Science.gov

Sample records for fluid catalytic cracking

  1. 40 CFR 60.105a - Monitoring of emissions and operations for fluid catalytic cracking units (FCCU) and fluid coking...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for fluid catalytic cracking units (FCCU) and fluid coking units (FCU). 60.105a Section 60.105a... and operations for fluid catalytic cracking units (FCCU) and fluid coking units (FCU). (a) FCCU and... Emission Standards for Hazardous Air Pollutants for Petroleum Refineries: Catalytic Cracking...

  2. Multifunctional two-stage riser fluid catalytic cracking process.

    PubMed

    Zhang, Jinhong; Shan, Honghong; Chen, Xiaobo; Li, Chunyi; Yang, Chaohe

    This paper described the discovering process of some shortcomings of the conventional fluid catalytic cracking (FCC) process and the proposed two-stage riser (TSR) FCC process for decreasing dry gas and coke yields and increasing light oil yield, which has been successfully applied in 12 industrial units. Furthermore, the multifunctional two-stage riser (MFT) FCC process proposed on the basis of the TSR FCC process was described, which were carried out by the optimization of reaction conditions for fresh feedstock and cycle oil catalytic cracking, respectively, by the coupling of cycle oil cracking and light FCC naphtha upgrading processes in the second-stage riser, and the specially designed reactor for further reducing the olefin content of gasoline. The pilot test showed that it can further improve the product quality, increase the diesel yield, and enhance the conversion of heavy oil.

  3. 40 CFR 60.105a - Monitoring of emissions and operations for fluid catalytic cracking units (FCCU) and fluid coking...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... bags or filter media, or any other condition that may cause an increase in particulate emissions; (ii) Sealing off defective bags or filter media; (iii) Replacing defective bags or filter media or otherwise... for fluid catalytic cracking units (FCCU) and fluid coking units (FCU). 60.105a Section...

  4. Upgrading naphtha in a multiple riser fluid catalytic cracking operation employing a catalyst mixture

    SciTech Connect

    Herbst, J.A.; Owen, H.; Schipper, P.H.

    1989-05-16

    A process is described for producing gasoline comprising contacting a hydrocarbon feed having an initial boiling-point of at least 400/sup 0/F., a 50% boiling of at least 500/sup 0/F. and an end boiling point of at least 600/sup 0/F., in a first riser, with a two component catalyst under fluid catalytic cracking conditions. At least one component of the catalyst is stripped in a stripping unit to remove entrained hydrocarbons, and regenerated wherein the two component catalyst comprises a first catalyst component selected from the group consisting of an amorphous cracking catalyst and a large pore cracking catalyst, whereby a product comprising olefins and naphtha is produced. Ethylene introduced together with the two component catalyst to a second riser, for contacting ethylene with a second catalyst component which is a shape selective medium pore crystalline silicate zeolite to produce products heavier than ethylene and to increase the temperature of the catalyst to an optimum temperature for upgrading naphtha; and naphtha is introduced to the second riser, down stream of the point of ethylene introduction, for contact with the catalyst at the optimum temperature and the naphtha is upgraded to gasoline product.

  5. Stabilization of heavy metals on spent fluid catalytic cracking catalyst using marine clay.

    PubMed

    Sun, D D; Tay, J H; Qian, C E; Lai, D

    2001-01-01

    Spent fluid catalytic cracking catalyst is a hazardous solid waste generated by petroleum refineries containing vanadium and nickel. The marine clay was used as a matrix to stabilize vanadium and nickel and produce bricks which were then fired at various temperatures. TCLP leaching tests indicated that stabilizing brick had low metal leaching, with a maximum of 6.4 mg/l for vanadium and 19.8 microg/l for nickel. Compressive strength of stabilizing brick was found to range between 20 N/mm2 and 47 N/mm2. It is believed that stabilization and encapsulation mechanisms are responsible for the stabilization of vanadium and nickel. Encapsulation is a process whereby the marine clay matrix forms a physical barrier around the heavy metals which are thus prevented from leaching out into the environment. Incorporation involves the formation of bonds between the marine clay matrix and the heavy metals which thus become incorporated in the clay microstructure.

  6. Economics for iso-olefin production using the fluid catalytic cracking unit

    SciTech Connect

    McClung, R.G.; Witoshkin, A.; Bogert, D.C.; Winkler, W.S.

    1993-12-31

    The Clean Air Act of 1990 requires use of oxygenates in some gasolines to improve both CO and hydrocarbon auto tailpipe emissions. Various oxygenates are currently being used by the refining industry. For the fully integrated refinery having a fluid catalytic cracking unit, the most commonly used oxygenates are methyl tertiary butyl ether (MTBE) and tertiary amyl ether (TAME). The FCC unit produces the isobutylene and iso-amylases need for manufacture of both MTBE and TAME. The economics for an assumed refinery processing scheme for several FCC cases are examined giving estimates of income and investments for each case. Up to one-third of the total gasoline pool can be made in reformulated gasoline using TAME and MTBE with the FCC unit as the sole source of feedstock. This processing route is much more economical than the alternative scheme using butane isomerization/iosbutane dehydrogenation.

  7. Quenched catalytic cracking process

    SciTech Connect

    Krambeck, F.J.; Penick, J.E.; Schipper, P.H.

    1990-12-18

    This paper describes improvement in a fluidized catalytic cracking process wherein a fluidizable catalyst cracking catalyst and a hydrocarbon feed are charged to a reactor riser at catalytic riser cracking conditions to form catalytically cracked vapor product and spent catalyst which are discharged into a reactor vessel having a volume via a riser reactor outlet equipped with a separation means to produce a catalyst lean phase. It comprises: a majority of the cracked product, and a catalyst rich phase comprising a majority of the spend catalyst. The the catalyst rich phase is discharged into a dense bed of catalyst maintained below the riser outlet and the catalyst lean phase is discharged into the vessel for a time, and at a temperature, which cause unselective thermal cracking of the cracked product in the reactor volume before product is withdrawn from the vessel via a vessel outlet. The improvement comprises: addition, after riser cracking is completed, and after separation of cracked products from catalyst, of a quenching stream into the vessel above the dense bed of catalyst, via a quench stream addition point which allows the quench stream to contact at least a majority of the volume of the vessel above the dense bed.

  8. Catalytic cracking of hydrocarbons

    SciTech Connect

    Absil, R.P.L.; Bowes, E.; Green, G.J.; Marler, D.O.; Shihabi, D.S.; Socha, R.F.

    1992-02-04

    This patent describes an improvement in a catalytic cracking process in which a hydrocarbon feed is cracked in a cracking zone in the absence of added hydrogen and in the presence of a circulating inventory of solid acidic cracking a catalyst which acquires a deposit of coke that contains chemically bound nitrogen while the cracking catalyst is in the cracking zone, the coke catalyst being circulated to t regeneration zone to convert the coke catalyst to a regenerated catalyst with the formation of a flue gas comprising nitrogen oxides: the improvement comprises incorporating into the circulating catalyst inventory an amount of additive particles comprising a synthetic porous crystalline material containing copper metal or cations, to reduce the content of nitrogen oxides in the flue gas.

  9. High-Resolution Single-Molecule Fluorescence Imaging of Zeolite Aggregates within Real-Life Fluid Catalytic Cracking Particles**

    PubMed Central

    Ristanović, Zoran; Kerssens, Marleen M; Kubarev, Alexey V; Hendriks, Frank C; Dedecker, Peter; Hofkens, Johan; Roeffaers, Maarten B J; Weckhuysen, Bert M

    2015-01-01

    Fluid catalytic cracking (FCC) is a major process in oil refineries to produce gasoline and base chemicals from crude oil fractions. The spatial distribution and acidity of zeolite aggregates embedded within the 50–150 μm-sized FCC spheres heavily influence their catalytic performance. Single-molecule fluorescence-based imaging methods, namely nanometer accuracy by stochastic chemical reactions (NASCA) and super-resolution optical fluctuation imaging (SOFI) were used to study the catalytic activity of sub-micrometer zeolite ZSM-5 domains within real-life FCC catalyst particles. The formation of fluorescent product molecules taking place at Brønsted acid sites was monitored with single turnover sensitivity and high spatiotemporal resolution, providing detailed insight in dispersion and catalytic activity of zeolite ZSM-5 aggregates. The results point towards substantial differences in turnover frequencies between the zeolite aggregates, revealing significant intraparticle heterogeneities in Brønsted reactivity. PMID:25504139

  10. Fluid catalytic cracking: recent developments on the grand old lady of zeolite catalysis.

    PubMed

    Vogt, E T C; Weckhuysen, B M

    2015-10-21

    Fluid catalytic cracking (FCC) is one of the major conversion technologies in the oil refinery industry. FCC currently produces the majority of the world's gasoline, as well as an important fraction of propylene for the polymer industry. In this critical review, we give an overview of the latest trends in this field of research. These trends include ways to make it possible to process either very heavy or very light crude oil fractions as well as to co-process biomass-based oxygenates with regular crude oil fractions, and convert these more complex feedstocks in an increasing amount of propylene and diesel-range fuels. After providing some general background of the FCC process, including a short history as well as details on the process, reactor design, chemical reactions involved and catalyst material, we will discuss several trends in FCC catalysis research by focusing on ways to improve the zeolite structure stability, propylene selectivity and the overall catalyst accessibility by (a) the addition of rare earth elements and phosphorus, (b) constructing hierarchical pores systems and (c) the introduction of new zeolite structures. In addition, we present an overview of the state-of-the-art micro-spectroscopy methods for characterizing FCC catalysts at the single particle level. These new characterization tools are able to explain the influence of the harsh FCC processing conditions (e.g. steam) and the presence of various metal poisons (e.g. V, Fe and Ni) in the crude oil feedstocks on the 3-D structure and accessibility of FCC catalyst materials.

  11. Fluid catalytic cracking: recent developments on the grand old lady of zeolite catalysis

    PubMed Central

    2015-01-01

    Fluid catalytic cracking (FCC) is one of the major conversion technologies in the oil refinery industry. FCC currently produces the majority of the world's gasoline, as well as an important fraction of propylene for the polymer industry. In this critical review, we give an overview of the latest trends in this field of research. These trends include ways to make it possible to process either very heavy or very light crude oil fractions as well as to co-process biomass-based oxygenates with regular crude oil fractions, and convert these more complex feedstocks in an increasing amount of propylene and diesel-range fuels. After providing some general background of the FCC process, including a short history as well as details on the process, reactor design, chemical reactions involved and catalyst material, we will discuss several trends in FCC catalysis research by focusing on ways to improve the zeolite structure stability, propylene selectivity and the overall catalyst accessibility by (a) the addition of rare earth elements and phosphorus, (b) constructing hierarchical pores systems and (c) the introduction of new zeolite structures. In addition, we present an overview of the state-of-the-art micro-spectroscopy methods for characterizing FCC catalysts at the single particle level. These new characterization tools are able to explain the influence of the harsh FCC processing conditions (e.g. steam) and the presence of various metal poisons (e.g. V, Fe and Ni) in the crude oil feedstocks on the 3-D structure and accessibility of FCC catalyst materials. PMID:26382875

  12. Catalytic cracking of heavy oils

    SciTech Connect

    Otterstedt, J.E.; Gevert, B.; Sterte, J. )

    1987-08-01

    Of the many factors which influence product yields in a fluid catalytic cracker, the feed stock quality and the catalyst composition are of particular interest as they can be controlled only to a limited extent by the refiner. In the past decade there has been a trend towards using heavier feedstocks in the FCC-unit, which is expected to continue in the foreseeable future. It is therefore important to study how molecular types, characteristic not only of heavy petroleum oil but also of e.g. coal liquid, shale oil and biomass oil, respond to cracking over catalysts of different compositions.

  13. X-ray Fluorescence Tomography of Aged Fluid-Catalytic-Cracking Catalyst Particles Reveals Insight into Metal Deposition Processes

    PubMed Central

    Kalirai, Sam; Boesenberg, Ulrike; Falkenberg, Gerald; Meirer, Florian; Weckhuysen, Bert M

    2015-01-01

    Microprobe X-ray fluorescence tomography was used to investigate metal poison deposition in individual, intact and industrially deactivated fluid catalytic cracking (FCC) particles at two differing catalytic life-stages. 3 D multi-element imaging, at submicron resolution was achieved by using a large-array Maia fluorescence detector. Our results show that Fe, Ni and Ca have significant concentration at the exterior of the FCC catalyst particle and are highly co-localized. As concentrations increase as a function of catalytic life-stage, the deposition profiles of Fe, Ni, and Ca do not change significantly. V has been shown to penetrate deeper into the particle with increasing catalytic age. Although it has been previously suggested that V is responsible for damaging the zeolite components of FCC particles, no spatial correlation was found for V and La, which was used as a marker for the embedded zeolite domains. This suggests that although V is known to be detrimental to zeolites in FCC particles, a preferential interaction does not exist between the two. PMID:26613011

  14. Improved high efficiency third stage separator cyclones for separation of fines from fluid catalytic cracking flue gas

    SciTech Connect

    Chitnis, G.K.; Schatz, K.W.; Bussey, B.K.

    1996-12-31

    Stairmand type small diameter (0.254 m) multicyclones were cold flow tested for fluid catalytic cracking third stage separator application. The gas discharge from the cyclone dust outlet into the common collection hopper was found to far exceed the hopper bleed rate (underflow). The excess gas reentrained dust from the hopper back into cyclones, which lowered collection efficiencies. Vortex {open_quotes}stabilization{close_quotes} using apex cones was unsuccessful whereas a Mobil proprietary cyclone modification was successful in minimizing excess gas discharge and dust reentrainment at the cyclone-hopper boundary. In tests at 700 {degrees}C, the modified cyclones captured all particles above 4 {mu}m. Mobil-Kellogg incorporated the modified cyclones in a new third stage separator design which is targeted for achieving lowest opacity and <50 mg/Nm{sup 3} emissions at the stack. The first such unit will be commercialized in Mobil`s newest catalytic cracker (M.W. Kellogg design) under construction in Altona, Australia in late 1996. 5 refs., 4 figs., 2 tabs.

  15. Multiphase flow modelling using non orthogonal collocated finite volumes : application to fluid catalytical cracking and large scale geophysical flows.

    NASA Astrophysics Data System (ADS)

    Martin, R. M.; Nicolas, A. N.

    2003-04-01

    A modeling approach of gas solid flow, taking into account different physical phenomena such as gas turbulence and inter-particle interactions is presented. Moment transport equations are derived for the second order fluctuating velocity tensor which allow to involve practical closures based on single phase turbulence modeling on one hand and kinetic theory of granular media on the other hand. The model is applied to fluid catalytic cracking processes and explosive volcanism. In the industry as well as in the geophysical community, multiphase flows are modeled using a finite volume approach and a multicorrector algorithm in time in order to determine implicitly the pressures, velocities and volume fractions for each phase. Pressures, and velocities are generally determined at mid-half mesh step from each other following the staggered grid approach. This ensures stability and prevents oscillations in pressure. It allows to treat almost all the Reynolds number ranges for all speeds and viscosities. The disadvantages appear when we want to treat more complex geometries or if a generalized curvilinear formulation of the conservation equations is considered. Too many interpolations have to be done and accuracy is then lost. In order to overcome these problems, we use here a similar algorithm in time and a Rhie and Chow interpolation (1983) of the collocated variables and essentially the velocities at the interface. The Rhie and Chow interpolation of the velocities at the finite volume interfaces allows to have no oscillations of the pressure without checkerboard effects and to stabilize all the algorithm. In a first predictor step, fluxes at the interfaces of the finite volumes are then computed using 2nd and 3rd order shock capturing schemes of MUSCL/TVD or Van Leer type, and the orthogonal stress components are treated implicitly while cross viscous/diffusion terms are treated explicitly. Pentadiagonal linear systems are solved in each geometrical direction (the so

  16. A novel "wastes-treat-wastes" technology: role and potential of spent fluid catalytic cracking catalyst assisted ozonation of petrochemical wastewater.

    PubMed

    Chen, Chunmao; Yu, Ji; Yoza, Brandon A; Li, Qing X; Wang, Gang

    2015-04-01

    Catalytic ozonation is a promising wastewater treatment technology. However, the high cost of the catalyst hinders its application. A novel "wastes-treat-wastes" technology was developed to reuse spent fluid catalytic cracking catalysts (sFCCc) for the ozonation of petrochemical wastewater in this study. Multivalent vanadium (V(4+) and V(5+)), iron (Fe(2+) and Fe(3+)) and nickel (Ni(2+)) oxides that are distributed on the surface of sFCCc and poisoned FCC catalysts are the catalytic components for ozonation. The sFCCc assisted catalytic ozonation (sFCCc-O) of nitrobenzene indicated that the sFCCc significantly promoted hydroxyl radical mediated oxidation. The degradation rate constant of nitrobenzene in sFCCc-O (0.0794 min(-1) at 298 K) was approximately doubled in comparison with that in single ozonation (0.0362 min(-1) at 298 K). The sFCCc-O of petrochemical wastewater increased chemical oxygen demand removal efficiency by three-fold relative to single ozonation. The number of oxygen-containing (Ox) polar contaminants in the effluent (253) from sFCCc-O treatment decreased to about 70% of the initial wastewater (353). The increased oxygen/carbon atomic ratio and decreased number of Ox polar contaminants indicated a high degree of degradation. The present study showed the role and potential of sFCCc for catalytic ozonation of petrochemical wastewater, particularly in an advantage of the cost-effectiveness through "wastes-treat-wastes".

  17. Corrosion of stainless steels in the riser during co-processing of bio-oils in a fluid catalytic cracking pilot plant

    DOE PAGES

    Brady, M. P.; Keiser, J. R.; Leonard, D. N.; ...

    2017-01-31

    Co-processing of bio-oils with conventional petroleum-based feedstocks is an attractive initial option to make use of renewable biomass as a fuel source while leveraging existing refinery infrastructures. But, bio-oils and their processing intermediates have high concentrations of organic oxygenates, which, among their other negative qualities, can result in increased corrosion issues. A range of stainless steel alloys (409, 410, 304L, 316L, 317L, and 201) was exposed at the base of the riser in a fluid catalytic cracking pilot plant while co-processing vacuum gas oil with pine-derived pyrolysis bio-oils that had been catalytically hydrodeoxygenated to ~ 2 to 28% oxygen. Wemore » studied the processing using a catalyst temperature of 704 °C, a reaction exit temperature of 520 °C, and total co-processing run times of 57–75 h. External oxide scaling 5–30 μm thick and internal attack 1–5 μm deep were observed in these short-duration exposures. The greatest extent of internal attack was observed for co-processing with the least stabilized bio-oil, and more so for types 409, 410, 304L, 316L, 317L stainless steel than for type 201. Finally, the internal attack involved porous Cr-rich oxide formation, associated with local Ni-metal enrichment and S-rich nanoparticles, primarily containing Cr or Mn. Implications for alloy selection and corrosion are discussed.« less

  18. Life and death of a single catalytic cracking particle

    PubMed Central

    Meirer, Florian; Kalirai, Sam; Morris, Darius; Soparawalla, Santosh; Liu, Yijin; Mesu, Gerbrand; Andrews, Joy C.; Weckhuysen, Bert M.

    2015-01-01

    Fluid catalytic cracking (FCC) particles account for 40 to 45% of worldwide gasoline production. The hierarchical complex particle pore structure allows access of long-chain feedstock molecules into active catalyst domains where they are cracked into smaller, more valuable hydrocarbon products (for example, gasoline). In this process, metal deposition and intrusion is a major cause for irreversible catalyst deactivation and shifts in product distribution. We used x-ray nanotomography of industrial FCC particles at differing degrees of deactivation to quantify changes in single-particle macroporosity and pore connectivity, correlated to iron and nickel deposition. Our study reveals that these metals are incorporated almost exclusively in near-surface regions, severely limiting macropore accessibility as metal concentrations increase. Because macropore channels are “highways” of the pore network, blocking them prevents feedstock molecules from reaching the catalytically active domains. Consequently, metal deposition reduces conversion with time on stream because the internal pore volume, although itself unobstructed, becomes largely inaccessible. PMID:26601160

  19. JP-8 catalytic cracking for compact fuel processors

    NASA Astrophysics Data System (ADS)

    Campbell, Timothy J.; Shaaban, Aly H.; Holcomb, Franklin H.; Salavani, Reza; Binder, Michael J.

    In processing heavier hydrocarbons such as military logistic fuels (JP-4, JP-5, JP-8, and JP-100), kerosene, gasoline, and diesel to produce hydrogen for fuel cell use, several issues arise. First, these fuels have high sulfur content, which can poison and deactivate components of the reforming process and the fuel cell stack; second, these fuels may contain non-volatile residue (NVR), up to 1.5 vol.%, which could potentially accumulate in a fuel processor; and third is the high coking potential of heavy hydrocarbons. Catalytic cracking of a distillate fuel prior to reforming can resolve these issues. Cracking using an appropriate catalyst can convert the various heavy organosulfur species in the fuel to lighter sulfur species such as hydrogen sulfide (H 2S), facilitating subsequent sulfur adsorption on zinc oxide (ZnO). Cracking followed by separation of light cracked gas from heavies effectively eliminates non-volatile aromatic species. Catalytic cracking can also convert heavier hydrocarbons to lights (C 1-C 3) at high conversion, which reduces the potential for coke formation in the reforming process. In this study, two types of catalysts were compared for JP-8 cracking performance: commercially-available zeolite materials similar to catalysts formulated for fluidized catalytic cracking (FCC) processes, and a novel manganese/alumina catalyst, which was previously reported to provide high selectivity to lights and low coke yield. Experiments were designed to test each catalyst's effectiveness under the high space velocity conditions necessary for use in compact, lightweight fuel processor systems. Cracking conversion results, as well as sulfur and hydrocarbon distributions in the light cracked gas, are presented for the two catalysts to provide a performance comparison.

  20. 40 CFR 63.1564 - What are my requirements for metal HAP emissions from catalytic cracking units?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... emissions from catalytic cracking units? 63.1564 Section 63.1564 Protection of Environment ENVIRONMENTAL... Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Catalytic Cracking... requirements for metal HAP emissions from catalytic cracking units? (a) What emission limitations and...

  1. Catalytic cracking catalysts using silicoaluminophosphate molecular sieves

    SciTech Connect

    Pellet, R.J.; Coughlin, P.K.; Staniulis, M.T.; Long, G.N.; Rabo, J.A.

    1987-05-19

    A cracking catalyst is described comprising: a silicoaluminophosphate molecular sieve of U.S. Pat. No. 4,440,871 characterized in its calcined form by an adsorption of isobutane of at least 2 percent by weight at a pressure of 500 torr and a temperature of 20/sup 0/C and having an effective amount of the cations associated with the silicoaluminophosphate molecular sieve selected from the group consisting of H+, ammonium, Group IIA, groups IIIB to VIIB, cerium, lanthanum, praseodymium, neodymium, and promethium.

  2. Elasticity-Driven Backflow of Fluid-Driven Cracks

    NASA Astrophysics Data System (ADS)

    Lai, Ching-Yao; Zheng, Zhong; Dressaire, Emilie; Ramon, Guy; Huppert, Herbert E.; Stone, Howard A.

    2016-11-01

    Fluid-driven cracks are generated by the injection of pressurized fluid into an elastic medium. Once the injection pressure is released, the crack closes up due to elasticity and the fluid in the crack drains out of the crack through an outlet, which we refer to as backflow. We experimentally study the effects of crack size, elasticity of the matrix, and fluid viscosity on the backflow dynamics. During backflow, the volume of liquid remaining in the crack as a function of time exhibits a transition from a fast decay at early times to a power law behavior at late times. Our results at late times can be explained by scaling arguments balancing elastic and viscous stresses in the crack. This work may relate to the environmental issue of flowback in hydraulic fracturing. This work is supported by National Science Foundation via Grant CBET-1509347 and partially supported by Andlinger Center for Energy and the Environment at Princeton University.

  3. 40 CFR 63.1565 - What are my requirements for organic HAP emissions from catalytic cracking units?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... HAP emissions from catalytic cracking units? 63.1565 Section 63.1565 Protection of Environment... Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Catalytic Cracking Units, Catalytic Reforming Units, Sulfur Recovery Units, and Bypass Lines § 63.1565...

  4. 40 CFR 63.1565 - What are my requirements for organic HAP emissions from catalytic cracking units?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... HAP emissions from catalytic cracking units? 63.1565 Section 63.1565 Protection of Environment... Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Catalytic Cracking Units, Catalytic Reforming Units, Sulfur Recovery Units, and Bypass Lines § 63.1565...

  5. Evaluation of Catalytic and Thermal Cracking in a JP-8 Fueled Pulsed Detonation Engine (Postprint)

    DTIC Science & Technology

    2007-09-01

    Additionally, a zeolite catalytic coating is applied to the heat-exchanger surfaces to stimulate further cracking of the fuel and reduce coke deposition. To...concentric-counter-flow heat exchangers to elevate the fuel temperature levels sufficiently to induce thermal cracking. Additionally, a zeolite catalytic ...to elevate the fuel temperatures sufficiently to crack the fuel thermally with the assistance of a zeolite catalytic coating. II. Background

  6. 40 CFR Table 12 to Subpart Uuu of... - Initial Compliance With Organic HAP Emission Limits for Catalytic Cracking Units

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Emission Limits for Catalytic Cracking Units 12 Table 12 to Subpart UUU of Part 63 Protection of... Pollutants for Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery... HAP Emission Limits for Catalytic Cracking Units As stated in § 63.1565(b)(4), you shall meet...

  7. 40 CFR Table 2 to Subpart Uuu of... - Operating Limits for Metal HAP Emissions From Catalytic Cracking Units

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Emissions From Catalytic Cracking Units 2 Table 2 to Subpart UUU of Part 63 Protection of Environment... Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63... Catalytic Cracking Units As stated in § 63.1564(a)(2), you shall meet each operating limit in the...

  8. Control of a catalytic fluid cracker

    SciTech Connect

    Arbel, A.; Huang, Z.; Rinard, I.; Shinnar, R.

    1993-12-13

    Control offers an important tool for savings in refineries, mainly by integration of process models into on-line control. This paper is part of a research effort to better understand problems of partial control; control of a Fluid Catalytic Cracker (FCC) is used as example. Goal is to understand better the control problems of an FCC in context of model based control of a refinery, and to understand the general problem of designing partial control systems.

  9. Catalytic activity in individual cracking catalyst particles imaged throughout different life stages by selective staining.

    PubMed

    Buurmans, Inge L C; Ruiz-Martínez, Javier; Knowles, William V; van der Beek, David; Bergwerff, Jaap A; Vogt, Eelco T C; Weckhuysen, Bert M

    2011-09-18

    Fluid catalytic cracking (FCC) is the major conversion process used in oil refineries to produce valuable hydrocarbons from crude oil fractions. Because the demand for oil-based products is ever increasing, research has been ongoing to improve the performance of FCC catalyst particles, which are complex mixtures of zeolite and binder materials. Unfortunately, there is limited insight into the distribution and activity of individual zeolitic domains at different life stages. Here we introduce a staining method to visualize the structure of zeolite particulates and other FCC components. Brønsted acidity maps have been constructed at the single particle level from fluorescence microscopy images. By applying a statistical methodology to a series of catalysts deactivated via industrial protocols, a correlation is established between Brønsted acidity and cracking activity. The generally applicable method has clear potential for catalyst diagnostics, as it determines intra- and interparticle Brønsted acidity distributions for industrial FCC materials.

  10. Catalytic activity in individual cracking catalyst particles imaged throughout different life stages by selective staining

    NASA Astrophysics Data System (ADS)

    Buurmans, Inge L. C.; Ruiz-Martínez, Javier; Knowles, William V.; van der Beek, David; Bergwerff, Jaap A.; Vogt, Eelco T. C.; Weckhuysen, Bert M.

    2011-11-01

    Fluid catalytic cracking (FCC) is the major conversion process used in oil refineries to produce valuable hydrocarbons from crude oil fractions. Because the demand for oil-based products is ever increasing, research has been ongoing to improve the performance of FCC catalyst particles, which are complex mixtures of zeolite and binder materials. Unfortunately, there is limited insight into the distribution and activity of individual zeolitic domains at different life stages. Here we introduce a staining method to visualize the structure of zeolite particulates and other FCC components. Brønsted acidity maps have been constructed at the single particle level from fluorescence microscopy images. By applying a statistical methodology to a series of catalysts deactivated via industrial protocols, a correlation is established between Brønsted acidity and cracking activity. The generally applicable method has clear potential for catalyst diagnostics, as it determines intra- and interparticle Brønsted acidity distributions for industrial FCC materials.

  11. Process for the preparation of light hydrocarbon distillates by hydrocracking and catalytic cracking

    SciTech Connect

    DeVries, A.F.; Stork, W.H.J.

    1989-08-22

    This patent describes a process for the preparation of a gasoline range petroleum distillate from a vacuum heavy hydrocarbon oil distillate. It comprises: passing at least a portion of the vacuum heavy hydrocarbon oil distillate to a hydrocracking zone to hydrocrack the distillate into a product stream comprising a hydrocracked distillate residue having an initial boiling point of at least 300{sup 0}C; passing the hydrocracked distillate to a distillation separation zone to separate and recover the residue; passing the residue to a catalytic cracking zone to catalytically crack the residue; passing at least a portion of the vacuum heavy oil distillate prior to hydrocracking to the catalytic cracking to catalytically crack the vacuum heaving oil distillate; withdrawing the gasoline range petroleum distillate from the catalytic cracking zone.

  12. Acoustic properties of a crack containing magmatic or hydrothermal fluids

    USGS Publications Warehouse

    Kumagai, H.; Chouet, B.A.

    2000-01-01

    We estimate the acoustic properties of a crack containing maginatic or hydrothermal fluids to quantify the source properties of long-period (LP) events observed in volcanic areas assuming that a crack-like structure is the source of LP events. The tails of synthetic waveforms obtained from a model of a fluid-driven crack are analyzed by the Sompi method to determine the complex frequencies of one of the modes of crack resonance over a wide range of the model parameters ??/a and ??f/??s, where ?? is the P wave velocity of the rock matrix, a is the sound speed of the fluid, and ??f and ??s are the densities of the fluid and rock matrix, respectively. The quality factor due to radiation loss (Qr) for the selected mode almost monotonically increases with increasing ??/a, while the dimensionless frequency (??) of the mode decreases with increasing ??/a and ??f/??s. These results are used to estimate Q and ?? for a crack containing various types of fluids (gas-gas mixtures, liquid-gas mixtures, and dusty and misty gases) for values of a, ??f, and quality factor due to intrinsic losses (Qi) appropriate for these types of fluids, in which Q is given by Q-1 = Qr-1 + Qi-1. For a crack containing such fluids, we obtain Q ranging from almost unity to several hundred, which consistently explains the wide variety of quality factors measured in LP events observed at various volcanoes. We underscore the importance of dusty and misty gases containing small-size particles with radii around 1 ??m to explain long-lasting oscillations with Q significantly larger than 100. Our results may provide a basis for the interpretation of spatial and temporal variations in the observed complex frequencies of LP events in terms of fluid compositions beneath volcanoes. Copyright 2000 by the American Geophysical Union.

  13. Role of the pore fluid in crack propagation in glass

    NASA Astrophysics Data System (ADS)

    Mallet, Céline; Fortin, Jérôme; Guéguen, Yves; Bouyer, Fréric

    2015-05-01

    We investigate pore fluid effects due to surface energy variation or due to chemical corrosion in cracked glass. Both effects have been documented through experimental tests on cracked borosilicate glass samples. Creep tests have been performed to investigate the slow crack propagation behavior. We compared the dry case (saturated with argon gas), the nonreactive water saturated case (commercial mineralized water), and the distilled and deionized water saturated case (pure water). Chemical corrosion effects have been observed and evidenced from pH and water composition evolution of the pure water. Then, the comparison of the dry case, the mineral water saturated case, and the corrosion case allow to (i) evidence the mechanical effect of the presence of a pore fluid and (ii) show also the chemical effect of a glass dissolution. Both effects enhance subcritical crack propagation.

  14. The Investigation of Reducing PAHs Emission from Coal Pyrolysis by Gaseous Catalytic Cracking

    PubMed Central

    Wang, Yulong; Zhao, Ruifang; Zhang, Chun; Li, Guanlong; Zhang, Jing; Li, Fan

    2014-01-01

    The catalytic cracking method of PAHs for the pyrolysis gaseous products is proposed to control their pollution to the environment. In this study, the Py-GC-MS is used to investigate in situ the catalytic effect of CaO and Fe2O3 on the 16 PAHs from Pingshuo coal pyrolysis under different catalytic temperatures and catalyst particle sizes. The results demonstrate that Fe2O3 is effective than that of CaO for catalytic cracking of 16 PAHs and that their catalytic temperature corresponding to the maximum PAHs cracking rates is different. The PAHs cracking rate is up to 60.59% for Fe2O3 at 600°C and is 52.88% at 700°C for CaO. The catalytic temperature and particle size of the catalysts have a significant effect on PAHs cracking rate and CaO will lose the capability of decreasing 16 PAHs when the temperature is higher than 900°C. The possible cracking process of 16 PAHs is deduced by elaborately analyzing the cracking effect of the two catalysts on 16 different species of PAHs. PMID:24963507

  15. Catalytic cracking unit with internal gross cut separator and quench injector

    SciTech Connect

    Quinn, G.P.; Kruse, L.W.; Gebhard, T.J.; Forgac, J.M.

    1992-02-11

    This patent describes a catalytic cracking unit. It comprises: a catalytic cracker, a disengager, an internal rough cut separator positioned inside the disengaging vessel and located in the upper dilute phase portion of the disengaging vessel for making a rough cut separation of the coked cracking catalyst particulates from the catalytically cracked oil, the internal rough cut separator having a product outlet for egress of catalytically cracked oil and having a catalyst outlet for egress of the coked cracking catalyst particulates; an oil quench injector extending into the upper dilute phase portion of the disengaging vessel at a location above and in proximity to the product outlet of the internal rough cut separator inside the disengaging vessel for inhibiting substantial thermal cracking of the catalytically cracked oil in the upper dilute phase portion of the disengaging vessel; at least one secondary internalcyclone positioned inside the disengaging vessel and having an inlet at an elevation above the rough cut separator; and the oil quench injector composes an oil quench line disposed in the disengaging vessel between the product outlet of the internal rough cut separator and the inlet of the secondary cyclone.

  16. Elastic Relaxation of Fluid-Driven Cracks and the Resulting Backflow

    NASA Astrophysics Data System (ADS)

    Lai, Ching-Yao; Zheng, Zhong; Dressaire, Emilie; Ramon, Guy Z.; Huppert, Herbert E.; Stone, Howard A.

    2016-12-01

    Cracks filled with fluid propagation when the pressurized fluid is injected into the crack. Subsequently, when the fluid inlet is exposed to a lower pressure, the fluid flows backwards (backflow) and the crack closes due to the elastic relaxation of the solid. Here we study the dynamics of the crack closure during the backflow. We find that the crack radius remains constant and the fluid volume in the crack decreases with time in a power-law manner at late times. The balance between the viscous stresses in the fluid and elastic stresses in the fluid and the elastic stresses in the solid yields a scaling law that agrees with the experimental results for different fluid viscosities, Young's moduli of the solid, and initial radii of the cracks. Furthermore, we visualize the time-dependent crack shapes, and the convergence to a universal dimensionless shape demonstrates the self-similarity of the crack shapes during the backflow process.

  17. FIB-SEM Tomography Probes the Mesoscale Pore Space of an Individual Catalytic Cracking Particle

    PubMed Central

    2016-01-01

    The overall performance of a catalyst particle strongly depends on the ability of mass transport through its pore space. Characterizing the three-dimensional structure of the macro- and mesopore space of a catalyst particle and establishing a correlation with transport efficiency is an essential step toward designing highly effective catalyst particles. In this work, a generally applicable workflow is presented to characterize the transport efficiency of individual catalyst particles. The developed workflow involves a multiscale characterization approach making use of a focused ion beam-scanning electron microscope (FIB-SEM). SEM imaging is performed on cross sections of 10.000 μm2, visualizing a set of catalyst particles, while FIB-SEM tomography visualized the pore space of a large number of 8 μm3 cubes (subvolumes) of individual catalyst particles. Geometrical parameters (porosity, pore connectivity, and heterogeneity) of the material were used to generate large numbers of virtual 3D volumes resembling the sample’s pore space characteristics, while being suitable for computationally demanding transport simulations. The transport ability, defined as the ratio of unhindered flow over hindered flow, is then determined via transport simulations through the virtual volumes. The simulation results are used as input for an upscaling routine based on an analogy with electrical networks, taking into account the spatial heterogeneity of the pore space over greater length scales. This novel approach is demonstrated for two distinct types of industrially manufactured fluid catalytic cracking (FCC) particles with zeolite Y as the active cracking component. Differences in physicochemical and catalytic properties were found to relate to differences in heterogeneities in the spatial porosity distribution. In addition to the characterization of existing FCC particles, our method of correlating pore space with transport efficiency does also allow for an up-front evaluation of

  18. Laboratory Production of Biofuels and Biochemicals from a Rapeseed Oil through Catalytic Cracking Conversion.

    PubMed

    Ng, Siauw H; Shi, Yu; Heshka, Nicole E; Zhang, Yi; Little, Edward

    2016-09-02

    The work is based on a reported study which investigates the processability of canola oil (bio-feed) in the presence of bitumen-derived heavy gas oil (HGO) for production of transportation fuels through a fluid catalytic cracking (FCC) route. Cracking experiments are performed with a fully automated reaction unit at a fixed weight hourly space velocity (WHSV) of 8 hr(-1), 490-530 °C, and catalyst/oil ratios of 4-12 g/g. When a feed is in contact with catalyst in the fluid-bed reactor, cracking takes place generating gaseous, liquid, and solid products. The vapor produced is condensed and collected in a liquid receiver at -15 °C. The non-condensable effluent is first directed to a vessel and is sent, after homogenization, to an on-line gas chromatograph (GC) for refinery gas analysis. The coke deposited on the catalyst is determined in situ by burning the spent catalyst in air at high temperatures. Levels of CO2 are measured quantitatively via an infrared (IR) cell, and are converted to coke yield. Liquid samples in the receivers are analyzed by GC for simulated distillation to determine the amounts in different boiling ranges, i.e., IBP-221 °C (gasoline), 221-343 °C (light cycle oil), and 343 °C+ (heavy cycle oil). Cracking of a feed containing canola oil generates water, which appears at the bottom of a liquid receiver and on its inner wall. Recovery of water on the wall is achieved through washing with methanol followed by Karl Fischer titration for water content. Basic results reported include conversion (the portion of the feed converted to gas and liquid product with a boiling point below 221 °C, coke, and water, if present) and yields of dry gas (H2-C2's, CO, and CO2), liquefied petroleum gas (C3-C4), gasoline, light cycle oil, heavy cycle oil, coke, and water, if present.

  19. 40 CFR Table 14 to Subpart Uuu of... - Continuous Compliance With Operating Limits for Organic HAP Emissions From Catalytic Cracking Units

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Limits for Organic HAP Emissions From Catalytic Cracking Units 14 Table 14 to Subpart UUU of Part 63... Hazardous Air Pollutants for Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and... Compliance With Operating Limits for Organic HAP Emissions From Catalytic Cracking Units As stated in §...

  20. Catalytic cracking of bio-oil to organic liquid product (OLP).

    PubMed

    Hew, K L; Tamidi, A M; Yusup, S; Lee, K T; Ahmad, M M

    2010-11-01

    The main objective of this paper is to find the optimum operating condition to upgrade the EFB-derived pyrolysis oil (bio-oil) to liquid fuel, mainly gasoline using Taguchi Method. From the analysis that has been done, it is found that the optimum operating condition for heterogeneous catalytic cracking process is at 400 degrees C, 15min of reaction time using 30g of catalyst weight where operating at this condition produced the highest yield of gasoline fraction which is 91.67 wt.%. This observation proves that EFB-derived pyrolysis oil could be upgraded via heterogeneous catalytic cracking to produce gasoline.

  1. Asphaltene cracking in catalytic hydrotreating of heavy oil

    SciTech Connect

    Asaoka, S.; Nakata, S.; Shiroto, Y.; Takeuchi, C.

    1981-03-01

    A Boscan crude, an Athabasca bitumen and a Khafji vacuum residue were chosen as typical asphaltenic feedstocks for this study, since they contain a lot of asphaltenes as well as sulfur and their metal contents are considerably different from one another. Any changes on these asphaltenes caused by metals and sulfur removal should, therefore, be observed easier than on other asphaltenes similar to one another. Various measurements reported here vapor pressure osmometry, gel permeation chromatography, nuclear magnetic resonance, x-ray diffraction, small angle x-ray scattering and electron spin resonance are mainly for the asphaltenes isolated from these feedstocks and from their product oils. Further, the model of the asphaltene cracking mechanism is proposed from these results and is discussed in the correspondence with the activities and selectivities among demetallation, desulfurization and asphaltene cracking. The features of asphaltene cracking are summarized as follows: (1) the removal of vanadium and sulfur from asphaltenes; (2) the decrease of molecular weight of remaining asphaltene; (3) the decrease of unit number and no change of unit sheet weight; (4) no change of asphaltene macrostructure in the stacking portion (cracking occurring at the non-stacked portion); (5) no major change of asphaltene particle size; and (6) the change of vanadyl association type in remaining asphaltenes from free to bound state and the decrease of the dissociation energy of the vanadyl. According to these features, the model of asphaltene cracking previously proposed, was confirmed, where the main reactions are the destruction of asphaltene micelles caused by vanadium removal and the depolymerization of asphaltene molecules by removal of heteroatoms such as sulfur. By comparing the model with the reactivities and selectivities, it is shown that the contribution of the two reactions in the model for asphaltene cracking depends on the kinds of feedstocks.

  2. 40 CFR Table 13 to Subpart Uuu of... - Continuous Compliance With Organic HAP Emission Limits for Catalytic Cracking Units

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... catalytic cracking unit . . . Subject to this emission limit for your catalyst regenerator vent . . . If you... monoxide (CO) in 40 CFR 60.103 CO emissions from your catalyst regenerator vent or CO boiler serving the... i. CO emissions from your catalyst regenerator vent or CO boiler serving the catalytic cracking...

  3. 40 CFR Table 13 to Subpart Uuu of... - Continuous Compliance With Organic HAP Emission Limits for Catalytic Cracking Units

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... catalytic cracking unit . . . Subject to this emission limit for your catalyst regenerator vent . . . If you... monoxide (CO) in 40 CFR 60.103 CO emissions from your catalyst regenerator vent or CO boiler serving the... i. CO emissions from your catalyst regenerator vent or CO boiler serving the catalytic cracking...

  4. 40 CFR Table 13 to Subpart Uuu of... - Continuous Compliance With Organic HAP Emission Limits for Catalytic Cracking Units

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... catalytic cracking unit . . . Subject to this emission limit for your catalyst regenerator vent . . . If you... monoxide (CO) in 40 CFR 60.103 CO emissions from your catalyst regenerator vent or CO boiler serving the... i. CO emissions from your catalyst regenerator vent or CO boiler serving the catalytic cracking...

  5. Catalytic and thermal cracking processes of waste cooking oil for bio-gasoline synthesis

    NASA Astrophysics Data System (ADS)

    Dewanto, Muhammad Andry Rizki; Januartrika, Aulia Azka; Dewajani, Heny; Budiman, Arief

    2017-03-01

    Non-renewable energy resources such as fossil fuels, and coal were depleted as the increase of global energy demand. Moreover, environmental aspect becomes a major concern which recommends people to utilize bio-based resources. Waste cooking oil is one of the economical sources for biofuel production and become the most used raw material for biodiesel production. However, the products formed during frying, can affect the trans-esterification reaction and the biodiesel properties. Therefore, it needs to convert low-quality cooking oil directly into biofuel by both thermal and catalytic cracking processes. Thermal and catalytic cracking sometimes are regarded as prospective bio-energy conversion processes. This research was carried out in the packed bed reactor equipped with 2 stages preheater with temperature of reactor was variated in the range of 450-550°C. At the same temperature, catalytic cracking had been involved in this experiment, using activated ZSM-5 catalyst with 1 cm in length. The organic liquid product was recovered by three stages of double pipe condensers. The composition of cracking products were analyzed using GC-MS instrument and the caloric contents were analyzed using Bomb calorimeter. The results reveal that ZSM-5 was highly selective toward aromatic and long aliphatic compounds formation. The percentage recovery of organic liquid product from the cracking process varies start from 8.31% and the optimal results was 54.08%. The highest heating value of liquid product was resulted from catalytic cracking process at temperature of 450°C with value of 10880.48 cal/gr and the highest product yield with 54.08% recovery was achieved from thermal cracking process with temperature of 450°C.

  6. Thermodynamic analysis of a process for producing high-octane gasoline components from catalytic cracking gas

    NASA Astrophysics Data System (ADS)

    Ismailova, Z. R.; Pirieva, Kh. B.; Kasimov, A. A.; Dzhamalova, S. A.; Gadzhizade, S. M.; Nuriev, Sh. A.; Zeinalova, S. Kh.; Dzhafarov, R. P.

    2016-03-01

    The results from a thermodynamic analysis of high-octane gasoline component production from catalytic cracking gases using zeolite catalyst OMNIKAT-210P modified with Ni, Co, Cr are presented. The equilibrium constants of the reactions assumed to occur in this process are calculated, along with the equilibrium yield of the reactions.

  7. 40 CFR Table 8 to Subpart Uuu of... - Organic HAP Emission Limits for Catalytic Cracking Units

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... limit for each catalyst regenerator vent . . . 1. Subject to the NSPS for carbon monoxide (CO) in 40 CFR 60.103 CO emissions from the catalyst regenerator vent or CO boiler serving the catalytic cracking... in 40 CFR 60.103 a. CO emissions from the catalyst regenerator vent or CO boiler serving...

  8. 40 CFR Table 8 to Subpart Uuu of... - Organic HAP Emission Limits for Catalytic Cracking Units

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... limit for each catalyst regenerator vent . . . 1. Subject to the NSPS for carbon monoxide (CO) in 40 CFR 60.103 CO emissions from the catalyst regenerator vent or CO boiler serving the catalytic cracking... in 40 CFR 60.103 a. CO emissions from the catalyst regenerator vent or CO boiler serving...

  9. Visualizing Dealumination of a Single Zeolite Domain in a Real-Life Catalytic Cracking Particle.

    PubMed

    Kalirai, Sam; Paalanen, Pasi P; Wang, Jian; Meirer, Florian; Weckhuysen, Bert M

    2016-09-05

    Fluid catalytic cracking (FCC) catalysts play a central role in the chemical conversion of crude oil fractions. Using scanning transmission X-ray microscopy (STXM) we investigate the chemistry of one fresh and two industrially deactivated (ECAT) FCC catalysts at the single zeolite domain level. Spectro-microscopic data at the Fe L3 , La M5 , and Al K X-ray absorption edges reveal differing levels of deposited Fe on the ECAT catalysts corresponding with an overall loss in tetrahedral Al within the zeolite domains. Using La as a localization marker, we have developed a novel methodology to map the changing Al distribution of single zeolite domains within real-life FCC catalysts. It was found that significant changes in the zeolite domain size distributions as well as the loss of Al from the zeolite framework occur. Furthermore, inter- and intraparticle heterogeneities in the dealumination process were observed, revealing the complex interplay between metal-mediated pore accessibility loss and zeolite dealumination.

  10. 40 CFR Table 11 to Subpart Uuu of... - Requirements for Performance Tests for Organic HAP Emissions From Catalytic Cracking Units Not...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... existing catalytic cracking unit catalyst regenerator vent. a. Select sampling port's location and the... catalytic cracking unit catalyst regenerator vent if you use a continuous emission monitoring system... catalytic cracking unit catalyst regenerator vent if you use continuous parameter monitoring systems....

  11. Catalytic cracking catalysts for high octane gasoline products

    SciTech Connect

    Chiang, R.L.; Staniulis, M.T.

    1987-07-07

    This patent describes a cracking catalyst comprising a zeolite aluminosilicate having a mole ratio of oxides in the dehydrated state of (0.85-1.1)M/sub 2/n/O:Al/sub 2/O/sub 3:x/SiO/sub 2/ ''M'' is a cation having a valence of ''n;'' ''x'' has a value greater than 6.0 to about 7.0, has an x-ray powder diffraction pattern having at least the d-spacing of Table A; has extraneous silicon atoms in the crystal lattice in the form of framework SiO/sub 4/ tetrahedra; an inorganic oxide matrix; has an effective amount between greater than zero to less than 5 weight percent, based on weight percent, based on the weight of the aluminoscilate employed in the catalyst, expressed as the oxide, of at least one rare earth cation selected from the group consisting of cerium, lanthanum, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium; and less than 1.2 weight percent Na/sub 2/O based on the wright of the aluminosilicate employed in the catalyst.

  12. Selective conversion of bio-oil to light olefins: controlling catalytic cracking for maximum olefins.

    PubMed

    Gong, Feiyan; Yang, Zhi; Hong, Chenggui; Huang, Weiwei; Ning, Shen; Zhang, Zhaoxia; Xu, Yong; Li, Quanxin

    2011-10-01

    Light olefins are the basic building blocks for the petrochemical industry. In this work, selective production of light olefins from catalytic cracking of bio-oil was performed by using the La/HZSM-5 catalyst. With a nearly complete conversion of bio-oil, the maximum yield reached 0.28±0.02 kg olefins/(kg bio-oil), which was close to that from methanol. Addition of La into zeolite efficiently changed the total acid amount of HZSM-5, especially the acid distribution among the strong, medium and weak acid sites. A moderate increase of the number of the medium acid sites effectively enhanced the olefins selectivity and improved the catalyst stability. The comparison between the catalytic cracking and pyrolysis of bio-oil was studied. The mechanism of the conversion of bio-oil to light olefins was also discussed.

  13. Effect of support on catalytic cracking of bio-oil over Ni/silica-alumina

    NASA Astrophysics Data System (ADS)

    Sunarno, Herman, Syamsu; Rochmadi, Mulyono, Panut; Budiman, Arief

    2017-03-01

    Depletion of petroleum and environmental problem have led to look for an alternative fuel sources In many ways, biomass is a potential renewable source. Among the many forms of biomass, oil palm empty fruit bunch (EFB) is a very attractive feedstock due to its abudance, low price and non-competitiveness with the food chain. EFB can be converted bio-oil by pyrolysis process. but this product can not be used directly as a transportation fuel, so it needs upgrading bio-oil through a catalytic cracking process. The catalyst plays an important role in the catalytic cracking process. The objective of this research is to study the effect of Ni concentrations (1,3,5 and 7 wt.%) on the characteristics of the catalyst Ni / Silica-Alumina and the performance test for the catalytic cracking of bio-oil. Preparation of the catalyst Ni / Silica-Alumina was done by impregnation at 80°C for 3 hours, then done to calcination and reduction at 500°C for 2 hours. The performance test was conducted on catalytic cracking temperature of 500°C. Results show that increasing concentration of Ni from 1 to 7 %, the pore diameter of the catalyst decreased from 35.71 to 32.70 A and surface area decreased from 209.78 to 188.53 m2/gram. With the increase of Ni concentration, the yield of oil reduced from 22.5 to 11.25 %, while the heating value of oil increased from 34.4 to 36.41MJ/kg.

  14. Task 3.9 -- Catalytic tar cracking. Semi-annual report, January 1--June 30, 1995

    SciTech Connect

    Young, B.C.; Timpe, R.C.

    1995-12-31

    Tar produced in the gasification of coal is deleterious to the operation of downstream equipment including fuel cells, gas turbines, hot-gas stream cleanup filters, and pressure swing adsorption systems. Catalytic cracking of tars to smaller hydrocarbons can be an effective means to remove these tars from gas streams and, in the process, generate useful products, e.g., methane gas, which is crucial to the operation of molten carbonate fuel cells. The objectives of this project are to investigate whether gasification tars can be cracked by synthetic nickel-substituted micamontmorillonite, zeolite, or dolomite material; and whether the tars can be cracked selectively by these catalysts to produce a desired liquid and/or gas stream. Results to date are presented in the cited papers.

  15. 40 CFR Table 12 to Subpart Uuu of... - Initial Compliance With Organic HAP Emission Limits for Catalytic Cracking Units

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... . . . 1. Subject to the NSPS for carbon monoxide (CO) in 40 CFR 60.103 CO emissions from your catalyst... catalyst regenerator vent or CO boiler serving the catalytic cracking unit must not exceed 500 ppmv...

  16. Microporous and mesoporous ZSM-5 catalyst for catalytic cracking of C5 raffinate to light olefins.

    PubMed

    Lee, Joongwon; Hong, Ung Gi; Hwang, Sunhwan; Youn, Min Hye; Song, In Kyu

    2014-11-01

    ZSM5 catalysts (PAM(X)-ZSM5) with micropores and mesopores were prepared using polyacrylamide (PAM) as a soft template at different PAM content (X = 0, 0.12, 0.25, 0.53, 0.64, and 0.78 wt%), and they were applied to the production of light olefins (ethylene and propylene) through catalytic cracking of C5 raffinate. The effect of PAM content of PAM(X)-ZSM5 catalysts on the physicochemical properties and catalytic activities was investigated. N2 adsorption-desorption isotherms of PAM(X)-ZSM5 catalysts exhibited a broad hysteresis loop at high relative pressure, indicating the existence of mesopores in the catalysts. It was found that the catalytic performance of PAM(X)-ZSM5 catalysts was closely related to the mesoporosity of the catalysts. Conversion of C5 raffinate and yield for light olefins showed volcano-shaped trends with respect to mesopore/micropore volume ratio of the catalysts. Thus, an optimal PAM content was required to achieve maximum production of light olefins through catalytic cracking of C5 raffinate over microporous and mesoporous PAM(X)-ZSM5 catalysts.

  17. Hierarchical Macro-meso-microporous ZSM-5 Zeolite Hollow Fibers With Highly Efficient Catalytic Cracking Capability

    PubMed Central

    Liu, Jia; Jiang, Guiyuan; Liu, Ying; Di, Jiancheng; Wang, Yajun; Zhao, Zhen; Sun, Qianyao; Xu, Chunming; Gao, Jinsen; Duan, Aijun; Liu, Jian; Wei, Yuechang; Zhao, Yong; Jiang, Lei

    2014-01-01

    Zeolite fibers have attracted growing interest for a range of new applications because of their structural particularity while maintaining the intrinsic performances of the building blocks of zeolites. The fabrication of uniform zeolite fibers with tunable hierarchical porosity and further exploration of their catalytic potential are of great importance. Here, we present a versatile and facile method for the fabrication of hierarchical ZSM-5 zeolite fibers with macro-meso-microporosity by coaxial electrospinning. Due to the synergistic integration of the suitable acidity and the hierarchical porosity, high yield of propylene and excellent anti-coking stability were demonstrated on the as-prepared ZSM-5 hollow fibers in the catalytic cracking reaction of iso-butane. This work may also provide good model catalysts with uniform wall thickness and tunable porosity for studying a series of important catalytic reactions. PMID:25450726

  18. 40 CFR 63.1564 - What are my requirements for metal HAP emissions from catalytic cracking units?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... permissible hourly average Ni operating limit, percent-acfm-ppmw, i.e., your site-specific Ni operating limit....009 Where: Ni operating limit2 = Maximum permissible hourly average Ni operating limit, percent-ppmw... Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery...

  19. Pattern formation during healing of fluid-filled cracks: an analog experiment

    SciTech Connect

    F. Renard; D. K. Dysthe; J. G. Feder; Paul Meakin; S.J.S. Morris; B. Jamtveit

    2009-11-01

    The formation and subsequent healing of cracks and crack networks may control such diverse phenomena as the strengthening of fault zones between earthquakes, fluid migrations in the Earth's crust, or the transport of radioactive materials in nuclear waste disposal. An intriguing pattern-forming process can develop during healing of fluid-filled cracks, where pockets of fluid remain permanently trapped in the solid as the crack tip is displaced driven by surface energy. Here, we present the results of analog experiments in which a liquid was injected into a colloidal inorganic gel to obtain penny-shaped cracks that were subsequently allowed to close and heal under the driving effect of interfacial tension. Depending on the properties of the gel and the injected liquid, two modes of healing were obtained. In the first mode, the crack healed completely through a continuous process. The second mode of healing was discontinuous and was characterized by a 'zipper-like' closure of a front that moved along the crack perimeter, trapping fluid that may eventually form inclusions trapped in the solid. This instability occurred only when the velocity of the crack tip decreased to zero. Our experiments provide a cheap and simple analog to reveal how aligned arrays of fluid inclusions may be captured along preexisting fracture planes and how small amounts of fluids can be permanently trapped in solids, modifying irreversibly their material properties.

  20. Catalytic cracking of the top phase fraction of bio-oil into upgraded liquid oil

    NASA Astrophysics Data System (ADS)

    Sunarno, Rochmadi, Mulyono, Panut; Budiman, Arief

    2016-06-01

    The energy consumption is increasing, while oil reserves as a primary energy resource are decreasing, so that is the reason seeking alternative energy source is inevitable. Biomass especially oil palm empty fruit bunches (EFB) which is abundant in Indonesia can be processed into bio-oil by pyrolysis process. The potential for direct substitution of bio-oil for petroleum may be limited due to the high viscosity, high oxygen content, low heating value, and corrosiveness. Consequently, upgrading of the bio-oil before use is inevitable to give a wider variety of applications of its liquid product. Furthermore, upgrading process to improve the quality of bio-oil by reduction of oxygenates involves process such as catalytic cracking. The objective of this research is to study the effect of operation temperature on yield and composition of upgraded liquid oil and to determine physical properties. Bio-oil derived from EFB was upgraded through catalytic cracking using series tubular reactor under atmospheric pressure on a silica-alumina catalyst. Results show that increasing temperature from 450 to 600 °C, resulting in decreasing of upgraded liquid oil (ULO) yield, decreasing viscosity and density of ULO, but increasing in calorimetric value of ULO. The increasing temperature of cracking also will increase the concentration of gasoline and kerosene in ULO.

  1. Catalytic and thermal cracking of coal-derived liquid in a fixed-bed reactor

    SciTech Connect

    Shamsi, A.

    1996-04-01

    A coal-derived liquid, obtained from the Coal Technology Corp.`s mild gasification process, was cracked over char produced from Pittsburgh No. 8 coal mixed with Plum Run dolomite in the Foster Wheeler carbonizer. For the purpose of comparison, calcined Plum Run dolomite (PRD), char produced from Pittsburgh No. 8 coal, and silicon carbide (an inert material) were also studied. Coal liquid feed was analyzed by sulfur-selective gas chromatography (GC), liquid chromatography (LC), and proton nuclear magnetic resonance (NMR) and for elemental composition. The gaseous products of cracking were analyzed for hydrocarbons using GC. Most sulfur in the feed was present in molecules heavier than dibenzothiophene and was distributed in a variety of structures. The surviving coal liquid was analyzed by LC. The results indicated that deoxygenation of phenols, dealkylation of aromatic compounds (AR), and condensation of aromatic structures are some of the reactions occurring on the surface of bed materials. Energies of activation for homogeneous and for heterogeneous pyrolysis of the coal liquid were calculated after separating the rate of thermal cracking from the sum of rates of thermal and catalytic cracking.

  2. Asphaltene cracking in catalytic hydrotreating of heavy oils. 2. study of changes in asphaltene structure during catalytic hydroprocessing

    SciTech Connect

    Sachio, A.; Chisato, T.; Shinichi, N.; Yoshimi, S.

    1983-04-01

    Characteristics in catalytic conversion of asphaltenes in petroleum heavy residues were studied in the hydrotreating process. A Boscan crude, an Athabasca bitumen, and a Khafji vacuum residue were tested as typical feedstocks. Various analyses were made to obtain the properties of asphaltenes before and after the reaction, e.g., changes of heteroatoms such as sulfur and metals, and decreases of molecular weight. The characteristic changes of asphaltene molecules were also investigated by electron spin resonance (ESR) and X-ray analyses. The association and coordination of vanadyl in asphaltenes were studied by the temperature dependence on the ESR spectra, and the sizes of the stacked crystallites and the aggregated asphaltene micelles were measured with X-ray diffraction and small-angle scattering. In the asphaltene cracking mechanism, it was clarified that the main reactions were the destruction of asphaltene micelles caused by vanadium removal and the depolymerization of asphaltene molecules by removal of heteroatoms such as sulfur.

  3. Decrepitation and crack healing of fluid inclusions in San Carlos olivine

    SciTech Connect

    Wanamaker, B.J. ); Wong, Tengfong ); Evans, B. )

    1990-09-10

    Fluid inclusions break, or decrepitate, when the fluid pressure exceeds the least principal lithostatic stress by a critical amount. After decrepitation, excess fluid pressure is relaxed, resulting in crack arrest; subsequently, crack healing may occur. The authors developed a linear elastic fracture mechanics model to analyze new data on decrepitation and crack arrest in San Carlos Olivine, compared the model with previous fluid inclusion investigations, and used it to interpret some natural decrepitation microstructures. The common experimental observation that smaller inclusions may sustain higher internal fluid pressures without decrepitating may be rationalized by assuming that flaws associated with the inclusion scale with the inclusion size. According to the model, the length of the crack formed by decrepitation depends on the lithostatic pressure at the initiation of cracking, the initial sizes of the flaw and the inclusion, and the critical stress intensity factor. Further experiments show that microcracks in San Carlos olivine heal within several days at 1,280 to 1,400{degree}C; healing rates depend on the crack geometry, temperature, and chemistry of the buffering gas. The regression distance of the crack tip during healing can be related to time through a power law with exponent n = 0.6. Chemical changes which become apparent after extremely long heat-treatments significantly affect the healing rates. Many of the inclusions in the San Carlos xenoliths stretched, decrepitated, and finally healed during uplift. The crack arrest model indicates that completely healed cracks had an initial fluid pressure of the order of 1 GPa. Using the crack arrest model and the healing kinetics, they estimate the ascent rate of these xenoliths to be between 0.001 and 0.1 m/s.

  4. A generalized equation for the resonance frequencies of a fluid-filled crack

    NASA Astrophysics Data System (ADS)

    Maeda, Yuta; Kumagai, Hiroyuki

    2017-01-01

    Although a model of the resonance of a rectangular fluid-filled crack (crack model) is one of the most frequently used source models of long-period seismic events at volcanoes, there has been no analytical solution for the resonance frequencies. We previously proposed an empirical expression for the resonance frequencies as a mathematical function of the crack length, aperture, and properties of the fluid and the surrounding elastic medium. However, the expression contained an empirical constant that had to be investigated numerically for each crack aspect ratio and oscillation mode, a requirement that prevented widespread use of the expression. In the present study, we examined the theoretical basis for the expression. We assumed that the ratio of the crack wall displacement to the fluid pressure near each crack edge varied as the square root of the distance from the edge. Using this assumption, we showed theoretically that the previously proposed empirical analytical expression was a good approximation (difference ≤ 2%) to another more complete expression. This theoretical expression is a closed form of a mathematical function of the crack model parameters and oscillation mode number; there are no empirical constants to be determined numerically. The expression thus enabled us to analytically compute the resonance frequencies for arbitrary rectangular cracks, and the results were in good agreement (difference ≤ 5%) with numerical solutions. Resonance frequencies of cracks can be very easily predicted using this expression. This predictive ability may enhance our quantitative understanding of the processes that generate long-period events at volcanoes.

  5. The selective catalytic cracking of Fischer-Tropsch liquids to high value transportation fuels. Final report

    SciTech Connect

    Schwartz, M.M.; Reagon, W.J.; Nicholas, J.J.; Hughes, R.D.

    1994-11-01

    Amoco Oil Company, investigated a selective catalytic cracking process (FCC) to convert the Fischer-Tropsch (F-T) gasoline and wax fractions to high value transportation fuels. The primary tasks of this contract were to (1) optimize the catalyst and process conditions of the FCC process for maximum conversion of F-T wax into reactive olefins for later production of C{sub 4}{minus}C{sub 8} ethers, and (2) use the olefin-containing light naphtha obtained from FCC processing of the F-T wax as feedstock for the synthesis of ethers. The catalytic cracking of F-T wax feedstocks gave high conversions with low activity catalysts and low process severities. HZSM-5 and beta zeolite catalysts gave higher yields of propylene, isobutylene, and isoamylenes but a lower gasoline yield than Y zeolite catalysts. Catalyst selection and process optimization will depend on product valuation. For a given catalyst and process condition, Sasol and LaPorte waxes gave similar conversions and product selectivities. The contaminant iron F-T catalyst fines in the LaPorte wax caused higher coke and hydrogen yields.

  6. Development of a heterogeneous catalytic cracking reactor utilizing online mass spectrometry analysis.

    PubMed

    Benson, Tracy J; Holmes, William E; White, Mark G; French, W Todd; Alley, Earl G; Hernandez, Rafael

    2007-11-23

    A laboratory system has been designed, constructed, and validated that reduces the complexity, time required, and data variability associated with catalytic microreactors that require post reaction steps prior to product analysis. In this work, a Varian (Walnut Creek, CA, USA) 3600 GC (gas chromatography) system coupled with a Saturn quadrupole ion trap mass spectrometer was used to perform mass spectral analysis in real-time catalytic cracking reactions. As this was an integrated reactor/analyzer, the GC column was exposed to temperatures beyond the degradation point of the column, and so selective ion storage RF waveform was used to remove the siloxane masses from the spectra. This produced lower detection limits and full scan data for identification. Mass/charge segmentation of the mass spectrometer allowed the complete product identification for electron impact spectra. Hexane was reacted over H-ZSM-5 catalyst for instrument validation. This produced a series of alkanes, alkenes, and aromatics with distributions consistent with that reported for the cracking of hexane.

  7. Catalytic reactor for promoting a chemical reaction on a fluid passing therethrough

    NASA Technical Reports Server (NTRS)

    Roychoudhury, Subir (Inventor); Pfefferle, William C. (Inventor)

    2001-01-01

    A catalytic reactor with an auxiliary heating structure for raising the temperature of a fluid passing therethrough whereby the catalytic reaction is promoted. The invention is a apparatus employing multiple electrical heating elements electrically isolated from one another by insulators that are an integral part of the flow path. The invention provides step heating of a fluid as the fluid passes through the reactor.

  8. An Experimental Study of Penny-shaped Fluid-driven Cracks in an Elastic Matrix

    NASA Astrophysics Data System (ADS)

    Stone, Howard

    2015-11-01

    When a pressurized fluid is injected into an elastic matrix, the fluid generates a fracture that grows along a plane and forms a fluid-filled disc-like shape. For example, such problems occur in various natural and industrial applications involving the subsurface of Earth, such as hydraulic fracturing operations. We report a laboratory study of such a fluid-driven crack in a gelatin matrix, study the crack shape as a function of time, and investigate the influence of different experimental parameters such as the injection flow rate, Young's modulus of the matrix, and fluid viscosity. We find that the crack radius increases with time as a power law, which has been predicted both for the limit where viscous effects in the flow along the crack opening control the rate of crack propagation, as well as the limit where fracture toughness controls crack propagation. We vary experimental parameters to probe the physical limits and highlight that for our typical parameters both effects can be significant. Also, we measure the time evolution of crack shape, which has not been studied before. The rescaled crack shapes collapse at longer times, based on an appropriate scaling argument, and again we compare the scaling arguments in different physical limits. The gelatin system provides a useful laboratory model for further studies of fluid-driven cracks, some of which we will mention as they are inspired by the physics of hydraulic fracturing. This work is part of the PhD thesis of Ching-Yao Lai and is a collaboration with Drs. Zhong Zheng and Jason Wexler (Princeton University) and Professor Emilie Dressaire (NYU). Department of Mechanical and Aerospace Engineering.

  9. 40 CFR Table 14 to Subpart Uuu of... - Continuous Compliance With Operating Limits for Organic HAP Emissions From Catalytic Cracking Units

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Limits for Organic HAP Emissions From Catalytic Cracking Units 14 Table 14 to Subpart UUU of Part 63... Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 14 Table 14 to Subpart UUU of Part 63—Continuous Compliance With Operating Limits for Organic HAP Emissions From Catalytic Cracking Units As...

  10. 40 CFR Table 14 to Subpart Uuu of... - Continuous Compliance With Operating Limits for Organic HAP Emissions From Catalytic Cracking Units

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Limits for Organic HAP Emissions From Catalytic Cracking Units 14 Table 14 to Subpart UUU of Part 63... Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 14 Table 14 to Subpart UUU of Part 63—Continuous Compliance With Operating Limits for Organic HAP Emissions From Catalytic Cracking Units As...

  11. Catalytic cracking of palm oil for the production of biofuels: optimization studies.

    PubMed

    Tamunaidu, Pramila; Bhatia, Subhash

    2007-12-01

    Oil palm is widely grown in Malaysia. Palm oil has attracted the attention of researchers to develop an 'environmentally friendly' and high quality fuel, free of nitrogen and sulfur. In the present study, the catalytic cracking of palm oil to biofuel was studied over REY catalyst in a transport riser reactor at atmospheric pressure. The effect of reaction temperature (400-500 degrees C), catalyst/palm oil ratio (5-10) and residence time (10-30s) was studied over the yield of bio-gasoline and gas as fuel. Design of experiments was used to study the effect of operating variables over conversion of palm oil and yield of hydrocarbon fuel. The response surface methodology was used to determine the optimum value of the operating variables for maximum yield of bio-gasoline fraction in the liquid product obtained.

  12. 40 CFR Table 9 to Subpart Uuu of... - Operating Limits for Organic HAP Emissions From Catalytic Cracking Units

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Operating Limits for Organic HAP Emissions From Catalytic Cracking Units 9 Table 9 to Subpart UUU of Part 63 Protection of Environment... Units Pt. 63, Subpt. UUU, Table 9 Table 9 to Subpart UUU of Part 63—Operating Limits for Organic...

  13. 40 CFR Table 9 to Subpart Uuu of... - Operating Limits for Organic HAP Emissions From Catalytic Cracking Units

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Operating Limits for Organic HAP Emissions From Catalytic Cracking Units 9 Table 9 to Subpart UUU of Part 63 Protection of Environment..., Subpt. UUU, Table 9 Table 9 to Subpart UUU of Part 63—Operating Limits for Organic HAP Emissions...

  14. 40 CFR Table 9 to Subpart Uuu of... - Operating Limits for Organic HAP Emissions From Catalytic Cracking Units

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Operating Limits for Organic HAP Emissions From Catalytic Cracking Units 9 Table 9 to Subpart UUU of Part 63 Protection of Environment... Units Pt. 63, Subpt. UUU, Table 9 Table 9 to Subpart UUU of Part 63—Operating Limits for Organic...

  15. 40 CFR Table 9 to Subpart Uuu of... - Operating Limits for Organic HAP Emissions From Catalytic Cracking Units

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Operating Limits for Organic HAP Emissions From Catalytic Cracking Units 9 Table 9 to Subpart UUU of Part 63 Protection of Environment... Units Pt. 63, Subpt. UUU, Table 9 Table 9 to Subpart UUU of Part 63—Operating Limits for Organic...

  16. 40 CFR Table 9 to Subpart Uuu of... - Operating Limits for Organic HAP Emissions From Catalytic Cracking Units

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Operating Limits for Organic HAP Emissions From Catalytic Cracking Units 9 Table 9 to Subpart UUU of Part 63 Protection of Environment..., Subpt. UUU, Table 9 Table 9 to Subpart UUU of Part 63—Operating Limits for Organic HAP Emissions...

  17. 40 CFR Table 5 to Subpart Uuu of... - Initial Compliance With Metal HAP Emission Limits for Catalytic Cracking Units

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... following table that applies to you. For each new and existing catalytic cracking unit catalyst regenerator...) of coke burn-off in the catalyst regenerator; if the discharged gases pass through an incinerator or... coke burn-off in the catalyst regenerator. As part of the Notification of Compliance Status, you...

  18. 40 CFR 63.1564 - What are my requirements for metal HAP emissions from catalytic cracking units?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... = Volumetric flow rate of exhaust gas from catalyst regenerator before adding air or gas streams. Example: You... unit catalyst regenerator, as determined from instruments in the catalytic cracking unit control room... unit catalyst regenerator flue gas as measured by Method 2 in appendix A to part 60 of this...

  19. 40 CFR Table 13 to Subpart Uuu of... - Continuous Compliance With Organic HAP Emission Limits for Catalytic Cracking Units

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... . . . Subject to this emission limit for your catalyst regenerator vent . . . If you must . . . You shall... emissions from your catalyst regenerator vent or CO boiler serving the catalytic cracking unit must not... ppmv (dry basis). 2. Not subject to the NSPS for CO in 40 CFR 60.103 i. CO emissions from your...

  20. 40 CFR 63.1564 - What are my requirements for metal HAP emissions from catalytic cracking units?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... = Volumetric flow rate of exhaust gas from catalyst regenerator before adding air or gas streams. Example: You... unit catalyst regenerator, as determined from instruments in the catalytic cracking unit control room... unit catalyst regenerator flue gas as measured by Method 2 in appendix A to part 60 of this...

  1. 40 CFR Table 5 to Subpart Uuu of... - Initial Compliance With Metal HAP Emission Limits for Catalytic Cracking Units

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... following table that applies to you. For each new and existing catalytic cracking unit catalyst regenerator...) of coke burn-off in the catalyst regenerator; if the discharged gases pass through an incinerator or... coke burn-off in the catalyst regenerator. As part of the Notification of Compliance Status, you...

  2. 40 CFR Table 13 to Subpart Uuu of... - Continuous Compliance With Organic HAP Emission Limits for Catalytic Cracking Units

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... . . . Subject to this emission limit for your catalyst regenerator vent . . . If you must . . . You shall... emissions from your catalyst regenerator vent or CO boiler serving the catalytic cracking unit must not... ppmv (dry basis). 2. Not subject to the NSPS for CO in 40 CFR 60.103 i. CO emissions from your...

  3. 40 CFR Table 2 to Subpart Uuu of... - Operating Limits for Metal HAP Emissions From Catalytic Cracking Units

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Operating Limits for Metal HAP Emissions From Catalytic Cracking Units 2 Table 2 to Subpart UUU of Part 63 Protection of Environment... Units Pt. 63, Subpt. UUU, Table 2 Table 2 to Subpart UUU of Part 63—Operating Limits for Metal...

  4. Hydrocarbon liquid production via the bioCRACK process and catalytic hydroprocessing of the product oil

    SciTech Connect

    Schwaiger, Nickolaus; Elliott, Douglas C.; Ritzberger, Jurgen; Wang, Huamin; Pucher, Peter; Siebenhofer, Matthaus

    2015-01-01

    Continuous hydroprocessing of liquid phase pyrolysis bio-oil, provided by BDI-BioEnergy International bioCRACK pilot plant at OMV Refinery in Schwechat/Vienna Austria was investigated. These hydroprocessing tests showed promising results using catalytic hydroprocessing strategies developed for unfractionated bio-oil. A sulfided base metal catalyst (CoMo on Al2O3) was evaluated. The bed of catalyst was operated at 400 °C in a continuous-flow reactor at a pressure of 12.1 MPa with flowing hydrogen. The condensed liquid products were analyzed and found that the hydrocarbon liquid was significantly hydrotreated so that nitrogen and sulfur were below the level of detection (<0.05), while the residual oxygen ranged from 0.7 to 1.2%. The density of the products varied from 0.71 g/mL up to 0.79 g/mL with a correlated change of the hydrogen to carbon atomic ratio from 2.1 down to 1.9. The product quality remained high throughout the extended tests suggesting minimal loss of catalyst activity through the test. These tests provided the data needed to assess the quality of liquid fuel products obtained from the bioCRACK process as well as the activity of the catalyst for comparison with products obtained from hydrotreated fast pyrolysis bio-oils from fluidized-bed operation.

  5. Hydrocarbon liquid production via the bioCRACK process and catalytic hydroprocessing of the product oil

    DOE PAGES

    Schwaiger, Nickolaus; Elliott, Douglas C.; Ritzberger, Jurgen; ...

    2015-01-01

    Continuous hydroprocessing of liquid phase pyrolysis bio-oil, provided by BDI-BioEnergy International bioCRACK pilot plant at OMV Refinery in Schwechat/Vienna Austria was investigated. These hydroprocessing tests showed promising results using catalytic hydroprocessing strategies developed for unfractionated bio-oil. A sulfided base metal catalyst (CoMo on Al2O3) was evaluated. The bed of catalyst was operated at 400 °C in a continuous-flow reactor at a pressure of 12.1 MPa with flowing hydrogen. The condensed liquid products were analyzed and found that the hydrocarbon liquid was significantly hydrotreated so that nitrogen and sulfur were below the level of detection (<0.05), while the residual oxygen rangedmore » from 0.7 to 1.2%. The density of the products varied from 0.71 g/mL up to 0.79 g/mL with a correlated change of the hydrogen to carbon atomic ratio from 2.1 down to 1.9. The product quality remained high throughout the extended tests suggesting minimal loss of catalyst activity through the test. These tests provided the data needed to assess the quality of liquid fuel products obtained from the bioCRACK process as well as the activity of the catalyst for comparison with products obtained from hydrotreated fast pyrolysis bio-oils from fluidized-bed operation.« less

  6. Normal compression wave scattering by a permeable crack in a fluid-saturated poroelastic solid

    NASA Astrophysics Data System (ADS)

    Song, Yongjia; Hu, Hengshan; Rudnicki, John W.

    2017-03-01

    A mathematical formulation is presented for the dynamic stress intensity factor (mode I) of a finite permeable crack subjected to a time-harmonic propagating longitudinal wave in an infinite poroelastic solid. In particular, the effect of the wave-induced fluid flow due to the presence of a liquid-saturated crack on the dynamic stress intensity factor is analyzed. Fourier sine and cosine integral transforms in conjunction with Helmholtz potential theory are used to formulate the mixed boundary-value problem as dual integral equations in the frequency domain. The dual integral equations are reduced to a Fredholm integral equation of the second kind. It is found that the stress intensity factor monotonically decreases with increasing frequency, decreasing the fastest when the crack width and the slow wave wavelength are of the same order. The characteristic frequency at which the stress intensity factor decays the fastest shifts to higher frequency values when the crack width decreases.

  7. The effect of fluid composition, salinity, and acidity on subcritical crack growth in calcite crystals

    NASA Astrophysics Data System (ADS)

    Bergsaker, Anne Schad; Røyne, Anja; Ougier-Simonin, Audrey; Aubry, Jérôme; Renard, François

    2016-03-01

    Chemically activated processes of subcritical cracking in calcite control the time-dependent strength of this mineral, which is a major constituent of the Earth's brittle upper crust. Here experimental data on subcritical crack growth are acquired with a double torsion apparatus to characterize the influence of fluid pH (range 5-7.5) and ionic strength and species (Na2SO4, NaCl, MgSO4, and MgCl2) on the propagation of microcracks in calcite single crystals. The effect of different ions on crack healing has also been investigated by decreasing the load on the crack for durations up to 30 min and allowing it to relax and close. All solutions were saturated with CaCO3. The crack velocities reached during the experiments are in the range 10-9-10-2 m/s and cover the range of subcritical to close to dynamic rupture propagation velocities. Results show that for calcite saturated solutions, the energy necessary to fracture calcite is independent of pH. As a consequence, the effects of fluid salinity, measured through its ionic strength, or the variation of water activity have stronger effects on subcritical crack propagation in calcite than pH. Consequently, when considering the geological sequestration of CO2 into carbonate reservoirs, the decrease of pH within the range of 5-7.5 due to CO2 dissolution into water should not significantly alter the rate of fracturing of calcite. Increase in salinity caused by drying may lead to further reduction in cracking and consequently a decrease in brittle creep. The healing of cracks is found to vary with the specific ions present.

  8. The seismic properties of sintered glass-bead media: effects of thermal cracking and fluid saturation

    NASA Astrophysics Data System (ADS)

    Li, Y.; Jackson, I.; David, E.; Schmitt, D. R.

    2013-12-01

    The stiffness of rocks is significantly affected by the presence of cracks as well as pore fluids, the latter potentially increasing the effective stiffness of cracks. Reversible pore-fluid flow within the crack network, occurring during seismic wave propagation, may result in strongly frequency dependent seismic properties. Theoretical models for fluid flow induced seismic wave dispersion have been proposed but have so far not been subject to thorough experimental testing. Soda-lime-silica glass beads, of ~300 μm diameter were sintered near the glass transition temperature to produce a synthetic analogue for sedimentary rock with low porosity (~2%) and a simpler microstructure. Widely distributed cracks with uniformly low aspect ratio (~0.0007) and crack porosity ~0.2% were introduced by quenching heated cylindrical samples into liquid water at room temperature. Combined use of low-frequency (mHz-Hz) forced oscillation techniques at the Australian National University with ultrasonic pulse transmission methods (MHz) at the University of Alberta, is allowing a broadband measurement of seismic velocities and attenuation on a thermally cracked glass-bead sample. A recent upgrade of the data acquisition system on the apparatus for forced oscillation measurements is providing improved precision in determining shear and Young's moduli, measured at seismic frequencies, reveal a strong systematic variation with effective pressure (Peff=Pc-Pf) and some relaxation at longer oscillation periods tentatively attributed to fluid flow. Under water-saturated conditions, at low frequencies, both shear and Young's moduli are noticeably higher than under dry or argon-saturated conditions, possibly attributed to spatial restricted flow of water during forced-oscillation tests. Ongoing measurement of ultrasonic velocities should thus provide the 'intermediate' to 'high' frequency bounds on elastic moduli.

  9. Conversion of Isoprenoid Oil by Catalytic Cracking and Hydrocracking over Nanoporous Hybrid Catalysts

    PubMed Central

    Kimura, Toshiyuki; Liu, Chen; Li, Xiaohong; Maekawa, Takaaki; Asaoka, Sachio

    2012-01-01

    In order to produce petroleum alternatives from biomass, a significant amount of research has been focused on oils from microalgae due to their origin, which would not affect food availability. Nanoporous hybrid catalysts composed of ns Al2O3 and zeolites have been proven to be very useful compared to traditional catalysts in hydrotreating (HT), hydrocracking (HC), and catalytic cracking (CC) of large molecules. To evaluate the reaction scheme and products from model isoprenoid compounds of microalgae oil, nanoporous hybrid catalyst technologies (CC: ns Al2O3/H-USY and ns Al2O3/H-GaAlMFI; HC: [Ni-Mo/γ-Al2O3]/ns Al2O3/H-beta) were studied. The major product from CC on ns Al2O3/H-USY was highly aromatic gasoline, while the product from HC was half-isoparaffinic/olefinic kerosene. Although more than 50 wt% of the products from HT/CC on the USY catalyst was liquefied petroleum gas due to overcracking, the product from HT/CC on the MFI catalyst was high-octane-number gasoline. Delightfully, the product from HT/HC was kerosene and its average number was 11, with more than 80 wt% being isoparaffinic. As a result, it was demonstrated that hydrotreating may convert isoprenoid oil from microalgae over nanoporous hybrid catalysts into a variety of products. PMID:22791962

  10. Crack

    MedlinePlus

    ... is cocaine that has been processed into rock crystal form. Like cocaine, crack is a powerful and ... with things that cause powdered cocaine to form crystals. Many of these are harmless, but sometimes producers ...

  11. Crack

    MedlinePlus

    ... are harmless, but sometimes producers add ingredients like amphetamines to make crack cheaper. These added ingredients raise ... For Kids For Parents MORE ON THIS TOPIC Amphetamines Drugs: What to Know Dealing With Addiction Cocaine ...

  12. Instability in Immiscible Fluids Displacement from Cracks and Porous Samples

    NASA Astrophysics Data System (ADS)

    Smirnov, N. N.; Nikitin, V. F.; Ivashnyov, O. E.

    2002-01-01

    problems of terrestrial engineering and technology. Surface tension affected flows in porous media could be much better understood in microgravity studies eliminating the masking effects of gravity. Saffman-Taylor instability of the interface could bring to formation and growth of "fingers" of gas penetrating the bulk fluid. The growth of fingers and their further coalescence could not be described by the linear analysis. Growth of fingers causes irregularity of the mixing zone. The tangential velocity difference on the interface separating fluids of different densities and viscousities could bring to a Kelvin-Helmholtz instability resulting in "diffusion of fingers" partial regularization of the displacement mixing zone. Thus combination of the two effects would govern the flow in the displacement process. fracture under a pressure differential displacing the high viscosity residual fracturing fluid. There are inherent instability and scalability problems associated with viscous fingering that play a key role in the cleanup procedure. Entrapment of residual fracturing fluid by the gas flow lowers down the quality of a fracture treatment leaving most of fluid in the hydraulic fracture thus decreasing the production rate. The gravity effects could play essential role in vertical hydraulic fractures as the problem is scale dependent. displacement of viscous fluid by a less viscous one in a two-dimensional channel with vertical breaks, and to determine characteristic size of entrapment zones. Extensive direct numerical simulations allow to investigate the sensitivity of the displacement process to variation of values of the main governing parameters. were found for the two limiting cases: infinitely wide cell, and narrow cell with an infinitely small gap between the finger and the side walls. governing parameters. The obtained solutions allowed to explain the physical meaning of the exiting empirical criteria for the beginning of viscous fingering and the growth of a

  13. A new model of reaction-driven cracking: fluid volume consumption and tensile failure during serpentinization

    NASA Astrophysics Data System (ADS)

    Eichenbaum-Pikser, J. M.; Spiegelman, M. W.; Kelemen, P. B.; Wilson, C. R.

    2013-12-01

    Reactive fluid flow plays an important role in a wide range of geodynamic processes, such as melt migration, formation of hydrous minerals on fault surfaces, and chemical weathering. These processes are governed by the complex coupling between fluid transport, reaction, and solid deformation. Reaction-driven cracking is a potentially critical feedback mechanism, by which volume change associated with chemical reaction drives fracture in the surrounding rock. It has been proposed to play a role in both serpentinization and carbonation of peridotite, motivating consideration of its application to mineral carbon sequestration. Previous studies of reactive cracking have focused on the increase in solid volume, and as such, have considered failure in compression. However, if the consumption of fluid is considered in the overall volume budget, the reaction can be net volume reducing, potentially leading to failure in tension. To explore these problems, we have formulated and solved a 2-D model of coupled porous flow, reaction kinetics, and elastic deformation using the finite element model assembler TerraFERMA (Wilson et al, G3 2013 submitted). The model is applied to the serpentinization of peridotite, which can be reasonably approximated as the transfer of a single reactive component (H2O) between fluid and solid phases, making it a simple test case to explore the process. The behavior of the system is controlled by the competition between the rate of volume consumption by the reaction, and the rate of volume replacement by fluid transport, as characterized by a nondimensional parameter χ, which depends on permeability, reaction rate, and the bulk modulus of the solid. Large values of χ correspond to fast fluid transport relative to reaction rate, resulting in a low stress, volume replacing regime. At smaller values of χ, fluid transport cannot keep up with the reaction, resulting in pore fluid under-pressure and tensile solid stresses. For the range of χ relevant

  14. Multidimensional gas chromatography for the characterization of permanent gases and light hydrocarbons in catalytic cracking process.

    PubMed

    Luong, J; Gras, R; Cortes, H J; Shellie, R A

    2013-01-04

    An integrated gas chromatographic system has been successfully developed and implemented for the measurement of oxygen, nitrogen, carbon monoxide, carbon dioxide and light hydrocarbons in one single analysis. These analytes are frequently encountered in critical industrial petrochemical and chemical processes like catalytic cracking of naphtha or diesel fuel to lighter components used in gasoline. The system employs a practical, effective configuration consisting of two three-port planar microfluidic devices in series with each other, having built-in fluidic gates, and a mid-point pressure source. The use of planar microfluidic devices offers intangible advantages like in-oven switching with no mechanical moving parts, an inert sample flow path, and a leak-free operation even with multiple thermal cycles. In this way, necessary features such as selectivity enhancement, column isolation, column back-flushing, and improved system cleanliness were realized. Porous layer open tubular capillary columns were employed for the separation of hydrocarbons followed by flame ionization detection. After separation has occurred, carbon monoxide and carbon dioxide were converted to methane with the use of a nickel-based methanizer for detection with flame ionization. Flow modulated thermal conductivity detection was employed to measure oxygen and nitrogen. Separation of all the target analytes was achieved in one single analysis of less than 12 min. Reproducibility of retention times for all compounds were found to be less than 0.1% (n=20). Reproducibility of area counts at two levels, namely 100 ppm(v) and 1000 ppm(v) over a period of two days were found to be less than 5.5% (n=20). Oxygen and nitrogen were found to be linear over a range from 20 ppm(v) to 10,000 ppm(v) with correlation coefficients of at least 0.998 and detection limits of less than 10 ppm(v). Hydrocarbons of interest were found to be linear over a range from 200 ppb(v) to 1000 ppm(v) with correlation

  15. Catalytic ferrous iron in amniotic fluid as a predictive marker of human maternal-fetal disorders.

    PubMed

    Hattori, Yuka; Mukaide, Takahiro; Jiang, Li; Kotani, Tomomi; Tsuda, Hiroyuki; Mano, Yukio; Sumigama, Seiji; Hirayama, Tasuku; Nagasawa, Hideko; Kikkawa, Fumitaka; Toyokuni, Shinya

    2015-01-01

    Amniotic fluid contains numerous biomolecules derived from fetus and mother, thus providing precious information on pregnancy. Here, we evaluated oxidative stress of human amniotic fluid and measured the concentration of catalytic Fe(II). Amniotic fluid samples were collected with consent from a total of 89 subjects in Nagoya University Hospital, under necessary medical interventions: normal pregnancy at term, normal pregnancy at the 2nd trimester, preterm delivery with maternal disorders but without fetal disorders, congenital diaphragmatic hernia, fetal growth restriction, pregnancy-induced hypertension, gestational diabetes mellitus, Down syndrome and trisomy 18. Catalytic Fe(II) and oxidative stress markers (8-hydroxy-2'-deoxyguanosine, 8-OHdG; dityrosine) were determined with RhoNox-1 and specific antibodies, respectively, using plate assays. Levels of 8-OHdG and dityrosine were higher in the 3rd trimester compared with the 2nd trimester in normal subjects, and the abnormal groups generally showed lower levels than the controls, thus suggesting that they represent fetal metabolic activities. In contrast, catalytic Fe(II) was higher in the 2nd trimester than the 3rd trimester in the normal subjects, and overall the abnormal groups showed higher levels than the controls, suggesting that high catalytic Fe(II) at late gestation reflects fetal pathologic alterations. Notably, products of H2O2 and catalytic Fe(II) remained almost constant in amniotic fluid.

  16. Catalytic thermal cracking of post-consumer waste plastics to fuels. 2. Pilot study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alternative gasoline and diesel fuels were prepared via catalytic and non-catalytic pyrolysis and distillation of waste polyethylene and polypropylene plastics. Reaction conditions were optimized using a bench-scale (2 L) batch reactor and then applied to pilot-scale production of crude plastic oil....

  17. Analysis of the organic liquid produced from catalytic cracking of crude palm oil in the presence of alumina supported catalysts

    NASA Astrophysics Data System (ADS)

    Ramli, Anita; Razak, Rozlina Abdul

    2012-09-01

    Catalytic cracking of crude palm oil (CPO) was studied in the presence of alumina, 1% Pt/Al2O3 and 1% Pd/Al2O3 as catalyst. The CPO to catalyst weight ratio used was 1:0.05. The experiment was carried out in a simple liquid-phase batch reactor at atmospheric pressure where the sample was heated to 300-350 δC. Products formed were organic liquid products (OLP) and gaseous product with the solid residue remains in the reactor. The total conversion of CPO was only between 25 - 31% where the residue is suggested to be mainly of polimerised CPO. The OLP was analysed using a gas chromatography with FID detector. Analyses show that the selectivity to liquid fuel is influence by the catalyst used whereby Al2O3 gives the highest selectivity to gasoline while 1% Pt/Al2O3 has the highest selectivity to diesel. However, 1% Pd/Al2O3 is not a suitable catalyst for catalytic cracking of CPO to liquid fuel where less than 17.5% of OLP produced could be classified as liquid fuel.

  18. Advances of two-stage riser catalytic cracking of heavy oil for maximizing propylene yield (TMP) process.

    PubMed

    Chaohe, Yang; Xiaobo, Chen; Jinhong, Zhang; Chunyi, Li; Honghong, Shan

    Two-stage riser catalytic cracking of heavy oil for maximizing propylene yield (TMP) process proposed by State Key Laboratory of Heavy oil Processing, China University of Petroleum, can remarkably enhance the propylene yield and minimize the dry gas and coke yields, and obtain high-quality light oils (gasoline and diesel). It has been commercialized since 2006. Up to now, three TMP commercial units have been put into production and other four commercial units are under design and construction. The commercial data showed that taking paraffinic based Daqing (China) atmospheric residue as the feedstock, the propylene yield reached 20.31 wt%, the liquid products yield (the total yield of liquefied petroleum gas, gasoline, and diesel) was 82.66 wt%, and the total yield of dry gas and coke was 14.28 wt%. Moreover, the research octane number of gasoline could be up to 96.

  19. 40 CFR Table 4 to Subpart Uuu of... - Requirements for Performance Tests for Metal HAP Emissions From Catalytic Cracking Units Not...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... in the following table that applies to you. For each new or existing catalytic cracking unit catalyst.... Determine the equilibrium catalyst Ni concentration. XRF procedure in appendix A to this subpart1; or EPA... equilibrium catalyst Ni concentration for each of the 3 samples; and you may adjust the laboratory results...

  20. 40 CFR Table 4 to Subpart Uuu of... - Requirements for Performance Tests for Metal HAP Emissions From Catalytic Cracking Units Not...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... in the following table that applies to you. For each new or existing catalytic cracking unit catalyst.... Determine the equilibrium catalyst Ni concentration. XRF procedure in appendix A to this subpart1; or EPA... equilibrium catalyst Ni concentration for each of the 3 samples; and you may adjust the laboratory results...

  1. 40 CFR Table 4 to Subpart Uuu of... - Requirements for Performance Tests for Metal HAP Emissions From Catalytic Cracking Units Not...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... that applies to you. For each new or existing catalytic cracking unit catalyst regenerator vent.... Determine the equilibrium catalyst Ni concentration. XRF procedure in appendix A to this subpart1; or EPA... equilibrium catalyst Ni concentration for each of the 3 samples; and you may adjust the laboratory results...

  2. 40 CFR Table 4 to Subpart Uuu of... - Requirements for Performance Tests for Metal HAP Emissions From Catalytic Cracking Units Not...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... that applies to you. For each new or existing catalytic cracking unit catalyst regenerator vent.... Determine the equilibrium catalyst Ni concentration. XRF procedure in appendix A to this subpart1; or EPA... equilibrium catalyst Ni concentration for each of the 3 samples; and you may adjust the laboratory results...

  3. 40 CFR Table 4 to Subpart Uuu of... - Requirements for Performance Tests for Metal HAP Emissions From Catalytic Cracking Units Not...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... in the following table that applies to you. For each new or existing catalytic cracking unit catalyst.... Determine the equilibrium catalyst Ni concentration. XRF procedure in appendix A to this subpart1; or EPA... equilibrium catalyst Ni concentration for each of the 3 samples; and you may adjust the laboratory results...

  4. Catalytic thermal cracking of post-consumer waste plastics to fuels: Part 1 - Kinetics and optimization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermogravimetric analysis (TGA) was used to investigate thermal and catalytic pyrolysis of waste plastics such as prescription bottles (polypropylene/PP), high density polyethylene, landfill liners (polyethylene/PE), packing materials (polystyrene/PS), and foams (polyurethane/PU) into crude plastic...

  5. 40 CFR Table 8 to Subpart Uuu of... - Organic HAP Emission Limits for Catalytic Cracking Units

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... emission limit for each catalyst regenerator vent . . . 1. Subject to the NSPS for carbon monoxide (CO) in 40 CFR 60.103 CO emissions from the catalyst regenerator vent or CO boiler serving the catalytic... for CO in 40 CFR 60.103 a. CO emissions from the catalyst regenerator vent or CO boiler serving...

  6. 40 CFR Table 8 to Subpart Uuu of... - Organic HAP Emission Limits for Catalytic Cracking Units

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... emission limit for each catalyst regenerator vent . . . 1. Subject to the NSPS for carbon monoxide (CO) in 40 CFR 60.103 CO emissions from the catalyst regenerator vent or CO boiler serving the catalytic... for CO in 40 CFR 60.103 a. CO emissions from the catalyst regenerator vent or CO boiler serving...

  7. 40 CFR Table 8 to Subpart Uuu of... - Organic HAP Emission Limits for Catalytic Cracking Units

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... emission limit for each catalyst regenerator vent . . . 1. Subject to the NSPS for carbon monoxide (CO) in 40 CFR 60.103 CO emissions from the catalyst regenerator vent or CO boiler serving the catalytic... for CO in 40 CFR 60.103 a. CO emissions from the catalyst regenerator vent or CO boiler serving...

  8. Photobioreactor cultivation and catalytic pyrolysis of the microalga Desmodesmus communis (Chlorophyceae) for hydrocarbons production by HZSM-5 zeolite cracking.

    PubMed

    Conti, Roberto; Pezzolesi, Laura; Pistocchi, Rossella; Torri, Cristian; Massoli, Patrizio; Fabbri, Daniele

    2016-12-01

    The study evaluated the growth of Desmodesmus communis on column photobioreactor and its thermochemical treatment by catalytic pyrolysis using HZSM-5 zeolite. D. communis showed good results in terms of growth (0.05gL(-1)d(-1)). Analytical pyrolysis of original algae and derived bio-oil mixed with zeolite was used as a screening method in order to gather information on the cracking process. Preparative pyrolysis on bench scale reactor was performed on algae biomass over a zeolite bed at 1:10 ratio (wt/wt). Py-GC-MS of biomass/catalyst mixture showed that the denitrogenation/deoxygenation increased with increasing zeolite load from 1:5 to 1:20 ratio and became significant at 1:10 ratio. The composition observed by analytical pyrolysis was featured by the predominance of alkylated monoaromatic hydrocarbons. The scaling-up to bench scale confirmed the results obtained with analytical pyrolysis in terms of monoaromatic hydrocarbons. However, low yield of catalytic oil (8% by weight) was observed.

  9. Glass fabrics self-cracking catalytic growth of boron nitride nanotubes

    NASA Astrophysics Data System (ADS)

    Wang, Jilin; Peng, Daijang; Long, Fei; Wang, Weimin; Gu, Yunle; Mo, Shuyi; Zou, Zhengguang; Fu, Zhengyi

    2017-02-01

    Glass fabrics were used to fabricate boron nitride nanotubes (BNNTs) with a broad diameter range through a combined chemical vapor deposition and self-propagation high-temperature synthesis (CVD-SHS) method at different holding times (0min, 30min, 90min, 180min and 360min). SEM characterization has been employed to investigate the macro and micro structure/morphology changes of the glass fabrics and BNNTs in detail. SEM image analysis has provided direct experimental evidences for the rationality of the optimized self-cracking catalyst VLS growth mechanism, including the transformation situations of the glass fabrics and the BNNTs growth processes respectively. This paper was the further research and compensation for the theory and experiment deficiencies in the new preparation method of BNNTs reported in our previous work. In addition, it is likely that the distinctive self-cracking catalyst VLS growth mechanism could provide a new idea to preparation of other inorganic functional nano-materials using similar one-dimensional raw materials as growth templates and catalysts.

  10. Scattering of monochromatic longitudinal waves on a planar crack of arbitrary shape in a fluid-saturated poroelastic medium

    NASA Astrophysics Data System (ADS)

    Levin, V.; Kanaun, S.

    2015-04-01

    Scattering of monochromatic longitudinal waves on a planar crack of arbitrary shape in a saturated poroelastic medium is considered. The medium is described by Biot's constitutive equations, the crack sides are fluid permeable. The problem is reduced to a two-dimensional integral equation for the crack opening vector. Gaussian approximating functions are used for discretization of this equation. For such functions, the elements of the matrix of discretized problem are combinations of four standard one-dimensional integrals that can be tabulated. As a result, numerical integration is not needed. For regular grids of approximating nodes, this matrix has Toeplitz's structure, and matrix-vector products can be calculated by the fast Fourier transform technique. The latter accelerates substantially the process of iterative solution of the discretized problem. Calculation of crack opening vectors, differential, and total cross-sections of circular and elliptic cracks are performed for longitudinal incident waves orthogonal to the crack surfaces. Dependencies of these characteristics on the medium permeability and wavefrequency are studied. Comparison of a crack in the poroelastic medium and in a dry elastic medium with the same porosity and skeleton elastic properties is presented.

  11. The Use of Fry (Embalming Fluid and PCP-Laced Cigarettes or Marijuana Sticks) among Crack Cocaine Smokers

    ERIC Educational Resources Information Center

    Peters, Ronald J.; Williams, Mark; Ross, Michael W.; Atkinson, John; McCurdy, Sherly A.

    2009-01-01

    Statistics show that the prevalence of crack cocaine use and embalming fluid and phencyclidine (PCP)-laced cigarettes or marijuana sticks, commonly referred to on the street as "fry" or "wet" is a problem; however, the relationship between these substances of abuse and concurrent polydrug use is unknown. In the present study, a…

  12. Life cycle assessment of hydrogenated biodiesel production from waste cooking oil using the catalytic cracking and hydrogenation method.

    PubMed

    Yano, Junya; Aoki, Tatsuki; Nakamura, Kazuo; Yamada, Kazuo; Sakai, Shin-ichi

    2015-04-01

    There is a worldwide trend towards stricter control of diesel exhaust emissions, however presently, there are technical impediments to the use of FAME (fatty acid methyl esters)-type biodiesel fuel (BDF). Although hydrogenated biodiesel (HBD) is anticipated as a new diesel fuel, the environmental performance of HBD and its utilization system have not been adequately clarified. Especially when waste cooking oil is used as feedstock, not only biofuel production but also the treatment of waste cooking oil is an important function for society. A life cycle assessment (LCA), including uncertainty analysis, was conducted to determine the environmental benefits (global warming, fossil fuel consumption, urban air pollution, and acidification) of HBD produced from waste cooking oil via catalytic cracking and hydrogenation, compared with fossil-derived diesel fuel or FAME-type BDF. Combined functional unit including "treatment of waste cooking oil" and "running diesel vehicle for household waste collection" was established in the context of Kyoto city, Japan. The calculation utilized characterization, damage, and integration factors identified by LIME2, which was based on an endpoint modeling method. The results show that if diesel vehicles that comply with the new Japanese long-term emissions gas standard are commonly used in the future, the benefit of FAME-type BDF will be relatively limited. Furthermore, the scenario that introduced HBD was most effective in reducing total environmental impact, meaning that a shift from FAME-type BDF to HBD would be more beneficial.

  13. Catalytic cracking of non-edible sunflower oil over ZSM-5 for hydrocarbon bio-jet fuel.

    PubMed

    Zhao, Xianhui; Wei, Lin; Julson, James; Qiao, Qiquan; Dubey, Ashish; Anderson, Gary

    2015-03-25

    Non-edible sunflower oils that were extracted from sunflower residual wastes were catalytically cracked over a ZSM-5 catalyst in a fixed-bed reactor at three different reaction temperatures: 450°C, 500°C and 550°C. The catalyst was characterized using XRD, FT-IR, BET and SEM. Characterizations of the upgraded sunflower oils, hydrocarbon fuels, distillation residues and non-condensable gases were carried out. The effect of the reaction temperature on the yield and quality of liquid products was discussed. The results showed that the reaction temperature affected the hydrocarbon fuel yield but had a minor influence on its properties. The highest conversion efficiency from sunflower oils to hydrocarbon fuels was 30.1%, which was obtained at 550°C. The reaction temperature affected the component content of the non-condensable gases. The non-condensable gases generated at 550°C contained the highest content of light hydrocarbons (C1-C5), CO, CO2 and H2. Compared to raw sunflower oils, the properties of hydrocarbon fuels including the dynamic viscosity, pH, moisture content, density, oxygen content and heating value were improved.

  14. Improved PI-PD control design using predictive functional optimization for temperature model of a fluidized catalytic cracking unit.

    PubMed

    Zou, Hongbo; Li, Haisheng

    2017-03-01

    Proportional-integral-derivative (PID) control is widely used in industry because of its simple structure and convenient implementation. However, PID control is suitable for small time delay systems; while if too large delay is encountered, PID control may not obtain the desired performance. Proportional-integral-proportional-derivative (PI-PD) control is a modified of PID control and can get improved control performance; however, due to the complex controller parameter tuning, the PI-PD control is used in a limited scope. Inspired by the advantage of predictive functional control (PFC), a new PI-PD control design using PFC optimization is proposed in this paper. The proposed method not only inherits the advantage of PFC, which does well in coping with the time delay, but also has the same structure as the PI-PD controller. The proposed method is tested on the preheated temperature control of crude oil in a fluidized catalytic cracking unit. The results show that the proposed controller improves control performance compared with typical PID control and PI-PD control.

  15. 40 CFR 63.1566 - What are my requirements for organic HAP emissions from catalytic reforming units?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Catalytic Cracking Units, Catalytic Reforming Units, Sulfur Recovery Units, and Bypass Lines § 63.1566...

  16. 40 CFR 63.1566 - What are my requirements for organic HAP emissions from catalytic reforming units?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Catalytic Cracking Units, Catalytic Reforming Units, Sulfur Recovery Units, and Bypass Lines § 63.1566...

  17. 40 CFR 63.1567 - What are my requirements for inorganic HAP emissions from catalytic reforming units?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Catalytic Cracking Units, Catalytic Reforming Units, Sulfur Recovery Units, and Bypass Lines § 63.1567...

  18. Dynamic bulk and shear moduli due to grain-scale local fluid flow in fluid-saturated cracked poroelastic rocks: Theoretical model

    NASA Astrophysics Data System (ADS)

    Song, Yongjia; Hu, Hengshan; Rudnicki, John W.

    2016-07-01

    Grain-scale local fluid flow is an important loss mechanism for attenuating waves in cracked fluid-saturated poroelastic rocks. In this study, a dynamic elastic modulus model is developed to quantify local flow effect on wave attenuation and velocity dispersion in porous isotropic rocks. The Eshelby transform technique, inclusion-based effective medium model (the Mori-Tanaka scheme), fluid dynamics and mass conservation principle are combined to analyze pore-fluid pressure relaxation and its influences on overall elastic properties. The derivation gives fully analytic, frequency-dependent effective bulk and shear moduli of a fluid-saturated porous rock. It is shown that the derived bulk and shear moduli rigorously satisfy the Biot-Gassmann relationship of poroelasticity in the low-frequency limit, while they are consistent with isolated-pore effective medium theory in the high-frequency limit. In particular, a simplified model is proposed to quantify the squirt-flow dispersion for frequencies lower than stiff-pore relaxation frequency. The main advantage of the proposed model over previous models is its ability to predict the dispersion due to squirt flow between pores and cracks with distributed aspect ratio instead of flow in a simply conceptual double-porosity structure. Independent input parameters include pore aspect ratio distribution, fluid bulk modulus and viscosity, and bulk and shear moduli of the solid grain. Physical assumptions made in this model include (1) pores are inter-connected and (2) crack thickness is smaller than the viscous skin depth. This study is restricted to linear elastic, well-consolidated granular rocks.

  19. Relating feedstock composition to product slate and composition in catalytic cracking: 1. Bench scale experiments with liquid chromatographic fractions from Wilmington, CA, >650{degree}F resid

    SciTech Connect

    Green, J.B.; Zagula, E.J.; Reynolds, J.W.; Wandke, H.H.; Young, L.L.; Chew, H.

    1993-09-01

    The catalytic cracking behavior of compound types in the >650{degree}F resid from a Wilmington, CA, 14.2{degree} API crude was investigated. Liquid Chromatography (LC) was used to separate the resid into eight fractions. These fractions were used as feedstocks for a bench scale fluidized catalytic cracking (FCC) unit. Gasoline was produced almost exclusively from neutral (65 % of whole resid) components. Acidic and basic types were partially converted to coke plus small amounts of C{sub l} and C{sub 2} gases, with the balance primarily carrying over as heavy liquid products. Gasoline composition depended on the type and quantity of polar compounds present in the feed because both acidic and basic compounds inhibited cracking reactions ({beta}-scission, hydrogen transfer, etc.) to varying degrees. In accordance with prior work, basic nitrogen compounds exhibited the largest inhibitory effect on cracking. Their effect is dependent on concentrations up to a limiting value which may correspond to saturation of susceptible catalyst sites. On an equal weight basis, the effect of high boiling (high molecular weight) bases was less than those occurring in the 650--1000{degree}F distillate range. Partitioning of nitrogen present in acidic (e.g. carbazole) forms in the feed into liquid products was greater than for basic nitrogen. Thiophenic forms of sulfur partitioned more into liquid and less into gaseous (H{sub 2}S) products than sulfide-type sulfur. Coke yield was approximately proportional to microcarbon residue test results for all feeds. Ongoing work with additional feedstocks has indicated behavior similar to that of Wilmington. Selected Wilmington liquid products are undergoing detailed analysis in order to determine relationships between feed versus product composition, particularly with respect to acidic and basic types.

  20. HZSM-5/MCM-41 composite molecular sieves for the catalytic cracking of endothermic hydrocarbon fuels: nano-ZSM-5 zeolites as the source

    NASA Astrophysics Data System (ADS)

    Sang, Yu; Jiao, Qingze; Li, Hansheng; Wu, Qin; Zhao, Yun; Sun, Kening

    2014-12-01

    A series of HZSM-5/MCM-41 composite molecular sieves (HZM-Ns ( x)) were prepared by employing nano-ZSM-5 zeolites with the SiO2/Al2O3 ratios ( x) of 50, 100 and 150 as the source. These materials were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive spectroscopy, transmission electron microscopy, N2 adsorption-desorption measurement, and NH3 temperature-programmed desorption. The catalytic cracking of endothermic hydrocarbon fuels over the HZM-Ns with n-decane as model was evaluated at atmospheric pressure and 500 °C. The effect of the parent zeolite, mesopore and SiO2/Al2O3 ratio on the structure, acidity, and catalytic performance of HZM-Ns was investigated. The HZM-Ns exhibited a skeletal matrix with nano-sized HZSM-5 particles (200-300 nm) with a controllable acidity well dispersed in and microporous-mesoporous hierarchical pores. The mesoporous structure improved the diffusion of the reactants and products in the pores, and the HZSM-5 nanoparticles uniformly dispersed in the MCM-41 matrix supplied a proper acidity, shorter channels, and a higher specific surface area for reaction. These resulted in a high catalytic activity, a high selectivity to light olefins and a long lifetime for n-decane catalytic cracking. The HZM-N (150) exhibited the excellent conversion, a high selectivity to light olefins and a long lifetime due to low diffusion resistance, high specific surface area, and appropriate acid distribution and strength, with the increasing SiO2/Al2O3 ratio.

  1. 40 CFR 60.105a - Monitoring of emissions and operations for fluid catalytic cracking units (FCCU) and fluid coking...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... system must be equipped with an alarm system that will sound when the system detects an increase in... system to account for seasonal effects, including temperature and humidity, according to the procedures... the CPMS for exhaust gas temperature and O2 monitor required in paragraph (h)(4) of this section...

  2. 40 CFR 60.105a - Monitoring of emissions and operations for fluid catalytic cracking units (FCCU) and fluid coking...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... data logger). (iii) The bag leak detection system must be equipped with an alarm system that will sound... sensitivity of the bag leak detection system to account for seasonal effects, including temperature and... data known to affect CO emissions; and (B) Descriptions of the CPMS for exhaust gas temperature and...

  3. 40 CFR 60.105a - Monitoring of emissions and operations for fluid catalytic cracking units (FCCU) and fluid coking...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... data logger). (iii) The bag leak detection system must be equipped with an alarm system that will sound... sensitivity of the bag leak detection system to account for seasonal effects, including temperature and... data known to affect CO emissions; and (B) Descriptions of the CPMS for exhaust gas temperature and...

  4. Resonance of a fluid-driven crack: radiation properties and implications for the source of long-period events and harmonic tremor.

    USGS Publications Warehouse

    Chouet, B.

    1988-01-01

    A dynamic source model is presented, in which a 3-D crack containing a viscous compressible fluid is excited into resonance by an impulsive pressure transient applied over a small area DELTA S of the crack surface. The crack excitation depends critically on two dimensionless parameters called the crack stiffness and viscous damping loss. According to the model, the long-period event and harmonic tremor share the same source but differ in the boundary conditions for fluid flow and in the triggering mechanism setting up the resonance of the source, the former being viewed as the impulse response of the tremor generating system and the later representing the excitation due to more complex forcing functions.-from Author

  5. Shuttle Fuel Feedliner Cracking Investigation

    NASA Technical Reports Server (NTRS)

    Nesman, Tomas E.; Turner, Jim (Technical Monitor)

    2002-01-01

    This presentation provides an overview of material covered during 'Space Shuttle Fuel Feedliner Cracking Investigation MSFC Fluids Workshop' held November 19-21, 2002. Topics covered include: cracks on fuel feed lines of Orbiter space shuttles, fluid driven cracking analysis, liner structural modes, structural motion in a fluid, fluid borne drivers, three dimensional computational fluid dynamics models, fluid borne drivers from pumps, amplification mechanisms, flow parameter mapping, and flight engine flow map.

  6. Influence of circumferential notch and fatigue crack on the mechanical integrity of biodegradable magnesium-based alloy in simulated body fluid.

    PubMed

    Bobby Kannan, M; Singh Raman, R K; Witte, F; Blawert, C; Dietzel, W

    2011-02-01

    Applications of magnesium alloys as biodegradable orthopaedic implants are critically dependent on the mechanical integrity of the implant during service. In this study, the mechanical integrity of an AZ91 magnesium alloy was studied using a constant extension rate tensile (CERT) method. The samples in two different geometries that is, circumferentially notched (CN), and circumferentially notched and fatigue cracked (CNFC), were tested in air and in simulated body fluid (SBF). The test results show that the mechanical integrity of the AZ91 magnesium alloy decreased substantially (∼50%) in both the CN and CNFC samples exposed to SBF. Fracture surface analysis revealed secondary cracks suggesting stress corrosion cracking susceptibility of the alloy in SBF.

  7. Heterogeneous kinetic modeling of the catalytic conversion of cycloparaffins

    NASA Astrophysics Data System (ADS)

    Al-Sabawi, Mustafa N.

    The limited availability of high value light hydrocarbon feedstocks along with the rise in crude prices has resulted in the international recognition of the vast potential of Canada's oil sands. With the recent expansion of Canadian bitumen production come, however, many technical challenges, one of which is the significant presence of aromatics and cycloparaffins in bitumen-derived feedstocks. In addition to their negative environmental impact, aromatics limit fluid catalytic cracking (FCC) feedstock conversion, decrease the yield and quality of valuable products such as gasoline and middle distillates, increase levels of polyaromatic hydrocarbons prone to form coke on the catalyst, and ultimately compromise the FCC unit performance. Although cycloparaffins do not have such negative impacts, they are precursors of aromatics as they frequently undergo hydrogen transfer reactions. However, cycloparaffin cracking chemistry involves other competing reactions that are complex and need much investigation. This dissertation provides insights and understanding of the fundamentals of the catalytic cracking of cycloparaffins using carefully selected model compounds such as methylcyclohexane (MCH) and decalin. Thermal and catalytic cracking of these cycloparaffins on FCC-type catalysts are carried out using the CREC Riser Simulator under operating conditions similar to those of the industrial FCC units in terms of temperature, reaction time, reactant partial pressure and catalyst-to-hydrocarbon ratio. The crystallite size of the supported zeolites is varied between 0.4 and 0.9 microns, with both activity and selectivity being monitored. Catalytic conversions ranged between 4 to 16 wt% for MCH and between 8 to 27 wt% for decalin. Reaction pathways of cycloparaffins are determined, and these include ring-opening, protolytic cracking, isomerization, hydrogen transfer and transalkylation. The yields and selectivities of over 60 and 140 products, formed during MCH and decalin

  8. Systemic toxicity from subchronic dermal exposure, chemical characterization, and dermal penetration of catalytically cracked clarified slurry oil.

    PubMed

    Cruzan, G; Low, L K; Cox, G E; Meeks, J R; Mackerer, C R; Craig, P H; Singer, E J; Mehlman, M A

    1986-12-01

    Clarified slurry oil (CSO), the heavy residual fraction from the fluidized catalytic cracker, was applied to the shaven backs of groups of 10 male and 10 female Sprague-Dawley rats 5 days/week for 13 weeks at doses of 8, 30, 125, or 500 mg/kg/day, and to another group for 2 weeks at doses of 2000 mg/kg/day. The rats were fitted with cardboard Elizabethan collars to minimize the ingestion of the test material, which was applied undiluted and remained uncovered on the skin. A similar group of rats served as controls; they were treated in the same manner except that no CSO was applied to their skin. There was a dose-related mortality and depression of body weight gain in the rats treated with CSO at doses of 30 mg/kg/day or greater; none of the rats dosed at 2000 mg/kg/day survived more than 2 weeks. The primary target organs of CSO toxicity were the liver, thymus, and bone marrow. The effects on the liver included increased weight (250% at 500 mg/kg/day), cholangiolitis, diffuse liver cell degeneration and hypertrophy, necrosis, fibrosis, decreased serum glucose, increased levels of alkaline phosphatase, aspartate aminotransferase, alanine amino transferase, bilirubin, and triglycerides. The thymus was found to be small and upon microscopic examination to be atrophic or hypoplastic. Erythroid hypoplasia was found in the bone marrow of some of the rats dosed at 30 mg/kg/day and increased in severity with increasing dose. The erythroid hypoplasia was accompanied by a dose-related anemia. Even in the rats dosed at 8 mg/kg/day, very slight abnormalities in the bile ducts were observed upon microscopic examination of the liver. Chromatographic separation and analyses demonstrated that CSO contains about 58% 3- to 5-ring polycyclic aromatic hydrocarbons (PAHs) and approximately 8-10% carbazole derivatives. In vitro and in vivo skin penetration studies demonstrated that the carbazole materials penetrate through the skin to a considerable extent (about 44%); less penetration

  9. Low-temperature, selective catalytic deoxygenation of vegetable oil in supercritical fluid media.

    PubMed

    Kim, Seok Ki; Lee, Hong-Shik; Hong, Moon Hyun; Lim, Jong Sung; Kim, Jaehoon

    2014-02-01

    The effects of supercritical fluids on the production of renewable diesel-range hydrocarbons from natural triglycerides were investigated. Various supercritical fluids, which included CO2 (scCO2 ), propane (scC3 H8 ) and n-hexane (scC6 H14 ), were introduced with H2 and soybean oil into a fixed-bed reactor that contained pre-activated CoMo/γ-Al2 O3 . Among these supercritical fluids, scC3 H8 and scC6 H14 efficiently allowed the reduction of the reaction temperature by as much as 50 °C as a result of facilitated heat and mass transfer and afforded similar yields to reactions in the absence of supercritical fluids. The compositional analyses of the gas and liquid products indicated that the addition of scC3 H8 during the hydrotreatment of soybean oil promoted specific deoxygenation pathways, decarbonylation and decarboxylation, which consumed less H2 than the hydrodeoxygenation pathway. As a result, the quantity of H2 required to obtain a high yield of diesel-range hydrocarbons could be reduced to 57 % if scC3 H8 was used. As decarboxylation and decarbonylation are mildly endothermic reactions, the reduced heat transfer resistance in scC3 H8 may drive the deoxygenation reaction to thermodynamically favourable pathways.

  10. Computer simulations of fluid flow over catalytic surfaces for water splitting

    NASA Astrophysics Data System (ADS)

    Chong, Leebyn; Dutt, Meenakshi

    2014-12-01

    Interfacial phenomena arising at solid/fluid interfaces depend upon the nanoscale structural and dynamical properties of the system. The presence of active sites on the solid surface that can bind with reactants in the fluid enables the investigation of reaction kinetics and its effect on multi-scale transport processes. We develop a coarse-grained particle-based model of the flow of reactants over a solid surface composed of close packed particles with embedded active sites. We investigate the role of the adsorption of the reactants onto these sites on the transport phenomena via the coarse-grained molecular dynamics technique. Our objective is to understand the role of nanoscale interfacial phenomena on the structural and dynamical properties of the system through the measurement of diffusion coefficients, velocity profiles, radial distribution functions, and mean residence times. We have investigated these properties as a function of the active site density, coarse graining effects and interaction strengths. Our results can potentially be used for future studies on multi-scale phenomena driven by reaction kinetics at solid/fluid interfaces, such as artificial photosynthesis cells.

  11. Soluble and Catalytically Active Endothelin Converting Enzyme-1 is Present in Cerebrospinal Fluid of Subarachnoid Hemorrhage Patients

    PubMed Central

    Kuruppu, Sanjaya; Chou, Sherry H.-Y.; Feske, Steven K.; Suh, Sarah; Hanchapola, Iresha; Lo, Eng H.; Ning, MingMing; Smith, A. Ian

    2014-01-01

    Endothelin converting Enzyme-1 (ECE-1) is essential for the production of Endothelin-1 (ET-1), which is associated with vasospasm following subarachnoid hemorrhage (SAH). We have previously demonstrated the presence of a catalytically active soluble form of ECE-1 in the media of endothelial cells. We aimed to determine if this form of ECE-1 exists in vivo, in cerebrospinal fluid (CSF) of SAH patients. We examined CSF taken from SAH subjects for the presence of soluble ECE-1 using a bradykinin based quenched fluorescent substrate assay. We obtained further confirmation by characterizing the CSF mediated cleavage products of BigET-1 and BigET18–34 (6 μg/ml) using mass spectrometry. The specificity of cleavage was confirmed using the ECE-1 inhibitor CGS35066 5nmol/L. SAH CSF samples had mean ECE-1 activity of 0.127 ± 0.037 μmols of substrate cleaved/μl of CSF/24 h. The C-terminal peptides generated upon the cleavage of BigET-1 and BigET18–34 were detected 48 h after incubation of these substrates with CSF. Cleavage of these substrates was inhibited by CGS35066. Results of Western blots also produced strong evidence for the presence of truncated soluble ECE-1 in CSF. These results strongly suggest the presence of a truncated but catalytically active form of ECE-1 in the CSF of SAH subjects. Further studies are necessary to determine the biological significance of soluble ECE-1 in CSF of SAH subjects, including an association with vasospasm after SAH. PMID:23816989

  12. Slow Crack Growth and Fracture Toughness of Sapphire for the International Space Station Fluids and Combustion Facility

    NASA Technical Reports Server (NTRS)

    Salem, Jonathan A.

    2006-01-01

    The fracture toughness, inert flexural strength, and slow crack growth parameters of the r- and a-planes of sapphire grown by the Heat Exchange Method were measured to qualify sapphire for structural use in the International Space Station. The fracture toughness in dry nitrogen, K(sub Ipb), was 2.31 +/- 0.12 MPa(square root of)m and 2.47 +/- 0.15 MPa(squre root of)m for the a- and r-planes, respectively. Fracture toughness measured in water via the operational procedure in ASTM C1421 was significantly lower, K(sub Ivb) = 1.95+/- 0.03 MPa(square root of)m, 1.94 +/- 0.07 and 1.77 +/- 0.13 MPa(square root of)m for the a- , m- and r-planes, respectively. The mean inert flexural strength in dry nitrogen was 1085 +/- 127 MPa for the r-plane and 1255 +/- 547 MPa for the a-plane. The power law slow crack growth exponent for testing in water was n = 21 +/- 4 for the r-plane and n (greater than or equal to) 31 for the a-plane. The power law slow crack growth coefficient was A = 2.81 x 10(exp -14) m/s x (MPa(squre root of)m)/n for the r-plane and A (approx. equals)2.06 x 10(exp -15) m/s x (MPa(square root of)m)/n for the a-plane. The r- and a-planes of sapphire are relatively susceptible to stress corrosion induced slow crack growth in water. However, failure occurs by competing modes of slow crack growth at long failure times and twinning for short failure time and inert environments. Slow crack growth testing needs to be performed at low failure stress levels and long failure times so that twinning does not affect the results. Some difficulty was encountered in measuring the slow crack growth parameters for the a-plane due to a short finish (i.e., insufficient material removal for elimination of the damage generated in the early grinding stages). A consistent preparation method that increases the Weibull modulus of sapphire test specimens and components is needed. This would impart higher component reliability, even if higher Weibull modulus is gained at the sacrifice of

  13. Investigation of Coal-biomass Catalytic Gasification using Experiments, Reaction Kinetics and Computational Fluid Dynamics

    SciTech Connect

    Battaglia, Francine; Agblevor, Foster; Klein, Michael; Sheikhi, Reza

    2015-12-31

    A collaborative effort involving experiments, kinetic modeling, and computational fluid dynamics (CFD) was used to understand co-gasification of coal-biomass mixtures. The overall goal of the work was to determine the key reactive properties for coal-biomass mixed fuels. Sub-bituminous coal was mixed with biomass feedstocks to determine the fluidization and gasification characteristics of hybrid poplar wood, switchgrass and corn stover. It was found that corn stover and poplar wood were the best feedstocks to use with coal. The novel approach of this project was the use of a red mud catalyst to improve gasification and lower gasification temperatures. An important results was the reduction of agglomeration of the biomass using the catalyst. An outcome of this work was the characterization of the chemical kinetics and reaction mechanisms of the co-gasification fuels, and the development of a set of models that can be integrated into other modeling environments. The multiphase flow code, MFIX, was used to simulate and predict the hydrodynamics and co-gasification, and results were validated with the experiments. The reaction kinetics modeling was used to develop a smaller set of reactions for tractable CFD calculations that represented the experiments. Finally, an efficient tool was developed, MCHARS, and coupled with MFIX to efficiently simulate the complex reaction kinetics.

  14. A density functional study on the effect of the zeolite cavity on its catalytic activity: The dehydrogenation and cracking reactions of isobutane over HZSM-5 and HY zeolites

    NASA Astrophysics Data System (ADS)

    Milas, Ivan; Chaer Nascimento, Marco Antonio

    2006-02-01

    The dehydrogenation and cracking reactions of isobutane over HZMS-5 and HY were studied at the DFT level of calculation to verify the influence of the cavity on the energetics and mechanism of the reactions. The zeolites were represented by the 20T and 32T clusters, respectively. The results indicate that the reactions follow the same mechanism in both zeolites but the activation energies are reduced by ˜10 kcal/mol relative to the values with smaller clusters. Activation energies for the dehydrogenation reactions were similar in both zeolites, but for the cracking reaction in HY, the activation energy is ˜5 kcal/mol higher than in HZSM-5.

  15. Hydrocarbon cracking and reforming process

    SciTech Connect

    Le, Q.N.; Schipper, P.H.; Owen, H.

    1992-03-31

    This patent describes a process for upgrading paraffinic naphtha to high octane fuel. It comprises: contacting a fresh naphtha feedstock stream containing a major amount of C{sub 7+} alkanes and naphthenes with medium pore acid cracking catalyst under low pressure selective cracking conditions effective to produce 4-C5 isoalkene and C4-C5 isoalkane, the cracking catalyst being substantially free of hydrogenation-dehydrogenation metal components and having an acid cracking activity less than 15; separating cracking effluent to obtain an olefinic fraction rich in C4-C5 isoalkene and a C6+ fraction; etherifying the C4-C5 isoalkene fraction by catalytic reaction with lower alkanol to produce tertiary-alkyl ether product; and reforming the C6+ fraction to provide high octane gasoline components.

  16. Use of vacuum residue in thermal cracking

    SciTech Connect

    Mikulla, K.D.; Wernicke, H.J.

    1981-03-24

    Vacuum residue is used for production of olefins by first separating, preferably by solvent extraction, the asphalt therein , blending resultant asphalt depleted fraction with a lighter fraction, E.G., a vacuum gas oil, and then subjecting the blend to a conventional catalytic hydrogenation step prior to thermal cracking. The hydrogenate may be separated into fractions with the heavy fraction only being thermally cracked.

  17. Multifaceted effects of HZSM-5 (Proton-exchanged Zeolite Socony Mobil-5) on catalytic cracking of pinewood pyrolysis vapor in a two-stage fixed bed reactor.

    PubMed

    Wang, Yimeng; Wang, Jie

    2016-08-01

    The pinewood was pyrolyzed in the first reactor at a heating rate of 10°Cmin(-1) from room temperature to 700°C, and the vapor was allowed to be cracked through the second reactor in a temperature range of 450-750°C without and with HZSM-5. Attempts were made to determine a wide spectrum of gaseous and liquid products, as well as the mass and element partitions to gas, water, bio-oil, coke and char. HZSM-5 showed a preferential deoxygenation effect via the facilitated decarbonylation and decarboxylation with the inhibited dehydration at 550-600°C. This catalyst also displayed a high selectivity for the formations of aromatic hydrocarbons and olefins by the promoted hydrogen transfer to these products at 550-600°C. The bio-oil produced with HZSM-5 at 500-600°C had the yields of 14.5-16.8%, the high heat values of 39.1-42.4MJkg(-1), and the energy recoveries of 33-35% (all dry biomass basis).

  18. Crack Healing in Quartz: Influence of Crack Morphology and pOH-

    NASA Astrophysics Data System (ADS)

    Fallon, J. A.; Kronenberg, A. K.; Popp, R. K.; Lamb, W. M.

    2004-12-01

    Crack healing in quartz has been investigated by optical microscopy and interferometry of rhombohedral r-cleavage cracks in polished Brazilian quartz prisms that were hydrothermally annealed. Quartz prisms were pre-cracked at room temperature and then annealed at temperatures T of 250° and 400° C for 2.4 to 240 hours, fluid pressure Pf = 41 MPa (equal to confining pressure Pc), and varying pOH- (from 5.4 to 1.2 at 250° C for fluids consisting of distilled water and NaOH solutions). Crack morphologies before and after annealing were recorded for each sample in plane light digital images and apertures were determined from interference fringes recorded using transmitted monochromatic light (λ = 598 nm). As documented in previous studies (Smith and Evans, 1984; Brantley et al., 1990; Beeler and Hickman, 1996), crack healing of quartz is driven by reductions in surface energy and healing rates appear to be limited by diffusional solute transport; sharply defined crack tips become blunted and break up into fluid-filled tubes and inclusions. However, fluid inclusion geometries are also observed with nonequilibrium shapes that depend on initial surface roughness. Crack healing is significant at 400° C after short run durations (24 hr) with healing rates reaching 10-5 mm/s. Crack healing is also observed at T=250° C, but only for smooth cracks with apertures < 0.6 μ m or for cracks subject to low pOH-. The extent of crack healing is sensitive to crack aperture and to hackles formed by fine-scale crack branching during crack growth. Initial crack apertures appear to be governed by the presence of fine particles, often found in the vicinity of hackles, which maintain the separation of crack surfaces. Where rough cracks exhibit healing, hackles are sites of either enhanced or reduced loss of fluid-solid interface depending on slight mismatches and sense of twist of opposing crack surfaces. Hackles of open r-cleavage cracks are replaced either by (1) healed curvilinear

  19. Crack propagation driven by crystal growth

    SciTech Connect

    A. Royne; Paul Meaking; A. Malthe-Sorenssen; B. Jamtveit; D. K. Dysthe

    2011-10-01

    Crystals that grow in confinement may exert a force on their surroundings and thereby drive crack propagation in rocks and other materials. We describe a model of crystal growth in an idealized crack geometry in which the crystal growth and crack propagation are coupled through the stress in the surrounding bulk solid. Subcritical crack propagation takes place during a transient period, which may be very long, during which the crack velocity is limited by the kinetics of crack propagation. When the crack is sufficiently large, the crack velocity becomes limited by the kinetics of crystal growth. The duration of the subcritical regime is determined by two non-dimensional parameters, which relate the kinetics of crack propagation and crystal growth to the supersaturation of the fluid and the elastic properties of the surrounding material.

  20. Thermal cracking with post hydrogenation and recycle of heavy fractions

    SciTech Connect

    Schliebener, C.; Wernicke, H.J.

    1981-10-27

    In a process for the thermal cracking of hydrocarbons to produce olefins. Improvements include recovering of hydrocarbons boiling above 200/sup 0/ C from the thermal cracking stage, removal of polymeric components therefrom, catalytically hydrogenating resultant hydrocarbons boiling above 200/sup 0/ C, and recycling resultant hydrogenated hydrocarbons to the thermal cracking stage.

  1. The kinetics of hydrocarbon cracking

    SciTech Connect

    Groten, W.A.; Wojciechowski, B.W. )

    1993-03-01

    A general kinetic model which describes the catalytic cracking of pure hydrocarbons is presented. The model includes a monomolecular cracking path based on the Langmuir adsorption isotherm as well as a bimolecular path, following Rideal kinetics, which accounts for the possibility of a chain cracking mechanism being involved. Catalyst decay is accounted for using the time-on-stream-decay function. Fitting of experimental data from n-nonane cracking on USHY at 673 K, combined with Monte Carlo simulations indicates that, in that case, the total catalytic activity could include between 0 and 90% of activity due to chain processes. This large margin of error stems from the combined effects of a large decay rate, forcing the experimenter to use average conversion data, and of experimental error. Fitting of the model to previously published cracking data for 2-methylpentane on USHY showed that the model lacks a suitable parameter to account for thermal reactions which were not accounted for in the original data set. This observation supports the impression that the model is sensitive to departures from the postulated mechanism. The above kinetic model has also been fitted to the results of n-nonane cracking at three temperatures as well as to previously published data for various other linear paraffins. 32 refs., 17 figs., 6 tabs.

  2. Seismic wave propagation in cracked porous media

    NASA Astrophysics Data System (ADS)

    Pointer, Tim; Liu, Enru; Hudson, John A.

    2000-07-01

    The movement of interstitial fluids within a cracked solid can have a significant effect on the properties of seismic waves of long wavelength propagating through the solid. We consider three distinct mechanisms of wave-induced fluid flow: flow through connections between cracks in an otherwise non-porous material, fluid movement within partially saturated cracks, and diffusion from the cracks into a porous matrix material. In each case the cracks may be aligned or randomly oriented, leading, respectively, to anisotropic or isotropic wave speeds and attenuation factors. In general, seismic velocities exhibit behaviour that is intermediate between that of empty cracks and that of isolated liquid-filled cracks if fluid flow is significant. In the range of frequencies for which considerable fluid flow occurs there is high attenuation and dispersion of seismic waves. Fluid flow may be on either a wavelength scale or a local scale depending on the model and whether the cracks are aligned or randomly oriented, resulting in completely different effects on seismic wave propagation. A numerical analysis shows that all models can have an effect over the exploration seismic frequency range.

  3. 40 CFR 63.1566 - What are my requirements for organic HAP emissions from catalytic reforming units?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... elect to meet a TOC or nonmethane TOC percent reduction standard or concentration limit, whichever is... Pollutants for Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Catalytic Cracking Units, Catalytic Reforming Units, Sulfur Recovery Units, and Bypass Lines §...

  4. 40 CFR 63.1566 - What are my requirements for organic HAP emissions from catalytic reforming units?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... elect to meet a TOC or nonmethane TOC percent reduction standard or concentration limit, whichever is... Pollutants for Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Catalytic Cracking Units, Catalytic Reforming Units, Sulfur Recovery Units, and Bypass Lines §...

  5. Cracking catalyst

    SciTech Connect

    Otterstedt, J. E. A.; Jaras, S. G.; Pudas, R.; Upson, L. L.

    1985-05-07

    A cracking catalyst having good resistance to metal poisoning has at least two particle fractions of different particle sizes, the cracking catalyzing zeolite material being concentrated to the coarser particle size fractions, and the finer particle size fractions being formed from material having relatively lower or no or insignificant cracking catalyzing activity. The particles of the finer particle size fractions have a matrix of kaolin and amorphous alumina--silica and may contain for example, an SO /SUB x/ eliminating additive such as Al/sub 2/O/sub 3/, CaO and/or MgO. The coarser particle size fractions having cracking catalyzing effect have a mean particle size of from 80 to 125 ..mu..m and the finer particle size fractions a mean particle size of from 30 to 75 ..mu..m. The coarser particle size fractions have a zeolite content of at least 20 weight % and may have a zeolite content of up to 100 weight %, the remainder consisting essentially of material which has relatively lower or no or insignificant cracking-catalyzing activity and which consists of kaolin and amorphous alumina-silica. The catalyst mass as a whole may have a zeolite content of up to 50 weight %.

  6. Catalytic reactor

    SciTech Connect

    Aaron, Timothy Mark; Shah, Minish Mahendra; Jibb, Richard John

    2009-03-10

    A catalytic reactor is provided with one or more reaction zones each formed of set(s) of reaction tubes containing a catalyst to promote chemical reaction within a feed stream. The reaction tubes are of helical configuration and are arranged in a substantially coaxial relationship to form a coil-like structure. Heat exchangers and steam generators can be formed by similar tube arrangements. In such manner, the reaction zone(s) and hence, the reactor is compact and the pressure drop through components is minimized. The resultant compact form has improved heat transfer characteristics and is far easier to thermally insulate than prior art compact reactor designs. Various chemical reactions are contemplated within such coil-like structures such that as steam methane reforming followed by water-gas shift. The coil-like structures can be housed within annular chambers of a cylindrical housing that also provide flow paths for various heat exchange fluids to heat and cool components.

  7. Methodology for extracting local constants from petroleum cracking flows

    DOEpatents

    Chang, Shen-Lin; Lottes, Steven A.; Zhou, Chenn Q.

    2000-01-01

    A methodology provides for the extraction of local chemical kinetic model constants for use in a reacting flow computational fluid dynamics (CFD) computer code with chemical kinetic computations to optimize the operating conditions or design of the system, including retrofit design improvements to existing systems. The coupled CFD and kinetic computer code are used in combination with data obtained from a matrix of experimental tests to extract the kinetic constants. Local fluid dynamic effects are implicitly included in the extracted local kinetic constants for each particular application system to which the methodology is applied. The extracted local kinetic model constants work well over a fairly broad range of operating conditions for specific and complex reaction sets in specific and complex reactor systems. While disclosed in terms of use in a Fluid Catalytic Cracking (FCC) riser, the inventive methodology has application in virtually any reaction set to extract constants for any particular application and reaction set formulation. The methodology includes the step of: (1) selecting the test data sets for various conditions; (2) establishing the general trend of the parametric effect on the measured product yields; (3) calculating product yields for the selected test conditions using coupled computational fluid dynamics and chemical kinetics; (4) adjusting the local kinetic constants to match calculated product yields with experimental data; and (5) validating the determined set of local kinetic constants by comparing the calculated results with experimental data from additional test runs at different operating conditions.

  8. Fatigue behavior of Long and Short Cracks in Aluminum Alloys.

    DTIC Science & Technology

    1987-05-01

    deposits ,37 40 irregular fracture morphologies coupled with crack tip shear displacements, 4 1 4 3 and fluid-induced pressure44 in addition to...Associated Auger measurements of the extent of crack surface corrosion deposits are shown in Fig. 4.6. In marked contrast to behavior in lower...6 8 10 12 CRACK LENGTH MEASURED FROM NOTCH (mm) Fig. 4.6: Scanning Auger spectroscopic measurements of excess crack surface oxide deposits as a

  9. Catalytic Reforming

    SciTech Connect

    Little, D.M.

    1985-01-01

    Don Little's Catalytic Reforming deals exclusively with reforming. With the increasing need for unleaded gasoline, the importance of this volume has escalated since it combines various related aspects of reforming technology into a single publication. For those with no practical knowledge of catalytic reforming, the chemical reactions, flow schemes and how the cat reformer fits into the overall refinery process will be of interest. Contents include: Catalytic reforming in refinery processing: How catalytic reformers work - chemical reactions; Process design; The catalyst, process variables and unit operation; Commercial processes; BTX operation; Feed preparation; naphtha hydrotreating and catalytic reforming; Index.

  10. Methods of cracking a crude product to produce additional crude products

    DOEpatents

    Mo, Weijian; Roes, Augustinus Wilhelmus Maria; Nair, Vijay

    2009-09-08

    A method for producing a crude product is disclosed. Formation fluid is produced from a subsurface in situ heat treatment process. The formation fluid is separated to produce a liquid stream and a first gas stream. The first gas stream includes olefins. The liquid stream is fractionated to produce one or more crude products. At least one of the crude products has a boiling range distribution from 38.degree. C. and 343.degree. C. as determined by ASTM Method D5307. The crude product having the boiling range distribution from 38.degree. C. and 343.degree. C. is catalytically cracked to produce one or more additional crude products. At least one of the additional crude products is a second gas stream. The second gas stream has a boiling point of at most 38.degree. C. at 0.101 MPa.

  11. Method and apparatus for a catalytic firebox reactor

    DOEpatents

    Smith, Lance L.; Etemad, Shahrokh; Ulkarim, Hasan; Castaldi, Marco J.; Pfefferle, William C.

    2001-01-01

    A catalytic firebox reactor employing an exothermic catalytic reaction channel and multiple cooling conduits for creating a partially reacted fuel/oxidant mixture. An oxidation catalyst is deposited on the walls forming the boundary between the multiple cooling conduits and the exothermic catalytic reaction channel, on the side of the walls facing the exothermic catalytic reaction channel. This configuration allows the oxidation catalyst to be backside cooled by any fluid passing through the cooling conduits. The heat of reaction is added to both the fluid in the exothermic catalytic reaction channel and the fluid passing through the cooling conduits. After discharge of the fluids from the exothermic catalytic reaction channel, the fluids mix to create a single combined flow. A further innovation in the reactor incorporates geometric changes in the exothermic catalytic reaction channel to provide streamwise variation of the velocity of the fluids in the reactor.

  12. Crack, crack house sex, and HIV risk.

    PubMed

    Inciardi, J A

    1995-06-01

    Limited attention has been focused on HIV risk behaviors of crack smokers and their sex partners, yet there is evidence that the crack house and the crack-using life-style may be playing significant roles in the transmission of HIV and other sexually transmitted diseases. The purposes of this research were to study the attributes and patterns of "sex for crack" exchanges, particularly those that occurred in crack houses, and to assess their potential impact on the spread of HIV. Structured interviews were conducted with 17 men and 35 women in Miami, Florida, who were regular users of crack and who had exchanged sex for crack (or for money to buy crack) during the past 30 days. In addition, participant observation was conducted in 8 Miami crack houses. Interview and observational data suggest that individuals who exchange sex for crack do so with considerable frequency, and through a variety of sexual activities. Systematic data indicated that almost a third of the men and 89% of the women had had 100 or more sex partners during the 30-day period prior to study recruitment. Not only were sexual activities anonymous, extremely frequent, varied, uninhibited (often undertaken in public areas of crack houses), and with multiple partners but, in addition, condoms were not used during the majority of contacts. Of the 37 subjects who were tested for HIV and received their test results 31% of the men and 21% of the women were HIV seropositive.

  13. 40 CFR 63.1567 - What are my requirements for inorganic HAP emissions from catalytic reforming units?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... demonstrate continuous compliance with the percent reduction operating limit, calculate the HCl operating... permissible HCl concentration for the percent reduction operating limit, ppmv; %HCl ReductionLimit = Minimum... Pollutants for Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur...

  14. 40 CFR 63.1567 - What are my requirements for inorganic HAP emissions from catalytic reforming units?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... demonstrate continuous compliance with the percent reduction operating limit, calculate the HCl operating... permissible HCl concentration for the percent reduction operating limit, ppmv; %HCl ReductionLimit = Minimum... Pollutants for Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur...

  15. Gear Crack Propagation Investigation

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Reduced weight is a major design goal in aircraft power transmissions. Some gear designs incorporate thin rims to help meet this goal. Thin rims, however, may lead to bending fatigue cracks. These cracks may propagate through a gear tooth or into the gear rim. A crack that propagates through a tooth would probably not be catastrophic, and ample warning of a failure could be possible. On the other hand, a crack that propagates through the rim would be catastrophic. Such cracks could lead to disengagement of a rotor or propeller from an engine, loss of an aircraft, and fatalities. To help create and validate tools for the gear designer, the NASA Lewis Research Center performed in-house analytical and experimental studies to investigate the effect of rim thickness on gear-tooth crack propagation. Our goal was to determine whether cracks grew through gear teeth (benign failure mode) or through gear rims (catastrophic failure mode) for various rim thicknesses. In addition, we investigated the effect of rim thickness on crack propagation life. A finite-element-based computer program simulated gear-tooth crack propagation. The analysis used principles of linear elastic fracture mechanics, and quarter-point, triangular elements were used at the crack tip to represent the stress singularity. The program had an automated crack propagation option in which cracks were grown numerically via an automated remeshing scheme. Crack-tip stress-intensity factors were estimated to determine crack-propagation direction. Also, various fatigue crack growth models were used to estimate crack-propagation life. Experiments were performed in Lewis' Spur Gear Fatigue Rig to validate predicted crack propagation results. Gears with various backup ratios were tested to validate crack-path predictions. Also, test gears were installed with special crack-propagation gages in the tooth fillet region to measure bending-fatigue crack growth. From both predictions and tests, gears with backup ratios

  16. 40 CFR Table 20 to Subpart Uuu of... - Continuous Compliance With Organic HAP Emission Limits for Catalytic Reforming Units

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Emission Limits for Catalytic Reforming Units 20 Table 20 to Subpart UUU of Part 63 Protection of... Pollutants for Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery... HAP Emission Limits for Catalytic Reforming Units As stated in § 63.1566(c)(1), you shall meet...

  17. 40 CFR Table 26 to Subpart Uuu of... - Initial Compliance With Inorganic HAP Emission Limits for Catalytic Reforming Units

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Emission Limits for Catalytic Reforming Units 26 Table 26 to Subpart UUU of Part 63 Protection of... Pollutants for Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery... HAP Emission Limits for Catalytic Reforming Units As stated in § 63.1567(b)(4), you shall meet...

  18. 40 CFR Table 26 to Subpart Uuu of... - Initial Compliance With Inorganic HAP Emission Limits for Catalytic Reforming Units

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Emission Limits for Catalytic Reforming Units 26 Table 26 to Subpart UUU of Part 63 Protection of... Pollutants for Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery... HAP Emission Limits for Catalytic Reforming Units As stated in § 63.1567(b)(4), you shall meet...

  19. 40 CFR Table 27 to Subpart Uuu of... - Continuous Compliance With Inorganic HAP Emission Limits for Catalytic Reforming Units

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... HAP Emission Limits for Catalytic Reforming Units 27 Table 27 to Subpart UUU of Part 63 Protection of... Pollutants for Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery... Inorganic HAP Emission Limits for Catalytic Reforming Units As stated in § 63.1567(c)(1), you shall...

  20. 40 CFR Table 19 to Subpart Uuu of... - Initial Compliance With Organic HAP Emission Limits for Catalytic Reforming Units

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Emission Limits for Catalytic Reforming Units 19 Table 19 to Subpart UUU of Part 63 Protection of... Pollutants for Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery... HAP Emission Limits for Catalytic Reforming Units As stated in § 63.1566(b)(7), you shall meet...

  1. 40 CFR Table 20 to Subpart Uuu of... - Continuous Compliance With Organic HAP Emission Limits for Catalytic Reforming Units

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Emission Limits for Catalytic Reforming Units 20 Table 20 to Subpart UUU of Part 63 Protection of... Pollutants for Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery... HAP Emission Limits for Catalytic Reforming Units As stated in § 63.1566(c)(1), you shall meet...

  2. 40 CFR Table 19 to Subpart Uuu of... - Initial Compliance With Organic HAP Emission Limits for Catalytic Reforming Units

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Emission Limits for Catalytic Reforming Units 19 Table 19 to Subpart UUU of Part 63 Protection of... Pollutants for Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery... HAP Emission Limits for Catalytic Reforming Units As stated in § 63.1566(b)(7), you shall meet...

  3. Crack spectra analysis

    SciTech Connect

    Tiernan, M.

    1980-09-01

    Crack spectra derived from velocity data have been shown to exhibit systematics which reflect microstructural and textural differences between samples (Warren and Tiernan, 1980). Further research into both properties and information content of crack spectra have yielded the following: Spectral features are reproducible even at low pressures; certain observed spectral features may correspond to non-in-situ crack populations created during sample retrieval; the functional form of a crack spectra may be diagnostic of the sample's grain texture; hysteresis is observed in crack spectra between up and down pressure runs - it may be due to friction between the faces of closed crack populations.

  4. Gear crack propagation investigations

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; Ballarini, Roberto

    1996-01-01

    Analytical and experimental studies were performed to investigate the effect of gear rim thickness on crack propagation life. The FRANC (FRacture ANalysis Code) computer program was used to simulate crack propagation. The FRANC program used principles of linear elastic fracture mechanics, finite element modeling, and a unique re-meshing scheme to determine crack tip stress distributions, estimate stress intensity factors, and model crack propagation. Various fatigue crack growth models were used to estimate crack propagation life based on the calculated stress intensity factors. Experimental tests were performed in a gear fatigue rig to validate predicted crack propagation results. Test gears were installed with special crack propagation gages in the tooth fillet region to measure bending fatigue crack growth. Good correlation between predicted and measured crack growth was achieved when the fatigue crack closure concept was introduced into the analysis. As the gear rim thickness decreased, the compressive cyclic stress in the gear tooth fillet region increased. This retarded crack growth and increased the number of crack propagation cycles to failure.

  5. 40 CFR Table 22 to Subpart Uuu of... - Inorganic HAP Emission Limits for Catalytic Reforming Units

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Inorganic HAP Emission Limits for... Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 22 Table 22 to Subpart UUU of Part 63—Inorganic HAP Emission Limits for Catalytic Reforming...

  6. 40 CFR Table 22 to Subpart Uuu of... - Inorganic HAP Emission Limits for Catalytic Reforming Units

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Inorganic HAP Emission Limits for... Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 22 Table 22 to Subpart UUU of Part 63—Inorganic HAP Emission Limits for Catalytic Reforming...

  7. White-Etching Matter in Bearing Steel. Part I: Controlled Cracking of 52100 Steel

    NASA Astrophysics Data System (ADS)

    Solano-Alvarez, W.; Bhadeshia, H. K. D. H.

    2014-10-01

    Although most of the research performed in bearing steel metallurgy aims to prevent crack nucleation and propagation, some applications require the exact opposite in order to study the role that disconnected surfaces inside the bulk material play when load is applied, or when fluids entrapped in surface cracks propagate tensile stresses or exacerbate corrosion. Four heat treatments have been designed to create controlled arrays of crack types and distributions in quenched and untempered steel normally used in the manufacture of bearings. The varieties of cracks studied include sparsely distributed martensite-plate cracks, fine-grain-boundary cracks, abundant martensite-plate cracks, and surface cracks. The intention was to create samples which can then be subjected to appropriate mechanical testing so that phenomena such as the appearance of "white-etching areas" or "white-etching cracks," crack-lubricant interactions, or hydrogen trapping can be studied further.

  8. Catalytic, hollow, refractory spheres

    NASA Technical Reports Server (NTRS)

    Wang, Taylor G. (Inventor); Elleman, Daniel D. (Inventor); Lee, Mark C. (Inventor); Kendall, Jr., James M. (Inventor)

    1987-01-01

    Improved, heterogeneous, refractory catalysts are in the form of gas-impervious, hollow, thin-walled spheres (10) suitable formed of a shell (12) of refractory such as alumina having a cavity (14) containing a gas at a pressure greater than atmospheric pressure. The wall material may be itself catalytic or a catalytically active material coated onto the sphere as a layer (16), suitably platinum or iron, which may be further coated with a layer (18) of activator or promoter. The density of the spheres (30) can be uniformly controlled to a preselected value within .+-.10 percent of the density of the fluid reactant such that the spheres either remain suspended or slowly fall or rise through the liquid reactant.

  9. The Effect of Water on Crack Interaction

    NASA Astrophysics Data System (ADS)

    Gaede, O.; Regenauer-Lieb, K.

    2009-04-01

    While the mechanical coupling between pore fluid and solid phase is relatively well understood, quantitative studies dealing with chemical-mechanical weakening in geological materials are rare. Many classical poroelastic problems can be addressed with the simple law of effective stress. Experimental studies show that the presence of a chemically active fluid can have effects that exceed the predictions of the law of effective stress. These chemical fluid-rock interactions alter the mechanical properties of the solid phase. Especially chemical-mechanical weakening has important ramifications for many areas of applied geosciences ranging from nuclear waste disposal over reservoir enhancement to fault stability. In this study, we model chemically induced changes of the size of the process zone around a crack tip. The knowledge of the process zone size is used to extend existing effective medium approximations of cracked solids. The stress distribution around a crack leads to a chemical potential gradient. This gradient will be a driver for mass diffusion through the solid phase. As an example, mass diffusion is towards the crack tip for a mode I crack. In this case a chemical reaction, that weakens the solid phase, will increase the size of the process zone around the crack tip. We apply our model to the prominent hydrolytic weakening effect observed in the quartz-water system (Griggs and Blacic, 1965). Hydrolytic weakening is generally attributed to water hydrolyzing the strong Si-O bonds of the quartz crystal. The hydrolysis replaces a Si-O-Si bridge with a relatively weak hydrogen bridge between two silanol groups. This enhances dislocation mobility and hence the yield stress is reduced. The plastic process zone around a crack tip is therefore larger in a wet crystal than in a dry crystal. We calculate the size of the process zone by solving this coupled mechanical-chemical problem with the Finite Element code ABAQUS. We consider single crack, collinear crack and

  10. Investigation of Helicopter Longeron Cracks

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Baughman, James; Wallace, Terryl A.

    2009-01-01

    Four cracked longerons, containing a total of eight cracks, were provided for study. Cracked regions were cut from the longerons. Load was applied to open the cracks, enabling crack surface examination. Examination revealed that crack propagation was driven by fatigue loading in all eight cases. Fatigue crack initiation appears to have occurred on the top edge of the longerons near geometric changes that affect component bending stiffness. Additionally, metallurgical analysis has revealed a local depletion in alloying elements in the crack initiation regions that may be a contributing factor. Fatigue crack propagation appeared to be initially driven by opening-mode loading, but at a crack length of approximately 0.5 inches (12.7 mm), there is evidence of mixed-mode crack loading. For the longest cracks studied, shear-mode displacements destroyed crack-surface features of interest over significant portions of the crack surfaces.

  11. Fluid-Bed Testing of Greatpoint Energy's Direct Oxygen Injection Catalytic Gasification Process for Synthetic Natural Gas and Hydrogen Coproduction Year 6 - Activity 1.14 - Development of a National Center for Hydrogen Technology

    SciTech Connect

    Swanson, Michael; Henderson, Ann

    2012-04-01

    The GreatPoint Energy (GPE) concept for producing synthetic natural gas and hydrogen from coal involves the catalytic gasification of coal and carbon. GPE’s technology “refines” coal by employing a novel catalyst to “crack” the carbon bonds and transform the coal into cleanburning methane (natural gas) and hydrogen. The GPE mild “catalytic” gasifier design and operating conditions result in reactor components that are less expensive and produce pipeline-grade methane and relatively high purity hydrogen. The system operates extremely efficiently on very low cost carbon sources such as lignites, subbituminous coals, tar sands, petcoke, and petroleum residual oil. In addition, GPE’s catalytic coal gasification process eliminates troublesome ash removal and slagging problems, reduces maintenance requirements, and increases thermal efficiency, significantly reducing the size of the air separation plant (a system that alone accounts for 20% of the capital cost of most gasification systems) in the catalytic gasification process. Energy & Environmental Research Center (EERC) pilot-scale gasification facilities were used to demonstrate how coal and catalyst are fed into a fluid-bed reactor with pressurized steam and a small amount of oxygen to “fluidize” the mixture and ensure constant contact between the catalyst and the carbon particles. In this environment, the catalyst facilitates multiple chemical reactions between the carbon and the steam on the surface of the coal. These reactions generate a mixture of predominantly methane, hydrogen, and carbon dioxide. Product gases from the process are sent to a gas-cleaning system where CO{sub 2} and other contaminants are removed. In a full-scale system, catalyst would be recovered from the bottom of the gasifier and recycled back into the fluid-bed reactor. The by-products (such as sulfur, nitrogen, and CO{sub 2}) would be captured and could be sold to the chemicals and petroleum industries, resulting in

  12. Elevated temperature crack growth

    NASA Technical Reports Server (NTRS)

    Kim, K. S.; Vanstone, R. H.

    1992-01-01

    The purpose of this program was to extend the work performed in the base program (CR 182247) into the regime of time-dependent crack growth under isothermal and thermal mechanical fatigue (TMF) loading, where creep deformation also influences the crack growth behavior. The investigation was performed in a two-year, six-task, combined experimental and analytical program. The path-independent integrals for application to time-dependent crack growth were critically reviewed. The crack growth was simulated using a finite element method. The path-independent integrals were computed from the results of finite-element analyses. The ability of these integrals to correlate experimental crack growth data were evaluated under various loading and temperature conditions. The results indicate that some of these integrals are viable parameters for crack growth prediction at elevated temperatures.

  13. Fatigue Behavior of Long and Short Cracks in Wrought and Powder Aluminum Alloys.

    DTIC Science & Technology

    1984-05-01

    deposits ,24-26 irregular fracture morphologies coupled with crack tip shear displacements,27-29 and fluid-induced pressure3 5 ,36 in addition to...compliance curves of load versus relative strain deviated from linearity. Crack surface corrosion deposits were measured with Scanning Auger Spectroscopy...linear with far fewer crack deflections. Associated Auger measurements of the extent of crack surface corrosion deposits are shown in Fig. 4.7. In marked

  14. The cracked tooth.

    PubMed

    Zuckerman, G R

    1998-01-01

    Fractured molars and premolars are very common. Fractures usually result from cracks that develop and slowly extend until the tooth separates into buccal and lingual fragments. Sometimes, as these cracks expand, the patient exhibits symptoms of what is commonly referred to as "cracked tooth syndrome" (CTS). When CTS occurs, an opportunity exists to diagnose and treat these patients, to relieve their discomfort and prevent sequelae that would require more extensive treatment.

  15. Elevated temperature crack growth

    NASA Technical Reports Server (NTRS)

    Kim, K. S.; Vanstone, R. H.

    1989-01-01

    Alloy 718 crack growth experiments were conducted to assess the ability of the selected path-independent (P-I) integrals to describe the elevated temperature crack growth behavior. These tests were performed on single edge notch (SEN) specimens under displacement control with multiple extensometers to monitor the specimen and crack mouth opening displacement (CMOD). The displacements in these tests were sufficiently high to induce bulk cyclic inelastic deformation of the specimen. Under these conditions, the linear elastic fracture mechanics (LEFM) parameter K does not correlate the crack growth data. The experimentally measured displacement gradients at the end of specimen gage length were used as the boundary conditions in elastic-plastic finite element method (FEM) analyses. These analyses were performed with a node release approach using CYANIDE, a GEAE FEM code, which included a gap element which is capable of efficiently simulating crack closure. Excellent correlation was obtained between the experimentally measured and predicted variation of stress and CMOD with crack length and the stress-CMOD loops for Alloy 718 tests conducted at 538 C. This confirmed the accuracy of the FEM crack growth simulation approach. The experimentally measured crack growth rate data correlated well the selected P-I integrals. These investigations have produced significant progress in developing P-I integrals as non-linear fracture mechanics parameters. The results suggest that this methodology has the potential of accurately describing elevated temperature crack growth behavior under the combined influence of thermal cycling and bulk elastic-inelastic deformation states.

  16. High temperature catalytic membrane reactors

    SciTech Connect

    Not Available

    1990-03-01

    Current state-of-the-art inorganic oxide membranes offer the potential of being modified to yield catalytic properties. The resulting modules may be configured to simultaneously induce catalytic reactions with product concentration and separation in a single processing step. Processes utilizing such catalytically active membrane reactors have the potential for dramatically increasing yield reactions which are currently limited by either thermodynamic equilibria, product inhibition, or kinetic selectivity. Examples of commercial interest include hydrogenation, dehydrogenation, partial and selective oxidation, hydrations, hydrocarbon cracking, olefin metathesis, hydroformylation, and olefin polymerization. A large portion of the most significant reactions fall into the category of high temperature, gas phase chemical and petrochemical processes. Microporous oxide membranes are well suited for these applications. A program is proposed to investigate selected model reactions of commercial interest (i.e. dehydrogenation of ethylbenzene to styrene and dehydrogenation of butane to butadiene) using a high temperature catalytic membrane reactor. Membranes will be developed, reaction dynamics characterized, and production processes developed, culminating in laboratory-scale demonstration of technical and economic feasibility. As a result, the anticipated increased yield per reactor pass economic incentives are envisioned. First, a large decrease in the temperature required to obtain high yield should be possible because of the reduced driving force requirement. Significantly higher conversion per pass implies a reduced recycle ratio, as well as reduced reactor size. Both factors result in reduced capital costs, as well as savings in cost of reactants and energy.

  17. Pyrolytic carbon indentation crack morphology.

    PubMed

    Ely, J L; Stupka, J; Haubold, A D

    1996-06-01

    In studying fatigue and fracture behavior of brittle materials, Vickers diamond indentation cracks are often used. Many of the studies of indentation cracks use crack system models such as the radial-median crack or Palmqvist crack. These systems are also used to study small crack growth in brittle materials, and have been studied for pyrolytic carbon. However, the true morphology of these cracks in pyrolytic carbon coatings on graphite substrates have not been described. This study examined Vickers diamond and spherical ball indentation cracks in pyrolytic carbon coatings using several techniques, including serial metallographic cross sections, indentation fracture in bending, acoustic emission, and residual surface indentation scanning. The crack systems developed using these techniques were not typical of either radial median or Palmqvist systems. The morphology is unique to this material, possibly because of the coating thickness limitations. Given the difference in crack system, the application of standard indentation crack equations in studying fracture mechanics, especially for small cracks, must be questioned.

  18. Crack layer theory

    NASA Technical Reports Server (NTRS)

    Chudnovsky, A.

    1984-01-01

    A damage parameter is introduced in addition to conventional parameters of continuum mechanics and consider a crack surrounded by an array of microdefects within the continuum mechanics framework. A system consisting of the main crack and surrounding damage is called crack layer (CL). Crack layer propagation is an irreversible process. The general framework of the thermodynamics of irreversible processes are employed to identify the driving forces (causes) and to derive the constitutive equation of CL propagation, that is, the relationship between the rates of the crack growth and damage dissemination from one side and the conjugated thermodynamic forces from another. The proposed law of CL propagation is in good agreement with the experimental data on fatigue CL propagation in various materials. The theory also elaborates material toughness characterization.

  19. Catalytic reforming

    SciTech Connect

    Aldag, A.W. Jr.

    1986-01-28

    This patent describes a process for the catalytic reforming of a feedstock which contains at least one reformable organic compound. The process consists of contacting the feedstock under suitable reforming conditions with a catalyst composition selected from the group consisting of a catalyst. The catalyst essentially consists of zinc oxide and a spinel structure alumina. Another catalyst consists essentially of a physical mixture of zinc titanate and a spinel structure alumina in the presence of sufficient added hydrogen to substantially prevent the formation of coke. Insufficient zinc is present in the catalyst composition for the formation of a bulk zinc aluminate.

  20. Catalytic Layer Makes Aircraft Seats More Fire Retardant

    NASA Technical Reports Server (NTRS)

    Parker, John A.; Kourtides, Demetrius A.

    1987-01-01

    Specially constructed cushion retards fires in aircraft seats through action of catalytic matrix that cracks flammable gaseous decomposition products to less flammable species. Improved cushion contributes substantially to fire safety without adding significantly to weight or to manufacturing cost. In this fire-blocking covering for an aircraft seat cushion, flammable pyrolysis products cracked to less flammable species by catalytic layer covering foam core of cushion. Aluminum foil holds in pyrolysis vapors to promote catalysis and prevent spread of fire by ignition of released vapors.

  1. Method to produce catalytically active nanocomposite coatings

    DOEpatents

    Erdemir, Ali; Eryilmaz, Osman Levent; Urgen, Mustafa; Kazmanli, Kursat

    2016-02-09

    A nanocomposite coating and method of making and using the coating. The nanocomposite coating is disposed on a base material, such as a metal or ceramic; and the nanocomposite consists essentially of a matrix of an alloy selected from the group of Cu, Ni, Pd, Pt and Re which are catalytically active for cracking of carbon bonds in oils and greases and a grain structure selected from the group of borides, carbides and nitrides.

  2. Development of crack shape: LBB methodology for cracked pipes

    SciTech Connect

    Moulin, D.; Chapuliot, S.; Drubay, B.

    1997-04-01

    For structures like vessels or pipes containing a fluid, the Leak-Before-Break (LBB) assessment requires to demonstrate that it is possible, during the lifetime of the component, to detect a rate of leakage due to a possible defect, the growth of which would result in a leak before-break of the component. This LBB assessment could be an important contribution to the overall structural integrity argument for many components. The aim of this paper is to review some practices used for LBB assessment and to describe how some new R & D results have been used to provide a simplified approach of fracture mechanics analysis and especially the evaluation of crack shape and size during the lifetime of the component.

  3. Quantity effect of radial cracks on the cracking propagation behavior and the crack morphology.

    PubMed

    Chen, Jingjing; Xu, Jun; Liu, Bohan; Yao, Xuefeng; Li, Yibing

    2014-01-01

    In this letter, the quantity effect of radial cracks on the cracking propagation behavior as well as the circular crack generation on the impacted glass plate within the sandwiched glass sheets are experimentally investigated via high-speed photography system. Results show that the radial crack velocity on the backing glass layer decreases with the crack number under the same impact conditions during large quantities of repeated experiments. Thus, the "energy conversion factor" is suggested to elucidate the physical relation between the cracking number and the crack propagation speed. Besides, the number of radial crack also takes the determinative effect in the crack morphology of the impacted glass plate. This study may shed lights on understanding the cracking and propagation mechanism in laminated glass structures and provide useful tool to explore the impact information on the cracking debris.

  4. Surface Enhancement Improves Crack Resistance

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The low plasticity burnishing (LPB) process produces a deep layer of surface compression in a quick and affordable manner to produce metal surfaces free of scratches, nicks, and gouges. The process, designed for easy inclusion in the manufacturing environment, can be performed with conventional Computer Numerical Control machine tools. This allows parts to be processed during manufacturing, rather than as a post process in a separate facility. A smooth, free-rolling spherical ball suspended in a fluid allows for single-point contact. The ball comes into mechanical contact only with the surface to be burnished, and can be moved in any direction. LPB can be applied to all types of carbon and alloy steel, stainless steel, cast iron, aluminum, titanium, and nickel- based super alloys. In addition to improving a surface's resistance to fatigue and damage, treatment stops the growth of shallow cracks. The LPB process is used on the leading edges of turbine blades to improve resistance to foreign object damage and crack growth. This means significant savings for aircraft owners, since maintenance requirements to inspect for fatigue damage, replace parts, and remove corrosion damage increase the cost of operation.

  5. Elevated temperature crack growth

    NASA Technical Reports Server (NTRS)

    Kim, K. S.; Vanstone, R. H.; Malik, S. N.; Laflen, J. H.

    1988-01-01

    A study was performed to examine the applicability of path-independent (P-I) integrals to crack growth problems in hot section components of gas turbine aircraft engines. Alloy 718 was used and the experimental parameters included combined temperature and strain cycling, thermal gradients, elastic-plastic strain levels, and mean strains. A literature review was conducted of proposed P-I integrals, and those capable of analyzing hot section component problems were selected and programmed into the postprocessor of a finite element code. Detailed elastic-plastic finite element analyses were conducted to simulate crack growth and crack closure of the test specimen, and to evaluate the P-I integrals. It was shown that the selected P-I integrals are very effective for predicting crack growth for isothermal conditions.

  6. Elevated Temperature Crack Propagation

    NASA Technical Reports Server (NTRS)

    Orange, Thomas W.

    1994-01-01

    This paper is a summary of two NASA contracts on high temperature fatigue crack propagation in metals. The first evaluated the ability of fairly simple nonlinear fracture parameters to correlate crack propagation. Hastelloy-X specimens were tested under isothermal and thermomechanical cycling at temperatures up to 980 degrees C (1800 degrees F). The most successful correlating parameter was the crack tip opening displacement derived from the J-integral. The second evaluated the ability of several path-independent integrals to correlate crack propagation behavior. Inconel 718 specimens were tested under isothermal, thermomechanical, temperature gradient, and creep conditions at temperatures up to 650 degrees C (1200 degrees F). The integrals formulated by Blackburn and by Kishimoto correlated the data reasonably well under all test conditions.

  7. Elevated temperature crack propagation

    SciTech Connect

    Orange, T.W.

    1994-02-01

    This paper is a summary of two NASA contracts on high temperature fatigue crack propagation in metals. The first evaluated the ability of fairly simple nonlinear fracture parameters to correlate crack propagation. Hastelloy-X specimens were tested under isothermal and thermomechanical cycling at temperatures up to 980 degrees C (1800 degrees F). The most successful correlating parameter was the crack tip opening displacement derived from the J-integral. The second evaluated the ability of several path-independent integrals to correlate crack propagation behavior. Inconel 718 specimens were tested under isothermal, thermomechanical, temperature gradient, and creep conditions at temperatures up to 650 degrees C (1200 degrees F). The integrals formulated by Blackburn and by Kishimoto correlated the data reasonably well under all test conditions.

  8. Ethylene by Naphta Cracking

    ERIC Educational Resources Information Center

    Wiseman, Peter

    1977-01-01

    Presents a discussion of the manufacture of ethylene by thermal cracking of hydrocarbon feedstocks that is useful for introducing the subject of industrial chemistry into a chemistry curriculum. (MLH)

  9. Inspecting cracks in foam insulation

    NASA Technical Reports Server (NTRS)

    Cambell, L. W.; Jung, G. K.

    1979-01-01

    Dye solution indicates extent of cracking by penetrating crack and showing original crack depth clearly. Solution comprised of methylene blue in denatured ethyl alcohol penetrates cracks completely and evaporates quickly and is suitable technique for usage in environmental or structural tests.

  10. Cracked Plain, Buried Craters

    NASA Technical Reports Server (NTRS)

    2004-01-01

    4 September 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a cracked plain in western Utopia Planitia. The three circular crack patterns indicate the location of three buried meteor impact craters. These landforms are located near 41.9oN, 275.9oW. The image covers an area approximately 3 km (1.9 mi) across. Sunlight illuminates this scene from the lower left.

  11. Piloted rich-catalytic lean-burn hybrid combustor

    DOEpatents

    Newburry, Donald Maurice

    2002-01-01

    A catalytic combustor assembly which includes, an air source, a fuel delivery means, a catalytic reactor assembly, a mixing chamber, and a means for igniting a fuel/air mixture. The catalytic reactor assembly is in fluid communication with the air source and fuel delivery means and has a fuel/air plenum which is coated with a catalytic material. The fuel/air plenum has cooling air conduits passing therethrough which have an upstream end. The upstream end of the cooling conduits is in fluid communication with the air source but not the fuel delivery means.

  12. Catalytic hollow spheres

    NASA Technical Reports Server (NTRS)

    Wang, Taylor G. (Inventor); Elleman, Daniel D. (Inventor); Lee, Mark C. (Inventor); Kendall, Jr., James M. (Inventor)

    1986-01-01

    The improved, heterogeneous catalysts are in the form of gas-impervious, hollow, thin-walled spheres (10) suitably formed of a shell (12) of metal such as aluminum having a cavity (14) containing a gas at a pressure greater than atmospheric pressure. The wall material may be, itself, catalytic or the catalyst can be coated onto the sphere as a layer (16), suitably platinum or iron, which may be further coated with a layer (18) of activator or promoter. The density of the spheres (30) can be uniformly controlled to a preselected value within .+-.10 percent of the density of the fluid reactant such that the spheres either remain suspended or slowly fall or rise through the liquid reactant.

  13. Catalytic hollow spheres

    NASA Technical Reports Server (NTRS)

    Wang, Taylor G. (Inventor); Elleman, Daniel D. (Inventor); Lee, Mark C. (Inventor); Kendall, Jr., James M. (Inventor)

    1989-01-01

    The improved, heterogeneous catalysts are in the form of gas-impervious, hollow, thin-walled spheres (10) suitably formed of a shell (12) of metal such as aluminum having a cavity (14) containing a gas at a pressure greater than atmospheric pressure. The wall material may be, itself, catalytic or the catalyst can be coated onto the sphere as a layer (16), suitably platinum or iron, which may be further coated with a layer (18) of activator or promoter. The density of the spheres (30) can be uniformly controlled to a preselected value within .+-.10 percent of the density of the fluid reactant such that the spheres either remain suspended or slowly fall or rise through the liquid reactant.

  14. Bifunctional catalytic electrode

    NASA Technical Reports Server (NTRS)

    Cisar, Alan (Inventor); Murphy, Oliver J. (Inventor); Clarke, Eric (Inventor)

    2005-01-01

    The present invention relates to an oxygen electrode for a unitized regenerative hydrogen-oxygen fuel cell and the unitized regenerative fuel cell having the oxygen electrode. The oxygen electrode contains components electrocatalytically active for the evolution of oxygen from water and the reduction of oxygen to water, and has a structure that supports the flow of both water and gases between the catalytically active surface and a flow field or electrode chamber for bulk flow of the fluids. The electrode has an electrocatalyst layer and a diffusion backing layer interspersed with hydrophilic and hydrophobic regions. The diffusion backing layer consists of a metal core having gas diffusion structures bonded to the metal core.

  15. Estimating crack growth in temperature damaged concrete

    NASA Astrophysics Data System (ADS)

    Recalde, Juan Jose

    2009-12-01

    Evaluation of the structural condition of deteriorated concrete infrastructure and evaluation of new sustainable cementitious materials require an understanding of how the material will respond to applied loads and environmental exposures. A fundamental understanding of how microstructural changes in these materials relate to changes in mechanical properties and changes in fluid penetrability is needed. The ability to provide rapid, inexpensive assessment of material characteristics and relevant engineering properties is valuable for decision making and asset management purposes. In this investigation, the effects of changes in dynamic elastic properties with water content and fluid penetrability properties before and after a 300°C exposure were investigated based on estimates of the crack density parameter from dry and saturated cracked media. The experimental and analytical techniques described in this dissertation allow calculation of a value for the crack density parameter using nondestructive determination of wet and dry dynamic shear modulus of relatively thin disks. The techniques were used to compare a conventional concrete mixture to several mixtures with enhanced sustainability characteristics. The three enhanced sustainable materials investigated were a very high fly ash mixture, a magnesium phosphate cement based mortar, and a magnesium phosphate cement based concrete, and were compared to a conventional concrete mixture. The analysis provided both quantitative assessment of changes with high temperature damage and autogenous healing, and estimates of changes in mean crack trace lengths. The results showed that water interaction, deterioration due to damage, and autogenous healing recovery were different for the magnesium phosphate cement based mixtures than the portland cement based concrete mixtures. A strong correlation was found between log-transformed Air Permeability Index, dynamic shear modulus, and crack density parameter. The findings imply

  16. Evaluation of the effect of crack closure on fatigue crack growth of simulated short cracks

    NASA Technical Reports Server (NTRS)

    Telesman, J.; Fisher, D. M.

    1984-01-01

    A test program was performed to determine the influence of crack closure on fatigue crack growth (FCG) rates of short cracks. By use of the standard compact tension specimen, test procedures were devised to evaluate closure loads in the wake of the crack behind its tip. The first procedure determined the magnitude of crack closure as a function of the fatigued crack wave by incrementally removing the contacting wake surfaces and measuring closure load at each increment. The second procedure used a low-high loading sequence to simulate short crack behavior. Based on the results, it was concluded that crack closure is not the major reason for the more rapid growth of short cracks as compared to long crack growth.

  17. 40 CFR Table 22 to Subpart Uuu of... - Inorganic HAP Emission Limits for Catalytic Reforming Units

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Inorganic HAP Emission Limits for... Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 22 Table 22 to Subpart UUU of Part 63—Inorganic HAP Emission Limits for...

  18. 40 CFR Table 22 to Subpart Uuu of... - Inorganic HAP Emission Limits for Catalytic Reforming Units

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Inorganic HAP Emission Limits for... Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 22 Table 22 to Subpart UUU of Part 63—Inorganic HAP Emission Limits for...

  19. Fluid imbalance

    MedlinePlus

    ... up in the body. This is called fluid overload (volume overload). This can lead to edema (excess fluid in ... Water imbalance; Fluid imbalance - dehydration; Fluid buildup; Fluid overload; Volume overload; Loss of fluids; Edema - fluid imbalance; ...

  20. Raney nickel catalytic device

    DOEpatents

    O'Hare, Stephen A.

    1978-01-01

    A catalytic device for use in a conventional coal gasification process which includes a tubular substrate having secured to its inside surface by expansion a catalytic material. The catalytic device is made by inserting a tubular catalytic element, such as a tubular element of a nickel-aluminum alloy, into a tubular substrate and heat-treating the resulting composite to cause the tubular catalytic element to irreversibly expand against the inside surface of the substrate.

  1. Crack propagation in Hastelloy X

    SciTech Connect

    Weerasooriya, T.; Strizak, J.P.

    1980-05-01

    The fatigue and creep crack growth rates of Hastelloy X were examined both in air and impure helium. Creep crack growth rate is higher in air and impure helium at 650/sup 0/C. Initial creep crack growth from the original sharp fatigue crack is by an intergranular mode of fracture. As the cracking accelerates at higher stress intensities, growth is by a mixed mode of both intergranular and transgranular fracture. Fatigue crack growth rate increases with increasing temperature and decreasing frequency for the range of stress intensities reported in the literature and is lower in impure helium than in air.

  2. The dependence of acoustic properties of a crack on the resonance mode and geometry

    USGS Publications Warehouse

    Kumagai, H.; Chouet, B.A.

    2001-01-01

    We examine the dependence of the acoustic properties of a crack containing magmatic or hydrothermal fluids on the resonance mode and geometry to quantify the source properties of long-period (LP) events observed in volcanic areas. Our results, based on spectral analyses of synthetic waveforms generated with a fluid-driven crack model, indicate that the basic features of the dimensionless frequency (??) and quality factor (Qr) for a crack containing various types of fluids are not strongly affected by the choice of mode, although the actual ranges of Q?? and ?? both depend on the mode. The dimensionless complex frequency systematically varies with changes in the crack geometry, showing increases in both Qr and ?? as the crack length to aperture ratio decreases. The present results may be useful for the interpretation of spatial and temporal variations in the observed complex frequencies of LP events.

  3. Samarium Ion Exchanged Montmorillonite for High Temperature Cumene Cracking Reaction

    NASA Astrophysics Data System (ADS)

    Binitha, N. N.; Silija, P. P.; Suraj, V.; Yaakob, Z.; Sugunan, S.

    2011-02-01

    Montmorillonite clay is cation exchanged with samarium and its catalytic influence in cumene cracking reaction is investigated. Effect of exchange with sodium ions on further exchange with samarium ions is also noted. Acidity measurements are done using Temperature Programmed Desorption (TPD) of ammonia. The retention of basic structure is proved from FTIR spectra and XRD patterns. Elemental analysis result shows that samarium exchange has occurred, which is responsible for the higher catalytic activity. Surface area and pore volume remains more or less unaffected upon exchange. Thermogravimetric analysis indicates the enhanced thermal stability on exchanging. Cumene cracking reaction is carried out at atmospheric pressure in a fixed bed glass reactor at 673 K. The predominance of Brønsted acidity is confirmed from high selectivity to benzene.

  4. Subcritical crack growth in glasses under cyclic loads: Effect of hydrodynamic pressure in aqueous environments

    SciTech Connect

    Yi, K.S.; Dill, S.J.; Dauskardt, R.H.

    1997-07-01

    The effect of hydrodynamic pressure developed in the wake of a crack growing in a brittle material under cyclic loads in an aqueous environment is considered. The pressure acts in opposition to the movement of the crack faces, thus shielding the crack up from the applied loads. A general hydrodynamic fluid pressure relation based on a one-dimensional Reynolds equation, which applicable to a crack with an arbitrary crack opening profile, is developed. The model is modified to account for side flow through the thickness of the sample and cavitation near the crack tip. Both effects significantly modify the hydrodynamic pressure distribution. Finally, the resulting hydrodynamic pressure relations are combined with a fracture mechanics model to account for the change in the near-tip stress intensity. Resulting predictions of the cyclic crack-growth rate are found to be in good agreement with measured values for a borosilicate glass tested at various frequencies in a water environment.

  5. Cracking the Credit Hour

    ERIC Educational Resources Information Center

    Laitinen, Amy

    2012-01-01

    The basic currency of higher education--the credit hour--represents the root of many problems plaguing America's higher education system: the practice of measuring time rather than learning. "Cracking the Credit Hour" traces the history of this time-based unit, from the days of Andrew Carnegie to recent federal efforts to define a credit…

  6. Thermal cracking of retort oil

    SciTech Connect

    Dearth, J.D.; Smith, R.H.

    1980-10-14

    The thermal cracking of retort oil vapors in an elongated reactor is improved by passing the effluent oil vapors and gases from a retort to a thermal cracking unit before the temperature of the retort effluent falls below 680* F. This encourages the more desirable cracking reactions, increases the thermal efficiency of the process, and avoids preheater coking.

  7. Measurements of Nonlinear Harmonic Waves at Cracked Interfaces

    NASA Astrophysics Data System (ADS)

    Jeong, Hyunjo; Barnard, Dan

    2011-06-01

    Nonlinear harmonic waves generated at cracked interfaces are investigated both experimentally and theoretically. A compact tension specimen is fabricated and the amplitude of transmitted wave is analyzed as a function of position along the fatigued crack surface. In order to measure as many nonlinear harmonic components as possible a broadband Lithium Niobate (LiNbO3) transducers are employed together with a calibration technique for making absolute amplitude measurements with fluid-coupled receiving transducers. Cracked interfaces are shown to generate high acoustic nonlinearities which are manifested as harmonics in the power spectrum of the received signal. The first subharmonic (f/2) and the second harmonic (2f) waves are found to be dominant nonlinear components for an incident toneburst signal of frequency f. To explain the observed nonlinear behavior a partially closed crack is modeled by planar half interfaces that can account for crack parameters such as crack opening displacement and crack surface conditions. The simulation results show reasonable agreements with the experimental results.

  8. Simultaneous Measurements of Harmonic Waves at Fatigue-Cracked Interfaces

    NASA Astrophysics Data System (ADS)

    Hyunjo, Jeong; Dan, Barnard

    2011-08-01

    Nonlinear harmonic waves generated at cracked interfaces are investigated theoretically and experimentally. A compact tension specimen is fabricated and the amplitude of the transmitted wave is analyzed as a function of position along the fatigued crack surface. In order to measure as many nonlinear harmonic components as possible, broadband lithium niobate (LiNbO3) transducers are employed together with a calibration technique for making absolute amplitude measurements with fluid-coupled receiving transducers. Cracked interfaces are shown to generate high acoustic nonlinearities, which are manifested as harmonics in the power spectrum of the received signal. The first subharmonic f/2 and the second harmonic 2f waves are found to be dominant nonlinear components for an incident toneburst signal of frequency f. To explain the observed nonlinear behavior, a partially closed crack is modeled by planar half interfaces that can account for crack parameters, such as crack opening displacement and crack surface conditions. The simulation results show reasonable agreement with the experimental results.

  9. A Review of Crack Closure

    DTIC Science & Technology

    1984-04-01

    OVERLOAD EFFECTS [27,32,36,55,65,80-94] 104 4.3 SHORT CRACK BEHAVIOUR 113 4.4 SURFACE CRACK BEHAVIOUR 116 4.5 EFFECT OF RESIDUAL STRESS 117 4.6...Compressive Stresses Developed 16 on a Growing Fatigue Crack During a Constant Amplitude Cyclic Load Control Test. 4 Plastic Zone and Residual Compressive... Stresses Developed 18 on a Saw Cut Sharp Crack During a Constant Amplitude Cyclic Load Control Test. Residual Stresses Developed in the Plane of Crack

  10. Novel Fast Pyrolysis/Catalytic Technology for the Production of Stable Upgraded Liquids

    SciTech Connect

    Oyama, Ted; Agblevor, Foster; Battaglia, Francine; Klein, Michael

    2013-01-18

    The objective of the proposed research is the demonstration and development of a novel biomass pyrolysis technology for the production of a stable bio-oil. The approach is to carry out catalytic hydrodeoxygenation (HDO) and upgrading together with pyrolysis in a single fluidized bed reactor with a unique two-level design that permits the physical separation of the two processes. The hydrogen required for the HDO will be generated in the catalytic section by the water-gas shift reaction employing recycled CO produced from the pyrolysis reaction itself. Thus, the use of a reactive recycle stream is another innovation in this technology. The catalysts will be designed in collaboration with BASF Catalysts LLC (formerly Engelhard Corporation), a leader in the manufacture of attrition-resistant cracking catalysts. The proposed work will include reactor modeling with state-of-the-art computational fluid dynamics in a supercomputer, and advanced kinetic analysis for optimization of bio-oil production. The stability of the bio-oil will be determined by viscosity, oxygen content, and acidity determinations in real and accelerated measurements. A multi-faceted team has been assembled to handle laboratory demonstration studies and computational analysis for optimization and scaleup.

  11. State-of-the-art review of computational fluid dynamics modeling for fluid-solids systems

    SciTech Connect

    Lyczkowski, R.W.; Bouillard, J.X.; Ding, J.; Chang, S.L.; Burge, S.W.

    1994-05-12

    As the result of 15 years of research (50 staff years of effort) Argonne National Laboratory (ANL), through its involvement in fluidized-bed combustion, magnetohydrodynamics, and a variety of environmental programs, has produced extensive computational fluid dynamics (CFD) software and models to predict the multiphase hydrodynamic and reactive behavior of fluid-solids motions and interactions in complex fluidized-bed reactors (FBRS) and slurry systems. This has resulted in the FLUFIX, IRF, and SLUFIX computer programs. These programs are based on fluid-solids hydrodynamic models and can predict information important to the designer of atmospheric or pressurized bubbling and circulating FBR, fluid catalytic cracking (FCC) and slurry units to guarantee optimum efficiency with minimum release of pollutants into the environment. This latter issue will become of paramount importance with the enactment of the Clean Air Act Amendment (CAAA) of 1995. Solids motion is also the key to understanding erosion processes. Erosion rates in FBRs and pneumatic and slurry components are computed by ANL`s EROSION code to predict the potential metal wastage of FBR walls, intervals, feed distributors, and cyclones. Only the FLUFIX and IRF codes will be reviewed in the paper together with highlights of the validations because of length limitations. It is envisioned that one day, these codes with user-friendly pre and post-processor software and tailored for massively parallel multiprocessor shared memory computational platforms will be used by industry and researchers to assist in reducing and/or eliminating the environmental and economic barriers which limit full consideration of coal, shale and biomass as energy sources, to retain energy security, and to remediate waste and ecological problems.

  12. Catalytic pyrolysis of waste rice husk over mesoporous materials

    PubMed Central

    2012-01-01

    Catalytic fast pyrolysis of waste rice husk was carried out using pyrolysis-gas chromatography/mass spectrometry [Py-GC/MS]. Meso-MFI zeolite [Meso-MFI] was used as the catalyst. In addition, a 0.5-wt.% platinum [Pt] was ion-exchanged into Meso-MFI to examine the effect of Pt addition. Using a catalytic upgrading method, the activities of the catalysts were evaluated in terms of product composition and deoxygenation. The structure and acid site characteristics of the catalysts were analyzed by Brunauer-Emmett-Teller surface area measurement and NH3 temperature-programmed desorption analysis. Catalytic upgrading reduced the amount of oxygenates in the product vapor due to the cracking reaction of the catalysts. Levoglucosan, a polymeric oxygenate species, was completely decomposed without being detected. While the amount of heavy phenols was reduced by catalytic upgrading, the amount of light phenols was increased because of the catalytic cracking of heavy phenols into light phenols and aromatics. The amount of aromatics increased remarkably as a result of catalytic upgrading, which is attributed to the strong Brönsted acid sites and the shape selectivity of the Meso-MFI catalyst. The addition of Pt made the Meso-MFI catalyst even more active in deoxygenation and in the production of aromatics. PMID:22221540

  13. Sudden bending of cracked laminates

    NASA Technical Reports Server (NTRS)

    Sih, G. C.; Chen, E. P.

    1980-01-01

    A dynamic approximate laminated plate theory is developed with emphasis placed on obtaining effective solution for the crack configuration where the 1/square root of r stress singularity and the condition of plane strain are preserved. The radial distance r is measured from the crack edge. The results obtained show that the crack moment intensity tends to decrease as the crack length to laminate plate thickness is increased. Hence, a laminated plate has the desirable feature of stabilizing a through crack as it increases its length at constant load. Also, the level of the average load intensity transmitted to a through crack can be reduced by making the inner layers to be stiffer than the outer layers. The present theory, although approximate, is useful for analyzing laminate failure to crack propagation under dynamic load conditions.

  14. Elevated temperature crack growth

    NASA Technical Reports Server (NTRS)

    Malik, S. N.; Vanstone, R. H.; Kim, K. S.; Laflen, J. H.

    1985-01-01

    The purpose is to determine the ability of currently available P-I integrals to correlate fatigue crack propagation under conditions that simulate the turbojet engine combustor liner environment. The utility of advanced fracture mechanics measurements will also be evaluated during the course of the program. To date, an appropriate specimen design, a crack displacement measurement method, and boundary condition simulation in the computational model of the specimen were achieved. Alloy 718 was selected as an analog material based on its ability to simulate high temperature behavior at lower temperatures. Tensile and cyclic tests were run at several strain rates so that an appropriate constitutive model could be developed. Suitable P-I integrals were programmed into a finite element post-processor for eventual comparison with experimental data.

  15. Elevated temperature crack growth

    NASA Technical Reports Server (NTRS)

    Yau, J. F.; Malik, S. N.; Kim, K. S.; Vanstone, R. H.; Laflen, J. H.

    1985-01-01

    The objective of the Elevated Temperature Crack Growth Project is to evaluate proposed nonlinear fracture mechanics methods for application to combustor liners of aircraft gas turbine engines. During the first year of this program, proposed path-independent (P-I) integrals were reviewed for such applications. Several P-I integrals were implemented into a finite-element postprocessor which was developed and verified as part of the work. Alloy 718 was selected as the analog material for use in the forthcoming experimental work. A buttonhead, single-edge notch specimen was designed and verified for use in elevated-temperature strain control testing with significant inelastic strains. A crack mouth opening displacement measurement device was developed for further use.

  16. Statistical crack mechanics

    SciTech Connect

    Dienes, J.K.

    1983-01-01

    An alternative to the use of plasticity theory to characterize the inelastic behavior of solids is to represent the flaws by statistical methods. We have taken such an approach to study fragmentation because it offers a number of advantages. Foremost among these is that, by considering the effects of flaws, it becomes possible to address the underlying physics directly. For example, we have been able to explain why rocks exhibit large strain-rate effects (a consequence of the finite growth rate of cracks), why a spherical explosive imbedded in oil shale produces a cavity with a nearly square section (opening of bedding cracks) and why propellants may detonate following low-speed impact (a consequence of frictional hot spots).

  17. Cracked and Pitted Plain

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-536, 6 November 2003

    This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a typical view--at 1.5 meters (5 feet) per pixel--of surfaces in far western Utopia Planitia. In this region, the plains have developed cracks and pit chains arranged in a polygonal pattern. The pits form by collapse along the trend of a previously-formed crack. This picture is located near 45.0oN, 275.4oW. This April 2003 image covers an area 3 km (1.9 mi) wide and is illuminated by sunlight from the lower left.

  18. Slow crack propagation in glass and creep prediction

    NASA Astrophysics Data System (ADS)

    Mallet, Celine; Fortin, Jerome; Gueguen, Yves

    2013-04-01

    The context of our study is the observation of the time-dependent deformation of cracked glass. The aim of our study is to observe the slow crack propagation, to quantify it and to predict finally the creep behavior. We performed creep experiments in compaction conditions in a triaxial cell, on cracked boro-silicate glass samples. The chemical composition of the investigated glass is very close to the composition of waste vitrified packages. The matrix of the original glass (OG) is perfectly amorphous, without porosity. A few isolated air bubbles are trapped during the glass flow. Cracks are introduced in the OG through thermal shocks. Strain and acoustic emission (AE) are recorded. Several experiments are performed at different confining pressures (15 or 25 MPa), different pore fluid conditions (with argon gas, considered as the dry case, with tap water saturated porosity, or with distilled water) and different temperatures (ambiant temperature, 50oC or 80oC). Linear increase of the volumetric strain is first observed. A dilatancy increase is recorded. Note that dilatancy does not appear in constant strain rate tests. Constant stress tests show that dilatancy develops during a time interval that depends on the stress level. In addition AE rate are recorded. A non zero AE rate is an evidence of crack propagation. We use a micro-mechanical model that gives the stress intensity factor at the crack tips. This factor depends on stress and geometrical parameters (all known). An exponential law describe the rate of crack propagation, as a function of temperature, environment and applied stresses. This model allows us to predict the creep rate in glass. Assuming a constant crack aspect ratio, crack length and volumetric strain are related. The volumetric strain rate is calculated from model and compared to the data.

  19. Subcritical crack growth in marble

    NASA Astrophysics Data System (ADS)

    Nara, Yoshitaka; Nishida, Yuki; Toshinori, Ii; Harui, Tomoki; Tanaka, Mayu; Kashiwaya, Koki

    2016-04-01

    It is essential to study time-dependent deformation and fracturing in various rock materials to prevent natural hazards related to the failure of a rock mass. In addition, information of time-dependent fracturing is essential to ensure the long-term stability of a rock mass surrounding various structures. Subcritical crack growth is one of the main causes of time-dependent fracturing in rock. It is known that subcritical crack growth is influenced by not only stress but also surrounding environment. Studies of subcritical crack growth have been widely conducted for silicate rocks such as igneous rocks and sandstones. By contrast, information of subcritical crack growth in carbonate rocks is not enough. Specifically, influence of surrounding environment on subcritical crack growth in carbonate rock should be clarified to ensure the long-term stability of a rock mass. In this study, subcritical crack growth in marble was investigated. Especially, the influence of the temperature, relative humidity and water on subcritical crack growth in marble is investigated. As rock samples, marbles obtained in Skopje-City in Macedonia and Carrara-City in Italy were used. To measure subcritical crack growth, we used the load relaxation method of the double-torsion (DT) test. All measurements by DT test were conducted under controlled temperature and relative humidity. For both marbles, it was shown that the crack velocity in marble in air increased with increasing relative humidity at a constant temperature. Additionally, the crack velocity in water was much higher than that in air. It was also found that the crack velocity increased with increasing temperature. It is considered that temperature and water have significant influences on subcritical crack growth in marble. For Carrara marble in air, it was recognized that the value of subcritical crack growth index became low when the crack velocity was higher than 10-4 m/s. This is similar to Region II of subcritical crack growth

  20. Utopia Cracks and Polygons

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-339, 23 April 2003

    This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a pattern of polygonal cracks and aligned, elliptical pits in western Utopia Planitia. The picture covers an area about 3 km (about 1.9 mi) wide near 44.9oN, 274.7oW. Sunlight illuminates the scene from the left.

  1. Distributed Password Cracking

    DTIC Science & Technology

    2009-12-01

    conduit to this significant source of processing power and John the Ripper is the key. BOINC is a distributed data processing system that...processed without changing significant portions of the structure. John the Ripper is a password cracking program that takes a password file and...strength of their password security policy. This thesis goes into detail on the inner workings of BOINC, John the Ripper , and the merger of the two

  2. Effect of corrosion and stress-corrosion cracking on pipe integrity and remaining life

    SciTech Connect

    Jaske, C.E.; Beavers, J.A.

    1996-07-01

    Process piping is often exposed to corrosive fluids. During service, such exposure may cause localized corrosion or stress-corrosion cracking that affects structural integrity. This paper presents a model that quantifies the effect of localized corrosion and stress-corrosion cracking on pipe failure stress. The model is an extension of those that have been developed for oil and gas pipelines. It accounts for both axial and hoop stress. Cracks are modeled using inelastic fracture mechanics. Both flow-stress and fracture-toughness dependent failure modes are addressed. Corrosion and crack-growth rates are used to predict remaining service life.

  3. Propagation of Crack in Glasses under Creep Conditions

    NASA Astrophysics Data System (ADS)

    Mallet, C.; Fortin, J.; Guéguen, Y.; Schubnel, A.

    2012-04-01

    The context of our study is the observation of the mechanical behaviour of glass used for the storage of radioactive wastes. This implies to measure the crack propagation characteristics in glass. Results on the investigation of the micromechanics of creep under triaxial loading conditions are presented in the framework of this study. We performed the experiments in a triaxial cell, with pore fluid pressure, on boro-silicate glass. The chemical composition of the investigated glass is very close to the composition of waste vitrified packages. The matrix of the original glass (OG) is perfectly amorphous, without porosity. A few isolated air bubbles are trapped during the glass flow. Cracks are introduced in the OG through thermal shocks. The evolution of deformation (axial and radial strain) is measured using strain gages. The elastic P and S wave velocities and the acoustic emissions (AE) are also recorded. An experiment in dry conditions was performed (the pore fluid was argon gas) with a confining pressure fixed at 15 MPa. Stress step tests were performed in order to get creep data. A similar experiment was performed in water saturated conditions. Crack-closure is first observed at very low strains. Then elastic deformation is observed up to a stress level where elastic anisotropy develops. This can be clearly detected from ɛ Thomsen parameter increase. At last, at a deviatoric stress of 175 MPa (in dry conditions), we observe dilatancy. This behaviour has never been observed in original glass. Indeed, the OG behaviour is perfectly elastic and brittle. In addition, the constant stress tests show that dilatancy develops during a time constant that depends on the stress level. It can be inferred that crack propagation takes place during the constant stress steps. This behaviour is under investigation. We are also quantifying the velocity of the crack propagation by modelling this phenomenon. Indeed, the crack density can be expressed as a volumic strain, ɛv =

  4. An influence of normal stress and pore pressure on the conditions and dynamics of shear crack propagation in brittle solids

    NASA Astrophysics Data System (ADS)

    Shilko, Evgeny V.; Psakhie, Sergey G.; Popov, Valentin L.

    2016-11-01

    The paper is devoted to the study of the influence of crack-normal stress on the shear strength of the brittle material with initial crack and the geometrical condition of acceleration of dynamically growing crack towards the longitudinal wave speed. We considered elastic-brittle permeable materials with nanoscale pore size. We have shown that pore fluid in nanoporous brittle materials influences mainly the condition of shear crack propagation transition from conventional sub-Rayleigh regime to supershear one. The results of the study make it possible to assess the ability of initial cracks in brittle materials to develop in supershear regime under the condition of confined longitudinal shear.

  5. Switchable catalytic DNA catenanes.

    PubMed

    Hu, Lianzhe; Lu, Chun-Hua; Willner, Itamar

    2015-03-11

    Two-ring interlocked DNA catenanes are synthesized and characterized. The supramolecular catenanes show switchable cyclic catalytic properties. In one system, the catenane structure is switched between a hemin/G-quadruplex catalytic structure and a catalytically inactive state. In the second catenane structure the catenane is switched between a catalytically active Mg(2+)-dependent DNAzyme-containing catenane and an inactive catenane state. In the third system, the interlocked catenane structure is switched between two distinct catalytic structures that include the Mg(2+)- and the Zn(2+)-dependent DNAzymes.

  6. Investigation of Cracks Found in Helicopter Longerons

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Baughman, James M.; Wallace, Terryl A.

    2009-01-01

    Four cracked longerons, containing a total of eight cracks, were provided for study. Cracked regions were cut from the longerons. Load was applied to open the cracks, enabling crack surface examination. Examination revealed that crack propagation was driven by fatigue loading in all eight cases. Fatigue crack initiation appears to have occurred on the top edge of the longerons near geometric changes that affect component bending stiffness. Additionally, metallurigical analysis has revealed a local depletion in alloying elements in the crack initiation regions that may be a contributing factor. Fatigue crack propagation appeared to be initially driven by opening-mode loading, but at a crack length of approximately 0.5 inches (12.7 mm), there is evidence of mixed-mode crack loading. For the longest cracks studied, shear-mode displacements destroyed crack-surface features of interest over significant portions of the crack surfaces.

  7. 40 CFR Table 25 to Subpart Uuu of... - Requirements for Performance Tests for Inorganic HAP Emissions From Catalytic Reforming Units

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... limit for HCl concentration using Equation 4 of § 63.1567. If you elect to comply with the HCl percent... Pollutants for Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery... elect to meet an applicable HCl percent reduction standard, sampling sites must be located at the...

  8. 40 CFR Table 23 to Subpart Uuu of... - Operating Limits for Inorganic HAP Emission Limitations for Catalytic Reforming Units

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... adsorption system must not exceed the design or manufacturer's recommended limit (1.8 weight percent for the... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Operating Limits for Inorganic HAP... Pollutants for Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur...

  9. 40 CFR Table 17 to Subpart Uuu of... - Continuous Monitoring Systems for Organic HAP Emissions From Catalytic Reforming Units

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Pollutants for Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery... sensor, or infrared sensor to continuously detect the presence of a pilot flame. 2. Option 2: percent reduction or concentration limit. Thermal incinerator, process heater or boiler with a design heat...

  10. Combination of thermal cracking with vacuum distillation of cracked tar

    SciTech Connect

    Telyashev, G.G.; Gimaev, R.N.; Makhov, A.F.; Usmanov, R.M.; Baimbetov, A.M.; Vafin, I.A.

    1987-11-01

    A method of obtaining greater amounts of distillate feedstocks from the heavy gasoil recovered by vacuum distillation of the products of thermal cracking of petroleum resids was examined. At the Novo-Ufa Petroleum Refinery, a two-furnace thermal cracking unit was reconstructed, adding a vacuum section for distillation of the cracked tar. A simplified flow plan of this unit is shown. Vacuum resid from atmospheric-vacuum tubestill units is heated in double-pipe heat exchangers, using heat from the gasoil and cracked tar. The new method makes it possible to curtail production of boiler fuel, expand the resources of feed, and improve the quality of petroleum coke.

  11. On the Crack Bifurcation and Fanning of Crack Growth Data

    NASA Technical Reports Server (NTRS)

    Forman, Royce G.; Zanganeh, Mohammad

    2015-01-01

    Crack growth data obtained from ASTM load shedding method for different R values show some fanning especially for aluminum alloys. It is believed by the authors and it has been shown before that the observed fanning is due to the crack bifurcation occurs in the near threshold region which is a function of intrinsic properties of the alloy. Therefore, validity of the ASTM load shedding test procedure and results is confirmed. However, this position has been argued by some experimentalists who believe the fanning is an artifact of the test procedure and thus the obtained results are invalid. It has been shown that using a special test procedure such as using compressively pre-cracked specimens will eliminate the fanning effect. Since not using the fanned data fit can result in a significantly lower calculated cyclic life, design of a component, particularly for rotorcraft and propeller systems will considerably be impacted and therefore this study is of paramount importance. In this effort both test procedures i.e. ASTM load shedding and the proposed compressive pre-cracking have been used to study the fatigue crack growth behavior of compact tension specimens made of aluminum alloy 2524-T3. Fatigue crack growth paths have been closely observed using SEM machines to investigate the effects of compression pre-cracking on the crack bifurcation behavior. The results of this study will shed a light on resolving the existing argument by better understanding of near threshold fatigue crack growth behavior.

  12. Investigation of wing crack formation with a combined phase-field and experimental approach

    NASA Astrophysics Data System (ADS)

    Lee, Sanghyun; Reber, Jacqueline E.; Hayman, Nicholas W.; Wheeler, Mary F.

    2016-08-01

    Fractures that propagate off of weak slip planes are known as wing cracks and often play important roles in both tectonic deformation and fluid flow across reservoir seals. Previous numerical models have produced the basic kinematics of wing crack openings but generally have not been able to capture fracture geometries seen in nature. Here we present both a phase-field modeling approach and a physical experiment using gelatin for a wing crack formation. By treating the fracture surfaces as diffusive zones instead of as discontinuities, the phase-field model does not require consideration of unpredictable rock properties or stress inhomogeneities around crack tips. It is shown by benchmarking the models with physical experiments that the numerical assumptions in the phase-field approach do not affect the final model predictions of wing crack nucleation and growth. With this study, we demonstrate that it is feasible to implement the formation of wing cracks in large scale phase-field reservoir models.

  13. Crack Diagnosis of Wind Turbine Blades Based on EMD Method

    NASA Astrophysics Data System (ADS)

    Hong-yu, CUI; Ning, DING; Ming, HONG

    2016-11-01

    Wind turbine blades are both the source of power and the core technology of wind generators. After long periods of time or in some extreme conditions, cracks or damage can occur on the surface of the blades. If the wind generators continue to work at this time, the crack will expand until the blade breaks, which can lead to incalculable losses. Therefore, a crack diagnosis method based on EMD for wind turbine blades is proposed in this paper. Based on aerodynamics and fluid-structure coupling theory, an aero-elastic analysis on wind turbine blades model is first made in ANSYS Workbench. Second, based on the aero-elastic analysis and EMD method, the blade cracks are diagnosed and identified in the time and frequency domains, respectively. Finally, the blade model, strain gauge, dynamic signal acquisition and other equipment are used in an experimental study of the aero-elastic analysis and crack damage diagnosis of wind turbine blades to verify the crack diagnosis method proposed in this paper.

  14. Preventing Cracking of Anodized Coatings

    NASA Technical Reports Server (NTRS)

    He, Charles C.; Heslin, Thomas M.

    1995-01-01

    Anodized coatings have been used as optical and thermal surfaces in spacecraft. Particulate contamination from cracked coatings is a concern for many applications. The major cause for the cracking is the difference in the coefficient of thermal expansion between the oxide coatings and the aluminum substrate. The loss of water when the coating is exposed to a vacuum also could induce cracking of the coating. Hot-water sealing was identified as the major cause for the cracking of the coatings because of the large temperature change when the parts were immersed in boiling water and the water was absorbed in the coating. when the hot-water sealing process was eliminated, the cracking resistance of the anodized coatings was greatly improved. Also, it was found that dyed black coatings were more susceptible than clear coatings to cracking during thermo-vacuum cyclings.

  15. Janus droplet as a catalytic micromotor

    NASA Astrophysics Data System (ADS)

    Shklyaev, Sergey

    2015-06-01

    Self-propulsion of a Janus droplet in a solution of surfactant, which reacts on a half of a drop surface, is studied theoretically. The droplet acts as a catalytic motor creating a concentration gradient, which generates its surface-tension-driven motion; the self-propulsion speed is rather high, 60 μ \\text{m/s} and more. This catalytic motor has several advantages over other micromotors: simple manufacturing, easily attained neutral buoyancy. In contrast to a single-fluid droplet, which demonstrates a self-propulsion as a result of symmetry breaking instability, for the Janus one no stability threshold exists; hence, the droplet radius can be scaled down to micrometers.

  16. Fatigue Crack Topography.

    DTIC Science & Technology

    1984-01-01

    continents, rihst-i- " the battlement line Nile - Lake Albert - Lake Tanganyika - Lake Malawi in Attica. Iscr~l example are all ocean ridges, for...marker band application. MARKER MARKER MARKER BANDS BANDS BANDS 6". Ist5 4..% 2M.d - W.S. 0,0 CRACK K*MAX SPECI CORD 64 8 5 q. 14 969 kg9133 0cu LR) G...AFTER HIGHEST 1-7 LOW LEVEL PEAK MARKER BLOCK BEFORE ADDED TO SEQUENCE SEVERE 1-8 FLIGHT SNO BIRD 1-9 2-40 2-5KB 2-111 2-120 LOW LEVEL 427 CYCLES

  17. Retrofitting olefin cracking plants

    SciTech Connect

    Sumner, C.; Fernandez-Baujin, J.M.

    1983-12-01

    This article discusses the retrofitting of liquid crackers which produce olefins so that gaseous feedstocks can be used. Naphtha and gas oil are the predominant design feedstocks for producing olefins. The price of gaseous feedstocks such as ethane, propane and butane have become economically more attractive than liquid feedstocks. Existing liquid crackers will be able to produce ethylene at 85% or higher capacity when cracking propane and butane feedstock with only minor changes. Topics considered include revamping for vacuum gas oil (VGO) feedstocks and revamping for liquefied petroleum gas (LPG) feedstocks.

  18. Mode II fatigue crack propagation.

    NASA Technical Reports Server (NTRS)

    Roberts, R.; Kibler, J. J.

    1971-01-01

    Fatigue crack propagation rates were obtained for 2024-T3 bare aluminum plates subjected to in-plane, mode I, extensional loads and transverse, mode II, bending loads. These results were compared to the results of Iida and Kobayashi for in-plane mode I-mode II extensional loads. The engineering significance of mode I-mode II fatigue crack growth is considered in view of the present results. A fatigue crack growth equation for handling mode I-mode II fatigue crack growth rates from existing mode I data is also discussed.

  19. Three-Dimensional Gear Crack Propagation Studies

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; Sane, Ashok D.; Drago, Raymond J.; Wawrzynek, Paul A.

    1998-01-01

    Three-dimensional crack growth simulation was performed on a split-tooth gear design using boundary element modeling and linear elastic fracture mechanics. Initial cracks in the fillet of the teeth produced stress intensity factors of greater magnitude (and thus, greater crack growth rates) than those in the root or groove areas of the teeth. Crack growth simulation was performed on a case study to evaluate crack propagation paths. Tooth fracture was predicted from the crack growth simulation for an initial crack in the tooth fillet region. Tooth loads on the uncracked mesh of the split-tooth design were up to five times greater than those on the cracked mesh if equal deflections of the cracked and uncracked teeth were considered. Predicted crack shapes as well as crack propagation life are presented based on calculated stress intensity factors, mixed-mode crack propagation trajectory theories, and fatigue crack growth theories.

  20. Shear fatigue crack growth - A literature survey

    NASA Technical Reports Server (NTRS)

    Liu, H. W.

    1985-01-01

    Recent studies of shear crack growth are reviewed, emphasizing test methods and data analyses. The combined mode I and mode II elastic crack tip stress fields are considered. The development and design of the compact shear specimen are described, and the results of fatigue crack growth tests using compact shear specimens are reviewed. The fatigue crack growth tests are discussed and the results of inclined cracks in tensile panels, center cracks in plates under biaxial loading, cracked beam specimens with combined bending and shear loading, center-cracked panels and double edge-cracked plates under cyclic shear loading are examined and analyzed in detail.

  1. Enhanced ethylene and ethane production with free-radical cracking catalysts.

    PubMed

    Kolts, J H; Delzer, G A

    1986-05-09

    A series of free-radical catalysts have been discovered that increase the yield of highly valuable olefins from the cracking of low molecular weight paraffins. For example, catalytic cracking of n-butane, isobutane, and propane over manganese or iron supported on magnesium oxide (MgO) gave product distributions different from those given by thermal (free-radical) cracking or cracking over traditional acid catalysts. With n-butane and propane feeds, the products from catalytic cracking included large amounts of ethylene and ethane; with isobutane feed, propylene was the major product. Physical characterization of the MgO-supported catalyst showed the manganese to be in a 2+ oxidation state in the reduced catalyst and a 4+ oxidation state in the fully oxidized catalyst. Manganese was also shown to be uniformly distributed in the support material with very little enrichment at the surface. Matrix isolation of the gasphase radicals from n-butane feed showed that ethyl and methyl radicals were produced over the active catalysts. In the thermal process, only methyl radicals were produced. The mechanism of the catalytic reaction appears to be selective formation of primary carbanions at the catalyst surface followed by electron transfer and release of primary hydrocarbon radicals to the gas phase.

  2. 21 CFR 137.190 - Cracked wheat.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Cracked wheat. 137.190 Section 137.190 Food and... Related Products § 137.190 Cracked wheat. Cracked wheat is the food prepared by so cracking or cutting... such wheat, other than moisture, remain unaltered. Cracked wheat contains not more than 15 percent...

  3. 21 CFR 137.190 - Cracked wheat.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Cracked wheat. 137.190 Section 137.190 Food and... Related Products § 137.190 Cracked wheat. Cracked wheat is the food prepared by so cracking or cutting... such wheat, other than moisture, remain unaltered. Cracked wheat contains not more than 15 percent...

  4. Effect of Crack Opening on Penetrant Crack Detectability

    NASA Technical Reports Server (NTRS)

    Weaver, Devin

    2009-01-01

    Results: From the testing we were able to determine all the cracks within the test range were detectable or better with developer. Many of the indications after development lost their linearity and gave circular indications. Our tests were performed in a laboratory and our procedure would be difficult in an industrial setting. Conclusions: The "V" did not significantly affect our ability to detect the POD cracks with fluorescent penetrant. Conduct same experiment with more cracks. The 0.025 and 0.050 POD specimens are clean and documented with the SEM. Conduct water-wash fluorescent penetrant test at EAFB. The poppet cracks are tighter than the POD specimen cracks. Flight FCV poppets: 0.01 mils (0.3 microns) Langley fatigue cracked poppets: 0.02 mils (0.5 microns) POD specimen (post 5 mils): 0.05 mils (1.4 microns) We could not detect cracks in Langley fatigue-cracked poppets with fluorescent penetrant. Investigate inability of penetrant to wet the poppet surface.

  5. Rich catalytic injection

    DOEpatents

    Veninger, Albert

    2008-12-30

    A gas turbine engine includes a compressor, a rich catalytic injector, a combustor, and a turbine. The rich catalytic injector includes a rich catalytic device, a mixing zone, and an injection assembly. The injection assembly provides an interface between the mixing zone and the combustor. The injection assembly can inject diffusion fuel into the combustor, provides flame aerodynamic stabilization in the combustor, and may include an ignition device.

  6. Two stage catalytic combustor

    NASA Technical Reports Server (NTRS)

    Alvin, Mary Anne (Inventor); Bachovchin, Dennis (Inventor); Smeltzer, Eugene E. (Inventor); Lippert, Thomas E. (Inventor); Bruck, Gerald J. (Inventor)

    2010-01-01

    A catalytic combustor (14) includes a first catalytic stage (30), a second catalytic stage (40), and an oxidation completion stage (49). The first catalytic stage receives an oxidizer (e.g., 20) and a fuel (26) and discharges a partially oxidized fuel/oxidizer mixture (36). The second catalytic stage receives the partially oxidized fuel/oxidizer mixture and further oxidizes the mixture. The second catalytic stage may include a passageway (47) for conducting a bypass portion (46) of the mixture past a catalyst (e.g., 41) disposed therein. The second catalytic stage may have an outlet temperature elevated sufficiently to complete oxidation of the mixture without using a separate ignition source. The oxidation completion stage is disposed downstream of the second catalytic stage and may recombine the bypass portion with a catalyst exposed portion (48) of the mixture and complete oxidation of the mixture. The second catalytic stage may also include a reticulated foam support (50), a honeycomb support, a tube support or a plate support.

  7. Acidic and basic properties of zeolite-containing cracking catalyst in the process of butene-1 isomerization

    NASA Astrophysics Data System (ADS)

    Mursalova, L. A.; Guseinova, E. A.; Adzhamov, K. Yu.

    2016-08-01

    The process of butene-1 isomerization in the presence of two groups of samples of zeolite-containing catalyst (ZCC) that earlier participated in the traditional and oxidative catalytic cracking of vacuum gasoil is investigated. It is established that the nature of the reaction mixture and conditions of the cracking process are key factors in forming the acidic and basic properties of the catalyst. It is shown that the highest activity in the butene-1 isomerization into cis-/ trans-butene-2 is demonstrated by ZCC samples that participated in the oxidative catalytic cracking (oxycracking). It is suggested that the enhanced catalytic activity of this group of ZCC samples was related to the availability of acid-base centers in the form of radical-like oxygen along with protic- and aprotic-type acidic centers in the structure of the oxidative compaction products.

  8. Replica-Based Crack Inspection

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Willard, Scott A.; Smith, Stephen W.; Piascik, Robert S.

    2008-01-01

    Surface replication has been proposed as a method for crack detection in space shuttle main engine flowliner slots. The results of a feasibility study show that examination of surface replicas with a scanning electron microscope can result in the detection of cracks as small as 0.005 inch, and surface flaws as small as 0.001 inch, for the flowliner material.

  9. Experiences on IGSCC crack manufacturing

    SciTech Connect

    Veron, P.

    1997-02-01

    The author presents his experience in manufacturing IGSCC realistic defects, mainly in INCONEL 600 MA Steam Generator Tubes. From that experience he extracts some knowledge about this cracking (influence of chemistry in the environment, stress state, crack growth rate, and occurrence in laboratory condition of break before leak).

  10. An experimental investigation of fatigue crack growth in drillstring tubulars

    SciTech Connect

    Dale, B.A.

    1986-01-01

    Drill-string failures continue to plague the oil industry, often costing millions of dollars each year. This problem is frequently intensified with the drilling of deep deviated wellbores or ''hard rock'' drilling conditions. The drilling industry attempts to guard against these costly failures by performing periodic nondestructive inspections to remove damaged tubulars from service. This paper describes the results of full-scale fatigue crack growth tests of drill collars under rotating and bending loads. In addition, corrosion fatigue crack growth data are also presented for API drill-pipe steels in air and in three representative water-base drilling fluid environments. Based on this experimental investigation, the test data support the practical application of fatigue crack growth mechanics principles for the development of nondestructive inspection intervals to reduce drill-string failures.

  11. High speed thin plate fatigue crack monitor

    NASA Technical Reports Server (NTRS)

    Wincheski, Buzz A. (Inventor); Heyman, Joseph S. (Inventor); Namkung, Min (Inventor); Fulton, James P. (Inventor)

    1996-01-01

    A device and method are provided which non-destructively detect crack length and crack geometry in thin metallic plates. A non-contacting vibration apparatus produces resonant vibrations without introducing extraneous noise. Resulting resonant vibration shifts in cracked plates are correlated to known crack length in plates with similar resonant vibration shifts. In addition, acoustic emissions of cracks at resonance frequencies are correlated to acoustic emissions from known crack geometries.

  12. Catalytic distillation structure

    DOEpatents

    Smith, Jr., Lawrence A.

    1984-01-01

    Catalytic distillation structure for use in reaction distillation columns, a providing reaction sites and distillation structure and consisting of a catalyst component and a resilient component intimately associated therewith. The resilient component has at least about 70 volume % open space and being present with the catalyst component in an amount such that the catalytic distillation structure consist of at least 10 volume % open space.

  13. Performance characterization of a hydrogen catalytic heater.

    SciTech Connect

    Johnson, Terry Alan; Kanouff, Michael P.

    2010-04-01

    This report describes the performance of a high efficiency, compact heater that uses the catalytic oxidation of hydrogen to provide heat to the GM Hydrogen Storage Demonstration System. The heater was designed to transfer up to 30 kW of heat from the catalytic reaction to a circulating heat transfer fluid. The fluid then transfers the heat to one or more of the four hydrogen storage modules that make up the Demonstration System to drive off the chemically bound hydrogen. The heater consists of three main parts: (1) the reactor, (2) the gas heat recuperator, and (3) oil and gas flow distribution manifolds. The reactor and recuperator are integrated, compact, finned-plate heat exchangers to maximize heat transfer efficiency and minimize mass and volume. Detailed, three-dimensional, multi-physics computational models were used to design and optimize the system. At full power the heater was able to catalytically combust a 10% hydrogen/air mixture flowing at over 80 cubic feet per minute and transfer 30 kW of heat to a 30 gallon per minute flow of oil over a temperature range from 100 C to 220 C. The total efficiency of the catalytic heater, defined as the heat transferred to the oil divided by the inlet hydrogen chemical energy, was characterized and methods for improvement were investigated.

  14. Two new cracking catalysts are developed for TCC process

    SciTech Connect

    Anderson, C.D.; Breckenridge, L.L.; Bundens, R.G.; Dwyer, F.G.; Herbst, J.A.

    1987-06-01

    Two new catalysts, Durabead 12 and Durabead 14, have been developed during 1986 for Mobil's Thermofor Catalytic Cracking (TCC) units. Durabead 12 produces significantly more gasoline and distillate at the expense of coke and C/sub 4//sup -/ gas and shows good hydrothermal stability. Durabead 12 has the same low attrition and high density and diffusivity as previous Durabead catalysts (Table 1). As a result, unit retention, regenerability, and flow and pressure drop characteristics of Durabead 12 are excellent. Durabead 14 is a combination of Mobil's ZSM-5 shape-selective zeolite and Durabead 12. Durabead 14 has very favorable coke selectivity, octane, and potential alkylate enhancement with no gasoline yield loss compared to conventional rare earth Y (REY) cracking catalysts. Results of laboratory tests on both catalysts are presented in this article. Additional commercial evaluation of Durabead 12 were conducted. Those results are also presented.

  15. Weertman cracks and the fast extraction of diamonds from the Earth's mantle with a speed of about 800 km/h

    NASA Astrophysics Data System (ADS)

    Sommer, Holger; Regenauer-Lieb, Klaus; Gaede, Oliver

    2010-05-01

    First evidence from the Jwangeng diamond mine in South Botswana reveals a possible mechanism of near-sonic speed diamond extraction. Our data support the formation of Weertman cracks as a transport mechanism for the diamond bearing kimberlitic-melt from the Earth's mantle to the surface. Weertman cracks are vertical fluid filled cracks, which can move with a velocity of about 800 km/h. External stress fields facilitate the propagation of a Weertman crack, but it is essentially driven by the buoyancy or gravitational potential energy of the fluid. A Weertman crack can never overshoot (propagate faster than) the fluid, without losing its driving force. Therefore, we use properties of the fluid to estimate upper limits for the propagation velocity of a Weertman crack. We present new data that support the hypothesis that Weertman cracks can be responsible for the extraction of diamonds. Arguments for Weertman cracks are threefold: 1) The geometry of kimberlite pipes closely resembles the shape predicted by Weertman cracks; 2) Like Weertman cracks kimberlites themselves never develop an explosive stage besides the mechanism due to contact with groundwater; the melt often gets trapped near the Earth's surface; 3) The speed of the uplift of the diamonds from >150 km depth must be larger than 800 km/h to explain preservation of diamonds themselves and our OH-diffusion profiles in garnet and our calculations recorded from quenched diamondiferous host rock.

  16. Catalytic performances of HZSM-5, NaY and MCM-41 in two-stage catalytic pyrolysis of pinewood

    NASA Astrophysics Data System (ADS)

    Wang, Y. M.; Wang, J.

    2016-08-01

    Experiments were carried out in an atmospheric two-stage fixed bed reactor to investigate the catalytic cracking of pinewood pyrolysis vapour over three single catalysts, HZSM-5, NaY and MCM-41. The pinewood was pyrolyzed in the first stage reactor at a heating rate of 10 °C min-1 from room temperature to 700 °C, and the resultant vapour was cracked through the second reactor at a temperature of 500, 600 or 700 °C with and without catalyst. Both the gases and liquid compounds were thoroughly determined. It was found that all three catalysts had significant catalytic effects on the vapour cracking especially in the range of 500-600 °C. However, three catalysts showed dissimilarity to each other with respect to the distributions of products. Among three catalysts, HZSM-5 displayed the highest selectivity for the formation of olefins and light aromatics, with the least deposit of coke, though NaY showed the strongest capability of deoxygenation. The HZSM-5 cracking at 600 °C was preferred to balance the yield and quality of bio-products. MCM-41 behaved as a worse catalyst in the deoxygenation, and its resultant liquid product contained more heavy aromatics.

  17. Hierarchical petascale simulation framework for stress corrosion cracking

    NASA Astrophysics Data System (ADS)

    Vashishta, P.; Kalia, R. K.; Nakano, A.; Kaxiras, E.; Grama, A.; Lu, G.; Eidenbenz, S.; Voter, A. F.; Hood, R. Q.; Moriarty, J. A.; Yang, L. H.

    2008-07-01

    We are developing a scalable parallel and distributed computational framework consisting of methods, algorithms, and integrated software tools for multi-terascle-to-petascale simulations of stress corrosion cracking (SCC) with quantum-level accuracy. We have performed multimillion- to billion-atom molecular dynamics (MD) simulations of deformation, flow, and fracture in amorphous silica with interatomic potentials and forces validated by density functional theory (DFT) calculations. Optimized potentials have been developed to study sulfur embrittlement of nickel with multimillion-to-multibillion atom MD simulations based on DFT and temperature dependent model generalized pseudopotential theory. We have also developed a quasi-continuum method embedded with quantum simulations based on DFT to reach macroscopic length scales and an accelerated molecular dynamics scheme to reach macroscopic time scales in simulations of solid-fluid interfaces that are relevant to SCC. A hybrid MD and mesoscale lattice Boltzmann simulation algorithm is being designed to study fluid flow through cracks.

  18. Analysis of Crack Arrest Toughness.

    DTIC Science & Technology

    1988-01-15

    vload(m) vp tn(m) Vertical Source Load (kN) on wedge HY80 Finite Element 0.0122 0.0099 3.81x10 -4 144 Steel Calculations Experiment 0.0122 --- 3.74x10-4...curve, are bona fide measures of the fracture arrest capability of tough ductile steels . The second is that the J-values represent the crack driving...fibrous mode of crack extension. (b) A new test method for studying fast fracture and arrest in tough steels . (c) Measurements of fast fracture and crack

  19. A computational algorithm for crack determination: The multiple crack case

    NASA Technical Reports Server (NTRS)

    Bryan, Kurt; Vogelius, Michael

    1992-01-01

    An algorithm for recovering a collection of linear cracks in a homogeneous electrical conductor from boundary measurements of voltages induced by specified current fluxes is developed. The technique is a variation of Newton's method and is based on taking weighted averages of the boundary data. The method also adaptively changes the applied current flux at each iteration to maintain maximum sensitivity to the estimated locations of the cracks.

  20. Stress intensity and crack displacement for small edge cracks

    NASA Technical Reports Server (NTRS)

    Orange, Thomas W.

    1988-01-01

    The weight function method was used to derive stress intensity factors and crack mouth displacement coefficients for small edge cracks (less than 20 percent of the specimen width) in common fracture specimen configurations. Contact stresses due to point application of loads were found to be small but significant for three-point bending and insignificant for four-point bending. The results are compared with available equations and numerical solutions from the literature and with unpublished boundary collocation results.

  1. A Linearized Model for Wave Propagation through Coupled Volcanic Conduit-crack Systems Filled with Multiphase Magma

    NASA Astrophysics Data System (ADS)

    Liang, C.; Dunham, E. M.; OReilly, O. J.; Karlstrom, L.

    2015-12-01

    Both the oscillation of magma in volcanic conduits and resonance of fluid-filled cracks (dikes and sills) are appealing explanations for very long period signals recorded at many active volcanoes. While these processes have been studied in isolation, real volcanic systems involve interconnected networks of conduits and cracks. The overall objective of our work is to develop a model of wave propagation and ultimately eruptive fluid dynamics through this coupled system. Here, we present a linearized model for wave propagation through a conduit with multiple cracks branching off of it. The fluid is compressible and viscous, and is comprised of a mixture of liquid melt and gas bubbles. Nonequilibrium bubble growth and resorption (BGR) is quantified by introducing a time scale for mass exchange between phases, following the treatment in Karlstrom and Dunham (2015). We start by deriving the dispersion relation for crack waves travelling along the multiphase-magma-filled crack embedded in an elastic solid. Dissipation arises from magma viscosity, nonequilibrium BGR, and radiation of seismic waves into the solid. We next introduce coupling conditions between the conduit and crack, expressing conservation of mass and the balance of forces across the junction. Waves in the conduit, like those in the crack, are influenced by nonequilibrium BGR, but the deformability of the surrounding solid is far less important than for cracks. Solution of the coupled system of equations provides the evolution of pressure and fluid velocity within the conduit-crack system. The system has various resonant modes that are sensitive to fluid properties and to the geometry of the conduit and cracks. Numerical modeling of seismic waves in the solid allows us to generate synthetic seismograms.

  2. Fluid-driven fractures in brittle hydrogels

    NASA Astrophysics Data System (ADS)

    O'Keeffe, Niall; Linden, Paul

    2016-11-01

    Hydraulic fracturing is a process in which fluid is injected deep underground at high pressures that can overcome the strength of the surrounding matrix. This results in an increase of surface area connected to the well bore and thus allows extraction of natural gas previously trapped in a rock formation. We experimentally study the physical mechanisms of these fluid-driven fractures in low permeability reservoirs where the leak-off of fracturing fluid is considered negligible. This is done through the use of small scale experiments on transparent and brittle, heavily cross-linked hydrogels. The propagation of these fractures can be split into two distinct regimes depending on whether the dominant energy dissipation mechanism is viscous flow or material toughness. We will analyse crack growth rates, crack thickness and tip shape in both regimes. Moreover, PIV techniques allow us to explore the flow dynamics within the fracture, which is crucial in predicting transport of proppants designed to prevent localisation of cracks.

  3. Peridynamic model for fatigue cracking.

    SciTech Connect

    Silling, Stewart Andrew; Abe Askari

    2014-10-01

    The peridynamic theory is an extension of traditional solid mechanics in which the field equations can be applied on discontinuities, such as growing cracks. This paper proposes a bond damage model within peridynamics to treat the nucleation and growth of cracks due to cyclic loading. Bond damage occurs according to the evolution of a variable called the "remaining life" of each bond that changes over time according to the cyclic strain in the bond. It is shown that the model reproduces the main features of S-N data for typical materials and also reproduces the Paris law for fatigue crack growth. Extensions of the model account for the effects of loading spectrum, fatigue limit, and variable load ratio. A three-dimensional example illustrates the nucleation and growth of a helical fatigue crack in the torsion of an aluminum alloy rod.

  4. 46 CFR 59.10-5 - Cracks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Cracks. 59.10-5 Section 59.10-5 Shipping COAST GUARD... APPURTENANCES Welding Repairs to Boilers and Pressure Vessels in -Service § 59.10-5 Cracks. (a) Cracks extending... cracks are veed out so that complete penetration of the weld metal is secured. (b) Circumferential...

  5. Cocaine/Crack: The Big Lie.

    ERIC Educational Resources Information Center

    National Inst. on Drug Abuse (DHHS/PHS), Rockville, MD.

    This pamphlet focuses on cocaine and crack use and the addictive nature of cocaine/crack. It contains a set of 21 questions about crack and cocaine, each accompanied by a clear and complete response. Interspersed throughout the booklet are photographs and quotes from former cocaine or crack users/addicts. Questions and answers focus on what…

  6. Shaft vibrations in turbomachinery excited by cracks

    NASA Technical Reports Server (NTRS)

    Grabowski, B.

    1982-01-01

    During the past years the dynamic behavior of rotors with cracks has been investigated mainly theoretically. This paper deals with the comparison of analytical and experimental results of the dynamics of a rotor with an artificial crack. The experimental results verify the crack model used in the analysis. They show the general possibility to determine a crack by extended vibration control.

  7. 46 CFR 59.10-5 - Cracks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... APPURTENANCES Welding Repairs to Boilers and Pressure Vessels in -Service § 59.10-5 Cracks. (a) Cracks extending... corrugated furnaces may be repaired by welding provided any one crack does not exceed 20 inches in length. (e... any direction, nor more than a total of four cracks in a drum, and further provided the welding...

  8. Microdeformation and subcritical cracking in chalk

    NASA Astrophysics Data System (ADS)

    Bergsaker, Anne; Dysthe, Dag Kristian

    2016-04-01

    Deformation processes in chalks, both in relation to changing pore fluids and stress conditions has been of great interest as chalk is an important reservoir rock for both hydrocarbons and ground water. Lately it has also gained interest as a potential reservoir rock for captured CO2. Chalks are composed of large amounts of biogenic calcite grains, the skeletal debris of marine microorganisms. Its deformation is highly time and stress dependent, and governed by a transition from distributed to localized deformation at the onset of yield, affected by mechanisms such as subcritical crack growth and pore collapse. We present a microdeformation rig which makes use of thermal expansion as a means of subjecting small samples to strictly controlled tensile stresses. High resolution imaging provides resolutions down to 0.5 micrometers, enabling study of pore scale processes during slow deformation. Examples of localized and distributed deformation are presented.

  9. Microscopic origins of stochastic crack growth

    NASA Astrophysics Data System (ADS)

    Pardee, W. J.; Morris, W. L.; Cox, B. N.

    Physical arguments are made to obtain a mathematical model of the stochastic growth of surface fatigue cracks in a ductile metal alloy. The model is a set of coupled partial differential equations for the expected statistical density of cracks per unit area. The differential equations describe the smooth, deterministic local evolution of crack states, with the stochastic effects of abrupt local changes of material in the crack path appearing as transitions between distinct subspaces of single crack state space. Results are related to observables such as statistical distributions of crack growth rate and of time for at least one crack to reach macroscopic length.

  10. Catalytic distillation process

    DOEpatents

    Smith, L.A. Jr.

    1982-06-22

    A method is described for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C[sub 4] feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.

  11. Catalytic distillation process

    DOEpatents

    Smith, Jr., Lawrence A.

    1982-01-01

    A method for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C.sub.4 feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.

  12. Evolution of catalytic function

    NASA Technical Reports Server (NTRS)

    Joyce, G. F.

    1993-01-01

    An RNA-based evolution system was constructed in the laboratory and used to develop RNA enzymes with novel catalytic function. By controlling the nature of the catalytic task that the molecules must perform in order to survive, it is possible to direct the evolving population toward the expression of some desired catalytic behavior. More recently, this system has been coupled to an in vitro translation procedure, raising the possibility of evolving protein enzymes in the laboratory to produce novel proteins with desired catalytic properties. The aim of this line of research is to reduce darwinian evolution, the fundamental process of biology, to a laboratory procedure that can be made to operate in the service of organic synthesis.

  13. Mitigation of Crack Damage in Metallic Materials

    NASA Technical Reports Server (NTRS)

    Leser, Patrick E.; Newman, John A.; Smith, Stephen W.; Leser, William P.; Wincheski, Russell A.; Wallace, Terryl A.; Glaessgen, Edward H.; Piascik, Robert S.

    2014-01-01

    A system designed to mitigate or heal crack damage in metallic materials has been developed where the protected material or component is coated with a low-melting temperature film. After a crack is formed, the material is heated, melting the film which then infiltrates the crack opening through capillary action. Upon solidification, the healing material inhibits further crack damage in two ways. While the crack healing material is intact, it acts like an adhesive that bonds or bridges the crack faces together. After fatigue loading damages, the healing material in the crack mouth inhibits further crack growth by creating artificially-high crack closure levels. Mechanical test data show that this method sucessfully arrests or retards crack growth in laboratory specimens.

  14. Production of hydrogen by thermocatalytic cracking of natural gas. Task 4 report; Annual report

    SciTech Connect

    1995-10-01

    The conventional methods of hydrogen production from natural gas, for example, steam reforming (SR), are complex multi-step processes. These processes also result in the emission of large quantities of CO{sub 2} into the atmosphere. One alternative is the single-step thermocatalytic cracking (TCC) (or decomposition) of natural gas into hydrogen and carbon. The comparative assessment of SR and TCC processes was conducted. Thermocatalytic cracking of methane over various catalysts and supports in a wide range of temperatures (500--900 C) and flow rates was conducted. Two types of fix bed catalytic reactors were designed, built and tested: continuous flow and pulse reactors. Ni-Mo/Alumina and Fe-catalysts demonstrated relatively high efficiency in the methane cracking reaction at the range of temperatures 600--800 C. Fe-catalyst demonstrated fairly good stability, whereas alumina-supported Pt-catalyst rapidly lost its catalytic activity. Methane decomposition reaction over Ni-Mo/alumina was studied over wide range of space velocities in a continuous flow fixed bed catalytic reactor. The experimental results indicate that the hydrogen yield decreases noticeably with an increase in the space velocity of methane. The pulse type catalytic reactor was used to test the activity of the catalysts. It was found that induction period on the kinetic curve of hydrogen production corresponded to the reduction of metal oxide to metallic form of the catalyst. SEM method was used to study the structure of the carbon deposited on the catalyst surface.

  15. Catalytic distillation structure

    DOEpatents

    Smith, L.A. Jr.

    1984-04-17

    Catalytic distillation structure is described for use in reaction distillation columns, and provides reaction sites and distillation structure consisting of a catalyst component and a resilient component intimately associated therewith. The resilient component has at least about 70 volume % open space and is present with the catalyst component in an amount such that the catalytic distillation structure consists of at least 10 volume % open space. 10 figs.

  16. Crack Extension in Hydraulic Fracturing of Shale Cores Using Viscous Oil, Water, and Liquid Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Bennour, Ziad; Ishida, Tsuyoshi; Nagaya, Yuya; Chen, Youqing; Nara, Yoshitaka; Chen, Qu; Sekine, Kotaro; Nagano, Yu

    2015-07-01

    We performed hydraulic fracturing experiments on cylindrical cores of anisotropic shale obtained by drilling normal to the sedimentary plane. Experiments were conducted under ambient condition and uniaxial stresses, using three types of fracturing fluid: viscous oil, water, and liquid carbon dioxide (L-CO2). In the experiments using water and oil, cracks extended along the loading direction normal to the sedimentary plane under the uniaxial loading and extended along the sedimentary plane without loading. These results suggest that the direction of crack extension is strongly affected by in situ stress conditions. Fluorescent microscopy revealed that hydraulic fracturing with viscous oil produced linear cracks with few branches, whereas that with water produced cracks with many branches inclining from the loading axis. Statistical analysis of P wave polarity of acoustic emission waveforms showed that viscous oil tended to induce Mode I fracture, whereas both water and L-CO2 tended to induce Mode II fracture. Crack extension upon injection of L-CO2 was independent of loading condition unlike extension for the other two fluids. This result seemed attributable to the low viscosity of L-CO2 and was consistent with previous observations for granite specimens that low-viscosity fluids like CO2 tend to induce widely extending cracks with many branches, with Mode II fractures being dominant. These features are more advantageous for shale gas production than those induced by injection of conventional slick water.

  17. Clean catalytic combustor program

    NASA Technical Reports Server (NTRS)

    Ekstedt, E. E.; Lyon, T. F.; Sabla, P. E.; Dodds, W. J.

    1983-01-01

    A combustor program was conducted to evolve and to identify the technology needed for, and to establish the credibility of, using combustors with catalytic reactors in modern high-pressure-ratio aircraft turbine engines. Two selected catalytic combustor concepts were designed, fabricated, and evaluated. The combustors were sized for use in the NASA/General Electric Energy Efficient Engine (E3). One of the combustor designs was a basic parallel-staged double-annular combustor. The second design was also a parallel-staged combustor but employed reverse flow cannular catalytic reactors. Subcomponent tests of fuel injection systems and of catalytic reactors for use in the combustion system were also conducted. Very low-level pollutant emissions and excellent combustor performance were achieved. However, it was obvious from these tests that extensive development of fuel/air preparation systems and considerable advancement in the steady-state operating temperature capability of catalytic reactor materials will be required prior to the consideration of catalytic combustion systems for use in high-pressure-ratio aircraft turbine engines.

  18. In-vitro characterization of stress corrosion cracking of aluminium-free magnesium alloys for temporary bio-implant applications.

    PubMed

    Choudhary, Lokesh; Singh Raman, R K; Hofstetter, Joelle; Uggowitzer, Peter J

    2014-09-01

    The complex interaction between physiological stresses and corrosive human body fluid may cause premature failure of metallic biomaterials due to the phenomenon of stress corrosion cracking. In this study, the susceptibility to stress corrosion cracking of biodegradable and aluminium-free magnesium alloys ZX50, WZ21 and WE43 was investigated by slow strain rate tensile testing in a simulated human body fluid. Slow strain rate tensile testing results indicated that each alloy was susceptible to stress corrosion cracking, and this was confirmed by fractographic features of transgranular and/or intergranular cracking. However, the variation in alloy susceptibility to stress corrosion cracking is explained on the basis of their electrochemical and microstructural characteristics.

  19. Fatigue Growth and Closure of Short Cracks

    DTIC Science & Technology

    1989-06-03

    stLdy has been carried out to investigate the growth and closure behavior of shortýýcracks in 2024-T351 aluminum alloy and four different conditions of...that short cracks show lessclosure behavior than longcracks. The estimates of initlal.crack lengths based on linearelastic data were made. tThese...anomalous behavior of short cracks. Advances in small crack growth have enabled increasingly quantitative studies that affect initi- ation and growth at

  20. Cracks in Utopia

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Many of the craters found on the northern plains of Mars have been partly filled or buried by some material (possibly sediment). The Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image presented here (MOC2-136b, above left) shows a high-resolution view of a tiny portion of the floor of one of these northern plains craters. The crater, located in Utopia Planitia at 44oN, 258oW, is shown on the right (MOC2-136a)with a small white box to indicate the location of the MOC image. The MOC image reveals that the material covering the floor of this crater is cracked and pitted. The origin and source of material that has been deposited in this crater is unknown.

    The MOC image was acquired in June 1999 and covers an area only 1.1 kilometers (0.7 miles) wide at a resolution of 1.8 meters (6 feet) per pixel. The context picture is a mosaic of Viking 2 orbiter images 010B53 and 010B55, taken in 1976. Both images are illuminated from the left. Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  1. Formation and interpretation of dilatant echelon cracks.

    USGS Publications Warehouse

    Pollard, D.D.; Segall, P.; Delaney, P.T.

    1982-01-01

    The relative displacements of the walls of many veins, joints, and dikes demonstrate that these structures are dilatant cracks. We infer that dilatant cracks propagate in a principal stress plane, normal to the maximum tensile or least compressive stress. Arrays of echelon crack segments appear to emerge from the peripheries of some dilatant cracks. Breakdown of a parent crack into an echelon array may be initiated by a spatial or temporal rotation of the remote principal stresses about an axis parallel to the crack propagation direction. Near the parent-crack tip, a rotation of the local principal stresses is induced in the same sense, but not necessarily through the same angle. Incipient echelon cracks form at the parent-crack tip normal to the local maximum tensile stress. Further longitudinal growth along surfaces that twist about axes parallel to the propagation direction realigns each echelon crack into a remote principal stress plane. The walls of these twisted cracks may be idealized as helicoidal surfaces. An array of helicoidal cracks sweeps out less surface area than one parent crack twisting through the same angle. Thus, many echelon cracks grow from a single parent because the work done in creating the array, as measured by its surface area decreases as the number of cracks increases. -from Authors

  2. Screening acidic zeolites for catalytic fast pyrolysis of biomass and its components

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Zeolites have been shown to effectively promote cracking reactions during pyrolysis resulting in highly deoxygenated and hydrocarbon-rich compounds and stable pyrolysis oil product. Py/GC-MS was employed to study the catalytic fast pyrolysis of lignocellulosic biomass samples comprising oak, corn...

  3. Amniotic fluid

    MedlinePlus

    ... carefully. Removing a sample of the fluid through amniocentesis can provide information about the sex, health, and development of the fetus. Images Amniocentesis Amniotic fluid Polyhydramnios Amniotic fluid References Cunningham FG, ...

  4. Observation of Intralaminar Cracking in the Edge Crack Torsion Specimen

    NASA Technical Reports Server (NTRS)

    Czabaj, Michael W.; Ratcliffe, James G.; Davidson, Barry D.

    2013-01-01

    The edge crack torsion (ECT) test is evaluated to determine its suitability for measuring fracture toughness associated with mode III delamination growth onset. A series of ECT specimens with preimplanted inserts with different lengths is tested and examined using nondestructive and destructive techniques. Ultrasonic inspection of all tested specimens reveals that delamination growth occurs at one interface ply beneath the intended midplane interface. Sectioning and optical microscopy suggest that the observed delamination growth results from coalescence of angled intralaminar matrix cracks that form and extend across the midplane plies. The relative orientation of these cracks is approximately 45 deg with respect to the midplane, suggesting their formation is caused by resolved principal tensile stresses arising due to the global mode-III shear loading. Examination of ECT specimens tested to loads below the level corresponding to delamination growth onset reveals that initiation of intralaminar cracking approximately coincides with the onset of nonlinearity in the specimen's force-displacement response. The existence of intralaminar cracking prior to delamination growth onset and the resulting delamination extension at an unintended interface render the ECT test, in its current form, unsuitable for characterization of mode III delamination growth onset. The broader implications of the mechanisms observed in this study are also discussed with respect to the current understanding of shear-driven delamination in tape-laminate composites.

  5. Salinity effects on cracking morphology and dynamics in 3-D desiccating clays

    NASA Astrophysics Data System (ADS)

    DeCarlo, Keita F.; Shokri, Nima

    2014-04-01

    Saline conditions induce not only chemical but physical changes in swelling clays, and have a significant influence on the crack dynamics and morphology of desiccating clays. In this study, we used X-ray microtomography to experimentally investigate the effects of sodium chloride on the morphology and dynamics of desiccation cracks in three-dimensional mixtures of sand-bentonite slurry under varying rheological conditions. Rectangular glass containers were packed with slurries of different salt concentrations, with the top boundary exposed to air for evaporation. The growth and propagation of the cracking network that subsequently formed was visualized in 3-D at multiple intervals. The characterization of cracking and branching behavior shows a high extent of localized surficial crack networks at low salinity, with a transition to less extensive but more centralized crack networks with increased salinity. The observed behavior was described in the context of the physicochemical properties of the montmorillonite clay, where shifts from an "entangled" (large platelet spacing, small pore structure) to a "stacked" (small platelet spacing, open pore structure) network influence fluid distribution and thus extent of cracking and branching behavior. This is further corroborated by vertical profiles of water distribution, which shows localized desiccation fronts that shift to uniform desaturation with increasing salt concentration. Our results provide new insights regarding the formation, dynamics, and patterns of desiccation cracks formed during evaporation from 3-D saline clay structures, which will be useful in hydrological applications including water management, land surface evaporation, and subsurface contaminant transport.

  6. 40 CFR 60.100 - Applicability, designation of affected facility, and reconstruction.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... petroleum refineries: fluid catalytic cracking unit catalyst regenerators, fuel gas combustion devices, and... petroleum refinery. (b) Any fluid catalytic cracking unit catalyst regenerator or fuel gas combustion device...) and (d) of this section. (c) Any fluid catalytic cracking unit catalyst regenerator under paragraph...

  7. 40 CFR 60.100 - Applicability, designation of affected facility, and reconstruction.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... petroleum refineries: fluid catalytic cracking unit catalyst regenerators, fuel gas combustion devices, and... petroleum refinery. (b) Any fluid catalytic cracking unit catalyst regenerator or fuel gas combustion device...) and (d) of this section. (c) Any fluid catalytic cracking unit catalyst regenerator under paragraph...

  8. 40 CFR 60.100 - Applicability, designation of affected facility, and reconstruction.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... petroleum refineries: fluid catalytic cracking unit catalyst regenerators, fuel gas combustion devices, and... petroleum refinery. (b) Any fluid catalytic cracking unit catalyst regenerator or fuel gas combustion device... under paragraphs (c) through (e) of this section. (c) Any fluid catalytic cracking unit...

  9. 40 CFR 60.100 - Applicability, designation of affected facility, and reconstruction.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... petroleum refineries: fluid catalytic cracking unit catalyst regenerators, fuel gas combustion devices, and... petroleum refinery. (b) Any fluid catalytic cracking unit catalyst regenerator or fuel gas combustion device... under paragraphs (c) through (e) of this section. (c) Any fluid catalytic cracking unit...

  10. Corrosion fatigue crack propagation in metals

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.

    1990-01-01

    This review assesses fracture mechanics data and mechanistic models for corrosion fatigue crack propagation in structural alloys exposed to ambient temperature gases and electrolytes. Extensive stress intensity-crack growth rate data exist for ferrous, aluminum and nickel based alloys in a variety of environments. Interactive variables (viz., stress intensity range, mean stress, alloy composition and microstructure, loading frequency, temperature, gas pressure and electrode potential) strongly affect crack growth kinetics and complicate fatigue control. Mechanistic models to predict crack growth rates were formulated by coupling crack tip mechanics with occluded crack chemistry, and from both the hydrogen embrittlement and anodic dissolution/film rupture perspectives. Research is required to better define: (1) environmental effects near threshold and on crack closure; (2) damage tolerant life prediction codes and the validity of similitude; (3) the behavior of microcrack; (4) probes and improved models of crack tip damage; and (5) the cracking performance of advanced alloys and composites.

  11. Catalytic nanoporous membranes

    DOEpatents

    Pellin, Michael J; Hryn, John N; Elam, Jeffrey W

    2013-08-27

    A nanoporous catalytic membrane which displays several unique features Including pores which can go through the entire thickness of the membrane. The membrane has a higher catalytic and product selectivity than conventional catalysts. Anodic aluminum oxide (AAO) membranes serve as the catalyst substrate. This substrate is then subjected to Atomic Layer Deposition (ALD), which allows the controlled narrowing of the pores from 40 nm to 10 nm in the substrate by deposition of a preparatory material. Subsequent deposition of a catalytic layer on the inner surfaces of the pores reduces pore sizes to less than 10 nm and allows for a higher degree of reaction selectivity. The small pore sizes allow control over which molecules enter the pores, and the flow-through feature can allow for partial oxidation of reactant species as opposed to complete oxidation. A nanoporous separation membrane, produced by ALD is also provided for use in gaseous and liquid separations. The membrane has a high flow rate of material with 100% selectivity. Also provided is a method for producing a catalytic membrane having flow-through pores and discreet catalytic clusters adhering to the inside surfaces of the pores.

  12. Transient catalytic combustor model

    NASA Technical Reports Server (NTRS)

    Tien, J. S.

    1981-01-01

    A quasi-steady gas phase and thermally thin substrate model is used to analyze the transient behavior of catalytic monolith combustors in fuel lean operation. The combustor response delay is due to the substrate thermal inertia. Fast response is favored by thin substrate, short catalytic bed length, high combustor inlet and final temperatures, and small gas channel diameters. The calculated gas and substrate temperature time history at different axial positions provides an understanding of how the catalytic combustor responds to an upstream condition change. The computed results also suggest that the gas residence times in the catalytic bed in the after bed space are correlatable with the nondimensional combustor response time. The model also performs steady state combustion calculations; and the computed steady state emission characteristics show agreement with available experimental data in the range of parameters covered. A catalytic combustor design for automotive gas turbine engine which has reasonably fast response ( 1 second) and can satisfy the emission goals in an acceptable total combustor length is possible.

  13. Transient catalytic combustor model

    NASA Astrophysics Data System (ADS)

    Tien, J. S.

    1981-05-01

    A quasi-steady gas phase and thermally thin substrate model is used to analyze the transient behavior of catalytic monolith combustors in fuel lean operation. The combustor response delay is due to the substrate thermal inertia. Fast response is favored by thin substrate, short catalytic bed length, high combustor inlet and final temperatures, and small gas channel diameters. The calculated gas and substrate temperature time history at different axial positions provides an understanding of how the catalytic combustor responds to an upstream condition change. The computed results also suggest that the gas residence times in the catalytic bed in the after bed space are correlatable with the nondimensional combustor response time. The model also performs steady state combustion calculations; and the computed steady state emission characteristics show agreement with available experimental data in the range of parameters covered. A catalytic combustor design for automotive gas turbine engine which has reasonably fast response ( 1 second) and can satisfy the emission goals in an acceptable total combustor length is possible.

  14. Production of hydrogen by thermocatalytic cracking of natural gas

    SciTech Connect

    Muradov, N.Z.

    1995-09-01

    It is universally accepted that in the next few decades hydrogen production will continue to rely on fossil fuels (primarily, natural gas). On the other hand, the conventional methods of hydrogen production from natural gas (for example, steam reforming) are complex multi-step processes. These processes also result in the emission of large quantities of CO{sub 2} into the atmosphere that produce adverse ecological effects. One alternative is the one-step thermocatalytic cracking (TCC) (or decomposition) of natural gas into hydrogen and carbon. Preliminary analysis indicates that the cost of hydrogen produced by thermal decomposition of natural gas is somewhat lower than the conventional processes after by-product carbon credit is taken. In the short term, this process can be used for on-site production of hydrogen-methane mixtures in gas-filling stations and for CO{sub x}-free production of hydrogen for fuel cell driven prime movers. The experimental data on the thermocatalytic cracking of methane over various catalysts and supports in a wide range of temperatures (500-900{degrees}C) are presented in this paper. Two types of reactors were designed and built at FSEC: continuous flow and pulse fix bed catalytic reactors. The temperature dependence of the hydrogen production yield using oxide type catalysts was studied. Alumina-supported Ni- and Fe-catalysts demonstrated relatively high efficiency in the methane cracking reaction at moderate temperatures (600-800{degrees}C). Kinetic curves of hydrogen production over metal and metal oxide catalysts at different temperatures are presented in the paper. Fe-catalyst demonstrated good stability (for several hours), whereas alumina-supported Pt-catalyst rapidly lost its catalytic activity.

  15. Getter materials for cracking ammonia

    DOEpatents

    Boffito, Claudio; Baker, John D.

    1999-11-02

    A method is provided for cracking ammonia to produce hydrogen. The method includes the steps of passing ammonia over an ammonia-cracking catalyst which is an alloy including (1) alloys having the general formula Zr.sub.1-x Ti.sub.x M.sub.1 M.sub.2, wherein M.sub.1 and M.sub.2 are selected independently from the group consisting of Cr, Mn, Fe, Co, and Ni, and x is between about 0.0 and about 1.0 inclusive; and between about 20% and about 50% Al by weight. In another aspect, the method of the invention is used to provide methods for operating hydrogen-fueled internal combustion engines and hydrogen fuel cells. In still another aspect, the present invention provides a hydrogen-fueled internal combustion engine and a hydrogen fuel cell including the above-described ammonia-cracking catalyst.

  16. Catalytic membranes beckon

    SciTech Connect

    Caruana, C.M.

    1994-11-01

    Chemical engineers here and abroad are finding that the marriage of catalysts and membranes holds promise for faster and more specific reactions, although commercialization of this technology is several years away. Catalytic membrane reactors (CMRs) combine a heterogeneous catalyst and a permselective membrane. Reactions performed by CMRs provide higher yields--sometimes as much as 50% higher--because of better reaction selectivity--as opposed to separation selectivity. CMRs also can work at very high temperatures, using ceramic materials that would not be possible with organic membranes. Although the use of CMRs is not widespread presently, the development of new membranes--particularly porous ceramic and zeolite membranes--will increase the potential to improve yields of many catalytic processes. The paper discusses ongoing studies, metal and advanced materials for membranes, the need for continued research, hydrogen recovery from coal-derived gases, catalytic oxidation of sulfides, CMRs for water purification, and oxidative coupling of methane.

  17. Catalytic hydrotreating process

    DOEpatents

    Karr, Jr., Clarence; McCaskill, Kenneth B.

    1978-01-01

    Carbonaceous liquids boiling above about 300.degree. C such as tars, petroleum residuals, shale oils and coal-derived liquids are catalytically hydrotreated by introducing the carbonaceous liquid into a reaction zone at a temperature in the range of 300.degree. to 450.degree. C and a pressure in the range of 300 to 4000 psig for effecting contact between the carbonaceous liquid and a catalytic transition metal sulfide in the reaction zone as a layer on a hydrogen permeable transition metal substrate and then introducing hydrogen into the reaction zone by diffusing the hydrogen through the substrate to effect the hydrogenation of the carbonaceous liquid in the presence of the catalytic sulfide layer.

  18. Analogy between fluid cavitation and fracture mechanics

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Mullen, R. L.; Braun, M. J.

    1983-01-01

    When the stresses imposed on a fluid are sufficiently large, rupture or cavitation can occur. Such conditions can exist in many two-phase flow applications, such as the choked flows, which can occur in seals and bearings. Nonspherical bubbles with large aspect ratios have been observed in fluids under rapid acceleration and high shear fields. These bubbles are geometrically similar to fracture surface patterns (Griffith crack model) existing in solids. Analogies between crack growth in solid and fluid cavitation are proposed and supported by analysis and observation (photographs). Healing phenomena (void condensation), well accepted in fluid mechanics, have been observed in some polymers and hypothesized in solid mechanics. By drawing on the strengths of the theories of solid mechanics and cavitation, a more complete unified theory can be developed.

  19. Review of Environmentally Assisted Cracking

    NASA Astrophysics Data System (ADS)

    Sadananda, K.; Vasudevan, A. K.

    2011-02-01

    Many efforts have been made in the past by several researchers to arrive at some unifying principles governing the embrittlement phenomena. An inescapable conclusion reached by all these efforts was that the behavior is very complex. Hence, recognizing the complexity of material/environment behavior, we focus our attention here only in extracting some similarities in the experimental trends to arrive at some generic principles of behavior. Crack nucleation and growth are examined under static load in the presence of internal and external environments. Stress concentration, either pre-existing or in-situ generated, appears to be a requirement for embrittlement. A chemical stress concentration factor is defined for a given material/environment system as the ratio of failure stress with and without the damaging chemical environment. All factors that affect the buildup of the required stress concentration, such as planarity of slip, stacking fault energy, etc., also affect the stress-corrosion behavior. The chemical stress concentration factor is coupled with the mechanical stress concentration factor. In addition, generic features for all systems appear to be (a) an existence of a threshold stress as a function of concentration of the damaging environment and flow properties of the material, and (b) an existence of a limiting threshold as a function of concentration, indicative of a damage saturation for that environment. Kinetics of crack growth also depends on concentration and the mode of crack growth. In general, environment appears to enhance crack tip ductility on one side by the reduction of energy for dislocation nucleation and glide, and to reduce cohesive energy for cleavage, on the other. These two opposing factors are coupled to provide environmentally induced crack nucleation and growth. The relative ratio of these two opposing factors depends on concentration and flow properties, thereby affecting limiting thresholds. The limiting concentration or

  20. Catalytic, hollow, refractory spheres, conversions with them

    NASA Technical Reports Server (NTRS)

    Wang, Taylor G. (Inventor); Elleman, Daniel D. (Inventor); Lee, Mark C. (Inventor); Kendall, Jr., James M. (Inventor)

    1989-01-01

    Improved, heterogeneous, refractory catalysts are in the form of gas-impervious, hollow, thin-walled spheres (10) suitable formed of a shell (12) of refractory such as alumina having a cavity (14) containing a gas at a pressure greater than atmospheric pressure. The wall material may be itself catalytic or a catalytically active material coated onto the sphere as a layer (16), suitably platinum or iron, which may be further coated with a layer (18) of activator or promoter. The density of the spheres (30) can be uniformly controlled to a preselected value within .+-.10 percent of the density of the fluid reactant such that the spheres either remain suspended or slowly fall or rise through the liquid reactant.

  1. Steam reformer with catalytic combustor

    NASA Technical Reports Server (NTRS)

    Voecks, Gerald E. (Inventor)

    1990-01-01

    A steam reformer is disclosed having an annular steam reforming catalyst bed formed by concentric cylinders and having a catalytic combustor located at the center of the innermost cylinder. Fuel is fed into the interior of the catalytic combustor and air is directed at the top of the combustor, creating a catalytic reaction which provides sufficient heat so as to maintain the catalytic reaction in the steam reforming catalyst bed. Alternatively, air is fed into the interior of the catalytic combustor and a fuel mixture is directed at the top. The catalytic combustor provides enhanced radiant and convective heat transfer to the reformer catalyst bed.

  2. Steam reformer with catalytic combustor

    DOEpatents

    Voecks, Gerald E.

    1990-03-20

    A steam reformer is disclosed having an annular steam reforming catalyst bed formed by concentric cylinders and having a catalytic combustor located at the center of the innermost cylinder. Fuel is fed into the interior of the catalytic combustor and air is directed at the top of the combustor, creating a catalytic reaction which provides sufficient heat so as to maintain the catalytic reaction in the steam reforming catalyst bed. Alternatively, air is fed into the interior of the catalytic combustor and a fuel mixture is directed at the top. The catalytic combustor provides enhanced radiant and convective heat transfer to the reformer catalyst bed.

  3. Slow Crack Growth of Germanium

    NASA Technical Reports Server (NTRS)

    Salem, Jon

    2016-01-01

    The fracture toughness and slow crack growth parameters of germanium supplied as single crystal beams and coarse grain disks were measured. Although germanium is anisotropic (A=1.7), it is not as anisotropic as SiC, NiAl, or Cu, as evidence by consistent fracture toughness on the 100, 110, and 111 planes. Germanium does not exhibit significant slow crack growth in distilled water. (n=100). Practical values for engineering design are a fracture toughness of 0.7 MPam and a Weibull modulus of m=6+/-2. For well ground and reasonable handled coupons, fracture strength should be greater than 30 MPa.

  4. Nonlinear structural crack growth monitoring

    DOEpatents

    Welch, Donald E.; Hively, Lee M.; Holdaway, Ray F.

    2002-01-01

    A method and apparatus are provided for the detection, through nonlinear manipulation of data, of an indicator of imminent failure due to crack growth in structural elements. The method is a process of determining energy consumption due to crack growth and correlating the energy consumption with physical phenomena indicative of a failure event. The apparatus includes sensors for sensing physical data factors, processors or the like for computing a relationship between the physical data factors and phenomena indicative of the failure event, and apparatus for providing notification of the characteristics and extent of such phenomena.

  5. Crack growth resistance in nuclear graphites

    NASA Astrophysics Data System (ADS)

    Ouagne, Pierre; Neighbour, Gareth B.; McEnaney, Brian

    2002-05-01

    Crack growth resistance curves for the non-linear fracture parameters KR, JR and R were measured for unirradiated PGA and IM1-24 graphites that are used as moderators in British Magnox and AGR nuclear reactors respectively. All the curves show an initial rising part, followed by a plateau region where the measured parameter is independent of crack length. JR and R decreased at large crack lengths. The initial rising curves were attributed to development of crack bridges in the wake of the crack front, while, in the plateau region, the crack bridging zone and the frontal process zone, ahead of the crack tip, reached steady state values. The decreases at large crack lengths were attributed to interaction of the frontal zone with the specimen end face. Microscopical evidence for graphite fragments acting as crack bridges showed that they were much smaller than filler particles, indicating that the graphite fragments are broken down during crack propagation. There was also evidence for friction points in the crack wake zone and shear cracking of some larger fragments. Inspection of KR curves showed that crack bridging contributed ~0.4 MPa m0.5 to the fracture toughness of the graphites. An analysis of JR and R curves showed that the development of the crack bridging zone in the rising part of the curves contributed ~20% to the total work of fracture. Energies absorbed during development of crack bridges and steady state crack propagation were greater for PGA than for IM1-24 graphite. These differences reflect the greater extent of irreversible processes occurring during cracking in the coarser microtexture of PGA graphite.

  6. Catalytic decomposition of petroleum into natural gas

    SciTech Connect

    Mango, F.D.; Hightower, J.

    1997-12-01

    Petroleum is believed to be unstable in the earth, decomposing to lighter hydrocarbons at temperatures > 150{degrees}C. Oil and gas deposits support this view: gas/oil ratios and methane concentrations tend to increase with depth above 150{degrees}C. Although oil cracking is suggested and receives wide support, laboratory pyrolysis does not give products resembling natural gas. Moreover, it is doubtful that the light hydrocarbons in wet gas (C{sub 2}-C{sub 4}) could decompose over geologic time to dry gas (>95% methane) without catalytic assistance. We now report the catalytic decomposition of crude oil to a gas indistinguishable from natural gas. Like natural gas in deep basins, it becomes progressively enriched in methane: initially 90% (wet gas) to a final composition of 100% methane (dry gas). To our knowledge, the reaction is unprecedented and unexpectedly robust (conversion of oil to gas is 100% in days, 175{degrees}C) with significant implications regarding the stability of petroleum in sedimentary basins. The existence or nonexistence of oil in the deep subsurface may not depend on the thermal stability of hydrocarbons as currently thought. The critical factor could be the presence of transition metal catalysts which destabilize hydrocarbons and promote their decomposition to natural gas.

  7. Crack problems in cylindrical and spherical shells

    NASA Technical Reports Server (NTRS)

    Erdogan, F.

    1976-01-01

    Standard plate or shell theories were used as a starting point to study the fracture problems in thin-walled cylindrical and spherical shells, assuming that the plane of the crack is perpendicular to the surface of the sheet. Since recent studies have shown that local shell curvatures may have a rather considerable effect on the stress intensity factor, the crack problem was considered in conjunction with a shell rather than a plate theory. The material was assumed to be isotropic and homogeneous, so that approximate solutions may be obtained by approximating the local shell crack geometry with an ideal shell which has a solution, namely a spherical shell with a meridional crack, a cylindrical shell with a circumferential crack, or a cylindrical shell with an axial crack. A method of solution for the specially orthotropic shells containing a crack was described; symmetric and skew-symmetric problems are considered in cylindrical shells with an axial crack.

  8. Crack Formation in Cement-Based Composites

    NASA Astrophysics Data System (ADS)

    Sprince, A.; Pakrastinsh, L.; Vatin, N.

    2016-04-01

    The cracking properties in cement-based composites widely influences mechanical behavior of construction structures. The challenge of present investigation is to evaluate the crack propagation near the crack tip. During experiments the tension strength and crack mouth opening displacement of several types of concrete compositions was determined. For each composition the Compact Tension (CT) specimens were prepared with dimensions 150×150×12 mm. Specimens were subjected to a tensile load. Deformations and crack mouth opening displacement were measured with extensometers. Cracks initiation and propagation were analyzed using a digital image analysis technique. The formation and propagation of the tensile cracks was traced on the surface of the specimens using a high resolution digital camera with 60 mm focal length. Images were captured during testing with a time interval of one second. The obtained experimental curve shows the stages of crack development.

  9. Interacting Cracks in an Environmentally Assisted Fracture

    NASA Astrophysics Data System (ADS)

    Levandovsky, Artem; Balazs, Anna

    2006-03-01

    We perform the study of environmentally assisted fracture within the framework of a lattice model. Formation of an ensemble of environmentally assisted microcracks, their coalescence and formation of crack ``avalanches'' lead to a very rich dynamical picture. Under specific condition crack healing can occur due to cohesive forces, which hold material together and tend to pull atoms together even if they are separated by a crack over several lattice units. We investigate the dynamical interplay between crack formation, arrest, healing and re-cracking. The goal here is to provide an understanding of the conditions leading to the phenomena of crack healing that happens along with the crack formation. We study the morphology of crack patterns with the intentions to establish a way to enhance the healing property of a material sample.

  10. Fracture mechanics parameters for small fatigue cracks

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1992-01-01

    This paper presents a review of some common small-crack test specimens, the underlying causes of the small-crack effect, and the fracture-mechanics parameters that have been used to correlate or predict their growth behavior. This review concentrates on continuum mechanics concepts and on the nonlinear behavior of small cracks. The paper reviews some stress-intensity factor solutions for small-crack test specimens and develops some simple elastic-plastic J integral and cyclic J integral expressions that include the influence of crack-closure. These parameters were applied to small-crack growth data on two aluminum alloys, and a fatigue life prediction methodology is demonstrated. For these materials, the crack-closure transient from the plastic wake was found to be the major factor in causing the small-crack effect.

  11. Catalytic efficiency of designed catalytic proteins

    PubMed Central

    Korendovych, Ivan V; DeGrado, William F

    2014-01-01

    The de novo design of catalysts that mimic the affinity and specificity of natural enzymes remains one of the Holy Grails of chemistry. Despite decades of concerted effort we are still unable to design catalysts as efficient as enzymes. Here we critically evaluate approaches to (re)design of novel catalytic function in proteins using two test cases: Kemp elimination and ester hydrolysis. We show that the degree of success thus far has been modest when the rate enhancements seen for the designed proteins are compared with the rate enhancements by small molecule catalysts in solvents with properties similar to the active site. Nevertheless, there are reasons for optimism: the design methods are ever improving and the resulting catalyst can be efficiently improved using directed evolution. PMID:25048695

  12. Catalytic coal liquefaction process

    DOEpatents

    Garg, D.; Sunder, S.

    1986-12-02

    An improved process for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a solvent comprises using as catalyst a mixture of a 1,2- or 1,4-quinone and an alkaline compound, selected from ammonium, alkali metal, and alkaline earth metal oxides, hydroxides or salts of weak acids. 1 fig.

  13. Catalytic coal liquefaction process

    DOEpatents

    Garg, Diwakar; Sunder, Swaminathan

    1986-01-01

    An improved process for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a solvent comprises using as catalyst a mixture of a 1,2- or 1,4-quinone and an alkaline compound, selected from ammonium, alkali metal, and alkaline earth metal oxides, hydroxides or salts of weak acids.

  14. TV fatigue crack monitoring system

    NASA Technical Reports Server (NTRS)

    Exton, R. J. (Inventor)

    1977-01-01

    An apparatus is disclosed for monitoring the development and growth of fatigue cracks in a test specimen subjected to a pulsating tensile load. A plurality of television cameras photograph a test specimen which is illuminated at the point of maximum tensile stress. The television cameras have a modified vidicon tube which has an increased persistence time thereby eliminating flicker in the displayed images.

  15. Methylecgonidine coats the crack particle.

    PubMed

    Wood, R W; Shojaie, J; Fang, C P; Graefe, J F

    1996-01-01

    Crack is a form of cocaine base self-administered by smoking. When heated, it volatilizes and may partially pyrolyze to methylecgonidine (MEG). Upon cooling, a condensation aerosol forms. Heating cocaine base in model crack pipes produced particles of about 1 micron in diameter, regardless of the amount heated; however, MEG concentration increased from < or = 2% at 10 mg per heating to as much as 5% at 30 mg per heating. Methylecgonidine was < or = 1% of the recovered material when cocaine was vaporized off a heated wire coil, but the particles were larger (2-5 microns), and the distribution disperse. The vapor pressure of MEG was higher [log P(mm Hg) = 9.994 - 3530/T] than cocaine base, consistent with MEG coating the droplet during condensation, and with evaporation during aging or dilution. Disappearance of MEG from a chamber filled with crack smoke was a two-component process, one proceeding at the rate of cocaine particle removal, and the other at the desorption rate from other surfaces. Particle diameter influences the deposition site in the respiratory tract; thus, the likely different patterns of deposition in the respiratory tract of humans and animals of crack aerosols produced by different techniques warrant consideration, as they may influence our understanding of immediate and delayed sequelae of the inhalation of cocaine and its pyrolysis product, MEG.

  16. Steam Hydrocarbon Cracking and Reforming

    ERIC Educational Resources Information Center

    Golombok, Michael

    2004-01-01

    The interactive methods of steam hydrocarbon reforming and cracking of the oil and chemical industries are scrutinized, with special focus on their resemblance and variations. The two methods are illustrations of equilibrium-controlled and kinetically-controlled processes, the analysis of which involves theories, which overlap and balance each…

  17. Confining crack propagation in defective graphene.

    PubMed

    López-Polín, Guillermo; Gómez-Herrero, Julio; Gómez-Navarro, Cristina

    2015-03-11

    Crack propagation in graphene is essential to understand mechanical failure in 2D materials. We report a systematic study of crack propagation in graphene as a function of defect content. Nanoindentations and subsequent images of graphene membranes with controlled induced defects show that while tears in pristine graphene span microns length, crack propagation is strongly reduced in the presence of defects. Accordingly, graphene oxide exhibits minor crack propagation. Our work suggests controlled defect creation as an approach to avoid catastrophic failure in graphene.

  18. A study of crack closure in fatigue

    NASA Technical Reports Server (NTRS)

    Shih, T. T.; Wei, R. P.

    1973-01-01

    Crack closure phenomenon in fatigue was studied by using a Ti-6Al-4V titanium alloy. The occurrence of crack closure was directly measured by an electrical-potential method, and indirectly by load-strain measurement. The experimental results showed that the onset of crack closure depends on both the stress ratio, and the maximum stress intensity factor. No crack closure was observed for stress ratio, greater than 0.3 in this alloy. A two-dimensional elastic model was used to explain the behavior of the recorded load-strain curves. Closure force was estimated by using this model. Yield level stress was found near the crack tip. Based on this estimated closure force, the crack opening displacement was calculated. This result showed that onset of crack closure detected by electrical-potential measurement and crack-opening-displacement measurement is the same. The implications of crack closure on fatigue crack are considered. The experimental results show that crack closure cannot fully account for the effect of stress ratio, on crack growth, and that it cannot be regarded as the sole cause for delay.

  19. Cracked Teeth: A Review of the Literature

    PubMed Central

    Lubisich, Erinne B.; Hilton, Thomas J.; FERRACANE, JACK

    2013-01-01

    Although cracked teeth are a common problem for patients and dentists, there is a dearth of evidence-based guidelines on how to prevent, diagnose, and treat cracks in teeth. The purpose of this article is to review the literature to establish what evidence exists regarding the risk factors for cracked teeth and their prevention, diagnosis, and treatment. PMID:20590967

  20. Jumplike fatigue crack growth in compressor blades

    NASA Astrophysics Data System (ADS)

    Limar', L. V.; Demina, Yu. A.; Botvina, L. R.

    2014-04-01

    It is shown that power relations between the two main fractographic characteristics of fracture surfaces forming during jumplike fatigue crack growth, namely, the crack depth and the corresponding crack front length, can be used to estimate the fracture stress during vibration tests of the compressor blades of an aviation gas turbine engine, which are made of VT3-1 titanium alloy.

  1. Fracture analysis of axially cracked pressure tube of pressurized heavy water reactor

    SciTech Connect

    Krishnan, S.; Bhasin, V.; Mahajan, S.C.

    1997-04-01

    Three Dimensional (313) finite element elastic plastic fracture analysis was done for through wall axially cracked thin pressure tubes of 220 MWe Indian Pressurized Heavy Water Reactor. The analysis was done for Zr-2 and Zr-2.5Nb pressure tubes operating at 300{degrees}C and subjected to 9.5 Mpa internal pressure. Critical crack length was determined based on tearing instability concept. The analysis included the effect of crack face pressure due to the leaking fluid from tube. This effect was found to be significant for pressure tubes. The available formulae for calculating J (for axially cracked tubes) do not take into account the effect of crack face pressure. 3D finite element analysis also gives insight into variation of J across the thickness of pressure tube. It was observed that J is highest at the mid-surface of tube. The results have been presented in the form of across the thickness average J value and a peak factor on J. Peak factor on J is ratio of J at mid surface to average J value. Crack opening area for different cracked lengths was calculated from finite element results. The fracture assessment of pressure tubes was also done using Central Electricity Generating Board R-6 method. Ductile tearing was considered.

  2. Crack-opening displacements in center-crack, compact, and crack-line wedge-loaded specimens. [of flat plates

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1976-01-01

    The theoretical crack-opening displacements for center-crack, compact, and crack-line wedge-loaded specimens (reported in the ASTM Proposed Recommended Practice for R-Curve Determination (1974)) disagree with experimental measurements in the literature. The disagreement is a result of using approximate specimen configurations and load representation to obtain the theoretical displacements. An improved method of boundary collocation is presented which was used to obtain the theoretical displacements in these three specimen types; the actual specimen configurations and more accurate load representation were used. In the analysis of crack-opening displacements in the compact and crack-line wedge-loaded specimens, the effects of the pin-loaded holes were also included. The theoretical calculations agree with the experimental measurements reported in the literature. Also examined are accurate polynomial expressions for crack-opening displacements in both compact and crack-line wedge-loaded specimens.

  3. Cracking behavior of structural slab bridge decks

    NASA Astrophysics Data System (ADS)

    Baah, Prince

    Bridge deck cracking is a common problem throughout the United States, and it affects the durability and service life of concrete bridges. Several departments of transportation (DOTs) in the United States prefer using continuous three-span solid structural slab bridges without stringers over typical four-lane highways. Recent inspections of such bridges in Ohio revealed cracks as wide as 0.125 in. These measured crack widths are more than ten times the maximum limit recommended in ACI 224R-01 for bridge decks exposed to de-icing salts. Measurements using digital image correlation revealed that the cracks widened under truck loading, and in some cases, the cracks did not fully close after unloading. This dissertation includes details of an experimental investigation of the cracking behavior of structural concrete. Prism tests revealed that the concrete with epoxy-coated bars (ECB) develops the first crack at smaller loads, and develops larger crack widths compared to the corresponding specimens with uncoated (black) bars. Slab tests revealed that the slabs with longitudinal ECB developed first crack at smaller loads, exhibited wider cracks and a larger number of cracks, and failed at smaller ultimate loads compared to the corresponding test slabs with black bars. To develop a preventive measure, slabs with basalt and polypropylene fiber reinforced concrete were also included in the test program. These test slabs exhibited higher cracking loads, smaller crack widths, and higher ultimate loads at failure compared to the corresponding slab specimens without fibers. Merely satisfying the reinforcement spacing requirements given in AASHTO or ACI 318-11 is not adequate to limit cracking below the ACI 224R-01 recommended maximum limit, even though all the relevant design requirements are otherwise met. Addition of fiber to concrete without changing any steel reinforcing details is expected to reduce the severity and extent of cracking in reinforced concrete bridge decks.

  4. Crack modeling of rotating blades with cracked hexahedral finite element method

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Jiang, Dongxiang

    2014-06-01

    Dynamic analysis is the basis in investigating vibration features of cracked blades, where the features can be applied to monitor health state of blades, detect cracks in an early stage and prevent failures. This work presents a cracked hexahedral finite element method for dynamic analysis of cracked blades, with the purpose of addressing the contradiction between accuracy and efficiency in crack modeling of blades in rotor system. The cracked hexahedral element is first derived with strain energy release rate method, where correction of stress intensity factors of crack front and formulation of load distribution of crack surface are carried out to improve the modeling accuracy. To consider nonlinear characteristics of time-varying opening and closure effects caused by alternating loads, breathing function is proposed for the cracked hexahedral element. Second, finite element method with contact element is analyzed and used for comparison. Finally, validation of the cracked hexahedral element is carried out in terms of breathing effects of cracked blades and natural frequency in different crack depths. Good consistency is acquired between the results with developed cracked hexahedral element and contact element, while the computation time is significantly reduced in the previous one. Therefore, the developed cracked hexahedral element achieves good accuracy and high efficiency in crack modeling of rotating blades.

  5. Crack branching in carbon steel. Fracture mechanisms

    NASA Astrophysics Data System (ADS)

    Syromyatnikova, A. S.; Alekseev, A. A.; Levin, A. I.; Lyglaev, A. V.

    2010-04-01

    The fracture surfaces of pressure vessels made of carbon steel that form during crack branching propagation are examined by fractography. Crack branching is found to occur at a crack velocity higher than a certain critical value V > V c . In this case, the material volume that is involved in fracture and depends on the elastoplastic properties of the material and the sample width has no time to dissipate the energy released upon crack motion via the damage mechanisms intrinsic in the material under given deformation conditions (in our case, via cracking according to intragranular cleavage).

  6. Crack use in São Paulo.

    PubMed

    Nappo, S A; Galduróz, J C; Noto, A R

    1996-04-01

    Documented crack use emerged in São Paulo, Brazil, from 1991 onward. Therefore, it is a recent behavior among drug users. The present work draws a profile of São Paulo crack users, employing an ethnographic approach. Twenty-five crack users were interviewed on selected social and demographic characteristics, on the drug itself and its consumption, and on the consequences of this use. Crack cocaine is harmful for the user, leading within a short period to a condition of dependence. The crack users reported ultimately lapsing into "marginality" due to social isolation, neglect of bodily needs, and breakdown of family ties and other relationships.

  7. Fluid Mechanics.

    ERIC Educational Resources Information Center

    Drazin, Philip

    1987-01-01

    Outlines the contents of Volume II of "Principia" by Sir Isaac Newton. Reviews the contributions of subsequent scientists to the physics of fluid dynamics. Discusses the treatment of fluid mechanics in physics curricula. Highlights a few of the problems of modern research in fluid dynamics. Shows that problems still remain. (CW)

  8. Catalytic thermal barrier coatings

    DOEpatents

    Kulkarni, Anand A.; Campbell, Christian X.; Subramanian, Ramesh

    2009-06-02

    A catalyst element (30) for high temperature applications such as a gas turbine engine. The catalyst element includes a metal substrate such as a tube (32) having a layer of ceramic thermal barrier coating material (34) disposed on the substrate for thermally insulating the metal substrate from a high temperature fuel/air mixture. The ceramic thermal barrier coating material is formed of a crystal structure populated with base elements but with selected sites of the crystal structure being populated by substitute ions selected to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a higher rate than would the base compound without the ionic substitutions. Precious metal crystallites may be disposed within the crystal structure to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a lower light-off temperature than would the ceramic thermal barrier coating material without the precious metal crystallites.

  9. Catalytic reforming catalyst

    SciTech Connect

    Buss, W.C.; Kluksdahl, H.E.

    1980-12-09

    An improved catalyst, having a reduced fouling rate when used in a catalytic reforming process, said catalyst comprising platinum disposed on an alumina support wherein the alumina support is obtained by removing water from aluminum hydroxide produced as a by-product from a ziegler higher alcohol synthesis reaction, and wherein the alumina is calcined at a temperature of 1100-1400/sup 0/F so as to have a surface area of 165 to 215 square meters per gram.

  10. Improved imaging algorithm for bridge crack detection

    NASA Astrophysics Data System (ADS)

    Lu, Jingxiao; Song, Pingli; Han, Kaihong

    2012-04-01

    This paper present an improved imaging algorithm for bridge crack detection, through optimizing the eight-direction Sobel edge detection operator, making the positioning of edge points more accurate than without the optimization, and effectively reducing the false edges information, so as to facilitate follow-up treatment. In calculating the crack geometry characteristics, we use the method of extracting skeleton on single crack length. In order to calculate crack area, we construct the template of area by making logical bitwise AND operation of the crack image. After experiment, the results show errors of the crack detection method and actual manual measurement are within an acceptable range, meet the needs of engineering applications. This algorithm is high-speed and effective for automated crack measurement, it can provide more valid data for proper planning and appropriate performance of the maintenance and rehabilitation processes of bridge.

  11. Catalytic nanoporous membranes

    DOEpatents

    Pellin, Michael J.; Hryn, John N.; Elam, Jeffrey W.

    2009-12-01

    A nanoporous catalytic membrane which displays several unique features including pores which can go through the entire thickness of the membrane. The membrane has a higher catalytic and product selectivity than conventional catalysts. Anodic aluminum oxide (AAO) membranes serve as the catalyst substrate. This substrate is then subjected to Atomic Layer Deposition (ALD), which allows the controlled narrowing of the pores from 40 nm to 10 nm in the substrate by deposition of a preparatory material. Subsequent deposition of a catalytic layer on the inner surfaces of the pores reduces pore sizes to less than 10 nm and allows for a higher degree of reaction selectivity. The small pore sizes allow control over which molecules enter the pores, and the flow-through feature can allow for partial oxidation of reactant species as opposed to complete oxidation. A nanoporous separation membrane, produced by ALD is also provided for use in gaseous and liquid separations. The membrane has a high flow rate of material with 100% selectivity.

  12. Polygon/Cracked Sedimentary Rock

    NASA Technical Reports Server (NTRS)

    2004-01-01

    4 December 2004 Exposures of sedimentary rock are quite common on the surface of Mars. Less common, but found in many craters in the regions north and northwest of the giant basin, Hellas, are sedimentary rocks with distinct polygonal cracks in them. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows an example from the floor of an unnamed crater near 21.0oS, 311.9oW. Such cracks might have formed by desiccation as an ancient lake dried up, or they might be related to ground ice freeze/thaw cycles or some other stresses placed on the original sediment or the rock after it became lithified. The 300 meter scale bar is about 328 yards long. The scene is illuminated by sunlight from the upper left.

  13. Biaxial Fatigue Cracking from Notch

    DTIC Science & Technology

    2013-03-04

    Leevers (reference 11) noticed that the variation in  from 0 to 2 has little effect on the da/dN in PVC ( polyvinyl - chloride ), but reduces the da/dN...under biaxial rotating and bending. Ahmad (reference 2) formulated a model for the biaxial fatigue crack growth in aggressive environment, outlined by...1962, Vol. 90, pp. 238-239. 20. ASM Handbook , Vol. 12 Fractography: 1992, p. 430, 438. 21. Metals Handbook , Vol. 9 Fractography and Atlas of

  14. Electrorheological fluids

    SciTech Connect

    Adolf, D.; Anderson, R.; Garino, T.; Halsey, T.C.; Hance, B.; Martin, J.E.; Odinek, J.

    1996-10-01

    An Electrorheological fluid is normally a low-viscosity colloidal suspension, but when an electric field is applied, the fluid undergoes a reversible transition to a solid, being able to support considerable stress without yield. Commercial possibilities for such fluids are enormous, including clutches, brakes, valves,shock absorbers, and stepper motors. However, performance of current fluids is inadequate for many proposed applications. Our goal was to engineer improved fluids by investigating the key technical issues underlying the solid-phase yield stress and the liquid to solid switching time. Our studies focused on field-induced interactions between colloidal particles that lead to solidification, the relation between fluid structure and performance (viscosity, yield stress), and the time evolution of structure in the fluid as the field is switched on or off.

  15. Fluid permeability of deformable fracture networks

    SciTech Connect

    Brown, S.R.; Bruhn, R.L.

    1997-04-01

    The authors consider the problem of defining the fracture permeability tensor for each grid lock in a rock mass from maps of natural fractures. For this purpose they implement a statistical model of cracked rock due to M. Oda [1985], where the permeability tensor is related to the crack geometry via a volume average of the contribution from each crack in the population. In this model tectonic stress is implicitly coupled to fluid flow through an assumed relationship between crack aperture and normal stress across the crack. The authors have included the following enhancements to the basic model: (1) a realistic model of crack closure under stress has been added along with the provision to apply tectonic stresses to the fracture system in any orientation, the application of stress results in fracture closure and consequently a reduction in permeability; (2) the fracture permeability can be superimposed onto an arbitrary anisotropic matrix permeability; (3) the fracture surfaces are allowed to slide under the application of shear stress, causing fractures to dilate and result in a permeability increase. Through an example, the authors demonstrate that significant changes in permeability magnitudes and orientations are possible when tectonic stress is applied to a fracture system.

  16. Alumina-based monopropellant microthruster with integrated heater, catalytic bed and temperature sensors

    NASA Astrophysics Data System (ADS)

    Khaji, Zahra; Klintberg, Lena; Barbade, Dhananjay; Palmer, Kristoffer; Thornell, Greger

    2016-10-01

    A liquid propellant alumina microthruster with an integrated heater, catalytic bed and two temperature sensors has been developed and tested using 30 wt.% hydrogen peroxide. The temperature sensors and the catalytic bed were screen-printed using platinum paste on tapes of alumina that was stacked and laminated before sintering. In order to increase the surface of the catalytic bed, the platinum paste was mixed with a sacrificial paste that disappeared during sintering, leaving behind a porous and rough layer. Complete evaporation and combustion, resulting in only gas coming from the outlet, was achieved with powers above 3.7 W for a propellant flow of 50 μl/min. At this power, the catalytic bed reached a maximum temperature of 147°C. The component was successfully operated up to a temperature of 307°C, where it cracked.

  17. Crack, sex work, and HIV.

    PubMed

    Leggett, T

    1999-01-01

    South Africa's long isolation, and perhaps deliberate efforts by the apartheid government, have led to an unusual pattern of drug abuse in the country. Drugs not commonly used in other countries, such as Mandrax and Welconol, are widespread in South Africa, while the street drugs commonly found in other countries, such as cocaine and heroin, have been relatively rare. However, this is changing, as international drug traffickers now import a broad range of drugs, including heroin and cocaine. Demand for these drugs has been established in South Africa, including among the urban lower classes. Immigration, especially of other Africans and particularly Nigerians, has accelerated the trend. While both mandrax and crack cocaine are smoked, the former is a sedative and the latter is a stimulant with pro-sexual effects. These sexual effects, together with very strong addictive potential, have led to very high HIV seroprevalence in user populations. Addiction often leads female users into prostitution, with prostitutes being a prime conduit for the spread of both the drug and HIV infection. Desperate to earn funds to meet their crack consumption needs, drug-addicted female prostitutes in South Africa service many clients and engage in practices shunned by their nonaddicted peers, such as unprotected and anal sex. There will be serious long-term effects of crack cocaine consumption, together with prostitution, upon all of South African society.

  18. The Origin of Griffith Cracks

    NASA Astrophysics Data System (ADS)

    Campbell, John

    2011-12-01

    As a result of the extremely strong interatomic bonds, pores and cracks are difficult to form in metals. They seem unlikely to be created intrinsically by the normal mechanisms involved in the formation of a solid by solidification from liquid, or condensation from vapor phases, or probably, by lattice mechanisms in the solid state. It is proposed here that initiation sites for pores and cracks for most failures of metals can only be initiated from unbonded interfaces. Such unbonded defects are introduced into metals only via extrinsic ( entrainment) mechanisms resulting from production processes, particularly melting and casting. Only entrained inclusions, particularly bifilms, have unbonded interfaces that can be opened to constitute Griffith cracks and can explain the initiation of macroscopic fracture and related microscopic processes, such as a decohesion between the second phases and a matrix. In the absence of entrained defects, metals would be predicted to fail in tension only either (1) at high stresses probably in excess of 20 GPa or (2) by ductile flow to the point of 100 pct reduction in area. Improved melting and casting processes giving freedom from entrained defects promise unprecedented performance and reliability of engineering metals.

  19. The Growth of Small Corrosion Fatigue Cracks in Alloy 7075

    NASA Technical Reports Server (NTRS)

    Piascik, R. S.

    2001-01-01

    The corrosion fatigue crack growth characteristics of small (less than 35 microns) surface and corner cracks in aluminum alloy 7075 is established. The early stage of crack growth is studied by performing in situ long focal length microscope (500X) crack length measurements in laboratory air and 1% NaCl environments. To quantify the "small crack effect" in the corrosive environment, the corrosion fatigue crack propagation behavior of small cracks is compared to long through-the-thickness cracks grown under identical experimental conditions. In salt water, long crack constant K(sub max) growth rates are similar to small crack da/dN.

  20. The Growth of Small Corrosion Fatigue Cracks in Alloy 7075

    NASA Technical Reports Server (NTRS)

    Piascik, Robert S.

    2015-01-01

    The corrosion fatigue crack growth characteristics of small (greater than 35 micrometers) surface and corner cracks in aluminum alloy 7075 is established. The early stage of crack growth is studied by performing in situ long focal length microscope (500×) crack length measurements in laboratory air and 1% sodium chloride (NaCl) environments. To quantify the "small crack effect" in the corrosive environment, the corrosion fatigue crack propagation behavior of small cracks is compared to long through-the-thickness cracks grown under identical experimental conditions. In salt water, long crack constant K(sub max) growth rates are similar to small crack da/dN.

  1. Predicting failure of specimens with either surface cracks or corner cracks at holes

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1976-01-01

    A previously developed fracture criterion was applied to fracture data for surface-cracked specimens subjected to remote tensile loading and for specimens with a corner crack (or cracks) emanating from a circular hole subjected to either remote tensile loading or pin loading in the hole. The failure stresses calculated from this criterion were consistent with experimental failure stresses for both surface and corner cracks for a wide range of crack shapes and crack sizes in specimens of aluminum alloy, titanium alloy, and steel. Empirical equations for the elastic stress-intensity factors for a surface crack and for a corner crack (or cracks) emanating from a circular hole in a finite-thickness and finite-width specimen were also developed.

  2. Fatigue cracks in Eurofer 97 steel: Part II. Comparison of small and long fatigue crack growth

    NASA Astrophysics Data System (ADS)

    Kruml, T.; Hutař, P.; Náhlík, L.; Seitl, S.; Polák, J.

    2011-05-01

    The fatigue crack growth rate in the Eurofer 97 steel at room temperature was measured by two different methodologies. Small crack growth data were obtained using cylindrical specimens with a shallow notch and no artificial crack starters. The growth of semicircular cracks of length between 10-2000 μm was followed in symmetrical cycling with constant strain amplitude ( R ɛ = -1). Long crack data were measured using standard CT specimen and ASTM methodology, i.e. R = 0.1. The growth of cracks having the length in the range of 10-30 mm was measured. It is shown that the crack growth rates of both types of cracks are in a very good agreement if J-integral representation is used and usual assumptions of the crack closure effects are taken into account.

  3. Catalytic reactor for low-Btu fuels

    SciTech Connect

    Smith, Lance; Etemad, Shahrokh; Karim, Hasan; Pfefferle, William C.

    2009-04-21

    An improved catalytic reactor includes a housing having a plate positioned therein defining a first zone and a second zone, and a plurality of conduits fabricated from a heat conducting material and adapted for conducting a fluid therethrough. The conduits are positioned within the housing such that the conduit exterior surfaces and the housing interior surface within the second zone define a first flow path while the conduit interior surfaces define a second flow path through the second zone and not in fluid communication with the first flow path. The conduit exits define a second flow path exit, the conduit exits and the first flow path exit being proximately located and interspersed. The conduits define at least one expanded section that contacts adjacent conduits thereby spacing the conduits within the second zone and forming first flow path exit flow orifices having an aggregate exit area greater than a defined percent of the housing exit plane area. Lastly, at least a portion of the first flow path defines a catalytically active surface.

  4. 40 CFR 60.105 - Monitoring of emissions and operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... provisions of this subpart as follows: (1) For fluid catalytic cracking unit catalyst regenerators subject to... catalytic cracking unit catalyst regenerators subject to § 60.103(a), an instrument for continuously... SO2 control device from any fluid catalytic cracking unit catalyst regenerator for which the owner...

  5. Cracking of simulated oil refinery off-gas over a coal char, petroleum coke, and quartz

    SciTech Connect

    Yuan Zhang; Jin-hu Wu; Dong-ke Zhang

    2008-03-15

    The cracking of oil refinery off-gas, simulated with a gas mixture containing methane (51%), ethylene (21.4%), ethane (21.1%), and propane (6.5%), over a coal char, petroleum coke, and quartz, respectively, has been studied in a fixed bed reactor. The experiments were performed at temperatures between 850 and 1000{sup o}C and at atmospheric pressure. The results show that the conversions of all species considered increased with increasing temperature. Ethane and propane completely decomposed over all three bed materials in the temperature range investigated. However, the higher initial conversion rates of methane and ethylene cracking at all temperatures were observed only over the coal char and not on the petroleum coke and quartz, indicating a significant catalytic effect of the coal char on methane and ethylene cracking. Methane and ethylene conversions decreased with reaction time due to deactivation of the coal char by carbon deposition on the char surface and, in the later stage of a cracking experiment, became negative, suggesting that methane and ethylene had been formed during the cracking of ethane and propane. 16 refs., 13 figs., 2 tabs.

  6. Failure Diagram for Chemically Assisted Crack Growth

    NASA Astrophysics Data System (ADS)

    Sadananda, K.; Vasudevan, A. K.

    2011-02-01

    A failure diagram that combines the thresholds for failure of a smooth specimen to that of a fracture mechanics specimen, similar to the modified Kitagawa diagram in fatigue, is presented. For a given material/environment system, the diagram defines conditions under which a crack initiated at the threshold stress in a smooth specimen becomes a propagating crack, by satisfying the threshold stress intensity of a long crack. In analogy with fatigue, it is shown that internal stresses or local stress concentrations are required to provide the necessary mechanical crack tip driving forces, on one hand, and reaction/transportation kinetics to provide the chemical potential gradients, on the other. Together, they help in the initiation and propagation of the cracks. The chemical driving forces can be expressed as equivalent mechanical stresses using the failure diagram. Both internal stresses and their gradients, in conjunction with the chemical driving forces, have to meet the minimum magnitude and the minimum gradients to sustain the growth of a microcrack formed. Otherwise, nonpropagating conditions will prevail or a crack formed will remain dormant. It is shown that the processes underlying the crack nucleation in a smooth specimen and the crack growth of a fracture mechanics specimen are essentially the same. Both require building up of internal stresses by local plasticity. The process involves intermittent crack tip blunting and microcrack nucleation until the crack becomes unstable under the applied stress.

  7. Modelling and measurement of crack closure and crack growth following overloads and underloads

    NASA Technical Reports Server (NTRS)

    Dexter, R. J.; Hudak, S. J.; Davidson, D. L.

    1989-01-01

    Ignoring crack growth retardation following overloads can result in overly conservative life predictions in structures subjected to variable amplitude fatigue loading. Crack closure is believed to contribute to the crack growth retardation, although the specific closure mechanism is dabatable. The delay period and corresponding crack growth rate transients following overload and overload/underload cycles were systematically measured as a function of load ratio and overload magnitude. These responses are correlated in terms of the local 'driving force' for crack growth, i.e. the effective stress intensity factor range. Experimental results are compared with the predictions of a Dugdale-type (1960) crack closure model, and improvements in the model are suggested.

  8. Crack Turning in Integrally Stiffened Aircraft Structures

    NASA Technical Reports Server (NTRS)

    Pettit, Richard Glen

    2000-01-01

    Current emphasis in the aircraft industry toward reducing manufacturing cost has created a renewed interest in integrally stiffened structures. Crack turning has been identified as an approach to improve the damage tolerance and fail-safety of this class of structures. A desired behavior is for skin cracks to turn before reaching a stiffener, instead of growing straight through. A crack in a pressurized fuselage encounters high T-stress as it nears the stiffener--a condition favorable to crack turning. Also, the tear resistance of aluminum alloys typically varies with crack orientation, a form of anisotropy that can influence the crack path. The present work addresses these issues with a study of crack turning in two-dimensions, including the effects of both T-stress and fracture anisotropy. Both effects are shown to have relation to the process zone size, an interaction that is central to this study. Following an introduction to the problem, the T-stress effect is studied for a slightly curved semi-infinite crack with a cohesive process zone, yielding a closed form expression for the future crack path in an infinite medium. For a given initial crack tip curvature and tensile T-stress, the crack path instability is found to increase with process zone size. Fracture orthotropy is treated using a simple function to interpolate between the two principal fracture resistance values in two-dimensions. An extension to three-dimensions interpolates between the six principal values of fracture resistance. Also discussed is the transition between mode I and mode II fracture in metals. For isotropic materials, there is evidence that the crack seeks out a direction of either local symmetry (pure mode I) or local asymmetry (pure mode II) growth. For orthotropic materials the favored states are not pure modal, and have mode mixity that is a function of crack orientation.

  9. Physicochemical controls on initiation and evolution of desiccation cracks in sand-bentonite mixtures: X-ray CT imaging and stochastic modeling

    NASA Astrophysics Data System (ADS)

    Gebrenegus, Thomas; Ghezzehei, Teamrat A.; Tuller, Markus

    2011-09-01

    The shrink-swell behavior of active clays in response to changes in physicochemical conditions creates great challenges for construction of geotechnical barriers for hazardous waste isolation, and is of significant importance for management of agricultural and natural resources. Initiation and evolution of desiccation cracks in active clays are strongly dependent on physicochemical initial and boundary conditions. To investigate effects of bentonite content (20, 40, 60%), pore fluid chemistry (0.05 and 0.5 M NaCl) and drying rates (40 and 60 °C) on cracking behavior, well-controlled dehydration experiments were conducted and X-ray Computed Tomography (CT) was applied to visualize and quantify geometrical features of evolving crack networks. A stochastic model based on the Fokker-Plank equation was adopted to describe the evolution of crack aperture distributions (CAD) and to assess the impact of physicochemical factors on cracking behavior. Analyses of crack porosity and crack specific surface area showed that both clay content and temperature had larger impact on cracking than pore fluid concentration. More cracks formed at high bentonite contents (40 and 60%) and at high drying rate (60 °C). The drift, diffusion and source terms derived from stochastic analysis indicated that evaporative demand had greater influence on the dynamics of the CAD than solution chemistry.

  10. Physicochemical controls on initiation and evolution of desiccation cracks in sand-bentonite mixtures: X-ray CT imaging and stochastic modeling.

    PubMed

    Gebrenegus, Thomas; Ghezzehei, Teamrat A; Tuller, Markus

    2011-09-25

    The shrink-swell behavior of active clays in response to changes in physicochemical conditions creates great challenges for construction of geotechnical barriers for hazardous waste isolation, and is of significant importance for management of agricultural and natural resources. Initiation and evolution of desiccation cracks in active clays are strongly dependent on physicochemical initial and boundary conditions. To investigate effects of bentonite content (20, 40, 60%), pore fluid chemistry (0.05 and 0.5M NaCl) and drying rates (40 and 60°C) on cracking behavior, well-controlled dehydration experiments were conducted and X-ray Computed Tomography (CT) was applied to visualize and quantify geometrical features of evolving crack networks. A stochastic model based on the Fokker-Plank equation was adopted to describe the evolution of crack aperture distributions (CAD) and to assess the impact of physicochemical factors on cracking behavior. Analyses of crack porosity and crack specific surface area showed that both clay content and temperature had larger impact on cracking than pore fluid concentration. More cracks formed at high bentonite contents (40 and 60%) and at high drying rate (60°C). The drift, diffusion and source terms derived from stochastic analysis indicated that evaporative demand had greater influence on the dynamics of the CAD than solution chemistry.

  11. Crack Closure Characteristics Considering Center Cracked and Compact Tension Specimens.

    DTIC Science & Technology

    1984-12-01

    adjacent elements differed in size by no more than a factor of 2. The fine mesh elements near the crack tip were much smaller than the -7 2CTS with an area...N .1- £KO.~.-N 0 0 td t + U.Us* 0 C.+ *4 w O mcow K O4 ’ 4u 0. X Ulf! W I 2 0 Z K0 NO- N Cos.@-0S W.N a-1 WW m .M0 000004.*0 00 4-W-M. R800*x -3-o" 0

  12. Catalytic reforming process

    SciTech Connect

    Absil, R.P.; Huss, A. Jr.; McHale, W.D.; Partridge, R.D.

    1989-06-13

    This patent describes a catalytic reforming process which comprises contacting a naphtha range feed with a low acidity extrudate comprising an intermediate and/or a large pore acidic zeolite bound with a low acidity refractory oxide under reforming conditions to provide a reaction product of increased aromatic content, the extrudate having been prepared with at least an extrusion-facilitating amount of a low acidity refractory oxide in colloidal form and containing at least one metal species selected from the platinum group metals.

  13. Characterization of the roles of electrochemistry, convection and crack chemistry in stress corrosion cracking

    SciTech Connect

    Andresen, P.L.; Young, L.M.

    1995-12-31

    Understanding the role of ionic current flow within a crack and near the crack tip is fundamental to modeling of environmentally assisted crack advance. Critical conceptual issues and models related to ionic current flow within cracks, and the associated ``crevice`` chemistry and metal oxidation that results, are presented and examined in the light of experimental evidence. Various advanced techniques have been developed to evaluate the roles of electrochemistry, transport, and crack chemistry in stress corrosion cracking, with emphasis on high temperature ``pure`` water. These include high resolution crack length measurement by dc potential drop performed simultaneously with microsampling, electrochemical microprobe mapping, microinjection of species, and micropolarization of the crack. Conceptual issues addressed include the importance of the corrosion potential vs. oxidant concentration, the absence of oxidants and associated low corrosion potential within cracks, the location and role of macrocell currents associated with potential gradients from differential aeration cells, the localized nature of the microcell currents associated with dissolution at the crack tip, the importance of pH and adsorbed species on repassivation and crack advance, and the role of convection in crack chemistry and crack advance. Correct concepts are shown to be an essential pre-cursor to quantitative modeling.

  14. Model Predictions of Chemically Controlled Slow Crack Growth with Application to Mechanical Effects in Geothermal Environments

    SciTech Connect

    Viani, B E

    2001-04-11

    Representative, simplified geothermal rock-fluid systems are investigated with a modeling approach to estimate how rock water interactions affect coupled properties related to mechanical stability and permeability improvement through fracturing. First, geochemical modeling is used to determine the evolution of fluid chemistry at temperatures up to 300 C when fluids are in contact with representative rocks of continental origin. Then, a kinetic crack growth model for quartz is used to predict growth rate for subcritical cracks in acidic and basic environments. The predicted growth rate is highly sensitive to temperature and pH in the ranges tested. At present, the model is limited to situations in which quartz controls the mechanical process of interest, such as well bore stability in silica cemented rocks and the opening of quartz filled veins to enhance permeability.

  15. Scattering of elastic waves by a fracture zone containing randomly distributed cracks

    NASA Astrophysics Data System (ADS)

    Kawahara, Jun; Yamashita, Teruo

    1992-03-01

    We theoretically study the scattering of P, SV and SH waves by a zonal distribution of cracks, which simulates a fault fracture zone. An investigation is conducted how the geometrical properties of the crack distribution and the frictional characteristics of the crack surface are reflected in the attenuation and dispersion of incident waves, as well as in the amplitudes of the transmitted and reflected waves from the zone. If the crack distribution within the fault zone changes temporally during the preparation process of the expected earthquake, it will be important for earthquake prediction to monitor it, utilizing the scattering-induced wave phenomena. We consider the two-dimensional problem. Aligned cracks with the same length are assumed to be randomly distributed in a zone with a finite width, on which elastic waves are assumed to be incident. The distribution of cracks is assumed to be homogeneous and sparse. The crack surface is assumed to be stress-free, or to undergo viscous friction; the latter case simulates fluid-filled cracks. The opening displacement of the crack is assumed to be negligibly small. The idea of the mean wave formalism is employed in the analysis, and Foldy's approximation is assumed. When the crack surface is stress-free, it is commonly observed for every wave mode ( P, SV and SH) that the attenuation coefficient Q -1 peaks around ka˜1, the phase velocity is almost independent of k in the range ka<1 and it increases monotonically with k in the range ka>1, where k is the intrinsic S wavenumber and a is the half length of the crack. The effect of the friction is to shift the peak of Q -1 and the corner of the phase velocity curve to the low wavenumber range. The high wavenumber asymptote of Q -1 is proportional to k -1 independently of model parameters and the wave modes. If the seismological observation that Q -1 of S waves has a peak at around 0.5 Hz in the earth's crust is combined with our results, the upper limit of crack size

  16. A probabilistic model of brittle crack formation

    NASA Technical Reports Server (NTRS)

    Chudnovsky, A.; Kunin, B.

    1987-01-01

    Probability of a brittle crack formation in an elastic solid with fluctuating strength is considered. A set Omega of all possible crack trajectories reflecting the fluctuation of the strength field is introduced. The probability P(X) that crack penetration depth exceeds X is expressed as a functional integral over Omega of a conditional probability of the same event taking place along a particular path. Various techniques are considered to evaluate the integral. Under rather nonrestrictive assumptions, the integral is reduced to solving a diffusion-type equation. A new characteristic of fracture process, 'crack diffusion coefficient', is introduced. An illustrative example is then considered where the integration is reduced to solving an ordinary differential equation. The effect of the crack diffusion coefficient and of the magnitude of strength fluctuations on probability density of crack penetration depth is presented. Practical implications of the proposed model are discussed.

  17. Crack Propagation in Bamboo's Hierarchical Cellular Structure

    PubMed Central

    Habibi, Meisam K.; Lu, Yang

    2014-01-01

    Bamboo, as a natural hierarchical cellular material, exhibits remarkable mechanical properties including excellent flexibility and fracture toughness. As far as bamboo as a functionally graded bio-composite is concerned, the interactions of different constituents (bamboo fibers; parenchyma cells; and vessels.) alongside their corresponding interfacial areas with a developed crack should be of high significance. Here, by using multi-scale mechanical characterizations coupled with advanced environmental electron microscopy (ESEM), we unambiguously show that fibers' interfacial areas along with parenchyma cells' boundaries were preferred routes for crack growth in both radial and longitudinal directions. Irrespective of the honeycomb structure of fibers along with cellular configuration of parenchyma ground, the hollow vessels within bamboo culm affected the crack propagation too, by crack deflection or crack-tip energy dissipation. It is expected that the tortuous crack propagation mode exhibited in the present study could be applicable to other cellular natural materials as well. PMID:24998298

  18. Crack propagation in bamboo's hierarchical cellular structure.

    PubMed

    Habibi, Meisam K; Lu, Yang

    2014-07-07

    Bamboo, as a natural hierarchical cellular material, exhibits remarkable mechanical properties including excellent flexibility and fracture toughness. As far as bamboo as a functionally graded bio-composite is concerned, the interactions of different constituents (bamboo fibers; parenchyma cells; and vessels.) alongside their corresponding interfacial areas with a developed crack should be of high significance. Here, by using multi-scale mechanical characterizations coupled with advanced environmental electron microscopy (ESEM), we unambiguously show that fibers' interfacial areas along with parenchyma cells' boundaries were preferred routes for crack growth in both radial and longitudinal directions. Irrespective of the honeycomb structure of fibers along with cellular configuration of parenchyma ground, the hollow vessels within bamboo culm affected the crack propagation too, by crack deflection or crack-tip energy dissipation. It is expected that the tortuous crack propagation mode exhibited in the present study could be applicable to other cellular natural materials as well.

  19. Drug user settings: a crack house typology.

    PubMed

    Geter, R S

    1994-06-01

    Both lay persons and members of the scientific community have come to view the inner-city crack house as a facility where drug dealers and crack addicts sell, buy, and use crack cocaine. It is suggested in this article that the term "crack house" be unbundled into four more meaningful terms based on the physical conditions of the house, its functionality, and the social relationships that it supports. Two typologies are proposed. The first separates drug houses into four general categories: (1) Crack House, (2) Cop House, (3) Drug House III, and (4) Drug House IV. The second typology categorizes the Crack House into four types: (A) the Party House, (B) the Hit House, (C) the Smoke House, and (D) the Bandominium. Each of these types is explored in detail.

  20. Prediction of thermal cycling induced matrix cracking

    NASA Technical Reports Server (NTRS)

    Mcmanus, Hugh L.

    1992-01-01

    Thermal fatigue has been observed to cause matrix cracking in laminated composite materials. A method is presented to predict transverse matrix cracks in composite laminates subjected to cyclic thermal load. Shear lag stress approximations and a simple energy-based fracture criteria are used to predict crack densities as a function of temperature. Prediction of crack densities as a function of thermal cycling is accomplished by assuming that fatigue degrades the material's inherent resistance to cracking. The method is implemented as a computer program. A simple experiment provides data on progressive cracking of a laminate with decreasing temperature. Existing data on thermal fatigue is also used. Correlations of the analytical predictions to the data are very good. A parametric study using the analytical method is presented which provides insight into material behavior under cyclical thermal loads.

  1. Online bridge crack monitoring with smart film.

    PubMed

    Zhang, Benniu; Wang, Shuliang; Li, Xingxing; Zhou, Zhixiang; Zhang, Xu; Yang, Guang; Qiu, Minfeng

    2013-01-01

    Smart film crack monitoring method, which can be used for detecting initiation, length, width, shape, location, and propagation of cracks on real bridges, is proposed. Firstly, the fabrication of the smart film is developed. Then the feasibility of the method is analyzed and verified by the mechanical sensing character of the smart film under the two conditions of normal strain and crack initiation. Meanwhile, the coupling interference between parallel enameled wires of the smart film is discussed, and then low-frequency detecting signal and the custom communication protocol are used to decrease interference. On this basis, crack monitoring system with smart film is designed, where the collected crack data is sent to the remote monitoring center and the cracks are simulated and recurred. Finally, the monitoring system is applied to six bridges, and the effects are discussed.

  2. Online Bridge Crack Monitoring with Smart Film

    PubMed Central

    Wang, Shuliang; Li, Xingxing; Zhou, Zhixiang; Zhang, Xu; Yang, Guang; Qiu, Minfeng

    2013-01-01

    Smart film crack monitoring method, which can be used for detecting initiation, length, width, shape, location, and propagation of cracks on real bridges, is proposed. Firstly, the fabrication of the smart film is developed. Then the feasibility of the method is analyzed and verified by the mechanical sensing character of the smart film under the two conditions of normal strain and crack initiation. Meanwhile, the coupling interference between parallel enameled wires of the smart film is discussed, and then low-frequency detecting signal and the custom communication protocol are used to decrease interference. On this basis, crack monitoring system with smart film is designed, where the collected crack data is sent to the remote monitoring center and the cracks are simulated and recurred. Finally, the monitoring system is applied to six bridges, and the effects are discussed. PMID:24489496

  3. Measuring Crack Length in Coarse Grain Ceramics

    NASA Technical Reports Server (NTRS)

    Salem, Jonathan A.; Ghosn, Louis J.

    2010-01-01

    Due to a coarse grain structure, crack lengths in precracked spinel specimens could not be measured optically, so the crack lengths and fracture toughness were estimated by strain gage measurements. An expression was developed via finite element analysis to correlate the measured strain with crack length in four-point flexure. The fracture toughness estimated by the strain gaged samples and another standardized method were in agreement.

  4. Crack Path Prediction Near an Elliptical Inhomogeneity

    DTIC Science & Technology

    1991-09-01

    Prediction Near an Elliptical Inhomogeneity 1L162618AH80 6. AUTHOR(S) Edward M. Patton 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8 . PERFORMING...oriented crack. Erdogan and Gupta [ 8 ] later solved the problem in which the crack crosses the interface. These solutions are based on the Green’s...the crack propagation direction 8 is greatest. This criterion implies that the stress parallel to that direction would be a minimum, or that the

  5. Thermomechanical Manipulation of Crack-Tip Stress Field for Resistance to Stress Corrosion Crack Propagation

    NASA Astrophysics Data System (ADS)

    Singh Raman, R. K.; Ibrahim, R. N.; Wu, F.; Rihan, R.

    2008-12-01

    Corrosion-assisted propagation of an existing crack is profoundly influenced by the stress intensity at the crack tip. This article presents the first results of thermomechanical conditioning (TMC) for local manipulation of material at and ahead of the crack tip, in an attempt to retard/stop crack propagation. Prenotched round tensile specimens of mild steel were subjected to rotating bending to generate a fatigue precrack, and then to apply localized thermomechanical conditioning. The threshold stress intensity factor ( K ISCC ) for stress corrosion cracking (SCC) of precracked specimens with and without TMC was determined in a caustic environment. Results suggest that TMC can increase K ISCC . Finite element analysis of the specimens suggests development of compressive stresses at and around the crack tip, which is expected to improve the resistance to stress corrosion crack propagation (since stress corrosion cracks can propagate only under tensile loading).

  6. Novel Catalytic Membrane Reactors

    SciTech Connect

    Stuart Nemser, PhD

    2010-10-01

    There are many industrial catalytic organic reversible reactions with amines or alcohols that have water as one of the products. Many of these reactions are homogeneously catalyzed. In all cases removal of water facilitates the reaction and produces more of the desired chemical product. By shifting the reaction to right we produce more chemical product with little or no additional capital investment. Many of these reactions can also relate to bioprocesses. Given the large number of water-organic compound separations achievable and the ability of the Compact Membrane Systems, Inc. (CMS) perfluoro membranes to withstand these harsh operating conditions, this is an ideal demonstration system for the water-of-reaction removal using a membrane reactor. Enhanced reaction synthesis is consistent with the DOE objective to lower the energy intensity of U.S. industry 25% by 2017 in accord with the Energy Policy Act of 2005 and to improve the United States manufacturing competitiveness. The objective of this program is to develop the platform technology for enhancing homogeneous catalytic chemical syntheses.

  7. Fatigue Crack Closure - A Review

    DTIC Science & Technology

    1990-09-01

    gauge along the crack line. They used CCT speci- mens of high tensile strength steel ( HY80 ). The measured value of U was found to be a minimum at the...ultrasonic surface wave technique on 12.5mm thick specimens of 2024-T851, 2024-T351, Al 2219, Ti-6AI-4V and 17-4 PH steel . Most of the results were...medium and high strength steels . Exami- nation of the fracture surfaces suggested that raising the mean stress in low fracture toughness steels could

  8. Competition between fatigue crack propagation and wear

    SciTech Connect

    Fan, H.; Keer, L.M.; Cheng, W.; Cheng, H.S. )

    1993-01-01

    Based on a semi-empirical derivation of the Paris fatigue law, the fatigue crack length a is related to the yield limit or flow stress, which ultimately is related to the hardness of the material. The analysis considers together the cyclic loading, which tends to increase the surface crack length, and the wear, which tends to decrease the crack length at the surface, and shows that under certain conditions a stable crack length may be developed. Experiments conducted on two test groups (Rc = 58.5 and Rc = 62.7) tend to support the present analysis. 10 refs.

  9. Combustion in cracks of PBX 9501

    SciTech Connect

    Berghout, H. L.; Son, S. F.; Bolme, C. A.; Hill, L. G.; Asay, B. W.; Dickson, P. M.; Henson, B. F.; Smilowitz, L. B.

    2002-01-01

    Recent experiments involving the combustion of PBX 9501 explosive under confined conditions reveal the importance of crack and flaws in reaction violence. Experiments on room temperature confined disks of pristine and thermally damaged PBX 9501 reveal that crack ignition depends on hot gases entering existing or pressure induced cracks rather than on energy release at the crack tip. PBX 9501 slot combustion experiments show that the reaction propagation rate in the slot does not depend on the external pressure. We have observed 1500 d s in long slots of highly-confined PBX 9501. We present experiments that examine the combustion of mechanically and thermally damaged samples of PBX 9501.

  10. Investigations of Low Temperature Time Dependent Cracking

    SciTech Connect

    Van der Sluys, W A; Robitz, E S; Young, B A; Bloom, J

    2002-09-30

    The objective of this project was to investigate metallurgical and mechanical phenomena associated with time dependent cracking of cold bent carbon steel piping at temperatures between 327 C and 360 C. Boiler piping failures have demonstrated that understanding the fundamental metallurgical and mechanical parameters controlling these failures is insufficient to eliminate it from the field. The results of the project consisted of the development of a testing methodology to reproduce low temperature time dependent cracking in laboratory specimens. This methodology was used to evaluate the cracking resistance of candidate heats in order to identify the factors that enhance cracking sensitivity. The resultant data was integrated into current available life prediction tools.

  11. [Desiccation cracking of soil body: a review].

    PubMed

    Pei, Yin-Ge; Xu, Ze-Min; Zhang, Jia-Ming

    2012-04-01

    Desiccation cracking of soil body is a complex physical process, which can affect the strength, stability, and permeability of soil body, and involve in several disciplines such as soil science, agricultural science, engineering geology, and environmental science. This paper introduced the significances of the study on the desiccation cracking of soil body, reviewed the related theoretical and applied researches and the quantitative analysis of crack morphology, and discussed the deficiencies in the research fields, research contents, and research methods. The future research directions about the desiccation cracking of soil body were pointed out.

  12. Fatigue crack propagation at polymer adhesive interfaces

    SciTech Connect

    Ritter, J.E.

    1996-12-31

    Delamination of polymer adhesive interfaces often occurs due to slow crack growth under either monotonic or cyclic loading. The author`s previous research showed that moisture-assisted crack growth at epoxy/glass and epoxy acrylate/glass interfaces under monotonic loading was directly related to the applied energy release rate and relative humidity and that cyclic loading could enhance crack growth. The purpose of the present research is to compare crack growth along epoxy acrylate/glass and epoxy/PMMA interfaces under monotonic and cyclic loading.

  13. On cracking of charged anisotropic polytropes

    NASA Astrophysics Data System (ADS)

    Azam, M.; Mardan, S. A.

    2017-01-01

    Recently in [1], the role of electromagnetic field on the cracking of spherical polytropes has been investigated without perturbing charge parameter explicitly. In this study, we have examined the occurrence of cracking of anisotropic spherical polytropes through perturbing parameters like anisotropic pressure, energy density and charge. We consider two different types of polytropes in this study. We discuss the occurrence of cracking in two different ways (i) by perturbing polytropic constant, anisotropy and charge parameter (ii) by perturbing polytropic index, anisotropy and charge parameter for each case. We conclude that cracking appears for a wide range of parameters in both cases. Also, our results are reduced to [2] in the absence of charge.

  14. Controlled crack growth specimen for brittle systems

    NASA Technical Reports Server (NTRS)

    Calomino, Anthony M.; Brewer, David N.

    1992-01-01

    A pure Mode 1 fracture specimen and test procedure has been developed which provides extended, stable, through-thickness crack growth in ceramics and other brittle, nonmetallic materials. Fixed displacement loading, applied at the crack mouth, promotes stable crack extension by reducing the stored elastic strain energy. Extremely fine control of applied displacements is achieved by utilizing the Poisson's expansion of a compressively loaded cylindrical pin. Stable cracks were successfully grown in soda-lime glass and monolithic Al2O3 for lengths in excess of 2O mm without uncontrollable catastrophic failure.

  15. Cracks in Sheets Draped on Curved Surfaces

    NASA Astrophysics Data System (ADS)

    Mitchell, Noah P.; Koning, Vinzenz; Vitelli, Vincenzo; Irvine, William T. M.

    Conforming materials to surfaces with Gaussian curvature has proven a versatile tool to guide the behavior of mechanical defects such as folds, blisters, scars, and pleats. In this talk, we show how curvature can likewise be used to control material failure. In our experiments, thin elastic sheets are confined on curved geometries that stimulate or suppress the growth of cracks, and steer or arrest their propagation. By redistributing stresses in a sheet, curvature provides a geometric tool for protecting certain regions and guiding crack patterns. A simple model captures crack behavior at the onset of propagation, while a 2D phase-field model successfully captures the crack's full phenomenology.

  16. Controlled crack growth specimen for brittle systems

    NASA Technical Reports Server (NTRS)

    Calomino, Anthony M.; Brewer, David N.

    1990-01-01

    A pure Mode 1 fracture specimen and test procedure has been developed which provides extended, stable, through-thickness crack growth in ceramics and other brittle, nonmetallic materials. Fixed displacement loading, applied at the crack mouth, promotes stable crack extension by reducing the stored elastic strain energy. Extremely fine control of applied displacements is achieved by utilizing the Poisson's expansion of a compressively loaded cylindrical pin. Stable cracks were successfully grown in soda-lime glass and monolithic Al2O3 for lengths in excess of 20 mm without uncontrollable catastrophic failure.

  17. Fracture Mechanics of Crack Growth During Sonic-IR Inspection

    NASA Astrophysics Data System (ADS)

    Chen, J. C.; Riddell, W. T.; Lick, Kyle; Wong, Chang-Hwa

    2007-03-01

    In past studies, we showed that cracks synthesized under carefully controlled conditions will propagate when subjected to sonic IR testing. The extent or severity of the propagation observed depended on several parameters including the stress intensity factor (which corresponds to crack growth rate) under which the crack was synthesized, the tightness of the crack closure, and the initial crack length. Furthermore, we showed that crack propagation during sonic IR testing occurs for 2024 aluminum, titanium and 304 stainless steel specimens. In this study, we extend the range of experimental conditions for synthesizing cracks to further elucidate their effect on the crack propagation, and we focus more specifically on the stress intensity factor. The stress intensity factor not only determines the rate of crack growth, but it has two profound effects on crack characteristics: the establishment of plastic zones around the crack tip and the variation of the topography of the mating crack surfaces. These two factors strongly affect crack propagation.

  18. Fatigue Crack Closure Analysis Using Digital Image Correlation

    NASA Technical Reports Server (NTRS)

    Leser, William P.; Newman, John A.; Johnston, William M.

    2010-01-01

    Fatigue crack closure during crack growth testing is analyzed in order to evaluate the critieria of ASTM Standard E647 for measurement of fatigue crack growth rates. Of specific concern is remote closure, which occurs away from the crack tip and is a product of the load history during crack-driving-force-reduction fatigue crack growth testing. Crack closure behavior is characterized using relative displacements determined from a series of high-magnification digital images acquired as the crack is loaded. Changes in the relative displacements of features on opposite sides of the crack are used to generate crack closure data as a function of crack wake position. For the results presented in this paper, remote closure did not affect fatigue crack growth rate measurements when ASTM Standard E647 was strictly followed and only became a problem when testing parameters (e.g., load shed rate, initial crack driving force, etc.) greatly exceeded the guidelines of the accepted standard.

  19. Liquid metal embrittlement. [crack propagation in metals with liquid metal in crack space

    NASA Technical Reports Server (NTRS)

    Tiller, W. A.

    1973-01-01

    Crack propagation is discussed for metals with liquid metal in the crack space. The change in electrochemical potential of an electron in a metal due to changes in stress level along the crack surface was investigated along with the change in local chemistry, and interfacial energy due to atomic redistribution in the liquid. Coupled elastic-elastrostatic equations, stress effects on electron energy states, and crack propagation via surface roughening are discussed.

  20. Determining fatigue crack opening loads from near-crack-tip displacement measurements

    SciTech Connect

    Riddell, W.T.; Piascik, R.S.; Sutton, M.A.; Zhao, W.; McNeill, S.R.; Helm, J.D.

    1999-07-01

    The aim of this research was to develop a near-crack-tip measurement method that quantifies crack closure levels in the near-threshold fatigue crack growth regime--a regime where crack closure is not well characterized by remote compliance methods. Further understanding of crack closure mechanics was gained by performing novel crack growth experiments in conjunction with numerical simulations of three-dimensional crack-front propagation. Steady-state (i.e., constant growth rate) fatigue crack growth rates were characterized by performing constant cyclic stress intensity range ({Delta}K) experiments over a wide range of stress ratios (R). Near-crack-tip (less than 0.3 mm behind) load-versus-displacement measurements were conducted on the specimen surface using a novel noncontact experimental technique (Digital Imaging Displacement System--DIDS). The experiments and simulations revealed that the three-dimensional aspects of fatigue crack closure must be considered to determine correct opening load levels from near-crack-tip load-versus-displacement data. It was shown that near-crack-front, but increase near the free surface. The interior opening load was found to collapse closure-affected data to intrinsic rates, and thus shown to relate to the true crack-front driving force parameter. Surface opening load DIDS measurements made at an optimal distance behind the crack tip were used to correlate da/dN with {Delta}K{sub eff}. Opening load determinations made less than the optimal distance behind the crack tip were shown to be too high to correlate fatigue crack growth rates.

  1. Effect of Crack Closure on Ultrasonic Detection of Fatigue Cracks at Fastener Holes

    NASA Astrophysics Data System (ADS)

    Bowles, S. J.; Harding, C. A.; Hugo, G. R.

    2009-03-01

    The ultrasonic response from closed fatigue cracks grown in aluminium alloy specimens using a representative aircraft spectrum loading has been characterised as a function of tensile applied load using pulse-echo 45° shear-wave ultrasonic C-scans with focused immersion transducers. Observed trends with crack size and applied load are described and compared to results for artificial machined defects. The results demonstrate that crack closure significantly reduces the ultrasonic response compared to open cracks or machined defects.

  2. Analysis of the interaction of two parallel surface cracks

    NASA Astrophysics Data System (ADS)

    Hahn, Jeeyeon

    The objective of this research is to analyze and predict the interaction of surface cracks that occur in parallel planes. Multiple cracks may form in aging aircraft that forms at stress concentrations such as fastener holes and notched components by stress corrosion and fatigue cracking. The lifetime of the structures are significantly affected by the interaction between these cracks. Depending on relative positions and orientations of neighboring cracks, local stress fields and crack driving forces can be affected by the presence of adjacent cracks. Even small subcritical cracks may rapidly grow to a size that will cause failure in service due to interaction and coalescence with other cracks. The interaction behavior and crack propagation direction of two parallel surface cracks is studied using three-dimensional finite element analysis (FEA). FEA models with wide range of crack configurations in a finite plate under tension are evaluated to investigate the correlation between the crack shapes and the separation distance between two cracks. The relative distance (vertical and horizontal) between two cracks and size and shape of these cracks are varied to create different stress interaction fields. Stress intensity factors (SIF) along the crack fronts are obtained from FEA, and then, cracking behaviors of the cracks are predicted by considering the influence of the interaction on the SIF and the coalescence of two cracks. The results obtained are then compared with existing experimental and analytical data for validation. All of the data analyses are presented in tabular forms and figures.

  3. Catalytic Oxidative Dehydration of Butanol Isomers: 1-Butanol, 2-Butanol, and Isobutanol

    DTIC Science & Technology

    2011-09-01

    the literature (9–12). In one such process, ethane auto- thermally decomposes to form ethylene (9). This process also converts heavier paraffins...production enables the reaction to perform auto- thermally . As a result, the catalytic reaction initiates at a temperature as low as 240 °C, and the catalyst...There was minimal thermal cracking along the carbon backbone since 88– 99% of the olefins produced were butene isomers. Then the degree of

  4. A Creaking and Cracking Comet

    NASA Astrophysics Data System (ADS)

    Faurschou Hviid, Stubbe; Hüttig, Christian; Groussin, Olivier; Mottola, Stefano; Keller, Horst Uwe; OSIRIS Team

    2016-10-01

    Since the middle of 2014 the OSIRIS cameras on the ESA Rosetta mission have been monitoring the evolution of the comet 67P/Churyumov-Gerasimenko as it passed through perihelion. During the perihelion passage several change events have been observed on the nucleus surface. For example existing large scale cracks have expanded and new large scale cracks have been created. Also several large scale "wave pattern" like change events have been observed in the Imhotep and Hapi regions. These are events not directly correlated with any normal visible cometary activity. One interpretation is that these are events likely caused by "seismic" activity. The seismic activity is created by the self-gravity stress of the non-spherical comet nucleus and stress created by the non-gravitational forces acting on the comet. The non-gravitational forces are changing the rotation period of the comet (~20min/perihelion passage) which induces a changing mechanical stress pattern through the perihelion passage. Also the diurnal cycle with its changing activity pattern is causing a periodic wobble in the stress pattern that can act as a trigger for a comet quake. The stress pattern has been modeled using a finite element model that includes self-gravity, the comet spin and the non-gravitational forces based on a cometary activity model. This paper will discuss what can be learned about the comet nucleus structure and about the cometary material properties from these events and from the FEM model.

  5. Laboratory Study of Crack Development and Crack Interaction in Concrete Blocks due to Swelling of Cracking Agent

    NASA Astrophysics Data System (ADS)

    Frühwirt, Thomas; Plößer, Arne; Konietzky, Heinz

    2015-04-01

    The main focus of this work was to investigate temporary and spatial features of crack development in concrete blocks due to the action of a swelling agent. A commercial available cement-based mortar which shows heavily swelling behaviour when hydrating is used to provide inside pressure in boreholes in conrete blocks and hence serves as cracking agent. As no data for the swelling behaviour of the cracking agent were available the maximum axial swelling stress and axial free swelling strain were determined experimentally. In a first series of tests on concrete blocks the influence of an external mechanical, unidirectional stress on the development-time and orientation of cracks has been investigated for a range of loading levels. The stress state in the blocks prepared with a single borehole was determined by a superposition of internal stresses caused by swelling pressure and external mechanical loading. For a second series of tests prismatic blocks with two boreholes where prepared. This test setup allowed to realize different orientation of boreholes with respect to the uniaxial loading direction. Complementary tests were done using the cracking agent in both, only one or none of the boreholes. Different modes of crack interaction and influence of filled or unfilled boreholes have been observed. Features of crack development showed significant sensitivity to external loading. Starting even at very low load levels crack orientation was primarely determined by the direction of the external load. Temporal change in crack development due to the different load levels was insignificant and no consistent conclusion could be drawn. Crack interaction phenomena only were observed with two boreholes orientated primarely in direction of the external loading. Even in these cases crack orientation was mainly determined by the external stress field and only locally influenced by other cracks or the unfilled borehole. The work provides us with an extensive catalogue of

  6. Effects of crack aspect ratio on the behavior of small surface cracks in fatigue: Part I. Simulation

    NASA Astrophysics Data System (ADS)

    Ravichandran, K. S.

    1997-01-01

    A simple simulation of alternate growth of a small surface crack in the surface and depth directions was performed to illustrate the changes in crack aspect ratio, induced by grain boundaries, as a function of crack size. It is shown that at small crack sizes, large variations in aspect ratio, a/c ( a is the crack depth and c is the half-surface length), occur, due to local crack front perturbations induced by grains that are oriented for crack growth. At these crack sizes, the assumption of a semicircular crack shape ( a/c=1.0) was found to cause errors in stress intensity range (Δ K) calculations. This, in turn, led to significant scatter or “anomaly” in small crack growth rates relative to large cracks. At large crack sizes, the effects of local crack front perturbations on crack aspect ratio and Δ K were found to be insignificant. As a result, the scatter in crack growth data was found to decrease to a negligible level at large crack sizes. It is suggested that the limiting crack size above which the small crack behaves as a large crack, l 2=10 d ( d = grain size), proposed by Taylor and Knott, is related to the crack size above which the effects due to aspect ratio variations are small.

  7. The growth of small corrosion fatigue cracks in alloy 2024

    NASA Technical Reports Server (NTRS)

    Piascik, Robert S.; Willard, Scott A.

    1993-01-01

    The corrosion fatigue crack growth characteristics of small surface and corner cracks in aluminum alloy 2024 is established. The damaging effect of salt water on the early stages of small crack growth is characterized by crack initiation at constituent particle pits, intergranular microcracking for a less than 100 micrometers, and transgranular small crack growth for a micrometer. In aqueous 1 percent NaCl and at a constant anodic potential of -700 mV(sub SCE), small cracks exhibit a factor of three increase in fatigue crack growth rates compared to laboratory air. Small cracks exhibit accelerated corrosion fatigue crack growth rates at low levels of delta-K (less than 1 MPa square root of m) below long crack delta-K (sub th). When exposed to Paris regime levels of crack tip stress intensity, small corrosion fatigue cracks exhibit growth rates similar to that observed for long cracks. Results suggest that crack closure effects influence the corrosion fatigue crack growth rates of small cracks (a less than or equal to 100 micrometers). This is evidenced by similar small and long crack growth behavior at various levels of R. Contrary to the corrosion fatigue characteristics of small cracks in high strength steels, no pronounced chemical crack length effect is observed for Al by 2024 exposed to salt water.

  8. Fluid Shifts

    NASA Technical Reports Server (NTRS)

    Stenger, M.; Hargens, A.; Dulchavsky, S.; Ebert, D.; Lee, S.; Lauriie, S.; Garcia, K.; Sargsyan, A.; Martin, D.; Ribeiro, L.; Lui, J.; Macias, B.; Arbeille, P.; Danielson, R.; Chang, D.; Johnston, S.; Ploutz-Snyder, R.; Smith, S.

    2016-01-01

    NASA is focusing on long-duration missions on the International Space Station (ISS) and future exploration-class missions beyond low-Earth orbit. Visual acuity changes observed after short-duration missions were largely transient, but more than 50% of ISS astronauts experienced more profound, chronic changes with objective structural and functional findings such as papilledema and choroidal folds. Globe flattening, optic nerve sheath dilation, and optic nerve tortuosity also are apparent. This pattern is referred to as the visual impairment and intracranial pressure (VIIP) syndrome. VIIP signs and symptoms, as well as postflight lumbar puncture data, suggest that elevated intracranial pressure (ICP) may be associated with the spaceflight-induced cephalad fluid shifts, but this hypothesis has not been tested. The purpose of this study is to characterize fluid distribution and compartmentalization associated with long-duration spaceflight, and to correlate these findings with vision changes and other elements of the VIIP syndrome. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as the VIIP-related effects of those shifts, is predicted by the crewmember's preflight conditions and responses to acute hemodynamic manipulations (such as head-down tilt). Lastly, we will evaluate the patterns of fluid distribution in ISS astronauts during acute reversal of fluid shifts through application of lower body negative pressure (LBNP) interventions to characterize and explain general and individual responses. METHODS: We will examine a variety of physiologic variables in 10 long-duration ISS crewmembers using the test conditions and timeline presented in the Figure below. Measures include: (1) fluid compartmentalization (total body water by D2O, extracellular fluid by NaBr, intracellular fluid by calculation, plasma volume by CO rebreathe, interstitial fluid by calculation); (2) forehead/eyelids, tibia, calcaneus tissue thickness (by

  9. Wellbore fluid

    SciTech Connect

    Dorsey, D.L.; Corley, W.T.

    1983-12-27

    A clay-based or clay-free aqueous thixotropic wellbore fluid having improved fluid loss control, desirable flow characteristics and low shale sensitivity for use in drilling a well comprising water or a brine base including an effective amount of an additive comprising a crosslinked potato starch, a heteropolysaccharide derived from a carbohydrate by bacteria of the genus Xanthomonas, and hydroxyethylcellulose or carboxymethylcellulose, is disclosed. This drilling fluid has been found to be nondamaging to the formations through which the well is drilled.

  10. Fatigue life and crack growth prediction methodology

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Phillips, E. P.; Everett, R. A., Jr.

    1993-01-01

    The capabilities of a plasticity-induced crack-closure model and life-prediction code to predict fatigue crack growth and fatigue lives of metallic materials are reviewed. Crack-tip constraint factors, to account for three-dimensional effects, were selected to correlate large-crack growth rate data as a function of the effective-stress-intensity factor range (delta(K(sub eff))) under constant-amplitude loading. Some modifications to the delta(K(sub eff))-rate relations were needed in the near threshold regime to fit small-crack growth rate behavior and endurance limits. The model was then used to calculate small- and large-crack growth rates, and in some cases total fatigue lives, for several aluminum and titanium alloys under constant-amplitude, variable-amplitude, and spectrum loading. Fatigue lives were calculated using the crack growth relations and microstructural features like those that initiated cracks. Results from the tests and analyses agreed well.

  11. Grain boundary resistance to fatigue crack growth

    NASA Technical Reports Server (NTRS)

    Chen, QI; Liu, H. W.

    1993-01-01

    Results of an experimental study tracing the grain boundary effect on the fatigue crack growth rate are reported. Direct experimental evidence for the grain boundary blockage mechanism is presented. The orientation difference between two neighboring grains directly contributed to the extent of crack growth retardation.

  12. Characterization of crack growth under combined loading

    NASA Technical Reports Server (NTRS)

    Feldman, A.; Smith, F. W.; Holston, A., Jr.

    1977-01-01

    Room-temperature static and cyclic tests were made on 21 aluminum plates in the shape of a 91.4x91.4-cm Maltese cross with 45 deg flaws to develop crack growth and fracture toughness data under mixed-mode conditions. During cyclic testing, it was impossible to maintain a high proportion of shear-mode deformation on the crack tips. Cracks either branched or turned. Under static loading, cracks remained straight if shear stress intensity exceeded normal stress intensity. Mixed-mode crack growth rate data compared reasonably well with published single-mode data, and measured crack displacements agreed with the straight and branched crack analyses. Values of critical strain energy release rate at fracture for pure shear were approximately 50% higher than for pure normal opening, and there was a large reduction in normal stress intensity at fracture in the presence of high shear stress intensity. Net section stresses were well into the inelastic range when fracture occurred under high shear on the cracks.

  13. The crack-inclusion interaction problem

    NASA Technical Reports Server (NTRS)

    Xue-Hui, L.; Erdogan, F.

    1984-01-01

    The general plane elastostatic problem of interaction between a crack and an inclusion is considered. The Green's functions for a pair of dislocations and a pair of concentrated body forces are used to generate the crack and the inclusion. Integral equations are obtained for a line crack and an elastic line inclusion having an arbitrary relative orientation and size. The nature of stress singularity around the end points of rigid and elastic inclusions is described and three special cases of this intersection problem are studied. The problem is solved for an arbitrary uniform stress state away from the crack-inclusion region. The nonintersecting crack-inclusion problem is considered for various relative size, orientation, and stiffness parameters, and the stress intensity factors at the ends of the inclusion and the crack are calculated. For the crack-inclusion intersection case, special stress intensity factors are defined and are calculated for various values of the parameters defining the relative size and orientation of the crack and the inclusion and the stiffness of the inclusion.

  14. Positioning Community Art Practices in Urban Cracks

    ERIC Educational Resources Information Center

    Verschelden, Griet; Van Eeghem, Elly; Steel, Riet; De Visscher, Sven; Dekeyrel, Carlos

    2012-01-01

    This article addresses the position of community art practices and the role of practitioners in urban cracks. Community art practices raise possibilities for a reconceptualisation of the concept of community and an extension of the concept of art in public space. Urban cracks are conceptualised as spatial, temporal and relational manifestations of…

  15. Entering a Crack: An Encounter with Gossip

    ERIC Educational Resources Information Center

    Henderson, Linda

    2014-01-01

    In this paper, I enter a crack to think otherwise about the concept "gossip". Drawing on previous scholarship engaging with Deleuzian concepts to inform research methodologies, this paper builds on this body of work. Following Deleuze and Guattari, the paper undertakes a mapping of gossip, subsequent to an encounter with a crack.…

  16. Effect of size on cracking of materials

    NASA Technical Reports Server (NTRS)

    Glucklick, J.

    1971-01-01

    Brittle behavior of large mild steel elements, glass plasticity, and fatigue specimen size sensitivity are manifestations of strain-energy size effect. Specimens physical size effect on material cracking initiation occurs according to flaw distribution statistics. Fracture size effect depends on stability or instability of crack propagation.

  17. Crack tip field and fatigue crack growth in general yielding and low cycle fatigue

    NASA Technical Reports Server (NTRS)

    Minzhong, Z.; Liu, H. W.

    1984-01-01

    Fatigue life consists of crack nucleation and crack propagation periods. Fatigue crack nucleation period is shorter relative to the propagation period at higher stresses. Crack nucleation period of low cycle fatigue might even be shortened by material and fabrication defects and by environmental attack. In these cases, fatigue life is largely crack propagation period. The characteristic crack tip field was studied by the finite element method, and the crack tip field is related to the far field parameters: the deformation work density, and the product of applied stress and applied strain. The cyclic carck growth rates in specimens in general yielding as measured by Solomon are analyzed in terms of J-integral. A generalized crack behavior in terms of delta is developed. The relations between J and the far field parameters and the relation for the general cyclic crack growth behavior are used to analyze fatigue lives of specimens under general-yielding cyclic-load. Fatigue life is related to the applied stress and strain ranges, the deformation work density, crack nucleus size, fracture toughness, fatigue crack growth threshold, Young's modulus, and the cyclic yield stress and strain. The fatigue lives of two aluminum alloys correlate well with the deformation work density as depicted by the derived theory. The general relation is reduced to Coffin-Manson low cycle fatigue law in the high strain region.

  18. Method of continuously determining crack length

    NASA Technical Reports Server (NTRS)

    Prabhakaran, Ramamurthy (Inventor); Lopez, Osvaldo F. (Inventor)

    1993-01-01

    The determination of crack lengths in an accurate and straight forward manner is very useful in studying and preventing load created flaws and cracks. A crack length sensor according to the present invention is fabricated in a rectangular or other geometrical form from a conductive powder impregnated polymer material. The long edges of the sensor are silver painted on both sides and the sensor is then bonded to a test specimen via an adhesive having sufficient thickness to also serve as an insulator. A lead wire is connected to each of the two outwardly facing silver painted edges. The resistance across the sensor changes as a function of the crack length in the specimen and sensor. The novel aspect of the present invention includes the use of relatively uncomplicated sensors and instrumentation to effectively measure the length of generated cracks.

  19. The crack problem for a nonhomogeneous plane

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1982-01-01

    The plane elasticity problem for a nonhomogeneous medium containing a crack is considered. It is assumed that the Poisson's ratio of the medium is constant and the Young's modulus E varies exponentially with the coordinate parallel to the crack. First the half plane problem is formulated and the solution is given for arbitrary tractions along the boundary. Then the integral equation for the crack problem is derived. It is shown that the integral equation having the derivative of the crack surface displacement as the density function has a simple Cauchy type kernel. Hence, its solution and the stresses around the crack tips have the conventional square root singularity. The solution is given for various loading conditions. The results show that the effect of the Poisson's ratio and consequently that of the thickness constraint on the stress intensity factors are rather negligible.

  20. Stress analysis for structures with surface cracks

    NASA Technical Reports Server (NTRS)

    Bell, J. C.

    1978-01-01

    Two basic forms of analysis, one treating stresses around arbitrarily loaded circular cracks, the other treating stresses due to loads arbitrarily distributed on the surface of a half space, are united by a boundary-point least squares method to obtain analyses for stresses from surface cracks in places or bars. Calculations were for enough cases to show how effects from the crack vary with the depth-to-length ratio, the fractional penetration ratio, the obliquity of the load, and to some extent the fractional span ratio. The results include plots showing stress intensity factors, stress component distributions near the crack, and crack opening displacement patterns. Favorable comparisons are shown with two kinds of independent experiments, but the main method for confirming the results is by wide checking of overall satisfaction of boundary conditions, so that external confirmation is not essential. Principles involved in designing analyses which promote dependability of the results are proposed and illustrated.

  1. Stress-corrosion cracking in metals

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Criteria and recommended practices for preventing stress-corrosion cracking from impairing the structural integrity and flightworthiness of space vehicles are presented. The important variables affecting stress-corrosion cracking are considered to be the environment, including time and temperature; metal composition, and structure; and sustained tensile stress. For designing spacecraft structures that are free of stress-corrosion cracking for the service life of the vehicle the following rules apply: (1) identification and control of the environments to which the structure will be exposed during construction, storage, transportation, and use; (2) selection of alloy compositions and tempers which are resistant to stress-corrosion cracking in the identified environment; (3) control of fabrication and other processes which may introduce residual tensile stresses or damage the material; (4) limitation of the combined residual and applied tensile stresses to below the threshold stress level for the onset of cracking throughout the service life of the vehicle; and (5) establishment of a thorough inspection program.

  2. Small crack test program for helicopter materials

    NASA Technical Reports Server (NTRS)

    Annigeri, Bal; Schneider, George

    1994-01-01

    Crack propagation tests were conducted to determine crack growth behavior in five helicopter materials for surface cracks between 0.005 to 0.020 inches in depth. Constant amplitude tests were conducted at stress ratios R equals 0.1 and 0.5, and emphasis was placed on near threshold data (i.e., 10-8 to 10-6 inches/cycle). Spectrum tests were conducted using a helicopter spectrum. The test specimen was an unnotched tension specimen, and cracks were initiated from a small EDM notch. An optical/video system was used to monitor crack growth. The material for the test specimens was obtained from helicopter part forgings. Testing was conducted at stresses below yield to reflect actual stresses in helicopter parts.

  3. Strain rate effects in stress corrosion cracking

    SciTech Connect

    Parkins, R.N. . Dept. of Metallurgy and Engineering Materials)

    1990-03-01

    Slow strain rate testing (SSRT) was initially developed as a rapid, ad hoc laboratory method for assessing the propensity for metals an environments to promote stress corrosion cracking. It is now clear, however, that there are good theoretical reasons why strain rate, as opposed to stress per se, will often be the controlling parameter in determining whether or not cracks are nucleated and, if so, are propagated. The synergistic effects of the time dependence of corrosion-related reactions and microplastic strain provide the basis for mechanistic understanding of stress corrosion cracking in high-pressure pipelines and other structures. However, while this may be readily comprehended in the context of laboratory slow strain tests, its extension to service situations may be less apparent. Laboratory work involving realistic stressing conditions, including low-frequency cyclic loading, shows that strain or creep rates give good correlation with thresholds for cracking and with crack growth kinetics.

  4. Fatigue Crack Detection Using Digital Image Correlation

    NASA Astrophysics Data System (ADS)

    Cawley, P.; Hutt, T. D.

    2009-03-01

    At present, detecting structural defects such as cracking and corrosion before they become critical is largely achieved by time consuming techniques such as eddy current and ultrasonic testing. These techniques require point-by-point scanning over the area to be tested. Digital Image Correlation could provide a cheaper and quicker testing technique. It works by correlating images of the structure surface in unloaded and loaded states taken with a standard digital camera, giving the displacement and strain fields. The specific case of a crack at a hole in an aluminium plate was investigated. It was found that the strain concentration around the crack tip is too localised to detect; however the displacement jump across the crack could be seen. This technique allows the cracks to be detected and would allow rapid testing of a structure if it can easily be loaded.

  5. An experimental investigation of fatigue-crack growth in drillstring tubulars

    SciTech Connect

    Dale, B.A.

    1988-12-01

    Drillstring failures continue to plague the oil industry, often costing millions of dollars each year. This problem is frequently intensified with the drilling of deep, deviated wellbores or ''hard rock'' drilling conditions. The drilling industry attempts to guard against these costly failures by performing periodic nondestructive inspections to remove damaged tubulars from service. This paper describes the results of full-scale fatigue-crack-growth tests of drill collars under rotating and bending loads. In addition, corrosion fatigue-crack-growth data are also presented for API drillpipe steels in air and in three representative water-based drilling-fluid environments. Based on this experimental investigation, the test data support the practical application of fatigue-crack-growth mechanics principles for the development of nondestructive inspection intervals to reduce drillstring failures.

  6. Measurement and analysis of critical crack tip processes during fatigue crack growth

    NASA Technical Reports Server (NTRS)

    Davidson, D. L.; Hudak, S. J.; Dexter, R. J.

    1985-01-01

    The mechanics of fatigue crack growth under constant-amplitudes and variable-amplitude loading were examined. Critical loading histories involving relatively simple overload and overload/underload cycles were studied to provide a basic understanding of the underlying physical processes controlling crack growth. The material used for this study was 7091-T7E69, a powder metallurgy aluminum alloy. Local crack-tip parameters were measured at various times before, during, and after the overloads, these include crack-tip opening loads and displacements, and crack-tip strain fields. The latter were useed, in combination with the materials cyclic and monotonic stress-strain properties, to compute crack-tip residual stresses. The experimental results are also compared with analytical predictions obtained using the FAST-2 computer code. The sensitivity of the analytical model to constant-amplitude fatigue crack growth rate properties and to through-thickness constrain are studied.

  7. Crack shape developments and leak rates for circumferential complex-cracked pipes

    SciTech Connect

    Brickstad, B.; Bergman, M.

    1997-04-01

    A computerized procedure has been developed that predicts the growth of an initial circumferential surface crack through a pipe and further on to failure. The crack growth mechanism can either be fatigue or stress corrosion. Consideration is taken to complex crack shapes and for the through-wall cracks, crack opening areas and leak rates are also calculated. The procedure is based on a large number of three-dimensional finite element calculations of cracked pipes. The results from these calculations are stored in a database from which the PC-program, denoted LBBPIPE, reads all necessary information. In this paper, a sensitivity analysis is presented for cracked pipes subjected to both stress corrosion and vibration fatigue.

  8. Micromechanical predictions of crack initiation, propagation and crack growth resistance in boron/aluminum composites

    NASA Technical Reports Server (NTRS)

    Mahishi, J. M.; Adams, D. F.

    1982-01-01

    An elastoplastic, axisymmetric finite element model has been used to predict the initiation and propagation of a crack in a composite model consisting of a single broken boron fiber embedded in an annular sheath of aluminum matrix. The accuracy of the axisymmetric finite element model for crack problems has been established by solving the classical problem of a penny-shaped crack in a thick cylindrical rod under axial tension. Also, the stress intensity factors predicted by the present numerical model are compared with continuum results. A constant displacement boundary condition applied during an increment of crack growth permits a substantial amount of stable crack growth in the matrix material. The concept of Crack Growth Resistance Curves (KR-curves) has been used to determine the point of crack instability

  9. Life prediction for bridged fatigue cracks

    SciTech Connect

    Cox, B.N.

    1994-08-01

    One of the more promising classes of composites touted for high temperature applications, and certainly the most available, is that of relatively brittle matrices, either ceramic or intermetallic, reinforced by strong, aligned, continuous fibers. Under cyclic loading in the fiber direction, these materials develop matrix cracks that often run perpendicular to the fibers, while the fibers remain intact in the crack wake, supplying bridging tractions across the fracture surfaces. The bridging tractions shield the crack tip from the applied load, dramatically reducing the crack velocity from that expected in an unreinforced material subjected to the same value, {Delta}K{sub a}, of the cyclic applied stress intensity factor. An important issue in reliability is the prediction of the growth rates of the bridged cracks. The growth rates of matrix fatigue cracks bridged by sliding fibers are now commonly predicted by models based on the micromechanics of frictional interfaces. However, there exist many reasons, both theoretical and experimental, for suspecting that the most popular micromechanical models are probably wrong in detail in the context of fatigue cracks. Furthermore, a review of crack growth data reveals that the validity of the micromechanics-based predictive model has never been tested and may never be tested. In this paper, two alternative approaches are suggested to the engineering problem of predicting the growth rates of bridged cracks without explicit recourse to micromechanics. Instead, it is shown that the material properties required to analyze bridging effects can be deduced directly from crack growth data. Some experiments are proposed to test the validity of the proposals.

  10. Fluid Shifts

    NASA Technical Reports Server (NTRS)

    Stenger, M. B.; Hargens, A.; Dulchavsky, S.; Ebert, D.; Lee, S.; Laurie, S.; Garcia, K.; Sargsyan, A.; Martin, D.; Lui, J.; Macias, B.; Arbeille, P.; Danielson, R.; Chang, D.; Gunga, H.; Johnston, S.; Westby, C.; Ribeiro, L.; Ploutz-Snyder, R.; Smith, S.

    2015-01-01

    INTRODUCTION: Mechanisms responsible for the ocular structural and functional changes that characterize the visual impairment and intracranial pressure (ICP) syndrome (VIIP) are unclear, but hypothesized to be secondary to the cephalad fluid shift experienced in spaceflight. This study will relate the fluid distribution and compartmentalization associated with long-duration spaceflight with VIIP symptoms. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as the VIIP-related effects of those shifts, can be predicted preflight with acute hemodynamic manipulations, and also if lower body negative pressure (LBNP) can reverse the VIIP effects. METHODS: Physiologic variables will be examined pre-, in- and post-flight in 10 International Space Station crewmembers including: fluid compartmentalization (D2O and NaBr dilution); interstitial tissue thickness (ultrasound); vascular dimensions and dynamics (ultrasound and MRI (including cerebrospinal fluid pulsatility)); ocular measures (optical coherence tomography, intraocular pressure, ultrasound); and ICP measures (tympanic membrane displacement, otoacoustic emissions). Pre- and post-flight measures will be assessed while upright, supine and during 15 deg head-down tilt (HDT). In-flight measures will occur early and late during 6 or 12 month missions. LBNP will be evaluated as a countermeasure during HDT and during spaceflight. RESULTS: The first two crewmembers are in the preflight testing phase. Preliminary results characterize the acute fluid shifts experienced from upright, to supine and HDT postures (increased stroke volume, jugular dimensions and measures of ICP) which are reversed with 25 millimeters Hg LBNP. DISCUSSION: Initial results indicate that acute cephalad fluid shifts may be related to VIIP symptoms, but also may be reversible by LBNP. The effect of a chronic fluid shift has yet to be evaluated. Learning Objectives: Current spaceflight VIIP research is described

  11. Investigating Reaction-Driven Cracking

    NASA Astrophysics Data System (ADS)

    Kelemen, P. B.; Hirth, G.; Savage, H. M.

    2013-12-01

    Many metamorphic reactions lead to large volume changes, and potentially to reaction-driven cracking [1,2]. Large-scale hydration of mantle peridotite to produce serpentine or talc is invoked to explain the rheology of plate boundaries, the nature of earthquakes, and the seismic properties of slow-spread ocean crust and the 'mantle wedge' above subduction zones. Carbonation of peridotite may be an important sink in the global carbon cycle. Zones of 100% magnesite + quartz replacing peridotite, up to 200 m thick, formed where oceanic mantle was thrust over carbonate-bearing metasediments in Oman. Talc + carbonate is an important component of the matrix in subduction mélanges at Santa Catalina Island , California, and the Sanbagawa metamorphic belt, Japan. Engineered systems to emulate natural mineral carbonation could provide relatively inexpensive CO2 capture and storage [3]. More generally, engineered reaction-driven cracking could supplement or replace hydraulic fracture in geothermal systems, solution mining, and extraction of tight oil and gas. The controls on reaction-driven cracking are poorly understood. Hydration and carbonation reactions can be self-limiting, since they potentially reduce permeability and armor reactive surfaces [4]. Also, in some cases, hydration or carbonation may take place at constant volume. Small changes in volume due to precipitation of solid products increases stress, destabilizing solid reactants, until precipitation and dissolution rates become equal at a steady state stress [5]. In a third case, volume change due to precipitation of solid products causes brittle failure. This has been invoked on qualitative grounds to explain, e.g., complete serpentinization of mantle peridotite [6]. Below ~ 300°C, the available potential energy for hydration and carbonation of olivine could produce stresses of 100's of MPa [2], sufficient to fracture rocks to 10 km depth or more, causing brittle failure below the steady state stress required

  12. Environmental stress cracking of polymers

    NASA Technical Reports Server (NTRS)

    Mahan, K. I.

    1980-01-01

    A two point bending method for use in studying the environmental stress cracking and crazing phenomena is described and demonstrated for a variety of polymer/solvent systems. Critical strain values obtained from these curves are reported for various polymer/solvent systems including a considerable number of systems for which critical strain values have not been previously reported. Polymers studied using this technique include polycarbonate (PC), ABS, high impact styrene (HIS), polyphenylene oxide (PPO), and polymethyl methacrylate (PMMA). Critical strain values obtained using this method compared favorably with available existing data. The major advantage of the technique is the ability to obtain time vs. strain curves over a short period of time. The data obtained suggests that over a short period of time the transition in most of the polymer solvent systems is more gradual than previously believed.

  13. Plane strain crack growth models for fatigue crack growth life predictions

    SciTech Connect

    Bloom, J.M.; Daniewicz, S.R.; Hechmer, J.L.

    1996-02-01

    Experimental data and analytical models have shown that a growing fatigue crack produces a plastic wake. This, in turn, leads to residual compressive stresses acting over the crack faces during the unloading portion of the fatigue cycle. This crack closure effect results in an applied stress intensity factor during unloading which is greater than that associated with the K{sub min}, thus producing a crack-driving force which is less than {Delta}K = K{sub max} {minus} K{sub min}. Life predictions which do not account for this crack closure effect give inaccurate life estimates, especially for fully reversed loadings. This paper discusses the development of a crack closure expression for the 4-point bend specimen using numerical results obtained from a modified strip-yield model. Data from tests of eight 4-point bend specimens were used to estimate the specimen constraint factor (stress triaxiality effect). The constraint factor was then used in the estimation of the crack opening stresses for each of the bend tests. The numerically estimated crack opening stresses were used to develop an effective stress intensity factor range, {Delta}K{sub eff}. The resulting crack growth rate data when plotted versus {Delta}K{sub eff} resulted in a material fatigue crack growth rate property curve independent of test specimen type, stress level, and R-ratio. Fatigue crack growth rate data from center-cracked panels using Newman`s crack closure model, from compact specimens using Eason`s R-ratio expression, and from bend specimens using the model discussed in this paper are all shown to fall along the same straight line (on log-log paper) when plotted versus {Delta}K{sub eff}, even though crack closure differs for each specimen type.

  14. Electrorheological fluids

    SciTech Connect

    Halsey, T.C.; Martin, J.E.

    1993-10-01

    An electrorheological fluid is a substance whose form changes in the presence of electric fields. Depending on the strength of the field to which it is subjected, an electrorheological fluid can run freely like water, ooze like honey or solidify like gelatin. Indeed, the substance can switch from ne state to another within a few milliseconds. Electrorheological fluids are easy to make; they consist of microscopic particles suspended in an insulating liquid. Yet they are not ready for most commercial applications. They tend to suffer from a number of problems, including structural weakness as solids, abrasiveness as liquids and chemical breakdown, especially at high temperatures. Automotive engineers could imagine, for instance, constructing an electrorheological clutch. It was also hoped that electrorheological fluids would lead to valveless hydraulic systems, in which solidifying fluid would shut off flow through a thin section of pipe. Electrorheological fluids also offer the possibility of a shock absorber that provides response times of milliseconds and does not require mechanical adjustments. 3 refs.

  15. Propulsion Mechanism of Catalytic Microjet Engines

    PubMed Central

    Fomin, Vladimir M.; Hippler, Markus; Magdanz, Veronika; Soler, Lluís; Sanchez, Samuel; Schmidt, Oliver G.

    2014-01-01

    We describe the propulsion mechanism of the catalytic microjet engines that are fabricated using rolled-up nanotech. Microjets have recently shown numerous potential applications in nanorobotics but currently there is a lack of an accurate theoretical model that describes the origin of the motion as well as the mechanism of self-propulsion. The geometric asymmetry of a tubular microjet leads to the development of a capillary force, which tends to propel a bubble toward the larger opening of the tube. Because of this motion in an asymmetric tube, there emerges a momentum transfer to the fluid. In order to compensate this momentum transfer, a jet force acting on the tube occurs. This force, which is counterbalanced by the linear drag force, enables tube velocities of the order of 100 μm/s. This mechanism provides a fundamental explanation for the development of driving forces that are acting on bubbles in tubular microjets. PMID:25177214

  16. Three-Dimensional Gear Crack Propagation Studied

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.

    1999-01-01

    Gears used in current helicopters and turboprops are designed for light weight, high margins of safety, and high reliability. However, unexpected gear failures may occur even with adequate tooth design. To design an extremely safe system, the designer must ask and address the question, "What happens when a failure occurs?" With gear-tooth bending fatigue, tooth or rim fractures may occur. A crack that propagates through a rim will be catastrophic, leading to disengagement of the rotor or propeller, loss of an aircraft, and possible fatalities. This failure mode should be avoided. A crack that propagates through a tooth may or may not be catastrophic, depending on the design and operating conditions. Also, early warning of this failure mode may be possible because of advances in modern diagnostic systems. One concept proposed to address bending fatigue fracture from a safety aspect is a splittooth gear design. The prime objective of this design would be to control crack propagation in a desired direction such that at least half of the tooth would remain operational should a bending failure occur. A study at the NASA Lewis Research Center analytically validated the crack-propagation failsafe characteristics of a split-tooth gear. It used a specially developed three-dimensional crack analysis program that was based on boundary element modeling and principles of linear elastic fracture mechanics. Crack shapes as well as the crack-propagation life were predicted on the basis of the calculated stress intensity factors, mixed-mode crack-propagation trajectory theories, and fatigue crack-growth theories. The preceding figures show the effect of the location of initial cracks on crack propagation. Initial cracks in the fillet of the teeth produced stress intensity factors of greater magnitude (and thus, greater crack growth rates) than those in the root or groove areas of the teeth. Crack growth was simulated in a case study to evaluate crack-propagation paths. Tooth

  17. Catalytic Microtube Rocket Igniter

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.; Deans, Matthew C.

    2011-01-01

    Devices that generate both high energy and high temperature are required to ignite reliably the propellant mixtures in combustion chambers like those present in rockets and other combustion systems. This catalytic microtube rocket igniter generates these conditions with a small, catalysis-based torch. While traditional spark plug systems can require anywhere from 50 W to multiple kW of power in different applications, this system has demonstrated ignition at less than 25 W. Reactants are fed to the igniter from the same tanks that feed the reactants to the rest of the rocket or combustion system. While this specific igniter was originally designed for liquid methane and liquid oxygen rockets, it can be easily operated with gaseous propellants or modified for hydrogen use in commercial combustion devices. For the present cryogenic propellant rocket case, the main propellant tanks liquid oxygen and liquid methane, respectively are regulated and split into different systems for the individual stages of the rocket and igniter. As the catalyst requires a gas phase for reaction, either the stored boil-off of the tanks can be used directly or one stream each of fuel and oxidizer can go through a heat exchanger/vaporizer that turns the liquid propellants into a gaseous form. For commercial applications, where the reactants are stored as gases, the system is simplified. The resulting gas-phase streams of fuel and oxidizer are then further divided for the individual components of the igniter. One stream each of the fuel and oxidizer is introduced to a mixing bottle/apparatus where they are mixed to a fuel-rich composition with an O/F mass-based mixture ratio of under 1.0. This premixed flow then feeds into the catalytic microtube device. The total flow is on the order of 0.01 g/s. The microtube device is composed of a pair of sub-millimeter diameter platinum tubes connected only at the outlet so that the two outlet flows are parallel to each other. The tubes are each

  18. Hierarchically-Driven Approach for Quantifying Fatigue Crack Initiation and Short Crack Growth Behavior in Aerospace Materials

    DTIC Science & Technology

    2016-08-31

    AFRL-AFOSR-VA-TR-2016-0308 Hierarchically-Driven Approach for Quantifying Fatigue Crack Initiation and Short Crack Growth Behavior inAerospace...Quantifying Fatigue Crack Initiation and Short Crack Growth Behavior inAerospace Materials 5a. CONTRACT NUMBER FA9550-13-1-0144 5b. GRANT NUMBER 5c...Approach for Quantifying Fatigue Crack Initiation and Short Crack Growth Behavior inAerospace Materials Principal Investigator K.N. Solanki

  19. Fluid Management System (FMS) fluid systems overview

    NASA Technical Reports Server (NTRS)

    Baird, R. S.

    1990-01-01

    Viewgraphs on fluid management system (FMS) fluid systems overview are presented. Topics addressed include: fluid management system description including system requirements (integrated nitrogen system, integrated water system, and integrated waste gas system) and physical description; and fluid management system evolution.

  20. Effect of hierarchical porosity and phosphorus modification on the catalytic properties of zeolite Y

    NASA Astrophysics Data System (ADS)

    Li, Wenlin; Zheng, Jinyu; Luo, Yibin; Da, Zhijian

    2016-09-01

    The zeolite Y is considered as a leading catalyst for FCC industry. The acidity and porosity modification play important roles in determining the final catalytic properties of zeolite Y. The alkaline treatment of zeolite Y by dealumination and alkaline treatment with NaOH and NaOH&TBPH was investigated. The zeolites were characterized by X-ray diffraction, low-temperature adsorption of nitrogen, transmission electron microscope, NMR, NH3-TPD and IR study of acidity. Accordingly, the hierarchical porosity and acidity property were discussed systematically. Finally, the catalytic performance of the zeolites Y was evaluated in the cracking of 1,3,5-TIPB. It was found that desilication with NaOH&TBPH ensured the more uniform intracrystalline mesoporosity with higher microporosity, while preserving higher B/L ratio and moderate Brønsted acidities resulting in catalysts with the most appropriated acidity and then with better catalytic performance.

  1. Catalytic Membrane Sensors

    SciTech Connect

    Boyle, T.J.; Brinker, C.J.; Gardner, T.J.; Hughes, R.C.; Sault, A.G.

    1998-12-01

    The proposed "catalytic membrane sensor" (CMS) was developed to generate a device which would selectively identify a specific reagent in a complex mixture of gases. This was to be accomplished by modifying an existing Hz sensor with a series of thin films. Through selectively sieving the desired component from a complex mixture and identifying it by decomposing it into Hz (and other by-products), a Hz sensor could then be used to detect the presence of the select component. The proposed "sandwich-type" modifications involved the deposition of a catalyst layered between two size selective sol-gel layers on a Pd/Ni resistive Hz sensor. The role of the catalyst was to convert organic materials to Hz and organic by-products. The role of the membraneo was to impart both chemical specificity by molecukir sieving of the analyte and converted product streams, as well as controlling access to the underlying Pd/Ni sensor. Ultimately, an array of these CMS elements encompassing different catalysts and membranes were to be developed which would enable improved selectivity and specificity from a compiex mixture of organic gases via pattern recognition methodologies. We have successfully generated a CMS device by a series of spin-coat deposited methods; however, it was determined that the high temperature required to activate the catalyst, destroys the sensor.

  2. Catalytic gasification of biomass

    NASA Astrophysics Data System (ADS)

    Robertus, R. J.; Mudge, L. K.; Sealock, L. J., Jr.; Mitchell, D. H.; Weber, S. L.

    1981-12-01

    Methane and methanol synthesis gas can be produced by steam gasification of biomass in the presence of appropriate catalysts. This concept is to use catalysts in a fluidized bed reactor which is heated indirectly. The objective is to determine the technical and economic feasibility of the concept. Technically the concept has been demonstrated on a 50 lb per hr scale. Potential advantages over conventional processes include: no oxygen plant is needed, little tar is produced so gas and water treatment are simplified, and yields and efficiencies are greater than obtained by conventional gasification. Economic studies for a plant processing 2000 T/per day dry wood show that the cost of methanol from wood by catalytic gasification is competitive with the current price of methanol. Similar studies show the cost of methane from wood is competitive with projected future costs of synthetic natural gas. When the plant capacity is decreased to 200 T per day dry wood, neither product is very attractive in today's market.

  3. Lattice theory of three-dimensional cracks

    NASA Technical Reports Server (NTRS)

    Esterling, D. M.

    1976-01-01

    The problem of the stability of a three-dimensional crack is analyzed within a lattice-statics approximation. The consequence of introducing a jog into the crack face as well as the effects of various nonlinear-force laws are studied. The phenomenon of lattice trapping (upper and lower bounds on the applied stress for an equilibrium crack of given length) is again obtained. It is possible to obtain some physical insight into which aspects of the force law are critical for crack stability. In particular, the inadequacy of a thermodynamic approach - which relates the critical stress to a surface energy corresponding to the area under the cohesive-force-vs-displacement curve - is demonstrated. Surface energy is a global property of the cohesive-force law. Crack stability is sensitive to much more refined aspects of the cohesive-force law. Crack healing is sensitive to the long-range portion of the cohesive force. Crack expansion is sensitive to the position of the maximum in the cohesive-force relation.

  4. Closure of fatigue cracks at high strains

    NASA Technical Reports Server (NTRS)

    Iyyer, N. S.; Dowling, N. E.

    1985-01-01

    Experiments were conducted on smooth specimens to study the closure behavior of short cracks at high cyclic strains under completely reversed cycling. Testing procedures and methodology, and closure measurement techniques, are described in detail. The strain levels chosen for the study cover from predominantly elastic to grossly plastic strains. Crack closure measurements are made at different crack lengths. The study reveals that, at high strains, cracks close only as the lowest stress level in the cycle is approached. The crack opening is observed to occur in the compressive part of the loading cycle. The applied stress needed to open a short crack under high strain is found to be less than for cracks under small scale yielding. For increased plastic deformations, the value of sigma sub op/sigma sub max is observed to decrease and approaches the value of R. Comparison of the experimental results with existing analysis is made and indicates the limitations of the small scale yielding approach where gross plastic deformation behavior occurs.

  5. Ultrasonic characterization of fatigue crack closure

    SciTech Connect

    Thompson, R.B.; Buck, O.; Rehbein, D.K.

    1991-01-01

    The characterization of fatigue crack closure is an important objective because of its influence on fatigue crack propagation, particularly under conditions of variable amplitude loading. This paper describes a nontraditional technique for characterizing closure, in which ultrasonic scattering measurements are used to obtain estimates of the number density and size of asperities bridging the crack faces, with subsequent estimates of the crack tip shielding being based on those geometrical parameters. The paper first reviews the experimental configuration and the basic elasto-dynamic theory underlying the technique. It then presents recent results obtained in studies of the influence of block overloads and load shedding on the growth of fatigue cracks in aluminum alloys. In both cases, the change in the closure state after the overload can be unambiguously seen even in the raw data. Moreover, data analysis suggests that it may be possible to predict when the crack will reinitiate based on more subtle changes in the ultrasonically inferred closure state. In the case of load shedding, a massive closure region is observed, whose characteristics appear consistent with the notion that threshold phenomena can be explained in terms of crack closure. 20 refs., 10 figs.

  6. Identification of cracks in thick beams with a cracked beam element model

    NASA Astrophysics Data System (ADS)

    Hou, Chuanchuan; Lu, Yong

    2016-12-01

    The effect of a crack on the vibration of a beam is a classical problem, and various models have been proposed, ranging from the basic stiffness reduction method to the more sophisticated model involving formulation based on the additional flexibility due to a crack. However, in the damage identification or finite element model updating applications, it is still common practice to employ a simple stiffness reduction factor to represent a crack in the identification process, whereas the use of a more realistic crack model is rather limited. In this paper, the issues with the simple stiffness reduction method, particularly concerning thick beams, are highlighted along with a review of several other crack models. A robust finite element model updating procedure is then presented for the detection of cracks in beams. The description of the crack parameters is based on the cracked beam flexibility formulated by means of the fracture mechanics, and it takes into consideration of shear deformation and coupling between translational and longitudinal vibrations, and thus is particularly suitable for thick beams. The identification procedure employs a global searching technique using Genetic Algorithms, and there is no restriction on the location, severity and the number of cracks to be identified. The procedure is verified to yield satisfactory identification for practically any configurations of cracks in a beam.

  7. JSC Materials Laboratory Reproduction and Failure Analysis of Cracked Orbiter Reaction Control System Niobium Thruster Injectors

    NASA Technical Reports Server (NTRS)

    Castner, Willard L.; Jacobs, Jeremy B.

    2006-01-01

    In April 2004 a Space Shuttle Orbiter Reaction Control System (RCS) thruster was found to be cracked while undergoing a nozzle (niobium/C103 alloy) retrofit. As a failure resulting from an in-flight RCS thruster burn-through (initiated from a crack) could be catastrophic, an official Space Shuttle Program flight constraint was issued until flight safety could be adequately demonstrated. This paper describes the laboratory test program which was undertaken to reproduce the cracking in order to fully understand and bound the driving environments. The associated rationale developed to justify continued safe flight of the Orbiter RCS system is also described. The laboratory testing successfully reproduced the niobium cracking, and established specific bounding conditions necessary to cause cracking in the C103 thruster injectors. Each of the following conditions is necessary in combination together: 1) a mechanically disturbed / cold-worked free surface, 2) an externally applied sustained tensile stress near yield strength, 3) presence of fluorine-containing fluids on exposed tensile / cold-worked free surfaces, and 4) sustained exposure to temperatures greater than 400 F. As a result of this work, it was concluded that fluorine-containing materials (e.g. HF acid, Krytox , Brayco etc.) should be carefully controlled or altogether eliminated during processing of niobium and its alloys.

  8. Crack growth monitoring at CFRP bond lines

    NASA Astrophysics Data System (ADS)

    Rahammer, M.; Adebahr, W.; Sachse, R.; Gröninger, S.; Kreutzbruck, M.

    2016-02-01

    With the growing need for lightweight technologies in aerospace and automotive industries, fibre-reinforced plastics, especially carbon-fibre (CFRP), are used with a continuously increasing annual growth rate. A promising joining technique for composites is adhesive bonding. While rivet holes destroy the fibres and cause stress concentration, adhesive bond lines distribute the load evenly. Today bonding is only used in secondary structures due to a lack of knowledge with regard to long-term predictability. In all industries, numerical simulation plays a critical part in the development process of new materials and structures, while it plays a vital role when it comes to CFRP adhesive bondings conducing the predictability of life time and damage tolerance. The critical issue with adhesive bondings is crack growth. In a dynamic tensile stress testing machine we dynamically load bonded CFRP coupon specimen and measure the growth rate of an artificially started crack in order to feed the models with the results. We also investigate the effect of mechanical crack stopping features. For observation of the bond line, we apply two non-contact NDT techniques: Air-coupled ultrasound in slanted transmission mode and active lockin-thermography evaluated at load frequencies. Both methods give promising results for detecting the current crack front location. While the ultrasonic technique provides a slightly higher accuracy, thermography has the advantage of true online monitoring, because the measurements are made while the cyclic load is being applied. The NDT methods are compared to visual inspection of the crack front at the specimen flanks and show high congruence. Furthermore, the effect of crack stopping features within the specimen on the crack growth is investigated. The results show, that not all crack fronts are perfectly horizontal, but all of them eventually come to a halt in the crack stopping feature vicinity.

  9. Slow crack propagation in composite restorative materials.

    PubMed

    Montes-G, G M; Draughn, R A

    1987-05-01

    The double-torsion test technique was used to study slow crack propagation in a set of dental composite resins including two glass-filled and two microfilled materials. The microstructure within each pair was the same but one of the resins was selfcured and the other photocured. The fracture behavior was dependent on the filler concentration and the presence of absorbed water. Wet materials fractured by slow crack growth in the range of crack velocity studied (10(-7) to 10(-3) m/s), and the microfilled composites, which contain a lower concentration of inorganic filler, had lower stress intensity factors (K1c) than the glass-filled composites tested. Dry specimens of the microfilled materials and the selfcured, glass-filled composite also showed unstable, stick-slip fracture behavior indicative of a crack blunting mechanism which leads to an elevation of the stress intensity factor for crack initiation over K1c for stable crack growth. The plasticizing effect of water increased the viscoelastic response of the materials measured by the slope of curves of slow crack growth. Analysis of fracture surfaces showed that cracks propagated at low velocities (10(-7) to 10(-5) m/s) by the apparent failure of the filler/matrix interfacial bond, and absorbed water affected the strength or fracture resistance of the interface. At high crack velocities the properties of the composite depend on the properties of the polymeric matrix, the filler, and the filler volume fraction, but at low velocities the interface is the controlling factor in the durability of these composites exposed to an aqueous environment.

  10. Crack Growth Properties of Sealing Glasses

    NASA Technical Reports Server (NTRS)

    Salem, Jonathan A.; Tandon, R.

    2008-01-01

    The crack growth properties of several sealing glasses were measured using constant stress rate testing in 2% and 95% RH (relative humidity). Crack growth parameters measured in high humidity are systematically smaller (n and B) than those measured in low humidity, and velocities for dry environments are approx. 100x lower than for wet environments. The crack velocity is very sensitivity to small changes in RH at low RH. Confidence intervals on parameters that were estimated from propagation of errors were comparable to those from Monte Carlo simulation.

  11. MECHANICS OF CRACK BRIDGING UNDER DYNAMIC LOADS

    SciTech Connect

    N. SRIDHAR; ET AL

    2001-02-01

    A bridging law for fiber reinforced composites under dynamic crack propagation conditions has been derived. Inertial effects in the mechanism of fiber pullout during dynamic propagation of a bridged crack are critically examined for the first time. By reposing simple shear lag models of pullout as problems of dynamic wave propagation, the effect of the frictional coupling between the fibers and the matrix is accounted for in a fairly straightforward way. The solutions yield the time-dependent relationship between the crack opening displacement and the bridging traction. Engineering criteria and the role of material and geometrical parameters for significant inertial effects are identified.

  12. Fatigue-Crack-Growth Computer Program

    NASA Technical Reports Server (NTRS)

    Forman, Royce G.; Shivakumar, V.; Newman, James C., Jr.

    1991-01-01

    Fatigue Crack Growth (NASA/FLAGRO) computer program developed as aid in predicting growth of preexisting flaws and cracks in structural components of space systems. Is enhanced version of FLAGRO4 and incorporates state-of-the-art improvements in both fracture mechanics and computer technology. Provides fracture-mechanics analyst with computerized method of evaluating "safe-crack-growth-life" capabilities of structural components. Also used to evaluate tolerance to damage of structure of given design. Designed modular to facilitate revisions and operation on minicomputers. Written in FORTRAN 77.

  13. Characterization of Surface Cracks Using Rayleigh Waves

    SciTech Connect

    Masserey, B.; Mazza, E.

    2005-04-09

    The characterization of surface cracks in steel plates using surface acoustic waves is investigated. In the experiments Rayleigh wave is generated by a standard wedge technique and the surface displacement is measured pointwise by means of a heterodyne laser interferometer. The presence of a crack in the acoustic field leads to an amplitude increase due to the scattering of the surface wave at the defect. The time-of-flight method is extended to crack depth smaller than the wavelength by correlating the time delay of the transmitted wave with the defect depth. The method is shown to provide good results for defect depths down to 0.2 mm.

  14. Slow crack growth in spinel in water

    NASA Technical Reports Server (NTRS)

    Schwantes, S.; Elber, W.

    1983-01-01

    Magnesium aluminate spinel was tested in a water environment at room temperature to establish its slow crack-growth behavior. Ring specimens with artificial flaws on the outside surface were loaded hydraulically on the inside surface. The time to failure was measured. Various precracking techniques were evaluated and multiple precracks were used to minimize the scatter in the static fatigue tests. Statistical analysis techniques were developed to determine the strength and crack velocities for a single flaw. Slow crack-growth rupture was observed at stress intensities as low as 70 percent of K sub c. A strengthening effect was observed in specimens that had survived long-time static fatigue tests.

  15. Crack initiation around prestressed rock bolts

    NASA Astrophysics Data System (ADS)

    Wijk, G.

    1982-07-01

    The stress fields in the rock in the immediate vicinities of the ends of prestressed rock bolts are considered. In particular, the tensile stresses that are likely to initiate cracks are studies. A fracture mechanics analysis shows that if cracks are initiated they will normally not be extended more than a few bore hole diameters and cause negligable reduction of the tensile force in the rock bolts. It is suggested that the initiated cracks can be considerably extended by blasting activities in the neighborhood and accordingly cause loss of bolt tension. If so retensioning of the rock bolts is quite meaningless.

  16. Prediction of Crack Growth in Aqueous Environments.

    DTIC Science & Technology

    1986-07-01

    Impedance for the Propagation of a Crack Through HY80 Steel in 3.5Z NaCl Solution at 25*C Under Sinusoidal Loading Condi t ions...THE PROPAGATION OF A CRACK THROUGH HY80 STEEL IN 3.5% NaCI SOLUTION AT 25°C UNDER SINUSOIDAL LOADING CONDITIONS 49 and the properties of greatest...VELOCITY AS A FUNCTION OF TIME FOR A CRACK GROWN AT CONSTANT CURRENT IN HY80 STEEL Initial conditions CI in Table 5. 66 400 UJ x v> l/> L. 0

  17. Closing of cracks under impact loading

    SciTech Connect

    Finkel', V.M.; Fomin, I.M.; Shegai, V.V.

    1985-12-01

    The healing of cracks has been studied in crystalline materials such as diamond, sodium chloride, tungsten, molybdenum and quartz, and the possibility has also been studied of restoring material continuity to sodium chloride and lithium fluoride single crystals under conditions of relatively prolonged compression over a time range of from one to tens of seconds. Potential restoration of interatomic bonds between surfaces of failed material (reanimation) precedes collapse of a crack as a process of approach of its edges before mechanical contact. The goal of this work is to study crack closing with short-term impact.

  18. Crack tip mechanics in periodically layered composites

    NASA Astrophysics Data System (ADS)

    Jha, Mahendra

    In this work, the plane strain problems of periodically layered composites consisting of alternate matrix and fiber layers weakened by a crack perpendicular or parallel to the interfaces are considered. Elasto-static analytical solutions for the crack-tip micromechanical fields under mode-I, mode-II and mixed-mode loading are developed using principles of asymptotic homogenization and the method of complex elastic potentials. In a separate formulation, the mode-I crack-tip fields for a crack normal to the interfaces are also obtained using the method of non-standard analysis. The analytical model predictions are compared with the numerical solutions obtained through refined near-tip micro-macro hybrid finite element analyses. Extensive numerical studies addressing the crack-tip location effects on the near-tip fields are presented. In all cases considered, the zero-order micro-stresses obtained from the analytical solutions are found to exhibit an overall rsp{{-}{1/2}} singularity. The numerical studies have revealed that the near-tip micro-stress field in cracked layered systems is structured in three distinct zones. In systems with isotropic layers, the stress field in the matrix phase surrounding the immediate vicinity of crack-tip is found to exhibit a universal isotropic field behavior dominated by a matrix material dependent stress intensity factor. In the far-field region, the admissible discontinuous micro-stress field is observed to depend on the microstructural heterogeneity and the global anisotropy of the system. The transition from the universal isotropic to the far field behavior takes place within a relatively small region. Crack tip amplification or shielding are shown to take place for a crack approaching a bimaterial interface. The mode-I near-tip fields for a crack normal to the interface in a laminate consisting of alternate brittle and ductile layers are also studied numerically. The Gurson constitutive model that accounts for the ductile

  19. Catalytic reforming of naphtha fractions

    SciTech Connect

    Bishop, K.C.; Vorhis, F.H.

    1980-09-16

    Production of motor gasoline and a btx-enriched reformate by fractionating a naphtha feedstock into a mid-boiling btxprecursor fraction, a relatively high-boiling fraction and a relatively low-boiling fraction; catalytically reforming the btxprecursor fraction in a first reforming zone; combining the relatively high-boiling and low-boiling fractions and catalytically reforming the combined fractions in a second reforming zone.

  20. Fluid Shifts

    NASA Technical Reports Server (NTRS)

    Stenger, Michael; Hargens, A.; Dulchavsky, S.; Ebert, D.; Lee, S.; Sargsyan, A.; Martin, D.; Lui, J.; Macias, B.; Arbeille, P.; Platts, S.

    2014-01-01

    NASA is focusing on long-duration missions on the International Space Station (ISS) and future exploration-class missions beyond low Earth orbit. Visual acuity changes observed after short-duration missions were largely transient, but more than 30% of ISS astronauts experience more profound, chronic changes with objective structural and functional findings such as papilledema and choroidal folds. Globe flattening, optic nerve sheath dilation, and optic nerve tortuosity also are apparent. This pattern is referred to as the visual impairment and intracranial pressure (VIIP) syndrome. VIIP signs and symptoms, as well as postflight lumbar puncture data, suggest that elevated intracranial pressure (ICP) may be associated with the space flight-induced cephalad fluid shifts, but this hypothesis has not been tested. The purpose of this study is to characterize fluid distribution and compartmentalization associated with long-duration space flight, and to correlate these findings with vision changes and other elements of the VIIP syndrome. We also seek to determine whether the magnitude of fluid shifts during space flight, as well as the VIIP-related effects of those shifts, is predicted by the crewmember's pre-flight condition and responses to acute hemodynamic manipulations (such as head-down tilt). Lastly, we will evaluate the patterns of fluid distribution in ISS astronauts during acute reversal of fluid shifts through application of lower body negative pressure (LBNP) interventions to characterize and explain general and individual responses. We will examine a variety of physiologic variables in 10 long-duration ISS crewmembers using the test conditions and timeline presented in the Figure below. Measures include: (1) fluid compartmentalization (total body water by D2O, extracellular fluid by NaBr, intracellular fluid by calculation, plasma volume by CO rebreathe, interstitial fluid by calculation); (2) forehead/eyelids, tibia, calcaneus tissue thickness (by ultrasound

  1. Interfacial Crack Arrest in Sandwich Panels with Embedded Crack Stoppers Subjected to Fatigue Loading

    NASA Astrophysics Data System (ADS)

    Martakos, G.; Andreasen, J. H.; Berggreen, C.; Thomsen, O. T.

    2017-02-01

    A novel crack arresting device has been implemented in sandwich panels and tested using a special rig to apply out-of-plane loading on the sandwich panel face-sheets. Fatigue crack propagation was induced in the face-core interface of the sandwich panels which met the crack arrester. The effect of the embedded crack arresters was evaluated in terms of the achieved enhancement of the damage tolerance of the tested sandwich panels. A finite element (FE) model of the experimental setup was used for predicting propagation rates and direction of the crack growth. The FE simulation was based on the adoption of linear fracture mechanics and a fatigue propagation law (i.e. Paris law) to predict the residual fatigue life-time and behaviour of the test specimens. Finally, a comparison between the experimental results and the numerical simulations was made to validate the numerical predictions as well as the overall performance of the crack arresters.

  2. Crack-face displacements for embedded elliptic and semi-elliptical surface cracks

    NASA Technical Reports Server (NTRS)

    Raju, I. S.

    1989-01-01

    Analytical expressions for the crack-face displacements of an embedded elliptic crack in infinite solid subjected to arbitrary tractions are obtained. The tractions on the crack faces are assumed to be expressed in a polynomial form. These displacements expressions complete the exact solution of Vijayakumar and Atluri, and Nishioki and Atluri. For the special case of an embedded crack in an infinite solid subjected to uniform pressure loading, the present displacements agree with those by Green and Sneddon. The displacement equations derived were used with the finite-element alternating method (FEAM) for the analysis of a semi-elliptic surface crack in a finite solid subjected to remote tensile loading. The maximum opening displacements obtained with FEAM are compared to those with the finite-element method with singularity elements. The maximum crack opening displacements by the two methods showed good agreement.

  3. The relationship between the acidity and the hydrocarbon cracking activity of ultrastable H-Y zeolite

    NASA Astrophysics Data System (ADS)

    Kuehne, Mark Andrew

    Changes in the structural, acidic, and catalytic properties of H-USY (acidic ultrastable Y zeolite) that occur during steam dealumination were investigated. This study focused on three factors that previously have been suggested to cause the enhanced activity of H-USY: (1) increased Bronsted acid strength caused by nonframework Al; (2) increased Bronsted acid strength caused by decreased framework Al content; and (3) direct participation of Lewis acid sites in the cracking reaction. Acidity was characterized by microcalorimetry and FTIR of NH3 adsorption. The 2-methylpentane cracking activity of H-USY at 573 K was 35 times higher than that of H-Y that had not been steamed. With further steaming of H-USY, the cracking activity decreased, although the activity per strong Bronsted acid site remained essentially constant. H-USY, with both Bronsted and Lewis acid sites, had a heterogeneous acid strength and many acid sites with heat of NH3 adsorption >130 kJ/mol. In contrast, zeolites containing only Bronsted acid sites had a rather homogeneous acid strength. The heat of NH3 adsorption did not exceed 130 U/mol for (H,NH4)-USY, in which the strongly acidic Lewis acid sites were covered by NH3, but its activity was equal to that of H-USY. Thus, Lewis acid sites are inactive for hydrocarbon cracking. Dealumination by ammonium hexafluorosilicate, which produces very little nonframework Al, resulted in a zeolite with a low heat of NH3 adsorption equal to that of H-Y, and activity only three times higher than that of H-Y. The mechanism of coke deactivation in H-USY was studied. Coke caused a proportionally larger decrease in n-hexane cracking activity than in the number of acid sites, but did not cause pore blockage or reduced n-hexane diffusivity. The evidence is consistent with a site poisoning deactivation model for a diffusion-limited reaction. In conclusion, the enhanced cracking activity of USY is not caused by Lewis acid sites nor by Bronsted acid sites with a very

  4. Fluid Shifts

    NASA Technical Reports Server (NTRS)

    Stenger, M. B.; Hargens, A. R.; Dulchavsky, S. A.; Arbeille, P.; Danielson, R. W.; Ebert, D. J.; Garcia, K. M.; Johnston, S. L.; Laurie, S. S.; Lee, S. M. C.; Liu, J.; Macias, B.; Martin, D. S.; Minkoff, L.; Ploutz-Snyder, R.; Ribeiro, L. C.; Sargsyan, A.; Smith, S. M.

    2017-01-01

    Introduction. NASA's Human Research Program is focused on addressing health risks associated with long-duration missions on the International Space Station (ISS) and future exploration-class missions beyond low Earth orbit. Visual acuity changes observed after short-duration missions were largely transient, but now more than 50 percent of ISS astronauts have experienced more profound, chronic changes with objective structural findings such as optic disc edema, globe flattening and choroidal folds. These structural and functional changes are referred to as the visual impairment and intracranial pressure (VIIP) syndrome. Development of VIIP symptoms may be related to elevated intracranial pressure (ICP) secondary to spaceflight-induced cephalad fluid shifts, but this hypothesis has not been tested. The purpose of this study is to characterize fluid distribution and compartmentalization associated with long-duration spaceflight and to determine if a relation exists with vision changes and other elements of the VIIP syndrome. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as any VIIP-related effects of those shifts, are predicted by the crewmember's pre-flight status and responses to acute hemodynamic manipulations, specifically posture changes and lower body negative pressure. Methods. We will examine a variety of physiologic variables in 10 long-duration ISS crewmembers using the test conditions and timeline presented in the figure below. Measures include: (1) fluid compartmentalization (total body water by D2O, extracellular fluid by NaBr, intracellular fluid by calculation, plasma volume by CO rebreathe, interstitial fluid by calculation); (2) forehead/eyelids, tibia, and calcaneus tissue thickness (by ultrasound); (3) vascular dimensions by ultrasound (jugular veins, cerebral and carotid arteries, vertebral arteries and veins, portal vein); (4) vascular dynamics by MRI (head/neck blood flow, cerebrospinal fluid

  5. The crack problem in bonded nonhomogeneous materials

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Joseph, P. F.; Kaya, A. C.

    1991-01-01

    The plane elasticity problem for two bonded half planes containing a crack perpendicular to the interface was considered. The effect of very steep variations in the material properties near the diffusion plane on the singular behavior of the stresses and stress intensity factors were studied. The two materials were thus, assumed to have the shear moduli mu(o) and mu(o) exp (Beta x), x=0 being the diffusion plane. Of particular interest was the examination of the nature of stress singularity near a crack tip termination at the interface where the shear modulus has a discontinuous derivative. The results show that, unlike the crack problem in piecewise homogeneous materials for which the singularity is of the form r/alpha, 0 less than alpha less than 1, in this problem the stresses have a standard square-root singularity regardless of the location of the crack tip. The nonhomogeneity constant Beta has, however, considerable influence on the stress intensity factors.

  6. Cracked shells under skew-symmetric loading

    NASA Technical Reports Server (NTRS)

    Lelale, F.

    1982-01-01

    A shell containing a through crack in one of the principal planes of curvature and under general skew-symmetric loading is considered. By employing a Reissner type shell theory which takes into account the effect of transverse shear strains, all boundary conditions on the crack surfaces are satisfied separately. Consequently, unlike those obtained from the classical shell theory, the angular distributions of the stress components around the crack tips are shown to be identical to the distributions obtained from the plane and antiplane elasticity solutions. Extensive results are given for axially and circumferentially cracked cylindrical shells, spherical shells, and toroidal shells under uniform inplane shearing, out of plane shearing, and torsion. The effect of orthotropy on the results is also studied.

  7. The interaction between inclusions and cracks

    NASA Technical Reports Server (NTRS)

    Erdogan, F.

    1973-01-01

    Some current fracture theories are reviewed and a group of mechanics problems of practical interest relating to the elastic interaction between cracks and inclusions are identified and results summarized.

  8. Struggling with Fitzgerald's "Crack-Up" Essays.

    ERIC Educational Resources Information Center

    Fulcher, James

    1998-01-01

    Ponders F. Scott Fitzgerald's essays about his "crack-up" and relates them to the many complex aspects of the struggles of a teacher using post-structural literary theory and teaching two-year college students. (SR)

  9. Crack arrest in thick section steel plate

    NASA Astrophysics Data System (ADS)

    Smith, E.

    1983-03-01

    Crack arrest in thick section steel plate is considered in relation to the conditions for crack arrest in a nuclear reactor pressure vessel, when this is subjected to thermal stresses resulting from a hypothetical loss of coolant accident. The results of a theoretical analysis, based primarily on recent developments in quasi-static crack propagation theory, provide further support for the view that the arrest toughness KIa is essentially a material property. However, since the theoretical results also suggest that KIa is reduced by neutron irradiation, and because there is, as yet, no conclusive experimental data on the effect of neutron irradiation on KIa, it is proposed that with highly irradiated steel, instead of using a KIa crack arrest criterion, it is better to use a more conservative criterion, based on the concept that arrest occurs within the vessel at a position where the temperature exceeds that temperature above which the cleavage fracture mode is unable to operate.

  10. Crack instabilities of a heated glass strip

    NASA Astrophysics Data System (ADS)

    Adda-Bedia, Mokhtar; Pomeau, Yves

    1995-10-01

    Recently, Yuse and Sano [Nature (London) 362, 329 (1993)] have observed that a crack traveling in a glass strip submitted to a nonuniform thermal diffusion field undergoes numerous instabilities. We study two cases of quasistatic crack propagation. The crack extension condition in straight propagation is determined. An asymptotic analysis of the elastic free energy is introduced and scaling laws are derived. A linear stability analysis of the straight propagation is performed, based on the assumption that the crack tip propagation deviates from the centered straight one as soon as it is submitted to a ``physical'' singular shear stress. It is shown that a straight propagation can become unstable after which a wavy instability appears. The condition for instability as well as the selected wavelength is calculated quantitatively. The results are compared with experiments and the agreement is favorable.

  11. Survey updates amine stress corrosion cracking data

    SciTech Connect

    Not Available

    1992-01-13

    The final report by National Association of Corrosion Engineers (NACE) task group T-8-14 has been published, revising and expanding the information on stress information on stress corrosion cracking of carbon steel in diethanolamine and diisopropanolamine service. A major conclusion of the survey was that cracking frequency was more prevalent in monoethanolamine (MEA) than in other amines. This paper reports that further examination of the DEA data indicated that some units were previously in MEA service and the reported cracks were actually associated with that period. A detailed follow-up review of the DEA data also revealed that some cases were caused by processes other than amine cracking. In many cases, further inspection or testing had been done after the original survey was submitted.

  12. Seismic waves in rocks with fluids and fractures

    SciTech Connect

    Berryman, J.G.

    2007-05-14

    Seismic wave propagation through the earth is often stronglyaffected by the presence of fractures. When these fractures are filledwith fluids (oil, gas, water, CO2, etc.), the type and state of the fluid(liquid or gas) can make a large difference in the response of theseismic waves. This paper summarizes recent work on methods ofdeconstructing the effects of fractures, and any fluids within thesefractures, on seismic wave propagation as observed in reflection seismicdata. One method explored here is Thomsen's weak anisotropy approximationfor wave moveout (since fractures often induce elastic anisotropy due tononuniform crack-orientation statistics). Another method makes use ofsome very convenient fracture parameters introduced previously thatpermit a relatively simple deconstruction of the elastic and wavepropagation behavior in terms of a small number of fracture parameters(whenever this is appropriate, as is certainly the case for small crackdensities). Then, the quantitative effects of fluids on thesecrack-influence parameters are shown to be directly related to Skempton scoefficient B of undrained poroelasticity (where B typically ranges from0 to 1). In particular, the rigorous result obtained for the low crackdensity limit is that the crack-influence parameters are multiplied by afactor (1 ? B) for undrained systems. It is also shown how fractureanisotropy affects Rayleigh wave speed, and how measured Rayleigh wavespeeds can be used to infer shear wave speed of the fractured medium.Higher crack density results are also presented by incorporating recentsimulation data on such cracked systems.

  13. Direct numerical simulation of fluid-particle mass, momentum, and heat tranfers in reactive systems.

    NASA Astrophysics Data System (ADS)

    Hammouti, Abdelkader; Wachs, Anthony

    2015-11-01

    Many industrial processes like coal combustion, catalytic cracking, gas phase polymerization reactors and more recently biomass gasification and chemical looping involve two-phase reactive flows in which the continuous phase is a fluid and the dispersed phase consists of rigid particles. Improving both the design and the operating conditions of these processes represents a major scientific and industrial challenge in a context of markedly rising energy cost and sustainable development. Thus, it is above all important to better understand the coupling of hydrodynamic, chemical and thermal phenomena in those flows in order to be able to predict them reliably. The aim of our work is to build up a multi-scale modelling approach of reactive particulate flows and at first to focus on the development of a microscopic-scale including heat and mass transfers and chemical reactions for the prediction of particle-laden flows in dense and dilute regimes. A first step is the upgrading and the validation of our numerical tools via analytical solutions or empirical correlations when it is feasible. These couplings are implemented in a massively parallel numerical code that already enable to take a step towards the enhanced design of semi-industrial processes.

  14. Thermophysical properties of fluids for the gas industry. Annual report, January-December 1992

    SciTech Connect

    Bruno, T.J.; Haynes, W.M.

    1993-05-01

    The US gas industry standard for computing thermophysical properties is the A.G.A. Transmission Measurement Committee Report No. 8 equation of state (AGA 8). The report summarized the results from several experimental, theoretical, and modeling programs directed at the extensive evaluation of the accuracy with which various types of natural gas physical properties can be calculated using AGA 8 and related methods. The most important results were the assembly of benchmark data sets for speed of sound, viscosity, fugacity, heat capacity, critical region PVT, mixture compressibilities, and vapor pressure measurements for natural gas fluids. When tested against these benchmark properties data, the AGA 8 equation of state model was found to be generally accurate within + or - 0.1% for sound speeds (and densities) and within + or - 0.03% for compressibilities over the ranges of pressure, temperature, and composition that encompass the major region of custody transfer for natural gas. Work was also completed on the fabrication and testing of a prototype catalytic cracking detector for the selective detection of hydrocarbons; a US patent was awarded for this invention with the assignment to GRI.

  15. Three-dimensional measurements of fatigue crack closure

    NASA Technical Reports Server (NTRS)

    Ray, S. K.; Grandt, A. F., Jr.

    1984-01-01

    Fatigue crack growth and retardation experiments conducted in polycarbonate test specimen are described. The transparent test material allows optical interferometry measurements of the fatigue crack opening (and closing) profiles. Crack surface displacements are obtained through the specimen thickness and three dimensional aspects of fatigue crack closure are discussed.

  16. Effects of crack geometry and material behavior on scattering by cracks for QNDE applications

    SciTech Connect

    Achenbach, J.D.

    1989-09-15

    In work carried out on this project, the usual mathematical modeling of ultrasonic wave scattering by flaws is being extended to account for several typical characteristics of fatigue and stress-corrosion cracks, and the environment of such cracks. Work has been completed on scattering by macrocrack-microcrack configurations. We have also investigated reflection and transmission by a flaw plane consisting of an infinite array of randomly oriented cracks. In another investigation the propagation of mechanical disturbances in solids with periodically distributed cracks has been studied.

  17. Crack-mouth displacements for semielliptical surface cracks subjected to remote tension and bending loads

    NASA Technical Reports Server (NTRS)

    Raju, Ivatury S.; Newman, James C., Jr.; Atluri, Satya N.

    1992-01-01

    The exact analytical solution for an embedded elliptical crack in an infinite body subjected to arbitrary loading was used in conjunction with the finite element alternating method to obtain crack-mouth-opening displacements (CMOD) for surface cracks in finite plates subjected to remote tension. Identical surface-crack configurations were also analyzed with the finite element method using 20-noded element for plates subjected to both remote tension and bending. The CMODs from these two methods generally agreed within a few percent of each other. Comparisons made with experimental results obtained from surface cracks in welded aluminum alloy specimens subjected to tension also showed good agreement. Empirical equations were developed for CMOD for a wide range of surface-crack shapes and sizes subjected to tension and bending loads. These equations were obtained by modifying the Green-Sneddon exact solution for an elliptical crack in an infinite body to account for finite boundary effects. These equations should be useful in monitoring surface-crack growth in tests and in developing complete crack-face-displacement equations for use in three-dimensional weight-function methods.

  18. The effects of crack surface friction and roughness on crack tip stress fields

    NASA Technical Reports Server (NTRS)

    Ballarini, Roberto; Plesha, Michael E.

    1987-01-01

    A model is presented which can be used to incorporate the effects of friction and tortuosity along crack surfaces through a constitutive law applied to the interface between opposing crack surfaces. The problem of a crack with a saw-tooth surface in an infinite medium subjected to a far-field shear stress is solved and the ratios of Mode-I stress intensity to Mode-II stress intensity are calculated for various coefficients of friction and material properties. The results show that tortuosity and friction lead to an increase in fracture loads and alter the direction of crack propagation.

  19. The effects of crack surface friction and roughness on crack tip stress fields

    NASA Technical Reports Server (NTRS)

    Ballarini, Roberto; Plesha, Michael E.

    1987-01-01

    A model is presented which can be used to incorporate the effects of friction and tortuosity along crack surfaces through a constitutive law applied to the interface between opposing crack surfaces. The problem of a crack with a saw-tooth surface in an infinite medium subjected to a far-field shear stress is solved and the ratios of mode I stress intensity to mode II stress intensity are calculated for various coefficients of friction and material properties. The results show that tortuosity and friction lead to an increase in fracture loads and alter the direction of crack propagation.

  20. Measurement and analysis of critical crack tip processes associated with variable amplitude fatigue crack growth

    NASA Technical Reports Server (NTRS)

    Hudak, S. J., Jr.; Davidson, D. L.; Chan, K. S.

    1983-01-01

    Crack growth retardation following overloads can result in overly conservative life predictions in structures subjected to variable amplitude fatigue loading when linear damage accumulation procedures are employed. Crack closure is believed to control the crack growth retardation, although the specific closure mechanism is debatable. Information on the relative contributions to crack closure from: (1) plasticity left in the wake of the advancing crack and (2) crack tip residual stresses is provided. The delay period and corresponding crack growth rate transients following overloads are systematically measured as a function of load ratio (R) and overload magnitude. These responses are correlated in terms of the local 'driving force' for crack growth as measured by crack tip opening loads and delta K sub eff. The latter measurements are obtained using a scanning electron microscope equipped with a cyclic loading stage; measurements are quantified using a relatively new stereoimaging technique. Combining experimental results with analytical predictions suggests that both plastic wake and residual stress mechanism are operative, the latter becoming predominate as R increases.

  1. The algorithm of crack and crack tip coordinates detection in optical images during fatigue test

    NASA Astrophysics Data System (ADS)

    Panin, S. V.; Chemezov, V. O.; Lyubutin, P. S.; Titkov, V. V.

    2017-02-01

    An algorithm of crack detection during fatigue testing of materials, designed to automate the process of cyclic loading and tracking the crack tip, is proposed and tested. The ultimate goal of the study is aimed at controlling the displacements of the optical system with regard to the specimen under fatigue loading to ensure observation of the ‘area of interest’. It is shown that the image region that contains the crack may be detected and positioned with an average error of 1.93%. In terms of determining the crack tip position, the algorithm provides the accuracy of its localization with the average error value of 56 pixels.

  2. Composite Pressure Vessel Including Crack Arresting Barrier

    NASA Technical Reports Server (NTRS)

    DeLay, Thomas K. (Inventor)

    2013-01-01

    A pressure vessel includes a ported fitting having an annular flange formed on an end thereof and a tank that envelopes the annular flange. A crack arresting barrier is bonded to and forming a lining of the tank within the outer surface thereof. The crack arresting barrier includes a cured resin having a post-curing ductility rating of at least approximately 60% through the cured resin, and further includes randomly-oriented fibers positioned in and throughout the cured resin.

  3. Fatigue crack growth in aluminum laminate composites

    SciTech Connect

    Hoffman, P.B.; Carpenter, R.D.; Gibeling, J.C.

    1996-12-31

    Fatigue crack growth has been measured in a laminated metal composite (LMC) consisting of alternating layers of AA6090/SiC/25p metal matrix composite (MMC) and AA5182 alloy. This material was tested in both as-pressed (F temper) and aged (T6 temper) conditions. Corresponding crack growth measurements were made in self-laminates of both the MMC and AA5182 materials to examine the role of the interfaces.

  4. Molecular dynamics simulation of propagating cracks

    NASA Technical Reports Server (NTRS)

    Mullins, M.

    1982-01-01

    Steady state crack propagation is investigated numerically using a model consisting of 236 free atoms in two (010) planes of bcc alpha iron. The continuum region is modeled using the finite element method with 175 nodes and 288 elements. The model shows clear (010) plane fracture to the edge of the discrete region at moderate loads. Analysis of the results obtained indicates that models of this type can provide realistic simulation of steady state crack propagation.

  5. Trends in long-period seismicity related to magmatic fluid compositions

    USGS Publications Warehouse

    Morrissey, M.M.; Chouet, B.A.

    2001-01-01

    Sound speeds and densities are calculated for three different types of fluids: gas-gas mixture; ash-gas mixture; and bubbly liquid. These fluid properties are used to calculate the impedance contrast (Z) and crack stiffness (C) in the fluid-driven crack model (Chouet: J. Geophys. Res., 91 (1986) 13,967; 101 (1988) 4375; A seismic model for the source of long-period events and harmonic tremor. In: Gasparini, P., Scarpa, R., Aki, K. (Eds.), Volcanic Seismology, IAVCEI Proceedings in Volcanology, Springer, Berlin, 3133). The fluid-driven crack model describes the far-field spectra of long-period (LP) events as modes of resonance of the crack. Results from our calculations demonstrate that ash-laden gas mixtures have fluid to solid density ratios comparable to, and fluid to solid velocity ratios lower than bubbly liquids (gas-volume fractions 20% gas-volume fraction yields values of Q-1r similar to those for a rectangular crack. As with gas-gas and ash-gas mixtures, an increase in mass fraction narrows the bandwidth of the dominant mode and shifts the spectra to lower frequencies. Including energy losses due to dissipative processes in a bubbly liquid increases attenuation. Attenuation may also be higher in ash-gas mixtures and foams if the effects of momentum and mass transfer between the phases were considered in the calculations. ?? 2001 Elsevier Science B. V. All rights reserved.

  6. Atomistic observation of a crack tip approaching coherent twin boundaries.

    PubMed

    Liu, L; Wang, J; Gong, S K; Mao, S X

    2014-03-18

    Coherent twin boundaries (CTBs) in nano-twinned materials could improve crack resistance. However, the role of the CTBs during crack penetration has never been explored at atomic scale. Our in situ observation on nano-twinned Ag under a high resolution transmission electron microscope (HRTEM) reveals the dynamic processes of a crack penetration across the CTBs, which involve alternated crack tip blunting, crack deflection, twinning/detwinning and slip transmission across the CTBs. The alternated blunting processes are related to the emission of different types of dislocations at the crack tip and vary with the distance of the crack tip from the CTBs.

  7. Crack growth direction in unidirectional off-axis graphite epoxy

    NASA Technical Reports Server (NTRS)

    Herakovich, C. T.; Gregory, M. A.; Beuth, J. L., Jr.

    1984-01-01

    An anisotropic elasticity crack tip stress analysis is implemented using three crack extension direction criteria (the normal stress ratio, the tensor polynominal and the strain energy density) to predict the direction of crack extension in unidirectional off axis graphite-epoxy. The theoretical predictions of crack extension direction are then compared with experimental results for 15 deg off axis tensile coupons with center cracks. Specimens of various aspect ratios and crack orientations are analyzed. It is shown that only the normal stress ratio criterion predicts the correct direction of crack growth.

  8. Electromagnetic pulsed thermography for natural cracks inspection.

    PubMed

    Gao, Yunlai; Tian, Gui Yun; Wang, Ping; Wang, Haitao; Gao, Bin; Woo, Wai Lok; Li, Kongjing

    2017-02-07

    Emerging integrated sensing and monitoring of material degradation and cracks are increasingly required for characterizing the structural integrity and safety of infrastructure. However, most conventional nondestructive evaluation (NDE) methods are based on single modality sensing which is not adequate to evaluate structural integrity and natural cracks. This paper proposed electromagnetic pulsed thermography for fast and comprehensive defect characterization. It hybrids multiple physical phenomena i.e. magnetic flux leakage, induced eddy current and induction heating linking to physics as well as signal processing algorithms to provide abundant information of material properties and defects. New features are proposed using 1st derivation that reflects multiphysics spatial and temporal behaviors to enhance the detection of cracks with different orientations. Promising results that robust to lift-off changes and invariant features for artificial and natural cracks detection have been demonstrated that the proposed method significantly improves defect detectability. It opens up multiphysics sensing and integrated NDE with potential impact for natural understanding and better quantitative evaluation of natural cracks including stress corrosion crack (SCC) and rolling contact fatigue (RCF).

  9. Electromagnetic pulsed thermography for natural cracks inspection

    PubMed Central

    Gao, Yunlai; Tian, Gui Yun; Wang, Ping; Wang, Haitao; Gao, Bin; Woo, Wai Lok; Li, Kongjing

    2017-01-01

    Emerging integrated sensing and monitoring of material degradation and cracks are increasingly required for characterizing the structural integrity and safety of infrastructure. However, most conventional nondestructive evaluation (NDE) methods are based on single modality sensing which is not adequate to evaluate structural integrity and natural cracks. This paper proposed electromagnetic pulsed thermography for fast and comprehensive defect characterization. It hybrids multiple physical phenomena i.e. magnetic flux leakage, induced eddy current and induction heating linking to physics as well as signal processing algorithms to provide abundant information of material properties and defects. New features are proposed using 1st derivation that reflects multiphysics spatial and temporal behaviors to enhance the detection of cracks with different orientations. Promising results that robust to lift-off changes and invariant features for artificial and natural cracks detection have been demonstrated that the proposed method significantly improves defect detectability. It opens up multiphysics sensing and integrated NDE with potential impact for natural understanding and better quantitative evaluation of natural cracks including stress corrosion crack (SCC) and rolling contact fatigue (RCF). PMID:28169361

  10. Fatigue crack growth in lithium hydride

    SciTech Connect

    Healy, T.E.

    1993-09-01

    Subcritical fatigue crack growth, from cyclic tensile loading, was demonstrated in warm pressed Polycrystalline lithium hydride. Experiments were performed with cyclic tension-tension crack opening (mode I) loads applied to a pre-cracked compact type specimen in an argon environment at a temperature of 21C (70F). The fatigue crack growth was found to occur between 7.56 {times} 10{sup {minus}ll} M/cycle (2.98 {times} l0{sup {minus}9} in/cycle) and 2.35 {times} l0{sup {minus}8} m/cycle (9.24{times}10{sup {minus}7} in/cycle) for a range of stress intensity factors between 1.04 MPa{center_dot}{radical}m (0.95 ksi{center_dot}{radical}in) and 1.49 MPa{center_dot}{radical}m (1.36 ksi{center_dot}{radical}in). The rate of fatigue crack growth from cyclic tensile loading was found to be in excess of crack growth from sustained loading at an equivalent stress intensity factor. Furthermore, a fatigue threshold was not evident from the acquired data.

  11. Creep Behavior and Durability of Cracked CMC

    NASA Technical Reports Server (NTRS)

    Bhatt, R. T.; Fox, Dennis; Smith, Craig

    2015-01-01

    To understand failure mechanisms and durability of cracked Ceramic matrix composites (CMCs), Melt Infiltration (MI) SiCSiC composites with Sylramic-iBN fibers and full Chemical vapour infiltration SiCSiC composites with Sylramic-ion bombarded BN (iBN) and Hi-Nicalon -S fibers were pre-cracked between 150 to 200 megapascal and then creep and Sustained Peak Low Cycle Fatigue (SPLCF) tested at 13150 C at stress levels from 35 to 103 megapascal for up to 200 hours under furnace and burner rig conditions. In addition creep testing was also conducted on pre-cracked full Chemical vapour infiltration SiCSiC composites at 14500 C between 35 and 103 megapascal for up to 200 hours under furnace conditions. If the specimens survived the 200 hour durability tests, then they were tensile tested at room temperature to determine their residual tensile properties. The failed specimens were examined by Scanning electron microscope (SEM) to determine the failure modes and mechanisms. The influence of crack healing matrix, fiber types, crack density, testing modes and interface oxidation on durability of cracked Ceramic matrix composites (CMCs) will be discussed.

  12. Electromagnetic pulsed thermography for natural cracks inspection

    NASA Astrophysics Data System (ADS)

    Gao, Yunlai; Tian, Gui Yun; Wang, Ping; Wang, Haitao; Gao, Bin; Woo, Wai Lok; Li, Kongjing

    2017-02-01

    Emerging integrated sensing and monitoring of material degradation and cracks are increasingly required for characterizing the structural integrity and safety of infrastructure. However, most conventional nondestructive evaluation (NDE) methods are based on single modality sensing which is not adequate to evaluate structural integrity and natural cracks. This paper proposed electromagnetic pulsed thermography for fast and comprehensive defect characterization. It hybrids multiple physical phenomena i.e. magnetic flux leakage, induced eddy current and induction heating linking to physics as well as signal processing algorithms to provide abundant information of material properties and defects. New features are proposed using 1st derivation that reflects multiphysics spatial and temporal behaviors to enhance the detection of cracks with different orientations. Promising results that robust to lift-off changes and invariant features for artificial and natural cracks detection have been demonstrated that the proposed method significantly improves defect detectability. It opens up multiphysics sensing and integrated NDE with potential impact for natural understanding and better quantitative evaluation of natural cracks including stress corrosion crack (SCC) and rolling contact fatigue (RCF).

  13. Ultrasonic testing of plates containing edge cracks

    NASA Technical Reports Server (NTRS)

    Williams, J. H., Jr.; Karagulle, H.; Lee, S. S.

    1985-01-01

    The stress wave factor (SWF) signal is utilized for the nondestructive evaluation of plates containing perpendicular edge cracks. The effects of the existence lateral location and depth of the crack on the magnitude spectra of individual reflections in the SWF signal are studied. If the reflections in the SWF signal are not overlapped the short time Fourier analysis is applied. If the reflections are overlapped the short time homomorphic analysis (cepstrum analysis) is applied. Several reflections which have average resonant frequencies approximately at 0.9, 1.3, and 1.7 MHz are analyzed. It is observed that the magnitude ratios evaluated at average resonant frequencies decrease more with increasing d/h if the crack is located between the transducers, where h is plate thickness and d is crack depth. Moreover, for the plates, crack geometries, reflections, and frequencies considered, the average decibel drop depends mainly on the dimensionless parameter d/h and it is approximately -1 dB per 0.07 d/h. Changes in the average resonant frequencies of the magnitude spectra are also observed due to changes in the location of the crack.

  14. Micro-Cracking Detection in Laminated Composites

    NASA Technical Reports Server (NTRS)

    Chu, Tsuchin; Leyte, Alma; DiGregorio, Anthony; Russell, Samuel S.; Walker, James L.; Thom, Robert (Technical Monitor)

    2002-01-01

    Porosity and fatigue cracking are two critical factors that affect the performance and safety of cryogenic fuel tanks and feedlines made from unlined laminated or weaved carbon/epoxy materials. This paper presents the experiments to induce fatigue cracking of laminated composites through thermal cycling as well as the feasibility of using Thermography and Ultrasound Spectroscopy technology (UT) to detect and measure such micro-cracking. Carbon/epoxy laminated composite panels were built and cut into strips. These specimens were partially submerged in liquid nitrogen while subjected to various loads on a test machine. Edges of some specimens were polished and etched to determine the degree of micro-cracking. The rest of specimens were then examined with Thermography and Ultrasound Spectroscopy NDE systems to investigate the feasibility of finding such micro-cracking in the laminated composites. Thermography is utilized to determine changes in thermal diffusivity. The degree of cracking may reduce the apparent thermal diffusivity and therefore change the thermal response on the surface. Thermography testing was conducted on a group of specimens where it is desired to have some correlation between the predetermined stress and the thermography data. Ultrasound Spectroscopy was used to determine peak changes between the pre-stressed and stressed samples. Data from the inspections were analyzed and the results are presented in this paper.

  15. Slow crack growth behaviour of hydroxyapatite ceramics.

    PubMed

    Benaqqa, Chahid; Chevalier, Jerome; Saädaoui, Malika; Fantozzi, Gilbert

    2005-11-01

    Among materials for medical applications, hydroxyapatite is one of the best candidates in orthopedics, since it exhibits a composition similar to the mineral part of bone. Double torsion technique was here performed to investigate slow crack growth behaviour of dense hydroxyapatite materials. Crack rate, V, versus stress intensity factor, K(I), laws were obtained for different environments and processing conditions. Stress assisted corrosion by water molecules in oxide ceramics is generally responsible for slow crack growth. The different propagation stages obtained here could be analyzed in relation to this process. The presence of a threshold defining a safety range of use was also observed. Hydroxyapatite ceramics appear to be very sensitive to slow crack growth, crack propagation occurring even at very low K(I). This can be explained by the fact that they contain hydroxyl groups (HAP: Ca(10)(PO(4))(6)(OH)(2)), favouring water adsorption on the crack surface and thus a strong decrease of surface energy in the presence of water. This study demonstrates that processing conditions must be carefully controlled, specially sintering temperature, which plays a key role on V-K(I) laws. Sintering at 50 degrees C above or below the optimal temperature, for example, may shift the V-K(I) law towards very low stress intensity factors. The influence of ageing is finally discussed.

  16. Dynamic behaviour of a rotating cracked beam

    NASA Astrophysics Data System (ADS)

    Yashar, Ahmed; Ghandchi-Tehrani, Maryam; Ferguson, Neil

    2016-09-01

    This paper presents a new approach to investigate and analyse the vibrational behaviour of cracked rotating cantilever beams, which can for example represent helicopter or wind turbine blades. The analytical Hamiltonian method is used in modelling the rotating beam and two numerical methods, the Rayleigh-Ritz and FEM, are used to study the natural frequencies and the mode shapes of the intact rotating beams. Subsequently, a crack is introduced into the FE model and simulations are performed to identify the modal characteristics for an open cracked rotating beam. The effect of various parameters such as non-dimensional rotating speed, hub ratio and slenderness ratio are investigated for both the intact and the cracked rotating beam, and in both directions of chordwise and flapwise motion. The veering phenomena in the natural frequencies as a function of the rotational speed and the buckling speed are considered with respect to the slenderness ratio. In addition, the mode shapes obtained for the flapwise vibration are compared using the modal assurance criterion (MAC). Finally, a new three dimensional design chart is produced, showing the effect of crack location and depth on the natural frequencies of the rotating beam. This chart will be subsequently important in identifying crack defects in rotating blades.

  17. Fatigue crack propagation analysis of plaque rupture.

    PubMed

    Pei, Xuan; Wu, Baijian; Li, Zhi-Yong

    2013-10-01

    Rupture of atheromatous plaque is the major cause of stroke or heart attack. Considering that the cardiovascular system is a classic fatigue environment, plaque rupture was treated as a chronic fatigue crack growth process in this study. Fracture mechanics theory was introduced to describe the stress status at the crack tip and Paris' law was used to calculate the crack growth rate. The effect of anatomical variation of an idealized plaque cross-section model was investigated. The crack initiation was considered to be either at the maximum circumferential stress location or at any other possible locations around the lumen. Although the crack automatically initialized at the maximum circumferential stress location usually propagated faster than others, it was not necessarily the most critical location where the fatigue life reached its minimum. We found that the fatigue life was minimum for cracks initialized in the following three regions: the midcap zone, the shoulder zone, and the backside zone. The anatomical variation has a significant influence on the fatigue life. Either a decrease in cap thickness or an increase in lipid pool size resulted in a significant decrease in fatigue life. Comparing to the previously used stress analysis, this fatigue model provides some possible explanations of plaque rupture at a low stress level in a pulsatile cardiovascular environment, and the method proposed here may be useful for further investigation of the mechanism of plaque rupture based on in vivo patient data.

  18. Hierarchical Formation of Intrasplat Cracks in Thermal Spray Ceramic Coatings

    NASA Astrophysics Data System (ADS)

    Chen, Lin; Yang, Guan-Jun; Li, Cheng-Xin; Li, Chang-Jiu

    2016-06-01

    Intrasplat cracks, an essential feature of thermally sprayed ceramic coatings, play important roles in determining coating properties. However, final intrasplat crack patterns are always considered to be disordered and irregular, resulting from random cracking during splat cooling, since the detailed formation process of intrasplat cracks has scarcely been considered. In the present study, the primary formation mechanism for intrasplat cracking was explored based on both experimental observations and mechanical analysis. The results show that the intrasplat crack pattern in thermally sprayed ceramic splats presents a hierarchical structure with four sides and six neighbors, indicating that intrasplat crack patterns arise from successive domain divisions due to sequential cracking during splat cooling. The driving forces for intrasplat cracking are discussed, and the experimental data quantitatively agree well with theoretical results. This will provide insight for further coating structure designs and tailoring by tuning of intrasplat cracks.

  19. Low temperature extraction and upgrading of oil sands and bitumen in supercritical fluid mixtures.

    PubMed

    Brough, Sarah A; Riley, Sandra H; McGrady, G Sean; Tanhawiriyakul, Supaporn; Romero-Zerón, Laura; Willson, Christopher D

    2010-07-21

    Preliminary results are reported for the extraction and catalytic hydrocracking of Alberta bitumen and oil sands using supercritical fluid mixtures; high levels of extraction and upgrading were attained using reaction conditions significantly milder than those previously reported.

  20. Key parameters controlling the performance of catalytic motors

    NASA Astrophysics Data System (ADS)

    Esplandiu, Maria J.; Afshar Farniya, Ali; Reguera, David

    2016-03-01

    The development of autonomous micro/nanomotors driven by self-generated chemical gradients is a topic of high interest given their potential impact in medicine and environmental remediation. Although impressive functionalities of these devices have been demonstrated, a detailed understanding of the propulsion mechanism is still lacking. In this work, we perform a comprehensive numerical analysis of the key parameters governing the actuation of bimetallic catalytic micropumps. We show that the fluid motion is driven by self-generated electro-osmosis where the electric field originates by a proton current rather than by a lateral charge asymmetry inside the double layer. Hence, the surface potential and the electric field are the key parameters for setting the pumping strength and directionality. The proton flux that generates the electric field stems from the proton gradient induced by the electrochemical reactions taken place at the pump. Surprisingly the electric field and consequently the fluid flow are mainly controlled by the ionic strength and not by the conductivity of the solution, as one could have expected. We have also analyzed the influence of the chemical fuel concentration, electrochemical reaction rates, and size of the metallic structures for an optimized pump performance. Our findings cast light on the complex chemomechanical actuation of catalytic motors and provide important clues for the search, design, and optimization of novel catalytic actuators.

  1. Fatigue crack layer propagation in silicon-iron

    NASA Technical Reports Server (NTRS)

    Birol, Y.; Welsch, G.; Chudnovsky, A.

    1986-01-01

    Fatigue crack propagation in metal is almost always accompanied by plastic deformation unless conditions strongly favor brittle fracture. The analysis of the plastic zone is crucial to the understanding of crack propagation behavior as it governs the crack growth kinetics. This research was undertaken to study the fatigue crack propagation in a silicon iron alloy. Kinetic and plasticity aspects of fatigue crack propagation in the alloy were obtained, including the characterization of damage evolution.

  2. CATALYTIC CYCLES FOR HYDROCARBON CRACKING ON ZEOLITES. (R825370C056)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  3. 2-METHYLHEXANE CRACKING ON Y-ZEOLITES: CATALYTIC CYCLES AND REACTION SELECTIVITY. (R825370C056)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  4. Catalytic cracking of fast and tail gas reactive pyrolysis bio-oils over HZSM-5

    Technology Transfer Automated Retrieval System (TEKTRAN)

    While hydrodeoxygenation (HDO) of pyrolysis oil is well understood as an upgrading method, the high processing pressures associated with it alone justify the exploration of alternative upgrading solutions, especially those that could adapt pyrolysis oils into the existing refinery infrastructure. Ca...

  5. 40 CFR Table 1 to Subpart Uuu of... - Metal HAP Emission Limits for Catalytic Cracking Units

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for each catalyst regenerator vent . . . 1. Subject to new source performance standard (NSPS) for PM... coke burn-off in the catalyst regenerator; if the discharged gases pass through an incinerator or waste... emissions must not exceed 1.0 kg/1,000 kg (1.0 lb/1,000 lb) of coke burn-off in the catalyst regenerator;...

  6. 40 CFR Table 1 to Subpart Uuu of... - Metal HAP Emission Limits for Catalytic Cracking Units

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... limits for each catalyst regenerator vent . . . 1. Subject to new source performance standard (NSPS) for...) of coke burn-off in the catalyst regenerator; if the discharged gases pass through an incinerator or... PM emissions must not exceed 1.0 kg/1,000 kg (1.0 lb/1,000 lb) of coke burn-off in the...

  7. 40 CFR Table 1 to Subpart Uuu of... - Metal HAP Emission Limits for Catalytic Cracking Units

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... emission limits for each catalyst regenerator vent . . . 1. Subject to new source performance standard...,000 lb) of coke burn-off in the catalyst regenerator; if the discharged gases pass through an... catalyst regenerator; if the discharged gases pass through an incinerator or waste heat boiler in which...

  8. 40 CFR Table 1 to Subpart Uuu of... - Metal HAP Emission Limits for Catalytic Cracking Units

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for each catalyst regenerator vent . . . 1. Subject to new source performance standard (NSPS) for PM... coke burn-off in the catalyst regenerator; if the discharged gases pass through an incinerator or waste... emissions must not exceed 1.0 kg/1,000 kg (1.0 lb/1,000 lb) of coke burn-off in the catalyst regenerator;...

  9. 40 CFR Table 1 to Subpart Uuu of... - Metal HAP Emission Limits for Catalytic Cracking Units

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... emission limits for each catalyst regenerator vent . . . 1. Subject to new source performance standard...,000 lb) of coke burn-off in the catalyst regenerator; if the discharged gases pass through an... catalyst regenerator; if the discharged gases pass through an incinerator or waste heat boiler in which...

  10. Biogenic Cracks in Porous Rock

    NASA Astrophysics Data System (ADS)

    Hemmerle, A.; Hartung, J.; Hallatschek, O.; Goehring, L.; Herminghaus, S.

    2014-12-01

    Microorganisms growing on and inside porous rock may fracture it by various processes. Some of the mechanisms of biofouling and bioweathering are today identified and partially understood but most emphasis is on chemical weathering, while mechanical contributions have been neglected. However, as demonstrated by the perseverance of a seed germinating and cracking up a concrete block, the turgor pressure of living organisms can be very significant. Here, we present results of a systematic study of the effects of the mechanical forces of growing microbial populations on the weathering of porous media. We designed a model porous medium made of glass beads held together by polydimethylsiloxane (PDMS), a curable polymer. The rheological properties of the porous medium, whose shape and size are tunable, can be controlled by the ratio of crosslinker to base used in the PDMS (see Fig. 1). Glass and PDMS being inert to most chemicals, we are able to focus on the mechanical processes of biodeterioration, excluding any chemical weathering. Inspired by recent measurements of the high pressure (~0.5 Mpa) exerted by a growing population of yeasts trapped in a microfluidic device, we show that yeast cells can be cultured homogeneously within porous medium until saturation of the porous space. We investigate then the effects of such an inner pressure on the mechanical properties of the sample. Using the same model system, we study also the complex interplay between biofilms and porous media. We focus in particular on the effects of pore size on the penetration of the biofilm within the porous sample, and on the resulting deformations of the matrix, opening new perspectives into the understanding of life in complex geometry. Figure 1. Left : cell culture growing in a model porous medium. The white spheres represent the grains, bonds are displayed in grey, and microbes in green. Right: microscopy picture of glass beads linked by PDMS bridges, scale bar: 100 μm.

  11. Catalytic combustion with steam injection

    NASA Technical Reports Server (NTRS)

    Anderson, D. N.; Tacina, R. R.

    1982-01-01

    The effects of steam injection on (1) catalytic combustion performance, and (2) the tendency of residual fuel to burn in the premixing duct upstream of the catalytic reactor were determined. A petroleum residual, no. 2 diesel, and a blend of middle and heavy distillate coal derived fuels were tested. Fuel and steam were injected together into the preheated airflow entering a 12 cm diameter catalytic combustion test section. The inlet air velocity and pressure were constant at 10 m/s and 600 kPa, respectively. Steam flow rates were varied from 24 percent to 52 percent of the air flow rate. The resulting steam air mixture temperatures varied from 630 to 740 K. Combustion temperatures were in the range of 1200 to 1400 K. The steam had little effect on combustion efficiency or emissions. It was concluded that the steam acts as a diluent which has no adverse effect on catalytic combustion performance for no. 2 diesel and coal derived liquid fuels. Tests with the residual fuel showed that upstream burning could be eliminated with steam injection rates greater than 30 percent of the air flow rate, but inlet mixture temperatures were too low to permit stable catalytic combustion of this fuel.

  12. Environmentally assisted cracking in light water reactors.

    SciTech Connect

    Chopra, O. K.; Chung, H. M.; Clark, R. W.; Gruber, E. E.; Shack, W. J.; Soppet, W. K.; Strain, R. V.

    2007-11-06

    This report summarizes work performed by Argonne National Laboratory on fatigue and environmentally assisted cracking (EAC) in light water reactors (LWRs) from January to December 2002. Topics that have been investigated include: (a) environmental effects on fatigue crack initiation in carbon and low-alloy steels and austenitic stainless steels (SSs), (b) irradiation-assisted stress corrosion cracking (IASCC) of austenitic SSs in BWRs, (c) evaluation of causes and mechanisms of irradiation-assisted cracking of austenitic SS in PWRs, and (d) cracking in Ni-alloys and welds. A critical review of the ASME Code fatigue design margins and an assessment of the conservation in the current choice of design margins are presented. The existing fatigue {var_epsilon}-N data have been evaluated to define the effects of key material, loading, and environmental parameters on the fatigue lives of carbon and low-alloy steels and austenitic SSs. Experimental data are presented on the effects of surface roughness on fatigue crack initiation in these materials in air and LWR environments. Crack growth tests were performed in BWR environments on SSs irradiated to 0.9 and 2.0 x 10{sup 21} n x cm{sup -2}. The crack growth rates (CGRs) of the irradiated steels are a factor of {approx}5 higher than the disposition curve proposed in NUREG-0313 for thermally sensitized materials. The CGRs decreased by an order of magnitude in low-dissolved oxygen (DO) environments. Slow-strain-rate tensile (SSRT) tests were conducted in high-purity 289 C water on steels irradiated to {approx}3 dpa. The bulk S content correlated well with the susceptibility to intergranular SCC in 289 C water. The IASCC susceptibility of SSs that contain >0.003 wt. % S increased drastically. bend tests in inert environments at 23 C were conducted on broken pieces of SSRT specimens and on unirradiated specimens of the same materials after hydrogen charging. The results of the tests and a review of other data in the literature

  13. Stochastic modeling of crack initiation and short-crack growth under creep and creep-fatigue conditions

    NASA Technical Reports Server (NTRS)

    Kitamura, Takayuki; Ghosn, Louis J.; Ohtani, Ryuichi

    1989-01-01

    A simplified stochastic model is proposed for crack initiation and short-crack growth under creep and creep-fatigue conditions. Material inhomogeneity provides the random nature of crack initiation and early growth. In the model, the influence of microstructure is introduced by the variability of: (1) damage accumulation along grain boundaries, (2) critical damage required for crack initiation or growth, and (3) the grain-boundary length. The probabilities of crack initiation and growth are derived by using convolution integrals. The model is calibrated and used to predict the crack density and crack-growth rate of short cracks of 304 stainless steel under creep and creep-fatigue conditions. The mean-crack initiation lives are predicted to be within an average deviation of about 10 percent from the experimental results. The predicted cumulative distributions of crack-growth rate follow the experimental data closely. The applicability of the simplified stochastic model is discussed and the future research direction is outlined.

  14. Fluid Mechanics

    NASA Astrophysics Data System (ADS)

    Pnueli, David; Gutfinger, Chaim

    1997-01-01

    This text is intended for the study of fluid mechanics at an intermediate level. The presentation starts with basic concepts, in order to form a sound conceptual structure that can support engineering applications and encourage further learning. The presentation is exact, incorporating both the mathematics involved and the physics needed to understand the various phenomena in fluid mechanics. Where a didactical choice must be made between the two, the physics prevails. Throughout the book the authors have tried to reach a balance between exact presentation, intuitive grasp of new ideas, and creative applications of concepts. This approach is reflected in the examples presented in the text and in the exercises given at the end of each chapter. Subjects treated are hydrostatics, viscous flow, similitude and order of magnitude, creeping flow, potential flow, boundary layer flow, turbulent flow, compressible flow, and non-Newtonian flows. This book is ideal for advanced undergraduate students in mechanical, chemical, aerospace, and civil engineering. Solutions manual available.

  15. Crack-tip-opening angle measurements and crack tunneling under stable tearing in thin sheet 2024-T3 aluminum alloy

    NASA Technical Reports Server (NTRS)

    Dawicke, D. S.; Sutton, M. A.

    1993-01-01

    The stable tearing behavior of thin sheets 2024-T3 aluminum alloy was studied for middle crack tension specimens having initial cracks that were: flat cracks (low fatigue stress) and 45 degrees through-thickness slant cracks (high fatigue stress). The critical crack-tip-opening angle (CTOA) values during stable tearing were measured by two independent methods, optical microscopy and digital image correlation. Results from the two methods agreed well. The CTOA measurements and observations of the fracture surfaces showed that the initial stable tearing behavior of low and high fatigue stress tests is significantly different. The cracks in the low fatigue stress tests underwent a transition from flat-to-slant crack growth, during which the CTOA values were high and significant crack tunneling occurred. After crack growth equal to about the thickness, CTOA reached a constant value of 6 deg and after crack growth equal to about twice the thickness, crack tunneling stabilized. The initial high CTOA values, in the low fatigue crack tests, coincided with large three-dimensional crack front shape changes due to a variation in the through-thickness crack tip constraint. The cracks in the high fatigue stress tests reach the same constant CTOA value after crack growth equal to about the thickness, but produced only a slightly higher CTOA value during initial crack growth. For crack growth on the 45 degree slant, the crack front and local field variables are still highly three-dimensional. However, the constant CTOA values and stable crack front shape may allow the process to be approximated with two-dimensional models.

  16. Fluid extraction

    DOEpatents

    Wai, Chien M.; Laintz, Kenneth E.

    1999-01-01

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent is described. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated .beta.-diketone. In especially preferred embodiments the extraction solvent is supercritical carbon dioxide, and the chelating agent comprises a fluorinated .beta.-diketone and a trialkyl phosphate, or a fluorinated .beta.-diketone and a trialkylphosphine oxide. Although a trialkyl phosphate can extract lanthanides and actinides from acidic solutions, a binary mixture comprising a fluorinated .beta.-diketone and a trialkyl phosphate or a trialkylphosphine oxide tends to enhance the extraction efficiencies for actinides and lanthanides. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The method is particularly useful for extracting actinides and lanthanides from acidic solutions. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.

  17. Expression studies of catalytic antibodies

    SciTech Connect

    Ulrich, H.D.; Patten, P.A.; Yang, P.L.

    1995-12-05

    We have examined the positive influence of human constant regions on the folding and bacterial expression of active soluble mouse immunoglobulin variable domains derived form a number of catalytic antibodies. Expression yields of eight hybridoma-and myeloma-derived chimeric Fab fragments are compared in both shake flasks and high-density fermentation. In addition the usefulness of this system for the generation of in vivo expression libraries is examined by constructing and expressing combinations of heavy and light chain variable regions that were not selected as a pair during an immune response. A mutagenesis study of one of the recombinant catalytic Fab fragments reveals that single amino acid substitutions can have dramatic effects on the expression yield. This system should be generally applicable to the production of Fab fragments of catalytic and other hybridoma-derived antibodies for crystallographic and structure-function studies. 41 refs., 4 figs., 1 tab.

  18. Catalytic distillation water recovery subsystem

    NASA Technical Reports Server (NTRS)

    Budininkas, P.; Rasouli, F.

    1985-01-01

    An integrated engineering breadboard subsystem for the recovery of potable water from untreated urine based on the vapor phase catalytic ammonia removal was designed, fabricated and tested. Unlike other evaporative methods, this process catalytically oxidizes ammonia and volatile hydrocarbons vaporizing with water to innocuous products; therefore, no pretreatment of urine is required. Since the subsystem is fabricated from commercially available components, its volume, weight and power requirements are not optimized; however, it is suitable for zero-g operation. The testing program consists of parametric tests, one month of daily tests and a continuous test of 168 hours duration. The recovered water is clear, odorless, low in ammonia and organic carbon, and requires only an adjustment of its pH to meet potable water standards. The obtained data indicate that the vapor phase catalytic ammonia removal process, if further developed, would also be competitive with other water recovery systems in weight, volume and power requirements.

  19. Treatment of singularities in cracked bodies

    NASA Technical Reports Server (NTRS)

    Shivakumar, K. N.; Raju, I. S.

    1990-01-01

    Three-dimensional finite-element analyses of middle-crack tension (M-T) and bend specimens subjected to mode I loadings were performed to study the stress singularity along the crack front. The specimen was modeled using 20-node isoparametric elements. The displacements and stresses from the analysis were used to estimate the power of singularities using a log-log regression analysis along the crack front. The analyses showed that finite-sized cracked bodies have two singular stress fields of the form rho = C sub o (theta, z) r to the -1/2 power + D sub o (theta, phi) R to the lambda rho power. The first term is the cylindrical singularity with the power -1/2 and is dominant over the middle 96 pct (for Poisson's ratio = 0.3) of the crack front and becomes nearly zero at the free surface. The second singularity is a vertex singularity with the vertex point located at the intersection of the crack front and the free surface. The second term is dominant at the free surface and becomes nearly zero away from the boundary layer. The thickness of the boundary layer depends on Poisson's ratio of the material and is independent of the specimen type. The thickness of the boundary layer varied from 0 pct to about 5 pct of the total specimen thickness as Poisson's ratio varied from 0.0 to 0.45. Because there are two singular stress fields near the free surface, the strain energy release rate (G) is an appropriate parameter to measure the severity of the crack.

  20. TRANSPORT THROUGH CRACKED CONCRETE: LITERATURE REVIEW

    SciTech Connect

    Langton, C.

    2012-05-11

    Concrete containment structures and cement-based fills and waste forms are used at the Savannah River Site to enhance the performance of shallow land disposal systems designed for containment of low-level radioactive waste. Understanding and measuring transport through cracked concrete is important for describing the initial condition of radioactive waste containment structures at the Savannah River Site (SRS) and for predicting performance of these structures over time. This report transmits the results of a literature review on transport through cracked concrete which was performed by Professor Jason Weiss, Purdue University per SRR0000678 (RFP-RQ00001029-WY). This review complements the NRC-sponsored literature review and assessment of factors relevant to performance of grouted systems for radioactive waste disposal. This review was performed by The Center for Nuclear Waste Regulatory Analyses, San Antonio, TX, and The University of Aberdeen, Aberdeen Scotland and was focused on tank closure. The objective of the literature review on transport through cracked concrete was to identify information in the open literature which can be applied to SRS transport models for cementitious containment structures, fills, and waste forms. In addition, the literature review was intended to: (1) Provide a framework for describing and classifying cracks in containment structures and cementitious materials used in radioactive waste disposal, (2) Document the state of knowledge and research related to transport through cracks in concrete for various exposure conditions, (3) Provide information or methodology for answering several specific questions related to cracking and transport in concrete, and (4) Provide information that can be used to design experiments on transport through cracked samples and actual structures.