walls. governing parameters. The obtained solutions allowed to explain the physical meaning of the exiting empirical criteria for the beginning of viscous fingering and the growth of a

  9. Multidimensional gas chromatography for the characterization of permanent gases and light hydrocarbons in catalytic cracking process.

    PubMed

    Luong, J; Gras, R; Cortes, H J; Shellie, R A

    2013-01-04

    An integrated gas chromatographic system has been successfully developed and implemented for the measurement of oxygen, nitrogen, carbon monoxide, carbon dioxide and light hydrocarbons in one single analysis. These analytes are frequently encountered in critical industrial petrochemical and chemical processes like catalytic cracking of naphtha or diesel fuel to lighter components used in gasoline. The system employs a practical, effective configuration consisting of two three-port planar microfluidic devices in series with each other, having built-in fluidic gates, and a mid-point pressure source. The use of planar microfluidic devices offers intangible advantages like in-oven switching with no mechanical moving parts, an inert sample flow path, and a leak-free operation even with multiple thermal cycles. In this way, necessary features such as selectivity enhancement, column isolation, column back-flushing, and improved system cleanliness were realized. Porous layer open tubular capillary columns were employed for the separation of hydrocarbons followed by flame ionization detection. After separation has occurred, carbon monoxide and carbon dioxide were converted to methane with the use of a nickel-based methanizer for detection with flame ionization. Flow modulated thermal conductivity detection was employed to measure oxygen and nitrogen. Separation of all the target analytes was achieved in one single analysis of less than 12 min. Reproducibility of retention times for all compounds were found to be less than 0.1% (n=20). Reproducibility of area counts at two levels, namely 100 ppm(v) and 1000 ppm(v) over a period of two days were found to be less than 5.5% (n=20). Oxygen and nitrogen were found to be linear over a range from 20 ppm(v) to 10,000 ppm(v) with correlation coefficients of at least 0.998 and detection limits of less than 10 ppm(v). Hydrocarbons of interest were found to be linear over a range from 200 ppb(v) to 1000 ppm(v) with correlation

  10. A new model of reaction-driven cracking: fluid volume consumption and tensile failure during serpentinization

    NASA Astrophysics Data System (ADS)

    Eichenbaum-Pikser, J. M.; Spiegelman, M. W.; Kelemen, P. B.; Wilson, C. R.

    2013-12-01

    Reactive fluid flow plays an important role in a wide range of geodynamic processes, such as melt migration, formation of hydrous minerals on fault surfaces, and chemical weathering. These processes are governed by the complex coupling between fluid transport, reaction, and solid deformation. Reaction-driven cracking is a potentially critical feedback mechanism, by which volume change associated with chemical reaction drives fracture in the surrounding rock. It has been proposed to play a role in both serpentinization and carbonation of peridotite, motivating consideration of its application to mineral carbon sequestration. Previous studies of reactive cracking have focused on the increase in solid volume, and as such, have considered failure in compression. However, if the consumption of fluid is considered in the overall volume budget, the reaction can be net volume reducing, potentially leading to failure in tension. To explore these problems, we have formulated and solved a 2-D model of coupled porous flow, reaction kinetics, and elastic deformation using the finite element model assembler TerraFERMA (Wilson et al, G3 2013 submitted). The model is applied to the serpentinization of peridotite, which can be reasonably approximated as the transfer of a single reactive component (H2O) between fluid and solid phases, making it a simple test case to explore the process. The behavior of the system is controlled by the competition between the rate of volume consumption by the reaction, and the rate of volume replacement by fluid transport, as characterized by a nondimensional parameter χ, which depends on permeability, reaction rate, and the bulk modulus of the solid. Large values of χ correspond to fast fluid transport relative to reaction rate, resulting in a low stress, volume replacing regime. At smaller values of χ, fluid transport cannot keep up with the reaction, resulting in pore fluid under-pressure and tensile solid stresses. For the range of χ relevant

  11. Catalytic thermal cracking of post-consumer waste plastics to fuels. 2. Pilot study

    USDA-ARS?s Scientific Manuscript database

    Alternative gasoline and diesel fuels were prepared via catalytic and non-catalytic pyrolysis and distillation of waste polyethylene and polypropylene plastics. Reaction conditions were optimized using a bench-scale (2 L) batch reactor and then applied to pilot-scale production of crude plastic oil....

  12. Analysis of the organic liquid produced from catalytic cracking of crude palm oil in the presence of alumina supported catalysts

    NASA Astrophysics Data System (ADS)

    Ramli, Anita; Razak, Rozlina Abdul

    2012-09-01

    Catalytic cracking of crude palm oil (CPO) was studied in the presence of alumina, 1% Pt/Al2O3 and 1% Pd/Al2O3 as catalyst. The CPO to catalyst weight ratio used was 1:0.05. The experiment was carried out in a simple liquid-phase batch reactor at atmospheric pressure where the sample was heated to 300-350 δC. Products formed were organic liquid products (OLP) and gaseous product with the solid residue remains in the reactor. The total conversion of CPO was only between 25 - 31% where the residue is suggested to be mainly of polimerised CPO. The OLP was analysed using a gas chromatography with FID detector. Analyses show that the selectivity to liquid fuel is influence by the catalyst used whereby Al2O3 gives the highest selectivity to gasoline while 1% Pt/Al2O3 has the highest selectivity to diesel. However, 1% Pd/Al2O3 is not a suitable catalyst for catalytic cracking of CPO to liquid fuel where less than 17.5% of OLP produced could be classified as liquid fuel.

  13. Catalytic ferrous iron in amniotic fluid as a predictive marker of human maternal-fetal disorders.

    PubMed

    Hattori, Yuka; Mukaide, Takahiro; Jiang, Li; Kotani, Tomomi; Tsuda, Hiroyuki; Mano, Yukio; Sumigama, Seiji; Hirayama, Tasuku; Nagasawa, Hideko; Kikkawa, Fumitaka; Toyokuni, Shinya

    2015-01-01

    Amniotic fluid contains numerous biomolecules derived from fetus and mother, thus providing precious information on pregnancy. Here, we evaluated oxidative stress of human amniotic fluid and measured the concentration of catalytic Fe(II). Amniotic fluid samples were collected with consent from a total of 89 subjects in Nagoya University Hospital, under necessary medical interventions: normal pregnancy at term, normal pregnancy at the 2nd trimester, preterm delivery with maternal disorders but without fetal disorders, congenital diaphragmatic hernia, fetal growth restriction, pregnancy-induced hypertension, gestational diabetes mellitus, Down syndrome and trisomy 18. Catalytic Fe(II) and oxidative stress markers (8-hydroxy-2'-deoxyguanosine, 8-OHdG; dityrosine) were determined with RhoNox-1 and specific antibodies, respectively, using plate assays. Levels of 8-OHdG and dityrosine were higher in the 3rd trimester compared with the 2nd trimester in normal subjects, and the abnormal groups generally showed lower levels than the controls, thus suggesting that they represent fetal metabolic activities. In contrast, catalytic Fe(II) was higher in the 2nd trimester than the 3rd trimester in the normal subjects, and overall the abnormal groups showed higher levels than the controls, suggesting that high catalytic Fe(II) at late gestation reflects fetal pathologic alterations. Notably, products of H2O2 and catalytic Fe(II) remained almost constant in amniotic fluid.

  14. Catalytic ferrous iron in amniotic fluid as a predictive marker of human maternal-fetal disorders

    PubMed Central

    Hattori, Yuka; Mukaide, Takahiro; Jiang, Li; Kotani, Tomomi; Tsuda, Hiroyuki; Mano, Yukio; Sumigama, Seiji; Hirayama, Tasuku; Nagasawa, Hideko; Kikkawa, Fumitaka; Toyokuni, Shinya

    2015-01-01

    Amniotic fluid contains numerous biomolecules derived from fetus and mother, thus providing precious information on pregnancy. Here, we evaluated oxidative stress of human amniotic fluid and measured the concentration of catalytic Fe(II). Amniotic fluid samples were collected with consent from a total of 89 subjects in Nagoya University Hospital, under necessary medical interventions: normal pregnancy at term, normal pregnancy at the 2nd trimester, preterm delivery with maternal disorders but without fetal disorders, congenital diaphragmatic hernia, fetal growth restriction, pregnancy-induced hypertension, gestational diabetes mellitus, Down syndrome and trisomy 18. Catalytic Fe(II) and oxidative stress markers (8-hydroxy-2'-deoxyguanosine, 8-OHdG; dityrosine) were determined with RhoNox-1 and specific antibodies, respectively, using plate assays. Levels of 8-OHdG and dityrosine were higher in the 3rd trimester compared with the 2nd trimester in normal subjects, and the abnormal groups generally showed lower levels than the controls, thus suggesting that they represent fetal metabolic activities. In contrast, catalytic Fe(II) was higher in the 2nd trimester than the 3rd trimester in the normal subjects, and overall the abnormal groups showed higher levels than the controls, suggesting that high catalytic Fe(II) at late gestation reflects fetal pathologic alterations. Notably, products of H2O2 and catalytic Fe(II) remained almost constant in amniotic fluid. PMID:25678752

  15. Catalytic gasification studies in a pressurized fluid-bed unit

    SciTech Connect

    Mudge, L.K.; Baker, E.G.; Mitchell, D.H.; Robertus, R.J.; Brown, M.D.

    1983-07-01

    The purpose of the project is to evaluate the technical and economic feasibility of producing specific gas products via the catalytic gasification of biomass. This report presents the results of research conducted from October 1980 to November 1982. In the laboratory scale studis, active catalysts were developed for generation of synthesis gases from wood by steam gasification. A trimetallic catalyst, Ni-Co-Mo on silica-alumina doped with 2 wt % Na, was found to retain activity indefinitely for generation of a methanol synthesis gas from wood at 1380/sup 0/F (750/sup 0/C) and 1 atm (100 kPa) absolute pressure. Catalysts for generation of a methane-rich gas were deactivated rapidly and could not be regenerated as required for economic application. Sodium carbonate and potassium carbonate were effective as catalysts for conversion of wood to synthesis gases and methane-rich gas and should be economically viable. Catalytic gasification conditions were found to be suitable for processing of alternative feedstocks: bagasse, alfalfa, rice hulls, and almond hulls. The PDU was operated successfully at absolute pressures of up to 10 atm (1000 kPa) and temperatures of up to 1380/sup 0/F (750/sup 0/C). Yields of synthesis gases at elevated pressure were greater than those used for previous economic evaluations. A trimetallic catalyst, Ni-Cu-Mo on silica-alumina, did not display a long life as did the doped trimetallic catalyst used in laboratory studies. A computer program for a Radio Shack TRS-80 Model I microcomputer was developed to evaluate rapidly the economics of producing either methane or methanol from wood. The program is based on economic evaluations reported in previous studies. Improved yields from the PDU studies were found to result in a reduction of about 9 cents/gal in methanol cost.

  16. Advances of two-stage riser catalytic cracking of heavy oil for maximizing propylene yield (TMP) process.

    PubMed

    Chaohe, Yang; Xiaobo, Chen; Jinhong, Zhang; Chunyi, Li; Honghong, Shan

    Two-stage riser catalytic cracking of heavy oil for maximizing propylene yield (TMP) process proposed by State Key Laboratory of Heavy oil Processing, China University of Petroleum, can remarkably enhance the propylene yield and minimize the dry gas and coke yields, and obtain high-quality light oils (gasoline and diesel). It has been commercialized since 2006. Up to now, three TMP commercial units have been put into production and other four commercial units are under design and construction. The commercial data showed that taking paraffinic based Daqing (China) atmospheric residue as the feedstock, the propylene yield reached 20.31 wt%, the liquid products yield (the total yield of liquefied petroleum gas, gasoline, and diesel) was 82.66 wt%, and the total yield of dry gas and coke was 14.28 wt%. Moreover, the research octane number of gasoline could be up to 96.

  17. Toxicity evaluation of petroleum blending streams: reproductive and developmental effects of light catalytic cracked naphtha distillate in rats.

    PubMed

    Schreiner, C; Bui, Q; Breglia, R; Burnett, D; Koschier, F; Podhasky, P; Lapadula, E; White, R; Schroeder, R E

    1999-11-26

    A distillate of light catalytic cracked naphtha (CAS number 64741-55-5, LCCN-D), administered by inhalation, was tested for reproductive and developmental toxicity in Sprague-Dawley rats, following a modified OECD Guideline 421, Reproductive/Developmental Toxicity Screening Protocol. LCCN-D was administered as a vapor, 6 h/d, 7 d/wk at target concentrations of 0, 750, 2500 or 7500 ppm to female rats for approximately 7 wk from 2 wk prior to mating, during mating through gestational d 19, and to males beginning 2 wk prior to mating for 8 consecutive weeks. Dams and litters were sacrificed on postnatal d 4, and males were sacrificed within the following week. Parental systemic effects observed at the 7500 ppm exposure level were increased kidney weights and relative liver weights in males and increased spleen weights in high-dose females. Livers and spleens from rats in the high-dose group were normal in appearance at necropsy. IncreaSed kidney weights in high-dose males were indicative of male-rat-specific light hydrocarbon nephropathy. No test-related microscopic changes were observed in the reproductive organs or nasal turbinate tissues of either sex. Reproductive performance was unaffected by treatment with LCCN-D. Fertility index was > or =90% in all dose groups. There were no exposure-related differences in implantation sites and live pups per litter, and no gross abnormalities were observed. Pups born from treated dams showed comparable body weights and weight gains to controls. The viability index on postpartum d 4 was > or =97%; the high-dose group had more male than female pups at birth and at d 4 postpartum. Under the conditions of this study, the no-observable-adverse-effect level (NOAEL) for exposure to light catalytic cracked naphtha distillate for parental toxicity was 2500 ppm and the NOAEL for reproductive performance and developmental toxicity was 7500 ppm.

  18. 40 CFR Table 8 to Subpart Uuu of... - Organic HAP Emission Limits for Catalytic Cracking Units

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... emission limit for each catalyst regenerator vent . . . 1. Subject to the NSPS for carbon monoxide (CO) in 40 CFR 60.103 CO emissions from the catalyst regenerator vent or CO boiler serving the catalytic... for CO in 40 CFR 60.103 a. CO emissions from the catalyst regenerator vent or CO boiler serving...

  19. 40 CFR Table 8 to Subpart Uuu of... - Organic HAP Emission Limits for Catalytic Cracking Units

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... emission limit for each catalyst regenerator vent . . . 1. Subject to the NSPS for carbon monoxide (CO) in 40 CFR 60.103 CO emissions from the catalyst regenerator vent or CO boiler serving the catalytic... for CO in 40 CFR 60.103 a. CO emissions from the catalyst regenerator vent or CO boiler serving...

  20. 40 CFR Table 8 to Subpart Uuu of... - Organic HAP Emission Limits for Catalytic Cracking Units

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... emission limit for each catalyst regenerator vent . . . 1. Subject to the NSPS for carbon monoxide (CO) in 40 CFR 60.103 CO emissions from the catalyst regenerator vent or CO boiler serving the catalytic... for CO in 40 CFR 60.103 a. CO emissions from the catalyst regenerator vent or CO boiler serving...

  1. Catalytic thermal cracking of post-consumer waste plastics to fuels: Part 1 - Kinetics and optimization

    USDA-ARS?s Scientific Manuscript database

    Thermogravimetric analysis (TGA) was used to investigate thermal and catalytic pyrolysis of waste plastics such as prescription bottles (polypropylene/PP), high density polyethylene, landfill liners (polyethylene/PE), packing materials (polystyrene/PS), and foams (polyurethane/PU) into crude plastic...

  2. Transportation fuel production by combination of LDPE thermal cracking and catalytic hydroreforming.

    PubMed

    Escola, J M; Aguado, J; Serrano, D P; Briones, L

    2014-11-01

    Fuel production from plastics is a promising way to reduce landfilling rates while obtaining valuable products. The usage of Ni-supported hierarchical Beta zeolite (h-Beta) for the hydroreforming of the oils coming from LDPE thermal cracking has proved to produce high selectivities to gasoline and diesel fuels (>80%). In the present work, the effect of the Ni loading on Ni/h-Beta is investigated in the hydroreforming of the oils form LDPE thermal cracking. h-Beta samples were impregnated with Ni nitrate, calcined and reduced in H2 up to 550°C to achieve different Ni contents: 1.5%, 4%, 7% and 10%. Larger and more easily reducible metal particles were obtained on Ni 7%/h-Beta and Ni 10%/h-Beta. Hydroreforming tests were carried out in autoclave reactor at 310°C, under 20 bar H2, for 45 min. Ni content progressively increased the amount of gases at the expenses of diesel fractions, while gasoline remained approximately constant about 52-54%. Maximum selectivity to automotive fuels (∼81%) was obtained with Ni 7%/h-Beta. Ni loading also enhanced olefins saturation up to Ni 7%/h-Beta. High cetane indices (71-86) and octane numbers (89-91) were obtained over all the catalysts. Regarding the different studied Ni contents, Ni 7%/h-Beta constitutes a rather promising catalyst for obtaining high quality fuels from LDPE thermal cracking oils. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Photobioreactor cultivation and catalytic pyrolysis of the microalga Desmodesmus communis (Chlorophyceae) for hydrocarbons production by HZSM-5 zeolite cracking.

    PubMed

    Conti, Roberto; Pezzolesi, Laura; Pistocchi, Rossella; Torri, Cristian; Massoli, Patrizio; Fabbri, Daniele

    2016-12-01

    The study evaluated the growth of Desmodesmus communis on column photobioreactor and its thermochemical treatment by catalytic pyrolysis using HZSM-5 zeolite. D. communis showed good results in terms of growth (0.05gL(-1)d(-1)). Analytical pyrolysis of original algae and derived bio-oil mixed with zeolite was used as a screening method in order to gather information on the cracking process. Preparative pyrolysis on bench scale reactor was performed on algae biomass over a zeolite bed at 1:10 ratio (wt/wt). Py-GC-MS of biomass/catalyst mixture showed that the denitrogenation/deoxygenation increased with increasing zeolite load from 1:5 to 1:20 ratio and became significant at 1:10 ratio. The composition observed by analytical pyrolysis was featured by the predominance of alkylated monoaromatic hydrocarbons. The scaling-up to bench scale confirmed the results obtained with analytical pyrolysis in terms of monoaromatic hydrocarbons. However, low yield of catalytic oil (8% by weight) was observed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. A broadband laboratory study of the seismic properties of cracked and fluid-saturated synthetic glass media

    NASA Astrophysics Data System (ADS)

    Li, Yang; David, Emmanuel; Nakagawa, Seiji; Kneafsey, Timothy; Schmitt, Douglas; Jackson, Ian

    2017-04-01

    In order to better understand the frequency dependence or dispersion of seismic-wave speeds and associated strain-energy dissipation in cracked and fluid-saturated crustal rocks, we have conducted a broadband laboratory study of synthetic glass media. The glass materials were prepared either from dense soda-lime-silica glass rod or by sintering glass beads of similar chemical composition. Along with sub-equant pores contributing either 2 or 5% porosity for the sintered-bead specimens, quantifiable densities of cracks, generally of very low aspect ratio, were introduced by controlled thermal cracking. Permeability was measured under selected conditions of confining and pore pressure either by transient decay with argon pore fluid or with the steady-flow method and water pore fluid. The water permeability of the cracked glass-rod specimen decreased strongly with increasing differential pressure Pd to 10-18 m2 near 10 MPa. Further increase of differential pressure towards 100 MPa resulted in modest reductions of permeability to specimen-specific values in the range (0.5 - 2) × 10-19 m2. The characteristic frequencies for the draining of cylindrical specimens of such low permeability are estimated to be < 10 mHz, so that undrained conditions can be expected even at the 10-300 mHz frequencies of the forced-oscillation tests. The same or similarly prepared glass specimens were mechanically tested with sub-Hz forced-oscillation methods, a kHz-frequency resonant bar technique, and MHz-frequency ultrasonic wave propagation, before and after thermal cracking. The cracked specimens were successively measured under dry, argon- (or nitrogen-) saturated and water-saturated conditions. The shear and Young's moduli measured on the cracked materials typically increase strongly with increasing differential pressure below a threshold of 30 MPa beyond which the pressure sensitivity becomes substantially milder. This behaviour is quantitatively interpreted in terms of pressure

  5. Glass fabrics self-cracking catalytic growth of boron nitride nanotubes

    NASA Astrophysics Data System (ADS)

    Wang, Jilin; Peng, Daijang; Long, Fei; Wang, Weimin; Gu, Yunle; Mo, Shuyi; Zou, Zhengguang; Fu, Zhengyi

    2017-02-01

    Glass fabrics were used to fabricate boron nitride nanotubes (BNNTs) with a broad diameter range through a combined chemical vapor deposition and self-propagation high-temperature synthesis (CVD-SHS) method at different holding times (0min, 30min, 90min, 180min and 360min). SEM characterization has been employed to investigate the macro and micro structure/morphology changes of the glass fabrics and BNNTs in detail. SEM image analysis has provided direct experimental evidences for the rationality of the optimized self-cracking catalyst VLS growth mechanism, including the transformation situations of the glass fabrics and the BNNTs growth processes respectively. This paper was the further research and compensation for the theory and experiment deficiencies in the new preparation method of BNNTs reported in our previous work. In addition, it is likely that the distinctive self-cracking catalyst VLS growth mechanism could provide a new idea to preparation of other inorganic functional nano-materials using similar one-dimensional raw materials as growth templates and catalysts.

  6. Scattering of monochromatic longitudinal waves on a planar crack of arbitrary shape in a fluid-saturated poroelastic medium

    NASA Astrophysics Data System (ADS)

    Levin, V.; Kanaun, S.

    2015-04-01

    Scattering of monochromatic longitudinal waves on a planar crack of arbitrary shape in a saturated poroelastic medium is considered. The medium is described by Biot's constitutive equations, the crack sides are fluid permeable. The problem is reduced to a two-dimensional integral equation for the crack opening vector. Gaussian approximating functions are used for discretization of this equation. For such functions, the elements of the matrix of discretized problem are combinations of four standard one-dimensional integrals that can be tabulated. As a result, numerical integration is not needed. For regular grids of approximating nodes, this matrix has Toeplitz's structure, and matrix-vector products can be calculated by the fast Fourier transform technique. The latter accelerates substantially the process of iterative solution of the discretized problem. Calculation of crack opening vectors, differential, and total cross-sections of circular and elliptic cracks are performed for longitudinal incident waves orthogonal to the crack surfaces. Dependencies of these characteristics on the medium permeability and wavefrequency are studied. Comparison of a crack in the poroelastic medium and in a dry elastic medium with the same porosity and skeleton elastic properties is presented.

  7. Catalytic converter with fluid injector for catalyst-free enclosure of catalyst bed

    SciTech Connect

    Andrew, S.P.S.

    1984-09-25

    A fluid injection lozenge comprises two tubes supporting a perforate member forming a cage enclosing the space between the tubes. Each tube has a series of perforations along its length so that a fluid can be injected, through the tube, into the enclosed space. The lozenges are of use in catalytic converters of either the axial or radial flow design. In the case of a radial flow converter, a plurality of tubes are provided, preferably connected in pairs by the perforate members, to form a squirrel cage structure, disposed in the catalyst bed.

  8. The Use of Fry (Embalming Fluid and PCP-Laced Cigarettes or Marijuana Sticks) among Crack Cocaine Smokers

    ERIC Educational Resources Information Center

    Peters, Ronald J.; Williams, Mark; Ross, Michael W.; Atkinson, John; McCurdy, Sherly A.

    2009-01-01

    Statistics show that the prevalence of crack cocaine use and embalming fluid and phencyclidine (PCP)-laced cigarettes or marijuana sticks, commonly referred to on the street as "fry" or "wet" is a problem; however, the relationship between these substances of abuse and concurrent polydrug use is unknown. In the present study, a…

  9. The Use of Fry (Embalming Fluid and PCP-Laced Cigarettes or Marijuana Sticks) among Crack Cocaine Smokers

    ERIC Educational Resources Information Center

    Peters, Ronald J.; Williams, Mark; Ross, Michael W.; Atkinson, John; McCurdy, Sherly A.

    2009-01-01

    Statistics show that the prevalence of crack cocaine use and embalming fluid and phencyclidine (PCP)-laced cigarettes or marijuana sticks, commonly referred to on the street as "fry" or "wet" is a problem; however, the relationship between these substances of abuse and concurrent polydrug use is unknown. In the present study, a…

  10. Effect of Particle Size Upon Pt/SiO2 Catalytic Cracking of n-Dodecane Under Supercritical Conditions: in situ SAXS and XANES Studies

    SciTech Connect

    Lee, Sungwon; Lee, Sungsik; Kumbhalkar, Mrunmayi; Wiaderek, Kamila M.; Dumesic, James A; Winans, Randall E.

    2017-01-01

    The endothermic cracking and dehydrogenation of n-dodecane is investigated over well-defined nanometer size platinum catalysts supported on SiO2 to study the particle size effects in the catalytic cracking reaction, with simultaneous in situ monitoring of the particle size and oxidation state of the working catalysts by in situ SAXS (small angle X-ray scattering) and XAS (X-ray absorption spectroscopy). The selectivity toward olefins products was found dominant in the 1 nm size platinum catalysts, whereas paraffins are dominant in the 2 nm catalysts. This reveals a strong correlation between catalytic performance and catalyst size as well as the stability of the nanoparticles in supercritical condition of n-dodecane. The presented results suggest that controlling the size and geometric structure of platinum nanocatalysts could lead to a fundamentally new level of understanding of nanoscale materials by monitoring the catalysts in realistic reaction conditions.

  11. Life cycle assessment of hydrogenated biodiesel production from waste cooking oil using the catalytic cracking and hydrogenation method.

    PubMed

    Yano, Junya; Aoki, Tatsuki; Nakamura, Kazuo; Yamada, Kazuo; Sakai, Shin-ichi

    2015-04-01

    There is a worldwide trend towards stricter control of diesel exhaust emissions, however presently, there are technical impediments to the use of FAME (fatty acid methyl esters)-type biodiesel fuel (BDF). Although hydrogenated biodiesel (HBD) is anticipated as a new diesel fuel, the environmental performance of HBD and its utilization system have not been adequately clarified. Especially when waste cooking oil is used as feedstock, not only biofuel production but also the treatment of waste cooking oil is an important function for society. A life cycle assessment (LCA), including uncertainty analysis, was conducted to determine the environmental benefits (global warming, fossil fuel consumption, urban air pollution, and acidification) of HBD produced from waste cooking oil via catalytic cracking and hydrogenation, compared with fossil-derived diesel fuel or FAME-type BDF. Combined functional unit including "treatment of waste cooking oil" and "running diesel vehicle for household waste collection" was established in the context of Kyoto city, Japan. The calculation utilized characterization, damage, and integration factors identified by LIME2, which was based on an endpoint modeling method. The results show that if diesel vehicles that comply with the new Japanese long-term emissions gas standard are commonly used in the future, the benefit of FAME-type BDF will be relatively limited. Furthermore, the scenario that introduced HBD was most effective in reducing total environmental impact, meaning that a shift from FAME-type BDF to HBD would be more beneficial. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Catalytic cracking of non-edible sunflower oil over ZSM-5 for hydrocarbon bio-jet fuel.

    PubMed

    Zhao, Xianhui; Wei, Lin; Julson, James; Qiao, Qiquan; Dubey, Ashish; Anderson, Gary

    2015-03-25

    Non-edible sunflower oils that were extracted from sunflower residual wastes were catalytically cracked over a ZSM-5 catalyst in a fixed-bed reactor at three different reaction temperatures: 450°C, 500°C and 550°C. The catalyst was characterized using XRD, FT-IR, BET and SEM. Characterizations of the upgraded sunflower oils, hydrocarbon fuels, distillation residues and non-condensable gases were carried out. The effect of the reaction temperature on the yield and quality of liquid products was discussed. The results showed that the reaction temperature affected the hydrocarbon fuel yield but had a minor influence on its properties. The highest conversion efficiency from sunflower oils to hydrocarbon fuels was 30.1%, which was obtained at 550°C. The reaction temperature affected the component content of the non-condensable gases. The non-condensable gases generated at 550°C contained the highest content of light hydrocarbons (C1-C5), CO, CO2 and H2. Compared to raw sunflower oils, the properties of hydrocarbon fuels including the dynamic viscosity, pH, moisture content, density, oxygen content and heating value were improved.

  13. Improved PI-PD control design using predictive functional optimization for temperature model of a fluidized catalytic cracking unit.

    PubMed

    Zou, Hongbo; Li, Haisheng

    2017-03-01

    Proportional-integral-derivative (PID) control is widely used in industry because of its simple structure and convenient implementation. However, PID control is suitable for small time delay systems; while if too large delay is encountered, PID control may not obtain the desired performance. Proportional-integral-proportional-derivative (PI-PD) control is a modified of PID control and can get improved control performance; however, due to the complex controller parameter tuning, the PI-PD control is used in a limited scope. Inspired by the advantage of predictive functional control (PFC), a new PI-PD control design using PFC optimization is proposed in this paper. The proposed method not only inherits the advantage of PFC, which does well in coping with the time delay, but also has the same structure as the PI-PD controller. The proposed method is tested on the preheated temperature control of crude oil in a fluidized catalytic cracking unit. The results show that the proposed controller improves control performance compared with typical PID control and PI-PD control.

  14. Light catalytically cracked naphtha: subchronic toxicity of vapors in rats and mice and developmental toxicity screen in rats.

    PubMed

    Dalbey, W E; Feuston, M H; Yang, J J; Kommineni, C V; Roy, T A

    1996-01-01

    Both a subchronic inhalation study and a developmental toxicity screen were performed with vapors of light catalytically cracked naphtha (LCCN). In the subchronic study, four groups of mice and rats (10 animals per sex per species) were exposed for approximately 13 wk (6 h/d, 5 d/wk) to concentrations of LCCN vapors of 0, 530, 2060, or 7690 mg/m3. An untreated control group was also included. Animals were observed daily and body weights were taken weekly. No significant treatment-related changes were found in clinical signs, body weight, serum chemistry, hematology, histopathology of 24 tissues, or weights of 12 organs. A marginal decrease was noted in the number of sperm per gram of epididymis. In the developmental toxicity screen, presumed-pregnant Sprague-Dawley rats were exposed to 0, 2150, or 7660 mg/m3 of LCCN vapors, 6 h/d on d 0-19 of gestation. Females were sacrificed on d 20; dams and fetuses were examined grossly and fetuses were later evaluated for skeletal and visceral effects. The number of resorptions was increased by approximately 140% in the group receiving 7660 mg/m3; no other definite treatment-related changes were observed. Overall, the effects of exposure to partially vaporized LCCN were minimal.

  15. Catalytic cracking of HDPE wastes to liquid fuel in the presence of siliceous mesoporous molecular sieves

    NASA Astrophysics Data System (ADS)

    Ramli, Anita; Majid, Noor Diana Abdul; Yusup, Suzana

    2014-10-01

    A siliceous gel was synthesized at 80°C and aged for 5 days at 120°C before it was dried at 120°C for 16 hours and calcined at 500 and 700°C. The calcined Na-Si-MMS samples were then undergone ion exchange with ammonia solution to form NH4- Si - MMS . All samples were characterized for their physicochemical properties using nitrogen (N2) adsorption-desorption isotherm for surface area and porosity; and temperature programme desorption of ammonia (TPD-NH3) for determination of acidity. The catalytic activity of all samples was tested in pyrolysis of high density polyethylene (HDPE) waste at catalyst to HDPE ratio of 0.2. The organic liquid product (OLP) collected was analysed using gas chromatography (GC). Results show that presence of Na-Si-MMS calcined at 500°C promotes the formation of gasoline-like product while presence of Na-Si-MMS calcined at 700°C promotes the formation of both diesel-like and kerosene-like products. On the other hand, presence of all NH4-Si-MMS catalysts promotes the formation of gasoline-like product. These show that the activation process of Si-MMS has a significant effect on the production of fuel-like product from pyrolysis of HDPE.

  16. 40 CFR 63.1566 - What are my requirements for organic HAP emissions from catalytic reforming units?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Catalytic Cracking Units, Catalytic Reforming Units, Sulfur Recovery Units, and Bypass Lines § 63.1566...

  17. 40 CFR 63.1566 - What are my requirements for organic HAP emissions from catalytic reforming units?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Catalytic Cracking Units, Catalytic Reforming Units, Sulfur Recovery Units, and Bypass Lines § 63.1566...

  18. 40 CFR 63.1567 - What are my requirements for inorganic HAP emissions from catalytic reforming units?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Catalytic Cracking Units, Catalytic Reforming Units, Sulfur Recovery Units, and Bypass Lines § 63.1567...

  19. Robust regulation of temperature in reactor-regenerator fluid catalytic cracking units

    SciTech Connect

    Alvarez-Ramirez, J.; Aguilar, R.; Lopez-Isunza, F.

    1996-05-01

    FCC processes involve complex interactive dynamics which are difficult to operate and control as well as poorly known reaction kinetics. This work concerns the synthesis of temperature controllers for FCC units. The problem is addressed first for the case where perfect knowledge of the reaction kinetics is assumed, leading to an input-output linearizing state feedback. However, in most industrial FCC units, perfect knowledge of reaction kinetics and composition measurements is not available. To address the problem of robustness against uncertainties in the reaction kinetics, an adaptive model-based nonlinear controller with simplified reaction models is presented. The adaptive strategy makes use of estimates of uncertainties derived from calorimetric (energy) balances. The resulting controller is similar in form to standard input-output linearizing controllers and can be tuned analogously. Alternatively, the controller can be tuned using a single gain parameter and is computationally efficient. The performance of the closed-loop system and the controller design procedure are shown with simulations.

  20. Dynamic bulk and shear moduli due to grain-scale local fluid flow in fluid-saturated cracked poroelastic rocks: Theoretical model

    NASA Astrophysics Data System (ADS)

    Song, Yongjia; Hu, Hengshan; Rudnicki, John W.

    2016-07-01

    Grain-scale local fluid flow is an important loss mechanism for attenuating waves in cracked fluid-saturated poroelastic rocks. In this study, a dynamic elastic modulus model is developed to quantify local flow effect on wave attenuation and velocity dispersion in porous isotropic rocks. The Eshelby transform technique, inclusion-based effective medium model (the Mori-Tanaka scheme), fluid dynamics and mass conservation principle are combined to analyze pore-fluid pressure relaxation and its influences on overall elastic properties. The derivation gives fully analytic, frequency-dependent effective bulk and shear moduli of a fluid-saturated porous rock. It is shown that the derived bulk and shear moduli rigorously satisfy the Biot-Gassmann relationship of poroelasticity in the low-frequency limit, while they are consistent with isolated-pore effective medium theory in the high-frequency limit. In particular, a simplified model is proposed to quantify the squirt-flow dispersion for frequencies lower than stiff-pore relaxation frequency. The main advantage of the proposed model over previous models is its ability to predict the dispersion due to squirt flow between pores and cracks with distributed aspect ratio instead of flow in a simply conceptual double-porosity structure. Independent input parameters include pore aspect ratio distribution, fluid bulk modulus and viscosity, and bulk and shear moduli of the solid grain. Physical assumptions made in this model include (1) pores are inter-connected and (2) crack thickness is smaller than the viscous skin depth. This study is restricted to linear elastic, well-consolidated granular rocks.

  1. Catalytic cracking catalysts

    SciTech Connect

    Chiang, R.L.; Perigard, R.G.; Rabo, J.A.

    1986-05-13

    A process is described for preparing a catalyst comprising the following steps: (i) contacting a mixture of a large pore zeolite and an inorganic oxide matrix, with a fluoro salt of the formula A/sub (n-m)/(MF/sub n/)/sub z/ wherein ''A'' is an organic or inorganic ionic moiety; (MF/sub n/)/sub z/ is a fluoroanion moiety comprising the element ''M''; ''M'' is an element selected from the group of elements from Groups VB, VIB, VIIB, VIII, IIIA, IVA and VA of the Periodic Table of Elements; ''n'' is the coordination number of ''M''; ''m'' is the valence of ''M''; and ''z'' is the valence or charge associated with ''A''; at a pH greater than about 3, at effective conditions of temperature and time.

  2. Relating feedstock composition to product slate and composition in catalytic cracking: 1. Bench scale experiments with liquid chromatographic fractions from Wilmington, CA, >650{degree}F resid

    SciTech Connect

    Green, J.B.; Zagula, E.J.; Reynolds, J.W.; Wandke, H.H.; Young, L.L.; Chew, H.

    1993-09-01

    The catalytic cracking behavior of compound types in the >650{degree}F resid from a Wilmington, CA, 14.2{degree} API crude was investigated. Liquid Chromatography (LC) was used to separate the resid into eight fractions. These fractions were used as feedstocks for a bench scale fluidized catalytic cracking (FCC) unit. Gasoline was produced almost exclusively from neutral (65 % of whole resid) components. Acidic and basic types were partially converted to coke plus small amounts of C{sub l} and C{sub 2} gases, with the balance primarily carrying over as heavy liquid products. Gasoline composition depended on the type and quantity of polar compounds present in the feed because both acidic and basic compounds inhibited cracking reactions ({beta}-scission, hydrogen transfer, etc.) to varying degrees. In accordance with prior work, basic nitrogen compounds exhibited the largest inhibitory effect on cracking. Their effect is dependent on concentrations up to a limiting value which may correspond to saturation of susceptible catalyst sites. On an equal weight basis, the effect of high boiling (high molecular weight) bases was less than those occurring in the 650--1000{degree}F distillate range. Partitioning of nitrogen present in acidic (e.g. carbazole) forms in the feed into liquid products was greater than for basic nitrogen. Thiophenic forms of sulfur partitioned more into liquid and less into gaseous (H{sub 2}S) products than sulfide-type sulfur. Coke yield was approximately proportional to microcarbon residue test results for all feeds. Ongoing work with additional feedstocks has indicated behavior similar to that of Wilmington. Selected Wilmington liquid products are undergoing detailed analysis in order to determine relationships between feed versus product composition, particularly with respect to acidic and basic types.

  3. HZSM-5/MCM-41 composite molecular sieves for the catalytic cracking of endothermic hydrocarbon fuels: nano-ZSM-5 zeolites as the source

    NASA Astrophysics Data System (ADS)

    Sang, Yu; Jiao, Qingze; Li, Hansheng; Wu, Qin; Zhao, Yun; Sun, Kening

    2014-12-01

    A series of HZSM-5/MCM-41 composite molecular sieves (HZM-Ns ( x)) were prepared by employing nano-ZSM-5 zeolites with the SiO2/Al2O3 ratios ( x) of 50, 100 and 150 as the source. These materials were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive spectroscopy, transmission electron microscopy, N2 adsorption-desorption measurement, and NH3 temperature-programmed desorption. The catalytic cracking of endothermic hydrocarbon fuels over the HZM-Ns with n-decane as model was evaluated at atmospheric pressure and 500 °C. The effect of the parent zeolite, mesopore and SiO2/Al2O3 ratio on the structure, acidity, and catalytic performance of HZM-Ns was investigated. The HZM-Ns exhibited a skeletal matrix with nano-sized HZSM-5 particles (200-300 nm) with a controllable acidity well dispersed in and microporous-mesoporous hierarchical pores. The mesoporous structure improved the diffusion of the reactants and products in the pores, and the HZSM-5 nanoparticles uniformly dispersed in the MCM-41 matrix supplied a proper acidity, shorter channels, and a higher specific surface area for reaction. These resulted in a high catalytic activity, a high selectivity to light olefins and a long lifetime for n-decane catalytic cracking. The HZM-N (150) exhibited the excellent conversion, a high selectivity to light olefins and a long lifetime due to low diffusion resistance, high specific surface area, and appropriate acid distribution and strength, with the increasing SiO2/Al2O3 ratio.

  4. 40 CFR 60.105a - Monitoring of emissions and operations for fluid catalytic cracking units (FCCU) and fluid coking...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of a jet ejector type wet scrubber or other type of wet scrubber equipped with atomizing spray... data logger). (iii) The bag leak detection system must be equipped with an alarm system that will sound... pressure drop across baghouse cells and frequency of visual inspections of the baghouse interior...

  5. 40 CFR 60.105a - Monitoring of emissions and operations for fluid catalytic cracking units (FCCU) and fluid coking...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) of this section. (A) As an alternative to pressure drop, the owner or operator of a jet ejector type... system must be equipped with an alarm system that will sound when the system detects an increase in... cells and frequency of visual inspections of the baghouse interior and baghouse components such as...

  6. 40 CFR 60.105a - Monitoring of emissions and operations for fluid catalytic cracking units (FCCU) and fluid coking...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of a jet ejector type wet scrubber or other type of wet scrubber equipped with atomizing spray... data logger). (iii) The bag leak detection system must be equipped with an alarm system that will sound... pressure drop across baghouse cells and frequency of visual inspections of the baghouse interior...

  7. 40 CFR 60.105a - Monitoring of emissions and operations for fluid catalytic cracking units (FCCU) and fluid coking...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) of this section. (A) As an alternative to pressure drop, the owner or operator of a jet ejector type... system must be equipped with an alarm system that will sound when the system detects an increase in... cells and frequency of visual inspections of the baghouse interior and baghouse components such as...

  8. 40 CFR 60.105a - Monitoring of emissions and operations for fluid catalytic cracking units (FCCU) and fluid coking...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of a jet ejector type wet scrubber or other type of wet scrubber equipped with atomizing spray... data logger). (iii) The bag leak detection system must be equipped with an alarm system that will sound... pressure drop across baghouse cells and frequency of visual inspections of the baghouse interior...

  9. Transient radon signals driven by fluid pressure pulse, micro-crack closure, and failure during granite deformation experiments

    NASA Astrophysics Data System (ADS)

    Girault, Frédéric; Schubnel, Alexandre; Pili, Éric

    2017-09-01

    In seismically active fault zones, various crustal fluids including gases are released at the surface. Radon-222, a radioactive gas naturally produced in rocks, is used in volcanic and tectonic contexts to illuminate crustal deformation or earthquake mechanisms. At some locations, intriguing radon signals have been recorded before, during, or after tectonic events, but such observations remain controversial, mainly because physical characterization of potential radon anomalies from the upper crust is lacking. Here we conducted several month-long deformation experiments under controlled dry upper crustal conditions with a triaxial cell to continuously monitor radon emission from crustal rocks affected by three main effects: a fluid pressure pulse, micro-crack closure, and differential stress increase to macroscopic failure. We found that these effects are systematically associated with a variety of radon signals that can be explained using a first-order advective model of radon transport. First, connection to a source of deep fluid pressure (a fluid pressure pulse) is associated with a large transient radon emission increase (factor of 3-7) compared with the background level. We reason that peak amplitude is governed by the accumulation time and the radon source term, and that peak duration is controlled by radioactive decay, permeability, and advective losses of radon. Second, increasing isostatic compression is first accompanied by an increase in radon emission followed by a decrease beyond a critical pressure representing the depth below which crack closure hampers radon emission (150-250 MPa, ca. 5.5-9.5 km depth in our experiments). Third, the increase of differential stress, and associated shear and volumetric deformation, systematically triggers significant radon peaks (ca. 25-350% above background level) before macroscopic failure, by connecting isolated cracks, which dramatically enhances permeability. The detection of transient radon signals before rupture

  10. THE USE OF FRY (EMBALMING FLUID AND PCP-LACED CIGARETTES OR MARIJUANA STICKS) AMONG CRACK COCAINE SMOKERS

    PubMed Central

    PETERS, RONALD J.; WILLIAMS, MARK; ROSS, MICHAEL W.; ATKINSON, JOHN; McCURDY, SHERLY A.

    2010-01-01

    Statistics show that the prevalence of crack cocaine use and embalming fluid and phencyclidine (PCP)-laced cigarettes or marijuana sticks, commonly referred to on the street as “fry” or “wet” is a problem; however, the relationship between these substances of abuse and concurrent polydrug use is unknown. In the present study, a cross-sectional survey was conducted among 426 African-American crack users in Houston, Texas, to investigate the difference between those who concurrently reported lifetime (defined as at least one usage of fry in life) fry use and those who stated they never used fry. The data were analyzed using chi-square and logistic regression analyses. Fry users were significantly more likely than non-users to not have a casual sex partner (92% users vs. 84% non-users, p ≤ 0.05) and were more likely to have been diagnosed with gonorrhea in the past 12 months (9% users vs. 2% non-users, p ≤ 0.05). In addition fry users had significantly higher odds of currently trading sex for drugs (OR = 2.30, p ≤ 0.05), marijuana use (OR = 12.11, p ≤ 0.05), and codeine (syrup) use (OR = 8.10, p ≤ 0.05). These findings are important in determining the “cultural novelties” relative to crack and fry use among younger African Americans. PMID:19157045

  11. Resonance of a fluid-driven crack: radiation properties and implications for the source of long-period events and harmonic tremor.

    USGS Publications Warehouse

    Chouet, B.

    1988-01-01

    A dynamic source model is presented, in which a 3-D crack containing a viscous compressible fluid is excited into resonance by an impulsive pressure transient applied over a small area DELTA S of the crack surface. The crack excitation depends critically on two dimensionless parameters called the crack stiffness and viscous damping loss. According to the model, the long-period event and harmonic tremor share the same source but differ in the boundary conditions for fluid flow and in the triggering mechanism setting up the resonance of the source, the former being viewed as the impulse response of the tremor generating system and the later representing the excitation due to more complex forcing functions.-from Author

  12. Reaction-induced grain boundary cracking and anisotropic fluid flow during prograde devolatilization reactions within subduction zones

    NASA Astrophysics Data System (ADS)

    Okamoto, Atsushi; Shimizu, Hiroyuki; Fukuda, Jun-ichi; Muto, Jun; Okudaira, Takamoto

    2017-09-01

    Devolatilization reactions during prograde metamorphism are a key control on the fluid distribution within subduction zones. Garnets in Mn-rich quartz schist within the Sanbagawa metamorphic belt of Japan are characterized by skeletal structures containing abundant quartz inclusions. Each quartz inclusion was angular-shaped, and showed random crystallographic orientations, suggesting that these quartz inclusions were trapped via grain boundary cracking during garnet growth. Such skeletal garnet within the quartz schist formed related to decarbonation reactions with a positive total volume change (Δ V t > 0), whereas the euhedral garnet within the pelitic schists formed as a result of dehydration reaction with negative Δ V t values. Coupled hydrological-chemical-mechanical processes during metamorphic devolatilization reactions were investigated by a distinct element method (DEM) numerical simulation on a foliated rock that contained reactive minerals and non-reactive matrix minerals. Negative Δ V t reactions cause a decrease in fluid pressure and do not produce fractures within the matrix. In contrast, a fluid pressure increase by positive Δ V t reactions results in hydrofracturing of the matrix. This fracturing preferentially occurs along grain boundaries and causes episodic fluid pulses associated with the development of the fracture network. The precipitation of garnet within grain boundary fractures could explain the formation of the skeletal garnet. Our DEM model also suggests a strong influence of reaction-induced fracturing on anisotropic fluid flow, meaning that dominant fluid flow directions could easily change in response to changes in stress configuration and the magnitude of differential stress during prograde metamorphism within a subduction zone.

  13. Shuttle Fuel Feedliner Cracking Investigation

    NASA Technical Reports Server (NTRS)

    Nesman, Tomas E.; Turner, Jim (Technical Monitor)

    2002-01-01

    This presentation provides an overview of material covered during 'Space Shuttle Fuel Feedliner Cracking Investigation MSFC Fluids Workshop' held November 19-21, 2002. Topics covered include: cracks on fuel feed lines of Orbiter space shuttles, fluid driven cracking analysis, liner structural modes, structural motion in a fluid, fluid borne drivers, three dimensional computational fluid dynamics models, fluid borne drivers from pumps, amplification mechanisms, flow parameter mapping, and flight engine flow map.

  14. Selected applications of ultra-rapid fluidized (URF) reactors: Ultrapyrolysis of heavy oils and ultra-rapid catalytic cracking

    SciTech Connect

    Vogiatzis, A.L.; Briens, C.L.; Bergougnou, M.A. )

    1988-01-01

    The URF reactor is a major new reactor system which impacts jets of hot particulate heat carrier (catalytic or not) onto a jet of cold finely atomized feedstock. The mixing between the various phases takes place at the point of impact in a very short time (about 30 ms) and the reacting mixture continues in a transported downflow reactor before being quenched. Experiments were conducted in an existing mini-pilot plant using a bitumen feedstock from Cold Lake (Alberta, Canda) at 900{sup 0}C and short residence times of about 75 ms. The results are indicated here. Lower temperature experiments were conducted at 660{sup 0}C and 450 ms. At these reaction conditions experiments were carried out both with and without catalyst. The results of these experiments are also described.

  15. Synthesis, Acidity and Catalytic of the Rare Earth Ce Loaded on the Composite Pore Zeolite Catalyst for Hydrogenation Cracking

    NASA Astrophysics Data System (ADS)

    Shi, Chunwei; Wu, Wenyuan; Bian, Xue; Pei, Mingyuan; Zhao, Shanlin; Chen, Ping

    2017-07-01

    Composite molecular sieve Y/SBA-15(C-Y) was prepared by microwave method, while Ce was loaded by ion exchange method to the composite molecular sieves (Ce-Y/SBA-15 (C-X)). Productive-type middle distillate hydrocracking catalyst was prepared from C-X and C-Y loaded. FI-IR, XPS, Pyridine IR, and TG-DTG had been used to characterize the C-X's and C-Y's structure and acidity. The results showed that Ce loaded not only had not broken the original structure of C-Y, but also improved silica alumina ratio of C-X, furthermore improved its total acid content. Through polarization and entrainment, Ce increased the skeleton and hydroxyl silicon aluminum hydroxy on electronic probability of migration to the cage, thus enhance the C-X's B acid strength, make it more suitable for heavy oil processing. As compared with C-Y, the selectivity and yield of middle distillates over C-X was 0.7 % and 1.8 % higher, respectively. C-X have the greatest relief wax oil viscosity index, best once cracking selectivity, and lowest levels of diesel oil solidifying point in the three catalysts.

  16. Heterogeneous kinetic modeling of the catalytic conversion of cycloparaffins

    NASA Astrophysics Data System (ADS)

    Al-Sabawi, Mustafa N.

    The limited availability of high value light hydrocarbon feedstocks along with the rise in crude prices has resulted in the international recognition of the vast potential of Canada's oil sands. With the recent expansion of Canadian bitumen production come, however, many technical challenges, one of which is the significant presence of aromatics and cycloparaffins in bitumen-derived feedstocks. In addition to their negative environmental impact, aromatics limit fluid catalytic cracking (FCC) feedstock conversion, decrease the yield and quality of valuable products such as gasoline and middle distillates, increase levels of polyaromatic hydrocarbons prone to form coke on the catalyst, and ultimately compromise the FCC unit performance. Although cycloparaffins do not have such negative impacts, they are precursors of aromatics as they frequently undergo hydrogen transfer reactions. However, cycloparaffin cracking chemistry involves other competing reactions that are complex and need much investigation. This dissertation provides insights and understanding of the fundamentals of the catalytic cracking of cycloparaffins using carefully selected model compounds such as methylcyclohexane (MCH) and decalin. Thermal and catalytic cracking of these cycloparaffins on FCC-type catalysts are carried out using the CREC Riser Simulator under operating conditions similar to those of the industrial FCC units in terms of temperature, reaction time, reactant partial pressure and catalyst-to-hydrocarbon ratio. The crystallite size of the supported zeolites is varied between 0.4 and 0.9 microns, with both activity and selectivity being monitored. Catalytic conversions ranged between 4 to 16 wt% for MCH and between 8 to 27 wt% for decalin. Reaction pathways of cycloparaffins are determined, and these include ring-opening, protolytic cracking, isomerization, hydrogen transfer and transalkylation. The yields and selectivities of over 60 and 140 products, formed during MCH and decalin

  17. Influence of circumferential notch and fatigue crack on the mechanical integrity of biodegradable magnesium-based alloy in simulated body fluid.

    PubMed

    Bobby Kannan, M; Singh Raman, R K; Witte, F; Blawert, C; Dietzel, W

    2011-02-01

    Applications of magnesium alloys as biodegradable orthopaedic implants are critically dependent on the mechanical integrity of the implant during service. In this study, the mechanical integrity of an AZ91 magnesium alloy was studied using a constant extension rate tensile (CERT) method. The samples in two different geometries that is, circumferentially notched (CN), and circumferentially notched and fatigue cracked (CNFC), were tested in air and in simulated body fluid (SBF). The test results show that the mechanical integrity of the AZ91 magnesium alloy decreased substantially (∼50%) in both the CN and CNFC samples exposed to SBF. Fracture surface analysis revealed secondary cracks suggesting stress corrosion cracking susceptibility of the alloy in SBF.

  18. Developments in resid cracking technology at gulf

    SciTech Connect

    Campagna, R.J.; Krishna, A.S.; Yanik, S.J.

    1983-08-01

    As conservation measures and standards for new car efficiencies take hold, the demand for gasoline is expected to decline, forcing refiners to meet product demands efficiently with minimum crude. With a reduced market and relatively low price for residual streams, it is very likely that Fluid Catalytic Cracking (FCC) will continue to play a key role in upgrading resids. The economics can be overwhelmingly in favor of this strategy. With current price differentials between asphalt and FCC products, the incremental profit for resid cracking at one Gulf Refinery was estimated to be $8/BBL of Vacuum Tower Bottoms (VTB) cracked. A recent Davison survey (1) of resid cracking applications indicated that at least 52 units representing almost 40% of U. S. capacity are cracking mixtures of residual feed and gas oil at the present time. Processing resids poses a number of problems. They often contain high levels of sulfur, metals and coke precursors which may require high catalyst costs, unit modifications and process innovations. Development of promising approaches to handling resids has focused on three key areas: (a) catalyst and passivator technology improvements, (b) innovations in FCC processing technology and (c) coupling of FCC with other processes. This report reviews Gulf's research efforts in these areas. In addition, Gulf's commercial and pilot plant resid cracking data are discussed.

  19. Systemic toxicity from subchronic dermal exposure, chemical characterization, and dermal penetration of catalytically cracked clarified slurry oil.

    PubMed

    Cruzan, G; Low, L K; Cox, G E; Meeks, J R; Mackerer, C R; Craig, P H; Singer, E J; Mehlman, M A

    1986-12-01

    Clarified slurry oil (CSO), the heavy residual fraction from the fluidized catalytic cracker, was applied to the shaven backs of groups of 10 male and 10 female Sprague-Dawley rats 5 days/week for 13 weeks at doses of 8, 30, 125, or 500 mg/kg/day, and to another group for 2 weeks at doses of 2000 mg/kg/day. The rats were fitted with cardboard Elizabethan collars to minimize the ingestion of the test material, which was applied undiluted and remained uncovered on the skin. A similar group of rats served as controls; they were treated in the same manner except that no CSO was applied to their skin. There was a dose-related mortality and depression of body weight gain in the rats treated with CSO at doses of 30 mg/kg/day or greater; none of the rats dosed at 2000 mg/kg/day survived more than 2 weeks. The primary target organs of CSO toxicity were the liver, thymus, and bone marrow. The effects on the liver included increased weight (250% at 500 mg/kg/day), cholangiolitis, diffuse liver cell degeneration and hypertrophy, necrosis, fibrosis, decreased serum glucose, increased levels of alkaline phosphatase, aspartate aminotransferase, alanine amino transferase, bilirubin, and triglycerides. The thymus was found to be small and upon microscopic examination to be atrophic or hypoplastic. Erythroid hypoplasia was found in the bone marrow of some of the rats dosed at 30 mg/kg/day and increased in severity with increasing dose. The erythroid hypoplasia was accompanied by a dose-related anemia. Even in the rats dosed at 8 mg/kg/day, very slight abnormalities in the bile ducts were observed upon microscopic examination of the liver. Chromatographic separation and analyses demonstrated that CSO contains about 58% 3- to 5-ring polycyclic aromatic hydrocarbons (PAHs) and approximately 8-10% carbazole derivatives. In vitro and in vivo skin penetration studies demonstrated that the carbazole materials penetrate through the skin to a considerable extent (about 44%); less penetration

  20. Toxicity evaluation of petroleum blending streams: inhalation subchronic toxicity/neurotoxicity study of a light catalytic cracked naphtha distillate in rats.

    PubMed

    Lapin, C; Bui, Q; Breglia, R; Koschier, F; Podhasky, P; Lapadula, E; Roth, R; Schreiner, C; White, R; Clark, C; Mandella, R; Hoffman, G

    2001-01-01

    A 15-week, whole-body inhalation study of the vapors of a distillate (LCCN-D) of light catalytic cracked naphtha (CAS no. 64741-55-5, LCCN) was conducted with Sprague-Dawley rats. Target exposure concentrations were 0, 750, 2500, and 7500 ppm for 6 hours/day, 5 days/week. Over the course of the study, animals received at least 65 exposures. For a portion of the control and 7500-ppm groups, a 4-week postexposure period was included in the study. Subchronic toxicity was evaluated using standard parameters. During life, neurotoxicity was evaluated by motor activity assessment and a functional observational battery. Selected tissues from animals in all exposure groups were examined microscopically. Neuropathologic examination of selected neuronal tissues from animals in the control and high-exposure groups was also conducted. No compound-related effects were seen on survival, clinical chemistry, food consumption, or physical signs. No evidence of neurotoxicity was seen at any exposure level. Slight decreases in hematocrit and hemoglobin concentrations were seen in male rats at the end of exposure to 7500 ppm LCCN-D. However, values were within normal physiological ranges and recovery occurred. Slight decreases in mean body weights and body weight gain were observed in high-exposure females during the first 7 weeks of exposure, but this decrease was not seen during the second half of the study. Male rat nephropathy involving hyaline droplet formation and alpha-2micro-globulin accumulation was seen in mid- and high-exposure males, an effect not relevant to humans. The incidence and severity of goblet cell hypertrophy/hyperplasia and respiratory epithelium hyperplasia in nasoturbinal tissues were greater in high-exposure animals, but recovery occurred. None of the effects observed were considered toxicologically significant. The no-observable-adverse-effect level (NOAEL) for subchronic and neurotoxicity of LCCN-D was > or = 7500 ppm.

  1. Low-temperature, selective catalytic deoxygenation of vegetable oil in supercritical fluid media.

    PubMed

    Kim, Seok Ki; Lee, Hong-Shik; Hong, Moon Hyun; Lim, Jong Sung; Kim, Jaehoon

    2014-02-01

    The effects of supercritical fluids on the production of renewable diesel-range hydrocarbons from natural triglycerides were investigated. Various supercritical fluids, which included CO2 (scCO2 ), propane (scC3 H8 ) and n-hexane (scC6 H14 ), were introduced with H2 and soybean oil into a fixed-bed reactor that contained pre-activated CoMo/γ-Al2 O3 . Among these supercritical fluids, scC3 H8 and scC6 H14 efficiently allowed the reduction of the reaction temperature by as much as 50 °C as a result of facilitated heat and mass transfer and afforded similar yields to reactions in the absence of supercritical fluids. The compositional analyses of the gas and liquid products indicated that the addition of scC3 H8 during the hydrotreatment of soybean oil promoted specific deoxygenation pathways, decarbonylation and decarboxylation, which consumed less H2 than the hydrodeoxygenation pathway. As a result, the quantity of H2 required to obtain a high yield of diesel-range hydrocarbons could be reduced to 57 % if scC3 H8 was used. As decarboxylation and decarbonylation are mildly endothermic reactions, the reduced heat transfer resistance in scC3 H8 may drive the deoxygenation reaction to thermodynamically favourable pathways.

  2. Computer simulations of fluid flow over catalytic surfaces for water splitting

    NASA Astrophysics Data System (ADS)

    Chong, Leebyn; Dutt, Meenakshi

    2014-12-01

    Interfacial phenomena arising at solid/fluid interfaces depend upon the nanoscale structural and dynamical properties of the system. The presence of active sites on the solid surface that can bind with reactants in the fluid enables the investigation of reaction kinetics and its effect on multi-scale transport processes. We develop a coarse-grained particle-based model of the flow of reactants over a solid surface composed of close packed particles with embedded active sites. We investigate the role of the adsorption of the reactants onto these sites on the transport phenomena via the coarse-grained molecular dynamics technique. Our objective is to understand the role of nanoscale interfacial phenomena on the structural and dynamical properties of the system through the measurement of diffusion coefficients, velocity profiles, radial distribution functions, and mean residence times. We have investigated these properties as a function of the active site density, coarse graining effects and interaction strengths. Our results can potentially be used for future studies on multi-scale phenomena driven by reaction kinetics at solid/fluid interfaces, such as artificial photosynthesis cells.

  3. Soluble and Catalytically Active Endothelin Converting Enzyme-1 is Present in Cerebrospinal Fluid of Subarachnoid Hemorrhage Patients

    PubMed Central

    Kuruppu, Sanjaya; Chou, Sherry H.-Y.; Feske, Steven K.; Suh, Sarah; Hanchapola, Iresha; Lo, Eng H.; Ning, MingMing; Smith, A. Ian

    2014-01-01

    Endothelin converting Enzyme-1 (ECE-1) is essential for the production of Endothelin-1 (ET-1), which is associated with vasospasm following subarachnoid hemorrhage (SAH). We have previously demonstrated the presence of a catalytically active soluble form of ECE-1 in the media of endothelial cells. We aimed to determine if this form of ECE-1 exists in vivo, in cerebrospinal fluid (CSF) of SAH patients. We examined CSF taken from SAH subjects for the presence of soluble ECE-1 using a bradykinin based quenched fluorescent substrate assay. We obtained further confirmation by characterizing the CSF mediated cleavage products of BigET-1 and BigET18–34 (6 μg/ml) using mass spectrometry. The specificity of cleavage was confirmed using the ECE-1 inhibitor CGS35066 5nmol/L. SAH CSF samples had mean ECE-1 activity of 0.127 ± 0.037 μmols of substrate cleaved/μl of CSF/24 h. The C-terminal peptides generated upon the cleavage of BigET-1 and BigET18–34 were detected 48 h after incubation of these substrates with CSF. Cleavage of these substrates was inhibited by CGS35066. Results of Western blots also produced strong evidence for the presence of truncated soluble ECE-1 in CSF. These results strongly suggest the presence of a truncated but catalytically active form of ECE-1 in the CSF of SAH subjects. Further studies are necessary to determine the biological significance of soluble ECE-1 in CSF of SAH subjects, including an association with vasospasm after SAH. PMID:23816989

  4. Slow Crack Growth and Fracture Toughness of Sapphire for the International Space Station Fluids and Combustion Facility

    NASA Technical Reports Server (NTRS)

    Salem, Jonathan A.

    2006-01-01

    The fracture toughness, inert flexural strength, and slow crack growth parameters of the r- and a-planes of sapphire grown by the Heat Exchange Method were measured to qualify sapphire for structural use in the International Space Station. The fracture toughness in dry nitrogen, K(sub Ipb), was 2.31 +/- 0.12 MPa(square root of)m and 2.47 +/- 0.15 MPa(squre root of)m for the a- and r-planes, respectively. Fracture toughness measured in water via the operational procedure in ASTM C1421 was significantly lower, K(sub Ivb) = 1.95+/- 0.03 MPa(square root of)m, 1.94 +/- 0.07 and 1.77 +/- 0.13 MPa(square root of)m for the a- , m- and r-planes, respectively. The mean inert flexural strength in dry nitrogen was 1085 +/- 127 MPa for the r-plane and 1255 +/- 547 MPa for the a-plane. The power law slow crack growth exponent for testing in water was n = 21 +/- 4 for the r-plane and n (greater than or equal to) 31 for the a-plane. The power law slow crack growth coefficient was A = 2.81 x 10(exp -14) m/s x (MPa(squre root of)m)/n for the r-plane and A (approx. equals)2.06 x 10(exp -15) m/s x (MPa(square root of)m)/n for the a-plane. The r- and a-planes of sapphire are relatively susceptible to stress corrosion induced slow crack growth in water. However, failure occurs by competing modes of slow crack growth at long failure times and twinning for short failure time and inert environments. Slow crack growth testing needs to be performed at low failure stress levels and long failure times so that twinning does not affect the results. Some difficulty was encountered in measuring the slow crack growth parameters for the a-plane due to a short finish (i.e., insufficient material removal for elimination of the damage generated in the early grinding stages). A consistent preparation method that increases the Weibull modulus of sapphire test specimens and components is needed. This would impart higher component reliability, even if higher Weibull modulus is gained at the sacrifice of

  5. Investigation of Coal-biomass Catalytic Gasification using Experiments, Reaction Kinetics and Computational Fluid Dynamics

    SciTech Connect

    Battaglia, Francine; Agblevor, Foster; Klein, Michael; Sheikhi, Reza

    2015-12-31

    A collaborative effort involving experiments, kinetic modeling, and computational fluid dynamics (CFD) was used to understand co-gasification of coal-biomass mixtures. The overall goal of the work was to determine the key reactive properties for coal-biomass mixed fuels. Sub-bituminous coal was mixed with biomass feedstocks to determine the fluidization and gasification characteristics of hybrid poplar wood, switchgrass and corn stover. It was found that corn stover and poplar wood were the best feedstocks to use with coal. The novel approach of this project was the use of a red mud catalyst to improve gasification and lower gasification temperatures. An important results was the reduction of agglomeration of the biomass using the catalyst. An outcome of this work was the characterization of the chemical kinetics and reaction mechanisms of the co-gasification fuels, and the development of a set of models that can be integrated into other modeling environments. The multiphase flow code, MFIX, was used to simulate and predict the hydrodynamics and co-gasification, and results were validated with the experiments. The reaction kinetics modeling was used to develop a smaller set of reactions for tractable CFD calculations that represented the experiments. Finally, an efficient tool was developed, MCHARS, and coupled with MFIX to efficiently simulate the complex reaction kinetics.

  6. Developments in resid cracking technology at Gulf

    SciTech Connect

    Campagna, R.J.; Krishna, A.S.; Yanik, S.J.

    1983-08-01

    As conservation measures and standards for new car efficiencies take hold, the demand for gasoline is expected to decline, forcing refiners to meet product demands efficiently with minimum crude. With a reduced market and relatively low price for residual streams, it is very likely that fluid catalytic cracking (FCC) will continue to play a key role in upgrading resids. The economics are overwhelmingly in favor of this strategy. With current price differentials between asphalt and FCC products, the incremental profit for resid cracking at one Gulf Refinery was estimated to be $8/bbl of vacuum tower bottoms cracked. Processing resids poses a number of problems, however. They often contain high levels of sulfur, metals, and coke precursors which may require high catalysts costs, unit modifications and process innovations. Development of promising approaches to handling resids has focused on three key area: 1)catalyst and passivator technology improvemnts; 2)innovations in FCC processing technology; and 3)coupling FCC with other processes. The report presented reviews Gulf's research efforts in these areas. In addition, Gulf's commercial and pilot plant resid cracking data are discussed. (JMT)

  7. A density functional study on the effect of the zeolite cavity on its catalytic activity: The dehydrogenation and cracking reactions of isobutane over HZSM-5 and HY zeolites

    NASA Astrophysics Data System (ADS)

    Milas, Ivan; Chaer Nascimento, Marco Antonio

    2006-02-01

    The dehydrogenation and cracking reactions of isobutane over HZMS-5 and HY were studied at the DFT level of calculation to verify the influence of the cavity on the energetics and mechanism of the reactions. The zeolites were represented by the 20T and 32T clusters, respectively. The results indicate that the reactions follow the same mechanism in both zeolites but the activation energies are reduced by ˜10 kcal/mol relative to the values with smaller clusters. Activation energies for the dehydrogenation reactions were similar in both zeolites, but for the cracking reaction in HY, the activation energy is ˜5 kcal/mol higher than in HZSM-5.

  8. Corrosion cracking

    SciTech Connect

    Goel, V.S.

    1985-01-01

    This book presents the papers given at a conference on alloy corrosion cracking. Topics considered at the conference included the effect of niobium addition on intergranular stress corrosion cracking, corrosion-fatigue cracking in fossil-fueled-boilers, fracture toughness, fracture modes, hydrogen-induced thresholds, electrochemical and hydrogen permeation studies, the effect of seawater on fatigue crack propagation of wells for offshore structures, the corrosion fatigue of carbon steels in seawater, and stress corrosion cracking and the mechanical strength of alloy 600.

  9. Hydrocarbon cracking and reforming process

    SciTech Connect

    Le, Q.N.; Schipper, P.H.; Owen, H.

    1992-03-31

    This patent describes a process for upgrading paraffinic naphtha to high octane fuel. It comprises: contacting a fresh naphtha feedstock stream containing a major amount of C{sub 7+} alkanes and naphthenes with medium pore acid cracking catalyst under low pressure selective cracking conditions effective to produce 4-C5 isoalkene and C4-C5 isoalkane, the cracking catalyst being substantially free of hydrogenation-dehydrogenation metal components and having an acid cracking activity less than 15; separating cracking effluent to obtain an olefinic fraction rich in C4-C5 isoalkene and a C6+ fraction; etherifying the C4-C5 isoalkene fraction by catalytic reaction with lower alkanol to produce tertiary-alkyl ether product; and reforming the C6+ fraction to provide high octane gasoline components.

  10. Simultaneous determination of cocaine/crack and its metabolites in oral fluid, urine and plasma by liquid chromatography-mass spectrometry and its application in drug users.

    PubMed

    Fiorentin, Taís Regina; D'Avila, Felipe Bianchini; Comiran, Eloisa; Zamboni, Amanda; Scherer, Juliana Nichterwitz; Pechansky, Flavio; Borges, Paulo Eduardo Mayorga; Fröehlich, Pedro Eduardo; Limberger, Renata Pereira

    2017-07-01

    A single LC-MS equipment was used to validate three methods for simultaneously analyzing cocaine (COC), benzoylecgonine (BZE), cocaethylene (CE), anhydroecgonine methyl ester (AEME) and anhydroecgonine (AEC) in oral fluid (OF), urine and plasma. The methods were carried out using a Kinetex HILIC column for polar compounds at 30°C. Mobile phase with isocratic condition of acetonitrile: 13mM ammonium acetate pH 6.0: methanol (55:35:10 v/v/v) at 0.8mL/min flow rate was used. After buffer dilution (OF) and protein precipitation (urine and plasma), calibration curve ranges were 4.25-544ng/mL for oral fluid and 5-320ng/mL for urine and plasma with correlation coefficients (r) between 0.9947 and 0.9992. The lowest concentration of the calibration curves were the lower limit of quantification. No major matrix effect could be noted, demonstrating the efficiency of the cleaning procedure. The methods were fully validated and proved to be suitable for analysis of 124 cocaine and/or crack cocaine users. Among the subjects, 56.5% reported daily use of cocaine in the previous three months. Results show a high prevalence of the analytes, with BZE as the most prevalent (94 cases), followed by COC (93 cases), AEC (70 cases), CE (33 cases) and AEME (13 cases). In addition, the concentration of BZE in urine was higher compared to OF and plasma found in the real samples, showing the facility of accumulation in chronic users in matrices with a large detection window. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Use of vacuum residue in thermal cracking

    SciTech Connect

    Mikulla, K.D.; Wernicke, H.J.

    1981-03-24

    Vacuum residue is used for production of olefins by first separating, preferably by solvent extraction, the asphalt therein , blending resultant asphalt depleted fraction with a lighter fraction, E.G., a vacuum gas oil, and then subjecting the blend to a conventional catalytic hydrogenation step prior to thermal cracking. The hydrogenate may be separated into fractions with the heavy fraction only being thermally cracked.

  12. Multifaceted effects of HZSM-5 (Proton-exchanged Zeolite Socony Mobil-5) on catalytic cracking of pinewood pyrolysis vapor in a two-stage fixed bed reactor.

    PubMed

    Wang, Yimeng; Wang, Jie

    2016-08-01

    The pinewood was pyrolyzed in the first reactor at a heating rate of 10°Cmin(-1) from room temperature to 700°C, and the vapor was allowed to be cracked through the second reactor in a temperature range of 450-750°C without and with HZSM-5. Attempts were made to determine a wide spectrum of gaseous and liquid products, as well as the mass and element partitions to gas, water, bio-oil, coke and char. HZSM-5 showed a preferential deoxygenation effect via the facilitated decarbonylation and decarboxylation with the inhibited dehydration at 550-600°C. This catalyst also displayed a high selectivity for the formations of aromatic hydrocarbons and olefins by the promoted hydrogen transfer to these products at 550-600°C. The bio-oil produced with HZSM-5 at 500-600°C had the yields of 14.5-16.8%, the high heat values of 39.1-42.4MJkg(-1), and the energy recoveries of 33-35% (all dry biomass basis).

  13. Crack Healing in Quartz: Influence of Crack Morphology and pOH-

    NASA Astrophysics Data System (ADS)

    Fallon, J. A.; Kronenberg, A. K.; Popp, R. K.; Lamb, W. M.

    2004-12-01

    Crack healing in quartz has been investigated by optical microscopy and interferometry of rhombohedral r-cleavage cracks in polished Brazilian quartz prisms that were hydrothermally annealed. Quartz prisms were pre-cracked at room temperature and then annealed at temperatures T of 250° and 400° C for 2.4 to 240 hours, fluid pressure Pf = 41 MPa (equal to confining pressure Pc), and varying pOH- (from 5.4 to 1.2 at 250° C for fluids consisting of distilled water and NaOH solutions). Crack morphologies before and after annealing were recorded for each sample in plane light digital images and apertures were determined from interference fringes recorded using transmitted monochromatic light (λ = 598 nm). As documented in previous studies (Smith and Evans, 1984; Brantley et al., 1990; Beeler and Hickman, 1996), crack healing of quartz is driven by reductions in surface energy and healing rates appear to be limited by diffusional solute transport; sharply defined crack tips become blunted and break up into fluid-filled tubes and inclusions. However, fluid inclusion geometries are also observed with nonequilibrium shapes that depend on initial surface roughness. Crack healing is significant at 400° C after short run durations (24 hr) with healing rates reaching 10-5 mm/s. Crack healing is also observed at T=250° C, but only for smooth cracks with apertures < 0.6 μ m or for cracks subject to low pOH-. The extent of crack healing is sensitive to crack aperture and to hackles formed by fine-scale crack branching during crack growth. Initial crack apertures appear to be governed by the presence of fine particles, often found in the vicinity of hackles, which maintain the separation of crack surfaces. Where rough cracks exhibit healing, hackles are sites of either enhanced or reduced loss of fluid-solid interface depending on slight mismatches and sense of twist of opposing crack surfaces. Hackles of open r-cleavage cracks are replaced either by (1) healed curvilinear

  14. Crack propagation driven by crystal growth

    SciTech Connect

    A. Royne; Paul Meaking; A. Malthe-Sorenssen; B. Jamtveit; D. K. Dysthe

    2011-10-01

    Crystals that grow in confinement may exert a force on their surroundings and thereby drive crack propagation in rocks and other materials. We describe a model of crystal growth in an idealized crack geometry in which the crystal growth and crack propagation are coupled through the stress in the surrounding bulk solid. Subcritical crack propagation takes place during a transient period, which may be very long, during which the crack velocity is limited by the kinetics of crack propagation. When the crack is sufficiently large, the crack velocity becomes limited by the kinetics of crystal growth. The duration of the subcritical regime is determined by two non-dimensional parameters, which relate the kinetics of crack propagation and crystal growth to the supersaturation of the fluid and the elastic properties of the surrounding material.

  15. Thermal cracking with post hydrogenation and recycle of heavy fractions

    SciTech Connect

    Schliebener, C.; Wernicke, H.J.

    1981-10-27

    In a process for the thermal cracking of hydrocarbons to produce olefins. Improvements include recovering of hydrocarbons boiling above 200/sup 0/ C from the thermal cracking stage, removal of polymeric components therefrom, catalytically hydrogenating resultant hydrocarbons boiling above 200/sup 0/ C, and recycling resultant hydrogenated hydrocarbons to the thermal cracking stage.

  16. The kinetics of hydrocarbon cracking

    SciTech Connect

    Groten, W.A.; Wojciechowski, B.W. )

    1993-03-01

    A general kinetic model which describes the catalytic cracking of pure hydrocarbons is presented. The model includes a monomolecular cracking path based on the Langmuir adsorption isotherm as well as a bimolecular path, following Rideal kinetics, which accounts for the possibility of a chain cracking mechanism being involved. Catalyst decay is accounted for using the time-on-stream-decay function. Fitting of experimental data from n-nonane cracking on USHY at 673 K, combined with Monte Carlo simulations indicates that, in that case, the total catalytic activity could include between 0 and 90% of activity due to chain processes. This large margin of error stems from the combined effects of a large decay rate, forcing the experimenter to use average conversion data, and of experimental error. Fitting of the model to previously published cracking data for 2-methylpentane on USHY showed that the model lacks a suitable parameter to account for thermal reactions which were not accounted for in the original data set. This observation supports the impression that the model is sensitive to departures from the postulated mechanism. The above kinetic model has also been fitted to the results of n-nonane cracking at three temperatures as well as to previously published data for various other linear paraffins. 32 refs., 17 figs., 6 tabs.

  17. Seismic wave propagation in cracked porous media

    NASA Astrophysics Data System (ADS)

    Pointer, Tim; Liu, Enru; Hudson, John A.

    2000-07-01

    The movement of interstitial fluids within a cracked solid can have a significant effect on the properties of seismic waves of long wavelength propagating through the solid. We consider three distinct mechanisms of wave-induced fluid flow: flow through connections between cracks in an otherwise non-porous material, fluid movement within partially saturated cracks, and diffusion from the cracks into a porous matrix material. In each case the cracks may be aligned or randomly oriented, leading, respectively, to anisotropic or isotropic wave speeds and attenuation factors. In general, seismic velocities exhibit behaviour that is intermediate between that of empty cracks and that of isolated liquid-filled cracks if fluid flow is significant. In the range of frequencies for which considerable fluid flow occurs there is high attenuation and dispersion of seismic waves. Fluid flow may be on either a wavelength scale or a local scale depending on the model and whether the cracks are aligned or randomly oriented, resulting in completely different effects on seismic wave propagation. A numerical analysis shows that all models can have an effect over the exploration seismic frequency range.

  18. 40 CFR 63.1566 - What are my requirements for organic HAP emissions from catalytic reforming units?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... elect to meet a TOC or nonmethane TOC percent reduction standard or concentration limit, whichever is... Pollutants for Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Catalytic Cracking Units, Catalytic Reforming Units, Sulfur Recovery Units, and Bypass Lines §...

  19. Cracking catalyst

    SciTech Connect

    Otterstedt, J. E. A.; Jaras, S. G.; Pudas, R.; Upson, L. L.

    1985-05-07

    A cracking catalyst having good resistance to metal poisoning has at least two particle fractions of different particle sizes, the cracking catalyzing zeolite material being concentrated to the coarser particle size fractions, and the finer particle size fractions being formed from material having relatively lower or no or insignificant cracking catalyzing activity. The particles of the finer particle size fractions have a matrix of kaolin and amorphous alumina--silica and may contain for example, an SO /SUB x/ eliminating additive such as Al/sub 2/O/sub 3/, CaO and/or MgO. The coarser particle size fractions having cracking catalyzing effect have a mean particle size of from 80 to 125 ..mu..m and the finer particle size fractions a mean particle size of from 30 to 75 ..mu..m. The coarser particle size fractions have a zeolite content of at least 20 weight % and may have a zeolite content of up to 100 weight %, the remainder consisting essentially of material which has relatively lower or no or insignificant cracking-catalyzing activity and which consists of kaolin and amorphous alumina-silica. The catalyst mass as a whole may have a zeolite content of up to 50 weight %.

  20. Catalytic reactor

    SciTech Connect

    Aaron, Timothy Mark; Shah, Minish Mahendra; Jibb, Richard John

    2009-03-10

    A catalytic reactor is provided with one or more reaction zones each formed of set(s) of reaction tubes containing a catalyst to promote chemical reaction within a feed stream. The reaction tubes are of helical configuration and are arranged in a substantially coaxial relationship to form a coil-like structure. Heat exchangers and steam generators can be formed by similar tube arrangements. In such manner, the reaction zone(s) and hence, the reactor is compact and the pressure drop through components is minimized. The resultant compact form has improved heat transfer characteristics and is far easier to thermally insulate than prior art compact reactor designs. Various chemical reactions are contemplated within such coil-like structures such that as steam methane reforming followed by water-gas shift. The coil-like structures can be housed within annular chambers of a cylindrical housing that also provide flow paths for various heat exchange fluids to heat and cool components.

  1. Supercritical Catalytic Cracking of Hydrocarbon Feeds Insight

    DTIC Science & Technology

    2016-04-21

    was built around three central components, an ultrafast laser system, a fast optical scanning system and an upright microscope. The ultrafast laser ... laser system using synchronous digitization. After passing through the scan system, the beam is sent to the upright microscope and then focused on to...Stokes Raman spectroscopy (CARS), resonance Raman spectroscopy and two-photon fluorescence. The crystals with varying Si/Al ratio were characterized by

  2. Process for preparing catalytic cracking catalysts

    SciTech Connect

    Chiang, R.L.; Perigard, R.G.; Rabo, J.A.

    1986-05-27

    A process is described for preparing a catalyst comprising the following steps: (i) contacting a mixture of large pore zeolite and inorganic oxide matrix, with a fluoro salt of the formula A/sub (n-m)/(MF/sub n/)/sub z/ wherein ''A'' is an organic or inorganic ionic moiety; (MF/sub n/)/sub z/ is a fluoroanion moiety comprising the element ''M''; ''M'' is an element selected from the group of elements from Groups VB, VIB, VIIB, VIII, IIIA, IVA and VA of the Periodic Table of Elements; ''n'' is the coordination number of ''M''; ''m'' is the valence of ''M''; and ''z'' is the valence or charge associated with ''A''; at a pH greater than 7, at effective conditions of temperature and time.

  3. Heterogeneously Catalyzed Endothermic Fuel Cracking

    DTIC Science & Technology

    2016-08-28

    showed that the most active materials have in fact a distribution of carbide nanoparticles, with many particles inside the zeolite nanopores , but also...Combustion, fuels, materials , design. MIT press. Tranter, R. S. et al. (2005). Ethane oxidation and pyrolysis from 5 bar to 1000 bar: Experiments and...olefins in the Fluidized Catalytic Cracking process. This observation motivated the investigation of these materials under high pressures. In

  4. Methodology for extracting local constants from petroleum cracking flows

    DOEpatents

    Chang, Shen-Lin; Lottes, Steven A.; Zhou, Chenn Q.

    2000-01-01

    A methodology provides for the extraction of local chemical kinetic model constants for use in a reacting flow computational fluid dynamics (CFD) computer code with chemical kinetic computations to optimize the operating conditions or design of the system, including retrofit design improvements to existing systems. The coupled CFD and kinetic computer code are used in combination with data obtained from a matrix of experimental tests to extract the kinetic constants. Local fluid dynamic effects are implicitly included in the extracted local kinetic constants for each particular application system to which the methodology is applied. The extracted local kinetic model constants work well over a fairly broad range of operating conditions for specific and complex reaction sets in specific and complex reactor systems. While disclosed in terms of use in a Fluid Catalytic Cracking (FCC) riser, the inventive methodology has application in virtually any reaction set to extract constants for any particular application and reaction set formulation. The methodology includes the step of: (1) selecting the test data sets for various conditions; (2) establishing the general trend of the parametric effect on the measured product yields; (3) calculating product yields for the selected test conditions using coupled computational fluid dynamics and chemical kinetics; (4) adjusting the local kinetic constants to match calculated product yields with experimental data; and (5) validating the determined set of local kinetic constants by comparing the calculated results with experimental data from additional test runs at different operating conditions.

  5. Fatigue behavior of Long and Short Cracks in Aluminum Alloys.

    DTIC Science & Technology

    1987-05-01

    deposits ,37 40 irregular fracture morphologies coupled with crack tip shear displacements, 4 1 4 3 and fluid-induced pressure44 in addition to...Associated Auger measurements of the extent of crack surface corrosion deposits are shown in Fig. 4.6. In marked contrast to behavior in lower...6 8 10 12 CRACK LENGTH MEASURED FROM NOTCH (mm) Fig. 4.6: Scanning Auger spectroscopic measurements of excess crack surface oxide deposits as a

  6. Catalytic Reforming

    SciTech Connect

    Little, D.M.

    1985-01-01

    Don Little's Catalytic Reforming deals exclusively with reforming. With the increasing need for unleaded gasoline, the importance of this volume has escalated since it combines various related aspects of reforming technology into a single publication. For those with no practical knowledge of catalytic reforming, the chemical reactions, flow schemes and how the cat reformer fits into the overall refinery process will be of interest. Contents include: Catalytic reforming in refinery processing: How catalytic reformers work - chemical reactions; Process design; The catalyst, process variables and unit operation; Commercial processes; BTX operation; Feed preparation; naphtha hydrotreating and catalytic reforming; Index.

  7. Methods of cracking a crude product to produce additional crude products

    DOEpatents

    Mo, Weijian [Sugar Land, TX; Roes, Augustinus Wilhelmus Maria [Houston, TX; Nair, Vijay [Katy, TX

    2009-09-08

    A method for producing a crude product is disclosed. Formation fluid is produced from a subsurface in situ heat treatment process. The formation fluid is separated to produce a liquid stream and a first gas stream. The first gas stream includes olefins. The liquid stream is fractionated to produce one or more crude products. At least one of the crude products has a boiling range distribution from 38.degree. C. and 343.degree. C. as determined by ASTM Method D5307. The crude product having the boiling range distribution from 38.degree. C. and 343.degree. C. is catalytically cracked to produce one or more additional crude products. At least one of the additional crude products is a second gas stream. The second gas stream has a boiling point of at most 38.degree. C. at 0.101 MPa.

  8. Crack, crack house sex, and HIV risk.

    PubMed

    Inciardi, J A

    1995-06-01

    Limited attention has been focused on HIV risk behaviors of crack smokers and their sex partners, yet there is evidence that the crack house and the crack-using life-style may be playing significant roles in the transmission of HIV and other sexually transmitted diseases. The purposes of this research were to study the attributes and patterns of "sex for crack" exchanges, particularly those that occurred in crack houses, and to assess their potential impact on the spread of HIV. Structured interviews were conducted with 17 men and 35 women in Miami, Florida, who were regular users of crack and who had exchanged sex for crack (or for money to buy crack) during the past 30 days. In addition, participant observation was conducted in 8 Miami crack houses. Interview and observational data suggest that individuals who exchange sex for crack do so with considerable frequency, and through a variety of sexual activities. Systematic data indicated that almost a third of the men and 89% of the women had had 100 or more sex partners during the 30-day period prior to study recruitment. Not only were sexual activities anonymous, extremely frequent, varied, uninhibited (often undertaken in public areas of crack houses), and with multiple partners but, in addition, condoms were not used during the majority of contacts. Of the 37 subjects who were tested for HIV and received their test results 31% of the men and 21% of the women were HIV seropositive.

  9. Method and apparatus for a catalytic firebox reactor

    DOEpatents

    Smith, Lance L.; Etemad, Shahrokh; Ulkarim, Hasan; Castaldi, Marco J.; Pfefferle, William C.

    2001-01-01

    A catalytic firebox reactor employing an exothermic catalytic reaction channel and multiple cooling conduits for creating a partially reacted fuel/oxidant mixture. An oxidation catalyst is deposited on the walls forming the boundary between the multiple cooling conduits and the exothermic catalytic reaction channel, on the side of the walls facing the exothermic catalytic reaction channel. This configuration allows the oxidation catalyst to be backside cooled by any fluid passing through the cooling conduits. The heat of reaction is added to both the fluid in the exothermic catalytic reaction channel and the fluid passing through the cooling conduits. After discharge of the fluids from the exothermic catalytic reaction channel, the fluids mix to create a single combined flow. A further innovation in the reactor incorporates geometric changes in the exothermic catalytic reaction channel to provide streamwise variation of the velocity of the fluids in the reactor.

  10. 40 CFR 63.1567 - What are my requirements for inorganic HAP emissions from catalytic reforming units?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... demonstrate continuous compliance with the percent reduction operating limit, calculate the HCl operating... permissible HCl concentration for the percent reduction operating limit, ppmv; %HCl ReductionLimit = Minimum... Pollutants for Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur...

  11. 40 CFR 63.1567 - What are my requirements for inorganic HAP emissions from catalytic reforming units?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... demonstrate continuous compliance with the percent reduction operating limit, calculate the HCl operating... permissible HCl concentration for the percent reduction operating limit, ppmv; %HCl ReductionLimit = Minimum... Pollutants for Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur...

  12. Gear Crack Propagation Investigation

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Reduced weight is a major design goal in aircraft power transmissions. Some gear designs incorporate thin rims to help meet this goal. Thin rims, however, may lead to bending fatigue cracks. These cracks may propagate through a gear tooth or into the gear rim. A crack that propagates through a tooth would probably not be catastrophic, and ample warning of a failure could be possible. On the other hand, a crack that propagates through the rim would be catastrophic. Such cracks could lead to disengagement of a rotor or propeller from an engine, loss of an aircraft, and fatalities. To help create and validate tools for the gear designer, the NASA Lewis Research Center performed in-house analytical and experimental studies to investigate the effect of rim thickness on gear-tooth crack propagation. Our goal was to determine whether cracks grew through gear teeth (benign failure mode) or through gear rims (catastrophic failure mode) for various rim thicknesses. In addition, we investigated the effect of rim thickness on crack propagation life. A finite-element-based computer program simulated gear-tooth crack propagation. The analysis used principles of linear elastic fracture mechanics, and quarter-point, triangular elements were used at the crack tip to represent the stress singularity. The program had an automated crack propagation option in which cracks were grown numerically via an automated remeshing scheme. Crack-tip stress-intensity factors were estimated to determine crack-propagation direction. Also, various fatigue crack growth models were used to estimate crack-propagation life. Experiments were performed in Lewis' Spur Gear Fatigue Rig to validate predicted crack propagation results. Gears with various backup ratios were tested to validate crack-path predictions. Also, test gears were installed with special crack-propagation gages in the tooth fillet region to measure bending-fatigue crack growth. From both predictions and tests, gears with backup ratios

  13. Crack spectra analysis

    SciTech Connect

    Tiernan, M.

    1980-09-01

    Crack spectra derived from velocity data have been shown to exhibit systematics which reflect microstructural and textural differences between samples (Warren and Tiernan, 1980). Further research into both properties and information content of crack spectra have yielded the following: Spectral features are reproducible even at low pressures; certain observed spectral features may correspond to non-in-situ crack populations created during sample retrieval; the functional form of a crack spectra may be diagnostic of the sample's grain texture; hysteresis is observed in crack spectra between up and down pressure runs - it may be due to friction between the faces of closed crack populations.

  14. 40 CFR Table 20 to Subpart Uuu of... - Continuous Compliance With Organic HAP Emission Limits for Catalytic Reforming Units

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Emission Limits for Catalytic Reforming Units 20 Table 20 to Subpart UUU of Part 63 Protection of... Pollutants for Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery... HAP Emission Limits for Catalytic Reforming Units As stated in § 63.1566(c)(1), you shall meet...

  15. 40 CFR Table 26 to Subpart Uuu of... - Initial Compliance With Inorganic HAP Emission Limits for Catalytic Reforming Units

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Emission Limits for Catalytic Reforming Units 26 Table 26 to Subpart UUU of Part 63 Protection of... Pollutants for Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery... HAP Emission Limits for Catalytic Reforming Units As stated in § 63.1567(b)(4), you shall meet...

  16. 40 CFR Table 26 to Subpart Uuu of... - Initial Compliance With Inorganic HAP Emission Limits for Catalytic Reforming Units

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Emission Limits for Catalytic Reforming Units 26 Table 26 to Subpart UUU of Part 63 Protection of... Pollutants for Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery... HAP Emission Limits for Catalytic Reforming Units As stated in § 63.1567(b)(4), you shall meet...

  17. 40 CFR Table 27 to Subpart Uuu of... - Continuous Compliance With Inorganic HAP Emission Limits for Catalytic Reforming Units

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... HAP Emission Limits for Catalytic Reforming Units 27 Table 27 to Subpart UUU of Part 63 Protection of... Pollutants for Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery... Inorganic HAP Emission Limits for Catalytic Reforming Units As stated in § 63.1567(c)(1), you shall...

  18. 40 CFR Table 19 to Subpart Uuu of... - Initial Compliance With Organic HAP Emission Limits for Catalytic Reforming Units

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Emission Limits for Catalytic Reforming Units 19 Table 19 to Subpart UUU of Part 63 Protection of... Pollutants for Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery... HAP Emission Limits for Catalytic Reforming Units As stated in § 63.1566(b)(7), you shall meet...

  19. 40 CFR Table 20 to Subpart Uuu of... - Continuous Compliance With Organic HAP Emission Limits for Catalytic Reforming Units

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Emission Limits for Catalytic Reforming Units 20 Table 20 to Subpart UUU of Part 63 Protection of... Pollutants for Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery... HAP Emission Limits for Catalytic Reforming Units As stated in § 63.1566(c)(1), you shall meet...

  20. 40 CFR Table 19 to Subpart Uuu of... - Initial Compliance With Organic HAP Emission Limits for Catalytic Reforming Units

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Emission Limits for Catalytic Reforming Units 19 Table 19 to Subpart UUU of Part 63 Protection of... Pollutants for Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery... HAP Emission Limits for Catalytic Reforming Units As stated in § 63.1566(b)(7), you shall meet...

  1. 40 CFR Table 18 to Subpart Uuu of... - Requirements for Performance Tests for Organic HAP Emissions From Catalytic Reforming Units

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Organic HAP Emissions From Catalytic Reforming Units 18 Table 18 to Subpart UUU of Part 63 Protection of... Pollutants for Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery... for Organic HAP Emissions From Catalytic Reforming Units As stated in § 63.1566(b)(2) and (3), you...

  2. 40 CFR Table 27 to Subpart Uuu of... - Continuous Compliance With Inorganic HAP Emission Limits for Catalytic Reforming Units

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... HAP Emission Limits for Catalytic Reforming Units 27 Table 27 to Subpart UUU of Part 63 Protection of... Pollutants for Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery... Inorganic HAP Emission Limits for Catalytic Reforming Units As stated in § 63.1567(c)(1), you shall meet...

  3. Gear crack propagation investigations

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; Ballarini, Roberto

    1996-01-01

    Analytical and experimental studies were performed to investigate the effect of gear rim thickness on crack propagation life. The FRANC (FRacture ANalysis Code) computer program was used to simulate crack propagation. The FRANC program used principles of linear elastic fracture mechanics, finite element modeling, and a unique re-meshing scheme to determine crack tip stress distributions, estimate stress intensity factors, and model crack propagation. Various fatigue crack growth models were used to estimate crack propagation life based on the calculated stress intensity factors. Experimental tests were performed in a gear fatigue rig to validate predicted crack propagation results. Test gears were installed with special crack propagation gages in the tooth fillet region to measure bending fatigue crack growth. Good correlation between predicted and measured crack growth was achieved when the fatigue crack closure concept was introduced into the analysis. As the gear rim thickness decreased, the compressive cyclic stress in the gear tooth fillet region increased. This retarded crack growth and increased the number of crack propagation cycles to failure.

  4. Cocaine (Coke, Crack) Facts

    MedlinePlus

    ... That People Abuse » Cocaine (Coke, Crack) Facts Cocaine (Coke, Crack) Facts Listen Cocaine is a white ... Version Download "My life was built around getting cocaine and getting high." ©istock.com/ Marjot Stacey is ...

  5. Tubing weld cracking test

    SciTech Connect

    Lundin, C.D.; Qiao, C.Y.P.

    1995-12-31

    A tubing weld cracking (TWC) test was developed for applications involving advanced austenitic alloys (such as modified 800H and 310HCbN). Compared to the Finger hot cracking test, the TWC test shows an enhanced ability to evaluate the crack sensitivity of tubing materials. The TWC test can evaluate the cracking tendency of base as well as filter materials. Thus, it is a useful tool for tubing suppliers, filler metal producers and fabricators.

  6. 40 CFR Table 22 to Subpart Uuu of... - Inorganic HAP Emission Limits for Catalytic Reforming Units

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Inorganic HAP Emission Limits for... Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 22 Table 22 to Subpart UUU of Part 63—Inorganic HAP Emission Limits for Catalytic Reforming...

  7. 40 CFR Table 22 to Subpart Uuu of... - Inorganic HAP Emission Limits for Catalytic Reforming Units

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Inorganic HAP Emission Limits for... Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 22 Table 22 to Subpart UUU of Part 63—Inorganic HAP Emission Limits for Catalytic Reforming...

  8. White-Etching Matter in Bearing Steel. Part I: Controlled Cracking of 52100 Steel

    NASA Astrophysics Data System (ADS)

    Solano-Alvarez, W.; Bhadeshia, H. K. D. H.

    2014-10-01

    Although most of the research performed in bearing steel metallurgy aims to prevent crack nucleation and propagation, some applications require the exact opposite in order to study the role that disconnected surfaces inside the bulk material play when load is applied, or when fluids entrapped in surface cracks propagate tensile stresses or exacerbate corrosion. Four heat treatments have been designed to create controlled arrays of crack types and distributions in quenched and untempered steel normally used in the manufacture of bearings. The varieties of cracks studied include sparsely distributed martensite-plate cracks, fine-grain-boundary cracks, abundant martensite-plate cracks, and surface cracks. The intention was to create samples which can then be subjected to appropriate mechanical testing so that phenomena such as the appearance of "white-etching areas" or "white-etching cracks," crack-lubricant interactions, or hydrogen trapping can be studied further.

  9. Catalytic, hollow, refractory spheres

    NASA Technical Reports Server (NTRS)

    Wang, Taylor G. (Inventor); Elleman, Daniel D. (Inventor); Lee, Mark C. (Inventor); Kendall, Jr., James M. (Inventor)

    1987-01-01

    Improved, heterogeneous, refractory catalysts are in the form of gas-impervious, hollow, thin-walled spheres (10) suitable formed of a shell (12) of refractory such as alumina having a cavity (14) containing a gas at a pressure greater than atmospheric pressure. The wall material may be itself catalytic or a catalytically active material coated onto the sphere as a layer (16), suitably platinum or iron, which may be further coated with a layer (18) of activator or promoter. The density of the spheres (30) can be uniformly controlled to a preselected value within .+-.10 percent of the density of the fluid reactant such that the spheres either remain suspended or slowly fall or rise through the liquid reactant.

  10. Bed-limited cracks in effective medium theory

    NASA Astrophysics Data System (ADS)

    Tod, S. R.

    2003-02-01

    An effective medium theory typically requires the description of a mean crack shape. In general, for simplicity, this is taken to be a flat, circular (`penny-shaped') crack. However, this places an unnecessary limitation on the theory, when it is perhaps more realistic to describe a crack in terms of having a bounded width and an otherwise ellipsoidal shape. The generalization of the method of smoothing, as proposed by Hudson (1994, Geophys. J. Int.,117, 555-561) , to extend his original model (Hudson, 1980. Math. proc. Camb. phil. Soc.,88, 371-384), has been used to study the role of the crack width and the ratio of the two larger dimensions in determining the properties of the effective medium. In general, this leads to a description of the medium as having orthorhombic symmetry, and provides a suitable description of a material where the crack dimensions are restricted in one direction owing to, for example, bed-limiting effects, while remaining unconfined in other directions. An elliptical flat crack limit is determined, analoguous to the circular crack description of the original Hudson model. In addition to the isolated crack description, the theory is extended to include the fluid flow mechanism of Tod (2001, Geophys. J. Int.,146, 249-263) that models the flow as being dominated by crack-to-crack flow and is valid for low matrix porosities and over a large range of frequencies, provided that the wavelength is much greater than the crack dimensions.

  11. The Effect of Water on Crack Interaction

    NASA Astrophysics Data System (ADS)

    Gaede, O.; Regenauer-Lieb, K.

    2009-04-01

    While the mechanical coupling between pore fluid and solid phase is relatively well understood, quantitative studies dealing with chemical-mechanical weakening in geological materials are rare. Many classical poroelastic problems can be addressed with the simple law of effective stress. Experimental studies show that the presence of a chemically active fluid can have effects that exceed the predictions of the law of effective stress. These chemical fluid-rock interactions alter the mechanical properties of the solid phase. Especially chemical-mechanical weakening has important ramifications for many areas of applied geosciences ranging from nuclear waste disposal over reservoir enhancement to fault stability. In this study, we model chemically induced changes of the size of the process zone around a crack tip. The knowledge of the process zone size is used to extend existing effective medium approximations of cracked solids. The stress distribution around a crack leads to a chemical potential gradient. This gradient will be a driver for mass diffusion through the solid phase. As an example, mass diffusion is towards the crack tip for a mode I crack. In this case a chemical reaction, that weakens the solid phase, will increase the size of the process zone around the crack tip. We apply our model to the prominent hydrolytic weakening effect observed in the quartz-water system (Griggs and Blacic, 1965). Hydrolytic weakening is generally attributed to water hydrolyzing the strong Si-O bonds of the quartz crystal. The hydrolysis replaces a Si-O-Si bridge with a relatively weak hydrogen bridge between two silanol groups. This enhances dislocation mobility and hence the yield stress is reduced. The plastic process zone around a crack tip is therefore larger in a wet crystal than in a dry crystal. We calculate the size of the process zone by solving this coupled mechanical-chemical problem with the Finite Element code ABAQUS. We consider single crack, collinear crack and

  12. Linking elastic, mechanical and transport properties in anisotropically cracked rocks

    NASA Astrophysics Data System (ADS)

    Schubnel, A.; Benson, P.; Nasseri, F.; Gueguen, Y.; Meredith, P.; Young, R.

    2007-12-01

    Damage and crack porosity can result in a decrease of the mechanical strength of the rock, the development of elastic and mechanical anisotropy and the enhancement of transport properties. Using Non-Interactive Crack Effective Medium (NIC) theory as a fundamental tool, it is possible to calculate dry and wet elastic properties of cracked rocks in terms of a crack density tensor, average crack aspect ratio and mean crack fabric orientation using the solid grains and fluid elastic properties. Using the same tool, we show that the anisotropy, the shear wave splitting and the dispersion of elastic waves can be derived for anisotropic crack fabrics. Mechanically, the existence of embedded microcrack fabrics in rocks also significantly influences the fracture toughness (KIC) of rocks. We show that KIC can show large amounts of anisotropy as well, the degree and orientation of which being largely constrained once again by the microcrack fabric. NIC can predict relatively well KIC at high crack density, by simply using dimensionless crack densities inverted from velocities. A decrease of 50% for crack densities larger than 1, 80% for crack densities larger than 5 is predicted, in close agreement with our observed experimental variation of KIC. At the microscale, this can be interpreted by the fact that the main fracture is strongly interacting with the pre-existing microcrack fabric. Finally, and above the percolation threshold, macroscopic fluid flow also depends on the porosity, crack density and aspect ratio. Using the permeability model of Guéguen and Dienes (1989) and the crack density and aspect ratio recovered from the elastic wave velocity inversion, we successfully predict the evolution of permeability with pressure for direct comparison with the laboratory measurements. These combined experimental and modelling results illustrate the importance of understanding the details of how rock microstructures change in response to an external stimulus in predicting the

  13. Investigation of Helicopter Longeron Cracks

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Baughman, James; Wallace, Terryl A.

    2009-01-01

    Four cracked longerons, containing a total of eight cracks, were provided for study. Cracked regions were cut from the longerons. Load was applied to open the cracks, enabling crack surface examination. Examination revealed that crack propagation was driven by fatigue loading in all eight cases. Fatigue crack initiation appears to have occurred on the top edge of the longerons near geometric changes that affect component bending stiffness. Additionally, metallurgical analysis has revealed a local depletion in alloying elements in the crack initiation regions that may be a contributing factor. Fatigue crack propagation appeared to be initially driven by opening-mode loading, but at a crack length of approximately 0.5 inches (12.7 mm), there is evidence of mixed-mode crack loading. For the longest cracks studied, shear-mode displacements destroyed crack-surface features of interest over significant portions of the crack surfaces.

  14. Nonlinear Crack Growth Monitoring

    SciTech Connect

    Welch, DE

    2001-03-27

    Oak Ridge National Laboratory has developed a new technique to monitor the growth of cracks in structural members, and to predict when failure due to this damage is imminent. This technique requires the measurement of global loadings and local deflections/strains at critical locations to indicate the increasing growth of hidden cracks with sufficient warning time prior to failure to take preventative action to correct the problem or retire the structure before failure. The techniques, as described in the referenced report have been proven on a laboratory scale to successfully detect the onset of failure due to fatigue cracking (including cracking of corroded samples), stress corrosion cracking, and low temperature creep crack growth, with a reasonable degree of warning before failure.

  15. Elevated temperature crack growth

    NASA Technical Reports Server (NTRS)

    Kim, K. S.; Vanstone, R. H.

    1992-01-01

    The purpose of this program was to extend the work performed in the base program (CR 182247) into the regime of time-dependent crack growth under isothermal and thermal mechanical fatigue (TMF) loading, where creep deformation also influences the crack growth behavior. The investigation was performed in a two-year, six-task, combined experimental and analytical program. The path-independent integrals for application to time-dependent crack growth were critically reviewed. The crack growth was simulated using a finite element method. The path-independent integrals were computed from the results of finite-element analyses. The ability of these integrals to correlate experimental crack growth data were evaluated under various loading and temperature conditions. The results indicate that some of these integrals are viable parameters for crack growth prediction at elevated temperatures.

  16. Fatigue Behavior of Long and Short Cracks in Wrought and Powder Aluminum Alloys.

    DTIC Science & Technology

    1984-05-01

    deposits ,24-26 irregular fracture morphologies coupled with crack tip shear displacements,27-29 and fluid-induced pressure3 5 ,36 in addition to...compliance curves of load versus relative strain deviated from linearity. Crack surface corrosion deposits were measured with Scanning Auger Spectroscopy...linear with far fewer crack deflections. Associated Auger measurements of the extent of crack surface corrosion deposits are shown in Fig. 4.7. In marked

  17. CRACK MODELLING FOR RADIOGRAPHY

    SciTech Connect

    Chady, T.; Napierala, L.

    2010-02-22

    In this paper, possibility of creation of three-dimensional crack models, both random type and based on real-life radiographic images is discussed. Method for storing cracks in a number of two-dimensional matrices, as well algorithm for their reconstruction into three-dimensional objects is presented. Also the possibility of using iterative algorithm for matching simulated images of cracks to real-life radiographic images is discussed.

  18. The cracked tooth.

    PubMed

    Zuckerman, G R

    1998-01-01

    Fractured molars and premolars are very common. Fractures usually result from cracks that develop and slowly extend until the tooth separates into buccal and lingual fragments. Sometimes, as these cracks expand, the patient exhibits symptoms of what is commonly referred to as "cracked tooth syndrome" (CTS). When CTS occurs, an opportunity exists to diagnose and treat these patients, to relieve their discomfort and prevent sequelae that would require more extensive treatment.

  19. Elevated temperature crack growth

    NASA Technical Reports Server (NTRS)

    Kim, K. S.; Vanstone, R. H.

    1989-01-01

    Alloy 718 crack growth experiments were conducted to assess the ability of the selected path-independent (P-I) integrals to describe the elevated temperature crack growth behavior. These tests were performed on single edge notch (SEN) specimens under displacement control with multiple extensometers to monitor the specimen and crack mouth opening displacement (CMOD). The displacements in these tests were sufficiently high to induce bulk cyclic inelastic deformation of the specimen. Under these conditions, the linear elastic fracture mechanics (LEFM) parameter K does not correlate the crack growth data. The experimentally measured displacement gradients at the end of specimen gage length were used as the boundary conditions in elastic-plastic finite element method (FEM) analyses. These analyses were performed with a node release approach using CYANIDE, a GEAE FEM code, which included a gap element which is capable of efficiently simulating crack closure. Excellent correlation was obtained between the experimentally measured and predicted variation of stress and CMOD with crack length and the stress-CMOD loops for Alloy 718 tests conducted at 538 C. This confirmed the accuracy of the FEM crack growth simulation approach. The experimentally measured crack growth rate data correlated well the selected P-I integrals. These investigations have produced significant progress in developing P-I integrals as non-linear fracture mechanics parameters. The results suggest that this methodology has the potential of accurately describing elevated temperature crack growth behavior under the combined influence of thermal cycling and bulk elastic-inelastic deformation states.

  20. Solidification Effect on an Upwardly Propagating Crack

    NASA Astrophysics Data System (ADS)

    Fargetton, T.; Taisne, B.; Tait, S.

    2006-12-01

    We present the results of laboratory experiments designed to study the influence of solidification on the propagation of magma-filled fractures in the Earth's lithosphere. The flows are driven both by buoyancy of the fluid with respect to the solid and a constant source overpressure; the flow Reynolds Numbers are small. Fluids are Newtonian with a well know solidification temperature and the solid hosting the fractures is gelatin with isotropic homogeneous elastic properties. Elastic modulus, fracture toughness, injection rate and temperature difference between fluid and solid vary between experiments. We highlight two results: First, even when a crack is fed with a constant volumetric flux of fluid, the crack can propagate by steps as follows: the crack tip stalls as freezing occurs at the narrow tip, the crack then undergoes a phase of inflation before the propagation can resume by fluid from the liquid interior of the crack breaking through the frozen skin. Second, the propagation does not occur necessarily from the tip, and can take place by the dyke branching out laterally, sometimes well behind the tip. The scaling law we have obtained suggests that, for given temperatures of the fluid and the solid, three behaviors are possible as a function of increasing driving force (no propagation, step like propagation, and continuous propagation). This result implies that for given rock and magma properties, there should be a minimum input flux necessary for eruption to occur. High-resolution seismic observations of propagating dykes in the literature show that the focus of seismic energy release does not migrate monotonically but that energy is also often released behind the tip, which could be explained by the phenomenon of horizontal breaking out observed in the experiments. This phenomenon also leads to a final crack structure made of overlapping segments that is geometrically comparable to overlapping dyke segments that can be observed in the field on eroded dyke

  1. Fluid-Bed Testing of Greatpoint Energy's Direct Oxygen Injection Catalytic Gasification Process for Synthetic Natural Gas and Hydrogen Coproduction Year 6 - Activity 1.14 - Development of a National Center for Hydrogen Technology

    SciTech Connect

    Swanson, Michael; Henderson, Ann

    2012-04-01

    The GreatPoint Energy (GPE) concept for producing synthetic natural gas and hydrogen from coal involves the catalytic gasification of coal and carbon. GPE’s technology “refines” coal by employing a novel catalyst to “crack” the carbon bonds and transform the coal into cleanburning methane (natural gas) and hydrogen. The GPE mild “catalytic” gasifier design and operating conditions result in reactor components that are less expensive and produce pipeline-grade methane and relatively high purity hydrogen. The system operates extremely efficiently on very low cost carbon sources such as lignites, subbituminous coals, tar sands, petcoke, and petroleum residual oil. In addition, GPE’s catalytic coal gasification process eliminates troublesome ash removal and slagging problems, reduces maintenance requirements, and increases thermal efficiency, significantly reducing the size of the air separation plant (a system that alone accounts for 20% of the capital cost of most gasification systems) in the catalytic gasification process. Energy & Environmental Research Center (EERC) pilot-scale gasification facilities were used to demonstrate how coal and catalyst are fed into a fluid-bed reactor with pressurized steam and a small amount of oxygen to “fluidize” the mixture and ensure constant contact between the catalyst and the carbon particles. In this environment, the catalyst facilitates multiple chemical reactions between the carbon and the steam on the surface of the coal. These reactions generate a mixture of predominantly methane, hydrogen, and carbon dioxide. Product gases from the process are sent to a gas-cleaning system where CO{sub 2} and other contaminants are removed. In a full-scale system, catalyst would be recovered from the bottom of the gasifier and recycled back into the fluid-bed reactor. The by-products (such as sulfur, nitrogen, and CO{sub 2}) would be captured and could be sold to the chemicals and petroleum industries, resulting in

  2. 40 CFR Table 21 to Subpart Uuu of... - Continuous Compliance With Operating Limits for Organic HAP Emissions From Catalytic Reforming Units

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Limits for Organic HAP Emissions From Catalytic Reforming Units 21 Table 21 to Subpart UUU of Part 63... Hazardous Air Pollutants for Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and... Compliance With Operating Limits for Organic HAP Emissions From Catalytic Reforming Units As stated in § 63...

  3. High temperature catalytic membrane reactors

    SciTech Connect

    Not Available

    1990-03-01

    Current state-of-the-art inorganic oxide membranes offer the potential of being modified to yield catalytic properties. The resulting modules may be configured to simultaneously induce catalytic reactions with product concentration and separation in a single processing step. Processes utilizing such catalytically active membrane reactors have the potential for dramatically increasing yield reactions which are currently limited by either thermodynamic equilibria, product inhibition, or kinetic selectivity. Examples of commercial interest include hydrogenation, dehydrogenation, partial and selective oxidation, hydrations, hydrocarbon cracking, olefin metathesis, hydroformylation, and olefin polymerization. A large portion of the most significant reactions fall into the category of high temperature, gas phase chemical and petrochemical processes. Microporous oxide membranes are well suited for these applications. A program is proposed to investigate selected model reactions of commercial interest (i.e. dehydrogenation of ethylbenzene to styrene and dehydrogenation of butane to butadiene) using a high temperature catalytic membrane reactor. Membranes will be developed, reaction dynamics characterized, and production processes developed, culminating in laboratory-scale demonstration of technical and economic feasibility. As a result, the anticipated increased yield per reactor pass economic incentives are envisioned. First, a large decrease in the temperature required to obtain high yield should be possible because of the reduced driving force requirement. Significantly higher conversion per pass implies a reduced recycle ratio, as well as reduced reactor size. Both factors result in reduced capital costs, as well as savings in cost of reactants and energy.

  4. Pyrolytic carbon indentation crack morphology.

    PubMed

    Ely, J L; Stupka, J; Haubold, A D

    1996-06-01

    In studying fatigue and fracture behavior of brittle materials, Vickers diamond indentation cracks are often used. Many of the studies of indentation cracks use crack system models such as the radial-median crack or Palmqvist crack. These systems are also used to study small crack growth in brittle materials, and have been studied for pyrolytic carbon. However, the true morphology of these cracks in pyrolytic carbon coatings on graphite substrates have not been described. This study examined Vickers diamond and spherical ball indentation cracks in pyrolytic carbon coatings using several techniques, including serial metallographic cross sections, indentation fracture in bending, acoustic emission, and residual surface indentation scanning. The crack systems developed using these techniques were not typical of either radial median or Palmqvist systems. The morphology is unique to this material, possibly because of the coating thickness limitations. Given the difference in crack system, the application of standard indentation crack equations in studying fracture mechanics, especially for small cracks, must be questioned.

  5. Crack layer theory

    NASA Technical Reports Server (NTRS)

    Chudnovsky, A.

    1984-01-01

    A damage parameter is introduced in addition to conventional parameters of continuum mechanics and consider a crack surrounded by an array of microdefects within the continuum mechanics framework. A system consisting of the main crack and surrounding damage is called crack layer (CL). Crack layer propagation is an irreversible process. The general framework of the thermodynamics of irreversible processes are employed to identify the driving forces (causes) and to derive the constitutive equation of CL propagation, that is, the relationship between the rates of the crack growth and damage dissemination from one side and the conjugated thermodynamic forces from another. The proposed law of CL propagation is in good agreement with the experimental data on fatigue CL propagation in various materials. The theory also elaborates material toughness characterization.

  6. Catalytic reforming

    SciTech Connect

    Aldag, A.W. Jr.

    1986-01-28

    This patent describes a process for the catalytic reforming of a feedstock which contains at least one reformable organic compound. The process consists of contacting the feedstock under suitable reforming conditions with a catalyst composition selected from the group consisting of a catalyst. The catalyst essentially consists of zinc oxide and a spinel structure alumina. Another catalyst consists essentially of a physical mixture of zinc titanate and a spinel structure alumina in the presence of sufficient added hydrogen to substantially prevent the formation of coke. Insufficient zinc is present in the catalyst composition for the formation of a bulk zinc aluminate.

  7. Small-crack test methods

    NASA Astrophysics Data System (ADS)

    Larsen, James M.; Allison, John E.

    This book contains chapters on fracture mechanics parameters for small fatigue cracks, monitoring small-crack growth by the replication method, measurement of small cracks by photomicroscopy (experiments and analysis), and experimental mechanics of microcracks. Other topics discussed are the real-time measurement of small-crack-opening behavior using an interferometric strain/displacement gage; direct current electrical potential measurement of the growth of small cracks; an ultrasonic method for the measurement of the size and opening behavior of small fatigue cracks; and the simulation of short crack and other low closure loading conditions, utilizing constant K(max) Delta-K-decreasing fatigue crack growth procedures.

  8. Catalytic Layer Makes Aircraft Seats More Fire Retardant

    NASA Technical Reports Server (NTRS)

    Parker, John A.; Kourtides, Demetrius A.

    1987-01-01

    Specially constructed cushion retards fires in aircraft seats through action of catalytic matrix that cracks flammable gaseous decomposition products to less flammable species. Improved cushion contributes substantially to fire safety without adding significantly to weight or to manufacturing cost. In this fire-blocking covering for an aircraft seat cushion, flammable pyrolysis products cracked to less flammable species by catalytic layer covering foam core of cushion. Aluminum foil holds in pyrolysis vapors to promote catalysis and prevent spread of fire by ignition of released vapors.

  9. Catalytic Layer Makes Aircraft Seats More Fire Retardant

    NASA Technical Reports Server (NTRS)

    Parker, John A.; Kourtides, Demetrius A.

    1987-01-01

    Specially constructed cushion retards fires in aircraft seats through action of catalytic matrix that cracks flammable gaseous decomposition products to less flammable species. Improved cushion contributes substantially to fire safety without adding significantly to weight or to manufacturing cost. In this fire-blocking covering for an aircraft seat cushion, flammable pyrolysis products cracked to less flammable species by catalytic layer covering foam core of cushion. Aluminum foil holds in pyrolysis vapors to promote catalysis and prevent spread of fire by ignition of released vapors.

  10. Method to produce catalytically active nanocomposite coatings

    DOEpatents

    Erdemir, Ali; Eryilmaz, Osman Levent; Urgen, Mustafa; Kazmanli, Kursat

    2016-02-09

    A nanocomposite coating and method of making and using the coating. The nanocomposite coating is disposed on a base material, such as a metal or ceramic; and the nanocomposite consists essentially of a matrix of an alloy selected from the group of Cu, Ni, Pd, Pt and Re which are catalytically active for cracking of carbon bonds in oils and greases and a grain structure selected from the group of borides, carbides and nitrides.

  11. Development of crack shape: LBB methodology for cracked pipes

    SciTech Connect

    Moulin, D.; Chapuliot, S.; Drubay, B.

    1997-04-01

    For structures like vessels or pipes containing a fluid, the Leak-Before-Break (LBB) assessment requires to demonstrate that it is possible, during the lifetime of the component, to detect a rate of leakage due to a possible defect, the growth of which would result in a leak before-break of the component. This LBB assessment could be an important contribution to the overall structural integrity argument for many components. The aim of this paper is to review some practices used for LBB assessment and to describe how some new R & D results have been used to provide a simplified approach of fracture mechanics analysis and especially the evaluation of crack shape and size during the lifetime of the component.

  12. Quantity effect of radial cracks on the cracking propagation behavior and the crack morphology.

    PubMed

    Chen, Jingjing; Xu, Jun; Liu, Bohan; Yao, Xuefeng; Li, Yibing

    2014-01-01

    In this letter, the quantity effect of radial cracks on the cracking propagation behavior as well as the circular crack generation on the impacted glass plate within the sandwiched glass sheets are experimentally investigated via high-speed photography system. Results show that the radial crack velocity on the backing glass layer decreases with the crack number under the same impact conditions during large quantities of repeated experiments. Thus, the "energy conversion factor" is suggested to elucidate the physical relation between the cracking number and the crack propagation speed. Besides, the number of radial crack also takes the determinative effect in the crack morphology of the impacted glass plate. This study may shed lights on understanding the cracking and propagation mechanism in laminated glass structures and provide useful tool to explore the impact information on the cracking debris.

  13. Quantity Effect of Radial Cracks on the Cracking Propagation Behavior and the Crack Morphology

    PubMed Central

    Chen, Jingjing; Xu, Jun; Liu, Bohan; Yao, Xuefeng; Li, Yibing

    2014-01-01

    In this letter, the quantity effect of radial cracks on the cracking propagation behavior as well as the circular crack generation on the impacted glass plate within the sandwiched glass sheets are experimentally investigated via high-speed photography system. Results show that the radial crack velocity on the backing glass layer decreases with the crack number under the same impact conditions during large quantities of repeated experiments. Thus, the “energy conversion factor” is suggested to elucidate the physical relation between the cracking number and the crack propagation speed. Besides, the number of radial crack also takes the determinative effect in the crack morphology of the impacted glass plate. This study may shed lights on understanding the cracking and propagation mechanism in laminated glass structures and provide useful tool to explore the impact information on the cracking debris. PMID:25048684

  14. Elevated temperature crack growth

    NASA Technical Reports Server (NTRS)

    Kim, K. S.; Vanstone, R. H.; Malik, S. N.; Laflen, J. H.

    1988-01-01

    A study was performed to examine the applicability of path-independent (P-I) integrals to crack growth problems in hot section components of gas turbine aircraft engines. Alloy 718 was used and the experimental parameters included combined temperature and strain cycling, thermal gradients, elastic-plastic strain levels, and mean strains. A literature review was conducted of proposed P-I integrals, and those capable of analyzing hot section component problems were selected and programmed into the postprocessor of a finite element code. Detailed elastic-plastic finite element analyses were conducted to simulate crack growth and crack closure of the test specimen, and to evaluate the P-I integrals. It was shown that the selected P-I integrals are very effective for predicting crack growth for isothermal conditions.

  15. Elevated temperature crack propagation

    NASA Astrophysics Data System (ADS)

    Orange, Thomas W.

    1994-02-01

    This paper is a summary of two NASA contracts on high temperature fatigue crack propagation in metals. The first evaluated the ability of fairly simple nonlinear fracture parameters to correlate crack propagation. Hastelloy-X specimens were tested under isothermal and thermomechanical cycling at temperatures up to 980 degrees C (1800 degrees F). The most successful correlating parameter was the crack tip opening displacement derived from the J-integral. The second evaluated the ability of several path-independent integrals to correlate crack propagation behavior. Inconel 718 specimens were tested under isothermal, thermomechanical, temperature gradient, and creep conditions at temperatures up to 650 degrees C (1200 degrees F). The integrals formulated by Blackburn and by Kishimoto correlated the data reasonably well under all test conditions.

  16. Elevated temperature crack propagation

    SciTech Connect

    Orange, T.W.

    1994-02-01

    This paper is a summary of two NASA contracts on high temperature fatigue crack propagation in metals. The first evaluated the ability of fairly simple nonlinear fracture parameters to correlate crack propagation. Hastelloy-X specimens were tested under isothermal and thermomechanical cycling at temperatures up to 980 degrees C (1800 degrees F). The most successful correlating parameter was the crack tip opening displacement derived from the J-integral. The second evaluated the ability of several path-independent integrals to correlate crack propagation behavior. Inconel 718 specimens were tested under isothermal, thermomechanical, temperature gradient, and creep conditions at temperatures up to 650 degrees C (1200 degrees F). The integrals formulated by Blackburn and by Kishimoto correlated the data reasonably well under all test conditions.

  17. Ethylene by Naphta Cracking

    ERIC Educational Resources Information Center

    Wiseman, Peter

    1977-01-01

    Presents a discussion of the manufacture of ethylene by thermal cracking of hydrocarbon feedstocks that is useful for introducing the subject of industrial chemistry into a chemistry curriculum. (MLH)

  18. Elevated Temperature Crack Propagation

    NASA Technical Reports Server (NTRS)

    Orange, Thomas W.

    1994-01-01

    This paper is a summary of two NASA contracts on high temperature fatigue crack propagation in metals. The first evaluated the ability of fairly simple nonlinear fracture parameters to correlate crack propagation. Hastelloy-X specimens were tested under isothermal and thermomechanical cycling at temperatures up to 980 degrees C (1800 degrees F). The most successful correlating parameter was the crack tip opening displacement derived from the J-integral. The second evaluated the ability of several path-independent integrals to correlate crack propagation behavior. Inconel 718 specimens were tested under isothermal, thermomechanical, temperature gradient, and creep conditions at temperatures up to 650 degrees C (1200 degrees F). The integrals formulated by Blackburn and by Kishimoto correlated the data reasonably well under all test conditions.

  19. Ethylene by Naphta Cracking

    ERIC Educational Resources Information Center

    Wiseman, Peter

    1977-01-01

    Presents a discussion of the manufacture of ethylene by thermal cracking of hydrocarbon feedstocks that is useful for introducing the subject of industrial chemistry into a chemistry curriculum. (MLH)

  20. Inspecting cracks in foam insulation

    NASA Technical Reports Server (NTRS)

    Cambell, L. W.; Jung, G. K.

    1979-01-01

    Dye solution indicates extent of cracking by penetrating crack and showing original crack depth clearly. Solution comprised of methylene blue in denatured ethyl alcohol penetrates cracks completely and evaporates quickly and is suitable technique for usage in environmental or structural tests.

  1. Inspecting cracks in foam insulation

    NASA Technical Reports Server (NTRS)

    Cambell, L. W.; Jung, G. K.

    1979-01-01

    Dye solution indicates extent of cracking by penetrating crack and showing original crack depth clearly. Solution comprised of methylene blue in denatured ethyl alcohol penetrates cracks completely and evaporates quickly and is suitable technique for usage in environmental or structural tests.

  2. Surface Enhancement Improves Crack Resistance

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The low plasticity burnishing (LPB) process produces a deep layer of surface compression in a quick and affordable manner to produce metal surfaces free of scratches, nicks, and gouges. The process, designed for easy inclusion in the manufacturing environment, can be performed with conventional Computer Numerical Control machine tools. This allows parts to be processed during manufacturing, rather than as a post process in a separate facility. A smooth, free-rolling spherical ball suspended in a fluid allows for single-point contact. The ball comes into mechanical contact only with the surface to be burnished, and can be moved in any direction. LPB can be applied to all types of carbon and alloy steel, stainless steel, cast iron, aluminum, titanium, and nickel- based super alloys. In addition to improving a surface's resistance to fatigue and damage, treatment stops the growth of shallow cracks. The LPB process is used on the leading edges of turbine blades to improve resistance to foreign object damage and crack growth. This means significant savings for aircraft owners, since maintenance requirements to inspect for fatigue damage, replace parts, and remove corrosion damage increase the cost of operation.

  3. Mechanics of Interface Cracks

    DTIC Science & Technology

    1990-09-27

    tip fields along with a correspondence of these fields to the well characterized small strain (HRR) fields in homogeneous media . In particular, it...crack dimension. Our results showed that for cases involving two elastic-plastic media that the fields, in both materials, are parts of a single...of an geneous media (e.g., Hutchinson, 1983). In one sense the work infinite crack embedded in an infinite bimaterial body (see Fig. complimented

  4. Cracked Plain, Buried Craters

    NASA Technical Reports Server (NTRS)

    2004-01-01

    4 September 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a cracked plain in western Utopia Planitia. The three circular crack patterns indicate the location of three buried meteor impact craters. These landforms are located near 41.9oN, 275.9oW. The image covers an area approximately 3 km (1.9 mi) across. Sunlight illuminates this scene from the lower left.

  5. Piloted rich-catalytic lean-burn hybrid combustor

    DOEpatents

    Newburry, Donald Maurice

    2002-01-01

    A catalytic combustor assembly which includes, an air source, a fuel delivery means, a catalytic reactor assembly, a mixing chamber, and a means for igniting a fuel/air mixture. The catalytic reactor assembly is in fluid communication with the air source and fuel delivery means and has a fuel/air plenum which is coated with a catalytic material. The fuel/air plenum has cooling air conduits passing therethrough which have an upstream end. The upstream end of the cooling conduits is in fluid communication with the air source but not the fuel delivery means.

  6. Bifunctional catalytic electrode

    NASA Technical Reports Server (NTRS)

    Cisar, Alan (Inventor); Murphy, Oliver J. (Inventor); Clarke, Eric (Inventor)

    2005-01-01

    The present invention relates to an oxygen electrode for a unitized regenerative hydrogen-oxygen fuel cell and the unitized regenerative fuel cell having the oxygen electrode. The oxygen electrode contains components electrocatalytically active for the evolution of oxygen from water and the reduction of oxygen to water, and has a structure that supports the flow of both water and gases between the catalytically active surface and a flow field or electrode chamber for bulk flow of the fluids. The electrode has an electrocatalyst layer and a diffusion backing layer interspersed with hydrophilic and hydrophobic regions. The diffusion backing layer consists of a metal core having gas diffusion structures bonded to the metal core.

  7. Catalytic hollow spheres

    NASA Technical Reports Server (NTRS)

    Wang, Taylor G. (Inventor); Elleman, Daniel D. (Inventor); Lee, Mark C. (Inventor); Kendall, Jr., James M. (Inventor)

    1986-01-01

    The improved, heterogeneous catalysts are in the form of gas-impervious, hollow, thin-walled spheres (10) suitably formed of a shell (12) of metal such as aluminum having a cavity (14) containing a gas at a pressure greater than atmospheric pressure. The wall material may be, itself, catalytic or the catalyst can be coated onto the sphere as a layer (16), suitably platinum or iron, which may be further coated with a layer (18) of activator or promoter. The density of the spheres (30) can be uniformly controlled to a preselected value within .+-.10 percent of the density of the fluid reactant such that the spheres either remain suspended or slowly fall or rise through the liquid reactant.

  8. Catalytic hollow spheres

    NASA Technical Reports Server (NTRS)

    Wang, Taylor G. (Inventor); Elleman, Daniel D. (Inventor); Lee, Mark C. (Inventor); Kendall, Jr., James M. (Inventor)

    1989-01-01

    The improved, heterogeneous catalysts are in the form of gas-impervious, hollow, thin-walled spheres (10) suitably formed of a shell (12) of metal such as aluminum having a cavity (14) containing a gas at a pressure greater than atmospheric pressure. The wall material may be, itself, catalytic or the catalyst can be coated onto the sphere as a layer (16), suitably platinum or iron, which may be further coated with a layer (18) of activator or promoter. The density of the spheres (30) can be uniformly controlled to a preselected value within .+-.10 percent of the density of the fluid reactant such that the spheres either remain suspended or slowly fall or rise through the liquid reactant.

  9. Estimating crack growth in temperature damaged concrete

    NASA Astrophysics Data System (ADS)

    Recalde, Juan Jose

    2009-12-01

    Evaluation of the structural condition of deteriorated concrete infrastructure and evaluation of new sustainable cementitious materials require an understanding of how the material will respond to applied loads and environmental exposures. A fundamental understanding of how microstructural changes in these materials relate to changes in mechanical properties and changes in fluid penetrability is needed. The ability to provide rapid, inexpensive assessment of material characteristics and relevant engineering properties is valuable for decision making and asset management purposes. In this investigation, the effects of changes in dynamic elastic properties with water content and fluid penetrability properties before and after a 300°C exposure were investigated based on estimates of the crack density parameter from dry and saturated cracked media. The experimental and analytical techniques described in this dissertation allow calculation of a value for the crack density parameter using nondestructive determination of wet and dry dynamic shear modulus of relatively thin disks. The techniques were used to compare a conventional concrete mixture to several mixtures with enhanced sustainability characteristics. The three enhanced sustainable materials investigated were a very high fly ash mixture, a magnesium phosphate cement based mortar, and a magnesium phosphate cement based concrete, and were compared to a conventional concrete mixture. The analysis provided both quantitative assessment of changes with high temperature damage and autogenous healing, and estimates of changes in mean crack trace lengths. The results showed that water interaction, deterioration due to damage, and autogenous healing recovery were different for the magnesium phosphate cement based mixtures than the portland cement based concrete mixtures. A strong correlation was found between log-transformed Air Permeability Index, dynamic shear modulus, and crack density parameter. The findings imply

  10. Evaluation of the effect of crack closure on fatigue crack growth of simulated short cracks

    NASA Technical Reports Server (NTRS)

    Telesman, J.; Fisher, D. M.

    1984-01-01

    A test program was performed to determine the influence of crack closure on fatigue crack growth (FCG) rates of short cracks. By use of the standard compact tension specimen, test procedures were devised to evaluate closure loads in the wake of the crack behind its tip. The first procedure determined the magnitude of crack closure as a function of the fatigued crack wave by incrementally removing the contacting wake surfaces and measuring closure load at each increment. The second procedure used a low-high loading sequence to simulate short crack behavior. Based on the results, it was concluded that crack closure is not the major reason for the more rapid growth of short cracks as compared to long crack growth.

  11. 40 CFR Table 22 to Subpart Uuu of... - Inorganic HAP Emission Limits for Catalytic Reforming Units

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Inorganic HAP Emission Limits for... Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 22 Table 22 to Subpart UUU of Part 63—Inorganic HAP Emission Limits for...

  12. 40 CFR Table 22 to Subpart Uuu of... - Inorganic HAP Emission Limits for Catalytic Reforming Units

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Inorganic HAP Emission Limits for... Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 22 Table 22 to Subpart UUU of Part 63—Inorganic HAP Emission Limits for...

  13. Intermittent crack growth in fatigue

    NASA Astrophysics Data System (ADS)

    Kokkoniemi, R.; Miksic, A.; Ovaska, M.; Laurson, L.; Alava, M. J.

    2017-07-01

    Fatigue occurs under cyclic loading at stresses below a material’s static strength limit. We consider fatigue crack growth as a stochastic process and perform crack growth experiments in a metal (copper). We follow optically cracks propagating from initial edge notches. The main interest is in the dynamics of the crack growth—the Paris’ law and the initiation phase prior to that—and especially the intermittency this is discovered to display. How the sampling of the crack advancement, performed at regular intervals, influences such measurement results is analysed by the analogy of planar crack dynamics in slow, driven growth.

  14. Crack propagation in Hastelloy X

    SciTech Connect

    Weerasooriya, T.; Strizak, J.P.

    1980-05-01

    The fatigue and creep crack growth rates of Hastelloy X were examined both in air and impure helium. Creep crack growth rate is higher in air and impure helium at 650/sup 0/C. Initial creep crack growth from the original sharp fatigue crack is by an intergranular mode of fracture. As the cracking accelerates at higher stress intensities, growth is by a mixed mode of both intergranular and transgranular fracture. Fatigue crack growth rate increases with increasing temperature and decreasing frequency for the range of stress intensities reported in the literature and is lower in impure helium than in air.

  15. Raney nickel catalytic device

    DOEpatents

    O'Hare, Stephen A.

    1978-01-01

    A catalytic device for use in a conventional coal gasification process which includes a tubular substrate having secured to its inside surface by expansion a catalytic material. The catalytic device is made by inserting a tubular catalytic element, such as a tubular element of a nickel-aluminum alloy, into a tubular substrate and heat-treating the resulting composite to cause the tubular catalytic element to irreversibly expand against the inside surface of the substrate.

  16. The dependence of acoustic properties of a crack on the resonance mode and geometry

    USGS Publications Warehouse

    Kumagai, H.; Chouet, B.A.

    2001-01-01

    We examine the dependence of the acoustic properties of a crack containing magmatic or hydrothermal fluids on the resonance mode and geometry to quantify the source properties of long-period (LP) events observed in volcanic areas. Our results, based on spectral analyses of synthetic waveforms generated with a fluid-driven crack model, indicate that the basic features of the dimensionless frequency (??) and quality factor (Qr) for a crack containing various types of fluids are not strongly affected by the choice of mode, although the actual ranges of Q?? and ?? both depend on the mode. The dimensionless complex frequency systematically varies with changes in the crack geometry, showing increases in both Qr and ?? as the crack length to aperture ratio decreases. The present results may be useful for the interpretation of spatial and temporal variations in the observed complex frequencies of LP events.

  17. Samarium Ion Exchanged Montmorillonite for High Temperature Cumene Cracking Reaction

    NASA Astrophysics Data System (ADS)

    Binitha, N. N.; Silija, P. P.; Suraj, V.; Yaakob, Z.; Sugunan, S.

    2011-02-01

    Montmorillonite clay is cation exchanged with samarium and its catalytic influence in cumene cracking reaction is investigated. Effect of exchange with sodium ions on further exchange with samarium ions is also noted. Acidity measurements are done using Temperature Programmed Desorption (TPD) of ammonia. The retention of basic structure is proved from FTIR spectra and XRD patterns. Elemental analysis result shows that samarium exchange has occurred, which is responsible for the higher catalytic activity. Surface area and pore volume remains more or less unaffected upon exchange. Thermogravimetric analysis indicates the enhanced thermal stability on exchanging. Cumene cracking reaction is carried out at atmospheric pressure in a fixed bed glass reactor at 673 K. The predominance of Brønsted acidity is confirmed from high selectivity to benzene.

  18. Subcritical crack growth in glasses under cyclic loads: Effect of hydrodynamic pressure in aqueous environments

    SciTech Connect

    Yi, K.S.; Dill, S.J.; Dauskardt, R.H.

    1997-07-01

    The effect of hydrodynamic pressure developed in the wake of a crack growing in a brittle material under cyclic loads in an aqueous environment is considered. The pressure acts in opposition to the movement of the crack faces, thus shielding the crack up from the applied loads. A general hydrodynamic fluid pressure relation based on a one-dimensional Reynolds equation, which applicable to a crack with an arbitrary crack opening profile, is developed. The model is modified to account for side flow through the thickness of the sample and cavitation near the crack tip. Both effects significantly modify the hydrodynamic pressure distribution. Finally, the resulting hydrodynamic pressure relations are combined with a fracture mechanics model to account for the change in the near-tip stress intensity. Resulting predictions of the cyclic crack-growth rate are found to be in good agreement with measured values for a borosilicate glass tested at various frequencies in a water environment.

  19. Collar crack of birch

    Treesearch

    Alex L. Shigo

    1964-01-01

    The name "Collar crack" is suggested for a condition of birches observed in the past 4 years during field studies of forest disease problems in the White Mountains of New Hampshire. The first close observations of this condition were made during the summer of 1963. This is a report on those observations and an explanation of the possible cause.

  20. Cracking the Credit Hour

    ERIC Educational Resources Information Center

    Laitinen, Amy

    2012-01-01

    The basic currency of higher education--the credit hour--represents the root of many problems plaguing America's higher education system: the practice of measuring time rather than learning. "Cracking the Credit Hour" traces the history of this time-based unit, from the days of Andrew Carnegie to recent federal efforts to define a credit…

  1. Thermal cracking of retort oil

    SciTech Connect

    Dearth, J.D.; Smith, R.H.

    1980-10-14

    The thermal cracking of retort oil vapors in an elongated reactor is improved by passing the effluent oil vapors and gases from a retort to a thermal cracking unit before the temperature of the retort effluent falls below 680* F. This encourages the more desirable cracking reactions, increases the thermal efficiency of the process, and avoids preheater coking.

  2. Fluid imbalance

    MedlinePlus

    ... up in the body. This is called fluid overload (volume overload). This can lead to edema (excess fluid in ... Water imbalance; Fluid imbalance - dehydration; Fluid buildup; Fluid overload; Volume overload; Loss of fluids; Edema - fluid imbalance; ...

  3. Measurements of Nonlinear Harmonic Waves at Cracked Interfaces

    NASA Astrophysics Data System (ADS)

    Jeong, Hyunjo; Barnard, Dan

    2011-06-01

    Nonlinear harmonic waves generated at cracked interfaces are investigated both experimentally and theoretically. A compact tension specimen is fabricated and the amplitude of transmitted wave is analyzed as a function of position along the fatigued crack surface. In order to measure as many nonlinear harmonic components as possible a broadband Lithium Niobate (LiNbO3) transducers are employed together with a calibration technique for making absolute amplitude measurements with fluid-coupled receiving transducers. Cracked interfaces are shown to generate high acoustic nonlinearities which are manifested as harmonics in the power spectrum of the received signal. The first subharmonic (f/2) and the second harmonic (2f) waves are found to be dominant nonlinear components for an incident toneburst signal of frequency f. To explain the observed nonlinear behavior a partially closed crack is modeled by planar half interfaces that can account for crack parameters such as crack opening displacement and crack surface conditions. The simulation results show reasonable agreements with the experimental results.

  4. Simultaneous Measurements of Harmonic Waves at Fatigue-Cracked Interfaces

    NASA Astrophysics Data System (ADS)

    Hyunjo, Jeong; Dan, Barnard

    2011-08-01

    Nonlinear harmonic waves generated at cracked interfaces are investigated theoretically and experimentally. A compact tension specimen is fabricated and the amplitude of the transmitted wave is analyzed as a function of position along the fatigued crack surface. In order to measure as many nonlinear harmonic components as possible, broadband lithium niobate (LiNbO3) transducers are employed together with a calibration technique for making absolute amplitude measurements with fluid-coupled receiving transducers. Cracked interfaces are shown to generate high acoustic nonlinearities, which are manifested as harmonics in the power spectrum of the received signal. The first subharmonic f/2 and the second harmonic 2f waves are found to be dominant nonlinear components for an incident toneburst signal of frequency f. To explain the observed nonlinear behavior, a partially closed crack is modeled by planar half interfaces that can account for crack parameters, such as crack opening displacement and crack surface conditions. The simulation results show reasonable agreement with the experimental results.

  5. Velocity Dispersion Measurements in Cracked Quartzite

    NASA Astrophysics Data System (ADS)

    Schijns, H. M.; Schmitt, D. R.; Jackson, I.

    2011-12-01

    Oscillating stress induced by seismic waves is expected to cause reversible fluid flow within low aspect ratio cracks, resulting in strongly frequency dependent seismic wave velocities. Laboratory measurements of seismic velocities typically made at MHz frequencies, well logging undertaken at kHz frequencies and in-situ exploration seismic (10-300 Hz) measurements are unlikely to be directly comparable as a result of this fluid flow effect. Experimental measurements over a broad range of frequencies are necessary to constrain theoretical velocity dispersion models. Here we present a preliminary comparison of ultrasonic (MHz) measurements on two cracked quartzite samples with measurements made in the mHz-Hz frequency band using forced oscillation. Quartzite samples from Cape Sorell, Australia and Alberta, Canada are cracked by thermally heating the samples to 1100 C and quenching them in liquid nitrogen and water, respectively. A relatively isotropic distribution of cracks, with average aperture of 1 μm and aspect ratio of <0.01, is induced in both samples for total porosities of ~2%. Measurements are made on the quartzite samples when they are dry, and after saturating with argon and water. The difference in viscosity between argon (0.025 mPa s at 10 MPa and 20 C) and water (1 mPa s) allow the investigation of different time scales of fluid flow. Further, measurements are made over effective pressures from 10-150 MPa, with progressive crack closure observed between 10-100 MPa. High frequency (0.64 MHz) measurements using piezoelectric transducers are used in conjunction with density measurements to calculate high frequency Young's and shear moduli. Low frequency (mHz-Hz) moduli are measured using a forced oscillation apparatus at Australian National University. The experimental assembly consists of a long cylindrical beam; the top of the beam is held fixed while the bottom is driven using time-varying electromagnetic drivers. The polarization of the applied force

  6. A Review of Crack Closure

    DTIC Science & Technology

    1984-04-01

    OVERLOAD EFFECTS [27,32,36,55,65,80-94] 104 4.3 SHORT CRACK BEHAVIOUR 113 4.4 SURFACE CRACK BEHAVIOUR 116 4.5 EFFECT OF RESIDUAL STRESS 117 4.6...Compressive Stresses Developed 16 on a Growing Fatigue Crack During a Constant Amplitude Cyclic Load Control Test. 4 Plastic Zone and Residual Compressive... Stresses Developed 18 on a Saw Cut Sharp Crack During a Constant Amplitude Cyclic Load Control Test. Residual Stresses Developed in the Plane of Crack

  7. Novel Fast Pyrolysis/Catalytic Technology for the Production of Stable Upgraded Liquids

    SciTech Connect

    Oyama, Ted; Agblevor, Foster; Battaglia, Francine; Klein, Michael

    2013-01-18

    The objective of the proposed research is the demonstration and development of a novel biomass pyrolysis technology for the production of a stable bio-oil. The approach is to carry out catalytic hydrodeoxygenation (HDO) and upgrading together with pyrolysis in a single fluidized bed reactor with a unique two-level design that permits the physical separation of the two processes. The hydrogen required for the HDO will be generated in the catalytic section by the water-gas shift reaction employing recycled CO produced from the pyrolysis reaction itself. Thus, the use of a reactive recycle stream is another innovation in this technology. The catalysts will be designed in collaboration with BASF Catalysts LLC (formerly Engelhard Corporation), a leader in the manufacture of attrition-resistant cracking catalysts. The proposed work will include reactor modeling with state-of-the-art computational fluid dynamics in a supercomputer, and advanced kinetic analysis for optimization of bio-oil production. The stability of the bio-oil will be determined by viscosity, oxygen content, and acidity determinations in real and accelerated measurements. A multi-faceted team has been assembled to handle laboratory demonstration studies and computational analysis for optimization and scaleup.

  8. Catalytic pyrolysis of waste rice husk over mesoporous materials

    PubMed Central

    2012-01-01

    Catalytic fast pyrolysis of waste rice husk was carried out using pyrolysis-gas chromatography/mass spectrometry [Py-GC/MS]. Meso-MFI zeolite [Meso-MFI] was used as the catalyst. In addition, a 0.5-wt.% platinum [Pt] was ion-exchanged into Meso-MFI to examine the effect of Pt addition. Using a catalytic upgrading method, the activities of the catalysts were evaluated in terms of product composition and deoxygenation. The structure and acid site characteristics of the catalysts were analyzed by Brunauer-Emmett-Teller surface area measurement and NH3 temperature-programmed desorption analysis. Catalytic upgrading reduced the amount of oxygenates in the product vapor due to the cracking reaction of the catalysts. Levoglucosan, a polymeric oxygenate species, was completely decomposed without being detected. While the amount of heavy phenols was reduced by catalytic upgrading, the amount of light phenols was increased because of the catalytic cracking of heavy phenols into light phenols and aromatics. The amount of aromatics increased remarkably as a result of catalytic upgrading, which is attributed to the strong Brönsted acid sites and the shape selectivity of the Meso-MFI catalyst. The addition of Pt made the Meso-MFI catalyst even more active in deoxygenation and in the production of aromatics. PMID:22221540

  9. Sudden bending of cracked laminates

    NASA Technical Reports Server (NTRS)

    Sih, G. C.; Chen, E. P.

    1980-01-01

    A dynamic approximate laminated plate theory is developed with emphasis placed on obtaining effective solution for the crack configuration where the 1/square root of r stress singularity and the condition of plane strain are preserved. The radial distance r is measured from the crack edge. The results obtained show that the crack moment intensity tends to decrease as the crack length to laminate plate thickness is increased. Hence, a laminated plate has the desirable feature of stabilizing a through crack as it increases its length at constant load. Also, the level of the average load intensity transmitted to a through crack can be reduced by making the inner layers to be stiffer than the outer layers. The present theory, although approximate, is useful for analyzing laminate failure to crack propagation under dynamic load conditions.

  10. Elevated temperature crack growth

    NASA Technical Reports Server (NTRS)

    Malik, S. N.; Vanstone, R. H.; Kim, K. S.; Laflen, J. H.

    1985-01-01

    The purpose is to determine the ability of currently available P-I integrals to correlate fatigue crack propagation under conditions that simulate the turbojet engine combustor liner environment. The utility of advanced fracture mechanics measurements will also be evaluated during the course of the program. To date, an appropriate specimen design, a crack displacement measurement method, and boundary condition simulation in the computational model of the specimen were achieved. Alloy 718 was selected as an analog material based on its ability to simulate high temperature behavior at lower temperatures. Tensile and cyclic tests were run at several strain rates so that an appropriate constitutive model could be developed. Suitable P-I integrals were programmed into a finite element post-processor for eventual comparison with experimental data.

  11. Cracked and Pitted Plain

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-536, 6 November 2003

    This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a typical view--at 1.5 meters (5 feet) per pixel--of surfaces in far western Utopia Planitia. In this region, the plains have developed cracks and pit chains arranged in a polygonal pattern. The pits form by collapse along the trend of a previously-formed crack. This picture is located near 45.0oN, 275.4oW. This April 2003 image covers an area 3 km (1.9 mi) wide and is illuminated by sunlight from the lower left.

  12. Elevated temperature crack growth

    NASA Technical Reports Server (NTRS)

    Yau, J. F.; Malik, S. N.; Kim, K. S.; Vanstone, R. H.; Laflen, J. H.

    1985-01-01

    The objective of the Elevated Temperature Crack Growth Project is to evaluate proposed nonlinear fracture mechanics methods for application to combustor liners of aircraft gas turbine engines. During the first year of this program, proposed path-independent (P-I) integrals were reviewed for such applications. Several P-I integrals were implemented into a finite-element postprocessor which was developed and verified as part of the work. Alloy 718 was selected as the analog material for use in the forthcoming experimental work. A buttonhead, single-edge notch specimen was designed and verified for use in elevated-temperature strain control testing with significant inelastic strains. A crack mouth opening displacement measurement device was developed for further use.

  13. Statistical crack mechanics

    SciTech Connect

    Dienes, J.K.

    1983-01-01

    An alternative to the use of plasticity theory to characterize the inelastic behavior of solids is to represent the flaws by statistical methods. We have taken such an approach to study fragmentation because it offers a number of advantages. Foremost among these is that, by considering the effects of flaws, it becomes possible to address the underlying physics directly. For example, we have been able to explain why rocks exhibit large strain-rate effects (a consequence of the finite growth rate of cracks), why a spherical explosive imbedded in oil shale produces a cavity with a nearly square section (opening of bedding cracks) and why propellants may detonate following low-speed impact (a consequence of frictional hot spots).

  14. Subcritical crack growth in marble

    NASA Astrophysics Data System (ADS)

    Nara, Yoshitaka; Nishida, Yuki; Toshinori, Ii; Harui, Tomoki; Tanaka, Mayu; Kashiwaya, Koki

    2016-04-01

    It is essential to study time-dependent deformation and fracturing in various rock materials to prevent natural hazards related to the failure of a rock mass. In addition, information of time-dependent fracturing is essential to ensure the long-term stability of a rock mass surrounding various structures. Subcritical crack growth is one of the main causes of time-dependent fracturing in rock. It is known that subcritical crack growth is influenced by not only stress but also surrounding environment. Studies of subcritical crack growth have been widely conducted for silicate rocks such as igneous rocks and sandstones. By contrast, information of subcritical crack growth in carbonate rocks is not enough. Specifically, influence of surrounding environment on subcritical crack growth in carbonate rock should be clarified to ensure the long-term stability of a rock mass. In this study, subcritical crack growth in marble was investigated. Especially, the influence of the temperature, relative humidity and water on subcritical crack growth in marble is investigated. As rock samples, marbles obtained in Skopje-City in Macedonia and Carrara-City in Italy were used. To measure subcritical crack growth, we used the load relaxation method of the double-torsion (DT) test. All measurements by DT test were conducted under controlled temperature and relative humidity. For both marbles, it was shown that the crack velocity in marble in air increased with increasing relative humidity at a constant temperature. Additionally, the crack velocity in water was much higher than that in air. It was also found that the crack velocity increased with increasing temperature. It is considered that temperature and water have significant influences on subcritical crack growth in marble. For Carrara marble in air, it was recognized that the value of subcritical crack growth index became low when the crack velocity was higher than 10-4 m/s. This is similar to Region II of subcritical crack growth

  15. Slow crack propagation in glass and creep prediction

    NASA Astrophysics Data System (ADS)

    Mallet, Celine; Fortin, Jerome; Gueguen, Yves

    2013-04-01

    The context of our study is the observation of the time-dependent deformation of cracked glass. The aim of our study is to observe the slow crack propagation, to quantify it and to predict finally the creep behavior. We performed creep experiments in compaction conditions in a triaxial cell, on cracked boro-silicate glass samples. The chemical composition of the investigated glass is very close to the composition of waste vitrified packages. The matrix of the original glass (OG) is perfectly amorphous, without porosity. A few isolated air bubbles are trapped during the glass flow. Cracks are introduced in the OG through thermal shocks. Strain and acoustic emission (AE) are recorded. Several experiments are performed at different confining pressures (15 or 25 MPa), different pore fluid conditions (with argon gas, considered as the dry case, with tap water saturated porosity, or with distilled water) and different temperatures (ambiant temperature, 50oC or 80oC). Linear increase of the volumetric strain is first observed. A dilatancy increase is recorded. Note that dilatancy does not appear in constant strain rate tests. Constant stress tests show that dilatancy develops during a time interval that depends on the stress level. In addition AE rate are recorded. A non zero AE rate is an evidence of crack propagation. We use a micro-mechanical model that gives the stress intensity factor at the crack tips. This factor depends on stress and geometrical parameters (all known). An exponential law describe the rate of crack propagation, as a function of temperature, environment and applied stresses. This model allows us to predict the creep rate in glass. Assuming a constant crack aspect ratio, crack length and volumetric strain are related. The volumetric strain rate is calculated from model and compared to the data.

  16. Utopia Cracks and Polygons

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-339, 23 April 2003

    This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a pattern of polygonal cracks and aligned, elliptical pits in western Utopia Planitia. The picture covers an area about 3 km (about 1.9 mi) wide near 44.9oN, 274.7oW. Sunlight illuminates the scene from the left.

  17. Effect of corrosion and stress-corrosion cracking on pipe integrity and remaining life

    SciTech Connect

    Jaske, C.E.; Beavers, J.A.

    1996-07-01

    Process piping is often exposed to corrosive fluids. During service, such exposure may cause localized corrosion or stress-corrosion cracking that affects structural integrity. This paper presents a model that quantifies the effect of localized corrosion and stress-corrosion cracking on pipe failure stress. The model is an extension of those that have been developed for oil and gas pipelines. It accounts for both axial and hoop stress. Cracks are modeled using inelastic fracture mechanics. Both flow-stress and fracture-toughness dependent failure modes are addressed. Corrosion and crack-growth rates are used to predict remaining service life.

  18. Propagation of Crack in Glasses under Creep Conditions

    NASA Astrophysics Data System (ADS)

    Mallet, C.; Fortin, J.; Guéguen, Y.; Schubnel, A.

    2012-04-01

    The context of our study is the observation of the mechanical behaviour of glass used for the storage of radioactive wastes. This implies to measure the crack propagation characteristics in glass. Results on the investigation of the micromechanics of creep under triaxial loading conditions are presented in the framework of this study. We performed the experiments in a triaxial cell, with pore fluid pressure, on boro-silicate glass. The chemical composition of the investigated glass is very close to the composition of waste vitrified packages. The matrix of the original glass (OG) is perfectly amorphous, without porosity. A few isolated air bubbles are trapped during the glass flow. Cracks are introduced in the OG through thermal shocks. The evolution of deformation (axial and radial strain) is measured using strain gages. The elastic P and S wave velocities and the acoustic emissions (AE) are also recorded. An experiment in dry conditions was performed (the pore fluid was argon gas) with a confining pressure fixed at 15 MPa. Stress step tests were performed in order to get creep data. A similar experiment was performed in water saturated conditions. Crack-closure is first observed at very low strains. Then elastic deformation is observed up to a stress level where elastic anisotropy develops. This can be clearly detected from ɛ Thomsen parameter increase. At last, at a deviatoric stress of 175 MPa (in dry conditions), we observe dilatancy. This behaviour has never been observed in original glass. Indeed, the OG behaviour is perfectly elastic and brittle. In addition, the constant stress tests show that dilatancy develops during a time constant that depends on the stress level. It can be inferred that crack propagation takes place during the constant stress steps. This behaviour is under investigation. We are also quantifying the velocity of the crack propagation by modelling this phenomenon. Indeed, the crack density can be expressed as a volumic strain, ɛv =

  19. An influence of normal stress and pore pressure on the conditions and dynamics of shear crack propagation in brittle solids

    NASA Astrophysics Data System (ADS)

    Shilko, Evgeny V.; Psakhie, Sergey G.; Popov, Valentin L.

    2016-11-01

    The paper is devoted to the study of the influence of crack-normal stress on the shear strength of the brittle material with initial crack and the geometrical condition of acceleration of dynamically growing crack towards the longitudinal wave speed. We considered elastic-brittle permeable materials with nanoscale pore size. We have shown that pore fluid in nanoporous brittle materials influences mainly the condition of shear crack propagation transition from conventional sub-Rayleigh regime to supershear one. The results of the study make it possible to assess the ability of initial cracks in brittle materials to develop in supershear regime under the condition of confined longitudinal shear.

  20. Switchable catalytic DNA catenanes.

    PubMed

    Hu, Lianzhe; Lu, Chun-Hua; Willner, Itamar

    2015-03-11

    Two-ring interlocked DNA catenanes are synthesized and characterized. The supramolecular catenanes show switchable cyclic catalytic properties. In one system, the catenane structure is switched between a hemin/G-quadruplex catalytic structure and a catalytically inactive state. In the second catenane structure the catenane is switched between a catalytically active Mg(2+)-dependent DNAzyme-containing catenane and an inactive catenane state. In the third system, the interlocked catenane structure is switched between two distinct catalytic structures that include the Mg(2+)- and the Zn(2+)-dependent DNAzymes.

  1. Alloy 600 Cracking Prevention and Mitigation

    SciTech Connect

    Siegel, Edward A.; Connor, William M.; Forsyth, David R.; Grendys, Paula A.; Badlani, Manu

    2002-07-01

    applied to over 1300 joints in BWRs. The NRC has accepted MSIP after rigorous qualification testing and field experience that demonstrated the effectiveness of this technique. The upper head temperature reduction program is a method of lowering the RV head temperature and is already in effect at a number of plants. Alloy 600 PWSCC is very sensitive to temperature; and lower temperatures can be an effective way to extend the useful life of a head. Weld overlay or encapsulation is a technique for creating a non-structural fluid barrier on the inner diameter (ID) of pipe weld joints and on the wetted Alloy 600 surfaces of a reactor head. The new barrier effectively stops the corrosion process from continuing by isolating the susceptible material from the corrosive environment. For reactor heads, this may be an alternative to head replacement or a repair/mitigation at a specific location where flaws are discovered. It is recommended that that all plants evaluate these mitigative techniques for inclusion in an overall Alloy 600 Program. Proactive implementation will diminish, and possibly preclude, the incidence of cracking at some specific locations during the subsequent operating life of the plant. (authors)

  2. Investigation of Cracks Found in Helicopter Longerons

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Baughman, James M.; Wallace, Terryl A.

    2009-01-01

    Four cracked longerons, containing a total of eight cracks, were provided for study. Cracked regions were cut from the longerons. Load was applied to open the cracks, enabling crack surface examination. Examination revealed that crack propagation was driven by fatigue loading in all eight cases. Fatigue crack initiation appears to have occurred on the top edge of the longerons near geometric changes that affect component bending stiffness. Additionally, metallurigical analysis has revealed a local depletion in alloying elements in the crack initiation regions that may be a contributing factor. Fatigue crack propagation appeared to be initially driven by opening-mode loading, but at a crack length of approximately 0.5 inches (12.7 mm), there is evidence of mixed-mode crack loading. For the longest cracks studied, shear-mode displacements destroyed crack-surface features of interest over significant portions of the crack surfaces.

  3. State-of-the-art review of computational fluid dynamics modeling for fluid-solids systems

    NASA Astrophysics Data System (ADS)

    Lyczkowski, R. W.; Bouillard, J. X.; Ding, J.; Chang, S. L.; Burge, S. W.

    1994-05-01

    As the result of 15 years of research (50 staff years of effort) Argonne National Laboratory (ANL), through its involvement in fluidized-bed combustion, magnetohydrodynamics, and a variety of environmental programs, has produced extensive computational fluid dynamics (CFD) software and models to predict the multiphase hydrodynamic and reactive behavior of fluid-solids motions and interactions in complex fluidized-bed reactors (FBR's) and slurry systems. This has resulted in the FLUFIX, IRF, and SLUFIX computer programs. These programs are based on fluid-solids hydrodynamic models and can predict information important to the designer of atmospheric or pressurized bubbling and circulating FBR, fluid catalytic cracking (FCC) and slurry units to guarantee optimum efficiency with minimum release of pollutants into the environment. This latter issue will become of paramount importance with the enactment of the Clean Air Act Amendment (CAAA) of 1995. Solids motion is also the key to understanding erosion processes. Erosion rates in FBR's and pneumatic and slurry components are computed by ANL's EROSION code to predict the potential metal wastage of FBR walls, intervals, feed distributors, and cyclones. Only the FLUFIX and IRF codes will be reviewed in the paper together with highlights of the validations because of length limitations. It is envisioned that one day, these codes with user-friendly pre- and post-processor software and tailored for massively parallel multiprocessor shared memory computational platforms will be used by industry and researchers to assist in reducing and/or eliminating the environmental and economic barriers which limit full consideration of coal, shale, and biomass as energy sources; to retain energy security; and to remediate waste and ecological problems.

  4. State-of-the-art review of computational fluid dynamics modeling for fluid-solids systems

    SciTech Connect

    Lyczkowski, R.W.; Bouillard, J.X.; Ding, J.; Chang, S.L.; Burge, S.W.

    1994-05-12

    As the result of 15 years of research (50 staff years of effort) Argonne National Laboratory (ANL), through its involvement in fluidized-bed combustion, magnetohydrodynamics, and a variety of environmental programs, has produced extensive computational fluid dynamics (CFD) software and models to predict the multiphase hydrodynamic and reactive behavior of fluid-solids motions and interactions in complex fluidized-bed reactors (FBRS) and slurry systems. This has resulted in the FLUFIX, IRF, and SLUFIX computer programs. These programs are based on fluid-solids hydrodynamic models and can predict information important to the designer of atmospheric or pressurized bubbling and circulating FBR, fluid catalytic cracking (FCC) and slurry units to guarantee optimum efficiency with minimum release of pollutants into the environment. This latter issue will become of paramount importance with the enactment of the Clean Air Act Amendment (CAAA) of 1995. Solids motion is also the key to understanding erosion processes. Erosion rates in FBRs and pneumatic and slurry components are computed by ANL`s EROSION code to predict the potential metal wastage of FBR walls, intervals, feed distributors, and cyclones. Only the FLUFIX and IRF codes will be reviewed in the paper together with highlights of the validations because of length limitations. It is envisioned that one day, these codes with user-friendly pre and post-processor software and tailored for massively parallel multiprocessor shared memory computational platforms will be used by industry and researchers to assist in reducing and/or eliminating the environmental and economic barriers which limit full consideration of coal, shale and biomass as energy sources, to retain energy security, and to remediate waste and ecological problems.

  5. A catalytic plasma exhaust purification system

    SciTech Connect

    Penzhorn, R.D.; Rodriguez, R.; Gluglia, M.; Gunther, K.; Yoshida, H.; Konishi, S.

    1988-09-01

    For the plasma exhaust clean-up of a fusion reactor a process concept based on the hydrogen isotope purification through palladium/silver alloy permeators combined with selective catalytic reaction steps is proposed, which avoids intermediate conversion of impurities into water. To recover tritium from tritiated impurities ammonia is decomposed into the elements inside the permeators; water is reduced catalytically by carbon monoxide into carbon dioxide and hydrogen; and hydrocarbons are cracked into carbon and hydrogen on a nickel catalyst. Experimental results on the reactivity, consumption and regeneration of the catalysts are given. The permeation rate of hydrogen through palladium/silver alloy was found to be largely independent of the impurities CO, CO/sub 2/, H/sub 2/O and CH/sub 4/. Technological requirements in view of NET are discussed.

  6. 40 CFR Table 25 to Subpart Uuu of... - Requirements for Performance Tests for Inorganic HAP Emissions From Catalytic Reforming Units

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... limit for HCl concentration using Equation 4 of § 63.1567. If you elect to comply with the HCl percent... Pollutants for Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery... elect to meet an applicable HCl percent reduction standard, sampling sites must be located at the...

  7. 40 CFR Table 17 to Subpart Uuu of... - Continuous Monitoring Systems for Organic HAP Emissions From Catalytic Reforming Units

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Pollutants for Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery... sensor, or infrared sensor to continuously detect the presence of a pilot flame. 2. Option 2: percent reduction or concentration limit. Thermal incinerator, process heater or boiler with a design heat...

  8. Combination of thermal cracking with vacuum distillation of cracked tar

    SciTech Connect

    Telyashev, G.G.; Gimaev, R.N.; Makhov, A.F.; Usmanov, R.M.; Baimbetov, A.M.; Vafin, I.A.

    1987-11-01

    A method of obtaining greater amounts of distillate feedstocks from the heavy gasoil recovered by vacuum distillation of the products of thermal cracking of petroleum resids was examined. At the Novo-Ufa Petroleum Refinery, a two-furnace thermal cracking unit was reconstructed, adding a vacuum section for distillation of the cracked tar. A simplified flow plan of this unit is shown. Vacuum resid from atmospheric-vacuum tubestill units is heated in double-pipe heat exchangers, using heat from the gasoil and cracked tar. The new method makes it possible to curtail production of boiler fuel, expand the resources of feed, and improve the quality of petroleum coke.

  9. On the Crack Bifurcation and Fanning of Crack Growth Data

    NASA Technical Reports Server (NTRS)

    Forman, Royce G.; Zanganeh, Mohammad

    2015-01-01

    Crack growth data obtained from ASTM load shedding method for different R values show some fanning especially for aluminum alloys. It is believed by the authors and it has been shown before that the observed fanning is due to the crack bifurcation occurs in the near threshold region which is a function of intrinsic properties of the alloy. Therefore, validity of the ASTM load shedding test procedure and results is confirmed. However, this position has been argued by some experimentalists who believe the fanning is an artifact of the test procedure and thus the obtained results are invalid. It has been shown that using a special test procedure such as using compressively pre-cracked specimens will eliminate the fanning effect. Since not using the fanned data fit can result in a significantly lower calculated cyclic life, design of a component, particularly for rotorcraft and propeller systems will considerably be impacted and therefore this study is of paramount importance. In this effort both test procedures i.e. ASTM load shedding and the proposed compressive pre-cracking have been used to study the fatigue crack growth behavior of compact tension specimens made of aluminum alloy 2524-T3. Fatigue crack growth paths have been closely observed using SEM machines to investigate the effects of compression pre-cracking on the crack bifurcation behavior. The results of this study will shed a light on resolving the existing argument by better understanding of near threshold fatigue crack growth behavior.

  10. Investigation of wing crack formation with a combined phase-field and experimental approach

    NASA Astrophysics Data System (ADS)

    Lee, Sanghyun; Reber, Jacqueline E.; Hayman, Nicholas W.; Wheeler, Mary F.

    2016-08-01

    Fractures that propagate off of weak slip planes are known as wing cracks and often play important roles in both tectonic deformation and fluid flow across reservoir seals. Previous numerical models have produced the basic kinematics of wing crack openings but generally have not been able to capture fracture geometries seen in nature. Here we present both a phase-field modeling approach and a physical experiment using gelatin for a wing crack formation. By treating the fracture surfaces as diffusive zones instead of as discontinuities, the phase-field model does not require consideration of unpredictable rock properties or stress inhomogeneities around crack tips. It is shown by benchmarking the models with physical experiments that the numerical assumptions in the phase-field approach do not affect the final model predictions of wing crack nucleation and growth. With this study, we demonstrate that it is feasible to implement the formation of wing cracks in large scale phase-field reservoir models.

  11. Threshold intensity factors as lower boundaries for crack propagation in ceramics

    PubMed Central

    Marx, Rudolf; Jungwirth, Franz; Walter, Per-Ole

    2004-01-01

    Background Slow crack growth can be described in a v (crack velocity) versus KI (stress intensity factor) diagram. Slow crack growth in ceramics is attributed to corrosion assisted stress at the crack tip or at any pre-existing defect in the ceramic. The combined effect of high stresses at the crack tip and the presence of water or body fluid molecules (reducing surface energy at the crack tip) induces crack propagation, which eventually may result in fatigue. The presence of a threshold in the stress intensity factor, below which no crack propagation occurs, has been the subject of important research in the last years. The higher this threshold, the higher the reliability of the ceramic, and consequently the longer its lifetime. Methods We utilize the Irwin K-field displacement relation to deduce crack tip stress intensity factors from the near crack tip profile. Cracks are initiated by indentation impressions. The threshold stress intensity factor is determined as the time limit of the tip stress intensity when the residual stresses have (nearly) disappeared. Results We determined the threshold stress intensity factors for most of the all ceramic materials presently important for dental restorations in Europe. Of special significance is the finding that alumina ceramic has a threshold limit nearly identical with that of zirconia. Conclusion The intention of the present paper is to stress the point that the threshold stress intensity factor represents a more intrinsic property for a given ceramic material than the widely used toughness (bend strength or fracture toughness), which refers only to fast crack growth. Considering two ceramics with identical threshold limits, although with different critical stress intensity limits, means that both ceramics have identical starting points for slow crack growth. Fast catastrophic crack growth leading to spontaneous fatigue, however, is different. This growth starts later in those ceramic materials that have larger

  12. Preventing Cracking of Anodized Coatings

    NASA Technical Reports Server (NTRS)

    He, Charles C.; Heslin, Thomas M.

    1995-01-01

    Anodized coatings have been used as optical and thermal surfaces in spacecraft. Particulate contamination from cracked coatings is a concern for many applications. The major cause for the cracking is the difference in the coefficient of thermal expansion between the oxide coatings and the aluminum substrate. The loss of water when the coating is exposed to a vacuum also could induce cracking of the coating. Hot-water sealing was identified as the major cause for the cracking of the coatings because of the large temperature change when the parts were immersed in boiling water and the water was absorbed in the coating. when the hot-water sealing process was eliminated, the cracking resistance of the anodized coatings was greatly improved. Also, it was found that dyed black coatings were more susceptible than clear coatings to cracking during thermo-vacuum cyclings.

  13. Crack Diagnosis of Wind Turbine Blades Based on EMD Method

    NASA Astrophysics Data System (ADS)

    Hong-yu, CUI; Ning, DING; Ming, HONG

    2016-11-01

    Wind turbine blades are both the source of power and the core technology of wind generators. After long periods of time or in some extreme conditions, cracks or damage can occur on the surface of the blades. If the wind generators continue to work at this time, the crack will expand until the blade breaks, which can lead to incalculable losses. Therefore, a crack diagnosis method based on EMD for wind turbine blades is proposed in this paper. Based on aerodynamics and fluid-structure coupling theory, an aero-elastic analysis on wind turbine blades model is first made in ANSYS Workbench. Second, based on the aero-elastic analysis and EMD method, the blade cracks are diagnosed and identified in the time and frequency domains, respectively. Finally, the blade model, strain gauge, dynamic signal acquisition and other equipment are used in an experimental study of the aero-elastic analysis and crack damage diagnosis of wind turbine blades to verify the crack diagnosis method proposed in this paper.

  14. Cracking in charged anisotropic cylinder

    NASA Astrophysics Data System (ADS)

    Sharif, M.; Sadiq, Sobia

    2017-06-01

    In this paper, we study the stability of static charged anisotropic cylindrically symmetric compact object through cracking. The Einstein-Maxwell field equations and conservation equation are formulated. We then apply local density perturbation and study the behavior of force distribution function. Finally, the cracking is explored for two models satisfying specific form of Chaplygin equation of state. It is found that these models exhibit cracking and the instability increases as the value of charge parameter is increased.

  15. Janus droplet as a catalytic micromotor

    NASA Astrophysics Data System (ADS)

    Shklyaev, Sergey

    2015-06-01

    Self-propulsion of a Janus droplet in a solution of surfactant, which reacts on a half of a drop surface, is studied theoretically. The droplet acts as a catalytic motor creating a concentration gradient, which generates its surface-tension-driven motion; the self-propulsion speed is rather high, 60 μ \\text{m/s} and more. This catalytic motor has several advantages over other micromotors: simple manufacturing, easily attained neutral buoyancy. In contrast to a single-fluid droplet, which demonstrates a self-propulsion as a result of symmetry breaking instability, for the Janus one no stability threshold exists; hence, the droplet radius can be scaled down to micrometers.

  16. Three-Dimensional Gear Crack Propagation Studies

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; Sane, Ashok D.; Drago, Raymond J.; Wawrzynek, Paul A.

    1998-01-01

    Three-dimensional crack growth simulation was performed on a split-tooth gear design using boundary element modeling and linear elastic fracture mechanics. Initial cracks in the fillet of the teeth produced stress intensity factors of greater magnitude (and thus, greater crack growth rates) than those in the root or groove areas of the teeth. Crack growth simulation was performed on a case study to evaluate crack propagation paths. Tooth fracture was predicted from the crack growth simulation for an initial crack in the tooth fillet region. Tooth loads on the uncracked mesh of the split-tooth design were up to five times greater than those on the cracked mesh if equal deflections of the cracked and uncracked teeth were considered. Predicted crack shapes as well as crack propagation life are presented based on calculated stress intensity factors, mixed-mode crack propagation trajectory theories, and fatigue crack growth theories.

  17. Retrofitting olefin cracking plants

    SciTech Connect

    Sumner, C.; Fernandez-Baujin, J.M.

    1983-12-01

    This article discusses the retrofitting of liquid crackers which produce olefins so that gaseous feedstocks can be used. Naphtha and gas oil are the predominant design feedstocks for producing olefins. The price of gaseous feedstocks such as ethane, propane and butane have become economically more attractive than liquid feedstocks. Existing liquid crackers will be able to produce ethylene at 85% or higher capacity when cracking propane and butane feedstock with only minor changes. Topics considered include revamping for vacuum gas oil (VGO) feedstocks and revamping for liquefied petroleum gas (LPG) feedstocks.

  18. Mode II fatigue crack propagation.

    NASA Technical Reports Server (NTRS)

    Roberts, R.; Kibler, J. J.

    1971-01-01

    Fatigue crack propagation rates were obtained for 2024-T3 bare aluminum plates subjected to in-plane, mode I, extensional loads and transverse, mode II, bending loads. These results were compared to the results of Iida and Kobayashi for in-plane mode I-mode II extensional loads. The engineering significance of mode I-mode II fatigue crack growth is considered in view of the present results. A fatigue crack growth equation for handling mode I-mode II fatigue crack growth rates from existing mode I data is also discussed.

  19. Shear fatigue crack growth - A literature survey

    NASA Technical Reports Server (NTRS)

    Liu, H. W.

    1985-01-01

    Recent studies of shear crack growth are reviewed, emphasizing test methods and data analyses. The combined mode I and mode II elastic crack tip stress fields are considered. The development and design of the compact shear specimen are described, and the results of fatigue crack growth tests using compact shear specimens are reviewed. The fatigue crack growth tests are discussed and the results of inclined cracks in tensile panels, center cracks in plates under biaxial loading, cracked beam specimens with combined bending and shear loading, center-cracked panels and double edge-cracked plates under cyclic shear loading are examined and analyzed in detail.

  20. Enhanced ethylene and ethane production with free-radical cracking catalysts.

    PubMed

    Kolts, J H; Delzer, G A

    1986-05-09

    A series of free-radical catalysts have been discovered that increase the yield of highly valuable olefins from the cracking of low molecular weight paraffins. For example, catalytic cracking of n-butane, isobutane, and propane over manganese or iron supported on magnesium oxide (MgO) gave product distributions different from those given by thermal (free-radical) cracking or cracking over traditional acid catalysts. With n-butane and propane feeds, the products from catalytic cracking included large amounts of ethylene and ethane; with isobutane feed, propylene was the major product. Physical characterization of the MgO-supported catalyst showed the manganese to be in a 2+ oxidation state in the reduced catalyst and a 4+ oxidation state in the fully oxidized catalyst. Manganese was also shown to be uniformly distributed in the support material with very little enrichment at the surface. Matrix isolation of the gasphase radicals from n-butane feed showed that ethyl and methyl radicals were produced over the active catalysts. In the thermal process, only methyl radicals were produced. The mechanism of the catalytic reaction appears to be selective formation of primary carbanions at the catalyst surface followed by electron transfer and release of primary hydrocarbon radicals to the gas phase.

  1. Current understanding of stress-corrosion cracking

    SciTech Connect

    Parkins, R.N. )

    1992-12-01

    The mechanisms that cause stress corrosion cracking and the conditions in which they apply are reviewed. Attention is given to hydrogen-assisted cracking, film-induced cleavage, dissolution mechanisms, surface-mobility mechanism, cracking environments, deformation and cracking, and stochastic aspects of cracking. 70 refs.

  2. Effect of Crack Opening on Penetrant Crack Detectability

    NASA Technical Reports Server (NTRS)

    Weaver, Devin

    2009-01-01

    Results: From the testing we were able to determine all the cracks within the test range were detectable or better with developer. Many of the indications after development lost their linearity and gave circular indications. Our tests were performed in a laboratory and our procedure would be difficult in an industrial setting. Conclusions: The "V" did not significantly affect our ability to detect the POD cracks with fluorescent penetrant. Conduct same experiment with more cracks. The 0.025 and 0.050 POD specimens are clean and documented with the SEM. Conduct water-wash fluorescent penetrant test at EAFB. The poppet cracks are tighter than the POD specimen cracks. Flight FCV poppets: 0.01 mils (0.3 microns) Langley fatigue cracked poppets: 0.02 mils (0.5 microns) POD specimen (post 5 mils): 0.05 mils (1.4 microns) We could not detect cracks in Langley fatigue-cracked poppets with fluorescent penetrant. Investigate inability of penetrant to wet the poppet surface.

  3. Rich catalytic injection

    SciTech Connect

    Veninger, Albert

    2008-12-30

    A gas turbine engine includes a compressor, a rich catalytic injector, a combustor, and a turbine. The rich catalytic injector includes a rich catalytic device, a mixing zone, and an injection assembly. The injection assembly provides an interface between the mixing zone and the combustor. The injection assembly can inject diffusion fuel into the combustor, provides flame aerodynamic stabilization in the combustor, and may include an ignition device.

  4. Two stage catalytic combustor

    NASA Technical Reports Server (NTRS)

    Alvin, Mary Anne (Inventor); Bachovchin, Dennis (Inventor); Smeltzer, Eugene E. (Inventor); Lippert, Thomas E. (Inventor); Bruck, Gerald J. (Inventor)

    2010-01-01

    A catalytic combustor (14) includes a first catalytic stage (30), a second catalytic stage (40), and an oxidation completion stage (49). The first catalytic stage receives an oxidizer (e.g., 20) and a fuel (26) and discharges a partially oxidized fuel/oxidizer mixture (36). The second catalytic stage receives the partially oxidized fuel/oxidizer mixture and further oxidizes the mixture. The second catalytic stage may include a passageway (47) for conducting a bypass portion (46) of the mixture past a catalyst (e.g., 41) disposed therein. The second catalytic stage may have an outlet temperature elevated sufficiently to complete oxidation of the mixture without using a separate ignition source. The oxidation completion stage is disposed downstream of the second catalytic stage and may recombine the bypass portion with a catalyst exposed portion (48) of the mixture and complete oxidation of the mixture. The second catalytic stage may also include a reticulated foam support (50), a honeycomb support, a tube support or a plate support.

  5. Corrosion Behavior of Steel Reinforcement in Concrete with Recycled Aggregates, Fly Ash and Spent Cracking Catalyst

    PubMed Central

    Gurdián, Hebé; García-Alcocel, Eva; Baeza-Brotons, Francisco; Garcés, Pedro; Zornoza, Emilio

    2014-01-01

    The main strategy to reduce the environmental impact of the concrete industry is to reuse the waste materials. This research has considered the combination of cement replacement by industrial by-products, and natural coarse aggregate substitution by recycled aggregate. The aim is to evaluate the behavior of concretes with a reduced impact on the environment by replacing a 50% of cement by industrial by-products (15% of spent fluid catalytic cracking catalyst and 35% of fly ash) and a 100% of natural coarse aggregate by recycled aggregate. The concretes prepared according to these considerations have been tested in terms of mechanical strengths and the protection offered against steel reinforcement corrosion under carbonation attack and chloride-contaminated environments. The proposed concrete combinations reduced the mechanical performance of concretes in terms of elastic modulus, compressive strength, and flexural strength. In addition, an increase in open porosity due to the presence of recycled aggregate was observed, which is coherent with the changes observed in mechanical tests. Regarding corrosion tests, no significant differences were observed in the case of the resistance of these types of concretes under a natural chloride attack. In the case of carbonation attack, although all concretes did not stand the highly aggressive conditions, those concretes with cement replacement behaved worse than Portland cement concretes. PMID:28788613

  6. Crack damage evolution in rocks deformed under true triaxial loading

    NASA Astrophysics Data System (ADS)

    Browning, John; Meredith, Philip; Stuart, Chris; Healy, David; Harland, Sophie; Mitchell, Tom

    2017-04-01

    constant. Hence, the differential stress at which rocks fail (strength) will be significantly increased under true triaxial stress conditions than under the much more commonly applied condition of conventional triaxial stress. Through a series of cyclic loading tests, we show that while individual stress states are important, the stress path by which this stress state is reached is equally important. Whether or not that stress state has been 'visited' before is also vitally important in determining and understanding damage states. Finally, we show that damage evolution can be anisotropic and must be considered as a three-dimensional problem. Such results are important for understanding three-dimensional crack damage evolution which is likely a key control on fluid migration in volcanoes and fault zones.

  7. Acidic and basic properties of zeolite-containing cracking catalyst in the process of butene-1 isomerization

    NASA Astrophysics Data System (ADS)

    Mursalova, L. A.; Guseinova, E. A.; Adzhamov, K. Yu.

    2016-08-01

    The process of butene-1 isomerization in the presence of two groups of samples of zeolite-containing catalyst (ZCC) that earlier participated in the traditional and oxidative catalytic cracking of vacuum gasoil is investigated. It is established that the nature of the reaction mixture and conditions of the cracking process are key factors in forming the acidic and basic properties of the catalyst. It is shown that the highest activity in the butene-1 isomerization into cis-/ trans-butene-2 is demonstrated by ZCC samples that participated in the oxidative catalytic cracking (oxycracking). It is suggested that the enhanced catalytic activity of this group of ZCC samples was related to the availability of acid-base centers in the form of radical-like oxygen along with protic- and aprotic-type acidic centers in the structure of the oxidative compaction products.

  8. Selective dehydrogenation of propane over novel catalytic materials

    SciTech Connect

    Sault, A.G.; Boespflug, E.P.; Martino, A.; Kawola, J.S.

    1998-02-01

    The conversion of small alkanes into alkenes represents an important chemical processing area; ethylene and propylene are the two most important organic chemicals manufactured in the U.S. These chemicals are currently manufactured by steam cracking of ethane and propane, an extremely energy intensive, nonselective process. The development of catalytic technologies (e.g., selective dehydrogenation) that can be used to produce ethylene and propylene from ethane and propane with greater selectivity and lower energy consumption than steam cracking will have a major impact on the chemical processing industry. This report details a study of two novel catalytic materials for the selective dehydrogenation of propane: Cr supported on hydrous titanium oxide ion-exchangers, and Pt nanoparticles encapsulated in silica and alumina aerogel and xerogel matrices.

  9. Replica-Based Crack Inspection

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Willard, Scott A.; Smith, Stephen W.; Piascik, Robert S.

    2008-01-01

    Surface replication has been proposed as a method for crack detection in space shuttle main engine flowliner slots. The results of a feasibility study show that examination of surface replicas with a scanning electron microscope can result in the detection of cracks as small as 0.005 inch, and surface flaws as small as 0.001 inch, for the flowliner material.

  10. Experiences on IGSCC crack manufacturing

    SciTech Connect

    Veron, P.

    1997-02-01

    The author presents his experience in manufacturing IGSCC realistic defects, mainly in INCONEL 600 MA Steam Generator Tubes. From that experience he extracts some knowledge about this cracking (influence of chemistry in the environment, stress state, crack growth rate, and occurrence in laboratory condition of break before leak).

  11. Cracking in Drying Colloidal Films

    NASA Astrophysics Data System (ADS)

    Singh, Karnail B.; Tirumkudulu, Mahesh S.

    2007-05-01

    It has long been known that thick films of colloidal dispersions such as wet clays, paints, and coatings crack under drying. Although capillary stresses generated during drying have been recently identified as the cause for cracking, the existence of a maximum crack-free film thickness that depends on particle size, rigidity, and packing has not been understood. Here, we identify two distinct regimes for crack-free films based on the magnitude of compressive strain at the maximum attainable capillary pressure and show remarkable agreement of measurements with our theory. We anticipate our results to not only form the basis for design of coating formulations for the paints, coatings, and ceramics industry but also assist in the production of crack-free photonic band gap crystals.

  12. High speed thin plate fatigue crack monitor

    NASA Technical Reports Server (NTRS)

    Wincheski, Buzz A. (Inventor); Heyman, Joseph S. (Inventor); Namkung, Min (Inventor); Fulton, James P. (Inventor)

    1996-01-01

    A device and method are provided which non-destructively detect crack length and crack geometry in thin metallic plates. A non-contacting vibration apparatus produces resonant vibrations without introducing extraneous noise. Resulting resonant vibration shifts in cracked plates are correlated to known crack length in plates with similar resonant vibration shifts. In addition, acoustic emissions of cracks at resonance frequencies are correlated to acoustic emissions from known crack geometries.

  13. Crack Mitigation in Concrete: Superabsorbent Polymers as Key to Success?

    PubMed Central

    Mignon, Arn; Snoeck, Didier; Dubruel, Peter; Van Vlierberghe, Sandra; De Belie, Nele

    2017-01-01

    Cracking is a major concern in building applications. Cracks may arise from shrinkage, freeze/thawing and/or structural stresses, amongst others. Several solutions can be found but superabsorbent polymers (SAPs) seem to be interesting to counteract these problems. At an early age, the absorbed water by the SAPs may be used to mitigate autogenous and plastic shrinkage. The formed macro pores may increase the freeze/thaw resistance. The swelling upon water ingress may seal a crack from intruding fluids and may regain the overall water-tightness. The latter water may promote autogenous healing. The use of superabsorbent polymers is thus very interesting. This review paper summarizes the current research and gives a critical note towards the use of superabsorbent polymers in cementitious materials. PMID:28772599

  14. An experimental investigation of fatigue crack growth in drillstring tubulars

    SciTech Connect

    Dale, B.A.

    1986-01-01

    Drill-string failures continue to plague the oil industry, often costing millions of dollars each year. This problem is frequently intensified with the drilling of deep deviated wellbores or ''hard rock'' drilling conditions. The drilling industry attempts to guard against these costly failures by performing periodic nondestructive inspections to remove damaged tubulars from service. This paper describes the results of full-scale fatigue crack growth tests of drill collars under rotating and bending loads. In addition, corrosion fatigue crack growth data are also presented for API drill-pipe steels in air and in three representative water-base drilling fluid environments. Based on this experimental investigation, the test data support the practical application of fatigue crack growth mechanics principles for the development of nondestructive inspection intervals to reduce drill-string failures.

  15. Crack Mitigation in Concrete: Superabsorbent Polymers as Key to Success?

    PubMed

    Mignon, Arn; Snoeck, Didier; Dubruel, Peter; Van Vlierberghe, Sandra; De Belie, Nele

    2017-02-28

    Cracking is a major concern in building applications. Cracks may arise from shrinkage, freeze/thawing and/or structural stresses, amongst others. Several solutions can be found but superabsorbent polymers (SAPs) seem to be interesting to counteract these problems. At an early age, the absorbed water by the SAPs may be used to mitigate autogenous and plastic shrinkage. The formed macro pores may increase the freeze/thaw resistance. The swelling upon water ingress may seal a crack from intruding fluids and may regain the overall water-tightness. The latter water may promote autogenous healing. The use of superabsorbent polymers is thus very interesting. This review paper summarizes the current research and gives a critical note towards the use of superabsorbent polymers in cementitious materials.

  16. Three-dimensional crack closure behavior

    NASA Technical Reports Server (NTRS)

    Dawicke, D. S.; Grandt, A. F., Jr.; Newman, J. C., Jr.

    1990-01-01

    A crack closure measurement technique involving fatigue striations was used to produce a three-dimensional crack opening load profile for 2024-T351 aluminum alloy. The crack opening load profile, determined through the specimen thickness, was compared with crack opening load measurements made with strain gages and displacement gages. The results of this study indicate that a significant three-dimensional variation in crack closure behavior occurs in the alloy examined. An understanding of this phehomenon is important in understanding crack growth behavior, predicting crack shape changes, and interpreting 'standard' crack closure measurement techniques.

  17. Catalytic distillation structure

    DOEpatents

    Smith, Jr., Lawrence A.

    1984-01-01

    Catalytic distillation structure for use in reaction distillation columns, a providing reaction sites and distillation structure and consisting of a catalyst component and a resilient component intimately associated therewith. The resilient component has at least about 70 volume % open space and being present with the catalyst component in an amount such that the catalytic distillation structure consist of at least 10 volume % open space.

  18. Prediction of fatigue crack-growth patterns and lives in three-dimensional cracked bodies

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Raju, I. S.

    1986-01-01

    Fatigue crack growth patterns and lives for surface cracks, surface cracks at holes, and corner cracks at holes in three dimensional bodies were predicted using linear-elastic fracture mechanics concepts that were modified to account for crack-closure behavior. The predictions were made by using stress intensity factor equations for these crack configurations and the fatigue crack-growth (delta K against rate) relationship for the material of interest. The crack configurations were subjected to constant-amplitude fatigue loading under either remote tension or bending loads. The predicted crack growth patterns and crack growth lives for aluminum alloys agreed well with test data from the literature.

  19. Prediction of fatigue crack-growth patterns and lives in three-dimensional cracked bodies

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Raju, I. S.

    1984-01-01

    Fatigue crack growth patterns and lives for surface cracks, surface cracks at holes, and corner cracks at holes in three dimensional bodies were predicted using linear-elastic fracture mechanics concepts that were modified to account for crack-closure behavior. The predictions were made by using stress intensity factor equations for these crack configurations and the fatigue crack-growth (delta K against rate) relationship for the material of interest. The crack configurations were subjected to constant-amplitude fatigue loading under either remote tension or bending loads. The predicted crack growth patterns and crack growth lives for aluminum alloys agreed well with test data from the literature.

  20. Two new cracking catalysts are developed for TCC process

    SciTech Connect

    Anderson, C.D.; Breckenridge, L.L.; Bundens, R.G.; Dwyer, F.G.; Herbst, J.A.

    1987-06-01

    Two new catalysts, Durabead 12 and Durabead 14, have been developed during 1986 for Mobil's Thermofor Catalytic Cracking (TCC) units. Durabead 12 produces significantly more gasoline and distillate at the expense of coke and C/sub 4//sup -/ gas and shows good hydrothermal stability. Durabead 12 has the same low attrition and high density and diffusivity as previous Durabead catalysts (Table 1). As a result, unit retention, regenerability, and flow and pressure drop characteristics of Durabead 12 are excellent. Durabead 14 is a combination of Mobil's ZSM-5 shape-selective zeolite and Durabead 12. Durabead 14 has very favorable coke selectivity, octane, and potential alkylate enhancement with no gasoline yield loss compared to conventional rare earth Y (REY) cracking catalysts. Results of laboratory tests on both catalysts are presented in this article. Additional commercial evaluation of Durabead 12 were conducted. Those results are also presented.

  1. Performance characterization of a hydrogen catalytic heater.

    SciTech Connect

    Johnson, Terry Alan; Kanouff, Michael P.

    2010-04-01

    This report describes the performance of a high efficiency, compact heater that uses the catalytic oxidation of hydrogen to provide heat to the GM Hydrogen Storage Demonstration System. The heater was designed to transfer up to 30 kW of heat from the catalytic reaction to a circulating heat transfer fluid. The fluid then transfers the heat to one or more of the four hydrogen storage modules that make up the Demonstration System to drive off the chemically bound hydrogen. The heater consists of three main parts: (1) the reactor, (2) the gas heat recuperator, and (3) oil and gas flow distribution manifolds. The reactor and recuperator are integrated, compact, finned-plate heat exchangers to maximize heat transfer efficiency and minimize mass and volume. Detailed, three-dimensional, multi-physics computational models were used to design and optimize the system. At full power the heater was able to catalytically combust a 10% hydrogen/air mixture flowing at over 80 cubic feet per minute and transfer 30 kW of heat to a 30 gallon per minute flow of oil over a temperature range from 100 C to 220 C. The total efficiency of the catalytic heater, defined as the heat transferred to the oil divided by the inlet hydrogen chemical energy, was characterized and methods for improvement were investigated.

  2. Weertman cracks and the fast extraction of diamonds from the Earth's mantle with a speed of about 800 km/h

    NASA Astrophysics Data System (ADS)

    Sommer, Holger; Regenauer-Lieb, Klaus; Gaede, Oliver

    2010-05-01

    First evidence from the Jwangeng diamond mine in South Botswana reveals a possible mechanism of near-sonic speed diamond extraction. Our data support the formation of Weertman cracks as a transport mechanism for the diamond bearing kimberlitic-melt from the Earth's mantle to the surface. Weertman cracks are vertical fluid filled cracks, which can move with a velocity of about 800 km/h. External stress fields facilitate the propagation of a Weertman crack, but it is essentially driven by the buoyancy or gravitational potential energy of the fluid. A Weertman crack can never overshoot (propagate faster than) the fluid, without losing its driving force. Therefore, we use properties of the fluid to estimate upper limits for the propagation velocity of a Weertman crack. We present new data that support the hypothesis that Weertman cracks can be responsible for the extraction of diamonds. Arguments for Weertman cracks are threefold: 1) The geometry of kimberlite pipes closely resembles the shape predicted by Weertman cracks; 2) Like Weertman cracks kimberlites themselves never develop an explosive stage besides the mechanism due to contact with groundwater; the melt often gets trapped near the Earth's surface; 3) The speed of the uplift of the diamonds from >150 km depth must be larger than 800 km/h to explain preservation of diamonds themselves and our OH-diffusion profiles in garnet and our calculations recorded from quenched diamondiferous host rock.

  3. Control of serpentinisation rate by reaction-induced cracking

    NASA Astrophysics Data System (ADS)

    Malvoisin, Benjamin; Brantut, Nicolas; Kaczmarek, Mary-Alix

    2017-10-01

    Serpentinisation of mantle rocks requires the generation and maintenance of transport pathways for water. The solid volume increase during serpentinisation can lead to stress build-up and trigger cracking, which ease fluid penetration into the rock. The quantitative effect of this reaction-induced cracking mechanism on reactive surface generation is poorly constrained, thus hampering our ability to predict serpentinisation rate in geological environments. Here we use a combined approach with numerical modelling and observations in natural samples to provide estimates of serpentinisation rate at mid-ocean ridges. We develop a micromechanical model to quantify the propagation of serpentinisation-induced cracks in olivine. The maximum crystallisation pressure deduced from thermodynamic calculations reaches several hundreds of megapascals but does not necessary lead to crack propagation if the olivine grain is subjected to high compressive stresses. The micromechanical model is then coupled to a simple geometrical model to predict reactive surface area formation during grain splitting, and thus bulk reaction rate. Our model reproduces quantitatively experimental kinetic data and the typical mesh texture formed during serpentinisation. We also compare the model results with olivine grain size distribution data obtained on natural serpentinised peridotites from the Marum ophiolite and the Papuan ultramafic belt (Papua New Guinea). The natural serpentinised peridotites show an increase of the number of olivine grains for a decrease of the mean grain size by one order of magnitude as reaction progresses from 5 to 40%. These results are in agreement with our model predictions, suggesting that reaction-induced cracking controls the serpentinisation rate. We use our model to estimate that, at mid-ocean ridges, serpentinisation occurs up to 12 km depth and reaction-induced cracking reduces the characteristic time of serpentinisation by one order of magnitude, down to values

  4. Catalytic performances of HZSM-5, NaY and MCM-41 in two-stage catalytic pyrolysis of pinewood

    NASA Astrophysics Data System (ADS)

    Wang, Y. M.; Wang, J.

    2016-08-01

    Experiments were carried out in an atmospheric two-stage fixed bed reactor to investigate the catalytic cracking of pinewood pyrolysis vapour over three single catalysts, HZSM-5, NaY and MCM-41. The pinewood was pyrolyzed in the first stage reactor at a heating rate of 10 °C min-1 from room temperature to 700 °C, and the resultant vapour was cracked through the second reactor at a temperature of 500, 600 or 700 °C with and without catalyst. Both the gases and liquid compounds were thoroughly determined. It was found that all three catalysts had significant catalytic effects on the vapour cracking especially in the range of 500-600 °C. However, three catalysts showed dissimilarity to each other with respect to the distributions of products. Among three catalysts, HZSM-5 displayed the highest selectivity for the formation of olefins and light aromatics, with the least deposit of coke, though NaY showed the strongest capability of deoxygenation. The HZSM-5 cracking at 600 °C was preferred to balance the yield and quality of bio-products. MCM-41 behaved as a worse catalyst in the deoxygenation, and its resultant liquid product contained more heavy aromatics.

  5. Ionizable side chains at catalytic active sites of enzymes.

    PubMed

    Jimenez-Morales, David; Liang, Jie; Eisenberg, Bob

    2012-05-01

    Catalytic active sites of enzymes of known structure can be well defined by a modern program of computational geometry. The CASTp program was used to define and measure the volume of the catalytic active sites of 573 enzymes in the Catalytic Site Atlas database. The active sites are identified as catalytic because the amino acids they contain are known to participate in the chemical reaction catalyzed by the enzyme. Acid and base side chains are reliable markers of catalytic active sites. The catalytic active sites have 4 acid and 5 base side chains, in an average volume of 1,072 Å(3). The number density of acid side chains is 8.3 M (in chemical units); the number density of basic side chains is 10.6 M. The catalytic active site of these enzymes is an unusual electrostatic and steric environment in which side chains and reactants are crowded together in a mixture more like an ionic liquid than an ideal infinitely dilute solution. The electrostatics and crowding of reactants and side chains seems likely to be important for catalytic function. In three types of analogous ion channels, simulation of crowded charges accounts for the main properties of selectivity measured in a wide range of solutions and concentrations. It seems wise to use mathematics designed to study interacting complex fluids when making models of the catalytic active sites of enzymes.

  6. Analysis of Crack Arrest Toughness.

    DTIC Science & Technology

    1988-01-15

    vload(m) vp tn(m) Vertical Source Load (kN) on wedge HY80 Finite Element 0.0122 0.0099 3.81x10 -4 144 Steel Calculations Experiment 0.0122 --- 3.74x10-4...curve, are bona fide measures of the fracture arrest capability of tough ductile steels . The second is that the J-values represent the crack driving...fibrous mode of crack extension. (b) A new test method for studying fast fracture and arrest in tough steels . (c) Measurements of fast fracture and crack

  7. Stress intensity and crack displacement for small edge cracks

    NASA Technical Reports Server (NTRS)

    Orange, Thomas W.

    1988-01-01

    The weight function method was used to derive stress intensity factors and crack mouth displacement coefficients for small edge cracks (less than 20 percent of the specimen width) in common fracture specimen configurations. Contact stresses due to point application of loads were found to be small but significant for three-point bending and insignificant for four-point bending. The results are compared with available equations and numerical solutions from the literature and with unpublished boundary collocation results.

  8. A computational algorithm for crack determination: The multiple crack case

    NASA Technical Reports Server (NTRS)

    Bryan, Kurt; Vogelius, Michael

    1992-01-01

    An algorithm for recovering a collection of linear cracks in a homogeneous electrical conductor from boundary measurements of voltages induced by specified current fluxes is developed. The technique is a variation of Newton's method and is based on taking weighted averages of the boundary data. The method also adaptively changes the applied current flux at each iteration to maintain maximum sensitivity to the estimated locations of the cracks.

  9. A Linearized Model for Wave Propagation through Coupled Volcanic Conduit-crack Systems Filled with Multiphase Magma

    NASA Astrophysics Data System (ADS)

    Liang, C.; Dunham, E. M.; OReilly, O. J.; Karlstrom, L.

    2015-12-01

    Both the oscillation of magma in volcanic conduits and resonance of fluid-filled cracks (dikes and sills) are appealing explanations for very long period signals recorded at many active volcanoes. While these processes have been studied in isolation, real volcanic systems involve interconnected networks of conduits and cracks. The overall objective of our work is to develop a model of wave propagation and ultimately eruptive fluid dynamics through this coupled system. Here, we present a linearized model for wave propagation through a conduit with multiple cracks branching off of it. The fluid is compressible and viscous, and is comprised of a mixture of liquid melt and gas bubbles. Nonequilibrium bubble growth and resorption (BGR) is quantified by introducing a time scale for mass exchange between phases, following the treatment in Karlstrom and Dunham (2015). We start by deriving the dispersion relation for crack waves travelling along the multiphase-magma-filled crack embedded in an elastic solid. Dissipation arises from magma viscosity, nonequilibrium BGR, and radiation of seismic waves into the solid. We next introduce coupling conditions between the conduit and crack, expressing conservation of mass and the balance of forces across the junction. Waves in the conduit, like those in the crack, are influenced by nonequilibrium BGR, but the deformability of the surrounding solid is far less important than for cracks. Solution of the coupled system of equations provides the evolution of pressure and fluid velocity within the conduit-crack system. The system has various resonant modes that are sensitive to fluid properties and to the geometry of the conduit and cracks. Numerical modeling of seismic waves in the solid allows us to generate synthetic seismograms.

  10. It Shrinks! It Cracks!

    NASA Image and Video Library

    2017-04-20

    Given enough time, impact craters on Mars tend to fill up with different materials. For instance, some craters on Mars had lakes inside them in the past. When these lakes dried out, they left behind traces of their past existence, such as sedimentary deposits (materials that were carried along with the running water into the lake inside the crater and then settled down). Some craters, especially in high latitudes, contain ice deposits that filled the crater when an earlier ice age allowed ice to extend into the crater's latitude. Here, NASA's Mars Reconnaissance Orbiter spies a crater that lies close to Elysium, a major volcanic system on Mars. The whole region surrounding the crater was at some point covered by lava from the volcano creating vast lava plains, and in the process, flooding impact craters in their way. When the lava eventually cooled down, it solidified and began to shrink in size. This shrinking led to formation of cracks on the surface of the lava that grew in a circular pattern matching the shape of the crater it was filling. Scientists can study these fractures and estimate how much it shrank in volume to better understand the properties of the lava (such as its temperature) during the time it filled the crater. https://photojournal.jpl.nasa.gov/catalog/PIA21596

  11. Peridynamic model for fatigue cracking.

    SciTech Connect

    Silling, Stewart Andrew; Abe Askari

    2014-10-01

    The peridynamic theory is an extension of traditional solid mechanics in which the field equations can be applied on discontinuities, such as growing cracks. This paper proposes a bond damage model within peridynamics to treat the nucleation and growth of cracks due to cyclic loading. Bond damage occurs according to the evolution of a variable called the "remaining life" of each bond that changes over time according to the cyclic strain in the bond. It is shown that the model reproduces the main features of S-N data for typical materials and also reproduces the Paris law for fatigue crack growth. Extensions of the model account for the effects of loading spectrum, fatigue limit, and variable load ratio. A three-dimensional example illustrates the nucleation and growth of a helical fatigue crack in the torsion of an aluminum alloy rod.

  12. Vibrations Caused By Cracked Turbopump Bearing Race

    NASA Technical Reports Server (NTRS)

    Goggin, David G.; Dweck, Robert A.

    1990-01-01

    Expansion gives rise to eccentricity. Report presents analysis of dynamic effects caused by cracking of inner race of ball bearing in turbopump. Crack manifested itself via increase in vibrations synchronous with rotation and smaller increase at twice frequency of rotation. Analysis conducted to verify these increases were caused solely by crack and to understand implications for future such cracks.

  13. Shaft vibrations in turbomachinery excited by cracks

    NASA Technical Reports Server (NTRS)

    Grabowski, B.

    1982-01-01

    During the past years the dynamic behavior of rotors with cracks has been investigated mainly theoretically. This paper deals with the comparison of analytical and experimental results of the dynamics of a rotor with an artificial crack. The experimental results verify the crack model used in the analysis. They show the general possibility to determine a crack by extended vibration control.

  14. Cocaine/Crack: The Big Lie.

    ERIC Educational Resources Information Center

    National Inst. on Drug Abuse (DHHS/PHS), Rockville, MD.

    This pamphlet focuses on cocaine and crack use and the addictive nature of cocaine/crack. It contains a set of 21 questions about crack and cocaine, each accompanied by a clear and complete response. Interspersed throughout the booklet are photographs and quotes from former cocaine or crack users/addicts. Questions and answers focus on what…

  15. 46 CFR 59.10-5 - Cracks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... APPURTENANCES Welding Repairs to Boilers and Pressure Vessels in -Service § 59.10-5 Cracks. (a) Cracks extending... corrugated furnaces may be repaired by welding provided any one crack does not exceed 20 inches in length. (e... any direction, nor more than a total of four cracks in a drum, and further provided the welding...

  16. 46 CFR 59.10-5 - Cracks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Cracks. 59.10-5 Section 59.10-5 Shipping COAST GUARD... APPURTENANCES Welding Repairs to Boilers and Pressure Vessels in -Service § 59.10-5 Cracks. (a) Cracks extending... cracks are veed out so that complete penetration of the weld metal is secured. (b) Circumferential...

  17. 21 CFR 137.190 - Cracked wheat.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Cracked wheat. 137.190 Section 137.190 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Related Products § 137.190 Cracked wheat. Cracked wheat is the food prepared by so cracking or cutting...

  18. 21 CFR 137.190 - Cracked wheat.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Cracked wheat. 137.190 Section 137.190 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Related Products § 137.190 Cracked wheat. Cracked wheat is the food prepared by so cracking or cutting...

  19. 21 CFR 137.190 - Cracked wheat.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Cracked wheat. 137.190 Section 137.190 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Related Products § 137.190 Cracked wheat. Cracked wheat is the food prepared by so cracking or cutting...

  20. 21 CFR 137.190 - Cracked wheat.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Cracked wheat. 137.190 Section 137.190 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Related Products § 137.190 Cracked wheat. Cracked wheat is the food prepared by so cracking or cutting...

  1. Initiation and propagation of small corner cracks

    NASA Technical Reports Server (NTRS)

    Ellyin, Ferdnand; Kujawski, Daniel; Craig, David F.

    1994-01-01

    The behaviour of small corner cracks, inclined or perpendicular to loading direction, is presented. There are two aspects to this investigation: initiation of small cracks and monitoring their subsequent growth. An initial pre-cracking procedure under cyclic compression is adopted to minimize the residual damage at the tip of the growing and self-arresting crack under cyclic compression. A final fatigue specimen, cut from the larger pre-cracked specimen, has two corner flaws. The opening load of corner flaw is monitored using a novel strain gauge approach. The behaviour of small corner cracks is described in terms of growth rate relative to the size of the crack and its shape.

  2. Microscopic origins of stochastic crack growth

    NASA Astrophysics Data System (ADS)

    Pardee, W. J.; Morris, W. L.; Cox, B. N.

    Physical arguments are made to obtain a mathematical model of the stochastic growth of surface fatigue cracks in a ductile metal alloy. The model is a set of coupled partial differential equations for the expected statistical density of cracks per unit area. The differential equations describe the smooth, deterministic local evolution of crack states, with the stochastic effects of abrupt local changes of material in the crack path appearing as transitions between distinct subspaces of single crack state space. Results are related to observables such as statistical distributions of crack growth rate and of time for at least one crack to reach macroscopic length.

  3. Microdeformation and subcritical cracking in chalk

    NASA Astrophysics Data System (ADS)

    Bergsaker, Anne; Dysthe, Dag Kristian

    2016-04-01

    Deformation processes in chalks, both in relation to changing pore fluids and stress conditions has been of great interest as chalk is an important reservoir rock for both hydrocarbons and ground water. Lately it has also gained interest as a potential reservoir rock for captured CO2. Chalks are composed of large amounts of biogenic calcite grains, the skeletal debris of marine microorganisms. Its deformation is highly time and stress dependent, and governed by a transition from distributed to localized deformation at the onset of yield, affected by mechanisms such as subcritical crack growth and pore collapse. We present a microdeformation rig which makes use of thermal expansion as a means of subjecting small samples to strictly controlled tensile stresses. High resolution imaging provides resolutions down to 0.5 micrometers, enabling study of pore scale processes during slow deformation. Examples of localized and distributed deformation are presented.

  4. Mitigation of Crack Damage in Metallic Materials

    NASA Technical Reports Server (NTRS)

    Leser, Patrick E.; Newman, John A.; Smith, Stephen W.; Leser, William P.; Wincheski, Russell A.; Wallace, Terryl A.; Glaessgen, Edward H.; Piascik, Robert S.

    2014-01-01

    A system designed to mitigate or heal crack damage in metallic materials has been developed where the protected material or component is coated with a low-melting temperature film. After a crack is formed, the material is heated, melting the film which then infiltrates the crack opening through capillary action. Upon solidification, the healing material inhibits further crack damage in two ways. While the crack healing material is intact, it acts like an adhesive that bonds or bridges the crack faces together. After fatigue loading damages, the healing material in the crack mouth inhibits further crack growth by creating artificially-high crack closure levels. Mechanical test data show that this method sucessfully arrests or retards crack growth in laboratory specimens.

  5. Cracks in a Crater Ice

    NASA Image and Video Library

    2016-12-07

    Many impact craters on Mars were filled with ice in past climates. Sometimes this ice flows or slumps down the crater walls into the center and acquires concentric wrinkles as a result. This image shows an example of this. There are other ways that scientists know the material in the crater is icy. Surface cracks that form polygonal shapes cover the material in the crater. They are easy to see in this spring-time image because seasonal frost hides inside the cracks, outlining them in bright white. These cracks form because ice within the ground expands and contracts a lot as it warms and cools. Scientists can see similar cracks in icy areas of the Earth and other icy locations on Mars. If you look closely, you'll see small polygons inside larger ones. The small polygons are younger and the cracks shallower while the large ones are outlined with cracks that penetrate more deeply. http://photojournal.jpl.nasa.gov/catalog/PIA21215

  6. Evolution of catalytic function

    NASA Technical Reports Server (NTRS)

    Joyce, G. F.

    1993-01-01

    An RNA-based evolution system was constructed in the laboratory and used to develop RNA enzymes with novel catalytic function. By controlling the nature of the catalytic task that the molecules must perform in order to survive, it is possible to direct the evolving population toward the expression of some desired catalytic behavior. More recently, this system has been coupled to an in vitro translation procedure, raising the possibility of evolving protein enzymes in the laboratory to produce novel proteins with desired catalytic properties. The aim of this line of research is to reduce darwinian evolution, the fundamental process of biology, to a laboratory procedure that can be made to operate in the service of organic synthesis.

  7. Evolution of catalytic function

    NASA Technical Reports Server (NTRS)

    Joyce, G. F.

    1993-01-01

    An RNA-based evolution system was constructed in the laboratory and used to develop RNA enzymes with novel catalytic function. By controlling the nature of the catalytic task that the molecules must perform in order to survive, it is possible to direct the evolving population toward the expression of some desired catalytic behavior. More recently, this system has been coupled to an in vitro translation procedure, raising the possibility of evolving protein enzymes in the laboratory to produce novel proteins with desired catalytic properties. The aim of this line of research is to reduce darwinian evolution, the fundamental process of biology, to a laboratory procedure that can be made to operate in the service of organic synthesis.

  8. Catalytic distillation process

    DOEpatents

    Smith, L.A. Jr.

    1982-06-22

    A method is described for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C[sub 4] feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.

  9. Catalytic distillation process

    DOEpatents

    Smith, Jr., Lawrence A.

    1982-01-01

    A method for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C.sub.4 feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.

  10. Production of hydrogen by thermocatalytic cracking of natural gas. Task 4 report; Annual report

    SciTech Connect

    1995-10-01

    The conventional methods of hydrogen production from natural gas, for example, steam reforming (SR), are complex multi-step processes. These processes also result in the emission of large quantities of CO{sub 2} into the atmosphere. One alternative is the single-step thermocatalytic cracking (TCC) (or decomposition) of natural gas into hydrogen and carbon. The comparative assessment of SR and TCC processes was conducted. Thermocatalytic cracking of methane over various catalysts and supports in a wide range of temperatures (500--900 C) and flow rates was conducted. Two types of fix bed catalytic reactors were designed, built and tested: continuous flow and pulse reactors. Ni-Mo/Alumina and Fe-catalysts demonstrated relatively high efficiency in the methane cracking reaction at the range of temperatures 600--800 C. Fe-catalyst demonstrated fairly good stability, whereas alumina-supported Pt-catalyst rapidly lost its catalytic activity. Methane decomposition reaction over Ni-Mo/alumina was studied over wide range of space velocities in a continuous flow fixed bed catalytic reactor. The experimental results indicate that the hydrogen yield decreases noticeably with an increase in the space velocity of methane. The pulse type catalytic reactor was used to test the activity of the catalysts. It was found that induction period on the kinetic curve of hydrogen production corresponded to the reduction of metal oxide to metallic form of the catalyst. SEM method was used to study the structure of the carbon deposited on the catalyst surface.

  11. Catalytic distillation structure

    DOEpatents

    Smith, L.A. Jr.

    1984-04-17

    Catalytic distillation structure is described for use in reaction distillation columns, and provides reaction sites and distillation structure consisting of a catalyst component and a resilient component intimately associated therewith. The resilient component has at least about 70 volume % open space and is present with the catalyst component in an amount such that the catalytic distillation structure consists of at least 10 volume % open space. 10 figs.

  12. Crack Extension in Hydraulic Fracturing of Shale Cores Using Viscous Oil, Water, and Liquid Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Bennour, Ziad; Ishida, Tsuyoshi; Nagaya, Yuya; Chen, Youqing; Nara, Yoshitaka; Chen, Qu; Sekine, Kotaro; Nagano, Yu

    2015-07-01

    We performed hydraulic fracturing experiments on cylindrical cores of anisotropic shale obtained by drilling normal to the sedimentary plane. Experiments were conducted under ambient condition and uniaxial stresses, using three types of fracturing fluid: viscous oil, water, and liquid carbon dioxide (L-CO2). In the experiments using water and oil, cracks extended along the loading direction normal to the sedimentary plane under the uniaxial loading and extended along the sedimentary plane without loading. These results suggest that the direction of crack extension is strongly affected by in situ stress conditions. Fluorescent microscopy revealed that hydraulic fracturing with viscous oil produced linear cracks with few branches, whereas that with water produced cracks with many branches inclining from the loading axis. Statistical analysis of P wave polarity of acoustic emission waveforms showed that viscous oil tended to induce Mode I fracture, whereas both water and L-CO2 tended to induce Mode II fracture. Crack extension upon injection of L-CO2 was independent of loading condition unlike extension for the other two fluids. This result seemed attributable to the low viscosity of L-CO2 and was consistent with previous observations for granite specimens that low-viscosity fluids like CO2 tend to induce widely extending cracks with many branches, with Mode II fractures being dominant. These features are more advantageous for shale gas production than those induced by injection of conventional slick water.

  13. Fatigue Growth and Closure of Short Cracks

    DTIC Science & Technology

    1989-06-03

    TESTS 87 4.5 SHORT CRACK FATIGUE TESTS IN NOTCHED SPECIMENS 101 5. DISCUSSION 5.1 DURABILITY ANALYSIS - EQUIVALENT INITIAL FLAW SIZE 232 5.2 SHORT... equivalent initial flaw size approach, (2) effects of plasticity, (3) crack closure response of long cracks and (4) crack closure response of short...cracks. 5.1 EQUIVALENT INITIAL FLAW SIZE - DURABILITY ANALYSIS Aerospace structures were Initially designed on a safe-life approach. The underlying

  14. Fluid-driven fractures in brittle hydrogels

    NASA Astrophysics Data System (ADS)

    O'Keeffe, Niall; Linden, Paul

    2016-11-01

    Hydraulic fracturing is a process in which fluid is injected deep underground at high pressures that can overcome the strength of the surrounding matrix. This results in an increase of surface area connected to the well bore and thus allows extraction of natural gas previously trapped in a rock formation. We experimentally study the physical mechanisms of these fluid-driven fractures in low permeability reservoirs where the leak-off of fracturing fluid is considered negligible. This is done through the use of small scale experiments on transparent and brittle, heavily cross-linked hydrogels. The propagation of these fractures can be split into two distinct regimes depending on whether the dominant energy dissipation mechanism is viscous flow or material toughness. We will analyse crack growth rates, crack thickness and tip shape in both regimes. Moreover, PIV techniques allow us to explore the flow dynamics within the fracture, which is crucial in predicting transport of proppants designed to prevent localisation of cracks.

  15. Clean catalytic combustor program

    NASA Technical Reports Server (NTRS)

    Ekstedt, E. E.; Lyon, T. F.; Sabla, P. E.; Dodds, W. J.

    1983-01-01

    A combustor program was conducted to evolve and to identify the technology needed for, and to establish the credibility of, using combustors with catalytic reactors in modern high-pressure-ratio aircraft turbine engines. Two selected catalytic combustor concepts were designed, fabricated, and evaluated. The combustors were sized for use in the NASA/General Electric Energy Efficient Engine (E3). One of the combustor designs was a basic parallel-staged double-annular combustor. The second design was also a parallel-staged combustor but employed reverse flow cannular catalytic reactors. Subcomponent tests of fuel injection systems and of catalytic reactors for use in the combustion system were also conducted. Very low-level pollutant emissions and excellent combustor performance were achieved. However, it was obvious from these tests that extensive development of fuel/air preparation systems and considerable advancement in the steady-state operating temperature capability of catalytic reactor materials will be required prior to the consideration of catalytic combustion systems for use in high-pressure-ratio aircraft turbine engines.

  16. In-vitro characterization of stress corrosion cracking of aluminium-free magnesium alloys for temporary bio-implant applications.

    PubMed

    Choudhary, Lokesh; Singh Raman, R K; Hofstetter, Joelle; Uggowitzer, Peter J

    2014-09-01

    The complex interaction between physiological stresses and corrosive human body fluid may cause premature failure of metallic biomaterials due to the phenomenon of stress corrosion cracking. In this study, the susceptibility to stress corrosion cracking of biodegradable and aluminium-free magnesium alloys ZX50, WZ21 and WE43 was investigated by slow strain rate tensile testing in a simulated human body fluid. Slow strain rate tensile testing results indicated that each alloy was susceptible to stress corrosion cracking, and this was confirmed by fractographic features of transgranular and/or intergranular cracking. However, the variation in alloy susceptibility to stress corrosion cracking is explained on the basis of their electrochemical and microstructural characteristics. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Cracks in Utopia

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Many of the craters found on the northern plains of Mars have been partly filled or buried by some material (possibly sediment). The Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image presented here (MOC2-136b, above left) shows a high-resolution view of a tiny portion of the floor of one of these northern plains craters. The crater, located in Utopia Planitia at 44oN, 258oW, is shown on the right (MOC2-136a)with a small white box to indicate the location of the MOC image. The MOC image reveals that the material covering the floor of this crater is cracked and pitted. The origin and source of material that has been deposited in this crater is unknown.

    The MOC image was acquired in June 1999 and covers an area only 1.1 kilometers (0.7 miles) wide at a resolution of 1.8 meters (6 feet) per pixel. The context picture is a mosaic of Viking 2 orbiter images 010B53 and 010B55, taken in 1976. Both images are illuminated from the left. Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  18. Formation and interpretation of dilatant echelon cracks.

    USGS Publications Warehouse

    Pollard, D.D.; Segall, P.; Delaney, P.T.

    1982-01-01

    The relative displacements of the walls of many veins, joints, and dikes demonstrate that these structures are dilatant cracks. We infer that dilatant cracks propagate in a principal stress plane, normal to the maximum tensile or least compressive stress. Arrays of echelon crack segments appear to emerge from the peripheries of some dilatant cracks. Breakdown of a parent crack into an echelon array may be initiated by a spatial or temporal rotation of the remote principal stresses about an axis parallel to the crack propagation direction. Near the parent-crack tip, a rotation of the local principal stresses is induced in the same sense, but not necessarily through the same angle. Incipient echelon cracks form at the parent-crack tip normal to the local maximum tensile stress. Further longitudinal growth along surfaces that twist about axes parallel to the propagation direction realigns each echelon crack into a remote principal stress plane. The walls of these twisted cracks may be idealized as helicoidal surfaces. An array of helicoidal cracks sweeps out less surface area than one parent crack twisting through the same angle. Thus, many echelon cracks grow from a single parent because the work done in creating the array, as measured by its surface area decreases as the number of cracks increases. -from Authors

  19. Screening acidic zeolites for catalytic fast pyrolysis of biomass and its components

    USDA-ARS?s Scientific Manuscript database

    Zeolites have been shown to effectively promote cracking reactions during pyrolysis resulting in highly deoxygenated and hydrocarbon-rich compounds and stable pyrolysis oil product. Py/GC-MS was employed to study the catalytic fast pyrolysis of lignocellulosic biomass samples comprising oak, corn...

  20. Observation of Intralaminar Cracking in the Edge Crack Torsion Specimen

    NASA Technical Reports Server (NTRS)

    Czabaj, Michael W.; Ratcliffe, James G.; Davidson, Barry D.

    2013-01-01

    The edge crack torsion (ECT) test is evaluated to determine its suitability for measuring fracture toughness associated with mode III delamination growth onset. A series of ECT specimens with preimplanted inserts with different lengths is tested and examined using nondestructive and destructive techniques. Ultrasonic inspection of all tested specimens reveals that delamination growth occurs at one interface ply beneath the intended midplane interface. Sectioning and optical microscopy suggest that the observed delamination growth results from coalescence of angled intralaminar matrix cracks that form and extend across the midplane plies. The relative orientation of these cracks is approximately 45 deg with respect to the midplane, suggesting their formation is caused by resolved principal tensile stresses arising due to the global mode-III shear loading. Examination of ECT specimens tested to loads below the level corresponding to delamination growth onset reveals that initiation of intralaminar cracking approximately coincides with the onset of nonlinearity in the specimen's force-displacement response. The existence of intralaminar cracking prior to delamination growth onset and the resulting delamination extension at an unintended interface render the ECT test, in its current form, unsuitable for characterization of mode III delamination growth onset. The broader implications of the mechanisms observed in this study are also discussed with respect to the current understanding of shear-driven delamination in tape-laminate composites.

  1. Salinity effects on cracking morphology and dynamics in 3-D desiccating clays

    NASA Astrophysics Data System (ADS)

    DeCarlo, Keita F.; Shokri, Nima

    2014-04-01

    Saline conditions induce not only chemical but physical changes in swelling clays, and have a significant influence on the crack dynamics and morphology of desiccating clays. In this study, we used X-ray microtomography to experimentally investigate the effects of sodium chloride on the morphology and dynamics of desiccation cracks in three-dimensional mixtures of sand-bentonite slurry under varying rheological conditions. Rectangular glass containers were packed with slurries of different salt concentrations, with the top boundary exposed to air for evaporation. The growth and propagation of the cracking network that subsequently formed was visualized in 3-D at multiple intervals. The characterization of cracking and branching behavior shows a high extent of localized surficial crack networks at low salinity, with a transition to less extensive but more centralized crack networks with increased salinity. The observed behavior was described in the context of the physicochemical properties of the montmorillonite clay, where shifts from an "entangled" (large platelet spacing, small pore structure) to a "stacked" (small platelet spacing, open pore structure) network influence fluid distribution and thus extent of cracking and branching behavior. This is further corroborated by vertical profiles of water distribution, which shows localized desiccation fronts that shift to uniform desaturation with increasing salt concentration. Our results provide new insights regarding the formation, dynamics, and patterns of desiccation cracks formed during evaporation from 3-D saline clay structures, which will be useful in hydrological applications including water management, land surface evaporation, and subsurface contaminant transport.

  2. Crack healing in alumina bioceramics.

    PubMed

    Fischer, H; Weiss, R; Telle, R

    2008-03-01

    Microscopic cracks can occur at the surface of oxide ceramic restorations as a result of the manufacturing process and mainly due to the final mechanical preparation in the dental laboratory. A method is presented to heal up such microscopic cracks by a glass infiltration process. Bar specimens made of high purity bio-alumina were manufactured. On two batches of specimens microscopic cracks were induced using the Vickers indentation technique. The small microscopic cracks at the tip of the resulting half-penny-shape cracks were extended by the bridge loading method. The indentation pattern of the specimens of one batch was subsequently glass-infiltrated. The surface layers of the specimens with the Vickers indentation were removed by grinding as far as only the extended microscopic cracks (with and without glass) remained at the surface. The strengths of untreated, micro-damaged, and micro-damaged and glass-infiltrated specimens were determined. The microstructure of the fracture surfaces was analyzed using SEM. The characteristic strength of the specimens decreased from sigma(0)=378 to 196 MPa and the Weibull modulus from m=13.7 to 2.3 due to the micro-damaging. The strength and the scatter-in-strength were significantly improved by the glass infiltration process. The strength of the "healed" specimens (sigma(0)=434 MPa, m=17.3) was even better than that of the untreated samples. Microscopic cracks that can occur at the surface of dental restorations made of alumina like abutments or cores of crowns and bridges during the manufacturing and preparation process could reliably be healed by a glass infiltration process.

  3. Characterization of asphaltene molecular structures by cracking under hydrogenation conditions and prediction of the viscosity reduction from visbreaking of heavy oils

    NASA Astrophysics Data System (ADS)

    Rueda Velasquez, Rosa Imelda

    The chemical building blocks that comprise petroleum asphaltenes were determined by cracking samples under conditions that minimized alterations to aromatic and cycloalkyl groups. Hydrogenation conditions that used tetralin as hydrogen-donor solvent, with an iron-based catalyst, allowed asphaltenes from different geological regions to yield 50-60 wt% of distillates (<538°C fraction), with coke yields below 10 wt%. Control experiments with phenanthrene and 5alpha-cholestane confirmed low hydrogenation catalytic activity, and preservation of the cycloalkyl structures. Quantitative recovery of cracking products and characterization of the distillates, by gas chromatography-field ionization--time of flight high resolution mass spectrometry, displayed remarkable similarity in molecular composition for the different asphaltenes. Paraffins and 1-3 ring aromatics were the most abundant building blocks. The diversity of molecules identified, and the high yield of paraffins were consistent with high heterogeneity and complexity of molecules, built up by smaller fragments attached to each other by bridges. The sum of material remaining as vacuum residue and coke was in the range of 35-45 wt%; this total represents the maximum amount of large clusters in asphaltenes that could not be converted to lighter compounds under the evaluated cracking conditions. These analytical data for Cold Lake asphaltenes were transformed into probability density functions that described the molecular weight distributions of the building blocks. These distributions were input for a Monte Carlo approach that allowed stochastic construction of asphaltenes and simulation of their cracking reactions to examine differences in the distributions of products associated to the molecular topology. The construction algorithm evidenced that a significant amount of asphaltenes would consist of 3-5 building blocks. The results did not show significant differences between linear and dendritic molecular

  4. Corrosion fatigue crack propagation in metals

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.

    1990-01-01

    This review assesses fracture mechanics data and mechanistic models for corrosion fatigue crack propagation in structural alloys exposed to ambient temperature gases and electrolytes. Extensive stress intensity-crack growth rate data exist for ferrous, aluminum and nickel based alloys in a variety of environments. Interactive variables (viz., stress intensity range, mean stress, alloy composition and microstructure, loading frequency, temperature, gas pressure and electrode potential) strongly affect crack growth kinetics and complicate fatigue control. Mechanistic models to predict crack growth rates were formulated by coupling crack tip mechanics with occluded crack chemistry, and from both the hydrogen embrittlement and anodic dissolution/film rupture perspectives. Research is required to better define: (1) environmental effects near threshold and on crack closure; (2) damage tolerant life prediction codes and the validity of similitude; (3) the behavior of microcrack; (4) probes and improved models of crack tip damage; and (5) the cracking performance of advanced alloys and composites.

  5. 40 CFR 60.100 - Applicability, designation of affected facility, and reconstruction.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... petroleum refineries: fluid catalytic cracking unit catalyst regenerators, fuel gas combustion devices, and... petroleum refinery. (b) Any fluid catalytic cracking unit catalyst regenerator or fuel gas combustion device...) and (d) of this section. (c) Any fluid catalytic cracking unit catalyst regenerator under paragraph (b...

  6. 40 CFR 60.100 - Applicability, designation of affected facility, and reconstruction.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... petroleum refineries: fluid catalytic cracking unit catalyst regenerators, fuel gas combustion devices, and... petroleum refinery. (b) Any fluid catalytic cracking unit catalyst regenerator or fuel gas combustion device... under paragraphs (c) through (e) of this section. (c) Any fluid catalytic cracking unit catalyst...

  7. 40 CFR 60.100 - Applicability, designation of affected facility, and reconstruction.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... petroleum refineries: fluid catalytic cracking unit catalyst regenerators, fuel gas combustion devices, and... petroleum refinery. (b) Any fluid catalytic cracking unit catalyst regenerator or fuel gas combustion device... under paragraphs (c) through (e) of this section. (c) Any fluid catalytic cracking unit catalyst...

  8. 40 CFR 60.100 - Applicability, designation of affected facility, and reconstruction.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... petroleum refineries: fluid catalytic cracking unit catalyst regenerators, fuel gas combustion devices, and... petroleum refinery. (b) Any fluid catalytic cracking unit catalyst regenerator or fuel gas combustion device...) and (d) of this section. (c) Any fluid catalytic cracking unit catalyst regenerator under paragraph...

  9. 40 CFR 60.100 - Applicability, designation of affected facility, and reconstruction.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... petroleum refineries: fluid catalytic cracking unit catalyst regenerators, fuel gas combustion devices, and... petroleum refinery. (b) Any fluid catalytic cracking unit catalyst regenerator or fuel gas combustion device...) and (d) of this section. (c) Any fluid catalytic cracking unit catalyst regenerator under paragraph (b...

  10. Catalytic nanoporous membranes

    DOEpatents

    Pellin, Michael J; Hryn, John N; Elam, Jeffrey W

    2013-08-27

    A nanoporous catalytic membrane which displays several unique features Including pores which can go through the entire thickness of the membrane. The membrane has a higher catalytic and product selectivity than conventional catalysts. Anodic aluminum oxide (AAO) membranes serve as the catalyst substrate. This substrate is then subjected to Atomic Layer Deposition (ALD), which allows the controlled narrowing of the pores from 40 nm to 10 nm in the substrate by deposition of a preparatory material. Subsequent deposition of a catalytic layer on the inner surfaces of the pores reduces pore sizes to less than 10 nm and allows for a higher degree of reaction selectivity. The small pore sizes allow control over which molecules enter the pores, and the flow-through feature can allow for partial oxidation of reactant species as opposed to complete oxidation. A nanoporous separation membrane, produced by ALD is also provided for use in gaseous and liquid separations. The membrane has a high flow rate of material with 100% selectivity. Also provided is a method for producing a catalytic membrane having flow-through pores and discreet catalytic clusters adhering to the inside surfaces of the pores.

  11. Transient catalytic combustor model

    NASA Technical Reports Server (NTRS)

    Tien, J. S.

    1981-01-01

    A quasi-steady gas phase and thermally thin substrate model is used to analyze the transient behavior of catalytic monolith combustors in fuel lean operation. The combustor response delay is due to the substrate thermal inertia. Fast response is favored by thin substrate, short catalytic bed length, high combustor inlet and final temperatures, and small gas channel diameters. The calculated gas and substrate temperature time history at different axial positions provides an understanding of how the catalytic combustor responds to an upstream condition change. The computed results also suggest that the gas residence times in the catalytic bed in the after bed space are correlatable with the nondimensional combustor response time. The model also performs steady state combustion calculations; and the computed steady state emission characteristics show agreement with available experimental data in the range of parameters covered. A catalytic combustor design for automotive gas turbine engine which has reasonably fast response ( 1 second) and can satisfy the emission goals in an acceptable total combustor length is possible.

  12. Transient catalytic combustor model

    NASA Astrophysics Data System (ADS)

    Tien, J. S.

    1981-05-01

    A quasi-steady gas phase and thermally thin substrate model is used to analyze the transient behavior of catalytic monolith combustors in fuel lean operation. The combustor response delay is due to the substrate thermal inertia. Fast response is favored by thin substrate, short catalytic bed length, high combustor inlet and final temperatures, and small gas channel diameters. The calculated gas and substrate temperature time history at different axial positions provides an understanding of how the catalytic combustor responds to an upstream condition change. The computed results also suggest that the gas residence times in the catalytic bed in the after bed space are correlatable with the nondimensional combustor response time. The model also performs steady state combustion calculations; and the computed steady state emission characteristics show agreement with available experimental data in the range of parameters covered. A catalytic combustor design for automotive gas turbine engine which has reasonably fast response ( 1 second) and can satisfy the emission goals in an acceptable total combustor length is possible.

  13. Production of hydrogen by thermocatalytic cracking of natural gas

    SciTech Connect

    Muradov, N.Z.

    1995-09-01

    It is universally accepted that in the next few decades hydrogen production will continue to rely on fossil fuels (primarily, natural gas). On the other hand, the conventional methods of hydrogen production from natural gas (for example, steam reforming) are complex multi-step processes. These processes also result in the emission of large quantities of CO{sub 2} into the atmosphere that produce adverse ecological effects. One alternative is the one-step thermocatalytic cracking (TCC) (or decomposition) of natural gas into hydrogen and carbon. Preliminary analysis indicates that the cost of hydrogen produced by thermal decomposition of natural gas is somewhat lower than the conventional processes after by-product carbon credit is taken. In the short term, this process can be used for on-site production of hydrogen-methane mixtures in gas-filling stations and for CO{sub x}-free production of hydrogen for fuel cell driven prime movers. The experimental data on the thermocatalytic cracking of methane over various catalysts and supports in a wide range of temperatures (500-900{degrees}C) are presented in this paper. Two types of reactors were designed and built at FSEC: continuous flow and pulse fix bed catalytic reactors. The temperature dependence of the hydrogen production yield using oxide type catalysts was studied. Alumina-supported Ni- and Fe-catalysts demonstrated relatively high efficiency in the methane cracking reaction at moderate temperatures (600-800{degrees}C). Kinetic curves of hydrogen production over metal and metal oxide catalysts at different temperatures are presented in the paper. Fe-catalyst demonstrated good stability (for several hours), whereas alumina-supported Pt-catalyst rapidly lost its catalytic activity.

  14. Getter materials for cracking ammonia

    DOEpatents

    Boffito, Claudio; Baker, John D.

    1999-11-02

    A method is provided for cracking ammonia to produce hydrogen. The method includes the steps of passing ammonia over an ammonia-cracking catalyst which is an alloy including (1) alloys having the general formula Zr.sub.1-x Ti.sub.x M.sub.1 M.sub.2, wherein M.sub.1 and M.sub.2 are selected independently from the group consisting of Cr, Mn, Fe, Co, and Ni, and x is between about 0.0 and about 1.0 inclusive; and between about 20% and about 50% Al by weight. In another aspect, the method of the invention is used to provide methods for operating hydrogen-fueled internal combustion engines and hydrogen fuel cells. In still another aspect, the present invention provides a hydrogen-fueled internal combustion engine and a hydrogen fuel cell including the above-described ammonia-cracking catalyst.

  15. Cracking on anisotropic neutron stars

    NASA Astrophysics Data System (ADS)

    Setiawan, A. M.; Sulaksono, A.

    2017-07-01

    We study the effect of cracking of a local anisotropic neutron star (NS) due to small density fluctuations. It is assumed that the neutron star core consists of leptons, nucleons and hyperons. The relativistic mean field model is used to describe the core of equation of state (EOS). For the crust, we use the EOS introduced by Miyatsu et al. [1]. Furthermore, two models are used to describe pressure anisotropic in neutron star matter. One is proposed by Doneva-Yazadjiev (DY) [2] and the other is proposed by Herrera-Barreto (HB) [3]. The anisotropic parameter of DY and HB models are adjusted in order the predicted maximum mass compatible to the mass of PSR J1614-2230 [4] and PSR J0348+0432 [5]. We have found that cracking can potentially present in the region close to the neutron star surface. The instability due cracking is quite sensitive to the NS mass and anisotropic parameter used.

  16. Crack cocaine users living on the streets - gender characteristics.

    PubMed

    Vernaglia, Taís Veronica Cardoso; Vieira, Regina Amélia de Magalhães Senna; Cruz, Marcelo Santos

    2015-06-01

    The increase in the use of crack cocaine constitutes a challenge to public health in Brazil. The objectives of this article are to identify how gender relations are constituted in the daily lives of crack users, and to analyze the dynamics that permeate the construction of these relationships involving exchange and power. This is a qualitative, descriptive, exploratory study of phenomenological orientation. The data was collected from crack users living on the streets in the Manguinhos community in the city of Rio de Janeiro. Eight focus groups (n = 31) were conducted and there were two individual interviews between June and August 2011. In the groups, the reports of the young men and women differed in terms of the establishment of bonds of affection; in the role attributed to crack as an operator in conflict mediation; in the use of the body as exchange/prostitution; and in the generation and care of offspring. Some shifts were observed with respect to traditional and hierarchical arrangements of gender. The study of the relationships established in this research reveals that it is not possible to point to simply perpetrators or victims. What emerges in the analysis is a plural and fluid universe, which is in permanent construction, with shifts that sometimes favor women and sometimes favor men.

  17. Catalytic membranes beckon

    SciTech Connect

    Caruana, C.M.

    1994-11-01

    Chemical engineers here and abroad are finding that the marriage of catalysts and membranes holds promise for faster and more specific reactions, although commercialization of this technology is several years away. Catalytic membrane reactors (CMRs) combine a heterogeneous catalyst and a permselective membrane. Reactions performed by CMRs provide higher yields--sometimes as much as 50% higher--because of better reaction selectivity--as opposed to separation selectivity. CMRs also can work at very high temperatures, using ceramic materials that would not be possible with organic membranes. Although the use of CMRs is not widespread presently, the development of new membranes--particularly porous ceramic and zeolite membranes--will increase the potential to improve yields of many catalytic processes. The paper discusses ongoing studies, metal and advanced materials for membranes, the need for continued research, hydrogen recovery from coal-derived gases, catalytic oxidation of sulfides, CMRs for water purification, and oxidative coupling of methane.

  18. Catalytic hydrotreating process

    DOEpatents

    Karr, Jr., Clarence; McCaskill, Kenneth B.

    1978-01-01

    Carbonaceous liquids boiling above about 300.degree. C such as tars, petroleum residuals, shale oils and coal-derived liquids are catalytically hydrotreated by introducing the carbonaceous liquid into a reaction zone at a temperature in the range of 300.degree. to 450.degree. C and a pressure in the range of 300 to 4000 psig for effecting contact between the carbonaceous liquid and a catalytic transition metal sulfide in the reaction zone as a layer on a hydrogen permeable transition metal substrate and then introducing hydrogen into the reaction zone by diffusing the hydrogen through the substrate to effect the hydrogenation of the carbonaceous liquid in the presence of the catalytic sulfide layer.

  19. Review of Environmentally Assisted Cracking

    NASA Astrophysics Data System (ADS)

    Sadananda, K.; Vasudevan, A. K.

    2011-02-01

    Many efforts have been made in the past by several researchers to arrive at some unifying principles governing the embrittlement phenomena. An inescapable conclusion reached by all these efforts was that the behavior is very complex. Hence, recognizing the complexity of material/environment behavior, we focus our attention here only in extracting some similarities in the experimental trends to arrive at some generic principles of behavior. Crack nucleation and growth are examined under static load in the presence of internal and external environments. Stress concentration, either pre-existing or in-situ generated, appears to be a requirement for embrittlement. A chemical stress concentration factor is defined for a given material/environment system as the ratio of failure stress with and without the damaging chemical environment. All factors that affect the buildup of the required stress concentration, such as planarity of slip, stacking fault energy, etc., also affect the stress-corrosion behavior. The chemical stress concentration factor is coupled with the mechanical stress concentration factor. In addition, generic features for all systems appear to be (a) an existence of a threshold stress as a function of concentration of the damaging environment and flow properties of the material, and (b) an existence of a limiting threshold as a function of concentration, indicative of a damage saturation for that environment. Kinetics of crack growth also depends on concentration and the mode of crack growth. In general, environment appears to enhance crack tip ductility on one side by the reduction of energy for dislocation nucleation and glide, and to reduce cohesive energy for cleavage, on the other. These two opposing factors are coupled to provide environmentally induced crack nucleation and growth. The relative ratio of these two opposing factors depends on concentration and flow properties, thereby affecting limiting thresholds. The limiting concentration or

  20. 40 CFR 98.250 - Definition of source category.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... (c) This source category consists of the following sources at petroleum refineries: Catalytic cracking units; fluid coking units; delayed coking units; catalytic reforming units; coke calcining units...

  1. Nonlinear structural crack growth monitoring

    DOEpatents

    Welch, Donald E.; Hively, Lee M.; Holdaway, Ray F.

    2002-01-01

    A method and apparatus are provided for the detection, through nonlinear manipulation of data, of an indicator of imminent failure due to crack growth in structural elements. The method is a process of determining energy consumption due to crack growth and correlating the energy consumption with physical phenomena indicative of a failure event. The apparatus includes sensors for sensing physical data factors, processors or the like for computing a relationship between the physical data factors and phenomena indicative of the failure event, and apparatus for providing notification of the characteristics and extent of such phenomena.

  2. Slow Crack Growth of Germanium

    NASA Technical Reports Server (NTRS)

    Salem, Jon

    2016-01-01

    The fracture toughness and slow crack growth parameters of germanium supplied as single crystal beams and coarse grain disks were measured. Although germanium is anisotropic (A=1.7), it is not as anisotropic as SiC, NiAl, or Cu, as evidence by consistent fracture toughness on the 100, 110, and 111 planes. Germanium does not exhibit significant slow crack growth in distilled water. (n=100). Practical values for engineering design are a fracture toughness of 0.7 MPam and a Weibull modulus of m=6+/-2. For well ground and reasonable handled coupons, fracture strength should be greater than 30 MPa.

  3. Steam reformer with catalytic combustor

    DOEpatents

    Voecks, Gerald E.

    1990-03-20

    A steam reformer is disclosed having an annular steam reforming catalyst bed formed by concentric cylinders and having a catalytic combustor located at the center of the innermost cylinder. Fuel is fed into the interior of the catalytic combustor and air is directed at the top of the combustor, creating a catalytic reaction which provides sufficient heat so as to maintain the catalytic reaction in the steam reforming catalyst bed. Alternatively, air is fed into the interior of the catalytic combustor and a fuel mixture is directed at the top. The catalytic combustor provides enhanced radiant and convective heat transfer to the reformer catalyst bed.

  4. Steam reformer with catalytic combustor

    NASA Technical Reports Server (NTRS)

    Voecks, Gerald E. (Inventor)

    1990-01-01

    A steam reformer is disclosed having an annular steam reforming catalyst bed formed by concentric cylinders and having a catalytic combustor located at the center of the innermost cylinder. Fuel is fed into the interior of the catalytic combustor and air is directed at the top of the combustor, creating a catalytic reaction which provides sufficient heat so as to maintain the catalytic reaction in the steam reforming catalyst bed. Alternatively, air is fed into the interior of the catalytic combustor and a fuel mixture is directed at the top. The catalytic combustor provides enhanced radiant and convective heat transfer to the reformer catalyst bed.

  5. Nanocarbons for Catalytic Desulfurization.

    PubMed

    Gu, Qingqing; Lin, Yangming; Heumann, Saskia; Su, Dangsheng

    2017-08-24

    Nanocarbon catalysts are green and sustainable alternatives to the metal-based catalysts for numerous catalytic transformations. The application of nanocarbons for environmental catalysis is an emerging research discipline and has undergone rapid development in recent years. In this focus review, we provide a critical analysis on the state-of-the-art nanocarbon catalysts for three different catalytic desulfurization processes. And the focus is on the advantage and limitation as well as the reaction mechanism of the nanocarbon catalysts at molecular level. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Crack growth resistance in nuclear graphites

    NASA Astrophysics Data System (ADS)

    Ouagne, Pierre; Neighbour, Gareth B.; McEnaney, Brian

    2002-05-01

    Crack growth resistance curves for the non-linear fracture parameters KR, JR and R were measured for unirradiated PGA and IM1-24 graphites that are used as moderators in British Magnox and AGR nuclear reactors respectively. All the curves show an initial rising part, followed by a plateau region where the measured parameter is independent of crack length. JR and R decreased at large crack lengths. The initial rising curves were attributed to development of crack bridges in the wake of the crack front, while, in the plateau region, the crack bridging zone and the frontal process zone, ahead of the crack tip, reached steady state values. The decreases at large crack lengths were attributed to interaction of the frontal zone with the specimen end face. Microscopical evidence for graphite fragments acting as crack bridges showed that they were much smaller than filler particles, indicating that the graphite fragments are broken down during crack propagation. There was also evidence for friction points in the crack wake zone and shear cracking of some larger fragments. Inspection of KR curves showed that crack bridging contributed ~0.4 MPa m0.5 to the fracture toughness of the graphites. An analysis of JR and R curves showed that the development of the crack bridging zone in the rising part of the curves contributed ~20% to the total work of fracture. Energies absorbed during development of crack bridges and steady state crack propagation were greater for PGA than for IM1-24 graphite. These differences reflect the greater extent of irreversible processes occurring during cracking in the coarser microtexture of PGA graphite.

  7. Catalytic, hollow, refractory spheres, conversions with them

    NASA Technical Reports Server (NTRS)

    Wang, Taylor G. (Inventor); Elleman, Daniel D. (Inventor); Lee, Mark C. (Inventor); Kendall, Jr., James M. (Inventor)

    1989-01-01

    Improved, heterogeneous, refractory catalysts are in the form of gas-impervious, hollow, thin-walled spheres (10) suitable formed of a shell (12) of refractory such as alumina having a cavity (14) containing a gas at a pressure greater than atmospheric pressure. The wall material may be itself catalytic or a catalytically active material coated onto the sphere as a layer (16), suitably platinum or iron, which may be further coated with a layer (18) of activator or promoter. The density of the spheres (30) can be uniformly controlled to a preselected value within .+-.10 percent of the density of the fluid reactant such that the spheres either remain suspended or slowly fall or rise through the liquid reactant.

  8. Simulation of acoustic wave propagation in a borehole surrounded by cracked media using a finite difference method based on Hudson’s approach

    NASA Astrophysics Data System (ADS)

    Yue, Chongwang; Yue, Xiaopeng

    2017-06-01

    Cracked media are a common geophysical phenomena. It is important to study the propagation characteristics in boreholes for sonic logging theory, as this can provide the basis for the sonic log interpretation. This paper derives velocity-stress staggered finite difference equations of elastic wave propagation in cylindrical coordinates for cracked media. The sound field in the borehole is numerically simulated using the finite-difference technique with second order in time and tenth order in space. It gives the relationship curves between the P-wave, S-wave velocity, anisotropy factor and crack density, and aspect ratio. Furthermore, it gives snapshots of the borehole acoustic wave field in cracked media with different crack densities and aspect ratios. The calculated results show that in dry conditions the P-wave velocity in both the axial and radial directions decreases, and more rapidly in the axial direction while the crack density increases. The S-wave velocity decreases slowly with increasing crack density. The attenuation of the wave energy increases with the increase in crack density. In fluid-saturated cracked media, both the P-wave and S-wave velocity increases with the aspect ratio of the cracks. The anisotropy of the P-wave decreases with the aspect ratio of the cracks. The aspect ratio of the crack does not obviously affect the energy attenuation.

  9. Catalytically induced electrokinetics for motors and micropumps.

    PubMed

    Paxton, Walter F; Baker, Paul T; Kline, Timothy R; Wang, Yang; Mallouk, Thomas E; Sen, Ayusman

    2006-11-22

    We have explored the role of electrokinetics in the spontaneous motion of platinum-gold nanorods suspended in hydrogen peroxide (H2O2) solutions that may arise from the bimetallic electrochemical decomposition of H2O2. The electrochemical decomposition pathway was confirmed by measuring the steady-state short-circuit current between platinum and gold interdigitated microelectrodes (IMEs) in the presence of H2O2. The resulting ion flux from platinum to gold implies an electric field in the surrounding solution that can be estimated from Ohm's Law. This catalytically generated electric field could in principle bring about electrokinetic effects that scale with the Helmholtz-Smoluchowski equation. Accordingly, we observed a linear relationship between bimetallic rod speed and the resistivity of the bulk solution. Previous observations relating a decrease in speed to an increase in ethanol concentration can be explained in terms of a decrease in current density caused by the presence of ethanol. Furthermore, we found that the catalytically generated electric field in the solution near a Pt/Au IME in the presence of H2O2 is capable of inducing electroosmotic fluid flow that can be switched on and off externally. We demonstrate that the velocity of the fluid flow in the plane of the IME is a function of the electric field, whether catalytically generated or applied from an external current source. Our findings indicate that the motion of PtAu nanorods in H2O2 is primarily due to a catalytically induced electrokinetic phenomenon and that other mechanisms, such as those related to interfacial tension gradients, play at best a minor role.

  10. Interacting Cracks in an Environmentally Assisted Fracture

    NASA Astrophysics Data System (ADS)

    Levandovsky, Artem; Balazs, Anna

    2006-03-01

    We perform the study of environmentally assisted fracture within the framework of a lattice model. Formation of an ensemble of environmentally assisted microcracks, their coalescence and formation of crack ``avalanches'' lead to a very rich dynamical picture. Under specific condition crack healing can occur due to cohesive forces, which hold material together and tend to pull atoms together even if they are separated by a crack over several lattice units. We investigate the dynamical interplay between crack formation, arrest, healing and re-cracking. The goal here is to provide an understanding of the conditions leading to the phenomena of crack healing that happens along with the crack formation. We study the morphology of crack patterns with the intentions to establish a way to enhance the healing property of a material sample.

  11. Crack Formation in Cement-Based Composites

    NASA Astrophysics Data System (ADS)

    Sprince, A.; Pakrastinsh, L.; Vatin, N.

    2016-04-01

    The cracking properties in cement-based composites widely influences mechanical behavior of construction structures. The challenge of present investigation is to evaluate the crack propagation near the crack tip. During experiments the tension strength and crack mouth opening displacement of several types of concrete compositions was determined. For each composition the Compact Tension (CT) specimens were prepared with dimensions 150×150×12 mm. Specimens were subjected to a tensile load. Deformations and crack mouth opening displacement were measured with extensometers. Cracks initiation and propagation were analyzed using a digital image analysis technique. The formation and propagation of the tensile cracks was traced on the surface of the specimens using a high resolution digital camera with 60 mm focal length. Images were captured during testing with a time interval of one second. The obtained experimental curve shows the stages of crack development.

  12. Mechanics of the crack path formation

    NASA Technical Reports Server (NTRS)

    Rubinstein, Asher A.

    1989-01-01

    A detailed analysis of experimentally obtained curvilinear crack path trajectories formed in a heterogeneous stress field is presented. Experimental crack path trajectories were used as data for numerical simulations, recreating the actual stress field governing the development of the crack path. Thus, the current theories of crack curving and kinking could be examined by comparing them with the actual stress field parameters as they develop along the experimentally observed crack path. The experimental curvilinear crack path trajectories were formed in the tensile specimens with a hole positioned in the vicinity of a potential crack path. The numerical simulation, based on the solution of equivalent boundary value problems with the possible perturbations of the crack path, is presented here.

  13. Predicting crack growth direction in unidirectional composites

    NASA Technical Reports Server (NTRS)

    Gregory, M. A.; Herakovich, C. T.

    1986-01-01

    The purpose of this study is to gain a better understanding of the parameters affecting crack growth direction in unidirectional composite materials. To achieve this, the effect of anisotropy and biaxial, far field, loading on the direction of crack growth in unidirectional off-axis composite materials is investigated. Specific emphasis is placed on defining the crack-tip-stress field and finding a consistent criterion for predicting the direction of crack growth. An anisotropic crack-tip-stress analysis was implemented using three criteria (the normal stress ratio theory, the tensor polynomial failure criterion, and the strain energy density theory) to predict the direction of crack extension in unidirectional off-axis graphite-epoxy. The theoretically predicted crack extension directions were then compared with experimental results. It was determined that only the normal stress-ratio criterion correctly predicts the direction of crack extension.

  14. Crack problems in cylindrical and spherical shells

    NASA Technical Reports Server (NTRS)

    Erdogan, F.

    1976-01-01

    Standard plate or shell theories were used as a starting point to study the fracture problems in thin-walled cylindrical and spherical shells, assuming that the plane of the crack is perpendicular to the surface of the sheet. Since recent studies have shown that local shell curvatures may have a rather considerable effect on the stress intensity factor, the crack problem was considered in conjunction with a shell rather than a plate theory. The material was assumed to be isotropic and homogeneous, so that approximate solutions may be obtained by approximating the local shell crack geometry with an ideal shell which has a solution, namely a spherical shell with a meridional crack, a cylindrical shell with a circumferential crack, or a cylindrical shell with an axial crack. A method of solution for the specially orthotropic shells containing a crack was described; symmetric and skew-symmetric problems are considered in cylindrical shells with an axial crack.

  15. Ultrasound imaging of stress corrosion cracking

    NASA Astrophysics Data System (ADS)

    Hörchens, Lars; Wassink, Casper; Haines, Harvey

    2015-03-01

    The formation of cracks in a corrosive environment in combination with tensile stresses is known as stress corrosion cracking. This type of degradation mechanism can lead to sudden and rapid failure of a structure. In a colony of cracks, it is desired to determine the position and depth of individual cracks in order to assess the remaining strength of the structure. In the present paper, acoustical imaging using inverse wave field extrapolation is applied to a pipe coupon exhibiting stress corrosion cracking. It is shown that individual cracks in the colony can be identified and sized. Aside from the direct path into the pipe wall, reflections from the inner and outer surface of the sample are used to determine accurately the extent of the surface-breaking cracks within the material. The images obtained during a scan can be stacked together to provide a three-dimensional visualization of the colony of cracks.

  16. Fracture mechanics parameters for small fatigue cracks

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1992-01-01

    This paper presents a review of some common small-crack test specimens, the underlying causes of the small-crack effect, and the fracture-mechanics parameters that have been used to correlate or predict their growth behavior. This review concentrates on continuum mechanics concepts and on the nonlinear behavior of small cracks. The paper reviews some stress-intensity factor solutions for small-crack test specimens and develops some simple elastic-plastic J integral and cyclic J integral expressions that include the influence of crack-closure. These parameters were applied to small-crack growth data on two aluminum alloys, and a fatigue life prediction methodology is demonstrated. For these materials, the crack-closure transient from the plastic wake was found to be the major factor in causing the small-crack effect.

  17. Catalytic decomposition of petroleum into natural gas

    SciTech Connect

    Mango, F.D.; Hightower, J.

    1997-12-01

    Petroleum is believed to be unstable in the earth, decomposing to lighter hydrocarbons at temperatures > 150{degrees}C. Oil and gas deposits support this view: gas/oil ratios and methane concentrations tend to increase with depth above 150{degrees}C. Although oil cracking is suggested and receives wide support, laboratory pyrolysis does not give products resembling natural gas. Moreover, it is doubtful that the light hydrocarbons in wet gas (C{sub 2}-C{sub 4}) could decompose over geologic time to dry gas (>95% methane) without catalytic assistance. We now report the catalytic decomposition of crude oil to a gas indistinguishable from natural gas. Like natural gas in deep basins, it becomes progressively enriched in methane: initially 90% (wet gas) to a final composition of 100% methane (dry gas). To our knowledge, the reaction is unprecedented and unexpectedly robust (conversion of oil to gas is 100% in days, 175{degrees}C) with significant implications regarding the stability of petroleum in sedimentary basins. The existence or nonexistence of oil in the deep subsurface may not depend on the thermal stability of hydrocarbons as currently thought. The critical factor could be the presence of transition metal catalysts which destabilize hydrocarbons and promote their decomposition to natural gas.

  18. Catalytic efficiency of designed catalytic proteins

    PubMed Central

    Korendovych, Ivan V; DeGrado, William F

    2014-01-01

    The de novo design of catalysts that mimic the affinity and specificity of natural enzymes remains one of the Holy Grails of chemistry. Despite decades of concerted effort we are still unable to design catalysts as efficient as enzymes. Here we critically evaluate approaches to (re)design of novel catalytic function in proteins using two test cases: Kemp elimination and ester hydrolysis. We show that the degree of success thus far has been modest when the rate enhancements seen for the designed proteins are compared with the rate enhancements by small molecule catalysts in solvents with properties similar to the active site. Nevertheless, there are reasons for optimism: the design methods are ever improving and the resulting catalyst can be efficiently improved using directed evolution. PMID:25048695

  19. Catalytic coal liquefaction process

    DOEpatents

    Garg, D.; Sunder, S.

    1986-12-02

    An improved process for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a solvent comprises using as catalyst a mixture of a 1,2- or 1,4-quinone and an alkaline compound, selected from ammonium, alkali metal, and alkaline earth metal oxides, hydroxides or salts of weak acids. 1 fig.

  20. Catalytic coal liquefaction process

    DOEpatents

    Garg, Diwakar; Sunder, Swaminathan

    1986-01-01

    An improved process for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a solvent comprises using as catalyst a mixture of a 1,2- or 1,4-quinone and an alkaline compound, selected from ammonium, alkali metal, and alkaline earth metal oxides, hydroxides or salts of weak acids.

  1. Analogy between fluid cavitation and fracture mechanics

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Mullen, R. L.; Braun, M. J.

    1983-01-01

    When the stresses imposed on a fluid are sufficiently large, rupture or cavitation can occur. Such conditions can exist in many two-phase flow applications, such as the choked flows, which can occur in seals and bearings. Nonspherical bubbles with large aspect ratios have been observed in fluids under rapid acceleration and high shear fields. These bubbles are geometrically similar to fracture surface patterns (Griffith crack model) existing in solids. Analogies between crack growth in solid and fluid cavitation are proposed and supported by analysis and observation (photographs). Healing phenomena (void condensation), well accepted in fluid mechanics, have been observed in some polymers and hypothesized in solid mechanics. By drawing on the strengths of the theories of solid mechanics and cavitation, a more complete unified theory can be developed.

  2. TV fatigue crack monitoring system

    NASA Technical Reports Server (NTRS)

    Exton, R. J. (Inventor)

    1977-01-01

    An apparatus is disclosed for monitoring the development and growth of fatigue cracks in a test specimen subjected to a pulsating tensile load. A plurality of television cameras photograph a test specimen which is illuminated at the point of maximum tensile stress. The television cameras have a modified vidicon tube which has an increased persistence time thereby eliminating flicker in the displayed images.

  3. Biaxial Fatigue Cracking from Notch

    DTIC Science & Technology

    2013-03-04

    UNCLASSIFIED UNCLASSIFIED NAVAL AIR WARFARE CENTER AIRCRAFT DIVISION PATUXENT RIVER, MARYLAND TECHNICAL REPORT REPORT NO... AIRCRAFT DIVISION PATUXENT RIVER, MARYLAND NAWCADPAX/TR-2013/32 4 March 2013 BIAXIAL FATIGUE CRACKING FROM NOTCH by Eun U. Lee...Materials Engineering Division Naval Air Warfare Center Aircraft Division NAWCADPAX/TR-2013/32 i REPORT DOCUMENTATION PAGE Form Approved OMB

  4. Steam Hydrocarbon Cracking and Reforming

    ERIC Educational Resources Information Center

    Golombok, Michael

    2004-01-01

    The interactive methods of steam hydrocarbon reforming and cracking of the oil and chemical industries are scrutinized, with special focus on their resemblance and variations. The two methods are illustrations of equilibrium-controlled and kinetically-controlled processes, the analysis of which involves theories, which overlap and balance each…

  5. Crack and flip phacoemulsification technique.

    PubMed

    Fine, I H; Maloney, W F; Dillman, D M

    1993-11-01

    The crack and flip phacoemulsification technique combines the advantages of circumferential division of the nucleus and nucleofactis techniques. As such, it adds safety and control to the procedure. We describe each of the surgical maneuvers, including machine settings, and explain the rationale for maneuvers and machine settings.

  6. Methylecgonidine coats the crack particle.

    PubMed

    Wood, R W; Shojaie, J; Fang, C P; Graefe, J F

    1996-01-01

    Crack is a form of cocaine base self-administered by smoking. When heated, it volatilizes and may partially pyrolyze to methylecgonidine (MEG). Upon cooling, a condensation aerosol forms. Heating cocaine base in model crack pipes produced particles of about 1 micron in diameter, regardless of the amount heated; however, MEG concentration increased from < or = 2% at 10 mg per heating to as much as 5% at 30 mg per heating. Methylecgonidine was < or = 1% of the recovered material when cocaine was vaporized off a heated wire coil, but the particles were larger (2-5 microns), and the distribution disperse. The vapor pressure of MEG was higher [log P(mm Hg) = 9.994 - 3530/T] than cocaine base, consistent with MEG coating the droplet during condensation, and with evaporation during aging or dilution. Disappearance of MEG from a chamber filled with crack smoke was a two-component process, one proceeding at the rate of cocaine particle removal, and the other at the desorption rate from other surfaces. Particle diameter influences the deposition site in the respiratory tract; thus, the likely different patterns of deposition in the respiratory tract of humans and animals of crack aerosols produced by different techniques warrant consideration, as they may influence our understanding of immediate and delayed sequelae of the inhalation of cocaine and its pyrolysis product, MEG.

  7. Steam Hydrocarbon Cracking and Reforming

    ERIC Educational Resources Information Center

    Golombok, Michael

    2004-01-01

    The interactive methods of steam hydrocarbon reforming and cracking of the oil and chemical industries are scrutinized, with special focus on their resemblance and variations. The two methods are illustrations of equilibrium-controlled and kinetically-controlled processes, the analysis of which involves theories, which overlap and balance each…

  8. Cracking-Induced Mistuning in Bladed Disks

    DTIC Science & Technology

    2005-10-01

    caused by blade vibrations 1. Adding to this concern is the increased use in modern engines of integrated bladed disks, or blisks , which have dynamic...cracking induced mistuning for a weakly coupled research blisk using 3D finite methods. It was found that the natural frequencies of the cracked blade...decreased significantly only when the crack was sufficiently large. However, the cracked blade dramatically changed the dynamic response of the blisk

  9. A study of crack closure in fatigue

    NASA Technical Reports Server (NTRS)

    Shih, T. T.; Wei, R. P.

    1973-01-01

    Crack closure phenomenon in fatigue was studied by using a Ti-6Al-4V titanium alloy. The occurrence of crack closure was directly measured by an electrical-potential method, and indirectly by load-strain measurement. The experimental results showed that the onset of crack closure depends on both the stress ratio, and the maximum stress intensity factor. No crack closure was observed for stress ratio, greater than 0.3 in this alloy. A two-dimensional elastic model was used to explain the behavior of the recorded load-strain curves. Closure force was estimated by using this model. Yield level stress was found near the crack tip. Based on this estimated closure force, the crack opening displacement was calculated. This result showed that onset of crack closure detected by electrical-potential measurement and crack-opening-displacement measurement is the same. The implications of crack closure on fatigue crack are considered. The experimental results show that crack closure cannot fully account for the effect of stress ratio, on crack growth, and that it cannot be regarded as the sole cause for delay.

  10. The Consequences of Habitual Knuckle Cracking

    PubMed Central

    Swezey, Robert L.; Swezey, Stuart E.

    1975-01-01

    Habitual knuckle cracking in children has been considered a cause of arthritis. A survey of a geriatric patient population with a history of knuckle cracking failed to show a correlation between knuckle cracking and degenerative changes of the metacarpal phalangeal joints. PMID:1130029

  11. Jumplike fatigue crack growth in compressor blades

    NASA Astrophysics Data System (ADS)

    Limar', L. V.; Demina, Yu. A.; Botvina, L. R.

    2014-04-01

    It is shown that power relations between the two main fractographic characteristics of fracture surfaces forming during jumplike fatigue crack growth, namely, the crack depth and the corresponding crack front length, can be used to estimate the fracture stress during vibration tests of the compressor blades of an aviation gas turbine engine, which are made of VT3-1 titanium alloy.

  12. Cracked Teeth: A Review of the Literature

    PubMed Central

    Lubisich, Erinne B.; Hilton, Thomas J.; FERRACANE, JACK

    2013-01-01

    Although cracked teeth are a common problem for patients and dentists, there is a dearth of evidence-based guidelines on how to prevent, diagnose, and treat cracks in teeth. The purpose of this article is to review the literature to establish what evidence exists regarding the risk factors for cracked teeth and their prevention, diagnosis, and treatment. PMID:20590967

  13. Evolution of Rock Cracks Under Unloading Condition

    NASA Astrophysics Data System (ADS)

    Huang, R. Q.; Huang, D.

    2014-03-01

    Underground excavation normally causes instability of the mother rock due to the release and redistribution of stress within the affected zone. For gaining deep insight into the characteristics and mechanism of rock crack evolution during underground excavation, laboratory tests are carried out on 36 man-made rock specimens with single or double cracks under two different unloading conditions. The results show that the strength of rock and the evolution of cracks are clearly influenced by both the inclination angle of individual cracks with reference to the unloading direction and the combination geometry of cracks. The peak strength of rock with a single crack becomes smaller with the inclination angle. Crack propagation progresses intermittently, as evidenced by a sudden increase in deformation and repeated fluctuation of measured stress. The rock with a single crack is found to fail in three modes, i.e., shear, tension-shear, and splitting, while the rock bridge between two cracks is normally failed in shear, tension-shear, and tension. The failure mode in which a crack rock or rock bridge behaves is found to be determined by the inclination angle of the original crack, initial stress state, and unloading condition. Another observation is that the secondary cracks are relatively easily created under high initial stress and quick unloading.

  14. Twisting cracks in Bouligand structures.

    PubMed

    Suksangpanya, Nobphadon; Yaraghi, Nicholas A; Kisailus, David; Zavattieri, Pablo

    2017-06-10

    The Bouligand structure, which is found in many biological materials, is a hierarchical architecture that features uniaxial fiber layers assembled periodically into a helicoidal pattern. Many studies have highlighted the high damage-resistant performance of natural and biomimetic Bouligand structures. One particular species that utilizes the Bouligand structure to achieve outstanding mechanical performance is the smashing Mantis Shrimp, Odontodactylus Scyllarus (or stomatopod). The mantis shrimp generates high speed, high acceleration blows using its raptorial appendage to defeat highly armored preys. The load-bearing part of this appendage, the dactyl club, contains an interior region [16] that consists of a Bouligand structure. This region is capable of developing a significant amount of nested twisting microcracks without exhibiting catastrophic failure. The development and propagation of these microcracks are a source of energy dissipation and stress relaxation that ultimately contributes to the remarkable damage tolerance properties of the dactyl club. We develop a theoretical model to provide additional insights into the local stress intensity factors at the crack front of twisting cracks formed within the Bouligand structure. Our results reveal that changes in the local fracture mode at the crack front leads to a reduction of the local strain energy release rate, hence, increasing the necessary applied energy release rate to propagate the crack, which is quantified by the local toughening factor. Ancillary 3D simulations of the asymptotic crack front field were carried out using a J-integral to validate the theoretical values of the energy release rate and the local stress intensity factors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Desiccation of a Sessile Drop of Blood: Cracks Formation and Delamination

    NASA Astrophysics Data System (ADS)

    Sobac, Benjamin; Brutin, David

    2011-11-01

    The evaporation of drops of biological fluids has been studied since few years du to several applications in medical fields such as medical tests, drug screening, biostabilization... The evaporation of a drop of whole blood leads to the formation of final typical pattern of cracks. Flow motion, adhesion, gelation and fracturation all occur during the evaporation of this complex matter. During the drying, a sol-gel transition develops. The drying kinetics is explained by a simple model of evaporation taking account of the evolution of the gelation front. The system solidifies and when stresses are too important, cracks nucleate. The cracks formation and the structure of the crack pattern are investigated. The initial crack spacing is found in good agreement with the implementation in open geometry of the model of cracks formation induced by evaporation proposed by Allain and Limat. Finally, the drop is still drying after the end of the formation of cracks which leads, like in the situation of colloid suspensions, to the observation of a delamination phenomenon.

  16. Fracture analysis of axially cracked pressure tube of pressurized heavy water reactor

    SciTech Connect

    Krishnan, S.; Bhasin, V.; Mahajan, S.C.

    1997-04-01

    Three Dimensional (313) finite element elastic plastic fracture analysis was done for through wall axially cracked thin pressure tubes of 220 MWe Indian Pressurized Heavy Water Reactor. The analysis was done for Zr-2 and Zr-2.5Nb pressure tubes operating at 300{degrees}C and subjected to 9.5 Mpa internal pressure. Critical crack length was determined based on tearing instability concept. The analysis included the effect of crack face pressure due to the leaking fluid from tube. This effect was found to be significant for pressure tubes. The available formulae for calculating J (for axially cracked tubes) do not take into account the effect of crack face pressure. 3D finite element analysis also gives insight into variation of J across the thickness of pressure tube. It was observed that J is highest at the mid-surface of tube. The results have been presented in the form of across the thickness average J value and a peak factor on J. Peak factor on J is ratio of J at mid surface to average J value. Crack opening area for different cracked lengths was calculated from finite element results. The fracture assessment of pressure tubes was also done using Central Electricity Generating Board R-6 method. Ductile tearing was considered.

  17. Mitsunobu Reactions Catalytic in Phosphine and a Fully Catalytic System

    PubMed Central

    Buonomo, Joseph A; Aldrich, Courtney C

    2015-01-01

    The Mitsunobu reaction is renowned for its mild reaction conditions and broad substrate tolerance, but has limited utility in process chemistry and industrial applications due to poor atom economy and the generation of stoichiometric phosphine oxide and hydrazine by-products that complicate purification. A catalytic Mitsunobu reaction using innocuous reagents to recycle these by-products would overcome both of these shortcomings. Herein we report a protocol that is catalytic in phosphine (1-phenylphospholane) employing phenylsilane to recycle the catalyst. Integration of this phosphine catalytic cycle with Taniguchi’s azocarboxylate catalytic system provided the first fully catalytic Mitsunobu reaction. PMID:26347115

  18. Crack-opening displacements in center-crack, compact, and crack-line wedge-loaded specimens. [of flat plates

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1976-01-01

    The theoretical crack-opening displacements for center-crack, compact, and crack-line wedge-loaded specimens (reported in the ASTM Proposed Recommended Practice for R-Curve Determination (1974)) disagree with experimental measurements in the literature. The disagreement is a result of using approximate specimen configurations and load representation to obtain the theoretical displacements. An improved method of boundary collocation is presented which was used to obtain the theoretical displacements in these three specimen types; the actual specimen configurations and more accurate load representation were used. In the analysis of crack-opening displacements in the compact and crack-line wedge-loaded specimens, the effects of the pin-loaded holes were also included. The theoretical calculations agree with the experimental measurements reported in the literature. Also examined are accurate polynomial expressions for crack-opening displacements in both compact and crack-line wedge-loaded specimens.

  19. Cracking behavior of structural slab bridge decks

    NASA Astrophysics Data System (ADS)

    Baah, Prince

    Bridge deck cracking is a common problem throughout the United States, and it affects the durability and service life of concrete bridges. Several departments of transportation (DOTs) in the United States prefer using continuous three-span solid structural slab bridges without stringers over typical four-lane highways. Recent inspections of such bridges in Ohio revealed cracks as wide as 0.125 in. These measured crack widths are more than ten times the maximum limit recommended in ACI 224R-01 for bridge decks exposed to de-icing salts. Measurements using digital image correlation revealed that the cracks widened under truck loading, and in some cases, the cracks did not fully close after unloading. This dissertation includes details of an experimental investigation of the cracking behavior of structural concrete. Prism tests revealed that the concrete with epoxy-coated bars (ECB) develops the first crack at smaller loads, and develops larger crack widths compared to the corresponding specimens with uncoated (black) bars. Slab tests revealed that the slabs with longitudinal ECB developed first crack at smaller loads, exhibited wider cracks and a larger number of cracks, and failed at smaller ultimate loads compared to the corresponding test slabs with black bars. To develop a preventive measure, slabs with basalt and polypropylene fiber reinforced concrete were also included in the test program. These test slabs exhibited higher cracking loads, smaller crack widths, and higher ultimate loads at failure compared to the corresponding slab specimens without fibers. Merely satisfying the reinforcement spacing requirements given in AASHTO or ACI 318-11 is not adequate to limit cracking below the ACI 224R-01 recommended maximum limit, even though all the relevant design requirements are otherwise met. Addition of fiber to concrete without changing any steel reinforcing details is expected to reduce the severity and extent of cracking in reinforced concrete bridge decks.

  20. Crack modeling of rotating blades with cracked hexahedral finite element method

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Jiang, Dongxiang

    2014-06-01

    Dynamic analysis is the basis in investigating vibration features of cracked blades, where the features can be applied to monitor health state of blades, detect cracks in an early stage and prevent failures. This work presents a cracked hexahedral finite element method for dynamic analysis of cracked blades, with the purpose of addressing the contradiction between accuracy and efficiency in crack modeling of blades in rotor system. The cracked hexahedral element is first derived with strain energy release rate method, where correction of stress intensity factors of crack front and formulation of load distribution of crack surface are carried out to improve the modeling accuracy. To consider nonlinear characteristics of time-varying opening and closure effects caused by alternating loads, breathing function is proposed for the cracked hexahedral element. Second, finite element method with contact element is analyzed and used for comparison. Finally, validation of the cracked hexahedral element is carried out in terms of breathing effects of cracked blades and natural frequency in different crack depths. Good consistency is acquired between the results with developed cracked hexahedral element and contact element, while the computation time is significantly reduced in the previous one. Therefore, the developed cracked hexahedral element achieves good accuracy and high efficiency in crack modeling of rotating blades.

  1. Crack branching in carbon steel. Fracture mechanisms

    NASA Astrophysics Data System (ADS)

    Syromyatnikova, A. S.; Alekseev, A. A.; Levin, A. I.; Lyglaev, A. V.

    2010-04-01

    The fracture surfaces of pressure vessels made of carbon steel that form during crack branching propagation are examined by fractography. Crack branching is found to occur at a crack velocity higher than a certain critical value V > V c . In this case, the material volume that is involved in fracture and depends on the elastoplastic properties of the material and the sample width has no time to dissipate the energy released upon crack motion via the damage mechanisms intrinsic in the material under given deformation conditions (in our case, via cracking according to intragranular cleavage).

  2. Crack use in São Paulo.

    PubMed

    Nappo, S A; Galduróz, J C; Noto, A R

    1996-04-01

    Documented crack use emerged in São Paulo, Brazil, from 1991 onward. Therefore, it is a recent behavior among drug users. The present work draws a profile of São Paulo crack users, employing an ethnographic approach. Twenty-five crack users were interviewed on selected social and demographic characteristics, on the drug itself and its consumption, and on the consequences of this use. Crack cocaine is harmful for the user, leading within a short period to a condition of dependence. The crack users reported ultimately lapsing into "marginality" due to social isolation, neglect of bodily needs, and breakdown of family ties and other relationships.

  3. Hydrogen embrittlement and stress corrosion cracking

    SciTech Connect

    Gibala, R.; Hehemann, R.F.

    1984-01-01

    This book presents proceedings which give an account of knowledge and understanding of hydrogen embrittlement and stress corrosion cracking from the viewpoints of the authors. The book is divided into two sections: (1) hydrogen embrittlement and (2) stress corrosion cracking, with papers by experts in the field contained in each section. Contents include: Hydrogen Embrittlement: Overview on hydrogen degradation phenomena; theories of hydrogen induced cracking of steels; hydrogen embrittlement of steels; hydrogen trapping and hydrogen embrittlement; some recent results on the direct observation of hydrogen trapping in metals and its consequence on embrittlement mechanisms; fracture mechanisms and surface chemistry; investigations of environment-assisted crack growth; the role of microstructure in hydrogen embrittlement; hydrogen related second phase embrittlement of solids. Stress corrosion cracking: Recent observations on the propagation of stress corrosion cracks and their relevance to proposed mechanisms of stress corrosion cracking; films and their importance in the nucleation of stress corrosion cracking stainless steel; stress corrosion cracking of ferritic and austenitic stainless steels; fundamentals of corrosion fatigue behavior of metals and alloys; hydrogen embrittlement and stress corrosion cracking of aluminum alloys; hydrogen permeation and embrittlement studies on metallic glasses; and industrial occurrence of stress corrosion cracking and means for prediction.

  4. Catalytic thermal barrier coatings

    DOEpatents

    Kulkarni, Anand A.; Campbell, Christian X.; Subramanian, Ramesh

    2009-06-02

    A catalyst element (30) for high temperature applications such as a gas turbine engine. The catalyst element includes a metal substrate such as a tube (32) having a layer of ceramic thermal barrier coating material (34) disposed on the substrate for thermally insulating the metal substrate from a high temperature fuel/air mixture. The ceramic thermal barrier coating material is formed of a crystal structure populated with base elements but with selected sites of the crystal structure being populated by substitute ions selected to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a higher rate than would the base compound without the ionic substitutions. Precious metal crystallites may be disposed within the crystal structure to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a lower light-off temperature than would the ceramic thermal barrier coating material without the precious metal crystallites.

  5. Visual simulation of fatigue crack growth

    SciTech Connect

    Wang, S.; Margolin, H.; Lin, F.B.

    1998-07-01

    An attempt has been made to visually simulate fatigue crack propagation from a precrack. An integrated program was developed for this purpose. The crack-tip shape was determined at four load positions in the first load cycle. The final shape was a blunt front with an ear profile at the precrack tip. A more general model, schematically illustrating the mechanism of fatigue crack growth and striation formation in a ductile material, was proposed based on this simulation. According to the present model, fatigue crack growth is an intermittent process; cyclic plastic shear strain is the driving force applied to both state 1 and 2 crack growth. No fracture mode transition occurs between the two stages in the present study. The crack growth direction alternates, moving up and down successively, producing fatigue striations. A brief examination has been made of the crack growth path in a ductile two-phase material.

  6. Hydrogen embrittlement and stress corrosion cracking

    SciTech Connect

    Gibala, R.; Hehemann, R.F.

    1984-01-01

    Topics related to hydrogen embrittlement are discussed, taking into account an overview on hydrogen degradation phenomena, theories of hydrogen induced cracking of steels, the hydrogen embrittlement of steels, hydrogen trapping in iron and steels, some recent results on the direct observation of hydrogen trapping in metals and its consequences on embrittlement mechanisms, fracture mechanics and surface chemistry investigations of environment-assisted crack growth, the role of microstructure in hydrogen embrittlement, and hydrogen related second phase embrittlement of solids. Subjects in the area of stress corrosion cracking are also explored, giving attention to recent observations on the propagation of stress corrosion cracks and their relevance to proposed mechanisms of stress corrosion cracking, films and their importance in the nucleation of stress corrosion cracking in stainless steel, and fundamentals of corrosion fatigue behavior of metals and alloys. Stress corrosion cracking of ferritic and austenitic stainless steels is also considered along with embrittlement studies on metallic glasses.

  7. Improved imaging algorithm for bridge crack detection

    NASA Astrophysics Data System (ADS)

    Lu, Jingxiao; Song, Pingli; Han, Kaihong

    2012-04-01

    This paper present an improved imaging algorithm for bridge crack detection, through optimizing the eight-direction Sobel edge detection operator, making the positioning of edge points more accurate than without the optimization, and effectively reducing the false edges information, so as to facilitate follow-up treatment. In calculating the crack geometry characteristics, we use the method of extracting skeleton on single crack length. In order to calculate crack area, we construct the template of area by making logical bitwise AND operation of the crack image. After experiment, the results show errors of the crack detection method and actual manual measurement are within an acceptable range, meet the needs of engineering applications. This algorithm is high-speed and effective for automated crack measurement, it can provide more valid data for proper planning and appropriate performance of the maintenance and rehabilitation processes of bridge.

  8. Crustal Rock Fracture Mechanics for Design and Control of Artificial Subsurface Cracks in Geothermal Energy Extraction Engineering ({Gamma}-Project)

    SciTech Connect

    Abe, Hiroyuki; Takahashi, Hideaki

    1983-12-15

    Recently a significant role of artificial and/or natural cracks in the geothermal reservoir has been demonstrated in the literatures (Abe, H., et al., 1983, Nielson, D.L. and Hullen, J.B., 1983), where the cracks behave as fluid paths and/or heat exchanging surfaces. Until now, however, there are several problems such as a design procedure of hydraulic fracturing, and a quantitative estimate of fluid and heat transfer for reservoir design. In order to develop a design methodology of geothermal reservoir cracks, a special distinguished research project, named as ''{Lambda}-Project'', started at Tohoku University (5 years project, 1983-1988). In this project a basic fracture mechanics model of geothermal reservoir cracks is being demonstrated and its validation is being discussed both theoretically and experimentally. This paper descibes an outline of ''{Lambda}-Project''.

  9. Catalytic reforming catalyst

    SciTech Connect

    Buss, W.C.; Kluksdahl, H.E.

    1980-12-09

    An improved catalyst, having a reduced fouling rate when used in a catalytic reforming process, said catalyst comprising platinum disposed on an alumina support wherein the alumina support is obtained by removing water from aluminum hydroxide produced as a by-product from a ziegler higher alcohol synthesis reaction, and wherein the alumina is calcined at a temperature of 1100-1400/sup 0/F so as to have a surface area of 165 to 215 square meters per gram.

  10. Catalytic nanoporous membranes

    DOEpatents

    Pellin, Michael J.; Hryn, John N.; Elam, Jeffrey W.

    2009-12-01

    A nanoporous catalytic membrane which displays several unique features including pores which can go through the entire thickness of the membrane. The membrane has a higher catalytic and product selectivity than conventional catalysts. Anodic aluminum oxide (AAO) membranes serve as the catalyst substrate. This substrate is then subjected to Atomic Layer Deposition (ALD), which allows the controlled narrowing of the pores from 40 nm to 10 nm in the substrate by deposition of a preparatory material. Subsequent deposition of a catalytic layer on the inner surfaces of the pores reduces pore sizes to less than 10 nm and allows for a higher degree of reaction selectivity. The small pore sizes allow control over which molecules enter the pores, and the flow-through feature can allow for partial oxidation of reactant species as opposed to complete oxidation. A nanoporous separation membrane, produced by ALD is also provided for use in gaseous and liquid separations. The membrane has a high flow rate of material with 100% selectivity.

  11. Polygon/Cracked Sedimentary Rock

    NASA Technical Reports Server (NTRS)

    2004-01-01

    4 December 2004 Exposures of sedimentary rock are quite common on the surface of Mars. Less common, but found in many craters in the regions north and northwest of the giant basin, Hellas, are sedimentary rocks with distinct polygonal cracks in them. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows an example from the floor of an unnamed crater near 21.0oS, 311.9oW. Such cracks might have formed by desiccation as an ancient lake dried up, or they might be related to ground ice freeze/thaw cycles or some other stresses placed on the original sediment or the rock after it became lithified. The 300 meter scale bar is about 328 yards long. The scene is illuminated by sunlight from the upper left.

  12. Polygon/Cracked Sedimentary Rock

    NASA Technical Reports Server (NTRS)

    2004-01-01

    4 December 2004 Exposures of sedimentary rock are quite common on the surface of Mars. Less common, but found in many craters in the regions north and northwest of the giant basin, Hellas, are sedimentary rocks with distinct polygonal cracks in them. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows an example from the floor of an unnamed crater near 21.0oS, 311.9oW. Such cracks might have formed by desiccation as an ancient lake dried up, or they might be related to ground ice freeze/thaw cycles or some other stresses placed on the original sediment or the rock after it became lithified. The 300 meter scale bar is about 328 yards long. The scene is illuminated by sunlight from the upper left.

  13. Crack-Defined Electronic Nanogaps.

    PubMed

    Dubois, Valentin; Niklaus, Frank; Stemme, Göran

    2016-03-16

    Achieving near-atomic-scale electronic nanogaps in a reliable and scalable manner will facilitate fundamental advances in molecular detection, plasmonics, and nanoelectronics. Here, a method is shown for realizing crack-defined nanogaps separating TiN electrodes, allowing parallel and scalable fabrication of arrays of sub-10 nm electronic nanogaps featuring individually defined gap widths. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. The Growth of Small Corrosion Fatigue Cracks in Alloy 7075

    NASA Technical Reports Server (NTRS)

    Piascik, Robert S.

    2015-01-01

    The corrosion fatigue crack growth characteristics of small (greater than 35 micrometers) surface and corner cracks in aluminum alloy 7075 is established. The early stage of crack growth is studied by performing in situ long focal length microscope (500×) crack length measurements in laboratory air and 1% sodium chloride (NaCl) environments. To quantify the "small crack effect" in the corrosive environment, the corrosion fatigue crack propagation behavior of small cracks is compared to long through-the-thickness cracks grown under identical experimental conditions. In salt water, long crack constant K(sub max) growth rates are similar to small crack da/dN.

  15. The Growth of Small Corrosion Fatigue Cracks in Alloy 7075

    NASA Technical Reports Server (NTRS)

    Piascik, R. S.

    2001-01-01

    The corrosion fatigue crack growth characteristics of small (less than 35 microns) surface and corner cracks in aluminum alloy 7075 is established. The early stage of crack growth is studied by performing in situ long focal length microscope (500X) crack length measurements in laboratory air and 1% NaCl environments. To quantify the "small crack effect" in the corrosive environment, the corrosion fatigue crack propagation behavior of small cracks is compared to long through-the-thickness cracks grown under identical experimental conditions. In salt water, long crack constant K(sub max) growth rates are similar to small crack da/dN.

  16. Predicting failure of specimens with either surface cracks or corner cracks at holes

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1976-01-01

    A previously developed fracture criterion was applied to fracture data for surface-cracked specimens subjected to remote tensile loading and for specimens with a corner crack (or cracks) emanating from a circular hole subjected to either remote tensile loading or pin loading in the hole. The failure stresses calculated from this criterion were consistent with experimental failure stresses for both surface and corner cracks for a wide range of crack shapes and crack sizes in specimens of aluminum alloy, titanium alloy, and steel. Empirical equations for the elastic stress-intensity factors for a surface crack and for a corner crack (or cracks) emanating from a circular hole in a finite-thickness and finite-width specimen were also developed.

  17. Crack propagation in teeth: a comparison of perimortem and postmortem behavior of dental materials and cracks.

    PubMed

    Hughes, Cris E; White, Crystal A

    2009-03-01

    This study presents a new method for understanding postmortem heat-induced crack propagation patterns in teeth. The results demonstrate that patterns of postmortem heat-induced crack propagation differ from perimortem and antemortem trauma-induced crack propagation patterns. Dental material of the postmortem tooth undergoes dehydration leading to a shrinking and more brittle dentin material and a weaker dentin-enamel junction. Dentin intertubule tensile stresses are amplified by the presence of the pulp cavity, and initiates crack propagation from the internal dentin, through the dentin-enamel junction and lastly the enamel. In contrast, in vivo perimortem and antemortem trauma-induced crack propagation initiates cracking from the external surface of the enamel toward the dentin-enamel junction where the majority of the energy of the crack is dissipated, eliminating the crack's progress into the dentin. These unique patterns of crack propagation can be used to differentiate postmortem taphonomy-induced damage from antemortem and perimortem trauma in teeth.

  18. Fatigue cracks in Eurofer 97 steel: Part II. Comparison of small and long fatigue crack growth

    NASA Astrophysics Data System (ADS)

    Kruml, T.; Hutař, P.; Náhlík, L.; Seitl, S.; Polák, J.

    2011-05-01

    The fatigue crack growth rate in the Eurofer 97 steel at room temperature was measured by two different methodologies. Small crack growth data were obtained using cylindrical specimens with a shallow notch and no artificial crack starters. The growth of semicircular cracks of length between 10-2000 μm was followed in symmetrical cycling with constant strain amplitude ( R ɛ = -1). Long crack data were measured using standard CT specimen and ASTM methodology, i.e. R = 0.1. The growth of cracks having the length in the range of 10-30 mm was measured. It is shown that the crack growth rates of both types of cracks are in a very good agreement if J-integral representation is used and usual assumptions of the crack closure effects are taken into account.

  19. Crack, sex work, and HIV.

    PubMed

    Leggett, T

    1999-01-01

    South Africa's long isolation, and perhaps deliberate efforts by the apartheid government, have led to an unusual pattern of drug abuse in the country. Drugs not commonly used in other countries, such as Mandrax and Welconol, are widespread in South Africa, while the street drugs commonly found in other countries, such as cocaine and heroin, have been relatively rare. However, this is changing, as international drug traffickers now import a broad range of drugs, including heroin and cocaine. Demand for these drugs has been established in South Africa, including among the urban lower classes. Immigration, especially of other Africans and particularly Nigerians, has accelerated the trend. While both mandrax and crack cocaine are smoked, the former is a sedative and the latter is a stimulant with pro-sexual effects. These sexual effects, together with very strong addictive potential, have led to very high HIV seroprevalence in user populations. Addiction often leads female users into prostitution, with prostitutes being a prime conduit for the spread of both the drug and HIV infection. Desperate to earn funds to meet their crack consumption needs, drug-addicted female prostitutes in South Africa service many clients and engage in practices shunned by their nonaddicted peers, such as unprotected and anal sex. There will be serious long-term effects of crack cocaine consumption, together with prostitution, upon all of South African society.

  20. The Origin of Griffith Cracks

    NASA Astrophysics Data System (ADS)

    Campbell, John

    2011-12-01

    As a result of the extremely strong interatomic bonds, pores and cracks are difficult to form in metals. They seem unlikely to be created intrinsically by the normal mechanisms involved in the formation of a solid by solidification from liquid, or condensation from vapor phases, or probably, by lattice mechanisms in the solid state. It is proposed here that initiation sites for pores and cracks for most failures of metals can only be initiated from unbonded interfaces. Such unbonded defects are introduced into metals only via extrinsic ( entrainment) mechanisms resulting from production processes, particularly melting and casting. Only entrained inclusions, particularly bifilms, have unbonded interfaces that can be opened to constitute Griffith cracks and can explain the initiation of macroscopic fracture and related microscopic processes, such as a decohesion between the second phases and a matrix. In the absence of entrained defects, metals would be predicted to fail in tension only either (1) at high stresses probably in excess of 20 GPa or (2) by ductile flow to the point of 100 pct reduction in area. Improved melting and casting processes giving freedom from entrained defects promise unprecedented performance and reliability of engineering metals.

  1. Alumina-based monopropellant microthruster with integrated heater, catalytic bed and temperature sensors

    NASA Astrophysics Data System (ADS)

    Khaji, Zahra; Klintberg, Lena; Barbade, Dhananjay; Palmer, Kristoffer; Thornell, Greger

    2016-10-01

    A liquid propellant alumina microthruster with an integrated heater, catalytic bed and two temperature sensors has been developed and tested using 30 wt.% hydrogen peroxide. The temperature sensors and the catalytic bed were screen-printed using platinum paste on tapes of alumina that was stacked and laminated before sintering. In order to increase the surface of the catalytic bed, the platinum paste was mixed with a sacrificial paste that disappeared during sintering, leaving behind a porous and rough layer. Complete evaporation and combustion, resulting in only gas coming from the outlet, was achieved with powers above 3.7 W for a propellant flow of 50 μl/min. At this power, the catalytic bed reached a maximum temperature of 147°C. The component was successfully operated up to a temperature of 307°C, where it cracked.

  2. NMR sensor for onboard ship detection of catalytic fines in marine fuel oils.

    PubMed

    Sørensen, Morten K; Vinding, Mads S; Bakharev, Oleg N; Nesgaard, Tomas; Jensen, Ole; Nielsen, Niels Chr

    2014-08-05

    A mobile, low-field nuclear magnetic resonance (NMR) sensor for onboard, inline detection of catalytic fines in fuel oil in the shipping industry is presented as an alternative to onshore laboratory measurements. Catalytic fines (called cat fines) are aluminosilicate zeolite catalysts utilized in the oil cracking process at refineries. When present in fuel oil, cat fines cause abrasive wear of engine parts and may ultimately lead to engine breakdown with large economical consequences, thereby motivating methods for inline measurements. Here, we report on a robust, mobile, and low-cost (27)Al NMR sensor for continuous online measurement of the level of catalytic fines in fuel oil onboard ships. The sensor enables accurate measurements of aluminum (catalytic fines) in ppm concentrations in good agreement with commercial laboratory reference measurements.

  3. Cracking of simulated oil refinery off-gas over a coal char, petroleum coke, and quartz

    SciTech Connect

    Yuan Zhang; Jin-hu Wu; Dong-ke Zhang

    2008-03-15

    The cracking of oil refinery off-gas, simulated with a gas mixture containing methane (51%), ethylene (21.4%), ethane (21.1%), and propane (6.5%), over a coal char, petroleum coke, and quartz, respectively, has been studied in a fixed bed reactor. The experiments were performed at temperatures between 850 and 1000{sup o}C and at atmospheric pressure. The results show that the conversions of all species considered increased with increasing temperature. Ethane and propane completely decomposed over all three bed materials in the temperature range investigated. However, the higher initial conversion rates of methane and ethylene cracking at all temperatures were observed only over the coal char and not on the petroleum coke and quartz, indicating a significant catalytic effect of the coal char on methane and ethylene cracking. Methane and ethylene conversions decreased with reaction time due to deactivation of the coal char by carbon deposition on the char surface and, in the later stage of a cracking experiment, became negative, suggesting that methane and ethylene had been formed during the cracking of ethane and propane. 16 refs., 13 figs., 2 tabs.

  4. Catalytic reactor for low-Btu fuels

    DOEpatents

    Smith, Lance; Etemad, Shahrokh; Karim, Hasan; Pfefferle, William C.

    2009-04-21

    An improved catalytic reactor includes a housing having a plate positioned therein defining a first zone and a second zone, and a plurality of conduits fabricated from a heat conducting material and adapted for conducting a fluid therethrough. The conduits are positioned within the housing such that the conduit exterior surfaces and the housing interior surface within the second zone define a first flow path while the conduit interior surfaces define a second flow path through the second zone and not in fluid communication with the first flow path. The conduit exits define a second flow path exit, the conduit exits and the first flow path exit being proximately located and interspersed. The conduits define at least one expanded section that contacts adjacent conduits thereby spacing the conduits within the second zone and forming first flow path exit flow orifices having an aggregate exit area greater than a defined percent of the housing exit plane area. Lastly, at least a portion of the first flow path defines a catalytically active surface.

  5. 40 CFR 60.105 - Monitoring of emissions and operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... provisions of this subpart as follows: (1) For fluid catalytic cracking unit catalyst regenerators subject to... catalytic cracking unit catalyst regenerators subject to § 60.103(a), an instrument for continuously... SO2 control device from any fluid catalytic cracking unit catalyst regenerator for which the owner...

  6. Failure Diagram for Chemically Assisted Crack Growth

    NASA Astrophysics Data System (ADS)

    Sadananda, K.; Vasudevan, A. K.

    2011-02-01

    A failure diagram that combines the thresholds for failure of a smooth specimen to that of a fracture mechanics specimen, similar to the modified Kitagawa diagram in fatigue, is presented. For a given material/environment system, the diagram defines conditions under which a crack initiated at the threshold stress in a smooth specimen becomes a propagating crack, by satisfying the threshold stress intensity of a long crack. In analogy with fatigue, it is shown that internal stresses or local stress concentrations are required to provide the necessary mechanical crack tip driving forces, on one hand, and reaction/transportation kinetics to provide the chemical potential gradients, on the other. Together, they help in the initiation and propagation of the cracks. The chemical driving forces can be expressed as equivalent mechanical stresses using the failure diagram. Both internal stresses and their gradients, in conjunction with the chemical driving forces, have to meet the minimum magnitude and the minimum gradients to sustain the growth of a microcrack formed. Otherwise, nonpropagating conditions will prevail or a crack formed will remain dormant. It is shown that the processes underlying the crack nucleation in a smooth specimen and the crack growth of a fracture mechanics specimen are essentially the same. Both require building up of internal stresses by local plasticity. The process involves intermittent crack tip blunting and microcrack nucleation until the crack becomes unstable under the applied stress.

  7. Stress Corrosion Cracking of Carbon Steel Weldments

    SciTech Connect

    POH-SANG, LAM

    2005-01-13

    An experiment was conducted to investigate the role of weld residual stress on stress corrosion cracking in welded carbon steel plates prototypic to those used for nuclear waste storage tanks. Carbon steel specimen plates were butt-joined with Gas Metal Arc Welding technique. Initial cracks (seed cracks) were machined across the weld and in the heat affected zone. These specimen plates were then submerged in a simulated high level radioactive waste chemistry environment. Stress corrosion cracking occurred in the as-welded plate but not in the stress-relieved duplicate. A detailed finite element analysis to simulate exactly the welding process was carried out, and the resulting temperature history was used to calculate the residual stress distribution in the plate for characterizing the observed stress corrosion cracking. It was shown that the cracking can be predicted for the through-thickness cracks perpendicular to the weld by comparing the experimental KISCC to the calculated stress intensity factors due to the welding residual stress. The predicted crack lengths agree reasonably well with the test data. The final crack lengths appear to be dependent on the details of welding and the sequence of machining the seed cracks, consistent with the prediction.

  8. Modelling and measurement of crack closure and crack growth following overloads and underloads

    NASA Technical Reports Server (NTRS)

    Dexter, R. J.; Hudak, S. J.; Davidson, D. L.

    1989-01-01

    Ignoring crack growth retardation following overloads can result in overly conservative life predictions in structures subjected to variable amplitude fatigue loading. Crack closure is believed to contribute to the crack growth retardation, although the specific closure mechanism is dabatable. The delay period and corresponding crack growth rate transients following overload and overload/underload cycles were systematically measured as a function of load ratio and overload magnitude. These responses are correlated in terms of the local 'driving force' for crack growth, i.e. the effective stress intensity factor range. Experimental results are compared with the predictions of a Dugdale-type (1960) crack closure model, and improvements in the model are suggested.

  9. Crack Turning in Integrally Stiffened Aircraft Structures

    NASA Technical Reports Server (NTRS)

    Pettit, Richard Glen

    2000-01-01

    Current emphasis in the aircraft industry toward reducing manufacturing cost has created a renewed interest in integrally stiffened structures. Crack turning has been identified as an approach to improve the damage tolerance and fail-safety of this class of structures. A desired behavior is for skin cracks to turn before reaching a stiffener, instead of growing straight through. A crack in a pressurized fuselage encounters high T-stress as it nears the stiffener--a condition favorable to crack turning. Also, the tear resistance of aluminum alloys typically varies with crack orientation, a form of anisotropy that can influence the crack path. The present work addresses these issues with a study of crack turning in two-dimensions, including the effects of both T-stress and fracture anisotropy. Both effects are shown to have relation to the process zone size, an interaction that is central to this study. Following an introduction to the problem, the T-stress effect is studied for a slightly curved semi-infinite crack with a cohesive process zone, yielding a closed form expression for the future crack path in an infinite medium. For a given initial crack tip curvature and tensile T-stress, the crack path instability is found to increase with process zone size. Fracture orthotropy is treated using a simple function to interpolate between the two principal fracture resistance values in two-dimensions. An extension to three-dimensions interpolates between the six principal values of fracture resistance. Also discussed is the transition between mode I and mode II fracture in metals. For isotropic materials, there is evidence that the crack seeks out a direction of either local symmetry (pure mode I) or local asymmetry (pure mode II) growth. For orthotropic materials the favored states are not pure modal, and have mode mixity that is a function of crack orientation.

  10. Physicochemical controls on initiation and evolution of desiccation cracks in sand-bentonite mixtures: X-ray CT imaging and stochastic modeling.

    PubMed

    Gebrenegus, Thomas; Ghezzehei, Teamrat A; Tuller, Markus

    2011-09-25

    The shrink-swell behavior of active clays in response to changes in physicochemical conditions creates great challenges for construction of geotechnical barriers for hazardous waste isolation, and is of significant importance for management of agricultural and natural resources. Initiation and evolution of desiccation cracks in active clays are strongly dependent on physicochemical initial and boundary conditions. To investigate effects of bentonite content (20, 40, 60%), pore fluid chemistry (0.05 and 0.5M NaCl) and drying rates (40 and 60°C) on cracking behavior, well-controlled dehydration experiments were conducted and X-ray Computed Tomography (CT) was applied to visualize and quantify geometrical features of evolving crack networks. A stochastic model based on the Fokker-Plank equation was adopted to describe the evolution of crack aperture distributions (CAD) and to assess the impact of physicochemical factors on cracking behavior. Analyses of crack porosity and crack specific surface area showed that both clay content and temperature had larger impact on cracking than pore fluid concentration. More cracks formed at high bentonite contents (40 and 60%) and at high drying rate (60°C). The drift, diffusion and source terms derived from stochastic analysis indicated that evaporative demand had greater influence on the dynamics of the CAD than solution chemistry.

  11. Physicochemical controls on initiation and evolution of desiccation cracks in sand-bentonite mixtures: X-ray CT imaging and stochastic modeling

    NASA Astrophysics Data System (ADS)

    Gebrenegus, Thomas; Ghezzehei, Teamrat A.; Tuller, Markus

    2011-09-01

    The shrink-swell behavior of active clays in response to changes in physicochemical conditions creates great challenges for construction of geotechnical barriers for hazardous waste isolation, and is of significant importance for management of agricultural and natural resources. Initiation and evolution of desiccation cracks in active clays are strongly dependent on physicochemical initial and boundary conditions. To investigate effects of bentonite content (20, 40, 60%), pore fluid chemistry (0.05 and 0.5 M NaCl) and drying rates (40 and 60 °C) on cracking behavior, well-controlled dehydration experiments were conducted and X-ray Computed Tomography (CT) was applied to visualize and quantify geometrical features of evolving crack networks. A stochastic model based on the Fokker-Plank equation was adopted to describe the evolution of crack aperture distributions (CAD) and to assess the impact of physicochemical factors on cracking behavior. Analyses of crack porosity and crack specific surface area showed that both clay content and temperature had larger impact on cracking than pore fluid concentration. More cracks formed at high bentonite contents (40 and 60%) and at high drying rate (60 °C). The drift, diffusion and source terms derived from stochastic analysis indicated that evaporative demand had greater influence on the dynamics of the CAD than solution chemistry.

  12. Fluid permeability of deformable fracture networks

    SciTech Connect

    Brown, S.R.; Bruhn, R.L.

    1997-04-01

    The authors consider the problem of defining the fracture permeability tensor for each grid lock in a rock mass from maps of natural fractures. For this purpose they implement a statistical model of cracked rock due to M. Oda [1985], where the permeability tensor is related to the crack geometry via a volume average of the contribution from each crack in the population. In this model tectonic stress is implicitly coupled to fluid flow through an assumed relationship between crack aperture and normal stress across the crack. The authors have included the following enhancements to the basic model: (1) a realistic model of crack closure under stress has been added along with the provision to apply tectonic stresses to the fracture system in any orientation, the application of stress results in fracture closure and consequently a reduction in permeability; (2) the fracture permeability can be superimposed onto an arbitrary anisotropic matrix permeability; (3) the fracture surfaces are allowed to slide under the application of shear stress, causing fractures to dilate and result in a permeability increase. Through an example, the authors demonstrate that significant changes in permeability magnitudes and orientations are possible when tectonic stress is applied to a fracture system.

  13. Fluid Physics

    NASA Image and Video Library

    2002-12-12

    These are video microscope images of magnetorheological (MR) fluids, illuminated with a green light. Those on Earth, left, show the MR fluid forming columns or spikes structures. On the right, the fluids in microgravity aboard the International Space Station (ISS), formed broader columns.

  14. Fluid Mechanics.

    ERIC Educational Resources Information Center

    Drazin, Philip

    1987-01-01

    Outlines the contents of Volume II of "Principia" by Sir Isaac Newton. Reviews the contributions of subsequent scientists to the physics of fluid dynamics. Discusses the treatment of fluid mechanics in physics curricula. Highlights a few of the problems of modern research in fluid dynamics. Shows that problems still remain. (CW)

  15. Fluid Mechanics.

    ERIC Educational Resources Information Center

    Drazin, Philip

    1987-01-01

    Outlines the contents of Volume II of "Principia" by Sir Isaac Newton. Reviews the contributions of subsequent scientists to the physics of fluid dynamics. Discusses the treatment of fluid mechanics in physics curricula. Highlights a few of the problems of modern research in fluid dynamics. Shows that problems still remain. (CW)

  16. The effect of moisture absorption on the fatigue crack propagation resistance of acrylic bone cement.

    PubMed

    Schmitt, S; Krzypow, D J; Rimnac, C M

    2004-03-01

    In vivo, bone cement is subject to cyclic loading in a fluid environment. However, little is known about the effect of moisture absorption on the fatigue crack propagation resistance of bone cement. The effect of moisture absorption at 37 degrees C on the fatigue crack propagation resistance of a common bone cement (Endurance, DePuy, Orthopaedics, Inc.) was examined. Preliminary fracture toughness tests were conducted on disk-shaped, vacuum-mixed cement specimens (compact tension type) that were cyclically pre-cracked. Plain-strain fracture toughness K(IC) (MPa square root(m)) was determined. To study the effect of moisture absorption four treatment groups, with different soaking periods in Ringer's at 37 degrees C, of Endurance cement were tested. The specimens weights prior to and following soaking showed a significant increase in mean weight for specimens soaked for 8 and 12 weeks. Linear regression analysis of log(da/dN) vs. log (deltaK) was conducted on the combined data in each fatigue test group. Soaking bone cement in Ringer's at 37 degrees C for 8 and 12 weeks lead to an improvement in fatigue crack propagation resistance, that may be related to water sorption that increases polymer chain mobility, with enhanced crack tip blunting. It may be more physiologically relevant to conduct in vitro studies of fatigue and fracture toughness of bone cements following storage in a fluid environment.

  17. Crack Closure Characteristics Considering Center Cracked and Compact Tension Specimens.

    DTIC Science & Technology

    1984-12-01

    adjacent elements differed in size by no more than a factor of 2. The fine mesh elements near the crack tip were much smaller than the -7 2CTS with an area...N .1- £KO.~.-N 0 0 td t + U.Us* 0 C.+ *4 w O mcow K O4 ’ 4u 0. X Ulf! W I 2 0 Z K0 NO- N Cos.@-0S W.N a-1 WW m .M0 000004.*0 00 4-W-M. R800*x -3-o" 0

  18. Catalyst Residence Time Distributions in Riser Reactors for Catalytic Fast Pyrolysis. Part 2: Pilot-Scale Simulations and Operational Parameter Study

    DOE PAGES

    Foust, Thomas D.; Ziegler, Jack L.; Pannala, Sreekanth; ...

    2017-02-21

    Here, wsing the validated simulation model developed in part one of this study for biomass catalytic fast pyrolysis (CFP), we assess the functional utility of using this validated model to assist in the development of CFP processes in fluidized catalytic cracking (FCC) reactors to a commercially viable state. Specifically, we examine the effects of mass flow rates, boundary conditions (BCs), pyrolysis vapor molecular weight variation, and the impact of the chemical cracking kinetics on the catalyst residence times. The factors that had the largest impact on the catalyst residence time included the feed stock molecular weight and the degree ofmore » chemical cracking as controlled by the catalyst activity. Lastly, because FCC reactors have primarily been developed and utilized for petroleum cracking, we perform a comparison analysis of CFP with petroleum and show the operating regimes are fundamentally different.« less

  19. Characterization of the roles of electrochemistry, convection and crack chemistry in stress corrosion cracking

    SciTech Connect

    Andresen, P.L.; Young, L.M.

    1995-12-31

    Understanding the role of ionic current flow within a crack and near the crack tip is fundamental to modeling of environmentally assisted crack advance. Critical conceptual issues and models related to ionic current flow within cracks, and the associated ``crevice`` chemistry and metal oxidation that results, are presented and examined in the light of experimental evidence. Various advanced techniques have been developed to evaluate the roles of electrochemistry, transport, and crack chemistry in stress corrosion cracking, with emphasis on high temperature ``pure`` water. These include high resolution crack length measurement by dc potential drop performed simultaneously with microsampling, electrochemical microprobe mapping, microinjection of species, and micropolarization of the crack. Conceptual issues addressed include the importance of the corrosion potential vs. oxidant concentration, the absence of oxidants and associated low corrosion potential within cracks, the location and role of macrocell currents associated with potential gradients from differential aeration cells, the localized nature of the microcell currents associated with dissolution at the crack tip, the importance of pH and adsorbed species on repassivation and crack advance, and the role of convection in crack chemistry and crack advance. Correct concepts are shown to be an essential pre-cursor to quantitative modeling.

  20. Catalytic reforming process

    SciTech Connect

    Absil, R.P.; Huss, A. Jr.; McHale, W.D.; Partridge, R.D.

    1989-06-13

    This patent describes a catalytic reforming process which comprises contacting a naphtha range feed with a low acidity extrudate comprising an intermediate and/or a large pore acidic zeolite bound with a low acidity refractory oxide under reforming conditions to provide a reaction product of increased aromatic content, the extrudate having been prepared with at least an extrusion-facilitating amount of a low acidity refractory oxide in colloidal form and containing at least one metal species selected from the platinum group metals.

  1. Catalytic reforming methods

    DOEpatents

    Tadd, Andrew R; Schwank, Johannes

    2013-05-14

    A catalytic reforming method is disclosed herein. The method includes sequentially supplying a plurality of feedstocks of variable compositions to a reformer. The method further includes adding a respective predetermined co-reactant to each of the plurality of feedstocks to obtain a substantially constant output from the reformer for the plurality of feedstocks. The respective predetermined co-reactant is based on a C/H/O atomic composition for a respective one of the plurality of feedstocks and a predetermined C/H/O atomic composition for the substantially constant output.

  2. Stress-dependent permeability and wave dispersion in tight cracked rocks: Experimental validation of simple effective medium models

    NASA Astrophysics Data System (ADS)

    Sarout, Joel; Cazes, Emilie; Delle Piane, Claudio; Arena, Alessio; Esteban, Lionel

    2017-08-01

    We experimentally assess the impact of microstructure, pore fluid, and frequency on wave velocity, wave dispersion, and permeability in thermally cracked Carrara marble under effective pressure up to 50 MPa. The cracked rock is isotropic, and we observe that (1) P and S wave velocities at 500 kHz and the low-strain (<10-5) mechanical moduli at 0.01 Hz are pressure-dependent, (2) permeability decreases asymptotically toward a small value with increasing pressure, (3) wave dispersion between 0.01 Hz and 500 MHz in the water-saturated rock reaches a maximum of 26% for S waves and 9% for P waves at 1 MPa, and (4) wave dispersion virtually vanishes above 30 MPa. Assuming no interactions between the cracks, effective medium theory is used to model the rock's elastic response and its permeability. P and S wave velocity data are jointly inverted to recover the crack density and effective aspect ratio. The permeability data are inverted to recover the cracks' effective radius. These parameters lead to a good agreement between predicted and measured wave velocities, dispersion and permeability up to 50 MPa, and up to a crack density of 0.5. The evolution of the crack parameters suggests that three deformation regimes exist: (1) contact between cracks' surface asperities up to 10 MPa, (2) progressive crack closure between 10 and 30 MPa, and (3) crack closure effectively complete above 30 MPa. The derived crack parameters differ significantly from those obtained by analysis of 2-D electron microscope images of thin sections or 3-D X-ray microtomographic images of millimeter-size specimens.

  3. Scattering of elastic waves by a fracture zone containing randomly distributed cracks

    NASA Astrophysics Data System (ADS)

    Kawahara, Jun; Yamashita, Teruo

    1992-03-01

    We theoretically study the scattering of P, SV and SH waves by a zonal distribution of cracks, which simulates a fault fracture zone. An investigation is conducted how the geometrical properties of the crack distribution and the frictional characteristics of the crack surface are reflected in the attenuation and dispersion of incident waves, as well as in the amplitudes of the transmitted and reflected waves from the zone. If the crack distribution within the fault zone changes temporally during the preparation process of the expected earthquake, it will be important for earthquake prediction to monitor it, utilizing the scattering-induced wave phenomena. We consider the two-dimensional problem. Aligned cracks with the same length are assumed to be randomly distributed in a zone with a finite width, on which elastic waves are assumed to be incident. The distribution of cracks is assumed to be homogeneous and sparse. The crack surface is assumed to be stress-free, or to undergo viscous friction; the latter case simulates fluid-filled cracks. The opening displacement of the crack is assumed to be negligibly small. The idea of the mean wave formalism is employed in the analysis, and Foldy's approximation is assumed. When the crack surface is stress-free, it is commonly observed for every wave mode ( P, SV and SH) that the attenuation coefficient Q -1 peaks around ka˜1, the phase velocity is almost independent of k in the range ka<1 and it increases monotonically with k in the range ka>1, where k is the intrinsic S wavenumber and a is the half length of the crack. The effect of the friction is to shift the peak of Q -1 and the corner of the phase velocity curve to the low wavenumber range. The high wavenumber asymptote of Q -1 is proportional to k -1 independently of model parameters and the wave modes. If the seismological observation that Q -1 of S waves has a peak at around 0.5 Hz in the earth's crust is combined with our results, the upper limit of crack size

  4. Drug user settings: a crack house typology.

    PubMed

    Geter, R S

    1994-06-01

    Both lay persons and members of the scientific community have come to view the inner-city crack house as a facility where drug dealers and crack addicts sell, buy, and use crack cocaine. It is suggested in this article that the term "crack house" be unbundled into four more meaningful terms based on the physical conditions of the house, its functionality, and the social relationships that it supports. Two typologies are proposed. The first separates drug houses into four general categories: (1) Crack House, (2) Cop House, (3) Drug House III, and (4) Drug House IV. The second typology categorizes the Crack House into four types: (A) the Party House, (B) the Hit House, (C) the Smoke House, and (D) the Bandominium. Each of these types is explored in detail.

  5. Crack Propagation in Bamboo's Hierarchical Cellular Structure

    PubMed Central

    Habibi, Meisam K.; Lu, Yang

    2014-01-01

    Bamboo, as a natural hierarchical cellular material, exhibits remarkable mechanical properties including excellent flexibility and fracture toughness. As far as bamboo as a functionally graded bio-composite is concerned, the interactions of different constituents (bamboo fibers; parenchyma cells; and vessels.) alongside their corresponding interfacial areas with a developed crack should be of high significance. Here, by using multi-scale mechanical characterizations coupled with advanced environmental electron microscopy (ESEM), we unambiguously show that fibers' interfacial areas along with parenchyma cells' boundaries were preferred routes for crack growth in both radial and longitudinal directions. Irrespective of the honeycomb structure of fibers along with cellular configuration of parenchyma ground, the hollow vessels within bamboo culm affected the crack propagation too, by crack deflection or crack-tip energy dissipation. It is expected that the tortuous crack propagation mode exhibited in the present study could be applicable to other cellular natural materials as well. PMID:24998298

  6. Online Bridge Crack Monitoring with Smart Film

    PubMed Central

    Wang, Shuliang; Li, Xingxing; Zhou, Zhixiang; Zhang, Xu; Yang, Guang; Qiu, Minfeng

    2013-01-01

    Smart film crack monitoring method, which can be used for detecting initiation, length, width, shape, location, and propagation of cracks on real bridges, is proposed. Firstly, the fabrication of the smart film is developed. Then the feasibility of the method is analyzed and verified by the mechanical sensing character of the smart film under the two conditions of normal strain and crack initiation. Meanwhile, the coupling interference between parallel enameled wires of the smart film is discussed, and then low-frequency detecting signal and the custom communication protocol are used to decrease interference. On this basis, crack monitoring system with smart film is designed, where the collected crack data is sent to the remote monitoring center and the cracks are simulated and recurred. Finally, the monitoring system is applied to six bridges, and the effects are discussed. PMID:24489496

  7. Crack formation and prevention in colloidal drops

    PubMed Central

    Kim, Jin Young; Cho, Kun; Ryu, Seul-a; Kim, So Youn; Weon, Byung Mook

    2015-01-01

    Crack formation is a frequent result of residual stress release from colloidal films made by the evaporation of colloidal droplets containing nanoparticles. Crack prevention is a significant task in industrial applications such as painting and inkjet printing with colloidal nanoparticles. Here, we illustrate how colloidal drops evaporate and how crack generation is dependent on the particle size and initial volume fraction, through direct visualization of the individual colloids with confocal laser microscopy. To prevent crack formation, we suggest use of a versatile method to control the colloid-polymer interactions by mixing a nonadsorbing polymer with the colloidal suspension, which is known to drive gelation of the particles with short-range attraction. Gelation-driven crack prevention is a feasible and simple method to obtain crack-free, uniform coatings through drying-mediated assembly of colloidal nanoparticles. PMID:26279317

  8. Prediction of thermal cycling induced matrix cracking

    NASA Technical Reports Server (NTRS)

    Mcmanus, Hugh L.

    1992-01-01

    Thermal fatigue has been observed to cause matrix cracking in laminated composite materials. A method is presented to predict transverse matrix cracks in composite laminates subjected to cyclic thermal load. Shear lag stress approximations and a simple energy-based fracture criteria are used to predict crack densities as a function of temperature. Prediction of crack densities as a function of thermal cycling is accomplished by assuming that fatigue degrades the material's inherent resistance to cracking. The method is implemented as a computer program. A simple experiment provides data on progressive cracking of a laminate with decreasing temperature. Existing data on thermal fatigue is also used. Correlations of the analytical predictions to the data are very good. A parametric study using the analytical method is presented which provides insight into material behavior under cyclical thermal loads.

  9. Online bridge crack monitoring with smart film.

    PubMed

    Zhang, Benniu; Wang, Shuliang; Li, Xingxing; Zhou, Zhixiang; Zhang, Xu; Yang, Guang; Qiu, Minfeng

    2013-01-01

    Smart film crack monitoring method, which can be used for detecting initiation, length, width, shape, location, and propagation of cracks on real bridges, is proposed. Firstly, the fabrication of the smart film is developed. Then the feasibility of the method is analyzed and verified by the mechanical sensing character of the smart film under the two conditions of normal strain and crack initiation. Meanwhile, the coupling interference between parallel enameled wires of the smart film is discussed, and then low-frequency detecting signal and the custom communication protocol are used to decrease interference. On this basis, crack monitoring system with smart film is designed, where the collected crack data is sent to the remote monitoring center and the cracks are simulated and recurred. Finally, the monitoring system is applied to six bridges, and the effects are discussed.

  10. Reliability of welded structures containing fatigue cracks

    SciTech Connect

    Lanning, D.; Shen, M.H.H.

    1996-11-01

    This study investigates the reliability of a cracked fillet welded T-joint typically found in offshore structures. A formulation for the aspect ratio (a/c) of a propagating semi-elliptical fatigue crack located at the toe of the weld is developed using Newman and Raju`s stress intensity factor for a cracked flat plate in conjunction with a weld magnification factor. The reliability in terms of fatigue lifetime is then calculated using the aspect ratio and Paris`s law of crack propagation with both fracture toughness and elastic-plastic failure criteria. The variation in crack aspect ratio in the T-joint is compared to that in a cracked flat plate, and examples are provided of reliability calculations for tension and bending loads.

  11. Crack propagation in bamboo's hierarchical cellular structure.

    PubMed

    Habibi, Meisam K; Lu, Yang

    2014-07-07

    Bamboo, as a natural hierarchical cellular material, exhibits remarkable mechanical properties including excellent flexibility and fracture toughness. As far as bamboo as a functionally graded bio-composite is concerned, the interactions of different constituents (bamboo fibers; parenchyma cells; and vessels.) alongside their corresponding interfacial areas with a developed crack should be of high significance. Here, by using multi-scale mechanical characterizations coupled with advanced environmental electron microscopy (ESEM), we unambiguously show that fibers' interfacial areas along with parenchyma cells' boundaries were preferred routes for crack growth in both radial and longitudinal directions. Irrespective of the honeycomb structure of fibers along with cellular configuration of parenchyma ground, the hollow vessels within bamboo culm affected the crack propagation too, by crack deflection or crack-tip energy dissipation. It is expected that the tortuous crack propagation mode exhibited in the present study could be applicable to other cellular natural materials as well.

  12. A probabilistic model of brittle crack formation

    NASA Technical Reports Server (NTRS)

    Chudnovsky, A.; Kunin, B.

    1987-01-01

    Probability of a brittle crack formation in an elastic solid with fluctuating strength is considered. A set Omega of all possible crack trajectories reflecting the fluctuation of the strength field is introduced. The probability P(X) that crack penetration depth exceeds X is expressed as a functional integral over Omega of a conditional probability of the same event taking place along a particular path. Various techniques are considered to evaluate the integral. Under rather nonrestrictive assumptions, the integral is reduced to solving a diffusion-type equation. A new characteristic of fracture process, 'crack diffusion coefficient', is introduced. An illustrative example is then considered where the integration is reduced to solving an ordinary differential equation. The effect of the crack diffusion coefficient and of the magnitude of strength fluctuations on probability density of crack penetration depth is presented. Practical implications of the proposed model are discussed.

  13. Crack formation and prevention in colloidal drops

    NASA Astrophysics Data System (ADS)

    Kim, Jin Young; Cho, Kun; Ryu, Seul-A.; Kim, So Youn; Weon, Byung Mook

    2015-08-01

    Crack formation is a frequent result of residual stress release from colloidal films made by the evaporation of colloidal droplets containing nanoparticles. Crack prevention is a significant task in industrial applications such as painting and inkjet printing with colloidal nanoparticles. Here, we illustrate how colloidal drops evaporate and how crack generation is dependent on the particle size and initial volume fraction, through direct visualization of the individual colloids with confocal laser microscopy. To prevent crack formation, we suggest use of a versatile method to control the colloid-polymer interactions by mixing a nonadsorbing polymer with the colloidal suspension, which is known to drive gelation of the particles with short-range attraction. Gelation-driven crack prevention is a feasible and simple method to obtain crack-free, uniform coatings through drying-mediated assembly of colloidal nanoparticles.

  14. Influence of viscous environments on fatique crack propagation in a lower strength steel

    SciTech Connect

    Tzou, J.L.

    1983-06-01

    The effect of dehumidified silicone and paraffin oils with viscosities from 5 to 60,000 centistokes (cS) on fatigue crack propagation in a lower strength 2 1/4Cr-1Mo pressure vessel steel (ASTM A542 Class 3) was studied at both near-threshold (less than or equal to 10/sup -6/ mm/cycle) and higher (approx. 10/sup -6/ to 10/sup -3/ mm/cycle) growth rates. It is found that, at low load ratios, crack growth rates in oils are lower than in moist air and dry hydrogen and increase in increasing oil viscosity in higher growth rate region. However, at near-threshold levels, crack growth rates in oils are considerably higher than in moist air and are not affected by the viscosity of oil. At high load ratios, although crack propagation in oils is slower in higher growth rate region and unchanged at near-threshold levels when compared to that in moist air, no effect of oil viscosity can be observed. Such observations are discussed and quantitatively analyzed in terms of three mutually competitive mechanisms specific to dry viscous environments, namely suppression of moisture-induced hydrogen embrittlement and/or metal dissolution, minimization of oxide-induced crack closure and hydrodynamic wedging effects of the viscous fluid within the crack.

  15. Model Predictions of Chemically Controlled Slow Crack Growth with Application to Mechanical Effects in Geothermal Environments

    SciTech Connect

    Viani, B E

    2001-04-11

    Representative, simplified geothermal rock-fluid systems are investigated with a modeling approach to estimate how rock water interactions affect coupled properties related to mechanical stability and permeability improvement through fracturing. First, geochemical modeling is used to determine the evolution of fluid chemistry at temperatures up to 300 C when fluids are in contact with representative rocks of continental origin. Then, a kinetic crack growth model for quartz is used to predict growth rate for subcritical cracks in acidic and basic environments. The predicted growth rate is highly sensitive to temperature and pH in the ranges tested. At present, the model is limited to situations in which quartz controls the mechanical process of interest, such as well bore stability in silica cemented rocks and the opening of quartz filled veins to enhance permeability.

  16. Outcome of Endodontically Treated Cracked Teeth

    DTIC Science & Technology

    2016-06-01

    reported retrospective results from 49 patients who received root canal treatment for cracked teeth. The data included the presence of periodontal pocketing... periodontal pocketing, patients’ age and gender, location of cracked teeth, type of teeth and presence of terminal cracked tooth. The 2-year survival rate was...85.5%. Factors that decreased outcomes were the terminal tooth position in the arch, the presence of periodontal pocketing prior to endodontic

  17. Measuring Crack Length in Coarse Grain Ceramics

    NASA Technical Reports Server (NTRS)

    Salem, Jonathan A.; Ghosn, Louis J.

    2010-01-01

    Due to a coarse grain structure, crack lengths in precracked spinel specimens could not be measured optically, so the crack lengths and fracture toughness were estimated by strain gage measurements. An expression was developed via finite element analysis to correlate the measured strain with crack length in four-point flexure. The fracture toughness estimated by the strain gaged samples and another standardized method were in agreement.

  18. Crack Path Prediction Near an Elliptical Inhomogeneity

    DTIC Science & Technology

    1991-09-01

    Prediction Near an Elliptical Inhomogeneity 1L162618AH80 6. AUTHOR(S) Edward M. Patton 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8 . PERFORMING...oriented crack. Erdogan and Gupta [ 8 ] later solved the problem in which the crack crosses the interface. These solutions are based on the Green’s...the crack propagation direction 8 is greatest. This criterion implies that the stress parallel to that direction would be a minimum, or that the

  19. Electrorheological fluids

    SciTech Connect

    Adolf, D.; Anderson, R.; Garino, T.; Halsey, T.C.; Hance, B.; Martin, J.E.; Odinek, J.

    1996-10-01

    An Electrorheological fluid is normally a low-viscosity colloidal suspension, but when an electric field is applied, the fluid undergoes a reversible transition to a solid, being able to support considerable stress without yield. Commercial possibilities for such fluids are enormous, including clutches, brakes, valves,shock absorbers, and stepper motors. However, performance of current fluids is inadequate for many proposed applications. Our goal was to engineer improved fluids by investigating the key technical issues underlying the solid-phase yield stress and the liquid to solid switching time. Our studies focused on field-induced interactions between colloidal particles that lead to solidification, the relation between fluid structure and performance (viscosity, yield stress), and the time evolution of structure in the fluid as the field is switched on or off.

  20. Thermomechanical Manipulation of Crack-Tip Stress Field for Resistance to Stress Corrosion Crack Propagation

    NASA Astrophysics Data System (ADS)

    Singh Raman, R. K.; Ibrahim, R. N.; Wu, F.; Rihan, R.

    2008-12-01

    Corrosion-assisted propagation of an existing crack is profoundly influenced by the stress intensity at the crack tip. This article presents the first results of thermomechanical conditioning (TMC) for local manipulation of material at and ahead of the crack tip, in an attempt to retard/stop crack propagation. Prenotched round tensile specimens of mild steel were subjected to rotating bending to generate a fatigue precrack, and then to apply localized thermomechanical conditioning. The threshold stress intensity factor ( K ISCC ) for stress corrosion cracking (SCC) of precracked specimens with and without TMC was determined in a caustic environment. Results suggest that TMC can increase K ISCC . Finite element analysis of the specimens suggests development of compressive stresses at and around the crack tip, which is expected to improve the resistance to stress corrosion crack propagation (since stress corrosion cracks can propagate only under tensile loading).

  1. Fracture Mechanics of Crack Growth During Sonic-IR Inspection

    NASA Astrophysics Data System (ADS)

    Chen, J. C.; Riddell, W. T.; Lick, Kyle; Wong, Chang-Hwa

    2007-03-01

    In past studies, we showed that cracks synthesized under carefully controlled conditions will propagate when subjected to sonic IR testing. The extent or severity of the propagation observed depended on several parameters including the stress intensity factor (which corresponds to crack growth rate) under which the crack was synthesized, the tightness of the crack closure, and the initial crack length. Furthermore, we showed that crack propagation during sonic IR testing occurs for 2024 aluminum, titanium and 304 stainless steel specimens. In this study, we extend the range of experimental conditions for synthesizing cracks to further elucidate their effect on the crack propagation, and we focus more specifically on the stress intensity factor. The stress intensity factor not only determines the rate of crack growth, but it has two profound effects on crack characteristics: the establishment of plastic zones around the crack tip and the variation of the topography of the mating crack surfaces. These two factors strongly affect crack propagation.

  2. Fatigue Crack Closure Analysis Using Digital Image Correlation

    NASA Technical Reports Server (NTRS)

    Leser, William P.; Newman, John A.; Johnston, William M.

    2010-01-01

    Fatigue crack closure during crack growth testing is analyzed in order to evaluate the critieria of ASTM Standard E647 for measurement of fatigue crack growth rates. Of specific concern is remote closure, which occurs away from the crack tip and is a product of the load history during crack-driving-force-reduction fatigue crack growth testing. Crack closure behavior is characterized using relative displacements determined from a series of high-magnification digital images acquired as the crack is loaded. Changes in the relative displacements of features on opposite sides of the crack are used to generate crack closure data as a function of crack wake position. For the results presented in this paper, remote closure did not affect fatigue crack growth rate measurements when ASTM Standard E647 was strictly followed and only became a problem when testing parameters (e.g., load shed rate, initial crack driving force, etc.) greatly exceeded the guidelines of the accepted standard.

  3. Fatigue Crack Closure - A Review

    DTIC Science & Technology

    1990-09-01

    gauge along the crack line. They used CCT speci- mens of high tensile strength steel ( HY80 ). The measured value of U was found to be a minimum at the...ultrasonic surface wave technique on 12.5mm thick specimens of 2024-T851, 2024-T351, Al 2219, Ti-6AI-4V and 17-4 PH steel . Most of the results were...medium and high strength steels . Exami- nation of the fracture surfaces suggested that raising the mean stress in low fracture toughness steels could

  4. A Crack Runs Through It

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D image taken by the microscopic imager on the Mars Exploration Rover Opportunity shows a close-up of the center of the rock abrasion tool hole, ground into 'Bounce' on the rover's 66th sol on Mars. Features smaller than one-tenth of a millimeter (.004 inches) are visible. The observed area is a little over 3 centimeters (1.2 inches). The canyon-like crack that runs across the bottom half of the image is really only about 2 millimeters (about 0.08 inches) deep. Scientists are currently using a variety of instruments to study the chemical content of the rock.

  5. Novel Catalytic Membrane Reactors

    SciTech Connect

    Stuart Nemser, PhD

    2010-10-01

    There are many industrial catalytic organic reversible reactions with amines or alcohols that have water as one of the products. Many of these reactions are homogeneously catalyzed. In all cases removal of water facilitates the reaction and produces more of the desired chemical product. By shifting the reaction to right we produce more chemical product with little or no additional capital investment. Many of these reactions can also relate to bioprocesses. Given the large number of water-organic compound separations achievable and the ability of the Compact Membrane Systems, Inc. (CMS) perfluoro membranes to withstand these harsh operating conditions, this is an ideal demonstration system for the water-of-reaction removal using a membrane reactor. Enhanced reaction synthesis is consistent with the DOE objective to lower the energy intensity of U.S. industry 25% by 2017 in accord with the Energy Policy Act of 2005 and to improve the United States manufacturing competitiveness. The objective of this program is to develop the platform technology for enhancing homogeneous catalytic chemical syntheses.

  6. Controlled crack growth specimen for brittle systems

    NASA Technical Reports Server (NTRS)

    Calomino, Anthony M.; Brewer, David N.

    1990-01-01

    A pure Mode 1 fracture specimen and test procedure has been developed which provides extended, stable, through-thickness crack growth in ceramics and other brittle, nonmetallic materials. Fixed displacement loading, applied at the crack mouth, promotes stable crack extension by reducing the stored elastic strain energy. Extremely fine control of applied displacements is achieved by utilizing the Poisson's expansion of a compressively loaded cylindrical pin. Stable cracks were successfully grown in soda-lime glass and monolithic Al2O3 for lengths in excess of 20 mm without uncontrollable catastrophic failure.

  7. Investigations of Low Temperature Time Dependent Cracking

    SciTech Connect

    Van der Sluys, W A; Robitz, E S; Young, B A; Bloom, J

    2002-09-30

    The objective of this project was to investigate metallurgical and mechanical phenomena associated with time dependent cracking of cold bent carbon steel piping at temperatures between 327 C and 360 C. Boiler piping failures have demonstrated that understanding the fundamental metallurgical and mechanical parameters controlling these failures is insufficient to eliminate it from the field. The results of the project consisted of the development of a testing methodology to reproduce low temperature time dependent cracking in laboratory specimens. This methodology was used to evaluate the cracking resistance of candidate heats in order to identify the factors that enhance cracking sensitivity. The resultant data was integrated into current available life prediction tools.

  8. Cracks in Sheets Draped on Curved Surfaces

    NASA Astrophysics Data System (ADS)

    Mitchell, Noah P.; Koning, Vinzenz; Vitelli, Vincenzo; Irvine, William T. M.

    Conforming materials to surfaces with Gaussian curvature has proven a versatile tool to guide the behavior of mechanical defects such as folds, blisters, scars, and pleats. In this talk, we show how curvature can likewise be used to control material failure. In our experiments, thin elastic sheets are confined on curved geometries that stimulate or suppress the growth of cracks, and steer or arrest their propagation. By redistributing stresses in a sheet, curvature provides a geometric tool for protecting certain regions and guiding crack patterns. A simple model captures crack behavior at the onset of propagation, while a 2D phase-field model successfully captures the crack's full phenomenology.

  9. On cracking of charged anisotropic polytropes

    NASA Astrophysics Data System (ADS)

    Azam, M.; Mardan, S. A.

    2017-01-01

    Recently in [1], the role of electromagnetic field on the cracking of spherical polytropes has been investigated without perturbing charge parameter explicitly. In this study, we have examined the occurrence of cracking of anisotropic spherical polytropes through perturbing parameters like anisotropic pressure, energy density and charge. We consider two different types of polytropes in this study. We discuss the occurrence of cracking in two different ways (i) by perturbing polytropic constant, anisotropy and charge parameter (ii) by perturbing polytropic index, anisotropy and charge parameter for each case. We conclude that cracking appears for a wide range of parameters in both cases. Also, our results are reduced to [2] in the absence of charge.

  10. Deformation mechanics of deep surface flaw cracks

    NASA Technical Reports Server (NTRS)

    Francis, P. H.; Nagy, A.; Beissner, R. E.

    1972-01-01

    A combined analytical and experimental program was conducted to determine the deformation characteristics of deep surface cracks in Mode I loading. An approximate plane finite element analysis was performed to make a parameter study on the influence of crack depth, crack geometry, and stress level on plastic zones, crack opening displacement, and back surface dimpling in Fe-3Si steel and 2219-T87 aluminum. Surface replication and profiling techniques were used to examine back surface dimple configurations in 2219-T87 aluminum. Interferometry and holography were used to evaluate the potential of various optical techniques to detect small surface dimples on large surface areas.

  11. Competition between fatigue crack propagation and wear

    SciTech Connect

    Fan, H.; Keer, L.M.; Cheng, W.; Cheng, H.S. )

    1993-01-01

    Based on a semi-empirical derivation of the Paris fatigue law, the fatigue crack length a is related to the yield limit or flow stress, which ultimately is related to the hardness of the material. The analysis considers together the cyclic loading, which tends to increase the surface crack length, and the wear, which tends to decrease the crack length at the surface, and shows that under certain conditions a stable crack length may be developed. Experiments conducted on two test groups (Rc = 58.5 and Rc = 62.7) tend to support the present analysis. 10 refs.

  12. Combustion in cracks of PBX 9501

    SciTech Connect

    Berghout, H. L.; Son, S. F.; Bolme, C. A.; Hill, L. G.; Asay, B. W.; Dickson, P. M.; Henson, B. F.; Smilowitz, L. B.

    2002-01-01

    Recent experiments involving the combustion of PBX 9501 explosive under confined conditions reveal the importance of crack and flaws in reaction violence. Experiments on room temperature confined disks of pristine and thermally damaged PBX 9501 reveal that crack ignition depends on hot gases entering existing or pressure induced cracks rather than on energy release at the crack tip. PBX 9501 slot combustion experiments show that the reaction propagation rate in the slot does not depend on the external pressure. We have observed 1500 d s in long slots of highly-confined PBX 9501. We present experiments that examine the combustion of mechanically and thermally damaged samples of PBX 9501.

  13. Controlled crack growth specimen for brittle systems

    NASA Technical Reports Server (NTRS)

    Calomino, Anthony M.; Brewer, David N.

    1992-01-01

    A pure Mode 1 fracture specimen and test procedure has been developed which provides extended, stable, through-thickness crack growth in ceramics and other brittle, nonmetallic materials. Fixed displacement loading, applied at the crack mouth, promotes stable crack extension by reducing the stored elastic strain energy. Extremely fine control of applied displacements is achieved by utilizing the Poisson's expansion of a compressively loaded cylindrical pin. Stable cracks were successfully grown in soda-lime glass and monolithic Al2O3 for lengths in excess of 2O mm without uncontrollable catastrophic failure.

  14. Fatigue crack propagation at polymer adhesive interfaces

    SciTech Connect

    Ritter, J.E.

    1996-12-31

    Delamination of polymer adhesive interfaces often occurs due to slow crack growth under either monotonic or cyclic loading. The author`s previous research showed that moisture-assisted crack growth at epoxy/glass and epoxy acrylate/glass interfaces under monotonic loading was directly related to the applied energy release rate and relative humidity and that cyclic loading could enhance crack growth. The purpose of the present research is to compare crack growth along epoxy acrylate/glass and epoxy/PMMA interfaces under monotonic and cyclic loading.

  15. Expansive Soil Crack Depth under Cumulative Damage

    PubMed Central

    Shi, Bei-xiao; Chen, Sheng-shui; Han, Hua-qiang; Zheng, Cheng-feng

    2014-01-01

    The crack developing depth is a key problem to slope stability of the expansive soil and its project governance and the crack appears under the roles of dry-wet cycle and gradually develops. It is believed from the analysis that, because of its own cohesion, the expansive soil will have a certain amount of deformation under pulling stress but without cracks. The soil body will crack only when the deformation exceeds the ultimate tensile strain that causes cracks. And it is also believed that, due to the combined effect of various environmental factors, particularly changes of the internal water content, the inherent basic physical properties of expansive soil are weakened, and irreversible cumulative damages are eventually formed, resulting in the development of expansive soil cracks in depth. Starting from the perspective of volumetric strain that is caused by water loss, considering the influences of water loss rate and dry-wet cycle on crack developing depth, the crack developing depth calculation model which considers the water loss rate and the cumulative damages is established. Both the proposal of water loss rate and the application of cumulative damage theory to the expansive soil crack development problems try to avoid difficulties in matrix suction measurement, which will surely play a good role in promoting and improving the research of unsaturated expansive soil. PMID:24737974

  16. [Desiccation cracking of soil body: a review].

    PubMed

    Pei, Yin-Ge; Xu, Ze-Min; Zhang, Jia-Ming

    2012-04-01

    Desiccation cracking of soil body is a complex physical process, which can affect the strength, stability, and permeability of soil body, and involve in several disciplines such as soil science, agricultural science, engineering geology, and environmental science. This paper introduced the significances of the study on the desiccation cracking of soil body, reviewed the related theoretical and applied researches and the quantitative analysis of crack morphology, and discussed the deficiencies in the research fields, research contents, and research methods. The future research directions about the desiccation cracking of soil body were pointed out.

  17. Crack depth determination with inductive thermography

    NASA Astrophysics Data System (ADS)

    Oswald-Tranta, B.; Schmidt, R.

    2015-05-01

    Castings, forgings and other steel products are nowadays usually tested with magnetic particle inspection, in order to detect surface cracks. An alternative method is active thermography with inductive heating, which is quicker, it can be well automated and as in this paper presented, even the depth of a crack can be estimated. The induced eddy current, due to its very small penetration depth in ferro-magnetic materials, flows around a surface crack, heating this selectively. The surface temperature is recorded during and after the short inductive heating pulse with an infrared camera. Using Fourier transformation the whole IR image sequence is evaluated and the phase image is processed to detect surface cracks. The level and the local distribution of the phase around a crack correspond to its depth. Analytical calculations were used to model the signal distribution around cracks with different depth and a relationship has been derived between the depth of a crack and its phase value. Additionally, also the influence of the heating pulse duration has been investigated. Samples with artificial and with natural cracks have been tested. Results are presented comparing the calculated and measured phase values depending on the crack depth. Keywords: inductive heating, eddy current, infrared

  18. Controlled crack growth specimen for brittle systems

    NASA Technical Reports Server (NTRS)

    Calomino, Anthony M.; Brewer, David N.

    1992-01-01

    A pure Mode 1 fracture specimen and test procedure has been developed which provides extended, stable, through-thickness crack growth in ceramics and other brittle, nonmetallic materials. Fixed displacement loading, applied at the crack mouth, promotes stable crack extension by reducing the stored elastic strain energy. Extremely fine control of applied displacements is achieved by utilizing the Poisson's expansion of a compressively loaded cylindrical pin. Stable cracks were successfully grown in soda-lime glass and monolithic Al2O3 for lengths in excess of 2O mm without uncontrollable catastrophic failure.

  19. Nonlinear modal method of crack localization

    NASA Astrophysics Data System (ADS)

    Ostrovsky, Lev; Sutin, Alexander; Lebedev, Andrey

    2004-05-01

    A simple scheme for crack localization is discussed that is relevant to nonlinear modal tomography based on the cross-modulation of two signals at different frequencies. The scheme is illustrated by a theoretical model, in which a thin plate or bar with a single crack is excited by a strong low-frequency wave and a high-frequency probing wave (ultrasound). The crack is assumed to be small relative to all wavelengths. Nonlinear scattering from the crack is studied using a general matrix approach as well as simplified models allowing one to find the nonlinear part of crack volume variations under the given stress and then the combinational wave components in the tested material. The nonlinear response strongly depends on the crack position with respect to the peaks or nodes of the corresponding interacting signals which can be used for determination of the crack position. Juxtaposing various resonant modes interacting at the crack it is possible to retrieve both crack location and orientation. Some aspects of inverse problem solutions are also discussed, and preliminary experimental results are presented.

  20. Determining fatigue crack opening loads from near-crack-tip displacement measurements

    SciTech Connect

    Riddell, W.T.; Piascik, R.S.; Sutton, M.A.; Zhao, W.; McNeill, S.R.; Helm, J.D.

    1999-07-01

    The aim of this research was to develop a near-crack-tip measurement method that quantifies crack closure levels in the near-threshold fatigue crack growth regime--a regime where crack closure is not well characterized by remote compliance methods. Further understanding of crack closure mechanics was gained by performing novel crack growth experiments in conjunction with numerical simulations of three-dimensional crack-front propagation. Steady-state (i.e., constant growth rate) fatigue crack growth rates were characterized by performing constant cyclic stress intensity range ({Delta}K) experiments over a wide range of stress ratios (R). Near-crack-tip (less than 0.3 mm behind) load-versus-displacement measurements were conducted on the specimen surface using a novel noncontact experimental technique (Digital Imaging Displacement System--DIDS). The experiments and simulations revealed that the three-dimensional aspects of fatigue crack closure must be considered to determine correct opening load levels from near-crack-tip load-versus-displacement data. It was shown that near-crack-front, but increase near the free surface. The interior opening load was found to collapse closure-affected data to intrinsic rates, and thus shown to relate to the true crack-front driving force parameter. Surface opening load DIDS measurements made at an optimal distance behind the crack tip were used to correlate da/dN with {Delta}K{sub eff}. Opening load determinations made less than the optimal distance behind the crack tip were shown to be too high to correlate fatigue crack growth rates.