Sample records for fluid collection device

  1. A clinical evaluation of a new Silastic seminal fluid collection device.

    PubMed

    Mehan, D J; Chehval, M J

    1977-06-01

    A new Silastic seminal fluid collection device has been tested clinically and comparison studies have been made with both the polyethylene sheath and commercial latex condoms. In a series of 100 patients, the Silastic seminal fluid device has been found to be superior to the polyethylene sheath with regard to patient comfort and also has had greater reliability. In comparison with the latex device, the Silastic seminal fluid collection device is nearly as comfortable and has been found to be far more reliable.

  2. Comparison of oral fluid collection methods for the molecular detection of hepatitis B virus.

    PubMed

    Portilho, M M; Mendonça, Acf; Marques, V A; Nabuco, L C; Villela-Nogueira, C A; Ivantes, Cap; Lewis-Ximenez, L L; Lampe, E; Villar, L M

    2017-11-01

    This study aims to compare the efficiency of four oral fluid collection methods (Salivette, FTA Card, spitting and DNA-Sal) to detect HBV DNA by qualitative PCR. Seventy-four individuals (32 HBV reactive and 42 with no HBV markers) donated serum and oral fluid. In-house qualitative PCR to detect HBV was used for both samples and commercial quantitative PCR for serum. HBV DNA was detected in all serum samples from HBV-infected individuals, and it was not detected in control group. HBV DNA from HBV group was detected in 17 samples collected with Salivette device, 16 samples collected by FTA Card device, 16 samples collected from spitting and 13 samples collected by DNA-Sal device. Samples that corresponded to a higher viral load in their paired serum sample could be detected using all oral fluid collection methods, but Salivette collection device yielded the largest numbers of positive samples and had a wide range of viral load that was detected. It was possible to detect HBV DNA using all devices tested, but higher number of positive samples was observed when samples were collected using Salivette device, which shows high concordance to viral load observed in the paired serum samples. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. All rights reserved.

  3. Method and apparatus for continuous fluid leak monitoring and detection in analytical instruments and instrument systems

    DOEpatents

    Weitz, Karl K [Pasco, WA; Moore, Ronald J [West Richland, WA

    2010-07-13

    A method and device are disclosed that provide for detection of fluid leaks in analytical instruments and instrument systems. The leak detection device includes a collection tube, a fluid absorbing material, and a circuit that electrically couples to an indicator device. When assembled, the leak detection device detects and monitors for fluid leaks, providing a preselected response in conjunction with the indicator device when contacted by a fluid.

  4. Microfluidic device and method for focusing, segmenting, and dispensing of a fluid stream

    DOEpatents

    Jacobson, Stephen C [Knoxville, TN; Ramsey, J Michael [Knoxville, TN

    2008-09-09

    A microfluidic device and method for forming and dispensing minute volume segments of a material are described. In accordance with the present invention, a microfluidic device and method are provided for spatially confining the material in a focusing element. The device is also adapted for segmenting the confined material into minute volume segments, and dispensing a volume segment to a waste or collection channel. The device further includes means for driving the respective streams of sample and focusing fluids through respective channels into a chamber, such that the focusing fluid streams spatially confine the sample material. The device may also include additional means for driving a minute volume segment of the spatially confined sample material into a collection channel in fluid communication with the waste reservoir.

  5. Microfluidic device and method for focusing, segmenting, and dispensing of a fluid stream

    DOEpatents

    Jacobson, Stephen C.; Ramsey, J. Michael

    2004-09-14

    A microfluidic device for forming and/or dispensing minute volume segments of a material is described. In accordance with one aspect of the present invention, a microfluidic device and method is provided for spatially confining the material in a focusing element. The device is also capable of segmenting the confined material into minute volume segments, and dispensing a volume segment to a waste or collection channel. The device further includes means for driving the respective streams of sample and focusing fluids through respective channels into a chamber, such that the focusing fluid streams spatially confine the sample material. The device may also include additional means for driving a minute volume segment of the spatially confined sample material into a collection channel in fluid communication with the waste reservoir.

  6. Technical note: A device for obtaining time-integrated samples of ruminal fluid

    USGS Publications Warehouse

    Corley, R. N.; Murphy, M.R.; Lucena, J.; Panno, S.V.

    1999-01-01

    A device was adapted to allow for time-integrated sampling of fluid from the rumen via a cannula. The sampler consisted of a cup-shaped ceramic filter positioned in the ventral rumen of a cannulated cow and attached to a tube through which fluid entering the filter was removed continuously using a peristaltic pump. Rate of ruminal fluid removal using the device was monitored over two 36-h periods (at 6-h intervals) and was not affected (P > .05) by time, indicating that the system was not susceptible to clogging during this period. Two cows having ad libitum access to a totally mixed ration were used in a split-block design to evaluate the utility of the system for obtaining time-integrated samples of ruminal fluid. Ruminal fluid VFA concentration and pattern in samples collected in two replicated 8-h periods by the time-integrated sampler (at 1-h intervals) were compared with composite samples collected using a conventional suction-strainer device (at 30-min intervals). Each 8-h collection period started 2 h before or 6 h after feeding. Results indicated that total VFA concentration was not affected (P > .05) by the sampling method. Volatile fatty acid patterns were likewise unaffected (P > .05) except that acetate was 2.5% higher (P < .05) in samples collected 2 h before feeding and valerate was 5% higher (P < .05) in samples collected 6 h after feeding by the suction-strainer device. Although significant, these differences were not considered physiologically important. We concluded that use of the ceramic filter improved the sampling of ruminal fluid by simplifying the technique and allowing time-integrated samples to be obtained.

  7. A fluid collection system for dermal wounds in clinical investigations

    PubMed Central

    Klopfer, Michael; Li, G.-P.; Widgerow, Alan; Bachman, Mark

    2016-01-01

    In this work, we demonstrate the use of a thin, self adherent, and clinically durable patch device that can collect fluid from a wound site for analysis. This device is manufactured from laminated silicone layers using a novel all-silicone double-molding process. In vitro studies for flow and delivery were followed by a clinical demonstration for exudate collection efficiency from a clinically presented partial thickness burn. The demonstrated utility of this device lends itself for use as a research implement used to clinically sample wound exudate for analysis. This device can serve as a platform for future integration of wearable technology into wound monitoring and care. The demonstrated fabrication method can be used for devices requiring thin membrane construction. PMID:27051470

  8. Portable Intravenous Fluid Production Device For Ground Use Project

    NASA Technical Reports Server (NTRS)

    Oliva-Buisson, Yvette J.

    2014-01-01

    Several medical conditions require the administration of intravenous (IV) fluids,but limitations of mass, volume, shelf-life, transportation, and local resources can restrict the availability of these important fluids. Such limitations are expected in long-duration space exploration missions and in remote or austere places on Earth. This design uses regular drinking water that is pumped through two filters to produce, in minutes, sterile, ultrapure water that meets the stringent quality standards of the United States Pharmacopeia for Water for Injection (Total Bacteria, Conductivity, Endo - toxins, Total Organic Carbon). The device weighs 2.2 lb (1 kg) and is 10 in. long, 5 in. wide, and 3 in. high (˜25, 13, and 7.5 cm, respectively) in its storage configuration. This handheld device produces one liter of medical-grade water in 21 minutes. Total production capacity for this innovation is expected to be in the hundreds of liters. The device contains one battery powered electric mini-pump. Alternatively, a manually powered pump can be attached and used. Drinking water enters the device from a source water bag, flows through two filters, and final sterile production water exits into a sealed, medical-grade collection bag. The collection bag contains pre-placed crystalline salts to mix with product water to form isotonic intravenous medical solutions. Alternatively, a hypertonic salt solution can be injected into a filled bag. The filled collection bag is detached from the device and is ready for use or storage. This device currently contains one collection bag, but a manifold of several pre-attached bags or replacement of single collection bags under sterile needle technique is possible for the production of multiple liters. The entire system will be flushed, sealed, and radiation-sterilized. Operation of the device is easy and requires minimal training. Drinking water is placed into the collection bag. Inline stopcock flow valves at the source and collection bags are opened, and the mini-pump is turned on by a switch to begin fluid flow. When the collection bag is completely filled with the medical- grade water, the pump can be turned off. The pump is designed so it cannot pump air, and overfilling of the collection bag with fluid is avoided by placing an equal amount of water in the source bag. Backflow is avoided by inline check valves. The filled collection bag is disconnected from its tubing and is ready for use. The source bag can be refilled for production of multiple liters, or the source bag can be replaced with an input tube that can be placed in a larger potable water source if the device is attended. The device functions in all orientations independent of any gravity fields. In addition to creating IV fluids, the device produces medical-grade water, which can be used for mixing with medications for injection, reconstituting freeze-dried blood products for injection, or for wound hydration or irrigation. Potential worldwide use is expected with medical activities in environments that have limited resources, storage, or resupply such as in military field operations, humanitarian relief efforts, submarines, commercial cruise ships, etc.

  9. Apparatus for moving a pipe inspection probe through piping

    DOEpatents

    Zollinger, W.T.; Appel, D.K.; Lewis, G.W.

    1995-07-18

    A method and apparatus are disclosed for controllably moving devices for cleaning or inspection through piping systems, including piping systems with numerous piping bends therein, by using hydrostatic pressure of a working fluid introduced into the piping system. The apparatus comprises a reservoir or other source for supplying the working fluid to the piping system, a launch tube for admitting the device into the launcher and a reversible, positive displacement pump for controlling the direction and flow rate of the working fluid. The device introduced into the piping system moves with the flow of the working fluid through the piping system. The launcher attaches to the valved ends of a piping system so that fluids in the piping system can recirculate in a closed loop. The method comprises attaching the launcher to the piping system, supplying the launcher with working fluid, admitting the device into the launcher, pumping the working fluid in the direction and at the rate desired so that the device moves through the piping system for pipe cleaning or inspection, removing the device from the launcher, and collecting the working fluid contained in the launcher. 8 figs.

  10. Apparatus for moving a pipe inspection probe through piping

    DOEpatents

    Zollinger, W. Thor; Appel, D. Keith; Lewis, Gregory W.

    1995-01-01

    A method and apparatus for controllably moving devices for cleaning or inspection through piping systems, including piping systems with numerous piping bends therein, by using hydrostatic pressure of a working fluid introduced into the piping system. The apparatus comprises a reservoir or other source for supplying the working fluid to the piping system, a launch tube for admitting the device into the launcher and a reversible, positive displacement pump for controlling the direction and flow rate of the working fluid. The device introduced into the piping system moves with the flow of the working fluid through the piping system. The launcher attaches to the valved ends of a piping system so that fluids in the piping system can recirculate in a closed loop. The method comprises attaching the launcher to the piping system, supplying the launcher with working fluid, admitting the device into the launcher, pumping the working fluid in the direction and at the rate desired so that the device moves through the piping system for pipe cleaning or inspection, removing the device from the launcher, and collecting the working fluid contained in the launcher.

  11. A Study on the Reliability of an On-Site Oral Fluid Drug Test in a Recreational Context

    PubMed Central

    Gentili, Stefano; Tittarelli, Roberta; Mannocchi, Giulio

    2016-01-01

    The reliability of DrugWipe 5A on site test for principal drugs of abuse (cannabis, amphetamines, cocaine, and opiates) detection in oral fluid was assessed by comparing the on-site results with headspace solid-phase microextraction (HS-SPME) gas chromatography-mass spectrometry (GC-MS) analysis on samples extracted by the device collection pad. Oral fluid samples were collected at recreational settings (e.g., discos, pubs, and music bars) of Rome metropolitan area. Eighty-three club goers underwent the on-site drug screening test with one device. Independently from the result obtained, a second device was used just to collect another oral fluid sample subsequently extracted and analyzed in the laboratory following HS-SPME procedure, gas chromatographic separation by a capillary column, and MS detection by electron impact ionization. DrugWipe 5A on-site test showed 54 samples (65.1%) positive to one or more drugs of abuse, whereas 75 samples (90.4%) tested positive for one or more substances following GC-MS assay. Comparing the obtained results, the device showed sensitivity, specificity, and accuracy around 80% for amphetamines class. Sensitivity (67 and 50%) was obtained for cocaine and opiates, while both sensitivity and accuracy were unsuccessful (29 and 53%, resp.) for cannabis, underlying the limitation of the device for this latter drug class. PMID:27610266

  12. A programmable point-of-care device for external CSF drainage and monitoring.

    PubMed

    Simkins, Jeffrey R; Subbian, Vignesh; Beyette, Fred R

    2014-01-01

    This paper presents a prototype of a programmable cerebrospinal fluid (CSF) external drainage system that can accurately measure the dispensed fluid volume. It is based on using a miniature spectrophotometer to collect color data to inform drain rate and pressure monitoring. The prototype was machined with 1 μm dimensional accuracy. The current device can reliably monitor the total accumulated fluid volume, the drain rate, the programmed pressure, and the pressure read from the sensor. Device requirements, fabrication processes, and preliminary results with an experimental set-up are also presented.

  13. A FORMULA FOR HUMAN PAROTID FLUID COLLECTED WITHOUT EXOGENEOUS STIMULATION.

    DTIC Science & Technology

    Parotid fluid was collected from 4,589 systemically healthy males between 17 and 22 years of age. Collection devices were placed with an absolute...secretion of the parotid gland. For all 4,589 subjects from the 8 experiments the mean rate of flow was 0.040 ml./minute with an average standard deviation of

  14. 40 CFR 65.113 - Standards: Sampling connection systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... be collected or captured. (c) Equipment design and operation. Each closed-purge, closed-loop, or... system; or (2) Collect and recycle the purged process fluid to a process; or (3) Be designed and operated to capture and transport all the purged process fluid to a control device that meets the requirements...

  15. 40 CFR 65.113 - Standards: Sampling connection systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... be collected or captured. (c) Equipment design and operation. Each closed-purge, closed-loop, or... system; or (2) Collect and recycle the purged process fluid to a process; or (3) Be designed and operated to capture and transport all the purged process fluid to a control device that meets the requirements...

  16. 40 CFR 65.113 - Standards: Sampling connection systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... be collected or captured. (c) Equipment design and operation. Each closed-purge, closed-loop, or... system; or (2) Collect and recycle the purged process fluid to a process; or (3) Be designed and operated to capture and transport all the purged process fluid to a control device that meets the requirements...

  17. Endosonography guided management of pancreatic fluid collections

    PubMed Central

    Vilmann, Andreas S; Menachery, John; Tang, Shou-Jiang; Srinivasan, Indu; Vilmann, Peter

    2015-01-01

    The revised Atlanta classification of acute pancreatitis was adopted by international consensus, and is based on actual local and systemic determinants of disease severity. The local determinant is pancreatic necrosis (sterile or infected), and the systemic determinant is organ failure. Local complications of pancreatitis can include acute peri-pancreatic fluid collection, acute necrotic collection, pseudocyst formation, and walled-off necrosis. Interventional endoscopic ultrasound (EUS) has been increasing utilized in managing these local complications. After performing a PubMed search, the authors manually applied pre-defined inclusion criteria or a filter to identify publications relevant to EUS and pancreatic collections (PFCs). The authors then reviewed the utility, efficacy, and risks associated with using therapeutic EUS and involved EUS devices in treating PFCs. Due to the development and regulatory approval of improved and novel endoscopic devices specifically designed for transmural drainage of fluid and necrotic debris (access and patency devices), the authors predict continuing evolution in the management of PFCs. We believe that EUS will become an indispensable part of procedures used to diagnose PFCs and perform image-guided interventions. After draining a PFC, the amount of tissue necrosis is the most important predictor of a successful outcome. Hence, it seems logical to classify these collections based on their percentage of necrotic component or debris present when viewed by imaging methods or EUS. Finally, the authors propose an algorithm for managing fluid collections based on their size, location, associated symptoms, internal echogenic patterns, and content. PMID:26557008

  18. Driving under the influence of cannabis: pitfalls, validation, and quality control of a UPLC-MS/MS method for the quantification of tetrahydrocannabinol in oral fluid collected with StatSure, Quantisal, or Certus collector.

    PubMed

    Wille, Sarah M R; Di Fazio, Vincent; Ramírez-Fernandez, Maria del Mar; Kummer, Natalie; Samyn, Nele

    2013-02-01

    "Driving under the influence of drugs" (DUID) has a large impact on the worldwide mortality risk. Therefore, DUID legislations based on impairment or analytical limits are adopted. Drug detection in oral fluid is of interest due to the ease of sampling during roadside controls. The prevalence of Δ9-tetrahydrocannabinol (THC) in seriously injured drivers ranges from 0.5% to 7.6% in Europe. For these reasons, the quantification of THC in oral fluid collected with 3 alternative on-site collectors is presented and discussed in this publication. An ultra-performance liquid chromatography-mass spectrometric quantification method for THC in oral fluid samples collected with the StatSure (Diagnostic Systems), Quantisal (Immunalysis), and Certus (Concateno) devices was validated according to the international guidelines. Small sample volumes of 100-200 μL were extracted using hexane. Special attention was paid to factors such as matrix effects, THC adsorption onto the collector, and stability in the collection fluid. A relatively high-throughput analysis was developed and validated according to ISO 17025 requirements. Although the effects of the matrix on the quantification could be minimized using a deuterated internal standard, and stability was acceptable according the validation data, adsorption of THC onto the collectors was a problem. For the StatSure device, THC was totally recovered from the collector pad after storage for 24 hours at room temperature or 7 days at 4°C. A loss of 15%-25% was observed for the Quantisal collector, whereas the recovery from the Certus device was irreproducible (relative standard deviation, 44%-85%) and low (29%-80%). During the roadside setting, a practical problem arose: small volumes of oral fluid (eg, 300 μL) were collected. However, THC was easily detected and concentrations ranged from 8 to 922 ng/mL in neat oral fluid. A relatively high-throughput analysis (40 samples in 4 hours) adapted for routine DUID analysis was developed and validated for THC quantification in oral fluid samples collected from drivers under the influence of cannabis.

  19. Quantification of 11-Nor-9-Carboxy-Δ9-Tetrahydrocannabinol in Human Oral Fluid by Gas Chromatography–Tandem Mass Spectrometry

    PubMed Central

    Barnes, Allan J.; Scheidweiler, Karl B.; Huestis, Marilyn A.

    2015-01-01

    A sensitive and specific method for the quantification of 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (THCCOOH) in oral fluid collected with the Quantisal and Oral-Eze devices was developed and fully validated. Extracted analytes were derivatized with hexafluoroisopropanol and trifluoroacetic anhydride and quantified by gas chromatography–tandem mass spectrometry with negative chemical ionization. Standard curves, using linear least-squares regression with 1/x2 weighting were linear from 10 to 1000 ng/L with coefficients of determination >0.998 for both collection devices. Bias was 89.2%–112.6%, total imprecision 4.0%–5.1% coefficient of variation, and extraction efficiency >79.8% across the linear range for Quantisal-collected specimens. Bias was 84.6%–109.3%, total imprecision 3.6%–7.3% coefficient of variation, and extraction efficiency >92.6% for specimens collected with the Oral-Eze device at all 3 quality control concentrations (10, 120, and 750 ng/L). This effective high-throughput method reduces analysis time by 9 minutes per sample compared with our current 2-dimensional gas chromatography–mass spectrometry method and extends the capability of quantifying this important oral fluid analyte to gas chromatography–tandem mass spectrometry. This method was applied to the analysis of oral fluid specimens collected from individuals participating in controlled cannabis studies and will be effective for distinguishing passive environmental contamination from active cannabis smoking. PMID:24622724

  20. 40 CFR 63.166 - Standards: Sampling connection systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... fluid to a process; or (3) Be designed and operated to capture and transport the purged process fluid to a control device that complies with the requirements of § 63.172 of this subpart; or (4) Collect... of subpart G of this part applicable to group 1 wastewater streams. If the purged process fluid does...

  1. 40 CFR 63.166 - Standards: Sampling connection systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... fluid to a process; or (3) Be designed and operated to capture and transport the purged process fluid to a control device that complies with the requirements of § 63.172 of this subpart; or (4) Collect... of subpart G of this part applicable to group 1 wastewater streams. If the purged process fluid does...

  2. Microfluidics meets metabolomics to reveal the impact of Campylobacter jejuni infection on biochemical pathways.

    PubMed

    Mortensen, Ninell P; Mercier, Kelly A; McRitchie, Susan; Cavallo, Tammy B; Pathmasiri, Wimal; Stewart, Delisha; Sumner, Susan J

    2016-06-01

    Microfluidic devices that are currently being used in pharmaceutical research also have a significant potential for utilization in investigating exposure to infectious agents. We have established a microfluidic device cultured with Caco-2 cells, and utilized metabolomics to investigate the biochemical responses to the bacterial pathogen Campylobacter jejuni. In the microfluidic devices, Caco-2 cells polarize at day 5, are uniform, have defined brush borders and tight junctions, and form a mucus layer. Metabolomics analysis of cell culture media collected from both Caco-2 cell culture systems demonstrated a more metabolic homogenous biochemical profile in the media collected from microfluidic devices, compared with media collected from transwells. GeneGo pathway mapping indicated that aminoacyl-tRNA biosynthesis was perturbed by fluid flow, suggesting that fluid dynamics and shear stress impacts the cells translational quality control. Both microfluidic device and transwell culturing systems were used to investigate the impact of Campylobacter jejuni infection on biochemical processes. Caco-2 cells cultured in either system were infected at day 5 with C. jejuni 81-176 for 48 h. Metabolomics analysis clearly differentiated C. jejuni 81-176 infected and non-infected medias collected from the microfluidic devices, and demonstrated that C. jejuni 81-176 infection in microfluidic devices impacts branched-chain amino acid metabolism, glycolysis, and gluconeogenesis. In contrast, no distinction was seen in the biochemical profiles of infected versus non-infected media collected from cells cultured in transwells. Microfluidic culturing conditions demonstrated a more metabolically homogenous cell population, and present the opportunity for studying host-pathogen interactions for extended periods of time.

  3. Microfluidics Meets Metabolomics to Reveal the Impact of Campylobacter jejuni Infection on Biochemical Pathways

    PubMed Central

    Mortensen, Ninell P.; Mercier, Kelly A.; McRitchie, Susan; Cavallo, Tammy B.; Pathmasiri, Wimal; Stewart, Delisha; Sumner, Susan J.

    2016-01-01

    Microfluidic devices that are currently being used in pharmaceutical research also have a significant potential for utilization in investigating exposure to infectious agents. We have established a microfluidic device cultured with Caco-2 cells, and utilized metabolomics to investigate the biochemical responses to the bacterial pathogen Campylobacter jejuni. In the microfluidic devices, Caco-2 cells polarize at day 5, are uniform, have defined brush borders and tight junctions, and form a mucus layer. Metabolomics analysis of cell culture media collected from both Caco-2 cell culture systems demonstrated a more metabolic homogenous biochemical profile in the media collected from microfluidic devices, compared with media collected from transwells. GeneGo pathway mapping indicated that aminoacyl-tRNA biosynthesis was perturbed by fluid flow, suggesting that fluid dynamics and shear stress impacts the cells translational quality control. Both microfluidic device and transwell culturing systems were used to investigate the impact of Campylobacter jejuni infection on biochemical processes. Caco-2 cells cultured in either system were infected at day 5 with C. jejuni 81-176 for 48 hours. Metabolomics analysis clearly differentiated C. jejuni 81-176 infected and non-infected medias collected from the microfluidic devices, and demonstrated that C. jejuni 81-176 infection in microfluidic devices impacts branched-chain amino acid metabolism, glycolysis, and gluconeogenesis. In contrast, no distinction was seen in the biochemical profiles of infected versus non-infected media collected from cells cultured in transwells. Microfluidic culturing conditions demonstrated a more metabolically homogenous cell population, and present the opportunity for studying host-pathogen interactions for extended periods of time. PMID:27231016

  4. Guidelines for European workplace drug testing in oral fluid.

    PubMed

    Cooper, Gail; Moore, Christine; George, Claire; Pichini, Simona

    2011-05-01

    Over the past decade, oral fluid has established itself as a robust testing matrix for monitoring drug use or misuse. Commercially available collection devices provide opportunities to collect and test oral fluid by the roadside and near-patient testing with both clinical and criminal justice applications. One of the main advantages of oral fluid relates to the collection of the matrix which is non-invasive, simple, and can be carried out under direct observation making it ideal for workplace drug testing. Laboratories offering legally defensible oral fluid workplace drug testing must adhere to national and international quality standards (ISO/IEC 17025); however, these standards do not address issues specific to oral fluid testing. The European Workplace Drug Testing Society (EWDTS) recognizes the importance of providing best practice guidelines to organizations offering testing and those choosing to use oral fluid drug testing to test their employees. The aim of this paper is to present the EWDTS guidelines for oral fluid workplace drug testing. Copyright © 2011 John Wiley & Sons, Ltd.

  5. Integrated fountain effect pump device for fluid management at low gravity

    NASA Astrophysics Data System (ADS)

    Yuan, S. W. K.; Frank, D. J.

    1988-02-01

    To transfer He II in space, the supply tank must be drained at low gravity. Conventional capillary devices such as the gallery system make use of the capillary retention capability of the screens for fluid management. Liquid helium is collected into gallery channels and then conveyed to the downstream fountain effect pump (FEP) or mechanical pump. In this Paper, a new fluid management device is proposed. The screens along the gallery channels are replaced by porous plugs which are responsible for both the fluid retention and pumping (by mechanical effect) of He II. No downstream pump is needed. The plugs in contact with liquid helium on both sides act as FEPs, and plugs exposed to vapour on one side behave as vapour-liquid phase separators (VLPSs). The total net transfer rate of He II into the receiving tank is the mass flow rate through the FEP minus the liquid loss from the VLPS plugs. The performance of the integrated FEP device (IFD) was analysed. The possibility of liquid breakthrough in the IFD was studied. The IFD is a very promising system for the fluid management of He II at low gravity.

  6. Oral Fluid Cocaine and Benzoylecgonine Concentrations Following Controlled Intravenous Cocaine Administration

    PubMed Central

    Ellefsen, Kayla N.; Concheiro, Marta; Pirard, Sandrine; Gorelick, David A.; Huestis, Marilyn A.

    2016-01-01

    Limited oral fluid (OF) pharmacokinetic data collected with commercially available collection devices after controlled cocaine administration hinder OF result interpretations. Ten cocaine-using adults provided OF, collected with Oral-Eze® (OE) and StatSure Saliva Sampler™ (SS) devices, an hour prior to and up to 69 h after 25 mg intravenous (IV) cocaine administration. Cocaine and benzoylecgonine (BE) were quantified by a validated 2D-GC-MS method. Large inter-subject variability was observed. Cocaine was detected in OF in the first 0.17 h sample after IV administration, with much more rapid elimination than BE. OE median observed Cmax (range) was 932 (394–1,574) μg/L for cocaine and 248 (96.9–953) μg/L for BE. SS median (range) observed cocaine and BE Cmax trended lower at 732 (83.3–1,892) μg/L and 360 (77.2–836) μg/L, respectively. OE and SS cocaine OF detection times were 12.5 and 6.5 h and for BE 30.5 and 28.0 h, respectively at 1 μg/L. There were no significant pharmacokinetic differences between OE and SS OF collection devices, except cocaine half-life was significantly shorter in SS OF specimens. This difference could be attributed to differences in stabilizing buffers present in OF collection devices, which may affect cocaine stability in OF specimens, or decreased recovery from collection pads. Both OE and SS OF collection devices were effective in monitoring cocaine and metabolite concentrations with similar detection windows. Furthermore, we demonstrated that different confirmatory OF cutoffs can be selected to produce shorter or longer cocaine and metabolite detection windows to address specific needs of clinical and forensic drug testing programs. PMID:26851651

  7. Heat pipe with embedded wick structure

    DOEpatents

    Adkins, Douglas Ray; Shen, David S.; Tuck, Melanie R.; Palmer, David W.; Grafe, V. Gerald

    1998-01-01

    A heat pipe has an embedded wick structure that maximizes capillary pumping capability. Heat from attached devices such as integrated circuits evaporates working fluid in the heat pipe. The vapor cools and condenses on a heat dissipation surface. The condensate collects in the wick structure, where capillary pumping returns the fluid to high heat areas.

  8. Heat pipe with embedded wick structure

    DOEpatents

    Adkins, D.R.; Shen, D.S.; Tuck, M.R.; Palmer, D.W.; Grafe, V.G.

    1998-06-23

    A heat pipe has an embedded wick structure that maximizes capillary pumping capability. Heat from attached devices such as integrated circuits evaporates working fluid in the heat pipe. The vapor cools and condenses on a heat dissipation surface. The condensate collects in the wick structure, where capillary pumping returns the fluid to high heat areas. 7 figs.

  9. Heat pipe with embedded wick structure

    DOEpatents

    Adkins, Douglas Ray; Shen, David S.; Tuck, Melanie R.; Palmer, David W.; Grafe, V. Gerald

    1999-01-01

    A heat pipe has an embedded wick structure that maximizes capillary pumping capability. Heat from attached devices such as integrated circuits evaporates working fluid in the heat pipe. The vapor cools and condenses on a heat dissipation surface. The condensate collects in the wick structure, where capillary pumping returns the fluid to high heat areas.

  10. Evaluation of the intercept oral specimen collection device with HIV assays versus paired serum/plasma specimens.

    PubMed

    Beelaert, G; Van Heddegem, L; Van Frankenhuijsen, M; Vandewalle, G; Compernolle, V; Florence, E; Fransen, K

    2016-08-01

    Oral fluid has many advantages over blood-based techniques: it is less invasive, eliminates the occupational risk associated with needle stick accidents and collection can be self-administrated. Each individual test is packaged with a corresponding collection device. This study tested the suitability of the Intercept Oral Specimen Collection Device for different HIV diagnostic tests: three different rapid HIV tests and two adapted ELISAs, which were evaluated and compared with a gold standard on blood. In addition a total IgG quantification was performed to demonstrate the quality of the specimen. HIV antibodies were detected with a sensitivity of 100%, 99.3%, 98.6%, 100% and 95.7% for, DPP, OraQuick, Aware, Genscreen and Vironostika respectively using the Intercept Collection Device. Respective specificities were 100%, 100%, 99.3%, 97.3% and 100%. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Assessment of the use of oral fluid as a matrix for drug monitoring in patients undergoing treatment for opioid addiction.

    PubMed

    Kunkel, Frank; Fey, Elizabeth; Borg, Damon; Stripp, Richard; Getto, Christine

    2015-01-01

    Drug testing is an important clinical tool that is available to physicians who are assessing the effectiveness of drug treatment as well as patient compliance to the administered program. While urine has traditionally been the matrix of choice for drug monitoring, oral fluid, a filtrate of the blood, has shown great promise as an alternative matrix for such applications. Oral fluid collection can be accomplished without the need for highly trained medical staff through the use of a simple, noninvasive oral fluid collection device, which obtains an adequate sample in only a few minutes. There has been a significant amount of research performed on the use of oral fluid for forensic toxicology application; however, more studies assessing the use of oral fluid drug testing are required to validate its ability to achieve clinical drug monitoring goals. Testing for various drugs in oral fluid may yield a different result when compared to the same drugs in urine, requiring an assessment of the utility of oral fluid for such practices. The purpose of this study was to examine the application of oral fluid drug testing in patients undergoing buprenorphine treatment for opioid dependence. A retrospective analysis of drug testing results obtained from 6,928 patients (4,560 unobserved urine collections and 2,368 observed oral fluid collections) monitored for heroin metabolite, amphetamine, benzodiazepines, buprenorphine, tetrahydrocannabinol, cocaine, codeine, hydrocodone, hydromorphone, methadone, morphine, oxycodone, and oxymorphone was completed. Results of this statistical exercise indicated that patients undergoing observed oral fluid collection tested positive more frequently than those unobserved urine collections for several illicit drugs and prescription medications targeted. Oral fluid was shown to detect illicit drug use as well as noncompliance in this patient population under the studied conditions more often than the urine specimens.

  12. Passive, Collapsible Contingency Urinal for Human Space Flight

    NASA Technical Reports Server (NTRS)

    Jenson, Ryan

    2015-01-01

    Fluid transport systems for spacecraft face acute challenges because of the persistently unfamiliar and unforgiving low-gravity environment. IRPI, LLC, has developed a contingency wastewater collection and processing device that provides passive liquid collation, containment, bubble separation, and droplet coalescence functions. The lightweight, low-volume, low-cost, and potentially disposable device may be used for subsequent sampling, metering, storage, disposal, and/or reuse. The approach includes a fractal wetting design that incorporates smart capillary fluidics. This work could have a broad impact on capillary-based fluid management on spacecraft and on Earth.

  13. Impact of Oral Fluid Collection Device on Cannabinoid Stability Following Smoked Cannabis

    PubMed Central

    Anizan, Sébastien; Bergamaschi, Mateus M.; Barnes, Allan J.; Milman, Garry; Desrosiers, Nathalie; Lee, Dayong; Gorelick, David A.; Huestis, Marilyn A.

    2014-01-01

    Evaluation of cannabinoid stability in authentic oral fluid (OF) is critical, as most OF stability studies employed fortified or synthetic OF. Participants (n=16) smoked a 6.8% delta-9-tetrahydrocannabinol (THC) cigarette, and baseline concentrations of THC, 11-nor-9-carboxy-THC (THCCOOH), cannabidiol (CBD), and cannabinol (CBN) were determined within 24h in 16 separate pooled samples (collected 1h before to 10.5 or 13h after smoking). OF was collected with the StatSure Saliva Sampler™ and Oral-Eze® devices. Oral-Eze samples were re-analyzed after room temperature (RT) storage for 1 week, and for both devices after 4°C for 1 and 4 weeks, and –20°C for 4 and 24 weeks. Concentrations ±20% from initial concentrations were considered stable. With the StatSure device, all cannabinoids were within 80-120% median %baseline for all storage conditions. Individual THC, CBD, CBN and THCCOOH pool concentrations were stable in 100%, 100%, 80-94% and >85%, respectively, across storage conditions. With the Oral-Eze device, at RT or refrigerated storage (for 1 and 4 weeks), THC, CBD and THCCOOH were stable in 94-100%, 78-89% and 93-100% of samples, respectively, while CBN concentrations were 53–79% stable. However, after 24 weeks at -20°C, stability decreased, especially for CBD, with a median of 56% stability. Overall, the collection devices’ elution/stabilizing buffers provided good stability for OF cannabinoids, with the exception of the more labile CBN. To ensure OF cannabinoid concentration accuracy, these data suggest analysis within 4 weeks at 4°C storage for Oral-Eze collection and within 4 weeks at 4°C or 24 weeks at -20°C for StatSure collection. PMID:24995604

  14. Endoscopic Management of Peri-Pancreatic Fluid Collections.

    PubMed

    Yip, Hon Chi; Teoh, Anthony Yuen Bun

    2017-09-15

    In the past decade, there has been a progressive paradigm shift in the management of peri-pancreatic fluid collections after acute pancreatitis. Refinements in the definitions of fluid collections from the updated Atlanta classification have enabled better communication amongst physicians in an effort to formulate optimal treatments. Endoscopic ultrasound (EUS)-guided drainage of pancreatic pseudocysts has emerged as the procedure of choice over surgical cystogastrostomy. The approach provides similar success rates with low complications and better quality of life compared with surgery. However, an endoscopic "step up" approach in the management of pancreatic walled-off necrosis has also been advocated. Both endoscopic and percutaneous drainage routes may be used depending on the anatomical location of the collections. New-generation large diameter EUS-specific stent systems have also recently been described. The device allows precise and effective drainage of the collections and permits endoscopic necrosectomy through the stents.

  15. 40 CFR 61.242-5 - Standards: Sampling connecting systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Collect and recycle the purged process fluid; or (3) Be designed and operated to capture and transport all the purged process fluid to a control device that complies with the requirements of § 61.242-11; or (4... operated in compliance with the provisions of 40 CFR part 63, subpart G, applicable to Group 1 wastewater...

  16. 40 CFR 61.242-5 - Standards: Sampling connecting systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Collect and recycle the purged process fluid; or (3) Be designed and operated to capture and transport all the purged process fluid to a control device that complies with the requirements of § 61.242-11; or (4... operated in compliance with the provisions of 40 CFR part 63, subpart G, applicable to Group 1 wastewater...

  17. Liquid Acquisition Device Testing with Sub-Cooled Liquid Oxygen

    NASA Technical Reports Server (NTRS)

    Jurns, John M.; McQuillen, John B.

    2008-01-01

    When transferring propellant in space, it is most efficient to transfer single phase liquid from a propellant tank to an engine. In earth s gravity field or under acceleration, propellant transfer is fairly simple. However, in low gravity, withdrawing single-phase fluid becomes a challenge. A variety of propellant management devices (PMD) are used to ensure single-phase flow. One type of PMD, a liquid acquisition device (LAD) takes advantage of capillary flow and surface tension to acquire liquid. Previous experimental test programs conducted at NASA have collected LAD data for a number of cryogenic fluids, including: liquid nitrogen (LN2), liquid oxygen (LOX), liquid hydrogen (LH2), and liquid methane (LCH4). The present work reports on additional testing with sub-cooled LOX as part of NASA s continuing cryogenic LAD development program. Test results extend the range of LOX fluid conditions examined, and provide insight into factors affecting predicting LAD bubble point pressures.

  18. Detection of Delta9-tetrahydrocannabinol and amphetamine-type stimulants in oral fluid using the Rapid Stat point-of-collection drug-testing device.

    PubMed

    Röhrich, J; Zörntlein, S; Becker, J; Urban, R

    2010-04-01

    The Rapid Stat assay, a point-of-collection drug-testing device for detection of amphetamines, cannabinoids, cocaine, opiates, methadone, and benzodiazepines in oral fluid, was evaluated for cannabis and amphetamine-type stimulants. The Rapid Stat tests (n = 134) were applied by police officers in routine traffic checks. Oral fluid and blood samples were analyzed using gas chromatography-mass spectrometry (GC-MS) for Delta(9)-tetrahydrocannabinol, amphetamine, methamphetamine, methylenedioxymethamphetamine, methylenedioxyethylamphetamine, and methylenedioxyamphetamine. The comparison of GC-MS analysis of oral fluid with the Rapid Stat results for cannabis showed a sensitivity of 85%, a specificity of 87%, and a total confirmation rate of 87%. When compared with serum, the sensitivity of the cannabis assay decreased to 71%, the specificity to 60%, and the total confirmation rate to 66%. These findings were possibly caused by an incorrect reading of the THC test results. Comparison of the Rapid Stat amphetamine assay with GC-MS in oral fluid showed a sensitivity of 94%, a specificity of 97%, and a total confirmation rate of 97%. Compared with serum, a sensitivity of 100%, a specificity of 90%, and a total confirmation rate of 92% was found. The amphetamine assay must, therefore, be regarded as satisfactory.

  19. Streamline-based microfluidic device

    NASA Technical Reports Server (NTRS)

    Tai, Yu-Chong (Inventor); Zheng, Siyang (Inventor); Kasdan, Harvey (Inventor)

    2013-01-01

    The present invention provides a streamline-based device and a method for using the device for continuous separation of particles including cells in biological fluids. The device includes a main microchannel and an array of side microchannels disposed on a substrate. The main microchannel has a plurality of stagnation points with a predetermined geometric design, for example, each of the stagnation points has a predetermined distance from the upstream edge of each of the side microchannels. The particles are separated and collected in the side microchannels.

  20. Recovery and Stability of Δ9-Tetrahydrocannabinol Using the Oral-Eze® Oral Fluid Collection System and Intercept® Oral Specimen Collection Device.

    PubMed

    Samano, Kimberly L; Anne, Lakshmi; Johnson, Ted; Tang, Kenneth; Sample, R H Barry

    2015-10-01

    Oral fluid (OF) is increasingly used for clinical, forensic and workplace drug testing as an alternative to urine. Uncertainties surrounding OF collection device performance, drug stability and testing reproducibility may be partially responsible for delays in the implementation of OF testing in regulated drug testing programs. Stability of Δ(9)-tetrahydrocannabinol (THC) fortified and authentic specimens was examined after routine collection, transport and laboratory testing. Acceptable recovery and stability were observed when THC-fortified OF (1.5 and 4.5 ng/mL) was applied to Oral-Eze devices. Neat OF samples collected with Oral-Eze, processed per the package insert, and fortified with THC (3 and 6 ng/mL) were stable (±20%) at room temperature (21-25°C), refrigerated (2-8°C) and frozen (-25 to -15°C) conditions up to 1 month, while samples collected with Intercept devices showed decreases at refrigerated and room temperatures. After long-term refrigerated or frozen storage, maximum reductions in THC concentrations were 42% for Oral-Eze and 69% for Intercept. After ≥1 year frozen storage, 80.7% of laboratory specimens positive for THC (3 ng/mL cut-off) by GC-MS were reconfirmed positive (within 25%), with an average THC decrease of 4.2%. Specimens (n = 47) processed with Oral-Eze (diluted) and tested via enzyme immunoassay were concordant with LC-MS-MS results and showed 100% sensitivity and 95% specificity. Paired specimens collected with Oral-Eze and Intercept exhibited 98% overall agreement between the immunoassay test systems. Collectively, these data demonstrate consistent and reproducible recovery and stability of THC in OF after collection, transport and laboratory testing using the Oral-Eze OF Collection System. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Oral Fluid Testing for Drugs of Abuse

    PubMed Central

    Bosker, Wendy M.; Huestis, Marilyn A.

    2011-01-01

    BACKGROUND Oral fluid (OF) is an exciting alternative matrix for monitoring drugs of abuse in workplace, clinical toxicology, criminal justice, and driving under the influence of drugs (DUID) programs. During the last 5 years, scientific and technological advances in OF collection, point-of-collection testing devices, and screening and confirmation methods were achieved. Guidelines were proposed for workplace OF testing by the Substance Abuse and Mental Health Services Administration, DUID testing by the European Union’s Driving under the Influence of Drugs, Alcohol and Medicines (DRUID) program, and standardization of DUID research. Although OF testing is now commonplace in many monitoring programs, the greatest current limitation is the scarcity of controlled drug administration studies available to guide interpretation. CONTENT This review outlines OF testing advantages and limitations, and the progress in OF that has occurred during the last 5 years in collection, screening, confirmation, and interpretation of cannabinoids, opioids, amphetamines, cocaine, and benzodiazepines. We examine controlled drug administration studies, immunoassay and chromatographic methods, collection devices, point-of-collection testing device performance, and recent applications of OF testing. SUMMARY Substance Abuse and Mental Health Services Administration approval of OF testing was delayed because questions about drug OF disposition were not yet resolved, and collection device performance and testing assays required improvement. Here, we document the many advances achieved in the use of OF. Additional research is needed to identify new bio-markers, determine drug detection windows, characterize OF adulteration techniques, and evaluate analyte stability. Nevertheless, there is no doubt that OF offers multiple advantages as an alternative matrix for drug monitoring and has an important role in DUID, treatment, workplace, and criminal justice programs. PMID:19745062

  2. EUS-guided drainage of pancreatic fluid collections using a novel lumen-apposing metal stent on an electrocautery-enhanced delivery system: a large retrospective study (with video).

    PubMed

    Rinninella, Emanuele; Kunda, Rastislav; Dollhopf, Markus; Sanchez-Yague, Andres; Will, Uwe; Tarantino, Ilaria; Gornals Soler, Joan; Ullrich, Sebastian; Meining, Alexander; Esteban, Josè Miguel; Enz, Thomas; Vanbiervliet, Geoffroy; Vleggaar, Frank; Attili, Fabia; Larghi, Alberto

    2015-12-01

    A lumen-apposing, self-expanding metal stent incorporated in an electrocautery-enhanced delivery system for EUS-guided drainage of pancreatic fluid collections (PFCs) recently has become available. The aim of this study was to analyze the safety and clinical effectiveness of this newly developed device in this clinical setting. This was a retrospective analysis of all consecutive patients with PFCs who underwent EUS-guided drainage using the study device in 13 European centers. Ninety-three patients with PFCs (80% with complex collections) underwent drainage using the study device. Penetration of the PFC was accomplished directly with the study device in 74.2% of patients, and successful stent placement was accomplished in all but 1 patient, mostly without fluoroscopic assistance. Direct endoscopic necrosectomy (DEN) was carried out in 31 of 52 cases (59.6%) of walled-off necrosis and in 2 of 4 cases (50%) of acute peripancreatic fluid collection. Complete resolution of the PFC was obtained in 86 cases (92.5%), with no recurrence during follow-up. Treatment failure occurred in 6 patients because of persistent infection requiring surgery (n = 3), perforation and massive bleeding caused by the nasocystic drainage catheter (NCDC) (n = 2), and the need for a larger opening to extract large necrotic tissue pieces (n = 1). Major adverse events occurred in 5 patients (perforation and massive bleeding caused by the NCDC in 2 patients, 1 pneumoperitoneum and 1 stent dislodgement during DEN, and 1 postdrainage infection) and were mostly not related to the drainage procedure. EUS-guided drainage with the electrocautery-enhanced delivery system is a safe, easy to perform, and a highly effective minimally invasive treatment modality for PFCs. Copyright © 2015 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.

  3. Primary Total Knee Replacement: Is Suction a Portal of Infection?

    PubMed Central

    Budnar, Vijaya M; Amirfeyz, Rouin; Ng, Michael; Bannister, Gordon C; Blom, Ashley W

    2009-01-01

    INTRODUCTION Pulsed lavage during a total knee replacement usually leaves a pool of fluid on the surgical drapes. It is common practice to suck away this fluid using the same suction device used intra-operatively. This could be a cause of direct wound contamination. We hypothesised that bacteria contaminate fluid that collects around the foot in total knee replacement surgery and that suction equipment could be a portal of contamination. We also hypothesised that bacterial count in the fluid is lower if chlorhexidine, rather than saline, is used in the pulsed lavage. PATIENTS AND METHODS Forty patients undergoing primary total knee replacement were divided into two groups. The first group had pulsed lavage with normal saline and the second with 0.05% chlorhexidine. RESULTS At the end of the operation, 20 ml of fluid, pooled on the surgical drapes was aspirated and cultured for bacterial growth. None of the fluid samples showed bacterial growth. CONCLUSIONS Suction device used peri-operatively during knee replacement is unlikely to be a cause of wound contamination. Pulsed lavage with normal saline is as effective as lavage with chlorhexidine. PMID:19335972

  4. 77 FR 3496 - Renewal and Revision of Approved Information Collection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-24

    ... Gamble, Division of Fluid Minerals, at (202) 912-7148. Persons who use a telecommunication device for the... message for Ms. Gamble. SUPPLEMENTARY INFORMATION: OMB regulations at 5 CFR part 1320, which implement...

  5. Illicit Drugs in Oral Fluid: Evaluation of Two Collection Devices.

    PubMed

    Cohier, Camille; Mégarbane, Bruno; Roussel, Olivier

    2017-01-01

    Driving after illicit drug use is a worldwide growing concern requiring rapid and sensitive screening at the roadside. It is noteworthy that the sampling method used to collect oral fluid (OF) may significantly influence drug concentrations in the collected sample and thus alter the accuracy of the measurement. We evaluated two OF collection devices, Quantisal ® and Certus ® collectors, for their suitability for collecting samples to allow laboratory confirmation of driving after illicit drug use. Four parameters were studied including (i) the collected OF volume; (ii) the recovery efficiency using OFs spiked with opiates, cannabinoids, amphetamines, cocaine and its metabolites; (iii) drug stability after storage for 1, 7 and 14 days at -20°C, +4°C and room temperature; and (iv) the impact of mouth cells present in the collected OF on drug stability. Drug concentrations were measured using gas and liquid chromatography-mass spectrometry. Certus ® collector allowed the collection of significantly larger (0.94 ± 0.18 mL vs. 0.84 ± 0.06 mL, P = 0.08) but less reproducible OF volumes (19 vs. 6.7%) compared with Quantisal ® collector. Drug recovery was significantly better with Quantisal ® than with Certus ® collector, especially when used to detect cannabinoids (0.94 vs. 0.54, P < 0.001 for ∆9-tetrahydrocannabinol (THC)). For both OF collectors, storage at 4°C was preferable except for methadone, the stability of which was altered by adherence to the collector device. In the presence of mouth cells in the OF sample, THC concentrations were significantly decreased at Day 7 in comparison with Day 1 with both collection devices (P = 0.001 with Quantisal ® collector and P = 0.01 with Certus ® collector). In conclusion, Quantisal ® collector is more reliable than Certus ® collector although the practicability of both devices remains to be determined at the roadside. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Improved Large-Volume Sampler for the Collection of Bacterial Cells from Aerosol

    PubMed Central

    White, L. A.; Hadley, D. J.; Davids, D. E.; Naylor, R.

    1975-01-01

    A modified large-volume sampler was demonstrated to be an efficient device for the collection of mono-disperse aerosols of rhodamine B and poly-disperse aerosols of bacterial cells. Absolute efficiency for collection of rhodamine B varied from 100% with 5-μm particles to about 70% with 0.5-μm particles. The sampler concentrated the particles from 950 liters of air into a flow of between 1 and 2 ml of collecting fluid per min. Spores of Bacillus subtilis var. niger were collected at an efficiency of about 82% compared to the collection in the standard AGI-30 sampler. In the most desirable collecting fluids tested, aerosolized cells of Serratia marcescens, Escherichia coli, and Aerobacter aerogenes were collected at comparative efficiencies of approximately 90, 80, and 90%, respectively. The modified sampler has practical application in the study of aerosol transmission of respiratory pathogens. Images PMID:803820

  7. Development and control of a magnetorheological haptic device for robot assisted surgery.

    PubMed

    Shokrollahi, Elnaz; Goldenberg, Andrew A; Drake, James M; Eastwood, Kyle W; Kang, Matthew

    2017-07-01

    A prototype magnetorheological (MR) fluid-based actuator has been designed for tele-robotic surgical applications. This device is capable of generating forces up to 47 N, with input currents ranging from 0 to 1.5 A. We begin by outlining the physical design of the device, and then discuss a novel nonlinear model of the device's behavior. The model was developed using the Hammerstein-Wiener (H-W) nonlinear black-box technique and is intended to accurately capture the hysteresis behavior of the MR-fluid. Several experiments were conducted on the device to collect estimation and validation datasets to construct the model and assess its performance. Different estimating functions were used to construct the model, and their effectiveness is assessed based on goodness-of-fit and final-prediction-error measurements. A sigmoid network was found to have a goodness-of-fit of 95%. The model estimate was then used to tune a PID controller. Two control schemes were proposed to eliminate the hysteresis behavior present in the MR fluid device. One method uses a traditional force feedback control loop and the other is based on measuring the magnetic field using a Hall-effect sensor embedded within the device. The Hall-effect sensor scheme was found to be superior in terms of cost, simplicity and real-time control performance compared to the force control strategy.

  8. Fluid sampling device

    NASA Technical Reports Server (NTRS)

    Studenick, D. K. (Inventor)

    1977-01-01

    An inlet leak is described for sampling gases, more specifically, for selectively sampling multiple fluids. This fluid sampling device includes a support frame. A plurality of fluid inlet devices extend through the support frame and each of the fluid inlet devices include a longitudinal aperture. An opening device that is responsive to a control signal selectively opens the aperture to allow fluid passage. A closing device that is responsive to another control signal selectively closes the aperture for terminating further fluid flow.

  9. Femoral incision morbidity following endovascular aortic aneurysm repair.

    PubMed

    Slappy, A L Jackson; Hakaim, Albert G; Oldenburg, W Andrew; Paz-Fumagalli, Ricardo; McKinney, J Mark

    2003-01-01

    Currently available aortic stent-grafts require bilateral femoral incisions for device deployment. The incidence of morbidity (infection, lymphatic complications, breakdown) of vertical, infrainguinal incisions used in endovascular aneurysm repair (EVAR) for abdominal aortic aneurysms (AAAs) was assessed, and the natural history of asymptomatic groin fluid collections following such procedures was determined. Between June 1999 and February 2001, 77 consecutive patients underwent EVAR for AAAs utilizing bilateral vertical femoral incisions. Fifty-nine (77%) bifurcated stent-grafts (BSGs), and 18 (23%) aortouniiliac (AUI) devices, with femorofemoral bypass were performed. Patients returned at 2 weeks, 1 month, and 6 months for physical examination, and 1 month and 6 months for abdominal and pelvic computed tomography (CT) scans. The presence of fluid collections was determined from the dictation report of the attending radiologist. Data are reported as (n) mean +/-SE. Patient characteristics were compared using Fisher's exact test; p<0.05 considered significant. There were 72 males and 5 females, age 75 +/-6.4 years and aneurysm size (77) 5.6 +/-0.8 cm. There were no cases of wound breakdown or lymph fistula. Wound infections occurred in 3/150 incisions (2%), 2/34 AUI incisions (6%), and 1/116 BSG incisions (0.86%). There was no statistical difference (p=0.13) between graft types (BSG vs AUI). All infections were diagnosed clinically before the 1-month CT scan, treated without operative intervention or hospitalization, and resolved. There was a significant decrease in the BSG group and overall in asymptomatic wound fluid collections from 1 to 6 months postoperatively. At 1 and 6 months, respectively, the BSG group had 17 (14.6%) and 3 (2.6%) fluid collections out of 116 incisions (p=0.003); the AUI group had 6 (17.6%) and 1 (2.9%) fluid collection(s) out of 34 incisions (p=0.13); and overall 23 (15.3%) and 4 (2.6%) out of 150 incisions (p=0.004). The present study demonstrates that bilateral vertical femoral incisions used in EVAR have a wound infection rate of 2.0%. Infections are usually detected and treated clinically and empirically without the need for hospitalization or surgery. Asymptomatic groin wound fluid collections resolve significantly within 6 months without intervention. Therefore, surgical femoral artery exposure adds little morbidity to the endovascular repair of abdominal aortic aneurysms.

  10. The role of endoscopic intervention in the management of inflammatory pancreatic fluid collections.

    PubMed

    Parihar, Vikrant; Ridgway, Paul F; Conlon, Kevin C; Huggett, Matthew; Ryan, Barbara M

    2017-04-01

    Pancreatic fluid collections (PFCs) are a frequent complication of pancreatitis, or less commonly, pancreatic trauma or surgery. The revised Atlanta Classification categorizes PFCs as acute or chronic, with further subclassification of acute collections into acute peripancreatic collections and acute necrotic collections and of chronic fluid collections into pseudocysts and walled-off pancreatic necrosis. Acute PFCs are generally only subjected to an intervention when they are infected and not responding to antibiotics and are not managed endoscopically. Chronic PFCs, both pseudocysts and walled-off pancreatic necrosis, require intervention only when symptomatic or enlarging over time. Endoscopic ultrasound-guided drainage has become the mainstay of management for chronic PFCs that require intervention. Developments in medical devices over the past few years have significantly simplified and shortened the duration of the procedure itself, but the optimum choice of stent in different clinical scenarios remains to be defined, as does the place of endoscopic necrosectomy. To optimize outcomes, these patients should undergo a careful preprocedure workup and discussion in a multidisciplinary environment and procedures should be carried out in high-volume pancreatic units.

  11. Method of removing an immiscible lubricant from a refrigeration system and apparatus for same

    DOEpatents

    Spauschus, Hans O.; Starr, Thomas L.

    1999-01-01

    A method of separating an immiscible lubricant from a liquid refrigerant in a refrigerating system including a compressor, a condenser, an expansion device and an evaporator, wherein the expansion device is connected to the condenser by a liquid refrigerant flow line for liquid refrigerant and immiscible lubricant. The method comprising slowing the rate of flow of the liquid refrigerant and immiscible lubricant between the condenser and the expansion device such that the liquid refrigerant and the immiscible lubricant separate based upon differences in density. The method also comprises collecting the separated immiscible lubricant in a collection chamber in fluid communication with the separated immiscible lubricant. Apparatus for performing the method is also disclosed.

  12. Impact of oral fluid collection device on cannabinoid stability following smoked cannabis.

    PubMed

    Anizan, Sébastien; Bergamaschi, Mateus M; Barnes, Allan J; Milman, Garry; Desrosiers, Nathalie; Lee, Dayong; Gorelick, David A; Huestis, Marilyn A

    2015-02-01

    Evaluation of cannabinoid stability in authentic oral fluid (OF) is critical, as most OF stability studies employed fortified or synthetic OF. Participants (n = 16) smoked a 6.8% delta-9-tetrahydrocannabinol (THC) cigarette, and baseline concentrations of THC, 11-nor-9-carboxy-THC (THCCOOH), cannabidiol (CBD), and cannabinol (CBN) were determined within 24 h in 16 separate pooled samples (collected 1 h before to 10.5 or 13 h after smoking). OF was collected with the StatSure Saliva Sampler™ and Oral-Eze® devices. Oral-Eze samples were re-analyzed after room temperature (RT) storage for 1 week, and for both devices after 4 °C for 1 and 4 weeks, and -20 °C for 4 and 24 weeks. Concentrations ±20% from initial concentrations were considered stable. With the StatSure device, all cannabinoids were within 80-120% median %baseline for all storage conditions. Individual THC, CBD, CBN and THCCOOH pool concentrations were stable in 100%, 100%, 80-94% and >85%, respectively, across storage conditions. With the Oral-Eze device, at RT or refrigerated storage (for 1 and 4 weeks), THC, CBD and THCCOOH were stable in 94-100%, 78-89%, and 93-100% of samples, respectively, while CBN concentrations were 53-79% stable. However, after 24 weeks at -20 °C, stability decreased, especially for CBD, with a median of 56% stability. Overall, the collection devices' elution/stabilizing buffers provided good stability for OF cannabinoids, with the exception of the more labile CBN. To ensure OF cannabinoid concentration accuracy, these data suggest analysis within 4 weeks at 4 °C storage for Oral-Eze collection and within 4 weeks at 4 °C or 24 weeks at -20 °C for StatSure collection. Published 2014. This article is a U.S. Government work and is in the public domain in the USA. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  13. Energy Harvesting Systems and Methods of Assembling Same

    NASA Technical Reports Server (NTRS)

    Cepeda-Rizo, Juan (Inventor); Ganapathi, Gani B. (Inventor)

    2013-01-01

    A method of assembling an energy harvesting system is provided. The method includes coupling at least one energy storage device in flow communication with at least one apparatus that is configured to generate thermal energy and to transfer the thermal energy into at least one fluid stream. The energy storage device is configured to store the fluid stream. Moreover, the method includes coupling at least one fluid transfer device downstream from the energy storage device. The fluid transfer device receives the fluid stream from the energy storage device. A bladeless turbine is coupled in flow communication with the fluid transfer device, wherein the bladeless turbine receives the fluid stream to generate power.

  14. Extended Detection of Amphetamine and Methamphetamine in Oral Fluid.

    PubMed

    Andås, Hilde T; Enger, Asle; Øiestad, Åse Marit L; Vindenes, Vigdis; Christophersen, Asbjørg S; Huestis, Marilyn A; Øiestad, Elisabeth L

    2016-02-01

    Amphetamine and methamphetamine are popular drugs of abuse worldwide and are important components of drug monitoring programs. Windows of detection for amphetamine and methamphetamine in oral fluid after high doses have not been investigated. Repeated high-dose ingestions are likely to cause positive samples for extended periods. Common routes of administration of amphetamine/methamphetamine in Norway are oral intake or injection. The aim of this study was to investigate windows of detection for amphetamine and methamphetamine in oral fluid from drug addicts under sustained abstinence during detoxification. Twenty-five patients admitted to a closed detoxification unit were included in this study. Oral fluid samples were collected daily in the morning and evening, and urine every morning for 10 days. A blood sample was drawn during the first 5 days after admission if the patient consented. Oral fluid results were compared with urine results to determine whether a new ingestion occurred. Oral fluid was collected with the Intercept oral fluid collection device. In-house cutoff concentrations for amphetamine and methamphetamine were 6.8 and 7.5 mcg/L, respectively, in oral fluid, and 135 and 149 mcg/L, respectively, in urine. Amphetamines were detected in 11 oral fluid, 5 urine, and 2 blood specimens from 25 patients. Patients self-reported amphetamines intake of up to 0.5-2 g daily. Windows of detection for amphetamine and methamphetamine in oral fluid were up to 8 days, longer than in urine at the applied cutoff values. These data confirm that oral fluid is a viable alternative to urine for monitoring amphetamine abuse, and that these substances might be detected in oral fluid for at least 1 week after ingestion of high doses. Such long detection times were, as far as we are aware, never reported previously for oral fluid amphetamines.

  15. Method of removing an immiscible lubricant from a refrigeration system and apparatus for same

    DOEpatents

    Spauschus, H.O.; Starr, T.L.

    1999-03-30

    A method is described for separating an immiscible lubricant from a liquid refrigerant in a refrigerating system including a compressor, a condenser, an expansion device and an evaporator, wherein the expansion device is connected to the condenser by a liquid refrigerant flow line for liquid refrigerant and immiscible lubricant. The method comprising slowing the rate of flow of the liquid refrigerant and immiscible lubricant between the condenser and the expansion device such that the liquid refrigerant and the immiscible lubricant separate based upon differences in density. The method also comprises collecting the separated immiscible lubricant in a collection chamber in fluid communication with the separated immiscible lubricant. Apparatus for performing the method is also disclosed. 3 figs.

  16. Nanoscale wicking methods and devices

    NASA Technical Reports Server (NTRS)

    Zhou, Jijie (Inventor); Bronikowski, Michael (Inventor); Noca, Flavio (Inventor); Sansom, Elijah B. (Inventor)

    2011-01-01

    A fluid transport method and fluid transport device are disclosed. Nanoscale fibers disposed in a patterned configuration allow transport of a fluid in absence of an external power source. The device may include two or more fluid transport components having different fluid transport efficiencies. The components may be separated by additional fluid transport components, to control fluid flow.

  17. Fluid technology (selected components, devices, and systems): A compilation

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Developments in fluid technology and hydraulic equipment are presented. The subjects considered are: (1) the use of fluids in the operation of switches, amplifiers, and servo devices, (2) devices and data for laboratory use in the study of fluid dynamics, and (3) the use of fluids as controls and certain methods of controlling fluids.

  18. Oral Fluid as an Alternative Matrix to Monitor Opiate and Cocaine Use in Substance-Abuse Treatment Patients

    PubMed Central

    Dams, Riet; Choo, Robin E.; Lambert, Willy E.; Jones, Hendree; Huestis, Marilyn A.

    2007-01-01

    Interest in oral fluid as an alternative matrix for monitoring drug use is due to its ease-of-collection and non-invasiveness; however, limited data are available on the disposition of drugs into oral fluid. The objective of this research was to provide data on the presence and concentrations of heroin, cocaine and multiple metabolites in oral fluid after illicit opioid and cocaine use. Thrice weekly oral fluid specimens (N=403) from 16 pregnant opiate-dependent women were obtained with the Salivette® oral fluid collection device. Evidence of heroin (N=62) and cocaine (N=130) use was detected in oral fluid by LC-APCI-MS/MS. 6-Acetylmorphine (6-AM), heroin and morphine were the major opiates detected, with median concentrations of 5.2, 2.3, and 7.5 μg/L, respectively. Cocaine and benzoylecgonine (BE) had median concentrations of 6.4 and 3.4 μg/L. Application of the Substance Abuse Mental Health Services Administration (SAMHSA) recommended cutoffs for morphine and codeine (40 μg/L), 6-AM (4 μg/L) and cocaine and BE (8 μg/L), yielded 28 opiate- and 50 cocaine-positive specimens. Oral fluid is a promising alternative matrix to monitor opiate and cocaine use in drug testing programs. These data guide interpretation of oral fluid test results and evaluate currently proposed SAMHSA oral fluid testing cutoffs. PMID:17008030

  19. A Point-of-Care Raman Spectroscopy-Based Device for the Diagnosis of Gout and Pseudogout: Comparison With the Clinical Standard Microscopy.

    PubMed

    Li, Bolan; Singer, Nora G; Yeni, Yener N; Haggins, Donard G; Barnboym, Emma; Oravec, Daniel; Lewis, Steven; Akkus, Ozan

    2016-07-01

    To demonstrate the usefulness of a novel medical device based on Raman spectroscopy for the rapid point-of-care diagnosis of gout and pseudogout. A shoebox-sized point-of-care Raman spectroscopy (POCRS) device was developed for use in the diagnosis of gout and pseudogout. The device included a disposable syringe microfiltration kit to collect arthropathic crystals from synovial fluid and a customized automated Raman spectroscopy system to chemically identify crystal species. Diagnosis according to the findings of POCRS was compared with the clinical standard diagnosis based on compensated polarized light microscopy (CPLM) of synovial fluid aspirates collected from symptomatic patients (n = 174). Kappa coefficients were used to measure the agreement between POCRS and CPLM findings. Overall, POCRS and CPLM results were consistent in 89.7% of samples (156 of 174). For the diagnosis of gout, the kappa coefficient for POCRS and CPLM was 0.84 (95% confidence interval [95% CI] 0.75-0.94). For the diagnosis of pseudogout, the kappa coefficient for POCRS and CPLM was 0.61 (95% CI 0.42-0.81). Kappa coefficients indicated that there was excellent agreement between POCRS and CPLM for the diagnosis of gout, with good agreement for the diagnosis of pseudogout. The POCRS device holds the potential to standardize and expedite the time to clinical diagnosis of gout and pseudogout, especially in settings where certified operators trained for CPLM analysis are not available. © 2016, American College of Rheumatology.

  20. An automated spring-loaded needle for endoscopic ultrasound-guided abdominal paracentesis in cancer patients

    PubMed Central

    Suzuki, Rei; Irisawa, Atsushi; Bhutani, Manoop S; Hikichi, Takuto; Takagi, Tadayuki; Shibukawa, Goro; Sato, Ai; Sato, Masaki; Ikeda, Tsunehiko; Watanabe, Ko; Nakamura, Jun; Annangi, Srinadh; Tasaki, Kazuhiro; Obara, Katsutoshi; Ohira, Hiromasa

    2014-01-01

    AIM: To evaluate the feasibility of using an automated spring-loaded needle device for endoscopic ultrasound (EUS)-guided abdominal paracentesis (EUS-P) to see if this would make it easier to puncture the mobile and lax gastric wall for EUS-P. METHODS: The EUS database and electronic medical records at Fukushima Medical University Hospital were searched from January 2001 to April 2011. Patients with a history of cancer and who underwent EUS-P using an automated spring-loaded needle device with a 22-gauge puncture needle were included. The needle was passed through the instrument channel and advanced through the gastrointestinal wall under EUS guidance into the echo-free space in the abdominal cavity and ascitic fluid was collected. The confirmed diagnosis of malignant ascites included positive cytology and results from careful clinical observation for at least 6 mo in patients with negative cytology. The technical success rate, cytology results and complications were evaluated. RESULTS: We found 11 patients who underwent EUS-P with an automated spring-loaded needle device. In 4 cases, ascites was revealed only with EUS but not in other imaging modalities. EUS-P was done in 7 other cases because there was minimal ascitic fluid and no safe window for percutaneous abdominal aspiration. Ascitic fluid was obtained in all cases by EUS-P. The average amount aspirated was 14.1 mL (range 0.5-38 mL) and that was sent for cytological exam. The etiology of ascitic fluid was benign in 5 patients and malignant in 6. In all cases, ascitic fluid was obtained with the first needle pass. No procedure-related adverse effects occurred. CONCLUSION: EUS-P with an automated spring-loaded needle device is a feasible and safe method for ascites evaluation. PMID:24567793

  1. Capillary interconnect device

    DOEpatents

    Renzi, Ronald F

    2013-11-19

    An interconnecting device for connecting a plurality of first fluid-bearing conduits to a corresponding plurality of second fluid-bearing conduits thereby providing fluid communication between the first fluid-bearing conduits and the second fluid-bearing conduits. The device includes a manifold and one or two ferrule plates that are held by compressive axial forces.

  2. Methods of use for sensor based fluid detection devices

    NASA Technical Reports Server (NTRS)

    Lewis, Nathan S. (Inventor)

    2001-01-01

    Methods of use and devices for detecting analyte in fluid. A system for detecting an analyte in a fluid is described comprising a substrate having a sensor comprising a first organic material and a second organic material where the sensor has a response to permeation by an analyte. A detector is operatively associated with the sensor. Further, a fluid delivery appliance is operatively associated with the sensor. The sensor device has information storage and processing equipment, which is operably connected with the device. This device compares a response from the detector with a stored ideal response to detect the presence of analyte. An integrated system for detecting an analyte in a fluid is also described where the sensing device, detector, information storage and processing device, and fluid delivery device are incorporated in a substrate. Methods for use for the above system are also described where the first organic material and a second organic material are sensed and the analyte is detected with a detector operatively associated with the sensor. The method provides for a device, which delivers fluid to the sensor and measures the response of the sensor with the detector. Further, the response is compared to a stored ideal response for the analyte to determine the presence of the analyte. In different embodiments, the fluid measured may be a gaseous fluid, a liquid, or a fluid extracted from a solid. Methods of fluid delivery for each embodiment are accordingly provided.

  3. System and method for networking electrochemical devices

    DOEpatents

    Williams, Mark C.; Wimer, John G.; Archer, David H.

    1995-01-01

    An improved electrochemically active system and method including a plurality of electrochemical devices, such as fuel cells and fluid separation devices, in which the anode and cathode process-fluid flow chambers are connected in fluid-flow arrangements so that the operating parameters of each of said plurality of electrochemical devices which are dependent upon process-fluid parameters may be individually controlled to provide improved operating efficiency. The improvements in operation include improved power efficiency and improved fuel utilization in fuel cell power generating systems and reduced power consumption in fluid separation devices and the like through interstage process fluid parameter control for series networked electrochemical devices. The improved networking method includes recycling of various process flows to enhance the overall control scheme.

  4. Detection of Nitrobenzodiazepines and Their 7-Amino Metabolites in Oral Fluid.

    PubMed

    Vindenes, Vigdis; Strand, Dag Helge; Koksæter, Paul; Gjerde, Hallvard

    2016-05-01

    Clonazepam, nitrazepam and flunitrazepam are frequently used benzodiazepines, both as prescribed medication and as drugs of abuse. Little is, however, known about how these drugs are excreted in oral fluid. It has been claimed that the parent drugs are more likely to be detected in oral fluid than the 7-amino metabolites. The aim of this study was to investigate whether the parent drugs or the 7-amino metabolites of the nitrobenzodiazepines were most frequently detected in authentic oral fluid samples. Oral fluid samples were collected from patients undergoing opioid maintenance treatment. Cases where clonazepam, nitrazepam, flunitrazepam and/or their metabolites were detected were included. The samples were collected using the Intercept Oral Specimen Collection Device. A cutoff concentration of 1 nM (∼0.3 ng/mL) in oral fluid-buffer mixture was applied for all the substances. A total of 1,001 oral fluid samples were positive for clonazepam and/or 7-aminoclonazepam; both substances were detected in 707 samples, only the parent drug in 64 cases and only the metabolite in 230 cases. For nitrazepam, both substances were detected in 139 samples; only the parent drug in 16 cases and only the metabolite in 56 cases. Flunitrazepam only was not detected in any sample; both substances were detected in one of these cases, and only the metabolite in three cases. This study revealed that 7-amino metabolites were more likely to be detected in oral fluid than the parent drugs. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Using Mason number to predict MR damper performance from limited test data

    NASA Astrophysics Data System (ADS)

    Becnel, Andrew C.; Wereley, Norman M.

    2017-05-01

    The Mason number can be used to produce a single master curve which relates MR fluid stress versus strain rate behavior across a wide range of shear rates, temperatures, and applied magnetic fields. As applications of MR fluid energy absorbers expand to a variety of industries and operating environments, Mason number analysis offers a path to designing devices with desired performance from a minimal set of preliminary test data. Temperature strongly affects the off-state viscosity of the fluid, as the passive viscous force drops considerably at higher temperatures. Yield stress is not similarly affected, and stays relatively constant with changing temperature. In this study, a small model-scale MR fluid rotary energy absorber is used to measure the temperature correction factor of a commercially-available MR fluid from LORD Corporation. This temperature correction factor is identified from shear stress vs. shear rate data collected at four different temperatures. Measurements of the MR fluid yield stress are also obtained and related to a standard empirical formula. From these two MR fluid properties - temperature-dependent viscosity and yield stress - the temperature-corrected Mason number is shown to predict the force vs. velocity performance of a full-scale rotary MR fluid energy absorber. This analysis technique expands the design space of MR devices to high shear rates and allows for comprehensive predictions of overall performance across a wide range of operating conditions from knowledge only of the yield stress vs. applied magnetic field and a temperature-dependent viscosity correction factor.

  6. Passive cannabis smoke exposure and oral fluid testing.

    PubMed

    Niedbala, Sam; Kardos, Keith; Salamone, Sal; Fritch, Dean; Bronsgeest, Matth; Cone, Edward J

    2004-10-01

    Oral fluid testing for Delta(9)-tetrahydrocannabinol (THC) provides a convenient means of detection of recent cannabis usage. In this study, the risk of positive oral fluid tests from passive cannabis smoke exposure was investigated by housing four cannabis-free volunteers in a small, unventilated, and sealed room with an approximate volume of 36 m(3). Five active cannabis smokers were also present in the room, and each smoked a single cannabis cigarette (1.75% THC). Cannabis smoking occurred over the first 20 min of the study session. All subjects remained in the room for approximately 4 h. Oral fluid specimens were collected with the Intercept DOA Oral Specimen Collection Device. Three urine specimens were collected (0, 20, and 245 min). In addition, three air samples were collected for measurement of THC content. All oral fluid specimens were screened by enzyme immunoassay (EIA) for cannabinoids (cutoff concentration = 3 ng/mL) and tested by gas chromatography-tandem mass spectrometry (GC-MS-MS) for THC (LOQ/LOD = 0.75 ng/mL). All urine specimens were screened by EIA for cannabinoids (cutoff concentration = 50 ng/mL) and tested by GC-MS-MS for THCCOOH (LOQ/LOD = 1 ng/mL). Air samples were measured for THC by GC-MS (LOD = 1 ng/L). A total of eight oral fluid specimens (collected 20 to 50 min following initiation of smoking) from the four passive subjects screened and confirmed positive for THC at concentrations ranging from 3.6 to 26.4 ng/mL. Two additional specimens from one passive subject, collected at 50 and 65 min, screened negative but contained THC in concentrations of 4.2 and 1.1 ng/mL, respectively. All subsequent specimens for passive participants tested negative by EIA and GC-MS-MS for the remainder of the 4-h session. In contrast, oral fluid specimens collected from the five cannabis smokers generally screened and confirmed positive for THC throughout the session at concentrations substantially higher than observed for passive subjects. Urine specimens from active cannabis smokers also screened and confirmed positive at conventional cutoff concentrations. A biphasic pattern of decline for THC was observed in oral fluid specimens collected from cannabis smokers, whereas a linear decline was seen for passive subjects suggesting that initial oral fluid contamination is cleared rapidly and is followed by THC sequestration in the oral mucosa. It is concluded that the risk of positive oral fluid tests from passive cannabis smoke inhalation is limited to a period of approximately 30 min following exposure.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fong, Erika J.; Huang, Chao; Hamilton, Julie

    Here, a major advantage of microfluidic devices is the ability to manipulate small sample volumes, thus reducing reagent waste and preserving precious sample. However, to achieve robust sample manipulation it is necessary to address device integration with the macroscale environment. To realize repeatable, sensitive particle separation with microfluidic devices, this protocol presents a complete automated and integrated microfluidic platform that enables precise processing of 0.15–1.5 ml samples using microfluidic devices. Important aspects of this system include modular device layout and robust fixtures resulting in reliable and flexible world to chip connections, and fully-automated fluid handling which accomplishes closed-loop sample collection,more » system cleaning and priming steps to ensure repeatable operation. Different microfluidic devices can be used interchangeably with this architecture. Here we incorporate an acoustofluidic device, detail its characterization, performance optimization, and demonstrate its use for size-separation of biological samples. By using real-time feedback during separation experiments, sample collection is optimized to conserve and concentrate sample. Although requiring the integration of multiple pieces of equipment, advantages of this architecture include the ability to process unknown samples with no additional system optimization, ease of device replacement, and precise, robust sample processing.« less

  8. Measurement of Clozapine, Norclozapine, and Amisulpride in Plasma and in Oral Fluid Obtained Using 2 Different Sampling Systems.

    PubMed

    Fisher, Danielle S; Beyer, Chad; van Schalkwyk, Gerrit; Seedat, Soraya; Flanagan, Robert J

    2017-04-01

    There is a poor correlation between total concentrations of proton-accepting compounds (most basic drugs) in unstimulated oral fluid and in plasma. The aim of this study was to compare clozapine, norclozapine, and amisulpride concentrations in plasma and in oral fluid collected using commercially available collection devices [Thermo Fisher Scientific Oral-Eze and Greiner Bio-One (GBO)]. Oral-Eze and GBO samples and plasma were collected in that order from patients prescribed clozapine. Analyte concentrations were measured by liquid chromatography-tandem mass spectrometry. There were 112 participants [96 men, aged (median, range) 47 (21-65) years and 16 women, aged 44 (21-65) years]: 74 participants provided 2 sets of samples and 7 provided 3 sets (overall 2 GBO samples not collected). Twenty-three patients were co-prescribed amisulpride, of whom 17 provided 2 sets of samples and 1 provided 3 sets. The median (range) oral fluid within the GBO samples was 52 (13%-86%). Nonadherence to clozapine was identified in all 3 samples in one instance. After correction for oral fluid content, analyte concentrations in the GBO and Oral-Eze samples were poorly correlated with plasma clozapine and norclozapine (R = 0.57-0.63) and plasma amisulpride (R = 0.65-0.72). Analyte concentrations in the 2 sets of oral fluid samples were likewise poorly correlated (R = 0.68-0.84). Mean (SD) plasma clozapine and norclozapine were 0.60 (0.46) and 0.25 (0.21) mg/L, respectively. Mean clozapine and norclozapine concentrations in the 2 sets of oral fluid samples were similar to those in plasma (0.9-1.8 times higher), that is, approximately 2- to 3-fold higher than those in unstimulated oral fluid. The mean (±SD) amisulpride concentrations (microgram per liter) in plasma (446 ± 297) and in the Oral-Eze samples (501 ± 461) were comparable and much higher than those in the GBO samples (233 ± 318). Oral fluid collected using either the GBO system or the Oral-Eze system cannot be used for quantitative clozapine and/or amisulpride therapeutic drug monitoring.

  9. An acoustic on-chip goniometer for room temperature macromolecular crystallography.

    PubMed

    Burton, C G; Axford, D; Edwards, A M J; Gildea, R J; Morris, R H; Newton, M I; Orville, A M; Prince, M; Topham, P D; Docker, P T

    2017-12-05

    This paper describes the design, development and successful use of an on-chip goniometer for room-temperature macromolecular crystallography via acoustically induced rotations. We present for the first time a low cost, rate-tunable, acoustic actuator for gradual in-fluid sample reorientation about varying axes and its utilisation for protein structure determination on a synchrotron beamline. The device enables the efficient collection of diffraction data via a rotation method from a sample within a surface confined droplet. This method facilitates efficient macromolecular structural data acquisition in fluid environments for dynamical studies.

  10. Cryogenic fluid management for low-g transfer

    NASA Technical Reports Server (NTRS)

    Frank, D. J.; Jaekle, D. E., Jr.

    1986-01-01

    An account is given of design and operations criteria pertaining to low-g environment systems for the collection and delivery of liquid cryogens to a supply tank drain inlet in orbit. Analyses must assess the draining efficiencies of such devices, because the minimization of supply tank residual contents is of the essence. Settling accelerations, passive expulsion, and positive expulsion methods of fluid control have all been successfully demonstrated in orbit. Attention is given to the unique advantages and disadvantages of each method in view of different sets of requirements.

  11. Resealable, optically accessible, PDMS-free fluidic platform for ex vivo interrogation of pancreatic islets.

    PubMed

    Lenguito, Giovanni; Chaimov, Deborah; Weitz, Jonathan R; Rodriguez-Diaz, Rayner; Rawal, Siddarth A K; Tamayo-Garcia, Alejandro; Caicedo, Alejandro; Stabler, Cherie L; Buchwald, Peter; Agarwal, Ashutosh

    2017-02-28

    We report the design and fabrication of a robust fluidic platform built out of inert plastic materials and micromachined features that promote optimized convective fluid transport. The platform is tested for perfusion interrogation of rodent and human pancreatic islets, dynamic secretion of hormones, concomitant live-cell imaging, and optogenetic stimulation of genetically engineered islets. A coupled quantitative fluid dynamics computational model of glucose stimulated insulin secretion and fluid dynamics was first utilized to design device geometries that are optimal for complete perfusion of three-dimensional islets, effective collection of secreted insulin, and minimization of system volumes and associated delays. Fluidic devices were then fabricated through rapid prototyping techniques, such as micromilling and laser engraving, as two interlocking parts from materials that are non-absorbent and inert. Finally, the assembly was tested for performance using both rodent and human islets with multiple assays conducted in parallel, such as dynamic perfusion, staining and optogenetics on standard microscopes, as well as for integration with commercial perfusion machines. The optimized design of convective fluid flows, use of bio-inert and non-absorbent materials, reversible assembly, manual access for loading and unloading of islets, and straightforward integration with commercial imaging and fluid handling systems proved to be critical for perfusion assay, and particularly suited for time-resolved optogenetics studies.

  12. Paper-based microfluidic system for tear electrolyte analysis† †We declare no competing financial interests. ‡ ‡Electronic supplementary information (ESI) available: Microscopic images of G1 paper and G41 paper under brightfield; optimization of CO2 laser radiation fluence and beam speed for ablating filter paper-G1; photographs of DI water diffusion in microfluidic channels with different lengths, different widths, different viscosities of fluid and different numbers of channels; fluorescence intensity readouts of Na+ and K+ ions with varied concentrations of fluorescent probes; effect of variations in temperature on fluorescence intensity; photographs of DMSO on G1 paper dried in the air; calibration curves of electrolyte sensing on G1 paper using microplate reader measurement; calculation of sensitivity of the fluorescent sensors based on International Union of Pure and Applied Chemistry (IUPAC) guidelines; quantification of ion interference in buffer solution and artificial tear fluid; light attenuation of LED lights using different optical filters; the design of the sample collection device and its potential clinical use; calibration curves of electrolyte sensors using the paper-based microfluidic system; quantifications of evaporation effect on sampling process; design of the sample collection device and its potential clinical use; batch-to-batch variation experiments; equation for background subtraction; movies of sample collection and measurements. See DOI: 10.1039/c6lc01450j Click here for additional data file. Click here for additional data file. Click here for additional data file. Click here for additional data file.

    PubMed Central

    Jiang, Nan; Tamayol, Ali; Ruiz-Esparza, Guillermo U.; Zhang, Yu Shrike; Medina-Pando, Sofía; Gupta, Aditi; Wolffsohn, James S.; Butt, Haider; Khademhosseini, Ali

    2017-01-01

    The analysis of tear constituents at point-of-care settings has a potential for early diagnosis of ocular disorders such as dry eye disease, low-cost screening, and surveillance of at-risk subjects. However, current minimally-invasive rapid tear analysis systems for point-of-care settings have been limited to assessment of osmolarity or inflammatory markers and cannot differentiate between dry eye subclassifications. Here, we demonstrate a portable microfluidic system that allows quantitative analysis of electrolytes in the tear fluid that is suited for point-of-care settings. The microfluidic system consists of a capillary tube for sample collection, a reservoir for sample dilution, and a paper-based microfluidic device for electrolyte analysis. The sensing regions are functionalized with fluorescent crown ethers, o-acetanisidide, and seminaphtorhodafluor that are sensitive to mono- and divalent electrolytes, and their fluorescence outputs are measured with a smartphone readout device. The measured sensitivity values of Na+, K+, Ca2+ ions and pH in artificial tear fluid were matched with the known ion concentrations within the physiological range. The microfluidic system was tested with samples having different ionic concentrations, demonstrating the feasibility for the detection of early-stage dry eye, differential diagnosis of dry eye sub-types, and their severity staging. PMID:28207920

  13. Magnelok technology: a complement to magnetorheological fluids

    NASA Astrophysics Data System (ADS)

    Carlson, J. David

    2004-07-01

    Magnetorheological or MR fluids have been successfully used to enable highly effective semi-active control systems in automobile primary suspensions to control unwanted motions in civil engineering structures and to provide force-feedback in steer-by-wire systems. A key to the successful use of MR fluids is an appreciation and understanding of the balance and trade-off between the magnetically controlled on-state force and the ever-present off-state viscous force. In all MR fluid applications, one must deal with the fact that MR fluids never fully decouple or go to zero force in their off-state. Magnelok devices are a magnetically controlled compliment to traditional MR fluid devices that have been developed to enable a true force decoupling in the off-state. Magnelok devices may be embodied as linear or rotary dampers, brakes, lockable struts or position holding devices. They are particularly suitable for lock/un-lock applications. Unlike MR fluid devices they contain no fluid yet they do provide a variable level of friction damping that is controlled by the magnitude of the applied magnetic field. Magnelok devices are low cost as they easily accommodate relatively loose mechanical tolerances and require no seals or accumulator. A variety of controllable Magnelok devices and applications are described.

  14. Roadside drug testing: An evaluation of the Alere DDS® 2 mobile test system.

    PubMed

    Rohrig, Timothy P; Moore, Christine M; Stephens, Kimberly; Cooper, Kelsey; Coulter, Cynthia; Baird, Tyson; Garnier, Margaux; Miller, Samuel; Tuyay, James; Osawa, Kei; Chou, Joshua; Nuss, Carson; Collier, Jeff; Wittman, Karen Cudlin

    2018-04-01

    The number of drivers using drugs has increased over the last few years, and is likely to continue its upward trend. Testing drivers for alcohol use is routine and standardized, but the same is not true for the identification of driving under the influence of drugs (DUID). The Drug Evaluation and Classification Program (DECP) was developed to train police officers to recognize the signs and symptoms of recent drug use and remains an invaluable program; however, there are insufficient numbers of these highly trained drug recognition experts (DREs) available to attend every potential drug involved traffic incident. While blood and urine samples are used to test for drugs in a driver, both have disadvantages, particularly as they pertain to the length of time required after a traffic stop to sample collection. Therefore, the development of oral fluid testing devices which can be operated at the roadside and have the potential to assist officers in the identification of drug use is a major advancement in DUID cases. This project evaluated the performance of one instrumental oral fluid roadside testing device (Alere DDS®2) compared to DRE opinion, oral fluid laboratory-based analysis, and routine blood testing. The results showed that there was a good correlation with DRE observations and the device performance was >80% in all drug categories compared to laboratory-based analytical testing, both in oral fluid and blood, with few exceptions. The instrument can be considered a useful tool to assist law enforcement in identifying a drugged driver. Because the device does not test for all potentially impairing drugs, the opinion of the police officer regarding the condition of the driver should still be considered the most important aspect for arrest and further action. Copyright © 2017 John Wiley & Sons, Ltd.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolenbaugh, Jonathan M.; Naqi, Syed

    A method to operate a clutch device in an electro-mechanical transmission mechanically-operatively coupled to an internal combustion engine and at least one electric machine includes, in response to a failure condition detected within a flow control device configured to facilitate flow of hydraulic fluid for operating the clutch device, selectively preventing the flow of hydraulic fluid from entering the flow control device and feeding the clutch device. Synchronization of the clutch device is initiated when the clutch device is intended for activation, and only if the clutch device is synchronized, the flow of hydraulic fluid is selectively permitted to entermore » the flow control device to activate the clutch device.« less

  16. Novel multi-functional fluid flow device for studying cellular mechanotransduction

    PubMed Central

    Lyons, James S.; Iyer, Shama R.; Lovering, Richard M.; Ward, Christopher W.; Stains, Joseph P.

    2016-01-01

    Cells respond to their mechanical environment by initiating multiple mechanotransduction signaling pathways. Defects in mechanotransduction have been implicated in a number of pathologies; thus, there is need for convenient and efficient methods for studying the mechanisms underlying these processes. A widely used and accepted technique for mechanically stimulating cells in culture is the introduction of fluid flow on cell monolayers. Here, we describe a novel, multifunctional fluid flow device for exposing cells to fluid flow in culture. This device integrates with common lab equipment including routine cell culture plates and peristaltic pumps. Further, it allows the fluid flow treated cells to be examined with outcomes at the cell and molecular level. We validated the device using the biologic response of cultured UMR-106 osteoblast-like cells in comparison to a commercially available system of laminar sheer stress to track live cell calcium influx in response to fluid flow. In addition, we demonstrate the fluid flow-dependent activation of phospho-ERK in these cells, consistent with the findings in other fluid flow devices. This device provides a low cost, multi-functional alternative to currently available systems, while still providing the ability to generate physiologically relevant conditions for studying processes involved in mechanotransduction in vitro. PMID:27887728

  17. Method and apparatus for actively controlling a micro-scale flexural plate wave device

    DOEpatents

    Dohner, Jeffrey L.

    2001-01-01

    An actively controlled flexural plate wave device provides a micro-scale pump. A method of actively controlling a flexural plate wave device produces traveling waves in the device by coordinating the interaction of a magnetic field with actively controlled currents. An actively-controlled flexural plate wave device can be placed in a fluid channel and adapted for use as a micro-scale fluid pump to cool or drive micro-scale systems, for example, micro-chips, micro-electrical-mechanical devices, micro-fluid circuits, or micro-scale chemical analysis devices.

  18. Endoscopic ultrasound guided drainage of pancreatic fluid collections: Assessment of the procedure, technical details and review of the literature

    PubMed Central

    Puri, Rajesh; Thandassery, Ragesh Babu; Alfadda, Abdulrahman A; Kaabi, Saad Al

    2015-01-01

    Endoscopic ultrasound (EUS) guided drainage of pancreatic fluid collections (PFC) has become increasingly popular and become first line management option in many centers. Use of therapeutic echoendoscopes has greatly increased the applicability of EUS guided transmural drainage. Drainage is indicated in symptomatic PFCs, PFC related infection, bleed, luminal obstruction, fistulization and biliary obstruction. EUS guided transmural drainage of PFCs is preferred in patients with non bulging lesions, portal hypertension, bleeding tendency and in those whom conventional drainage has failed. In the present decade significant progress has been made in minimally invasive endoscopic techniques. There are newer stent designs, access devices and techniques for more efficient drainage of PFCs. In this review, we discuss the EUS guided drainage of PFCs in acute pancreatitis. PMID:25901214

  19. Microfluidic Cell Culture Device

    NASA Technical Reports Server (NTRS)

    Takayama, Shuichi (Inventor); Cabrera, Lourdes Marcella (Inventor); Heo, Yun Seok (Inventor); Smith, Gary Daniel (Inventor)

    2014-01-01

    Microfluidic devices for cell culturing and methods for using the same are disclosed. One device includes a substrate and membrane. The substrate includes a reservoir in fluid communication with a passage. A bio-compatible fluid may be added to the reservoir and passage. The reservoir is configured to receive and retain at least a portion of a cell mass. The membrane acts as a barrier to evaporation of the bio-compatible fluid from the passage. A cover fluid may be added to cover the bio-compatible fluid to prevent evaporation of the bio-compatible fluid.

  20. A Novel Device Addressing Design Challenges for Passive Fluid Phase Separations Aboard Spacecraft

    NASA Astrophysics Data System (ADS)

    Weislogel, M. M.; Thomas, E. A.; Graf, J. C.

    2009-07-01

    Capillary solutions have long existed for the control of liquid inventories in spacecraft fluid systems such as liquid propellants, cryogens and thermal fluids for temperature control. Such large length scale, `low-gravity,' capillary systems exploit container geometry and fluid properties—primarily wetting—to passively locate or transport fluids to desired positions for a variety of purposes. Such methods have only been confidently established if the wetting conditions are known and favorable. In this paper, several of the significant challenges for `capillary solutions' to low-gravity multiphase fluids management aboard spacecraft are briefly reviewed in light of applications common to life support systems that emphasize the impact of the widely varying wetting properties typical of aqueous systems. A restrictive though no less typifying example of passive phase separation in a urine collection system is highlighted that identifies key design considerations potentially met by predominately capillary solutions. Sample results from novel scale model prototype testing aboard a NASA low-g aircraft are presented that support the various design considerations.

  1. Hydrostatic bearings for a turbine fluid flow metering device

    DOEpatents

    Fincke, James R.

    1982-01-01

    A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion.

  2. Hydrostatic bearings for a turbine fluid flow metering device

    DOEpatents

    Fincke, J.R.

    1982-05-04

    A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion. 3 figs.

  3. Evaporative Cooling Membrane Device

    NASA Technical Reports Server (NTRS)

    Lomax, Curtis (Inventor); Moskito, John (Inventor)

    1999-01-01

    An evaporative cooling membrane device is disclosed having a flat or pleated plate housing with an enclosed bottom and an exposed top that is covered with at least one sheet of hydrophobic porous material having a thin thickness so as to serve as a membrane. The hydrophobic porous material has pores with predetermined dimensions so as to resist any fluid in its liquid state from passing therethrough but to allow passage of the fluid in its vapor state, thereby, causing the evaporation of the fluid and the cooling of the remaining fluid. The fluid has a predetermined flow rate. The evaporative cooling membrane device has a channel which is sized in cooperation with the predetermined flow rate of the fluid so as to produce laminar flow therein. The evaporative cooling membrane device provides for the convenient control of the evaporation rates of the circulating fluid by adjusting the flow rates of the laminar flowing fluid.

  4. Point-of-care oral-based diagnostics

    PubMed Central

    Hart, RW; Mauk, MG; Liu, C; Qiu, X; Thompson, JA; Chen, D; Malamud, D; Abrams, WR; Bau, HH

    2014-01-01

    Many of the target molecules that reside in blood are also present in oral fluids, albeit at lower concentrations. Oral fluids are, however, relatively easy and safe to collect without the need for specialized equipment and training. Thus, oral fluids provide convenient samples for medical diagnostics. Recent advances in lab-on-a-chip technologies have made minute, fully integrated diagnostic systems practical for an assortment of point-of-care tests. Such systems can perform either immunoassays or molecular diagnostics outside centralized laboratories within time periods ranging from minutes to an hour. The article briefly reviews recent advances in devices for point-of-care testing with a focus on work that has been carried out by the authors as part of a NIH program. PMID:21521419

  5. Hydrostatic bearings for a turbine fluid flow metering device

    DOEpatents

    Fincke, J.R.

    1980-05-02

    A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion.

  6. Development of a Mechatronic Syringe Pump to Control Fluid Flow in a Microfluidic Device Based on Polyimide Film

    NASA Astrophysics Data System (ADS)

    Sek Tee, Kian; Sharil Saripan, Muhammad; Yap, Hiung Yin; Fhong Soon, Chin

    2017-08-01

    With the advancement in microfluidic technology, fluid flow control for syringe pump is always essential. In this paper, a mechatronic syringe pump will be developed and customized to control the fluid flow in a poly-dimethylsiloxane (PDMS) microfluidic device based on a polyimide laminating film. The syringe pump is designed to drive fluid with flow rates of 100 and 1000 μl/min which intended to drive continuous fluid in a polyimide based microfluidic device. The electronic system consists of an Arduino microcontroller board and a uni-polar stepper motor. In the system, the uni-polar stepper motor was coupled to a linear slider attached to the plunger of a syringe pump. As the motor rotates, the plunger pumps the liquid out of the syringe. The accuracy of the fluid flow rate was determined by adjusting the number of micro-step/revolution to drive the stepper motor to infuse fluid into the microfluidic device. With the precise control of the electronic system, the syringe pump could accurately inject fluid volume at 100 and 1000 μl/min into a microfluidic device.

  7. 21 CFR 872.1500 - Gingival fluid measurer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Gingival fluid measurer. 872.1500 Section 872.1500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1500 Gingival fluid measurer. (a) Identification...

  8. 21 CFR 872.1500 - Gingival fluid measurer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Gingival fluid measurer. 872.1500 Section 872.1500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1500 Gingival fluid measurer. (a) Identification...

  9. Rankine cycle condenser pressure control using an energy conversion device bypass valve

    DOEpatents

    Ernst, Timothy C; Nelson, Christopher R; Zigan, James A

    2014-04-01

    The disclosure provides a waste heat recovery system and method in which pressure in a Rankine cycle (RC) system of the WHR system is regulated by diverting working fluid from entering an inlet of an energy conversion device of the RC system. In the system, an inlet of a controllable bypass valve is fluidly coupled to a working fluid path upstream of an energy conversion device of the RC system, and an outlet of the bypass valve is fluidly coupled to the working fluid path upstream of the condenser of the RC system such that working fluid passing through the bypass valve bypasses the energy conversion device and increases the pressure in a condenser. A controller determines the temperature and pressure of the working fluid and controls the bypass valve to regulate pressure in the condenser.

  10. Superhydrophobic Surface Coatings for Microfluidics and MEMs.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Branson, Eric D.; Singh, Seema; Houston, Jack E.

    2006-11-01

    Low solid interfacial energy and fractally rough surface topography confer to Lotus plants superhydrophobic (SH) properties like high contact angles, rolling and bouncing of liquid droplets, and self-cleaning of particle contaminants. This project exploits the porous fractal structure of a novel, synthetic SH surface for aerosol collection, its self-cleaning properties for particle concentration, and its slippery nature 3 to enhance the performance of fluidic and MEMS devices. We propose to understand fundamentally the conditions needed to cause liquid droplets to roll rather than flow/slide on a surface and how this %22rolling transition%22 influences the boundary condition describing fluid flow inmore » a pipe or micro-channel. Rolling of droplets is important for aerosol collection strategies because it allows trapped particles to be concentrated and transported in liquid droplets with no need for a pre-defined/micromachined fluidic architecture. The fluid/solid boundary condition is important because it governs flow resistance and rheology and establishes the fluid velocity profile. Although many research groups are exploring SH surfaces, our team is the first to unambiguously determine their effects on fluid flow and rheology. SH surfaces could impact all future SNL designs of collectors, fluidic devices, MEMS, and NEMS. Interfaced with inertial focusing aerosol collectors, SH surfaces would allow size-specific particle populations to be collected, concentrated, and transported to a fluidic interface without loss. In microfluidic systems, we expect to reduce the energy/power required to pump fluids and actuate MEMS. Plug-like (rather than parabolic) velocity profiles can greatly improve resolution of chip-based separations and enable unprecedented control of concentration profiles and residence times in fluidic-based micro-reactors. Patterned SH/hydrophilic channels could induce mixing in microchannels and enable development of microflow control elements. Acknowledgements This work was funded by Sandia National Laboratory's Laboratory Directed Research & Development program (LDRD). Some coating processes were conducted in the cleanroom facility located at the University of New Mexico's Center for High Technology Materials (CHTM). SEM images were performed at UNM's Center for Micro-Engineering on equipment funded by a NSF New Mexico EPSCoR grant. 4« less

  11. Personal cooling air filtering device

    DOEpatents

    Klett, James [Knoxville, TN; Conway, Bret [Denver, NC

    2002-08-13

    A temperature modification system for modifying the temperature of fluids includes at least one thermally conductive carbon foam element, the carbon foam element having at least one flow channel for the passage of fluids. At least one temperature modification device is provided, the temperature modification device thermally connected to the carbon foam element and adapted to modify the temperature of the carbon foam to modify the temperature of fluids flowing through the flow channels. Thermoelectric and/or thermoionic elements can preferably be used as the temperature modification device. A method for the reversible temperature modification of fluids includes the steps of providing a temperature modification system including at least one thermally conductive carbon foam element having flow channels and at least one temperature modification device, and flowing a fluid through the flow channels.

  12. A modified fluid percussion device.

    PubMed

    Yamaki, T; Murakami, N; Iwamoto, Y; Yoshino, E; Nakagawa, Y; Ueda, S; Horikawa, J; Tsujii, T

    1994-10-01

    This report examines a modified fluid percussion device with specific improvements made to address deficiencies found in previously reported devices. These improvements include the use of a cylindrical saline reservoir made of stainless steel, placement of the reservoir in a 15-degree head-up position for the easy release of air bubbles, placement of the fluid flushing outlet and the pressure transducer close to the piston on the same plane, with both perpendicular to the direction of the piston, and adjustable reservoir volume to vary the waveform of the pressure pulse, and a metallic central injury screw secured to the animal's skull over the exposed dura. Using this device, midline fluid percussion (MFP) and lateral fluid percussion (LFP) injuries were performed in 70 rats. Histopathologic findings included diffuse axonal injury in the MFP model and cortical contusion in the LFP model. Survival rate was 41.4% in MFP animals and 100% in LFM animals when the device settings were 178 mm3 of the cylindrical reservoir and 50 degrees-60 degrees in height of the pendulum. Our results suggest that this modified fluid percussion device may offer significant improvements over previously reported fluid percussion models for use in experimental head injury.

  13. A FLUID SORBENT RECYCLING DEVICE FOR INDUSTRIAL FLUID USERS

    EPA Science Inventory

    A roller compression Extractor® that extracts fluids from reusable sorbent pads was evaluated as a method of waste reduction. The extraction device, evaluated for industrial fluid users in New Jersey, was found to be effective in recycling unpleated sorbent pads, especially ...

  14. Detection Times of Diazepam, Clonazepam, and Alprazolam in Oral Fluid Collected From Patients Admitted to Detoxification, After High and Repeated Drug Intake.

    PubMed

    Nordal, Kristin; Øiestad, Elisabeth L; Enger, Asle; Christophersen, Asbjorg S; Vindenes, Vigdis

    2015-08-01

    Clonazepam, diazepam, and alprazolam are benzodiazepines with sedative, anticonvulsant, and anxiolytic effects, but their prevalence in drug abuse and drug overdoses has long been recognized. When detection times for psychoactive drugs in oral fluid are reported, they are most often based on therapeutic doses administered in clinical studies. Repeated ingestions of high doses, as seen after drug abuse, are however likely to cause positive samples for extended time periods. Findings of drugs of abuse in oral fluid collected from imprisoned persons might lead to negative sanctions, and the knowledge of detection times of these drugs is thus important to ensure correct interpretation. The aim of this study was to investigate the time window of detection for diazepam, clonazepam, and alprazolam in oral fluid from drug addicts admitted to detoxification. Twenty-five patients with a history of heavy drug abuse admitted to a detoxification ward were included. Oral fluid was collected daily in the morning and the evening and urine samples every morning for 10 days, using the Intercept device. Whole blood samples were collected if the patient accepted. The cutoff levels in oral fluid were 1.3 ng/mL for diazepam, N-desmethyldiazepam, and 7-aminoclonazepam and 1 ng/mL for clonazepam and alprazolam. In urine, the cutoff levels for quantifications were 30 ng/mL for alprazolam, alpha-OH-alprazolam, and 7-aminoclonazepam, 135 ng/mL for N-desmethyldizepam, and 150 ng/mL for 3-OH-diazepam and for all the compounds, the cutoff for the screening analyses were 200 ng/mL. The maximum detection times for diazepam and N-desmethyldiazepam in oral fluid were 7 and 9 days, respectively. For clonazepam and 7-aminoclonazepam, the maximum detection times in oral fluid were 5 and 6 days, respectively. The maximum detection time for alprazolam in oral fluid was 2.5 days. New ingestions were not suspected in any of the cases, because the corresponding concentrations in urine were decreasing. Results from blood samples revealed that high doses of benzodiazepines had been ingested before admission, and explains the longer detection times in oral fluids than reported previously after intake of therapeutic doses of these drugs. This study has shown that oral fluid might be a viable alternative medium to urine when the abuse of benzodiazepines is suspected.

  15. Evaluation of commercial multi-drug oral fluid devices to identify 39 new amphetamine-designer drugs.

    PubMed

    Nieddu, Maria; Burrai, Lucia; Trignano, Claudia; Boatto, Gianpiero

    2014-03-01

    Recently, the diffusion on the black market of new psychoactive substances not controlled and often sold as 'legal highs', is exponentially increasing in Europe. Generally, the first analysis for these drugs involves an immunoassay screening in urine or plasma. Actually, there is growing interest in the use of oral fluid (OF) as alternative specimen over conventional biological fluids for drug testing, because of the significant advantages, as a non-invasive collection under direct observation without undue embarrassment or invasion of privacy, and a good correlation with plasma analytical data. Few assays have been developed for detection of new psychoactive compounds in biological samples, so it is important to investigate how they may or may not react in pre-existing commercial immunoassays. In this paper, two different multi-drugs oral fluid screen devices (OFDs) (Screen® Multi-Drug OFD and GIMA One Step Multi-Line Screen Test OFD) were evaluated to determine the cross-reactivity of thirty-nine new amphetamine designer drugs, including twelve substances officially recognized as illicit by italian legislation. Cross-reactivity towards most drugs analyzed was <1 in assays targeting amphetamine (AMP) or methamphetamine (MET). Only two (p-methoxyamphetamine and p-methoxymethamphetamine) of all tested amphetamines gave a positive result. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  16. 33 CFR 154.2203 - Facility requirements for barge vapor overpressure and vacuum protection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... displacement system must provide a pressure-sensing device that activates an alarm that satisfies the... located in the fluid displacement system's piping downstream of any devices that could potentially isolate... to inject the fluid. (d) A fluid displacement system must provide a pressure-sensing device that is...

  17. Detection of birefringent microcrystals in bile

    DOEpatents

    Darrow, Chris; Mirhej, Andrew; Seger, Tino

    2003-09-30

    A transparent flow channel fluidly communicates a fluid source and a collection reservoir. A light beam passes through a first polarizer having a first plane of polarization. The flow channel is orthogonal to the light beam. The light beam passes through a fluid sample as it flows through the flow channel. The light beam is then filtered through a second polarizer having a second plane of polarization rotated 90.degree. from the first plane of polarization. The birefringence of certain crystalline materials present in the fluid sample rotates the plane of polarization of the light beam. The presence of these microcrystals thus causes a component of the beam to pass through the second polarizer and impinge an electronic photo-detector located in the path of the beam. The photo-detector signals the presence of the microcrystals by generating voltage pulses. A display device visually presents the quantitative results of the assay.

  18. Device useful as a borehole fluid sampler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freifeld, Barry M.

    The present invention provides a device comprising: (a) a proximal end of the device comprises an inner first conduit within the lumen of an outer second conduit, (b) a distal end of the device comprises the outer second conduit in fluid communication with a third conduit and a fourth conduit through a Y-shaped, T-shaped or U-shaped junction, (c) the third conduit terminates in a triggering mechanism, and (d) the fourth conduit is in fluid communication through a one-way valve, wherein fluid can only convey in a direction from the fourth conduit towards the second outer conduit, with an aperture.

  19. Conditions for fluid separations in microchannels, capillary-driven fluid separations, and laminated devices capable of separating fluids

    DOEpatents

    TeGrotenhuis, Ward E [Kennewick, WA; Stenkamp, Victoria S [Richland, WA

    2005-04-05

    Methods of separating fluids using capillary forces and/or improved conditions for are disclosed. The improved methods may include control of the ratio of gas and liquid Reynolds numbers relative to the Suratman number. Also disclosed are wick-containing, laminated devices that are capable of separating fluids.

  20. Conditions for fluid separations in microchannels, capillary-driven fluid separations, and laminated devices capable of separating fluids

    DOEpatents

    TeGrotenhuis, Ward E [Kennewick, WA; Stenkamp, Victoria S [Richland, WA

    2008-03-18

    Methods of separating fluids using capillary forces and/or improved conditions for are disclosed. The improved methods may include control of the ratio of gas and liquid Reynolds numbers relative to the Suratman number. Also disclosed are wick-containing, laminated devices that are capable of separating fluids.

  1. 21 CFR 866.5800 - Seminal fluid (sperm) immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems § 866.5800 Seminal fluid (sperm) immunological test system. (a) Identification. A seminal fluid (sperm... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Seminal fluid (sperm) immunological test system...

  2. 21 CFR 872.1500 - Gingival fluid measurer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1500 Gingival fluid measurer. (a) Identification... sulcus (depression between the tooth and gums) to determine if there is a gingivitis condition. (b...

  3. 21 CFR 872.1500 - Gingival fluid measurer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1500 Gingival fluid measurer. (a) Identification... sulcus (depression between the tooth and gums) to determine if there is a gingivitis condition. (b...

  4. 21 CFR 872.1500 - Gingival fluid measurer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1500 Gingival fluid measurer. (a) Identification... sulcus (depression between the tooth and gums) to determine if there is a gingivitis condition. (b...

  5. Device and method for measuring multi-phase fluid flow and density of fluid in a conduit having a gradual bend

    DOEpatents

    Ortiz, Marcos German; Boucher, Timothy J.

    1998-01-01

    A system for measuring fluid flow in a conduit having a gradual bend or arc, and a straight section. The system includes pressure transducers, one or more disposed in the conduit on the outside of the arc, and one disposed in the conduit in a straight section thereof. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow.

  6. Heparin-like activity in uterine fluid.

    PubMed Central

    Foley, M E; Griffin, B D; Zuzel, M; Aparicio, S R; Bradbury, K; Bird, C C; Clayton, J K; Jenkins, D M; Scott, J S; Rajah, S M; McNichol, G P

    1978-01-01

    Uterine fluid was collected from a group of normal patients and a group of patients with menorrhagia. Heparin-like activity was detected in 34 out of 38 samples using an anti-Xa heparin assay. The heparin-like activity in uterine fluid was inhibited by adding the heparin antagonist hexadimethrine bromide to the assay. Concentrations of fibrinogen-fibrin degradation products (FDPs) were measured in five samples of uterine fluid. FDPs in the concentration detected had no effect on the anti-Xa assay. Heparin-like activity was higher in the group with menorrhagia, although the differences were not significant. Heparin-like activity increased throughout the menstrual cycle and decreased during menstruation, suggesting a possible cyclical variation in activity. There was no correlation between mast cell numbers in the endometrium and myometrium and heparin-like activity in uterine fluid and no correlation between the numbers and the stage in the menstrual cycle. In a few patients with intrauterine contraceptive devices (IUCDs) heparin-like activity was increased. PMID:687899

  7. A General Approach for Fluid Patterning and Application in Fabricating Microdevices.

    PubMed

    Huang, Zhandong; Yang, Qiang; Su, Meng; Li, Zheng; Hu, Xiaotian; Li, Yifan; Pan, Qi; Ren, Wanjie; Li, Fengyu; Song, Yanlin

    2018-06-19

    Engineering the fluid interface such as the gas-liquid interface is of great significance for solvent processing applications including functional material assembly, inkjet printing, and high-performance device fabrication. However, precisely controlling the fluid interface remains a great challenge owing to its flexibility and fluidity. Here, a general method to manipulate the fluid interface for fluid patterning using micropillars in the microchannel is reported. The principle of fluid patterning for immiscible fluid pairs including air, water, and oils is proposed. This understanding enables the preparation of programmable multiphase fluid patterns and assembly of multilayer functional materials to fabricate micro-optoelectronic devices. This general strategy of fluid patterning provides a promising platform to study the fundamental processes occurring on the fluid interface, and benefits applications in many subjects, such as microfluidics, microbiology, chemical analysis and detection, material synthesis and assembly, device fabrication, etc. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. An alternative for rapid administration of medication and fluids in the emergency setting using a novel device.

    PubMed

    Lyons, Neal; Nejak, Daniel; Lomotan, Nadine; Mokszycki, Robert; Jamieson, Stephen; McDowell, Marc; Kulstad, Erik

    2015-08-01

    Routes of administration for medications and fluids in the acute care setting have primarily focused on oral, intravenous, or intraosseous routes, but, in many patients, none of these routes is optimal. A novel device (Macy Catheter; Hospi Corp) that offers an easy route for administration of medications or fluids via rectal mucosal absorption (proctoclysis) has recently become available in the palliative care market; we describe here the first known uses of this device in the emergency setting. Three patients presenting to the hospital with conditions limiting more typical routes of medication or fluid administration were treated with this new device; patients were administered water for hydration, lorazepam for treatment of alcohol withdrawal, ondansetron for nausea, acetaminophen for fever, aspirin for antiplatelet effect, and methimazole for hyperthyroidism. Placement of the device was straightforward, absorption of administered medications (judged by immediacy of effects, where observable) was rapid, and use of the device was well tolerated by patients, suggesting that this device may be an appealing alternative route to medication and fluid administration for a variety of indications in acute and critical care settings.

  9. Comparison of reproducibility of natural head position using two methods.

    PubMed

    Khan, Abdul Rahim; Rajesh, R N G; Dinesh, M R; Sanjay, N; Girish, K S; Venkataraghavan, Karthik

    2012-01-01

    Lateral cephalometric radiographs have become virtually indispensable to orthodontists in the treatment of patients. They are important in orthodontic growth analysis, diagnosis, treatment planning, monitoring of therapy and evaluation of final treatment outcome. The purpose of this study was to evaluate and compare the maximum reproducibility with minimum variation of natural head position using two methods, i.e. the mirror method and the fluid level device method. The study included two sets of 40 lateral cephalograms taken using two methods of obtaining natural head position: (1) The mirror method and (2) fluid level device method, with a time interval of 2 months. Inclusion criteria • Subjects were randomly selected aged between 18 to 26 years Exclusion criteria • History of orthodontic treatment • Any history of respiratory tract problem or chronic mouth breathing • Any congenital deformity • History of traumatically-induced deformity • History of myofacial pain syndrome • Any previous history of head and neck surgery. The result showed that both the methods for obtaining natural head position-the mirror method and fluid level device method were comparable, but maximum reproducibility was more with the fluid level device as shown by the Dahlberg's coefficient and Bland-Altman plot. The minimum variance was seen with the fluid level device method as shown by Precision and Pearson correlation. The mirror method and the fluid level device method used for obtaining natural head position were comparable without any significance, and the fluid level device method was more reproducible and showed less variance when compared to mirror method for obtaining natural head position. Fluid level device method was more reproducible and shows less variance when compared to mirror method for obtaining natural head position.

  10. 21 CFR 880.2500 - Spinal fluid manometer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Spinal fluid manometer. 880.2500 Section 880.2500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Devices § 880.2500 Spinal fluid manometer. (a) Identification. A spinal fluid manometer is a device used...

  11. 21 CFR 880.2460 - Electrically powered spinal fluid pressure monitor.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electrically powered spinal fluid pressure monitor... Personal Use Monitoring Devices § 880.2460 Electrically powered spinal fluid pressure monitor. (a) Identification. An electrically powered spinal fluid pressure monitor is an electrically powered device used to...

  12. A microfluidic platform for precision small-volume sample processing and its use to size separate biological particles with an acoustic microdevice [Precision size separation of biological particles in small-volume samples by an acoustic microfluidic system

    DOE PAGES

    Fong, Erika J.; Huang, Chao; Hamilton, Julie; ...

    2015-11-23

    Here, a major advantage of microfluidic devices is the ability to manipulate small sample volumes, thus reducing reagent waste and preserving precious sample. However, to achieve robust sample manipulation it is necessary to address device integration with the macroscale environment. To realize repeatable, sensitive particle separation with microfluidic devices, this protocol presents a complete automated and integrated microfluidic platform that enables precise processing of 0.15–1.5 ml samples using microfluidic devices. Important aspects of this system include modular device layout and robust fixtures resulting in reliable and flexible world to chip connections, and fully-automated fluid handling which accomplishes closed-loop sample collection,more » system cleaning and priming steps to ensure repeatable operation. Different microfluidic devices can be used interchangeably with this architecture. Here we incorporate an acoustofluidic device, detail its characterization, performance optimization, and demonstrate its use for size-separation of biological samples. By using real-time feedback during separation experiments, sample collection is optimized to conserve and concentrate sample. Although requiring the integration of multiple pieces of equipment, advantages of this architecture include the ability to process unknown samples with no additional system optimization, ease of device replacement, and precise, robust sample processing.« less

  13. Magneto-Hydrodynamics Based Microfluidics

    PubMed Central

    Qian, Shizhi; Bau, Haim H.

    2009-01-01

    In microfluidic devices, it is necessary to propel samples and reagents from one part of the device to another, stir fluids, and detect the presence of chemical and biological targets. Given the small size of these devices, the above tasks are far from trivial. Magnetohydrodynamics (MHD) offers an elegant means to control fluid flow in microdevices without a need for mechanical components. In this paper, we review the theory of MHD for low conductivity fluids and describe various applications of MHD such as fluid pumping, flow control in fluidic networks, fluid stirring and mixing, circular liquid chromatography, thermal reactors, and microcoolers. PMID:20046890

  14. Hydrogel nanoparticle based immunoassay

    DOEpatents

    Liotta, Lance A; Luchini, Alessandra; Petricoin, Emanuel F; Espina, Virginia

    2015-04-21

    An immunoassay device incorporating porous polymeric capture nanoparticles within either the sample collection vessel or pre-impregnated into a porous substratum within fluid flow path of the analytical device is presented. This incorporation of capture particles within the immunoassay device improves sensitivity while removing the requirement for pre-processing of samples prior to loading the immunoassay device. A preferred embodiment is coreshell bait containing capture nanoparticles which perform three functions in one step, in solution: a) molecular size sieving, b) target analyte sequestration and concentration, and c) protection from degradation. The polymeric matrix of the capture particles may be made of co-polymeric materials having a structural monomer and an affinity monomer, the affinity monomer having properties that attract the analyte to the capture particle. This device is useful for point of care diagnostic assays for biomedical applications and as field deployable assays for environmental, pathogen and chemical or biological threat identification.

  15. Fluid injection device for high-pressure systems

    NASA Technical Reports Server (NTRS)

    Copeland, E. J.; Ward, J. B.

    1970-01-01

    Screw activated device, consisting of a compressor, shielded replaceable ampules, a multiple-element rubber gland, and a specially constructed fluid line fitting, injects measured amounts of fluids into a pressurized system. It is sturdy and easily manipulated.

  16. Device and method for measuring multi-phase fluid flow and density of fluid in a conduit having a gradual bend

    DOEpatents

    Ortiz, M.G.; Boucher, T.J.

    1998-10-27

    A system is described for measuring fluid flow in a conduit having a gradual bend or arc, and a straight section. The system includes pressure transducers, one or more disposed in the conduit on the outside of the arc, and one disposed in the conduit in a straight section thereof. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow. 1 fig.

  17. Self-charging metering and dispensing device for fluids

    NASA Technical Reports Server (NTRS)

    Hooper, S. L.; Setzer, D. (Inventor)

    1984-01-01

    A self-metering and dispensing device for fluids obtained from a pressurized fluid supply is discussed. Tubing and valving means permit the introduction of fluid into and discharge from a closed cylindrical reservoir. The reservoir contains a slideably disposed piston co-acting with a coil compression spring, with piston travel determining the amount of fluid in the reservoir. Once the determined amount of fluid is introduced into the reservoir, the fluid is discharged by the force of the coil compression spring acting upon the piston.

  18. Contamination Control of Freeze Shoe Coring System for Collection of Aquifer Sands

    NASA Astrophysics Data System (ADS)

    Homola, K.; van Geen, A.; Spivack, A. J.; Grzybowski, B.; Schlottenmier, D.

    2017-12-01

    We have developed and tested an original device, the freeze-shoe coring system, designed to recover undisturbed samples of water contained in sand-dominated aquifers. Aquifer sands are notoriously difficult to collect together with porewater from coincident depths, as high hydraulic permeability leads to water drainage and mixing during retrieval. Two existing corer designs were reconfigured to incorporate the freeze-shoe system; a Hydraulic Piston (HPC) and a Rotary (RC) Corer. Once deployed, liquid CO­2 contained in an interior tank is channeled to coils at the core head where it changes phase, rapidly cooling the deepest portion of the core. The resulting frozen core material impedes water loss during recovery. We conducted contamination tests to examine the integrity of cores retrieved during a March 2017 yard test deployment. Perfluorocarbon tracer (PFC) was added to the drill fluid and recovered cores were subsampled to capture the distribution of PFC throughout the core length and interior. Samples were collected from two HPC and one RC core and analyzed for PFC concentrations. The lowest porewater contamination, around 0.01% invasive fluid, occurs in the center of both HPC cores. The greatest contamination (up to 10%) occurs at the disturbed edges where core material contacts drill fluid. There was lower contamination in the core interior than top, bottom, and edges, as well as significantly lower contamination in HPC cores that those recovered with the RC. These results confirm that the freeze-shoe system, proposed for field test deployments in West Bengal, India, can successfully collect intact porewater and sediment material with minimal if any contamination from drill fluid.

  19. Performance of three different artificial swimmers in Newtonian and complex fluids

    NASA Astrophysics Data System (ADS)

    Godinez, F.; Zenit, R.; Lauga, E.

    2012-11-01

    We present an experimental investigation of three simple swimming devices at low Reynolds number. Each swimmer is composed of a magnetic head attached to a propulsive tail. The robots are driven by an external magnetic field and three different kinds of tails are used: (i) a flexible filament periodically oscillated (the flexible oar mechanism); (ii) a rigid helical filament rotated by the external field (the corkscrew mechanism); (iii) a flexible filament that, when rotated by the field, acquires a conical helical shape (a hybrid case). Each swimmer is tested in two different fluids with the same shear viscosity, a Newtonian and a Boger fluid. Surprisingly, even though the tests were conducted with the same fluid, the results for the viscoelastic fluid are contrastingly different. The device based on flexible oar mechanism swims faster in the Boger fluid than in the Newtonian one; on the contrary, the hybrid device swims at lower speeds in the Boger fluid than in the Newtonian one. And unexpectedly, the device based on the corkscrew mechanism practically swims at the same velocity in both fluids. These results, suggest that the swimming performance of a biomimetic device strongly depends on the details of the swimming actuation. We can conclude that a general viscoelastic effect.

  20. Device and method for measuring fluid flow in a conduit having a gradual bend

    DOEpatents

    Ortiz, M.G.; Boucher, T.J.

    1998-11-10

    A system is described for measuring fluid flow in a conduit having a gradual bend or arc, and a straight section. The system includes pressure transducers, one or more disposed in the conduit on the outside of the arc, and one disposed in the conduit in a straight section thereof. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow. 1 fig.

  1. Device and method for measuring multi-phase fluid flow in a conduit having an abrupt gradual bend

    DOEpatents

    Ortiz, M.G.

    1998-02-10

    A system is described for measuring fluid flow in a conduit having an abrupt bend. The system includes pressure transducers, one disposed in the conduit at the inside of the bend and one or more disposed in the conduit at the outside of the bend but spaced a distance therefrom. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow. 1 fig.

  2. Device and method for measuring fluid flow in a conduit having a gradual bend

    DOEpatents

    Ortiz, Marcos German; Boucher, Timothy J

    1998-01-01

    A system for measuring fluid flow in a conduit having a gradual bend or arc, and a straight section. The system includes pressure transducers, one or more disposed in the conduit on the outside of the arc, and one disposed in the conduit in a straight section thereof. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow.

  3. Device and method for measuring multi-phase fluid flow in a conduit having an abrupt gradual bend

    DOEpatents

    Ortiz, Marcos German

    1998-01-01

    A system for measuring fluid flow in a conduit having an abrupt bend. The system includes pressure transducers, one disposed in the conduit at the inside of the bend and one or more disposed in the conduit at the outside of the bend but spaced a distance therefrom. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow.

  4. 21 CFR 880.6740 - Vacuum-powered body fluid suction apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Vacuum-powered body fluid suction apparatus. 880... Personal Use Miscellaneous Devices § 880.6740 Vacuum-powered body fluid suction apparatus. (a) Identification. A vacuum-powered body fluid suction apparatus is a device used to aspirate, remove, or sample...

  5. 21 CFR 880.6740 - Vacuum-powered body fluid suction apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Vacuum-powered body fluid suction apparatus. 880... Personal Use Miscellaneous Devices § 880.6740 Vacuum-powered body fluid suction apparatus. (a) Identification. A vacuum-powered body fluid suction apparatus is a device used to aspirate, remove, or sample...

  6. Inter-device differences in monitoring for goal-directed fluid therapy.

    PubMed

    Thiele, Robert H; Bartels, Karsten; Gan, Tong-Joo

    2015-02-01

    Goal-directed fluid therapy is an integral component of many Enhanced Recovery After Surgery (ERAS) protocols currently in use. The perioperative clinician is faced with a myriad of devices promising to deliver relevant physiologic data to better guide fluid therapy. The goal of this review is to provide concise information to enable the clinician to make an informed decision when choosing a device to guide goal-directed fluid therapy. The focus of many devices used for advanced hemodynamic monitoring is on providing measurements of cardiac output, while other, more recent, devices include estimates of fluid responsiveness based on dynamic indices that better predict an individual's response to a fluid bolus. Currently available technologies include the pulmonary artery catheter, esophageal Doppler, arterial waveform analysis, photoplethysmography, venous oxygen saturation, as well as bioimpedance and bioreactance. The underlying mechanistic principles for each device are presented as well as their performance in clinical trials relevant for goal-directed therapy in ERAS. The ERAS protocols typically involve a multipronged regimen to facilitate early recovery after surgery. Optimizing perioperative fluid therapy is a key component of these efforts. While no technology is without limitations, the majority of the currently available literature suggests esophageal Doppler and arterial waveform analysis to be the most desirable choices to guide fluid administration. Their performance is dependent, in part, on the interpretation of dynamic changes resulting from intrathoracic pressure fluctuations encountered during mechanical ventilation. Evolving practice patterns, such as low tidal volume ventilation as well as the necessity to guide fluid therapy in spontaneously breathing patients, will require further investigation.

  7. Proteomic Characterization of Dermal Interstitial Fluid Extracted Using a Novel Microneedle-Assisted Technique.

    PubMed

    Tran, Bao Quoc; Miller, Philip R; Taylor, Robert M; Boyd, Gabrielle; Mach, Phillip M; Rosenzweig, C Nicole; Baca, Justin T; Polsky, Ronen; Glaros, Trevor

    2018-01-05

    As wearable fitness devices have gained commercial acceptance, interest in real-time monitoring of an individual's physiological status using noninvasive techniques has grown. Microneedles have been proposed as a minimally invasive technique for sampling the dermal interstitial fluid (ISF) for clinical monitoring and diagnosis, but little is known about its composition. In this study, a novel microneedle array was used to collect dermal ISF from three healthy human donors and compared with matching serum and plasma samples. Using a shotgun quantitative proteomic approach, 407 proteins were quantified with at least one unique peptide, and of those, 135 proteins were differently expressed at least 2-fold. Collectively, these proteins tended to originate from the cytoplasm, membrane bound vesicles, and extracellular vesicular exosomes. Proteomic analysis confirmed previously published work that indicates that ISF is highly similar to both plasma and serum. In this study, less than one percent of proteins were uniquely identified in ISF. Taken together, ISF could serve as a minimally invasive alternative for blood-derived fluids with potential for real-time monitoring applications.

  8. Passive cannabis smoke exposure and oral fluid testing. II. Two studies of extreme cannabis smoke exposure in a motor vehicle.

    PubMed

    Niedbala, R Sam; Kardos, Keith W; Fritch, Dean F; Kunsman, Kenneth P; Blum, Kristen A; Newland, Gregory A; Waga, Joe; Kurtz, Lisa; Bronsgeest, Matth; Cone, Edward J

    2005-10-01

    Two studies were conducted to determine if extreme passive exposure to cannabis smoke in a motor vehicle would produce positive results for delta-tetrahydrocannabinol (THC) in oral fluid. Passive exposure to cannabis smoke in an unventilated room has been shown to produce a transient appearance of THC in oral fluid for up to 30 min. However, it is well known that such factors as room size and extent of smoke exposure can affect results. Questions have also been raised concerning the effects of tobacco when mixed with marijuana and THC content. We conducted two passive cannabis studies under severe passive smoke exposure conditions in an unventilated eight-passenger van. Four passive subjects sat alongside four active cannabis smokers who each smoked a single cannabis cigarette containing either 5.4%, 39.5 mg THC (Study 1) or 10.4%, 83.2 mg THC (Study 2). The cigarettes in Study 1 contained tobacco mixed with cannabis; cigarettes in Study 2 contained only cannabis. Oral fluid specimens were collected from passive and active subjects with the Intercept Oral Specimen Collection Device for 1 h after smoking cessation while inside the van (Study 1) and up to 72 h (passive) or 8 h (active) outside the van. Additionally in Study 1, Intercept collectors were exposed to smoke in the van to assess environmental contamination during collection procedures. For Study 2, all oral fluid collections were outside the van following smoking cessation to minimize environmental contamination. Oral samples were analyzed with the Cannabinoids Intercept MICRO-PLATE EIA and quantitatively by gas chromatography-tandem mass spectrometry (GC-MS-MS). THC concentrations were adjusted for dilution (x 3). The screening and confirmation cutoff concentrations for THC in neat oral fluid were 3 ng/mL and 1.5 ng/mL, respectively. The limits of detection (LOD) and quantitation (LOQ) for THC in the GC-MS-MS assay were 0.3 and 0.75 ng/mL, respectively. Urine specimens were collected, screened (EMIT, 50 ng/mL cutoff), and analyzed by GC-MS-MS for THCCOOH (LOD/LOQ = 1.0 ng/mL). Peak oral fluid THC concentrations in passive subjects recorded at the end of cannabis smoke exposure were up to 7.5 ng/mL (Study 1) and 1.2 ng/mL (Study 2). Thereafter, THC concentrations quickly declined to negative levels within 30-45 min in Study 1. It was found that environmentally exposed Collectors contained 3-14 ng/mL in Study 1. When potential contamination during collection was eliminated in Study 2, all passive subjects were negative at screening/confirmation cutoff concentrations throughout the study. Oral fluid specimens from active smokers had peak concentrations of THC approximately 100-fold greater than passive subjects in both studies. Positive oral fluid results were observed for active smokers 0-8 h. Urine analysis confirmed oral fluid results. These studies clarify earlier findings on the effects of passive cannabis smoke on oral fluid results. Oral fluid specimens collected in the presence of cannabis smoke appear to have been contaminated, thereby falsely elevating THC concentrations in oral fluid. The risk of a positive test for THC was virtually eliminated when specimens were collected in the absence of THC smoke.

  9. Gold nanostructures and methods of use

    DOEpatents

    Zhang, Jin Z [Santa Cruz, CA; Schwartzberg, Adam [Santa Cruz, CA; Olson, Tammy Y [Santa Cruz, CA

    2012-03-20

    The invention is drawn to novel nanostructures comprising hollow nanospheres and nanotubes for use as chemical sensors, conduits for fluids, and electronic conductors. The nanostructures can be used in microfluidic devices, for transporting fluids between devices and structures in analytical devices, for conducting electrical currents between devices and structure in analytical devices, and for conducting electrical currents between biological molecules and electronic devices, such as bio-microchips.

  10. Energy management system for a rotary machine and method therefor

    DOEpatents

    Bowman, Michael John; Sinha, Gautam; Sheldon, Karl Edward

    2004-11-09

    In energy management system is provided for a power generating device having a working fluid intake in which the energy management system comprises an electrical dissipation device coupled to the power generating device and a dissipation device cooling system configured to direct a portion of a working fluid to the electrical dissipation device so as to provide thermal control to the electrical dissipation device.

  11. Gold nanostructures and methods of use

    DOEpatents

    Zhang, Jin Z.; Schwartzberg, Adam; Olson, Tammy Y.

    2016-03-01

    The invention is drawn to novel nanostructures comprising hollow nanospheres and nanotubes for use as chemical sensors, conduits for fluids, and electronic conductors. The nanostructures can be used in microfluidic devices, for transporting fluids between devices and structures in analytical devices, for conducting electrical currents between devices and structure in analytical devices, and for conducting electrical currents between biological molecules and electronic devices, such as bio-microchips.

  12. Field Detection of Drugs of Abuse in Oral Fluid Using the Alere™ DDS®2 Mobile Test System with Confirmation by Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS).

    PubMed

    Krotulski, Alex J; Mohr, Amanda L A; Friscia, Melissa; Logan, Barry K

    2018-04-01

    The collection and analysis of drugs in oral fluid (OF) at the roadside has become more feasible with the introduction of portable testing devices such as the Alere™ DDS®2 Mobile Test System (DDS®2). The objective of this study was to compare the on-site results for the DDS®2 to laboratory-based confirmatory assays with respect to detection of drugs of abuse in human subjects. As part of a larger Institutional Review Board approved study, two OF samples were collected from each participant at a music festival in Miami, FL, USA. One OF sample was field screened using the DDS®2, and a confirmatory OF sample was collected using the Quantisal™ OF collection device and submitted to the laboratory for testing. In total, 124 subjects participated in this study providing two contemporaneous OF samples. DDS®2 field screening yielded positive results for delta-9-tetrahydrocannabinol (THC) (n = 27), cocaine (n = 12), amphetamine (n = 3), methamphetamine (n = 3) and benzodiazepine (n = 1). No opiate-positive OF samples were detected. For cocaine, amphetamine, methamphetamine and benzodiazepines, the DDS®2 displayed sensitivity, specificity and accuracy of 100%. For THC, the DDS®2 displayed sensitivity of 90%, specificity of 100% and accuracy of 97.5%, when the threshold for confirmation matched that of the manufacturers advertised cut-off. When this confirmatory threshold was lowered to the analytical limit of detection (i.e., 1 ng/mL), apparent device performance for THC was poorer due to additional samples testing positive by confirmatory assay that had tested negative on the DDS®2, demonstrating a need for correlation between manufacturer cut-off and analytical reporting limit. These results from drug-using subjects demonstrate the value of field-based OF testing, and illustrate the significance of selecting an appropriate confirmation cut-off concentration with respect to performance evaluation and detection of drug use.

  13. 30 CFR 250.514 - Well-control fluids, equipment, and operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-control, fluid-volume measuring device for determining fluid volumes when filling the hole on trips; and... shall include both a visual and an audible warning device. (c) When coming out of the hole with drill... collars that may be pulled prior to filling the hole and the equivalent well-control fluid volume shall be...

  14. Microfluidic method for measuring viscosity using images from smartphone

    NASA Astrophysics Data System (ADS)

    Kim, Sooyeong; Kim, Kyung Chun; Yeom, Eunseop

    2018-05-01

    The viscosity of a fluid is the most important characteristic in fluid rheology. Many microfluidic devices have been proposed for easily measuring the fluid viscosity of small samples. A hybrid system consisting of a smartphone and microfluidic device can offer a mobile laboratory for performing a wide range of detection and analysis functions related to healthcare. In this study, a new mobile sensing method based on a microfluidic device was proposed for fluid viscosity measurements. By separately delivering sample and reference fluids into the two inlets of a Y-shaped microfluidic device, an interfacial line is induced at downstream of the device. Because the interfacial width (W) between the sample and reference fluid flows was determined by their pressure ratio, the viscosity (μ) of the sample could be estimated by measuring the interfacial width. To distinguish the interfacial width of a sample, optical images of the flows at downstream of the Y-shaped microfluidic device were acquired using a smartphone. To check the measurement accuracy of the proposed method, the viscosities of glycerol mixtures were compared with those measured by a conventional viscometer. The proposed technique was applied to monitor the variations in blood and oil samples depending on storage or rancidity. We expect that this mobile sensing method based on a microfluidic device could be utilized as a viscometer with significant advantages in terms of mobility, ease-of-operation, and data management.

  15. Devices with extended area structures for mass transfer processing of fluids

    DOEpatents

    TeGrotenhuis, Ward E.; Wegeng, Robert S.; Whyatt, Greg A.; King, David L.; Brooks, Kriston P.; Stenkamp, Victoria S.

    2009-04-21

    A microchannel device includes several mass transfer microchannels to receive a fluid media for processing at least one heat transfer microchannel in fluid communication with a heat transfer fluid defined by a thermally conductive wall, and at several thermally conductive fins each connected to the wall and extending therefrom to separate the mass transfer microchannels from one another. In one form, the device may optionally include another heat transfer microchannel and corresponding wall that is positioned opposite the first wall and has the fins and the mass transfer microchannels extending therebetween.

  16. Cross-Sectional Study of Hepatitis A Virus Infection in the Pantanal Population before Vaccine Implementation in Brazil: Usage of Non-Invasive Specimen Collection

    PubMed Central

    Tourinho, Renata Santos; de Almeida, Adilson José; Villar, Livia Melo; Murat, Paula Guerra; Capelin, Gina Jonasson Mousquer; Motta Castro, Ana Rita Coimbra; de Paula, Vanessa Salete

    2015-01-01

    Population-based prevalence studies are essential tools for screening of hepatitis A and provide important data on susceptible groups. However, surveillance in isolated communities is difficult because of the limited access to these areas and the need for blood sample collection. This study aimed to determine the anti-HAV prevalence using oral fluid samples to provide an alternative tool for epidemiological studies that might be useful for vaccination-related decisions. The study population was composed of 224 volunteers from South Pantanal, aged 3 to 86 years old. This study was performed using oral fluids, previously standardized for anti-HAV antibody detection, which were collected using a ChemBio device. Eluates were tested using modified commercial EIA to detect anti-HAV antibodies. The overall prevalence was 79.1%, corresponding to 178 reactive EIA tests out of 224 samples. The age stratified data revealed a prevalence of 47.8% between 0–10 years, 84% in 11–20 years and 91.9% in subjects older than 21 years. Results indicate that hepatitis A prevalence was higher in adolescents and adults, corroborating the literature reports. Thus, oral fluid samples could replace serum in HAV epidemiological studies in isolated communities as they are efficient at detecting anti-HAV antibodies. PMID:26133128

  17. Dose-Response Evaluation of Braslet-M Occlusion Cuffs

    NASA Technical Reports Server (NTRS)

    Ebert, Douglas; Garcia, Kathleen; Sargsyan, Ashot E.; Ham, David; Hamilton, Douglas; Dulchavsky, Scott A.

    2010-01-01

    Introduction: Braslet-M is a set of special elasticized thigh cuffs used by the Russian space agency to reduce the effects of the head-ward fluid shift during early adaptation to microgravity by sequestering fluid in the lower extremities. Currently, no imaging modalities are used in the calibration of the device, and the pressure required to produce a predictable physiological response is unknown. This investigation intends to relate the pressure exerted by the cuffs to the extent of fluid redistribution and commensurate physiological effects. Materials and Methods: Ten healthy subjects with standardized fluid intake participated in the study. Data collection included femoral and internal jugular vein imaging in two orthogonal planes, pulsed Doppler of cervical and femoral vessels and middle cerebral artery, optic nerve imaging, and echocardiography. Braslet-M cuff pressure was monitored at the skin interface using pre-calibrated pressure sensors. Using 6 and 30 head-down tilt in two separate sessions, the effect of Braslet-M was assessed while incrementally tightening the cuffs. Cuffs were then simultaneously released to document the resulting hemodynamic change. Results: Preliminary analysis shows correlation between physical pressure exerted by the Braslet-M device and several parameters such as jugular and femoral vein cross-sections, resistivity of the lower extremity vascular bed, and others. A number of parameters reflect blood redistribution and will be used to determine the therapeutic range of the device and to prevent unsafe application. Conclusion: Braslet-M exerts a physical effect that can be measured and correlated with many changes in central and peripheral hemodynamics. Analysis of the full data set will be required to make definitive recommendations regarding the range of safe therapeutic application. Objective data and subjective responses suggest that a safer and equally effective use of Braslet can be achieved when compared with the current non-imaging calibration techniques.

  18. Condenser design for AMTEC power conversion

    NASA Technical Reports Server (NTRS)

    Crowley, Christopher J.

    1991-01-01

    The condenser and the electrodes are the two elements of an alkali metal thermal-to-electric conversion (AMTEC) cell which most greatly affect the energy conversion performance. A condenser is described which accomplishes two critical functions in an AMTEC cell: management of the fluid under microgravity conditions and optimization of conversion efficiency. The first function is achieved via the use of a controlled surface shape, along with drainage grooves and arteries to collect the fluid. Capillary forces manage the fluid in microgravity and dominate hydrostatic effects on the ground so the device is ground-testable. The second function is achieved via a smooth film of highly reflective liquid sodium on the condensing surface, resulting in minimization of parasitic heat losses due to radiation heat transfer. Power conversion efficiencies of 25 percent to 30 percent are estimated with this condenser using present technology for the electrodes.

  19. Passive micromixers and organic electrochemical transistors for biosensor applications

    NASA Astrophysics Data System (ADS)

    Kanakamedala, Senaka Krishna

    Fluid handling at the microscale has greatly affected different fields such as biomedical, pharmaceutical, biochemical engineering and environmental monitoring due to its reduced reagent consumption, portability, high throughput, lower hardware cost and shorter analysis time compared to large devices. The challenges associated with mixing of fluids in microscale enabled us in designing, simulating, fabricating and characterizing various micromixers on silicon and flexible polyester substrates. The mixing efficiency was evaluated by injecting the fluids through the two inlets and collecting the sample at outlet. The images collected from the microscope were analyzed, and the absorbance of the color product at the outlet was measured to quantify the mixing efficacy. A mixing efficiency of 96% was achieved using a flexible disposable micromixer. The potential for low-cost processing and the device response tuning using chemical doping or synthesis opened doorways to use organic semiconductor devices as transducers in chemical and biological sensor applications. A simple, inexpensive organic electrochemical transistor (OECT) based on conducting polymer poly(3,4- ethyelenedioxythiphene) poly(styrene sulfonate) (PEDOT:PSS) was fabricated using a novel one step fabrication method. The developed transistor was used as a biosensor to detect glucose and glutamate. The developed glucose sensor showed a linear response for the glucose levels ranging from 1 muM-10 mM and showed a decent response for the glucose levels similar to those found in human saliva and to detect glutamate released from brain tumor cells. The developed glutamate sensor was used to detect the glutamate released from astrocytes and glioma cells after stimulation, and the results are compared with fluorescent spectrophotometer. The developed sensors employ simple fabrication, operate at low potentials, utilize lower enzyme concentrations, do not employ enzyme immobilization techniques, require only 5 muL of both enzyme and sample to be tested and show a stable response for a wide pH ranging from 4 to 9.

  20. High density grids

    DOEpatents

    Cohen, Aina E.; Baxter, Elizabeth L.

    2018-01-16

    An X-ray data collection grid device is provided that includes a magnetic base that is compatible with robotic sample mounting systems used at synchrotron beamlines, a grid element fixedly attached to the magnetic base, where the grid element includes at least one sealable sample window disposed through a planar synchrotron-compatible material, where the planar synchrotron-compatible material includes at least one automated X-ray positioning and fluid handling robot fiducial mark.

  1. A modified method using the SonoPrep ultrasonic skin permeation system for sampling human interstitial fluid is compatible with proteomic techniques.

    PubMed

    Lecomte, Marie M J; Atkinson, Kelly R; Kay, Daniel P; Simons, Joanne L; Ingram, John R

    2013-02-01

    The use of biomarkers in skin is a novel diagnostic tool. Interstitial fluid (ISF) from skin provides a snapshot of proteins secreted at the time of sampling giving insights into the patient's health status. A minimally invasive technique for the transdermal collection of human ISF proteins. A low frequency ultrasonic skin permeation device (SonoPrep ultrasonic skin permeation system) was used to produce micropores in the stratum corneum through which ISF was extracted using a portable pulsed vacuum ISF collection device. On average, protein concentrations recovered ranged between 0.064 and 4.792 μg/μL (mean 1.258 μg/μL). Two-dimensional gel electrophoresis revealed that this sample type was amenable to this type of analysis. Gel images indicated that both highly abundant proteins and lower abundance proteins were isolated from the skin. Western blot analysis confirmed the presence of proteins commonly found in plasma and the epidermis. A minimally invasive method for the transdermal recovery of ISF proteins has been developed. We have demonstrated that ISF samples obtained using this approach can be analysed with proteomic techniques, such as two-dimensional gel electrophoresis and western blots, providing another tool for the identification of disease specific protein biomarkers. © 2012 John Wiley & Sons A/S.

  2. Microfluidic separation of motile sperm with millilitre-scale sample capacity

    NASA Astrophysics Data System (ADS)

    Nosrati, Reza; Vollmer, Marion; Eamer, Lise; Zeidan, Krista; San Gabriel, Maria C.; Zini, Armand; Sinton, David

    2012-11-01

    Isolating motile from non-motile spermatozoa has been a challenge since the establishment of in vitro fertilization. Microfluidic approaches have been employed for this purpose, but current devices are limited by low sample volume. Here, we present a high-throughput microfluidic device that separates spermatozoa from one millilitre of raw semen sample based on the hydrodynamic characteristics of swimming sperm in a confined geometry. The device consists of two layers: an outer injection ring on top aligned with a network of radial microchannels at the bottom guiding motile sperm into an inner collection chamber. This approach (1) maximizes exposure of the sperm to the fluid channels, (2) maximizes surface area density (3) prevents fluid flow bias, and (4) employs a non-Newtonian viscoelastic medium consistent with the in vivo environment. Tests with human and bull spermatozoa indicate an increase in motile sperm concentration from 62.2% in raw semen to 99.2% in separated sample combined with a higher incidence of normal morphology. DNA integrity testing is currently underway. In conclusion, we present an effective one-step procedure to perform semen purification and separation on a millilitre-scale with clinically relevant numbers.

  3. A portable extensional rheometer for measuring the viscoelasticity of pitcher plant and other sticky liquids in the field.

    PubMed

    Collett, Catherine; Ardron, Alia; Bauer, Ulrike; Chapman, Gary; Chaudan, Elodie; Hallmark, Bart; Pratt, Lee; Torres-Perez, Maria Dolores; Wilson, D Ian

    2015-01-01

    Biological fluids often have interesting and unusual physical properties to adapt them for their specific purpose. Laboratory-based rheometers can be used to characterise the viscoelastic properties of such fluids. This, however, can be challenging as samples often do not retain their natural properties in storage while conventional rheometers are fragile and expensive devices ill-suited for field measurements. We present a portable, low-cost extensional rheometer designed specifically to enable in situ studies of biological fluids in the field. The design of the device (named Seymour) is based on a conventional capillary break-up extensional rheometer (the Cambridge Trimaster). It works by rapidly stretching a small fluid sample between two metal pistons. A battery-operated solenoid switch triggers the pistons to move apart rapidly and a compact, robust and inexpensive, USB 3 high speed camera is used to record the thinning and break-up of the fluid filament that forms between the pistons. The complete setup runs independently of mains electricity supply and weighs approximately 1 kg. Post-processing and analysis of the recorded images to extract rheological parameters is performed using open source software. The device was tested both in the laboratory and in the field, in Brunei Darussalam, using calibration fluids (silicone oil and carboxymethyl cellulose solutions) as well as Nepenthes pitcher plant trapping fluids as an example of a viscoelastic biological fluid. The fluid relaxation times ranged from 1 ms to over 1 s. The device gave comparable performance to the Cambridge Trimaster. Differences in fluid viscoelasticity between three species were quantified, as well as the change in viscoelasticity with storage time. This, together with marked differences between N. rafflesiana fluids taken from greenhouse and wild plants, confirms the need for a portable device. Proof of concept of the portable rheometer was demonstrated. Quantitative measurements of pitcher plant fluid viscoelasticity were made in the natural habitat for the first time. The device opens up opportunities for studying a wide range of plant fluids and secretions, under varying experimental conditions, or with changing temperatures and weather conditions.

  4. Continuous field-flow separation of particle populations in a dielectrophoretic chip with three dimensional electrodes

    NASA Astrophysics Data System (ADS)

    Iliescu, Ciprian; Tresset, Guillaume; Xu, Guolin

    2007-06-01

    This letter presents a dielectrophoretic (DEP) separation method of particles under continuous flow. The method consists of flowing two particle populations through a microfluidic channel, in which the vertical walls are the electrodes of the DEP device. The irregular shape of the electrodes generates both electric field and fluid velocity gradients. As a result, the particles that exhibit negative DEP can be trapped in the fluidic dead zones, while the particles that experience positive DEP are concentrated in the regions with high velocity and collected at the outlet. The device was tested with dead and living yeast cells.

  5. Development of a static bioactive stent prototype and dynamic aneurysm-on-a-chip(TM) model for the treatment of aneurysms

    NASA Astrophysics Data System (ADS)

    Reece, Lisa M.

    Aneurysms are pockets of blood that collect outside blood vessel walls forming dilatations and leaving arterial walls very prone to rupture. Current treatments include: (1) clipping, and (2) coil embolization, including stent-assisted coiling. While these procedures can be effective, it would be advantageous to design a biologically active stent, modified with magnetic stent coatings, allowing cells to be manipulated to heal the arterial lining. Further, velocity, pressure, and wall shear stresses aid in the disease development of aneurysmal growth, but the shear force mechanisms effecting wound closure is elusive. Due to these factors, there is a definite need to cultivate a new stent device that will aid in healing an aneurysm in situ. To this end, a static bioactive stent device was synthesized. Additionally, to study aneurysm pathogenesis, a lab-on-a-chip device (a dynamic stent device) is the key to discovering the underlying mechanisms of these lesions. A first step to the reality of a true bioactive stent involves the study of cells that can be tested against the biomaterials that constitute the stent itself. The second step is to test particles/cells in a microfluidic environment. Therefore, biocompatability data was collected against PDMS, bacterial nanocellulose (BNC), and magnetic bacterial nanocellulose (MBNC). Preliminary static bioactive stents were synthesized whereby BNC was grown to cover standard nitinol stents. In an offshoot of the original research, a two-dimensional microfluidic model, the Aneurysm-on-a-ChipTM (AOC), was the logical answer to study particle flow within an aneurysm "sac" - this was the dynamic bioactive stent device. The AOC apparatus can track particles/cells when it is coupled to a particle image velocimetry software (PIV) package. The AOC fluid flow was visualized using standard microscopy techniques with commercial microparticles/cells. Movies were taken during fluid flow experiments and PIV was utilized to monitor.

  6. Dual quantification of dapivirine and maraviroc in cervicovaginal secretions from ophthalmic tear strips and polyester-based swabs via liquid chromatographic-tandem mass spectrometric (LC-MS/MS) analysis.

    PubMed

    Parsons, Teresa L; Emory, Joshua F; Seserko, Lauren A; Aung, Wutyi S; Marzinke, Mark A

    2014-09-01

    Topical microbicidal agents are being actively pursued as a modality to prevent HIV viral transmission during sexual intercourse. Quantification of antiretroviral agents in specimen sources where antiviral activity is elicited is critical, and drug measurements in cervicovaginal fluid can provide key information on local drug concentrations. Two antiretroviral drugs, dapivirine and maraviroc, have gained interest as vaginal microbicidal agents, and rugged methods are required for their quantification in cervicovaginal secretions. Cervicovaginal fluid spiked with dapivirine and maraviroc were applied to ophthalmic tear strips or polyester-based swabs to mimic collection procedures used in clinical studies. Following sample extraction and the addition of isotopically labeled internal standards, samples were subjected to liquid chromatographic-tandem mass spectrometric (LC-MS/MS) analysis using a Waters BEH C8, 50mm×2.1mm, 1.7μm particle size column, on an API 4000 mass analyzer operated in selective reaction monitoring mode. The method was validated according to FDA Bioanalytical Method Validation guidelines. Due to the disparate saturation capacity of the tested collection devices, the analytical measuring ranges for dapivirine and maravirocin cervicovaginal fluid on the ophthalmic tear strip were 0.05-25ng/tear strip, and 0.025-25ng/tear strip, respectively. As for the polyester-based swab, the analytical measuring ranges were 0.25-125ng/swab for dapivirine and 0.125-125ng/swab for maraviroc. Dilutional studies were performed for both analytes to extended ranges of 25,000ng/tear strip and 11,250ng/swab. Standard curves were generated via weighted (1/x(2)) linear or quadratic regression of calibrators. Precision, accuracy, stability and matrix effects studies were all performed and deemed acceptable according to the recommendations of the FDA Bioanalytical Method Validation guidelines. A rugged LC-MS/MS method for the dual quantification of dapivirine and maraviroc in cervicovaginal fluid using two unique collection devices has been developed and validated. The described method meets the criteria to support large research trials. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Dual Quantification of Dapivirine and Maraviroc in Cervicovaginal Secretions from Ophthalmic Tear Strips and Polyester-Based Swabs via Liquid Chromatographic-Tandem Mass Spectrometric (LC-MS/MS) Analysis

    PubMed Central

    Parsons, Teresa L.; Emory, Joshua F.; Seserko, Lauren A.; Aung, Wutyi S.; Marzinke, Mark A.

    2014-01-01

    Background Topical microbicidal agents are being actively pursued as a modality to prevent HIV viral transmission during sexual intercourse. Quantification of antiretroviral agents in specimen sources where antiviral activity is elicited is critical, and drug measurements in cervicovaginal fluid can provide key information on local drug concentrations. Two antiretroviral drugs, dapivirine and maraviroc, have gained interest as vaginal microbicidal agents, and rugged methods are required for their quantification in cervicovaginal secretions. Methods Cervicovaginal fluid spiked with dapivirine and maraviroc were applied to ophthalmic tear strips or polyester-based swabs to mimic collection procedures used in clinical studies. Following sample extraction and the addition of isotopically-labeled internal standards, samples were subjected to liquid chromatographic-tandem mass spectrometric (LC-MS/MS) analysis using a Waters BEH C8, 50 × 2.1 mm, 1.7 µm particle size column, on an API 4000 mass analyzer operated in selective reaction monitoring mode. The method was validated according to FDA Bioanalytical Method Validation guidelines. Results Due to the disparate saturation capacity of the tested collection devices, the analytical measuring ranges for dapivirine and maravirocin cervicovaginal fluid on the ophthalmic tear strip were 0.05 to 25 ng/tear strip, and 0.025 to 25 ng/tear strip, respectively. As for the polyester-based swab, the analytical measuring ranges were 0.25 to 125 ng/swab for dapivirine and 0.125 to 125 ng/swab for maraviroc. Dilutional studies were performed for both analytes to extended ranges of 25,000 ng/tear strip and 11,250 ng/swab. Standard curves were generated via weighted (1/x2) linear or quadratic regression of calibrators. Precision, accuracy, stability and matrix effects studies were all performed and deemed acceptable according to the recommendations of the FDA Bioanalytical Method Validation guidelines. Conclusions A rugged LC-MS/MS method for the dual quantification of dapivirine and maraviroc in cervicovaginal fluid using two unique collection devices has been developed and validated. The described method meets the criteria to support large research trials. PMID:25005891

  8. Design of A Cyclone Separator Using Approximation Method

    NASA Astrophysics Data System (ADS)

    Sin, Bong-Su; Choi, Ji-Won; Lee, Kwon-Hee

    2017-12-01

    A Separator is a device installed in industrial applications to separate mixed objects. The separator of interest in this research is a cyclone type, which is used to separate a steam-brine mixture in a geothermal plant. The most important performance of the cyclone separator is the collection efficiency. The collection efficiency in this study is predicted by performing the CFD (Computational Fluid Dynamics) analysis. This research defines six shape design variables to maximize the collection efficiency. Thus, the collection efficiency is set up as the objective function in optimization process. Since the CFD analysis requires a lot of calculation time, it is impossible to obtain the optimal solution by linking the gradient-based optimization algorithm. Thus, two approximation methods are introduced to obtain an optimum design. In this process, an L18 orthogonal array is adopted as a DOE method, and kriging interpolation method is adopted to generate the metamodel for the collection efficiency. Based on the 18 analysis results, the relative importance of each variable to the collection efficiency is obtained through the ANOVA (analysis of variance). The final design is suggested considering the results obtained from two optimization methods. The fluid flow analysis of the cyclone separator is conducted by using the commercial CFD software, ANSYS-CFX.

  9. A multilayer concentric filter device to diminish clogging for separation of particles and microalgae based on size.

    PubMed

    Chen, Chih-Chung; Chen, Yu-An; Liu, Yi-Ju; Yao, Da-Jeng

    2014-04-21

    Microalgae species have great economic importance; they are a source of medicines, health foods, animal feeds, industrial pigments, cosmetic additives and biodiesel. Specific microalgae species collected from the environment must be isolated for examination and further application, but their varied size and culture conditions make their isolation using conventional methods, such as filtration, streaking plate and flow cytometric sorting, labour-intensive and costly. A separation device based on size is one of the most rapid, simple and inexpensive methods to separate microalgae, but this approach encounters major disadvantages of clogging and multiple filtration steps when the size of microalgae varies over a wide range. In this work, we propose a multilayer concentric filter device with varied pore size and is driven by a centrifugation force. The device, which includes multiple filter layers, was employed to separate a heterogeneous population of microparticles into several subpopulations by filtration in one step. A cross-flow to attenuate prospective clogging was generated by altering the rate of rotation instantly through the relative motion between the fluid and the filter according to the structural design of the device. Mixed microparticles of varied size were tested to demonstrate that clogging was significantly suppressed due to a highly efficient separation. Microalgae in a heterogeneous population collected from an environmental soil collection were separated and enriched into four subpopulations according to size in a one step filtration process. A microalgae sample contaminated with bacteria and insect eggs was also tested to prove the decontamination capability of the device.

  10. Fluid driven torsional dipole seismic source

    DOEpatents

    Hardee, Harry C.

    1991-01-01

    A compressible fluid powered oscillating downhole seismic source device capable of periodically generating uncontaminated horizontally-propagated, shear waves is provided. A compressible fluid generated oscillation is created within the device which imparts an oscillation to a housing when the device is installed in a housing such as the cylinder off an existing downhole tool, thereby a torsional seismic source is established. Horizontal waves are transferred to the surrounding bore hole medium through downhole clamping.

  11. RRM3 Fluid Management Device

    NASA Technical Reports Server (NTRS)

    Barfknecht, P.; Benson, D.; Boyle, R.; DeLee, C.; DiPirro, M.; Francis, J.; Li, X.; McGuire, J.; Mustafi, S.; Tuttle, J.; hide

    2015-01-01

    The current development progress of the fluid management device (FMD) for the Robotic Resupply Mission 3 (RRM3) cryogen source Dewar is described. RRM3 is an on-orbit cryogenic transfer experiment payload for the International Space Station. The fluid management device is a key component of the source Dewar to ensure the ullage bubble is located away from the outlet during transfer. The FMD also facilitates demonstration of radio frequency mass gauging within the source Dewar. The preliminary design of the RRM3 FMD is a number of concentric cones of Mylar which maximizes the volume of liquid in contact with the FMD in the source Dewar. This paper describes the design of the fluid management device and progress of hardware development

  12. Deployable Emergency Shutoff Device Blocks High-Velocity Fluid Flows

    NASA Technical Reports Server (NTRS)

    Nabors, Sammy A.

    2015-01-01

    NASA's Marshall Space Flight Center has developed a device and method for blocking the flow of fluid from an open pipe. Motivated by the sea-bed oil-drilling catastrophe in the Gulf of Mexico in 2010, NASA innovators designed the device to plug, control, and meter the flow of gases and liquids. Anchored with friction fittings, spikes, or explosively activated fasteners, the device is well-suited for harsh environments and high fluid velocities and pressures. With the addition of instrumentation, it can also be used as a variable area flow metering valve that can be set based upon flow conditions. With robotic additions, this patent-pending innovation can be configured to crawl into a pipe then anchor and activate itself to block or control fluid flow.

  13. Development of an accurate fluid management system for a pediatric continuous renal replacement therapy device

    PubMed Central

    SANTHANAKRISHNAN, ARVIND; NESTLE, TRENT T.; MOORE, BRIAN L.; YOGANATHAN, AJIT P.; PADEN, MATTHEW L.

    2013-01-01

    Acute kidney injury is common in critically ill children and renal replacement therapies provide a life saving therapy to a subset of these children. However, there is no Food and Drug Administration approved device to provide pediatric continuous renal replacement therapy (CRRT). Consequently, clinicians adapt approved adult CRRT devices for use in children due to lack of safer alternatives. Complications occur using adult CRRT devices in children due to inaccurate fluid balance (FB) between the volumes of ultrafiltrate (UF) removed and replacement fluid (RF) delivered. We demonstrate the design and validation of a pediatric fluid management system for obtaining accurate instantaneous and cumulative FB. Fluid transport was achieved via multiple novel pulsatile diaphragm pumps. The conservation of volume principle leveraging the physical property of fluid incompressibility along with mechanical coupling via a crankshaft was used for FB. Accuracy testing was conducted in vitro for 8-hour long continuous operation of the coupled UF and RF pumps. The mean cumulative FB error was <1% across filtration flows from 300 mL/hour to 3000 mL/hour. This approach of FB control in a pediatric specific CRRT device would represent a significant accuracy improvement over currently used clinical implementations. PMID:23644618

  14. [Markers of dental children`s health in the application of therapeutic orthodontic equipment].

    PubMed

    Пачевська, Аліса В; Білошицька, Аліна В

    Treatment of teeth anomalies using removable and non-removable orthodontic devices in children leads to complications such as caries, gingivitis, periodontitis, oral mucosa hyperplasia. Etiopathogenetical of these diseases can be associated with biochemical changes in the composition of saliva. To determine the activity of lysozyme and amylase in oral fluid in children when using a fixed and removable orthodontic devices. Amylase and lysozyme were studied in oral fluid. Analyzed the biochemical composition of the freshly samples of oral fluid that was obtained in the control, experimental group 1 and 2 (children ages 7-18 years, which were used medical non-removable and removable orthodontic devices). Saliva was collected at the beginning of the therapeutic use of orthodontic devices (the first day of treatment), on 3 and 6 months of treatment. Assessment of lysozyme activity was carried nephelometric method on the ability of lysozyme to dissolve indicator organism Micrococcus lysodeicticus. To construct a calibration graph using dry lysozyme company Sigma. Salivary amylase activity was determined by hydrolysis of starch. The results were subjected to statistical analysis by standard methods. Data processed using software packages applied statistical analysis Statistica 6.0, Microsoft Excel, 2003. The use of a fixed and removable orthodontic equipment led to a decrease in saliva amylase, major changes are observed on the 6th month of treatment. The activity of lysozyme in saliva decreased the mostin patients with a permanent equipment. Major changes were also recorded on the 6th month of treatment. Complications of orthodontic treatment teeth anomalies in children (caries, gingivitis, periodontitis) caused by changes in the biochemical composition of saliva. For the prevention of the emergence and development of these complications is necessary to control the level of amylase and lysozyme in the mouth.

  15. 40 CFR 60.100 - Applicability, designation of affected facility, and reconstruction.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... petroleum refineries: fluid catalytic cracking unit catalyst regenerators, fuel gas combustion devices, and... petroleum refinery. (b) Any fluid catalytic cracking unit catalyst regenerator or fuel gas combustion device...) and (d) of this section. (c) Any fluid catalytic cracking unit catalyst regenerator under paragraph (b...

  16. 40 CFR 60.100 - Applicability, designation of affected facility, and reconstruction.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... petroleum refineries: fluid catalytic cracking unit catalyst regenerators, fuel gas combustion devices, and... petroleum refinery. (b) Any fluid catalytic cracking unit catalyst regenerator or fuel gas combustion device...) and (d) of this section. (c) Any fluid catalytic cracking unit catalyst regenerator under paragraph (b...

  17. 40 CFR 60.100 - Applicability, designation of affected facility, and reconstruction.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... petroleum refineries: fluid catalytic cracking unit catalyst regenerators, fuel gas combustion devices, and... petroleum refinery. (b) Any fluid catalytic cracking unit catalyst regenerator or fuel gas combustion device...) and (d) of this section. (c) Any fluid catalytic cracking unit catalyst regenerator under paragraph (b...

  18. System and Method for Traversing Pipes

    NASA Technical Reports Server (NTRS)

    Graf, Jodi (Inventor); Pettinger, Ross (Inventor); Azimi, Shaun (Inventor); Magruder, Darby (Inventor); Ridley, Justin (Inventor); Lapp, Anthony (Inventor)

    2017-01-01

    A system and method is provided for traversing inside one or more pipes. In an embodiment, a fluid is injected into the one or more pipes thereby promoting a fluid flow. An inspection device is deployed into the one or more pipes at least partially filled with a flowing fluid. The inspection device comprises a housing wherein the housing is designed to exploit the hydrokinetic effects associated with a fluid flow in one or more pipes as well as maneuver past a variety of pipe configurations. The inspection device may contain one or more sensors capable of performing a variety of inspection tasks.

  19. Microparticle analysis system and method

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R. (Inventor)

    2007-01-01

    A device for analyzing microparticles is provided which includes a chamber with an inlet and an outlet for respectively introducing and dispensing a flowing fluid comprising microparticles, a light source for providing light through the chamber and a photometer for measuring the intensity of light transmitted through individual microparticles. The device further includes an imaging system for acquiring images of the fluid. In some cases, the device may be configured to identify and determine a quantity of the microparticles within the fluid. Consequently, a method for identifying and tracking microparticles in motion is contemplated herein. The method involves flowing a fluid comprising microparticles in laminar motion through a chamber, transmitting light through the fluid, measuring the intensities of the light transmitted through the microparticles, imaging the fluid a plurality of times and comparing at least some of the intensities of light between different images of the fluid.

  20. RFQ accelerator tuning system

    DOEpatents

    Bolie, V.W.

    1990-07-03

    A cooling system is provided for maintaining a preselected operating temperature in a device, which may be an RFQ accelerator, having a variable heat removal requirement, by circulating a cooling fluid through a cooling system remote from the device. Internal sensors in the device enable an estimated error signal to be generated from parameters which are indicative of the heat removal requirement from the device. Sensors are provided at predetermined locations in the cooling system for outputting operational temperature signals. Analog and digital computers define a control signal functionally related to the temperature signals and the estimated error signal, where the control signal is defined effective to return the device to the preselected operating temperature in a stable manner. The cooling system includes a first heat sink responsive to a first portion of the control signal to remove heat from a major portion of the circulating fluid. A second heat sink is responsive to a second portion of the control signal to remove heat from a minor portion of the circulating fluid. The cooled major and minor portions of the circulating fluid are mixed in response to a mixing portion of the control signal, which is effective to proportion the major and minor portions of the circulating fluid to establish a mixed fluid temperature which is effective to define the preselected operating temperature for the remote device. In an RFQ environment the stable temperature control enables the resonant frequency of the device to be maintained at substantially a predetermined value during transient operations. 3 figs.

  1. RFQ accelerator tuning system

    DOEpatents

    Bolie, Victor W.

    1990-01-01

    A cooling system is provided for maintaining a preselected operating temperature in a device, which may be an RFQ accelerator, having a variable heat removal requirement, by circulating a cooling fluid through a cooling system remote from the device. Internal sensors in the device enable an estimated error signal to be generated from parameters which are indicative of the heat removal requirement from the device. Sensors are provided at predetermined locations in the cooling system for outputting operational temperature signals. Analog and digital computers define a control signal functionally related to the temperature signals and the estimated error signal, where the control signal is defined effective to return the device to the preselected operating temperature in a stable manner. The cooling system includes a first heat sink responsive to a first portion of the control signal to remove heat from a major portion of the circulating fluid. A second heat sink is responsive to a second portion of the control signal to remove heat from a minor portion of the circulating fluid. The cooled major and minor portions of the circulating fluid are mixed in response to a mixing portion of the control signal, which is effective to proportion the major and minor portions of the circulating fluid to establish a mixed fluid temperature which is effective to define the preselected operating temperature for the remote device. In an RFQ environment the stable temperature control enables the resonant frequency of the device to be maintained at substantially a predetermined value during transient operations.

  2. Simultaneous analysis of psychotropic phenylalkylamines in oral fluid by GC-MS with automated SPE and its application to legal cases.

    PubMed

    Choi, Hyeyoung; Baeck, Seungkyung; Jang, Moonhee; Lee, Sooyeun; Choi, Hwakyung; Chung, Heesun

    2012-02-10

    Phenylalkylamine derivatives, such as methamphetamine (MA), amphetamine (AM), 3,4-methylenedioxymethamphetamine (MDMA), 3,4-methylenedioxyamphetamine (MDA), phentermine (PT), fenfluramine (FFA) and phenmetrazine (PM), and ketamine (KT) are widely abused recreational or anorectic drugs in Korea and are regulated under the Controlled Substance Act in Korea. Phenylalkylamines and ketamine analysis is normally performed using both urine and hair samples but there is no established method for the simultaneous analysis of all these phenylalkylamines and ketamine in oral fluids. Oral fluid is easy to collect/handle and can provide an indication of recent drug abuse. In this study, to confirm the presence of phenylalkylamine derivatives and ketamine in oral fluid after screening with an immunoassay, an analytical method using automated solid phase extraction (SPE) and gas chromatography-mass spectrometry (GC-MS) was developed and fully validated according to international guidelines. The applicability of the assay was demonstrated by analyzing of authentic oral fluid samples and the results of oral fluid analysis were compared with those in urine and hair to to evaluate the feasibility of oral fluid in forensic cases. The recovery of phenylalkylamines and ketamine from oral fluid collection devices was also assessed. Oral fluid specimens from 23 drug abuse suspects submitted by the police were collected using Salivette (Sarstedt, Nümbrecht, Germany), Quantisal (Immunalysis, Pomona, CA) or direct expectoration. The samples were screened using a biochip array analyzer (Evidence Investigator, Randox, Antrim, UK). For confirmation, the samples were analyzed by GC-MS in selected-ion monitoring (SIM) mode after extraction using automated SPE (RapidTrace, Zymark, MA, USA) with a mixed-mode cation exchange cartridge (CLEAN SCREEN, 130 mg/3 ml, UCT, PA, USA) and derivatization with trifluoroacetic anhydride (TFA). The results from the immunoassay were consistent with those from GC-MS. Twenty oral fluid samples gave positive results for MA, AM, PT and/or PM among the 23 cases, which gave positive results in urine and/or hair. Although large variations in the MA, AM, PT and PM concentrations were observed in three different specimens, the oral fluid specimen was useful for demonstrating phenylalkylamines and ketamine abuse as an alternative specimen for urine. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  3. 21 CFR 862.1435 - Ketones (nonquantitative) test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test...) test system is a device intended to identify ketones in urine and other body fluids. Identification of... acidity of body fluids) or ketosis (a condition characterized by increased production of ketone bodies...

  4. 21 CFR 862.1435 - Ketones (nonquantitative) test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test...) test system is a device intended to identify ketones in urine and other body fluids. Identification of... acidity of body fluids) or ketosis (a condition characterized by increased production of ketone bodies...

  5. 21 CFR 862.2730 - Osmometer for clinical use.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory Instruments § 862... to measure the osmotic pressure of body fluids. Osmotic pressure is the pressure required to prevent... device are used in the diagnosis and treatment of body fluid disorders. (b) Classification. Class I...

  6. 21 CFR 862.1435 - Ketones (nonquantitative) test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test...) test system is a device intended to identify ketones in urine and other body fluids. Identification of... acidity of body fluids) or ketosis (a condition characterized by increased production of ketone bodies...

  7. 21 CFR 862.2730 - Osmometer for clinical use.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory Instruments § 862... to measure the osmotic pressure of body fluids. Osmotic pressure is the pressure required to prevent... device are used in the diagnosis and treatment of body fluid disorders. (b) Classification. Class I...

  8. 21 CFR 862.2730 - Osmometer for clinical use.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory Instruments § 862... to measure the osmotic pressure of body fluids. Osmotic pressure is the pressure required to prevent... device are used in the diagnosis and treatment of body fluid disorders. (b) Classification. Class I...

  9. 21 CFR 862.2730 - Osmometer for clinical use.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory Instruments § 862... to measure the osmotic pressure of body fluids. Osmotic pressure is the pressure required to prevent... device are used in the diagnosis and treatment of body fluid disorders. (b) Classification. Class I...

  10. Apparatus for removing a contaminant from a fluid stream

    DOEpatents

    Brewster, M.D.; Posa, R.P.

    1998-12-22

    A device for removing a contaminant from a fluid stream flowing within a conduit is disclosed. The device includes a container and a barrier. The container has a first wall generated about an axis and a second wall generated about the same axis. The first wall defines a first volume therewithin, while the first and second walls define an annular second volume therebetween. Both the first and second volumes are sealed at one end of the device, while at the other end of the device the second volume only is sealed. A filter material occupies the second volume. The first and second walls are permeable to the fluid stream and are capable of retaining the filter material in the second volume. The barrier is impermeable to the fluid stream and creates a seal between the second wall and the conduit wall. The barrier is positioned adjacent the other end of the device such that when the other end of the device is the upstream end, the fluid stream must sequentially pass into the first volume, through the first wall, into the second volume and through the filter material, and through the second wall. 4 figs.

  11. Apparatus for removing a contaminant from a fluid stream

    DOEpatents

    Brewster, Michael D.; Posa, Richard P.

    1998-01-01

    A device for removing a contaminant from a fluid stream flowing within a conduit is disclosed. The device includes a container and a barrier. The container has a first wall generated about an axis and a second wall generated about the same axis. The first wall defines a first volume therewithin, while the first and second walls define an annular second volume therebetween. Both the first and second volumes are sealed at one end of the device, while at the other end of the device the second volume only is sealed. A filter material occupies the second volume. The first and second walls are permeable to the fluid stream and are capable of retaining the filter material in the second volume. The barrier is impermeable to the fluid stream and creates a seal between the second wall and the conduit wall. The barrier is positioned adjacent the other end of the device such that when the other end of the device is the upstream end, the fluid stream must sequentially pass into the first volume, through the first wall, into the second volume and through the filter material, and through the second wall.

  12. Lift producing device exhibiting low drag and reduced ventilation potential and method for producing the same

    NASA Technical Reports Server (NTRS)

    Caldwell, Richard A. (Inventor)

    1991-01-01

    A lift producing device is disclosed which is adapted to be connected to a vehicle to provide lift to the vehicle when the vehicle is moved relative to a first fluid medium having a first density and viscosity and being in contact with a second fluid medium adjacent the vehicle. The second fluid medium has a second fluid density which is different from the first fluid density. The lift producing device comprises opposed first and second major surfaces joined at a longitudinally extending leading edge and at a longitudinally extending trailing edge, with at least a portion of the longitudinally extending leading edge being spaced from the longitudinally extending trailing edge by a predetermined mean chord length. When the vehicle is moved relative to the first fluid medium at a velocity within a range of predetermined velocities, with each of the velocities having a direction inclined from a plane extending through the leading edge and the trailing edge within a predetermined angular range, a region of high pressure is generated in the first fluid medium adjacent the first major surface and a region of low pressure is generated in the first fluid medium adjacent the second major surface. The lift producing device has a cross-sectional shape which will generate a pressure distribution around the device when the vehicle is moved relative to the first fluid medium at a velocity within the range of predetermined velocities such that the first fluid medium exhibits attached laminar flow along the device for a portion of the predetermined mean chord length from the leading edge to the trailing edge and will neither form a laminar separation bubble adjacent the second major surface of the device, nor exhibit turbulent separation adjacent the second major surface for substantially all of the predetermined mean chord length from the leading edge to the trailing edge. The portion along which attached laminar flow is maintained is the longest portion which will still fulfill the flow separation requirements. A method for producing the foil is also disclosed.

  13. A cell impedance measurement device for the cytotoxicity assay dependent on the velocity of supplied toxic fluid

    NASA Astrophysics Data System (ADS)

    Kang, Yoon-Tae; Kim, Min-Ji; Cho, Young-Ho

    2018-04-01

    We present a cell impedance measurement chip capable of characterizing the toxic response of cells depending on the velocity of the supplied toxic fluid. Previous impedance-based devices using a single open-top chamber have been limited to maintaining a constant supply velocity, and devices with a single closed-top chamber present difficulties in simultaneous cytotoxicity assay for varying levels of supply velocities. The present device, capable of generating constant and multiple levels of toxic fluid velocity simultaneously within a single stepwise microchannel, performs a cytotoxicity assay dependent on toxic fluid velocity, in order to find the effective velocity of toxic fluid to cells for maximizing the cytotoxic effect. We analyze the cellular toxic response of 5% ethanol media supplied to cancer cells within a toxic fluid velocity range of 0-8.3 mm s-1. We observe the velocity-dependent cell detachment rate, impedance, and death rate. We find that the cell detachment rate decreased suddenly to 2.4% at a velocity of 4.4 mm s-1, and that the change rates of cell resistance and cell capacitance showed steep decreases to 8% and 41%, respectively, at a velocity of 5.7 mm s-1. The cell death rate and impedance fell steeply to 32% at a velocity of 5.7 mm s-1. We conclude that: (1) the present device is useful in deciding on the toxic fluid velocity effective to cytotoxicity assay, since the cellular toxic response is dependent on the velocity of toxic fluid, and; (2) the cell impedance analysis facilitates a finer cellular response analysis, showing better correlation with the cell death rate, compared to conventional visual observation. The present device, capable of performing the combinational analysis of toxic fluid velocity and cell impedance, has potential for application to the fine cellular toxicity assay of drugs with proper toxic fluid velocity.

  14. Fluid control structures in microfluidic devices

    DOEpatents

    Mathies, Richard A.; Grover, William H.; Skelley, Alison; Lagally, Eric; Liu, Chung N.

    2008-11-04

    Methods and apparatus for implementing microfluidic analysis devices are provided. A monolithic elastomer membrane associated with an integrated pneumatic manifold allows the placement and actuation of a variety of fluid control structures, such as structures for pumping, isolating, mixing, routing, merging, splitting, preparing, and storing volumes of fluid. The fluid control structures can be used to implement a variety of sample introduction, preparation, processing, and storage techniques.

  15. Fluid control structures in microfluidic devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathies, Richard A.; Grover, William H.; Skelley, Alison

    2017-05-09

    Methods and apparatus for implementing microfluidic analysis devices are provided. A monolithic elastomer membrane associated with an integrated pneumatic manifold allows the placement and actuation of a variety of fluid control structures, such as structures for pumping, isolating, mixing, routing, merging, splitting, preparing, and storing volumes of fluid. The fluid control structures can be used to implement a variety of sample introduction, preparation, processing, and storage techniques.

  16. Fluid control structures in microfluidic devices

    NASA Technical Reports Server (NTRS)

    Skelley, Alison (Inventor); Mathies, Richard A. (Inventor); Lagally, Eric (Inventor); Grover, William H. (Inventor); Liu, Chung N. (Inventor)

    2008-01-01

    Methods and apparatus for implementing microfluidic analysis devices are provided. A monolithic elastomer membrane associated with an integrated pneumatic manifold allows the placement and actuation of a variety of fluid control structures, such as structures for pumping, isolating, mixing, routing, merging, splitting, preparing, and storing volumes of fluid. The fluid control structures can be used to implement a variety of sample introduction, preparation, processing, and storage techniques.

  17. Centrifugal separators and related devices and methods

    DOEpatents

    Meikrantz, David H [Idaho Falls, ID; Law, Jack D [Pocatello, ID; Garn, Troy G [Idaho Falls, ID; Macaluso, Lawrence L [Carson City, NV; Todd, Terry A [Aberdeen, ID

    2012-03-06

    Centrifugal separators and related methods and devices are described. More particularly, centrifugal separators comprising a first fluid supply fitting configured to deliver fluid into a longitudinal fluid passage of a rotor shaft and a second fluid supply fitting sized and configured to sealingly couple with the first fluid supply fitting are described. Also, centrifugal separator systems comprising a manifold having a drain fitting and a cleaning fluid supply fitting are described, wherein the manifold is coupled to a movable member of a support assembly. Additionally, methods of cleaning centrifugal separators are described.

  18. Methods for separating a fluid, and devices capable of separating a fluid

    DOEpatents

    TeGrotenhuis, Ward E; Humble, Paul H; Caldwell, Dustin D

    2013-05-14

    Methods and apparatus for separating fluids are disclosed. We have discovered that, surprisingly, providing an open pore structure between a wick and an open flow channel resulted in superior separation performance. A novel and compact integrated device components for conducting separations are also described.

  19. Development and field application of a 6-bottle serial gas-tight fluid sampler for collecting seafloor cold seep and hydrothermal vent fluids with autonomous operation capability

    NASA Astrophysics Data System (ADS)

    Wu, S.; Ding, K.; Yang, C.; Seyfried, W. E., Jr.; Tan, C.; Schaen, A. T.; Luhmann, A. J.

    2014-12-01

    A 6-bottle serial gas-tight sampler (so-called "six-shooter") was developed for application with deep-sea vent fluids. The new device is composed of a custom-made 6-channel valve manifold and six sampling bottles which are circularly distributed around the valve manifold. Each valve channel consists of a high-pressure titanium cartridge valve and a motor-driven actuator. A sampling snorkel is connected to the inlet of the manifold that delivers the incoming fluid to different bottles. Each sampling bottle has a 160 ml-volume chamber and an accumulator chamber inside where compressed nitrogen is used to maintain the sample at near in-situ pressure. An electronics chamber that is located at the center of the sampler is used to carry out all sampling operations, autonomously, if desired. The sampler is of a compact circular configuration with a diameter of 26 cm and a length of 54 cm. During the SVC cruise AT 26-12, the sampler was deployed by DSV2 Alvin at a cold seep site MC036 with a depth of 1090 m in the Gulf of Mexico. The sampler collected fluid samples automatically following the tidal cycle to monitor the potential impact of the tide cycle on the fluid chemistry of cold seep in a period of two day. During the cruise AT 26-17, the sampler was used with newly upgraded DSV2 Alvin three times at the hydrothermal vent sites along Axial Seamount and Main Endeavor Field on Juan de Fuca Ridge. During a 4-day deployment at Anemone diffuse site (Axial Caldera), the sampler was set to work in an autonomous mode to collect fluid samples according to the preset interval. During other dives, the sampler was manually controlled via ICL (Inductively Coupled Link) communication through the hull. Gas-tight fluid samples were collected from different hydrothermal vents with temperatures between 267 ℃ and 335 ℃ at the depth up to 2200 m. The field results indicate unique advantages of the design. It can be deployed in extended time period with remote operation or working autonomously taking gas-tight fluid samples. If used with HOV or ROV, it will reduce basket space occupation and ICL communication cables compared to traditional single-bottle gas-tight samplers. This time serial gas-tight fluid sampler will be further developed into a 36 bottle system for remote operation with seafloor cabled observatory.

  20. Valve for fluid control

    DOEpatents

    Oborny, Michael C.; Paul, Phillip H.; Hencken, Kenneth R.; Frye-Mason, Gregory C.; Manginell, Ronald P.

    2001-01-01

    A valve for controlling fluid flows. This valve, which includes both an actuation device and a valve body provides: the ability to incorporate both the actuation device and valve into a unitary structure that can be placed onto a microchip, the ability to generate higher actuation pressures and thus control higher fluid pressures than conventional microvalves, and a device that draws only microwatts of power. An electrokinetic pump that converts electric potential to hydraulic force is used to operate, or actuate, the valve.

  1. RFQ (radio-frequency quadrupole) accelerator tuning system

    DOEpatents

    Bolie, V.W.

    1988-04-12

    A cooling system is provided for maintaining a preselected operating temperature in a device, which may be an RFQ accelerator, having a variable heat removal requirement, by circulating a cooling fluid through a cooling system remote from the device. Internal sensors in the device enable an estimated error signal to be generated from parameters which are indicative of the heat removal requirement from the device. Sensors are provided at predetermined locations in the cooling system for outputting operational temperature signals. Analog and digital computers define a control signal functionally related to the temperature signals and the estimated error signal, where the control signal is defined effective to return the device to the preselected operating temperature in a stable manner. The cooling system includes a first heat sink responsive to a first portion of the control signal to remove heat from a major portion of the circulating fluid. A second heat sink is responsive to a second portion of the control to remove heat from a minor portion of the circulating fluid. The cooled major and minor portions of the circulating fluid are mixed in responsive to a mixing portion of the control signal, which is effective to proportion the major and minor portions of the circulating fluid to establish a mixed fluid temperature which is effective to define the preselected operating temperature for the remote device. 3 figs., 2 tabs.

  2. Concentration of Micro and Nanoparticles in Sessile Droplets Using Asymmetric Surface Wave Irradiation

    NASA Astrophysics Data System (ADS)

    Friend, James; Yeo, Leslie; Li, Haiyan

    2007-11-01

    A rapid particle concentration method in sessile droplets and confined fluid chambers has been developed using asymmetric surface wave propagation on a substrate upon which the droplet is placed. Nanometre-order vibration induced along the substrate at frequencies from 8 to 125 MHz generate a combination of forces upon suspended particles and the fluid droplet itself via diffraction to provide localized agglomeration of nanoparticles into microstructures, followed by rapid collection of the microstructures to a single point at the centre of the droplet in about 2 to 30 seconds. This is far faster than other currently available particle concentration mechanisms due to the large convective velocities achieved using the device. The ability to control the collection via surface wave power and the effect of scale on the collection time and scheme of agglomeration are explained via a physical model, verified using fluorescent polystyrene particles from 20 nm to 45 microns in diameter. The usefulness of the method for bioparticles is illustrated through rapid concentration of yeast and mouse mesenchymal stem cells which remain viable and functional after concentration.

  3. Heat pump/refrigerator using liquid working fluid

    DOEpatents

    Wheatley, John C.; Paulson, Douglas N.; Allen, Paul C.; Knight, William R.; Warkentin, Paul A.

    1982-01-01

    A heat transfer device is described that can be operated as a heat pump or refrigerator, which utilizes a working fluid that is continuously in a liquid state and which has a high temperature-coefficient of expansion near room temperature, to provide a compact and high efficiency heat transfer device for relatively small temperature differences as are encountered in heating or cooling rooms or the like. The heat transfer device includes a pair of heat exchangers that may be coupled respectively to the outdoor and indoor environments, a regenerator connecting the two heat exchangers, a displacer that can move the liquid working fluid through the heat exchangers via the regenerator, and a means for alternately increasing and decreasing the pressure of the working fluid. The liquid working fluid enables efficient heat transfer in a compact unit, and leads to an explosion-proof smooth and quiet machine characteristic of hydraulics. The device enables efficient heat transfer as the indoor-outdoor temperature difference approaches zero, and enables simple conversion from heat pumping to refrigeration as by merely reversing the direction of a motor that powers the device.

  4. Portable Intravenous Fluid Production Device for Ground Use

    NASA Technical Reports Server (NTRS)

    Scarpa, Philip J.; Scheuer, Wolfgang K.

    2012-01-01

    There are several medical conditions that require intravenous (IV) fluids. Limitations of mass, volume, storage space, shelf-life, transportation, and local resources can restrict the availability of such important fluids. These limitations are expected in long-duration space exploration missions and in remote or austere environments on Earth. Current IV fluid production requires large factory-based processes. Easy, portable, on-site production of IV fluids can eliminate these limitations. Based on experience gained in developing a device for spaceflight, a ground-use device was developed. This design uses regular drinking water that is pumped through two filters to produce, in minutes, sterile, ultrapure water that meets the stringent quality standards of the United States Pharmacopeia for Water for Injection (Total Bacteria, Conductivity, Endotoxins, Total Organic Carbon). The device weighs 2.2 lb (1 kg) and is 10 in. long, 5 in. wide, and 3 in. high (.25, 13, and 7.5 cm, respectively) in its storage configuration. This handheld device produces one liter of medical-grade water in 21 minutes. Total production capacity for this innovation is expected to be in the hundreds of liters.

  5. Trace level detection of analytes using artificial olfactometry

    NASA Technical Reports Server (NTRS)

    Lewis, Nathan S. (Inventor); Severin, Erik J. (Inventor); Wong, Bernard (Inventor)

    2002-01-01

    The present invention provides a device for detecting the presence of an analyte, such as for example, a lightweight device, including: a sample chamber having a fluid inlet port for the influx of the analyte; a fluid concentrator in flow communication with the sample chamber wherein the fluid concentrator has an absorbent material capable of absorbing the analyte and capable of desorbing a concentrated analyte; and an array of sensors in fluid communication with the concentrated analyte to be released from the fluid concentrator.

  6. Air elimination capability in rapid infusion systems.

    PubMed

    Zoremba, N; Gruenewald, C; Zoremba, M; Rossaint, R; Schaelte, G

    2011-11-01

    Pressure infusion devices are used in clinical practice to apply large volumes of fluid over a short period of time. Although air infusion is a major complication, they have limited capability to detect and remove air during pressure infusion. In this investigation, we tested the air elimination capabilities of the Fluido(®) (The Surgical Company), Level 1(®) (Level 1 Technologies Inc.) and Ranger(®) (Augustine Medical GmbH) pressure infusion devices. Measurements were undertaken with a crystalloid solution during an infusion flow of 100, 200, 400 and 800 ml.min(-1). Four different volumes of air (25, 50, 100 and 200 ml) were injected as boluses in one experimental setting, or infused continuously over the time needed to perfuse 2 l saline in the other setting. The perfusion fluid was collected in an airtight infusion bag and the amount of air obtained in the bag was measured. The delivered air volume was negligible and would not cause any significant air embolism in all experiments. In our experimental setting, we found, during high flow, an increased amount of uneliminated air in all used devices compared with lower perfusion flows. All tested devices had a good air elimination capability. The use of ultrasonic air detection coupled with an automatic shutoff is a significant safety improvement and can reliably prevent accidental air embolism at rapid flows. © 2011 The Authors. Anaesthesia © 2011 The Association of Anaesthetists of Great Britain and Ireland.

  7. Low Level Leaks

    NASA Technical Reports Server (NTRS)

    1998-01-01

    NASA has transferred the improved portable leak detector technology to UE Systems, Inc.. This instrument was developed to detect leaks in fluid systems of critical launch and ground support equipment. This system incorporates innovative electronic circuitry, improved transducers, collecting horns, and contact sensors that provide a much higher degree of reliability, sensitivity and versatility over previously used systems. Potential commercial uses are pipelines, underground utilities, air-conditioning systems, petrochemical systems, aerospace, power transmission lines and medical devices.

  8. 21 CFR 862.1630 - Protein (fractionation) test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test... body fluids. Protein fractionations are used as an aid in recognizing abnormal proteins in body fluids...

  9. 21 CFR 862.1630 - Protein (fractionation) test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test... body fluids. Protein fractionations are used as an aid in recognizing abnormal proteins in body fluids...

  10. 21 CFR 862.1630 - Protein (fractionation) test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test... body fluids. Protein fractionations are used as an aid in recognizing abnormal proteins in body fluids...

  11. 21 CFR 862.1630 - Protein (fractionation) test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test... body fluids. Protein fractionations are used as an aid in recognizing abnormal proteins in body fluids...

  12. Activated-Carbon Sorbent With Integral Heat-Transfer Device

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.; Yavrouian, Andre

    1996-01-01

    Prototype adsorption device used, for example, in adsorption heat pump, to store natural gas to power automobile, or to separate components of fluid mixtures. Device includes activated carbon held together by binder and molded into finned heat-transfer device providing rapid heating or cooling to enable rapid adsorption or desorption of fluids. Concepts of design and fabrication of device equally valid for such other highly thermally conductive devices as copper-finned tubes, and for such other high-surface-area sorbents as zeolites or silicates.

  13. Pharmacodynamic effects and relationships to plasma and oral fluid pharmacokinetics after intravenous cocaine administration.

    PubMed

    Ellefsen, Kayla N; Concheiro, Marta; Pirard, Sandrine; Gorelick, David A; Huestis, Marilyn A

    2016-06-01

    No controlled cocaine administration data describe cocaine and metabolite disposition in oral fluid (OF) collected with commercially-available collection devices, OF-plasma ratios, and pharmacodynamic relationships with plasma and OF cocaine and metabolite concentrations. Eleven healthy, cocaine-using adults received 25mg intravenous cocaine. Physiological and subjective effects (visual analogue scales), and plasma were collected one hour prior, and up to 21h post-dose. OF was collected with the Quantisal™ device up to 69h post-dose. Cocaine, benzoylecgonine (BE) and ecgonine methyl ester were quantified in plasma by liquid chromatography-tandem mass spectrometry; cocaine and BE were quantified in OF by two dimensional-gas chromatography-mass spectrometry. Increases in heart rate, blood pressure and positive subjective effects occurred within the first 15min, persisting up to 1h ("Rush"), with clockwise hysteresis observed for plasma and OF concentrations and some subjective measures. Peak subjective effects ("Rush," "Good drug effect" and "Bad drug effect") occurred prior to peak OF cocaine concentration, whereas observed peak plasma concentrations and subjective measures occurred simultaneously, most likely due to significantly earlier plasma Tmax compared to OF Tmax.Tlast was generally longer in OF (12.5h cocaine; 33.0h BE) than plasma (9.5h cocaine; >21h BE, cutoffs 1μg/L); 8 and 10μg/L OF cocaine confirmatory cutoffs yielded detection times similar to cocaine's impairing effects, suggesting usefulness for DUID testing. OF offers advantages as an alternative matrix to blood and plasma for identifying cocaine intake, defining pharmacokinetic parameters at different confirmation cutoffs, and aiding different drug testing programs to best achieve their monitoring goals. Copyright © 2016. Published by Elsevier Ireland Ltd.

  14. Technical note: A simple rumen collection device for calves: An adaptation of a manual rumen drenching system.

    PubMed

    Klopp, R N; Oconitrillo, M J; Sackett, A; Hill, T M; Schlotterbeck, R L; Lascano, G J

    2018-07-01

    A limited amount of research is available related to the rumen microbiota of calves, yet there has been a recent spike of interest in determining the diversity and development of calf rumen microbial populations. To study the microbial populations of a calf's rumen, a sample of the rumen fluid is needed. One way to take a rumen fluid sample from a calf is by fistulating the animal. This method requires surgery and can be very stressful on a young animal that is trying to adapt to a new environment and has a depressed immune system. Another method that can be used instead of fistulation surgery is a rumen pump. This method requires a tube to be inserted into the rumen through the calf's esophagus. Once inside the rumen, fluid can be pumped out and collected in a few minutes. This method is quick, inexpensive, and does not cause significant stress on the animal. This technical note presents the materials and methodology used to convert a drenching system into a rumen pump and its respective utilization in 2 experiments using dairy bull calves. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. Surface-Micromachined Microfluidic Devices

    DOEpatents

    Galambos, Paul C.; Okandan, Murat; Montague, Stephen; Smith, James H.; Paul, Phillip H.; Krygowski, Thomas W.; Allen, James J.; Nichols, Christopher A.; Jakubczak, II, Jerome F.

    2004-09-28

    Microfluidic devices are disclosed which can be manufactured using surface-micromachining. These devices utilize an electroosmotic force or an electromagnetic field to generate a flow of a fluid in a microchannel that is lined, at least in part, with silicon nitride. Additional electrodes can be provided within or about the microchannel for separating particular constituents in the fluid during the flow based on charge state or magnetic moment. The fluid can also be pressurized in the channel. The present invention has many different applications including electrokinetic pumping, chemical and biochemical analysis (e.g. based on electrophoresis or chromatography), conducting chemical reactions on a microscopic scale, and forming hydraulic actuators. Microfluidic devices are disclosed which can be manufactured using surface-micromachining. These devices utilize an electroosmotic force or an electromagnetic field to generate a flow of a fluid in a microchannel that is lined, at least in part, with silicon nitride. Additional electrodes can be provided within or about the microchannel for separating particular constituents in the fluid during the flow based on charge state or magnetic moment. The fluid can also be pressurized in the channel. The present invention has many different applications including electrokinetic pumping, chemical and biochemical analysis (e.g. based on electrophoresis or chromatography), conducting chemical reactions on a microscopic scale, and forming hydraulic actuators.

  16. Differential capacitance probe for process control involving aqueous dielectric fluids

    DOEpatents

    Svoboda, John M.; Morrison, John L.

    2002-10-08

    A differential capacitance probe device for process control involving aqueous dielectric fluids is disclosed. The device contains a pair of matched capacitor probes configured in parallel, one immersed in a sealed container of reference fluid, and the other immersed in the process fluid. The sealed container holding the reference fluid is also immersed in the process fluid, hence both probes are operated at the same temperature. Signal conditioning measures the difference in capacitance between the reference probe and the process probe. The resulting signal is a control error signal that can be used to control the process.

  17. Particle-Based Microfluidic Device for Providing High Magnetic Field Gradients

    NASA Technical Reports Server (NTRS)

    Wong, Tak S. (Inventor); Lin, Adam Y. (Inventor)

    2013-01-01

    A microfluidic device for manipulating particles in a fluid has a device body that defines a main channel therein, in which the main channel has an inlet and an outlet. The device body further defines a particulate diverting channel therein, the particulate diverting channel being in fluid connection with the main channel between the inlet and the outlet of the main channel and having a particulate outlet. The microfluidic device also has a plurality of microparticles arranged proximate or in the main channel between the inlet of the main channel and the fluid connection of the particulate diverting channel to the main channel. The plurality of microparticles each comprises a material in a composition thereof having a magnetic susceptibility suitable to cause concentration of magnetic field lines of an applied magnetic field while in operation. A microfluidic particle-manipulation system has a microfluidic particle-manipulation device and a magnet disposed proximate the microfluidic particle-manipulation device.

  18. Volumetric Analysis of Gingival Crevicular Fluid and Peri-Implant Sulcus Fluid in Healthy and Diseased Sites: A Cross-Sectional Split-Mouth Pilot Study

    PubMed Central

    Bevilacqua, Lorenzo; De Biasi, Matteo; Lorenzon, Maria Giulia; Frattini, Costanza; Angerame, Daniele

    2016-01-01

    Background: Researchers have recently drawn attention to the analysis of gingival crevicular fluid (GCF) and peri-implant sulcus fluid (PISF) for the implementation of the diagnosis of periodontal and peri-implant disease. Nevertheless, the measurements of volume and biomarkers concentration can be critically biased when data collected from studies with parallel group design are compared, given the technical difficulties, methodological variables, as well as the variability of crevicular fluid characteristics among different individuals. Objective: The aim of the present study was to assess the GCF and PISF volumes in healthy and diseased sites belonging to the same patient. Method: Ten patients presenting a periodontally healthy tooth, a tooth with periodontitis, an implant with healthy peri-implant tissues and an implant with peri-implantitis were enrolled. Samples of GCF and PISF were collected from each site of interest and their volume measured with a Periotron 8000 device. Non-parametric statistical analysis was performed to test the significance of the differences in GCF and PISF volumes between i) sites of teeth and dental implants with the same condition of health or disease and ii) healthy and diseased sites of both teeth and dental implants subgroups. The correlation between probing pocket depth (PPD) and fluid production was also tested (p<0.05). Results: Healthy periodontal and peri-implant tissues produced comparable amounts of fluid that was significantly lower than in diseased sites (p<0.05). In the presence of diagnosed disease, the volumes of GCF and PISF were similar, too. The correlation between PPD and fluid production was significant only in healthy sites (PPD/GCF, ρ=0.890, p<0.001; PPD/PISF, ρ=0.810; p<0.005). Conclusion: The periodontal and peri-implant tissues behaved similarly in terms of fluid production in condition of both health and active disease. PMID:27335614

  19. Device for temporarily closing duct-formers in well completion apparatus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zandmer, H.M.; Zandmer, S.M.

    A duct-forming device is disclosed for use in a well completion apparatus of the kind, wherein a bore hole casing is positioned in a bore hole and duct-forming devices of alkali- and acid resistant metal-such as steel-are secured at spaced levels to the casing in alignment with holes machined in the casing wall. In accordance with the invention, a closure device is arranged within the duct-forming device which permits flow of predetermined amounts of liquid, such as acid, from the interior of the casing through the duct-forming device and into the producing formation, while gradually being moved by the liquidmore » into a position in which such fluid flow is prevented. After the fluid flow has been stopped by the closure device and when the formation pressure exceeds the pressure within the duct-forming device and the casing, fluid from the formation then forces the closure device toward and into the casing space to permit thereafter free flow of formation fluid into the duct-forming device and the casing or of pressurized treatment liquid from the casing into the formation. The inventive arrangement permits inter alia the establishment of a sufficient and substantially uniform feeding rate of treatment liquid, such as acid, from the casing into the producing formation through all the duct-formers in preparation for subsequent acidification or other treatments, such as sand fracking.« less

  20. Microfluidic device and methods for focusing fluid streams using electroosmotically induced pressures

    DOEpatents

    Jacobson, Stephen C.; Ramsey, J. Michael

    2010-06-01

    A microfabricated device employing a bridging membrane and methods for electrokinetic transport of a liquid phase biological or chemical material using the same are described. The bridging membrane is deployed in or adjacent to a microchannel and permits either electric current flow or the transport of gas species, while inhibiting the bulk flow of material. The use of bridging membranes in accordance with this invention is applicable to electrokinetically inducing fluid flow to confine a selected material in a region of a microchannel that is not influenced by an electric field. Other structures for inducing fluid flow in accordance with this invention include nanochannel bridging membranes and alternating current fluid pumping devices. Applications of the bridging membranes according to this invention include the separation of species from a sample material, valving of fluids in a microchannel network, mixing of different materials in a microchannel, and the pumping of fluids.

  1. Electrically controlled adjustable-resistance exercise equipment employing magnetorheological fluid

    NASA Astrophysics Data System (ADS)

    Lukianovich, Alex; Ashour, Osama N.; Thurston, Wilbert L.; Rogers, Craig A.; Chaudhry, Zaffir A.

    1996-05-01

    Magnetorheological (MR) fluids consist of stable suspensions of magnetic particles in a carrying fluid. The magnetorheological effect is one of the direct influences on the mechanical properties of a fluid. It represents a reversible increase, due to an external magnetic field, of the effective viscosity. Besides the variation of the rheological properties (viscosity, elasticity, and plasticity), the magnetic properties of the fluid (permeability and susceptibility), as well as the thermal and acoustic properties, are strongly influenced when an external magnetic field is applied. MR fluids have many appealing applications in the area of vibration control. The distinguishing feature of any MR fluid device is the absence of moving mechanical parts and the extreme simplicity of construction and technology. The most important element of any MR fluid device is an MR valve, which is functionally a controllable hydraulic resistance. As a demonstration of such devices, two commercially available pieces of exercise equipment, a cross stepper and a bench press, were modified to incorporate MR fluid and an external MR valve. As the magnetic field strength operating across the MR valve is adjusted, the viscosity of the flowing MR fluid changes and, accordingly, the needed force is adjusted.

  2. Portable device and method for determining permeability characteristics of earth formations

    DOEpatents

    Shuck, Lowell Z.

    1977-01-01

    The invention is directed to a device which is used for determining permeability characteristics of earth formations at the surface thereof. The determination of the maximum permeability direction and the magnitude of permeability are achieved by employing a device comprising a housing having a central fluid-injection port surrounded by a plurality of spaced-apart fluid flow and pressure monitoring ports radially extending from the central injection port. With the housing resting on the earth formation in a relatively fluid-tight manner as provided by an elastomeric pad disposed therebetween, fluid is injected through the central port into the earth formation and into registry with the fluid-monitoring ports disposed about the injection port. The fluid-monitoring ports are selectively opened and the flow of the fluid through the various fluid ports is measured so as to provide a measurement of flow rates and pressure distribution about the center hole which is indicative on the earth formation permeability direction and magnitude. For example, the azimuthal direction of the fluid-monitoring ports in the direction through which the greatest amount of injected fluid flows as determined by the lowest pressure distribution corresponds to the direction of maximum permeability in the earth formation.

  3. Performance of three systems for warming intravenous fluids at different flow rates.

    PubMed

    Satoh, J; Yamakage, M; Wasaki, S I; Namiki, A

    2006-02-01

    This study compared the intravenous fluid warming capabilities of three systems at different flow rates. The devices studied were a water-bath warmer, a dry-heat plate warmer, and an intravenous fluid tube warmer Ambient temperature was controlled at 22 degrees to 24 degrees C. Normal saline (0.9% NaCl) at either room temperature (21 degrees to 23 degrees C) or at ice-cold temperature (3 degrees to 5 degrees C) was administered through each device at a range of flow rates (2 to 100 ml/min). To mimic clinical conditions, the temperature of the fluid was measured with thermocouples at the end of a one metre tube connected to the outflow of the warmer for the first two devices and at the end of the 1.2 m warming tubing for the intravenous fluid tube warmer The temperature of fluid delivered by the water bath warmer increased as the flow rate was increased up to 15 to 20 ml/min but decreased with greater flow rates. The temperature of the fluid delivered by the dry-heat plate warmer significantly increased as the flow rate was increased within the range tested (due to decreased cooling after leaving the device at higher flow rates). The temperature of fluid delivered by the intravenous fluid tube warmer did not depend on the flow rate up to 20 ml/min but significantly and fluid temperature-dependently decreased at higher flow rates (>30 ml/min). Under the conditions of our testing, the dry heat plate warmer delivered the highest temperature fluid at high flow rates.

  4. Multiphase flows with digital and traditional microfluidics

    NASA Astrophysics Data System (ADS)

    Nilsson, Michael A.

    Multi-phase fluid systems are an important concept in fluid mechanics, seen every day in how fluids interact with solids, gases, and other fluids in many industrial, medical, agricultural, and other regimes. In this thesis, the development of a two-dimensional digital microfluidic device is presented, followed by the development of a two-phase microfluidic diagnostic tool designed to simulate sandstone geometries in oil reservoirs. In both instances, it is possible to take advantage of the physics involved in multiphase flows to affect positive outcomes in both. In order to make an effective droplet-based digital microfluidic device, one must be able to precisely control a number of key processes including droplet positioning, motion, coalescence, mixing, and sorting. For planar or open microfluidic devices, many of these processes have yet to be demonstrated. A suitable platform for an open system is a superhydrophobic surface, as suface characteristics are critical. Great efforts have been spent over the last decade developing hydrophobic surfaces exhibiting very large contact angles with water, and which allow for high droplet mobility. We demonstrate that sanding Teflon can produce superhydrophobic surfaces with advancing contact angles of up to 151° and contact angle hysteresis of less than 4°. We use these surfaces to characterize droplet coalescence, mixing, motion, deflection, positioning, and sorting. This research culminates with the presentation of two digital microfluidic devices: a droplet reactor/analyzer and a droplet sorter. As global energy usage increases, maximizing oil recovery from known reserves becomes a crucial multiphase challenge in order to meet the rising demand. This thesis presents the development of a microfluidic sandstone platform capable of quickly and inexpensively testing the performance of fluids with different rheological properties on the recovery of oil. Specifically, these microfluidic devices are utilized to examine how shear-thinning, shear-thickening, and viscoelastic fluids affect oil recovery. This work begins by looking at oil displacement from a microfluidic sandstone device, then investigates small-scale oil recovery from a single pore, and finally investigates oil displacement from larger scale, more complex microfluidic sandstone devices of varying permeability. The results demonstrate that with careful fluid design, it is possible to outperform current commercial additives using the patent-pending fluid we developed. Furthermore, the resulting microfluidic sandstone devices can reduce the time and cost of developing and testing of current and new enhanced oil recovery fluids.

  5. 21 CFR 862.1455 - Lecithin/sphingomyelin ratio in amniotic fluid test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1455 Lecithin/sphingomyelin ratio in amniotic fluid test system. (a...

  6. Prosthetic occlusive device for an internal passageway

    NASA Technical Reports Server (NTRS)

    Tenney, J. B., Jr. (Inventor)

    1983-01-01

    An occlusive device is disclosed for surgical implant to occlude the lumen of an internal organ. The device includes a cuff having a backing collar and two isolated cuff chambers. The fluid pressure of one chamber is regulated by a pump/valve reservoir unit. The other chamber is unregulated in pressure but its fluid volume is adjusted by removing or adding fluid to a septum/reservoir by means of a hypodermic needle. Pressure changes are transmitted between the two cuff chambers via faying surfaces which are sufficiently large in contact area and thin as to transmit pressure generally without attenuation. By adjusting the fluid volume of the septum, the operating pressure of the device may be adjusted to accommodate tubular organs of different diameter sizes as well as to compensate for changes in the organ following implant without reoperation.

  7. Exploration of microfluidic devices based on multi-filament threads and textiles: A review

    PubMed Central

    Nilghaz, A.; Ballerini, D. R.; Shen, W.

    2013-01-01

    In this paper, we review the recent progress in the development of low-cost microfluidic devices based on multifilament threads and textiles for semi-quantitative diagnostic and environmental assays. Hydrophilic multifilament threads are capable of transporting aqueous and non-aqueous fluids via capillary action and possess desirable properties for building fluid transport pathways in microfluidic devices. Thread can be sewn onto various support materials to form fluid transport channels without the need for the patterned hydrophobic barriers essential for paper-based microfluidic devices. Thread can also be used to manufacture fabrics which can be patterned to achieve suitable hydrophilic-hydrophobic contrast, creating hydrophilic channels which allow the control of fluids flow. Furthermore, well established textile patterning methods and combination of hydrophilic and hydrophobic threads can be applied to fabricate low-cost microfluidic devices that meet the low-cost and low-volume requirements. In this paper, we review the current limitations and shortcomings of multifilament thread and textile-based microfluidics, and the research efforts to date on the development of fluid flow control concepts and fabrication methods. We also present a summary of different methods for modelling the fluid capillary flow in microfluidic thread and textile-based systems. Finally, we summarized the published works of thread surface treatment methods and the potential of combining multifilament thread with other materials to construct devices with greater functionality. We believe these will be important research focuses of thread- and textile-based microfluidics in future. PMID:24086179

  8. Fluid flow sensing with ionic polymer-metal composites

    NASA Astrophysics Data System (ADS)

    Stalbaum, Tyler; Trabia, Sarah; Shen, Qi; Kim, Kwang J.

    2016-04-01

    Ionic polymer-metal composite (IPMC) actuators and sensors have been developed and modeled over the last two decades for use as soft-robotic deformable actuators and sensors. IPMC devices have been suggested for application as underwater actuators, energy harvesting devices, and medical devices such as in guided catheter insertion. Another interesting application of IPMCs in flow sensing is presented in this study. IPMC interaction with fluid flow is of interest to investigate the use of IPMC actuators as flow control devices and IPMC sensors as flow sensing devices. An organized array of IPMCs acting as interchanging sensors and actuators could potentially be designed for both flow measurement and control, providing an unparalleled tool in maritime operations. The underlying physics for this system include the IPMC ion transport and charge fundamental framework along with fluid dynamics to describe the flow around IPMCs. An experimental setup for an individual rectangular IPMC sensor with an externally controlled fluid flow has been developed to investigate this phenomenon and provide further insight into the design and application of this type of device. The results from this portion of the study include recommendations for IPMC device designs in flow control.

  9. 30 CFR 250.1623 - Well-control fluids, equipment, and operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... measuring device for determining fluid volumes when filling the hole on trips, and (3) A recording mud-pit... and an audible warning device. (c) When coming out of the hole with drill pipe or a workover string... that may be pulled prior to filling the hole and the equivalent well-control fluid volume shall be...

  10. 30 CFR 250.1623 - Well-control fluids, equipment, and operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... measuring device for determining fluid volumes when filling the hole on trips, and (3) A recording mud-pit... and an audible warning device. (c) When coming out of the hole with drill pipe or a workover string... that may be pulled prior to filling the hole and the equivalent well-control fluid volume shall be...

  11. 30 CFR 250.1623 - Well-control fluids, equipment, and operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... measuring device for determining fluid volumes when filling the hole on trips, and (3) A recording mud-pit... and an audible warning device. (c) When coming out of the hole with drill pipe or a workover string... that may be pulled prior to filling the hole and the equivalent well-control fluid volume shall be...

  12. Gas powered fluid gun with recoil mitigation

    DOEpatents

    Grubelich, Mark C; Yonas, Gerold

    2013-11-12

    A gas powered fluid gun for propelling a stream or slug of a fluid at high velocity toward a target. Recoil mitigation is provided that reduces or eliminates the associated recoil forces, with minimal or no backwash. By launching a quantity of water in the opposite direction, net momentum forces are reduced or eliminated. Examples of recoil mitigation devices include a cone for making a conical fluid sheet, a device forming multiple impinging streams of fluid, a cavitating venturi, one or more spinning vanes, or an annular tangential entry/exit.

  13. Sampling device for withdrawing a representative sample from single and multi-phase flows

    DOEpatents

    Apley, Walter J.; Cliff, William C.; Creer, James M.

    1984-01-01

    A fluid stream sampling device has been developed for the purpose of obtaining a representative sample from a single or multi-phase fluid flow. This objective is carried out by means of a probe which may be inserted into the fluid stream. Individual samples are withdrawn from the fluid flow by sampling ports with particular spacings, and the sampling parts are coupled to various analytical systems for characterization of the physical, thermal, and chemical properties of the fluid flow as a whole and also individually.

  14. Gas powered fluid gun with recoil mitigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grubelich, Mark C.; Yonas, Gerold

    A gas powered fluid gun for propelling a stream or slug of a fluid at high velocity toward a target. Recoil mitigation is provided that reduces or eliminates the associated recoil forces, with minimal or no backwash. By launching a quantity of water in the opposite direction, net momentum forces are reduced or eliminated. Examples of recoil mitigation devices include a cone for making a conical fluid sheet, a device forming multiple impinging streams of fluid, a cavitating venturi, one or more spinning vanes, or an annular tangential entry/exit.

  15. Sample preparation and detection device for infectious agents

    DOEpatents

    Miles, Robin R.; Wang, Amy W.; Fuller, Christopher K.; Lemoff, Asuncion V.; Bettencourt, Kerry A.; Yu, June

    2003-06-10

    A sample preparation and analysis device which incorporates both immunoassays and PCR assays in one compact, field-portable microchip. The device provides new capabilities in fluid and particle control which allows the building of a fluidic chip with no moving parts, thus decreasing fabrication cost and increasing the robustness of the device. The device can operate in a true continuous (not batch) mode. The device incorporates magnetohydrodynamic (MHD) pumps to move the fluid through the system, acoustic mixing and fractionation, dielectropheretic (DEP) sample concentration and purification, and on-chip optical detection capabilities.

  16. Foot pedal operated fluid type exercising device

    NASA Technical Reports Server (NTRS)

    Crum, G. W.; Sauter, R. J. (Inventor)

    1973-01-01

    A foot pedal operated exercising device is reported that contains a dynamometer formed of a pair of cylinders each containing a piston. The pistons are linked to each other. The upper portions of the two cylinders are joined together by a common opening to provide a common fluid reservoir and each piston is provided with a one way check valve to maintain an adequate supply of working fluid. Fluid from the driven cylinder is transmitted to the other cylinder through separate constant force spring biased valves each valve takes the predominant portion of the pressure drop thereby providing a constant force hydraulic dynamometer. A device is provided to determine the amount of movement of piston travel.

  17. Method and apparatus for fluid dispersion

    DOEpatents

    Stone, Howard A.; Anna, Shelley L.; Bontoux, Nathalie; Link, Darren Roy; Weitz, David A.; Gitlin, Irina; Kumacheva, Eugenia; Garstecki, Piotr; Diluzio, Willow R.; Whitesides, George M.

    2012-12-25

    A microfluidic method and device for focusing and/or forming discontinuous sections of similar or dissimilar size in a fluid is provided. The device can be fabricated simply from readily-available, inexpensive material using simple techniques.

  18. Method and apparatus for fluid dispersion

    DOEpatents

    Stone, Howard A; Anna, Shelley L; Bontoux, Nathalie; Link, Darren Roy; Weitz, David A; Gitlin, Irina; Kumacheva, Eugenia; Garstecki, Piotr; Diluzio, Willow R; Whitesides, George M

    2015-03-24

    A microfluidic method and device for focusing and/or forming discontinuous sections of similar or dissimilar size in a fluid is provided. The device can be fabricated simply from readily-available, inexpensive material using simple techniques.

  19. Method and apparatus for fluid dispersion

    DOEpatents

    Stone, Howard A.; Anna, Shelley L.; Bontoux, Nathalie; Link, Darren R.; Weitz, David A.; Gitlin, Irina; Kumacheva, Eugenia; Garstecki, Piotr; Diluzio, Willow; Whitesides, George M.

    2010-05-04

    A microfluidic method and device for focusing and/or forming discontinuous sections of similar or dissimilar size in a fluid is provided. The device can be fabricated simply from readily-available, inexpensive material using simple techniques.

  20. Quantification and significance of fluid shear stress field in biaxial cell stretching device.

    PubMed

    Thompson, Mark S; Abercrombie, Stuart R; Ott, Claus-Eric; Bieler, Friederike H; Duda, Georg N; Ventikos, Yiannis

    2011-07-01

    A widely used commercially available system for the investigation of mechanosensitivity applies a biaxial strain field to cells cultured on a compliant silicone substrate membrane stretched over a central post. As well as intended substrate strain, this device also provides a fluid flow environment for the cultured cells. In order to interpret the relevance of experiments using this device to the in vivo and clinical situation, it is essential to characterise both substrate and fluid environments. While previous work has detailed the substrate strain, the fluid shear stresses, to which bone cells are known to be sensitive, are unknown. Therefore, a fluid structure interaction computational fluid dynamics model was constructed, incorporating a finite element technique capable of capturing the contact between the post and the silicone substrate membrane, to the underside of which the pump control pressure was applied. Flow verification experiments using 10-μm-diameter fluorescent microspheres were carried out. Fluid shear stress increased approximately linearly with radius along the on-post substrate membrane, with peak values located close to the post edge. Changes in stimulation frequency and culture medium viscosity effected proportional changes in the magnitude of the fluid shear stress (peak fluid shear stresses varied in the range 0.09-3.5 Pa), with minor effects on temporal and spatial distribution. Good agreement was obtained between predicted and measured radial flow patterns. These results suggest a reinterpretation of previous data obtained using this device to include the potential for a strong role of fluid shear stress in mechanosensitivity.

  1. Integrated reactor and centrifugal separator and uses thereof

    DOEpatents

    Birdwell, Jr., Joseph F; Jennings, Harold L [Clinton, TN; McFarlane, Joanna [Oak Ridge, TN; Tsouris, Constantino [Oak Ridge, TN

    2012-01-17

    An apparatus for providing reaction of fluids and separation of products with increased residence time. The apparatus includes a stationary shell, a rotating hollow cylindrical component disposed in the stationary shell, a residence-time increasing device external to the stationary shell, a standpipe for introducing fluid into an interior cavity of the hollow cylindrical component from the residence-time increasing device, a first outlet in fluid flow communication with the interior cavity of the hollow cylindrical component for a less dense phase fluid, and a second outlet in fluid flow communication with the interior cavity of the hollow cylindrical component for a more dense phase fluid.

  2. 21 CFR 880.2460 - Electrically powered spinal fluid pressure monitor.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Electrically powered spinal fluid pressure monitor. 880.2460 Section 880.2460 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL HOSPITAL AND PERSONAL USE DEVICES General Hospital and Personal Use Monitoring Devices § 880.2460...

  3. Implantable drug therapy device: A concept

    NASA Technical Reports Server (NTRS)

    Feldstein, C.

    1972-01-01

    Design is described of small, rechargeable, implantable infusor which contains fluid medicament stored under pressure and which dispenses fluid continuously through catheter. Body of infusor is covered by pliable silicone rubber sheath attached to suture pad for securing device.

  4. Progress in the development and integration of fluid flow control tools in paper microfluidics.

    PubMed

    Fu, Elain; Downs, Corey

    2017-02-14

    Paper microfluidics is a rapidly growing subfield of microfluidics in which paper-like porous materials are used to create analytical devices. There is a need for higher performance field-use tests for many application domains including human disease diagnosis, environmental monitoring, and veterinary medicine. A key factor in creating high performance paper-based devices is the ability to manipulate fluid flow within the devices. This critical review is focused on the progress that has been made in (i) the development of fluid flow control tools and (ii) the integration of those tools into paper microfluidic devices. Further, we strive to be comprehensive in our presentation and provide historical context through discussion and performance comparisons, when possible, of both relevant earlier work and recent work. Finally, we discuss the major areas of focus for fluid flow methods development to advance the potential of paper microfluidics for high-performance field applications.

  5. Matrix isolation apparatus with extended sample collection capability

    DOEpatents

    Reedy, Gerald T.

    1987-01-01

    A gas-sample collection device provides for the matrix isolation of increased amounts of a sample material for spectrographic analysis from a gas chromatographic separation. The device includes an evacuated sample collection chamber containing a disc-like specular carousel having a generally circular lateral surface upon which the sample is deposited in an inert gas matrix for infrared (IR) spectral analysis. The evacuated sample chamber is mounted in a fixed manner and is coupled to and supports a rotating cryostatic coupler which, in turn, supports the specular carousel within the collection chamber. A rotational drive system connected to the cryostatic coupler provides for its rotational displacement as well as that of the sample collecting carousel. In addition, rotation of the cryostatic coupler effects vertical displacement of the carousel to permit the collection of an extended sample band in a helical configuration on the entire lateral surface of the carousel. The various components of the carousel's angular/linear displacement drive system are located exterior to the cryostatic coupler for easy access and improved operation. The cryostatic coupler includes a 360.degree. rotary union assembly for permitting the delivery of a high pressure working fluid to the cryostatic coupler in a continuous flow manner for maintaining the specular carousel at a low temperature, e.g., 10.degree.-20.degree. K., for improved uninterrupted gas sample collection and analysis.

  6. Simple, robust storage of drops and fluids in a microfluidic device.

    PubMed

    Boukellal, Hakim; Selimović, Seila; Jia, Yanwei; Cristobal, Galder; Fraden, Seth

    2009-01-21

    We describe a single microfluidic device and two methods for the passive storage of aqueous drops in a continuous stream of oil without any external control but hydrodynamic flow. Advantages of this device are that it is simple to manufacture, robust under operation, and drops never come into contact with each other, making it unnecessary to stabilize drops against coalescence. In one method the device can be used to store drops that are created upstream from the storage zone. In the second method the same device can be used to simultaneously create and store drops from a single large continuous fluid stream without resorting to the usual flow focusing or T-junction drop generation processes. Additionally, this device stores all the fluid introduced, including the first amount, with zero waste. Transport of drops in this device depends, however, on whether or not the aqueous drops wet the device walls. Analysis of drop transport in these two cases is presented. Finally, a method for extraction of the drops from the device is also presented, which works best when drops do not wet the walls of the chip.

  7. Impact of Flow Rate, Collection Devices, and Extraction Methods on Tear Concentrations Following Oral Administration of Doxycycline in Dogs and Cats.

    PubMed

    Sebbag, Lionel; Showman, Lucas; McDowell, Emily M; Perera, Ann; Mochel, Jonathan P

    2018-04-30

    Compare the precision of doxycycline quantification in tear fluid collected with either Schirmer strips or polyvinyl acetal (PVA) sponges following oral drug administration. Three dogs and 3 cats were administered doxycycline orally at a dose of 4.2-5 mg/kg every 12 h for 6 consecutive days. At day 5 and 6, blood and tear fluid were sampled to capture doxycycline trough and maximal concentrations. Tear fluid was collected 3 times (spaced 10 min apart) at each session with the absorbent material placed in the lower conjunctival fornix until the 20-mm mark was reached (Schirmer strip, one eye) or for 1 min (PVA sponge, other eye). Tear extraction was performed with either centrifugation or elution in methanol. Doxycycline concentrations were measured with liquid chromatography-mass spectrometry. Low (100 ng/mL) and high (1,000 ng/mL) tear concentrations measured in vivo were spiked into each absorbent material in vitro to evaluate percentage drug recovery. After oral administration of doxycycline, the drug reached the tear compartment at concentrations of 45.1-900.7 ng/mL in cats and 45.4-632.0 ng/mL in dogs, representing a tear-to-serum ratio of 12% and 16%, respectively. Doxycycline tear concentrations were significantly more precise when tear collection was performed with Schirmer strips rather than PVA sponges (P = 0.007), but were not correlated with tear flow rate. In vitro doxycycline recovery was poor to moderate (<75%). Schirmer strips represent a good option for lacrimal doxycycline quantification, although the collection and subsequent extraction have to be optimized to improve drug recovery.

  8. AutoSyP: A Low-Cost, Low-Power Syringe Pump for Use in Low-Resource Settings.

    PubMed

    Juarez, Alexa; Maynard, Kelley; Skerrett, Erica; Molyneux, Elizabeth; Richards-Kortum, Rebecca; Dube, Queen; Oden, Z Maria

    2016-10-05

    This article describes the design and evaluation of AutoSyP, a low-cost, low-power syringe pump intended to deliver intravenous (IV) infusions in low-resource hospitals. A constant-force spring within the device provides mechanical energy to depress the syringe plunger. As a result, the device can run on rechargeable battery power for 66 hours, a critical feature for low-resource settings where the power grid may be unreliable. The device is designed to be used with 5- to 60-mL syringes and can deliver fluids at flow rates ranging from 3 to 60 mL/hour. The cost of goods to build one AutoSyP device is approximately $500. AutoSyP was tested in a laboratory setting and in a pilot clinical study. Laboratory accuracy was within 4% of the programmed flow rate. The device was used to deliver fluid to 10 healthy adult volunteers and 30 infants requiring IV fluid therapy at Queen Elizabeth Central Hospital in Blantyre, Malawi. The device delivered fluid with an average mean flow rate error of -2.3% ± 1.9% for flow rates ranging from 3 to 60 mL/hour. AutoSyP has the potential to improve the accuracy and safety of IV fluid delivery in low-resource settings. © The American Society of Tropical Medicine and Hygiene.

  9. Flow characterization and patch clamp dose responses using jet microfluidics in a tubeless microfluidic device.

    PubMed

    Resto, Pedro J; Bhat, Abhishek; Stava, Eric; Lor, Chong; Merriam, Elliot; Diaz-Rivera, Ruben E; Pearce, Robert; Blick, Robert; Williams, Justin C

    2017-11-01

    Surface tension passive pumping is a way to actuate flow without the need for pumps, tubing or valves by using the pressure inside small drop to move liquid via a microfluidic channel. These types of tubeless devices have typically been used in cell biology. Herein we present the use of tubeless devices as a fluid exchange platform for patch clamp electrophysiology. Inertia from high-speed droplets and jets is used to create flow and perform on-the-fly mixing of solutions. These are then flowed over GABA transfected HEK cells under patch in order to perform a dose response analysis. TIRF imaging and electrical recordings are used to study the fluid exchange properties of the microfluidic device, resulting in 0-90% fluid exchange times of hundreds of milliseconds. COMSOL is used to model flow and fluid exchange within the device. Patch-clamping experiments show the ability to use high-speed passive pumping and its derivatives for studying peak dose responses, but not for studying ion channel kinetics. Our system results in fluid exchange times slower than when using a standard 12-barrel application system and is not as stable as traditional methods, but it offers a new platform with added functionality. Surface tension passive pumping and tubeless devices can be used in a limited fashion for electrophysiology. Users may obtain peak dose responses but the system, in its current form, is not capable of fluid exchange fast enough to study the kinetics of most ion channels. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Trace level detection of analytes using artificial olfactometry

    NASA Technical Reports Server (NTRS)

    Wong, Bernard (Inventor); Lewis, Nathan S. (Inventor); Severin, Erik J. (Inventor)

    2001-01-01

    The present invention provides a device for detecting the presence of an analyte, wherein said analyte is a microorganism marker gas. The device comprises a sample chamber having a fluid inlet port for the influx of the microorganism marker gas; a fluid concentrator in flow communication with the sample chamber, wherein the fluid concentrator has an absorbent material capable of absorbing the microorganism marker gas and thereafter releasing a concentrated microorganism marker gas; and an array of sensors in fluid communication with the concentrated microorganism marker gas. The sensor array detects and identifies the marker gas upon its release from fluid concentrate.

  11. Enzyme-Powered Pumps: From Fundamentals to Applications

    NASA Astrophysics Data System (ADS)

    Ortiz-Rivera, Isamar

    Non-mechanical nano and microfluidic devices that function without the aid of an external power source, and can be tailored to meet specific needs, represent the next generation of smart devices. Recently, we have shown that surface-bound enzymes can act as pumps driving large-scale fluid flows in the presence of any substance that triggers the enzymatic reaction (e.g. substrate, co-factor, or biomarker). The fluid velocities attained in such systems depend directly on the enzymatic reaction rate and the concentration of the substance that initiates enzymatic catalysis. The use of biochemical reactions to power a micropump offers the advantages of specificity, sensitivity, and selectively, eliminating at the same time the need of an external power source, while providing biocompatibility. More importantly, these self-powered pumps overcome a significant obstacle in nano- and micro-fluidics: the need to use external pressure-driven pumps to push fluids through devices. Certainly, the development of enzyme-powered devices opens up new venues in biochemical engineering, particularly in the biomedical field. The work highlighted in this dissertation covers all the studies performed with enzyme-powered pumps, from the development of the micropump design, to the efforts invested in understanding the enzyme pump concept as a whole. The data collected to date, aims to expand our knowledge about enzyme-powered micropumps from the inside out: not only by exploring the different applications of these devices at the macroscale, but also by investigating in depth the mechanism of pump activation behind these systems. Specifically, we have focused on: (1) The general features that characterize the pumping behavior observed in enzyme-powered pumps, as well as the optimization of the device, (2) the possible mechanisms behind fluid motion, including the role of enzyme coverage and/or activity on the transduction of chemical energy into mechanical fluid flow in these devices, covering also the effect of the thermodynamics of the enzymatic reaction in the pumping behavior, and (3) the applicability of enzyme pumps as fluid flow-based inhibitor assays and as drug delivery devices. Our findings in each of these areas, gets us closer to our ultimate goal, where we aim to identify the optimal conditions needed for enzyme micropump operation, and construct a general model that could accurately predict enzyme micropump behavior for any enzyme-substrate combination. The information aforementioned has been divided in four chapters. Chapter 1 gives a quick glance into the development of enzyme-powered micropumps: from the systems and observed behaviors inspiring this work, to the first systems that were developed. The stability, duration, and extent of fluid pumping of enzyme pumps in general, are also discussed, along with the optimization of the enzyme-pump design. This chapter aims to provide a general idea of the motivation behind the concept of "enzyme-powered pumps", what are "enzyme-powered pumps", and which are the key features that characterize these systems. Chapter 2 is an extensive analysis of the mechanisms of actuation proposed for enzyme-powered micropumps. This chapter not only covers the first attempts to understand how enzyme pumps work, but also explores further the behavior of urease-powered pumps, which fluid flow patterns cannot be completely predicted only by considering thermal or solutal gradients. The findings of these studies could allow us to rationally control fluid flow for the directed delivery of payloads at designated locations. In Chapters 3 and 4, our focus was to highlight the potential application of enzyme-powered pumps for sensing and delivery. Chapter 3 explores the use of enzyme pumps as fluid flow-based inhibitor assays. At fixed concentrations of an enzyme and its substrate, the presence of an inhibitor can be detected by monitoring the decrease in fluid flow speed. Using this principle, sensors for toxic substances, like mercury, cyanide and azide, were designed using urease and catalase-powered pumps, respectively, with limits of detection well below the concentrations permitted by the Environmental Protection Agency (EPA). Chapter 4 demonstrates that, apart from their applicability as sensors, enzyme pumps can also be used for stimuli-responsive release, if the architecture applied for the design of the enzyme pump consists of a porous scaffold (e.g. hydrogel), that serves both as the platform for enzyme immobilization and as the host for guest molecules to be released. These proof-of-concept devices were developed with the idea of using the flows generated by enzymatic catalysis to power cargo release, only in the presence of the correct stimuli (e.g. release of insulin in the presence of glucose; release of antidotes in the presence of a toxic agent). In the cases studied, cargo release was directly proportional to the concentration of enzyme substrate in solution, highlighting the sensitivity of the device and its potential for drug delivery purposes. (Abstract shortened by Proquest.).

  12. Ultrasound characterization of middle ear effusion.

    PubMed

    Seth, Rahul; Discolo, Christopher M; Palczewska, Grazyna M; Lewandowski, Jan J; Krakovitz, Paul R

    2013-01-01

    To further enhance and assess the ability to characterize middle ear effusion (MEE) using non-invasive ultrasound technology. This is a prospective unblinded comparison study. Fifty-six children between the ages of 6 months and 17 years scheduled to undergo bilateral myringotomy with pressure equalization tube placement were enrolled. With the child anesthetized, the probe was placed into the external ear canal after sterile water was inserted. Ultrasound recordings of middle ear contents were analyzed by computer algorithm. Middle ear fluid was collected during myringotomy and analyzed for bacterial culture and viscosity. Ultrasound waveforms yielded a computer algorithm interpretation of middle ear contents in 66% of ears tested. When a result was obtained, the sensitivity and specificity for successfully characterizing middle ear fluid content as either void of fluid, thick fluid (mucoid), or thin fluid (serous or purulent) were at least 94%. Mucoid effusions had higher measured viscosity values (P=.002). Viscosity measures were compared to culture result, and those with low viscosity (thin consistency) had a higher likelihood of having a positive culture (P=.048). The device sensitivity and specificity for fluid detection were 94% or greater among interpretable waveforms (66% of those tested). Although this technology provides important information of the middle ear effusion presence and characteristic, further technological improvements are needed. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Ultrasound Characterization of Middle Ear Effusion

    PubMed Central

    Seth, Rahul; Discolo, Christopher M; Palczewska, Grazyna M; Lewandowski, Jan J; Krakovitz, Paul R

    2012-01-01

    Purpose To further enhance and assess the ability to characterize middle ear effusion (MEE) using non-invasive ultrasound technology. Materials and Methods This is a prospective unblinded comparison study. Fifty-six children between the ages of 6 months and 17 years scheduled to undergo bilateral myringotomy with pressure equalization tube placement were enrolled. With the child anesthetized, the probe was placed into the external ear canal after sterile water was inserted. Ultrasound recordings of middle ear contents were analyzed by computer algorithm. Middle ear fluid was collected during myringotomy and analyzed for bacterial culture and viscosity. Results Ultrasound waveforms yielded a computer algorithm interpretation of middle ear contents in 66% of ears tested. When a result was obtained, the sensitivity and specificity for successfully characterizing middle ear fluid content as either void of fluid, thick fluid (mucoid), or thin fluid (serous or purulent) was at least 94%. Mucoid effusions had higher measured viscosity values (P=0.002). Viscosity measures were compared to culture result, and those with low viscosity (thin consistency) had a higher likelihood of having a positive culture (P=0.048). Conclusion The device sensitivity and specificity for fluid detection was 94% or greater among interpretable waveforms (66% of those tested). Although this technology provides important information of the middle ear effusion presence and characteristic, further technological improvements are needed. PMID:23084430

  14. Mobile device for disease diagnosis and data tracking in resource-limited settings.

    PubMed

    Chin, Curtis D; Cheung, Yuk Kee; Laksanasopin, Tassaneewan; Modena, Mario M; Chin, Sau Yin; Sridhara, Archana A; Steinmiller, David; Linder, Vincent; Mushingantahe, Jules; Umviligihozo, Gisele; Karita, Etienne; Mwambarangwe, Lambert; Braunstein, Sarah L; van de Wijgert, Janneke; Sahabo, Ruben; Justman, Jessica E; El-Sadr, Wafaa; Sia, Samuel K

    2013-04-01

    Collection of epidemiological data and care of patients are hampered by lack of access to laboratory diagnostic equipment and patients' health records in resource-limited settings. We engineered a low-cost mobile device that combines cell-phone and satellite communication technologies with fluid miniaturization techniques for performing all essential ELISA functions. We assessed the device's ability to perform HIV serodiagnostic testing in Rwanda and synchronize results in real time with electronic health records. We tested serum, plasma, and whole blood samples collected in Rwanda and on a commercially available sample panel made of mixed antibody titers. HIV testing on 167 Rwandan patients evaluated for HIV, viral hepatitis, and sexually transmitted infections yielded diagnostic sensitivity and specificity of 100% and 99%, respectively. Testing on 40 Rwandan whole-blood samples-using 1 μL of sample per patient-resulted in diagnostic sensitivity and specificity of 100% and 100%. The mobile device also successfully transmitted all whole-blood test results from a Rwandan clinic to a medical records database stored on the cloud. For all samples in the commercial panel, the device produced results in agreement with a leading ELISA test, including detection of weakly positive samples that were missed by existing rapid tests. The device operated autonomously with minimal user input, produced each result 10 times faster than benchtop ELISA, and consumed as little power as a mobile phone. A low-cost mobile device can perform a blood-based HIV serodiagnostic test with laboratory-level accuracy and real-time synchronization of patient health record data. © 2012 American Association for Clinical Chemistry

  15. Identification and quantitation of phosphatidylethanols in oral fluid by liquid chromatography-tandem mass spectrometry.

    PubMed

    Ullah, Shahid; Helander, Anders; Beck, Olof

    2017-08-28

    Phosphatidylethanols (PEth) are formed from phosphatidylcholines and ethanol and are used as a specific and sensitive alcohol biomarker. An analytical method for analysis of PEth in oral fluid based on high-performance liquid chromatography coupled to a quadrupole tandem mass spectrometer (LC-MS/MS) was developed and validated and applied on samples collected from patients undergoing alcohol detoxification. A 200-μL aliquot of oral fluid, collected using the QuantisalTM device, was extracted with chloroform/methanol containing internal standard and subjected to LC-MS/MS analysis of three selected PEth forms (16:0/16:0, 16:0/18:1, and 16:0/18:2). Chromatographic separation was achieved on a UPLC BEH phenyl column, using a mobile phase consisting of acetonitrile and water containing 10 mmol/L ammonium hydrogen carbonate with 0.1% ammonia. The MS instrument was operated in negative electrospray ionization and selected reaction monitoring mode. The detection limit for PEth 16:0/16:0, 16:0/18:1, and 16:0/18:2 was ~0.1 ng/mL, and the extraction recoveries at 2.0 ng/mL were in the range of 99%-114%. Method linearity over a concentration range up to 200 ng/mL was ≥0.99. No significant deviation in results was observed in an analyte stability study of two different concentrations at two different temperatures over 3 months. In 35 oral fluid samples collected from patients undergoing alcohol detoxification, the highest concentration was observed for PEth 16:0/18:1 (Detected range, 0.51-55.3 ng/mL; mean, 8.5; median, 3.1). In addition, all three PEth forms were variably identified in a majority (63%) of the oral fluid samples. The PEth 16:0/18:1 values in oral fluid showed a weak positive correlation with the corresponding values in whole blood samples (r=0.50, p=0.026, n=20). The LC-MS/MS method could reliably detect and quantify PEth in oral fluid samples collected after alcohol exposure. The method was characterized by validation data with satisfactory recovery, sensitivity, accuracy, and imprecision, and applied for analysis of clinical samples. The results suggest that measurement of PEth in oral fluid can be used as a biomarker for alcohol consumption, and as such a non-invasive complement to analysis in blood. However, further studies are required to evaluate the test characteristics (e.g. sensitivity and half-life) in comparison with PEth in blood.

  16. Modeling fluid transport in 2d paper networks

    NASA Astrophysics Data System (ADS)

    Tirapu Azpiroz, Jaione; Fereira Silva, Ademir; Esteves Ferreira, Matheus; Lopez Candela, William Fernando; Bryant, Peter William; Ohta, Ricardo Luis; Engel, Michael; Steiner, Mathias Bernhard

    2018-02-01

    Paper-based microfluidic devices offer great potential as a low-cost platform to perform chemical and biochemical tests. Commercially available formats such as dipsticks and lateral-flow test devices are widely popular as they are easy to handle and produce fast and unambiguous results. While these simple devices lack precise control over the flow to enable integration of complex functionality for multi-step processes or the ability to multiplex several tests, intense research in this area is rapidly expanding the possibilities. Modeling and simulation is increasingly more instrumental in gaining insight into the underlying physics driving the processes inside the channels, however simulation of flow in paper-based microfluidic devices has barely been explored to aid in the optimum design and prototyping of these devices for precise control of the flow. In this paper, we implement a multiphase fluid flow model through porous media for the simulation of paper imbibition of an incompressible, Newtonian fluid such as when water, urine or serum is employed. The formulation incorporates mass and momentum conservation equations under Stokes flow conditions and results in two coupled Darcy's law equations for the pressures and saturations of the wetting and non-wetting phases, further simplified to the Richard's equation for the saturation of the wetting fluid, which is then solved using a Finite Element solver. The model tracks the wetting fluid front as it displaces the non-wetting fluid by computing the time-dependent saturation of the wetting fluid. We apply this to the study of liquid transport in two-dimensional paper networks and validate against experimental data concerning the wetting dynamics of paper layouts of varying geometries.

  17. Blood Collection

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The method that is used for the collection, storage and real-time analysis of blood and other bodily fluids has been licensed to DBCD, Inc. by NASA. The result of this patent licensing agreement has been the development of a commercial product that can provide serum or plasma from whole blood volumes of 20 microliters to 4 milliliters. The device has a fibrous filter with a pore size of less than about 3 microns, and is coated with a mixture of mannitol and plasma fraction protein. The coating causes the cellular fraction to be trapped by the small pores, leaving the cellular fraction intact on the fibrous filter while the acellular fraction passes through the filter for collection in unaltered form from the serum sample collection chamber. The method used by this product is useful to NASA for blood analysis on manned space missions.

  18. Micromixer based on dielectric stack actuators for medical applications

    NASA Astrophysics Data System (ADS)

    Solano-Arana, Susana; Klug, Florian; Mößinger, Holger; Förster-Zügel, Florentine; Schlaak, Helmut F.

    2017-04-01

    Based on a previously developed microperistaltic pump, a micromixer made out of dielectric elastomer stack actuators (DESA) is proposed. The micromixer will be able to mix two fluids at the microscale, pumping both fluids in and out of the device. The device consists of three chambers. In the first and second chambers, fluids A and B are hosted, while in the third chamber, fluids A and B are mixed. The fluid flow regime is laminar. The application of voltage leads to an increase of the size of a gap in the z-axis direction, due to the actuators area expansion. This makes a channel open through which the fluid flows. The frequency of the actuation of the different actuators allows an increase of the flow rate. The micromixer can be used for applications such as drug delivery and synthesis of nucleic acids, the proposed device will be made of Polydimethylsiloxane (PDMS) as dielectric and graphite powder as electrode material. PDMS is a biocompatible material, widely used in the prosthesis field. Mixing fluids at a microscale is also in need in the lab-on-achip technology for complex chemical reactions.

  19. Optical devices having flakes suspended in a host fluid to provide a flake/fluid system providing flakes with angularly dependent optical properties in response to an alternating current electric field due to the dielectric properties of the system

    DOEpatents

    Kosc, Tanya Z [Rochester, NY; Marshall, Kenneth L [Rochester, NY; Jacobs, Stephen D [Pittsford, NY

    2006-05-09

    Optical devices utilizing flakes (also called platelets) suspended in a host fluid have optical characteristics, such as reflective properties, which are angular dependent in response to an AC field. The reflectivity may be Bragg-like, and the characteristics are obtained through the use of flakes of liquid crystal material, such as polymer liquid crystal (PLC) materials including polymer cholesteric liquid crystal (PCLC) and polymer nematic liquid crystal (PNLC) material or birefringent polymers (BP). The host fluid may be propylene carbonate, poly(ethylene glycol) or other fluids or fluid mixtures having fluid conductivity to support conductivity in the flake/host system. AC field dependent rotation of 90.degree. can be obtained at rates and field intensities dependent upon the frequency and magnitude of the AC field. The devices are useful in providing displays, polarizers, filters, spatial light modulators and wherever switchable polarizing, reflecting, and transmission properties are desired.

  20. Integrated fountain effect pump device for fluid management at low gravity

    NASA Technical Reports Server (NTRS)

    Yuan, S. W. K.; Frank, D. J.

    1988-01-01

    A new device for fluid management at low gravity is described. The system is basically the same as the enclosed capillary device using screens, in which the screens along the gallery channels are replaced by porous plugs which are responsible for both the fluid retention and pumping of He II; in this device, no downstream pump is needed. The plugs in contact with liquid He on both sides act as a fountain-effect pumps (FEPs), while plugs exposed to vapor on one side behave as vapor-liquid phase separators (VLPSs). The total net rate of He II transfer into the receiving tank equals the mass flow rate through the FEP plugs minus the liquid loss from the VLPS plugs. The results of the performance analysis of this integrated FEP device are presented together with its schematic diagram.

  1. Hollow fiber apparatus and use thereof for fluids separations and heat and mass transfers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bikson, Benjamin; Etter, Stephen; Ching, Nathaniel

    A hollow fiber fluid separation device includes a hollow fiber cartridge, comprising a plurality of hollow fiber membranes arranged around a central tubular core, a first tubesheet and a second tubesheet encapsulating respective distal ends of the hollow fiber bundle. The tubesheets have boreholes in fluid communication with bores of the hollow fiber membrane. In at least one of the tubesheets, the boreholes are formed radially and are in communication with the central tubular core. The hollow fiber fluid separation device can be utilized in liquid separation applications such as ultrafiltration and in gas separation processes such as air separation.more » The design disclosed herein is light weight and compact and is particularly advantageous at high operating temperatures when the pressure of the feed fluid introduced into the bores of hollow fibers is higher than the pressure on the shell side of the device.« less

  2. System and method for confining an object to a region of fluid flow having a stagnation point

    NASA Technical Reports Server (NTRS)

    Schroeder, Charles M. (Inventor); Babcock, Hazen P. (Inventor); Shaqfeh, Eric S. G. (Inventor); Chu, Steven (Inventor)

    2006-01-01

    A device for confining an object to a region proximate to a fluid flow stagnation point includes one or more inlets for carrying the fluid into the region, one or more outlets for carrying the fluid out of the region, and a controller, in fluidic communication with the inlets and outlets, for adjusting the motion of the fluid to produce a stagnation point in the region, thereby confining the object to the region. Applications include, for example, prolonged observation of the object, manipulation of the object, etc. The device optionally may employ a feedback control mechanism, a sensing apparatus (e.g., for imaging), and a storage medium for storing, and a computer for analyzing and manipulating, data acquired from observing the object. The invention further provides methods of using such a device and system in a number of fields, including biology, chemistry, physics, material science, and medical science.

  3. Optofluidic bioimaging platform for quantitative phase imaging of lab on a chip devices using digital holographic microscopy.

    PubMed

    Pandiyan, Vimal Prabhu; John, Renu

    2016-01-20

    We propose a versatile 3D phase-imaging microscope platform for real-time imaging of optomicrofluidic devices based on the principle of digital holographic microscopy (DHM). Lab-on-chip microfluidic devices fabricated on transparent polydimethylsiloxane (PDMS) and glass substrates have attained wide popularity in biological sensing applications. However, monitoring, visualization, and characterization of microfluidic devices, microfluidic flows, and the biochemical kinetics happening in these devices is difficult due to the lack of proper techniques for real-time imaging and analysis. The traditional bright-field microscopic techniques fail in imaging applications, as the microfluidic channels and the fluids carrying biological samples are transparent and not visible in bright light. Phase-based microscopy techniques that can image the phase of the microfluidic channel and changes in refractive indices due to the fluids and biological samples present in the channel are ideal for imaging the fluid flow dynamics in a microfluidic channel at high resolutions. This paper demonstrates three-dimensional imaging of a microfluidic device with nanometric depth precisions and high SNR. We demonstrate imaging of microelectrodes of nanometric thickness patterned on glass substrate and the microfluidic channel. Three-dimensional imaging of a transparent PDMS optomicrofluidic channel, fluid flow, and live yeast cell flow in this channel has been demonstrated using DHM. We also quantify the average velocity of fluid flow through the channel. In comparison to any conventional bright-field microscope, the 3D depth information in the images illustrated in this work carry much information about the biological system under observation. The results demonstrated in this paper prove the high potential of DHM in imaging optofluidic devices; detection of pathogens, cells, and bioanalytes on lab-on-chip devices; and in studying microfluidic dynamics in real time based on phase changes.

  4. Solar thermal energy receiver

    NASA Technical Reports Server (NTRS)

    Baker, Karl W. (Inventor); Dustin, Miles O. (Inventor)

    1992-01-01

    A plurality of heat pipes in a shell receive concentrated solar energy and transfer the energy to a heat activated system. To provide for even distribution of the energy despite uneven impingement of solar energy on the heat pipes, absence of solar energy at times, or failure of one or more of the heat pipes, energy storage means are disposed on the heat pipes which extend through a heat pipe thermal coupling means into the heat activated device. To enhance energy transfer to the heat activated device, the heat pipe coupling cavity means may be provided with extensions into the device. For use with a Stirling engine having passages for working gas, heat transfer members may be positioned to contact the gas and the heat pipes. The shell may be divided into sections by transverse walls. To prevent cavity working fluid from collecting in the extensions, a porous body is positioned in the cavity.

  5. Microbubble-assisted optofluidic control using a photothermal waveguide

    NASA Astrophysics Data System (ADS)

    Cheng, YuPeng; Yang, JianXin; Li, ZongBao; Zhu, DeBin; Cai, Xiang; Hu, Xiaowen; Huang, Wen; Xing, XiaoBo

    2017-10-01

    A convenient and easily controllable microfluidic system was proposed based on a photothermal device. Here, graphene oxide was assembled on an optical waveguide, which could serve as a miniature heat source to generate a microbubble and to control dynamic behaviors of flow by adjusting optical power at the micrometer scale. Micro/nanoparticles were used to demonstrate the trace of fluid flow around the microbubble, which displayed the ability of the flow to capture, transmit, and rotate particles in thermal convection. Correspondingly, three-dimensional theoretical simulation combining thermodynamics with hydrodynamics analyzed the distribution of the velocity field induced by the microbubble for collection and driving of particles. Furthermore, the photothermal waveguide would be developed into a microbubble-based device in the manipulation or transmission of micro/nanoparticles.

  6. A neuron-in-capillary platform for facile collection and mass spectrometric characterization of a secreted neuropeptide

    PubMed Central

    Lee, Chang Young; Fan, Yi; Rubakhin, Stanislav S.; Yoon, Sook; Sweedler, Jonathan V.

    2016-01-01

    The integration of microfluidic devices—which efficiently handle small liquid volumes—with separations/mass spectrometry (MS) is an effective approach for profiling the neurochemistry occurring in selected neurons. Interfacing the microfluidic cell culture to the mass spectrometer is challenging because of geometric and scaling issues. Here we demonstrate the hyphenation of a neuron-in-capillary platform to a solid phase extraction device and off-line MS. A primary neuronal culture of Aplysia californica neurons was established directly inside a cylindrical polyimide capillary. The approach also uses a particle-embedded monolith to condition neuropeptide releasates collected from several Aplysia neurons cultured in the capillary, with the subsequent characterization of released peptides via MS. This system presents a number of advances compared to more traditional microfluidic devices fabricated with polydimethylsiloxane. These include low cost, easy access to cell culture, rigidity, ease of transport, and minimal fluid handling. The cylindrical geometry of the platform allows convenient interface with a wide range of analytical tools that utilize capillary columns. PMID:27245782

  7. Dancing disclinations in confined active nematics

    NASA Astrophysics Data System (ADS)

    Shendruk, Tyler N.; Doostmohammadi, Amin; Thijssen, Kristian; Yeomans, Julia M.

    The spontaneous emergence of collective flows is a generic property of active fluids and often leads to chaotic flow patterns characterised by swirls, jets, and topological disclinations in their orientation field. However, the ability to achieve structured flows and ordered disclinations is of particular importance in the design and control of active systems. By confining an active nematic fluid within a channel, we find a regular motion of disclinations, in conjunction with a well defined and dynamic vortex lattice. As pairs of moving disclinations travel through the channel, they continually exchange partners producing a dynamic ordered state, reminiscent of Ceilidh dancing. We anticipate that this biomimetic ability to self-assemble organised topological disclinations and dynamically structured flow fields in engineered geometries will pave the road towards establishing new active topological microfluidic devices.

  8. Device for cooling and humidifying reformate

    DOEpatents

    Zhao, Jian Lian; Northrop, William F.

    2008-04-08

    Devices for cooling and humidifying a reformate stream from a reforming reactor as well as related methods, modules and systems includes a heat exchanger and a sprayer. The heat exchanger has an inlet, an outlet, and a conduit between the inlet and the outlet. The heat exchanger is adapted to allow a flow of a first fluid (e.g. water) inside the conduit and to establish a heat exchange relationship between the first fluid and a second fluid (e.g. reformate from a reforming reactor) flowing outside the conduit. The sprayer is coupled to the outlet of the heat exchanger for spraying the first fluid exiting the heat exchanger into the second fluid.

  9. On-line fast response device and method for measuring dissolved gas in a fluid

    DOEpatents

    Tutu, Narinder Kumar [Manorville, NY

    2011-01-11

    A method and device for the measurement of dissolved gas within a fluid. The fluid, substantially a liquid, is pumped into a pipe. The flow of the fluid is temporally restricted, creating one or more low pressure regions. A measurement indicative of trapped air is taken before and after the restriction. The amount of dissolved air is calculated from the difference between the first and second measurements. Preferably measurements indicative of trapped air is obtained from one or more pressure transducers, capacitance transducers, or combinations thereof. In the alternative, other methods such as those utilizing x-rays or gamma rays may also be used to detect trapped air. Preferably, the fluid is a hydraulic fluid, whereby dissolved air in the fluid is detected.

  10. Automated Extraction of Flow Features

    NASA Technical Reports Server (NTRS)

    Dorney, Suzanne (Technical Monitor); Haimes, Robert

    2005-01-01

    Computational Fluid Dynamics (CFD) simulations are routinely performed as part of the design process of most fluid handling devices. In order to efficiently and effectively use the results of a CFD simulation, visualization tools are often used. These tools are used in all stages of the CFD simulation including pre-processing, interim-processing, and post-processing, to interpret the results. Each of these stages requires visualization tools that allow one to examine the geometry of the device, as well as the partial or final results of the simulation. An engineer will typically generate a series of contour and vector plots to better understand the physics of how the fluid is interacting with the physical device. Of particular interest are detecting features such as shocks, re-circulation zones, and vortices (which will highlight areas of stress and loss). As the demand for CFD analyses continues to increase the need for automated feature extraction capabilities has become vital. In the past, feature extraction and identification were interesting concepts, but not required in understanding the physics of a steady flow field. This is because the results of the more traditional tools like; isc-surface, cuts and streamlines, were more interactive and easily abstracted so they could be represented to the investigator. These tools worked and properly conveyed the collected information at the expense of a great deal of interaction. For unsteady flow-fields, the investigator does not have the luxury of spending time scanning only one "snapshot" of the simulation. Automated assistance is required in pointing out areas of potential interest contained within the flow. This must not require a heavy compute burden (the visualization should not significantly slow down the solution procedure for co-processing environments). Methods must be developed to abstract the feature of interest and display it in a manner that physically makes sense.

  11. Automated Extraction of Flow Features

    NASA Technical Reports Server (NTRS)

    Dorney, Suzanne (Technical Monitor); Haimes, Robert

    2004-01-01

    Computational Fluid Dynamics (CFD) simulations are routinely performed as part of the design process of most fluid handling devices. In order to efficiently and effectively use the results of a CFD simulation, visualization tools are often used. These tools are used in all stages of the CFD simulation including pre-processing, interim-processing, and post-processing, to interpret the results. Each of these stages requires visualization tools that allow one to examine the geometry of the device, as well as the partial or final results of the simulation. An engineer will typically generate a series of contour and vector plots to better understand the physics of how the fluid is interacting with the physical device. Of particular interest are detecting features such as shocks, recirculation zones, and vortices (which will highlight areas of stress and loss). As the demand for CFD analyses continues to increase the need for automated feature extraction capabilities has become vital. In the past, feature extraction and identification were interesting concepts, but not required in understanding the physics of a steady flow field. This is because the results of the more traditional tools like; iso-surface, cuts and streamlines, were more interactive and easily abstracted so they could be represented to the investigator. These tools worked and properly conveyed the collected information at the expense of a great deal of interaction. For unsteady flow-fields, the investigator does not have the luxury of spending time scanning only one "snapshot" of the simulation. Automated assistance is required in pointing out areas of potential interest contained within the flow. This must not require a heavy compute burden (the visualization should not significantly slow down the solution procedure for (co-processing environments). Methods must be developed to abstract the feature of interest and display it in a manner that physically makes sense.

  12. A microfabricated microfluidic bioMEMS device to model human brain aneurisms: the aneurysm-on-a-chip

    NASA Astrophysics Data System (ADS)

    Reece, Lisa M.; Khor, Jian Wei; Thakur, Raviraj; Amin, Ahmed; Wereley, Steven T.; Leary, James F.

    2015-03-01

    Aneurysms are pockets of blood that collect outside blood vessel walls forming dilatations and leaving arterial walls very prone to rupture. There is little information concerning the causes of intracranial aneurysm formation, growth, and rupture. Current treatments include: (1) clipping, and (2) coil embolization, including stent-assisted coiling. Further, the evolution of any aneurysm is assumed to be caused by the remodeling of the affected blood vessel's material constituents (tunica intima, tunica media, or tunica adventitia). Velocity, pressure, and wall shear stresses aid in the disease development of aneurysmal growth, while the shear force mechanisms effecting wound closure are elusive. To study aneurysm pathogenesis, a lab-on-a-chip device is the key to discovering the underlying mechanisms of these lesions. A two-dimensional microfluidic model, the Aneurysm-on-a-Chip™ (AOC), was the logical answer to study particle flow within an aneurysm "sac". The AOC apparatus can track particles/cells when it is coupled to particle image velocimetry software (PIV) package. The AOC fluid flow was visualized using standard microscopy techniques with commercial microparticles and human aortic smooth muscle cells (HASMC). Images were taken during fluid flow experiments and PIV was utilized to monitor the flow of particles within the "sac" region, as well as particles entering and exiting the device. Quiver plots were generated from fluid flow experiments using standard 7 μm latex particles and fixed HASMC in PBS. PIV analysis shows that the particles flowed nicely from input to output. Wall shear stress provided evidence that there was some back flow at the edges of the "sac" - an indicator of aneurysm development in human patients.

  13. Microfluidic Devices for Analysis of Spatial Orientation Behaviors in Semi-Restrained Caenorhabditis elegans

    PubMed Central

    McCormick, Kathryn E.; Gaertner, Bryn E.; Sottile, Matthew; Phillips, Patrick C.; Lockery, Shawn R.

    2011-01-01

    This article describes the fabrication and use of microfluidic devices for investigating spatial orientation behaviors in nematode worms (Caenorhabditis elegans). Until now, spatial orientation has been studied in freely moving nematodes in which the frequency and nature of encounters with the gradient are uncontrolled experimental variables. In the new devices, the nematode is held in place by a restraint that aligns the longitudinal axis of the body with the border between two laminar fluid streams, leaving the animal's head and tail free to move. The content of the fluid streams can be manipulated to deliver step gradients in space or time. We demonstrate the utility of the device by identifying previously uncharacterized aspects of the behavioral mechanisms underlying chemotaxis, osmotic avoidance, and thermotaxis in this organism. The new devices are readily adaptable to behavioral and imaging studies involving fluid borne stimuli in a wide range of sensory modalities. PMID:22022437

  14. Apparatus and method of direct water cooling several parallel circuit cards each containing several chip packages

    DOEpatents

    Cipolla, Thomas M [Katonah, NY; Colgan, Evan George [Chestnut Ridge, NY; Coteus, Paul W [Yorktown Heights, NY; Hall, Shawn Anthony [Pleasantville, NY; Tian, Shurong [Mount Kisco, NY

    2011-12-20

    A cooling apparatus, system and like method for an electronic device includes a plurality of heat producing electronic devices affixed to a wiring substrate. A plurality of heat transfer assemblies each include heat spreaders and thermally communicate with the heat producing electronic devices for transferring heat from the heat producing electronic devices to the heat transfer assemblies. The plurality of heat producing electronic devices and respective heat transfer assemblies are positioned on the wiring substrate having the regions overlapping. A heat conduit thermally communicates with the heat transfer assemblies. The heat conduit circulates thermally conductive fluid therethrough in a closed loop for transferring heat to the fluid from the heat transfer assemblies via the heat spreader. A thermally conductive support structure supports the heat conduit and thermally communicates with the heat transfer assemblies via the heat spreader transferring heat to the fluid of the heat conduit from the support structure.

  15. PVDF Sensor Stimulated by Infrared Radiation for Temperature Monitoring in Microfluidic Devices.

    PubMed

    Pullano, Salvatore A; Mahbub, Ifana; Islam, Syed K; Fiorillo, Antonino S

    2017-04-13

    This paper presents a ferroelectric polymer-based temperature sensor designed for microfluidic devices. The integration of the sensor into a system-on-a-chip platform facilitates quick monitoring of localized temperature of a biological fluid, avoiding errors in the evaluation of thermal evolution of the fluid during analysis. The contact temperature sensor is fabricated by combining a thin pyroelectric film together with an infrared source, which stimulates the active element located on the top of the microfluidic channel. An experimental setup was assembled to validate the analytical model and to characterize the response rate of the device. The evaluation procedure and the operating range of the temperature also make this device suitable for applications where the localized temperature monitoring of biological samples is necessary. Additionally, ease of integration with standard microfluidic devices makes the proposed sensor an attractive option for in situ analysis of biological fluids.

  16. 40 CFR 60.100 - Applicability, designation of affected facility, and reconstruction.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... petroleum refineries: fluid catalytic cracking unit catalyst regenerators, fuel gas combustion devices, and... petroleum refinery. (b) Any fluid catalytic cracking unit catalyst regenerator or fuel gas combustion device... regenerator under paragraph (b) of this section which commences construction, reconstruction, or modification...

  17. 40 CFR 60.100 - Applicability, designation of affected facility, and reconstruction.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... petroleum refineries: fluid catalytic cracking unit catalyst regenerators, fuel gas combustion devices, and... petroleum refinery. (b) Any fluid catalytic cracking unit catalyst regenerator or fuel gas combustion device... regenerator under paragraph (b) of this section which commences construction, reconstruction, or modification...

  18. Endoscopic Management of Pancreatic Fluid Collections in Children.

    PubMed

    Nabi, Zaheer; Talukdar, Rupjyoti; Reddy, D Nageshwar

    2017-07-15

    The incidence of acute pancreatitis in children has increased over the last few decades. The development of pancreatic fluid collection is not uncommon after severe acute pancreatitis, although its natural course in children and adolescents is poorly understood. Asymptomatic fluid collections can be safely observed without any intervention. However, the presence of clinically significant symptoms warrants the drainage of these fluid collections. Endoscopic management of pancreatic fluid collection is safe and effective in adults. The use of endoscopic ultrasound (EUS)-guided procedure has improved the efficacy and safety of drainage of pancreatic fluid collections, which have not been well studied in pediatric populations, barring a scant volume of small case series. Excellent results of EUS-guided drainage in adult patients also need to be verified in children and adolescents. Endoprostheses used to drain pancreatic fluid collections include plastic and metal stents. Metal stents have wider lumens and become clogged less often than plastic stents. Fully covered metal stents specifically designed for pancreatic fluid collection are available, and initial studies have shown encouraging results in adult patients. The future of endoscopic management of pancreatic fluid collection in children appears promising. Prospective studies with larger sample sizes are required to establish their definitive role in the pediatric age group.

  19. Medical Devices; Immunology and Microbiology Devices; Classification of the Device To Detect and Identify Microbial Pathogen Nucleic Acids in Cerebrospinal Fluid. Final order.

    PubMed

    2017-10-20

    The Food and Drug Administration (FDA or we) is classifying the device to detect and identify microbial pathogen nucleic acids in cerebrospinal fluid into class II (special controls). The special controls that will apply to the device type are identified in this order and will be part of the codified language for the device to detect and identify microbial pathogen nucleic acids in cerebrospinal fluid’s classification. We are taking this action because we have determined that classifying the device into class II (special controls) will provide a reasonable assurance of safety and effectiveness of the device. We believe this action will also enhance patients' access to beneficial innovative devices, in part by reducing regulatory burdens.

  20. Label-free viscosity measurement of complex fluids using reversal flow switching manipulation in a microfluidic channel

    PubMed Central

    Jun Kang, Yang; Ryu, Jeongeun; Lee, Sang-Joon

    2013-01-01

    The accurate viscosity measurement of complex fluids is essential for characterizing fluidic behaviors in blood vessels and in microfluidic channels of lab-on-a-chip devices. A microfluidic platform that accurately identifies biophysical properties of blood can be used as a promising tool for the early detections of cardiovascular and microcirculation diseases. In this study, a flow-switching phenomenon depending on hydrodynamic balancing in a microfluidic channel was adopted to conduct viscosity measurement of complex fluids with label-free operation. A microfluidic device for demonstrating this proposed method was designed to have two inlets for supplying the test and reference fluids, two side channels in parallel, and a junction channel connected to the midpoint of the two side channels. According to this proposed method, viscosities of various fluids with different phases (aqueous, oil, and blood) in relation to that of reference fluid were accurately determined by measuring the switching flow-rate ratio between the test and reference fluids, when a reverse flow of the test or reference fluid occurs in the junction channel. An analytical viscosity formula was derived to measure the viscosity of a test fluid in relation to that of the corresponding reference fluid using a discrete circuit model for the microfluidic device. The experimental analysis for evaluating the effects of various parameters on the performance of the proposed method revealed that the fluidic resistance ratio (RJL/RL, fluidic resistance in the junction channel (RJL) to fluidic resistance in the side channel (RL)) strongly affects the measurement accuracy. The microfluidic device with smaller RJL/RL values is helpful to measure accurately the viscosity of the test fluid. The proposed method accurately measured the viscosities of various fluids, including single-phase (Glycerin and plasma) and oil-water phase (oil vs. deionized water) fluids, compared with conventional methods. The proposed method was also successfully applied to measure viscosities of blood with varying hematocrits, chemically fixed RBCS, and channel sizes. Based on these experimental results, the proposed method can be effectively used to measure the viscosities of various fluids easily, without any fluorescent labeling and tedious calibration procedures. PMID:24404040

  1. Physical therapy applications of MR fluids and intelligent control

    NASA Astrophysics Data System (ADS)

    Dong, Shufang; Lu, Ke-Qian; Sun, J. Q.; Rudolph, Katherine

    2005-05-01

    Resistance exercise has been widely reported to have positive rehabilitation effects for patients with neuromuscular and orthopaedic conditions. This paper presents an optimal design of magneto-rheological fluid dampers for variable resistance exercise devices. Adaptive controls for regulating the resistive force or torque of the device as well as the joint motion are presented. The device provides both isometric and isokinetic strength training for various human joints.

  2. Dielectrophoretic columnar focusing device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James, Conrad D; Galambos, Paul C; Derzon, Mark S

    2010-05-11

    A dielectrophoretic columnar focusing device uses interdigitated microelectrodes to provide a spatially non-uniform electric field in a fluid that generates a dipole within particles in the fluid. The electric field causes the particles to either be attracted to or repelled from regions where the electric field gradient is large, depending on whether the particles are more or less polarizable than the fluid. The particles can thereby be forced into well defined stable paths along the interdigitated microelectrodes. The device can be used for flow cytometry, particle control, and other process applications, including cell counting or other types of particle counting,more » and for separations in material control.« less

  3. Contaminate Control Device

    NASA Technical Reports Server (NTRS)

    Howe, Robert H. (Inventor); Flynn, Kenneth P. (Inventor); Stapleton, Thomas J. (Inventor)

    2014-01-01

    A contaminate control device for filtering contaminates from a gas such as air is provided. The device includes a housing having a first inlet and a first outlet. An axial flow filter is fluidly coupled between the first inlet and the first outlet, the axial flow filter has a second inlet and a second outlet. A second filter disposed about the axial flow filter and is fluidly coupled between the first inlet and the first outlet, the second filter having a third inlet on an inner diameter and a third outlet disposed on an outer diameter. A flow restrictor is fluidly coupled between the second inlet and the first inlet.

  4. Surface-micromachined microfluidic devices

    DOEpatents

    Galambos, Paul C.; Okandan, Murat; Montague, Stephen; Smith, James H.; Paul, Phillip H.; Krygowski, Thomas W.; Allen, James J.; Nichols, Christopher A.; Jakubczak, II, Jerome F.

    2003-01-01

    Microfluidic devices are disclosed which can be manufactured using surface-micromachining. These devices utilize an electroosmotic force or an electromagnetic field to generate a flow of a fluid in a microchannel that is lined, at least in part, with silicon nitride. Additional electrodes can be provided within or about the microchannel for separating particular constituents in the fluid during the flow based on charge state or magnetic moment. The fluid can also be pressurized in the channel. The present invention has many different applications including electrokinetic pumping, chemical and biochemical analysis (e.g. based on electrophoresis or chromatography), conducting chemical reactions on a microscopic scale, and forming hydraulic actuators.

  5. Triple Pancreatic Walled-off Fluid Collections Treated Simultaneously with Endoscopic Transmural Drainage.

    PubMed

    Khalid, Sameen; Abbass, Aamer; Nellis, Eric; Shah, Shashin; Shah, Hiral

    2018-01-09

    Pancreatic pseudocysts and walled-off pancreatic necrosis arise as a complication of pancreatitis. Multiple fluid collections are seen in 5-20% of the patients who have walled-off peripancreatic fluid collections. There is a paucity of data regarding the role of endoscopic transmural drainage in the management of multiple pancreatic fluid collections. In this case report, we present the case of a 72-year-old male with three walled-off pancreatic fluid collections in the setting of acute necrotizing pancreatitis. The patient underwent simultaneous endoscopic ultrasound-assisted cyst gastrostomy and cyst duodenostomy and aggressive irrigation without index endoscopic necrosectomy of the three peripancreatic fluid collections. Significant improvement in the size of the fluid collections was seen on the computed tomography scan, as well as a remarkable immediate clinical improvement after 24 hours of the endoscopic intervention.

  6. Experimental validation of a novel stictionless magnetorheological fluid isolator

    NASA Astrophysics Data System (ADS)

    Kelso, Shawn P.; Denoyer, Keith K.; Blankinship, Ross M.; Potter, Kenneth; Lindler, Jason E.

    2003-07-01

    Magnetorheological (MR) fluid damper design typically constitutes a piston/dashpot configuration. During reciprocation, the fluid is circulated through the device with the generated pressure providing viscous damping. In addition, the damper is also intended to accommodate off-axis loading; i.e., rotation moments and lateral loads orthogonal to the axis of operation. Typically two sets of seals, one where the piston shaft enters and exits the device and one between the piston and the cylinder wall, maintain alignment of the damper and seal the fluid from leaking. With MR fluid, these seals can act as sources of non-linear friction effects (stiction) and oftentimes possess a shorter lifespan due to the abrasive nature of the ferrous particles suspended in the fluid. Intelligently controlling damping forces must also accommodate the non-linear stiction behavior, which degrades performance. A new, unique MR fluid isolator was designed, fabricated and tested that directly addresses these concerns. The goal of this research was the development of a stiction-free MR isolator whose damping force can be predicted and precisely controlled. This paper presents experimental results for a prototype device and compares those results to model predictions.

  7. Reliability of intraventricular pressure measurement with fiberoptic or solid-state transducers: avoidance of a methodological error.

    PubMed

    Raabe, A; Stöckel, R; Hohrein, D; Schöche, J

    1998-01-01

    The failure of intraventricular pressure measurement in cases of catheter blockage or dislodgement is thought to be eliminated by using intraventricular microtransducers. We report on an avoidable methodological error that may affect the reliability of intraventricular pressure measurement with these devices. Intraventricular fiberoptic or solid-state devices were implanted in 43 patients considered to be at risk for developing catheter occlusion. Two different types were used, i.e., devices in which the transducer is placed inside the ventriculostomy catheter (Type A) and devices in which the transducer is integrated in the external surface of the catheter (Type B). Type A devices were used in 15 patients and Type B devices in 28 patients. Pressure recordings were checked at bedside for the validity and reliability of the measurement. Of the 15 patients treated with Type A devices, no reliable pressure recordings were able to be obtained in three patients in whom ventricular punctures were not successful. In 4 of the remaining 12 patients, periods of erroneous pressure readings were detected. After opening of cerebrospinal fluid drainage, all Type A devices failed to reflect real intraventricular pressure. In patients treated with Type B devices, no erroneous pressure recordings were able to be identified, irrespective of whether cerebrospinal fluid drainage was performed. Even when ventricular puncture failed, pressure measurement was correct each time. Transducers that are simply placed inside the ventriculostomy catheter require fluid-coupling. They may fail, either during cerebrospinal fluid drainage or when the catheter is blocked or placed within the parenchyma.

  8. Control device for prosthetic urinary sphincter cuff

    NASA Technical Reports Server (NTRS)

    Reinicke, Robert H. (Inventor)

    1983-01-01

    A device for controlling flow of fluid to and from a resilient inflatable cuff implanted about the urethra to control flow of urine therethrough. The device comprises a flexible bulb reservoir and a control unit that includes a manually operated valve that opens automatically when the bulb is squeezed to force fluid into the cuff for closing the urethra. The control unit also includes a movable valve seat member having a relatively large area exposed to pressure of fluid in a chamber that is connected to the cuff and which moves to a position in which the valve member is unseated by an abutment when fluid pressure in the chamber exceeds a predetermined value to thereby relieve excess fluid pressure in the cuff. The arrangement is such that the valve element is held closed against the seat member by the full differential in fluid pressures acting on both sides of the valve element until the seat member is moved away from the valve element to thus insure positive closing of the valve element until the seat member is moved out of engagement with the valve element by excess pressure differential.

  9. Design and initial evaluation of a portable in situ runoff and sediment monitoring device

    NASA Astrophysics Data System (ADS)

    Sun, Tao; Cruse, Richard M.; Chen, Qiang; Li, Hao; Song, Chunyu; Zhang, Xingyi

    2014-11-01

    An inexpensive portable runoff and sediment monitoring device (RSMD) requiring no external electric power was developed for measuring water runoff and associated sediment loss from field plots ranging from 0.005 to 0.1 ha. The device consists of runoff gauge, sediment mixing and sectional subsampling assemblies. The runoff hydrograph is determined using a calibrated tipping bucket. The sediment mixing assembly minimizes fluid splash while mixing the runoff water/sediment mixture prior to subsampling this material. Automatic flow-proportional sampling utilizes mechanical power supplied by the tipping bucket action, with power transmitted to the sample collection assembly via the tipping bucket pivot bar. Runoff is well-mixed and subdivided twice before subsamples are collected for analysis. The resolution of this device for a 100 m2 plot is 0.025 mm of runoff; the device is able to capture maximum flow rates up to 82 mm h-1 in a plot of the same dimension. Calibration results indicated the maximum error is 2.1% for estimating flow rate and less than 10% for sediment concentration in most of the flow range. The RSMD was assessed by measuring field runoff and soil loss from different tillage and slope treatments for a single natural rainfall event. Results were in close agreement with those in published literature, giving additional evidence that this device is performing acceptably well. The RSMD is uniquely adapted for a wide range of field sites, especially for those without electric power, making it a useful tool for studying soil management strategies.

  10. Electrocautery vs non-electrocautery dilation catheters in endoscopic ultrasonography-guided pancreatic fluid collection drainage

    PubMed Central

    Kitamura, Katsuya; Yamamiya, Akira; Ishii, Yu; Nomoto, Tomohiro; Honma, Tadashi; Yoshida, Hitoshi

    2016-01-01

    AIM: To investigate the safety and utility of an electrocautery dilation catheter for endoscopic ultrasonography (EUS)-guided pancreatic fluid collection drainage. METHODS: A single-center, exploratory, retrospective study was conducted between August 2010 and August 2014. This study was approved by the Medical Ethics Committee of our institution. Informed, written consent was obtained from each patient prior to the procedure. The subjects included 28 consecutive patients who underwent EUS-guided transmural drainage (EUS-TD) for symptomatic pancreatic and peripancreatic fluid collections (PFCs) by fine needle aspiration using a 19-gauge needle. These patients were retrospectively divided into two groups based on the use of an electrocautery dilation catheter as a fistula dilation device; 15 patients were treated with an electrocautery dilation catheter (electrocautery group), and 13 patients were treated with a non-electrocautery dilation catheter (non-electrocautery group). We evaluated the technical and clinical successes and the adverse events associated with EUS-TD for the treatment of PFCs between the two groups. RESULTS: There were no significant differences in age, sex, type, location and diameter of PFCs between the groups. Thirteen patients (87%) in the electrocautery group and 10 patients (77%) in the non-electrocautery group presented with infected PFCs. The technical success rates of EUS-TD for the treatment of PFCs were 100% (15/15) and 100% (13/13) for the electrocautery and the non-electrocautery groups, respectively. The clinical success rates of EUS-TD for the treatment of PFCs were 67% (10/15) and 69% (9/13) for the electrocautery and the non-electrocautery groups, respectively (P = 0.794). The procedure time of EUS-TD for the treatment of PFCs in the electrocautery group was significantly shorter than that of the non-electrocautery group (mean ± SD: 30 ± 12 min vs 52 ± 20 min, P < 0.001). Adverse events associated with EUS-TD for the treatment of PFCs occurred in 0 patients and 1 patient for the electrocautery and the non-electrocautery groups, respectively (P = 0.942). CONCLUSION: EUS-TD using an electrocautery dilation catheter as a fistula dilation device for the treatment of symptomatic PFCs appears safe and contributes to a shorter procedure time. PMID:27433292

  11. Controllable Sonar Lenses and Prisms Based on ERFs

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Sherrit, Stewart; Chang, Zensheu; Bao, Xiaoqi; Paustian, Iris; Lopes, Joseph; Folds, Donald

    2004-01-01

    Sonar-beam-steering devices of the proposed type would contain no moving parts and would be considerably smaller and less power-hungry, relative to conventional multiple-beam sonar arrays. The proposed devices are under consideration for installation on future small autonomous underwater vehicles because the sizes and power demands of conventional multiple-beam arrays are excessive, and motors used in single-beam mechanically scanned systems are also not reliable. The proposed devices would include a variety of electrically controllable acoustic prisms, lenses, and prism/lens combinations both simple and compound. These devices would contain electrorheological fluids (ERFs) between electrodes. An ERF typically consists of dielectric particles floating in a dielectric fluid. When an electric field is applied to the fluid, the particles become grouped into fibrils aligned in rows, with a consequent increase in the viscosity of the fluid and a corresponding increase in the speed of sound in the fluid. The change in the speed of sound increases with an increase in the applied electric field. By thus varying the speed of sound, one varies the acoustic index of refraction, analogously to varying the index of refraction of an optical lens or prism. In the proposed acoustic devices, this effect would be exploited to control the angles of refraction of acoustic beams, thereby steering the beams and, in the case of lenses, controlling focal lengths.

  12. Environmentally safe fluid extractor

    DOEpatents

    Sungaila, Zenon F.

    1993-01-01

    An environmentally safe fluid extraction device for use in mobile laboratory and industrial settings comprising a pump, compressor, valving system, waste recovery tank, fluid tank, and a exhaust filtering system.

  13. Environmentally safe fluid extractor

    DOEpatents

    Sungaila, Zenon F.

    1993-07-06

    An environmentally safe fluid extraction device for use in mobile laboratory and industrial settings comprising a pump, compressor, valving system, waste recovery tank, fluid tank, and a exhaust filtering system.

  14. Experimental quantification of the fluid dynamics in blood-processing devices through 4D-flow imaging: A pilot study on a real oxygenator/heat-exchanger module.

    PubMed

    Piatti, Filippo; Palumbo, Maria Chiara; Consolo, Filippo; Pluchinotta, Francesca; Greiser, Andreas; Sturla, Francesco; Votta, Emiliano; Siryk, Sergii V; Vismara, Riccardo; Fiore, Gianfranco Beniamino; Lombardi, Massimo; Redaelli, Alberto

    2018-02-08

    The performance of blood-processing devices largely depends on the associated fluid dynamics, which hence represents a key aspect in their design and optimization. To this aim, two approaches are currently adopted: computational fluid-dynamics, which yields highly resolved three-dimensional data but relies on simplifying assumptions, and in vitro experiments, which typically involve the direct video-acquisition of the flow field and provide 2D data only. We propose a novel method that exploits space- and time-resolved magnetic resonance imaging (4D-flow) to quantify the complex 3D flow field in blood-processing devices and to overcome these limitations. We tested our method on a real device that integrates an oxygenator and a heat exchanger. A dedicated mock loop was implemented, and novel 4D-flow sequences with sub-millimetric spatial resolution and region-dependent velocity encodings were defined. Automated in house software was developed to quantify the complex 3D flow field within the different regions of the device: region-dependent flow rates, pressure drops, paths of the working fluid and wall shear stresses were computed. Our analysis highlighted the effects of fine geometrical features of the device on the local fluid-dynamics, which would be unlikely observed by current in vitro approaches. Also, the effects of non-idealities on the flow field distribution were captured, thanks to the absence of the simplifying assumptions that typically characterize numerical models. To the best of our knowledge, our approach is the first of its kind and could be extended to the analysis of a broad range of clinically relevant devices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Localized arc filament plasma actuators for noise mitigation and mixing enhancement

    NASA Technical Reports Server (NTRS)

    Samimy, Mohammad (Inventor); Adamovich, Igor (Inventor)

    2008-01-01

    A device for controlling fluid flow. The device includes an arc generator coupled to electrodes. The electrodes are placed adjacent a fluid flowpath such that upon being energized by the arc generator, an arc filament plasma adjacent the electrodes is formed. In turn, this plasma forms a localized high temperature, high pressure perturbation in the adjacent fluid flowpath. The perturbations can be arranged to produce vortices, such as streamwise vortices, in the flowing fluid to control mixing and noise in such flows. The electrodes can further be arranged within a conduit configured to contain the flowing fluid such that when energized in a particular frequency and sequence, can excite flow instabilities in the flowing fluid. The placement of the electrodes is such that they are unobtrusive relative to the fluid flowpath being controlled.

  16. Localized arc filament plasma actuators for noise mitigation and mixing enhancement

    NASA Technical Reports Server (NTRS)

    Samimy, Mohammad (Inventor); Adamovich, Igor (Inventor)

    2010-01-01

    A device for controlling fluid flow. The device includes an arc generator coupled to electrodes. The electrodes are placed adjacent a fluid flowpath such that upon being energized by the arc generator, an arc filament plasma adjacent the electrodes is formed. In turn, this plasma forms a localized high temperature, high pressure perturbation in the adjacent fluid flowpath. The perturbations can be arranged to produce vortices, such as streamwise vortices, in the flowing fluid to control mixing and noise in such flows. The electrodes can further be arranged within a conduit configured to contain the flowing fluid such that when energized in a particular frequency and sequence, can excite flow instabilities in the flowing fluid. The placement of the electrodes is such that they are unobtrusive relative to the fluid flowpath being controlled.

  17. Controlled evacuation using the biocompatible and energy efficient microfluidic ejector.

    PubMed

    Lad, V N; Ralekar, Swati

    2016-10-01

    Development of controlled vacuum is having many applications in the realm of biotechnology, cell transfer, gene therapy, biomedical engineering and other engineering activities involving separation or chemical reactions. Here we show the controlled vacuum generation through a biocompatible, energy efficient, low-cost and flexible miniature device. We have designed and fabricated microfluidic devices from polydimethylsiloxane which are capable of producing vacuum at a highly controlled rate by using water as a motive fluid. Scrupulous removal of infected fluid/body fluid from the internal hemorrhage affected parts during surgical operations, gene manipulation, cell sorting, and other biomedical activities require complete isolation of the delicate cells or tissues adjacent to the targeted location. We demonstrate the potential of the miniature device to obtain controlled evacuation without the use of highly pressurized motive fluids. Water has been used as a motive liquid to eject vapor and liquid at ambient conditions through the microfluidic devices prepared using a low-cost fabrication method. The proposed miniature device may find applications in vacuum generation especially where the controlled rate of evacuation, and limited vacuum generation are of utmost importance in order to precisely protect the cells in the nearby region of the targeted evacuated area.

  18. Hollow fiber apparatus and use thereof for fluids separations and heat and mass transfers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bikson, Benjamin; Etter, Stephen; Ching, Nathaniel

    A hollow fiber device includes a hollow fiber bundle, comprising a plurality of hollow fibers, a first tubesheet and a second tubesheet encapsulating respective distal ends of the hollow fiber bundle. The tubesheets have boreholes in fluid communication with bores of the hollow fibers. In at least one of the tubesheets, the boreholes are formed radially. The hollow fiber device can be utilized in heat exchange, in gas/gas, liquid/liquid and gas/liquid heat transfer, in combined heat and mass transfer and in fluid separation assemblies and processes. The design disclosed herein is light weight and compact and is particularly advantageous whenmore » the pressure of a first fluid introduced into the bores of hollow fibers is higher than the pressure on the shell side of the device.« less

  19. Capillary electrophoresis-electrochemical detection microchip device and supporting circuits

    DOEpatents

    Jackson, Douglas J [New Albany, IN; Roussel, Jr., Thomas J.; Crain, Mark M [Georgetown, IN; Baldwin, Richard P [Louisville, KY; Keynton, Robert S [Louisville, KY; Naber, John F [Prospect, KY; Walsh, Kevin M [Louisville, KY; Edelen, John G [Versailles, KY

    2008-03-18

    The present invention is a capillary electrophoresis device, comprising a substrate; a first channel in the substrate, and having a buffer arm and a detection arm; a second channel in the substrate intersecting the first channel, and having a sample arm and a waste arm; a buffer reservoir in fluid communication with the buffer arm; a waste reservoir in fluid communication with the waste arm; a sample reservoir in fluid communication with the sample arm; and a detection reservoir in fluid communication with the detection arm. The detection arm and the buffer arm are of substantially equal length.

  20. 21 CFR 866.5860 - Total spinal fluid immuno-logical test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... diagnosis of multiple sclerosis and other diseases of the nervous system. (b) Classification. Class I... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Total spinal fluid immuno-logical test system. 866... SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems § 866...

  1. 21 CFR 866.5860 - Total spinal fluid immuno-logical test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... diagnosis of multiple sclerosis and other diseases of the nervous system. (b) Classification. Class I... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Total spinal fluid immuno-logical test system. 866... SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems § 866...

  2. 21 CFR 866.5860 - Total spinal fluid immuno-logical test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... diagnosis of multiple sclerosis and other diseases of the nervous system. (b) Classification. Class I... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Total spinal fluid immuno-logical test system. 866... SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems § 866...

  3. 21 CFR 866.5860 - Total spinal fluid immuno-logical test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... diagnosis of multiple sclerosis and other diseases of the nervous system. (b) Classification. Class I... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Total spinal fluid immuno-logical test system. 866... SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems § 866...

  4. 21 CFR 866.5860 - Total spinal fluid immuno-logical test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... diagnosis of multiple sclerosis and other diseases of the nervous system. (b) Classification. Class I... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Total spinal fluid immuno-logical test system. 866... SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems § 866...

  5. Means and Method for Measurement of Drilling Fluid Properties

    NASA Astrophysics Data System (ADS)

    Lysyannikov, A.; Kondrashov, P.; Pavlova, P.

    2016-06-01

    The paper addresses the problem on creation of a new design of the device for determining rheological parameters of drilling fluids and the basic requirements which it must meet. The key quantitative parameters that define the developed device are provided. The algorithm of determining the coefficient of the yield point from the rheological Shvedov- Bingam model at a relative speed of rotation of glasses from the investigated drilling fluid of 300 and 600 rpm is presented.

  6. Formation of interconnections to microfluidic devices

    DOEpatents

    Matzke, Carolyn M [Los Lunas, NM; Ashby, Carol I. H. [Edgewood, NM; Griego, Leonardo [Tijeras, NM

    2003-07-29

    A method is disclosed to form external interconnections to a microfluidic device for coupling of a fluid or light or both into a microchannel of the device. This method can be used to form optical or fluidic interconnections to microchannels previously formed on a substrate, or to form both the interconnections and microchannels during the same process steps. The optical and fluidic interconnections are formed parallel to the plane of the substrate, and are fluid tight.

  7. Antivortex Device for Multi-Outlet Liquid Reservoir

    NASA Technical Reports Server (NTRS)

    Grayson, Gary David (Inventor); Addison, Stephen Michael (Inventor)

    2016-01-01

    A liquid reservoir with a sump includes at least two outlet ports in fluid communication with a fluid conduit. An anti-vortex device includes a first plate extending across the at least two outlet ports and a second plate coupled to the first plate and extending substantially perpendicular to the first plate. The anti-vortex device is configured to disrupt formation of a vortex formed by liquid passing from the reservoir through said outlet ports.

  8. Incidence, risk factors and clinical course of pancreatic fluid collections in acute pancreatitis.

    PubMed

    Cui, Mei Lan; Kim, Kook Hyun; Kim, Ho Gak; Han, Jimin; Kim, Hyunsoo; Cho, Kwang Bum; Jung, Min Kyu; Cho, Chang Min; Kim, Tae Nyeun

    2014-05-01

    Acute pancreatitis is an acute inflammatory process of the pancreas with variable involvement of other regional tissues or remote organ systems. Acute fluid collections and pseudocyst formation are the most frequent complications of acute pancreatitis. The aims of this study were to evaluate the incidence, risk factors, and clinical course of pancreatic fluid collections and pseudocyst formation following acute pancreatitis. A prospective multicenter study was conducted in five participating centers with 302 patients diagnosed with acute pancreatitis from January 2011 to July 2012. The incidence of pancreatic fluid collections and pseudocyst was 42.7 and 6.3 %, respectively. Patients with fluid collections were significantly younger, compared to those without fluid collections (51.5 ± 15.9 vs. 60.4 ± 16.5 years, P = 0.000). The proportion of alcoholic etiology (54.3 %) in patients with fluid collections was significantly higher compared to other etiologies (P = 0.000). C-reactive protein (CRP) (48 h) was significantly higher in patients with fluid collections, compared to patients without fluid collections (39.2 ± 77.4 vs. 15.1 ± 36.2 mg/dL, P = 0.016). LDH (48 h) was significantly higher in patients with pseudocyst formation, compared to patients with complete resolution (1,317.6 ± 706.4 vs. 478.7 ± 190.5 IU/L, P = 0.000). Pancreatic fluid collections showed spontaneous resolution in 69.8 % (90/129) and 84.2 % of the pseudocysts disappeared or decreased in size during follow up. Age, CRP (48 h), and alcohol etiology are risk factors for pancreatic fluid collections. LDH (48 h) appears to be a risk factor for pseudocyst formation. Most pseudocysts showed a decrease in size or spontaneous resolution with conservative management.

  9. Hybrid microneedles devices for diagnostic and therapeutic applications: fabrication and preliminary results

    NASA Astrophysics Data System (ADS)

    Dardano, P.; Caliò, A.; Politi, J.; Di Palma, V.; Bevilacqua, M. F.; Rea, I.; Casalino, M.; Di Matteo, A.; Rendina, I.; De Stefano, L.

    2015-06-01

    Microneedles are newly developed biomedical devices, whose advantages are mainly in the non-invasiveness, discretion and versatility of use both as diagnostics and as therapeutics tool. In fact, they can be used both for drugs delivery in the interstitial fluids and for the analysis of the interstitial fluid. In this work we present the preliminary results for two devices based on micro needles in PolyEthylene (Glycol). The first for the drugs delivery includes a membrane whose optical reflected wavelength is related to the concentration of drug. Here, we present our preliminary result in diffusion of drugs between the membrane and the microneedles. The second device is gold coated and it works as electrode for the electrochemical detection of species in the interstitial fluid. A preliminary result in detection of glucose will be shown.

  10. Endoscopic management of peripancreatic fluid collections.

    PubMed

    Goyal, Jatinder; Ramesh, Jayapal

    2015-07-01

    Peripancreatic fluid collections are a well-known complication of pancreatitis and can vary from fluid-filled collections to entirely necrotic collections. Although most of the fluid-filled pseudocysts tend to resolve spontaneously with conservative management, intervention is necessary in symptomatic patients. Open surgery has been the traditional treatment modality of choice though endoscopic, laparoscopic and transcutaneous techniques offer alternative drainage approaches. During the last decade, improvement in endoscopic ultrasound technology has enabled real-time access and drainage of fluid collections that were previously not amenable to blind transmural drainage. This has initiated a trend towards use of this modality for treatment of pseudocysts. In this review, we have summarised the existing evidence for endoscopic drainage of peripancreatic fluid collections from published studies.

  11. A versatile valving toolkit for automating fluidic operations in paper microfluidic devices.

    PubMed

    Toley, Bhushan J; Wang, Jessica A; Gupta, Mayuri; Buser, Joshua R; Lafleur, Lisa K; Lutz, Barry R; Fu, Elain; Yager, Paul

    2015-03-21

    Failure to utilize valving and automation techniques has restricted the complexity of fluidic operations that can be performed in paper microfluidic devices. We developed a toolkit of paper microfluidic valves and methods for automatic valve actuation using movable paper strips and fluid-triggered expanding elements. To the best of our knowledge, this is the first functional demonstration of this valving strategy in paper microfluidics. After introduction of fluids on devices, valves can actuate automatically after a) a certain period of time, or b) the passage of a certain volume of fluid. Timing of valve actuation can be tuned with greater than 8.5% accuracy by changing lengths of timing wicks, and we present timed on-valves, off-valves, and diversion (channel-switching) valves. The actuators require ~30 μl fluid to actuate and the time required to switch from one state to another ranges from ~5 s for short to ~50 s for longer wicks. For volume-metered actuation, the size of a metering pad can be adjusted to tune actuation volume, and we present two methods - both methods can achieve greater than 9% accuracy. Finally, we demonstrate the use of these valves in a device that conducts a multi-step assay for the detection of the malaria protein PfHRP2. Although slightly more complex than devices that do not have moving parts, this valving and automation toolkit considerably expands the capabilities of paper microfluidic devices. Components of this toolkit can be used to conduct arbitrarily complex, multi-step fluidic operations on paper-based devices, as demonstrated in the malaria assay device.

  12. A versatile valving toolkit for automating fluidic operations in paper microfluidic devices

    PubMed Central

    Toley, Bhushan J.; Wang, Jessica A.; Gupta, Mayuri; Buser, Joshua R.; Lafleur, Lisa K.; Lutz, Barry R.; Fu, Elain; Yager, Paul

    2015-01-01

    Failure to utilize valving and automation techniques has restricted the complexity of fluidic operations that can be performed in paper microfluidic devices. We developed a toolkit of paper microfluidic valves and methods for automatic valve actuation using movable paper strips and fluid-triggered expanding elements. To the best of our knowledge, this is the first functional demonstration of this valving strategy in paper microfluidics. After introduction of fluids on devices, valves can actuate automatically a) after a certain period of time, or b) after the passage of a certain volume of fluid. Timing of valve actuation can be tuned with greater than 8.5% accuracy by changing lengths of timing wicks, and we present timed on-valves, off-valves, and diversion (channel-switching) valves. The actuators require ~30 μl fluid to actuate and the time required to switch from one state to another ranges from ~5 s for short to ~50s for longer wicks. For volume-metered actuation, the size of a metering pad can be adjusted to tune actuation volume, and we present two methods – both methods can achieve greater than 9% accuracy. Finally, we demonstrate the use of these valves in a device that conducts a multi-step assay for the detection of the malaria protein PfHRP2. Although slightly more complex than devices that do not have moving parts, this valving and automation toolkit considerably expands the capabilities of paper microfluidic devices. Components of this toolkit can be used to conduct arbitrarily complex, multi-step fluidic operations on paper-based devices, as demonstrated in the malaria assay device. PMID:25606810

  13. Rapid Assessment of Salivary MMP-8 and Periodontal Disease Using Lateral Flow Immunoassay

    PubMed Central

    Johnson, N.; Ebersole, J.L.; Kryscio, R.J.; Danaher, R. J.; Dawson, D.; Al-Sabbagh, M.; Miller, C.S.

    2016-01-01

    Objective This study determined the efficacy of a novel point-of-care immunoflow device (POCID) for detecting matrix metalloproteinase (MMP)-8 concentrations in oral fluids in comparison with a gold-standard laboratory-based immunoassay. Methods Oral rinse fluid and whole expectorated saliva samples were collected from 41 participants clinically classified as periodontally healthy or diseased. Samples were analyzed for MMP-8 by Luminex immunoassay and POCID. Photographed POCID results were assessed by optical scan and visually by two examiners. Data were analyzed by Pearson correlation and receiver operator characteristics. Results MMP-8 was readily detected by the POCID, and concentrations correlated well with Luminex for both saliva and rinse fluids (r=0.57–0.93). Thresholds that distinguished periodontitis from health were delineated from both the optical scans and visual reads of the POCID (sensitivity 0.7–0.9, specificity 0.5–0.7; p < 0.05). Conclusions Performance of this POCID for detecting MMP-8 in oral rinse fluid or saliva was excellent. These findings help demonstrate the utility of salivary biomarkers for distinguishing periodontal disease from health using a rapid point-of-care approach. PMID:27273425

  14. Evaluation of Δ(9) -tetrahydrocannabinol detection using DrugWipe5S(®) screening and oral fluid quantification after Quantisal™ collection for roadside drug detection via a controlled study with chronic cannabis users.

    PubMed

    Wille, Sarah M R; Di Fazio, Vincent; Toennes, Stefan W; van Wel, Janelle H P; Ramaekers, Johannes G; Samyn, Nele

    2015-03-01

    Oral fluid (OF) is potentially useful to detect driving under the influence of drugs because of its ease of sampling. While cannabis is the most prevalent drug in Europe, sensitivity issues for Δ(9) -tetrahydrocannabinol (THC) screening and problems during OF collection are observed. The ability of a recently improved OF screening device - the DrugWipe5S(®) , to detect recent THC use in chronic cannabis smokers, was studied. Ten subjects participated in a double-blind placebo-controlled study. The subjects smoked two subsequent doses of THC; 300 µg/kg and 150 µg/kg with a pause of 75 min using a Volcano vapourizer. DrugWipe5S(®) screening and OF collection using the Quantisal™ device were performed at baseline, 5 min after each administration and 80 min after the last inhalation. Blood samples were drawn simultaneously. The screening devices (n = 80) were evaluated visually after 8 min, while the corresponding OF and serum samples were analyzed respectively with ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) or gas chromatography-mass spectrometry (GC-MS). Neat OF THC concentrations ranged from 12 361 ng/g 5 min after smoking down to 34 ng/g 80 min later. Under placebo conditions, a median THC concentration of 8 ng/g OF (0-746 ng/g) and < 1 ng/ mL serum (0-7.8 ng/mL) was observed. The DrugWipe5S(®) was positive just after smoking (90%); however, sensitivity rapidly decreased within 1.5 h (50%). Sensitivity of DrugWipe5S(®) should be improved. As chronic cannabis users have high residual THC concentrations in their serum and OF, confirmation cut-offs should be set according to the aim of detecting recent drug use or establishing zero tolerance. Copyright © 2014 John Wiley & Sons, Ltd.

  15. Electrospray device

    NASA Technical Reports Server (NTRS)

    Demmons, Nathaniel (Inventor); Roy, Thomas (Inventor); Spence, Douglas (Inventor); Martin, Roy (Inventor); Hruby, Vladimir (Inventor); Ehrbar, Eric (Inventor); Zwahlen, Jurg (Inventor)

    2011-01-01

    An electrospray device includes an electrospray emitter adapted to receive electrospray fluid; an extractor plate spaced from the electrospray emitter and having at least one aperture; and a power supply for applying a first voltage between the extractor plate and emitter for generating at least one Taylor cone emission through the aperture to create an electrospray plume from the electrospray fluid, the extractor plate as well as accelerator and shaping plates may include a porous, conductive medium for transporting and storing excess, accumulated electrospray fluid away from the aperture.

  16. Delayed methotrexate excretion in infants and young children with primary central nervous system tumors and postoperative fluid collections.

    PubMed

    Wright, Karen D; Panetta, John C; Onar-Thomas, Arzu; Reddick, Wilburn E; Patay, Zoltan; Qaddoumi, Ibrahim; Broniscer, Alberto; Robinson, Giles; Boop, Frederick A; Klimo, Paul; Ward, Deborah; Gajjar, Amar; Stewart, Clinton F

    2015-01-01

    High-dose methotrexate (HD-MTX) has been used to treat children with central nervous system tumors. Accumulation of MTX within pleural, peritoneal, or cardiac effusions has led to delayed excretion and increased risk of systemic toxicity. This retrospective study analyzed the association of intracranial post-resection fluid collections with MTX plasma disposition in infants and young children with brain tumors. Brain MRI findings were analyzed for postoperative intracranial fluid collections in 75 pediatric patients treated with HD-MTX and for whom serial MTX plasma concentrations (MTX) were collected. Delayed plasma excretion was defined as (MTX) ≥1 μM at 42 hours (h). Leucovorin was administered at 42 h and then every 6 h until (MTX) <0.1 μM. Population and individual MTX pharmacokinetic parameters were estimated by nonlinear mixed-effects modeling. Fifty-eight patients had intracranial fluid collections present. Population average (inter-individual variation) MTX clearance was 96.0 ml/min/m² (41.1 CV %) and increased with age. Of the patients with intracranial fluid collections, 24 had delayed excretion; only 2 of the 17 without fluid collections (P < 0.04) had delayed excretion. Eleven patients had grade 3 or 4 toxicities attributed to HD-MTX. No significant difference was observed in intracranial fluid collection, total leucovorin dosing, or hydration fluids between those with and without toxicity. Although an intracranial fluid collection is associated with delayed MTX excretion, HD-MTX can be safely administered with monitoring of infants and young children with intracranial fluid collections. Infants younger than 1 year may need additional monitoring to avoid toxicity.

  17. Apparatus for measuring a sorbate dispersed in a fluid stream

    NASA Technical Reports Server (NTRS)

    Updike, O. L. (Inventor)

    1977-01-01

    A sensitive, miniature apparatus was designed for measuring low concentrations of a sorbate dispersed in a fluid stream. The device consists of an elongated body having a surface capable of sorbing an amount of the sorbate proportional to the concentration in the fluid stream and propagating acoustic energy along its length. The acoustic energy is converted to an electrical output signal corresponding to the concentration of sorbate in the fluid stream. The device can be designed to exhibit high sensitivity to extremely small amounts of sorbate dispersed in a fluid stream and to exhibit low sensitivity to large amounts of sorbate. Another advantage is that the apparatus may be formed in a microminiature size and at a low cost using bath microfabrication technology.

  18. 30 CFR 250.614 - Well-control fluids, equipment, and operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... workover string, the annulus shall be filled with well-control fluid before the change in such fluid level... equivalent well-control fluid volume shall be calculated and posted near the operator's station. A mechanical... utilized: (1) A fill-up line above the uppermost BOP; (2) A well-control, fluid-volume measuring device for...

  19. Metal sulfide electrodes and energy storage devices thereof

    DOEpatents

    Chiang, Yet-Ming; Woodford, William Henry; Li, Zheng; Carter, W. Craig

    2017-02-28

    The present invention generally relates to energy storage devices, and to metal sulfide energy storage devices in particular. Some aspects of the invention relate to energy storage devices comprising at least one flowable electrode, wherein the flowable electrode comprises an electroactive metal sulfide material suspended and/or dissolved in a carrier fluid. In some embodiments, the flowable electrode further comprises a plurality of electronically conductive particles suspended and/or dissolved in the carrier fluid, wherein the electronically conductive particles form a percolating conductive network. An energy storage device comprising a flowable electrode comprising a metal sulfide electroactive material and a percolating conductive network may advantageously exhibit, upon reversible cycling, higher energy densities and specific capacities than conventional energy storage devices.

  20. Composition Pulse Time-Of-Flight Mass Flow Sensor

    DOEpatents

    Mosier, Bruce P.; Crocker, Robert W.; Harnett, Cindy K. l

    2004-01-13

    A device for measuring fluid flow rates over a wide range of flow rates (<1 nL/min to >10 .mu.L/min) and at pressures at least as great as 10,000 psi. The invention is particularly adapted for use in microfluidic systems. The device operates by producing compositional variations in the fluid, or pulses, that are subsequently detected downstream from the point of creation to derive a flow rate. Each pulse, comprising a small fluid volume, whose composition is different from the mean composition of the fluid, can be created by electrochemical means, such as by electrolysis of a solvent, electrolysis of a dissolved species, or electrodialysis of a dissolved ionic species. Measurements of the conductivity of the fluid can be used to detect the arrival time of the pulses, from which the fluid flow rate can be determined

  1. Ceramic microparticles and capsules via microfluidic processing of a preceramic polymer

    PubMed Central

    Ye, Congwang; Chen, Anthony; Colombo, Paolo; Martinez, Carlos

    2010-01-01

    We have developed a robust technique to fabricate monodispersed solid and porous ceramic particles and capsules from single and double emulsion drops composed of silsesquioxane preceramic polymer. A microcapillary microfluidic device was used to generate the monodispersed drops. In this device, two round capillaries are aligned facing each other inside a square capillary. Three fluids are needed to generate the double emulsions. The inner fluid, which flows through the input capillary, and the middle fluid, which flows through the void space between the square and inner fluid capillaries, form a coaxial co-flow in a direction that is opposite to the flow of the outer fluid. As the three fluids are forced through the exit capillary, the inner and middle fluids break into monodispersed double emulsion drops in a single-step process, at rates of up to 2000 drops s−1. Once the drops are generated, the silsesquioxane is cross-linked in solution and the cross-linked particles are dried and pyrolysed in an inert atmosphere to form oxycarbide glass particles. Particles with diameters ranging from 30 to 180 µm, shell thicknesses ranging from 10 to 50 µm and shell pore diameters ranging from 1 to 10 µm were easily prepared by changing fluid flow rates, device dimensions and fluid composition. The produced particles and capsules can be used in their polymeric state or pyrolysed to ceramic. This technique can be extended to other preceramic polymers and can be used to generate unique core–shell multimaterial particles. PMID:20484226

  2. Ceramic microparticles and capsules via microfluidic processing of a preceramic polymer.

    PubMed

    Ye, Congwang; Chen, Anthony; Colombo, Paolo; Martinez, Carlos

    2010-08-06

    We have developed a robust technique to fabricate monodispersed solid and porous ceramic particles and capsules from single and double emulsion drops composed of silsesquioxane preceramic polymer. A microcapillary microfluidic device was used to generate the monodispersed drops. In this device, two round capillaries are aligned facing each other inside a square capillary. Three fluids are needed to generate the double emulsions. The inner fluid, which flows through the input capillary, and the middle fluid, which flows through the void space between the square and inner fluid capillaries, form a coaxial co-flow in a direction that is opposite to the flow of the outer fluid. As the three fluids are forced through the exit capillary, the inner and middle fluids break into monodispersed double emulsion drops in a single-step process, at rates of up to 2000 drops s(-1). Once the drops are generated, the silsesquioxane is cross-linked in solution and the cross-linked particles are dried and pyrolysed in an inert atmosphere to form oxycarbide glass particles. Particles with diameters ranging from 30 to 180 microm, shell thicknesses ranging from 10 to 50 microm and shell pore diameters ranging from 1 to 10 microm were easily prepared by changing fluid flow rates, device dimensions and fluid composition. The produced particles and capsules can be used in their polymeric state or pyrolysed to ceramic. This technique can be extended to other preceramic polymers and can be used to generate unique core-shell multimaterial particles.

  3. A fluidic diode, valves, and a sequential-loading circuit fabricated on layered paper.

    PubMed

    Chen, Hong; Cogswell, Jeremy; Anagnostopoulos, Constantine; Faghri, Mohammad

    2012-08-21

    Current microfluidic paper-based devices lack crucial components for fluid manipulation. We created a fluidic diode fabricated entirely on a single layer of paper to control the wicking of fluids. The fluidic diode is a two-terminal component that promotes or stops wicking along a paper channel. We further constructed a trigger and a delay valve based on the fluidic diode. Furthermore, we demonstrated a high-level functional circuit, consisting of a diode and a delay valve, to manipulate two fluids in a sequential manner. Our study provides new, transformative tools to manipulate fluid in microfluidic paper-based devices.

  4. Device for producing a fluid stream of varying composition

    DOEpatents

    Moss, Owen R.; Clark, Mark L.; Rossignol, E. John

    1982-01-01

    A device for producing a fluid stream of varying composition comprises a chamber having an inlet at one end and outlet at the other. Between the inlet and outlet there are substantially planar pans or baffles positioned normal to the bulk flow of fluid between the inlet and the outlet. These pans are arranged in pairs. Each pan, except those of the pair most remote from the inlet, is spaced from the walls of the chamber to permit air to flow past it. The pans of each pair are also spaced from each other, in a direction parallel to their planes, leaving an empty space along the mid-plane of the chamber. This produces a circulation and mixing of fluid between the pairs of pans or baffles. A secondary stream of fluid is introduced between two pairs of baffles in the intermediate portion of the chamber, so that the composition of the fluid is different in the portion adjacent to the outlet and the portion adjacent to the inlet. In a specific embodiment, the device is an exposure chamber for experimental animals, and the pans or baffles are catch pans for excrement.

  5. Fluid collections in amputations are not indicative or predictive of infection.

    PubMed

    Polfer, Elizabeth M; Hoyt, Benjamin W; Senchak, Lien T; Murphey, Mark D; Forsberg, Jonathan A; Potter, Benjamin K

    2014-10-01

    In the acute postoperative period, fluid collections are common in lower extremity amputations. Whether these fluid collections increase the risk of infection is unknown. The purposes of this study were to determine (1) the percentage of patients who develop postoperative fluid collections in posttraumatic amputations and the natural course of the collection; (2) whether patients who develop these collections are at increased risk for infection; and to ask (3) are there objective clinical or radiologic signs that are associated with likelihood of infection when a fluid collection is present? We performed a review of all 300 patients injured in combat operations who sustained at least one major lower extremity amputation (at or proximal to the tibiotalar joint) and were treated definitively at our institution between March 2005 and April 2009. We segregated the groups based on whether cross-sectional imaging was performed less than 3 months (early group) after closure, greater than 3 months (late group) after closure, or not at all (control group, baseline frequency of infection). Our primary study cohort where those patients with a fluid collection in the first three months. The clinical course was reviewed and the primary outcome was a return to the operating room for irrigation and débridement with positive cultures. For those patients with cross-sectional imaging, we also collected objective clinical parameters within 24 hours of the scan (white blood cell count, maximum temperature, presence of bacteremia, tachycardia, oxygen desaturation), extremity examination (presence of erythema, warmth, and/or drainage), and characteristics of the fluid collections seen (size of the fluid collection, enhancement, complexity (simple versus loculated), surrounding edema, skin changes, tract formation, presence of air, and changes within the bone itself). The presence of a fluid collection on imaging was analyzed to determine whether it was associated with infection. We further analyzed clinical parameters, objective physical examination findings at the extremity, and characteristics of the fluid collection to determine if there were other parameters associated with infection. Over half (55%) of the limbs demonstrated fluid collection in the early postoperative period and the prevalence decreased in the late group (11%; p = 0.001). There was no association between the presence of a fluid collection and infection. However, there was an association between objective clinical signs at the extremity (erythema and/or drainage) and infection (p < 0.001) in our primary study cohort. Fluid collections are common in combat-related amputations in the immediate postoperative period and become smaller and less frequent over time. In the absence of extremity erythema and wound drainage, imaging of a residual limb to evaluate for the presence of a fluid collection appears to be of little clinical use.

  6. Fluid handling equipment: A compilation

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Devices and techniques used in fluid-handling and vacuum systems are described. Section 1 presents several articles on fluid lines and tubing. Section 2 describes a number of components such as valves, filters, and regulators. The last section contains descriptions of a number of innovative fluid-handling systems.

  7. Method and apparatus for determining fluid mass flowrates

    DOEpatents

    Hamel, W.R.

    1982-10-07

    This invention relates to a new method and new apparatus for determining fluid mass flowrate and density. In one aspect of the invention, the fluid is passed through a straight cantilevered tube in which transient oscillation has been induced, thus generating Coriolis damping forces on the tube. The decay rate and frequency of the resulting damped oscillation are measured, and the fluid mass flowrate and density are determined therefrom. In another aspect of the invention, the fluid is passed through the cantilevered tube while an electrically powered device imparts steady-state harmonic excitation to the tube. This generates Coriolis tube-damping forces which are dependent on the mass flowrate of the fluid. Means are provided to respond to incipient flow-induced changes in the amplitude of vibration by changing the power input to the excitation device as required to sustain the original amplitude of vibration. The fluid mass flowrate and density are determined from the required bending of the fluid flow.

  8. Conductance valve and pressure-to-conductance transducer method and apparatus

    DOEpatents

    Schoeniger, Joseph S.; Cummings, Eric B.; Brennan, James S.

    2005-01-18

    A device for interrupting or throttling undesired ionic transport through a fluid network is disclosed. The device acts as a fluid valve by reversibly generating a fixed "bubble" in the conducting solvent solution carried by the network. The device comprises a porous hydrophobic structure filling a portion of a connecting channel within the network and optionally incorporates flow restrictor elements at either end of the porous structure that function as pressure isolation barriers, and a fluid reservoir connected to the region of the channel containing the porous structure. Also included is a pressure pump connected to the fluid reservoir. The device operates by causing the pump to vary the hydraulic pressure to a quantity of solvent solution held within the reservoir and porous structure. At high pressures, most or all of the pores of the structure are filled with conducting liquid so the ionic conductance is high. At lower pressures, only a fraction of the pores are filled with liquid, so ionic conductivity is lower. Below a threshold pressure, the porous structure contains only vapor, so there is no liquid conduction path. The device therefore effectively throttles ionic transport through the porous structure and acts as a "conductance valve" or "pressure-to-conductance" transducer within the network.

  9. Stretchable, wireless sensors and functional substrates for epidermal characterization of sweat.

    PubMed

    Huang, Xian; Liu, Yuhao; Chen, Kaile; Shin, Woo-Jung; Lu, Ching-Jui; Kong, Gil-Woo; Patnaik, Dwipayan; Lee, Sang-Heon; Cortes, Jonathan Fajardo; Rogers, John A

    2014-08-13

    This paper introduces materials and architectures for ultrathin, stretchable wireless sensors that mount on functional elastomeric substrates for epidermal analysis of biofluids. Measurement of the volume and chemical properties of sweat via dielectric detection and colorimetry demonstrates some capabilities. Here, inductively coupled sensors consisting of LC resonators with capacitive electrodes show systematic responses to sweat collected in microporous substrates. Interrogation occurs through external coils placed in physical proximity to the devices. The substrates allow spontaneous sweat collection through capillary forces, without the need for complex microfluidic handling systems. Furthermore, colorimetric measurement modes are possible in the same system by introducing indicator compounds into the depths of the substrates, for sensing specific components (OH(-) , H(+) , Cu(+) , and Fe(2+) ) in the sweat. The complete devices offer Young's moduli that are similar to skin, thus allowing highly effective and reliable skin integration without external fixtures. Experimental results demonstrate volumetric measurement of sweat with an accuracy of 0.06 μL/mm(2) with good stability and low drift. Colorimetric responses to pH and concentrations of various ions provide capabilities relevant to analysis of sweat. Similar materials and device designs can be used in monitoring other body fluids. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Quartz resonator fluid density and viscosity monitor

    DOEpatents

    Martin, Stephen J.; Wiczer, James J.; Cernosek, Richard W.; Frye, Gregory C.; Gebert, Charles T.; Casaus, Leonard; Mitchell, Mary A.

    1998-01-01

    A pair of thickness-shear mode resonators, one smooth and one with a textured surface, allows fluid density and viscosity to be independently resolved. A textured surface, either randomly rough or regularly patterned, leads to trapping of liquid at the device surface. The synchronous motion of this trapped liquid with the oscillating device surface allows the device to weigh the liquid; this leads to an additional response that depends on liquid density. This additional response enables a pair of devices, one smooth and one textured, to independently resolve liquid density and viscosity; the difference in responses determines the density while the smooth device determines the density-viscosity product, and thus, the pair determines both density and viscosity.

  11. Textured-surface quartz resonator fluid density and viscosity monitor

    DOEpatents

    Martin, Stephen J.; Wiczer, James J.; Cernosek, Richard W.; Frye, Gregory C.; Gebert, Charles T.; Casaus, Leonard; Mitchell, Mary A.

    1998-08-25

    A pair of thickness-shear mode resonators, one smooth and one with a textured surface, allows fluid density and viscosity to be independently resolved. A textured surface, either randomly rough or regularly patterned, leads to trapping of liquid at the device surface. The synchronous motion of this trapped liquid with the oscillating device surface allows the device to weigh the liquid; this leads to an additional response that depends on liquid density. This additional response enables a pair of devices, one smooth and one textured, to independently resolve liquid density and viscosity; the difference in responses determines the density while the smooth device determines the density-viscosity product, and thus, the pair determines both density and viscosity.

  12. Use of piezoelectric multicomponent force measuring devices in fluid mechanics

    NASA Technical Reports Server (NTRS)

    Richter, A.; Stefan, K.

    1979-01-01

    The characterisitics of piezoelectric multicomponent transducers are discussed, giving attention to the advantages of quartz over other materials. The main advantage of piezoelectric devices in aerodynamic studies is their ability to indicate rapid changes in the values of physical parameters. Problems in the accuracy of measurments by piezoelectric devices can be overcome by suitable design approaches. A practical example is given of how such can be utilized to measure rapid fluctuations of fluid forces exerted on a circular cylinder mounted in a water channel.

  13. Simplified thermodynamic functions for vapor-liquid phase separation and fountain effect pumps

    NASA Technical Reports Server (NTRS)

    Yuan, S. W. K.; Hepler, W. A.; Frederking, T. H. K.

    1984-01-01

    He-4 fluid handling devices near 2 K require novel components for non-Newtonian fluid transport in He II. Related sizing of devices has to be based on appropriate thermophysical property functions. The present paper presents simplified equilibrium state functions for porous media components which serve as vapor-liquid phase separators and fountain effect pumps.

  14. Packaging of electro-microfluidic devices

    DOEpatents

    Benavides, Gilbert L.; Galambos, Paul C.; Emerson, John A.; Peterson, Kenneth A.; Giunta, Rachel K.; Zamora, David Lee; Watson, Robert D.

    2003-04-15

    A new architecture for packaging surface micromachined electro-microfluidic devices is presented. This architecture relies on two scales of packaging to bring fluid to the device scale (picoliters) from the macro-scale (microliters). The architecture emulates and utilizes electronics packaging technology. The larger package consists of a circuit board with embedded fluidic channels and standard fluidic connectors (e.g. Fluidic Printed Wiring Board). The embedded channels connect to the smaller package, an Electro-Microfluidic Dual-Inline-Package (EMDIP) that takes fluid to the microfluidic integrated circuit (MIC). The fluidic connection is made to the back of the MIC through Bosch-etched holes that take fluid to surface micromachined channels on the front of the MIC. Electrical connection is made to bond pads on the front of the MIC.

  15. Packaging of electro-microfluidic devices

    DOEpatents

    Benavides, Gilbert L.; Galambos, Paul C.; Emerson, John A.; Peterson, Kenneth A.; Giunta, Rachel K.; Watson, Robert D.

    2002-01-01

    A new architecture for packaging surface micromachined electro-microfluidic devices is presented. This architecture relies on two scales of packaging to bring fluid to the device scale (picoliters) from the macro-scale (microliters). The architecture emulates and utilizes electronics packaging technology. The larger package consists of a circuit board with embedded fluidic channels and standard fluidic connectors (e.g. Fluidic Printed Wiring Board). The embedded channels connect to the smaller package, an Electro-Microfluidic Dual-Inline-Package (EMDIP) that takes fluid to the microfluidic integrated circuit (MIC). The fluidic connection is made to the back of the MIC through Bosch-etched holes that take fluid to surface micromachined channels on the front of the MIC. Electrical connection is made to bond pads on the front of the MIC.

  16. 21 CFR 880.2460 - Electrically powered spinal fluid pressure monitor.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... SERVICES (CONTINUED) MEDICAL DEVICES GENERAL HOSPITAL AND PERSONAL USE DEVICES General Hospital and... electrical signal. The device includes signal amplification, conditioning, and display equipment. (b...

  17. 21 CFR 880.2460 - Electrically powered spinal fluid pressure monitor.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... SERVICES (CONTINUED) MEDICAL DEVICES GENERAL HOSPITAL AND PERSONAL USE DEVICES General Hospital and... electrical signal. The device includes signal amplification, conditioning, and display equipment. (b...

  18. 21 CFR 880.2460 - Electrically powered spinal fluid pressure monitor.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... SERVICES (CONTINUED) MEDICAL DEVICES GENERAL HOSPITAL AND PERSONAL USE DEVICES General Hospital and... electrical signal. The device includes signal amplification, conditioning, and display equipment. (b...

  19. 3D-printed microfluidic automation.

    PubMed

    Au, Anthony K; Bhattacharjee, Nirveek; Horowitz, Lisa F; Chang, Tim C; Folch, Albert

    2015-04-21

    Microfluidic automation - the automated routing, dispensing, mixing, and/or separation of fluids through microchannels - generally remains a slowly-spreading technology because device fabrication requires sophisticated facilities and the technology's use demands expert operators. Integrating microfluidic automation in devices has involved specialized multi-layering and bonding approaches. Stereolithography is an assembly-free, 3D-printing technique that is emerging as an efficient alternative for rapid prototyping of biomedical devices. Here we describe fluidic valves and pumps that can be stereolithographically printed in optically-clear, biocompatible plastic and integrated within microfluidic devices at low cost. User-friendly fluid automation devices can be printed and used by non-engineers as replacement for costly robotic pipettors or tedious manual pipetting. Engineers can manipulate the designs as digital modules into new devices of expanded functionality. Printing these devices only requires the digital file and electronic access to a printer.

  20. An inkjet-printed electrowetting valve for paper-fluidic sensors.

    PubMed

    Koo, Charmaine K W; He, Fei; Nugen, Sam R

    2013-09-07

    Paper-fluidic devices have become an emerging trend for micro total analysis systems (microTAS) in the bioengineering field due to their ability to maintain the rapid, sensitive and specific attributes of microfluidic devices. Subsequently, paper-fluidic devices are also more portable, have a lower production cost and are easier to use. However, one of the obstacles in developing paper fluidic devices is the limited ability to control the rate of fluid flow during an assay. In our project, we use electrowetting on dielectrics where a dielectric, which is normally hydrophobic, is polarized and becomes hydrophilic. We have fabricated paper-fluidic devices by inkjet printing and spraying conductive hydrophobic electrodes/valves in conjunction with conductive hydrophilic electrodes which are able to stop the fluid front of phosphate buffered saline (PBS). The hydrophobic valves were then actuated by an applied potential which altered the fluorinated monolayer on the electrode. As the applied potential between the electrodes was increased, the amount of time for the fluid front to pass the valve decreased because the monolayer was altered faster. However, we did not observe significant differences in time as we increased the distance between the electrodes. The valves were also incorporated in a lateral flow assay where the device was used to detect Saccharomyces cerevisiae rRNA sequences. With the ability to control the fluid flow in a paper-fluidic device, more complex and intricate assays can be developed, which not only can be applied in the biomedical, food and environmental fields, but also can be used in low resource settings for the detection of diseases.

  1. Concept of planetary gear system to control fluid mixture ratio

    NASA Technical Reports Server (NTRS)

    Mcgroarty, J. D.

    1966-01-01

    Mechanical device senses and corrects for fluid flow departures from the selected flow ratio of two fluids. This system has been considered for control of rocket engine propellant mixture control but could find use wherever control of the flow ratio of any two fluids is desired.

  2. 14 CFR 23.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flammable fluid fire protection. 23.863... Construction Fire Protection § 23.863 Flammable fluid fire protection. (a) In each area where flammable fluids... protective devices. (4) Means available for controlling or extinguishing a fire, such as stopping flow of...

  3. FLOWMETER

    DOEpatents

    November, G.S.; Schute, F.

    1962-02-20

    A fluid flowmeter is designed in which a standing pressure wave is established. The amplitude of this standing wave is a function of the fluid flow rate so that pressure sensing devices may be used to indicate fluid flow and variations thereof. (AEC)

  4. Yield-stress fluids foams: flow patterns and controlled production in T-junction and flow-focusing devices.

    PubMed

    Laborie, Benoit; Rouyer, Florence; Angelescu, Dan E; Lorenceau, Elise

    2016-11-23

    We study the formation of yield-stress fluid foams in millifluidic flow-focusing and T-junction devices. First, we provide a phase diagram for the unsteady operating regimes of bubble production when the gas pressure and the yield-stress fluid flow rate are imposed. Three regimes are identified: a co-flow of gas and yield-stress fluid, a transient production of bubble and a flow of yield-stress fluid only. Taking wall slip into account, we provide a model for the pressure at the onset of bubble formation. Then, we detail and compare two simple methods to ensure steady bubble production: regulation of the gas pressure or flow-rate. These techniques, which are easy to implement, thus open pathways for controlled production of dry yield-stress fluid foams as shown at the end of this article.

  5. Radionuclide detection devices and associated methods

    DOEpatents

    Mann, Nicholas R [Rigby, ID; Lister, Tedd E [Idaho Falls, ID; Tranter, Troy J [Idaho Falls, ID

    2011-03-08

    Radionuclide detection devices comprise a fluid cell comprising a flow channel for a fluid stream. A radionuclide collector is positioned within the flow channel and configured to concentrate one or more radionuclides from the fluid stream onto at least a portion of the radionuclide collector. A scintillator for generating scintillation pulses responsive to an occurrence of a decay event is positioned proximate at least a portion of the radionuclide collector and adjacent to a detection system for detecting the scintillation pulses. Methods of selectively detecting a radionuclide are also provided.

  6. Cellulose-Based Smart Fluids under Applied Electric Fields

    PubMed Central

    Choi, Kisuk; Gao, Chun Yan; Nam, Jae Do

    2017-01-01

    Cellulose particles, their derivatives and composites have special environmentally benign features and are abundant in nature with their various applications. This review paper introduces the essential properties of several types of cellulose and their derivatives obtained from various source materials, and their use in electro-responsive electrorheological (ER) suspensions, which are smart fluid systems that are actively responsive under applied electric fields, while, at zero electric field, ER fluids retain a liquid-like state. Given the actively controllable characteristics of cellulose-based smart ER fluids under an applied electric field regarding their rheological and dielectric properties, they can potentially be applied for various industrial devices including dampers and haptic devices. PMID:28891966

  7. Fluid-flow pressure measurements and thermo-fluid characterization of a single loop two-phase passive heat transfer device

    NASA Astrophysics Data System (ADS)

    Ilinca, A.; Mangini, D.; Mameli, M.; Fioriti, D.; Filippeschi, S.; Araneo, L.; Roth, N.; Marengo, M.

    2017-11-01

    A Novel Single Loop Pulsating Heat Pipe (SLPHP), with an inner diameter of 2 mm, filled up with two working fluids (Ethanol and FC-72, Filling Ratio of 60%), is tested in Bottom Heated mode varying the heating power and the orientation. The static confinement diameter for Ethanol and FC-72, respectively 3.4 mm and 1.7mm, is above and slightly under the inner diameter of the tube. This is important for a better understanding of the working principle of the device very close to the limit between the Loop Thermosyphon and Pulsating Heat Pipe working modes. With respect to previous SLPHP experiments found in the literature, such device is designed with two transparent inserts mounted between the evaporator and the condenser allowing direct fluid flow visualization. Two highly accurate pressure transducers permit local pressure measurements just at the edges of one of the transparent inserts. Additionally, three heating elements are controlled independently, so as to vary the heating distribution at the evaporator. It is found that peculiar heating distributions promote the slug/plug flow motion in a preferential direction, increasing the device overall performance. Pressure measurements point out that the pressure drop between the evaporator and the condenser are related to the flow pattern. Furthermore, at high heat inputs, the flow regimes recorded for the two fluids are very similar, stressing that, when the dynamic effects start to play a major role in the system, the device classification between Loop Thermosyphon and Pulsating Heat Pipe is not that sharp anymore.

  8. Method and device for producing a tactile display using an electrorheological fluid

    NASA Technical Reports Server (NTRS)

    Garner, H. Douglas (Inventor)

    1996-01-01

    A tactile display device utilizes an electrorheological fluid to activate a plurality of tactile dots. A voltage is selectively produced uniformly across an electrorheological fluid flowing between a common ground electrode and a plurality of conductive dot electrodes, thereby producing an increase in the fluid's viscosity to the extent that fluid flow between the two electrodes is restricted. The flow restriction produces a build-up of electrorheological fluid in a corresponding dot actuator chamber. The resulting pressure increase in the chamber displaces an elastic diaphragm fixed to a display surface to form a lump which can be perceived by the reader as one dot in a Braille character cell. A flow regulation system provides a continually pressurized flow system and provides for free flow of the electrorheological fluid through the plurality of dot actuator chambers when they are not activated. The device is adaptable to printed circuit techniques and can simultaneously display tactile dots representative of a full page of Braille characters stored on a medium such as a tape cassette or to display tactile dots representative of non-Braille data appearing on a computer monitor or contained on another data storage medium. In an alternate embodiment, the elastic diaphragm drives a plurality of spring-loaded pins provided with positive stops to maintain consistent displacements of the pins in both their actuated and nonactuated positions.

  9. Tactile display device using an electrorheological fluid

    NASA Technical Reports Server (NTRS)

    Garner, H. Douglas (Inventor)

    1994-01-01

    A tactile display device utilizes an electrorheological fluid to activate a plurality of tactile dots. A voltage is selectively produced uniformly across an electrorheological fluid flowing between a common ground electrode and a plurality of conductive dot electrodes, thereby producing an increase in the fluid's viscosity to the extent that fluid flow between the two electrodes is restricted. The flow restriction produces a build-up of electrorheological fluid in a corresponding dot actuator chamber. The resulting pressure increase in the chamber displaces an elastic diaphragm fixed to a display surface to form a lump which can be perceived by the reader as one dot in a Braille character cell. A flow regulation system provides a continually pressurized flow system and provides for free flow of the electrorheological fluid through the plurality of dot actuator chambers when they are not activated. The device is adaptable to printed circuit techniques and can simultaneously display tactile dots representative of a full page of Braille characters stored on a medium such as a tape cassette or to display tactile dots representative of non-Braille data appearing on a computer monitor or contained on another data storage medium. In an alternate embodiment, the elastic diaphragm drives a plurality of spring-loaded pins provided with positive stops to maintain consistent displacements of the pins in both their actuated and nonactuated positions.

  10. Modular jet impingement assemblies with passive and active flow control for electronics cooling

    DOEpatents

    Zhou, Feng; Dede, Ercan Mehmet; Joshi, Shailesh

    2016-09-13

    Power electronics modules having modular jet impingement assembly utilized to cool heat generating devices are disclosed. The modular jet impingement assemblies include a modular manifold having a distribution recess, one or more angled inlet connection tubes positioned at an inlet end of the modular manifold that fluidly couple the inlet tube to the distribution recess and one or more outlet connection tubes positioned at an outlet end of the modular manifold that fluidly coupling the outlet tube to the distribution recess. The modular jet impingement assemblies include a manifold insert removably positioned within the distribution recess and include one or more inlet branch channels each including an impinging slot and one or more outlet branch channels each including a collecting slot. Further a heat transfer plate coupled to the modular manifold, the heat transfer plate comprising an impingement surface including an array of fins that extend toward the manifold insert.

  11. Microfluidic devices and methods including porous polymer monoliths

    DOEpatents

    Hatch, Anson V; Sommer, Gregory J; Singh, Anup K; Wang, Ying-Chih; Abhyankar, Vinay V

    2014-04-22

    Microfluidic devices and methods including porous polymer monoliths are described. Polymerization techniques may be used to generate porous polymer monoliths having pores defined by a liquid component of a fluid mixture. The fluid mixture may contain iniferters and the resulting porous polymer monolith may include surfaces terminated with iniferter species. Capture molecules may then be grafted to the monolith pores.

  12. Microfluidic devices and methods including porous polymer monoliths

    DOEpatents

    Hatch, Anson V.; Sommer, Gregory j.; Singh, Anup K.; Wang, Ying-Chih; Abhyankar, Vinay

    2015-12-01

    Microfluidic devices and methods including porous polymer monoliths are described. Polymerization techniques may be used to generate porous polymer monoliths having pores defined by a liquid component of a fluid mixture. The fluid mixture may contain iniferters and the resulting porous polymer monolith may include surfaces terminated with iniferter species. Capture molecules may then be grafted to the monolith pores.

  13. Device for measuring the total concentration of oxygen in gases

    DOEpatents

    Isaacs, Hugh S.; Romano, Anthony J.

    1977-01-01

    This invention provides a CO equilibrium in a device for measuring the total concentration of oxygen impurities in a fluid stream. To this end, the CO equilibrium is produced in an electrochemical measuring cell by the interaction of a carbon element in the cell with the chemically combined and uncombined oxygen in the fluid stream at an elevated temperature.

  14. Counterpropagating wave acoustic particle manipulation device for the effective manufacture of composite materials.

    PubMed

    Scholz, Marc-S; Drinkwater, Bruce W; Llewellyn-Jones, Thomas M; Trask, Richard S

    2015-10-01

    An ultrasonic assembly device exhibiting broadband behavior and a sacrificial plastic frame is described. This device is used to assemble a variety of microscopic particles differing in size, shape, and material into simple patterns within several host fluids. When the host fluid is epoxy, the assembled materials can be cured and the composite sample extracted from the sacrificial frame. The wideband performance means that within a single device, the wavelength can be varied, leading to control of the length scale of the acoustic radiation force field. We show that glass fibers of 50 μm length and 14 μm diameter can be assembled into a series of stripes separated by hundreds of microns in a time of 0.3 s. Finite element analysis is used to understand the attributes of the device which control its wideband characteristics. The bandwidth is shown to be governed by the damping produced by a combination of the plastic frame and the relatively large volume of the fluid particle mixture. The model also reveals that the acoustic radiation forces are a maximum near the substrate of the device, which is in agreement with experimental observations. The device is extended to 8-transducers and used to assemble more complex particle distributions.

  15. Microencapsulation and Electrostatic Processing Device

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R. (Inventor); Mosier, Benjamin (Inventor); Cassanto, John M. (Inventor)

    2001-01-01

    A microencapsulation and electrostatic processing (MEP) device is provided for forming microcapsules. In one embodiment, the device comprises a chamber having a filter which separates a first region in the chamber from a second region in the chamber. An aqueous solution is introduced into the first region through an inlet port, and a hydrocarbon/ polymer solution is introduced into the second region through another inlet port. The filter acts to stabilize the interface and suppress mixing between the two immiscible solutions as they are being introduced into their respective regions. After the solutions have been introduced and have become quiescent, the interface is gently separated from the filter. At this point, spontaneous formation of microcapsules at the interface may begin to occur, or some fluid motion may be provided to induce microcapsule formation. In any case, the fluid shear force at the interface is limited to less than 100 dynes/sq cm. This low-shear approach to microcapsule formation yields microcapsules with good sphericity and desirable size distribution. The MEP device is also capable of downstream processing of microcapsules, including rinsing, re-suspension in tertiary fluids, electrostatic deposition of ancillary coatings, and free-fluid electrophoretic separation of charged microcapsules.

  16. Numerical analysis and experiment research on fluid orbital performance of vane type propellant management device

    NASA Astrophysics Data System (ADS)

    Hu, Q.; Li, Y.; Pan, H. L.; Liu, J. T.; Zhuang, B. T.

    2015-01-01

    Vane type propellant management device (PMD) is one of the key components of the vane-type surface tension tank (STT), and its fluid orbital performance directly determines the STT's success or failure. In present paper, numerical analysis and microgravity experiment study on fluid orbital performance of a vane type PMD were carried out. By using two-phase flow model of volume of fluid (VOF), fluid flow characteristics in the tank with the vane type PMD were numerically calculated, and the rules of fluid transfer and distribution were gotten. A abbreviate model test system of the vane type PMD is established and microgravity drop tower tests were performed, then fluid management and transmission rules of the vane type PMD were obtained under microgravity environment. The analysis and tests results show that the vane type PMD has good and initiative fluid orbital management ability and meets the demands of fluid orbital extrusion in the vane type STT. The results offer valuable guidance for the design and optimization of the new generation of vane type PMD, and also provide a new approach for fluid management and control in space environment.

  17. 21 CFR 862.1725 - Trypsin test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862... other body fluids and in feces. Measurements obtained by this device are used in the diagnosis and...

  18. 21 CFR 862.1725 - Trypsin test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862... other body fluids and in feces. Measurements obtained by this device are used in the diagnosis and...

  19. 21 CFR 862.1725 - Trypsin test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862... other body fluids and in feces. Measurements obtained by this device are used in the diagnosis and...

  20. 21 CFR 862.1725 - Trypsin test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862... other body fluids and in feces. Measurements obtained by this device are used in the diagnosis and...

  1. 21 CFR 862.1725 - Trypsin test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862... other body fluids and in feces. Measurements obtained by this device are used in the diagnosis and...

  2. CT and MRI assessment of symptomatic organized pancreatic fluid collections and pancreatic duct disruption: an interreader variability study using the revised Atlanta classification 2012.

    PubMed

    Kamal, Ayesha; Singh, Vikesh K; Akshintala, Venkata S; Kawamoto, Satomi; Tsai, Salina; Haider, Maera; Fishman, Elliot K; Kamel, Ihab R; Zaheer, Atif

    2015-08-01

    Compare CT and MRI for fluid/debris component estimate and pancreatic duct (PD) communication with organized pancreatic fluid collections in acute pancreatitis. Evaluate fat density globules on CT as marker for debris. 29 Patients with 46 collections with CECT and MRI performed ≥4 weeks of symptom onset assessed for necrotizing pancreatitis, estimated percentage of fluid volume and PD involvement by two radiologists on separate occasions. T2WI used as standard for estimated percentage of fluid volume. Presence of fat globules and fluid attenuation on CT was recorded. Spearman rank correlation and kappa statistics were used to assess the correlation between imaging techniques and interreader agreement, respectively. Necrotizing pancreatitis seen on CT in 27 (93%, κ 0.119) vs. 20 (69%, κ 0.748) patients on MRI. CT identified 42 WON and 4 pseudocysts vs. 34 WON, and 12 pseudocysts on MRI. Higher interreader agreement for percentage fluid volume on MRI (κ = 0.55) vs. CT (κ = 0.196). Accuracy of CT in evaluation of percentage fluid volume was 65% using T2WI MRI used as standard. Fat globules identified on CT in 13(65%) out of 20 collections containing <75% fluid vs. 4(15%) out of 26 collections containing >75% fluid (p = 0.0001). PD involvement confidently excluded on CT in 68% collections vs. 93% on MRI. MRI demonstrates higher reproducibility for fluid to debris component estimation. Fat globules on CT were frequently seen in organized pancreatic fluid collections with large amount of debris. PD disruption more confidently excluded on MRI. This information may be helpful for pre-procedure planning.

  3. Method Of Packaging And Assembling Electro-Microfluidic Devices

    DOEpatents

    Benavides, Gilbert L.; Galambos, Paul C.; Emerson, John A.; Peterson, Kenneth A.; Giunta, Rachel K.; Zamora, David Lee; Watson, Robert D.

    2004-11-23

    A new architecture for packaging surface micromachined electro-microfluidic devices is presented. This architecture relies on two scales of packaging to bring fluid to the device scale (picoliters) from the macro-scale (microliters). The architecture emulates and utilizes electronics packaging technology. The larger package consists of a circuit board with embedded fluidic channels and standard fluidic connectors (e.g. Fluidic Printed Wiring Board). The embedded channels connect to the smaller package, an Electro-Microfluidic Dual-Inline-Package (EMDIP) that takes fluid to the microfluidic integrated circuit (MIC). The fluidic connection is made to the back of the MIC through Bosch-etched holes that take fluid to surface micromachined channels on the front of the MIC. Electrical connection is made to bond pads on the front of the MIC.

  4. Collection fluid helps preservation in voided urine cytology.

    PubMed

    Raistrick, J; Shambayati, B; Dunsmuir, W

    2008-04-01

    Degenerative change caused by delay in processing contributes to false-negative and false-positive diagnosis of urothelial carcinoma in cytology. The aim of the study was to see if the use of a collection fluid for urine samples made a significant difference to urine cytology diagnosis, and if one was better suited for routine use in the hospital laboratory. Three cell collection fluids were evaluated by analysing the preservation and degeneration of cells in urine samples, as was the routine preparation which did not use a collection fluid. In the design study 50 voided urine specimens were taken at random from the hospital haematuria clinic. Three commercially available collection fluids cytolyt, cytospin and cytoRich Blue and the hospital's routine conventional preparation of urine were compared. The degree of degeneration, and so preservation, was assessed by a table of chosen criteria; then ranked and analysed by Friedman's nonparametric test, at P = 0.05. A second table showing the cell content of each slide was also made. These showed no significant diagnostic difference between the collection fluids, but there was a significant difference between the collection fluids and the routine preparation. Minor differences that do not affect diagnosis, such as crystals and ghost red blood cells, were noted in cytospin and cytoRich Blue. It is recommended that a collection fluid is used. This choice should be made after health and safety issues and cost are considered.

  5. Making Medical Devices Safer at Home

    MedlinePlus

    ... and maintain home use devices, which include blood glucose monitors, infusion pumps (a device that delivers fluids, including nutrients and medications, into a patient's body) and respirators. These efforts include issuing a draft ...

  6. 3D-Printed Microfluidic Automation

    PubMed Central

    Au, Anthony K.; Bhattacharjee, Nirveek; Horowitz, Lisa F.; Chang, Tim C.; Folch, Albert

    2015-01-01

    Microfluidic automation – the automated routing, dispensing, mixing, and/or separation of fluids through microchannels – generally remains a slowly-spreading technology because device fabrication requires sophisticated facilities and the technology’s use demands expert operators. Integrating microfluidic automation in devices has involved specialized multi-layering and bonding approaches. Stereolithography is an assembly-free, 3D-printing technique that is emerging as an efficient alternative for rapid prototyping of biomedical devices. Here we describe fluidic valves and pumps that can be stereolithographically printed in optically-clear, biocompatible plastic and integrated within microfluidic devices at low cost. User-friendly fluid automation devices can be printed and used by non-engineers as replacement for costly robotic pipettors or tedious manual pipetting. Engineers can manipulate the designs as digital modules into new devices of expanded functionality. Printing these devices only requires the digital file and electronic access to a printer. PMID:25738695

  7. 21 CFR 862.1455 - Lecithin/sphingomyelin ratio in amniotic fluid test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Lecithin/sphingomyelin ratio in amniotic fluid... Clinical Chemistry Test Systems § 862.1455 Lecithin/sphingomyelin ratio in amniotic fluid test system. (a) Identification. A lecithin/sphingomyelin ratio in amniotic fluid test system is a device intended to measure the...

  8. 30 CFR 250.614 - Well-control fluids, equipment, and operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... device. (d) Before you displace kill-weight fluid from the wellbore and/or riser to an underbalanced... your APM your reasons for displacing the kill-weight fluid and provide detailed step-by-step written... integrity of independent barriers, (3) BOP procedures you will use while displacing kill weight fluids, and...

  9. 30 CFR 250.614 - Well-control fluids, equipment, and operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... device. (d) Before you displace kill-weight fluid from the wellbore and/or riser to an underbalanced... your APM your reasons for displacing the kill-weight fluid and provide detailed step-by-step written... integrity of independent barriers, (3) BOP procedures you will use while displacing kill weight fluids, and...

  10. 30 CFR 250.514 - Well-control fluids, equipment, and operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... uppermost BOP; (2) A well-control, fluid-volume measuring device for determining fluid volumes when filling the hole on trips; and (3) A recording mud-pit-level indicator to determine mud-pit-volume gains and... the hole with drill pipe, the annulus shall be filled with well-control fluid before the change in...

  11. 30 CFR 250.1623 - Well-control fluids, equipment, and operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., (2) A well-control fluid-volume measuring device for determining fluid volumes when filling the hole on trips, and (3) A recording mud-pit-level indicator to determine mud-pit-volume gains and losses... the change in fluid level decreases the hydrostatic pressure 75 psi or every five stands of drill pipe...

  12. Method and apparatus for simultaneous determination of fluid mass flow rate, mean velocity and density

    DOEpatents

    Hamel, William R.

    1984-01-01

    This invention relates to a new method and new apparatus for determining fluid mass flowrate and density. In one aspect of the invention, the fluid is passed through a straight cantilevered tube in which transient oscillation has been induced, thus generating Coriolis damping forces on the tube. The decay rate and frequency of the resulting damped oscillation are measured, and the fluid mass flowrate and density are determined therefrom. In another aspect of the invention, the fluid is passed through the cantilevered tube while an electrically powered device imparts steady-state harmonic excitation to the tube. This generates Coriolis tube-damping forces which are dependent on the mass flowrate of the fluid. Means are provided to respond to incipient flow-induced changes in the amplitude of vibration by changing the power input to the excitation device as required to sustain the original amplitude of vibration. The fluid mass flowrate and density are determined from the required change in power input. The invention provides stable, rapid, and accurate measurements. It does not require bending of the fluid flow.

  13. Effects of surface properties on droplet formation inside a microfluidic device

    NASA Astrophysics Data System (ADS)

    Steinhaus, Ben; Shen, Amy

    2004-11-01

    Micro-fluidic devices offer a unique method of creating and controlling droplets on small length scales. A microfluidic device is used to study the effects of surface properties on droplet formation of a 2-phase flow system. Four phase diagrams are generated to compare the dynamics of the 2 immiscible fluid system (silicone oil and water) inside microchannels with different surface properties. Results show that the channel surface plays an important role in determining the flow patterns and the droplet formation of the 2-phase fluid system.

  14. Monitoring of tritium

    DOEpatents

    Corbett, James A.; Meacham, Sterling A.

    1981-01-01

    The fluid from a breeder nuclear reactor, which may be the sodium cooling fluid or the helium reactor-cover-gas, or the helium coolant of a gas-cooled reactor passes over the portion of the enclosure of a gaseous discharge device which is permeable to hydrogen and its isotopes. The tritium diffused into the discharge device is radioactive producing beta rays which ionize the gas (argon) in the discharge device. The tritium is monitored by measuring the ionization current produced when the sodium phase and the gas phase of the hydrogen isotopes within the enclosure are in equilibrium.

  15. 21 CFR 886.4270 - Intraocular gas.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4270 Intraocular gas. (a) Identification. An intraocular gas is a device consisting of a gaseous fluid intended to be introduced into the eye to place pressure... required. As of May 28, 1976, an approval under section 515 of the act is required before this device may...

  16. Inorganic nanotubes and electro-fluidic devices fabricated therefrom

    DOEpatents

    Yang, Peidong [Kensington, CA; Majumdar, Arunava [Orinda, CA; Fan, Rong [Pasadena, CA; Karnik, Rohit [Cambridge, MA

    2011-03-01

    Nanofluidic devices incorporating inorganic nanotubes fluidly coupled to channels or nanopores for supplying a fluid containing chemical or bio-chemical species are described. In one aspect, two channels are fluidly interconnected with a nanotube. Electrodes on opposing sides of the nanotube establish electrical contact with the fluid therein. A bias current is passed between the electrodes through the fluid, and current changes are detected to ascertain the passage of select molecules, such as DNA, through the nanotube. In another aspect, a gate electrode is located proximal the nanotube between the two electrodes thus forming a nanofluidic transistor. The voltage applied to the gate controls the passage of ionic species through the nanotube selected as either or both ionic polarities. In either of these aspects the nanotube can be modified, or functionalized, to control the selectivity of detection or passage.

  17. Preventing hypothermia: comparison of current devices used by the US Army in an in vitro warmed fluid model.

    PubMed

    Allen, Paul B; Salyer, Steven W; Dubick, Michael A; Holcomb, John B; Blackbourne, Lorne H

    2010-07-01

    The purpose of this study was to develop an in vitro torso model constructed with fluid bags and to determine whether this model could be used to differentiate between the heat prevention performance of devices with active chemical or radiant forced-air heating systems compared with passive heat loss prevention devices. We tested three active (Hypothermia Prevention Management Kit [HPMK], Ready-Heat, and Bair Hugger) and five passive (wool, space blankets, Blizzard blankets, human remains pouch, and Hot Pocket) hypothermia prevention products. Active warming devices included products with chemically or electrically heated systems. Both groups were tested on a fluid model warmed to 37 degrees C versus a control with no warming device. Core temperatures were recorded every 5 minutes for 120 minutes in total. Products that prevent heat loss with an actively heated element performed better than most passive prevention methods. The original HPMK achieved and maintained significantly higher temperatures than all other methods and the controls at 120 minutes (p < 0.05). None of the devices with an actively heated element achieved the sustained 44 degrees C that could damage human tissue if left in place for 6 hours. The best passive methods of heat loss prevention were the Hot Pocket and Blizzard blanket, which performed the same as two of the three active heating methods tested at 120 minutes. Our in vitro fluid bag "torso" model seemed sensitive to detect heat loss in the evaluation of several active or passive warming devices. All active and most passive devices were better than wool blankets. Under conditions near room temperature, passive warming methods (Blizzard blanket or the Hot Pocket) were as effective as active warming devices other than the original HPMK. Further studies are necessary to determine how these data can translate to field conditions in preventing heat loss in combat casualties.

  18. Outcome of stenting in biliary and pancreatic benign and malignant diseases: A comprehensive review

    PubMed Central

    Mangiavillano, Benedetto; Pagano, Nico; Baron, Todd H; Luigiano, Carmelo

    2015-01-01

    Endoscopic stenting has become a widely method for the management of various malignant and benign pancreatico-biliary disorders. Biliary and pancreatic stents are devices made of plastic or metal used primarily to establish patency of an obstructed bile or pancreatic duct and may also be used to treat biliary or pancreatic leaks, pancreatic fluid collections and to prevent post-endoscopic retrograde cholangiopancreatography pancreatitis. In this review, relevant literature search and expert opinions have been used to evaluate the outcome of stenting in biliary and pancreatic benign and malignant diseases. PMID:26290631

  19. Novel Biomedical Device Utilizing Light-Emitting Nanostructures Developed

    NASA Technical Reports Server (NTRS)

    Scardelletti, Maximilian C.; Goldman, Rachel

    2004-01-01

    Sketches and chemical diagrams of state-of-the-art device and novel proposed device are presented. Current device uses a diode laser that emits into a fluorescent fluid only one wavelength and a photodetector diode that detects only one wavelength. Only one type of bacteria can be detected. The proposed device uses a quantum dot array that emits into a fluorescent fluid multiple wavelengths and an NIR 512 spectrometer that scans 0.8- to 1.7-mm wavelengths. Hundreds of different bacteria and viruses can be detected. A novel biomedical device is being developed at the NASA Glenn Research Center in cooperation with the University of Michigan. This device uses nano-structured quantum dots that emit light in the near-infrared (IR) region. The nanostructured quantum dots are used as a source and excite fluorochrome polymers coupled with antibodies that seek out and attach to specific bacteria and viruses. The fluorochrome polymers/antibodies fluoresce at specific wavelengths in the near-IR spectrum, but these wavelengths are offset from the excitation wavelength and can be detected with a tunable spectrometer. The device will be used to detect the presence of viruses and bacteria in simple fluids and eventually in more complex fluids, such as blood. Current state-of-the-art devices are limited to single bacteria or virus detection and a considerable amount of time and effort is required to prepare samples for analysis. Most importantly, the devices are quite large and cumbersome, which prohibits them from being used on the International Space Station and the space shuttles. This novel device uses nanostructured quantum dots which, through molecular beam epitaxy and highly selective annealing processes, can be developed into an illumination source that could potentially generate hundreds of specific wavelengths. As a result, this device will be able to excite hundreds of antibody/fluorochrome polymer combinations, which in turn could be used to detect hundreds of bacteria and viruses in fluids. A novel sample preparation technique that exploits micromembrane filtration and centrifugation methods has been developed for this device. The technique greatly reduces the time required to prepare the sample and the amount of sample needed to perform an accurate and comprehensive analysis. Last, and probably most important, because of the nano-light-emitting source and the novel sample preparation technique, the overall size of the device could be reduced dramatically. This device will serve as a nanoscale lab-on-a-chip for in situ microorganism detection and will enable tests to be performed on a time scale of minutes rather than days. Thus, it is ideally suited for monitoring the environmental conditions onboard the International Space Station and the space shuttles, thereby enhancing the safety of the astronauts. In addition, the device has important commercial applications, such as detecting the presence of bacteria and viruses in water at food- and beverage-processing centers, water treatment plants, and restaurants. Also, this technology has the potential to be used to detect bacteria and viruses in more complex fluids, such as blood--which in all likelihood would revolutionize blood analysis as it is performed today. This project was made possible through the Director's Discretionary Fund and is ongoing. In addition, this project provides funding to Dr. Rachel Goldman of the University of Michigan for the research and development of nanostructured quantum dots.

  20. Evidence based diagnosis and management of chronic subdural hematoma: A review of the literature.

    PubMed

    Mehta, Vikram; Harward, Stephen C; Sankey, Eric W; Nayar, Gautam; Codd, Patrick J

    2018-04-01

    Chronic subdural hematomas are encapsulated blood collections within the dural border cells with characteristic outer "neomembranes". Affected patients are more often male and typically above the age of 70. Imaging shows crescentic layering of fluid in the subdural space on a non-contrast computed tomography (CT) scan, best appreciated on sagittal or coronal reformats. Initial medical management involves reversing anticoagulant/antiplatelet therapies, and often initiation of anti-epileptic drugs (AEDs). Operative interventions, such as twist-drill craniostomy (TDC), burr-hole craniostomy (BHC), and craniotomy are indicated if imaging implies compression (maximum fluid collection thickness >1 cm) or the patient is symptomatic. The effectiveness of various surgical techniques remains poorly characterized, with sparse level 1 evidence, variable outcome measures, and various surgical techniques. Postoperatively, subdural drains can decrease recurrence and sequential compression devices can decrease embolic complications, while measures such as early mobilization and re-initiation of anticoagulation need further study. Non-operative management, including steroid therapy, etizolam, tranexamic acid, and angiotensin converting enzyme inhibitors (ACEI) also remain poorly studied. Recurrent hemorrhages are a major complication affecting around 10-20% of patients, and therefore close follow-up is essential. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Distinguishing infected from noninfected abdominal fluid collections after surgery: an imaging, clinical, and laboratory-based scoring system.

    PubMed

    Gnannt, Ralph; Fischer, Michael A; Baechler, Thomas; Clavien, Pierre-Alain; Karlo, Christoph; Seifert, Burkhardt; Lesurtel, Mickael; Alkadhi, Hatem

    2015-01-01

    Mortality from abdominal abscesses ranges from 30% in treated cases up to 80% to 100% in patients with undrained or nonoperated abscesses. Various computed tomographic (CT) imaging features have been suggested to indicate infection of postoperative abdominal fluid collections; however, features are nonspecific and substantial overlap between infected and noninfected collections exists. The purpose of this study was to develop and validate a scoring system on the basis of CT imaging findings as well as laboratory and clinical parameters for distinguishing infected from noninfected abdominal fluid collections after surgery. The score developmental cohort included 100 consecutive patients (69 men, 31 women; mean age, 58 ± 17 years) who underwent portal-venous phase CT within 24 hours before CT-guided intervention of postoperative abdominal fluid collections. Imaging features included attenuation (Hounsfield unit [HU]), volume, wall enhancement and thickness, fat stranding, as well as entrapped gas of fluid collections. Laboratory and clinical parameters included diabetes, intake of immunosuppressive drugs, body temperature, C-reactive protein, and leukocyte blood cell count. The score was validated in a separate cohort of 30 consecutive patients (17 men, 13 women; mean age, 51 ± 15 years) with postoperative abdominal fluid collections. Microbiologic analysis from fluid samples served as the standard of reference. Diabetes, body temperature, C-reactive protein, attenuation of the fluid collection (in HUs), wall enhancement and thickness of the wall, adjacent fat stranding, as well as entrapped gas within the fluid collection were significantly different between infected and noninfected collections (P < 0.001). Multiple logistic regression analysis revealed diabetes, C-reactive protein, attenuation of the fluid collection (in HUs), as well as entrapped gas as significant independent predictors of infection (P < 0.001) and thus was selected for constructing a scoring system from 0 to 10 (diabetes: 2 points; C-reactive protein, ≥ 100 mg/L: 1 point; attenuation of fluid collection, ≥ 20 HU: 4 points; entrapped gas: 3 points). The model was well calibrated (Hosmer-Lemeshow test, P = 0.36). In the validation cohort, scores of 2 or lower had a 90% (95% confidence interval [CI], 56%-100%) negative predictive value, scores of 3 or higher had an 80% (95% CI, 56%-94%) positive predictive value, and scores of 6 or higher a 100% (95% CI, 74%-100%) positive predictive value for diagnosing infected fluid collections. Receiver operating characteristic analysis revealed an area under the curve of 0.96 (95% CI, 0.88-1.00) for the score. We introduce an accurate scoring system including quantitative radiologic, laboratory, and clinical parameters for distinguishing infected from noninfected fluid collections after abdominal surgery.

  2. Pressure letdown method and device for coal conversion systems

    NASA Technical Reports Server (NTRS)

    Kendal, J. M.; Walsh, J. V. (Inventor)

    1983-01-01

    In combination with a reactor for a coal utilization system, a pressure letdown device accepts from a reactor, a polyphase fluid at an entrance pressure and an entrance velocity, and discharges the fluid from the device at a discharge pressure substantially lower than the entrance pressure and at a discharge temperature and a discharge velocity substantially equal to the entrance temperature and entrance velocity. The device is characterized by a series of pressure letdown stages including several symmetrical baffles, disposed in coaxially nested alignment. In each baffle several ports or apertures of uniform dimensions are defined. The number of ports or apertures for each baffle plate is unique with respect to the number of ports or apertures defined in each of the other baffles. The mass rate of flow for each port is a function of the area of the port, the pressure of the fluid as applied to the port, and a common pressure ratio established across the ports.

  3. An innovative multi-gap clutch based on magneto-rheological fluids and electrodynamic effects: magnetic design and experimental characterization

    NASA Astrophysics Data System (ADS)

    Rizzo, R.

    2017-01-01

    In this paper an innovative multi-gap magnetorheological clutch is described. It is inspired by a device previously developed by the author’s research group and contains a novel solution based on electrodynamic effects, capable to considerably improve the transmissible torque during the engagement phase. Since this (transient) phase is characterized by a non-zero angular speed between the two clutch shafts, the rotation of a permanent magnets system, used to excite the fluid, induces eddy currents on some conductive material strategically positioned in the device. As a consequence, an electromagnetic torque is produced which is added to the torque transmitted by the magnetorheological fluid only. Once the clutch is completely engaged and the relative speed between the two shafts is zero, the electrodynamic effects vanish and the device operates like a conventional magnetorheological clutch. The system is investigated and designed by means a 3D FEM model and the performance of the device is experimentally validated on a prototype.

  4. Plasmofluidics: Merging Light and Fluids at the Micro-/Nano-Scale

    PubMed Central

    Wang, Mingsong; Zhao, Chenglong; Miao, Xiaoyu; Zhao, Yanhui; Rufo, Joseph

    2016-01-01

    Plasmofluidics is the synergistic integration of plasmonics and micro/nano fluidics in devices and applications in order to enhance performance. There has been significant progress in the emerging field of plasmofluidics in recent years. By utilizing the capability of plasmonics to manipulate light at the nanoscale, combined with the unique optical properties of fluids, and precise manipulation via micro/nano fluidics, plasmofluidic technologies enable innovations in lab-on-a-chip systems, reconfigurable photonic devices, optical sensing, imaging, and spectroscopy. In this review article, we examine and categorize the most recent advances in plasmofluidics into plasmon-enhanced functionalities in microfluidics and microfluidics-enhanced plasmonic devices. The former focuses on plasmonic manipulations of fluids, bubbles, particles, biological cells, and molecules at the micro-/nano-scale. The latter includes technological advances that apply microfluidic principles to enable reconfigurable plasmonic devices and performance-enhanced plasmonic sensors. We conclude with our perspectives on the upcoming challenges, opportunities, and the possible future directions of the emerging field of plasmofluidics. PMID:26140612

  5. Plasmofluidics: Merging Light and Fluids at the Micro-/Nanoscale.

    PubMed

    Wang, Mingsong; Zhao, Chenglong; Miao, Xiaoyu; Zhao, Yanhui; Rufo, Joseph; Liu, Yan Jun; Huang, Tony Jun; Zheng, Yuebing

    2015-09-16

    Plasmofluidics is the synergistic integration of plasmonics and micro/nanofluidics in devices and applications in order to enhance performance. There has been significant progress in the emerging field of plasmofluidics in recent years. By utilizing the capability of plasmonics to manipulate light at the nanoscale, combined with the unique optical properties of fluids and precise manipulation via micro/nanofluidics, plasmofluidic technologies enable innovations in lab-on-a-chip systems, reconfigurable photonic devices, optical sensing, imaging, and spectroscopy. In this review article, the most recent advances in plasmofluidics are examined and categorized into plasmon-enhanced functionalities in microfluidics and microfluidics-enhanced plasmonic devices. The former focuses on plasmonic manipulations of fluids, bubbles, particles, biological cells, and molecules at the micro/nanoscale. The latter includes technological advances that apply microfluidic principles to enable reconfigurable plasmonic devices and performance-enhanced plasmonic sensors. The article is concluded with perspectives on the upcoming challenges, opportunities, and possible future directions of the emerging field of plasmofluidics. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Design of a pulsatile flow facility to evaluate thrombogenic potential of implantable cardiac devices.

    PubMed

    Arjunon, Sivakkumar; Ardana, Pablo Hidalgo; Saikrishnan, Neelakantan; Madhani, Shalv; Foster, Brent; Glezer, Ari; Yoganathan, Ajit P

    2015-04-01

    Due to expensive nature of clinical trials, implantable cardiac devices should first be extensively characterized in vitro. Prosthetic heart valves (PHVs), an important class of these devices, have been shown to be associated with thromboembolic complications. Although various in vitro systems have been designed to quantify blood-cell damage and platelet activation caused by nonphysiological hemodynamic shear stresses in these PHVs, very few systems attempt to characterize both blood damage and fluid dynamics aspects of PHVs in the same test system. Various numerical modeling methodologies are also evolving to simulate the structural mechanics, fluid mechanics, and blood damage aspects of these devices. This article presents a completely hemocompatible small-volume test-platform that can be used for thrombogenicity studies and experimental fluid mechanics characterization. Using a programmable piston pump to drive freshly drawn human blood inside a cylindrical column, the presented system can simulate various physiological and pathophysiological conditions in testing PHVs. The system includes a modular device-mounting chamber, and in this presented case, a 23 mm St. Jude Medical (SJM) Regents® mechanical heart valve (MHV) in aortic position was used as the test device. The system was validated for its capability to quantify blood damage by measuring blood damage induced by the tester itself (using freshly drawn whole human blood). Blood damage levels were ascertained through clinically relevant assays on human blood while fluid dynamics were characterized using time-resolved particle image velocimetry (PIV) using a blood-mimicking fluid. Blood damage induced by the tester itself, assessed through Thrombin-anti-Thrombin (TAT), Prothrombin factor 1.2 (PF1.2), and hemolysis (Drabkins assay), was within clinically accepted levels. The hydrodynamic performance of the tester showed consistent, repeatable physiological pressure and flow conditions. In addition, the system contains proximity sensors to accurately capture leaflet motion during the entire cardiac cycle. The PIV results showed skewing of the leakage jet, caused by the asymmetric closing of the two leaflets. All these results are critical to characterizing the blood damage and fluid dynamics characteristics of the SJM Regents® MHV, proving the utility of this tester as a precise system for assessing the hemodynamics and thrombogenicity for various PHVs.

  7. Bio-inspired device: a novel smart MR spring featuring tendril structure

    NASA Astrophysics Data System (ADS)

    Kaluvan, Suresh; Park, Chun-Yong; Choi, Seung-Bok

    2016-01-01

    Smart materials such as piezoelectric patches, shape memory alloy, electro and magneto rheological fluid, magnetostrictive materials, etc are involved by far to design intelligent and high performance smart devices like injectors, dental braces, dampers, actuators and sensors. In this paper, an interesting smart device is proposed by inspiring on the structure of the bio climber plant. The key enabling concept of this proposed work is to design the smart spring damper as a helical shaped tendril structure using magneto-rheological (MR) fluid. The proposed smart spring consists of a hollow helical structure filled with MR fluid. The viscosity of the MR fluid decides the damping force of helical shaped smart spring, while the fluid intensity in the vine decides the strength of the tendril in the climber plant. Thus, the proposed smart spring can provide a new concept design of the damper which can be applicable to various damping system industries with tuneable damping force. The proposed smart spring damper has several advantageous such as cost effective, easy implementation compared with the conventional damper. In addition, the proposed spring damper can be easily designed to adapt different damping force levels without any alteration.

  8. Pigtail catheters used for percutaneous fluid drainage: comparison of performance characteristics.

    PubMed

    Macha, Douglas B; Thomas, John; Nelson, Rendon C

    2006-03-01

    To compare the performance characteristics of various single-lumen all-purpose pigtail drainage catheters. The following parameters were compared: flow rates between catheters of the same size, whether changing the fluid viscosity has any effect on catheter comparisons, the effect on flow of leaving an open three-way stopcock in the drainage pathway, the tendency of the catheters to kink, and catheter patency after kinking, as measured according to flow. All-purpose 8.0-, 8.3-, and 8.5-F (collectively referred to as 8-F); 10.0-, 10.2-, and 10.3-F (collectively referred to as 10-F); and 12.0-F pigtail drainage catheters from three manufacturers were evaluated. Data were compared by using two-tailed t tests after normal distributions were confirmed. P < .05 was considered to represent a significant difference. At comparison of the 8-F catheters, the C.R. Bard catheters demonstrated better flow rates than the Cook and Boston Scientific devices. Among the 10-F catheters, there were no significant differences in the flow rates of fluid with viscosity equivalent to that of water between the C.R. Bard and Boston Scientific catheters; however, both these catheter types demonstrated significantly (P < .05) better flow rates than the Cook devices. Among the 12-F catheters, the C.R. Bard catheters demonstrated significantly (P < .05) better flow rates than the other two catheter types. Changing the fluid viscosity caused no changes in comparison results. In all catheter groups, the presence of a stopcock significantly (P < .05) impaired flow. None of the evaluated catheters demonstrated a clear advantage in terms of patency or susceptibility to kinking. At comparison of the in vitro performances of catheters from different manufacturers, the C.R. Bard 8.0-F and Cook 10.2-F catheters had comparable flow rates, and flow rates through the C.R. Bard and Boston Scientific 10.0-F catheters were comparable to flow rates through the Cook and Boston Scientific 12.0-F catheters. Varying viscosity had no effect on comparisons of catheter flow rates; however, a stopcock between the vacuum source and the catheter was noted to impair flow rates in all brands and sizes of evaluated catheters. Copyright RSNA, 2006.

  9. Intravenous fluid temperature management by infrared thermometer.

    PubMed

    Lapostolle, Frédéric; Catineau, Jean; Le Toumelin, Philippe; Proust, Clément; Garrigue, Bruno; Galinski, Michel; Adnet, Frédéric

    2006-03-01

    The management of intravenous (IV) fluid temperature is a daily challenge in critical care, anesthesiology, and emergency medicine. Infusion of IV fluids at the right temperature partly influences clinical outcomes of critically ill patients. Nowadays, intravenous fluid temperature is poorly managed, as no suitable device is routinely available. Infrared (IR) thermometers have been recently developed for industrial, personal, or medical purposes. The aim of this study was to evaluate the accuracy of an IR thermometer in measuring temperature of warmed and cooled infusion fluids in fluid bags. This study compared temperatures simultaneously recorded by an infrared thermometer and a temperature sensor. Temperatures of warmed (41 degrees C) and cooled (4 degrees C) infusion fluids in fluid bags were recorded by 2 independent operators every minute until IV bags' temperature reached ambient temperature. The relation curve was established with 576 measures. Temperature measures performed with an IR thermometer were perfectly linear and perfectly correlated with the reference method (R(2) = 0.995, P < 10(-5)). Infrared thermometers are efficient to measure IV fluid bag temperature in the range of temperatures used in clinical practice. As these devices are easy to use and inexpensive, they could be largely used in critical care, anesthesiology, or emergency medicine.

  10. Designing optical-fiber modulators by using magnetic fluids.

    PubMed

    Horng, H E; Chieh, J J; Chao, Y H; Yang, S Y; Hong, Chin-Yih; Yang, H C

    2005-03-01

    To reduce interface loss between optical fibers and devices in telecommunication systems, the development of an optical-fiber-based device that can be fused directly with fibers is important. A novel optical modulator consisting of a bare fiber core surrounded by magnetic fluids instead of by a SiO2 cladding layer is proposed. Applying a magnetic field raises the refractive index of the magnetic fluid. Thus we can control the occurrence of total reflection at the interface between the fiber core and the magnetic fluid when light propagates along the fiber. As a result, the intensity of the outgoing light is modulated by variation in field strength. Details of the design, fabrication, and working properties of such a modulator are presented.

  11. Endoscopic Ultrasound-guided drainage of an abdominal fluid collection following Whipple’s resection

    PubMed Central

    Jah, Asif; Jamieson, Neville; Huguet, Emmanuel; Griffiths, William; Carroll, Nicholas; Praseedom, Raaj

    2008-01-01

    Percutaneous aspiration and drainage of post-operative abdominal fluid collections is a well established standard technique. However, some fluid collections are not amenable to percutaneous drainage either due to location or the presence of surrounding visceral structures. Endoscopic Ultrasound (EUS) has been widely used for the drainage of pancreatitis-related abdominal fluid collections. However, there are no reports on the use of this technique in the post-operative setting. We report a case where the EUS-guided technique was used to drain a percutaneously inaccessible post-operative collection which had developed after Whipple’s resection. PMID:19058316

  12. Microfluidic-based Broadband Measurements of Fluid Permittivity and Permeability to 100 GHz

    NASA Astrophysics Data System (ADS)

    Little, Charles A. E.

    This dissertation concerns the development of unique microfluidic microwave devices and associated microwave calibrations to quantitatively extract the broadband permittivity and permeability of fluids between 100 kHz and 110 GHz. The devices presented here consist of SU-8- and PDMS-based microfluidic channels integrated lithographically with coplanar waveguides (CPWs), measured via an external vector network analyzer (VNA). By applying our hybrid set of microwave calibrations to the raw data we extract distributed circuit parameters, representative of the electromagnetic response of the microfluidic channel. We then correlate these parameters to the permittivity and permeability of the fluid within the channels. We are primarily focused on developing devices, calibrations, and analyses to characterize various chemical and biological systems. The small fluid volumes and overall scale of our devices lends the technique to point-of-care blood and cell analysis, as well as to the analysis of high-value chemicals. Broadband microwave microfluidics is sensitive to three primary categories of phenomena: Ionic, dipolar, and magnetic resonances. All three can occur in complex fluids such as blood, proteins and particle suspensions. In order to make quantitative measurements, we need to be able to model and separate all three types of responses. Here we first measure saline solutions (NaCl and water) as an ideal system to better understanding both the ionic and dipolar response. Specifically, we are targeting the electrical double-layer (EDL) response, an ionic effect, which dominates over the intrinsic fluid response at lower frequencies. We have found that the EDL response for saline obeys a strict Debye-type relaxation model, the frequency response of which is dependent solely on the conductivity of the solution. To develop a better understanding of the magnetic response, we first measure magnetic nanoparticles; showing it is possible to detect the magnetic resonances of magnetic nanoparticle in a fluid environment using the broad-band approach, and that the response matches cavity-based measurements. In addition, we demonstrate the complicated intermixing that occurs between magnetic and electrical responses in CPW-type measurements through both numerical modeling, and empirical measurements of impeded embedded permalloy devices.

  13. Paper Capillary Enables Effective Sampling for Microfluidic Paper Analytical Devices.

    PubMed

    Shangguan, Jin-Wen; Liu, Yu; Wang, Sha; Hou, Yun-Xuan; Xu, Bi-Yi; Xu, Jing-Juan; Chen, Hong-Yuan

    2018-06-06

    Paper capillary is introduced to enable effective sampling on microfluidic paper analytical devices. By coupling mac-roscale capillary force of paper capillary and microscale capillary forces of native paper, fluid transport can be flexibly tailored with proper design. Subsequently, a hybrid-fluid-mode paper capillary device was proposed, which enables fast and reliable sampling in an arrayed form, with less surface adsorption and bias for different components. The resulting device thus well supports high throughput, quantitative, and repeatable assays all by hands operation. With all these merits, multiplex analysis of ions, proteins, and microbe have all been realized on this platform, which has paved the way to level-up analysis on μPADs.

  14. Programmable diagnostic devices made from paper and tape.

    PubMed

    Martinez, Andres W; Phillips, Scott T; Nie, Zhihong; Cheng, Chao-Min; Carrilho, Emanuel; Wiley, Benjamin J; Whitesides, George M

    2010-10-07

    This paper describes three-dimensional microfluidic paper-based analytical devices (3-D microPADs) that can be programmed (postfabrication) by the user to generate multiple patterns of flow through them. These devices are programmed by pressing single-use 'on' buttons, using a stylus or a ballpoint pen. Pressing a button closes a small space (gap) between two vertically aligned microfluidic channels, and allows fluids to wick from one channel to the other. These devices are simple to fabricate, and are made entirely out of paper and double-sided adhesive tape. Programmable devices expand the capabilities of microPADs and provide a simple method for controlling the movement of fluids in paper-based channels. They are the conceptual equivalent of field-programmable gate arrays (FPGAs) widely used in electronics.

  15. The effect of coolants on the performance of magnetic micro-refrigerators.

    PubMed

    Silva, D J; Bordalo, B D; Pereira, A M; Ventura, J; Oliveira, J C R E; Araújo, J P

    2014-06-01

    Magnetic refrigeration is an alternative cooling technique with envisaged technological applications on micro- and opto-electronic devices. Here, we present a magnetic micro-refrigerator cooling device with embedded micro-channels and based on the magnetocaloric effect. We studied the influence of the coolant fluid in the refrigeration process by numerically simulating the heat transfer processes using the finite element method. This allowed us to calculate the cooling power of the device. Our results show that gallium is the most efficient coolant fluid and, when used with Gd5Si2Ge2, a maximum power of 11.2 W/mm3 at a working frequency of -5 kHz can be reached. However, for operation frequencies around 50 Hz, water is the most efficient fluid with a cooling power of 0.137 W/mm3.

  16. Fluid-solid contact vessel having fluid distributors therein

    DOEpatents

    Jones, Jr., John B.

    1980-09-09

    Rectangularly-shaped fluid distributors for large diameter, vertical vessels include reinforcers for high heat operation, vertical sides with gas distributing orifices and overhanging, sloped roofs. Devices are provided for cleaning the orifices from a buildup of solid deposits resulting from the reactions in the vessel.

  17. Method for measuring particulate and gaseous metals in a fluid stream, device for measuring particulate and gaseous metals in a fluid stream

    DOEpatents

    Farber, Paul S.; Huang, Hann-Shen

    2001-01-01

    A method for analyzing metal in a fluid is provided comprising maintaining a first portion of a continuous filter media substrate at a temperature coinciding with the phase in which the metal is to be analyzed; contacting the fluid to a first portion of said substrate to retain the metal on the first portion of said substrate; preventing further contact of the fluid to the first portion of substrate; and contacting the fluid to a second portion of said substrate to retain metal on the second portion of the said substrate while simultaneously analyzing the first portion for metal. Also provided is a device for the simultaneous monitoring and analysis of metal in a fluid comprising a continuous filter media substrate; means for maintaining a first portion of said filter media substrate at a temperature coinciding with the phase in which the metal is to be analyzed; a means for contacting the fluid to the first portion of said substrate; a means for preventing further contact of the fluid to the first portion of substrate; a means for contacting the fluid to a second portion of said substrate to retain metal on the second portion of the said substrate; and means for analyzing the first portion for metal.

  18. Energy transport in cooling device by magnetic fluid

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Hiroshi; Iwamoto, Yuhiro

    2017-06-01

    Temperature sensitive magnetic fluid has a great potential with high performance heat transport ability as well as long distance energy (heat) transporting. In the present study experimental set-up was newly designed and constructed in order to measure basic heat transport characteristics under various magnetic field conditions. Angular dependence for the device (heat transfer section) was also taken into consideration for a sake of practical applications. The energy transfer characteristic (heat transport capability) in the magnetically-driven heat transport (cooling) device using the binary TSMF was fully investigated with the set-up. The obtained results indicate that boiling of the organic mixture (before the magnetic fluid itself reaching boiling point) effectively enhances the heat transfer as well as boosting the flow to circulate in the closed loop by itself. A long-distance heat transport of 5 m is experimentally confirmed, transferring the thermal energy of 35.8 W, even when the device (circulation loop) is horizontally placed. The highlighted results reveal that the proposed cooling device is innovative in a sense of transporting substantial amount of thermal energy (heat) as well as a long distance heat transport. The development of the magnetically-driven heat transport device has a great potential to be replaced for the conventional heat pipe in application of thermal engineering.

  19. Nanochanneled Device and Related Methods

    NASA Technical Reports Server (NTRS)

    Goodall, Randy (Inventor); Hosali, Sharath (Inventor); Grattoni, Alessandro (Inventor); Fine, Daniel (Inventor); Hudson, Lee (Inventor); Ferrari, Mauro (Inventor); Liu, Xuewu (Inventor); Medema, Ryan (Inventor)

    2013-01-01

    A nanochannel delivery device and method of manufacturing and use. The nanochannel delivery device comprises an inlet, an outlet, and a nanochannel. The nanochannel may be oriented parallel to the primary plane of the nanochannel delivery device. The inlet and outlet may be in direct fluid communication with the nanochannel.

  20. Sub-micron surface plasmon resonance sensor systems

    NASA Technical Reports Server (NTRS)

    Glazier, James A. (Inventor); Amarie, Dragos (Inventor)

    2013-01-01

    Wearable or implantable devices combining microfluidic control of sample and reagent flow and micro-cavity surface plasmon resonance sensors functionalized with surface treatments or coatings capable of specifically binding to target analytes, ligands, or molecules in a bodily fluid are provided. The devices can be used to determine the presence and concentration of target analytes in the bodily fluids and thereby help diagnose, monitor or detect changes in disease conditions.

  1. An underwater robo-leader for collective motion studies

    NASA Astrophysics Data System (ADS)

    Sanchez, Yair; Wilhelmus, Monica M.

    2016-11-01

    A wide range of aquatic species, from bacteria to large tuna, exhibits collective behavior. It has long been hypothesized that the formation of complex configurations brings an energetic advantage to the members of a group as well as protection against larger predators or harmful agents. Lately, however, laboratory experiments have suggested that both the physics and the behavioral aspects of collective motion yield more complexity than previously attributed. With the goal to understand the fluid mechanical implications behind collective motion in a laboratory setting, we have developed a new device to induce this behavior on demand. Following recent studies of lab-induced vertical migration of Artemia salina, we have designed and constructed a remotely controlled underwater robotic swimmer that acts as a leader for groups of phototactic organisms. Preliminary quantitative flow visualizations done during vertical migration of brine shrimp show that this new instrument does induce collective motion in the laboratory. With this setup, we can address the hydrodynamic effect of having different swarm configurations, a variable that so far has been challenging to study in a controllable and reproducible manner.

  2. Active Mixing in Microchannels using Surface Acoustic Wave Streaming on Lithium Niobate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Branch, Darren W.; Meyer, Grant D.; Bourdon, Christopher Jay

    2005-11-01

    We present an active method for mixing fluid streams in microchannels at low Reynolds number with no dead volume. To overcome diffusion limited mixing in microchannels, surface acoustic wave streaming offers an extremely effective approach to rapidly homogenize fluids. This is a pivotal improvement over mixers based on complex 3D microchannels which have significant dead volume resulting in trapping or loss of sample. Our micromixer is integrable and highly adaptable for use within existing microfluidic devices. Surface acoustic wave devices fabricated on 128° YX LiNbO 3 permitted rapid mixing of flow streams as evidenced by fluorescence microscopy. Longitudinal waves createdmore » at the solid-liquid interface were capable of inducing strong nonlinear gradients within the bulk fluid. In the highly laminar regime (Re = 2), devices achieved over 93% mixing efficacy in less than a second. Micro-particle imaging velicometry was used to determine the mixing behavior in the microchannels and indicated that the liquid velocity can be controlled by varying the input power. Fluid velocities in excess of 3 cm•s -1 were measured in the main excitation region at low power levels (2.8mW). We believe that this technology will be pivotal in the development and advancement of microfluidic devices and applications.« less

  3. Novel and facile viscometer using a paper-based microfluidic device

    NASA Astrophysics Data System (ADS)

    Kang, Hyunwoong; Jang, Ilhoon; Song, Simon

    2017-11-01

    In clinical applications, it is important to rapidly estimate the blood viscosity of a patient with a high accuracy and a small sample consumption. Unfortunately, ordinary mechanical viscometers require long analysis time, large volume of sample and skilled person. To address this issue, silicon-based viscometers have been developed, but they are still far from prevail usage in clinical environments due to complexity in process and analysis. Recently, a paper-based microfluidic device is emerged as a new platform for a facile point-of-care diagnostic device due to low cost, disposability and ease of use. Thus, we propose a novel and facile method of measuring a viscosity with a paper-based microfluidic devices and a smartphone. This viscometer utilizes mixing characteristics of two fluid flows in a T-shape channel: one for reference and the other for test fluid. The mixing strongly depends on viscosity difference between the two fluids. Also, the fluids are dyed for colorimetric analysis with a smartphone. We found that the accuracy of viscometer is about 3 percent when it was tested for various glycerin aqueous solutions. More detailed information will be discussed in the presentation. This work was supported by the National Research Foundation of Korea(NRF) Grant funded by the Korea government(MSIP) (No. 2016R1A2B3009541).

  4. Utility of point of care test devices for infectious disease testing of blood and oral fluid and application to rapid testing in the field

    NASA Astrophysics Data System (ADS)

    Lee, Stephen R.; Kardos, Keith W.; Yearwood, Graham D.; Guillon, Geraldine B.; Kurtz, Lisa A.; Mokkapati, Vijaya K.

    2008-04-01

    Rapid, point of care (POC) testing has been increasingly deployed as an aid in the diagnosis of infectious disease, due to its ability to deliver rapid, actionable results. In the case of HIV, a number of rapid test devices have been FDA approved and CLIA-waived in order to enable diagnosis of HIV infection outside of traditional laboratory settings. These settings include STD clinics, community outreach centers and mobile testing units, as well as identifying HIV infection among pregnant women and managing occupational exposure to infection. The OraQuick ® rapid test platform has been widely used to identify HIV in POC settings, due to its simplicity, ease of use and the ability to utilize oral fluid as an alternative specimen to blood. More recently, a rapid test for antibodies to hepatitis C virus (HCV) has been developed on the same test platform which uses serum, plasma, finger-stick blood, venous blood and oral fluid. Clinical testing using this POC test device has shown that performance is equivalent to state of the art, laboratory based tests. These devices may be suitable for rapid field testing of blood and other body fluids for the presence of infectious agents.

  5. Composition pulse time-of-flight mass flow sensor

    DOEpatents

    Harnett, Cindy K [Livermore, CA; Crocker, Robert W [Fremont, CA; Mosier, Bruce P [San Francisco, CA; Caton, Pamela F [Berkeley, CA; Stamps, James F [Livermore, CA

    2007-06-05

    A device for measuring fluid flow rates over a wide range of flow rates (<1 nL/min to >10 .mu.L/min) and at pressures at least as great as 2,000 psi. The invention is particularly adapted for use in microfluidic systems. The device operates by producing compositional variations in the fluid, or pulses, that are subsequently detected downstream from the point of creation to derive a flow rate. Each pulse, comprising a small fluid volume, whose composition is different from the mean composition of the fluid, can be created by electrochemical means, such as by electrolysis of a solvent, electrolysis of a dissolved species, or electrodialysis of a dissolved ionic species. Measurements of the conductivity of the fluid can be used to detect the arrival time of the pulses, from which the fluid flow rate can be determined. A pair of spaced apart electrodes can be used to produce the electrochemical pulse. In those instances where it is desired to measure a wide range of fluid flow rates a three electrode configuration in which the electrodes are spaced at unequal distances has been found to be desirable.

  6. Biliary and pancreatic stenting: Devices and insertion techniques in therapeutic endoscopic retrograde cholangiopancreatography and endoscopic ultrasonography

    PubMed Central

    Mangiavillano, Benedetto; Pagano, Nico; Baron, Todd H; Arena, Monica; Iabichino, Giuseppe; Consolo, Pierluigi; Opocher, Enrico; Luigiano, Carmelo

    2016-01-01

    Stents are tubular devices made of plastic or metal. Endoscopic stenting is the most common treatment for obstruction of the common bile duct or of the main pancreatic duct, but also employed for the treatment of bilio-pancreatic leakages, for preventing post- endoscopic retrograde cholangiopancreatography pancreatitis and to drain the gallbladder and pancreatic fluid collections. Recent progresses in techniques of stent insertion and metal stent design are represented by new, fully-covered lumen apposing metal stents. These stents are specifically designed for transmural drainage, with a saddle-shape design and bilateral flanges, to provide lumen-to-lumen anchoring, reducing the risk of migration and leakage. This review is an update of the technique of stent insertion and metal stent deployment, of the most recent data available on stent types and characteristics and the new applications for biliopancreatic stents. PMID:26862364

  7. Short range, ultra-wideband radar with high resolution swept range gate

    DOEpatents

    McEwan, T.E.

    1998-05-26

    A radar range finder and hidden object locator is based on ultra-wide band radar with a high resolution swept range gate. The device generates an equivalent time amplitude scan with a typical range of 4 inches to 20 feet, and an analog range resolution as limited by a jitter of on the order of 0.01 inches. A differential sampling receiver is employed to effectively eliminate ringing and other aberrations induced in the receiver by the near proximity of the transmit antenna, so a background subtraction is not needed, simplifying the circuitry while improving performance. Uses of the invention include a replacement of ultrasound devices for fluid level sensing, automotive radar, such as cruise control and parking assistance, hidden object location, such as stud and rebar finding. Also, this technology can be used when positioned over a highway lane to collect vehicle count and speed data for traffic control. 14 figs.

  8. Short range, ultra-wideband radar with high resolution swept range gate

    DOEpatents

    McEwan, Thomas E.

    1998-05-26

    A radar range finder and hidden object locator is based on ultra-wide band radar with a high resolution swept range gate. The device generates an equivalent time amplitude scan with a typical range of 4 inches to 20 feet, and an analog range resolution as limited by a jitter of on the order of 0.01 inches. A differential sampling receiver is employed to effectively eliminate ringing and other aberrations induced in the receiver by the near proximity of the transmit antenna, so a background subtraction is not needed, simplifying the circuitry while improving performance. Uses of the invention include a replacement of ultrasound devices for fluid level sensing, automotive radar, such as cruise control and parking assistance, hidden object location, such as stud and rebar finding. Also, this technology can be used when positioned over a highway lane to collect vehicle count and speed data for traffic control.

  9. Crystal Growth and Fluid Mechanics Problems in Directional Solidification

    NASA Technical Reports Server (NTRS)

    Tanveer, Saleh A.; Baker, Gregory R.; Foster, Michael R.

    2001-01-01

    Our work in directional solidification has been in the following areas: (1) Dynamics of dendrites including rigorous mathematical analysis of the resulting equations; (2) Examination of the near-structurally unstable features of the mathematically related Hele-Shaw dynamics; (3) Numerical studies of steady temperature distribution in a vertical Bridgman device; (4) Numerical study of transient effects in a vertical Bridgman device; (5) Asymptotic treatment of quasi-steady operation of a vertical Bridgman furnace for large Rayleigh numbers and small Biot number in 3D; and (6) Understanding of Mullins-Sererka transition in a Bridgman device with fluid dynamics is accounted for.

  10. Long term stability of cannabinoids in oral fluid after controlled cannabis administration

    PubMed Central

    Swortwood, Madeleine J; Sempio, Cristina; Huestis, Marilyn A.

    2016-01-01

    Cannabinoid stability in oral fluid (OF) is important for assuring accurate results since OF has become a valid alternative matrix of choice for drug testing. We previously published OF cannabinoid stability studies using Quantisal™, Oral-Eze®, and StatSure™ devices stored at room temperature for 1 week, 4°C for up to 4 weeks and in −20°C up to 24 weeks. Extending refrigerated stability up to 3 months would be helpful for clinical and forensic testing, for reanalysis of OF samples and for batching research analyses. Individual authentic OF pools were prepared after controlled smoking of a 6.9% Δ9-tetrahydracannabinol cannabis cigarette; the Quantisal™ device was utilized for OF collection. Fifteen healthy volunteers participated in the Institutional Review Board approved study. Stability for THC, 11-nor-9-carboxy-THC (THCCOOH), Δ9-tetrahydrocannabivarin (THCV), cannabidiol (CBD) and cannabigerol (CBG) were determined after storage at 4°C for 1, 2 and 3 months. Results within ±20% of baseline concentrations were considered stable. All analytes were stable for up to 2 months at 4°C for all participants with positive baseline concentrations. Baseline concentrations were highly variable. In total, THC, THCCOOH, THCV, CBD and CBG were stable for 3 months at 4°C for pooled positive specimens from 14 of 15, 8 of 9, 7 of 8, 8 of 9 and 9 of 10 participants, respectively. In conclusion, Quantisal™ collected OF specimens should be stored at 4°C for no more than 2 months to assure accurate THC, THCCOOH, THCV, CBD and CBG quantitative results; only one participant's OF was unstable at 3 months. PMID:27539096

  11. Development of Magnetorheological Resistive Exercise Device for Rowing Machine

    PubMed Central

    Žiliukas, Pranas

    2016-01-01

    Training equipment used by professional sportsmen has a great impact on their sport performance. Most universal exercisers may help only to improve the general physical condition due to the specific kinematics and peculiar resistance generated by their loading units. Training of effective techniques and learning of psychomotor skills are possible only when exercisers conform to the movements and resistance typical for particular sports kinematically and dynamically. Methodology of developing a magnetorheological resistive exercise device for generating the desired law of passive resistance force and its application in a lever-type rowing machine are described in the paper. The structural parameters of a controllable hydraulic cylinder type device were found by means of the computational fluid dynamics simulation performed by ANSYS CFX software. Parameters describing the magnetorheological fluid as non-Newtonian were determined by combining numerical and experimental research of the resistance force generated by the original magnetorheological damper. A structural scheme of the device control system was developed and the variation of the strength of magnetic field that affects the magnetorheological fluid circulating in the device was determined, ensuring a variation of the resistance force on the oar handle adequate for the resistance that occurs during a real boat rowing stroke. PMID:27293479

  12. Development of Magnetorheological Resistive Exercise Device for Rowing Machine.

    PubMed

    Grigas, Vytautas; Šulginas, Anatolijus; Žiliukas, Pranas

    2015-01-01

    Training equipment used by professional sportsmen has a great impact on their sport performance. Most universal exercisers may help only to improve the general physical condition due to the specific kinematics and peculiar resistance generated by their loading units. Training of effective techniques and learning of psychomotor skills are possible only when exercisers conform to the movements and resistance typical for particular sports kinematically and dynamically. Methodology of developing a magnetorheological resistive exercise device for generating the desired law of passive resistance force and its application in a lever-type rowing machine are described in the paper. The structural parameters of a controllable hydraulic cylinder type device were found by means of the computational fluid dynamics simulation performed by ANSYS CFX software. Parameters describing the magnetorheological fluid as non-Newtonian were determined by combining numerical and experimental research of the resistance force generated by the original magnetorheological damper. A structural scheme of the device control system was developed and the variation of the strength of magnetic field that affects the magnetorheological fluid circulating in the device was determined, ensuring a variation of the resistance force on the oar handle adequate for the resistance that occurs during a real boat rowing stroke.

  13. Non-contact handling device

    DOEpatents

    Reece, Mark [Albuquerque, NM; Knorovsky, Gerald A [Albuquerque, NM; MacCallum, Danny O [Edgewood, NM

    2007-05-15

    A pressurized fluid handling nozzle has a body with a first end and a second end, a fluid conduit and a recess at the second end. The first end is configured for connection to a pressurized fluid source. The fluid conduit has an inlet at the first end and an outlet at the recess. The nozzle uses the Bernoulli effect for lifting a part.

  14. 7 CFR 3201.54 - Heat transfer fluids.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... for use in HVAC applications, internal combustion engines, personal cooling devices, thermal energy... Designated Items § 3201.54 Heat transfer fluids. (a) Definition. Products with high thermal capacities used...

  15. 7 CFR 3201.54 - Heat transfer fluids.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... for use in HVAC applications, internal combustion engines, personal cooling devices, thermal energy... Designated Items § 3201.54 Heat transfer fluids. (a) Definition. Products with high thermal capacities used...

  16. 7 CFR 3201.54 - Heat transfer fluids.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... for use in HVAC applications, internal combustion engines, personal cooling devices, thermal energy... Designated Items § 3201.54 Heat transfer fluids. (a) Definition. Products with high thermal capacities used...

  17. 21 CFR 876.5895 - Ostomy irrigator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ostomy irrigator. 876.5895 Section 876.5895 Food... DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Therapeutic Devices § 876.5895 Ostomy irrigator. (a) Identification. An ostomy irrigator is a device that consists of a container for fluid, tubing with a cone-shaped...

  18. Ball assisted device for analytical surface sampling

    DOEpatents

    ElNaggar, Mariam S; Van Berkel, Gary J; Covey, Thomas R

    2015-11-03

    A system for sampling a surface includes a sampling probe having a housing and a socket, and a rolling sampling sphere within the socket. The housing has a sampling fluid supply conduit and a sampling fluid exhaust conduit. The sampling fluid supply conduit supplies sampling fluid to the sampling sphere. The sampling fluid exhaust conduit has an inlet opening for receiving sampling fluid carried from the surface by the sampling sphere. A surface sampling probe and a method for sampling a surface are also disclosed.

  19. Pleural fluid smear

    MedlinePlus

    ... the fluid that has collected in the pleural space. This is the space between the lining of the outside of the ... the chest. When fluid collects in the pleural space, the condition is called pleural effusion .

  20. Pleural fluid analysis

    MedlinePlus

    ... of fluid that has collected in the pleural space. This is the space between the lining of the outside of the ... the chest. When fluid collects in the pleural space, the condition is called pleural effusion .

  1. Investigation of the capture of magnetic particles from high-viscosity fluids using permanent magnets

    PubMed Central

    Garraud, A.; Velez, C.; Shah, Y.; Garraud, N.; Kozissnik, B.; Yarmola, E. G.; Allen, K. D.; Dobson, J.; Arnold, D. P.

    2015-01-01

    Goal This paper investigates the practicality of using a small, permanent magnet to capture magnetic particles out of high-viscosity biological fluids, such as synovial fluid. Methods Numerical simulations are used to predict the trajectory of magnetic particles toward the permanent magnet. The simulations are used to determine a “collection volume” with a time-dependent size and shape, which determines the number of particles that can be captured from the fluid in a given amount of time. Results The viscosity of the fluid strongly influences the velocity of the magnetic particles towards the magnet, hence the collection volume after a given time. In regards to the design of the magnet, the overall size is shown to most strongly influence the collection volume in comparison to the magnet shape or aspect ratio. Conclusion Numerical results showed good agreement with in vitro experimental magnetic collection results. Significance In the long-term, this work aims to facilitate optimization of the collection of magnetic particle-biomarker conjugates from high-viscosity biological fluids without the need to remove the fluid from a patient. PMID:26208261

  2. Investigation of the Capture of Magnetic Particles From High-Viscosity Fluids Using Permanent Magnets.

    PubMed

    Garraud, Alexandra; Velez, Camilo; Shah, Yash; Garraud, Nicolas; Kozissnik, Bettina; Yarmola, Elena G; Allen, Kyle D; Dobson, Jon; Arnold, David P

    2016-02-01

    This paper investigates the practicality of using a small, permanent magnet to capture magnetic particles out of high-viscosity biological fluids, such as synovial fluid. Numerical simulations are used to predict the trajectory of magnetic particles toward the permanent magnet. The simulations are used to determine a "collection volume" with a time-dependent size and shape, which determines the number of particles that can be captured from the fluid in a given amount of time. The viscosity of the fluid strongly influences the velocity of the magnetic particles toward the magnet, hence, the collection volume after a given time. In regards to the design of the magnet, the overall size is shown to most strongly influence the collection volume in comparison to the magnet shape or aspect ratio. Numerical results showed good agreement with in vitro experimental magnetic collection results. In the long term, this paper aims to facilitate optimization of the collection of magnetic particle-biomarker conjugates from high-viscosity biological fluids without the need to remove the fluid from a patient.

  3. The effects of the secondary fluid temperature on the energy transfer in an unsteady ejector with a radial-flow diffuser

    NASA Astrophysics Data System (ADS)

    Ababneh, Amer Khalil; Jawarneh, Ali M.; Tlilan, Hitham M.; Ababneh, Mohammad K.

    2009-11-01

    Unsteady ejectors are devices whereby energy is exchanged between directly interacting fluids. Unlike steady ejectors, the mechanism responsible for the energy transfer is reversible in nature and thus higher efficiencies are perceivable. A potential application for PEE is for enhancement in output power per weight as in turbochargers. The unsteady ejector when used as a turbocharger the device is expected to perform under wide range of ambient temperatures. Therefore, it is important to investigate the effects of the temperature of the induced ambient air on the energy transfer. The radial-flow ejector, which usually leads to higher-pressure ratios with fewer stages, was selected for the investigation. The flow field is investigated at two Mach numbers 2.5 and 3.0 utilizing rectangular short-length supersonic nozzles for accelerating the primary fluid. Fundamental to the enhancement of these devices performance relies on the management of the flow field in such a way to minimize entropy production. The numerical analyses were conducted utilizing a package of computational fluid dynamics.

  4. Cortical gluing and Ringer lactate solution inflation to avoid cortical mantle collapse and subdural fluid collections in pediatric neurosurgery: safety and feasibility.

    PubMed

    Mirone, Giuseppe; Ruggiero, Claudio; Spennato, Pietro; Aliberti, Ferdinando; Trischitta, Vincenzo; Cinalli, Giuseppe

    2015-06-01

    Subdural fluid collections following intraventricular and/or paraventricular procedures in pediatric neurosurgery are common and can be hard to treat. We describe our technique to close cortical defects by the aid of a fibrin adhesive and subsequent Ringer inflation with the aim to avoid cortical mantle collapse and to prevent the development of subdural fluid collections. We report the preliminary results of a prospective study on a consecutive series of 29 children who underwent 37 transcortical or transcallosal surgical procedures since 2008 in our department. In 17 procedures, we performed a transcortical approach on lesions, and in other 19 operations, we operated by a transcallosal. In 5/17 transcortical approaches (29%) and in 3/20 transcallosal approaches (15%), we observed a 5-mm-thick subdural fluid collection of the 5 patients with subdural fluid collections in the transcortical group, 3 patients (17%) underwent surgery for symptomatic or progressive subdural fluid collections. Of the 3 patients in the transcallosal group, a subduro-peritoneal shunt was necessary only for 1 patient (5%). At the very end of the treatment (including chemotherapy and radiotherapy), it was possible to remove the subduro-peritoneal shunt in all these patients because of disappearance of the subdural fluid collections. In pediatric patients after transcortical or transcallosal procedures, the use of a fibrin adhesive to seal surgical opening and subsequent inflation of the residual cavity with Ringer lactate solution to avoid cortical mantle collapse seems safe and appears to prevent the development of subdural fluid collections.

  5. The role of CT-guided percutaneous drainage of loculated air collections: an institutional experience.

    PubMed

    Patel, Bhavik N; Morgan, Madeline; Tyler, Douglas; Paulson, Erik; Jaffe, Tracy A

    2015-10-01

    The purpose of this study is to describe our experience with the role of CT-guided percutaneous drainage of loculated intra-abdominal collections consisting entirely of gas. An IRB-approved retrospective study analyzing patients with air-only intra-abdominal collections over an 8-year period was undertaken. Seven patients referred for percutaneous drainage were included. Size of collections, subsequent development of fluid, and microbiological yield were determined. Clinical outcome was also analyzed. Out of 2835 patients referred for percutaneous drainage between 2004 and 2012, seven patients (5M, 2F; average age 63, range 54-85) met criteria for inclusion with CT showing air-only collections. Percutaneous drain placement (five 8 Fr, one 10 Fr, and one 12 Fr) using Seldinger technique was performed. Four patients (57%) had recently undergone surgery (2 Whipple, 1 colectomy, 1 hepatic resection) while two (29%) had a remote surgery (1 abdominoperineal resection, 1 sigmoidectomy). Despite the lack of detectable fluid on the original CT, 6 patients (86%) had air and fluid aspirated at drainage, 5 (83%) of the aspirates developed positive microbacterial cultures. Four patients (57%) presented with fever at the time of the initial scan, all of whom had positive cultures from aspirated fluid. Four patients (57%) had leukocytosis, all of whom had positive cultures from aspirated fluid. Although relatively rare in occurrence, patients with air-only intra-abdominal collections with signs of infection should be considered for percutaneous management similar to that of conventional infected fluid collections. Although fluid is not visible on CT, these collections can produce fluid that contains organisms.

  6. Benign mural nodules within fluid collections at MRI after soft-tissue sarcoma resection.

    PubMed

    Lantos, Joshua E; Hwang, Sinchun; Panicek, David M

    2014-06-01

    The purpose of this study was to determine the prevalence and clinical significance of nodules within fluid collections on MRI after surgical resection of soft-tissue sarcoma. This retrospective study included 175 patients who underwent resection of primary soft-tissue sarcoma and whose postoperative MRI reports mentioned fluid. Images were reviewed to determine the presence of fluid collections of 1 cm or greater in diameter in the surgical bed and any nodule (measuring ≥ 0.7 cm) within the collection. Signal intensity and characteristics of each collection and rim and presence of septa or blood products were recorded. Size, signal intensity, and contrast enhancement of nodules were reviewed. Nodules were classified as benign or malignant on the basis of histologic results or clinical or MRI follow-up. Fluid collections were present in 75 patients. Of those, 45 collections (60%) showed homogeneous fluid signal intensity and 30 (40%) were heterogeneous; septa were present in 45 (60%) and blood products in 12 (16%). Most collections showed a thin rim (59%) and rim enhancement (88%). Nodules were present along the inner wall of six (8%) collections. Four (66%) nodules enhanced and two (33%) were T1 hyperintense. At follow-up MRI, two nodules were stable in size, one decreased, and three resolved. Nodules in three patients were biopsied; all were benign. Two other patients had no recurrence at follow-up, and another died at 3 months. A nodule within a postoperative fluid collection at MRI after soft-tissue sarcoma resection generally does not represent tumor recurrence; short-interval follow-up MRI is recommended rather than immediate biopsy.

  7. Fluid sampling tool

    DOEpatents

    Johnston, Roger G.; Garcia, Anthony R. E.; Martinez, Ronald K.

    2001-09-25

    The invention includes a rotatable tool for collecting fluid through the wall of a container. The tool includes a fluid collection section with a cylindrical shank having an end portion for drilling a hole in the container wall when the tool is rotated, and a threaded portion for tapping the hole in the container wall. A passageway in the shank in communication with at least one radial inlet hole in the drilling end and an opening at the end of the shank is adapted to receive fluid from the container. The tool also includes a cylindrical chamber affixed to the end of the shank opposite to the drilling portion thereof for receiving and storing fluid passing through the passageway. The tool also includes a flexible, deformable gasket that provides a fluid-tight chamber to confine kerf generated during the drilling and tapping of the hole. The invention also includes a fluid extractor section for extracting fluid samples from the fluid collecting section.

  8. Robotic transgastric cystgastrostomy and pancreatic debridement in the management of pancreatic fluid collections following acute pancreatitis.

    PubMed

    Kirks, Russell C; Sola, Richard; Iannitti, David A; Martinie, John B; Vrochides, Dionisios

    2016-01-01

    Pancreatic and peripancreatic fluid collections may develop after severe acute pancreatitis. Organized fluid collections such as pancreatic pseudocyst and walled-off pancreatic necrosis (WOPN) that mature over time may require intervention to treat obstructive or constitutional symptoms related to the size and location of the collection as well as possible infection. Endoscopic, open surgical and minimally invasive techniques are described to treat post-inflammatory pancreatic fluid collections. Surgical intervention may be required to treat collections containing necrotic pancreatic parenchyma or in locations not immediately apposed to the stomach or duodenum. Comprising a blend of the surgical approach and the clinical benefits of minimally invasive surgery, the robot-assisted technique of pancreatic cystgastrostomy with pancreatic debridement is described.

  9. Experimental and numerical studies of a microfluidic device with compliant chambers for flow stabilization

    NASA Astrophysics Data System (ADS)

    Iyer, V.; Raj, A.; Annabattula, R. K.; Sen, A. K.

    2015-07-01

    This paper reports experimental and numerical studies of a passive microfluidic device that stabilizes a pulsating incoming flow and delivers a steady flow at the outlet. The device employs a series of chambers along the flow direction with a thin polymeric membrane (of thickness 75-250 µm) serving as the compliant boundary. The deformation of the membrane allows accumulation of fluid during an overflow and discharge of fluid during an underflow for flow stabilization. Coupled fluid-structure simulations are performed using Mooney-Rivlin formulations to account for a thin hyperelastic membrane material undergoing large deformations to accurately predict the device performance. The device was fabricated with PDMS as the substrate material and thin PDMS membrane as the compliant boundary. The performance of the device is defined in terms of a parameter called ‘Attenuation Factor (AF)’. The effect of various design parameters including membrane thickness, elastic modulus, chamber size and number of chambers in series as well as operating conditions including the outlet pressure, mean input flow rate, fluctuation amplitude and frequency on the device performance were studied using experiments and simulations. The simulation results successfully confront the experimental data (within 10%) which validates the numerical simulations. The device was used at the exit of a PZT actuated valveless micropump to take pulsating flow at the upstream and deliver steady flow downstream. The amplitude of the pulsating flow delivered by the micropump was significantly reduced (AF = 0.05 for a device with three 4 mm chambers) but at the expense of a reduction in the pressure capability (<20%). The proposed device could potentially be used for reducing flow pulsations in practical microfluidic circuits.

  10. 75 FR 5553 - Federal Motor Vehicle Safety Standards; Motor Vehicle Brake Fluids

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-03

    ... Vehicle Brake Fluids, so that brake fluids would be tested with ethylene, propylene, and diene terpolymer.... SUPPLEMENTARY INFORMATION: Table of Contents I. Background II. Testing With Ethylene, Propylene, and Diene... test procedures and devices. II. Testing With Ethylene, Propylene, and Diene Terpolymer Rubber This...

  11. Next Generation Programmable Bio-Nano-Chip System for On-Site Detection in Oral Fluids.

    PubMed

    Christodoulides, Nicolaos; De La Garza, Richard; Simmons, Glennon W; McRae, Michael P; Wong, Jorge; Newton, Thomas F; Kosten, Thomas R; Haque, Ahmed; McDevitt, John T

    2015-11-23

    Current on-site drug of abuse detection methods involve invasive sampling of blood and urine specimens, or collection of oral fluid, followed by qualitative screening tests using immunochromatographic cartridges. Test confirmation and quantitative assessment of a presumptive positive are then provided by remote laboratories, an inefficient and costly process decoupled from the initial sampling. Recently, a new noninvasive oral fluid sampling approach that is integrated with the chip-based Programmable Bio-Nano-Chip (p-BNC) platform has been developed for the rapid (~ 10 minutes), sensitive detection (~ ng/ml) and quantitation of 12 drugs of abuse. Furthermore, the system can provide the time-course of select drug and metabolite profiles in oral fluids. For cocaine, we observed three slope components were correlated with cocaine-induced impairment using this chip-based p-BNC detection modality. Thus, this p-BNC has significant potential for roadside drug testing by law enforcement officers. Initial work reported on chip-based drug detection was completed using 'macro' or "chip in the lab" prototypes, that included metal encased "flow cells", external peristaltic pumps and a bench-top analyzer system instrumentation. We now describe the next generation miniaturized analyzer instrumentation along with customized disposables and sampling devices. These tools will offer real-time oral fluid drug monitoring capabilities, to be used for roadside drug testing as well as testing in clinical settings as a non-invasive, quantitative, accurate and sensitive tool to verify patient adherence to treatment.

  12. Confirmation by LC-MS of drugs in oral fluid obtained from roadside testing.

    PubMed

    Concheiro, Marta; de Castro, Ana; Quintela, Oscar; Cruz, Angelines; López-Rivadulla, Manuel

    2007-08-06

    The aim of this study was to assess the effectiveness of two current on-site oral fluid (OF) drug detection devices (OraLab and Dräger), as part of the Spanish participation in the Roadside Testing Assessment Project (ROSITA Project). The study was done in collaboration with the Spanish Traffic Police, in Galicia (NW Spain), during 2004 and 2005. A total of 468 drivers selected at the police controls agreed to participate through informed consent. In addition, saliva samples were collected and sent to the laboratory to confirm the on-site results. For this purpose, two different analytical liquid chromatography-mass spectrometry (LC-MS) methods were used to detect 11 drugs or metabolites in a 300 microL sample. Simultaneous analysis of morphine, 6-acetylmorphine, amphetamine, methamphetamine, MDA, MDMA, MDEA, MBDB, cocaine and benzoylecgonine was carried out using 100 microL of oral fluid, after an automated solid phase extraction. A different LC-MS method was performed to detect Delta(9)-THC in 200 microL of oral fluid using liquid-liquid extraction with hexane at pH 6. Both methods were fully validated, including linearity (1-250 ng/mL, 2-250 ng/mL) recovery (>50%), within-day and between-day precision (CV<15%), accuracy (mean relative error<15%), limit of detection (0.5 and 1 ng/mL), quantitation (1 and 2 ng/mL) and matrix effect. All of the positive cases and a random selection of 30% of the negatives were analyzed for confirmation analysis. Good results (sensitivity, specificity, accuracy, positive predictive value and negative predictive value>90%) were obtained for cocaine and opiates by OraLab, and for cocaine by Dräger. However, the results for the other compounds could be improved for both detection devices. Differences in the ease of use and in the interpretation mode (visual or instrumental) were observed.

  13. Accurately tracking single-cell movement trajectories in microfluidic cell sorting devices.

    PubMed

    Jeong, Jenny; Frohberg, Nicholas J; Zhou, Enlu; Sulchek, Todd; Qiu, Peng

    2018-01-01

    Microfluidics are routinely used to study cellular properties, including the efficient quantification of single-cell biomechanics and label-free cell sorting based on the biomechanical properties, such as elasticity, viscosity, stiffness, and adhesion. Both quantification and sorting applications require optimal design of the microfluidic devices and mathematical modeling of the interactions between cells, fluid, and the channel of the device. As a first step toward building such a mathematical model, we collected video recordings of cells moving through a ridged microfluidic channel designed to compress and redirect cells according to cell biomechanics. We developed an efficient algorithm that automatically and accurately tracked the cell trajectories in the recordings. We tested the algorithm on recordings of cells with different stiffness, and showed the correlation between cell stiffness and the tracked trajectories. Moreover, the tracking algorithm successfully picked up subtle differences of cell motion when passing through consecutive ridges. The algorithm for accurately tracking cell trajectories paves the way for future efforts of modeling the flow, forces, and dynamics of cell properties in microfluidics applications.

  14. Mobile monolithic polymer elements for flow control in microfluidic devices

    DOEpatents

    Hasselbrink, Jr., Ernest F.; Rehm, Jason E.; Shepodd, Timothy J.

    2004-08-31

    A cast-in-place and lithographically shaped mobile, monolithic polymer element for fluid flow control in microfluidic devices and method of manufacture. Microfluid flow control devices, or microvalves that provide for control of fluid or ionic current flow can be made incorporating a cast-in-place, mobile monolithic polymer element, disposed within a microchannel, and driven by either fluid or gas pressure against a retaining or sealing surface. The polymer elements are made by the application of lithographic methods to monomer mixtures formulated in such a way that the polymer will not bond to microchannel walls. The polymer elements can seal against pressures greater than 5000 psi, and have a response time on the order of milliseconds. By the use of energetic radiation it is possible to depolymerize selected regions of the polymer element to form shapes that cannot be produced by conventional lithographic patterning and would be impossible to machine.

  15. Mobile monolithic polymer elements for flow control in microfluidic devices

    DOEpatents

    Hasselbrink, Jr., Ernest F.; Rehm, Jason E [Alameda, CA; Shepodd, Timothy J [Livermore, CA; Kirby, Brian J [San Francisco, CA

    2005-11-11

    A cast-in-place and lithographically shaped mobile, monolithic polymer element for fluid flow control in microfluidic devices and method of manufacture. Microfluid flow control devices, or microvalves that provide for control of fluid or ionic current flow can be made incorporating a cast-in-place, mobile monolithic polymer element, disposed within a microchannel, and driven by fluid pressure (either liquid or gas) against a retaining or sealing surface. The polymer elements are made by the application of lithographic methods to monomer mixtures formulated in such a way that the polymer will not bond to microchannel walls. The polymer elements can seal against pressures greater than 5000 psi, and have a response time on the order of milliseconds. By the use of energetic radiation it is possible to depolymerize selected regions of the polymer element to form shapes that cannot be produced by conventional lithographic patterning and would be impossible to machine.

  16. DNA hydrogel-based supercapacitors operating in physiological fluids

    PubMed Central

    Hur, Jaehyun; Im, Kyuhyun; Hwang, Sekyu; Choi, ByoungLyong; Kim, Sungjee; Hwang, Sungwoo; Park, Nokyoung; Kim, Kinam

    2013-01-01

    DNA nanostructures have been attractive due to their structural properties resulting in many important breakthroughs especially in controlled assemblies and many biological applications. Here, we report a unique energy storage device which is a supercapacitor that uses nanostructured DNA hydrogel (Dgel) as a template and layer-by-layer (LBL)-deposited polyelectrolyte multilayers (PEMs) as conductors. Our device, named as PEM-Dgel supercapacitor, showed excellent performance in direct contact with physiological fluids such as artificial urine and phosphate buffered saline without any need of additional electrolytes, and exhibited almost no cytotoxicity during cycling tests in cell culture medium. Moreover, we demonstrated that the PEM-Dgel supercapacitor has greater charge-discharge cycling stability in physiological fluids than highly concentrated acid electrolyte solution which is normally used for supercapacitor operation. These conceptually new supercapacitors have the potential to be a platform technology for the creation of implantable energy storage devices for packageless applications directly utilizing biofluids. PMID:23412432

  17. Mixing high-viscosity fluids via acoustically driven bubbles

    NASA Astrophysics Data System (ADS)

    Orbay, Sinem; Ozcelik, Adem; Lata, James; Kaynak, Murat; Wu, Mengxi; Huang, Tony Jun

    2017-01-01

    We present an acoustofluidic micromixer which can perform rapid and homogeneous mixing of highly viscous fluids in the presence of an acoustic field. In this device, two high-viscosity polyethylene glycol (PEG) solutions were co-injected into a three-inlet PDMS microchannel with the center inlet containing a constant stream of nitrogen flow which forms bubbles in the device. When these bubbles were excited by an acoustic field generated via a piezoelectric transducer, the two solutions mixed homogenously due to the combination of acoustic streaming, droplet ejection, and bubble eruption effects. The mixing efficiency of this acoustofluidic device was evaluated using PEG-700 solutions which are ~106 times more viscous than deionized (DI) water. Our results indicate homogenous mixing of the PEG-700 solutions with a ~0.93 mixing index. The acoustofluidic micromixer is compact, inexpensive, easy to operate, and has the capacity to mix highly viscous fluids within 50 ms.

  18. High pressure stopped-flow apparatus for the rapid mixing and subsequent study of two fluids under high hydrostatic pressures

    NASA Astrophysics Data System (ADS)

    Karan, Daniel M.; Macey, Robert I.

    1980-08-01

    A stopped-flow apparatus is described for the rapid mixing and subsequent study of two dissimilar fluids under pressures up to 1200 bar. The device consists of two identical pressure chambers which contain the two fluids, a third pressure chamber which contains gas to maintain the pressure in the system, an optical port for photometric observation, and various connections. The device has been used to measure reaction times on the order of a hundred milliseconds to tens of seconds, using a maximum of 2 ml of each reagent per experimental determination. The dead time is found to be 5-25 ms with minium average flow velocities of 2.0 m/s. The construction and operation of the device are described and examples of water transport data in red blood cells and the bromophenolblue indicated chemical reaction of NaHCO3 and HCl under pressure are presented.

  19. Acoustically Generated Flows in Flexural Plate Wave Sensors: a Multifield Analysis

    NASA Astrophysics Data System (ADS)

    Sayar, Ersin; Farouk, Bakhtier

    2011-11-01

    Acoustically excited flows in a microchannel flexural plate wave device are explored numerically with a coupled solid-fluid mechanics model. The device can be exploited to integrate micropumps with microfluidic chips. A comprehensive understanding of the device requires the development of coupled two or three-dimensional fluid structure interactive (FSI) models. The channel walls are composed of layers of ZnO, Si3N4 and Al. An isothermal equation of state for the fluid (water) is employed. The flexural motions of the channel walls and the resulting flowfields are solved simultaneously. A parametric analysis is performed by varying the values of the driving frequency, voltage of the electrical signal and the channel height. The time averaged axial velocity is found to be proportional to the square of the wave amplitude. The present approach is superior to the method of successive approximations where the solid-liquid coupling is weak.

  20. Microfluidic flow spectrometer

    NASA Astrophysics Data System (ADS)

    Vázquez-Vergara, Pamela; Torres Rojas, Aimee M.; Guevara-Pantoja, Pablo E.; Corvera Poiré, Eugenia; Caballero-Robledo, Gabriel A.

    2017-07-01

    We present a microfluidic device which allows one to study the dynamics of oscillatory flows for a frequency range between 1 and 300 Hz. The fluid in the microdevice could be Newtonian, viscoelastic, or even a biofluid, since the device is made of PMMA, which makes it biocompatible and free of elastomeric elements. Coupling a piezoelectric to a micropiston allows one to impose periodic movement to the fluid, with zero mean flow and amplitudes of up to 20~μ m, within the microchannels in which the dynamics is studied. The use of a fast camera coupled to a microscope allows one to study the dynamics of 1~μ m tracer particles and interfaces at an image acquisition rate as fast as 5000 frames per second. The fabrication of the device is easy and cost-effective, since it is based on the use of a micromilling machine. The dynamics of a Newtonian fluid is studied as a proof of principle.

  1. Stagnation point flow of wormlike micellar solutions in a microfluidic cross-slot device: effects of surfactant concentration and ionic environment.

    PubMed

    Haward, Simon J; McKinley, Gareth H

    2012-03-01

    We employ the techniques of microparticle image velocimetry and full-field birefringence microscopy combined with mechanical measurements of the pressure drop to perform a detailed characterization of the extensional rheology and elastic flow instabilities observed for a range of wormlike micellar solutions flowing through a microfluidic cross-slot device. As the flow rate through the device is increased, the flow first bifurcates from a steady symmetric to a steady asymmetric configuration characterized by a birefringent strand of highly aligned micellar chains oriented along the shear-free centerline of the flow field. At higher flow rates the flow becomes three dimensional and time dependent and is characterized by aperiodic spatiotemporal fluctuations of the birefringent strand. The extensional properties and critical conditions for the onset of flow instabilities in the fluids are highly dependent on the fluid formulation (surfactant concentration and ionic strength) and the resulting changes in the linear viscoelasticity and nonlinear shear rheology of the fluids. By combining the measurements of critical conditions for the flow transitions with the viscometric material properties and the degree of shear-thinning characterizing each test fluid, it is possible to construct a stability diagram for viscoelastic flow of complex fluids in the cross-slot geometry.

  2. Effect of physical variables on capture of magnetic nanoparticles in simulated blood vessels

    NASA Astrophysics Data System (ADS)

    Zhang, Minghui; Brazel, Christopher

    2011-11-01

    This study investigated how the percent capture of magnetic nanoparticles in a simulated vessel varies with physical variables. Magnetic nanoparticles (MNPs) can used as part of therapeutic or diagnostic materials for cancer patients. By capturing these devices with a magnetic field, the particles can be concentrated in an area of diseased tissue. In this study, flow of nanoparticles in simulated blood vessels was used to determine the affect of applying an external magnetic field. This study used maghemite nanoparticles as the MNPs and either water or Fetal Bovine Serum as the carrier fluid. A UV-Vis collected capture data. The percent capture of MNPs was positively influenced by five physical variables: larger vessel diameters, lower linear flow velocity, higher magnetic field strength, better dispersion, lower MNP concentration, and lower protein content in fluid. Free MNPs were also compared to micelles, with the free particles having more successful magnetic capture. Four factors contributed to these trends: the strength of the magnetic field's influence on the MNPs, the MNPs' interactions with other particles and the fluid, the momentum of the nanoparticles, and magnetic mass to total mass ratio of the flowing particles. Funded by NSF REU Site #1062611.

  3. Collection and analysis of peritoneal fluid from healthy llamas and alpacas.

    PubMed

    Cebra, Christopher K; Tornquist, Susan J; Reed, Shannon K

    2008-05-01

    To describe a technique for abdominocentesis in camelids and report peritoneal fluid biochemical and cytologic findings from healthy llamas and alpacas. Prospective study. Animals-17 adult llamas and 5 adult alpacas. Right paracostal abdominocentesis was performed. Peritoneal fluid was collected by gravity flow into tubes containing potassium-EDTA for cell count and cytologic evaluation and lithium heparin for biochemical analysis. Blood samples were collected via jugular venipuncture into heparinized tubes at the same time. Cytologic components were quantified. Fluid pH and concentrations of total carbon dioxide, sodium, potassium, chloride, lactate, and glucose were compared between peritoneal fluid and venous blood. All but 3 camelids had peritoneal fluid cell counts of < 3,000 nucleated cells/microL, with < 2,000 neutrophils/microL and < 1,040 large mononuclear cells/microL. All but 1 had peritoneal fluid protein concentrations of > or = 2.5 g/dL. Peritoneal fluid of camelids generally contained slightly less glucose, lactate, and sodium and roughly equal concentrations of potassium and chloride as venous blood. Peritoneal fluid was collected safely from healthy camelids. Compared with blood, peritoneal fluid usually had a low cell count and protein concentration, but some individuals had higher values. Electrolyte concentrations resembled those found in blood. High cell counts and protein concentrations found in peritoneal fluid of some healthy camelids may overlap with values found in diseased camelids, complicating interpretation of peritoneal fluid values.

  4. Salivary flow and alpha-amylase: collection technique, duration, and oral fluid type.

    PubMed

    Beltzer, Emilie K; Fortunato, Christine K; Guaderrama, Melissa M; Peckins, Melissa K; Garramone, Bianca M; Granger, Douglas A

    2010-09-01

    There has been renewed interest in salivary alpha-amylase (sAA), a surrogate marker of autonomic/sympathetic activity, in biosocial research on stress vulnerability, reactivity, and recovery. This study explored the impact of saliva flow rate on sAA measurement by examining the influence of (1) the technique used to collect oral fluid-synthetic swab, cotton pledget, hydrocellulose microsponge, or passive drool; (2) collection point duration--the length of time the technique is employed (1-5min); and (3) oral fluid type--whole unstimulated saliva (not absorbed by any material) or oral fluid sampled from areas near the parotid, submandibular, or sublingual salivary glands. sAA activity (U/mL) was the highest in oral fluid collected from the parotid and submandibular gland areas. The volume (mL) of oral fluid collected increased, and the activity of sAA (U/mL) decreased, as collection point duration lengthened. The magnitude of these effects varied according to collection technique and oral fluid type. Across all conditions, there were positive correlations (range .70-.88) between sAA activity (U/mL) and sAA output (U/min). Management of these potential sources of measurement error will be essential to ensuring the success of future research on the correlates and concomitants of sAA activity, stress-related reactivity and recovery, and diurnal variation. Copyright 2010 Elsevier Inc. All rights reserved.

  5. A systematic review of the effectiveness of warming interventions for women undergoing cesarean section.

    PubMed

    Munday, Judy; Hines, Sonia; Wallace, Karen; Chang, Anne M; Gibbons, Kristen; Yates, Patsy

    2014-12-01

    Women undergoing cesarean section are vulnerable to adverse effects associated with inadvertent perioperative hypothermia, but there has been a lack of synthesized evidence for temperature management in this population. This systematic review aimed to synthesize the best available evidence in relation to preventing hypothermia in mothers undergoing cesarean section surgery. Randomized controlled trials meeting the inclusion criteria (adult patients of any ethnic background, with or without comorbidities, undergoing any mode of anesthesia for any type of cesarean section) were eligible for consideration. Active or passive warming interventions versus usual care or placebo, aiming to limit or manage core heat loss in women undergoing cesarean section were considered. The primary outcome was maternal core temperature. A comprehensive search with no language restrictions was undertaken of multiple databases from their inception until May 2012. Two independent reviewers using the standardized critical appraisal instrument for randomized controlled trials from the Joanna Briggs Institute Meta-Analysis of Statistics Assessment and Review Instruments (JBI-MASTARI) assessed retrieved papers for methodological quality and conducted data collection. Where possible, results were combined in a fixed effects meta-analysis using the Cochrane Collaboration Review Manager software. Due to heterogeneity for one outcome, random effects meta-analysis was also used. A combined total of 719 participants from 12 studies were included. Intravenous fluid warming was found to be effective at maintaining maternal temperature and preventing shivering. Warming devices, including forced air warming and under-body carbon polymer mattresses, were effective at preventing hypothermia. However, effectiveness increased if the devices were applied preoperatively. Preoperative warming devices reduced shivering and improved neonatal temperatures at birth. Intravenous fluid warming did not improve neonatal temperature, and the effectiveness of warming interventions on umbilical pH remains unclear. Intravenous fluid warming by any method improves maternal temperature and reduces shivering during and after cesarean section, as does preoperative body warming. Preoperative warming strategies should be utilized where possible. Preoperative or intraoperative warmed IV fluids should be standard practice. Warming strategies are less effective when intrathecal opioids are administered. Further research is needed to investigate interventions in emergency cesarean section surgery. Larger scale studies using standardized, clinically meaningful temperature measurement time points are required. © 2014 Sigma Theta Tau International.

  6. Detection of total and PRRSV-specific antibodies in oral fluids collected with different rope types from PRRSV-vaccinated and experimentally infected pigs.

    PubMed

    Decorte, Inge; Van Breedam, Wander; Van der Stede, Yves; Nauwynck, Hans J; De Regge, Nick; Cay, Ann Brigitte

    2014-06-17

    Oral fluid collected by means of ropes has the potential to replace serum for monitoring and surveillance of important swine pathogens. Until now, the most commonly used method to collect oral fluid is by hanging a cotton rope in a pen. However, concerns about the influence of rope material on subsequent immunological assays have been raised. In this study, we evaluated six different rope materials for the collection of oral fluid and the subsequent detection of total and PRRSV-specific antibodies of different isotypes in oral fluid collected from PRRSV-vaccinated and infected pigs. An initial experiment showed that IgA is the predominant antibody isotype in porcine saliva. Moreover, it was found that synthetic ropes may yield higher amounts of IgA, whereas all rope types seemed to be equally suitable for IgG collection. Although IgA is the predominant antibody isotype in porcine oral fluid, the PRRSV-specific IgA-based IPMA and ELISA tests were clearly not ideal for sensitive detection of PRRSV-specific IgA antibodies. In contrast, PRRSV-specific IgG in oral fluids was readily detected in PRRSV-specific IgG-based IPMA and ELISA tests, indicating that IgG is a more reliable isotype for monitoring PRRSV-specific antibody immunity in vaccinated/infected animals via oral fluids with the currently available tests. Since PRRSV-specific IgG detection seems more reliable than PRRSV-specific IgA detection for monitoring PRRSV-specific antibody immunity via oral fluids, and since all rope types yield equal amounts of IgG, it seems that the currently used cotton ropes are an appropriate choice for sample collection in PRRSV monitoring.

  7. 21 CFR 862.2310 - Clinical sample concentrator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory Instruments § 862... intended to concentrate (by dialysis, evaporation, etc.) serum, urine, cerebrospinal fluid, and other body...

  8. 21 CFR 862.2310 - Clinical sample concentrator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory Instruments § 862... intended to concentrate (by dialysis, evaporation, etc.) serum, urine, cerebrospinal fluid, and other body...

  9. 21 CFR 862.2310 - Clinical sample concentrator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory Instruments § 862... intended to concentrate (by dialysis, evaporation, etc.) serum, urine, cerebrospinal fluid, and other body...

  10. 21 CFR 862.2310 - Clinical sample concentrator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory Instruments § 862... intended to concentrate (by dialysis, evaporation, etc.) serum, urine, cerebrospinal fluid, and other body...

  11. 77 FR 35745 - Highway Safety Programs; Conforming Products List of Screening Devices To Measure Alcohol in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-14

    ..., battery powered device with a semiconductor sensor. (2) Alcohol Countermeasure Systems Corp., submitted...-0062] Highway Safety Programs; Conforming Products List of Screening Devices To Measure Alcohol in... Screening Devices to Measure Alcohol in Bodily Fluids dated, March 31, 2008 (73 FR 16956). DATES: Effective...

  12. 21 CFR 868.2450 - Lung water monitor.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2450 Lung water monitor. (a) Identification. A lung water monitor is a device used to monitor the trend of fluid volume changes in a patient's lung by... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Lung water monitor. 868.2450 Section 868.2450 Food...

  13. 21 CFR 868.2450 - Lung water monitor.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Lung water monitor. 868.2450 Section 868.2450 Food... DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2450 Lung water monitor. (a) Identification. A lung water monitor is a device used to monitor the trend of fluid volume changes in a patient's lung by...

  14. 21 CFR 868.2450 - Lung water monitor.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Lung water monitor. 868.2450 Section 868.2450 Food... DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2450 Lung water monitor. (a) Identification. A lung water monitor is a device used to monitor the trend of fluid volume changes in a patient's lung by...

  15. 21 CFR 868.2450 - Lung water monitor.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Lung water monitor. 868.2450 Section 868.2450 Food... DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2450 Lung water monitor. (a) Identification. A lung water monitor is a device used to monitor the trend of fluid volume changes in a patient's lung by...

  16. 21 CFR 868.2450 - Lung water monitor.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Lung water monitor. 868.2450 Section 868.2450 Food... DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2450 Lung water monitor. (a) Identification. A lung water monitor is a device used to monitor the trend of fluid volume changes in a patient's lung by...

  17. Technology Readiness Assessment (TRA) Deskbook

    DTIC Science & Technology

    2009-07-01

    Document CDER Center for Drug Evaluation and Research CDR Critical Design Review CDRH Center for Devices and Radiologic Health CFD computational fluid...gational Device Exemption (IDE) meeting is held with Center for Devices and Radiological Health ( CDRH ) for proposed Class III devices, and the IDE...is prepared and submitted to CDRH . For a 510(k), determine substantially equivalent devices and their classification, validate func- tioning model

  18. Magnetic particle translation as a surrogate measure for synovial fluid mechanics.

    PubMed

    Shah, Yash Y; Maldonado-Camargo, Lorena; Patel, Neal S; Biedrzycki, Adam H; Yarmola, Elena G; Dobson, Jon; Rinaldi, Carlos; Allen, Kyle D

    2017-07-26

    The mechanics of synovial fluid vary with disease progression, but are difficult to quantify quickly in a clinical setting due to small sample volumes. In this study, a novel technique to measure synovial fluid mechanics using magnetic nanoparticles is introduced. Briefly, microspheres embedded with superparamagnetic iron oxide nanoparticles, termed magnetic particles, are distributed through a 100μL synovial fluid sample. Then, a permanent magnet inside a protective sheath is inserted into the synovial fluid sample. Magnetic particles translate toward the permanent magnet and the percentage of magnetic particles collected by the magnet in a given time can be related to synovial fluid viscosity. To validate this relationship, magnetic particle translation was demonstrated in three phases. First, magnetic particle translation was assessed in glycerol solutions with known viscosities, demonstrating that as fluid viscosity increased, magnetic particle translation decreased. Next, the relationship between magnetic particle translation and synovial fluid viscosity was assessed using bovine synovial fluid that was progressively degenerated via ultrasonication. Here, particle collection in a given amount of time increased as fluid degenerated, demonstrating that the relationship between particle collection and fluid mechanics holds in non-Newtonian synovial fluid. Finally, magnetic particle translation was used to assess differences between healthy and OA affected joints in equine synovial fluid. Here, particle collection in a given time was higher in OA joints relative to healthy horses (p<0.001). Combined, these data demonstrate potential viability of magnetic particle translation in a clinical setting to evaluate synovial fluid mechanics in limited volumes of synovial fluid sample. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Dual diaphragm tank with telltale drain

    NASA Technical Reports Server (NTRS)

    Tuthill, Wallace C., Jr. (Inventor)

    1991-01-01

    A fluid storage and expulsion system comprising a tank with an internal flexible diaphragm assembly of dual diaphragms in back-to-back relationship, at least one of which is provided with a patterned surface having fine edges such that the diaphragms are in contact along said edges without mating contact of surface areas to thereby form fluid channels which extend outwardly to the peripheral edges of the diaphragms is described. The interior wall of the tank at the juncture of tank sections is formed with a circumferential annular recess comprising an outer annular recess portion which forms a fluid collection chamber and an inner annular recess portion which accommodates the peripheral edge portions of the diaphragms and a sealing ring in clamped sealing relation therebetween. The sealing ring is perforated with radially extending passages which allow any fluid leaking or diffusing past a diaphragm to flow through the fluid channels between the diaphragms to the fluid collection chamber. Ports connectable to pressure fittings are provided in the tank sections for admission of fluids to opposite sides of the diaphragm assembly. A drain passage through the tank wall to the fluid collection chamber permits detection, analysis and removal of fluids in the collection chamber.

  20. In-line pressure within a HOTLINE® Fluid Warmer, under various flow conditions.

    PubMed

    Higashi, Midoriko; Yamaura, Ken; Matsubara, Yukie; Fukudome, Takuya; Hoka, Sumio

    2015-04-01

    Roller pump infusion devices are widely used for rapid infusion, and may be combined with separate warming devices. There may be instances however, where the pressures generated by the roller pump may not be compatible with the warming device. We assessed a commonly used roller pump in combination with a HOTLINE® Fluid Warmer, and found that it could generate pressures exceeding the HOTLINE® manufacturers specifications. This was of concern because the HOTLINE® manufacturer guideline states that not for use with pressure devices generating over 300 mmHg. Pressure greater than 300 mmHg may compromise the integrity of the HOTLINE® Fluid Warming Set. The aim of this study was to compare in-line pressure within a HOTLINE® Fluid Warmer at different infusion rates of a roller pump using various sizes of intravenous cannulae. The rapid infusion system comprised a 500 mL-normal saline bag, roller pump type infusion device, HOTLINE® Fluid Warmer (blood and fluid warmer system), and six different sizes of intravenous cannulae. In-line pressure was measured proximal to the HOTLINE® (pre-warmer) and proximal to the cannula (post-warmer), at flow rate of 50-160 mL/min. The in-line pressures increased significantly with increasing flow rate. The pre-warmer pressures exceeded 300 mmHg when the flow rate was ≥120 mL/min with 20-gauge, 48 mm length cannula, 130 with 20-gauge, 25 mm cannula, and 160 mL/min with 18-gauge, 48 mm cannula. However, they were <300 mmHg at any flow rates with 18-gauge, 30 mm cannula and 16-gauge cannulae. The post-warmer pressures exceeded 300 mmHg at the flow rate of 140 mL/min with 20-gauge, 48 mm cannula, and 160 mL/min with 20-gauge, 25 mm cannula, while they were <300 mmHg at any flow rates with 18 and 16-gauge cannulae. The in-line pressure within a HOTLINE® could exceed 300 mmHg, depending on the flow rate and size and length of cannula. It is important to pay attention to the size and length of cannulae and flow rate to keep the maximum in-line pressure<300 mmHg when a roller pump type infusion device is used.

  1. Bio-microfluidics: biomaterials and biomimetic designs.

    PubMed

    Domachuk, Peter; Tsioris, Konstantinos; Omenetto, Fiorenzo G; Kaplan, David L

    2010-01-12

    Bio-microfluidics applies biomaterials and biologically inspired structural designs (biomimetics) to microfluidic devices. Microfluidics, the techniques for constraining fluids on the micrometer and sub-micrometer scale, offer applications ranging from lab-on-a-chip to optofluidics. Despite this wealth of applications, the design of typical microfluidic devices imparts relatively simple, laminar behavior on fluids and is realized using materials and techniques from silicon planar fabrication. On the other hand, highly complex microfluidic behavior is commonplace in nature, where fluids with nonlinear rheology flow through chaotic vasculature composed from a range of biopolymers. In this Review, the current state of bio-microfluidic materials, designs and applications are examined. Biopolymers enable bio-microfluidic devices with versatile functionalization chemistries, flexibility in fabrication, and biocompatibility in vitro and in vivo. Polymeric materials such as alginate, collagen, chitosan, and silk are being explored as bulk and film materials for bio-microfluidics. Hydrogels offer options for mechanically functional devices for microfluidic systems such as self-regulating valves, microlens arrays and drug release systems, vital for integrated bio-microfluidic devices. These devices including growth factor gradients to study cell responses, blood analysis, biomimetic capillary designs, and blood vessel tissue culture systems, as some recent examples of inroads in the field that should lead the way in a new generation of microfluidic devices for bio-related needs and applications. Perhaps one of the most intriguing directions for the future will be fully implantable microfluidic devices that will also integrate with existing vasculature and slowly degrade to fully recapitulate native tissue structure and function, yet serve critical interim functions, such as tissue maintenance, drug release, mechanical support, and cell delivery.

  2. Detecting low levels of radionuclides in fluids

    DOEpatents

    Patch, Keith D.; Morgan, Dean T.

    2000-01-01

    An apparatus and method for detecting low levels of one or more radionuclides in a fluid sample uses a substrate that includes an ion exchange resin or other sorbent material to collect the radionuclides. A collecting apparatus includes a collecting chamber that exposes the substrate to a measured amount of the fluid sample such that radionuclides in the fluid sample are collected by the ion exchange resin. A drying apparatus, which can include a drying chamber, then dries the substrate. A measuring apparatus measures emissions from radionuclides collected on the substrate. The substrate is positioned in a measuring chamber proximate to a detector, which provides a signal in response to emissions from the radionuclides. Other analysis methods can be used to detect non-radioactive analytes, which can be collected with other types of sorbent materials.

  3. Pressure loss modulus correlation for Delta p across uniformly distributed-loss devices

    NASA Technical Reports Server (NTRS)

    Nunz, Gregory J.

    1994-01-01

    A dimensionless group, called a pressure loss modulus (N(sub PL)), is introduced that, in conjunction with an appropriately defined Reynolds number, is of considerable engineering utility in correlating steady-state Delta p vs flow calibration data and subsequently as a predictor, using the same or a different fluid, in uniformly distributed pressure loss devices. It is particularly useful under operation in the transition regime. Applications of this simple bivariate correlation to three diverse devices of particular interest for small liquid rocket engine fluid systems are discussed: large L/D capillary tube restrictors, packed granular catalyst beds, and stacked vortex-loss disk restrictors.

  4. 21 CFR 884.1660 - Transcervical endoscope (amnioscope) and accessories.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... visualize the fetus or amniotic fluid and to sample fetal blood or amniotic fluid. This generic type of device may include obturators, instruments used through an operating channel, light sources and cables...

  5. Light absorption cell combining variable path and length pump

    DOEpatents

    Prather, William S.

    1993-01-01

    A device for use in making spectrophotometric measurements of fluid samples. In particular, the device is a measurement cell containing a movable and a fixed lens with a sample of the fluid therebetween and through which light shines. The cell is connected to a source of light and a spectrophotometer via optic fibers. Movement of the lens varies the path length and also pumps the fluid into and out of the cell. Unidirectional inlet and exit valves cooperate with the movable lens to assure a one-way flow of fluid through the cell. A linear stepper motor controls the movement of the lens and cycles it from a first position closer to the fixed lens and a second position farther from the fixed lens, preferably at least 10 times per minute for a nearly continuous stream of absorption spectrum data.

  6. Highly simplified lateral flow-based nucleic acid sample preparation and passive fluid flow control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cary, Robert E.

    2015-12-08

    Highly simplified lateral flow chromatographic nucleic acid sample preparation methods, devices, and integrated systems are provided for the efficient concentration of trace samples and the removal of nucleic acid amplification inhibitors. Methods for capturing and reducing inhibitors of nucleic acid amplification reactions, such as humic acid, using polyvinylpyrrolidone treated elements of the lateral flow device are also provided. Further provided are passive fluid control methods and systems for use in lateral flow assays.

  7. Highly simplified lateral flow-based nucleic acid sample preparation and passive fluid flow control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cary, Robert B.

    Highly simplified lateral flow chromatographic nucleic acid sample preparation methods, devices, and integrated systems are provided for the efficient concentration of trace samples and the removal of nucleic acid amplification inhibitors. Methods for capturing and reducing inhibitors of nucleic acid amplification reactions, such as humic acid, using polyvinylpyrrolidone treated elements of the lateral flow device are also provided. Further provided are passive fluid control methods and systems for use in lateral flow assays.

  8. A controllable tactile device for human-like tissue realization using smart magneto-rheological fluids: fabrication and modeling

    NASA Astrophysics Data System (ADS)

    Cha, Seung-Woo; Kang, Seok-Rae; Hwang, Yong-Hoon; Oh, Jong-Seok; Choi, Seung-Bok

    2018-06-01

    This paper proposes a new tactile device to realize the force of human-like organs using the viscoelastic property by combing a smart magneto-rheological (MR) fluid with a sponge (MR sponge in short). The effectiveness of the sensor is validated through the comparison of the force obtained through measurement and the proposed prediction model. As the first step, a conventional standard linear solid model is adopted to independently investigate the force characteristics of MR fluid and sponge. Force is measured using a 3-axis robot with a force sensor to obtain certain properties of MR fluid and sponge. In addition, to show that the proposed MR sponge can realize the force of human-like tissues, experiments are performed using three specimens, i.e., porcine heart, lung, and liver. Subsequently, a quasi-static model for predicting the field-dependent force of the MR sponge is formulated using empirical values. It is demonstrated through comparison that the proposed force model can accurately predict the force of the specimens without significant error. In addition, a psychophysical test is carried out by ordinary subjects to validate the effectiveness of the proposed tactile device. Results show that the MR sponge tactile device can easily produce various levels of the force of human-like tissues, such as the liver and lung of the porcine, by controlling input current.

  9. A sample-freezing drive shoe for a wire line piston core sampler

    USGS Publications Warehouse

    Murphy, F.; Herkelrath, W.N.

    1996-01-01

    Loss of fluids and samples during retrieval of cores of saturated, noncohesive sediments results in incorrect measures of fluid distributions and an inaccurate measure of the stratigraphic position of the sample. To reduce these errors, we developed a hollow drive shoe that freezes in place the lowest 3 inches (75 mm) of a 1.88-inch-diameter (48 mm), 5-foot-long (1.5 m) sediment sample taken using a commercial wire line piston core sampler. The end of the core is frozen by piping liquid carbon dioxide at ambient temperature through a steel tube from a bottle at the land surface to the drive shoe where it evaporates and expands, cooling the interior surface of the shoe to about -109??F (-78??C). Freezing a core end takes about 10 minutes. The device was used to collect samples for a study of oil-water-air distributions, and for studies of water chemistry and microbial activity in unconsolidated sediments at the site of an oil spill near Bemidji, Minnesota. Before freezing was employed, samples of sandy sediments from near the water table sometimes flowed out of the core barrel as the sampler was withdrawn. Freezing the bottom of the core allowed for the retention of all material that entered the core barrel and lessened the redistribution of fluids within the core. The device is useful in the unsaturated and shallow saturated zones, but does not freeze cores well at depths greater than about 20 feet (6 m) below water, possibly because the feed tube plugs with dry ice with increased exhaust back-pressure, or because sediment enters the annulus between the core barrel and the core barrel liner and blocks the exhaust.

  10. Learning from real and tissue-engineered jellyfish: How to design and build a muscle-powered pump at intermediate Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Nawroth, Janna; Lee, Hyungsuk; Feinberg, Adam; Ripplinger, Crystal; McCain, Megan; Grosberg, Anna; Dabiri, John; Parker, Kit

    2012-11-01

    Tissue-engineered devices promise to advance medical implants, aquatic robots and experimental platforms for tissue-fluid interactions. The design, fabrication and systematic improvement of tissue constructs, however, is challenging because of the complex interactions of living cell, synthetic materials and their fluid environments. In a proof of concept study we have tissue-engineered a construct that mimics the swimming of a juvenile jellyfish, a simple model system for muscle-powered pumps at intermediate Reynolds numbers with quantifiable fluid dynamics and morphological properties. Optimally designed constructs achieved jellyfish-like swimming and generated biomimetic propulsion and feeding currents. Focusing on the fluid interactions, we discuss failed and successful designs and the lessons learned in the process. The main challenges were (1) to derive a body shape and deformation suitable for effective fluid transport under physiological fluid conditions, (2) to understand the mechanical properties of muscle and bell matrix and device a design capable of the desired deformation, (3) to establish adequate 3D kinematics of power and recovery stroke, and (4) to evaluate the performance of the design.

  11. Numerical analysis on the action of centrifuge force in magnetic fluid rotating shaft seals

    NASA Astrophysics Data System (ADS)

    Zou, Jibin; Li, Xuehui; Lu, Yongping; Hu, Jianhui

    2002-11-01

    The magnetic fluid seal is suitable for high-speed rotating shaft seal applications. Centrifuge force will have evident influence on magnetic fluid rotating shaft seals. The seal capacity of the rotating shaft seal can be improved or increased by some measures. Through hydrodynamic analysis the moving status of the magnetic fluid is worked out. By numerical method, the magnetic field and the isobars in the magnetic fluid of a seal device are computed. Then the influence of the centrifuge force on the magnetic fluid seal is calculated quantitatively.

  12. 21 CFR 866.5380 - Free secretory component immuno-logical test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... body fluids. Measurement of free secretory component (protein molecules) aids in the diagnosis or... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test...

  13. 21 CFR 866.5380 - Free secretory component immuno-logical test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... body fluids. Measurement of free secretory component (protein molecules) aids in the diagnosis or... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test...

  14. 21 CFR 866.5380 - Free secretory component immuno-logical test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... body fluids. Measurement of free secretory component (protein molecules) aids in the diagnosis or... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test...

  15. 21 CFR 866.5380 - Free secretory component immuno-logical test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... body fluids. Measurement of free secretory component (protein molecules) aids in the diagnosis or... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test...

  16. 21 CFR 862.1540 - Osmolality test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862... measure ionic and nonionic solute concentration in body fluids, such as serum and urine. Osmolality...

  17. 21 CFR 862.1540 - Osmolality test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862... measure ionic and nonionic solute concentration in body fluids, such as serum and urine. Osmolality...

  18. 21 CFR 862.1540 - Osmolality test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862... measure ionic and nonionic solute concentration in body fluids, such as serum and urine. Osmolality...

  19. 21 CFR 862.1540 - Osmolality test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862... measure ionic and nonionic solute concentration in body fluids, such as serum and urine. Osmolality...

  20. Offline solid phase microextraction sampling system

    DOEpatents

    Harvey, Chris A.

    2008-12-16

    An offline solid phase microextraction (SPME) sampling apparatus for enabling SPME samples to be taken a number of times from a previously collected fluid sample (e.g. sample atmosphere) stored in a fused silica lined bottle which keeps volatile organics in the fluid sample stable for weeks at a time. The offline SPME sampling apparatus has a hollow body surrounding a sampling chamber, with multiple ports through which a portion of a previously collected fluid sample may be (a) released into the sampling chamber, (b) SPME sampled to collect analytes for subsequent GC analysis, and (c) flushed/purged using a fluidically connected vacuum source and purging fluid source to prepare the sampling chamber for additional SPME samplings of the same original fluid sample, such as may have been collected in situ from a headspace.

  1. Review on microfluidic paper-based analytical devices towards commercialisation.

    PubMed

    Akyazi, Tugce; Basabe-Desmonts, Lourdes; Benito-Lopez, Fernando

    2018-02-25

    Paper-based analytical devices introduce an innovative platform technology for fluid handling and analysis, with wide range of applications, promoting low cost, ease of fabrication/operation and equipment independence. This review gives a general overview on the fabrication techniques reported to date, revealing and discussing their weak points as well as the newest approaches in order to overtake current mass production limitations and therefore commercialisation. Moreover, this review aims especially to highlight novel technologies appearing in literature for the effective handling and controlling of fluids. The lack of flow control is the main problem of paper-based analytical devices, which generates obstacles for marketing and slows down the transition of paper devices from the laboratory into the consumers' hands. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Electrically switchable polymer liquid crystal and polymer birefringent flake in fluid host systems and optical devices utilizing same

    DOEpatents

    Marshall, Kenneth L.; Kosc, Tanya Z.; Jacobs, Stephen D.; Faris, Sadeg M.; Li, Le

    2003-12-16

    Flakes or platelets of polymer liquid crystals (PLC) or other birefringent polymers (BP) suspended in a fluid host medium constitute a system that can function as the active element in an electrically switchable optical device when the suspension is either contained between a pair of rigid substrates bearing transparent conductive coatings or dispersed as microcapsules within the body of a flexible host polymer. Optical properties of these flake materials include large effective optical path length, different polarization states and high angular sensitivity in their selective reflection or birefringence. The flakes or platelets of these devices need only a 3-20.degree. rotation about the normal to the cell surface to achieve switching characteristics obtainable with prior devices using particle rotation or translation.

  3. Passive micromixer using by convection and surface tension effects with air-liquid interface.

    PubMed

    Ju, Jongil; Warrick, Jay

    2013-12-01

    This article describes a passive micromixer that utilizes an air-liquid interface and surface tension effects to enhance fluid mixing via convection and Marangoni effects. Performance of the microfluidic component is tested within a passive-pumping-based device that consists of three microchannels connected in succession using passive micro-mixers. Mixing was quantified at 5 key points along the length of the device using microscope images of patterned streams of Alexa 488 fluorescent-dyed water and pure DI water flowing through the device. The passive micro-mixer mixed fluid 15-20 times more effectively than diffusion between laminar flow streams alone and is a novel micro-mixer embodiment that provides an additional strategy for removing external components from microscale devices for simpler, autonomous operation.

  4. Passive micromixer using by convection and surface tension effects with air-liquid interface

    PubMed Central

    Ju, Jongil; Warrick, Jay

    2014-01-01

    This article describes a passive micromixer that utilizes an air-liquid interface and surface tension effects to enhance fluid mixing via convection and Marangoni effects. Performance of the microfluidic component is tested within a passive-pumping-based device that consists of three microchannels connected in succession using passive micro-mixers. Mixing was quantified at 5 key points along the length of the device using microscope images of patterned streams of Alexa 488 fluorescent-dyed water and pure DI water flowing through the device. The passive micro-mixer mixed fluid 15–20 times more effectively than diffusion between laminar flow streams alone and is a novel micro-mixer embodiment that provides an additional strategy for removing external components from microscale devices for simpler, autonomous operation. PMID:25104979

  5. Evaluation of some heavy metals concentration in body fluids of metal workers in Kano metropolis, Nigeria.

    PubMed

    Sani, Ali; Abdullahi, Ibrahim Lawal

    2017-01-01

    Metal workers in urban Kano constitute a major workforce with a considerable population. The present work was aimed at obtaining baseline data on the extent of metal ion concentration in body fluids (urine and blood) of sampled population in the area. The investigation involves interaction with sampled population as well as blood and urine sample collection for heavy metals analysis. The health problems associated with the practice identified by respondents include: metal fume fever; eye and skin irritation; dizziness and respiratory problems; lack of or inadequate protective devices during activity were also reported. Laboratory investigation of urine samples by Atomic absorption spectrophotometry indicated higher concentrations for Manganese (Mn), Lead (Pb) and Nickel (Ni); in blood samples, there were higher concentrations of Manganese (Mn), Lead (Pb), Chromium (Cr) and Nickel (Ni). Metal workers of urban Kano are at risk because of the concentration of Mn and Pb in particular. There is the need to monitor occupational activities that are responsible for pollution and with serious health risk.

  6. Shape matters: Near-field fluid mechanics dominate the collective motions of ellipsoidal squirmers.

    PubMed

    Kyoya, K; Matsunaga, D; Imai, Y; Omori, T; Ishikawa, T

    2015-12-01

    Microswimmers show a variety of collective motions. Despite extensive study, questions remain regarding the role of near-field fluid mechanics in collective motion. In this paper, we describe precisely the Stokes flow around hydrodynamically interacting ellipsoidal squirmers in a monolayer suspension. The results showed that various collective motions, such as ordering, aggregation, and whirls, are dominated by the swimming mode and the aspect ratio. The collective motions are mainly induced by near-field fluid mechanics, despite Stokes flow propagation over a long range. These results emphasize the importance of particle shape in collective motion.

  7. Pressure-controlled drainage of cerebrospinal fluid: clinical experience with a new type of ventricular catheter (Ventcontrol MTC)and an integrated Piezo-resistive sensor at its tip: technical note.

    PubMed

    Piek, J; Raes, P

    1996-01-01

    We described a new ventricular catheter that is the combination of a "classic" ventricular catheter with a piezo-resistive transducer at its tip. The device allows parallel recordings of intraventricular fluid pressure via a chip and a fluid-filled external transducer, drainage of cerebrospinal fluid from the ventricle or injection of fluid into the ventricle with simultaneous monitoring of intracranial pressure, and recording of brain tissue pressure in cases of misplacement or dislocation of the ventricular catheter or in cases of progressively narrowing ventricles caused by brain edema. Clinical tests in various situations at different pressure ranges (total recording time, 1356 h in 13 patients) gave excellent correlations of both pressures. Application of the device is especially indicated in clinical situations in which pressure-controlled drainage is desirable, occlusion of ventricular bolts is likely, or pressure-volume tests are needed.

  8. Viscoelasticity promotes collective swimming of sperm

    NASA Astrophysics Data System (ADS)

    Tung, Chih-Kuan; Harvey, Benedict B.; Fiore, Alyssa G.; Ardon, Florencia; Suarez, Susan S.; Wu, Mingming

    From flocking birds to swarming insects, interactions of organisms large and small lead to the emergence of collective dynamics. Here, we report striking collective swimming of bovine sperm, with sperm orienting in the same direction within each cluster, enabled by the viscoelasticity of the fluid. A long-chain polyacrylamide solution was used as a model viscoelastic fluid such that its rheology can be fine-tuned to mimic that of bovine cervical mucus. In viscoelastic fluid, sperm formed dynamic clusters, and the cluster size increased with elasticity of the polyacrylamide solution. In contrast, sperm swam randomly and individually in Newtonian fluids of similar viscosity. Analysis of the fluid motion surrounding individual swimming sperm indicated that sperm-fluid interaction is facilitated by the elastic component of the fluid. We note that almost all biological fluids (e.g. mucus and blood) are viscoelastic in nature, this finding highlights the importance of fluid elasticity in biological function. We will discuss what the orientation fluctuation within a cluster reveals about the interaction strength. Supported by NIH Grant 1R01HD070038.

  9. Design and characterization of hydrogel-based microfluidic devices with biomimetic solute transport networks

    PubMed Central

    Koo, Hyung-Jun

    2017-01-01

    Hydrogel could serve as a matrix material of new classes of solar cells and photoreactors with embedded microfluidic networks. These devices mimic the structure and function of plant leaves, which are a natural soft matter based microfluidic system. These unusual microfluidic-hydrogel devices with fluid-penetrable medium operate on the basis of convective-diffusive mechanism, where the liquid is transported between the non-connected channels via molecular permeation through the hydrogel. We define three key designs of such hydrogel devices, having linear, T-shaped, and branched channels and report results of numerical simulation of the process of their infusion with solute carried by the incoming fluid. The computational procedure takes into account both pressure-driven convection and concentration gradient-driven diffusion in the permeable gel matrix. We define the criteria for evaluation of the fluid infusion rate, uniformity, solute loss by outflow and overall performance. The T-shaped channel network was identified as the most efficient one and was improved further by investigating the effect of the channel-end secondary branches. Our parallel experimental data on the pattern of solute infusions are in excellent agreement with the simulation. These network designs can be applied to a broad range of novel microfluidic materials and soft matter devices with distributed microchannel networks. PMID:28396708

  10. A comparison between on-site immunoassay drug-testing devices and laboratory results.

    PubMed

    Grönholm, M; Lillsunde, P

    2001-09-15

    The aim with this study was to evaluate the accuracy of several on-site testing devices on the market. A part of this study is included in the European Union's (EU's) roadside testing assessment project (ROSITA). An other request for this kind of study came from the Finnish prison department in the Ministry of Justice. The evaluation was performed on both urine assays and oral fluid assays. The on-site test results were compared with laboratory results (gas chromatography-mass spectrometry (GC/MS)). The samples were tested on amphetamines (AMP), cannabinoids (THC), opiates (OPI) and cocaine metabolites (COC). Some of the tests also included a metamphetamine (MET) and a benzodiazepine (BZO) test. Both positive and negative samples were tested. A total of 800 persons and eight on-site devices for urine and two for oral fluid testing were included in this study. Good results were obtained for the urine on-site devices, with accuracies of 93-99% for amphetamines, 97-99% for cannabinoids, 94-98% for opiates and 90-98% for benzodiazepines. However, differences in the ease of performance and interpretation of test result were observed. It was possible to detect amphetamines and opiates in oral fluid by the used on-site devices, but the benzodiazepines and cannabinoids did not fulfil the needs of sensitivity.

  11. Investigation of Impact Jets Flow in Heat Sink Device of Closed-Circuit Cooling Systems

    NASA Astrophysics Data System (ADS)

    Tokarev, D. A.; Yenivatov, V. V.; Sokolov, S. S.; Erofeev, V. L.

    2018-03-01

    The flow simulations of impact jets in the heat sink device of the closed-circuit cooling systems are presented. The analysis of the rate of fluid flow in the heat sink device with the jet supply coolant is given.

  12. 21 CFR 862.1675 - Blood specimen collection device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Blood specimen collection device. 862.1675 Section... Systems § 862.1675 Blood specimen collection device. (a) Identification. A blood specimen collection device is a device intended for medical purposes to collect and to handle blood specimens and to separate...

  13. 21 CFR 862.1675 - Blood specimen collection device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Blood specimen collection device. 862.1675 Section... Systems § 862.1675 Blood specimen collection device. (a) Identification. A blood specimen collection device is a device intended for medical purposes to collect and to handle blood specimens and to separate...

  14. 21 CFR 862.1675 - Blood specimen collection device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Blood specimen collection device. 862.1675 Section... Systems § 862.1675 Blood specimen collection device. (a) Identification. A blood specimen collection device is a device intended for medical purposes to collect and to handle blood specimens and to separate...

  15. 21 CFR 862.1675 - Blood specimen collection device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Blood specimen collection device. 862.1675 Section... Systems § 862.1675 Blood specimen collection device. (a) Identification. A blood specimen collection device is a device intended for medical purposes to collect and to handle blood specimens and to separate...

  16. 21 CFR 862.1675 - Blood specimen collection device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Blood specimen collection device. 862.1675 Section... Systems § 862.1675 Blood specimen collection device. (a) Identification. A blood specimen collection device is a device intended for medical purposes to collect and to handle blood specimens and to separate...

  17. A device for the collection of submandibular saliva.

    PubMed

    Hanning, Sara; Motoi, Lidia; Medlicott, Natalie; Swindells, Stephen

    2012-03-01

    The objective of this study was to describe the construction of a non-invasive device for the collection of submandibular saliva. Preliminary tests were carried out on saliva collected from a single donor in order to determine whether the rheological properties of submandibular saliva collected using the device were comparable to whole saliva collected using the expectoration (or 'spit') method. The device collected a lower quantity of saliva than that collected using the expectoration method. Stimulated saliva collected using the device had a pH close to that of unstimulated saliva because the sealed collection unit in the device minimised contamination. Saliva exhibited shear-thinning behaviour regardless of the method of collection, although that collected using the device was more viscous. The viscoelasticity of saliva collected using the two methods was different, probably as a result of differences in composition. This difference was greater with stimulated saliva. Despite the discrepancies between whole saliva and submandibular saliva, the device provides a non-invasive method for the collection of high-quality saliva over extended periods.

  18. Microfluidics apparatus and methods for use thereof

    DOEpatents

    Peeters, John P.; Wiggins, Thomas; Ghosh, Madhushree; Bottomley, Lawrence A.; Seminara, Salvatore; Hu, Zhiyu; Seeley, Timothy; Kossek, Sebastian

    2005-08-09

    A microfluidics device includes a plurality of interaction cells and fluid control means including i) means for providing to the interaction cells a preparation fluid, and ii) means for providing to the interaction cells a sample fluid, wherein each interaction cell receives a different sample fluid. A plurality of microcantilevers may be disposed in each of the interaction cells, wherein each of the plurality of microcantilevers configured to deflect in response to an interaction involving a component of the sample fluid.

  19. Fluid cooled electrical assembly

    DOEpatents

    Rinehart, Lawrence E.; Romero, Guillermo L.

    2007-02-06

    A heat producing, fluid cooled assembly that includes a housing made of liquid-impermeable material, which defines a fluid inlet and a fluid outlet and an opening. Also included is an electrical package having a set of semiconductor electrical devices supported on a substrate and the second major surface is a heat sink adapted to express heat generated from the electrical apparatus and wherein the second major surface defines a rim that is fit to the opening. Further, the housing is constructed so that as fluid travels from the fluid inlet to the fluid outlet it is constrained to flow past the opening thereby placing the fluid in contact with the heat sink.

  20. Basic setup and disinfection.

    PubMed

    Shimada, Hiroyuki

    2014-01-01

    Vitrectomy is one of the ophthalmic surgeries that require a large number of instruments. Despite a growing array of single-use disposable instruments, vitrectomies for refractory diseases still involve complicated procedures and many surgical devices. As to the arrangement of materials and instruments on the surgical table, fluids that must not be introduced intraocularly, infusion fluid for washing the ocular surface, fluids for intraocular injection, and fluids for periocular injection are classified and marked to avoid using the wrong fluid. Since bacteria are present in the fluid retained in the fluid catch bag, the accumulated infusion fluid should be removed by aspiration. © 2014 S. Karger AG, Basel

  1. 21 CFR 862.1345 - Glucose test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862... glucose quantitatively in blood and other body fluids. Glucose measurements are used in the diagnosis and...

  2. 21 CFR 862.1345 - Glucose test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862... glucose quantitatively in blood and other body fluids. Glucose measurements are used in the diagnosis and...

  3. 21 CFR 862.1345 - Glucose test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862... glucose quantitatively in blood and other body fluids. Glucose measurements are used in the diagnosis and...

  4. Numerical study of heat transfer and fluid flow for steady crystal growth in a vertical Bridgman device

    NASA Astrophysics Data System (ADS)

    Pohlman, Matthew Michael

    The study of heat transfer and fluid flow in a vertical Bridgman device is motivated by current industrial difficulties in growing crystals with as few defects as possible. For example, Gallium Arsenide (GaAs) is of great interest to the semiconductor industry but remains an uneconomical alternative to silicon because of the manufacturing problems. This dissertation is a two dimensional study of the fluid in an idealized Bridgman device. The model nonlinear PDEs are discretized using second order finite differencing. Newton's method solves the resulting nonlinear discrete equations. The large sparse linear systems involving the Jacobian are solved iteratively using the Generalized Minimum Residual method (GMRES). By adapting fast direct solvers for elliptic equations with simple boundary conditions, a good preconditioner is developed which is essential for GMRES to converge quickly. Trends of the fluid flow and heat transfer for typical ranges of the physical parameters are determined. Also, the size of the terms in the mathematical model are found by numerical investigation, in order to find what terms are in balance as the physical parameters vary. The results suggest the plausibility of simpler asymptotic solutions.

  5. Embedding objects during 3D printing to add new functionalities.

    PubMed

    Yuen, Po Ki

    2016-07-01

    A novel method for integrating and embedding objects to add new functionalities during 3D printing based on fused deposition modeling (FDM) (also known as fused filament fabrication or molten polymer deposition) is presented. Unlike typical 3D printing, FDM-based 3D printing could allow objects to be integrated and embedded during 3D printing and the FDM-based 3D printed devices do not typically require any post-processing and finishing. Thus, various fluidic devices with integrated glass cover slips or polystyrene films with and without an embedded porous membrane, and optical devices with embedded Corning(®) Fibrance™ Light-Diffusing Fiber were 3D printed to demonstrate the versatility of the FDM-based 3D printing and embedding method. Fluid perfusion flow experiments with a blue colored food dye solution were used to visually confirm fluid flow and/or fluid perfusion through the embedded porous membrane in the 3D printed fluidic devices. Similar to typical 3D printed devices, FDM-based 3D printed devices are translucent at best unless post-polishing is performed and optical transparency is highly desirable in any fluidic devices; integrated glass cover slips or polystyrene films would provide a perfect optical transparent window for observation and visualization. In addition, they also provide a compatible flat smooth surface for biological or biomolecular applications. The 3D printed fluidic devices with an embedded porous membrane are applicable to biological or chemical applications such as continuous perfusion cell culture or biocatalytic synthesis but without the need for any post-device assembly and finishing. The 3D printed devices with embedded Corning(®) Fibrance™ Light-Diffusing Fiber would have applications in display, illumination, or optical applications. Furthermore, the FDM-based 3D printing and embedding method could also be utilized to print casting molds with an integrated glass bottom for polydimethylsiloxane (PDMS) device replication. These 3D printed glass bottom casting molds would result in PDMS replicas with a flat smooth bottom surface for better bonding and adhesion.

  6. Multi-input and binary reproducible, high bandwidth floating point adder in a collective network

    DOEpatents

    Chen, Dong; Eisley, Noel A.; Heidelberger, Philip; Steinmacher-Burow, Burkhard

    2016-11-15

    To add floating point numbers in a parallel computing system, a collective logic device receives the floating point numbers from computing nodes. The collective logic devices converts the floating point numbers to integer numbers. The collective logic device adds the integer numbers and generating a summation of the integer numbers. The collective logic device converts the summation to a floating point number. The collective logic device performs the receiving, the converting the floating point numbers, the adding, the generating and the converting the summation in one pass. One pass indicates that the computing nodes send inputs only once to the collective logic device and receive outputs only once from the collective logic device.

  7. Centrifugal separator devices, systems and related methods

    DOEpatents

    Meikrantz, David H [Idaho Falls, ID; Law, Jack D [Pocatello, ID; Garn, Troy G [Idaho Falls, ID; Todd, Terry A [Aberdeen, ID; Macaluso, Lawrence L [Carson City, NV

    2012-03-20

    Centrifugal separator devices, systems and related methods are described. More particularly, fluid transfer connections for a centrifugal separator system having support assemblies with a movable member coupled to a connection tube and coupled to a fixed member, such that the movable member is constrained to movement along a fixed path relative to the fixed member are described. Also, centrifugal separator systems including such fluid transfer connections are described. Additionally, methods of installing, removing and/or replacing centrifugal separators from centrifugal separator systems are described.

  8. Shuttle filter study. Volume 1: Characterization and optimization of filtration devices

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A program to develop a new technology base for filtration equipment and comprehensive fluid particulate contamination management techniques was conducted. The study has application to the systems used in the space shuttle and space station projects. The scope of the program is as follows: (1) characterization and optimization of filtration devices, (2) characterization of contaminant generation and contaminant sensitivity at the component level, and (3) development of a comprehensive particulate contamination management plane for space shuttle fluid systems.

  9. 21 CFR 862.3040 - Alcohol test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Toxicology Test Systems § 862... alcohol (e.g., ethanol, methanol, isopropanol, etc.) in human body fluids (e.g., serum, whole blood, and...

  10. 21 CFR 862.3040 - Alcohol test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Toxicology Test Systems § 862... alcohol (e.g., ethanol, methanol, isopropanol, etc.) in human body fluids (e.g., serum, whole blood, and...

  11. 21 CFR 862.3040 - Alcohol test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Toxicology Test Systems § 862... alcohol (e.g., ethanol, methanol, isopropanol, etc.) in human body fluids (e.g., serum, whole blood, and...

  12. 21 CFR 862.1180 - Chymotrypsin test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862... measure the activity of the enzyme chymotrypsin in blood and other body fluids and in feces. Chymotrypsin...

  13. Liquid acquisition devices for superfluid helium transfer

    NASA Technical Reports Server (NTRS)

    Dipirro, M. J.

    1990-01-01

    To transfer superfluid helium (He II) in the milli-g or micro-g environment in orbit, it is necessary to provide a reasonably steady supply of liquid to the inlet of the pump in the supply dewar. To accomplish this without providing an artificial gravity through acceleration requires a liquid acquisition device. Fluid swirl and electrostatic devices have been proposed to orientate the fluid. However, the simplest mechanisms appear to be the use of surface tension or the thermomechanical effect. This paper examines four concepts for providing He II to the inlet of a thermomechanical pump. The devices are a distributed thermomechanical pump, a distributed pump with a main thermomechanical pump, a screened channel system and a vane/sponge combination. Calculations on the efficiency of these types of liquid acquisition devices are made using laboratory data from tests involving small scale devices where applicable. These calculations show that the latter two types of liquid acquisition devices are the most efficient. Questions as to the probability of cavitation and the effect of the residual shuttle acceleration on their operation remain to be answered, however.

  14. Near-Infrared Spectroscopy Hemoglobin Index Measurement During Fluid Challenge: A Prospective Study in Cardiac Surgery Patients.

    PubMed

    Rebet, Olivier; Fischer, Marc-Olivier; Zamparini, Guillaume; Gérard, Jean-Louis; Fellahi, Jean-Luc; Hanouz, Jean-Luc

    2015-08-01

    Little is known about changes in near-infrared spectroscopy-derived tissue hemoglobin index (HbI). The authors tested the hypothesis that absolute values and changes in brain hemoglobin index (HbIb) and skeletal muscle hemoglobin index (HbIm) could differ from the reference arterial hemoglobin (Hb) during fluid challenge. A prospective, monocenter observational study. A 16-bed cardiac surgical intensive care unit in a teaching university hospital. Fifty consecutive adult patients. Investigation before and after a fluid challenge. Simultaneous comparative Hb, HbIb and HbIm data points were collected from a blood-gas analyzer and the EQUANOX device (Nonin Medical Inc., Plymouth, MN). Correlations were determined by linear regression. No significant relationship was found between absolute values of Hb and HbIb before (R(2)= 0.04, p = 0.627) and after (R(2) = 0.00006, p = 0.956) fluid challenge. No significant relationship was found between absolute values of Hb and HbIm before (R(2)= 0.030, p = 0.226) and after (R(2) = 0.05, p = 0.117) the fluid challenge. No significant relationship was found between changes in Hb and HbIb (R(2)= 0.26, p = 0.263) and between changes in Hb and HbIm (R(2) = 0.001, p = 0.801) after the fluid challenge. Bland-Altman analysis showed a poor concordance between changes in Hb and HbIb, and changes in Hb and HbIm, with large limits of agreement. HbIb and HbIm cannot be used to provide continuous noninvasive estimation of Hb, and trends in HbIb and HbIm cannot be considered as noninvasive surrogates for the trend in Hb after cardiac surgery. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Acute Hemodynamic Effects of the Braslet-M Device on the International Space Station

    NASA Technical Reports Server (NTRS)

    Hamilton, Douglas R.; Barratt, Michael R.; Sargsyan, Ashot E.; Garcia, Kathleen M.; Ebert, Douglas; Martin, David; Dulchavsky, Scott A.; Duncan, J. Michael

    2009-01-01

    The Braslet-M occlusion device is prescribed for cosmonauts as a countermeasure for early phases of spaceflight to temporarily alleviate symptoms associated with the cephalad fluid shift. Using a multipurpose ultrasound (US) device onboard, we assessed the acute hemodynamic effects of the Bracelet-M device on a long duration International Space Station (ISS) crewmember. Methods A combination of just-in-time training and real-time remote expert assistance was used to conduct the imaging procedures. An HDI-5000 imager (Philips, Bothell, WA) was used, provided by the ISS Human Research Facility. Superficial femoral artery (SFA), femoral vein (FV) flow spectra were obtained at mid-thigh level. Left ventricle was imaged through the apical 4-chamber view, with Color M-Mode to measure propagation velocity (V (p)). After 10 minutes of Bracelet-M use, data collection was repeated. All data were transmitted in DICOM format to ground for analysis. Results With Braslet-M, cardiac V(p) slope decreased (56ms to 42ms). A stagnation signature in the FV was seen suggesting impeded flow (rouleaux formation, too-low-to-measure velocity, and increase in diameter). Quadri-phasic flow in SFA was seen both before and after Braslet-M application. Velocities in the SFA decreased with Braslet-M (65cm/sec to 52cm/sec) and so did the time velocity integrals (16.97 to 12.4); the flow pattern spoke of resistivity increase in the vascular bed. Conclusion In the long duration ISS crewmember we observed effects of lower extremity venous occlusion through both central and peripheral indicators. A part of circulating volume transferred to peripheral potential vascular space. Impediment to venous outflow was demonstrated objectively, with a commensurate change in the flow pattern of the main feeding artery. Central volume reduction caused lower V(p). Additional studies are warranted to determine the time course of the changes and the dynamics in interstitial fluid sequestration, as well as the safe levels and duration of the compression forces.

  16. Endoscopic ultrasound-guided transmural drainage of postoperative pancreatic collections.

    PubMed

    Tilara, Amy; Gerdes, Hans; Allen, Peter; Jarnagin, William; Kingham, Peter; Fong, Yuman; DeMatteo, Ronald; D'Angelica, Michael; Schattner, Mark

    2014-01-01

    Pancreatic leak is a major cause of morbidity after pancreatectomy. Traditionally, peripancreatic fluid collections have been managed by percutaneous or operative drainage. Data for endoscopic ultrasound (EUS)-guided drainage of postoperative fluid collections are limited. Here we report on the safety, efficacy, and timing of EUS-guided drainage of postoperative peripancreatic collections. This is a retrospective review of 31 patients who underwent EUS-guided drainage of fluid collections after pancreatic resection. Technical success was defined as successful transgastric deployment of at least one double pigtail plastic stent. Clinical success was defined as resolution of the fluid collection on follow-up CT scan and resolution of symptoms. Early drainage was defined as initial transmural stent placement within 30 days after surgery. Endoscopic ultrasound-guided drainage was performed effectively with a technical success rate of 100%. Clinical success was achieved in 29 of 31 patients (93%). Nineteen of the 29 patients (65%) had complete resolution of their symptoms and collection with the first endoscopic procedure. Repeat drainage procedures, including some with necrosectomy, were required in the remaining 10 patients, with eventual resolution of collection and symptoms. Two patients who did not achieve durable clinical success required percutaneous drainage by interventional radiology. Seventeen (55%) of 31 patients had successful early drainage completed within 30 days of their operation. Endoscopic ultrasound-guided drainage of fluid collections after pancreatic resection is safe and effective. Early drainage (<30 days) of postoperative pancreatic fluid collections was not associated with increased complications in this series. Copyright © 2014 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  17. Application study of magnetic fluid seal in hydraulic turbine

    NASA Astrophysics Data System (ADS)

    Yu, Z. Y.; Zhang, W.

    2012-11-01

    The waterpower resources of our country are abundant, and the hydroelectric power is developed, but at present the main shaft sealing device of hydraulic turbine is easy to wear and tear and the leakage is great. The magnetic fluid seal has the advantages of no contact, no wear, self-healing, long life and so on. In this paper, the magnetic fluid seal would be used in the main shaft of hydraulic turbine, the sealing structure was built the model, meshed the geometry, applied loads and solved by using MULTIPHYSICS in ANSYS software, the influence of the various sealing structural parameters such as tooth width, height, slot width, sealing gap on the sealing property were analyzed, the magnetic fluid sealing device suitable for large-diameter shaft and sealing water was designed, the sealing problem of the hydraulic turbine main shaft was solved effectively which will bring huge economic benefits.

  18. Capillary interconnect device

    DOEpatents

    Renzi, Ronald F.

    2007-12-25

    A manifold for connecting external capillaries to the inlet and/or outlet ports of a microfluidic device for high pressure applications is provided. The fluid connector for coupling at least one fluid conduit to a corresponding port of a substrate that includes: (i) a manifold comprising one or more channels extending therethrough wherein each channel is at least partially threaded, (ii) one or more threaded ferrules each defining a bore extending therethrough with each ferrule supporting a fluid conduit wherein each ferrule is threaded into a channel of the manifold, (iii) a substrate having one or more ports on its upper surface wherein the substrate is positioned below the manifold so that the one or more ports is aligned with the one or more channels of the manifold, and (iv) means for applying an axial compressive force to the substrate to couple the one or more ports of the substrate to a corresponding proximal end of a fluid conduit.

  19. Emissions-critical charge cooling using an organic rankine cycle

    DOEpatents

    Ernst, Timothy C.; Nelson, Christopher R.

    2014-07-15

    The disclosure provides a system including a Rankine power cycle cooling subsystem providing emissions-critical charge cooling of an input charge flow. The system includes a boiler fluidly coupled to the input charge flow, an energy conversion device fluidly coupled to the boiler, a condenser fluidly coupled to the energy conversion device, a pump fluidly coupled to the condenser and the boiler, an adjuster that adjusts at least one parameter of the Rankine power cycle subsystem to change a temperature of the input charge exiting the boiler, and a sensor adapted to sense a temperature characteristic of the vaporized input charge. The system includes a controller that can determine a target temperature of the input charge sufficient to meet or exceed predetermined target emissions and cause the adjuster to adjust at least one parameter of the Rankine power cycle to achieve the predetermined target emissions.

  20. A Microfluidic Approach for Studying Piezo Channels.

    PubMed

    Maneshi, M M; Gottlieb, P A; Hua, S Z

    2017-01-01

    Microfluidics is an interdisciplinary field intersecting many areas in engineering. Utilizing a combination of physics, chemistry, biology, and biotechnology, along with practical applications for designing devices that use low volumes of fluids to achieve high-throughput screening, is a major goal in microfluidics. Microfluidic approaches allow the study of cells growth and differentiation using a variety of conditions including control of fluid flow that generates shear stress. Recently, Piezo1 channels were shown to respond to fluid shear stress and are crucial for vascular development. This channel is ideal for studying fluid shear stress applied to cells using microfluidic devices. We have developed an approach that allows us to analyze the role of Piezo channels on any given cell and serves as a high-throughput screen for drug discovery. We show that this approach can provide detailed information about the inhibitors of Piezo channels. Copyright © 2017 Elsevier Inc. All rights reserved.

Top