Blood-cerebrospinal fluid barrier permeability in Alzheimer's disease.
Chalbot, Sonia; Zetterberg, Henrik; Blennow, Kaj; Fladby, Tormod; Andreasen, Niels; Grundke-Iqbal, Inge; Iqbal, Khalid
2011-01-01
The role of blood-cerebrospinal fluid barrier (BCB) dysfunction in Alzheimer's disease (AD) has been addressed but not yet established. We evaluated the BCB integrity in 179 samples of cerebrospinal fluid (CSF) retrospectively collected from AD patients and control cases using both CSF/serum albumin ratio (QAlb) and CSF secretory Ca2+-dependent phospholipase A2 (sPLA2) activity. These analyses were supplemented with the measurement of total tau, amyloid-β1-42 (Aβ1-42), and ubiquitin CSF levels. We found that due to its higher sensitivity, CSF sPLA2 activity could 1) discriminate AD from healthy controls and 2) showed BCB impairment in neurological control cases while QAlb could not. Moreover, the CSF sPLA2 activity measurement showed that around half of the AD patients were characterized by a BCB impairment. The BCB dysfunction observed in AD was independent from Mini-Mental State Examination score as well as CSF levels of total tau, Aβ1-42, and ubiquitin. Finally, the BCB dysfunction was not limited to any of the CSF biomarkers-based previously identified subgroups of AD. These results suggest that the BCB damage occurs independent of and probably precedes both Aβ and tau pathologies in a restricted subgroup of AD patients.
Multiplicity of cerebrospinal fluid functions: New challenges in health and disease
Johanson, Conrad E; Duncan, John A; Klinge, Petra M; Brinker, Thomas; Stopa, Edward G; Silverberg, Gerald D
2008-01-01
This review integrates eight aspects of cerebrospinal fluid (CSF) circulatory dynamics: formation rate, pressure, flow, volume, turnover rate, composition, recycling and reabsorption. Novel ways to modulate CSF formation emanate from recent analyses of choroid plexus transcription factors (E2F5), ion transporters (NaHCO3 cotransport), transport enzymes (isoforms of carbonic anhydrase), aquaporin 1 regulation, and plasticity of receptors for fluid-regulating neuropeptides. A greater appreciation of CSF pressure (CSFP) is being generated by fresh insights on peptidergic regulatory servomechanisms, the role of dysfunctional ependyma and circumventricular organs in causing congenital hydrocephalus, and the clinical use of algorithms to delineate CSFP waveforms for diagnostic and prognostic utility. Increasing attention focuses on CSF flow: how it impacts cerebral metabolism and hemodynamics, neural stem cell progression in the subventricular zone, and catabolite/peptide clearance from the CNS. The pathophysiological significance of changes in CSF volume is assessed from the respective viewpoints of hemodynamics (choroid plexus blood flow and pulsatility), hydrodynamics (choroidal hypo- and hypersecretion) and neuroendocrine factors (i.e., coordinated regulation by atrial natriuretic peptide, arginine vasopressin and basic fibroblast growth factor). In aging, normal pressure hydrocephalus and Alzheimer's disease, the expanding CSF space reduces the CSF turnover rate, thus compromising the CSF sink action to clear harmful metabolites (e.g., amyloid) from the CNS. Dwindling CSF dynamics greatly harms the interstitial environment of neurons. Accordingly the altered CSF composition in neurodegenerative diseases and senescence, because of adverse effects on neural processes and cognition, needs more effective clinical management. CSF recycling between subarachnoid space, brain and ventricles promotes interstitial fluid (ISF) convection with both trophic and excretory benefits. Finally, CSF reabsorption via multiple pathways (olfactory and spinal arachnoidal bulk flow) is likely complemented by fluid clearance across capillary walls (aquaporin 4) and arachnoid villi when CSFP and fluid retention are markedly elevated. A model is presented that links CSF and ISF homeostasis to coordinated fluxes of water and solutes at both the blood-CSF and blood-brain transport interfaces. Outline 1 Overview 2 CSF formation 2.1 Transcription factors 2.2 Ion transporters 2.3 Enzymes that modulate transport 2.4 Aquaporins or water channels 2.5 Receptors for neuropeptides 3 CSF pressure 3.1 Servomechanism regulatory hypothesis 3.2 Ontogeny of CSF pressure generation 3.3 Congenital hydrocephalus and periventricular regions 3.4 Brain response to elevated CSF pressure 3.5 Advances in measuring CSF waveforms 4 CSF flow 4.1 CSF flow and brain metabolism 4.2 Flow effects on fetal germinal matrix 4.3 Decreasing CSF flow in aging CNS 4.4 Refinement of non-invasive flow measurements 5 CSF volume 5.1 Hemodynamic factors 5.2 Hydrodynamic factors 5.3 Neuroendocrine factors 6 CSF turnover rate 6.1 Adverse effect of ventriculomegaly 6.2 Attenuated CSF sink action 7 CSF composition 7.1 Kidney-like action of CP-CSF system 7.2 Altered CSF biochemistry in aging and disease 7.3 Importance of clearance transport 7.4 Therapeutic manipulation of composition 8 CSF recycling in relation to ISF dynamics 8.1 CSF exchange with brain interstitium 8.2 Components of ISF movement in brain 8.3 Compromised ISF/CSF dynamics and amyloid retention 9 CSF reabsorption 9.1 Arachnoidal outflow resistance 9.2 Arachnoid villi vs. olfactory drainage routes 9.3 Fluid reabsorption along spinal nerves 9.4 Reabsorption across capillary aquaporin channels 10 Developing translationally effective models for restoring CSF balance 11 Conclusion PMID:18479516
Roos, Per M; Vesterberg, Olof; Syversen, Tore; Flaten, Trond Peder; Nordberg, Monica
2013-02-01
Amyotrophic lateral sclerosis (ALS) is a progressive and fatal degenerative disorder of motor neurons. The cause of this degeneration is unknown, and different causal hypotheses include genetic, viral, traumatic and environmental mechanisms. In this study, we have analyzed metal concentrations in cerebrospinal fluid (CSF) and blood plasma in a well-defined cohort (n = 17) of ALS patients diagnosed with quantitative electromyography. Metal analyses were performed with high-resolution inductively coupled plasma mass spectrometry. Statistically significant higher concentrations of manganese, aluminium, cadmium, cobalt, copper, zinc, lead, vanadium and uranium were found in ALS CSF compared to control CSF. We also report higher concentrations of these metals in ALS CSF than in ALS blood plasma, which indicate mechanisms of accumulation, e.g. inward directed transport. A pattern of multiple toxic metals is seen in ALS CSF. The results support the hypothesis that metals with neurotoxic effects are involved in the pathogenesis of ALS.
Wang, Zhaopin; Wu, Juanli; Wu, Shihua; Bao, Aimin
2013-04-24
Histamine, a neurotransmitter crucially involved in a number of basic physiological functions, undergoes changes in neuropsychiatric disorders. Detection of histamine in biological samples such as cerebrospinal fluid (CSF) is thus of clinical importance. The most commonly used method for measuring histamine levels is high performance liquid chromatography (HPLC). However, factors such as very low levels of histamine, the even lower CSF-histamine and CSF-histamine metabolite levels, especially in certain neuropsychiatric diseases, rapid formation of histamine metabolites, and other confounding elements during sample collection, make analysis of CSF-histamine and CSF-histamine metabolites a challenging task. Nonetheless, this challenge can be met, not only with respect to HPLC separation column, derivative reagent, and detector, but also in terms of optimizing the CSF sample collection. This review aims to provide a general insight into the quantitative analyses of histamine in biological samples, with an emphasis on HPLC instruments, methods, and hyphenated techniques, with the aim of promoting the development of an optimal and practical protocol for the determination of CSF-histamine and/or CSF-histamine metabolites. Copyright © 2013 Elsevier B.V. All rights reserved.
Tormey, William P; O'Hagan, Christopher
2015-01-01
Cerebrospinal fluid (CSF) protein and glucose examinations are usually performed in chemical pathology departments on autoanalysers. Tuberculosis (TB) is a group 3 biological agent under Directive 2000/54/EC of the European Parliament but in the biochemistry laboratory, no extra precautions are taken in its analysis in possible TB cases. The issue of laboratory practice and safety in the biochemical analyses of CSF specimens, when tuberculosis infection is in question is addressed in the context of ambiguity in the implementation of current national and international health and safety regulations. Additional protective measures for laboratory staff during the analysis of CSF TB samples should force a change in current laboratory practice and become a regulatory issue under ISO 15189. Annual Mantoux skin test or an interferon-γ release assay for TB should be mandatory for relevant staff. This manuscript addresses the issue of biochemistry laboratory practice and safety in the biochemical analyses of CSF specimens when tuberculosis infection is in question in the context of the ambiguity of statutory health and safety regulations.
Homovanillic acid in cerebrospinal fluid of 1388 children with neurological disorders.
Molero-Luis, Marta; Serrano, Mercedes; Ormazábal, Aida; Pérez-Dueñas, Belén; García-Cazorla, Angels; Pons, Roser; Artuch, Rafael
2013-06-01
To determine the prevalence of dopaminergic abnormalities in 1388 children with neurological disorders, and to analyse their clinical, neuroradiological, and electrophysiological characteristics. We studied biogenic amines in 1388 cerebrospinal fluid (CSF) samples from children with neurological disorders (mean age 3y 10mo, SD 4y 5mo; 712 males, 676 females. Correlations among CSF homovanillic acid (HVA) values and other biochemical, clinical, neuroradiological, and electrophysiological parameters were analysed. Twenty-one patients with primary dopaminergic deficiencies were identified. Of the whole sample, 20% showed altered HVA. We report neurological diseases with abnormal CSF HVA values such as pontocerebellar hypoplasia, perinatal asphyxia, central nervous system infections, mitochondrial disorders, and other genetic diseases. Overlapping HVA levels between primary and secondary dopamine deficiencies were observed. Prevalence of low CSF HVA levels was significantly higher in neonatal patients (χ(2) =84.8, p<0.001). Abnormalities in white matter were associated with low CSF HVA (odds ratio 2.3, 95% confidence interval 1.5-3.5). HVA abnormalities are observed in various neurological diseases, but some are probably an unspecific finding. No clear limits for CSF HVA values pointing towards primary diseases can be stated. We report several neurological diseases showing HVA alterations. No neuroimaging traits were associated with low HVA values, except for white matter abnormalities. © The Authors. Developmental Medicine & Child Neurology © 2013 Mac Keith Press.
Cerebrospinal fluid cytokines in the diagnosis of bacterial meningitis in infants.
Srinivasan, Lakshmi; Kilpatrick, Laurie; Shah, Samir S; Abbasi, Soraya; Harris, Mary C
2016-10-01
Bacterial meningitis poses diagnostic challenges in infants. Antibiotic pretreatment and low bacterial density diminish cerebrospinal fluid (CSF) culture yield, while laboratory parameters do not reliably identify bacterial meningitis. Pro and anti-inflammatory cytokines are elevated in bacterial meningitis and may be useful diagnostic adjuncts when CSF cultures are negative. In a prospective cohort study of infants, we used cytometric bead arrays to measure tumor necrosis factor alpha (TNF-α), interleukin 1 (IL-1), IL-6, IL-8, IL-10, and IL-12 in CSF. Receiver operating characteristic (ROC) analyses and Principal component analysis (PCA) were used to determine cytokine combinations that identified bacterial meningitis. Six hundred and eighty four infants < 6 mo were included; 11 had culture-proven bacterial meningitis. IL-6 and IL-10 were the individual cytokines possessing greatest accuracy in diagnosis of culture proven bacterial meningitis (ROC analyses; area under the concentration-time curve (AUC) 0.91; 0.9103 respectively), and performed as well as, or better than combinations identified using ROC and PCA. CSF cytokines were highly correlated with each other and with CSF white blood cell count (WBC) counts in infants with meningitis. A subset of antibiotic pretreated culture-negative subjects demonstrated cytokine patterns similar to culture positive subjects. CSF cytokine levels may aid diagnosis of bacterial meningitis, and facilitate decision-making regarding treatment for culture negative meningitis.
Romme Christensen, Jeppe; Komori, Mika; von Essen, Marina Rode; Ratzer, Rikke; Börnsen, Lars; Bielekova, Bibi; Sellebjerg, Finn
2018-05-01
Development of treatments for progressive multiple sclerosis (MS) is challenged by the lack of sensitive and treatment-responsive biomarkers of intrathecal inflammation. To validate the responsiveness of cerebrospinal fluid (CSF) inflammatory biomarkers to treatment with natalizumab and methylprednisolone in progressive MS and to examine the relationship between CSF inflammatory and tissue damage biomarkers. CSF samples from two open-label phase II trials of natalizumab and methylprednisolone in primary and secondary progressive MS. CSF concentrations of 20 inflammatory biomarkers and CSF biomarkers of axonal damage (neurofilament light chain (NFL)) and demyelination were analysed using electrochemiluminescent assay and enzyme-linked immunosorbent assay (ELISA). In all, 17 natalizumab- and 23 methylprednisolone-treated patients had paired CSF samples. CSF sCD27 displayed superior standardised response means and highly significant decreases during both natalizumab and methylprednisolone treatment; however, post-treatment levels remained above healthy donor reference levels. Correlation analyses of CSF inflammatory biomarkers and NFL before, during and after treatment demonstrated that CSF sCD27 consistently correlates with NFL. These findings validate CSF sCD27 as a responsive and sensitive biomarker of intrathecal inflammation in progressive MS, capturing residual inflammation after treatment. Importantly, CSF sCD27 correlates with NFL, consistent with residual inflammation after anti-inflammatory treatment being associated with axonal damage.
National audit of cerebrospinal fluid testing.
Holbrook, Ian; Beetham, Robert; Cruickshank, Anne; Egner, William; Fahie-Wilson, Mike; Keir, Geoff; Patel, Dina; Watson, Ian; White, Peter
2007-09-01
UK National External Quality Assessment Service (NEQAS) Specialist Advisory Group for EQA of CSF Proteins and Biochemistry was interested in current practice for the biochemical investigation of cerebrospinal fluid (CSF) in the UK. A questionnaire was sent to laboratories via regional audit committees and the results collated. Most laboratories were analysing CSF in a satisfactory manner. There was some variation in the reference ranges used for glucose, protein and lactate. There was concern about the rejection policies of some laboratories on these unrepeatable samples and the wavelengths used to measure bilirubin. The survey revealed the lack of spectrophotometric scanning for haem pigments and bilirubin in some hospitals. The current practice for the measurement of CSF samples in the UK is satisfactory in most laboratories responding to the questionnaire. National agreement on reference ranges for glucose, protein and lactate should be achievable. Those performing spectrophotometric scanning of the CSF were doing so in concordance with the national guidelines. Some hospitals in the UK may not have responded to the questionnaire because they did not offer spectrophotometric scanning.
Price, Richard W; Parham, Robin; Kroll, Jing Lu; Wring, Stephen A; Baker, Brian; Sailstad, Jeff; Hoh, Rebecca; Liegler, Teri; Spudich, Serena; Kuritzkes, Daniel R; Deeks, Steven G
2008-01-01
Enfuvirtide is a potent inhibitor of systemic HIV-1 replication, but its penetration into the human central nervous system (CNS) has not been analysed. Here, we define cerebrospinal fluid (CSF) enfuvirtide pharmacokinetics and present a case illustrating the use of enfuvirtide as a probe to trace the origins of CSF HIV-1 quasispecies. Enfuvirtide CSF pharmacokinetics were assessed in 18 CSF and plasma sample pairs from four HIV-1-infected individuals. Enfuvirtide levels were measured by liquid chromatography tandem mass spectrometry using known standards and controls that included spiked CSF samples from untreated, HIV-negative individuals. A segment of the gp41 coding region encompassing the heptad repeat HR-1 and HR-2 domains was amplified from selected CSF and plasma samples and independent clones sequenced to assess resistance-associated mutations. CSF and plasma samples obtained between 2 and 20 h after enfuvirtide injection showed plasma concentrations similar to previous reports (mean 3.687 SD +/- 1.828 mg/ml) with prolonged decay. By contrast, enfuvirtide in all CSF samples was below the assay detection limit of 0.025 mg/ml. In one individual, who developed a transient increase in CSF HIV-1 RNA, seven of seven CSF and plasma clones had identical enfuvirtide resistance-associated V38A mutations, suggesting that the CSF quasispecies derived from that of blood. Enfuvirtide penetration into CSF is negligible; thus, in clinical settings, where direct CNS drug exposure is crucial, this drug Is not likely to directly contribute to the local therapeutic effect. Enfuvirtide can be used as a tool to dissect the origin of the CNS virus.
Cerebrospinal Fluid Clearance in Alzheimer Disease Measured with Dynamic PET.
de Leon, Mony J; Li, Yi; Okamura, Nobuyuki; Tsui, Wai H; Saint-Louis, Les A; Glodzik, Lidia; Osorio, Ricardo S; Fortea, Juan; Butler, Tracy; Pirraglia, Elizabeth; Fossati, Silvia; Kim, Hee-Jin; Carare, Roxana O; Nedergaard, Maiken; Benveniste, Helene; Rusinek, Henry
2017-09-01
Evidence supporting the hypothesis that reduced cerebrospinal fluid (CSF) clearance is involved in the pathophysiology of Alzheimer disease (AD) comes primarily from rodent models. However, unlike rodents, in which predominant extracranial CSF egress is via olfactory nerves traversing the cribriform plate, human CSF clearance pathways are not well characterized. Dynamic PET with 18 F-THK5117, a tracer for tau pathology, was used to estimate the ventricular CSF time-activity as a biomarker for CSF clearance. We tested 3 hypotheses: extracranial CSF is detected at the superior turbinates; CSF clearance is reduced in AD; and CSF clearance is inversely associated with amyloid deposition. Methods: Fifteen subjects, 8 with AD and 7 normal control volunteers, were examined with 18 F-THK5117. Ten subjects additionally underwent 11 C-Pittsburgh compound B ( 11 C-PiB) PET scanning, and 8 were 11 C-PiB-positive. Ventricular time-activity curves of 18 F-THK5117 were used to identify highly correlated time-activity curves from extracranial voxels. Results: For all subjects, the greatest density of CSF-positive extracranial voxels was in the nasal turbinates. Tracer concentration analyses validated the superior nasal turbinate CSF signal intensity. AD patients showed ventricular tracer clearance reduced by 23% and 66% fewer superior turbinate CSF egress sites. Ventricular CSF clearance was inversely associated with amyloid deposition. Conclusion: The human nasal turbinate is part of the CSF clearance system. Lateral ventricle and superior nasal turbinate CSF clearance abnormalities are found in AD. Ventricular CSF clearance reductions are associated with increased brain amyloid depositions. These data suggest that PET-measured CSF clearance is a biomarker of potential interest in AD and other neurodegenerative diseases. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.
A potential endophenotype for Alzheimer's disease: cerebrospinal fluid clusterin.
Deming, Yuetiva; Xia, Jian; Cai, Yefei; Lord, Jenny; Holmans, Peter; Bertelsen, Sarah; Holtzman, David; Morris, John C; Bales, Kelly; Pickering, Eve H; Kauwe, John; Goate, Alison; Cruchaga, Carlos
2016-01-01
Genome-wide association studies have associated clusterin (CLU) variants with Alzheimer's disease (AD). However, the role of CLU on AD pathogenesis is not totally understood. We used cerebrospinal fluid (CSF) and plasma CLU levels as endophenotypes for genetic studies to understand the role of CLU in AD. CSF, but not plasma, CLU levels were significantly associated with AD status and CSF tau/amyloid-beta ratio, and highly correlated with CSF apolipoprotein E (APOE) levels. Several loci showed almost genome-wide significant associations including LINC00917 (p = 3.98 × 10(-7)) and interleukin 6 (IL6, p = 9.94 × 10(-6), in the entire data set and in the APOE ε4- individuals p = 7.40 × 10(-8)). Gene ontology analyses suggest that CSF CLU levels may be associated with wound healing and immune response which supports previous functional studies that demonstrated an association between CLU and IL6. CLU may play a role in AD by influencing immune system changes that have been observed in AD or by disrupting healing after neurodegeneration. Copyright © 2016 Elsevier Inc. All rights reserved.
Chemical meningitis related to intra-CSF liposomal cytarabine.
Durand, Bénédicte; Zairi, Fahed; Boulanger, Thomas; Bonneterre, Jacques; Mortier, Laurent; Le Rhun, Emilie
2017-10-01
Therapeutic options of leptomeningeal metastases include intra-cerebrospinal fluid (CSF) chemotherapy. Among intra-CSF agents, liposomal cytarabine has advantages but can induce specific toxicities. A BRAF-V600E-mutated melanoma leptomeningeal metastases patient, treated by dabrafenib and liposomal cytarabine, presented after the first injection of liposomal cytarabine with hyperthermia and headaches. Despite sterile CSF/blood analyses, extended intravenous antibiotics were given and the second injection was delayed. The diagnosis of chemical meningitis was finally made. Dose reduction and appropriate symptomatic treatment permitted the administration of 15 injections of liposomal cytarabine combined with dabrafenib. A confirmation of the diagnosis of chemical meningitis is essential in order (1) not to delay intra-CSF or systemic chemotherapy or (2) to limit the administration of unnecessary but potentially toxic antibiotics.
Ugarte, Ana; Gil-Bea, Francisco; García-Barroso, Carolina; Cedazo-Minguez, Ángel; Ramírez, M Javier; Franco, Rafael; García-Osta, Ana; Oyarzabal, Julen; Cuadrado-Tejedor, Mar
2015-06-01
Levels of the cyclic nucleotides guanosine 3', 5'-monophosphate (cGMP) or adenosine 3', 5'-monophosphate (cAMP) that play important roles in memory processes are not characterized in Alzheimer's disease (AD). The aim of this study was to analyse the levels of these nucleotides in cerebrospinal fluid (CSF) samples from patients diagnosed with clinical and prodromal stages of AD and study the expression level of the enzymes that hydrolyzed them [phosphodiesterases (PDEs)] in the brain of AD patients vs. For cGMP and cAMP CSF analysis, the cohort (n = 79) included cognitively normal participants (subjective cognitive impairment), individuals with stable mild cognitive impairment or AD converters (sMCI and cMCI), and mild AD patients. A high throughput liquid chromatography-tandem mass spectrometry method was used. Interactions between CSF cGMP or cAMP with mini-mental state examination (MMSE) score, CSF Aβ(1-42) and CSF p-tau were analysed. For PDE4, 5, 9 and 10 expression analysis, brains of AD patients vs. controls (n = 7 and n = 8) were used. cGMP, and not cAMP levels, were significantly lower in the CSF of patients diagnosed with mild AD when compared with nondemented controls. CSF levels of cGMP showed a significant association with MMSE-diagnosed clinical dementia and with CSF biomarker Aβ42 in AD patients. Significant increase in PDE5 expression was detected in temporal cortex of AD patients compared with that of age-matched healthy control subjects. No changes in the expression of others PDEs were detected. These results support the potential involvement of cGMP in the pathological and clinical development of AD. The cGMP reduction in early stages of AD might participate in the aggravation of amyloid pathology and cognitive decline. © 2014 British Neuropathological Society.
Gómez-Pinedo, U; Galán, L; Yañez, M; Matias-Guiu, J; Valencia, C; Guerrero-Sola, A; Lopez-Sosa, F; Brin, J R; Benito-Martin, M S; Leon-Espinosa, G; Vela-Souto, A; Lendinez, C; Guillamon-Vivancos, T; Matias-Guiu, J A; Arranz-Tagarro, J A; Barcia, J A; Garcia, A G
2018-05-01
Cerebrospinal fluid (CSF) from amyotrophic lateral sclerosis (ALS) patients induces cytotoxic effects in in vitro cultured motor neurons. We selected CSF with previously reported cytotoxic effects from 32 ALS patients. Twenty-eight adult male rats were intracerebroventricularly implanted with osmotic mini-pumps and divided into 3 groups: 9 rats injected with CSF from non-ALS patients, 15 rats injected with cytotoxic ALS-CSF, and 4 rats injected with a physiological saline solution. CSF was intracerebroventricularly and continuously infused for periods of 20 or 43days after implantation. We conducted clinical assessments and electromyographic examinations, and histological analyses were conducted in rats euthanised 20, 45, and 82days after surgery. Immunohistochemical studies revealed tissue damage with similar characteristics to those found in the sporadic forms of ALS, such as overexpression of cystatinC, transferrin, and TDP-43 protein in the cytoplasm. The earliest changes observed seemed to play a protective role due to the overexpression of peripherin, AKTpan, AKTphospho, and metallothioneins; this expression had diminished by the time we analysed rats euthanised on day 82, when an increase in apoptosis was observed. The first cellular changes identified were activated microglia followed by astrogliosis and overexpression of GFAP and S100B proteins. Our data suggest that ALS could spread through CSF and that intracerebroventricular administration of cytotoxic ALS-CSF provokes changes similar to those found in sporadic forms of the disease. Copyright © 2016 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.
Naylor, Jennifer C; Hulette, Christine M; Steffens, David C; Shampine, Lawrence J; Ervin, John F; Payne, Victoria M; Massing, Mark W; Kilts, Jason D; Strauss, Jennifer L; Calhoun, Patrick S; Calnaido, Rohana P; Blazer, Daniel G; Lieberman, Jeffrey A; Madison, Roger D; Marx, Christine E
2008-08-01
It is currently unknown whether cerebrospinal fluid (CSF) neurosteroid levels are related to brain neurosteroid levels in humans. CSF and brain dehydroepiandrosterone (DHEA) levels are elevated in patients with Alzheimer's disease (AD), but it is unclear whether CSF DHEA levels are correlated with brain DHEA levels within the same subject cohort. We therefore determined DHEA and pregnenolone levels in AD patients (n = 25) and cognitively intact control subjects (n = 16) in both CSF and temporal cortex. DHEA and pregnenolone levels were determined by gas chromatography/mass spectrometry preceded by HPLC. Frozen CSF and temporal cortex specimens were provided by the Alzheimer's Disease Research Center at Duke University Medical Center. Data were analyzed by Mann-Whitney U test statistic and Spearman correlational analyses. CSF DHEA levels are positively correlated with temporal cortex DHEA levels (r = 0.59, P < 0.0001) and neuropathological disease stage (Braak and Braak) (r = 0.42, P = 0.007). CSF pregnenolone levels are also positively correlated with temporal cortex pregnenolone levels (r = 0.57, P < 0.0001) and tend to be correlated with neuropathological disease stage (Braak) (r = 0.30, P = 0.06). CSF DHEA levels are elevated (P = 0.032), and pregnenolone levels tend to be elevated (P = 0.10) in patients with AD, compared with cognitively intact control subjects. These findings indicate that CSF DHEA and pregnenolone levels are correlated with temporal cortex brain levels of these neurosteroids and that CSF DHEA is elevated in AD and related to neuropathological disease stage. Neurosteroids may thus be relevant to the pathophysiology of AD.
Prototype of an opto-capacitive probe for non-invasive sensing cerebrospinal fluid circulation
NASA Astrophysics Data System (ADS)
Myllylä, Teemu; Vihriälä, Erkki; Pedone, Matteo; Korhonen, Vesa; Surazynski, Lukasz; Wróbel, Maciej; Zienkiewicz, Aleksandra; Hakala, Jaakko; Sorvoja, Hannu; Lauri, Janne; Fabritius, Tapio; Jedrzejewska-Szczerska, Małgorzata; Kiviniemi, Vesa; Meglinski, Igor
2017-03-01
In brain studies, the function of the cerebrospinal fluid (CSF) awakes growing interest, particularly related to studies of the glymphatic system in the brain, which is connected with the complex system of lymphatic vessels responsible for cleaning the tissues. The CSF is a clear, colourless liquid including water (H2O) approximately with a concentration of 99 %. In addition, it contains electrolytes, amino acids, glucose, and other small molecules found in plasma. The CSF acts as a cushion behind the skull, providing basic mechanical as well as immunological protection to the brain. Disturbances of the CSF circulation have been linked to several brain related medical disorders, such as dementia. Our goal is to develop an in vivo method for the non-invasive measurement of cerebral blood flow and CSF circulation by exploiting optical and capacitive sensing techniques simultaneously. We introduce a prototype of a wearable probe that is aimed to be used for long-term brain monitoring purposes, especially focusing on studies of the glymphatic system. In this method, changes in cerebral blood flow, particularly oxy- and deoxyhaemoglobin, are measured simultaneously and analysed with the response gathered by the capacitive sensor in order to distinct the dynamics of the CSF circulation behind the skull. Presented prototype probe is tested by measuring liquid flows inside phantoms mimicking the CSF circulation.
Zhang, C; Ding, X; Lu, Y; Hu, L; Hu, G
2017-08-01
The aim of this study was to elucidate the risk factors for cerebrospinal fluid (CSF) rhinorrhoea following transsphenoidal surgery and discuss its prevention and treatments. We retrospectively reviewed 474 consecutive cases of pituitary adenoma treated with 485 transsphenoidal surgical procedures from January 2008 to December 2011 in our department. We analysed the incidence of intra- and post-operative CSF leakage and outcomes of various repair strategies. Intra-operative CSF leakage was encountered in 85 cases (17.9%), and post-operative CSF rhinorrhoea in 13 cases (2.7%). Seven of the 13 patients with post-operative CSF rhinorrhoea did not experience intra-operative CSF leakage; three of these patients had adrenocorticotropic hormone-secreting adenomas. Of the remaining 6 patients with both intra- and post-operative CSF leakage, 2 were treated for giant invasive prolactinomas, and 2 had previously undergone transsphenoidal surgery. In eight patients, the leak was resolved by lumbar puncture, lumbar external drainage, resting in a semi-reclining position, or other conservative treatment. Two CSF leaks were repaired with gelatine foam and fibrin glue using a transsphenoidal approach, and two with autologous fat graft and sellar floor reconstruction using a transnasal endoscopic approach. After undergoing two transnasal endoscopic repairs, one patient with post-operative CSF rhinorrhoea was successfully treated by further lumbar subarachnoid drainage. In conclusion, procedures using gelatine foam, fibrin glue and autologous fat graft are common and effective techniques for the management of CSF rhinorrhoea after transsphenoidal surgery. When a CSF leak is detected during transsphenoidal surgery, thorough sellar reconstruction and long-term follow-up are necessary. © Copyright by Società Italiana di Otorinolaringologia e Chirurgia Cervico-Facciale, Rome, Italy.
Cerebrospinal fluid biomarkers of simian immunodeficiency virus encephalitis
Bissel, Stephanie J.; Kofler, Julia; Nyaundi, Julia; Murphey-Corb, Michael; Wisniewski, Stephen R.; Wiley, Clayton A.
2016-01-01
Antiretroviral therapy has led to increased survival of HIV-infected patients but also increased prevalence of HIV-associated neurocognitive disorders. We previously identified YKL40 as a potential cerebrospinal fluid (CSF) biomarker of lentiviral central nervous system (CNS) disease in HIV-infected patients and in the macaque model of HIV encephalitis. The aim of this study was to define the specificity and sensitivity along with the predictive value of YKL40 as a biomarker of encephalitis and to assess its relationship to CSF viral load. CSF YKL40 and SIV RNA concentrations were analyzed over the course of infection in 19 SIV-infected pigtailed macaques and statistical analyses were performed to evaluate the relationship to encephalitis. Using these relationships, CSF alterations of 31 neuroimmune markers were studied pre-infection, during acute and asymptomatic infection, at the onset of encephalitis, and at necropsy. YKL40 CSF concentrations above 1122 ng/ml were found to be a specific and sensitive biomarker for the presence of encephalitis and were highly correlated with CSF viral load. Macaques that developed encephalitis had evidence of chronic CNS immune activation during early, asymptomatic, and end stages of infection. At the onset of encephalitis, CSF demonstrated a rise of neuroimmune markers associated with macrophage recruitment, activation and interferon response. CSF YKL40 concentration and viral load are valuable biomarkers to define the onset of encephalitis. Chronic CNS immune activation precedes the development of encephalitis while some responses suggest protection from CNS lentiviral disease. PMID:27059917
Associations between [18F]AV1451 tau PET and CSF measures of tau pathology in a clinical sample.
La Joie, Renaud; Bejanin, Alexandre; Fagan, Anne M; Ayakta, Nagehan; Baker, Suzanne L; Bourakova, Viktoriya; Boxer, Adam L; Cha, Jungho; Karydas, Anna; Jerome, Gina; Maass, Anne; Mensing, Ashley; Miller, Zachary A; O'Neil, James P; Pham, Julie; Rosen, Howard J; Tsai, Richard; Visani, Adrienne V; Miller, Bruce L; Jagust, William J; Rabinovici, Gil D
2018-01-23
To assess the relationships between fluid and imaging biomarkers of tau pathology and compare their diagnostic utility in a clinically heterogeneous sample. Fifty-three patients (28 with clinical Alzheimer disease [AD] and 25 with non-AD clinical neurodegenerative diagnoses) underwent β-amyloid (Aβ) and tau ([ 18 F]AV1451) PET and lumbar puncture. CSF biomarkers (Aβ 42 , total tau [t-tau], and phosphorylated tau [p-tau]) were measured by multianalyte immunoassay (AlzBio3). Receiver operator characteristic analyses were performed to compare discrimination of Aβ-positive AD from non-AD conditions across biomarkers. Correlations between CSF biomarkers and PET standardized uptake value ratios (SUVR) were assessed using skipped Pearson correlation coefficients. Voxelwise analyses were run to assess regional CSF-PET associations. [ 18 F]AV1451-PET cortical SUVR and p-tau showed excellent discrimination between Aβ-positive AD and non-AD conditions (area under the curve 0.92-0.94; ≤0.83 for other CSF measures), and reached 83% classification agreement. In the full sample, cortical [ 18 F]AV1451 was associated with all CSF biomarkers, most strongly with p-tau ( r = 0.75 vs 0.57 for t-tau and -0.49 for Aβ 42 ). When restricted to Aβ-positive patients with AD, [ 18 F]AV1451 SUVR correlated modestly with p-tau and t-tau (both r = 0.46) but not Aβ 42 ( r = 0.02). On voxelwise analysis, [ 18 F]AV1451 correlated with CSF p-tau in temporoparietal cortices and with t-tau in medial prefrontal regions. Within AD, Mini-Mental State Examination scores were associated with [ 18 F]AV1451-PET, but not CSF biomarkers. [ 18 F]AV1451-PET and CSF p-tau had comparable value for differential diagnosis. Correlations were robust in a heterogeneous clinical group but attenuated (although significant) in AD, suggesting that fluid and imaging biomarkers capture different aspects of tau pathology. This study provides Class III evidence that, in a clinical sample of patients with a variety of suspected neurodegenerative diseases, both CSF p-tau and [ 18 F]AV1451 distinguish AD from non-AD conditions. Copyright © 2017 American Academy of Neurology.
MATSUMAE, Mitsunori; SATO, Osamu; HIRAYAMA, Akihiro; HAYASHI, Naokazu; TAKIZAWA, Ken; ATSUMI, Hideki; SORIMACHI, Takatoshi
2016-01-01
Cerebrospinal fluid (CSF) plays an essential role in maintaining the homeostasis of the central nervous system. The functions of CSF include: (1) buoyancy of the brain, spinal cord, and nerves; (2) volume adjustment in the cranial cavity; (3) nutrient transport; (4) protein or peptide transport; (5) brain volume regulation through osmoregulation; (6) buffering effect against external forces; (7) signal transduction; (8) drug transport; (9) immune system control; (10) elimination of metabolites and unnecessary substances; and finally (11) cooling of heat generated by neural activity. For CSF to fully mediate these functions, fluid-like movement in the ventricles and subarachnoid space is necessary. Furthermore, the relationship between the behaviors of CSF and interstitial fluid in the brain and spinal cord is important. In this review, we will present classical studies on CSF circulation from its discovery over 2,000 years ago, and will subsequently introduce functions that were recently discovered such as CSF production and absorption, water molecule movement in the interstitial space, exchange between interstitial fluid and CSF, and drainage of CSF and interstitial fluid into both the venous and the lymphatic systems. Finally, we will summarize future challenges in research. This review includes articles published up to February 2016. PMID:27245177
Galasko, Douglas R; Peskind, Elaine; Clark, Christopher M; Quinn, Joseph F; Ringman, John M; Jicha, Gregory A; Cotman, Carl; Cottrell, Barbara; Montine, Thomas J; Thomas, Ronald G; Aisen, Paul
2012-07-01
To evaluate whether antioxidant supplements presumed to target specific cellular compartments affected cerebrospinal fluid (CSF) biomarkers. Double-blind, placebo-controlled clinical trial. Academic medical centers. Subjects with mild to moderate Alzheimer disease. Random assignment to treatment for 16 weeks with 800 IU/d of vitamin E (α-tocopherol) plus 500 mg/d of vitamin C plus 900 mg/d of α-lipoic acid (E/C/ALA); 400 mg of coenzyme Q 3 times/d; or placebo. Changes from baseline to 16 weeks in CSF biomarkers related to Alzheimer disease and oxidative stress, cognition (Mini-Mental State Examination), and function (Alzheimer's Disease Cooperative Study Activities of Daily Living Scale). Seventy-eight subjects were randomized; 66 provided serial CSF specimens adequate for biochemical analyses. Study drugs were well tolerated, but accelerated decline in Mini-Mental State Examination scores occurred in the E/C/ALA group, a potential safety concern. Changes in CSF Aβ42, tau, and P-tau(181) levels did not differ between the 3 groups. Cerebrospinal fluid F2-isoprostane levels, an oxidative stress biomarker, decreased on average by 19% from baseline to week 16 in the E/C/ALA group but were unchanged in the other groups. Antioxidants did not influence CSF biomarkers related to amyloid or tau pathology. Lowering of CSF F2-isoprostane levels in the E/C/ALA group suggests reduction of oxidative stress in the brain. However, this treatment raised the caution of faster cognitive decline, which would need careful assessment if longer-term clinical trials are conducted. clinicaltrials.gov Identifier: NCT00117403.
A new look at cerebrospinal fluid circulation
2014-01-01
According to the traditional understanding of cerebrospinal fluid (CSF) physiology, the majority of CSF is produced by the choroid plexus, circulates through the ventricles, the cisterns, and the subarachnoid space to be absorbed into the blood by the arachnoid villi. This review surveys key developments leading to the traditional concept. Challenging this concept are novel insights utilizing molecular and cellular biology as well as neuroimaging, which indicate that CSF physiology may be much more complex than previously believed. The CSF circulation comprises not only a directed flow of CSF, but in addition a pulsatile to and fro movement throughout the entire brain with local fluid exchange between blood, interstitial fluid, and CSF. Astrocytes, aquaporins, and other membrane transporters are key elements in brain water and CSF homeostasis. A continuous bidirectional fluid exchange at the blood brain barrier produces flow rates, which exceed the choroidal CSF production rate by far. The CSF circulation around blood vessels penetrating from the subarachnoid space into the Virchow Robin spaces provides both a drainage pathway for the clearance of waste molecules from the brain and a site for the interaction of the systemic immune system with that of the brain. Important physiological functions, for example the regeneration of the brain during sleep, may depend on CSF circulation. PMID:24817998
GWAS of cerebrospinal fluid tau levels identifies risk variants for Alzheimer's disease.
Cruchaga, Carlos; Kauwe, John S K; Harari, Oscar; Jin, Sheng Chih; Cai, Yefei; Karch, Celeste M; Benitez, Bruno A; Jeng, Amanda T; Skorupa, Tara; Carrell, David; Bertelsen, Sarah; Bailey, Matthew; McKean, David; Shulman, Joshua M; De Jager, Philip L; Chibnik, Lori; Bennett, David A; Arnold, Steve E; Harold, Denise; Sims, Rebecca; Gerrish, Amy; Williams, Julie; Van Deerlin, Vivianna M; Lee, Virginia M-Y; Shaw, Leslie M; Trojanowski, John Q; Haines, Jonathan L; Mayeux, Richard; Pericak-Vance, Margaret A; Farrer, Lindsay A; Schellenberg, Gerard D; Peskind, Elaine R; Galasko, Douglas; Fagan, Anne M; Holtzman, David M; Morris, John C; Goate, Alison M
2013-04-24
Cerebrospinal fluid (CSF) tau, tau phosphorylated at threonine 181 (ptau), and Aβ₄₂ are established biomarkers for Alzheimer's disease (AD) and have been used as quantitative traits for genetic analyses. We performed the largest genome-wide association study for cerebrospinal fluid (CSF) tau/ptau levels published to date (n = 1,269), identifying three genome-wide significant loci for CSF tau and ptau: rs9877502 (p = 4.89 × 10⁻⁹ for tau) located at 3q28 between GEMC1 and OSTN, rs514716 (p = 1.07 × 10⁻⁸ and p = 3.22 × 10⁻⁹ for tau and ptau, respectively), located at 9p24.2 within GLIS3 and rs6922617 (p = 3.58 × 10⁻⁸ for CSF ptau) at 6p21.1 within the TREM gene cluster, a region recently reported to harbor rare variants that increase AD risk. In independent data sets, rs9877502 showed a strong association with risk for AD, tangle pathology, and global cognitive decline (p = 2.67 × 10⁻⁴, 0.039, 4.86 × 10⁻⁵, respectively) illustrating how this endophenotype-based approach can be used to identify new AD risk loci. Copyright © 2013 Elsevier Inc. All rights reserved.
Morales, Diego M; Holubkov, Richard; Inder, Terri E; Ahn, Haejun C; Mercer, Deanna; Rao, Rakesh; McAllister, James P; Holtzman, David M; Limbrick, David D
2015-01-01
Neurological outcomes of preterm infants with post-hemorrhagic hydrocephalus (PHH) remain among the worst in infancy, yet there remain few instruments to inform the treatment of PHH. We previously observed PHH-associated elevations in cerebrospinal fluid (CSF) amyloid precursor protein (APP), neural cell adhesion molecule-L1 (L1CAM), neural cell adhesion molecule-1 (NCAM-1), and other protein mediators of neurodevelopment. The objective of this study was to examine the association of CSF APP, L1CAM, and NCAM-1 with ventricular size as an early step toward developing CSF markers of PHH. CSF levels of APP, L1CAM, NCAM-1, and total protein (TP) were measured in 12 preterm infants undergoing PHH treatment. Ventricular size was determined using cranial ultrasounds. The relationships between CSF APP, L1CAM, and NCAM-1, occipitofrontal circumference (OFC), volume of CSF removed, and ventricular size were examined using correlation and regression analyses. CSF levels of APP, L1CAM, and NCAM-1 but not TP paralleled treatment-related changes in ventricular size. CSF APP demonstrated the strongest association with ventricular size, estimated by frontal-occipital horn ratio (FOR) (Pearson R = 0.76, p = 0.004), followed by NCAM-1 (R = 0.66, p = 0.02) and L1CAM (R = 0.57,p = 0.055). TP was not correlated with FOR (R = 0.02, p = 0.95). Herein, we report the novel observation that CSF APP shows a robust association with ventricular size in preterm infants treated for PHH. The results from this study suggest that CSF APP and related proteins at once hold promise as biomarkers of PHH and provide insight into the neurological consequences of PHH in the preterm infant.
Rimério, Carla Aparecida Tavares; De Oliveira, Renato Souza; de Almeida Bonatelli, Murilo Queiroz; Nucci, Anamarli; Costa, Sandra Cecília Botelho; Bonon, Sandra Helena Alves
2015-04-01
Infections of the central nervous systems (CNS) present a diagnostic problem for which an accurate laboratory diagnosis is essential. Invasive practices, such as cerebral biopsy, have been replaced by obtaining a polymerase chain reaction (PCR) diagnosis using cerebral spinal fluid (CSF) as a reference method. Tests on DNA extracted from plasma are noninvasive, thus avoiding all of the collateral effects and patient risks associated with CSF collection. This study aimed to determine whether plasma can replace CSF in nested PCR analysis for the detection of CNS human herpesvirus (HHV) diseases by analysing the proportion of patients whose CSF nested PCR results were positive for CNS HHV who also had the same organism identified by plasma nested PCR. In this study, CSF DNA was used as the "gold standard," and nested PCR was performed on both types of samples. Fifty-two patients with symptoms of nervous system infection were submitted to CSF and blood collection. For the eight HHV, one positive DNA result-in plasma and/or CSF nested PCR-was considered an active HHV infection, whereas the occurrence of two or more HHVs in the same sample was considered a coinfection. HHV infections were positively detected in 27/52 (51.9%) of the CSF and in 32/52 (61.5%) of the plasma, difference not significant, thus nested PCR can be performed on plasma instead of CSF. In conclusion, this findings suggest that plasma as a useful material for the diagnosis of cases where there is any difficulty to perform a CSF puncture. © 2015 Wiley Periodicals, Inc.
Neonatal hypoxia-ischemia in rat increases doublecortin concentration in the cerebrospinal fluid.
Brégère, Catherine; Fisch, Urs; Sailer, Martin H; Lieb, Wolfgang S; Chicha, Laurie; Goepfert, Fabienne; Kremer, Thomas; Guzman, Raphael
2017-07-01
Doublecortin (DCX) is a microtubule-associated protein widely used as an indicator of neurogenesis in immunohistochemical analyses of the postmortem adult brain. A recent study reported that DCX can be quantified in the cerebrospinal fluid (CSF) from healthy rats between postnatal day 0 (P0) and P30. However, it is currently unclear whether the concentration of DCX in the CSF (CSF-DCX) may represent a measure of endogenous neurogenesis. To address this question, this study examined the impact of a neonatal hypoxic-ischemic (HI) brain injury, known to induce neurogenesis, on CSF-DCX. HI was elicited at P7 in Sprague-Dawley rat neonates, and CSF was collected serially from the cisterna magna at P5 and P10, or at P10 and P15. A sandwich immunoassay was used to measure CSF-DCX. Brains from P10 neonates were analyzed immunohistochemically for neurogenesis and cell death markers. Mean CSF-DCX was significantly higher in HI- than in sham-exposed animals, at both P10 and P15. In the HI group at P10, CSF-DCX and stroke severity correlated positively. DCX immunoreactivity was increased in the ipsilateral neurogenic niches from the P10 HI brains in comparison with that of shams. The number of proliferative DCX-positive cells was higher in the ipsilateral hippocampal subgranular zone (SGZ) than in the HI contralateral or sham SGZ. Thus, neonatal HI brain injury disrupts the developmental time-course of DCX levels in the CSF. Our data suggest that the increased concentration of DCX in the CSF after neonatal HI is the result of both cellular injury and increased neurogenesis. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Resistance to drainage of cerebrospinal fluid: clinical measurement and significance1
Martins, Albert N.
1973-01-01
By infusing saline intrathecally at a constant rate until a new steady-state cerebrospinal fluid (CSF) pressure is attained, one can estimate clinically the apparent resistance (Ra) to drainage of CSF in mm saline/ml./minute. This intrathecal saline infusion test (ITSIT) was performed 36 times on 29 patients with diverse intracranial problems, and the results were analysed and, in most cases, compared with the pneumoencephalogram and the isotope cisternogram. The ITSIT is a safe, simple test to estimate Ra, but factors which are difficult to control (occult leaks from the subarachnoid space; independent fluctuations of CSF pressure) limit its reliability and clinical usefulness. If closely correlated with the clinical syndrome, the pneumoencephalogram, and the isotope cisternogram, an ITSIT may identify decisively the patient who needs a shunt. In addition the ITSIT offers another method by which to investigate the pathophysiological mechanisms of the various states of intracranial hypertension. Results from the test performed on four patients with intracranial hypertension of unknown cause (pseudotumor cerebri) suggest that the underlying mechanism in this condition is probably an impediment to normal CSF drainage. PMID:4541080
Kauwe, John S K; Cruchaga, Carlos; Karch, Celeste M; Sadler, Brooke; Lee, Mo; Mayo, Kevin; Latu, Wayne; Su'a, Manti; Fagan, Anne M; Holtzman, David M; Morris, John C; Goate, Alison M
2011-02-09
Recent genome-wide association studies of Alzheimer's disease (AD) have identified variants in BIN1, CLU, CR1 and PICALM that show replicable association with risk for disease. We have thoroughly sampled common variation in these genes, genotyping 355 variants in over 600 individuals for whom measurements of two AD biomarkers, cerebrospinal fluid (CSF) 42 amino acid amyloid beta fragments (Aβ(42)) and tau phosphorylated at threonine 181 (ptau(181)), have been obtained. Association analyses were performed to determine whether variants in BIN1, CLU, CR1 or PICALM are associated with changes in the CSF levels of these biomarkers. Despite adequate power to detect effects as small as a 1.05 fold difference, we have failed to detect evidence for association between SNPs in these genes and CSF Aβ(42) or ptau(181) levels in our sample. Our results suggest that these variants do not affect risk via a mechanism that results in a strong additive effect on CSF levels of Aβ(42) or ptau(181).
Cerebrospinal fluid cytotoxicity does not affect survival in amyotrophic lateral sclerosis.
Galán, L; Matías-Guiu, J; Matias-Guiu, J A; Yáñez, M; Pytel, V; Guerrero-Sola, A; Vela-Souto, A; Arranz-Tagarro, J A; Gómez-Pinedo, U; García, A G
2017-09-01
Cerebrospinal fluid (CSF) from some patients with amyotrophic lateral sclerosis (ALS) has been demonstrated to significantly reduce the neuronal viability of primary cell cultures of motor neurons. We aimed to study the potential clinical consequences associated with the cytotoxicity of CSF in a cohort of patients with ALS. We collected CSF from thirty-one patients with ALS. We analysed cytotoxicity by incubating it into the primary cultures of motor cortex neurons. Neural viability was quantified after 24 hours using the colorimetric MTT reduction assay. All patients were followed up from the moment of diagnosis to death, and a complete evaluation during disease progression and survival was performed, including gastrostomy and respiratory assistance. Twenty-one patients (67.7%) presented a cytotoxic CSF. There were no significant differences between patients with and without cytotoxicity regarding mean time from symptom onset to the diagnosis, from the diagnosis to death, from the diagnosis to respiratory assistance with BIPAP, from diagnosis to gastrostomy and from the onset of symptoms to death. In Cox regression analysis, bulbar onset, but not cytotoxicity, gender or age at onset, was associated with a lower risk of survival. Cerebrospinal fluid cytotoxicity was not associated with differential survival rates. This suggests that the presence of cytotoxicity in CSF, measured through neuronal viability in primary cultures of motor cortex neurons, could reflect different mechanisms of the disease, but it does not predict disease outcome. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Clinical Prognosis in Neonatal Bacterial Meningitis: The Role of Cerebrospinal Fluid Protein.
Tan, Jintong; Kan, Juan; Qiu, Gang; Zhao, Dongying; Ren, Fang; Luo, Zhongcheng; Zhang, Yongjun
2015-01-01
Neonates are at high risk of meningitis and of resulting neurologic complications. Early recognition of neonates at risk of poor prognosis would be helpful in providing timely management. From January 2008 to June 2014, we enrolled 232 term neonates with bacterial meningitis admitted to 3 neonatology departments in Shanghai, China. The clinical status on the day of discharge from these hospitals or at a postnatal age of 2.5 to 3 months was evaluated using the Glasgow Outcome Scale (GOS). Patients were classified into two outcome groups: good (167 cases, 72.0%, GOS = 5) or poor (65 cases, 28.0%, GOS = 1-4). Neonates with good outcome had less frequent apnea, drowsiness, poor feeding, bulging fontanelle, irritability and more severe jaundice compared to neonates with poor outcome. The good outcome group also had less pneumonia than the poor outcome group. Besides, there were statistically significant differences in hemoglobin, mean platelet volume, platelet distribution width, C-reaction protein, procalcitonin, cerebrospinal fluid (CSF) glucose and CSF protein. Multivariate logistic regression analyses suggested that poor feeding, pneumonia and CSF protein were the predictors of poor outcome. CSF protein content was significantly higher in patients with poor outcome. The best cut-offs for predicting poor outcome were 1,880 mg/L in CSF protein concentration (sensitivity 70.8%, specificity 86.2%). After 2 weeks of treatment, CSF protein remained higher in the poor outcome group. High CSF protein concentration may prognosticate poor outcome in neonates with bacterial meningitis.
Forselv, Kristine J N; Lorentzen, Åslaug R; Ljøstad, Unn; Mygland, Åse; Eikeland, Randi; Kjelland, Vivian; Noraas, Sølvi; Quarsten, Hanne
2018-04-01
Tests for direct detection of Borrelia burgdorferi sensu lato (Bb) in Lyme neuroborreliosis (LNB) are needed. Detection of Bb DNA using PCR is promising, but clinical utility is hampered by low diagnostic sensitivity. We aimed to examine whether diagnostic sensitivity can be improved by the use of larger cerebrospinal fluid (CSF) volumes and faster handling of samples. Patients who underwent CSF examination for LNB were included. We collected two millilitres of CSF for PCR analysis, extracted DNA from the pellets within 24 h and analysed the eluate by two real-time PCR protocols (16S rRNA and OspA). Patients who fulfilled diagnostic criteria for LNB were classified as LNB cases and the rest as controls. Bb DNA in CSF was detected by PCR in seven of 28 adults with LNB. Two were Bb antibody negative. No Bb DNA was detected in CSF from 137 controls. Diagnostic sensitivity was 25% and specificity 100%. There was a non-significant trend towards larger CSF sample volume, faster handling of the sample, shorter duration of symptoms, and higher CSF cell count in the PCR-positive cases. We did not find that optimized handling of CSF increased diagnostic sensitivity of PCR in adults with LNB. However, our case series is small and we hypothesize that the importance of these factors will be clarified in further studies with larger case series and altered study design. PCR for diagnosis of LNB may be useful in cases without Bb antibodies due to short duration of symptoms.
Moresco, Monica; Lecciso, Mariangela; Ocadlikova, Darina; Filardi, Marco; Melzi, Silvia; Kornum, Birgitte Rahbek; Antelmi, Elena; Pizza, Fabio; Mignot, Emmanuel; Curti, Antonio; Plazzi, Giuseppe
2018-04-01
Type 1 narcolepsy (NT1) is a central hypersomnia linked to the destruction of hypocretin-producing neurons. A great body of genetic and epidemiological data points to likely autoimmune disease aetiology. Recent reports have characterized peripheral blood T-cell subsets in NT1, whereas data regarding the cerebrospinal fluid (CSF) immune cell composition are lacking. The current study aimed to characterize the T-cell and natural killer (NK) cell subsets in NT1 patients with long disease course. Immune cell subsets from CSF and peripheral blood mononuclear cell (PBMC) samples were analysed by flow cytometry in two age-balanced and sex-balanced groups of 14 NT1 patients versus 14 healthy controls. The frequency of CSF cell groups was compared with PBMCs. Non-parametric tests were used for statistical analyses. The NT1 patients did not show significant differences of CSF immune cell subsets compared to controls, despite a trend towards higher CD4 + terminally differentiated effector memory T cells. T cells preferentially displayed a memory phenotype in the CSF compared to PBMCs. Furthermore, a reduced frequency of CD4 + terminally differentiated effector memory T cells and an increased frequency of NK CD56 bright cells was observed in PBMCs from patients compared to controls. Finally, the ratio between CSF and peripheral CD4 + terminally differentiated effector memory T cells was two-fold increased in NT1 patients versus controls. Significant differences in PBMCs and in CSF/PBMC ratios of immune cell profile were found in NT1 patients compared to healthy controls. These differences might have arisen from the different HLA status, or be primary or secondary to hypocretin deficiency. Further functional studies in patients close to disease onset are required to understand NT1 pathophysiology. Copyright © 2017 Elsevier B.V. All rights reserved.
Berger, Florian; Kubik-Huch, Rahel A; Niemann, Tilo; Schmid, Hans Ruedi; Poetzsch, Michael; Froehlich, Johannes M; Beer, Jürg H; Thali, Michael J; Kraemer, Thomas
2018-05-08
Purpose To evaluate whether gadolinium penetrates human cerebrospinal fluid (CSF) after MR imaging (MRI) with a gadolinium-based contrast agent (GBCA). Materials and Methods For this retrospective study, the authors analyzed 60 CSF samples from 57 patients (median age, 50 years; range, 3-92 years) who underwent one contrast material-enhanced MRI examination with gadoterate meglumine within 60 days of CSF extraction between January and December 2016. CSF samples from patients who underwent MRI without contrast material administration (n = 22) or those who underwent contrast-enhanced MRI at least 1 year before extraction (n = 2) were analyzed and used as control samples. CSF measurements were performed with inductively coupled plasma mass spectrometry by monitoring the gadolinium 158 isotope. Statistical analyses were performed by using a preliminary Kruskal-Wallis test. Results Higher CSF gadolinium concentrations were detected within the first 8 hours after GBCA administration (mean concentration, 1152 ng/mL ± 734.6). Concentrations were lower between 8 and 48 hours (872 ng/mL ± 586). After 48 hours, gadolinium was almost completely cleared from CSF (121 ng/mL ± 296.3). All but two samples from the 24 control patients (median age, 60.5 years; range, 19-79 years) were negative for the presence of gadolinium. Those samples were from patients who had undergone GBCA-enhanced MRI examination more than a year before CSF extraction (0.1 and 0.2 ng/mL after 1 and 3 years, respectively). The concentrations in patients with chronic renal insufficiency (n = 3), cerebral toxoplasmosis (n = 1), and liver cirrhosis (n = 1) were higher than the mean concentrations. Conclusion Gadoterate meglumine can be detected in human CSF after intravenous administration. © RSNA, 2018.
2001-10-25
THE CEREBRO -SPINAL FLUID (CSF) DYNAMICS UNDER QUASI- STATIC CONDITION DURING A CARDIAC CYCLE Loïc FIN, Reinhard GREBE, Olivier BALÉDENT, Ilana...from... to) - Title and Subtitle Numerical Study of the Cerebro -Spinal Fluid (CSF) Dynamics Under Quasistatic Condition During a Cardiac Cycle
Kruse, Niels; Persson, Staffan; Alcolea, Daniel; Bahl, Justyna M C; Baldeiras, Ines; Capello, Elisabetta; Chiasserini, Davide; Bocchio Chiavetto, Luisella; Emersic, Andreja; Engelborghs, Sebastiaan; Eren, Erden; Fladby, Tormod; Frisoni, Giovanni; García-Ayllón, María-Salud; Genc, Sermin; Gkatzima, Olymbia; Heegaard, Niels H H; Janeiro, André M; Kováčech, Branislav; Kuiperij, H Bea; Leitão, Maria J; Lleó, Alberto; Martins, Madalena; Matos, Mafalda; Mollergard, Hanne M; Nobili, Flavio; Öhrfelt, Annika; Parnetti, Lucilla; de Oliveira, Catarina Resende; Rot, Uros; Sáez-Valero, Javier; Struyfs, Hanne; Tanassi, Julia T; Taylor, Peggy; Tsolaki, Magda; Vanmechelen, Eugeen; Verbeek, Marcel M; Zilka, Norbert; Blennow, Kaj; Zetterberg, Henrik; Mollenhauer, Brit
2015-09-01
Decreased levels of alpha-synuclein (aSyn) in cerebrospinal fluid (CSF) in Parkinson's disease and related synucleinopathies have been reported, however, not consistently in all cross-sectional studies. To test the performance of one recently released human-specific enzyme-linked immunosorbent assay (ELISA) for the quantification of aSyn in CSF, we carried out a round robin trial with 18 participating laboratories trained in CSF ELISA analyses within the BIOMARKAPD project in the EU Joint Program - Neurodegenerative Disease Research. CSF samples (homogeneous aliquots from pools) and ELISA kits (one lot) were provided centrally and data reported back to one laboratory for data analysis. Our study showed that although factors such as preanalytical sample handling and lot-to-lot variability were minimized by our study design, we identified high variation in absolute values of CSF aSyn even when the same samples and same lots of assays were applied. We further demonstrate that although absolute concentrations differ between laboratories the quantitative results are comparable. With further standardization this assay may become an attractive tool for comparing aSyn measurements in diverse settings. Recommendations for further validation experiments and improvement of the interlaboratory results obtained are given. Copyright © 2015 Elsevier Inc. All rights reserved.
Lower CSF Aβ is Associated with HAND in HIV-Infected Adults with a Family History of Dementia
Fazeli, Pariya. L.; Moore, David J.; Franklin, Donald R.; Umlauf, Anya; Heaton, Robert K.; Collier, Ann C.; Marra, Christina M.; Clifford, David B.; Gelman, Benjamin B.; Sacktor, Ned C.; Morgello, Susan; Simpson, David M.; McCutchan, John A.; Grant, Igor; Letendre, Scott L.
2015-01-01
Background Both family history of dementia (FHD) and lower levels of Aβ-42 are indepentently associated with worse neurocognitive functioning in HIV-infected patients. Objective To examine the relationships between cerebrospinal fluid (CSF) Aβ-42 and FHD with HIV-associated neurocognitive disorders (HAND). Methods One hundred eighty-three HIV+ adults underwent neuropsychological and neuromedical assessments, and determination of CSF Aβ-42 concentration and FHD (defined as a self-reported first or second-degree relative with a dementia diagnosis). Univariate analyses and multivariable logistic regressions were used. Results FHD was not associated with HAND (p = 0.24); however, CSF Aβ-42 levels were lower (p = 0.03) in the HAND group, but were not associated with FHD (p = 0.89). Multivariable models showed a main effect of CSF Aβ-42 (p = 0.03) and a trend-level (p = 0.06) interaction between FHD and CSF Aβ-42, such that lower CSF Aβ-42 was associated with HAND in those with FHD (p < 0.01) compared to those without FHD (p = 0.83). An analysis in those with follow-up data showed that higher baseline CSF Aβ-42 was associated with lower risk of neurocognitive decline (p = 0.02). While we did not find an FHD X CSF Aβ-42 interaction (p = 0.83), when analyses were stratified by FHD, lower CSF Aβ-42 was associated at the trend-level with neurocognitive decline in the FHD group (p = 0.08) compared to the no FHD group (p = 0.15). Conclusions FHD moderates the relationship between of CSF Aβ-42 and HAND. The findings highlight the complexities in interpreting the relationships between biomarkers of age-related neurodegeneration and HAND. PMID:26673902
An update on the use of cerebrospinal fluid analysis as a diagnostic tool in multiple sclerosis.
Gastaldi, Matteo; Zardini, Elisabetta; Franciotta, Diego
2017-01-01
Intrathecal B-lymphocyte activation is a hallmark of multiple sclerosis (MS), a multi-factorial inflammatory-demyelinating disease of the central nervous system. Such activation has a counterpart in the cerebrospinal fluid (CSF) oligoclonal IgG bands (OCB), whose diagnostic role in MS has been downgraded within the current McDonald's criteria. With a theoretico-practical approach, the authors review the physiopathological basis of the CSF dynamics, and the state-of-the-art of routine CSF analysis and CSF biomarkers in MS. Areas covered: The authors discuss pros and cons of CSF analysis, including critical evaluations of both well-established, and promising diagnostic and prognostic laboratory tools. New acquisitions on the CSF and cerebral interstitial fluid dynamics are also presented. The authors searched the PubMed database for English-language articles reported between January 2010 and June 2016, using the key words 'multiple sclerosis', 'cerebrospinal fluid', 'oligoclonal bands'. Reference lists of relevant articles were scanned for additional studies. Expert commentary: The availability of performing high-quality, routine CSF tests in specialized laboratories, the emerging potential of novel CSF biomarkers, and the trend for early treatments should induce a reappraisal of CSF analysis for diagnostic and prognostic purposes in MS. Further procedural and methodological improvements seem to be necessary in both research and translational diagnostic CSF settings.
... Alternative Names Culture - CSF; Spinal fluid culture; CSF culture Images Pneumococci organism References Karcher DS, McPherson RA. Cerebrospinal, synovial, serous body fluids, and alternative specimens. In: McPherson RA, Pincus ...
Mehta, Gautam U; Oldfield, Edward H
2012-06-01
Cerebrospinal fluid leakage is a major complication of transsphenoidal surgery. An intraoperative CSF leak, which occurs in up to 50% of pituitary tumor cases, is the only modifiable risk factor for postoperative leaks. Although several techniques have been described for surgical repair when an intraoperative leak is noted, none has been proposed to prevent an intraoperative CSF leak. The authors postulated that intraoperative CSF drainage would diminish tension on the arachnoid, decrease the rate of intraoperative CSF leakage during surgery for larger tumors, and reduce the need for surgical repair of CSF leaks. The results of 114 transsphenoidal operations for pituitary macroadenoma performed without intraoperative CSF drainage were compared with the findings from 44 cases in which a lumbar subarachnoid catheter was placed before surgery to drain CSF at the time of dural exposure and tumor removal. Cerebrospinal fluid drainage reduced the rate of intraoperative CSF leakage from 41% to 5% (p < 0.001). This reduction occurred in macroadenomas with (from 57% to 5%, p < 0.001) and those without suprasellar extension (from 29% to 0%, p = 0.31). The rate of postoperative CSF leakage was similar (5% vs 5%), despite the fact that intraoperative CSF drainage reduced the need for operative repair (from 32% to 5%, p < 0.001). There were no significant catheter-related complications. Cerebrospinal fluid drainage during transsphenoidal surgery for macroadenomas reduces the rate of intraoperative CSF leaks. This preventative measure obviated the need for surgical repair of intraoperative CSF leaks using autologous fat graft placement, other operative techniques, postoperative lumbar drainage, and/or reoperation in most patients and is associated with minimal risks.
CSF total protein is a test to determine the amount of protein in your spinal fluid, also called cerebrospinal fluid (CSF). ... The normal protein range varies from lab to lab, but is typically about 15 to 60 milligrams per deciliter (mg/dL) ...
Barstad, Bjørn; Tveitnes, Dag; Noraas, Sølvi; Selvik Ask, Ingvild; Saeed, Maryam; Bosse, Franziskus; Vigemyr, Grete; Huber, Ilka; Øymar, Knut
2017-12-01
Current markers of Lyme neuroborreliosis (LNB) in children have insufficient sensitivity in the early stage of disease. The B-lymphocyte chemoattractant CXCL13 in the cerebrospinal fluid (CSF) may be useful in diagnosing LNB, but its specificity has not been evaluated in studies including children with clinically relevant differential diagnoses. The aim of this study was to elucidate the diagnostic value of CSF CXCL13 in children with symptoms suggestive of LNB. Children with symptoms suggestive of LNB were included prospectively into predefined groups with a high or low likelihood of LNB based on CSF pleocytosis and the detection of Borrelia antibodies or other causative agents. CSF CXCL13 levels were compared between the groups, and receiver-operating characteristic analyses were performed to indicate optimal cutoff levels to discriminate LNB from non-LNB conditions. Two hundred and ten children were included. Children with confirmed LNB (n=59) and probable LNB (n=18) had higher CSF CXCL13 levels than children with possible LNB (n=7), possible peripheral LNB (n=7), non-Lyme aseptic meningitis (n=12), non-meningitis (n=91) and negative controls (n=16). Using 18 pg/mL as a cutoff level, both the sensitivity and specificity of CSF CXCL13 for LNB (confirmed and probable) were 97%. Comparing only children with LNB and non-Lyme aseptic meningitis, the sensitivity and specificity with the same cutoff level were 97% and 83%, respectively. CSF CXCL13 is a sensitive marker of LNB in children. The specificity to discriminate LNB from non-Lyme aseptic meningitis may be more moderate, suggesting that CSF CXCL13 should be used together with other variables in diagnosing LNB in children.
CTP (Cochlin-tomoprotein) detection in the profuse fluid leakage (gusher) from cochleostomy.
Ikezono, Tetsuo; Sugizaki, Kazuki; Shindo, Susumu; Sekiguchi, Satomi; Pawankar, Ruby; Baba, Shunkichi; Yagi, Toshiaki
2010-08-01
By testing 125 samples, we confirmed that Cochlin-tomoprotein (CTP) is present in the perilymph, not in cerebrospinal fluid (CSF). Perilymph and CSF exist in two distinct compartments, even in the case of a malformed inner ear with a bony defect in the lamina cribrosa, as described here. Cochleostomy might have suddenly decreased the perilymph pressure, allowing the influx of CSF into the inner ear resulting in profuse fluid leakage, first perilymph then CSF. The first purpose of this study was to further confirm the specificity of the perilymph-specific protein CTP that we reported recently. Secondly, we assessed the nature of the fluid leakage from the cochleostomy using the CTP detection test. A standardized CTP detection test was performed on 65 perilymph and 60 CSF samples. Samples of profuse fluid leakage collected from cochleostomy during cochlear implantation surgery of one patient with branchio-oto-renal (BOR) syndrome were also tested by the CTP detection test. CTP was detected in 60 of 65 perilymph samples but not in any of the CSF samples. The leaked fluid was shown to contain CTP, i.e. perilymph, at the outset, and then the CTP detection signals gradually disappeared as time elapsed.
Piccio, Laura; Deming, Yuetiva; Del-Águila, Jorge L; Ghezzi, Laura; Holtzman, David M; Fagan, Anne M; Fenoglio, Chiara; Galimberti, Daniela; Borroni, Barbara; Cruchaga, Carlos
2016-06-01
Low frequency coding variants in TREM2 are associated with increased Alzheimer disease (AD) risk, while loss of functions mutations in the gene lead to an autosomal recessive early-onset dementia, named Nasu-Hakola disease (NHD). TREM2 can be detected as a soluble protein in cerebrospinal fluid (CSF) and plasma, and its CSF levels are elevated in inflammatory CNS diseases. We measured soluble TREM2 (sTREM2) in the CSF of a large AD case-control dataset (n = 180) and 40 TREM2 risk variant carriers to determine whether CSF sTREM2 levels are associated with AD status or mutation status. We also performed genetic studies to identify genetic variants associated with CSF sTREM2 levels. CSF, but not plasma, sTREM2 was highly correlated with CSF total tau and phosphorylated-tau levels (r = 0.35, P < 1×10(-4); r = 0.40, P < 1×10(-4), respectively), but not with CSF Aβ42. AD cases presented higher CSF sTREM2 levels than controls (P = 0.01). Carriers of NHD-associated TREM2 variants presented significantly lower CSF sTREM2 levels, supporting the hypothesis that these mutations lead to reduced protein production/function (R136Q, D87N, Q33X or T66M; P = 1×10(-3)). In contrast, CSF sTREM2 levels were significantly higher in R47H carriers compared to non-carriers (P = 6×10(-3)), suggesting that this variant does not impact protein expression and increases AD risk through a different pathogenic mechanism than NHD variants. In GWAS analyses for CSF sTREM2 levels the most significant signal was located on the MS4A gene locus (P = 5.45 × 10(-07)) corresponding to one of the SNPs reported to be associated with AD risk in this locus. Furthermore, SNPs involved in pathways related to virus cellular entry and vesicular trafficking were overrepresented, suggesting that CSF sTREM2 levels could be an informative phenotype for AD.
Comar, Manola; Monasta, Lorenzo; Zanotta, Nunzia; Vecchi Brumatti, Liza; Ricci, Giuseppe; Zauli, Giorgio
2013-10-01
Although human papillomavirus (HPV) is the most common sexually transmitted infection, there are very scant data about the influence of this virus on the in vitro fertilization outcome. To assess the presence of HPV in the cervico-vaginal fluid in relationship to the in vitro fertilization (IVF) outcome and to the concentration of selected cytokines, known to affect embryo implantation and gestation: granulocyte-macrophage colony stimulating factor (GM-CSF) and granulocyte colony stimulating factor (G-CSF). Cervico-vaginal samples were collected on the day of oocyte pick-up from 82 women. Vaginas were flushed with 50 mL of sterile water and 3 mL of fluid was collected. Twelve women (15%) were positive for HPV. Interestingly, among HPV(+) women live birth rate was about half of the rate in HPV(-) women, although the differences were not statistically significant due to the low number of cases. Cervico-vaginal samples of a sub-group of 29 (8 HPV(+) and 21 HPV(-)) women were analyzed for GM-CSF and G-CSF by ELISA. GM-CSF but not G-CSF was significantly lower in the cervico-vaginal fluid of HPV(+) than in HPV(-) women. Since GM-CSF plays an important role during pregnancy, the reduced levels of GM-CSF in the cervico-vaginal fluid of HPV(+) women might contribute to explain the reduced live birth rate observed in HPV(+) women. Copyright © 2013 Elsevier B.V. All rights reserved.
Klarica, Marijan; Radoš, Milan; Erceg, Gorislav; Petošić, Antonio; Jurjević, Ivana; Orešković, Darko
2014-01-01
Intracranial hypertension is a severe therapeutic problem, as there is insufficient knowledge about the physiology of cerebrospinal fluid (CSF) pressure. In this paper a new CSF pressure regulation hypothesis is proposed. According to this hypothesis, the CSF pressure depends on the laws of fluid mechanics and on the anatomical characteristics inside the cranial and spinal space, and not, as is today generally believed, on CSF secretion, circulation and absorption. The volume and pressure changes in the newly developed CSF model, which by its anatomical dimensions and basic biophysical features imitates the craniospinal system in cats, are compared to those obtained on cats with and without the blockade of craniospinal communication in different body positions. During verticalization, a long-lasting occurrence of negative CSF pressure inside the cranium in animals with normal cranio-spinal communication was observed. CSF pressure gradients change depending on the body position, but those gradients do not enable unidirectional CSF circulation from the hypothetical site of secretion to the site of absorption in any of them. Thus, our results indicate the existence of new physiological/pathophysiological correlations between intracranial fluids, which opens up the possibility of new therapeutic approaches to intracranial hypertension.
Bora, Adriana; Anderson, Carol; Bachani, Muznabanu; Nath, Avindra; Cotter, Robert J.
2012-01-01
The cerebrospinal fluid (CSF) is produced in the brain by cells in the choroid plexus at a rate of 500mL/day. It is the only body fluid in direct contact with the brain. Thus, any changes in the CSF composition will reflect pathological processes and make CSF a potential source of biomarkers for different disease states. Proteomics offers a comprehensive view of the proteins found in CSF. In this study, we use a recently developed non-gel based method of sample preparation of CSF followed by liquid chromatography high accuracy mass spectrometry (LC-MS) for MS and MS/MS analyses, allowing unambiguous identification of peptides/proteins. Gel-eluted liquid fraction entrapment electrophoresis (Gelfree) is used to separate a CSF complex protein mixture in 12 user-selectable liquid-phase molecular weight fractions. Using this high throughput workflow we have been able to separate CSF intact proteins over a broad mass range 3.5 kDa-100 kDa with high resolution between 15 kDa and 100 kDa in 2 hours and 40 min. We have completely eliminated albumin and were able to interrogate the low abundance CSF proteins in a highly reproducible manner from different CSF samples in the same time. Using LC-MS as a downstream analysis, we identified 368 proteins using MidiTrap G-10 desalting columns and 166 proteins (including 57 unique proteins) using Zeba spin columns with 5% false discovery rate (FDR). Prostaglandin D2 synthase, Chromogranin A, Apolipoprotein E, Chromogranin B, Secretogranin III, Cystatin C, VGF nerve growth factor, Cadherin 2 are a few of the proteins that were characterized. The Gelfree-LC-MS is a robust method for the analysis of the human proteome that we will use to develop biomarkers for several neurodegenerative diseases and to quantitate these markers using multiple reaction monitoring. PMID:22537003
Jespersen, Sofie; Pedersen, Karin Kæreby; Anesten, Birgitta; Zetterberg, Henrik; Fuchs, Dietmar; Gisslén, Magnus; Hagberg, Lars; Trøseid, Marius; Nielsen, Susanne Dam
2016-04-21
HIV-associated cognitive impairment has declined since the introduction of combination antiretroviral treatment (cART). However, milder forms of cognitive impairment persist. Inflammation in the cerebrospinal fluid (CSF) has been associated with cognitive impairment, and CSF neurofilament light chain protein (NFL) and CSF neopterin concentrations are increased in those patients. Microbial translocation in HIV infection has been suggested to contribute to chronic inflammation, and lipopolysaccharide (LPS) and soluble CD14 (sCD14) are markers of microbial translocation and the resulting monocyte activation, respectively. We hypothesised that microbial translocation contributes to inflammation and axonal damage in the central nervous system (CNS) in untreated HIV infection. We analyzed paired samples of plasma and CSF from 62 HIV-infected, untreated patients without cognitive symptoms from Sahlgrenska University Hospital, Gothenburg, Sweden. Measurements of neopterin and NFL in CSF were available from previous studies. Plasma and CSF sCD14 was measured using ELISA (R&D, Minneapolis, MN), and plasma and CSF LPS was measured using LAL colorimetric assay (Lonza, Walkersville, MD, USA). Univariate and multivariate regression analyses were performed. LPS in plasma was associated with plasma sCD14 (r = 0.31, P = 0.015), and plasma sCD14 was associated with CSF sCD14 (r = 0.32, P = 0.012). Furthermore, CSF sCD14 was associated with NFL (r = 0.32, P = 0.031) and neopterin (r = 0.32, P = 0.012) in CSF. LPS was not detectable in CSF. In a multivariate regression model CSF sCD14 remained associated with NFL and neopterin after adjusting for age, CD4+ cell count, and HIV RNA in CSF. In a group of untreated, HIV-infected patients LPS was associated with sCD14 in plasma, and plasma sCD14 was associated CSF sCD14. CSF sCD14 were associated with markers of CNS inflammation and axonal damage. This suggest that microbial translocation might be a driver of systemic and CNS inflammation. However, LPS was not detectable in the CSF, and since sCD14 is a marker of monocyte activation sCD14 may be increased due to other causes than microbial translocation. Further studies regarding cognitive impairment and biomarkers are warranted to fully understand causality.
Distribution of HIV RNA in CSF and Blood is linked to CD4/CD8 Ratio During Acute HIV.
Chan, Phillip; Patel, Payal; Hellmuth, Joanna; Colby, Donn J; Kroon, Eugène; Sacdalan, Carlo; Pinyakorn, Suteeraporn; Jagodzinski, Linda; Krebs, Shelly; Ananworanich, Jintanat; Valcour, Victor; Spudich, Serena
2018-05-07
HIV RNA levels in the plasma and cerebrospinal fluid (CSF) are correlated in chronic HIV infection but their dynamics have not been characterized during acute infection. This study analyzed predictors of CSF HIV RNA and relative degree of CNS viral transmigration expressed as plasma minus CSF HIV log10 RNA (PCratio) during untreated acute HIV infection. CSF immune markers were compared between groups with different PCratio. 117 mostly male (97%) participants in the RV254 cohort in Bangkok, Thailand, had median age 28 years and an estimated median 18 days duration of infection; forty-three (37%) were Fiebig stages I/II. Twenty-seven (23%) had CSF HIV RNA <80 copies/ml. Those with quantifiable levels (n=90) had median CSF HIV RNA and PCratio of 3.76 and 2.36 Log10 copies/mL, respectively. HIV RNA peaked at Fiebig III in plasma and Fiebig IV in CSF. In multivariable analyses, plasma HIV RNA and CD4/CD8 ratio independently correlated with CSF HIV RNA (p<0.001) while CD4/CD8 ratio predicted PCratio (p=0.018). Participants with PCratio<1 had higher CSF neopterin, sCD163, IL-6 and sCD14 levels (all p<0.05). CD4/CD8 ratio independently correlated with CSF HIV RNA and PCratio, suggesting that immune responses modulate CNS viral entry at early infection.
[Endoscopic endonasal detection of cerebrospinal fluid leakage with topical fluorescein].
Sato, Taku; Kishida, Yugo; Watanabe, Tadashi; Tani, Akiko; Tada, Yasuhiro; Tamura, Takamitsu; Ichikawa, Masahiro; Sakuma, Jun; Omori, Koichi; Saito, Kiyoshi
2013-08-01
We evaluated the effectiveness of intraoperative topical application of fluorescein to detect the leakage point of cerebrospinal fluid(CSF)rhinorrhea. Three patients with CSF rhinorrhea were treated with an endoscopic endonasal technique. Ten percent fluorescein was topically used for intraoperative localization of the leak site. A change of the fluorescein color from brown to green due to dilation of CSF were recognized as evidence of CSF rhinorrhea. We repeated the procedure to detect any small defects. All CSF rhinorrheas were successfully repaired by this endoscopic endonasal approach. Topical application of fluorescein is simple and sensitive for identifying intraoperative CSF rhinorrhea.
Embryonic blood-cerebrospinal fluid barrier formation and function
Bueno, David; Parvas, Maryam; Hermelo, Ismaïl; Garcia-Fernàndez, Jordi
2014-01-01
During embryonic development and adult life, brain cavities and ventricles are filled with cerebrospinal fluid (CSF). CSF has attracted interest as an active signaling medium that regulates brain development, homeostasis and disease. CSF is a complex protein-rich fluid containing growth factors and signaling molecules that regulate multiple cell functions in the central nervous system (CNS). The composition and substance concentrations of CSF are tightly controlled. In recent years, it has been demonstrated that embryonic CSF (eCSF) has a key function as a fluid pathway for delivering diffusible signals to the developing brain, thus contributing to the proliferation, differentiation and survival of neural progenitor cells, and to the expansion and patterning of the brain. From fetal stages through to adult life, CSF is primarily produced by the choroid plexus. The development and functional activities of the choroid plexus and other blood–brain barrier (BBB) systems in adults and fetuses have been extensively analyzed. However, eCSF production and control of its homeostasis in embryos, from the closure of the anterior neuropore when the brain cavities become physiologically sealed, to the formation of the functional fetal choroid plexus, has not been studied in as much depth and remains open to debate. This review brings together the existing literature, some of which is based on experiments conducted by our research group, concerning the formation and function of a temporary embryonic blood–CSF barrier in the context of the crucial roles played by the molecules in eCSF. PMID:25389383
Radoš, Milan; Erceg, Gorislav; Petošić, Antonio; Jurjević, Ivana
2014-01-01
Intracranial hypertension is a severe therapeutic problem, as there is insufficient knowledge about the physiology of cerebrospinal fluid (CSF) pressure. In this paper a new CSF pressure regulation hypothesis is proposed. According to this hypothesis, the CSF pressure depends on the laws of fluid mechanics and on the anatomical characteristics inside the cranial and spinal space, and not, as is today generally believed, on CSF secretion, circulation and absorption. The volume and pressure changes in the newly developed CSF model, which by its anatomical dimensions and basic biophysical features imitates the craniospinal system in cats, are compared to those obtained on cats with and without the blockade of craniospinal communication in different body positions. During verticalization, a long-lasting occurrence of negative CSF pressure inside the cranium in animals with normal cranio-spinal communication was observed. CSF pressure gradients change depending on the body position, but those gradients do not enable unidirectional CSF circulation from the hypothetical site of secretion to the site of absorption in any of them. Thus, our results indicate the existence of new physiological/pathophysiological correlations between intracranial fluids, which opens up the possibility of new therapeutic approaches to intracranial hypertension. PMID:24748150
Cassol, Edana; Misra, Vikas; Dutta, Anupriya; Morgello, Susan; Gabuzda, Dana
2014-01-01
Objective(s): HIV-associated neurocognitive disorders (HAND) remain prevalent in HIV-infected patients on antiretroviral therapy (ART), but the underlying mechanisms are unclear. Some features of HAND resemble those of age-associated cognitive decline in the absence of HIV, suggesting that overlapping mechanisms may contribute to neurocognitive impairment. Design: Cross-sectional analysis of cerebrospinal fluid (CSF) from 100 individuals (46 HIV-positive patients and 54 HIV-negative controls). Methods: Untargeted CSF metabolite profiling was performed using liquid/gas chromatography followed by mass spectrometry. Cytokine profiling was performed by Bioplex. Bioinformatic analyses were performed in Metaboanalyst and R. Results: Alterations in the CSF metabolome of HIV patients on ART mapped to pathways associated with neurotransmitter production, mitochondrial function, oxidative stress, and metabolic waste. Many CSF metabolites altered in HIV overlapped with those altered with advanced age in HIV-negative controls, suggesting a pattern indicative of accelerated aging. Machine learning models identified neurotransmitters (glutamate, N-acetylaspartate), markers of glial activation (myo-inositol), and ketone bodies (beta-hydroxybutyric acid, 1,2-propanediol) as top-ranked classifiers of HAND. These CSF metabolites correlated with worse neurocognitive test scores, plasma inflammatory biomarkers [interferon (IFN)-α, IFN-γ, interleukin (IL)-8, IL-1β, IL-6, IL-2Ra], and intrathecal IFN responses (IFN-γ and kynurenine : tryptophan ratio), suggesting inter-relationships between systemic and intrathecal inflammation and metabolic alterations in CSF. Conclusions: Alterations in the CSF metabolome of HIV patients on ART suggest that persistent inflammation, glial responses, glutamate neurotoxicity, and altered brain waste disposal systems contribute to mechanisms involved in HAND that may be augmented with aging. PMID:24752083
Cerebrospinal Fluid Mechanics and Its Coupling to Cerebrovascular Dynamics
NASA Astrophysics Data System (ADS)
Linninger, Andreas A.; Tangen, Kevin; Hsu, Chih-Yang; Frim, David
2016-01-01
Cerebrospinal fluid (CSF) is not stagnant but displays fascinating oscillatory flow patterns inside the ventricular system and reversing fluid exchange between the cranial vault and spinal compartment. This review provides an overview of the current knowledge of pulsatile CSF motion. Observations contradicting classical views about its bulk production and clearance are highlighted. A clinical account of diseases of abnormal CSF flow dynamics, including hydrocephalus, syringomyelia, Chiari malformation type 1, and pseudotumor cerebri, is also given. We survey medical imaging modalities used to observe intracranial dynamics in vivo. Additionally, we assess the state of the art in predictive models of CSF dynamics. The discussion addresses open questions regarding CSF dynamics as they relate to the understanding and management of diseases.
Zhu, Jing-Cheng; Si, Meng-Ya; Li, Ya-Zhen; Chen, Huan-Zhu; Fan, Zhi-Cheng; Xie, Qing-Dong; Jiao, Xiao-Yang
2017-09-01
The aim of this study was to evaluate the clinical significance of circulating tight junction (TJ) proteins as biomarkers reflecting of leukaemia central nervous system (CNS) metastasis. TJs [claudin5 (CLDN5), occludin (OCLN) and ZO-1] concentrations were measured in serum and cerebrospinal fluid (CSF) samples obtained from 45 leukaemia patients. Serum ZO-1 was significantly higher (p < 0.05), but CSF ZO-1 levels were not significantly higher in the CNS leukaemia (CNSL) compared to the non-CNSL. The CNSL patients also had a lower CLDN5/ZO1 ratio in both serum and CSF than in non-CNSL patients (p < 0.05). The TJ index was negatively associated with WBC CSF , ALB CSF and BBB values in leukaemia patients. Among all of the parameters studied, CLDN5 CSF had the highest specificity in discriminating between CNSL and non-CNSL patients. Therefore, analysing serum and CSF levels of CLDN5, OCLN and the CLDN5/ZO1 ratio is valuable in evaluating the potential of leukaemia CNS metastasis. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Jost, Gregor; Frenzel, Thomas; Lohrke, Jessica; Lenhard, Diana Constanze; Naganawa, Shinji; Pietsch, Hubertus
2017-07-01
Signal hyperintensity on unenhanced MRI in certain brain regions has been reported after multiple administrations of some, but not all, gadolinium-based contrast agents (GBCAs). One potential initial pathway of GBCA entry into the brain, infiltration from blood into the cerebrospinal fluid (CSF), was systematically evaluated in this preclinical study. GBCA infiltration and distribution in the CSF were investigated in healthy rats using repeated fluid-attenuated MRI up to 4 h after high-dose (1.8 mmol/kg) administration of six marketed and one experimental GBCA. Additionally, gadolinium measurements in CSF, blood and brain tissue samples (after 24 h) were performed using inductively coupled plasma mass spectrometry. Enhanced MRI signals in the CSF spaces with similar distribution kinetics were observed for all GBCAs. No substantial differences in the gadolinium concentrations among the marketed GBCAs were found in the CSF, blood or brain tissue. After 4.5 h, the concentration in the CSF was clearly higher than in blood but was almost completely cleared and lower than the brain tissue concentration after 24 h. In contrast to the brain signal hyperintensities, no differences in penetration and distribution into the CSF of healthy rats exist among the marketed GBCAs. • Gadolinium-based contrast agents can cross the blood-CSF barrier. • Fluid-attenuated MRI shows GBCA distribution with CSF flow. • GBCA structure and physicochemical properties do not impact CSF penetration and distribution. • GBCA clearance from CSF was almost complete within 24 h in rats. • CSF is a potential pathway of GBCA entry into the brain.
Sun, Ira; Lim, Jia Xu; Goh, Chun Peng; Low, Shiong Wen; Kirollos, Ramez W; Tan, Chuen Seng; Lwin, Sein; Yeo, Tseng Tsai
2016-09-22
Postoperative cerebrospinal fluid (CSF) leak is a serious complication following trans-sphenoidal surgery for which elevated body mass index (BMI) has been implicated as a risk factor, albeit only in two recent North American studies. Given the paucity of evidence, we sought to determine if this association held true in an Asian population, where BMI criteria for obesity differ from the international standard. A retrospective study of 119 patients who underwent 123 trans-sphenoidal procedures for sellar lesions between May 2000 and May 2012 was conducted. Univariate and multivariate logistic regression analyses were performed to investigate the impact of elevated BMI and other risk factors on postoperative CSF leak. We found 10 (8.1%) procedures in ten patients that were complicated by postoperative CSF leak. The median BMI of patients with postoperative leak following trans-sphenoidal procedures was significantly higher than that of patients without postoperative CSF leak (27.0 kg/m2 vs. 24.6 kg/m2; p = 0.018). Patients categorised as either moderate or high risk under the Asian BMI classification were more likely to suffer from a postoperative leak (p = 0.030). Repeat procedures were also found to be significantly associated with postoperative CSF leak (p = 0.041). Elevated BMI predicts for postoperative CSF leak following trans-sphenoidal procedures, even in an Asian population, where the definition of obesity differs from international standards. Thus, BMI should be borne in mind during local and regional management decision-making processes prior to such procedures.
Rembach, Alan; Evered, Lisbeth A; Li, Qiao-Xin; Nash, Tabitha; Vidaurre, Lesley; Fowler, Christopher J; Pertile, Kelly K; Rumble, Rebecca L; Trounson, Brett O; Maher, Sarah; Mooney, Francis; Farrow, Maree; Taddei, Kevin; Rainey-Smith, Stephanie; Laws, Simon M; Macaulay, S Lance; Wilson, William; Darby, David G; Martins, Ralph N; Ames, David; Collins, Steven; Silbert, Brendan; Masters, Colin L; Doecke, James D
2015-11-19
Cerebrospinal fluid (CSF) biomarkers, although of established utility in the diagnostic evaluation of Alzheimer's disease (AD), are known to be sensitive to variation based on pre-analytical sample processing. We assessed whether gravity droplet collection versus syringe aspiration was another factor influencing CSF biomarker analyte concentrations and reproducibility. Standardized lumbar puncture using small calibre atraumatic spinal needles and CSF collection using gravity fed collection followed by syringe aspirated extraction was performed in a sample of elderly individuals participating in a large long-term observational research trial. Analyte assay concentrations were compared. For the 44 total paired samples of gravity collection and aspiration, reproducibility was high for biomarker CSF analyte assay concentrations (concordance correlation [95%CI]: beta-amyloid1-42 (Aβ42) 0.83 [0.71 - 0.90]), t-tau 0.99 [0.98 - 0.99], and phosphorylated tau (p-tau) 0.82 [95 % CI 0.71 - 0.89]) and Bonferroni corrected paired sample t-tests showed no significant differences (group means (SD): Aβ42 366.5 (86.8) vs 354.3 (82.6), p = 0.10; t-tau 83.9 (46.6) vs 84.7 (47.4) p = 0.49; p-tau 43.5 (22.8) vs 40.0 (17.7), p = 0.05). The mean duration of collection was 10.9 minutes for gravity collection and <1 minute for aspiration. Our results demonstrate that aspiration of CSF is comparable to gravity droplet collection for AD biomarker analyses but could considerably accelerate throughput and improve the procedural tolerability for assessment of CSF biomarkers.
Samuels, David C.; Kallianpur, Asha R.; Ellis, Ronald J.; Bush, William S.; Letendre, Scott; Franklin, Donald; Grant, Igor; Hulgan, Todd
2017-01-01
Background Mitochondrial DNA (mtDNA) haplogroups are ancestry-related patterns of single-nucleotide polymorphisms that are associated with differential mitochondrial function in model systems, neurodegenerative diseases in HIV-negative populations, and chronic complications of HIV infection, including neurocognitive impairment. We hypothesized that mtDNA haplogroups are associated with neuroinflammation in HIV-infected adults. Methods CNS HIV Antiretroviral Therapy Effects Research (CHARTER) is a US-based observational study of HIV-infected adults who underwent standardized neurocognitive assessments. Participants who consented to DNA collection underwent whole blood mtDNA sequencing, and a subset also underwent lumbar puncture. IL-6, IL-8, TNF-α (high-sensitivity), and IP-10 were measured in cerebrospinal fluid (CSF) by immunoassay. Multivariable regression of mtDNA haplogroups and log-transformed CSF biomarkers were stratified by genetic ancestry using whole-genome nuclear DNA genotyping (European [EA], African [AA], or Hispanic ancestry [HA]), and adjusted for age, sex, antiretroviral therapy (ART), detectable CSF HIV RNA, and CD4 nadir. A total of 384 participants had both CSF cytokine measures and genetic data (45% EA, 44% AA, 11% HA, 22% female, median age 43 years, 74% on ART). Results In analyses stratified by the 3 continental ancestry groups, no haplogroups were significantly associated with the 4 biomarkers. In the subgroup of participants with undetectable plasma HIV RNA on ART, European haplogroup H participants had significantly lower CSF TNF-α (P = 0.001). Conclusions Lower CSF TNF-α may indicate lower neuroinflammation in the haplogroup H participants with well-controlled HIV on ART. PMID:28317034
Effects of irregular cerebrospinal fluid production rate in human brain ventricular system
NASA Astrophysics Data System (ADS)
Hadzri, Edi Azali; Shamsudin, Amir Hamzah; Osman, Kahar; Abdul Kadir, Mohammed Rafiq; Aziz, Azian Abd
2012-06-01
Hydrocephalus is an abnormal accumulation of fluid in the ventricles and cavities in the brain. It occurs when the cerebrospinal fluid (CSF) flow or absorption is blocked or when excessive CSF is secreted. The excessive accumulation of CSF results in an abnormal widening of the ventricles. This widening creates potentially harmful pressure on the tissues of the brain. In this study, flow analysis of CSF was conducted on a three-dimensional model of the third ventricle and aqueduct of Sylvius, derived from MRI scans. CSF was modeled as Newtonian Fluid and its flow through the region of interest (ROI) was done using EFD. Lab software. Different steady flow rates through the Foramen of Monro, classified by normal and hydrocephalus cases, were modeled to investigate its effects. The results show that, for normal and hydrocephalus cases, the pressure drop of CSF flow across the third ventricle was observed to be linearly proportionally to the production rate increment. In conclusion, flow rates that cause pressure drop of 5 Pa was found to be the threshold for the initial sign of hydrocephalus.
de Almeida, Sergio M; Rotta, Indianara; Ribeiro, Clea E; Oliveira, Michelli F; Chaillon, Antoine; de Pereira, Ana Paula; Cunha, Ana Paula; Zonta, Marise; Bents, Joao França; Raboni, Sonia M; Smith, Davey; Letendre, Scott; Ellis, Ronald J
2017-06-01
Despite the effective suppression of viremia with antiretroviral therapy, HIV can still replicate in the central nervous system (CNS). This was a longitudinal study of the cerebrospinal fluid (CSF) and serum dynamics of several biomarkers related to inflammation, the blood-brain barrier, neuronal injury, and IgG intrathecal synthesis in serial samples of CSF and serum from a patient infected with HIV-1 subtype C with CNS compartmentalization.The phylogenetic analyses of plasma and CSF samples in an acute phase using next-generation sequencing and F-statistics analysis of C2-V3 haplotypes revealed distinct compartmentalized CSF viruses in paired CSF and peripheral blood mononuclear cell samples. The CSF biomarker analysis in this patient showed that symptomatic CSF escape is accompanied by CNS inflammation, high levels of cell and humoral immune biomarkers, CNS barrier dysfunction, and an increase in neuronal injury biomarkers with demyelization. Independent and isolated HIV replication can occur in the CNS, even in HIV-1 subtype C, leading to compartmentalization and development of quasispecies distinct from the peripheral plasma. These immunological aspects of the HIV CNS escape have not been described previously. To our knowledge, this is the first report of CNS HIV escape and compartmentalization in HIV-1 subtype C.
Arning, Erland; Bottiglieri, Teodoro
2016-01-01
We describe a simple stable isotope dilution method for accurate and precise measurement of γ-aminobutyric acid (GABA), a major inhibitory neurotransmitter in human cerebrospinal fluid (CSF) as a clinical diagnostic test. Determination of GABA in CSF (50 μL) was performed utilizing high performance liquid chromatography coupled with electrospray positive ionization tandem mass spectrometry (HPLC-ESI-MS/MS). Analysis of free and total GABA requires two individual sample preparations and mass spectrometry analyses. Free GABA in CSF is determined by a 1:2 dilution with internal standard (GABA-D2) and injected directly onto the HPLC-ESI-MS/MS system. Determination of total GABA in CSF requires additional sample preparation in order to hydrolyze all the bound GABA in the sample to the free form. This requires hydrolyzing the sample by boiling in acidic conditions (hydrochloric acid) for 4 h. The sample is then further diluted 1:10 with a 90 % acetonitrile/0.1 % formic acid solution and injected into the HPLC-ESI-MS/MS system. Each assay is quantified using a five-point standard curve and is linear from 6 nM to 1000 nM and 0.63 μM to 80 μM for free and total GABA, respectively.
Yeh, Hsin-Hua; Yang, Yuan-Han; Ko, Ju-Yun; Chen, Su-Hwei
2006-07-07
A simple micellar electrokinetic chromatography (MEKC) method with UV detection at 200 nm for analysis of piracetam in plasma and in cerebrospinal fluid (CSF) by direct injection without any sample pretreatment is described. The separation of piracetam from biological matrix was performed at 25 degrees C using a background electrolyte consisting of Tris buffer with sodium dodecyl sulfate (SDS) as the electrolyte solution. Several parameters affecting the separation of the drug from biological matrix were studied, including the pH and concentrations of the Tris buffer and SDS. Under optimal MEKC condition, good separation with high efficiency and short analyses time is achieved. Using imidazole as an internal standard (IS), the linear ranges of the method for the determination of piracetam in plasma and in CSF were all between 5 and 500 microg/mL; the detection limit of the drug in plasma and in CSF (signal-to-noise ratio=3; injection 0.5 psi, 5s) was 1.0 microg/mL. The applicability of the proposed method for determination of piracetam in plasma and CSF collected after intravenous administration of 3g piracetam every 6h and oral administration 1.2g every 6h in encephalopathy patients with aphasia was demonstrated.
Cieśla, Andrzej; Pierzchała-Koziec, Krystyna; Mach, Tomasz; Garlicki, Aleksander; Bociaga-Jasik, Monika
2005-05-01
Assessment of met-enkephalin level in the cerebrospinal fluid (CSF) of patients with inflammatory process of the central nervous system (CNS) was performed to estimate the role of opioid system in viral and bacterial meningitis, and encephalitis. The met-enkephalin level, protein concentration and pleocytosis were analysed in the CSF of 53 patients with viral or bacterial meningitis, encephalitis, and in the control group of patients without inflammatory disease of the CNS. The biggest differences have been observed between the groups of patients with bacterial meningitis and those without inflammatory disease of the CNS, but they were statistically insignificant. There was a lack of correlation between met-enkephalin level and some factors of inflammatory process in CSF, such as pleocytosis and protein concentration. We have not revealed any correlation between etiological agent of CNS infection and opioid system of the brain. Despite the fact that, we observed in the study statistically insignificant changes, we suggest to continue investigations, including additional parameters which are characteristic for the CNS diseases.
Illes, Sebastian
2017-01-01
Current progress in neuroscience demonstrates that the brain is not an isolated organ and is influenced by the systemic environment and extracerebral processes within the body. In view of this new concept, blood and cerebrospinal fluid (CSF) are important body fluids linking extracerebral and intracerebral processes. For decades, substantial evidence has been accumulated indicating that CSF modulates brain states and influences behavior as well as cognition. This chapter provides an overview of how CSF directly modulates the function of different types of brain cells, such as neurons, neural stem cells, and CSF-contacting cells. Alterations in CSF content occur in most pathologic central nervous system (CNS) conditions. In a classic view, the function of CSF is to drain waste products and detrimental factors derived from diseased brain parenchyma. This chapter presents examples for how intra- and extracerebral pathologic processes lead to alterations in the CSF content. Current knowledge about how pathologically altered CSF influences the functionality of brain cells will be presented. Thereby, it becomes evident that CSF has more than a drainage function and has a causal role for the etiology and pathogenesis of different CNS diseases. Copyright © 2017 Elsevier B.V. All rights reserved.
Implantable Systems for Continuous Liquorpheresis and CSF Replacement
2017-01-01
Liquorpheresis (cerebrospinal fluid filtration) comprises a therapeutical approach that has been proposed to treat several neurological conditions where antibodies, inflammatory mediators, or abnormal peptides are the cause or play an important role in the pathogenesis of the disease. Continuous or intermittent cerebrospinal fluid (CSF) replacement may be an alternative approach not explored thus far. Here, we review previous experiences in the use of liquorpheresis in autoimmune and degenerative neurological diseases. Then we describe previous technical reports and provide some new innovations in order to design bidirectional CSF shunting systems that can be complemented either with a deposit of artificial CSF or with a filter of CSF, allowing CSF replacement or liquorpheresis respectively. Both options would lead to mechanical dilution of the patient’s CSF. PMID:28413734
Hill, Emily; Bleck, Thomas P; Singh, Kamaljit; Ouyang, Bichun; Busl, Katharina M
2017-06-01
In a febrile patient with a ventriculostomy, diagnosing or excluding bacterial or microbial ventriculitis is difficult, as conventional markers in analysis of cerebrospinal fluid (CSF) are not applicable due to presence of blood and inflammation. CSF lactate has been shown to be a useful indicator of bacterial meningitis in CSF obtained via lumbar puncture, but little and heterogenous data exist on patients with ventriculostomies. We reviewed all CSF analyses obtained via ventriculostomy in patients admitted to our tertiary medical center between 2008 and 2013, and constructed receiver operating characteristic (ROC) curves to evaluate the accuracy of CSF lactate concentration in discriminating a positive CSF culture from a negative one in setting of ventriculostomy and prophylactic antibiosis. Among 467 CSF lactate values, there were 22 corresponding CSF cultures with bacterial growth. Sensitivities and specificities for CSF lactate at threshold values 3, 4, 5 and 6mmol/L showed sensitivity and specificity greater than 70% for CSF lactate threshold 4mmol/L. The lowest threshold value of 3mmol/L resulted in higher sensitivity of 81.8%, and the highest chosen threshold value resulted in high specificity of 94.2%, but these values had poor corresponding specificity and sensitivity, respectively. The area under the curve was 0.82 (95% CI 0.72, 0.91). Our data from a large sample of CSF studies in patients with ventriculostomy indicate that no single value of CSF lactate provided both sensitivity and specificity high enough to be regarded as reliable test. Copyright © 2017 Elsevier B.V. All rights reserved.
Takeda, Shuko; Commins, Caitlin; DeVos, Sarah L.; Nobuhara, Chloe K.; Wegmann, Susanne; Roe, Allyson D.; Costantino, Isabel; Fan, Zhanyun; Nicholls, Samantha B.; Sherman, Alexis E.; Trisini Lipsanopoulos, Ana T.; Scherzer, Clemens R.; Carlson, George A.; Pitstick, Rose; Peskind, Elaine R.; Raskind, Murray A.; Li, Ge; Montine, Thomas J.; Frosch, Matthew P.; Hyman, Bradley T.
2016-01-01
Objective Cerebrospinal fluid (CSF) tau is an excellent surrogate marker for assessing neuropathological changes that occur in Alzheimer's disease (AD) patients. However, whether the elevated tau in AD CSF is just a marker of neurodegeneration or in fact a part of the disease process is uncertain. Moreover, it is unknown how CSF tau relates to the recently described soluble high-molecular-weight (HMW) species that is found in postmortem AD brain and can be taken up by neurons and seed aggregates. Methods We have examined seeding and uptake properties of brain extracellular tau from various sources including: interstitial fluid (ISF) and CSF from an AD transgenic mouse model, and postmortem ventricular and antemortem lumbar CSF from AD patients. Results We found that brain ISF and CSF tau from the AD mouse model can be taken up by cells and induce intracellular aggregates. Ventricular CSF from AD patients contained a rare HMW tau species that exerted a higher seeding activity. Notably, the HMW tau species was also detected in lumbar CSF from AD patients and its levels were significantly elevated compared with control subjects. HMW tau derived from CSF of AD patients was seed-competent in vitro. Interpretation These findings suggest that CSF from an AD brain contains potentially bioactive HMW tau species giving new insights into the role of CSF tau and biomarker development for AD. PMID:27351289
A novel framework for the local extraction of extra-axial cerebrospinal fluid from MR brain images
NASA Astrophysics Data System (ADS)
Mostapha, Mahmoud; Shen, Mark D.; Kim, SunHyung; Swanson, Meghan; Collins, D. Louis; Fonov, Vladimir; Gerig, Guido; Piven, Joseph; Styner, Martin A.
2018-03-01
The quantification of cerebrospinal fluid (CSF) in the human brain has shown to play an important role in early postnatal brain developmental. Extr a-axial fluid (EA-CSF), which is characterized by the CSF in the subarachnoid space, is promising in the early detection of children at risk for neurodevelopmental disorders. Currently, though, there is no tool to extract local EA-CSF measurements in a way that is suitable for localized analysis. In this paper, we propose a novel framework for the localized, cortical surface based analysis of EA-CSF. In our proposed processing, we combine probabilistic brain tissue segmentation, cortical surface reconstruction as well as streamline based local EA-CSF quantification. For streamline computation, we employ the vector field generated by solving a Laplacian partial differential equation (PDE) between the cortical surface and the outer CSF hull. To achieve sub-voxel accuracy while minimizing numerical errors, fourth-order Runge-Kutta (RK4) integration was used to generate the streamlines. Finally, the local EA-CSF is computed by integrating the CSF probability along the generated streamlines. The proposed local EA-CSF extraction tool was used to study the early postnatal brain development in typically developing infants. The results show that the proposed localized EA-CSF extraction pipeline can produce statistically significant regions that are not observed in previous global approach.
Intrathecal inflammation precedes development of Alzheimer's disease
Tarkowski, E; Andreasen, N; Tarkowski, A; Blennow, K
2003-01-01
Objectives: To analyse the cerebrospinal fluid (CSF) values of the proinflammatory cytokines, interleukin 1ß (IL1ß), tumour necrosis factor α (TNFα), GM-CSF, of the anti-inflammatory cytokine TGFß, of tau protein, a marker for neurodegeneration, and of ß amyloid (Aß), a protein involved in the formation of senile plaques, in prospectively followed up patients with mild cognitive impairment (MCI). Methods: Analyses of CSF levels of TNFα, IL1ß, GM-CSF, TGFß, ßa, and tau protein were performed using ELISA in 56 patients with MCI who were followed up prospectively and in 25 age matched, healthy controls. Results: Patients with MCI displayed significantly higher levels of TNFα and tau protein and significantly lower levels of TGFß and Aß compared with the healthy controls. After nine months of follow up, 25 patients still displayed MCI while the remaining 31 patients had progressed to Alzheimer's disease (AD). Only MCI patients who progressed to AD at follow up, showed significantly higher CSF levels of TNFα than controls. In addition, reduced CSF-Aß42 levels were only found in MCI patients that progressed to AD, further supporting the notion that disturbed metabolism of Aß is an early finding in AD. Conclusions: These results demonstrate increased production of the proinflammatory cytokine, TNFα and decreased production of the anti-inflammatory cytokine TGFß in patients with MCI at risk to develop AD, suggesting a propensity towards inflammation in this patient group and indicating that CNS inflammation is a early hallmark in the pathogenesis of AD. PMID:12933918
The role of brain barriers in fluid movement in the CNS: is there a 'glymphatic' system?
Abbott, N Joan; Pizzo, Michelle E; Preston, Jane E; Janigro, Damir; Thorne, Robert G
2018-03-01
Brain fluids are rigidly regulated to provide stable environments for neuronal function, e.g., low K + , Ca 2+ , and protein to optimise signalling and minimise neurotoxicity. At the same time, neuronal and astroglial waste must be promptly removed. The interstitial fluid (ISF) of the brain tissue and the cerebrospinal fluid (CSF) bathing the CNS are integral to this homeostasis and the idea of a glia-lymph or 'glymphatic' system for waste clearance from brain has developed over the last 5 years. This links bulk (convective) flow of CSF into brain along the outside of penetrating arteries, glia-mediated convective transport of fluid and solutes through the brain extracellular space (ECS) involving the aquaporin-4 (AQP4) water channel, and finally delivery of fluid to venules for clearance along peri-venous spaces. However, recent evidence favours important amendments to the 'glymphatic' hypothesis, particularly concerning the role of glia and transfer of solutes within the ECS. This review discusses studies which question the role of AQP4 in ISF flow and the lack of evidence for its ability to transport solutes; summarizes attributes of brain ECS that strongly favour the diffusion of small and large molecules without ISF flow; discusses work on hydraulic conductivity and the nature of the extracellular matrix which may impede fluid movement; and reconsiders the roles of the perivascular space (PVS) in CSF-ISF exchange and drainage. We also consider the extent to which CSF-ISF exchange is possible and desirable, the impact of neuropathology on fluid drainage, and why using CSF as a proxy measure of brain components or drug delivery is problematic. We propose that new work and key historical studies both support the concept of a perivascular fluid system, whereby CSF enters the brain via PVS convective flow or dispersion along larger caliber arteries/arterioles, diffusion predominantly regulates CSF/ISF exchange at the level of the neurovascular unit associated with CNS microvessels, and, finally, a mixture of CSF/ISF/waste products is normally cleared along the PVS of venules/veins as well as other pathways; such a system may or may not constitute a true 'circulation', but, at the least, suggests a comprehensive re-evaluation of the previously proposed 'glymphatic' concepts in favour of a new system better taking into account basic cerebrovascular physiology and fluid transport considerations.
Cerebrospinal fluid maraviroc concentrations in HIV-1 infected patients.
Yilmaz, Aylin; Watson, Victoria; Else, Laura; Gisslèn, Magnus
2009-11-27
In order to assess the penetration of maraviroc to the central nervous system, we measured maraviroc concentrations in cerebrospinal fluid (CSF) and plasma. Concentrations were determined by liquid chromatography tandem mass spectrometry (lower limit of quantitation 1.25 ng/ml) in seven paired CSF and plasma samples. The median plasma maraviroc concentration was 94.9 ng/ml (range 21.4-478.0) and the median CSF concentration was 3.63 ng/ml (range 1.83-12.2). CSF samples exceeded the median EC90 for maraviroc (0.57 ng/ml) by at least three-fold. The CSF levels of maraviroc found in this study likely contribute to viral suppression in the CSF.
Dowling, N Maritza; Johnson, Sterling C; Gleason, Carey E; Jagust, William J
2015-01-15
Positive cerebrospinal fluid (CSF) biomarkers of tau and amyloid beta42 suggest possible active underlying Alzheimer's disease (AD) including neurometabolic dysfunction and neurodegeneration leading to eventual cognitive decline. But the temporal relationship between CSF, imaging markers of neural function, and cognition has not been described. Using a statistical mediation model, we examined relationships between cerebrospinal fluid (CSF) analytes (hyperphosphorylated tau (p-Tau(181p)), β-amyloid peptides 1-42 (Aβ(1-42)), total tau (t-Tau), and their ratios); change in cognitive function; and change in [18F]fluorodeoxyglucose (FDG) uptake using positron emission tomography (PET). We hypothesized that a) abnormal CSF protein values at baseline, result in cognitive declines by decreasing neuronal glucose metabolism across time, and b) the role of altered glucose metabolism in the assumed causal chain varies by brain region and the nature of CSF protein alteration. Data from 412 individuals participating in Alzheimer's Disease Neuroimaging (ADNI) cohort studies were included in analyses. At baseline, individuals were cognitively normal (N = 82), or impaired: 241 with mild cognitive impairment, and 89 with Alzheimer's disease. A parallel-process latent growth curve model was used to test mediational effects of changes in regional FDG-PET uptake over time in relation to baseline CSF biomarkers and changes in cognition, measured with the 13-item Alzheimer Disease's Assessment Scale-cognitive subscale (ADAS-Cog). Findings suggested a causal sequence of events; specifically, FDG hypometabolism acted as a mediator between antecedent CSF biomarker alterations and subsequent cognitive impairment. Higher baseline concentrations of t-Tau, and p-Tau(181p) were more predictive of decline in cerebral glucose metabolism than lower baseline concentrations of Aβ(1-42). FDG-PET changes appeared to mediate t-Tau or t-Tau/Aβ(1-42)-associated cognitive change across all brain regions examined. Significant direct effects of alterations in Aβ(1-42) levels on hypometabolism were observed in a single brain region: middle/inferior temporal gyrus. Results support a temporal framework model in which reduced CSF amyloid-related biomarkers occur earlier in the pathogenic pathway, ultimately leading to detrimental cognitive effects. Also consistent with this temporal framework model, baseline markers of neurofibrillary degeneration predicted changes in brain glucose metabolism in turn causing longitudinal cognitive changes, suggesting that tau-related burden precedes neurometabolic dysfunction. While intriguing, the hypothesized mediational relationships require further validation. Published by Elsevier Inc.
Kroth, Julia; Ciolac, Dumitru; Fleischer, Vinzenz; Koirala, Nabin; Krämer, Julia; Muthuraman, Muthuraman; Luessi, Felix; Bittner, Stefan; Gonzalez-Escamilla, Gabriel; Zipp, Frauke; Meuth, Sven G; Groppa, Sergiu
2017-12-01
Currently, no unequivocal predictors of disease evolution exist in patients with multiple sclerosis (MS). Cortical atrophy measurements are, however, closely associated with cumulative disability. Here, we aim to forecast longitudinal magnetic resonance imaging (MRI)-driven cortical atrophy and clinical disability from cerebrospinal fluid (CSF) markers. We analyzed CSF fractions of albumin and immunoglobulins (Ig) A, G, and M and their CSF to serum quotients. Widespread atrophy was highly associated with increased baseline CSF concentrations and quotients of albumin and IgA. Patients with increased CSF IgA and CSF IgM showed higher functional disability at follow-up. CSF markers of blood-brain barrier integrity and specific immune response forecast emerging gray matter pathology and disease progression in MS.
A potential endophenotype for Alzheimer’s disease: cerebrospinal fluid clusterin
Deming, Yuetiva; Xia, Jian; Cai, Yefei; Lord, Jenny; Holmans, Peter; Bertelsen, Sarah; Holtzman, David; Morris, John C; Bales, Kelly; Pickering, Eve H; Kauwe, John; Goate, Alison; Cruchaga, Carlos
2016-01-01
Genome-wide association studies have associated clusterin (CLU) variants with Alzheimer’s disease (AD). However the role of CLU on AD pathogenesis is not totally understood. We used CSF and plasma CLU levels as endophenotypes for genetic studies to understand the role of CLU in AD. CSF, but not plasma, CLU levels were significantly associated with AD status and CSF tau/Aβ ratio, and highly correlated with CSF apolipoprotein E (APOE) levels. Several loci showed almost genome-wide significant associations including LINC00917 (p=3.98×10−7) and interleukin 6 (IL6, p=9.94×10−6, in the entire dataset and in the APOE ε4- individuals p=7.40×10−8). Gene-ontology analyses suggest that CSF CLU levels may be associated with wound healing and immune response which supports previous functional studies that demonstrated an association between CLU and IL6. CLU may play a role in AD by influencing immune system changes that have been observed in AD or by disrupting healing after neurodegeneration. PMID:26545630
Schmidt, Eric; Ros, Maxime; Moyse, Emmanuel; Lorthois, Sylvie; Swider, Pascal
2016-01-01
In line with the first law of thermodynamics, Bernoulli's principle states that the total energy in a fluid is the same at all points. We applied Bernoulli's principle to understand the relationship between intracranial pressure (ICP) and intracranial fluids. We analyzed simple fluid physics along a tube to describe the interplay between pressure and velocity. Bernoulli's equation demonstrates that a fluid does not flow along a gradient of pressure or velocity; a fluid flows along a gradient of energy from a high-energy region to a low-energy region. A fluid can even flow against a pressure gradient or a velocity gradient. Pressure and velocity represent part of the total energy. Cerebral blood perfusion is not driven by pressure but by energy: the blood flows from high-energy to lower-energy regions. Hydrocephalus is related to increased cerebrospinal fluid (CSF) resistance (i.e., energy transfer) at various points. Identification of the energy transfer within the CSF circuit is important in understanding and treating CSF-related disorders. Bernoulli's principle is not an abstract concept far from clinical practice. We should be aware that pressure is easy to measure, but it does not induce resumption of fluid flow. Even at the bedside, energy is the key to understanding ICP and fluid dynamics.
Kim, Young-Hoon; Kim, Chae-Yong; Oh, Chang Wan
2013-01-01
Objective We performed this study to investigate whether the use of closed-suction drainage following microvascular decompression (MVD) causes cerebrospinal fluid (CSF) leakage. Methods Between 2004 and 2011, a total of 157 patients with neurovascular compression were treated with MVD. MVD was performed for hemifacial spasm in 150 (95.5%) cases and for trigeminal neuralgia in 7 (4.5%) cases. The mean age of the patients was 49.8±9.6 years (range, 20-69). Dural substitutes were used in 44 (28.0%) patients. Ninety-two patients (58.6%) were underwent a 4-5 cm craniotomy using drainage (drainage group), and 65 (41.4%) did a small 2-2.5 cm retromastoid craniectomy without closed-suction drainage (no-drainage group). Results Eleven (7.0%) patients experienced CSF leakage following MVD based on the criteria of this study; all of these patients were in the drainage group. In the unadjusted analyses, the incidence of CSF leakage was significantly related with the use of closed-suction drainage following MVD (12.0% in the drainage group vs. 0% in the no-drainage group, respectively; p=0.003; Fisher's exact test). Those who received dural substitutes and the elderly (cut-off value=60 years) exhibited a tendency to develop CSF leakage (p=0.075 and p=0.090, respectively; Fisher's exact test). In the multivariate analysis, only the use of closed-suction drainage was significantly and independently associated with the development of CSF leakage following MVD (odds ratio=9.900; 95% confidence interval, 1.418 to infinity; p=0.017). Conclusion The use of closed-suction drainage following MVD appears to be related to the development of CSF leakage. PMID:24175025
Frasca, Denis; Dahyot-Fizelier, Claire; Adier, Christophe; Mimoz, Olivier; Debaene, Bertrand; Couet, William; Marchand, Sandrine
2014-01-01
This study explored metronidazole and hydroxymetronidazole distribution in the cerebrospinal fluid (CSF) of brain-injured patients. Four brain-injured patients with external ventricular drain received 500 mg of metronidazole over 0.5 h every 8 h. CSF and blood samples were collected at steady state over 8 h, and the metronidazole and hydroxymetronidazole concentrations were assayed by high-pressure liquid chromatograph. A noncompartmental analysis was performed. Metronidazole is distributed extensively within CSF, with a mean CSF to unbound plasma AUC0-τ ratio of 86% ± 16%. However, the concentration profiles in CSF were mostly flat compared to the plasma profiles. Hydroxymetronidazole concentrations were much lower than those of metronidazole both in plasma and in CSF, with a corresponding CSF/unbound plasma AUC0-τ ratio of 79% ± 16%. We describe here for the first time in detail the pharmacokinetics of metronidazole and hydroxymetronidazole in CSF.
Ogami, Ryo; Nakahara, Toshinori; Hamasaki, Osamu; Araki, Hayato; Kurisu, Kaoru
2011-10-01
A rare complication of carotid artery stenting (CAS), prolonged reversible neurological symptoms with delayed cerebrospinal fluid (CSF) space enhancement on fluid attenuated inversion recovery (FLAIR) images, is associated with blood-brain barrier (BBB) disruption. We prospectively identified patients who showed CSF space enhancement on FLAIR images. Nineteen patients-5 acute-phase and 14 scheduled-underwent 21 CAS procedures. Balloon catheters were navigated across stenoses, angioplasty was performed using a neuroprotective balloon, and stents were placed with after dilation under distal balloon protection. CSF space hyperintensity or obscuration on FLAIR after versus before CAS indicated CSF space enhancement. Correlations with clinical factors were examined. CSF space was enhanced on FLAIR in 12 (57.1%) cases. Postprocedural CSF space enhancement was significantly related to age, stenosis rate, acute-stage procedure, and total occlusion time. All acute-stage CAS patients showed delayed enhancement. Only age was associated with delayed CSF space enhancement in scheduled CAS patients. Ischemic intolerance for severe carotid artery stenosis and temporary neuroprotective balloon occlusion, causing reperfusion injury, seem to be the main factors that underlie BBB disruption with delayed CSF space enhancement shortly after CAS, rather than sudden poststenting hemodynamic change. Our results suggest that factors related to hemodynamic instability or ischemic intolerance seem to be associated with post-CAS BBB vulnerability. Patients at risk for hemodynamic instability or with ischemic intolerance, which decrease BBB integrity, require careful management to prevent intracranial hemorrhagic and other post-CAS complications.
Jebamalar, Angelin A; Prabhat; Balakrishnapillai, Agiesh K; Parmeswaran, Narayanan; Dhiman, Pooja; Rajendiran, Soundravally
2016-07-01
To evaluate the diagnostic role of cerebrospinal fluid (CSF) ferritin and albumin index (AI = CSF albumin/serum albumin × 1000) in differentiating acute bacterial meningitis (ABM) from acute viral meningitis (AVM) in children. The study included 42 cases each of ABM and AVM in pediatric age group. Receiver operating characteristic (ROC) analysis was carried out for CSF ferritin and AI. Binary logistic regression was also done. CSF ferritin and AI were found significantly higher in ABM compared to AVM. Model obtained using AI and CSF ferritin along with conventional criteria is better than existing models.
Direct observation of cerebrospinal fluid bulk flow in the brain
NASA Astrophysics Data System (ADS)
Mestre, Humberto; Tithof, Jeffrey; Thomas, John; Kelley, Douglas; Nedergaard, Maiken
2017-11-01
Cerebrospinal fluid (CSF) serves a vital role in normal brain function. Its adequate flow and exchange with interstitial fluid through perivascular spaces (PVS) has been shown to be important in the clearance of toxic metabolites like amyloid- β, and its disturbance can cause severe neurological diseases. It has long been suspected that bulk flow may transport CSF, but limitations in imaging techniques have prevented direct observation of such flows in the PVS. In this talk, we describe a novel approach using high speed two photon laser scanning microscopy which has allowed for the first ever direct observation of CSF flow in the PVS of a mouse brain. By performing particle tracking velocimetry, we quantify the CSF bulk flow speeds and PVS geometry. This technique enables future studies of CSF flow disturbances on a new scale and will pave the way for evaluating the role of these fluxes in neurodegenerative disease. R01NS100366 (to M.N.).
Fonteh, Alfred N.; Ormseth, Cora; Chiang, Jiarong; Cipolla, Matthew; Arakaki, Xianghong; Harrington, Michael G.
2015-01-01
Sphingolipids are important in many brain functions but their role in Alzheimer’s disease (AD) is not completely defined. A major limit is availability of fresh brain tissue with defined AD pathology. The discovery that cerebrospinal fluid (CSF) contains abundant nanoparticles that include synaptic vesicles and large dense core vesicles offer an accessible sample to study these organelles, while the supernatant fluid allows study of brain interstitial metabolism. Our objective was to characterize sphingolipids in nanoparticles representative of membrane vesicle metabolism, and in supernatant fluid representative of interstitial metabolism from study participants with varying levels of cognitive dysfunction. We recently described the recruitment, diagnosis, and CSF collection from cognitively normal or impaired study participants. Using liquid chromatography tandem mass spectrometry, we report that cognitively normal participants had measureable levels of sphingomyelin, ceramide, and dihydroceramide species, but that their distribution differed between nanoparticles and supernatant fluid, and further differed in those with cognitive impairment. In CSF from AD compared with cognitively normal participants: a) total sphingomyelin levels were lower in nanoparticles and supernatant fluid; b) levels of ceramide species were lower in nanoparticles and higher in supernatant fluid; c) three sphingomyelin species were reduced in the nanoparticle fraction. Moreover, three sphingomyelin species in the nanoparticle fraction were lower in mild cognitive impairment compared with cognitively normal participants. The activity of acid, but not neutral sphingomyelinase was significantly reduced in the CSF from AD participants. The reduction in acid sphingomylinase in CSF from AD participants was independent of depression and psychotropic medications. Acid sphingomyelinase activity positively correlated with amyloid β42 concentration in CSF from cognitively normal but not impaired participants. In dementia, altered sphingolipid metabolism, decreased acid sphingomyelinase activity and its lost association with CSF amyloid β42 concentration, underscores the potential of sphingolipids as disease biomarkers, and acid sphingomyelinase as a target for AD diagnosis and/or treatment. PMID:25938590
Mathematical Modelling of CSF Pulsatile Flow in Aqueduct Cerebri.
Czosnyka, Zofia; Kim, Dong-Joo; Balédent, Olivier; Schmidt, Eric A; Smielewski, Peter; Czosnyka, Marek
2018-01-01
The phase-contrast MRI technique permits the non-invasive assessment of CSF movements in cerebrospinal fluid cavities of the central nervous system. Of particular interest is pulsatile cerebrospinal fluid (CSF) flow through the aqueduct cerebri. It is allegedly increased in hydrocephalus, having potential diagnostic value, although not all scientific reports contain unequivocally positive conclusions. For the mathematical simulation of CSF flow, we used a computational model of cerebrospinal blood/fluid circulation designed by a former student as his PhD project. With this model, cerebral blood flow and CSF may be simulated in various vessels using a system of non-linear differential equations as time-varying signals. The amplitude of CSF flow seems to be positively related to the amplitude of pulse waveforms of intracranial pressure (ICP) in situations where mean ICP increases, such as during simulated infusion tests and following step increases of resistance to CSF outflow. An additional positive association between the pulse amplitude of ICP and CSF flow can be seen during simulated increases in the amplitude of arterial pulses (without changes in mean arterial pressure, MAP). The opposite effect can be observed during step increases in the resistance of the aqueduct cerebri and with decreasing elasticity of the system, where the CSF flow amplitude and the ICP pulse amplitude are related inversely. Vasodilatation caused by both gradual decreases in MAP and by increases in PaCO2 provokes an elevation in the observed amplitude of pulsatile CSF flow. Preliminary results indicate that the pulsations of CSF flow may carry information about both CSF-circulatory and cerebral vasogenic components. In most cases, the pulsations of CSF flow are positively related to the pulse amplitudes of both arterial pressure and ICP and to a degree of cerebrovascular dilatation.
Rapid spontaneous cerebrospinal fluid leak detected in the gastrointestinal tract.
Ma, Hong Yun; Sen, Papia; Stein, Evan G; Freeman, Leonard M
2014-02-01
There are many causes of cerebrospinal (CSF) leaks. Most cases are secondary to blunt trauma and iatrogenic trauma caused by postoperative sequelae. Occasionally, CSF leakage may occur from nontraumatic or "spontaneous" causes, such as benign intracranial hypertension and "empty sella syndrome." Mass effect due to an encephalocele or meningocele may also be seen. Radionuclide cisternography is a sensitive method of determining CSF leak when combined with intranasal cotton pledget placement and analysis. We present a spontaneous CSF fluid leak that was detected when scintigraphic activity appeared first in the gastrointestinal tract.
Tortorella, C; Direnzo, V; Taurisano, P; Romano, R; Ruggieri, M; Zoccolella, S; Mastrapasqua, M; Popolizio, T; Blasi, G; Bertolino, A; Trojano, M
2015-04-01
Identifying markers of cognitive dysfunction in multiple sclerosis (MS) is extremely challenging since it means supplying potential biomarkers for neuroprotective therapeutic strategies. The aim of this study is to investigate the relationship between fMRI correlates of attention performance and cerebrospinal fluid (CSF) neurofilament light chain (NFL) levels in patients with clinically isolated syndrome (CIS) suggestive of MS. Twenty-one untreated, cognitively preserved CIS patients underwent BOLD-fMRI while performing the Variable Attentional Control (VAC) task, a cognitive paradigm requiring increasing levels of attentional control processing. CSF NFL was assessed by ELISA technique. SPM8 random-effects models were used for statistical analyses of fMRI data (p<0.05 corrected). Repeated-measures ANOVA on imaging data showed an interaction between attentional control load and NFL levels in the right putamen. At the high level of attentional control demand CIS patients with "low NFL levels" showed greater activity in the putamen compared with subjects with "high NFL levels" (p=0.001). These results are independent of cognitive impairment index. Our findings suggest a relationship between CSF NFL levels and load-dependent failure of putaminal recruitment pattern during sustained attention in CIS and suggest a role of CSF NFL as a marker of subclinical abnormality of cognitive pathway recruitment in CIS. © The Author(s), 2014.
Achariyar, Thiyagaragan M; Li, Baoman; Peng, Weiguo; Verghese, Philip B; Shi, Yang; McConnell, Evan; Benraiss, Abdellatif; Kasper, Tristan; Song, Wei; Takano, Takahiro; Holtzman, David M; Nedergaard, Maiken; Deane, Rashid
2016-12-08
Apolipoprotein E (apoE) is a major carrier of cholesterol and essential for synaptic plasticity. In brain, it's expressed by many cells but highly expressed by the choroid plexus and the predominant apolipoprotein in cerebrospinal fluid (CSF). The role of apoE in the CSF is unclear. Recently, the glymphatic system was described as a clearance system whereby CSF and ISF (interstitial fluid) is exchanged via the peri-arterial space and convective flow of ISF clearance is mediated by aquaporin 4 (AQP4), a water channel. We reasoned that this system also serves to distribute essential molecules in CSF into brain. The aim was to establish whether apoE in CSF, secreted by the choroid plexus, is distributed into brain, and whether this distribution pattern was altered by sleep deprivation. We used fluorescently labeled lipidated apoE isoforms, lenti-apoE3 delivered to the choroid plexus, immunohistochemistry to map apoE brain distribution, immunolabeled cells and proteins in brain, Western blot analysis and ELISA to determine apoE levels and radiolabeled molecules to quantify CSF inflow into brain and brain clearance in mice. Data were statistically analyzed using ANOVA or Student's t- test. We show that the glymphatic fluid transporting system contributes to the delivery of choroid plexus/CSF-derived human apoE to neurons. CSF-delivered human apoE entered brain via the perivascular space of penetrating arteries and flows radially around arteries, but not veins, in an isoform specific manner (apoE2 > apoE3 > apoE4). Flow of apoE around arteries was facilitated by AQP4, a characteristic feature of the glymphatic system. ApoE3, delivered by lentivirus to the choroid plexus and ependymal layer but not to the parenchymal cells, was present in the CSF, penetrating arteries and neurons. The inflow of CSF, which contains apoE, into brain and its clearance from the interstitium were severely suppressed by sleep deprivation compared to the sleep state. Thus, choroid plexus/CSF provides an additional source of apoE and the glymphatic fluid transporting system delivers it to brain via the periarterial space. By implication, failure in this essential physiological role of the glymphatic fluid flow and ISF clearance may also contribute to apoE isoform-specific disorders in the long term.
Cheng, Shaokoon; Fletcher, David; Hemley, Sarah; Stoodley, Marcus; Bilston, Lynne
2014-08-22
It is unknown whether spinal cord motion has a significant effect on cerebrospinal fluid (CSF) pressure and therefore the importance of including fluid structure interaction (FSI) in computational fluid dynamics models (CFD) of the spinal subarachnoid space (SAS) is unclear. This study aims to determine the effects of FSI on CSF pressure and spinal cord motion in a normal and in a stenosis model of the SAS. A three-dimensional patient specific model of the SAS and spinal cord were constructed from MR anatomical images and CSF flow rate measurements obtained from a healthy human being. The area of SAS at spinal level T4 was constricted by 20% to represent the stenosis model. FSI simulations in both models were performed by running ANSYS CFX and ANSYS Mechanical in tandem. Results from this study show that the effect of FSI on CSF pressure is only about 1% in both the normal and stenosis models and therefore show that FSI has a negligible effect on CSF pressure. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.
A balanced view of the cerebrospinal fluid composition and functions: Focus on adult humans.
Spector, Reynold; Robert Snodgrass, S; Johanson, Conrad E
2015-11-01
In this review, a companion piece to our recent examination of choroid plexus (CP), the organ that secretes the cerebrospinal fluid (CSF), we focus on recent information in the context of reliable older data concerning the composition and functions of adult human CSF. To accomplish this, we define CSF, examine the methodology employed in studying the CSF focusing on ideal or near ideal experiments and discuss the pros and cons of several widely used analogical descriptions of the CSF including: the CSF as the "third circulation," the CSF as a "nourishing liquor," the similarities of the CSF/choroid plexus to the glomerular filtrate/kidney and finally the CSF circulation as part of the "glymphatic system." We also consider the close interrelationship between the CSF and extracellular space of brain through gap junctions and the paucity of data suggesting that the cerebral capillaries secrete a CSF-like fluid. Recently human CSF has been shown to be in dynamic flux with heart-beat, posture and especially respiration. Functionally, the CSF provides buoyancy, nourishment (e.g., vitamins) and endogenous waste product removal for the brain by bulk flow into the venous (arachnoid villi and nerve roots) and lymphatic (nasal) systems, and by carrier-mediated reabsorptive transport systems in CP. The CSF also presents many exogenous compounds to CP for metabolism or removal, indirectly cleansing the extracellular space of brain (e.g., of xenobiotics like penicillin). The CSF also carries hormones (e.g., leptin) from blood via CP or synthesized in CP (e.g., IGF-2) to the brain. In summary the CP/CSF, the third circulation, performs many functions comparable to the kidney including nourishing the brain and contributing to a stable internal milieu for the brain. These tasks are essential to normal adult brain functioning. Copyright © 2015. Published by Elsevier Inc.
Kovac, Andrej; Somikova, Zuzana; Zilka, Norbert; Novak, Michal
2014-02-01
Alzheimer's disease (AD) is still being recognized today as an unmet medical need. Currently, there is no cure and early preclinical diagnostic assay available for AD. Therefore much attention is now being directed at the development of novel methods for quantitative determination of AD biomarkers in the cerebrospinal fluid (CSF). Here, we describe the liquid chromatography-tandem mass spectrometry method for determination of 5-hydroxytryptamine (SER), 5-hydroxyindoleacetic acid (5-HIAA), homovanilic acid (HVA), noradrenaline (NADR), adrenaline (ADR), dopamine (DA), glutamic acid (Glu), γ-aminobutyric acid (GABA), 3,4-dihydroxyphenylacetic acid (DOPAC) and histamine (HIS) in cerebrospinal fluid (CSF) from the rat model for human tauopathy. The benzoyl chloride was used as pre-column derivatization reagents. Neurotransmitters and metabolites were analysed on ultra performance liquid chromatography (UPLC) on C18 column in combination with tandem mass spectrometry. The method is simple, highly sensitive and showed excellent linearity with regression coefficients higher than 0.99. The accuracy was in a range of 93-113% for all analytes. The inter-day precision (n=5 days), expressed as %RSD, was in a range 2-10% for all analytes. Using this method we detected significant changes of CSF levels of two important neurotransmitters/metabolites, ADR and 5-HIAA, which correlates with progression of neurodegeneration in our animal model. © 2013 Published by Elsevier B.V.
Kawahara, Ichiro; Tsutsumi, Keisuke; Matsunaga, Yuki; Takahata, Hideaki; Ono, Tomonori; Toda, Keisuke; Baba, Hiroshi
2013-08-01
Mild cerebrospinal fluid (CSF) hypovolemia is a well-known clinical entity, but critical CSF hypovolemia that can cause transtentorial herniation is an unusual and rare clinical entity that occurs after craniotomy. We investigated CSF hypovolemia after microsurgical aneurysmal clipping for subarachnoid hemorrhage (SAH). This study included 144 consecutive patients with SAH. Lumbar drainage (LD) was inserted after general anesthesia or postoperatively as a standard perioperative protocol. CSF hypovolemia diagnosis was based on three criteria. Eleven patients (7.6%) were diagnosed with CSF hypovolemia according to diagnostic criteria in a postoperative range of 0-8 days. In all patients, signs or symptoms of CSF hypovolemia improved within 24 hours by clamping LD and using the Trendelenburg position. As a cause of acute clinical deterioration after aneurysmal clipping, CSF hypovolemia is likely under-recognized, and may actually be misdiagnosed as vasospasm or brain swelling. We should always take the etiology of CSF hypovolemia into consideration, and especially pay attention in patients with pneumocephalus and subdural fluid collection alongside brain sag on computed tomography. These patients are at higher risk developing of pressure gradients between their cranial and spinal compartments, and therefore, brain sagging after LD, than after ventricular drainage. We should be vigilant to strictly manage LD so as not to produce high pressure gradients.
Khani, Mohammadreza; Xing, Tao; Gibbs, Christina; Oshinski, John N; Stewart, Gregory R; Zeller, Jillynne R; Martin, Bryn A
2017-08-01
A detailed quantification and understanding of cerebrospinal fluid (CSF) dynamics may improve detection and treatment of central nervous system (CNS) diseases and help optimize CSF system-based delivery of CNS therapeutics. This study presents a computational fluid dynamics (CFD) model that utilizes a nonuniform moving boundary approach to accurately reproduce the nonuniform distribution of CSF flow along the spinal subarachnoid space (SAS) of a single cynomolgus monkey. A magnetic resonance imaging (MRI) protocol was developed and applied to quantify subject-specific CSF space geometry and flow and define the CFD domain and boundary conditions. An algorithm was implemented to reproduce the axial distribution of unsteady CSF flow by nonuniform deformation of the dura surface. Results showed that maximum difference between the MRI measurements and CFD simulation of CSF flow rates was <3.6%. CSF flow along the entire spine was laminar with a peak Reynolds number of ∼150 and average Womersley number of ∼5.4. Maximum CSF flow rate was present at the C4-C5 vertebral level. Deformation of the dura ranged up to a maximum of 134 μm. Geometric analysis indicated that total spinal CSF space volume was ∼8.7 ml. Average hydraulic diameter, wetted perimeter, and SAS area were 2.9 mm, 37.3 mm and 27.24 mm2, respectively. CSF pulse wave velocity (PWV) along the spine was quantified to be 1.2 m/s.
CEREBROSPINAL FLUID STASIS AND ITS CLINICAL SIGNIFICANCE
Whedon, James M.; Glassey, Donald
2010-01-01
We hypothesize that stasis of the cerebrospinal fluid (CSF) occurs commonly and is detrimental to health. Physiologic factors affecting the normal circulation of CSF include cardiovascular, respiratory, and vasomotor influences. The CSF maintains the electrolytic environment of the central nervous system (CNS), influences systemic acid-base balance, serves as a medium for the supply of nutrients to neuronal and glial cells, functions as a lymphatic system for the CNS by removing the waste products of cellular metabolism, and transports hormones, neurotransmitters, releasing factors, and other neuropeptides throughout the CNS. Physiologic impedance or cessation of CSF flow may occur commonly in the absence of degenerative changes or pathology and may compromise the normal physiologic functions of the CSF. CSF appears to be particularly prone to stasis within the spinal canal. CSF stasis may be associated with adverse mechanical cord tension, vertebral subluxation syndrome, reduced cranial rhythmic impulse, and restricted respiratory function. Increased sympathetic tone, facilitated spinal segments, dural tension, and decreased CSF flow have been described as closely related aspects of an overall pattern of structural and energetic dysfunction in the axial skeleton and CNS. Therapies directed at affecting CSF flow include osteopathic care (especially cranial manipulation), craniosacral therapy, chiropractic adjustment of the spine and cranium, Network Care (formerly Network Chiropractic), massage therapy (including lymphatic drainage techniques), yoga, therapeutic breathwork, and cerebrospinal fluid technique. Further investigation into the nature and causation of CSF stasis, its potential effects upon human health, and effective therapies for its correction is warranted. PMID:19472865
Numerical Cerebrospinal System Modeling in Fluid-Structure Interaction.
Garnotel, Simon; Salmon, Stéphanie; Balédent, Olivier
2018-01-01
Cerebrospinal fluid (CSF) stroke volume in the aqueduct is widely used to evaluate CSF dynamics disorders. In a healthy population, aqueduct stroke volume represents around 10% of the spinal stroke volume while intracranial subarachnoid space stroke volume represents 90%. The amplitude of the CSF oscillations through the different compartments of the cerebrospinal system is a function of the geometry and the compliances of each compartment, but we suspect that it could also be impacted be the cardiac cycle frequency. To study this CSF distribution, we have developed a numerical model of the cerebrospinal system taking into account cerebral ventricles, intracranial subarachnoid spaces, spinal canal and brain tissue in fluid-structure interactions. A numerical fluid-structure interaction model is implemented using a finite-element method library to model the cerebrospinal system and its interaction with the brain based on fluid mechanics equations and linear elasticity equations coupled in a monolithic formulation. The model geometry, simplified in a first approach, is designed in accordance with realistic volume ratios of the different compartments: a thin tube is used to mimic the high flow resistance of the aqueduct. CSF velocity and pressure and brain displacements are obtained as simulation results, and CSF flow and stroke volume are calculated from these results. Simulation results show a significant variability of aqueduct stroke volume and intracranial subarachnoid space stroke volume in the physiological range of cardiac frequencies. Fluid-structure interactions are numerous in the cerebrospinal system and difficult to understand in the rigid skull. The presented model highlights significant variations of stroke volumes under cardiac frequency variations only.
Al Shweiki, Mhd Rami; Oeckl, Patrick; Steinacker, Petra; Hengerer, Bastian; Schönfeldt-Lecuona, Carlos; Otto, Markus
2017-06-01
Major Depressive Disorder (MDD) is the leading cause of global disability, and an increasing body of literature suggests different cerebrospinal fluid (CSF) proteins as biomarkers of MDD. The aim of this review is to summarize the suggested CSF biomarkers and to analyze the MDD proteomics studies of CSF and brain tissues for promising biomarker candidates. Areas covered: The review includes the human studies found by a PubMed search using the following terms: 'depression cerebrospinal fluid biomarker', 'major depression biomarker CSF', 'depression CSF biomarker', 'proteomics depression', 'proteomics biomarkers in depression', 'proteomics CSF biomarker in depression', and 'major depressive disorder CSF'. The literature analysis highlights promising biomarker candidates and demonstrates conflicting results on others. It reveals 42 differentially regulated proteins in MDD that were identified in more than one proteomics study. It discusses the diagnostic potential of the biomarker candidates and their association with the suggested pathologies. Expert commentary: One ultimate goal of finding biomarkers for MDD is to improve the diagnostic accuracy to achieve better treatment outcomes; due to the heterogeneous nature of MDD, using bio-signatures could be a good strategy to differentiate MDD from other neuropsychiatric disorders. Notably, further validation studies of the suggested biomarkers are still needed.
Paranjape, Geeta S.; Terrill, Shana E.; Gouwens, Lisa K.; Ruck, Benjamin M.; Nichols, Michael R.
2012-01-01
Soluble aggregated forms of amyloid-β protein (Aβ) have garnered significant attention recently for their role in Alzheimer’s disease (AD). Protofibrils are a subset of these soluble species and are considered intermediates in the aggregation pathway to mature Aβ fibrils. Biological studies have demonstrated that protofibrils exhibit both toxic and inflammatory activities. It is important in these in vitro studies to prepare protofibrils using solution conditions that are appropriate for cellular studies as well as conducive to biophysical characterization of protofibrils. Here we describe the preparation and characterization of Aβ(1–42) protofibrils in modified artificial cerebrospinal fluid (aCSF) and demonstrate their prominent binding and activation of microglial cells. A simple phosphate/bicarbonate buffer system was prepared that maintained the ionic strength and cell compatibility of F-12 medium but did not contain numerous supplements that interfere with spectroscopic analyses of Aβ protofibrils. Reconstitution of Aβ(1–42) in aCSF and isolation with size exclusion chromatography (SEC) revealed curvilinear β-sheet protofibrils <100 nm in length and hydrodynamic radii of 21 nm. Protofibril concentration determination by BCA assay, which was not possible in F-12 medium, was more accurately measured in aCSF. Protofibrils formed and isolated in aCSF, but not monomers, markedly stimulated TNFα production in BV-2 and primary microglia and bound in significant amounts to microglial membranes. This report demonstrates the suitability of a modified aCSF system for preparing SEC-isolated Aβ(1–42) protofibrils and underscores the unique ability of protofibrils to functionally interact with microglia. PMID:23242692
CSF neurofilament concentration reflects disease severity in frontotemporal degeneration
Scherling, Carole S.; Hall, Tracey; Berisha, Flora; Klepac, Kristen; Karydas, Anna; Coppola, Giovanni; Kramer, Joel H.; Rabinovici, Gil; Ahlijanian, Michael; Miller, Bruce L.; Seeley, William; Grinberg, Lea T.; Rosen, Howard; Meredith, Jere; Boxer, Adam L.
2014-01-01
Objective Cerebrospinal fluid (CSF) neurofilament light chain (NfL) concentration is elevated in neurological disorders including frontotemporal degeneration (FTD). We investigated the clinical correlates of elevated CSF NfL levels in FTD. Methods CSF NfL, amyloid-β42 (Aβ42), tau and phosphorylated tau (ptau) concentrations were compared in 47 normal controls (NC), 8 asymptomatic gene carriers (NC2) of FTD-causing mutations, 79 FTD (45 behavioral variant frontotemporal dementia [bvFTD], 18 progressive nonfluent aphasia [PNFA], 16 semantic dementia [SD]), 22 progressive supranuclear palsy, 50 Alzheimer’s disease, 6 Parkinson’s disease and 17 corticobasal syndrome patients. Correlations between CSF analyte levels were performed with neuropsychological measures and the Clinical Dementia Rating scale sum of boxes (CDRsb). Voxel-based morphometry of structural MR images determined the relationship between brain volume and CSF NfL. Results Mean CSF NfL concentrations were higher in bvFTD, SD and PNFA than other groups. NfL in NC2 was similar to NC. CSF NfL, but not other CSF measures, correlated with CDRsb and neuropsychological measures in FTD, and not in other diagnostic groups. Analyses in two independent FTD cohorts and a group of autopsy verified or biomarker enriched cases confirmed the larger group analysis. In FTD, gray and white matter volume negatively correlated with CSF NfL concentration, such that individuals with highest NfL levels exhibited the most atrophy. Interpretation CSF NfL is elevated in symptomatic FTD and correlates with disease severity. This measurement may be a useful surrogate endpoint of disease severity in FTD clinical trials. Longitudinal studies of CSF NfL in FTD are warranted. PMID:24242746
Effect of epileptic seizures on the cerebrospinal fluid--A systematic retrospective analysis.
Tumani, Hayrettin; Jobs, Catherine; Brettschneider, Johannes; Hoppner, Anselm C; Kerling, Frank; Fauser, Susanne
2015-08-01
Analyses of the cerebrospinal fluid (CSF) are obligatory when epileptic seizures manifest for the first time in order to exclude life-threatening causes or treatable diseases such as acute infections or autoimmune encephalitis. However, there are only few systematic investigations on the effect of seizures themselves on CSF parameters and the significance of these parameters in differential diagnosis. CSF samples of 309 patients with epileptic and 10 with psychogenic seizures were retrospectively analyzed. CSF samples were collected between 1999 and 2008. Cell counts, the albumin quotient, lactate and Tau-protein levels were determined. Findings were correlated with seizure types, seizure etiology (symptomatic, cryptogenic, occasional seizure), and seizure duration. Pathological findings were only observed in patients with epileptic but not with psychogenic seizures. The lactate concentration was elevated in 14%, the albumin quotient in 34%, and the Tau protein level in 36% of CSF samples. Cell counts were only slightly elevated in 6% of patients. Different seizure types influenced all parameters except for the cell count: In status epilepticus highest, in simple partial seizures lowest values were seen. Symptomatic partial and generalized epileptic seizures had significantly higher Tau-protein levels than cryptogenic partial seizures. In patients with repetitive and occasional epileptic seizures, higher Tau-protein levels were seen than in those with psychogenic seizures. Duration of epileptic seizures was positively correlated with the albumin quotient, lactate and Tau-protein levels. High variability of investigated CSF parameters within each subgroup rendered a clear separation between epileptic and psychogenic seizures impossible. Elevated cell counts are infrequently observed in patients with epileptic seizures and should therefore not uncritically be interpreted as a postictal phenomenon. However, blood-CSF barrier disruption, increased glucose metabolism and elevation of neuronal damage markers are observed in considerable percentages of patients and depend on many factors such as etiology, seizure type and duration. Copyright © 2015 Elsevier B.V. All rights reserved.
... this page: //medlineplus.gov/ency/article/003768.htm CSF smear To use the sharing features on this ... around the spinal cord and brain. Cerebrospinal fluid (CSF) protects the brain and spinal cord from injury. ...
Welch, M J; Markham, C H; Jenden, D J
1976-01-01
Lumbar cerebrospinal fluid (CSF) acetylcholine (ACh) and choline (Ch) levels were measured in patients with Huntington's chorea (N=11), Parkinson's disease (N=8), and subjects at risk for Huntington's chorea (N=4), and all three groups were found not to differ significantly from normal controls (N=10). The values found for lumbar CSF ACh and Ch levels in the normal subjects were comparable with previously reported values. The use of physostigmine, a cholinesterase inhibitor, in collecting the CSF samples did not appear to make a difference with regard to ACh and Ch concentrations. Evidence suggesting a ventricular-lumbar gradient, with lumbar CSF Ch concentration being less than ventricular CSF Ch concentration, was found. Finally, ACh levels in CSF did not correlate with corresponding Ch levels. PMID:132512
Detection of West Nile virus genome and specific antibodies in Iranian encephalitis patients.
Chinikar, S; Javadi, A; Ataei, B; Shakeri, H; Moradi, M; Mostafavi, E; Ghiasi, S M
2012-08-01
West Nile virus (WNV) is a mosquito-borne flavivirus which circulates in birds, horses and humans. An estimated 80% of WNV infections are asymptomatic. Fewer than 1% of infected persons develop neuroinvasive disease, which typically presents as encephalitis, meningitis, or acute flaccid paralysis. This study was conducted from January 2008 to June 2009 in Isfahan, Iran. Patients attending the emergency department with fever and loss of consciousness were consecutively included. Cerebrospinal fluids (CSF) were initially analysed through bacteriology and biochemistry examinations, resulting in those with evidence of meningitis being excluded. Patients' CSF and serum were diagnosed by serological and molecular assays. A total of 632 patients with fever and loss of consciousness were tested by CSF analyses. Samples of the remaining patients (39·4%) were referred for WNV investigation. Three (1·2%) of the patients were positive for both serum and CSF by RT-PCR, and six (2·4%) were positive only for IgG antibodies. History of insect bite, and blood transfusion and transplantation were risk factors for being positive by RT-PCR (P=0·048) and being IgG positive (P=0·024), respectively. The results of this study showed that the prevalence of West Nile fever is low in patients with encephalitis.
Selenium speciation in paired serum and cerebrospinal fluid samples of sheep.
Humann-Ziehank, Esther; Ganter, Martin; Michalke, Bernhard
2016-01-01
This study was performed to characterise selenium (Se) and Se species in cerebrospinal fluid (CSF) of sheep and its relation to the respective Se concentrations in serum. Paired samples from 10 adult sheep were used for the study. Five sheep were fed a diet with a marginal Se concentration of <0.05mg Se/kg diet dry weight (dw, Se(-)), and five animals were fed the same diet supplemented with sodium selenite revealing a concentration of 0.2mg Se/kg diet dw (Se(+)). The feeding strategy was conducted for two years; The results on metabolic effects were published previously. At the end of the feeding period, paired samples of serum and CSF were collected and analysed using ion exchange chromatography inductively coupled plasma-dynamic reaction cell-mass spectrometry (IEC-ICP-DRC-MS) technique for total Se concentration and concentrations of Se species. Albumin concentrations were analysed additionally. The feeding strategy caused significant differences (p<0.01) in serum Se concentrations with 33.1±5.11μg Se/l in the Se(-) group and 96.5±18.3μg Se/l in the Se(+) group, respectively. The corresponding total Se concentrations in CSF were 4.38±1.02μg Se/l and 6.13±1.64μg Se/l in the Se(-) and the Se(+) group, respectively, missing statistical significance (p=0.077). IEC-ICP-DRC-MS technique was able to differentiate the Se species selenoprotein P-bound Se (SePP), selenomethionine, glutathione peroxidase-bound Se (Se-GPx), selenocystine, thioredoxin reductase-bound Se, ovine serum albumin-bound Se (Se-OSA), SeIV and SeVI in ovine serum and CSF. Quantitatively, SePP is the main selenoprotein in ovine serum followed by Se-GPx. The CSF/blood ratio of albumin (QAlbumin) reflected a physiological function of the blood-CSF barrier in all sheep. QSe-species were higher than QAlbumin both feeding groups, supporting the hypothesis of local production of Se species in the brain. Significant positive regression lines for CSF vs. serum were found for albumin and Se-OSA only, suggesting a role of albumin to convey Se across the blood-CSF barrier. The ovine model, together with the IEC-ICP-DRC-MS technique to characterise the Se species, might be a worthwhile model for further studies as repeated sample collection as well as modification of the nutritional status is feasible and effective. Copyright © 2015 Elsevier GmbH. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogami, Ryo, E-mail: ogami.r@mazda.co.jp; Nakahara, Toshinori; Hamasaki, Osamu
2011-10-15
Purpose: A rare complication of carotid artery stenting (CAS), prolonged reversible neurological symptoms with delayed cerebrospinal fluid (CSF) space enhancement on fluid attenuated inversion recovery (FLAIR) images, is associated with blood-brain barrier (BBB) disruption. We prospectively identified patients who showed CSF space enhancement on FLAIR images. Methods: Nineteen patients-5 acute-phase and 14 scheduled-underwent 21 CAS procedures. Balloon catheters were navigated across stenoses, angioplasty was performed using a neuroprotective balloon, and stents were placed with after dilation under distal balloon protection. CSF space hyperintensity or obscuration on FLAIR after versus before CAS indicated CSF space enhancement. Correlations with clinical factors weremore » examined. Results: CSF space was enhanced on FLAIR in 12 (57.1%) cases. Postprocedural CSF space enhancement was significantly related to age, stenosis rate, acute-stage procedure, and total occlusion time. All acute-stage CAS patients showed delayed enhancement. Only age was associated with delayed CSF space enhancement in scheduled CAS patients. Conclusions: Ischemic intolerance for severe carotid artery stenosis and temporary neuroprotective balloon occlusion, causing reperfusion injury, seem to be the main factors that underlie BBB disruption with delayed CSF space enhancement shortly after CAS, rather than sudden poststenting hemodynamic change. Our results suggest that factors related to hemodynamic instability or ischemic intolerance seem to be associated with post-CAS BBB vulnerability. Patients at risk for hemodynamic instability or with ischemic intolerance, which decrease BBB integrity, require careful management to prevent intracranial hemorrhagic and other post-CAS complications.« less
Calcagno, A; Pinnetti, C; De Nicolò, A; Scarvaglieri, E; Gisslen, M; Tempestilli, M; D'Avolio, A; Fedele, V; Di Perri, G; Antinori, A; Bonora, S
2018-06-01
Abacavir is a widely used nucleotide reverse transcriptase inhibitor, for which cerebrospinal fluid (CSF) exposure has been previously assessed in twice-daily recipients. We studied abacavir CSF concentrations in 61 and nine HIV-positive patients taking abacavir once daily and twice daily, respectively. Patients on once-daily abacavir had higher plasma and CSF concentrations (96 vs. 22 ng ml -1 , P = 0.038 and 123 vs. 49 ng ml -1 , P = 0.038) but similar CSF-to-plasma ratios (0.8 vs. 0.5, P = 0.500). CSF abacavir concentrations were adequate in patients receiving once-daily treatment. © 2018 The British Pharmacological Society.
Characterization of individual mouse cerebrospinal fluid proteomes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Jeffrey S.; Angel, Thomas E.; Chavkin, Charles
2014-03-20
Analysis of cerebrospinal fluid (CSF) offers key insight into the status of the central nervous system. Characterization of murine CSF proteomes can provide a valuable resource for studying central nervous system injury and disease in animal models. However, the small volume of CSF in mice has thus far limited individual mouse proteome characterization. Through non-terminal CSF extractions in C57Bl/6 mice and high-resolution liquid chromatography-mass spectrometry analysis of individual murine samples, we report the most comprehensive proteome characterization of individual murine CSF to date. Utilizing stringent protein inclusion criteria that required the identification of at least two unique peptides (1% falsemore » discovery rate at the peptide level) we identified a total of 566 unique proteins, including 128 proteins from three individual CSF samples that have been previously identified in brain tissue. Our methods and analysis provide a mechanism for individual murine CSF proteome analysis.« less
Sensitivity of MRI of the spine compared with CT myelography in orthostatic headache with CSF leak.
Starling, Amaal; Hernandez, Fatima; Hoxworth, Joseph M; Trentman, Terrence; Halker, Rashmi; Vargas, Bert B; Hastriter, Eric; Dodick, David
2013-11-12
To investigate the sensitivity of MRI of the spine compared with CT myelography (CTM) in detecting CSF leaks. Between July 1998 and October 2010, 12 patients with orthostatic headache and a CTM-confirmed spinal CSF leak underwent an MRI of the spine with and without contrast. Using CTM as the gold standard, we retrospectively investigated the sensitivity of spinal MRI in detecting a CSF leak. Eleven of 12 patients with a CSF leak documented by CTM also had extradural fluid collections on spinal MRI (sensitivity 91.7%). Six patients with extradural fluid collections on spinal MRI also had spinal dural enhancement. When compared with the gold standard of CTM, MRI of the spine appears to be a sensitive and less invasive imaging modality for detecting a spinal CSF leak, suggesting that MRI of the spine should be the imaging modality of first choice for the detection of spinal CSF leaks.
Mouton Paradot, Gaëlle; Baledent, Olivier; Sallioux, Guillaume; Lehmann, Pierre; Gondry-Jouet, Catherine; Le Gars, Daniel
2010-02-01
The diagnosis and management of patients with idiopathic normal-pressure hydrocephalus (NPH) remain somewhat controversial and there is no clear guideline for assessing the post-shunt outcome. The objective of this study was to investigate whether cerebrospinal fluid (CSF) flow dynamics is linked to post-shunt improvement. Fourteen NPH patients (nine males and five females; mean age, 68 years) investigated by magnetic resonance imaging (MRI) before surgical diversion of CSF were retrospectively reviewed. Phase-contrast sequences were added to the morphological clinical protocol for quantification of CSF oscillations, which were recorded at the level of the cerebral aqueduct and the C2 and C3 subarachnoid spaces (SAS). The phase-contrast images were analysed with custom-designed dedicated flow segmentation software. The oscillations measured in this hydrocephalus population were compared to a previously studied healthy population. A difference of at least two standard deviations was used to define a hyperdynamic or hypodynamic state of CSF flow. The cervical CSF flow of the hydrocephalus patients was not significantly different from those of the volunteer population. Of the 14 hydrocephalus patients, 12 had a good response to the shunt. Of these, 10 presented an increased ventricular CSF flow, one a low ventricular CSF flow, and the last one had a normal ventricular CSF flow. Phase-contrast MRI can help develop guidelines for surgical management of NPH. The shunt responders appear to be the patients with hyperdynamic ventricular CSF flow and normal cervical CSF flow. Copyright 2009 Elsevier Masson SAS. All rights reserved.
Simon, Matthew J.; Iliff, Jeffrey J.
2015-01-01
Cerebrospinal fluid (CSF) circulation and turnover provides a sink for the elimination of solutes from the brain interstitium, serving an important homeostatic role for the function of the central nervous system. Disruption of normal CSF circulation and turnover is believed to contribute to the development of many diseases, including neurodegenerative conditions such as Alzheimer’s disease, ischemic and traumatic brain injury, and neuroinflammatory conditions such as multiple sclerosis. Recent insights into CSF biology suggesting that CSF and interstitial fluid exchange along a brain-wide network of perivascular spaces termed the ‘glymphatic’ system suggest that CSF circulation may interact intimately with glial and vascular function to regulate basic aspects of brain function. Dysfunction within this glial vascular network, which is a feature of the aging and injured brain, is a potentially critical link between brain injury, neuroinflammation and the development of chronic neurodegeneration. Ongoing research within this field may provide a powerful new framework for understanding the common links between neurodegenerative, neurovascular and neuroinflammatory disease, in addition to providing potentially novel therapeutic targets for these conditions. PMID:26499397
CSF oligoclonal banding - slideshow
... this page: //medlineplus.gov/ency/presentations/100145.htm CSF oligoclonal banding - series—Normal anatomy To use the ... 5 out of 5 Overview The cerebrospinal fluid (CSF) serves to supply nutrients to the central nervous ...
Frasca, Denis; Dahyot-Fizelier, Claire; Adier, Christophe; Mimoz, Olivier; Debaene, Bertrand; Couet, William
2014-01-01
This study explored metronidazole and hydroxymetronidazole distribution in the cerebrospinal fluid (CSF) of brain-injured patients. Four brain-injured patients with external ventricular drain received 500 mg of metronidazole over 0.5 h every 8 h. CSF and blood samples were collected at steady state over 8 h, and the metronidazole and hydroxymetronidazole concentrations were assayed by high-pressure liquid chromatograph. A noncompartmental analysis was performed. Metronidazole is distributed extensively within CSF, with a mean CSF to unbound plasma AUC0–τ ratio of 86% ± 16%. However, the concentration profiles in CSF were mostly flat compared to the plasma profiles. Hydroxymetronidazole concentrations were much lower than those of metronidazole both in plasma and in CSF, with a corresponding CSF/unbound plasma AUC0–τ ratio of 79% ± 16%. We describe here for the first time in detail the pharmacokinetics of metronidazole and hydroxymetronidazole in CSF. PMID:24277050
CSF N-glycoproteomics for early diagnosis in Alzheimer's disease.
Palmigiano, Angelo; Barone, Rita; Sturiale, Luisa; Sanfilippo, Cristina; Bua, Rosaria Ornella; Romeo, Donata Agata; Messina, Angela; Capuana, Maria Luisa; Maci, Tiziana; Le Pira, Francesco; Zappia, Mario; Garozzo, Domenico
2016-01-10
This work aims at exploring the human CSF (Cerebrospinal fluid) N-glycome by MALDI MS techniques, in order to assess specific glycosylation pattern(s) in patients with Alzheimer's disease (n:24) and in subjects with mild cognitive impairment (MCI) (n:11), these last as potential AD patients at a pre-dementia stage. For comparison, 21 healthy controls were studied. We identified a group of AD and MCI subjects (about 40-50% of the studied sample) showing significant alteration of CSF N-glycome profiling, consisting of a decrease in the overall sialylation degree and an increase in species bearing bisecting GlcNAc. Noteworthy, all the MCI patients that converted to AD within the clinical follow-up, had an abnormal CSF glycosylation profile. Based on the studied cohort, CSF glycosylation changes may occur before an AD clinical onset. Previous studies specifically focused on the key role of glycosyltransferase GnT-III on AD-pathogenesis, addressing the patho-mechanism to specific sugar modification of BACE-1 glycoprotein with bisecting GlcNAc. Our patients addressed protein N-glycosylation changes at an early phase of the whole biomolecular misregulation on AD, pointing to CSF N-glycome analyses as promising tool to enhance early detection of AD and also suggesting alternative therapeutics target molecules, such as specific glyco-enzymes. Copyright © 2015 Elsevier B.V. All rights reserved.
Quantitative measurement of intervertebral disc signal using MRI.
Niemeläinen, R; Videman, T; Dhillon, S S; Battié, M C
2008-03-01
To investigate the spinal cord as an alternative intra-body reference to cerebrospinal fluid (CSF) in evaluating thoracic disc signal intensity. T2-weighted magnetic resonance imaging (MRI) images of T6-T12 were obtained using 1.5 T machines for a population-based sample of 523 men aged 35-70 years. Quantitative data on the signal intensities were acquired using an image analysis program (SpEx). A random sample of 30 subjects and intraclass correlation coefficients (ICC) were used to examine the repeatability of the spinal cord measurements. The validity of using the spinal cord as a reference was examined by correlating cord and CSF samples. Finally, thoracic disc signal was validated by correlating it with age without adjustment and adjusting for either cord or CSF. Pearson's r was used for correlational analyses. The repeatability of the spinal cord signal measurements was extremely high (>or=0.99). The correlations between the signals of spinal cord and CSF by level were all above 0.9. The spinal cord-adjusted disc signal and age correlated similarly with CSF-adjusted disc signal and age (r=-0.30 to -0.40 versus r=-0.26 to -0.36). Adjacent spinal cord is a good alternative reference to the current reference standard, CSF, for quantitative measurements of disc signal intensity. Clearly fewer levels were excluded when using spinal cord as compared to CSF due to missing reference samples.
Caragounis, E-C; Gisslén, M; Lindh, M; Nordborg, C; Westergren, S; Hagberg, L; Svennerholm, B
2008-02-01
HIV-1 infects the central nervous system (CNS) early in the course of infection. However, it is not known to what extent the virus evolves independently within the CNS and whether the HIV-RNA in cerebrospinal fluid (CSF) reflects the viral population replicating within the brain parenchyma or the systemic infection. The aim of this study was to investigate HIV-1 evolution in the CNS and the origin of HIV-1 in CSF. Longitudinally derived paired blood and CSF samples and post-mortem samples from CSF, brain and spleen were collected over a period of up to 63 months from three HIV-1 infected men receiving antiretroviral treatment and presenting with symptoms of AIDS dementia complex (ADC). Phylogenetic analyses of HIV-1 V3, reverse transcriptase (RT) and protease sequences from patient isolates suggest compartmentalization with distinct viral strains in blood, CSF and brain. We found a different pattern of RT and accessory protease mutations in the systemic infection compared to the CNS. We conclude that HIV-1 may to some extent evolve independently in the CNS and the viral population in CSF mainly reflects the infection in the brain parenchyma in patients with ADC. This is of importance in understanding HIV pathogenesis and can have implications on treatment of HIV-1 patients.
Lower body negative pressure reduces optic nerve sheath diameter during head-down tilt.
Marshall-Goebel, Karina; Terlević, Robert; Gerlach, Darius A; Kuehn, Simone; Mulder, Edwin; Rittweger, Jörn
2017-11-01
The microgravity ocular syndrome (MOS) results in significant structural and functional ophthalmic changes during 6-mo spaceflight missions consistent with an increase in cerebrospinal fluid (CSF) pressure compared with the preflight upright position. A ground-based study was performed to assess two of the major hypothesized contributors to MOS, headward fluid shifting and increased ambient CO 2 , on intracranial and periorbital CSF. In addition, lower body negative pressure (LBNP) was assessed as a countermeasure to headward fluid shifting. Nine healthy male subjects participated in a crossover design study with five head-down tilt (HDT) conditions: -6, -12, and -18° HDT, -12° HDT with -20 mmHg LBNP, and -12° HDT with a 1% CO 2 environment, each for 5 h total. A three-dimensional volumetric scan of the cranium and transverse slices of the orbita were collected with MRI, and intracranial CSF volume and optic nerve sheath diameter (ONSD) were measured after 4.5 h HDT. ONSD increased during -6° ( P < 0.001), -12° ( P < 0.001), and -18° HDT ( P < 0.001) and intracranial CSF increased during -12° HDT ( P = 0.01) compared with supine baseline. Notably, LBNP was able to reduce the increases in ONSD and intracranial CSF during HDT. The addition of 1% CO 2 during HDT, however, had no further effect on ONSD, but rather ONSD increased from baseline in a similar magnitude to -12° HDT with ambient air ( P = 0.001). These findings demonstrate the ability of LBNP, a technique that targets fluid distribution in the lower limbs, to directly influence CSF and may be a promising countermeasure to help reduce increases in CSF. NEW & NOTEWORTHY This is the first study to demonstrate the ability of lower body negative pressure to directly influence cerebrospinal fluid surrounding the optic nerve, indicating potential use as a countermeasure for increased cerebrospinal fluid on Earth or in space. Copyright © 2017 the American Physiological Society.
Hanyuda, Hitoshi; Otonari-Yamamoto, Mika; Imoto, Kenichi; Sakamoto, Junichiro; Kodama, Sayaka; Kamio, Takashi; Sano, Tsukasa
2013-01-01
The aim of this study was to elucidate possible elements in minimal amounts of fluid (MF) in the temporomandibular joint by analyzing signal intensities in T2-weighted and fluid-attenuated inversion recovery (FLAIR) magnetic resonance (MR) images. Fifteen joints (15 patients) with MF were subjected to MR imaging to obtain T2-weighted and FLAIR images. Regions of interest were placed on MF, cerebrospinal fluid (CSF), and gray matter (GM), and their signal intensities were measured on both images. The signal intensity ratio (SIR) obtained by the signal intensity of GM between MF and CSF was compared in T2-weighted and FLAIR images. The average SIR of MF was lower than that of CSF on T2-weighted images, whereas it was higher on FLAIR images. The average suppression ratio of the signal intensity was lower for MF (24.1%) than for CSF (71.4%). MF may contain elements such as protein that are capable of inducing a shortened T1 relaxation time on MR images. Copyright © 2013 Elsevier Inc. All rights reserved.
... is a clear fluid that circulates in the space surrounding the spinal cord and brain. CSF protects the brain and spinal cord from injury by acting like a liquid cushion. CSF is usually obtained through a lumbar ...
... is a clear fluid that circulates in the space surrounding the spinal cord and brain. CSF protects the brain and spinal cord from injury by acting like a liquid cushion. CSF is usually obtained through a lumbar ...
Differential uptake of salicylate in serum, cerebrospinal fluid, and perilymph.
Jastreboff, P J; Hansen, R; Sasaki, P G; Sasaki, C T
1986-10-01
After intraperitoneal administration of salicylate in anesthetized rats and guinea pigs, we found that salicylate levels in perilymph (PL) are closely related to both drug levels in cerebrospinal fluid (CSF) and in serum, with higher levels systematically observed in PL than in CSF. Further analysis suggests that salicylate is not passively transported into PL across CSF but, rather, is transported from blood directly to PL. The time course of salicylate uptake in rats reveals maximum levels at 1 1/2 hours (serum) and two to four hours (CSF and PL). On the other hand, salicylate uptake into serum and CSF of guinea pigs exhibits a longer time course, with maximum levels reached at four hours (serum) and five hours (CSF). These data, not previously available, are basic to our understanding of salicylate-related auditory effects.
Ichiyama, Takashi; Matsushige, Takeshi; Siba, Peter; Suarkia, Dagwin; Takasu, Toshiaki; Miki, Kenji; Furukawa, Susumu
2008-05-01
To investigate the brain inflammation and damage in subacute sclerosing panencephalitis (SSPE), the cerebrospinal fluid (CSF) concentrations of matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of metalloproteinase-1 (TIMP-1) were determined in SSPE patients. CSF MMP-9 and TIMP-1 levels were measured in 23 patients with SSPE in Papua New Guinea by ELISA. CSF MMP-9 levels and MMP-9/TIMP-1 ratios of SSPE patients were significantly higher than controls (p<0.001 and p=0.005, respectively). There were no significant differences in CSF TIMP-1 levels between SSPE patients and controls. Previous studies suggested that CSF MMP-9 levels reflect inflammatory damage to the brain. Our findings suggest that the MMP-9 level in CSF is an indicator of inflammatory damage to the brain in SSPE.
Guerra, Maria M.; González, César; Caprile, Teresa; Jara, Maryoris; Vío, Karin; Muñoz, Rosa I.; Rodríguez, Sara; Rodríguez, Esteban M.
2015-01-01
The dynamic and molecular composition of the cerebrospinal fluid (CSF) and, consequently, the CSF physiology is much more complex and fascinating than the simplistic view held for decades. Signal molecules either transported from blood to CSF or secreted into the CSF by circumventricular organs and CSF-contacting neurons, use the CSF to reach their targets in the brain, including the pre- and postnatal neurogenic niche. The subcommissural organ (SCO), a highly conserved brain gland present throughout the vertebrate phylum, is one of the sources for signals, as well as the choroid plexus, tanycytes and CSF-contacting neurons. The SCO secretes into the fetal and adult CSF SCO-spondin, transthyretin, and basic fibroblast growth factor. These proteins participate in certain aspects of neurogenesis, such as cell cycle of neural stem cells, neuronal differentiation, and axon pathfinding. Through the CSF, the SCO-secretory proteins may reach virtually any target in the embryonic and adult central nervous system. Since the SCO continues to secrete throughout life span, it seems likely that the neurogenetic property of the SCO compounds would be targeted to the niches where neurogenesis continues in adulthood. This review is aimed to bring into discussion early and new evidence concerning the role(s) of the SCO, and the probable mechanisms by which SCO compounds can readily reach the neurogenic niche of the subventricular zone flowing with the CSF to participate in the regulation of the neurogenic niche. As we unfold the multiples trans-fluid talks between discrete brain domains we will have more tools to influence such talks. PMID:26778959
Treatment of cerebrospinal fluid leak after spine surgery.
Fang, Zhao; Tian, Rong; Jia, Yu-Tao; Xu, Tian-Tong; Liu, Yang
2017-04-01
Owing to the complexity of spinal surgery, there is a great prevalence of dural tear causing cerebrospinal fluid (CSF) leakage. Many studies focused on suture repair for dural tear to stop CSF leak. Now some new treatment strategies have shown a promising effect that is listed as follows: 1) creating watertight dural closure to stop CSF leak with the help of dural substitute material; and 2) retarding CSF leak by changing pressure difference, including reducing the subarachnoid fluid pressure, increasing the epidural space pressure and both. In fact several methods mentioned above are usually combined to treat CSF leak. However, no update review summarized the relevant studies implemented in recent years. In this review, the authors would compare the effects of different dural closure techniques, and introduce the latest treatment methods and mechanisms. Copyright © 2017 Daping Hospital and the Research Institute of Surgery of the Third Military Medical University. Production and hosting by Elsevier B.V. All rights reserved.
Cerebrospinal fluid bulk flow is driven by the cardiac cycle
NASA Astrophysics Data System (ADS)
Tithof, Jeffrey; Mestre, Humberto; Thomas, John; Nedergaard, Maiken; Kelley, Douglas
2017-11-01
Recent discoveries have uncovered a cerebrospinal fluid (CSF) transport system in the perivascular spaces (PVS) of the mammalian brain which clears excess extracellular fluid and protein waste products. The oscillatory pattern of CSF flow has long been attributed to arterial pulsations due to cardiac contractility but limitations in imaging techniques have impeded quantitative measurement of flow rates within the PVS. In this talk, we describe quantitative measurements from the first ever direct imaging of CSF flow in the PVS of a mouse brain. We perform particle tracking velocimetry to obtain time-resolved velocity measurements. To identify the cardiac and/or respiratory dependence of the flow, while imaging, we simultaneously record the mouse's electrocardiogram and respiration. Our measurements conclusively indicate that CSF pulsatility in the arterial PVS is directly driven by the cardiac cycle and not by the respiratory cycle or cerebral vasomotion. These results offer a substantial step forward in understanding bulk flow of CSF in the mammalian brain and may have important implications related to neurodegenerative diseases.
Karlsson, Ulf; Antonsson, Liselotte; Ljungberg, Bengt; Medstrand, Patrik; Esbjörnsson, Joakim; Jansson, Marianne; Gisslen, Magnus
2012-09-10
To study the use of major and alternative coreceptors by HIV-1 isolates obtained from paired plasma and cerebrospinal fluid (CSF) samples. Paired plasma and CSF isolates from HIV-1-infected individuals with varying clinical, virologic, and immunologic parameters were assessed for the ability to infect indicator cells expressing a panel of coreceptors with documented expression in the central nervous system (CNS). HIV-1 isolates obtained from plasma and CSF in 28 individuals with varying viral load, CD4 T-cell counts, and with or without AIDS-defining disease were analyzed for the ability to infect NP2.CD4 cells stably expressing a panel of HIV coreceptors (CCR5, CXCR4, CCR3, CXCR6, GPR1, APJ, ChemR23, RDC-1 or BLT1). All isolates from both plasma and CSF utilized CCR5 and/or CXCR4. However, the ability to use both CCR3 and CCR5 (R3R5) was more pronounced in CSF isolates and correlated with high CSF viral load and low CD4 T-cell count. Notably, four out of five CSF isolates of subtype C origin exhibited CXCR6 use, which coincided with high CSF viral load despite preserved CD4 T-cell counts. The use of other alternative coreceptors was less pronounced. Dual-tropic R3R5 HIV-1 isolates in CSF coincide with high CSF viral load and low CD4 T-cell counts. Frequent CXCR6 use by CSF-derived subtype C isolates indicates that subtype-specific differences in coreceptor use may exist that will not be acknowledged when assessing plasma virus isolates. The findings may also bare relevance for HIV-1 replication within the CNS, and consequently, for the neuropathogenesis of AIDS.
Development of a Physiologically-Based Pharmacokinetic Model of the Rat Central Nervous System
Badhan, Raj K. Singh; Chenel, Marylore; Penny, Jeffrey I.
2014-01-01
Central nervous system (CNS) drug disposition is dictated by a drug’s physicochemical properties and its ability to permeate physiological barriers. The blood–brain barrier (BBB), blood-cerebrospinal fluid barrier and centrally located drug transporter proteins influence drug disposition within the central nervous system. Attainment of adequate brain-to-plasma and cerebrospinal fluid-to-plasma partitioning is important in determining the efficacy of centrally acting therapeutics. We have developed a physiologically-based pharmacokinetic model of the rat CNS which incorporates brain interstitial fluid (ISF), choroidal epithelial and total cerebrospinal fluid (CSF) compartments and accurately predicts CNS pharmacokinetics. The model yielded reasonable predictions of unbound brain-to-plasma partition ratio (Kpuu,brain) and CSF:plasma ratio (CSF:Plasmau) using a series of in vitro permeability and unbound fraction parameters. When using in vitro permeability data obtained from L-mdr1a cells to estimate rat in vivo permeability, the model successfully predicted, to within 4-fold, Kpuu,brain and CSF:Plasmau for 81.5% of compounds simulated. The model presented allows for simultaneous simulation and analysis of both brain biophase and CSF to accurately predict CNS pharmacokinetics from preclinical drug parameters routinely available during discovery and development pathways. PMID:24647103
Benedicenti, Leontine; Gianotti, Giacomo; Galban, Evelyn M
2018-04-01
The objectives of this study were to investigate the relationship between cerebrospinal fluid lactate and serum concentrations in dogs with clinical signs of central nervous system disease and to establish if cerebrospinal fluid lactate (CSF) concentrations are higher in dogs with structural intracranial disease (Group Pos-MRI) compared to dogs that have clinical signs of intracranial disease but no structural brain disease (Group Neg-MRI) based on magnetic resonance imaging (MRI) findings. Using a prospective study canine blood and cerebrospinal fluid were collected in 24 dogs with neurological signs after undergoing brain MRI. Dogs were divided in 2 groups. No significant difference between serum lactate (1.57 ± 0.9 mmol/L) and CSF lactate concentration (1.34 ± 0.3 mmol/L) was detected. There was a direct correlation between CSF and serum lactate concentration ( R = 0.731; P = 0.01). No significant difference was found in CSF lactate concentration between the 2 groups of dogs ( P = 0.13).
Raltegravir cerebrospinal fluid concentrations in HIV-1 infection.
Yilmaz, Aylin; Gisslén, Magnus; Spudich, Serena; Lee, Evelyn; Jayewardene, Anura; Aweeka, Francesca; Price, Richard W
2009-09-01
Raltegravir is an HIV-1 integrase inhibitor currently used in treatment-experienced HIV-1-infected patients resistant to other drug classes. In order to assess its central nervous system penetration, we measured raltegravir concentrations in cerebrospinal fluid (CSF) and plasma in subjects receiving antiretroviral treatment regimens containing this drug. Raltegravir concentrations were determined by liquid chromatography tandem mass spectrometry in 25 paired CSF and plasma samples from 16 HIV-1-infected individuals. The lower limit of quantitation was 2.0 ng/ml for CSF and 10 ng/ml for plasma. Twenty-four of the 25 CSF samples had detectable raltegravir concentrations with a median raltegravir concentration of 18.4 ng/ml (range, <2.0-126.0). The median plasma raltegravir concentration was 448 ng/ml (range, 37-5180). CSF raltegravir concentrations correlated with CSF:plasma albumin ratios and CSF albumin concentrations. Approximately 50% of the CSF specimens exceeded the IC(95) levels reported to inhibit HIV-1 strains without resistance to integrase inhibitors. In addition to contributing to control of systemic HIV-1 infection, raltegravir achieves local inhibitory concentrations in CSF in most, but not all, patients. Blood-brain and blood-CSF barriers likely restrict drug entry, while enhanced permeability of these barriers enhances drug entry.
Mukerji, Shibani S; Misra, Vikas; Lorenz, David R; Uno, Hajime; Morgello, Susan; Franklin, Donald; Ellis, Ronald J; Letendre, Scott; Gabuzda, Dana
2018-04-03
Cerebrospinal fluid (CSF) viral escape occurs in 4-20% of HIV-infected adults, yet the impact of antiretroviral therapy (ART) on CSF escape is unclear. Prospective study of 1063 participants with baseline plasma viral load (VL) ≤400 copies/ml between 2005-2016. Odds ratio for ART regimens (PI with nucleoside reverse transcriptase inhibitor [PI+NRTI] versus other ART) and CSF escape was estimated using mixed-effects models. Drug resistance mutation frequencies were calculated. Baseline mean age was 46, median plasma VL, CD4 nadir, and CD4 count were 50 copies/mL, 88 cells/μL, and 424 cells/μL, respectively; 48% on PI+NRTI, 33% on non-NRTI, and 6% on integrase inhibitors. During median follow-up of 4.4 years, CSF escape occurred in 77 participants (7.2%). PI+NRTI use was an independent predictor of CSF escape (OR 3.1 [95% CI 1.8-5.0]) in adjusted analyses and models restricted to plasma VL ≤50 copies/ml (p<0.001). Regimens containing atazanavir (ATV) were a stronger predictor of CSF viral escape than non-ATV PI+NRTI regimens. Plasma and CSF M184V/I combined with thymidine-analog mutations were more frequent in CSF escape versus no escape (23% vs. 2.3%). Genotypic susceptibility score-adjusted CNS penetration-effectiveness (CPE) values were calculated for CSF escape with M184V/I mutations (n=34). Adjusted CPE values were low (<5) for CSF and plasma in 27 (79%) and 13 (38%), respectively, indicating suboptimal CNS drug availability. PI+NRTI regimens are independent predictors of CSF escape in HIV-infected adults. Reduced CNS ART bioavailability may predispose to CSF escape in patients with M184V/I mutations. Optimizing ART regimens may reduce risk of CSF escape.
Spectrophotometry of cerebrospinal fluid in subacute and chronic subdural haematomas
Kjellin, K. G.; Steiner, L.
1974-01-01
Spectrophotometric examinations were performed on cerebrospinal and subdural fluids in subacute (five patients) and chronic (20 patients) subdural haematomas, with special reference to the diagnostic aid of CSF spectrophotometry. Spectrophotometric xanthochromia of haemorrhagic origin was found in all CSFs examined, while definite visible xanthochromia was observed in only 28% and the CSF was judged as colourless in 52% of those cases. Characteristic bleeding patterns were found spectrophotometrically in all the 20 CSFs examined within 24 hours after lumbar puncture, haematoma patterns being detected in 90-95% of the cases. In many cases the electrophoretically separated protein fractions of CSF and subdural fluids were spectrophotometrically examined. In conclusion, CSF spectrophotometry is a simple, fast, and extremely sensitive method, which in our opinion should be used routinely in the diagnosis of suspected subdural haematomas, if lumbar puncture is not contraindicated. PMID:4140892
Dahl, Viktor; Peterson, Julia; Fuchs, Dietmar; Gisslen, Magnus; Palmer, Sarah; Price, Richard W.
2015-01-01
Objective and design Though combination antiretroviral therapy reduces the concentration of HIV-1 RNA in both plasma and cerebrospinal fluid (CSF) below the detection limit of clinical assays, low levels of HIV-1 RNA are frequently detectable in plasma using more sensitive assays. We examined the frequency and magnitude of persistent low-level HIV-1 RNA in CSF and its relation to the central nervous system (CNS) immune activation. Methods CSF and plasma HIV-1 RNA were measured using the single-copy assay with a detection limit of 0.3 copies/ml in 70 CSF and 68 plasma samples from 45 treated HIV-1-infected patients with less than 40 copies/ml of HIV-1 RNA in both fluids by standard clinical assays. We also measured CSF neopterin to assess intrathecal immune activation. Theoretical drug exposure was estimated using the CNS penetration-efficacy score of treatment regimens. Results CSF HIV-1 RNA was detected in 12 of the 70 CSF samples (17%) taken after up to 10 years of suppressive therapy, compared to 39 of the 68 plasma samples (57%) with a median concentration of less than 0.3 copies/ml in CSF compared to 0.3 copies/ml in plasma (P <0.0001). CSF samples with detectable HIV-1 RNA had higher CSF neopterin levels (mean 8.2 compared to 5.7 nmol/l; P =0.0085). Patients with detectable HIV-1 RNA in CSF did not differ in pretreatment plasma HIV-1 RNA levels, nadir CD4+ cell count or CNS penetration-efficacy score. Conclusion Low-level CSF HIV-1 RNA and its association with elevated CSF neopterin highlight the potential for the CNS to serve as a viral reservoir and for persistent infection to cause subclinical CNS injury. PMID:25022595
Dahl, Viktor; Peterson, Julia; Fuchs, Dietmar; Gisslen, Magnus; Palmer, Sarah; Price, Richard W
2014-09-24
Though combination antiretroviral therapy reduces the concentration of HIV-1 RNA in both plasma and cerebrospinal fluid (CSF) below the detection limit of clinical assays, low levels of HIV-1 RNA are frequently detectable in plasma using more sensitive assays. We examined the frequency and magnitude of persistent low-level HIV-1 RNA in CSF and its relation to the central nervous system (CNS) immune activation. CSF and plasma HIV-1 RNA were measured using the single-copy assay with a detection limit of 0.3 copies/ml in 70 CSF and 68 plasma samples from 45 treated HIV-1-infected patients with less than 40 copies/ml of HIV-1 RNA in both fluids by standard clinical assays. We also measured CSF neopterin to assess intrathecal immune activation. Theoretical drug exposure was estimated using the CNS penetration-efficacy score of treatment regimens. CSF HIV-1 RNA was detected in 12 of the 70 CSF samples (17%) taken after up to 10 years of suppressive therapy, compared to 39 of the 68 plasma samples (57%) with a median concentration of less than 0.3 copies/ml in CSF compared to 0.3 copies/ml in plasma (P < 0.0001). CSF samples with detectable HIV-1 RNA had higher CSF neopterin levels (mean 8.2 compared to 5.7 nmol/l; P = 0.0085). Patients with detectable HIV-1 RNA in CSF did not differ in pretreatment plasma HIV-1 RNA levels, nadir CD4 cell count or CNS penetration-efficacy score. Low-level CSF HIV-1 RNA and its association with elevated CSF neopterin highlight the potential for the CNS to serve as a viral reservoir and for persistent infection to cause subclinical CNS injury.
Thordardottir, Steinunn; Ståhlbom, Anne Kinhult; Ferreira, Daniel; Almkvist, Ove; Westman, Eric; Zetterberg, Henrik; Eriksdotter, Maria; Blennow, Kaj; Graff, Caroline
2015-01-01
It is currently believed that therapeutic interventions will be most effective when introduced at the preclinical stage of Alzheimer's disease (AD). This underlines the importance of biomarkers to detect AD pathology in vivo before clinical disease onset. To examine the evolution of cerebrospinal fluid (CSF) biomarker and brain structure changes in the preclinical phase of familial AD. The study included members from four Swedish families at risk for carrying an APPswe, APParc, PSEN1 H163Y, or PSEN1 I143T mutation. Magnetic resonance imaging (MRI) scans were obtained from 13 mutation carriers (MC) and 20 non-carriers (NC) and analyzed using vertex-based analyses of cortical thickness and volume. CSF was collected from 10 MC and 12 NC from familial AD families and analyzed for Aβ42, total tau (T-tau) and phospho-tau (P-tau). The MC had significantly lower levels of CSF Aβ42 and higher levels T-tau and P-tau than the NC. There was a trend for a decrease in Aβ42 15-20 years before expected onset of clinical symptoms, while increasing T-tau and P-tau was not found until close to the expected clinical onset. The MC had decreased volume on MRI in the left precuneus, superior temporal gyrus, and fusiform gyrus. Aberrant biomarker levels in CSF as well as regional brain atrophy are present in preclinical familial AD, several years before the expected onset of clinical symptoms.
Gong, Zhong-Ying; Lv, Gao-Peng; Gao, Li-Na; Lu, Yi; Guo, Jie; Zang, Da-Wei
2018-06-13
There are no reliable biomarkers that could evaluate the disease burden in amyotrophic lateral sclerosis (ALS). The aim of our study is to evaluate the changes in cerebrospinal fluid (CSF) and serum neurofilament subunit L (NF-L) in patients with ALS and to analyze the correlations between the levels of NF-L and clinical parameters. CSF and serum samples were obtained from 80 ALS patients and 40 controls. The levels of NF-L in CSF and serum were assessed, and disease progression parameters including duration, revised ALS Functional Rating Scale (ALSFRS-r) score, disease progression rate (DPR), upper motor neuron (UMN) score, and survival were analyzed by registered neurologists. All samples were measured using a commercial enzyme-linked immunosorbent assay. Statistical analyses were performed using Prism software. Compared to the controls, the ALS patients displayed significantly increased levels of NF-L; these values were negatively correlated with the ALSFRS-r score and positively correlated with the decrease in ALSFRS-r score, DPR, and UMN score. There was no correlation between levels of NF-L and duration. In addition, the cumulative survival rate in ALS patients with a low level of NF-L was higher than in patients with a high level of NF-L. NF-L levels increased in CSF and serum of patients with ALS. NF-L may thus be a neurodegenerative biomarker for predicting ALS severity and progression, and the survival of patients with this disease. © 2018 S. Karger AG, Basel.
Hodel, Jérôme; Silvera, Jonathan; Bekaert, Olivier; Rahmouni, Alain; Bastuji-Garin, Sylvie; Vignaud, Alexandre; Petit, Eric; Durning, Bruno; Decq, Philippe
2011-02-01
To assess the three-dimensional turbo spin echo with variable flip-angle distribution magnetic resonance sequence (SPACE: Sampling Perfection with Application optimised Contrast using different flip-angle Evolution) for the imaging of intracranial cerebrospinal fluid (CSF) spaces. We prospectively investigated 18 healthy volunteers and 25 patients, 20 with communicating hydrocephalus (CH), five with non-communicating hydrocephalus (NCH), using the SPACE sequence at 1.5T. Volume rendering views of both intracranial and ventricular CSF were obtained for all patients and volunteers. The subarachnoid CSF distribution was qualitatively evaluated on volume rendering views using a four-point scale. The CSF volumes within total, ventricular and subarachnoid spaces were calculated as well as the ratio between ventricular and subarachnoid CSF volumes. Three different patterns of subarachnoid CSF distribution were observed. In healthy volunteers we found narrowed CSF spaces within the occipital aera. A diffuse narrowing of the subarachnoid CSF spaces was observed in patients with NCH whereas patients with CH exhibited narrowed CSF spaces within the high midline convexity. The ratios between ventricular and subarachnoid CSF volumes were significantly different among the volunteers, patients with CH and patients with NCH. The assessment of CSF spaces volume and distribution may help to characterise hydrocephalus.
Zappella, N; Barrelet, A; Pangon, B; Laurent, V; Bruneel, F
2013-11-01
We reported a case of group A streptococcal meningitis in a patient with a CSF fluid leak. This case underlined several relevant points: (i) an unfrequent cause of bacterial meningitis; (ii) the main diagnosis to evoke when the direct examination of CSF shows Gram+ cocci with a negative pneumococcal antigen; (iii) that bacteria other than Streptococcus pneumoniae are possible in front of a meningitis associated with a CSF fluif leak. Copyright © 2013 Société française d’anesthésie et de réanimation (Sfar). Published by Elsevier SAS. All rights reserved.
Simon, Matthew J; Iliff, Jeffrey J
2016-03-01
Cerebrospinal fluid (CSF) circulation and turnover provides a sink for the elimination of solutes from the brain interstitium, serving an important homeostatic role for the function of the central nervous system. Disruption of normal CSF circulation and turnover is believed to contribute to the development of many diseases, including neurodegenerative conditions such as Alzheimer's disease, ischemic and traumatic brain injury, and neuroinflammatory conditions such as multiple sclerosis. Recent insights into CSF biology suggesting that CSF and interstitial fluid exchange along a brain-wide network of perivascular spaces termed the 'glymphatic' system suggest that CSF circulation may interact intimately with glial and vascular function to regulate basic aspects of brain function. Dysfunction within this glial vascular network, which is a feature of the aging and injured brain, is a potentially critical link between brain injury, neuroinflammation and the development of chronic neurodegeneration. Ongoing research within this field may provide a powerful new framework for understanding the common links between neurodegenerative, neurovascular and neuroinflammatory disease, in addition to providing potentially novel therapeutic targets for these conditions. This article is part of a Special Issue entitled: Neuro Inflammation edited by Helga E. de Vries and Markus Schwaninger. Copyright © 2015 Elsevier B.V. All rights reserved.
Schwieler, Lilly; Larsson, Markus K.; Skogh, Elisabeth; Kegel, Magdalena E.; Orhan, Funda; Abdelmoaty, Sally; Finn, Anja; Bhat, Maria; Samuelsson, Martin; Lundberg, Kristina; Dahl, Marja-Liisa; Sellgren, Carl; Schuppe-Koistinen, Ina; Svensson, Camilla I.; Erhardt, Sophie; Engberg, Göran
2015-01-01
Background Accumulating evidence indicates that schizophrenia is associated with brain immune activation. While a number of reports suggest increased cytokine levels in patients with schizophrenia, many of these studies have been limited by their focus on peripheral cytokines or confounded by various antipsychotic treatments. Here, well-characterized patients with schizophrenia, all receiving olanzapine treatment, and healthy volunteers were analyzed with regard to cerebrospinal fluid (CSF) levels of cytokines. We correlated the CSF cytokine levels to previously analyzed metabolites of the kynurenine (KYN) pathway. Methods We analyzed the CSF from patients and controls using electrochemiluminescence detection with regard to cytokines. Cell culture media from human cortical astrocytes were analyzed for KYN and kynurenic acid (KYNA) using high-pressure liquid chromatography or liquid chromatography/mass spectrometry. Results We included 23 patients and 37 controls in our study. Patients with schizophrenia had increased CSF levels of interleukin (IL)-6 compared with healthy volunteers. In patients, we also observed a positive correlation between IL-6 and the tryptophan:KYNA ratio, indicating that IL-6 activates the KYN pathway. In line with this, application of IL-6 to cultured human astrocytes increased cell medium concentration of KYNA. Limitations The CSF samples had been frozen and thawed twice before analysis of cytokines. Median age differed between patients and controls. When appropriate, all present analyses were adjusted for age. Conclusion We have shown that IL-6, KYN and KYNA are elevated in patients with chronic schizophrenia, strengthening the idea of brain immune activation in patients with this disease. Our concurrent cell culture and clinical findings suggest that IL-6 induces the KYN pathway, leading to increased production of the N-methyl-d-aspartate receptor antagonist KYNA in patients with schizophrenia. PMID:25455350
Harari, Oscar; Cruchaga, Carlos; Kauwe, John S.K.; Ainscough, Benjamin J.; Bales, Kelly; Pickering, Eve H.; Bertelsen, Sarah; Fagan, Anne M.; Holtzman, David M.; Morris, John C.; Goate, Alison M.
2014-01-01
Background Identification of the physiological changes that occur during the early stages of Alzheimer’s disease (AD) may provide critical insights for the diagnosis, prognosis and treatment of disease. Cerebrospinal fluid (CSF) biomarkers are a rich source of information that reflect the brain proteome. Methods We applied a novel approach to screen a panel of ~190 CSF analytes quantified by multiplex immunoassay and detected common associations in the Knight- Alzheimer’s Disease Research Center (ADRC;N=311) and the Alzheimer’s Disease Neuroimaging Initiative (ADNI;N=293) cohorts. CSF ptau181-Aβ42 ratio was used as a continuous trait, rather than case control status in these analyses. Results We demonstrate the ptau181-Aβ42 ratio has more statistical power than traditional modeling approaches and that the levels of CSF Fatty Acid Binding Protein (H-FABP) and 12 other correlated analytes increase as the disease progresses. These results were validated using the traditional case control status model. Stratification of our dataset demonstrated that increases in these analytes occur very early in the disease course and were apparent even in non-demented individuals with AD pathology (low ptau181, low Aβ42) compared to pathology-negative elderly control subjects (low ptau181, high Aβ42). FABP-Aβ42 ratio demonstrates a similar hazard ratio for disease conversion to ptau181-Aβ42 even though the overlap in classification is incomplete suggesting that FABP contributes independent information as a predictor Conclusions Our results clearly indicate that the approach presented here can be employed to correctly identify novel biomarkers for AD, and that CSF H-FABP levels start to increase at very early stages of the disease. PMID:24548642
Reiber, Hansotto
2016-06-01
The physiological and biophysical knowledge base for interpretations of cerebrospinal fluid (CSF) data and reference ranges are essential for the clinical pathologist and neurochemist. With the popular description of the CSF flow dependent barrier function, the dynamics and concentration gradients of blood-derived, brain-derived and leptomeningeal proteins in CSF or the specificity-independent functions of B-lymphocytes in brain also the neurologist, psychiatrist, neurosurgeon as well as the neuropharmacologist may find essentials for diagnosis, research or development of therapies. This review may help to replace the outdated ideas like "leakage" models of the barriers, linear immunoglobulin Index Interpretations or CSF electrophoresis. Calculations, Interpretations and analytical pitfalls are described for albumin quotients, quantitation of immunoglobulin synthesis in Reibergrams, oligoclonal IgG, IgM analysis, the polyspecific ( MRZ- ) antibody reaction, the statistical treatment of CSF data and general quality assessment in the CSF laboratory. The diagnostic relevance is documented in an accompaning review.
Repair of Spontaneous Cerebrospinal Fluid Otorrhea from Defect of Middle Cranial Fossa
Goh, Young Bum; Han, Chi-Sung
2013-01-01
Spontaneous cerebrospinal fluid (CSF) otorrhea is defined as CSF otorrhea where there are no identifiable causes including previous trauma, surgery, infection, neoplasm or congenital anomaly. The condition is rare. The origin of CSF leak is commonly a defect in the tegmen of the middle cranial fossa. The pathophysiology of spontaneous CSF otorrhea is unclear. Two theories of the etiology of bony defects of the temporal bone are the congenital bony defect theory and arachnoid granulation theory. The authors experienced a case of a 49-year-old female patient admitted with the complaint of persistent right ear fullness. Computed tomography revealed a large defect of the middle fossa and suspicious CSF otorrhea through the defect of tegmen tympani. Repair was successful with multiple bone chips using the transmastoid approach. The postoperative course was good and there has been no recurrence of the CSF leakage. PMID:24653924
Resistance to outflow of cerebrospinal fluid after central infusions of angiotensin
NASA Technical Reports Server (NTRS)
Morrow, B. A.; Keil, L. C.; Severs, W. B.
1992-01-01
Infusions of artificial cerebrospinal fluid (CSF) into the cerebroventricles of conscious rats can raise CSF pressure (CSFp). This response can be modified by some neuropeptides. One of these, angiotensin, facilitates the rise in CSFp. We measured CSFp in conscious rats with a computerized system and evaluated resistance to CSF outflow during infusion of artificial CSF, with or without angiotensin, from the decay kinetics of superimposed bolus injections. Angiotensin (10 ng/min) raised CSFp (P less than 0.05) compared with solvent, but the resistance to CSF outflow of the two groups was similar (P greater than 0.05). Because CSFp was increased by angiotensin without an increase in the outflow resistance, a change in some volume compartment is likely. Angiotensin may raise CSFp by increasing CSF synthesis; this possibility is supported, since the choroid plexuses contain an intrinsic isorenin-angiotensin system. Alternatively, angiotensin may dilate pial arteries, leading to an increased intracranial blood volume.
Waggoner, Jesse J.; Soda, Elizabeth A.; Seibert, Ryan; Grant, Philip; Pinsky, Benjamin A.
2015-01-01
Leptospirosis is a potentially severe illness in returned travelers. Patients often present with fever, headache, and neck pain, which may lead to a workup for meningitis including the acquisition of cerebrospinal fluid (CSF). Although Leptospira DNA has been detected in CSF by polymerase chain reaction (PCR), little data exist regarding the utility of testing CSF in addition to serum or plasma obtained on presentation. In this report, we present two cases of leptospirosis in returned travelers presenting with fever and headache. Our first patient had neutrophilic meningitis, and Leptospira was detectable only in CSF obtained on admission. The second patient had a normal CSF profile, but Leptospira was detected in CSF at a bacterial load 5- to 10-fold higher than that in plasma. CSF is an important specimen for the diagnosis of Leptospira by molecular methods and may yield an actionable diagnosis in the absence of leptospiremia. PMID:26033024
Cerebrospinal Fluid HIV Escape from Antiretroviral Therapy.
Ferretti, Francesca; Gisslen, Magnus; Cinque, Paola; Price, Richard W
2015-06-01
CNS infection is a nearly constant facet of systemic CNS infection and is generally well controlled by suppressive systemic antiretroviral therapy (ART). However, there are instances when HIV can be detected in the cerebrospinal fluid (CSF) despite suppression of plasma viruses below the clinical limits of measurement. We review three types of CSF viral escape: asymptomatic, neuro-symptomatic, and secondary. The first, asymptomatic CSF escape, is seemingly benign and characterized by lack of discernable neurological deterioration or subsequent CNS disease progression. Neuro-symptomatic CSF escape is an uncommon, but important, entity characterized by new or progressive CNS disease that is critical to recognize clinically because of its management implications. Finally, secondary CSF escape, which may be even more uncommon, is defined by an increase of CSF HIV replication in association with a concomitant non-HIV infection, as a consequence of the local inflammatory response. Understanding these CSF escape settings not only is important for clinical diagnosis and management but also may provide insight into the CNS HIV reservoir.
Imaging review of cerebrospinal fluid leaks
Vemuri, Naga V; Karanam, Lakshmi S P; Manchikanti, Venkatesh; Dandamudi, Srinivas; Puvvada, Sampath K; Vemuri, Vineet K
2017-01-01
Cerebrospinal fluid (CSF) leak occurs due to a defect in the dura and skull base. Trauma remains the most common cause of CSF leak; however, a significant number of cases are iatrogenic, and result from a complication of functional endoscopic sinus surgery (FESS). Early diagnosis of CSF leak is of paramount importance to prevent life-threatening complications such as brain abscess and meningitis. Imaging plays a crucial role in the detection and characterization of CSF leaks. Three-dimensional, isotropic, high resolution computed tomography (HRCT) accurately detects the site and size of the bony defect. CT cisternography, though invasive, helps accurately identify the site of CSF leak, especially in the presence of multiple bony defects. Magnetic resonance imaging (MRI) accurately detects CSF leaks and associated complications such as the encephaloceles and meningoceles. In this review, we emphasize the importance and usefulness of 3D T2 DRIVE MR cisternography in localizing CSF leaks. This sequence has the advantages of effective bone and fat suppression, decreased artefacts, faster acquisition times, three-dimensional capability, y and high spatial resolution in addition to providing very bright signal from the CSF. PMID:29379240
Imaging review of cerebrospinal fluid leaks.
Vemuri, Naga V; Karanam, Lakshmi S P; Manchikanti, Venkatesh; Dandamudi, Srinivas; Puvvada, Sampath K; Vemuri, Vineet K
2017-01-01
Cerebrospinal fluid (CSF) leak occurs due to a defect in the dura and skull base. Trauma remains the most common cause of CSF leak; however, a significant number of cases are iatrogenic, and result from a complication of functional endoscopic sinus surgery (FESS). Early diagnosis of CSF leak is of paramount importance to prevent life-threatening complications such as brain abscess and meningitis. Imaging plays a crucial role in the detection and characterization of CSF leaks. Three-dimensional, isotropic, high resolution computed tomography (HRCT) accurately detects the site and size of the bony defect. CT cisternography, though invasive, helps accurately identify the site of CSF leak, especially in the presence of multiple bony defects. Magnetic resonance imaging (MRI) accurately detects CSF leaks and associated complications such as the encephaloceles and meningoceles. In this review, we emphasize the importance and usefulness of 3D T2 DRIVE MR cisternography in localizing CSF leaks. This sequence has the advantages of effective bone and fat suppression, decreased artefacts, faster acquisition times, three-dimensional capability, y and high spatial resolution in addition to providing very bright signal from the CSF.
Beta-trace protein in ascites and pleural effusions: limits of CSF leakage detection.
Dietzel, Joanna; Krebs, Alexander; Böttcher, Dominique; Sieb, Manuela; Glocker, Michael O; Lüdemann, Jan; Roser, Markus; Dressel, Alexander
2012-06-10
Rhino- and/or otoliquorrhea can be diagnosed by detecting beta-trace protein (β-TP) in nasal or ear secretions, as β-TP is found in high concentrations in cerebrospinal fluid (CSF) but not in serum. CSF fistulae following trauma or surgery can also occur at other anatomical sites, resulting in CSF leakage into the thoracic and abdominal cavities. By analogy, determination of ß-TP has also been used to diagnose CSF admixture in pleural effusions and ascites. However, no systematic study has yet evaluated the concentrations of β-TP in such fluids in the absence of CSF. To determine the validity of β-TP determination as a marker for the presence of CSF, we investigated β-TP concentrations in pleural effusions and ascites without CSF admixture. Patients from whom samples of ascites or pleural effusion and a paired plasma sample were available were investigated. One hundred sixty-four patients were prospectively recruited. ß-TP concentrations were determined by nephelometry. Mass spectrometric proteome analysis confirmed the presence of ß-TP in the samples. Median β-TP concentrations detected in ascites and pleural effusions (range, 0.014-26.5 mg/L, median 2.29 mg/L) exceeded the corresponding plasma concentrations 2.6-fold. According to cutoffs published to diagnose rhino- and otoliquorrhea, between 6.1% and 95.7% of the specimens would have been erroneously rated CSF-positive. Protein analysis confirmed the presence of β-TP in pleural effusion and ascites. Ascites and pleural effusion contain high concentrations of β-TP that exceed the levels in corresponding plasma. Therefore, β-TP is not a specific marker for the presence of CSF in these fluids.
Wang, Wang-Xia; Fardo, David W; Jicha, Gregory A; Nelson, Peter T
2017-12-01
MicroRNA (miRNA) expression varies in association with different tissue types and in diseases. Having been found in body fluids including blood and cerebrospinal fluid (CSF), miRNAs constitute potential biomarkers. CSF miRNAs have been proposed as biomarkers for neurodegenerative diseases; however, there is a lack of consensus about the best candidate miRNA biomarkers and there has been variability in results from different research centers, perhaps due to technical factors. Here, we sought to optimize technical parameters for CSF miRNA studies. We examined different RNA isolation methods and performed miRNA expression profiling with TaqMan® miRNA Arrays. More specifically, we developed a customized CSF-miRNA low-density array (TLDA) panel that contains 47 targets: miRNAs shown previously to be relevant to neurodegenerative disease, miRNAs that are abundant in CSF, data normalizers, and controls for potential blood and tissue contamination. The advantages of using this CSF-miRNA TLDA panel include specificity, sensitivity, fast processing and data analysis, and cost effectiveness. We optimized technical parameters for this assay. Further, the TLDA panel can be tailored to other specific purposes. We tested whether the profile of miRNAs in the CSF resembled miRNAs isolated from brain tissue (hippocampus or cerebellum), blood, or the choroid plexus. We found that the CSF miRNA expression profile most closely resembles that of choroid plexus tissue, underscoring the potential importance of choroid plexus-derived signaling through CSF miRNAs. In summary, the TLDA miRNA array panel will enable evaluation and discovery of CSF miRNA biomarkers and can potentially be utilized in clinical diagnosis and disease stage monitoring.
Cerebrospinal Fluid Biomarkers for Huntington's Disease.
Byrne, Lauren M; Wild, Edward J
2016-01-01
Cerebrospinal fluid (CSF) is enriched in brain-derived components and represents an accessible and appealing means of interrogating the CNS milieu to study neurodegenerative diseases and identify biomarkers to facilitate the development of novel therapeutics. Many such CSF biomarkers have been proposed for Huntington's disease (HD) but none has been validated for clinical trial use. Across many studies proposing dozens of biomarker candidates, there is a notable lack of statistical power, consistency, rigor and validation. Here we review proposed CSF biomarkers including neurotransmitters, transglutaminase activity, kynurenine pathway metabolites, oxidative stress markers, inflammatory markers, neuroendocrine markers, protein markers of neuronal death, proteomic approaches and mutant huntingtin protein itself. We reflect on the need for large-scale, standardized CSF collections with detailed phenotypic data to validate and qualify much-needed CSF biomarkers for clinical trial use in HD.
Dahl, Viktor; Gisslen, Magnus; Hagberg, Lars; Peterson, Julia; Shao, Wei; Spudich, Serena; Price, Richard W.; Palmer, Sarah
2014-01-01
We sequenced the genome of human immunodeficiency virus type 1 (HIV-1) recovered from 70 cerebrospinal fluid (CSF) specimens and 29 plasma samples and corresponding samples obtained before treatment initiation from 17 subjects receiving suppressive therapy. More CSF sequences than plasma sequences were hypermutants. We determined CSF sequences and plasma sequences in specimens obtained from 2 subjects after treatment initiation. In one subject, we found genetically distinct CSF and plasma sequences, indicating that they came from HIV-1 from 2 different compartments, one potentially the central nervous system, during suppressive therapy. In addition, there was little evidence of viral evolution in the CSF during therapy, suggesting that continuous virus replication is not the major cause of viral persistence in the central nervous system. PMID:24338353
Dahl, Viktor; Gisslen, Magnus; Hagberg, Lars; Peterson, Julia; Shao, Wei; Spudich, Serena; Price, Richard W; Palmer, Sarah
2014-05-15
We sequenced the genome of human immunodeficiency virus type 1 (HIV-1) recovered from 70 cerebrospinal fluid (CSF) specimens and 29 plasma samples and corresponding samples obtained before treatment initiation from 17 subjects receiving suppressive therapy. More CSF sequences than plasma sequences were hypermutants. We determined CSF sequences and plasma sequences in specimens obtained from 2 subjects after treatment initiation. In one subject, we found genetically distinct CSF and plasma sequences, indicating that they came from HIV-1 from 2 different compartments, one potentially the central nervous system, during suppressive therapy. In addition, there was little evidence of viral evolution in the CSF during therapy, suggesting that continuous virus replication is not the major cause of viral persistence in the central nervous system.
Manyam, B V; Giacobini, E; Ferraro, T N; Hare, T A
1990-11-01
Cerebrospinal fluid (CSF) amino acid neurotransmitters, related compounds, and their precursors, choline levels, and acetylcholinesterase activity were measured in the CSF of patients with cerebellar ataxia during a randomized, double-blind, crossover, placebo-controlled clinical trial of physostigmine salicylate. The CSF gamma-aminobutyric acid, methionine, and choline levels, adjusted for age, were significantly lower in patients with cerebellar ataxia compared with controls. Physostigmine selectively reduced the level of CSF isoleucine and elevated the levels of phosphoethanolamine. No change occurred in CSF acetylcholinesterase activity and in the levels of plasma amino compounds in patients with cerebellar ataxia when compared with controls. Median ataxia scores did not statistically differ between placebo and physostigmine nor did functional improvement occur in any of the patients.
USDA-ARS?s Scientific Manuscript database
A recent report (Formisano et al., 2013) identified clinical sacrocystosis in 2 adult sheep. The diagnosis relied primarily on characterization of DNA extracted from cerebrospinal fluid (CSF) and paraffin-embedded heart tissue. Parasites identified as merozoites were identified in CSF smears stained...
Jiang, Jian; James, Christopher A; Wong, Philip
2016-09-05
A LC-MS/MS method has been developed and validated for the determination of glycine in human cerebrospinal fluid (CSF). The validated method used artificial cerebrospinal fluid as a surrogate matrix for calibration standards. The calibration curve range for the assay was 100-10,000ng/mL and (13)C2, (15)N-glycine was used as an internal standard (IS). Pre-validation experiments were performed to demonstrate parallelism with surrogate matrix and standard addition methods. The mean endogenous glycine concentration in a pooled human CSF determined on three days by using artificial CSF as a surrogate matrix and the method of standard addition was found to be 748±30.6 and 768±18.1ng/mL, respectively. A percentage difference of -2.6% indicated that artificial CSF could be used as a surrogate calibration matrix for the determination of glycine in human CSF. Quality control (QC) samples, except the lower limit of quantitation (LLOQ) QC and low QC samples, were prepared by spiking glycine into aliquots of pooled human CSF sample. The low QC sample was prepared from a separate pooled human CSF sample containing low endogenous glycine concentrations, while the LLOQ QC sample was prepared in artificial CSF. Standard addition was used extensively to evaluate matrix effects during validation. The validated method was used to determine the endogenous glycine concentrations in human CSF samples. Incurred sample reanalysis demonstrated reproducibility of the method. Copyright © 2016 Elsevier B.V. All rights reserved.
Absorption kinetics of flurbiprofen axetil microspheres in cerebrospinal fluid: A pilot study .
Zhang, Hong; Gu, Jian; Feng, Yi; An, Haiyan
2017-11-01
The purpose of this study is to investigate the absorption dynamics of flurbiprofen axetil in cerebrospinal fluid. We analyzed the concentrations of flurbiprofen in peripheral venous blood and cerebrospinal fluid (CSF) to explore the absorption dynamics of flurbiprofen axetil loaded in lipid microspheres in CSF. 72 adult patients who planned to undergo selective operations under spinal anesthesia or combined spinal-epidural anesthesia were intravenously injected with flurbiprofen axetil (1 mg/kg) and randomly divided into nine groups according to the sampling time after administration: 5 (T5), 10 (T10), 15 (T15), 20 (T20), 25 (T25), 30 (T30), 35 (T35), 40 (T40), and 45 minutes (T45). The CSF and venous blood samples collected from patients were analyzed by reverse-phase high-performance liquid chromatography to determine the concentrations of flurbiprofen. With the exception of 3 CSF samples in T5 and 4 CSF samples in T10, flurbiprofen was detected in all CSF and blood specimens. Significant differences between the CSF concentrations and CSF/plasma drug concentration ratios were observed among the nine time points (p < 0.001), whereas no significant difference in plasma concentration was found (p > 0.05). The findings suggest that lipid microspheres loaded with flurbiprofen can penetrate through the blood-brain barrier into CSF after intravenous injection. The fact that the flurbiprofen concentration rose continuously for 45 minutes after injection indicates that flurbiprofen-loaded lipid microspheres may exert analgesic action via the central nervous system. .
Park, Jaechan; Choi, Yeon-Ju; Ohk, Boram; Chang, Hyun-Ha
2018-01-01
The placement of a ventricular catheter for temporary cerebrospinal fluid (CSF) diversion is associated with a considerable risk of CSF infection. The authors investigated the effect of a CSF leak on CSF-related infection and the predisposing factors for a CSF leak. Fifty-two patients who underwent external ventricular drainage (EVD) for acute hydrocephalus associated with a subarachnoid hemorrhage or intraventricular hemorrhage (IVH) were enrolled in this prospective study. A CSF leak-detection paper (small sterilized filter paper) was applied at the percutaneous catheter exit site to check for any bloody CSF leak. In addition, radiologic and clinical data were collected. Four of the 52 patients (7.7%) developed an EVD-related CSF infection from organisms including Staphylococcus epidermidis (n = 3) and Staphylococcus hominis (n = 1). A prolonged CSF leak >1 day was detected in 9 patients (17.3%) and revealed as a significant risk factor for CSF infection with a 44.4% positive predictive value. Moreover, an IVH >10 mL was found in 11 patients (21.2%) and revealed as a significant predisposing factor for a CSF leak at the percutaneous catheter exit. A prolonged CSF leak for >1 day at the percutaneous catheter exit site is a crucial risk factor for EVD-related CSF infection and an IVH >10 mL is a predisposing factor for a CSF leak. Copyright © 2017 Elsevier Inc. All rights reserved.
Akiyama, Tomoyuki; Hayashi, Yumiko; Hanaoka, Yoshiyuki; Shibata, Takashi; Akiyama, Mari; Tsuchiya, Hiroki; Yamaguchi, Tokito; Kobayashi, Katsuhiro
2017-09-01
We quantified pyridoxal 5'-phosphate (PLP), pyridoxal (PL), and 4-pyridoxic acid (PA) in paired serum and cerebrospinal fluid (CSF) samples from children and investigated the effect of age on the concentrations and CSF-to-serum ratios of these vitamers. Serum and CSF samples prospectively collected from 49 pediatric patients were analyzed. PLP, PL, and PA were measured using high-performance liquid chromatography with fluorescence detection, using pre-column derivatization by semicarbazide. Effects of age on these vitamers, the PLP-to-PL ratio, CSF-to-serum PLP ratio, and CSF-to-serum PL ratio were evaluated using correlation analysis. The PLP, PL, and PA concentrations in the serum and CSF were higher at younger ages, except for CSF PA concentrations that were mostly below the limit of detection (<1.2nmol/l). The PLP-to-PL ratios in the serum and CSF correlated positively with age. The CSF-to-serum PLP ratio and CSF-to-serum PL ratio were independent of age. Age-related changes in PLP, PL, and PA in serum and in CSF from pediatric patients and CSF-to-serum ratios of PLP and PL demonstrated in this study will provide valuable information for evaluating PLP supply to the central nervous system from the peripheral blood. Copyright © 2017 Elsevier B.V. All rights reserved.
CXCL13 as a Cerebrospinal Fluid Marker for Neurosyphilis in HIV-infected Patients with Syphilis
Marra, Christina M.; Tantalo, Lauren C.; Sahi, Sharon K.; Maxwell, Clare L.; Lukehart, Sheila A.
2010-01-01
Background Asymptomatic neurosyphilis is more difficult to diagnose in HIV-infected patients because HIV itself can cause cerebrospinal fluid (CSF) pleocytosis. The proportion of CSF lymphocytes that are B cells is elevated in neurosyphilis, suggesting that the CSF concentration of the B cell chemoattractant, chemokine (C-X-C motif) ligand 13 (CXCL13) concentration may also be elevated. Methods CSF and blood were collected from 199 HIV-infected patients with syphilis and neurosyphilis. Serum and CSF CXCL13 concentrations were determined. Results Patients with neurosyphilis had higher CSF and serum CXCL13 concentrations compared to patients with syphilis but not neurosyphilis. The odds of having symptomatic neurosyphilis were increased by 2.23 fold for every log increase in CSF CXCL13 concentration and were independent of CSF WBC and plasma HIV RNA concentrations, peripheral blood CD4+ T cell count and use of antiretroviral medications. A cut-off of 10 pg/mL CSF CXCL13 had high sensitivity and a cut-off of 250 pg/mL or evidence of intrathecal synthesis of CXCL13 had high specificity for diagnosis of both symptomatic and asymptomatic neurosyphilis. CSF concentrations of CXCL13 declined after treatment for neurosyphilis. Conclusions CSF CXCL13 concentration may be particularly useful for diagnosis of neurosyphilis in HIV-infected patients because it is independent of CSF pleocytosis and markers of HIV disease. PMID:20393380
Zhu, Lin; Gu, Xin; Peng, Rui-Rui; Wang, Cuini; Gao, Zixiao; Gao, Ying; Shi, Mei; Guan, Zhifang; Seña, Arlene C.
2014-01-01
In this study, we aimed to investigate the performance of nontreponemal antibody tests in cerebrospinal fluid (CSF) specimens from syphilis patients. From September 2009 to September 2012, CSF specimens were collected at the Shanghai Skin Disease Hospital in Shanghai, China, from 1,132 syphilis patients without HIV infection, including 154 with symptomatic and 56 with asymptomatic neurosyphilis. All of the CSF specimens underwent testing with a rapid plasma reagin (RPR) test, an RPR-V (commercial RPR antigen diluted 1:2 in 10% saline) test, the toluidine red unheated serum test (TRUST), and the Venereal Disease Research Laboratory (VDRL) test. Specificities, sensitivities, positive predictive values (PPVs), negative predictive values (NPVs), and kappa values were calculated to determine the performances of the tests. We compared results of the CSF-VDRL, CSF-RPR, CSF-RPR-V, and CSF-TRUST among patients with symptomatic and asymptomatic neurosyphilis who had reactive CSF-Treponema pallidum particle agglutination (TPPA) test results. Overall, the CSF-VDRL test was reactive in 261 patients (23.1%). There were no cases in which the CSF-VDRL was nonreactive and CSF-RPR, CSF-RPR-V, or CSF-TRUST was reactive. Agreement between the results of CSF-TRUST and CSF-RPR was almost perfect (κ = 0.861), with substantial agreement between the results of CSF-RPR and CSF-RPR-V (κ = 0.740). The sensitivities of CSF-VDRL, CSF-RPR, CSF-RPR-V, and CSF-TRUST were 81.4%, 76.2%, 79.5%, and 76.2%, respectively. Compared to CSF-VDRL, CSF-RPR, CSF-RPR-V, and CSF-TRUST had comparable PPVs and NPVs. However, the specificity of CSF-VDRL (90.3%) was significantly lower than those of the other tests (92.7 to 93.4%). Therefore, CSF-RPR, CSF-RPR-V, and CSF-TRUST can be considered alternative tests for neurosyphilis diagnosis in HIV-negative populations, particularly when the CSF-VDRL is not available. PMID:24335955
[Neopterin in serum and cerebrospinal fluid in Lyme disease].
Biesiada, Grazyna; Czepiel, Jacek; Garlicki, Aleksander; Mach, Tomasz
2009-01-01
Lyme disease is a multiorgan disease, caused by spirochetes of Borrelia species. Clinical picture is diverse, borreliosis can affect skin, nervous system, musculoskeletal system and heart. Neopterin is a marker of cytotoxic lymphocytes T activities, it is produced by monocytes/macrophages stimulated with IFNgamma. The aim of our study was to evaluate the level of neopterin in serum and cerebrospinal fluid in borreliosis and correlate it with the symptoms, markers of inflammation in cerebrospinal fluid (CSF), and serological tests against Borrelia burgdorferi. We have enrolled in the study 39 patients treated for Lyme borreliosis. The level of neopterin in serum was assessed in all patients, among patient with suspicion of neuroborreliosis (n = 33) we assessed the level of neopterin, protein, glucose and chlorium in CSF. The level of neopterin in CSF was lower among patients who were treated due to presence of erithema migrans in their past regarding patients who had never had erithema migrans (p = 0.008). The level of neopterin in CSF was higher (6.6 nmol/l) in patients with the presence of inflammation in CSF versus patients with no changes in CSF (3.8 mmol/l; p = 0.019). There was no correlation between neopterin in serum or CSF and Westernblot test. Patients with neuroborreliosis who had lymphocytic meningitis had higher level of neopterin in CSF. We suggest the role of neopterin in pathogenesis on neuroborreliosis. Neopterin as a marker of cytotoxic lymphocytes T activities can be useful in borreliosis diagnosis but more studies regarding this problem should be done.
The blood-cerebrospinal fluid barrier: structure and functional significance.
Johanson, Conrad E; Stopa, Edward G; McMillan, Paul N
2011-01-01
The choroid plexus (CP) of the blood-CSF barrier (BCSFB) displays fundamentally different properties than blood-brain barrier (BBB). With brisk blood flow (10 × brain) and highly permeable capillaries, the human CP provides the CNS with a high turnover rate of fluid (∼400,000 μL/day) containing micronutrients, peptides, and hormones for neuronal networks. Renal-like basement membranes in microvessel walls and underneath the epithelium filter large proteins such as ferritin and immunoglobulins. Type IV collagen (α3, α4, and α5) in the subepithelial basement membrane confers kidney-like permselectivity. As in the glomerulus, so also in CP, the basolateral membrane utrophin A and colocalized dystrophin impart structural stability, transmembrane signaling, and ion/water homeostasis. Extensive infoldings of the plasma-facing basal labyrinth together with lush microvilli at the CSF-facing membrane afford surface area, as great as that at BBB, for epithelial solute and water exchange. CSF formation occurs by basolateral carrier-mediated uptake of Na+, Cl-, and HCO3-, followed by apical release via ion channel conductance and osmotic flow of water through AQP1 channels. Transcellular epithelial active transport and secretion are energized and channeled via a highly dense organelle network of mitochondria, endoplasmic reticulum, and Golgi; bleb formation occurs at the CSF surface. Claudin-2 in tight junctions helps to modulate the lower electrical resistance and greater permeability in CP than at BBB. Still, ratio analyses of influx coefficients (Kin) for radiolabeled solutes indicate that paracellular diffusion of small nonelectrolytes (e.g., urea and mannitol) through tight junctions is restricted; molecular sieving is proportional to solute size. Protein/peptide movement across BCSFB is greatly limited, occurring by paracellular leaks through incomplete tight junctions and low-capacity transcellular pinocytosis/exocytosis. Steady-state concentration ratios, CSF/plasma, ranging from 0.003 for IgG to 0.80 for urea, provide insight on plasma solute penetrability, barrier permeability, and CSF sink action to clear substances from CNS.
Li, Ge; Millard, Steven P; Peskind, Elaine R; Zhang, Jing; Yu, Chang-En; Leverenz, James B; Mayer, Cynthia; Shofer, Jane S; Raskind, Murray A; Quinn, Joseph F; Galasko, Douglas R; Montine, Thomas J
2014-06-01
Age-related cognitive decline among older individuals with normal cognition is a complex trait that potentially derives from processes of aging, inherited vulnerabilities, environmental factors, and common latent diseases that can progress to cause dementia, such as Alzheimer disease and vascular brain injury. To use cerebrospinal fluid (CSF) biomarkers to gain insight into this complex trait. Secondary analyses of an academic multicenter cross-sectional (n = 315) and longitudinal (n = 158) study of 5 neuropsychological tests (Immediate Recall, Delayed Recall, Trail Making Test Parts A and B, and Category Fluency) in cognitively normal individuals aged 21 to 100 years. To investigate the association of these cognitive function test results with age, sex, educational level, inheritance of the ε4 allele of the apolipoprotein E gene, and CSF concentrations of β-amyloid 42 (Aβ42) and tau (biomarkers of Alzheimer disease) as well as F2-isoprostanes (measures of free radical injury). Age and educational level were broadly predictive of cross-sectional cognitive performance; of the genetic and CSF measures, only greater CSF F2-isoprostane concentration was significantly associated with poorer executive function (adjusted R2 ≤0.31). Longitudinal measures of cognitive abilities, except Category Fluency, also were associated broadly with age; of the genetic and CSF measures, only lower baseline CSF Aβ42 concentration was associated with longitudinal measures of immediate and delayed recall (marginal R2 ≤0.31). Our results suggest that age and educational level accounted for a substantial minority of variance in cross-sectional or longitudinal cognitive test performance in this large group of cognitively normal adults. Latent Alzheimer disease and other diseases that produce free radical injury, such as vascular brain injury, accounted for a small amount of variation in cognitive test performance across the adult human life span. Additional genetic and environmental factors likely contribute substantially to age-related cognitive decline.
Hasegawa, Tetsuya; Sumita, Maho; Horitani, Yusuke; Tamai, Reo; Tanaka, Katsuhiro; Komori, Masayuki; Takenaka, Shigeo
2014-04-01
Epilepsy is a common neurological disorder with seizures, but diagnostic approaches in veterinary clinics remain limited. Cerebrospinal fluid (CSF) is a body fluid used for diagnosis in veterinary medicine. In this study, we explored canine epilepsy diagnostic biomarkers using gas chromatography-mass spectrometry (GC-MS)-based metabolic profiling of CSF and multivariate data analysis. Profiles for subjects with idiopathic epilepsy differed significantly from those of healthy controls and subjects with symptomatic epilepsy. Among 60 identified metabolites, the levels of 20 differed significantly among the three groups. Glutamic acid was significantly increased in idiopathic epilepsy, and some metabolites including ascorbic acid were changed in both forms of epilepsy. These findings show that metabolic profiles of CSF differ between idiopathic and symptomatic epilepsy and that metabolites including glutamic acid and ascorbic acid in CSF may be useful for diagnosis of canine epilepsy.
Zheng, S; Lin, R J; Chan, Y H; Ngan, C C L
2018-03-01
There is no clear consensus on the diagnosis of neurosyphilis. The Venereal Disease Research Laboratory (VDRL) test from cerebrospinal fluid (CSF) has traditionally been considered the gold standard for diagnosing neurosyphilis but is widely known to be insensitive. In this study, we compared the clinical and laboratory characteristics of true-positive VDRL-CSF cases with biological false-positive VDRL-CSF cases. We retrospectively identified cases of true and false-positive VDRL-CSF across a 3-year period received by the Immunology and Serology Laboratory, Singapore General Hospital. A biological false-positive VDRL-CSF is defined as a reactive VDRL-CSF with a non-reactive Treponema pallidum particle agglutination (TPPA)-CSF and/or negative Line Immuno Assay (LIA)-CSF IgG. A true-positive VDRL-CSF is a reactive VDRL-CSF with a concordant reactive TPPA-CSF and/or positive LIA-CSF IgG. During the study period, a total of 1254 specimens underwent VDRL-CSF examination. Amongst these, 60 specimens from 53 patients tested positive for VDRL-CSF. Of the 53 patients, 42 (79.2%) were true-positive cases and 11 (20.8%) were false-positive cases. In our setting, a positive non-treponemal serology has 97.6% sensitivity, 100% specificity, 100% positive predictive value and 91.7% negative predictive value for a true-positive VDRL-CSF based on our laboratory definition. HIV seropositivity was an independent predictor of a true-positive VDRL-CSF. Biological false-positive VDRL-CSF is common in a setting where patients are tested without first establishing a serological diagnosis of syphilis. Serological testing should be performed prior to CSF evaluation for neurosyphilis. © 2017 European Academy of Dermatology and Venereology.
Cerebrospinal fluid lactate and pyruvate concentrations and their ratio.
Zhang, Wan-Ming; Natowicz, Marvin R
2013-05-01
Determinations of cerebrospinal fluid (CSF) lactate and pyruvate concentrations and CSF lactate:pyruvate (L/P) ratios are important in several clinical settings, yet published normative data have significant limitations. We sought to determine a large dataset of stringently-defined normative data for CSF lactate and pyruvate concentrations and CSF L/P ratios. We evaluated data from 627 patients who had determinations of CSF lactate and/or CSF pyruvate from 2001 to 2011 at the Cleveland Clinic. Inclusion in the normal reference population required normal CSF cell counts, glucose and protein and routine serum chemistries and absence of progressive brain disorder, epilepsy, or seizure within 24h. Brain MRI, if done, showed no evidence of tumor, acute changes or basal ganglia abnormality. CSF cytology, CSF alanine and immunoglobulin levels, and oligoclonal band analysis were required to be normal, if done. Various inclusion/exclusion criteria were compared. 92 patients fulfilled inclusion/exclusion criteria for a reference population. The 95% central intervals (2.5%-97.5%) for CSF lactate and pyruvate levels were 1.01-2.09mM and 0.03-0.15mM, respectively, and 9.05-26.37 for CSF L/P. There were no significant gender-related differences of CSF lactate or pyruvate concentrations or of CSF L/P. Weak positive correlations between the concentration of CSF lactate or pyruvate and age were noted. Using stringent inclusion/exclusion criteria, we determined normative data for CSF lactate and pyruvate concentrations and CSF L/P ratios in a large, well-characterized reference population. Normalcy of routine CSF and blood analytes are the most important parameters in determining reference intervals for CSF lactate and pyruvate. Copyright © 2012 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
Derkus, Burak; Acar Bozkurt, Pinar; Tulu, Metin; Emregul, Kaan C; Yucesan, Canan; Emregul, Emel
2017-03-15
This study was aimed at the development of an immunosensor for the simultaneous quantification of Myelin Basic Protein (MBP) and Tau proteins in cerebrospinal fluid (CSF) and serum, obtained from Multiple Sclerosis (MS) patients. The newly developed GO/pPG/anti-MBP/anti-Tau nanoimmunosensor has been established by immobilization of MBP and Tau antibodies. The newly developed nanoimmunosensor was tested, optimized and characterized using differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). The developed nanoimmunosensor was seen to have detection limits of 0.30nM for MBP and 0.15nM for Tau proteins which were sufficient for the levels to be analysed in neuro-clinic. The clinical study performed using CSF and serum of MS patients showed that the designed nanoimmunosensor was capable of detecting the proteins properly, that were essentially proven by ELISA. Copyright © 2016 Elsevier B.V. All rights reserved.
Raltegravir Cerebrospinal Fluid Concentrations in HIV-1 Infection
Yilmaz, Aylin; Gisslén, Magnus; Spudich, Serena; Lee, Evelyn; Jayewardene, Anura; Aweeka, Francesca; Price, Richard W.
2009-01-01
Introduction Raltegravir is an HIV-1 integrase inhibitor currently used in treatment-experienced HIV-1-infected patients resistant to other drug classes. In order to assess its central nervous system penetration, we measured raltegravir concentrations in cerebrospinal fluid (CSF) and plasma in subjects receiving antiretroviral treatment regimens containing this drug. Methods Raltegravir concentrations were determined by liquid chromatography tandem mass spectrometry in 25 paired CSF and plasma samples from 16 HIV-1-infected individuals. The lower limit of quantitation was 2.0 ng/ml for CSF and 10 ng/ml for plasma. Results Twenty-four of the 25 CSF samples had detectable raltegravir concentrations with a median raltegravir concentration of 18.4 ng/ml (range, <2.0–126.0). The median plasma raltegravir concentration was 448 ng/ml (range, 37–5180). CSF raltegravir concentrations correlated with CSF:plasma albumin ratios and CSF albumin concentrations. Conclusions Approximately 50% of the CSF specimens exceeded the IC95 levels reported to inhibit HIV-1 strains without resistance to integrase inhibitors. In addition to contributing to control of systemic HIV-1 infection, raltegravir achieves local inhibitory concentrations in CSF in most, but not all, patients. Blood-brain and blood-CSF barriers likely restrict drug entry, while enhanced permeability of these barriers enhances drug entry. PMID:19721718
Provencio, J Javier; Kivisäkk, Pia; Tucky, Barbara H; Luciano, Mark G; Ransohoff, Richard M
2005-06-01
The aim of the present study was to define the cellular composition of ventricular, as compared with lumbar, cerebrospinal fluid (CSF) in patients with non-inflammatory neurological disorders (NIND). We addressed this issue by determining the cellular composition of lumbar CSF from patients with normal pressure hydrocephalus (NPH) who were undergoing lumbar CSF drainage during evaluation for shunting procedures, and evaluating ventricular CSF from a subset of these who underwent subsequent placement of ventriculoperitoneal shunts. We determined the cellular composition of lumbar CSF from 18 patients with NPH, and found that the leukocyte differentials, and relative proportions of CD4+ and CD8+ central memory (TCM), effector memory (TEM) and naive cell (TNaive) populations, were equivalent to those found previously in studies of CSF from patients with NIND. We further evaluated cells in the ventricular CSF of five patients who had previously undergone lumbar drainage. Leukocyte differential counts, as well as CD4+ and CD8+ TCM, TEM, and TNaive proportions, were equivalent in matched ventricular and lumbar CSF samples. These observations support the hypothesis that leukocytes enter the CSF in a selective fashion, at its site of formation in the choroid plexus. The results implicate CSF T cells in the immune surveillance of the central nervous system.
Bociaga-Jasik, Monika; Garlicki, Aleksander; Kalinowska-Nowak, Anna; Mach, Tomasz
2004-01-01
Bacterial meningitis is still associated with high mortality rate and severe neurological sequels. The aim of the study was to assess correlation between concentration of proinflammatory cytokines (TNF-alpha, IL-1 beta, IL-8) in the cerebrospinal fluid (CSF) and patient condition described on the basis of Glasgow Coma Scale (GCS), changes in the CSF (pleocytosis, protein and glucose level), mortality rate and occurrence of neurological complications. 42 patients with bacterial meningitis have been analysed. Control group consisted of 25 patients with viral meningitis and 23 patients without meningitis. In analysed group with bacterial meningitis the correlation between number of scores aggregated by patients in GCS and outcome has been observed. Concentration of TNF-alpha, IL-1 beta, IL-8 in CSF of patient with bacterial meningitis was significantly higher (mean value; 705.2 pg/ml, 401.1 pg/ml and 1696.0 pg/ml) than in control group (viral meningitis: 7.93 pg/ml, 31.89 pg/ml, 405.28 pg/ml, without meningitis: 0.38 pg/ml, 2.55 pg/ml, 32.56 pg/ml). Negative correlation between concentration of investigated cytokines in the CSF of patient with bacterial meningitis and GCS has been observed. Furthermore TNF-alpha and IL-8 levels correlated with pleocytosis, and protein and glucose levels, whereas IL-1 beta correlated with pleocytosis and protein level in CSF. Connection between TNF-alpha and IL-1 beta but not IL-8 level and outcome of bacterial meningitis has been observed. High TNF-alpha in the CSF (median value 953 pg/ml) was associated with significant risk of patient death. IL-1 beta has been better prognostic indicator. Patients who developed neurological sequels had median value of IL-1 beta level 401.3 pg/ml, and those who died had 585.9 pg/ml vs 244.7 pg/ml in the group who survived without any complications. Analysis of the ROC curve-revealed, that concentration of IL-1 beta > or = 289.9 pg/ml with 88.9% sensitivity and 67.7% specifity differentiate cases who at risk for death. For TNF-alpha the cut-off was > or = 538.9 pg/ml. The sensitivity for determined critical point was 77%, and specificity was 68.7%. Our investigation confirm that TNF alpha, IL-1 beta, IL-8 are useful in differential diagnosis of neuroinfections. Assessment of patients with bacterial meningitis on the basis of GCS is helpful to establish prognosis, and CGS seems to correlate with the intensity of inflammation in the CSF. High concentration of TNF-alpha, and IL-1 beta in the CSF are associated with the risk of patient death during the course of bacterial meningitis, but IL-1 beta has been the better prognostic marker.
CSF inflammation and axonal damage are increased and correlate in progressive multiple sclerosis.
Romme Christensen, Jeppe; Börnsen, Lars; Khademi, Mohsen; Olsson, Tomas; Jensen, Poul Erik; Sørensen, Per Soelberg; Sellebjerg, Finn
2013-06-01
The mechanism underlying disease progression in progressive multiple sclerosis (MS) is uncertain. Pathological studies found widespread inflammation in progressive MS brains correlating with disease progression and axonal damage. To study cerebrospinal fluid (CSF) biomarkers and clarify whether inflammation and axonal damage are associated in progressive MS. Using enzyme-linked immunosorbent assay (ELISA), we analysed CSF from 40 secondary progressive (SPMS), 21 primary progressive (PPMS), and 36 relapsing-remitting (RRMS) and 20 non-inflammatory neurological disease (NIND) patients. Twenty-two of the SPMS patients participated in an MBP8298 peptide clinical trial and had CSF follow-up after one year. Compared to NIND patients, inflammatory biomarkers osteopontin and matrix metalloproteinase-9 (MMP9) were increased in all MS patients while CXCL13 was increased in RRMS and SPMS patients. Biomarkers of axonal damage (NFL) and demyelination (MBP) were increased in all MS patients. In progressive MS patients CSF levels of osteopontin and CXCL13 correlated with NFL while osteopontin and MMP9 correlated with MBP. MBP8298 treatment did not affect the levels of the biomarkers after one year of treatment. All biomarkers were continuously increased after one year of follow-up except MBP, which decreased. CSF biomarkers of inflammation, axonal damage and demyelination are continuously increased in progressive MS patients and correlate. These findings parallel pathology studies, emphasise a relationship between inflammation, axonal damage and demyelination and support the use of CSF biomarkers in progressive MS clinical trials.
Glucose test - CSF; Cerebrospinal fluid glucose test ... The glucose level in the CSF should be 50 to 80 mg/100 mL (or greater than 2/3 ... Abnormal results include higher and lower glucose levels. Abnormal ... or fungus) Inflammation of the central nervous system Tumor
Linking CSF and cognition in Alzheimer's disease: Reanalysis of clinical data.
Guhra, Michael; Thomas, Christine; Boedeker, Sebastian; Kreisel, Stefan; Driessen, Martin; Beblo, Thomas; Ohrmann, Patricia; Toepper, Max
2016-01-01
Memory and executive deficits are important cognitive markers of Alzheimer's disease (AD). Moreover, in the past decade, cerebrospinal fluid (CSF) biomarkers have been increasingly utilized in clinical practice. Both cognitive and CSF markers can be used to differentiate between AD patients and healthy seniors with high diagnostic accuracy. However, the extent to which performance on specific mnemonic or executive tasks enables reliable estimations of the concentrations of different CSF markers and their ratios remains unclear. To address the above issues, we examined the association between neuropsychological data and CSF biomarkers in 51 AD patients using hierarchical multiple regression analyses. In the first step of these analyses, age, education and sex were entered as predictors to control for possible confounding effects. In the second step, data from a neuropsychological test battery assessing episodic memory, semantic memory and executive functioning were included to determine whether these variables significantly increased (compared to step 1) the explained variance in Aβ42 concentration, p-tau concentration, t-tau concentration, Aβ42/t-tau ratio, and Aβ42/Aβ40 ratio. The different models explained 52% of the variance in Aβ42/t-tau ratio, 27% of the variance in Aβ42 concentration, and 28% of the variance in t-tau concentration. In particular, Aβ42/t-tau ratio was associated with verbal recognition and code shifting, with Aβ42 being related to verbal recognition and t-tau being related to code shifting. By contrast, the inclusion of neuropsychological data did not allow reliable estimations of Aβ42/Aβ40 ratio or p-tau concentration. Our results showed that strong associations exist between the cognitive key symptoms of AD and the concentrations and ratios of specific CSF markers. In addition, we revealed a specific combination of neuropsychological tests that may facilitate reliable estimations of CSF concentrations, thereby providing important diagnostic information for non-invasive early AD detection. Copyright © 2015 Elsevier Inc. All rights reserved.
Early post-operative cerebrospinal fluid hypovolemia: Report of 7 cases.
Hou, Kun; Zhu, Xiaobo; Zhang, Yang; Gao, Xianfeng; Suo, Shihuan; Zhao, Jinchuan; Li, Guichen
2018-06-01
Cerebrospinal fluid (CSF) hypovolemia is a common neurosurgical condition, which may be spontaneous or iatrogenic. At our institution, a substantial number of the reported cases of early post-operative CSF hypovolemia were identified to have unintentional or unrecognized post-operative continuous excessive CSF leakage. Cases who presented with post-operative CSF hypovolemia several days after uneventful intracranial surgeries without continuous CSF leakage were rarely reported. A retrospective review of the medical records of these patients was performed to identify those patients who developed early post-operative CSF hypovolemia without the presence of post-operative continuous CSF leakage. A total of 7 patients, 5 of which were males, were identified in this retrospective study. They experienced CSF hypovolemia between days 1 and 7 after emergency or scheduled intracranial surgeries. Ventricular collapse, cisternal effacement and midline shift are the most common radiological observations. With early diagnosis and management, 4 of the patients achieved a Glasgow Outcome Scale (GOS) score of 5, 1 achieved a GOS score of 4 and the remaining 2 had a GOS score of 3. No mortality was noted in this series. Although rare in incidence, early post-operative CSF hypovolemia may occur without the existence of post-operative continuous CSF leakage. When the diagnosis of CSF hypovolemia is reached, factors that may exacerbate CSF compensation should be promptly terminated. Trendelenburg position and sufficient intravenous hydration are practical and effective managements, and CSF hypovolemia may thereby be reversed in a substantial number of patients.
Yiallourou, Theresia I.; Kröger, Jan Robert; Stergiopulos, Nikolaos; Maintz, David
2012-01-01
Cerebrospinal fluid (CSF) dynamics in the cervical spinal subarachnoid space (SSS) have been thought to be important to help diagnose and assess craniospinal disorders such as Chiari I malformation (CM). In this study we obtained time-resolved three directional velocity encoded phase-contrast MRI (4D PC MRI) in three healthy volunteers and four CM patients and compared the 4D PC MRI measurements to subject-specific 3D computational fluid dynamics (CFD) simulations. The CFD simulations considered the geometry to be rigid-walled and did not include small anatomical structures such as nerve roots, denticulate ligaments and arachnoid trabeculae. Results were compared at nine axial planes along the cervical SSS in terms of peak CSF velocities in both the cranial and caudal direction and visual interpretation of thru-plane velocity profiles. 4D PC MRI peak CSF velocities were consistently greater than the CFD peak velocities and these differences were more pronounced in CM patients than in healthy subjects. In the upper cervical SSS of CM patients the 4D PC MRI quantified stronger fluid jets than the CFD. Visual interpretation of the 4D PC MRI thru-plane velocity profiles showed greater pulsatile movement of CSF in the anterior SSS in comparison to the posterior and reduction in local CSF velocities near nerve roots. CFD velocity profiles were relatively uniform around the spinal cord for all subjects. This study represents the first comparison of 4D PC MRI measurements to CFD of CSF flow in the cervical SSS. The results highlight the utility of 4D PC MRI for evaluation of complex CSF dynamics and the need for improvement of CFD methodology. Future studies are needed to investigate whether integration of fine anatomical structures and gross motion of the brain and/or spinal cord into the computational model will lead to a better agreement between the two techniques. PMID:23284970
Imoh, Lucius C; Mutale, Mubanga; Parker, Christopher T; Erasmus, Rajiv T; Zemlin, Annalise E
2016-01-01
Timeliness of laboratory results is crucial to patient care and outcome. Monitoring turnaround times (TAT), especially for emergency tests, is important to measure the effectiveness and efficiency of laboratory services. Laboratory-based clinical audits reveal opportunities for improving quality. Our aim was to identify the most critical steps causing a high TAT for cerebrospinal fluid (CSF) chemistry analysis in our laboratory. A 6-month retrospective audit was performed. The duration of each operational phase across the laboratory work flow was examined. A process-mapping audit trail of 60 randomly selected requests with a high TAT was conducted and reasons for high TAT were tested for significance. A total of 1505 CSF chemistry requests were analysed. Transport of samples to the laboratory was primarily responsible for the high average TAT (median TAT = 170 minutes). Labelling accounted for most delays within the laboratory (median TAT = 71 minutes) with most delays occurring after regular work hours (P < 0.05). CSF chemistry requests without the appropriate number of CSF sample tubes were significantly associated with delays in movement of samples from the labelling area to the technologist's work station (caused by a preference for microbiological testing prior to CSF chemistry). A laboratory-based clinical audit identified sample transportation, work shift periods and use of inappropriate CSF sample tubes as drivers of high TAT for CSF chemistry in our laboratory. The results of this audit will be used to change pre-analytical practices in our laboratory with the aim of improving TAT and customer satisfaction.
Faried, Ahmad; Arief, Gusman; Arifin, Muhammad Z; Nataprawira, Heda M
2018-03-01
Tuberculous meningitis (TBM) is an endemic infectious disease in developing countries, and it can become a serious illness in children. Treatment of TBM is more difficult and prone to failure than treatment of pulmonary tuberculosis. TBM causes hydrocephalus, cerebral edema, increased intracranial pressure, global ischemia, and neurologic deficits, which disturb cellular metabolism and increase lactate levels. A reliable, widely available clinical indicator of TBM severity is needed. Successful treatment of TBM is assessed using the Glasgow Outcome Scale (GOS). This prospective cohort study included 34 patients with TBM and acute hydrocephalus who had undergone fluid diversions and were admitted to Dr. Hasan Sadikin Hospital in Bandung from 2014 to 2015. A portable machine for blood glucose measurement was used to measure lactate concentrations. Statistical significance was defined as P ≤ 0.05. Average levels of plasma and cerebrospinal fluid (CSF) lactate were 1.99 ± 0.70 mmol/L and 3.04 ± 1.05 mmol/L, respectively. A significantly higher level of lactate was observed in CSF compared with plasma. Preoperative plasma lactate was negatively correlated to GOS (r = -0.539; P = 0.013), and CSF lactate was negatively correlated to GOS (r = -0.412; P = 0.027). Average lactate levels in CSF (central) were higher than plasma (peripheral) levels. GOS scale of patients decreased with increased plasma and CSF lactate levels. Examination of plasma and CSF lactate levels should be included in routine examinations to determine extent of cellular damage and GOS score in patients with TBM and acute hydrocephalus who have undergone fluid diversions. Copyright © 2017 Elsevier Inc. All rights reserved.
Promising Metabolite Profiles in the Plasma and CSF of Early Clinical Parkinson's Disease
Stoessel, Daniel; Schulte, Claudia; Teixeira dos Santos, Marcia C.; Scheller, Dieter; Rebollo-Mesa, Irene; Deuschle, Christian; Walther, Dirk; Schauer, Nicolas; Berg, Daniela; Nogueira da Costa, Andre; Maetzler, Walter
2018-01-01
Parkinson's disease (PD) shows high heterogeneity with regard to the underlying molecular pathogenesis involving multiple pathways and mechanisms. Diagnosis is still challenging and rests entirely on clinical features. Thus, there is an urgent need for robust diagnostic biofluid markers. Untargeted metabolomics allows establishing low-molecular compound biomarkers in a wide range of complex diseases by the measurement of various molecular classes in biofluids such as blood plasma, serum, and cerebrospinal fluid (CSF). Here, we applied untargeted high-resolution mass spectrometry to determine plasma and CSF metabolite profiles. We semiquantitatively determined small-molecule levels (≤1.5 kDa) in the plasma and CSF from early PD patients (disease duration 0–4 years; n = 80 and 40, respectively), and sex- and age-matched controls (n = 76 and 38, respectively). We performed statistical analyses utilizing partial least square and random forest analysis with a 70/30 training and testing split approach, leading to the identification of 20 promising plasma and 14 CSF metabolites. These metabolites differentiated the test set with an AUC of 0.8 (plasma) and 0.9 (CSF). Characteristics of the metabolites indicate perturbations in the glycerophospholipid, sphingolipid, and amino acid metabolism in PD, which underscores the high power of metabolomic approaches. Further studies will enable to develop a potential metabolite-based biomarker panel specific for PD. PMID:29556190
Cerebrospinal fluid eosinophilia and sterile shunt malfunction.
Traynelis, V C; Powell, R G; Koss, W; Schochet, S S; Kaufman, H H
1988-11-01
Cerebrospinal fluid (CSF) eosinophilia is a rare finding most often associated with central nervous system inflammatory processes, including parasitic, bacterial, and mycotic infections. It has also been seen as an allergic phenomenon. We present two cases of CSF eosinophilia occurring concurrently with sterile shunt malfunction. We speculate that CSF eosinophilia in our patients might have resulted from an allergic response to a foreign material such as suture, surgical glove powder, hair, cotton fibers, antibiotics, or silicone rubber. The incidence of sterile CSF eosinophilia after shunting is not known. Information concerning the role of eosinophilia in the development of shunt malfunctions is also lacking. An increased awareness of this possibility and further investigation are warranted.
Anderson, Albert M; Croteau, David; Ellis, Ronald J; Rosario, Debra; Potter, Michael; Guillemin, Gilles J; Brew, Bruce J; Woods, Steven Paul; Letendre, Scott L
2018-06-15
There is mounting evidence that prospective memory (PM) is impaired during HIV infection despite treatment. In this prospective study, 66 adults (43 HIV+ and 23 HIV negative) underwent PM assessment and cerebrospinal fluid (CSF) examination. HIV+ participants had significantly lower PM but significantly higher CSF concentrations of CXCL10 and quinolinic acid (QUIN). Higher CSF phosphorylated Tau (pTau) was associated with worse PM. In a secondary analysis excluding outliers, higher QUIN correlated with higher pTau. CSF QUIN is thus elevated during HIV infection despite antiretroviral therapy and could indirectly contribute to impaired PM by influencing the formation of pTau. Copyright © 2018 Elsevier B.V. All rights reserved.
Fleisher, Adam S; Chen, Kewei; Quiroz, Yakeel T; Jakimovich, Laura J; Gutierrez Gomez, Madelyn; Langois, Carolyn M; Langbaum, Jessica B S; Roontiva, Auttawut; Thiyyagura, Pradeep; Lee, Wendy; Ayutyanont, Napatkamon; Lopez, Liliana; Moreno, Sonia; Muñoz, Claudia; Tirado, Victoria; Acosta-Baena, Natalia; Fagan, Anne M; Giraldo, Margarita; Garcia, Gloria; Huentelman, Matthew J; Tariot, Pierre N; Lopera, Francisco; Reiman, Eric M
2015-03-01
Age-associated changes in brain imaging and fluid biomarkers are characterized and compared in presenilin 1 (PSEN1)E280A mutation carriers and noncarriers from the world's largest known autosomal dominant Alzheimer disease (AD) kindred. To characterize and compare age-associated changes in brain imaging and fluid biomarkers in PSEN1 E280A mutation carriers and noncarriers. Cross-sectional measures of 18F-florbetapir positron emission tomography, 18F-fludeoxyglucose positron emission tomography, structural magnetic resonance imaging, cerebrospinal fluid (CSF), and plasma biomarkers of AD were assessed from 54 PSEN1 E280A kindred members (age range, 20-59 years). We used brain mapping algorithms to compare regional cerebral metabolic rates for glucose and gray matter volumes in cognitively unimpaired mutation carriers and noncarriers. We used regression analyses to characterize associations between age and the mean cortical to pontine 18F-florbetapir standard uptake value ratios, precuneus cerebral metabolic rates for glucose, hippocampal gray matter volume, CSF Aβ1-42, total tau and phosphorylated tau181, and plasma Aβ measurements. Age at onset of progressive biomarker changes that distinguish carriers from noncarriers was estimated using best-fitting regression models. Compared with noncarriers, cognitively unimpaired mutation carriers had significantly lower precuneus cerebral metabolic rates for glucose, smaller hippocampal volume, lower CSF Aβ1-42, higher CSF total tau and phosphorylated tau181, and higher plasma Aβ1-42 measurements. Sequential changes in biomarkers were seen at age 20 years (95% CI, 14-24 years) for CSF Aβ1-42, age 16 years (95% CI, 11-24 years) for the mean cortical 18F-florbetapir standard uptake value ratio, age 15 years (95% CI, 10-24 years) for precuneus cerebral metabolic rate for glucose, age 15 years (95% CI, 7-20 years) for CSF total tau, age 13 years (95% CI, 8-19 years) for phosphorylated tau181, and age 6 years (95% CI, 1-10 years) for hippocampal volume, with cognitive decline up to 6 years before the kindred's estimated median age of 44 years (95% CI, 43-45 years) at mild cognitive impairment diagnosis. No age-associated findings were seen in plasma Aβ1-42 or Aβ1-40. This cross-sectional study provides additional information about the course of different AD biomarkers in the preclinical and clinical stages of autosomal dominant AD.
Finno, Carrie J; Packham, Andrea E; David Wilson, W; Gardner, Ian A; Conrad, Patricia A; Pusterla, Nicola
2007-05-01
The purpose of this study was to determine the effect of blood contamination of cerebrospinal fluid (CSF) on the results of indirect fluorescent antibody tests (IFATs) for Sarcocystis neurona and Neospora hughesi. The in vitro study used antibody-negative CSF collected from non-neurologic horses immediately after euthanasia and blood samples from 40 healthy horses that had a range of IFAT antibody titers against S. neurona and N. hughesi. Serial dilutions of whole blood were made in seronegative CSF to generate blood-contaminated CSF with red blood cell (RBC) concentrations ranging from 10 to 100,000 RBCs/microl. The blood-contaminated CSF samples were then tested for antibodies against both pathogens using IFAT. Blood contamination of CSF had no detectable effect on IFAT results for S. neurona or N. hughesi at any serologic titer when the RBC concentration in CSF was <10,000 RBCs/microl. At concentrations of 10,000-100,000 RBCs/microl of CSF, positive CSF results (IFAT titer >or=5) for S. neurona and N. hughesi were detected only when the corresponding serum titers were >or=160 and >or=80, respectively. The IFAT performed on CSF is reliable for testing horses for equine protozoal myeloencephalitis caused by S. neurona or N. hughesi, even when blood contamination causes the RBC concentration in CSF to be up to 10,000 RBCs/microl.
Zeman, David; Kušnierová, Pavlína; Švagera, Zdeněk; Všianský, František; Byrtusová, Monika; Hradílek, Pavel; Kurková, Barbora; Zapletalová, Olga; Bartoš, Vladimír
2016-01-01
We aimed to compare various methods for free light chain (fLC) quantitation in cerebrospinal fluid (CSF) and serum and to determine whether quantitative CSF measurements could reliably predict intrathecal fLC synthesis. In addition, we wished to determine the relationship between free kappa and free lambda light chain concentrations in CSF and serum in various disease groups. We analysed 166 paired CSF and serum samples by at least one of the following methods: turbidimetry (Freelite™, SPAPLUS), nephelometry (N Latex FLC™, BN ProSpec), and two different (commercially available and in-house developed) sandwich ELISAs. The results were compared with oligoclonal fLC detected by affinity-mediated immunoblotting after isoelectric focusing. Although the correlations between quantitative methods were good, both proportional and systematic differences were discerned. However, no major differences were observed in the prediction of positive oligoclonal fLC test. Surprisingly, CSF free kappa/free lambda light chain ratios were lower than those in serum in about 75% of samples with negative oligoclonal fLC test. In about a half of patients with multiple sclerosis and clinically isolated syndrome, profoundly increased free kappa/free lambda light chain ratios were found in the CSF. Our results show that using appropriate method-specific cut-offs, different methods of CSF fLC quantitation can be used for the prediction of intrathecal fLC synthesis. The reason for unexpectedly low free kappa/free lambda light chain ratios in normal CSFs remains to be elucidated. Whereas CSF free kappa light chain concentration is increased in most patients with multiple sclerosis and clinically isolated syndrome, CSF free lambda light chain values show large interindividual variability in these patients and should be investigated further for possible immunopathological and prognostic significance.
Jokinen, Jussi; Nordström, Anna-Lena; Nordström, Peter
2009-01-30
Two biomarkers of suicide risk; non-suppression in the dexamethasone suppression test (DST) and low 5-hydroxyindoleacetic acid (5-HIAA) in the cerebrospinal fluid (CSF) have been reported to be predictors of suicide in mood disorders. The interrelation of the two systems seems to be different in suicide attempters compared with depressed inpatients who have not made a suicide attempt, indicating that the two biomarkers may be seen as independent. This investigation examined the interrelation of low CSF 5-HIAA and DST non-suppression in suicide victims with mood disorder. Fifty-eight mood disorder inpatients not receiving any treatment with antidepressants underwent lumbar puncture and the DST. Plasma cortisol levels at 8:00 a.m., 4:00 p.m. and 11:00 p.m. were analysed in relation to CSF 5-HIAA. All patients were followed up for causes of death and suicides were verified with death certificates. During follow-up (mean 21 years), 11 (19%) patients had committed suicide. In male suicide victims (n=6), the serum cortisol level at 4:00 p.m. showed a significant positive correlation with CSF 5-HIAA. Low CSF 5-HIAA predicted all early suicides (within 1 year), whereas all males who committed suicide after 1 year were DST non-suppressors. In female suicide victims (n=5), the post-DST serum cortisol did not correlate with CSF 5-HIAA. Low CSF 5-HIAA and DST non-suppression are orthogonal biologic risk factors for suicide in male mood disorder inpatients. CSF 5-HIAA is associated with short-term suicide risk; dysregulation of the hypothalamic-pituitary-adrenal axis seems to be a long-term suicide predictor.
Leen, Wilhelmina G.; Willemsen, Michèl A.; Wevers, Ron A.; Verbeek, Marcel M.
2012-01-01
Cerebrospinal fluid (CSF) analysis is an important tool in the diagnostic work-up of many neurological disorders, but reference ranges for CSF glucose, CSF/plasma glucose ratio and CSF lactate based on studies with large numbers of CSF samples are not available. Our aim was to define age-specific reference values. In 1993 The Nijmegen Observational CSF Study was started. Results of all CSF samples that were analyzed between 1993 and 2008 at our laboratory were systematically collected and stored in our computerized database. After exclusion of CSF samples with an unknown or elevated erythrocyte count, an elevated leucocyte count, elevated concentrations of bilirubin, free hemoglobin, or total protein 9,036 CSF samples were further studied for CSF glucose (n = 8,871), CSF/plasma glucose ratio (n = 4,516) and CSF lactate values (n = 7,614). CSF glucose, CSF/plasma glucose ratio and CSF lactate were age-, but not sex dependent. Age-specific reference ranges were defined as 5–95th percentile ranges. CSF glucose 5th percentile values ranged from 1.8 to 2.9 mmol/L and 95th percentile values from 3.8 to 5.6 mmol/L. CSF/plasma glucose ratio 5th percentile values ranged from 0.41 to 0.53 and 95th percentile values from 0.82 to 1.19. CSF lactate 5th percentile values ranged from 0.88 to 1.41 mmol/L and 95th percentile values from 2.00 to 2.71 mmol/L. Reference ranges for all three parameters were widest in neonates and narrowest in toddlers, with lower and upper limits increasing with age. These reference values allow a reliable interpretation of CSF results in everyday clinical practice. Furthermore, hypoglycemia was associated with an increased CSF/plasma glucose ratio, whereas hyperglycemia did not affect the CSF/plasma glucose ratio. PMID:22880096
Cerebrospinal fluid lactate level as a diagnostic biomarker for bacterial meningitis in children
2014-01-01
Background Cerebrospinal fluid (CSF) lactate is a potential biomarker for bacterial meningitis in children. To this end, we performed a single-center retrospective cohort study of children from Sao Paulo, Brazil, with CSF pleocytosis to evaluate the ability of CSF lactate to distinguish between children with bacterial and aseptic meningitis. We determined the optimum cutoff point for CSF lactate using receiver-operator curve (ROC) analysis. Findings We identified 451 children of whom 40 (9%) had bacterial meningitis. Children with bacterial meningitis had a higher median CSF lactate level [9.6 mmol/l, interquartile range (IQR) 3.2-38.5 mmol/l bacterial meningitis vs. 2.0 mmol/l, IQR 1.2-2.8 mmol/l aseptic meningitis]. A CSF lactate cutoff point of 3.0 mmol/l had a sensitivity of 95% [95% confidence interval (CI) 83-99%), specificity of 94% (95% CI 90-96%) and negative predictive value of 99.3% (95% CI 97.7-99.9%) for bacterial meningitis. Conclusions In combination with a validated meningitis clinical prediction rule, the CSF lactate level can be used to distinguish between bacterial and aseptic meningitis in children with CSF pleocytosis. PMID:24576334
Cerebrospinal fluid lactate level as a diagnostic biomarker for bacterial meningitis in children.
Mekitarian Filho, Eduardo; Horita, Sérgio Massaru; Gilio, Alfredo Elias; Nigrovic, Lise E
2014-02-27
Cerebrospinal fluid (CSF) lactate is a potential biomarker for bacterial meningitis in children. To this end, we performed a single-center retrospective cohort study of children from Sao Paulo, Brazil, with CSF pleocytosis to evaluate the ability of CSF lactate to distinguish between children with bacterial and aseptic meningitis. We determined the optimum cutoff point for CSF lactate using receiver-operator curve (ROC) analysis. We identified 451 children of whom 40 (9%) had bacterial meningitis. Children with bacterial meningitis had a higher median CSF lactate level [9.6 mmol/l, interquartile range (IQR) 3.2-38.5 mmol/l bacterial meningitis vs. 2.0 mmol/l, IQR 1.2-2.8 mmol/l aseptic meningitis]. A CSF lactate cutoff point of 3.0 mmol/l had a sensitivity of 95% [95% confidence interval (CI) 83-99%), specificity of 94% (95% CI 90-96%) and negative predictive value of 99.3% (95% CI 97.7-99.9%) for bacterial meningitis. In combination with a validated meningitis clinical prediction rule, the CSF lactate level can be used to distinguish between bacterial and aseptic meningitis in children with CSF pleocytosis.
Nazir, Mudasir; Wani, Wasim Ahmad; Malik, Muzaffar Ahmad; Mir, Mohd Rafiq; Ashraf, Younis; Kawoosa, Khalid; Ali, Syed Wajid
To assess the performance of cerebrospinal fluid (CSF) lactate as a biomarker to differentiate bacterial meningitis from viral meningitis in children, and to define an optimal CSF lactate concentration that can be called significant for the differentiation. Children with clinical findings compatible with meningitis were studied. CSF lactate and other conventional CSF parameters were recorded. At a cut-off value of 3mmol/L, CSF lactate had a sensitivity of 0.90, specificity of 1.0, positive predictive value of 1.0, and negative predictive value of 0.963, with an accuracy of 0.972. The positive and negative likelihood ratios were 23.6 and 0.1, respectively. When comparing between bacterial and viral meningitis, the area under the curve for CSF lactate was 0.979. The authors concluded that CSF lactate has high sensitivity and specificity in differentiating bacterial from viral meningitis. While at a cut-off value of 3mmol/L, CSF lactate has high diagnostic accuracy for bacterial meningitis, mean levels in viral meningitis remain essentially below 2mmol/L. Copyright © 2017 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.
Diagnostic value of creatine kinase activity in canine cerebrospinal fluid.
Ferreira, Alexandra
2016-10-01
This study aimed to determine whether creatine kinase (CK) activity in cerebrospinal fluid (CSF) has diagnostic value for various groups of neurological conditions or for different anatomical areas of the nervous system (NS). The age, breed, results of CSF analysis, and diagnosis of 578 canine patients presenting with various neurological conditions between January 2009 and February 2015 were retrospectively collected. The cases were divided according to anatomical areas of the nervous system, i.e., brain, spinal cord, and peripheral nervous system, and into groups according to the nature of the condition diagnosed: vascular, immune/inflammatory/infectious, traumatic, toxic, anomalous, metabolic, idiopathic, neoplastic, and degenerative. Statistical analysis showed that CSF-CK alone cannot be used as a diagnostic tool and that total proteins in the CSF and red blood cells (RBCs) do not have a significant relationship with the CSF-CK activity. CSF-CK did not have a diagnostic value for different disease groups or anatomical areas of the nervous system.
Goulay, Romain; Flament, Julien; Gauberti, Maxime; Naveau, Michael; Pasquet, Nolwenn; Gakuba, Clement; Emery, Evelyne; Hantraye, Philippe; Vivien, Denis; Aron-Badin, Romina; Gaberel, Thomas
2017-08-01
Subarachnoid hemorrhage (SAH) is a devastating form of stroke with neurological outcomes dependent on the occurrence of delayed cerebral ischemia. It has been shown in rodents that some of the mechanisms leading to delayed cerebral ischemia are related to a decreased circulation of the cerebrospinal fluid (CSF) within the brain parenchyma. Here, we evaluated the cerebral circulation of the CSF in a nonhuman primate in physiological condition and after SAH. We first evaluated in physiological condition the circulation of the brain CSF in Macaca facicularis , using magnetic resonance imaging of the temporal DOTA-Gd distribution after its injection into the CSF. Then, animals were subjected to a minimally invasive SAH before an MRI evaluation of the impact of SAH on the brain parenchymal CSF circulation. We first demonstrate that the CSF actively penetrates the brain parenchyma. Two hours after injection, almost the entire brain is labeled by DOTA-Gd. We also show that our model of SAH in nonhuman primate displays the characteristics of SAH in humans and leads to a dramatic impairment of the brain parenchymal circulation of the CSF. The CSF actively penetrates within the brain parenchyma in the gyrencephalic brain, as described for the glymphatic system in rodent. This parenchymal CSF circulation is severely impaired by SAH. © 2017 American Heart Association, Inc.
Price, Richard W; Parham, Robin; Lu, Jing; Wring, Stephen A.; Baker, Brian; Sailstad, Jeff; Hoh, Rebecca; Liegler, Teri; Spudich, Serena; Kuritzkes, Daniel R; Deeks, Steven G
2009-01-01
Background Enfuvirtide is a potent inhibitor of systemic HIV-1 replication, but its penetration into the human central nervous system (CNS) has not been analyzed. Here, we define cerebrospinal fluid (CSF) enfuvirtide pharmacokinetics and present a case illustrating the use of enfuvirtide as a probe to trace the origins of CSF HIV-1 quasispecies. Methods Enfuvirtide CSF PK was assessed in 18 CSF and plasma sample pairs from 4 HIV-1-infected subjects. Enfuvirtide levels were measured by liquid chromatography tandem mass spectrometry using known standards and controls that including spiked CSF samples from untreated, HIV-negative subjects. A segment of the gp41-coding region encompassing the heptad repeat (HR)-1 and HR-2 domains was amplified from selected CSF and plasma samples, and independent clones sequenced to assess resistance-associated mutations. Results CSF and plasma samples obtained between 2 and 20 hrs after enfuvirtide injection showed plasma concentrations similar to previous reports (mean 3.687 +/−1.828 µg/ml SD) with prolonged decay. By contrast, enfuvirtide in all CSF samples was below the assay detection limit of 0.025 µg/ml. In one subject, who developed a transient increase in CSF HIV-1 RNA, 7 of 7 CSF and plasma clones had identical enfuvirtide resistance-associated V38A mutation, suggesting that the CSF quasispecies derived from that of blood. Conclusions Enfuvirtide CSF penetration into CSF is negligible, and thus in clinical settings where direct CNS drug exposure is critical, this drug will likely not directly contribute to the local therapeutic effect. Enfuvirtide can be used as a tool to dissect the origin of the CNS virus. PMID:18572749
Håkansson, I; Tisell, A; Cassel, P; Blennow, K; Zetterberg, H; Lundberg, P; Dahle, C; Vrethem, M; Ernerudh, J
2017-05-01
Improved biomarkers are needed to facilitate clinical decision-making and as surrogate endpoints in clinical trials in multiple sclerosis (MS). We assessed whether neurodegenerative and neuroinflammatory markers in cerebrospinal fluid (CSF) at initial sampling could predict disease activity during 2 years of follow-up in patients with clinically isolated syndrome (CIS) and relapsing-remitting MS. Using multiplex bead array and enzyme-linked immunosorbent assay, CXCL1, CXCL8, CXCL10, CXCL13, CCL20, CCL22, neurofilament light chain (NFL), neurofilament heavy chain, glial fibrillary acidic protein, chitinase-3-like-1, matrix metalloproteinase-9 and osteopontin were analysed in CSF from 41 patients with CIS or relapsing-remitting MS and 22 healthy controls. Disease activity (relapses, magnetic resonance imaging activity or disability worsening) in patients was recorded during 2 years of follow-up in this prospective longitudinal cohort study. In a logistic regression analysis model, NFL in CSF at baseline emerged as the best predictive marker, correctly classifying 93% of patients who showed evidence of disease activity during 2 years of follow-up and 67% of patients who did not, with an overall proportion of 85% (33 of 39 patients) correctly classified. Combining NFL with either neurofilament heavy chain or osteopontin resulted in 87% overall correctly classified patients, whereas combining NFL with a chemokine did not improve results. This study demonstrates the potential prognostic value of NFL in baseline CSF in CIS and relapsing-remitting MS and supports its use as a predictive biomarker of disease activity. © 2017 EAN.
Longhi, Rafael; Almeida, Roberto Farina; Machado, Letiane; Duarte, Maria Marta Medeiros Frescura; Souza, Débora Guerini; Machado, Priscila; de Assis, Adriano Martimbianco; Quincozes-Santos, André; Souza, Diogo Onofre
2017-04-01
Recent data regarding trans fatty acids (TFAs) have implicated these lipids as particularly deleterious to human health, causing systemic inflammation, endothelial dysfunction and possibly inflammation in the central nervous system (CNS). We aimed to clarify the impact of partially hydrogenated soybean oil (PHSO) with different TFA concentrations on cerebrospinal fluid (CSF), serum and hepatic parameters in adult Wistar rats. Wistar rats (n = 15/group) were fed either a normolipidic diet or a hyperlipidic diet for 90 days. The normolipidic and hyperlipidic diets had the same ingredients except for fat compositions, concentrations and calories. We used lard in the cis fatty acid group and PHSO in the trans fatty acid group. The intervention groups were as follows: (1) low lard (LL), (2) high lard (HL), (3) low partially hydrogenated soybean oil (LPHSO) and (4) high partially hydrogenated soybean oil (HPHSO). Body weight, lipid profiles and the inflammatory responses in the CSF, serum and liver tissue were analyzed. Surprisingly, with the PHSO diet we observed a worse metabolic response that was associated with oxidative stress in hepatic tissue as well as impaired serum and CSF fluid parameters at both PHSO concentrations. In many analyses, there were no significant differences between the LPHSO and HPHSO diets. Dietary supplementation with PHSO impaired inflammatory parameters in CSF and blood, induced insulin resistance, altered lipid profiles and caused hepatic damage. Overall, these findings suggest that fat composition is more important than the quantity of fat consumed in terms of cis and trans fatty acid diets.
Miyake, H; Ohta, T; Kajimoto, Y; Deguchi, J
1999-01-01
The indications for cerebrospinal fluid (CSF) shunting in patients with normal pressure hydrocephalus (NPH) have not been established. Establishment of clear-cut indications for this procedure is essential to ensure cost-effective, and safe treatment. We report the usefulness of the Diamox((R)) challenge test in evaluating indications for CSF shunting in patients with NPH. Pre- and post-operative responses in cerebral blood flow (CBF) and intracranial pressure (ICP) to intravenous administration of Diamox((R)) 1000mg (Diamox((R)) administration) were analysed in 41 patients with NPH who were treated by ventriculoperitoneal (VP) shunt with a programmable valve and an on-off valve. The preoperative response of ICP to Diamox((R)) administration was more than 10 mmHg in most patients in whom the shunt was effective (shunt effective group), however, it was less than 10 mmHg in most patients in whom the shunt was ineffective (shunt non-effective group). Furthermore, the postoperative response of ICP to Diamox((R)) administration decreased to less than 10 mmHg in most patients in the shunt effective group. The increases in CBF in response to Diamox((R)) administration were similar in the two groups both before and after placement of the VP shunt. Patients in whom ICP increased by more than 10 mmHg in response to Diamox((R)) administration were regarded to have poor CSF circulation and to thus be candidates for CSF shunting. The Diamox((R)) challenge test is a simple, safe procedure, useful in evaluating the response to treatment.
Wall, Emma C.; Hussain, Samia; Goonetilleke, Upali R. S.; Gritzfeld, Jenna; Scarborough, Matthew; Kadioglu, Aras
2012-01-01
Poor prognosis in Pneumococcal meningitis may be associated with high pneumolysin levels in cerebrospinal fluid (CSF). In patient samples we showed that pneumolysin levels in CSF remained high after 48 hours in nonsurvivors of meningitis compared with survivors. Selective antipneumolysin treatment may present a novel therapeutic option. PMID:22238165
NASA Astrophysics Data System (ADS)
Staroń, Waldemar; Herbowski, Leszek; Gurgul, Henryk
2007-04-01
The goal of the work was to determine the values of cumulative parameters of the cerebrospinal fluid. Values of the parameters characterise statistical cerebrospinal fluid obtained by puncture from the patients diagnosed due to suspicion of normotensive hydrocephalus. The cerebrospinal fluid taken by puncture for the routine examinations carried out at the patients suspected of normotensive hydrocephalus was analysed. In the paper there are presented results of examinations of several dozens of puncture samples of the cerebrospinal fluid coming from various patients. Each sample was examined under the microscope and photographed in 20 randomly chosen places. On the basis of analysis of the pictures showing the area of 100 x 100μm, the selected cumulative parameters such as count, numerical density, field area and field perimeter were determined for each sample. Then the average value of the parameters was determined as well.
Edén, Arvid; Nilsson, Staffan; Hagberg, Lars; Fuchs, Dietmar; Zetterberg, Henrik; Svennerholm, Bo; Gisslén, Magnus
2016-12-15
We examined longitudinal cerebrospinal fluid (CSF) samples (median, 5 samples/patients; interquartile range [IQR], 3-8 samples/patient) in 75 neurologically asymptomatic human immunodeficiency virus (HIV)-infected patients receiving antiretroviral therapy. Twenty-seven patients (36%) had ≥1 CSF HIV RNA load of >20 copies/mL (23% had ≥1 load of >50 copies/mL), with a median HIV RNA load of 50 copies/mL (IQR, 32-77 copies/mL). In plasma, 42 subjects (52%) and 22 subjects (29%) had an HIV RNA load of >20 and >50 copies/mL, respectively. Two subjects had an increasing virus load in consecutive CSF samples, representing possible CSF escape. Of 418 samples, 9% had a CSF HIV RNA load of >20 copies/mL (5% had a load of >50 copies/mL) and 19% had a plasma HIV RNA load of >20 copies/mL (8% had a load of >50 copies/mL). A CSF-associated virus load of >20 copies/mL was associated with higher CSF level of neopterin. In conclusion, CSF escape was rare, and increased CSF HIV RNA loads usually represented CSF virus load blips. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.
Perez-Alcazar, Marta; Culley, Georgia; Lyckenvik, Tim; Mobarrez, Kristoffer; Bjorefeldt, Andreas; Wasling, Pontus; Seth, Henrik; Asztely, Frederik; Harrer, Andrea; Iglseder, Bernhard; Aigner, Ludwig; Hanse, Eric; Illes, Sebastian
2016-01-01
For decades it has been hypothesized that molecules within the cerebrospinal fluid (CSF) diffuse into the brain parenchyma and influence the function of neurons. However, the functional consequences of CSF on neuronal circuits are largely unexplored and unknown. A major reason for this is the absence of appropriate neuronal in vitro model systems, and it is uncertain if neurons cultured in pure CSF survive and preserve electrophysiological functionality in vitro. In this article, we present an approach to address how human CSF (hCSF) influences neuronal circuits in vitro. We validate our approach by comparing the morphology, viability, and electrophysiological function of single neurons and at the network level in rat organotypic slice and primary neuronal cultures cultivated either in hCSF or in defined standard culture media. Our results demonstrate that rodent hippocampal slices and primary neurons cultured in hCSF maintain neuronal morphology and preserve synaptic transmission. Importantly, we show that hCSF increases neuronal viability and the number of electrophysiologically active neurons in comparison to the culture media. In summary, our data indicate that hCSF represents a physiological environment for neurons in vitro and a superior culture condition compared to the defined standard media. Moreover, this experimental approach paves the way to assess the functional consequences of CSF on neuronal circuits as well as suggesting a novel strategy for central nervous system (CNS) disease modeling. PMID:26973467
Dreha-Kulaczewski, Steffi; Joseph, Arun A; Merboldt, Klaus-Dietmar; Ludwig, Hans-Christoph; Gärtner, Jutta; Frahm, Jens
2017-03-01
CSF flux is involved in the pathophysiology of neurodegenerative diseases and cognitive impairment after traumatic brain injury, all hallmarked by the accumulation of cellular metabolic waste. Its effective disposal via various CSF routes has been demonstrated in animal models. In contrast, the CSF dynamics in humans are still poorly understood. Using novel real-time MRI, forced inspiration has been identified recently as a main driving force of CSF flow in the human brain. Exploiting technical advances toward real-time phase-contrast MRI, the current work analyzed directions, velocities, and volumes of human CSF flow within the brain aqueduct as part of the internal ventricular system and in the spinal canal during respiratory cycles. A consistent upward CSF movement toward the brain in response to forced inspiration was seen in all subjects at the aqueduct, in 11/12 subjects at thoracic level 2, and in 4/12 subjects at thoracic level 5. Concomitant analyses of CSF dynamics and cerebral venous blood flow, that is, in epidural veins at cervical level 3, uniquely demonstrated CSF and venous flow to be closely communicating cerebral fluid systems in which inspiration-induced downward flow of venous blood due to reduced intrathoracic pressure is counterbalanced by an upward movement of CSF. The results extend our understanding of human CSF flux and open important clinical implications, including concepts for drug delivery and new classifications and therapeutic options for various forms of hydrocephalus and idiopathic intracranial hypertension. SIGNIFICANCE STATEMENT Effective disposal of brain cellular waste products via CSF has been demonstrated repeatedly in animal models. However, CSF dynamics in humans are still poorly understood. A novel quantitative real-time MRI technique yielded in vivo CSF flow directions, velocities, and volumes in the human brain and upper spinal canal. CSF moved upward toward the head in response to forced inspiration. Concomitant analysis of brain venous blood flow indicated that CSF and venous flux act as closely communicating systems. The finding of a human CSF-venous network with upward CSF net movement opens new clinical concepts for drug delivery and new classifications and therapeutic options for various forms of hydrocephalus and ideopathic intracranial hypertension. Copyright © 2017 the authors 0270-6474/17/372395-08$15.00/0.
CSF 5-HIAA Predicts Suicide Risk after Attempted Suicide.
ERIC Educational Resources Information Center
Nordstrom, Peter; And Others
1994-01-01
Studied suicide risk after attempted suicide, as predicted by cerebrospinal fluid (CSF) monoamine metabolite concentrations, in 92 psychiatric mood disorder inpatients admitted shortly after attempting suicide. Results revealed that low CSF 5-hydroxyindoleacetic acid (5-HIAA) predicted short-range suicide risk after attempted suicide in mood…
Inflammation in complex regional pain syndrome
Parkitny, Luke; McAuley, James H.; Di Pietro, Flavia; Stanton, Tasha R.; O’Connell, Neil E.; Marinus, Johan; van Hilten, Jacobus J.
2013-01-01
Objectives: We conducted a systematic review of the literature with meta-analysis to determine whether complex regional pain syndrome (CRPS) is associated with a specific inflammatory profile and whether this is dependent on the duration of the condition. Methods: Comprehensive searches of the literature using MEDLINE, Embase, Scopus, Web of Science, and reference lists from published reviews identified articles that measured inflammatory factors in CRPS. Two independent investigators screened titles and abstracts, and performed data extraction and risk of bias assessments. Studies were subgrouped by medium (blood, blister fluid, and CSF) and duration (acute and chronic CRPS). Where possible, meta-analyses of inflammatory factor concentrations were performed and pooled effect sizes were calculated using random-effects models. Results: Twenty-two studies were included in the systematic review and 15 in the meta-analysis. In acute CRPS, the concentrations of interleukin (IL)-8 and soluble tumor necrosis factor receptors I (sTNF-RI) and II (sTNF-RII) were significantly increased in blood. In chronic CRPS, significant increases were found in 1) TNFα, bradykinin, sIL-1RI, IL-1Ra, IL-2, sIL-2Ra, IL-4, IL-7, interferon-γ, monocyte chemoattractant protein-1 (MCP-1), and sRAGE (soluble receptor for advanced glycation end products) in blood; 2) IL-1Ra, MCP-1, MIP-1β, and IL-6 in blister fluid; and 3) IL-1β and IL-6 in CSF. Chronic CRPS was also associated with significantly decreased 1) substance P, sE-selectin, sL-selectin, sP-selectin, and sGP130 in blood; and 2) soluble intercellular adhesion molecule-1 (sICAM-1) in CSF. Most studies failed to meet 3 or more of our quality criteria. Conclusion: CRPS is associated with the presence of a proinflammatory state in the blood, blister fluid, and CSF. Different inflammatory profiles were found for acute and chronic cases. PMID:23267031
Oligoclonal bands in cerebrospinal fluid in patients with Tourette's syndrome.
Wenzel, Claudia; Wurster, Ulrich; Müller-Vahl, Kirsten R
2011-02-01
Since a postinfectious or autoimmune etiology is suggested to be involved in the pathogenesis of Tourette's syndrome (TS), we investigated oligoclonal bands (OB) of immunoglobulin G (IgG) in cerebrospinal fluid (CSF), indicating a humoral immune response in the central nervous system. CSF examinations including isoelectric focusing to analyze the presence of OB were performed in 21 TS patients [17 men/4 women, mean age = 29 ± 12 (SD) years]. Isoelectric focusing showed the presence of positive OB in 6, borderline bands in 2, and serum and CSF bands ("mirrored pattern") in another 2 patients. Clinical data did not correlate with CSF findings. Thus, 38% (8 of 21) of our patients exhibited pathological CSF bands. Since none of them suffered from another disease known to be associated with OB, our results suggest an association with the pathogenesis of TS itself and point to an involvement of immunological mechanisms in TS pathology. Copyright © 2010 Movement Disorder Society.
False-positive cerebrospinal fluid cryptococcus antigen in Libman-Sacks endocarditis.
Isseh, Iyad N; Bourgi, Kassem; Nakhle, Asaad; Ali, Mahmoud; Zervos, Marcus J
2016-12-01
Cryptococcus meningoencephalitis is a serious opportunistic infection associated with high morbidity and mortality in immunocompromised hosts, particularly patients with advanced AIDS disease. The diagnosis is established through cerebrospinal fluid (CSF) cryptococcus antigen detection and cultures. Cryptococcus antigen testing is usually the initial test of choice due its high sensitivity and specificity along with the quick availability of the results. We hereby report a case of a false-positive CSF cryptococcus antigen assay in a patient with systemic lupus erythematosus presenting with acute confusion. While initial CSF evaluation revealed a positive cryptococcus antigen assay, the patient's symptoms were inconsistent with cryptococcus meningoencephalitis. A repeat CSF evaluation, done 3 days later, revealed a negative CSF cryptococcus antigen assay. Given the patient's active lupus disease and the elevated antinuclear antibody titers, we believe that the initial positive result was a false positive caused by interference from autoantibodies.
Nallet, E; Decq, P; Bezzo, A; Le Lievre, G; Peynegre, R; Coste, A
1998-10-01
The incidence and the risk of meningitidis justify treatment in all cases of cerebrospinal fluid rhinorrhea with spontaneous etiology or after traumatic injury. Endonasal surgery with endoscopic instruments provides many advantages compared with transcranial or transfacial approach used by neurosurgeons. We report our experience and our surgical technique in the treatment of CSF leaks in 5 patients. Intrathecal injection of fluoresceine was very useful in all cases for detecting the CSF leak. Total or selected ethmoidectomy depended on the localization of the leakage. Wide sphenoidotomy enables detection and repair of CSF leaks from the sphenoid cavity. A free graft of inferior turbinal mucosal was used to repair the breache. This rapid low morbidity surgery offered secure closure of rhinorrhea in 4 cases after one procedure and in 1 case after two procedures with an average follow up of 22 months. Cerebrospinal fluid rhinorrhea can be managed in first line therapy with endoscopic intranasal surgical techniques when they are localized in the anterior ethmoid or in the sphenoid cavity.
Imoh, Lucius C; Mutale, Mubanga; Parker, Christopher T; Erasmus, Rajiv T; Zemlin, Annalise E
2016-01-01
Introduction Timeliness of laboratory results is crucial to patient care and outcome. Monitoring turnaround times (TAT), especially for emergency tests, is important to measure the effectiveness and efficiency of laboratory services. Laboratory-based clinical audits reveal opportunities for improving quality. Our aim was to identify the most critical steps causing a high TAT for cerebrospinal fluid (CSF) chemistry analysis in our laboratory. Materials and methods A 6-month retrospective audit was performed. The duration of each operational phase across the laboratory work flow was examined. A process-mapping audit trail of 60 randomly selected requests with a high TAT was conducted and reasons for high TAT were tested for significance. Results A total of 1505 CSF chemistry requests were analysed. Transport of samples to the laboratory was primarily responsible for the high average TAT (median TAT = 170 minutes). Labelling accounted for most delays within the laboratory (median TAT = 71 minutes) with most delays occurring after regular work hours (P < 0.05). CSF chemistry requests without the appropriate number of CSF sample tubes were significantly associated with delays in movement of samples from the labelling area to the technologist’s work station (caused by a preference for microbiological testing prior to CSF chemistry). Conclusion A laboratory-based clinical audit identified sample transportation, work shift periods and use of inappropriate CSF sample tubes as drivers of high TAT for CSF chemistry in our laboratory. The results of this audit will be used to change pre-analytical practices in our laboratory with the aim of improving TAT and customer satisfaction. PMID:27346964
Validation of α-Synuclein as a CSF Biomarker for Sporadic Creutzfeldt-Jakob Disease.
Llorens, Franc; Kruse, Niels; Karch, André; Schmitz, Matthias; Zafar, Saima; Gotzmann, Nadine; Sun, Ting; Köchy, Silja; Knipper, Tobias; Cramm, Maria; Golanska, Ewa; Sikorska, Beata; Liberski, Pawel P; Sánchez-Valle, Raquel; Fischer, Andre; Mollenhauer, Brit; Zerr, Inga
2018-03-01
The analysis of cerebrospinal fluid (CSF) biomarkers gains importance in the differential diagnosis of prion diseases. However, no single diagnostic tool or combination of them can unequivocally confirm prion disease diagnosis. Electrochemiluminescence (ECL)-based immunoassays have demonstrated to achieve high diagnostic accuracy in a variety of sample types due to their high sensitivity and dynamic range. Quantification of CSF α-synuclein (a-syn) by an in-house ECL-based ELISA assay has been recently reported as an excellent approach for the diagnosis of sporadic Creutzfeldt-Jakob disease (sCJD), the most prevalent form of human prion disease. In the present study, we validated a commercially available ECL-based a-syn ELISA platform as a diagnostic test for correct classification of sCJD cases. CSF a-syn was analysed in 203 sCJD cases with definite diagnosis and in 445 non-CJD cases. We investigated reproducibility and stability of CSF a-syn and made recommendations for its analysis in the sCJD diagnostic workup. A sensitivity of 98% and a specificity of 97% were achieved when using an optimal cut-off of 820 pg/mL a-syn. Moreover, we were able to show a negative correlation between a-syn levels and disease duration suggesting that CSF a-syn may be a good prognostic marker for sCJD patients. The present study validates the use of a-syn as a CSF biomarker of sCJD and establishes the clinical and pre-analytical parameters for its use in differential diagnosis in clinical routine. Additionally, the current test presents some advantages compared to other diagnostic approaches: it is fast, economic, requires minimal amount of CSF and a-syn levels are stable along disease progression.
Lampert, Erika J; Roy Choudhury, Kingshuk; Hostage, Christopher A; Petrella, Jeffrey R; Doraiswamy, P Murali
2013-01-01
A positive family history (FH) is a risk factor for late-onset Alzheimer's disease (AD). Our aim was to examine the effects of FH on pathological and neuronal loss biomarkers across the cognitive spectrum. Cross-sectional analyses of data from a national biomarker study. The Alzheimer's Disease Neuroimaging Initiative national study. 257 subjects (ages 55-89), divided into cognitively normal (CN), mild cognitive impairment (MCI), and AD groups, with CSF and FH data. Cerebrospinal fluid (CSF) Aβ42, tau, and tau/Aβ42 ratio, MRI-measured hippocampal volumes. Univariate and multivariate analyses. In MCI, CSF Aβ42 was lower (p = .005), t-tau was higher (p = 0.02) and t-tau/Aβ42 ratio was higher (p = 0.002) in FH+ than FH- subjects. A significant residual effect of FH on pathologic markers in MCI remained after adjusting for ApoE4 (p<0.05). Among CN, 47% of FH+ exhibited "pathologic signature of AD" (CSF t-tau/Aβ42 ratio >0.39) versus 21% of FH- controls (p = 0.03). The FH effect was not significant in AD subjects. Hippocampal and intracranial volumes did not differ between FH+ and FH- subjects in any group. A positive family history of late-onset AD is associated with a higher prevalence of an abnormal cerebral beta-amyloid and tau protein phenotype in MCI. The unexplained genetic heritability in family history is about the half the size of the ApoE4 effect. Longitudinal studies are warranted to more definitively examine this issue.
Cerebrospinal fluid HIV RNA in persons living with HIV.
Di Carlofelice, M; Everitt, A; Muir, D; Winston, A
2018-05-01
Despite adequate suppression of plasma HIV RNA, viral escape in cerebrospinal fluid (CSF) is widely reported. Rates of CSF HIV RNA escape vary in the literature. In persons living with HIV (PLWH) undergoing lumbar puncture examination for clinical reasons, we assessed rates of CSF HIV RNA escape. Persons living with HIV attending a designated HIV neurology service undergoing CSF assessment for clinical reasons between January 2015 and April 2017 were included in the study. CSF HIV RNA escape was defined as HIV RNA ≥ 0.5 log 10 HIV-1 RNA copies/mL higher than plasma HIV RNA or detectable CSF HIV RNA when plasma HIV RNA was < 20 copies/mL. Clinical factors associated with CSF HIV RNA were assessed using logistic regression modelling. Of 38 individuals, 35 were receiving antiretroviral therapy, 30 were male and their mean age was 51 years. Clinical reasons for CSF assessment included investigation for cognitive decline (n = 25), early syphilis (n = 4) and other central nervous system (CNS) conditions (n = 9). HIV RNA was detectable in plasma and CSF in seven and six individuals, respectively, with two individuals (5.3%) meeting the definition of CSF escape. Detectable CSF HIV RNA was associated with a detectable plasma HIV RNA (P < 0.001) and a history of known antiretroviral drug resistance mutations (P = 0.021). The prevalence of CSF viral escape in PLWH undergoing lumbar puncture examination for clinical reasons is lower than previously reported. © 2018 British HIV Association.
Restorick, S M; Durant, L; Kalra, S; Hassan-Smith, G; Rathbone, E; Douglas, M R; Curnow, S J
2017-08-01
Considerable attention has been given to CCR6 + IL-17-secreting CD4 + T cells (Th17) in the pathology of a number of autoimmune diseases including multiple sclerosis (MS). However, other Th subsets also play important pathogenic roles, including those that secrete IFNγ and GM-CSF. CCR6 expression by Th17 cells allows their migration across the choroid plexus into the cerebrospinal fluid (CSF), where they are involved in the early phase of experimental autoimmune encephalomyelitis (EAE), and in MS these cells are elevated in the CSF during relapses and contain high frequencies of autoreactive cells. However, the relatively low frequency of Th17 cells suggests they cannot by themselves account for the high percentage of CCR6 + cells in MS CSF. Here we identify the dominant CCR6 + T cell subsets in both the blood and CSF as non-classic Th1 cells, including many that secrete GM-CSF, a key encephalitogenic cytokine. In addition, we show that Th cells secreting GM-CSF but not IFNγ or IL-17, a subset termed GM-CSF-only-secreting Th cells, also accumulate in the CSF. Importantly, in MS the proportion of IFNγ- and GM-CSF-secreting T cells expressing CCR6 was significantly enriched in the CSF, and was elevated in MS, suggesting these cells play a pathogenic role in this disease. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Tan, Natalie Woon Hui; Lee, Elis Yuexian; Khoo, Gloria Mei Chin; Tee, Nancy Wen Sim; Krishnamoorthy, Subramania; Choong, Chew Thye
2016-04-01
Non-polio enteroviruses (EV) are the most common viruses causing aseptic meningitis in children. We aim to evaluate the cerebrospinal fluid (CSF) characteristics of neonates and children with EV meningitis with a view to determine whether it could be discriminatory or otherwise in making a positive diagnosis. We performed a 3-year (July 2008-July 2011) retrospective study of children ≤16 years, treated at a tertiary children's hospital, with positive CSF EV polymerase chain reaction (PCR) and negative blood and CSF bacterial cultures. A total of 206 children were studied. The median CSF white cell count was 79 cells/mm(3) (range 0-4608 cells/mm(3)). CSF pleocytosis was observed in 99/150 (66%) aged ≤90 days, 3/4 (75%) aged 90 days-1 year, and 49/52 (94%) children ≥3 years. There was a huge variability in CSF pleocytosis in infants ≤90 days, where 34% of them had no pleocytosis, while in 66%, a wide range of pleocytosis that might even suggest bacterial meningitis was noted. CSF red cells were low, and protein or sugar values were not discriminatory. CSF pleocytosis in relation to increasing age was found to be statistically significant (p < 0.001). Early lumbar puncture within 48 h of symptoms and absence of CSF pleocytosis was also statistically significant (p = 0.039). CSF pleocytosis in EV meningitis is commoner in older children. As there was a huge variability in CSF pleocytosis in infants ≤90 days particularly, CSF analysis including EV PCR could avoid unnecessary antibiotic therapy.
A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules
Aspelund, Aleksanteri; Antila, Salli; Proulx, Steven T.; Karlsen, Tine Veronica; Karaman, Sinem; Detmar, Michael; Wiig, Helge
2015-01-01
The central nervous system (CNS) is considered an organ devoid of lymphatic vasculature. Yet, part of the cerebrospinal fluid (CSF) drains into the cervical lymph nodes (LNs). The mechanism of CSF entry into the LNs has been unclear. Here we report the surprising finding of a lymphatic vessel network in the dura mater of the mouse brain. We show that dural lymphatic vessels absorb CSF from the adjacent subarachnoid space and brain interstitial fluid (ISF) via the glymphatic system. Dural lymphatic vessels transport fluid into deep cervical LNs (dcLNs) via foramina at the base of the skull. In a transgenic mouse model expressing a VEGF-C/D trap and displaying complete aplasia of the dural lymphatic vessels, macromolecule clearance from the brain was attenuated and transport from the subarachnoid space into dcLNs was abrogated. Surprisingly, brain ISF pressure and water content were unaffected. Overall, these findings indicate that the mechanism of CSF flow into the dcLNs is directly via an adjacent dural lymphatic network, which may be important for the clearance of macromolecules from the brain. Importantly, these results call for a reexamination of the role of the lymphatic system in CNS physiology and disease. PMID:26077718
A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules.
Aspelund, Aleksanteri; Antila, Salli; Proulx, Steven T; Karlsen, Tine Veronica; Karaman, Sinem; Detmar, Michael; Wiig, Helge; Alitalo, Kari
2015-06-29
The central nervous system (CNS) is considered an organ devoid of lymphatic vasculature. Yet, part of the cerebrospinal fluid (CSF) drains into the cervical lymph nodes (LNs). The mechanism of CSF entry into the LNs has been unclear. Here we report the surprising finding of a lymphatic vessel network in the dura mater of the mouse brain. We show that dural lymphatic vessels absorb CSF from the adjacent subarachnoid space and brain interstitial fluid (ISF) via the glymphatic system. Dural lymphatic vessels transport fluid into deep cervical LNs (dcLNs) via foramina at the base of the skull. In a transgenic mouse model expressing a VEGF-C/D trap and displaying complete aplasia of the dural lymphatic vessels, macromolecule clearance from the brain was attenuated and transport from the subarachnoid space into dcLNs was abrogated. Surprisingly, brain ISF pressure and water content were unaffected. Overall, these findings indicate that the mechanism of CSF flow into the dcLNs is directly via an adjacent dural lymphatic network, which may be important for the clearance of macromolecules from the brain. Importantly, these results call for a reexamination of the role of the lymphatic system in CNS physiology and disease. © 2015 Aspelund et al.
Imoto, Kenichi; Otonari-Yamamoto, Mika; Nishikawa, Keiichi; Sano, Tsukasa; Yamamoto, Aya
2011-08-01
The purpose of this study was to determine the potential of fluid-attenuated inversion recovery (FLAIR) sequence images in the identification of joint effusion (JE) compared with T2-weighted images. A total of 31 joints (28 patients) with JE were investigated by magnetic resonance imaging (MRI). Regions of interest were placed over JE, cerebrospinal fluid (CSF), and gray matter (GM) on T2-weighted and FLAIR images and their signal intensities compared. The signal intensity ratios (SIRs) of JE and CSF were calculated with GM as the reference point. The Pearson product-moment correlation coefficient was used for the statistical analysis. The SIR of JE showed a strong correlation between T2-weighted and FLAIR images. However, no correlation was observed for CSF. The average suppression ratio for JE was lower than that for CSF. MRI using FLAIR sequences revealed that JE was not just water content, but a fluid accumulation containing elements such as protein. Further studies are needed, and FLAIR sequences could be useful for the diagnosis of pain and symptoms of the temporomandibular joint (TMJ). Copyright © 2011 Mosby, Inc. All rights reserved.
Cerebrospinal fluid Alzheimer's biomarker profiles in CNS infections.
Krut, Jan Jessen; Zetterberg, Henrik; Blennow, Kaj; Cinque, Paola; Hagberg, Lars; Price, Richard W; Studahl, Marie; Gisslén, Magnus
2013-02-01
The cerebrospinal fluid (CSF) biomarker profile in Alzheimer's disease (AD) is characterized by decreased beta amyloid (Aβ(1-42)), increased total and hyperphosphorylated tau (t-tau and p-tau, respectively), which is a useful diagnostic tool and gives insight in the pathogenesis of AD. It is of importance to study how these biomarkers react in other CNS diseases; therefore, we decided to analyse amyloid and tau biomarkers in different CNS infections. We also included analysis of soluble amyloid precursor proteins (sAPPα and -β). CSF Aβ(1-42), sAPPα and -β, t-tau and p-tau were analysed in bacterial meningitis (n = 12), Lyme neuroborreliosis (n = 13), herpes simplex virus type 1 (HSV-1) encephalitis (n = 10), HIV-associated dementia (HAD) (n = 21), AD (n = 21) and healthy controls (n = 42). Concurrent with AD, Aβ(1-42) was decreased in all groups except neuroborreliosis compared to controls. HSV-1 encephalitis, bacterial meningitis and HAD showed lower concentrations of sAPPα and -β compared to AD. T-tau was increased in AD and HSV-1 encephalitis compared to all other groups. P-tau was higher in AD and HSV-1 encephalitis compared to bacterial meningitis, HAD and control. Decreased CSF Aβ(1-42), sAPPα and -β in various CNS infections imply an effect of neuroinflammation on amyloid metabolism which is similar in regard to AD concerning Aβ(1-42), but differs concerning sAPPα and -β. These results clearly indicate different pathologic pathways in AD and infectious CNS disease and may provide help in the differential biomarker diagnostics. Increased p-tau in HSV-1 encephalitis probably reflect acute neuronal damage and necrosis.
Confocal Raman microscopy of pathologic cells in cerebrospinal fluid
NASA Astrophysics Data System (ADS)
Gonchukov, S. A.; Lonkina, T. V.; Minaeva, S. A.; Sundukov, A. V.; Migmanov, T. E.; Lademann, J.; Darvin, M. E.; Bagratashvili, V. N.
2014-01-01
In this work, the spatial localization of leucocytes, bacteria, and erythrocytes in the crystal pattern of a dried droplet of cerebrospinal fluid (CSF) is established. Characteristic lines are detected and identified in the Raman spectrum of the CSF that point to the presence of pathologic cells therein and can be used in a timely way to diagnose meningitis, the spectroscopic sample preparation procedure being simple enough. A dry CSF sample retains its characteristic spectral features for no less than three days, which is important for its safe keeping and transportation, and also for the computer processing of its spectra.
Effect of cerebral spinal fluid suppression for diffusional kurtosis imaging.
Yang, Alicia W; Jensen, Jens H; Hu, Caixia C; Tabesh, Ali; Falangola, Maria F; Helpern, Joseph A
2013-02-01
To evaluate the cerebral spinal fluid (CSF) partial volume effect on diffusional kurtosis imaging (DKI) metrics in white matter and cortical gray matter. Four healthy volunteers participated in this study. Standard DKI and fluid-attenuated inversion recovery (FLAIR) DKI experiments were performed using a twice-refocused-spin-echo diffusion sequence. The conventional diffusion tensor imaging (DTI) metrics of fractional anisotropy (FA), mean, axial, and radial diffusivity (MD, D[symbol in text], D[symbol in text] together with DKI metrics of mean, axial, and radial kurtosis (MK, K[symbol in text], K[symbol in text], were measured and compared. Single image slices located above the lateral ventricles, with similar anatomical features for each subject, were selected to minimize the effect of CSF from the ventricles. In white matter, differences of less than 10% were observed between diffusion metrics measured with standard DKI and FLAIR-DKI sequences, suggesting minimal CSF contamination. For gray matter, conventional DTI metrics differed by 19% to 52%, reflecting significant CSF partial volume effects. Kurtosis metrics, however, changed by 11% or less, indicating greater robustness with respect to CSF contamination. Kurtosis metrics are less sensitive to CSF partial voluming in cortical gray matter than conventional diffusion metrics. The kurtosis metrics may then be more specific indicators of changes in tissue microstructure, provided the effect sizes for the changes are comparable. Copyright © 2012 Wiley Periodicals, Inc.
Paracetamol plasma and cerebrospinal fluid pharmacokinetics in children
Anderson, B J; Holford, N H G; Woollard, G A; Chan, P L S
1998-01-01
Aims Paracetamol has a central action for both antipyresis and analgesia. Maximum temperature decrease and peak analgesia are reported at 1–2 h after peak plasma paracetamol concentration. We wished to determine the relationship between plasma and cerebrospinal fluid (CSF) pharmacokinetics in children. Methods Concentration-time profiles in plasma and CSF after nasogastric paracetamol 40 mg kg−1 were measured in nine children who had indwelling ventricular drains. Estimation of population pharmacokinetic parameters was made using both a standard two-stage population approach (MKMODEL) and a nonlinear mixed effect model (NONMEM). Results were standardized to a 70 kg person using an allometric power model. Results Both approaches gave similar estimates. NONMEM parameter estimates were clearance 10.2 l h−1 (CV 47%), volume of distribution 67.1 l (CV 58%) and absorption rate constant 0.77 h−1 (CV 49%). Cerebrospinal fluid concentrations lagged behind those of plasma. The equilibration half time was 0.72 h (CV 117%). The CSF/plasma partition coefficient was 1.18 (CV 8%). Conclusions Higher concentrations in the CSF probably reflect the lower free water volume of plasma. The CSF equilibration half time suggests that CSF kinetics approximate more closely to the effect compartment than plasma, but further time is required for paracetamol to exert its effects. Effect site concentrations equilibrate slowly with plasma. Paracetamol should be given 1–2 h before anticipated pain or fever in children. PMID:9764964
Antiretroviral Treatment Effect on Immune Activation Reduces Cerebrospinal Fluid HIV-1 Infection
Sinclair, Elizabeth; Ronquillo, Rollie; Lollo, Nicole; Deeks, Steven G.; Hunt, Peter; Yiannoutsos, Constantin T.; Spudich, Serena; Price, Richard W.
2012-01-01
Objective To define the effect of antiretroviral therapy (ART) on activation of T cells in cerebrospinal fluid (CSF) and blood, and interactions of this activation with CSF HIV-1 RNA concentrations. Design Cross-sectional analysis of 14 HIV-negative subjects and 123 neuroasymptomatic HIV-1–infected subjects divided into 3 groups: not on ART (termed “offs”), on ART with plasma HIV-1 RNA >500 copies/mL (“failures”), and on ART with plasma HIV-1 RNA ≤500 copies/mL (“successes”). T-cell activation was measured by coexpression of CD38 and human leukocyte antigen DR (HLA-DR). Other measurements included CSF neopterin and white blood cell (WBC) counts. Results CD8 T-cell activation in CSF and blood was highly correlated across all subjects and was highest in the offs, lower in the failures, and lower still in the successes. While CD8 activation was reduced in failures compared to offs across the range of plasma HIV-1, it maintained a coincident relation to CSF HIV-1 in both viremic groups. In addition to correlation with CSF HIV-1 concentrations, CD8 activation in blood and CSF correlated with CSF WBCs and CSF neopterin. Multivariate analysis confirmed the association of blood CD8 T-cell activation, along with plasma HIV-1 RNA and CSF neopterin, with CSF HIV-1 RNA levels. Conclusions The similarity of CD8 T-cell activation in blood and CSF suggests these cells move from blood to CSF with only minor changes in CD38/HLA-DR expression. Differences in the relation of CD8 activation to HIV-1 concentrations in the blood and CSF in the 2 viremic groups suggest that changes in immune activation not only modulate CSF HIV-1 replication but also contribute to CSF treatment effects. The magnitude of systemic HIV-1 infection and intrathecal macrophage activation are also important determinants of CSF HIV-1 RNA levels. PMID:18362693
Craven, Claudia; Toma, Ahmed K; Khan, Akbar A; Watkins, Laurence D
2016-09-01
Cerebrospinal fluid (CSF) leak following spinal surgery is a relatively common surgical complication. A disturbance in the underlying CSF dynamics could be the causative factor in a small group of patients with refractory CSF leaks that require multiple surgical repairs and prolonged hospital admission. A retrospective case series of patients with persistent post spinal surgery CSF leak referred to the hydrocephalus service for continuous intracranial pressure (ICP) monitoring. Patients' notes were reviewed for medical history, ICP data, radiological data, and subsequent management and outcome. Five patients (two males/three females, mean age, 35.4 years) were referred for ICP monitoring over a 12-month period. These patients had prolonged CSF leak despite multiple repair attempts 252 ± 454 days (mean ± SD). On ICP monitoring, all five patients had abnormal results, with the mean ICP 8.95 ± 4.41 mmHg. Four had abnormal pulse amplitudes, mean 6.15 mmHg ± 1.22 mmHg. All five patients underwent an intervention. Three patients underwent insertion of ventriculoperitoneal (VP) shunts. One patient had venous sinus stent insertion and one patient underwent medical management with acetazolamide. All five of the patients' CSF leak resolved post intervention. The mean time to resolution of CSF leak post intervention was 10.8 ± 12.9 days. Abnormal cerebrospinal fluid dynamics could be the underlying factor in patients with a persistent and treatment-refractory CSF leak post spinal surgery. Treatments aimed at lowering ICP may be beneficial in this group of patients. Whether abnormal pressure and dynamics represent a pre-existing abnormality or is induced by spinal surgery should be a subject of further study.
Reynolds, G; Gibbon, J R; Pratt, A G; Wood, M J; Coady, D; Raftery, G; Lorenzi, A R; Gray, A; Filer, A; Buckley, C D; Haniffa, M A; Isaacs, J D; Hilkens, C M U
2016-01-01
Objective A population of synovial inflammatory dendritic cells (infDCs) has recently been identified in rheumatoid arthritis (RA) and is thought to be monocyte-derived. Here, we investigated the role and source of granulocyte macrophage-colony-stimulating factor (GM-CSF) in the differentiation of synovial infDC in RA. Methods Production of GM-CSF by peripheral blood (PB) and synovial fluid (SF) CD4+ T cells was assessed by ELISA and flow cytometry. In vitro CD4+ T-cell polarisation experiments were performed with T-cell activating CD2/CD3/CD28-coated beads in the absence or presence of pro-Th1 or pro-Th17 cytokines. CD1c+ DC and CD16+ macrophage subsets were flow-sorted and analysed morphologically and functionally (T-cell stimulatory/polarising capacity). Results RA-SF CD4+ T cells produced abundant GM-CSF upon stimulation and significantly more than RA-SF mononuclear cells depleted of CD4+ T cells. GM-CSF-producing T cells were significantly increased in RA-SF compared with non-RA inflammatory arthritis SF, active RA PB and healthy donor PB. GM-CSF-producing CD4+ T cells were expanded by Th1-promoting but not Th17-promoting conditions. Following coculture with RA-SF CD4+ T cells, but not healthy donor PB CD4+ T cells, a subpopulation of monocytes differentiated into CD1c+ infDC; a process dependent on GM-CSF. These infDC displayed potent alloproliferative capacity and enhanced GM-CSF, interleukin-17 and interferon-γ production by CD4+ T cells. InfDC with an identical phenotype to in vitro generated cells were significantly enriched in RA-SF compared with non-RA-SF/tissue/PB. Conclusions We demonstrate a therapeutically tractable feedback loop of GM-CSF secreted by RA synovial CD4+ T cells promoting the differentiation of infDC with potent capacity to induce GM-CSF-producing CD4+ T cells. PMID:25923217
Mengistu, Assegid; Gaeseb, Johannes; Uaaka, Gottfried; Ndjavera, Christophine; Kambyambya, Kennedy; Indongo, Lazarus; Kalemeera, Francis; Ntege, Christopher; Mabirizi, David; Joshi, Mohan P; Sagwa, Evans
2013-01-01
Bacterial meningitis is a medical emergency associated with high mortality rates. Cerebrospinal fluid (CSF) culture is the "gold standard" for diagnosis of meningitis and it is important to establish the susceptibility of the causative microorganism to rationalize treatment. The Namibia Standard Treatment Guidelines (STGs) recommends initiation of empirical antibiotic treatment in patients with signs and symptoms of meningitis after taking a CSF sample for culture and sensitivity. The objective of this study was to assess the antimicrobial sensitivity patterns of microorganisms isolated from CSF to antibiotics commonly used in the empirical treatment of suspected bacterial meningitis in Namibia. This was a cross-sectional descriptive study of routinely collected antibiotic susceptibility data from the Namibia Institute of Pathology (NIP) database. Results of CSF culture and sensitivity from January 1, 2009 to May 31, 2012, from 33 state hospitals throughout Namibia were analysed. The most common pathogens isolated were Streptococcus species, Neisseria meningitidis, Haemophilus influenzae, Staphylococcus, and Escherichia coli. The common isolates from CSF showed high resistance (34.3% -73.5%) to penicillin. Over one third (34.3%) of Streptococcus were resistance to penicillin which was higher than 24.8% resistance in the United States. Meningococci were susceptible to several antimicrobial agents including penicillin. The sensitivity to cephalosporins remained high for Streptococcus, Neisseria, E. coli and Haemophilus. The highest percentage of resistance to cephalosporins was seen among ESBL K. pneumoniae (n = 7, 71%-100%), other Klebsiella species (n = 7, 28%-80%), and Staphylococcus (n = 36, 25%-40%). The common organisms isolated from CSF were Streptococcus Pneumoniae, Neisseria meningitidis, Haemophilus influenzae, Staphylococcus, and E. coli. All common organisms isolated from CSF showed high sensitivity to cephalosporins used in the empirical treatment of meningitis. The resistance of the common isolates to penicillin is high. Most ESBL K. pneumoniae were isolated from CSF samples drawn from neonates and were found to be resistant to the antibiotics recommended in the Namibia STGs. Based on the above findings, it is recommended to use a combination of aminoglycoside and third-generation cephalosporin to treat non-ESBL Klebsiella isolates. Carbapenems (e.g., meropenem) and piperacillin/tazobactam should be considered for treating severely ill patients with suspected ESBL Klebsiella infection. Namibia should have a national antimicrobial resistance surveillance system for early detection of antibiotics that may no longer be effective in treating meningitis and other life-threatening infections due to resistance.
Truncated cystatin C in cerebrospiral fluid: Technical [corrected] artefact or biological process?
Carrette, Odile; Burkhard, Pierre R; Hughes, Severine; Hochstrasser, Denis F; Sanchez, Jean-Charles
2005-08-01
Cystatin C, a low molecular weight cysteine proteinase inhibitor present in human body fluids at physiological concentrations, is more expressed in cerebrospinal fluid (CSF) than in plasma. Mass spectrometric characterization showed that after 3 months of storage of human CSF at -20 degrees C, cystatin C was cleaved in the peptide bond between R8 and L9 and lost its eight N-termini amino acids, whereas this cleavage did not occur when stored at -80 degrees C. This truncation occurred in all CSF samples studied irrespective of the underlying neurological status, indicating a storage-related artefact rather than a physiological or pathological processing of the protein. These results stress the importance of optimal preanalytical storage conditions of any sample prior to proteomics studies.
Cytoskeletal proteins in the cerebrospinal fluid as biomarker of multiple sclerosis.
Madeddu, Roberto; Farace, Cristiano; Tolu, Paola; Solinas, Giuliana; Asara, Yolande; Sotgiu, Maria Alessandra; Delogu, Lucia Gemma; Prados, Jose Carlos; Sotgiu, Stefano; Montella, Andrea
2013-02-01
The axonal cytoskeleton is a finely organized system, essential for maintaining the integrity of the axon. Axonal degeneration is implicated in the pathogenesis of unremitting disability of multiple sclerosis (MS). Purpose of this study is to evaluate levels of cytoskeletal proteins such as neurofilament light protein (NFL), glial fibrillary acidic protein (GFAP), and β-tubulin (β-Tub) isoforms II and III in the cerebrospinal fluid (CSF) of MS patients and their correlation with MS clinical indices. CSF levels of cytoskeletal proteins were determined in 51 patients: 33 with MS and 18 with other neurological diseases (OND). NFL, GFAP and β-Tub II proteins were significantly higher (p < 0.0001) in MS than in OND group; no significant difference (p > 0.05) was found between MS and OND with regard to β-Tub III. Interestingly, levels of β-Tub III and NFL were higher in progressive than in remitting MS forms; on the contrary, higher levels of β-Tub II and GFAP were found in remitting MS forms. However, with the exception of β-Tub III, all proteins tend to decrease their CSF levels concomitantly with the increasing disability (EDSS) score. Overall, our results might indicate β-Tub II as a potential candidate for diagnostic and β-Tub III as a possible prognostic biomarker of MS. Therefore, further analyses are legitimated and desirable.
Measurement of cerebral biomarkers proving traumatic brain injuries in post-mortem body fluids.
Ondruschka, Benjamin; Sieber, Monique; Kirsten, Holger; Franke, Heike; Dressler, Jan
2018-05-05
Until now, it is impossible to identify a fatal traumatic brain injury (TBI) before post-mortem radiological investigations or an autopsy take place. It would be preferable to have an additional diagnostic tool like post-mortem biochemistry to get greater insight into the pathological pathways and survival times after sustaining TBI. Cerebrospinal fluid (CSF) and serum samples of 84 autopsy cases were collected from forensic autopsies with post-mortem intervals (PMI) of up to 148 h. The cases were categorized into a fatal TBI case group (n=42) and non-TBI controls (n=42). The values of glial fibrillary acidic protein (GFAP), brain-derived neurotrophic factor (BDNF) and neutrophil gelatinase-associated lipocalin (NGAL) were analyzed by means of quantitative chemiluminescent multiplex immunoassays. The main results indicate that the usage of liquid samples with good macroscopic quality is more relevant for meaningful biomarker analyses than the length of the PMI. All three proteins were shown to differentiate TBI fatalities from the controls in CSF. In serum, only GFAP could be shown to be able to identify TBI cases. This study is the first approach to measure the three proteins together in CSF and serum in autopsy cases. Determined threshold values may differentiate between fatal TBI and control cases. The presented results emphasize the possible use of post-mortem biochemistry as a supplemental tool in everyday forensic routine.
Tautvydaitė, Domilė; Kukreja, Deepti; Antonietti, Jean-Philippe; Henry, Hugues; von Gunten, Armin; Popp, Julius
2017-02-02
During adulthood, personality characteristics may contribute to the individual capacity to compensate the impact of developing cerebral Alzheimer's disease (AD) pathology on cognitive impairment in later life. In this study we aimed to investigate whether and how premorbid personality traits interact with cerebrospinal fluid (CSF) markers of AD pathology to predict cognitive performance in subjects with mild cognitive impairment or mild AD dementia and in participants with normal cognition. One hundred and ten subjects, of whom 66 were patients with mild cognitive impairment or mild AD dementia and 44 were healthy controls, had a comprehensive medical and neuropsychological examination as well as lumbar puncture to measure CSF biomarkers of AD pathology (amyloid beta 1-42 , phosphorylated tau and total-tau). Participants' proxies completed the Revised NEO Personality Inventory, Form R to retrospectively assess subjects' premorbid personality. In hierarchical multivariate regression analyses, including age, gender, education, APOEε4 status and cognitive level, premorbid neuroticism, conscientiousness and agreeableness modulated the effect of CSF biomarkers on cognitive performance. Low premorbid openness independently predicted lower levels of cognitive functioning after controlling for biomarker concentrations. Our findings suggest that specific premorbid personality traits are associated with cerebral AD pathology and modulate its impact on cognitive performance. Considering personality characteristics may help to appraise a person's cognitive reserve and the risk of cognitive decline in later life.
Chen, Mingsheng; Yan, Qingguang; Sun, Jian; Jin, Gui; Qin, Mingxin
2017-09-11
In a prior study of intracerebral hemorrhage monitoring using magnetic induction phase shift (MIPS), we found that MIPS signal changes occurred prior to those seen with intracranial pressure. However, the characteristic MIPS alert is not yet fully explained. Combining the brain physiology and MIPS theory, we propose that cerebrospinal fluid (CSF) may be the primary factor that leads to hematoma expansion being alerted by MIPS earlier than with intracranial pressure monitoring. This paper investigates the relationship between CSF and MIPS in monitoring of rabbit intracerebral hemorrhage models, which is based on the MIPS measurements data, the quantified data on CSF from medical images and the amount of injected blood in the rabbit intracerebral hemorrhage model. In the investigated results, a R value of 0.792 with a significance of 0.019 is observed between the MIPS and CSF, which is closer than MIPS and injected blood. Before the reversal point of MIPS, CSF is the leading factor in MIPS signal changing in an early hematoma expansion stage. Under CSF compensation, CSF reduction compensates for hematoma expansion in the brain to keep intracranial pressure stable. MIPS decrease results from the reducing CSF volume. This enables MIPS to detect hematoma expansion earlier than intracranial pressure.
Pancotto, Theresa E; Rossmeisl, John H; Huckle, William R; Inzana, Karen D; Zimmerman, Kurt L
2016-04-01
Chronic canine hypothyroidism is associated with blood-brain barrier (BBB) disruption. We hypothesized that this change is mediated by endothelin-1(ET-1) and matrix metalloproteinases (MMP) -2, -9, and -14, as evidenced by increased concentrations of these proteins in cerebrospinal fluid (CSF) compared to controls. CSF from 18 dogs, 9 controls and 9 with experimentally induced hypothyroidism was collected before and 6, 12, and 18 months after induction of hypothyroidism. Concentrations of ET-1 using an ELISA kit, and for MMP-2, -9, and -14 using gelatinase zymography were measured in CSF. ET-1 was undetectable in CSF of control and hypothyroid dogs at all time-points. Constitutively expressed MMP-2 was detectable in CSF samples in all dogs at all time-points. No other MMPs were detectable in CSF. No differences in CSF concentrations of ET-1 and MMP-2, 9, and 14 were found between hypothyroid and euthyroid dogs. Therefore, ET-1 and MMP-2, 9, and 14 are unlikely to be primary mediators of BBB damage in chronically hypothyroid dogs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Shirotani, Keiro; Futakawa, Satoshi; Nara, Kiyomitsu; Hoshi, Kyoka; Saito, Toshie; Tohyama, Yuriko; Kitazume, Shinobu; Yuasa, Tatsuhiko; Miyajima, Masakazu; Arai, Hajime; Kuno, Atsushi; Narimatsu, Hisashi; Hashimoto, Yasuhiro
2011-01-01
We have established high-throughput lectin-antibody ELISAs to measure different glycans on transferrin (Tf) in cerebrospinal fluid (CSF) using lectins and an anti-transferrin antibody (TfAb). Lectin blot and precipitation analysis of CSF revealed that PVL (Psathyrella velutina lectin) bound an unique N-acetylglucosamine-terminated N-glycans on “CSF-type” Tf whereas SSA (Sambucus sieboldiana agglutinin) bound α2,6-N-acetylneuraminic acid-terminated N-glycans on “serum-type” Tf. PVL-TfAb ELISA of 0.5 μL CSF samples detected “CSF-type” Tf but not “serum-type” Tf whereas SSA-TfAb ELISA detected “serum-type” Tf but not “CSF-type” Tf, demonstrating the specificity of the lectin-TfAb ELISAs. In idiopathic normal pressure hydrocephalus (iNPH), a senile dementia associated with ventriculomegaly, amounts of the SSA-reactive Tf were significantly higher than in non-iNPH patients, indicating that Tf glycan analysis by the high-throughput lectin-TfAb ELISAs could become practical diagnostic tools for iNPH. The lectin-antibody ELISAs of CSF proteins might be useful for diagnosis of the other neurological diseases. PMID:21876827
Shirotani, Keiro; Futakawa, Satoshi; Nara, Kiyomitsu; Hoshi, Kyoka; Saito, Toshie; Tohyama, Yuriko; Kitazume, Shinobu; Yuasa, Tatsuhiko; Miyajima, Masakazu; Arai, Hajime; Kuno, Atsushi; Narimatsu, Hisashi; Hashimoto, Yasuhiro
2011-01-01
We have established high-throughput lectin-antibody ELISAs to measure different glycans on transferrin (Tf) in cerebrospinal fluid (CSF) using lectins and an anti-transferrin antibody (TfAb). Lectin blot and precipitation analysis of CSF revealed that PVL (Psathyrella velutina lectin) bound an unique N-acetylglucosamine-terminated N-glycans on "CSF-type" Tf whereas SSA (Sambucus sieboldiana agglutinin) bound α2,6-N-acetylneuraminic acid-terminated N-glycans on "serum-type" Tf. PVL-TfAb ELISA of 0.5 μL CSF samples detected "CSF-type" Tf but not "serum-type" Tf whereas SSA-TfAb ELISA detected "serum-type" Tf but not "CSF-type" Tf, demonstrating the specificity of the lectin-TfAb ELISAs. In idiopathic normal pressure hydrocephalus (iNPH), a senile dementia associated with ventriculomegaly, amounts of the SSA-reactive Tf were significantly higher than in non-iNPH patients, indicating that Tf glycan analysis by the high-throughput lectin-TfAb ELISAs could become practical diagnostic tools for iNPH. The lectin-antibody ELISAs of CSF proteins might be useful for diagnosis of the other neurological diseases.
Detection of cerebrospinal fluid leakage by specific measurement of transferrin glycoforms.
Kwon, Seok-Joon; Zhang, Fuming; Dordick, Jonathan S; Sonstein, William J; Linhardt, Robert J
2015-10-01
A simple and rapid detection of cerebrospinal fluid (CSF) leakage would benefit spine surgeons making critical postoperative decisions on patient care. We have assessed novel approaches to selectively determine CSF β2-transferrin (β2TF), an asialo-transferrin (aTF) biomarker, without interference from serum sialo-transferrin (sTF) in test samples. First, we performed mild periodate oxidation to selectively generate aldehyde groups in sTF for capture with magnetic hydrazide microparticles, and selective removal with a magnetic separator. Using this protocol sTF was selectively removed from mixtures of CSF and serum containing CSF aTF (β2TF) and serum sTF, respectively. Second, a two-step enzymatic method was developed with neuraminidase and galactose oxidase for generating aldehyde groups in sTF present in CSF and serum mixtures for magnetic hydrazide microparticle capture. After selectively removing sTF from mixtures of CSF and serum, ELISA could detect significant TF signal only in CSF, while the TF signal in serum was negligible. The new approach for selective removal of only sTF in test samples will be promising for the required intervention by a spine surgeon. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nedosekin, Dmitry A; Juratli, Mazen A; Sarimollaoglu, Mustafa; Moore, Christopher L; Rusch, Nancy J; Smeltzer, Mark S; Zharov, Vladimir P; Galanzha, Ekaterina I
2013-06-01
Circulating cells, bacteria, proteins, microparticles, and DNA in cerebrospinal fluid (CSF) are excellent biomarkers of many diseases, including cancer and infections. However, the sensitivity of existing methods is limited in their ability to detect rare CSF biomarkers at the treatable, early-stage of diseases. Here, we introduce novel CSF tests based on in vivo photoacoustic flow cytometry (PAFC) and ex vivo photothermal scanning cytometry. In the CSF of tumor-bearing mice, we molecularly detected in vivo circulating tumor cells (CTCs) before the development of breast cancer brain metastasis with 20-times higher sensitivity than with current assays. For the first time, we demonstrated assessing three pathways (i.e., blood, lymphatic, and CSF) of CTC dissemination, tracking nanoparticles in CSF in vivo and their imaging ex vivo. In label-free CSF samples, we counted leukocytes, erythrocytes, melanoma cells, and bacteria and imaged intracellular cytochromes, hemoglobin, melanin, and carotenoids, respectively. Taking into account the safety of PAFC, its translation for use in humans is expected to improve disease diagnosis beyond conventional detection limits. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Podlesniy, Petar; Trullas, Ramon
2018-01-01
Cerebrospinal fluid (CSF) contains molecules directly linked with brain function because it permeates brain tissue. The analysis of protein biomarkers in CSF is currently recommended for the diagnosis of neurodegenerative disorders, but the clinical sensitivity and specificity are still being investigated. A major drawback is that most of the currently used biomarkers of neurodegenerative diseases are proteins that are found at very low concentrations in CSF and need to be measured by immunoassays that provide relative values, which sometimes are difficult to reproduce between laboratories. In contrast, the recent availability of digital PCR platforms allows the absolute quantification of nucleic acids at single-molecule resolution, but their presence in CSF has not been characterized. CSF contains cell-free mitochondrial DNA (mtDNA) and changes in the concentration of this nucleic acid are linked to neurodegeneration. Here we describe a method to measure the concentration of cell-free circulating mtDNA directly in unpurified CSF using droplet digital PCR with either hydrolysis probes or fluorescent DNA-binding dye methods. This protocol allows the detection and absolute quantification of mtDNA content in the CSF with high analytical sensitivity, specificity, and accuracy.
Yoshimori, Mayumi; Imadome, Ken-Ichi; Tomii, Shohei; Yamamoto, Kouhei; Miura, Osamu; Arai, Ayako
2018-01-01
As chronic active Epstein-Barr virus (EBV) infection (CAEBV) progresses, EBV-infected tumor cells invade the central nervous system (CNS). To establish a diagnostic procedure for CNS invasion, we retrospectively analyzed cerebrospinal fluid (CSF) obtained from eight patients. Two patients presented with consciousness disturbance and were diagnosed with CNS invasion based on scan and autopsy results, respectively. The remaining six patients were diagnosed without CNS invasion by clinical findings and scans. In the two patients with CNS invasion, the number of mononuclear cells and the protein concentration were increased, whereas the CSF to serum glucose ratio and the adenosine deaminase concentration were raised. In one of the two patients, however, bacterial meningitis could not be excluded. Cytological examination of CSF demonstrated class 1-3. Notably, the CSF EBV-DNA load was positive in all patients, independent of CNS invasion diagnosis, and the CSF load correlated with that of the peripheral blood. Taken together, this indicates that CSF may lack the specific markers of CNS invasion in CAEBV patients. The CSF EBV-DNA load and the cytological analysis did not reflect CNS invasion; therefore, new biomarkers need to be established.
Association of cerebrospinal fluid Aβ42 with A2M gene in cognitively normal subjects
Millard, Steven P.; Lutz, Franziska; Li, Ge; Galasko, Douglas R.; Farlow, Martin R.; Quinn, Joseph F.; Kaye, Jeffrey A.; Leverenz, James B.; Tsuang, Debby; Yu, Chang-En; Peskind, Elaine R.; Bekris, Lynn M.
2013-01-01
Low cerebrospinal fluid (CSF) Aβ42 levels correlate with increased brain Aβ deposition in Alzheimer’s disease (AD), which suggests a disruption in the degradation and clearance of Aβ from the brain. In addition, APOE ε4 carriers have lower CSF Aβ42 levels than non-carriers. The hypothesis of this investigation was that CSF Aβ42 levels correlate with regulatory region variation in genes that are biologically associated with degradation or clearance of Aβ from the brain. CSF Aβ42 levels were tested for associations with Aβ degradation and clearance genes and APOE ε4. Twenty-four SNPs located within the 5′ and 3′ regions of 12 genes were analyzed. The study sample consisted of 99 AD patients and 168 cognitively normal control subjects. CSF Aβ42 levels were associated with APOE ε4 status in controls but not in AD patients; A2M regulatory region SNPs were also associated with CSF Aβ42 levels in controls, but not in AD patients, even after adjusting for APOE ε4. These results suggest that genetic variation within the A2M gene influences CSF Aβ42 levels. PMID:24011543
Effect of protein binding on unbound atazanavir and darunavir cerebrospinal fluid concentrations.
Delille, Cecile A; Pruett, Sarah T; Marconi, Vincent C; Lennox, Jeffrey L; Armstrong, Wendy S; Arrendale, Richard F; Sheth, Anandi N; Easley, Kirk A; Acosta, Edward P; Vunnava, Aswani; Ofotokun, Ighovwerha
2014-09-01
HIV-1 protease inhibitors (PIs) exhibit different protein binding affinities and achieve variable plasma and tissue concentrations. Degree of plasma protein binding may impact central nervous system penetration. This cross-sectional study assessed cerebrospinal fluid (CSF) unbound PI concentrations, HIV-1 RNA, and neopterin levels in subjects receiving either ritonavir-boosted darunavir (DRV), 95% plasma protein bound, or atazanavir (ATV), 86% bound. Unbound PI trough concentrations were measured using rapid equilibrium dialysis and liquid chromatography/tandem mass spectrometry. Plasma and CSF HIV-1 RNA and neopterin were measured by Ampliprep/COBAS® Taqman® 2.0 assay (Roche) and enzyme-linked immunosorbent assay (ALPCO), respectively. CSF/plasma unbound drug concentration ratio was higher for ATV, 0.09 [95% confidence interval (CI) 0.06-0.12] than DRV, 0.04 (95%CI 0.03-0.06). Unbound CSF concentrations were lower than protein adjusted wild-type inhibitory concentration-50 (IC50 ) in all ATV and 1 DRV-treated subjects (P < 0.001). CSF HIV-1 RNA was detected in 2/15 ATV and 4/15 DRV subjects (P = 0.65). CSF neopterin levels were low and similar between arms. ATV relative to DRV had higher CSF/plasma unbound drug ratio. Low CSF HIV-1 RNA and neopterin suggest that both regimens resulted in CSF virologic suppression and controlled inflammation. © 2014, The American College of Clinical Pharmacology.
Effect of Protein Binding on Unbound Atazanavir and Darunavir Cerebrospinal Fluid Concentrations
Delille, Cecile A.; Pruett, Sarah T.; Marconi, Vincent C.; Lennox, Jeffrey L.; Armstrong, Wendy S.; Arrendale, Richard F.; Sheth, Anandi N.; Easley, Kirk A.; Acosta, Edward P.; Vunnava, Aswani; Ofotokun, Ighovwerha
2015-01-01
HIV-1 protease inhibitors (PIs) exhibit different protein binding affinities and achieve variable plasma and tissue concentrations. Degree of plasma protein binding may impact central nervous system penetration. This cross-sectional study assessed cerebrospinal fluid (CSF) unbound PI concentrations, HIV-1 RNA, and neopterin levels in subjects receiving either ritonavir-boosted darunavir (DRV), 95% plasma protein bound, or atazanavir (ATV), 86% bound. Unbound PI trough concentrations were measured using rapid equilibrium dialysis and liquid chromatography/tandem mass spectrometry. Plasma and CSF HIV-1 RNA and neopterin were measured by Ampliprep/COBAS® Taqman® 2.0 assay (Roche) and enzyme-linked immunosorbent assay (ALPCO), respectively. CSF/plasma unbound drug concentration ratio was higher for ATV, 0.09 [95% confidence interval (CI) 0.06–0.12] than DRV, 0.04 (95%CI 0.03–0.06). Unbound CSF concentrations were lower than protein adjusted wild-type inhibitory concentration-50 (IC50) in all ATV and 1 DRV-treated subjects (P < 0.001). CSF HIV-1 RNA was detected in 2/15 ATV and 4/15 DRV subjects (P = 0.65). CSF neopterin levels were low and similar between arms. ATV relative to DRV had higher CSF/plasma unbound drug ratio. Low CSF HIV-1 RNA and neopterin suggest that both regimens resulted in CSF virologic suppression and controlled inflammation. PMID:24691856
Spudich, Serena; Gisslen, Magnus; Hagberg, Lars; Lee, Evelyn; Liegler, Teri; Brew, Bruce; Fuchs, Dietmar; Tambussi, Giuseppe; Cinque, Paola; Hecht, Frederick M; Price, Richard W
2011-09-01
Central nervous system (CNS) human immunodeficiency virus (HIV) infection and immune activation lead to brain injury and neurological impairment. Although HIV enters the nervous system soon after transmission, the magnitude of infection and immunoactivation within the CNS during primary HIV infection (PHI) has not been characterized. This cross-sectional study analyzed cerebrospinal fluid (CSF) and blood from 96 participants with PHI and compared them with samples from neuroasymptomatic participants with chronic infection and ≥ 200 or < 200 blood CD4 T cells/μL, and with samples from HIV-seronegative participants with respect to CSF and plasma HIV RNA, CSF to serum albumin ratio, and CSF white blood cell counts (WBC), neopterin levels, and concentrations of chemokines CXCL10 and CCL2. The PHI participants (median 77 days post transmission) had CSF HIV RNA, WBC, neopterin, and CXCL10 concentrations similar to the chronic infection participants but uniquely high albumin ratios. 18 participants had ≤ 100 copies/mL CSF HIV RNA, which was associated with low CSF to plasma HIV ratios and levels of CSF inflammation lower than in other PHI participants but higher than in HIV-seronegative controls. Prominent CNS infection and immune activation is evident during the first months after HIV transmission, though a proportion of PHI patients demonstrate relatively reduced CSF HIV RNA and inflammation during this early period.
Almdahl, Ina S.; Lauridsen, Camilla; Selnes, Per; Kalheim, Lisa F.; Coello, Christopher; Gajdzik, Beata; Møller, Ina; Wettergreen, Marianne; Grambaite, Ramune; Bjørnerud, Atle; Bråthen, Geir; Sando, Sigrid B.; White, Linda R.; Fladby, Tormod
2017-01-01
Introduction: Amyloid beta 1-43 (Aβ43), with its additional C-terminal threonine residue, is hypothesized to play a role in early Alzheimer’s disease pathology possibly different from that of amyloid beta 1-42 (Aβ42). Cerebrospinal fluid (CSF) Aβ43 has been suggested as a potential novel biomarker for predicting conversion from mild cognitive impairment (MCI) to dementia in Alzheimer’s disease. However, the relationship between CSF Aβ43 and established imaging biomarkers of Alzheimer’s disease has never been assessed. Materials and Methods: In this observational study, CSF Aβ43 was measured with ELISA in 89 subjects; 34 with subjective cognitive decline (SCD), 51 with MCI, and four with resolution of previous cognitive complaints. All subjects underwent structural MRI; 40 subjects on a 3T and 50 on a 1.5T scanner. Forty subjects, including 24 with SCD and 12 with MCI, underwent 18F-Flutemetamol PET. Seventy-eight subjects were assessed with 18F-fluorodeoxyglucose PET (21 SCD/7 MCI and 11 SCD/39 MCI on two different scanners). Ten subjects with SCD and 39 with MCI also underwent diffusion tensor imaging. Results: Cerebrospinal fluid Aβ43 was both alone and together with p-tau a significant predictor of the distinction between SCD and MCI. There was a marked difference in CSF Aβ43 between subjects with 18F-Flutemetamol PET scans visually interpreted as negative (37 pg/ml, n = 27) and positive (15 pg/ml, n = 9), p < 0.001. Both CSF Aβ43 and Aβ42 were negatively correlated with standardized uptake value ratios for all analyzed regions; CSF Aβ43 average rho -0.73, Aβ42 -0.74. Both CSF Aβ peptides correlated significantly with hippocampal volume, inferior parietal and frontal cortical thickness and axial diffusivity in the corticospinal tract. There was a trend toward CSF Aβ42 being better correlated with cortical glucose metabolism. None of the studied correlations between CSF Aβ43/42 and imaging biomarkers were significantly different for the two Aβ peptides when controlling for multiple testing. Conclusion: Cerebrospinal fluid Aβ43 appears to be strongly correlated with cerebral amyloid deposits in the same way as Aβ42, even in non-demented patients with only subjective cognitive complaints. Regarding imaging biomarkers, there is no evidence from the present study that CSF Aβ43 performs better than the classical CSF biomarker Aβ42 for distinguishing SCD and MCI. PMID:28223932
Craig-Schapiro, Rebecca; Kuhn, Max; Xiong, Chengjie; Pickering, Eve H.; Liu, Jingxia; Misko, Thomas P.; Perrin, Richard J.; Bales, Kelly R.; Soares, Holly; Fagan, Anne M.; Holtzman, David M.
2011-01-01
Background Clinicopathological studies suggest that Alzheimer's disease (AD) pathology begins ∼10–15 years before the resulting cognitive impairment draws medical attention. Biomarkers that can detect AD pathology in its early stages and predict dementia onset would, therefore, be invaluable for patient care and efficient clinical trial design. We utilized a targeted proteomics approach to discover novel cerebrospinal fluid (CSF) biomarkers that can augment the diagnostic and prognostic accuracy of current leading CSF biomarkers (Aβ42, tau, p-tau181). Methods and Findings Using a multiplexed Luminex platform, 190 analytes were measured in 333 CSF samples from cognitively normal (Clinical Dementia Rating [CDR] 0), very mildly demented (CDR 0.5), and mildly demented (CDR 1) individuals. Mean levels of 37 analytes (12 after Bonferroni correction) were found to differ between CDR 0 and CDR>0 groups. Receiver-operating characteristic curve analyses revealed that small combinations of a subset of these markers (cystatin C, VEGF, TRAIL-R3, PAI-1, PP, NT-proBNP, MMP-10, MIF, GRO-α, fibrinogen, FAS, eotaxin-3) enhanced the ability of the best-performing established CSF biomarker, the tau/Aβ42 ratio, to discriminate CDR>0 from CDR 0 individuals. Multiple machine learning algorithms likewise showed that the novel biomarker panels improved the diagnostic performance of the current leading biomarkers. Importantly, most of the markers that best discriminated CDR 0 from CDR>0 individuals in the more targeted ROC analyses were also identified as top predictors in the machine learning models, reconfirming their potential as biomarkers for early-stage AD. Cox proportional hazards models demonstrated that an optimal panel of markers for predicting risk of developing cognitive impairment (CDR 0 to CDR>0 conversion) consisted of calbindin, Aβ42, and age. Conclusions/Significance Using a targeted proteomic screen, we identified novel candidate biomarkers that complement the best current CSF biomarkers for distinguishing very mildly/mildly demented from cognitively normal individuals. Additionally, we identified a novel biomarker (calbindin) with significant prognostic potential. PMID:21526197
HIV-1 Viral Escape in Cerebrospinal Fluid of Subjects on Suppressive Antiretroviral Treatment
Edén, Arvid; Fuchs, Dietmar; Hagberg, Lars; Nilsson, Staffan; Spudich, Serena; Svennerholm, Bo; Price, Richard W.; Gisslén, Magnus
2010-01-01
Background. Occasional cases of viral escape in cerebrospinal fluid (CSF) despite suppression of plasma human immunodeficiency virus type 1 (HIV-1) RNA have been reported. We investigated CSF viral escape in subjects treated with commonly used antiretroviral therapy regimens in relation to intrathecal immune activation and central nervous system penetration effectiveness (CPE) rank. Methods. Sixty-nine neurologically asymptomatic subjects treated with antiretroviral therapy >6 months and plasma HIV-1 RNA <50 copies/mL were cross-sectionally included in the analysis. Antiretroviral therapy regimens included efavirenz, lopinavir/ritonavir or atazanavir/ritonavir combined with tenofovir, abacavir, or zidovudine and emtricitabine or lamivudine. HIV-1 RNA was analyzed with real-time polymerase chain reaction assays. Neopterin was analyzed by enzyme-linked immunosorbent assay. Results. Seven (10%) of the 69 subjects had detectable CSF HIV-1 RNA, in median 121 copies/mL (interquartile range, 54–213 copies/mL). Subjects with detectable CSF virus had significantly higher CSF neopterin and longer duration of treatment. Previous treatment interruptions were more common in subjects with CSF escape. Central nervous system penetration effectiveness rank was not a significant predictor of detectable CSF virus or CSF neopterin levels. Conclusions. Viral escape in CSF is more common than previously reported, suggesting that low-grade central nervous system infection may continue in treated patients. Although these findings need extension in longitudinal studies, they suggest the utility of monitoring CSF responses, as new treatment combinations and strategies modify clinical practice. PMID:21050119
Analysis of serum and cerebrospinal fluid in clinically normal adult miniature donkeys.
Mozaffari, A A; Samadieh, H
2013-09-01
To establish reference intervals for serum and cerebrospinal fluid (CSF) parameters in clinically healthy adult miniature donkeys. Experiments were conducted on 10 female and 10 male clinically normal adult miniature donkeys, randomly selected from five herds. Lumbosacral CSF collection was performed with the sedated donkey in the standing position. Cell analysis was performed immediately after the samples were collected. Blood samples were obtained from the jugular vein immediately after CSF sample collection. Sodium, potassium, glucose, urea nitrogen, total protein, calcium, chloride, phosphorous and magnesium concentrations were measured in CSF and serum samples. A paired t-test was used to compare mean values between female and male donkeys. The CSF was uniformly clear, colourless and free from flocculent material, with a specific gravity of 1.002. The range of total nucleated cell counts was 2-4 cells/μL. The differential white cell count comprised only small lymphocytes. No erythrocytes or polymorphonuclear cells were observed on cytological examination. Reference values were obtained for biochemical analysis of serum and CSF. Gender had no effect on any variables measured in serum or CSF (p>0.05). CSF analysis can provide important information in addition to that gained by clinical examination. CSF analysis has not previously been performed in miniature donkeys; this is the first report on the subject. In the present study, reference intervals for total nucleated cell count, total protein, glucose, urea nitrogen, sodium, potassium, chloride, calcium, phosphorous and magnesium concentrations of serum and CSF were determined for male and female miniature donkeys.
Miller, Anne-Marie; Balasa, Mircea; Blennow, Kaj; Gardiner, Mary; Rutkowska, Aleksandra; Scheltens, Philip; Teunissen, Charlotte E; Visser, Pieter Jelle; Winblad, Bengt; Waldemar, Gunhild; Lawlor, Brian
2017-01-01
BIOMARKAPD seeks to diminish the barriers associated with the clinical use of cerebrospinal fluid (CSF) biomarker analysis by reducing variation in CSF laboratory methodologies and generating consensus recommendations on their clinical interpretation and application for dementia diagnosis. To examine the disparity in practitioner attitudes and clinical practice relating to the use of CSF biomarkers for dementia diagnosis across Europe. Clinical dementia experts were surveyed on the prevalence of national consensus guidelines and analytical reimbursement across Europe, their biomarker platform preferences, lumbar puncture methodologies and application of reference values and cut-offs for CSF analysis. 74% of respondents (total n = 51) use CSF biomarkers in clinical practice and 69% perform lumbar punctures on an outpatient basis. Most use CSF biomarkers to diagnose atypical (84%) and early-onset cases of cognitive impairment (71%) and for the differential diagnosis of other dementias (69%). 82% state they are sufficiently informed about CSF biomarkers yet 61% report a lack of national consensus guidelines on their use for dementia diagnosis. 48% of countries represented do not reimburse clinical CSF analysis costs. 43% report using normal reference ranges derived from publications. Variations in attitude and practice relating to CSF biomarkers, widely recognised as barriers to their clinical acceptance, remain evident within and between countries across Europe, even in expert centres. These shortcomings must be addressed by developing consensus guidelines on CSF-related methodologies and their clinical application, to further their use for the diagnostic evaluation of dementia.
Volume transmission-mediated encephalopathies: a possible new concept?
Hartung, Hans-Peter; Dihné, Marcel
2012-03-01
There is strong evidence that the composition of cerebrospinal fluid (CSF) influences brain development, neurogenesis, and behavior. The bidirectional exchange of CSF and interstitial fluid (ISF) across the ependymal and pia-glial membranes is required for these phenomena to occur. Because ISF surrounds the parenchymal compartment, neuroactive substances in the CSF and ISF can influence neuronal activity. Functionally important neuroactive substances are distributed to distant sites of the central nervous system by the convection and diffusion of CSF and ISF, a process known as volume transmission. It has recently been shown that pathologically altered CSF from patients with acute traumatic brain injury suppresses in vitro neuronal network activity (ivNNA) recorded by multielectrode arrays measuring synchronously bursting neural populations. Functionally relevant substances in pathologically altered CSF have been biochemically identified, and ivNNA has been partially recovered by pharmacologic intervention. It remains unclear whether the in vivo parenchymal compartment remains unaffected by pathologically altered CSF that significantly impairs ivNNA. We hypothesize that pathologic CSF alterations are not just passive indicators of brain diseases but that they actively and directly evoke functional disturbances in global brain activity through the distribution of neuroactive substances, for instance, secondary to focal neurologic disease. For this mechanism, we propose the new term volume transmission-mediated encephalopathies (VTE). Recording ivNNA in the presence of pure human CSF could help to identify and monitor functionally relevant CSF alterations that directly result in VTEs, and the collected data might point to therapeutic ways to antagonize these alterations.
HIV-1 viral escape in cerebrospinal fluid of subjects on suppressive antiretroviral treatment.
Edén, Arvid; Fuchs, Dietmar; Hagberg, Lars; Nilsson, Staffan; Spudich, Serena; Svennerholm, Bo; Price, Richard W; Gisslén, Magnus
2010-12-15
Occasional cases of viral escape in cerebrospinal fluid (CSF) despite suppression of plasma human immunodeficiency virus type 1 (HIV-1) RNA have been reported. We investigated CSF viral escape in subjects treated with commonly used antiretroviral therapy regimens in relation to intrathecal immune activation and central nervous system penetration effectiveness (CPE) rank. Sixty-nine neurologically asymptomatic subjects treated with antiretroviral therapy >6 months and plasma HIV-1 RNA <50 copies/mL were cross-sectionally included in the analysis. Antiretroviral therapy regimens included efavirenz, lopinavir/ritonavir or atazanavir/ritonavir combined with tenofovir, abacavir, or zidovudine and emtricitabine or lamivudine. HIV-1 RNA was analyzed with real-time polymerase chain reaction assays. Neopterin was analyzed by enzyme-linked immunosorbent assay. Seven (10%) of the 69 subjects had detectable CSF HIV-1 RNA, in median 121 copies/mL (interquartile range, 54-213 copies/mL). Subjects with detectable CSF virus had significantly higher CSF neopterin and longer duration of treatment. Previous treatment interruptions were more common in subjects with CSF escape. Central nervous system penetration effectiveness rank was not a significant predictor of detectable CSF virus or CSF neopterin levels. Viral escape in CSF is more common than previously reported, suggesting that low-grade central nervous system infection may continue in treated patients. Although these findings need extension in longitudinal studies, they suggest the utility of monitoring CSF responses, as new treatment combinations and strategies modify clinical practice.
Reinstein, Eyal; Pariani, Mitchel; Bannykh, Serguei; Rimoin, David L; Schievink, Wouter I
2013-04-01
We aimed to assess the frequency of connective tissue abnormalities among patients with cerebrospinal fluid (CSF) leaks in a prospective study using a large cohort of patients. We enrolled a consecutive group of 50 patients, referred for consultation because of CSF leak. All patients have been carefully examined for the presence of connective tissue abnormalities, and based on findings, patients underwent genetic testing. Ancillary diagnostic studies included echocardiography, eye exam, and histopathological examinations of skin and dura biopsies in selected patients. We identified nine patients with heritable connective tissue disorders, including Marfan syndrome, Ehlers-Danlos syndrome and other unclassified forms. In seven patients, spontaneous CSF leak was the first noted manifestation of the genetic disorder. We conclude that spontaneous CSF leaks are associated with a spectrum of connective tissue abnormalities and may be the first noted clinical presentation of the genetic disorder. We propose that there is a clinical basis for considering spontaneous CSF leak as a clinical manifestation of heritable connective tissue disorders, and we suggest that patients with CSF leaks should be screened for connective tissue and vascular abnormalities.
Coccaro, Emil F; Lee, Royce; Coussons-Read, Mary
2015-02-01
C-reactive protein (CRP), in the plasma, serves as a marker of systemic inflammation and has been shown to correlate with history of actual aggressive behavior, and as a personality trait of aggressive tendency, in human subjects. This pilot study was conducted to determine if plasma CRP levels are correlated with cerebrospinal fluid levels (CSF CRP) and if CSF CRP also correlates with aggression. If so, this would suggest a role for central inflammatory processes in human aggression. Both plasma and basal lumbar CSF samples were obtained from 17 subjects with DSM-5 personality disorder and assayed for CRP. Plasma and CSF CRP levels were correlated (r = 0.65, p = 0.005) and each correlated with aggression (Plasma: r = 0.53, p = 0.029; CSF: r = 0.84, p < 0.001). When considered simultaneously, CSF CRP, but not plasma CRP, uniquely correlated with aggression. No relationship was seen with other measures of psychopathology. These data suggest a positive relationship between central nervous system CRP and aggression in humans.
Patel, Rajan P; Sitton, Clark W; Ketonen, Leena M; Hou, Ping; Johnson, Jason M; Romo, Seferino; Fletcher, Stephen; Shah, Manish N; Kerr, Marcia; Zaky, Wafik; Rytting, Michael E; Khatua, Soumen; Sandberg, David I
2018-03-01
Nuclear medicine studies have previously been utilized to assess for blockage of cerebrospinal fluid (CSF) flow prior to intraventricular chemotherapy infusions. To assess CSF flow without nuclear medicine studies, we obtained cine phase-contrast MRI sequences that assess CSF flow from the fourth ventricle down to the sacrum. In three clinical trials, 18 patients with recurrent malignant posterior fossa tumors underwent implantation of a ventricular access device (VAD) into the fourth ventricle, either with or without simultaneous tumor resection. Prior to infusing therapeutic agents into the VAD, cine MRI phase-contrast CSF flow sequences of the brain and total spine were performed. Velocity encoding (VENC) of 5 and 10 cm/s was used to confirm CSF flow from the fourth ventricular outlets to the cervical, thoracic, and lumbar spine. Qualitative CSF flow was characterized by neuroradiologists as present or absent. All 18 patients demonstrated CSF flow from the outlets of the fourth ventricle down to the sacrum with no evidence of obstruction. One of these patients, after disease progression, subsequently showed obstruction of CSF flow. No patient required a nuclear medicine study to assess CSF flow prior to initiation of infusions. Fourteen patients have received infusions to date, and none has had neurological toxicity. CSF flow including the fourth ventricle and the total spine can be assessed noninvasively with phase-contrast MRI sequences. Advantages over nuclear medicine studies include avoiding both an invasive procedure and radiation exposure.
Therapeutic Amprenavir Concentrations in Cerebrospinal Fluid
Letendre, Scott; Best, Brookie M.; Rossi, Steven S.; Ellis, Ronald J.; Clifford, David B.; Collier, Ann C.; Gelman, Benjamin B.; Marra, Christina M.; McArthur, Justin; McCutchan, J. Allen; Morgello, Susan; Simpson, David M.; Way, Lauren; Capparelli, Edmund; Grant, Igor
2012-01-01
Antiretrovirals that reach higher concentrations in cerebrospinal fluid (CSF) are associated with better control of HIV in CSF and possibly better neurocognitive performance. The objective of this study was to determine whether amprenavir (APV) concentrations in CSF are in the therapeutic range. Individuals were selected based on the use of regimens that included fosamprenavir (FPV), a prodrug of APV, and the availability of stored CSF and matched plasma. Total APV was measured in 119 matched CSF-plasma pairs from 75 subjects by high-performance liquid chromatography (HPLC) (plasma) or liquid chromatography tandem mass spectrometry (LC/MS/MS) (CSF). Concentrations were compared to the 50% inhibitory concentration (IC50) for wild-type HIV (5.6 ng/ml). Subjects were predominantly middle-aged (median 44 years) white (57%) men (78%) with AIDS (77%). APV was detected in all but 4 CSF specimens, with a median concentration of 24.8 ng/ml (interquartile range [IQR], 16.2 to 44.0). The median CSF-to-plasma ratio was 0.012 (IQR, 0.008 to 0.018). CSF concentrations correlated with plasma concentrations (rho = 0.61; P < 0.0001) and with postdose sampling interval (rho = −0.29; P = 0.0019). APV concentrations in CSF exceeded the median IC50 for wild-type HIV in more than 97% of CSF specimens with detectable APV by a median of 4.4-fold (IQR, 2.9 to 7.9). We conclude that administration of fosamprenavir should contribute to control of HIV replication in the central nervous system (CNS) as a component of effective antiretroviral regimens. PMID:22290964
Cerebrospinal Fluid Biomarkers of Neurodegeneration Are Decreased or Normal in Narcolepsy.
Jørgen Jennum, Poul; Østergaard Pedersen, Lars; Czarna Bahl, Justyna Maria; Modvig, Signe; Fog, Karina; Holm, Anja; Rahbek Kornum, Birgitte; Gammeltoft, Steen
2017-01-01
To investigate whether cerebrospinal fluid (CSF) biomarkers of neurodegeneration are altered in narcolepsy in order to evaluate whether the hypocretin deficiency and abnormal sleep-wake pattern in narcolepsy leads to neurodegeneration. Twenty-one patients with central hypersomnia (10 type 1 narcolepsy, 5 type 2 narcolepsy, and 6 idiopathic hypersomnia cases), aged 33 years on average and with a disease duration of 2-29 years, and 12 healthy controls underwent CSF analyses of the levels of β-amyloid, total tau protein (T-tau), phosphorylated tau protein (P-tau181), α-synuclein, neurofilament light chain (NF-L), and chitinase 3-like protein-1 (CHI3L1). Levels of β-amyloid were lower in patients with type 1 narcolepsy (375.4 ± 143.5 pg/mL) and type 2 narcolepsy (455.9 ± 65.0 pg/mL) compared to controls (697.9 ± 167.3 pg/mL, p < .05). Furthermore, in patients with type 1 narcolepsy, levels of T-tau (79.0 ± 27.5 pg/mL) and P-tau181 (19.1 ± 4.3 pg/mL) were lower than in controls (162.2 ± 49.9 pg/mL and 33.8 ± 9.2 pg/mL, p < .05). Levels of α-synuclein, NF-L, and CHI3L1 in CSF from narcolepsy patients were similar to those of healthy individuals. Six CSF biomarkers of neurodegeneration were decreased or normal in narcolepsy indicating that taupathy, synucleinopathy, and immunopathy are not prevalent in narcolepsy patients with a disease duration of 2-29 years. Lower CSF levels of β-amyloid, T-tau protein, and P-tau181 in narcolepsy may indicate that hypocretin deficiency and an abnormal sleep-wake pattern alter the turnover of these proteins in the central nervous system. © Sleep Research Society 2016. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.
Clarke, Elizabeth C; Fletcher, David F; Bilston, Lynne E
2017-04-01
Syringomyelia (a spinal cord cyst) usually develops as a result of conditions that cause cerebrospinal fluid (CSF) obstruction. The mechanism of syrinx formation and enlargement remains unclear, though previous studies suggest that the fluid enters via the perivascular spaces (PVS) of the penetrating arteries of the spinal cord, and that alterations in the CSF pulse timing and pressure could contribute to enhanced PVS inflow. This study uses an idealised computational model of the PVS to investigate the factors that influence peri-arterial fluid flow. First, we used three sample patient-specific models to explore whether changes in subarachnoid space (SAS) pressures in individuals with and without syringomyelia could influence PVS inflow. Second we conducted a parametric study to determine how features of the CSF pulse altered perivascular fluid, including alterations to timing and magnitude of the peak SAS pressure, the timing of reversal from high to low pressure (diastolic phase), and the area under the pressure-time curve. The model for the patient with syringomyelia had higher net CSF inflow to the PVS than the two subjects without syringomyelia. In the parametric study, only increasing the area under the high pressure region of the SAS pulse substantially increased PVS inflow, when coupled with a temporal shift in arterial and SAS pulses. This suggests that a period of sustained high SAS pressure while arterial diameter is low may increase net CSF pumping into the PVS.
Endoscopic Repair of CSF Fistulae: A Ten Year Experience
Alexander, Arun; Mathew, John; Varghese, Ajoy Mathew
2016-01-01
Introduction Cerebrospinal Fluid (CFF) fistulae are repaired endoscopically with varying degrees of success around the world. Large series are still uncommon, and the results varied primarily because of the different techniques by different surgeons and also because of a variation in the patient profile in each series, for example, many series deal primarily with traumatic CSF leaks where the defects are larger and outcomes poorer. Aim To analyse the surgical outcomes of Endoscopic CSF rhinorrhea closure. Materials and Methods This is a series of 34 cases operated upon primarily by one surgeon in two different centres over a period of 10 years. Results Of the 34 cases, 76% of the patients were women. Among the patients only 20.6% patients had a history of trauma preceding the CSF leak. The most common site of leak was in the fovea ethmoidalis in 19 (55.8%) followed by 10 (29.4%) in the cribriform plate. An overlay technique of placing the multiple layers of fascia and mucosa was used in 26 (76.5%) patients and underlay technique in the remaining. Postoperative lumbar drain was used in all patients. Conclusion Based on the treatment outcome of the 34 patients, it can be concluded that the success rate of a single endoscopic procedure in our experience is 97% and 100% following the second. Endoscopic approach for closure of CSF leak is safe with minimal complications and little morbidity. PMID:27656471
Magner, Martin; Szentiványi, Karol; Svandová, Ivana; Ješina, Pavel; Tesařová, Markéta; Honzík, Tomáš; Zeman, Jiří
2011-03-01
Increased lactate is an important biochemical marker in diagnosis of children with suspicion of mitochondrial disorders. A diagnostic dilemma may originate if analyses are performed after seizures, when the increased lactate levels may be considered to result from the seizures. To address this problem, we ascertained the diagnostic value of lactate and alanine in blood (B) and cerebrospinal fluid (CSF) in children with mitochondrial disorders (n = 24), epilepsy (n = 32), psychomotor retardation (n = 23), meningitis (n = 12) and meningism (n = 16). Lactate concentration was measured using a spectrophotometric method. Amino acids in serum and CSF were analyzed by ion exchange chromatography with ninhydrin detection. Average blood and CSF-lactate levels were significantly higher in children with mitochondrial disorders (3.87 ± 0.48 and 4.43 ± 0.55 mmol/l) and meningitis (2.77 ± 0.45 and 8.58 ± 1.08 mmol/l) than in children with epilepsy (1.72 ± 0.13 and 1.62 ± 0.04 mmol/l), psychomotor retardation (1.79 ± 1.40 and 1.68 ± 0.06 mmol/l) or meningism (1.70 ± 0.13 and 1.64 ± 0.07 mmol/l). Blood and CSF-alanine levels were also higher in children with mitochondrial disorders (558 ± 44 and 51 ± 8 μmol/l) than in children with epilepsy (327 ± 23 and 27 ± 3 μmol/l) or psychomotor retardation (323 ± 27 and 26 ± 3 μmol/l). The CSF-lactate levels of children with epilepsy were similar whether the samples were obtained 3 ± 0.6 h after an attack of brief seizures or from children without history of recent seizures. Elevated cerebrospinal fluid lactate level is a reliable marker pointing to mitochondrial origin of disease, even in children who have recently suffered short-lasting seizures. Some children with mitochondrial disorders manifest only mild or intermittent elevation of lactate levels. Copyright © 2010 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.
Experimental hydrocephalus following mechanical increment of intraventricular pulse pressure.
Di Rocco, C; Pettorossi, V E; Caldarelli, M; Mancinelli, R; Velardi, F
1977-11-15
Experimental hydrocephalus has been induced in lambs by artificial increase of the amplitude of intraventricular cerebrospinal fluid (CSF) oscillations related to arterial pulsations, without concomitant changes of the mean CSF-pressure. The characteristics of this hydrocephalus demonstrate that the intraventricular CSF-pulsations can play a role in the genesis of ventricular dilation. Such a method may be used to produce an original model of hydrocephalus independent of changes of CSF-circulation or absorption.
Berghoff, Martin; Hochberg, Alexandra; Schmid, Andreas; Schlegel, Jutta; Karrasch, Thomas; Kaps, Manfred; Schäffler, Andreas
2016-01-01
Adipokines bearing the potential to cross the blood-brain barrier (BBB) are promising candidates for the endocrine regulation of central nervous processes and of a postulated fat-brain axis. Resistin and progranulin concentrations in paired serum and cerebrospinal fluid (CSF) samples of patients undergoing neurological evaluation and spinal puncture were investigated. Samples of n = 270 consecutive patients with various neurological diseases were collected without prior selection. Adipokine serum and CSF concentrations were measured by enzyme-linked immunosorbent assay and serum and CSF routine parameters by standard procedures. Anthropometric data, medication and patient history were available. Serum levels of resistin and progranulin were positively correlated among each other, with respective CSF levels, low-density lipoprotein cholesterol levels and markers of systemic inflammation. CSF resistin concentrations were generally low. Progranulin CSF concentrations and CSF/serum progranulin ratio were significantly higher in patients with infectious diseases, with disturbed BBB function and with elevated CSF cell count and presence of oligoclonal bands. Both adipokines are able to cross the BBB depending on a differing patency that increases with increasing grade of barrier dysfunction. Whereas resistin represents a systemic marker of inflammation, CSF progranulin levels strongly depend on the underlying disease and dysfunction of blood-CSF barrier. Resistin and progranulin represent novel and putative regulators of the fat-brain axis by their ability to cross the BBB under physiological and pathophysiological conditions. The presented data provide insight into the characteristics of BBB function regarding progranulin and resistin and the basis for future establishment of normal values for CSF concentrations and CSF/serum ratios. © 2015 Stichting European Society for Clinical Investigation Journal Foundation.
Panuganti, Bharat A; Leach, Matthew; Antisdel, Jastin
2015-01-01
Cerebrospinal fluid (CSF) rhinorrhea and encephaloceles are rare complications of craniofacial advancement procedures performed in patients with craniofacial dysostoses (CD) to address the ramifications of their midface hypoplasia including obstructed nasal airway, exorbitism, and impaired mastication. Surgical repair of this CSF rhinorrhea is complicated by occult elevations in intracranial pressure (ICP), potentially necessitating open, transcranial repair. We report the first case in otolaryngology literature of a patient with Crouzon syndrome with late CSF rhinorrhea and encephalocele formation after previous LeFort III facial advancement surgery. Describe the case of a patient with Crouzon syndrome who presented with CSF rhinorrhea and encephaloceles as complications of Le Fort III facial advancement surgery. Review the literature pertaining to the incidence and management of post-operative CSF rhinorrhea and encephaloceles. Analyze issues related to repair of these complications, including occult elevations in ICP, the utility of perioperative CSF shunts, and the importance of considering alternative repair schemes to the traditional endonasal, endoscopic approach. Review of the literature describing CSF rhinorrhea and encephalocele formation following facial advancement in CD, focusing on management strategies. CSF rhinorrhea and encephalocele formation are rare complications of craniofacial advancement procedures. Occult elevations in ICP complicate the prospect of permanent surgical repair, potentially necessitating transcranial repair and the use of CSF shunts. Though no consensus exists regarding the utility of perioperative CSF drains, strong associations exist between elevated ICP and failed surgical repair. Additionally, the anatomic changes in the frontal and ethmoid sinuses after facial advancement present a challenge to endoscopic repair. Otolaryngologists should be aware of the possibility of occult elevations in ICP and sinonasal anatomic abnormalities when repairing CSF rhinorrhea in patients with CD. Clinicians should consider CSF shunt placement and carefully weigh the advantages of the transcranial approach versus endonasal, endoscopic techniques.
Alperin, Noam; Bagci, Ahmet M
2018-01-01
Most of the astronauts onboard the International Space Station (ISS) develop visual impairment and ocular structural changes that are not fully reversible upon return to earth. Current understanding assumes that the so-called visual impairments/intracranial pressure (VIIP) syndrome is caused by cephalad vascular fluid shift. This study assesses the roles of cerebrospinal fluid (CSF) and intracranial pressure (ICP) in VIIP. Seventeen astronauts, 9 who flew a short-duration mission on the space shuttle (14.1 days [SD 1.6]) and 7 who flew a long-duration mission on the ISS (188 days [SD 22]) underwent MRI of the brain and orbits to assess the pre-to-post spaceflight changes in four categories: VIIP severity measures: globe flattening and nerve protrusion; orbital and ventricular CSF volumes; cortical gray and white matter volumes; and MR-derived ICP (MRICP). Significant pre-to-post-flight increase in globe flattening and optic nerve protrusion occurred only in the long-duration cohort (0.031 [SD 0.019] vs -0.001 [SD 0.006], and 0.025 [SD 0.013] vs 0.001 [SD 0.006]; p < 0.00002 respectively). The increased globe deformations were associated with significant increases in orbital and ventricular CSF volumes, but not with increased tissue vascular fluid content. Additionally, a moderate increase in MRICP of 6 mmHg was observed in only two ISS astronauts with large ocular structure changes. These findings are evidence for the primary role of CSF and a lesser role for intracranial cephalad fluid-shift in the formation of VIIP. VIIP is caused by a prolonged increase in orbital CSF spaces that compress the globes' posterior pole, even without a large increase in ICP.
Safari-Alighiarloo, Nahid; Taghizadeh, Mohammad; Tabatabaei, Seyyed Mohammad; Namaki, Saeed
2016-01-01
Background The involvement of multiple genes and missing heritability, which are dominant in complex diseases such as multiple sclerosis (MS), entail using network biology to better elucidate their molecular basis and genetic factors. We therefore aimed to integrate interactome (protein–protein interaction (PPI)) and transcriptomes data to construct and analyze PPI networks for MS disease. Methods Gene expression profiles in paired cerebrospinal fluid (CSF) and peripheral blood mononuclear cells (PBMCs) samples from MS patients, sampled in relapse or remission and controls, were analyzed. Differentially expressed genes which determined only in CSF (MS vs. control) and PBMCs (relapse vs. remission) separately integrated with PPI data to construct the Query-Query PPI (QQPPI) networks. The networks were further analyzed to investigate more central genes, functional modules and complexes involved in MS progression. Results The networks were analyzed and high centrality genes were identified. Exploration of functional modules and complexes showed that the majority of high centrality genes incorporated in biological pathways driving MS pathogenesis. Proteasome and spliceosome were also noticeable in enriched pathways in PBMCs (relapse vs. remission) which were identified by both modularity and clique analyses. Finally, STK4, RB1, CDKN1A, CDK1, RAC1, EZH2, SDCBP genes in CSF (MS vs. control) and CDC37, MAP3K3, MYC genes in PBMCs (relapse vs. remission) were identified as potential candidate genes for MS, which were the more central genes involved in biological pathways. Discussion This study showed that network-based analysis could explicate the complex interplay between biological processes underlying MS. Furthermore, an experimental validation of candidate genes can lead to identification of potential therapeutic targets. PMID:28028462
Köller, Thomas; Kurze, Daniel; Lange, Mirjam; Scherdin, Martin; Podbielski, Andreas; Warnke, Philipp
2016-01-01
A fully automated multiplex real-time PCR assay—including a sample process control and a plasmid based positive control—for the detection and differentiation of herpes simplex virus 1 (HSV1), herpes simplex virus 2 (HSV2) and varicella-zoster virus (VZV) from cerebrospinal fluids (CSF) was developed on the BD Max platform. Performance was compared to an established accredited multiplex real time PCR protocol utilizing the easyMAG and the LightCycler 480/II, both very common devices in viral molecular diagnostics. For clinical validation, 123 CSF specimens and 40 reference samples from national interlaboratory comparisons were examined with both methods, resulting in 97.6% and 100% concordance for CSF and reference samples, respectively. Utilizing the BD Max platform revealed sensitivities of 173 (CI 95%, 88–258) copies/ml for HSV1, 171 (CI 95%, 148–194) copies/ml for HSV2 and 84 (CI 95%, 5–163) copies/ml for VZV. Cross reactivity could be excluded by checking 25 common viral, bacterial and fungal human pathogens. Workflow analyses displayed shorter test duration as well as remarkable fewer and easier preparation steps with the potential to reduce error rates occurring when manually assessing patient samples. This protocol allows for a fully automated PCR assay on the BD Max platform for the simultaneously detection of herpesviridae from CSF specimens. Singular or multiple infections due to HSV1, HSV2 and VZV can reliably be differentiated with good sensitivities. Control parameters are included within the assay, thereby rendering its suitability for current quality management requirements. PMID:27092772
Peluso, Michael J.; Valcour, Victor; Phanuphak, Nittaya; Ananworanich, Jintanat; Fletcsher, James LK; Chalermchai, Thep; Krebs, Shelly J.; Robb, Merlin L.; Hellmuth, Joanna; Gisslén, Magnus; Zetterberg, Henrik; Spudich, Serena
2018-01-01
Objective To characterize cerebrospinal fluid (CSF) YKL-40, a unique biomarker that reflects activation of microglial cells, in acute (AHI) and chronic HIV-1 infection (CHI) and to determine the effect of treatment initiation on levels of this marker. Design Cross-sectional study of two groups of HIV-infected participants at baseline and follow-up timepoints. Methods AHI (n=33) and CHI (n=34) participants underwent CSF and blood sampling before treatment initiation with combination antiretroviral therapy (cART) and at follow up on cART in a subset of these individuals (6 months in AHI participants [n=24], 1 year in CHI participants [n=10]). Measured parameters were analyzed at each timepoint. Analyses employed Mann-Whitney tests and Spearman correlations. Results Baseline median YKL-40 was higher in CHI than AHI (96844 versus 80754 ng/L; p=0.011). Elevations in the CHI group relative to the AHI group persisted at follow-up despite treatment (87414 versus 66130 ng/L; p=0.003). In untreated CHI, YKL-40 correlated with neopterin (r=0.51, p=0.0025), chemokine (CXC-motif) ligand-10 (r=0.44, p=0.011), and neurofilament light chain (r=0.56, p=0.0008) in CSF. Conclusions This study is the first to describe the dynamics of CSF YKL-40 in two groups of HIV-infected individuals before and after cART and demonstrates the value of this marker in understanding HIV neuropathogenesis. The results suggest the utility of further exploring the prognostic value of YKL-40, particularly in individuals with early HIV infection or those initiating treatment during CHI. PMID:27819802
Peluso, Michael J; Valcour, Victor; Phanuphak, Nittaya; Ananworanich, Jintanat; Fletcher, James L K; Chalermchai, Thep; Krebs, Shelly J; Robb, Merlin L; Hellmuth, Joanna; Gisslén, Magnus; Zetterberg, Henrik; Spudich, Serena
2017-01-14
To characterize cerebrospinal fluid (CSF) YKL-40, a unique biomarker that reflects activation of microglial cells, in acute (AHI) and chronic HIV-1 infection (CHI) and to determine the effect of treatment initiation on levels of this marker. A cross-sectional study of two groups of HIV-infected participants at baseline and follow-up timepoints. AHI (n = 33) and CHI (n = 34) participants underwent CSF and blood sampling before treatment initiation with combination antiretroviral therapy (cART) and at follow-up on cART in a subset of these individuals [6 months in AHI participants (n = 24), 1 year in CHI participants (n = 10)]. Measured parameters were analyzed at each timepoint. Analyses employed Mann-Whitney tests and Spearman correlations. Baseline median YKL-40 was higher in CHI than AHI (96844 versus 80754 ng/l; P = 0.011). Elevations in the CHI group relative to the AHI group persisted at follow-up despite treatment (87414 versus 66130 ng/l; P = 0.003). In untreated CHI, YKL-40 correlated with neopterin (r = 0.51, P = 0.0025), chemokine (CXC-motif) ligand-10 (r = 0.44, P = 0.011), and neurofilament light chain (r = 0.56, P = 0.0008) in CSF. This study is the first to describe the dynamics of CSF YKL-40 in two groups of HIV-infected individuals before and after cART and demonstrates the value of this marker in understanding HIV neuropathogenesis. The results suggest the utility of further exploring the prognostic value of YKL-40, particularly in individuals with early HIV infection or those initiating treatment during CHI.
Fleisher, Adam S.; Chen, Kewei; Quiroz, Yakeel T.; Jakimovich, Laura J.; Gomez, Madelyn Gutierrez; Langois, Carolyn M.; Langbaum, Jessica B. S.; Roontiva, Auttawut; Thiyyagura, Pradeep; Lee, Wendy; Ayutyanont, Napatkamon; Lopez, Liliana; Moreno, Sonia; Muñoz, Claudia; Tirado, Victoria; Acosta-Baena, Natalia; Fagan, Anne M.; Giraldo, Margarita; Garcia, Gloria; Huentelman, Matthew J.; Tariot, Pierre N.; Lopera, Francisco; Reiman, Eric M.
2015-01-01
IMPORTANCE Age-associated changes in brain imaging and fluid biomarkers are characterized and compared in presenilin 1 (PSEN1) E280A mutation carriers and noncarriers from the world’s largest known autosomal dominant Alzheimer disease (AD) kindred. OBJECTIVE To characterize and compare age-associated changes in brain imaging and fluid biomarkers in PSEN1 E280A mutation carriers and noncarriers. DESIGN, SETTING, AND PARTICIPANTS Cross-sectional measures of 18F-florbetapir positron emission tomography, 18F-fludeoxyglucose positron emission tomography, structural magnetic resonance imaging, cerebrospinal fluid (CSF), and plasma biomarkers of AD were assessed from 54 PSEN1 E280A kindred members (age range, 20-59 years). MAIN OUTCOMES AND MEASURES We used brain mapping algorithms to compare regional cerebral metabolic rates for glucose and gray matter volumes in cognitively unimpaired mutation carriers and noncarriers. We used regression analyses to characterize associations between age and the mean cortical to pontine 18F-florbetapir standard uptake value ratios, precuneus cerebral metabolic rates for glucose, hippocampal gray matter volume, CSF Aβ1-42, total tau and phosphorylated tau181, and plasma Aβ measurements. Age at onset of progressive biomarker changes that distinguish carriers from noncarriers was estimated using best-fitting regression models. RESULTS Compared with noncarriers, cognitively unimpaired mutation carriers had significantly lower precuneus cerebral metabolic rates for glucose, smaller hippocampal volume, lower CSF Aβ1-42, higher CSF total tau and phosphorylated tau181, and higher plasma Aβ1-42 measurements. Sequential changes in biomarkers were seen at age 20 years (95% CI, 14-24 years) for CSF Aβ1-42, age 16 years (95% CI, 11-24 years) for the mean cortical 18F-florbetapir standard uptake value ratio, age 15 years (95% CI, 10-24 years) for precuneus cerebral metabolic rate for glucose, age 15 years (95% CI, 7-20 years) for CSF total tau, age 13 years (95% CI, 8-19 years) for phosphorylated tau181, and age 6 years (95% CI, 1-10 years) for hippocampal volume, with cognitive decline up to 6 years before the kindred’s estimated median age of 44 years (95% CI, 43-45 years) at mild cognitive impairment diagnosis. No age-associated findings were seen in plasma Aβ1-42 or Aβ1-40. CONCLUSIONS AND RELEVANCE This cross-sectional study provides additional information about the course of different AD biomarkers in the preclinical and clinical stages of autosomal dominant AD. PMID:25580592
Cerebral spinal fluid (CSF) collection
... establish the diagnosis of normal pressure hydrocephalus. Normal Results Normal values typically range as follows: Pressure: 70 ... measurements or may test different specimens. What Abnormal Results Mean If the CSF looks cloudy, it could ...
Takemura, Hiroyuki; Ai, Tomohiko; Kimura, Konobu; Nagasaka, Kaori; Takahashi, Toshihiro; Tsuchiya, Koji; Yang, Haeun; Konishi, Aya; Uchihashi, Kinya; Horii, Takashi; Tabe, Yoko; Ohsaka, Akimichi
2018-01-01
The XN series automated hematology analyzer has been equipped with a body fluid (BF) mode to count and differentiate leukocytes in BF samples including cerebrospinal fluid (CSF). However, its diagnostic accuracy is not reliable for CSF samples with low cell concentration at the border between normal and pathologic level. To overcome this limitation, a new flow cytometry-based technology, termed "high sensitive analysis (hsA) mode," has been developed. In addition, the XN series analyzer has been equipped with the automated digital cell imaging analyzer DI-60 to classify cell morphology including normal leukocytes differential and abnormal malignant cells detection. Using various BF samples, we evaluated the performance of the XN-hsA mode and DI-60 compared to manual microscopic examination. The reproducibility of the XN-hsA mode showed good results in samples with low cell densities (coefficient of variation; % CV: 7.8% for 6 cells/μL). The linearity of the XN-hsA mode was established up to 938 cells/μL. The cell number obtained using the XN-hsA mode correlated highly with the corresponding microscopic examination. Good correlation was also observed between the DI-60 analyses and manual microscopic classification for all leukocyte types, except monocytes. In conclusion, the combined use of cell counting with the XN-hsA mode and automated morphological analyses using the DI-60 mode is potentially useful for the automated analysis of BF cells.
Shigemura, Tomonari; Nakazawa, Yozo; Matsuda, Kazuyuki; Motobayashi, Mitsuo; Saito, Shoji; Koike, Kenichi
2014-12-01
We report the case of a 19-year-old male with possible cerebral mucormycosis following chemotherapy. We detected a Lichtheimia DNA load of 2.0×10(4) copies/ml in cerebrospinal fluid (CSF), although a CSF culture showed no growth. After treatment with intravenous liposomal amphotericin B, the Lichtheimia DNA load fell below the detection limit, and at the same time the patient's headache and imaging findings improved. The quantification of Mucorales DNA in CSF may be useful for evaluating cerebral mucormycosis. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Qvarnstrom, Yvonne; Xayavong, Maniphet; da Silva, Ana Cristina Aramburu; Park, Sarah Y.; Whelen, A. Christian; Calimlim, Precilia S.; Sciulli, Rebecca H.; Honda, Stacey A. A.; Higa, Karen; Kitsutani, Paul; Chea, Nora; Heng, Seng; Johnson, Stuart; Graeff-Teixeira, Carlos; Fox, LeAnne M.; da Silva, Alexandre J.
2016-01-01
Angiostrongylus cantonensis is the most common infectious cause of eosinophilic meningitis. Timely diagnosis of these infections is difficult, partly because reliable laboratory diagnostic methods are unavailable. The aim of this study was to evaluate the usefulness of a real-time polymerase chain reaction (PCR) assay for the detection of A. cantonensis DNA in human cerebrospinal fluid (CSF) specimens. A total of 49 CSF specimens from 33 patients with eosinophilic meningitis were included: A. cantonensis DNA was detected in 32 CSF specimens, from 22 patients. Four patients had intermittently positive and negative real-time PCR results on subsequent samples, indicating that the level of A. cantonensis DNA present in CSF may fluctuate during the course of the illness. Immunodiagnosis and/or supplemental PCR testing supported the real-time PCR findings for 30 patients. On the basis of these observations, this real-time PCR assay can be useful to detect A. cantonensis in the CSF from patients with eosinophilic meningitis. PMID:26526920
Alonso, Maria I; Lamus, Francisco; Carnicero, Estela; Moro, Jose A; de la Mano, Anibal; Fernández, Jose M F; Desmond, Mary E; Gato, Angel
2017-01-01
Neurogenesis is a very intensive process during early embryonic brain development, becoming dramatically restricted in the adult brain in terms of extension and intensity. We have previously demonstrated the key role of embryonic cerebrospinal fluid (CSF) in developing brain neurogenic activity. We also showed that cultured adult brain neural stem cells (NSCs) remain competent when responding to the neurogenic influence of embryonic CSF. However, adult CSF loses its neurogenic inductive properties. Here, by means of an organotypic culture of adult mouse brain sections, we show that local administration of embryonic CSF in the subventricular zone (SVZ) niche is able to trigger a neurogenic program in NSCs. This leads to a significant increase in the number of non-differentiated NSCs, and also in the number of new neurons which show normal migration, differentiation and maturation. These new data reveal that embryonic CSF activates adult brain NSCs, supporting the previous idea that it contains key instructive components which could be useful in adult brain neuroregenerative strategies.
Handels, Ron L H; Vos, Stephanie J B; Kramberger, Milica G; Jelic, Vesna; Blennow, Kaj; van Buchem, Mark; van der Flier, Wiesje; Freund-Levi, Yvonne; Hampel, Harald; Olde Rikkert, Marcel; Oleksik, Ania; Pirtosek, Zvezdan; Scheltens, Philip; Soininen, Hilkka; Teunissen, Charlotte; Tsolaki, Magda; Wallin, Asa K; Winblad, Bengt; Verhey, Frans R J; Visser, Pieter Jelle
2017-08-01
We aimed to determine the added value of cerebrospinal fluid (CSF) to clinical and imaging tests to predict progression from mild cognitive impairment (MCI) to any type of dementia. The risk of progression to dementia was estimated using two logistic regression models based on 250 MCI participants: the first included standard clinical measures (demographic, clinical, and imaging test information) without CSF biomarkers, and the second included standard clinical measures with CSF biomarkers. Adding CSF improved predictive accuracy with 0.11 (scale from 0-1). Of all participants, 136 (54%) had a change in risk score of 0.10 or higher (which was considered clinically relevant), of whom in 101, it was in agreement with their dementia status at follow-up. An individual person's risk of progression from MCI to dementia can be improved by relying on CSF biomarkers in addition to recommended clinical and imaging tests for usual care. Copyright © 2017 the Alzheimer's Association. Published by Elsevier Inc. All rights reserved.
Alonso, Maria I.; Lamus, Francisco; Carnicero, Estela; Moro, Jose A.; de la Mano, Anibal; Fernández, Jose M. F.; Desmond, Mary E.; Gato, Angel
2017-01-01
Neurogenesis is a very intensive process during early embryonic brain development, becoming dramatically restricted in the adult brain in terms of extension and intensity. We have previously demonstrated the key role of embryonic cerebrospinal fluid (CSF) in developing brain neurogenic activity. We also showed that cultured adult brain neural stem cells (NSCs) remain competent when responding to the neurogenic influence of embryonic CSF. However, adult CSF loses its neurogenic inductive properties. Here, by means of an organotypic culture of adult mouse brain sections, we show that local administration of embryonic CSF in the subventricular zone (SVZ) niche is able to trigger a neurogenic program in NSCs. This leads to a significant increase in the number of non-differentiated NSCs, and also in the number of new neurons which show normal migration, differentiation and maturation. These new data reveal that embryonic CSF activates adult brain NSCs, supporting the previous idea that it contains key instructive components which could be useful in adult brain neuroregenerative strategies. PMID:29311854
A programmable point-of-care device for external CSF drainage and monitoring.
Simkins, Jeffrey R; Subbian, Vignesh; Beyette, Fred R
2014-01-01
This paper presents a prototype of a programmable cerebrospinal fluid (CSF) external drainage system that can accurately measure the dispensed fluid volume. It is based on using a miniature spectrophotometer to collect color data to inform drain rate and pressure monitoring. The prototype was machined with 1 μm dimensional accuracy. The current device can reliably monitor the total accumulated fluid volume, the drain rate, the programmed pressure, and the pressure read from the sensor. Device requirements, fabrication processes, and preliminary results with an experimental set-up are also presented.
NASA Astrophysics Data System (ADS)
Gholampour, S.; Fatouraee, N.; Seddighi, A. S.; Seddighi, A.
2017-05-01
Three-dimensional computational models of the cerebrospinal fluid (CSF) flow and brain tissue are presented for evaluation of their hydrodynamic conditions before and after shunting for seven patients with non-communicating hydrocephalus. One healthy subject is also modeled to compare deviated patients data to normal conditions. The fluid-solid interaction simulation shows the CSF mean pressure and pressure amplitude (the superior index for evaluation of non-communicating hydrocephalus) in patients at a greater point than those in the healthy subject by 5.3 and 2 times, respectively.
Vio, Karin; Rodríguez, Sara; Yulis, Carlos R; Oliver, Cristian; Rodríguez, Esteban M
2008-01-01
Background The subcommissural organ (SCO) is a highly conserved brain gland present throughout the vertebrate phylum; it secretes glycoproteins into the cerebrospinal fluid (CSF), where they aggregate to form Reissner's fiber (RF). SCO-spondin is the major constituent protein of RF. Evidence exists that the SCO also secretes proteins that remain soluble in the CSF. The aims of the present investigation were: (i) to identify and partially characterize the SCO-secretory compounds present in the SCO gland itself and in the RF of the Sprague-Dawley rat and non-hydrocephalic hyh mouse, and in the CSF of rat; (ii) to make a comparative analysis of the proteins present in these three compartments; (iii) to identify the proteins secreted by the SCO into the CSF at different developmental periods. Methods The proteins of the SCO secreted into the CSF were studied (i) by injecting specific antibodies into ventricular CSF in vivo; (ii) by immunoblots of SCO, RF and CSF samples, using specific antibodies against the SCO secretory proteins (AFRU and anti-P15). In addition, the glycosylated nature of SCO-compounds was analysed by concanavalin A and wheat germ agglutinin binding. To analyse RF-glycoproteins, RF was extracted from the central canal of juvenile rats and mice; to investigate the CSF-soluble proteins secreted by the SCO, CSF samples were collected from the cisterna magna of rats at different stages of development (from E18 to PN30). Results Five glycoproteins were identified in the rat SCO with apparent molecular weights of 630, 450, 390, 320 and 200 kDa. With the exception of the 200-kDa compound, all other compounds present in the rat SCO were also present in the mouse SCO. The 630 and 390 kDa compounds of the rat SCO have affinity for concanavalin A but not for wheat germ agglutinin, suggesting that they correspond to precursor forms. Four of the AFRU-immunoreactive compounds present in the SCO (630, 450, 390, 320 kDa) were absent from the RF and CSF. These may be precursor and/or partially processed forms. Two other compounds (200, 63 kDa) were present in SCO, RF and CSF and may be processed forms. The presence of these proteins in both, RF and CSF suggests a steady-state RF/CSF equilibrium for these compounds. Eight AFRU-immunoreactive bands were consistently found in CSF samples from rats at E18, E20 and PN1. Only four of these compounds were detected in the cisternal CSF of PN30 rats. The 200 kDa compound appears to be a key compound in rats since it was consistently found in all samples of SCO, RF and embryonic and juvenile CSF. Conclusion It is concluded that (i) during the late embryonic life, the rat SCO secretes compounds that remain soluble in the CSF and reach the subarachnoid space; (ii) during postnatal life, there is a reduction in the number and concentration of CSF-soluble proteins secreted by the SCO. The molecular structure and functional significance of these proteins remain to be elucidated. The possibility they are involved in brain development has been discussed. PMID:18218138
... is a clear fluid that circulates in the space surrounding the spinal cord and brain. CSF protects the brain and spinal cord from injury by acting like a liquid cushion. CSF is usually obtained through a lumbar ...
Alatyrtsev, V V; Iakunin, Iu A; Burkova, A S; Podkopaev, V N; Afonina, L G
1989-01-01
A study was made of the content of creatine kinase-BB (CK-BB) and lactate in cerebrospinal fluid (CSF) of 202 neonates and infants with perinatal CNS injuries. The relationship was found between the rise of the CK-BB content and the gravity of perinatal CNS injuries. The highest content of CK-BB in CSF was marked in neonates with cerebral disorders complicated by infectious and inflammatory diseases (pneumonia, sepsis). Within the first 5 days of life, the children of this group demonstrated the relationship between the content of CK-BB and lactate of CSF. The measurement of the content of CK-BB in CSF should be used for early diagnosis, assessment of the gravity and course of perinatal CNS injuries in neonates and in infants.
Elevated levels of ferritin in the cerebrospinal fluid of amyotrophic lateral sclerosis patients.
Zheng, Y; Gao, L; Wang, D; Zang, D
2017-08-01
The aim of the study was to detect changes in the levels of ferritin heavy chain (FHC), ferritin light chain (FLC), and transferrin in the cerebrospinal fluid (CSF) and serum of amyotrophic lateral sclerosis (ALS) patients and to analyze the correlations between the levels of these proteins and various clinical parameters. Cerebrospinal fluid and serum samples were obtained from 54 ALS patients and 46 non-inflammatory neurological disease control (non-INDC) patients. CSF and serum FHC, FLC, and transferring levels were measured via the enzyme-linked immunosorbent method using a commercial ELISA kit, and the times from onset (durations), ALS functional rating scale-revised (ALSFRS-r) scores, and disease progression rates (DPRs) were analyzed by registered neurologists. Statistical analysis was performed via Prism software. Compared with controls, ALS patients exhibited significantly increased FHC and FLC levels in CSF, which were positively correlated with DPR and negatively correlated with duration. Serum transferrin levels were significantly increased in ALS patients but were not correlated with disease progression. FHC and FLC in CSF rapidly increased as the disease worsened. This study demonstrated that the clinical measurement of FHC and FLC in CSF may be beneficial for disease differentiation and evaluating progression in patients with ALS. Compared with levels in serum, the levels of FHC and FLC in CSF might be more reliable for diagnosing and assessing the progression of ALS. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Kušnierová, Pavlína; Švagera, Zdeněk; Všianský, František; Byrtusová, Monika; Hradílek, Pavel; Kurková, Barbora; Zapletalová, Olga; Bartoš, Vladimír
2016-01-01
Objectives We aimed to compare various methods for free light chain (fLC) quantitation in cerebrospinal fluid (CSF) and serum and to determine whether quantitative CSF measurements could reliably predict intrathecal fLC synthesis. In addition, we wished to determine the relationship between free kappa and free lambda light chain concentrations in CSF and serum in various disease groups. Methods We analysed 166 paired CSF and serum samples by at least one of the following methods: turbidimetry (Freelite™, SPAPLUS), nephelometry (N Latex FLC™, BN ProSpec), and two different (commercially available and in-house developed) sandwich ELISAs. The results were compared with oligoclonal fLC detected by affinity-mediated immunoblotting after isoelectric focusing. Results Although the correlations between quantitative methods were good, both proportional and systematic differences were discerned. However, no major differences were observed in the prediction of positive oligoclonal fLC test. Surprisingly, CSF free kappa/free lambda light chain ratios were lower than those in serum in about 75% of samples with negative oligoclonal fLC test. In about a half of patients with multiple sclerosis and clinically isolated syndrome, profoundly increased free kappa/free lambda light chain ratios were found in the CSF. Conclusions Our results show that using appropriate method-specific cut-offs, different methods of CSF fLC quantitation can be used for the prediction of intrathecal fLC synthesis. The reason for unexpectedly low free kappa/free lambda light chain ratios in normal CSFs remains to be elucidated. Whereas CSF free kappa light chain concentration is increased in most patients with multiple sclerosis and clinically isolated syndrome, CSF free lambda light chain values show large interindividual variability in these patients and should be investigated further for possible immunopathological and prognostic significance. PMID:27846293
Strazielle, Nathalie; Creidy, Rita; Malcus, Christophe; Boucraut, José; Ghersi-Egea, Jean-François
2016-01-01
An emerging concept of normal brain immune surveillance proposes that recently and moderately activated central memory T lymphocytes enter the central nervous system (CNS) directly into the cerebrospinal fluid (CSF) via the choroid plexus. Within the CSF space, T cells inspect the CNS environment for cognate antigens. This gate of entry into the CNS could also prevail at the initial stage of neuroinflammatory processes. To actually demonstrate T cell migration across the choroidal epithelium forming the blood-CSF barrier, an in vitro model of the rat blood-CSF barrier was established in an “inverse” configuration that enables cell transmigration studies in the basolateral to apical, i.e. blood/stroma to CSF direction. Structural barrier features were evaluated by immunocytochemical analysis of tight junction proteins, functional barrier properties were assessed by measuring the monolayer permeability to sucrose and the active efflux transport of organic anions. The migratory behaviour of activated T cells across the choroidal epithelium was analysed in the presence and absence of chemokines. The migration pathway was examined by confocal microscopy. The inverse rat BCSFB model reproduces the continuous distribution of tight junction proteins at cell margins, the restricted paracellular permeability, and polarized active transport mechanisms, which all contribute to the barrier phenotype in vivo. Using this model, we present experimental evidence of T cell migration across the choroidal epithelium. Cell migration appears to occur via a paracellular route without disrupting the restrictive barrier properties of the epithelial interface. Apical chemokine addition strongly stimulates T cell migration across the choroidal epithelium. The present data provide evidence for the controlled migration of T cells across the blood-CSF barrier into brain. They further indicate that this recruitment route is sensitive to CSF-borne chemokines, extending the relevance of this migration pathway to neuroinflammatory and neuroinfectious disorders which are typified by elevated chemokine levels in CSF. PMID:26942913
Strazielle, Nathalie; Creidy, Rita; Malcus, Christophe; Boucraut, José; Ghersi-Egea, Jean-François
2016-01-01
An emerging concept of normal brain immune surveillance proposes that recently and moderately activated central memory T lymphocytes enter the central nervous system (CNS) directly into the cerebrospinal fluid (CSF) via the choroid plexus. Within the CSF space, T cells inspect the CNS environment for cognate antigens. This gate of entry into the CNS could also prevail at the initial stage of neuroinflammatory processes. To actually demonstrate T cell migration across the choroidal epithelium forming the blood-CSF barrier, an in vitro model of the rat blood-CSF barrier was established in an "inverse" configuration that enables cell transmigration studies in the basolateral to apical, i.e. blood/stroma to CSF direction. Structural barrier features were evaluated by immunocytochemical analysis of tight junction proteins, functional barrier properties were assessed by measuring the monolayer permeability to sucrose and the active efflux transport of organic anions. The migratory behaviour of activated T cells across the choroidal epithelium was analysed in the presence and absence of chemokines. The migration pathway was examined by confocal microscopy. The inverse rat BCSFB model reproduces the continuous distribution of tight junction proteins at cell margins, the restricted paracellular permeability, and polarized active transport mechanisms, which all contribute to the barrier phenotype in vivo. Using this model, we present experimental evidence of T cell migration across the choroidal epithelium. Cell migration appears to occur via a paracellular route without disrupting the restrictive barrier properties of the epithelial interface. Apical chemokine addition strongly stimulates T cell migration across the choroidal epithelium. The present data provide evidence for the controlled migration of T cells across the blood-CSF barrier into brain. They further indicate that this recruitment route is sensitive to CSF-borne chemokines, extending the relevance of this migration pathway to neuroinflammatory and neuroinfectious disorders which are typified by elevated chemokine levels in CSF.
Virchow-Robin space and aquaporin-4: new insights on an old friend.
Nakada, Tsutomu
2014-08-28
Recent studies have strongly indicated that the classic circulation model of cerebrospinal fluid (CSF) is no longer valid. The production of CSF is not only dependent on the choroid plexus but also on water flux in the peri-capillary (Virchow Robin) space. Historically, CSF flow through the Virchow Robin space is known as interstitial flow, the physiological significance of which is now fully understood. This article briefly reviews the modern concept of CSF physiology and the Virchow-Robin space, in particular its functionalities critical for central nervous system neural activities. Water influx into the Virchow Robin space and, hence, interstitial flow is regulated by aquaporin-4 (AQP-4) localized in the endfeet of astrocytes, connecting the intracellular cytosolic fluid space of astrocytes and the Virchow Robin space. Interstitial flow has a functionality equivalent to systemic lymphatics, on which clearance of β-amyloid is strongly dependent. Autoregulation of brain blood flow serves to maintain a constant inner capillary fluid pressure, allowing fluid pressure of the Virchow Robin space to regulate regional cerebral blood flow (rCBF) based on AQP-4 gating. Excess heat produced by neural activities is effectively removed from the area of activation by increased rCBF by closing AQP-4 channels. This neural flow coupling (NFC) is likely mediated by heat generated proton channels.
Sheldon, Claire A.; Kwon, Young Joon; Liu, Grant T.; McCormack, Shana E.
2015-01-01
Pseudotumor cerebri syndrome (PTCS) is defined by the presence of elevated intracranial pressure (ICP) in the setting of normal brain parenchyma and cerebrospinal fluid (CSF). Headache, vision changes, and papilledema are common presenting features. Up to 10% of appropriately treated patients may experience permanent visual loss. The mechanism(s) underlying PTCS is unknown. PTCS occurs in association with a variety of conditions, including kidney disease, obesity, and adrenal insufficiency, suggesting endocrine and/or metabolic derangements may occur. Recent studies suggest that fluid and electrolyte balance in renal epithelia is regulated by a complex interaction of metabolic and hormonal factors; these cells share many of the same features as the choroid plexus cells in the central nervous system (CNS) responsible for regulation of CSF dynamics. Thus, we posit that similar factors may influence CSF dynamics in both types of fluid-sensitive tissues. Specifically, we hypothesize that, in patients with PTCS, mitochondrial metabolites (glutamate, succinate) and steroid hormones (cortisol, aldosterone) regulate CSF production and/or absorption. In this integrated mechanism review, we consider the clinical and molecular evidence for each metabolite and hormone in turn. We illustrate how related intracellular signaling cascades may converge in the choroid plexus, drawing on evidence from functionally similar tissues. PMID:25420176
Infections in the differential diagnosis of Bell's palsy: a plea for performing CSF analysis.
Henkel, Katrin; Lange, Peter; Eiffert, Helmut; Nau, Roland; Spreer, Annette
2017-04-01
Peripheral facial nerve palsy (FP) is the most common single nerve affection. Most cases are idiopathic, but a relevant fraction is caused by potentially treatable aetiologies including infections. Not all current diagnosis and treatment guidelines recommend routine cerebrospinal fluid (CSF) analysis in the diagnostic workup of this symptom. In this study, we evaluated frequency of aetiologies and relevance of CSF analysis in an interdisciplinary cohort. We retrospectively analysed all cases of newly diagnosed FP treated at a German university medical centre in a 3-year period. Diagnostic certainty was classified for infectious aetiologies according to clinical and CSF parameters. 380 patients with FP were identified, 63 children and 317 adults. Idiopathic Bell´s palsy was predominant in 61 %. 25 % of FP was attributed to infections, and other causes were identified in 14 %. Clinical presentation alone was not conclusive for infectious aetiology, in almost half of patients with infection-attributed FP the reported symptoms or clinical signs did not differ from common symptoms of idiopathic Bell`s palsy. Determination of C-reactive protein or white blood cell count was not helpful in the identification of infectious causes, and radiological imaging was performed in a high proportion of adult patients without conclusive results. Nuchal rigidity was found only in 7 % of patients with CSF pleocytosis. The predominant infectious agents were Borrelia burgdorferi, VZV and HSV, and in most of these cases diagnosis relied on the findings of CSF analysis. This study outlines the importance of careful differential diagnosis to identify infectious causes of facial nerve palsy. The high incidence and frequent unspecific clinical presentation of infectious FP underlines the importance of including CSF analysis in the diagnostic routine workup of FP.
Predictive factors of bacterial meningitis in the patients seen in emergency departments.
Morales-Casado, María Isabel; Julián-Jiménez, Agustín; Lobato-Casado, Paula; Cámara-Marín, Belén; Pérez-Matos, Julio Alberto; Martínez-Maroto, Tamara
2017-04-01
To analyse and compare predictive factors of bacterial meningitis in the patients seen in the Emergency Departments (ED) due to an episode of acute meningitis (AM). A prospective, observational study was carried out in patients aged 15 years and older seen in ED due to AM between August 2009 and November 2015. Thirty-two variables for predicting bacterial meningitis were assessed. They covered epidemiological, comorbidity, clinical and analytical factors. Multivariate logistic regression analysis was performed. The study included 154 patients. The diagnosis was bacterial meningitis in 53 (34.4%) patients. Four variables were significantly associated with bacterial aetiology: cerebrospinal fluid (CSF) lactate concentration ≥33mg/dl (odds ratio [OR] 50.84; 95% confidence interval [CI]: 21.63-119.47, P<.001), serum procalcitonin (PCT) ≥0.8ng/ml (OR 46.34; 95%CI: 19.71-108.89; P<.001), CSF glucose <60% of blood value (OR 20.82; 95%CI: 8.86-48.96; P=.001), CSF polymorphonuclears greater than 50% (OR 20.19; 95%CI: 8.31-49.09; P=.002]. The area under the curve for the model serum PCT≥0.8ng/ml plus CSF lactate ≥33mg/dl was 0.992 (95%CI: 0.979-1; P<.001), and achieved 99% sensitivity and 98% specificity for predicting bacterial meningitis. Serum PCT with CSF lactate, CSF glucose and CSF polymorphonuclears evaluated in an initial assessment in the ED for patients with AM, achieved an excellent diagnostic usefulness for predicting bacterial meningitis. Copyright © 2016 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.
Duarte, Paulo C; Daft, Barbara M; Conrad, Patricia A; Packham, Andrea E; Saville, William J; MacKay, Robert J; Barr, Bradd C; Wilson, W David; Ng, Terry; Reed, Stephen M; Gardner, Ian A
2004-04-01
The objectives of this study were to evaluate the accuracy of the indirect fluorescent antibody test (IFAT) using serum and cerebrospinal fluid (CSF) of horses naturally and experimentally infected with Sarcocystis neurona, to assess the correlation between serum and CSF titers, and to determine the effect of S. neurona vaccination on the diagnosis of infection. Using receiver-operating characteristic analysis, the areas under the curve for the IFAT were 0.97 (serum) and 0.99 (CSF). Sensitivity and specificity were 83.3 and 96.9% (serum, cutoff 80) and 100 and 99% (CSF, cutoff 5), respectively. Titer-specific likelihood ratios (LRs) ranged from 0.03 to 187.8 for titers between <10 and 640. Median time to conversion was 22-26 days postinfection (DPI) (serum) and 30 DPI (CSF). The correlation between serum and CSF titers was moderately strong (r = 0.6) at 30 DPI. Percentage of vaccinated antibody-positive horses ranged from 0 to 95% between 0 and 112 days after the second vaccination. Thus, the IFAT was reliable and accurate using serum and CSF. Use of LRs potentially improves clinical decision making. Correlation between serum and CSF titers affects the joint accuracy of the IFAT; therefore, the ratio of serum to CSF titers has potential diagnostic value. The S. neurona vaccine could possibly interfere with equine protozoal myeloencephalitis diagnosis.
Lin, Wen-Li; Chi, Hsin; Huang, Fu-Yuan; Huang, Daniel Tsung-Ning; Chiu, Nan-Chang
2016-10-01
Cerebrospinal fluid (CSF) cell count and biochemical examinations and cultures form the basis for the diagnosis of bacterial meningitis. However, some patients do not have typical findings and are at a higher risk of being missed or having delayed treatment. To better understand the correlation between CSF results and outcomes, we evaluated CSF data focusing on the patients with atypical findings. This study enrolled CSF culture-proven bacterial meningitis patients aged from 1 month to 18 years in a medical center. The patients were divided into "normal" and "abnormal" groups for each laboratory result and in combination. The correlations between the laboratory results and the outcomes were analyzed. A total of 175 children with confirmed bacterial meningitis were enrolled. In CSF examinations, 16.2% of patients had normal white blood cell counts, 29.5% had normal glucose levels, 24.5% had normal protein levels, 10.2% had normal results in two items, and 8.6% had normal results in all three items. In logistic regression analysis, a normal CSF leukocyte count and increased CSF protein level were related to poor outcomes. Patients with meningitis caused by Streptococcus pneumoniae and hyponatremia were at a higher risk of mortality and the development of sequelae. In children with bacterial meningitis, nontypical CSF findings and, in particular, normal CSF leukocyte count and increased protein level may indicate a worse prognosis. Copyright © 2014. Published by Elsevier B.V.
Burbelo, Peter D; Price, Richard W; Hagberg, Lars; Hatano, Hiroyu; Spudich, Serena; Deeks, Steven G; Gisslén, Magnus
2018-01-01
Abstract Background Despite effective antiretroviral therapy (ART), human immunodeficiency virus (HIV) likely persists in the central nervous system (CNS) in treated individuals. We examined anti-HIV antibodies in cerebrospinal fluid (CSF) and blood as markers of persistence. Methods Human immunodeficiency virus antibodies were measured in paired CSF and serum before and after long-term treatment of chronic (n = 10) and early infection (n = 12), along with untreated early infection (n = 10). Results Treatment of chronic infection resulted in small reductions of anti-HIV antibodies in CSF and serum despite >10 years of suppressive ART. In untreated early infection, anti-HIV antibodies emerged in blood by day 30, whereas CSF antibodies reached similar levels 2 weeks later. Compared with long-term treatment of chronic infection, early ART initiation reduced CSF antibodies by 43-fold (P > .0001) and blood antibodies by 7-fold (P = .0003). Two individuals receiving pre-exposure prophylaxis and then ART early after infection failed to develop antibodies in CSF or blood, whereas CSF antibodies were markedly reduced in the Berlin patient. Conclusions To the extent that differential CSF and blood antibodies indicate HIV persistence, these data suggest a relative delay in establishment of the CNS compared with the systemic HIV reservoir that provides an opportunity for early treatment to have a greater impact on the magnitude of long-term CNS infection. PMID:29401308
Burbelo, Peter D; Price, Richard W; Hagberg, Lars; Hatano, Hiroyu; Spudich, Serena; Deeks, Steven G; Gisslén, Magnus
2018-03-13
Despite effective antiretroviral therapy (ART), human immunodeficiency virus (HIV) likely persists in the central nervous system (CNS) in treated individuals. We examined anti-HIV antibodies in cerebrospinal fluid (CSF) and blood as markers of persistence. Human immunodeficiency virus antibodies were measured in paired CSF and serum before and after long-term treatment of chronic (n = 10) and early infection (n = 12), along with untreated early infection (n = 10). Treatment of chronic infection resulted in small reductions of anti-HIV antibodies in CSF and serum despite >10 years of suppressive ART. In untreated early infection, anti-HIV antibodies emerged in blood by day 30, whereas CSF antibodies reached similar levels 2 weeks later. Compared with long-term treatment of chronic infection, early ART initiation reduced CSF antibodies by 43-fold (P > .0001) and blood antibodies by 7-fold (P = .0003). Two individuals receiving pre-exposure prophylaxis and then ART early after infection failed to develop antibodies in CSF or blood, whereas CSF antibodies were markedly reduced in the Berlin patient. To the extent that differential CSF and blood antibodies indicate HIV persistence, these data suggest a relative delay in establishment of the CNS compared with the systemic HIV reservoir that provides an opportunity for early treatment to have a greater impact on the magnitude of long-term CNS infection.
NASA Technical Reports Server (NTRS)
Wu, Jie; Yu, Sheng-Tao; Jiang, Bo-nan
1996-01-01
In this paper a numerical procedure for simulating two-fluid flows is presented. This procedure is based on the Volume of Fluid (VOF) method proposed by Hirt and Nichols and the continuum surface force (CSF) model developed by Brackbill, et al. In the VOF method fluids of different properties are identified through the use of a continuous field variable (color function). The color function assigns a unique constant (color) to each fluid. The interfaces between different fluids are distinct due to sharp gradients of the color function. The evolution of the interfaces is captured by solving the convective equation of the color function. The CSF model is used as a means to treat surface tension effect at the interfaces. Here a modified version of the CSF model, proposed by Jacqmin, is used to calculate the tension force. In the modified version, the force term is obtained by calculating the divergence of a stress tensor defined by the gradient of the color function. In its analytical form, this stress formulation is equivalent to the original CSF model. Numerically, however, the use of the stress formulation has some advantages over the original CSF model, as it bypasses the difficulty in approximating the curvatures of the interfaces. The least-squares finite element method (LSFEM) is used to discretize the governing equation systems. The LSFEM has proven to be effective in solving incompressible Navier-Stokes equations and pure convection equations, making it an ideal candidate for the present applications. The LSFEM handles all the equations in a unified manner without any additional special treatment such as upwinding or artificial dissipation. Various bench mark tests have been carried out for both two dimensional planar and axisymmetric flows, including a dam breaking, oscillating and stationary bubbles and a conical liquid sheet in a pressure swirl atomizer.
Fibrinolytic activity in cerebrospinal fluid of dogs with different neurological disorders.
de la Fuente, C; Monreal, L; Cerón, J; Pastor, J; Viu, J; Añor, S
2012-01-01
Fibrinolytic activity in cerebrospinal fluid (CSF) is activated in humans by different pathologic processes. To investigate fibrinolytic activity in the CSF of dogs with neurological disorders by measuring CSF D-dimer concentrations. One hundred and sixty-nine dogs with neurological disorders, 7 dogs with systemic inflammatory diseases without central nervous system involvement (SID), and 7 healthy Beagles were included in the study. Dogs with neurological disorders included 11 with steroid-responsive meningitis-arteritis (SRMA), 37 with other inflammatory neurological diseases (INF), 38 with neoplasia affecting the central nervous system (NEO), 28 with spinal compressive disorders (SCC), 15 with idiopathic epilepsy (IE), and 40 with noninflammatory neurological disorders (NON-INF). Prospective observational study. D-dimers and C-reactive protein (CRP) were simultaneously measured in paired CSF and blood samples. D-dimers and CRP were detected in 79/183 (43%) and in 182/183 (99.5%) CSF samples, respectively. All dogs with IE, SID, and controls had undetectable concentrations of D-dimers in the CSF. CSF D-dimer concentrations were significantly (P < .001) higher in dogs with SRMA than in dogs with other diseases and controls. CSF CRP concentration in dogs with SRMA was significantly (P < .001) higher than in dogs of other groups and controls, except for the SID group. No correlation was found between blood and CSF D-dimer concentrations. Intrathecal fibrinolytic activity seems to be activated in some canine neurological disorders, and it is high in severe meningeal inflammatory diseases. CSF D-dimer concentrations may be considered a diagnostic marker for SRMA. Copyright © 2012 by the American College of Veterinary Internal Medicine.
Cerebrospinal fluid interferon-gamma-inducible protein 10 (IP-10, CXCL10) in HIV-1 infection.
Cinque, Paola; Bestetti, Arabella; Marenzi, Roberta; Sala, Serena; Gisslen, Magnus; Hagberg, Lars; Price, Richard W
2005-11-01
Interferon-gamma-inducible protein (IP-10 or CXCL10) is a potent chemoattractant and has been suggested to enhance retrovirus infection and mediate neuronal injury. In order to assess this chemokine in central nervous system (CNS) HIV infection, we measured the cerebrospinal fluid (CSF) and plasma concentrations of CXCL10 by immunoassay in samples derived from 97 HIV-infected subjects across a spectrum of immunological progression and CNS complications and from 16 HIV seronegative control subjects studied at three clinical centers between 1994 and 2001. We also examined changes in the CSF and plasma CXCL10 concentrations in 30 subjects starting and three stopping antiretroviral therapy. CSF CXCL10 concentrations: (1) correlated with CSF HIV RNA and white blood cell (WBC) counts, but not with blood CXCL10, HIV RNA, or CD4 counts; (2) were increased in subjects with primary and asymptomatic HIV infections and AIDS dementia complex, but less frequently in those with more advanced infection, with or without CNS opportunistic diseases except cytomegalovirus encephalitis; (3) decreased in subjects starting antiretroviral in association with decreases in CSF and plasma HIV RNA and CSF WBCs; and (4) conversely, increased in subjects stopping treatment in parallel with CSF HIV RNA and WBCs. These results confirm that CSF CXCL10 associates closely with both CSF HIV and WBCs and suggest that this chemokine may be both a response to and contributing determinant of local infection. High CSF levels may be useful in the diagnosis of ADC in subjects with advanced immunosuppression in whom CMV encephalitis has been ruled out, though this issue requires further study.
Potential Pathways for CNS Drug Delivery Across the Blood-Cerebrospinal Fluid Barrier
Strazielle, Nathalie; Ghersi-Egea, Jean-François
2016-01-01
The blood-brain interfaces restrict the cerebral bioavailability of pharmacological compounds. Various drug delivery strategies have been developed to improve drug penetration into the brain. Most strategies target the microvascular endothelium forming the blood-brain barrier proper. Targeting the blood-cerebrospinal fluid (CSF) barrier formed by the epithelium of the choroid plexuses in addition to the blood-brain barrier may offer added-value for the treatment of central nervous system diseases. For instance, targeting the CSF spaces, adjacent tissue, or the choroid plexuses themselves is of interest for the treatment of neuroinflammatory and infectious diseases, cerebral amyloid angiopathy, selected brain tumors, hydrocephalus or neurohumoral dysregulation. Selected CSF-borne materials seem to reach deep cerebral structures by mechanisms that need to be understood in the context of chronic CSF delivery. Drug delivery through both barriers can reduce CSF sink action towards parenchymal drugs. Finally, targeting the choroid plexus-CSF system can be especially relevant in the context of neonatal and pediatric diseases of the central nervous system. Transcytosis appears the most promising mechanism to target in order to improve drug delivery through brain barriers. The choroid plexus epithelium displays strong vesicular trafficking and secretory activities that deserve to be explored in the context of cerebral drug delivery. Folate transport and exosome release into the CSF, plasma protein transport, and various receptor-mediated endocytosis pathways may prove useful mechanisms to exploit for efficient drug delivery into the CSF. This calls for a clear evaluation of transcytosis mechanisms at the blood-CSF barrier, and a thorough evaluation of CSF drug delivery rates. PMID:27464721
A pilot study on the use of cerebrospinal fluid cell-free DNA in intramedullary spinal ependymoma.
Connolly, Ian David; Li, Yingmei; Pan, Wenying; Johnson, Eli; You, Linya; Vogel, Hannes; Ratliff, John; Hayden Gephart, Melanie
2017-10-01
Cerebrospinal fluid (CSF) represents a promising source of cell-free DNA (cfDNA) for tumors of the central nervous system. A CSF-based liquid biopsy may obviate the need for riskier tissue biopsies and serve as a means for monitoring tumor recurrence or response to therapy. Spinal ependymomas most commonly occur in adults, and aggressive resection must be delicately balanced with the risk of injury to adjacent normal tissue. In patients with subtotal resection, recurrence commonly occurs. A CSF-based liquid biopsy matched to the patient's spinal ependymoma mutation profile has potential to be more sensitive then surveillance MRI, but the utility has not been well characterized for tumors of the spinal cord. In this study, we collected matched blood, tumor, and CSF samples from three adult patients with WHO grade II intramedullary spinal ependymoma. We performed whole exome sequencing on matched tumor and normal DNA to design Droplet Digital™ PCR (ddPCR) probes for tumor and wild-type mutations. We then interrogated CSF samples for tumor-derived cfDNA by performing ddPCR on extracted cfDNA. Tumor cfDNA was not reliably detected in the CSF of our cohort. Anatomic sequestration and low grade of intramedullary spinal cord tumors likely limits the role of CSF liquid biopsy.
Afferent vagal stimulation, vasopressin, and nitroprusside alter cerebrospinal fluid kinin.
Thomas, G R; Thibodeaux, H; Margolius, H S; Webb, J G; Privitera, P J
1987-07-01
The effects of afferent vagal stimulation, cerebroventricular vasopressin, and intravenous nitroprusside on cerebrospinal fluid (CSF) kinin levels, mean arterial pressure (MAP), and heart rate (HR) were determined in anesthetized dogs in which a ventriculocisternal perfusion system (VP) was established. Following bilateral vagotomy, stimulation of the central ends of both vagi for 60 min significantly increased MAP and CSF perfusate levels of kinin and norepinephrine (NE). MAP was increased a maximum of 32 +/- 4 mmHg, and the rates of kinin and NE appearance into the CSF perfusate increased from 4.2 +/- 1.4 to 22.1 +/- 6.9 and from 28 +/- 5 to 256 +/- 39 pg/min, respectively. A significant correlation was found between CSF kinin and NE levels in these experiments. In other experiments the addition of arginine vasopressin to the VP system caused a significant increase in CSF perfusate kinin without affecting MAP or HR. Intravenous infusion of nitroprusside lowered MAP without affecting kinin levels in the CSF. However, on cessation of nitroprusside infusion, CSF kinin increased significantly in association with the return in MAP to predrug level. Collectively the data are consistent with the hypothesis that central nervous system kinins have some role in cardiovascular regulation, and furthermore that this role may involve an interaction between brain kinin and central noradrenergic neuronal pathways.
Vanishing calcification associated with a spontaneous ventral spinal cerebrospinal fluid leak.
Schievink, Wouter I; Ross, Lindsey; Prasad, Ravi S; Maya, M Marcel
2016-12-01
Some patients with spontaneous intracranial hypotension have a ventral spinal cerebrospinal fluid (CSF) leak and these CSF leaks may be associated with calcified disk herniations. Identifying these calcifications is helpful in directing treatment. We report here the unusual case of a patient with a ventral CSF leak in whom the associated calcification absorbed over a five-month period. A 42-year-old woman developed orthostatic headaches and bilateral abducens nerve palsies. Magnetic resonance imaging of her brain showed typical findings of spontaneous intracranial hypotension. Magnetic resonance imaging of her spine showed an extensive cervicothoracic CSF leak. Computed tomographic myelography showed calcification at the Th1-2 disk space. Three epidural blood patches were performed, but her symptoms persisted. Digital subtraction myelography performed five months later showed an upper thoracic ventral CSF, but the calcification was no longer present. A dural tear, found at surgery at the Th1-2 level, was repaired and the patient made an uneventful recovery. The resorption of calcifications at the level of a ventral spinal CSF leak could explain the absence of any calcifications in at least some patients with such leaks and demonstrates the usefulness of reviewing previous imaging in patients with ventral CSF leaks if the exact site of the leak remains unknown. © International Headache Society 2016.
Cerebral arterial pulsation drives paravascular CSF-interstitial fluid exchange in the murine brain.
Iliff, Jeffrey J; Wang, Minghuan; Zeppenfeld, Douglas M; Venkataraman, Arun; Plog, Benjamin A; Liao, Yonghong; Deane, Rashid; Nedergaard, Maiken
2013-11-13
CSF from the subarachnoid space moves rapidly into the brain along paravascular routes surrounding penetrating cerebral arteries, exchanging with brain interstitial fluid (ISF) and facilitating the clearance of interstitial solutes, such as amyloid β, in a pathway that we have termed the "glymphatic" system. Prior reports have suggested that paravascular bulk flow of CSF or ISF may be driven by arterial pulsation. However, cerebral arterial pulsation could not be directly assessed. In the present study, we use in vivo two-photon microscopy in mice to visualize vascular wall pulsatility in penetrating intracortical arteries. We observed that unilateral ligation of the internal carotid artery significantly reduced arterial pulsatility by ~50%, while systemic administration of the adrenergic agonist dobutamine increased pulsatility of penetrating arteries by ~60%. When paravascular CSF-ISF exchange was evaluated in real time using in vivo two-photon and ex vivo fluorescence imaging, we observed that internal carotid artery ligation slowed the rate of paravascular CSF-ISF exchange, while dobutamine increased the rate of paravascular CSF-ISF exchange. These findings demonstrate that cerebral arterial pulsatility is a key driver of paravascular CSF influx into and through the brain parenchyma, and suggest that changes in arterial pulsatility may contribute to accumulation and deposition of toxic solutes, including amyloid β, in the aging brain.
Goda, Ryoya; Kobayashi, Nobuhiro
2012-05-01
To evaluate the usefulness of the peptide adsorption-controlled liquid chromatography-tandem mass spectrometry (PAC-LC-MS/MS) for reproducible measurement of peptides in biological fluids, simultaneous quantitation of amyloid β 1-38, 1-40, 1-42 and 1-43 peptides (Aβ38, Aβ40, Aβ42 and Aβ43) in dog cerebrospinal fluid (CSF) was tried. Each stable isotope labeled Aβ was used as the internal standard to minimize the influence of CSF matrix on the reproducible Aβ quantitation. To reduce a loss of Aβ during the pretreatment procedures, the dog CSF diluted by water-acetic acid-methanol (2:6:1, v/v/v) was loaded on PAC-LC-MS/MS directly. Quantification of the Aβ in the diluted dog CSF was carried out using multiple reaction monitoring (MRM) mode. The [M+5H(5+)] and b(5+) ion fragment of each peptide were chosen as the precursor and product ions for MRM transitions of each peptide. The calibration curves were drawn from Aβ standard calibration solutions using PAC-LC-MS/MS. Analysis of dog CSF samples suggests that the basal concentration of Aβ38, Aβ40, Aβ42 and Aβ43 in dog CSF is approximately 300, 900, 200 and 30 pM, respectively. This is the first time Aβ concentrations in dog CSF have been reported. Additionally, the evaluation of intra- and inter-day reproducibility of analysis of Aβ standard solution, the freeze-thaw stability and the room temperature stability of Aβ standard solution suggest that the PAC-LC-MS/MS method enables reproducible Aβ quantitation. Copyright © 2012 Elsevier B.V. All rights reserved.
Ratner, Vadim; Gao, Yi; Lee, Hedok; Elkin, Rena; Nedergaard, Maiken; Benveniste, Helene; Tannenbaum, Allen
2017-01-01
The glymphatic pathway is a system which facilitates continuous cerebrospinal fluid (CSF) and interstitial fluid (ISF) exchange and plays a key role in removing waste products from the rodent brain. Dysfunction of the glymphatic pathway may be implicated in the pathophysiology of Alzheimer's disease. Intriguingly, the glymphatic system is most active during deep wave sleep general anesthesia. By using paramagnetic tracers administered into CSF of rodents, we previously showed the utility of MRI in characterizing a macroscopic whole brain view of glymphatic transport but we have yet to define and visualize the specific flow patterns. Here we have applied an alternative mathematical analysis approach to a dynamic time series of MRI images acquired every 4 min over ∼3 hrs in anesthetized rats, following administration of a small molecular weight paramagnetic tracer into the CSF reservoir of the cisterna magna. We use Optimal Mass Transport (OMT) to model the glymphatic flow vector field, and then analyze the flow to find the network of CSF-ISF flow channels. We use 3D visualization computational tools to visualize the OMT defined network of CSF-ISF flow channels in relation to anatomical and vascular key landmarks from the live rodent brain. The resulting OMT model of the glymphatic transport network agrees largely with the current understanding of the glymphatic transport patterns defined by dynamic contrast-enhanced MRI revealing key CSF transport pathways along the ventral surface of the brain with a trajectory towards the pineal gland, cerebellum, hypothalamus and olfactory bulb. In addition, the OMT analysis also revealed some interesting previously unnoticed behaviors regarding CSF transport involving parenchymal streamlines moving from ventral reservoirs towards the surface of the brain, olfactory bulb and large central veins. PMID:28323163
Ratner, Vadim; Gao, Yi; Lee, Hedok; Elkin, Rena; Nedergaard, Maiken; Benveniste, Helene; Tannenbaum, Allen
2017-05-15
The glymphatic pathway is a system which facilitates continuous cerebrospinal fluid (CSF) and interstitial fluid (ISF) exchange and plays a key role in removing waste products from the rodent brain. Dysfunction of the glymphatic pathway may be implicated in the pathophysiology of Alzheimer's disease. Intriguingly, the glymphatic system is most active during deep wave sleep general anesthesia. By using paramagnetic tracers administered into CSF of rodents, we previously showed the utility of MRI in characterizing a macroscopic whole brain view of glymphatic transport but we have yet to define and visualize the specific flow patterns. Here we have applied an alternative mathematical analysis approach to a dynamic time series of MRI images acquired every 4min over ∼3h in anesthetized rats, following administration of a small molecular weight paramagnetic tracer into the CSF reservoir of the cisterna magna. We use Optimal Mass Transport (OMT) to model the glymphatic flow vector field, and then analyze the flow to find the network of CSF-ISF flow channels. We use 3D visualization computational tools to visualize the OMT defined network of CSF-ISF flow channels in relation to anatomical and vascular key landmarks from the live rodent brain. The resulting OMT model of the glymphatic transport network agrees largely with the current understanding of the glymphatic transport patterns defined by dynamic contrast-enhanced MRI revealing key CSF transport pathways along the ventral surface of the brain with a trajectory towards the pineal gland, cerebellum, hypothalamus and olfactory bulb. In addition, the OMT analysis also revealed some interesting previously unnoticed behaviors regarding CSF transport involving parenchymal streamlines moving from ventral reservoirs towards the surface of the brain, olfactory bulb and large central veins. Copyright © 2017. Published by Elsevier Inc.
Martin, Bryn A.; Kalata, Wojciech; Shaffer, Nicholas; Fischer, Paul; Luciano, Mark; Loth, Francis
2013-01-01
Elevated or reduced velocity of cerebrospinal fluid (CSF) at the craniovertebral junction (CVJ) has been associated with type I Chiari malformation (CMI). Thus, quantification of hydrodynamic parameters that describe the CSF dynamics could help assess disease severity and surgical outcome. In this study, we describe the methodology to quantify CSF hydrodynamic parameters near the CVJ and upper cervical spine utilizing subject-specific computational fluid dynamics (CFD) simulations based on in vivo MRI measurements of flow and geometry. Hydrodynamic parameters were computed for a healthy subject and two CMI patients both pre- and post-decompression surgery to determine the differences between cases. For the first time, we present the methods to quantify longitudinal impedance (LI) to CSF motion, a subject-specific hydrodynamic parameter that may have value to help quantify the CSF flow blockage severity in CMI. In addition, the following hydrodynamic parameters were quantified for each case: maximum velocity in systole and diastole, Reynolds and Womersley number, and peak pressure drop during the CSF cardiac flow cycle. The following geometric parameters were quantified: cross-sectional area and hydraulic diameter of the spinal subarachnoid space (SAS). The mean values of the geometric parameters increased post-surgically for the CMI models, but remained smaller than the healthy volunteer. All hydrodynamic parameters, except pressure drop, decreased post-surgically for the CMI patients, but remained greater than in the healthy case. Peak pressure drop alterations were mixed. To our knowledge this study represents the first subject-specific CFD simulation of CMI decompression surgery and quantification of LI in the CSF space. Further study in a larger patient and control group is needed to determine if the presented geometric and/or hydrodynamic parameters are helpful for surgical planning. PMID:24130704
Automated intracranial pressure-controlled cerebrospinal fluid external drainage with LiquoGuard.
Linsler, Stefan; Schmidtke, Mareike; Steudel, Wolf Ingo; Kiefer, Michael; Oertel, Joachim
2013-08-01
LiquoGuard is a new device for intracranial pressure (ICP)-controlled drainage of cerebrospinal fluid (CSF). This present study evaluates the accuracy of ICP measurement via the LiquoGuard device in comparison with Spiegelberg. Thus, we compared data ascertained from simultaneous measurement of ICP using tip-transducer and tip-sensor devices. A total of 1,764 monitoring hours in 15 patients (range, 52-219 h) were analysed. All patients received an intraventricular Spiegelberg III probe with the drainage catheter connected to the LiquoGuard system. ICP reading of both devices was performed on an hourly basis. Statistical analysis was done by applying Pearson correlation and Wilcoxon-matched pair test (p < 0.05). Mean ICP values were 11 ± 5 mmHg (Spiegelberg) and 10 ± 7 mmHg (LiquoGuard); the values measured with both devices correlated well (p = 0.001; Pearson correlation =0.349; n = 1,764). In two of the 15 patients with slit ventricles, episodes of significant differences in measured values could be observed. Both patients suffering from slit ventricles failed to produce reliable measurement with the external transducer of the LiquoGuard. LiquoGuard is a valuable new device for ICP-controlled CSF drainage. However, LiquoGuard tends to provide misleading results in slit ventricles. Thus, before these drawbacks are further analysed, the authors recommend additional ICP measurement with internal tip-sensor devices to avoid dangerous erroneous interpretation of ICP data.
Travassos, Maria; Santana, Isabel; Baldeiras, Inês; Tsolaki, Magda; Gkatzima, Olymbia; Sermin, Genc; Yener, Görsev G; Simonsen, Anja; Hasselbalch, Steen G; Kapaki, Elisabeth; Mara, Bourbouli; Cunha, Rodrigo A; Agostinho, Paula; Blennow, Kaj; Zetterberg, Henrik; Mendes, Vera M; Manadas, Bruno; de Mendon, Alexandreça
2015-01-01
Caffeine may be protective against Alzheimer's disease (AD) by modulating amyloid-β (Aβ) metabolic pathways. The present work aimed to study a possible association of caffeine consumption with the cerebrospinal fluid (CSF) biomarkers, particularly Aβ. The study included 88 patients with AD or mild cognitive impairment. The consumption of caffeine and theobromine was evaluated using a validated food questionnaire. Quantification of caffeine and main active metabolites was performed with liquid chromatography coupled to tandem mass spectrometry. The levels of A(1-42), total tau, and phosphorylated tau in the CSF were determined using sandwich ELISA methods and other Aβ species, Aβ(X-38), Aβ(X-40), and Aβ(X-42), with the MSD Aβ Triplex assay. The concentration of caffeine was 0.79±1.15 μg/mL in the CSF and 1.20±1.88 μg/mL in the plasma. No correlation was found between caffeine consumption and Aβ42 in the CSF. However, a significant positive correlation was found between the concentrations of theobromine, both in the CSF and in the plasma, with Aβ42 in the CSF. Theobromine in the CSF was positively correlated with the levels of other xanthines in the CSF, but not in the plasma, suggesting that it may be formed by central metabolic pathways. In conclusion, caffeine consumption does not modify the levels of CSF biomarkers, and does not require to be controlled for when measuring CSF biomarkers in a clinical setting. Since theobromine is associated with a favorable Aβ profile in the CSF, the possibility that it might have a protective role in AD should be further investigated.
Yatsushiro, Satoshi; Hirayama, Akihiro; Matsumae, Mitsunori; Kajiwara, Nao; Abdullah, Afnizanfaizal; Kuroda, Kagayaki
2014-01-01
Correlation time mapping based on magnetic resonance (MR) velocimetry has been applied to pulsatile cerebrospinal fluid (CSF) motion to visualize the pressure transmission between CSF at different locations and/or between CSF and arterial blood flow. Healthy volunteer experiments demonstrated that the technique exhibited transmitting pulsatile CSF motion from CSF space in the vicinity of blood vessels with short delay and relatively high correlation coefficients. Patient and healthy volunteer experiments indicated that the properties of CSF motion were different from the healthy volunteers. Resultant images in healthy volunteers implied that there were slight individual difference in the CSF driving source locations. Clinical interpretation for these preliminary results is required to apply the present technique for classifying status of hydrocephalus.
Dorey, Aline; Perret-Liaudet, Armand; Tholance, Yannick; Fourier, Anthony; Quadrio, Isabelle
2015-01-01
The combination of decreased amyloid β42 (Aβ42) and increased total tau proteins (T-Tau) and phosphorylated tau (P-Tau) in cerebrospinal fluid (CSF) has recently been considered as a biological diagnostic criterion of Alzheimer’s disease (AD). Previous studies showed significant heterogeneity in CSF Aβ42 levels to discriminate AD from non-AD patients. It was also suggested that the CSF amyloid peptide β42/β40 ratio has better diagnostic performance than Aβ42 alone. The objective of the present study was to investigate the potential added value of determining CSF amyloid β40 peptide (Aβ40) for biological diagnosis of AD when CSF Aβ42 levels failed. CSF AD biomarkers were run in 2,171 samples from 1,499 AD and 672 non-AD patients. The following pathologic thresholds were used to define an AD-positive CSF biomarker profile: T-Tau ≥ 400 ng/L, P-Tau181 ≥ 60 ng/L, and Aβ42 ≤ 700 ng/L. CSF Aβ40 was assayed in AD patients with CSF Aβ42 levels above 700 ng/L and non-AD patients with CSF Aβ42 levels below 700 ng/L. CSF Aβ40 levels were higher in AD than non-AD patients. The receiver operator characteristic curves of CSF Aβ40 and the Aβ42/Aβ40 ratio defined AD cut-off values at 12,644 ng/L and 0.06, respectively. In AD patients with non-pathological CSF Aβ42, CSF Aβ40 concentration was able to correct 76.2% of cases when expressed as CSF Aβ42/Aβ40 ratio and 94.7% of cases when used alone. Using CSF Aβ42 and then CSF Aβ40, the percentage of misinterpreted AD patients fell to 1.0%. CSF Aβ40 concentration improved interpretation of Aβ42 level for the diagnosis of AD. CSF Aβ40 alone showed better diagnostic performance than the amyloid peptide Aβ42/Aβ40 ratio. The added value of determining CSF Aβ40 in AD diagnosis now needs confirming in a cohort of definite AD patients and to be completed with novel amyloid cascade biomarkers. PMID:26640457
Jiménez-Jiménez, Félix J.; Alonso-Navarro, Hortensia; García-Martín, Elena; Agúndez, José A. G.
2014-01-01
The blood-brain barrier supplies brain tissues with nutrients and filters certain compounds from the brain back to the bloodstream. In several neurodegenerative diseases, including Parkinson's disease (PD), there are disruptions of the blood-brain barrier. Cerebrospinal fluid (CSF) has been widely investigated in PD and in other parkinsonian syndromes with the aim of establishing useful biomarkers for an accurate differential diagnosis among these syndromes. This review article summarizes the studies reported on CSF levels of many potential biomarkers of PD. The most consistent findings are: (a) the possible role of CSF urate on the progression of the disease; (b) the possible relations of CSF total tau and phosphotau protein with the progression of PD and with the preservation of cognitive function in PD patients; (c) the possible value of CSF beta-amyloid 1-42 as a useful marker of further cognitive decline in PD patients, and (d) the potential usefulness of CSF neurofilament (NFL) protein levels in the differential diagnosis between PD and other parkinsonian syndromes. Future multicentric, longitudinal, prospective studies with long-term follow-up and neuropathological confirmation would be useful in establishing appropriate biomarkers for PD. PMID:25426023
Goonetilleke, U. R.; Scarborough, M.; Ward, S. A.; Hussain, S.; Kadioglu, A.; Gordon, S. B.
2012-01-01
ABSTRACT Pneumococcal meningitis can lead to death or serious neurological sequelae as a result of the host inflammatory response. We investigated the association between host response protein expression and outcome in patients with pneumococcal meningitis. Cerebrospinal fluid (CSF) was obtained from 80 patients with pneumococcal meningitis (40 nonsurvivors and 40 survivors) and 10 normal controls. Candidate proteins were analyzed for an association with survival. Complement C3 levels were 5-fold lower in nonsurvivors than in survivors (P < 0.05). This C3 reduction was not associated with lower levels in serum, indicating a compartmentalized CSF response. Transferrin levels were significantly higher in CSF (but not serum) from nonsurvivors than in CSF from survivors, suggestive of blood-brain barrier damage. Classical apoptosis proteins caspase 3 and apoptosis-inducing factor were not present in CSF. Expression of creatine kinase BB in clinically infected CSF suggested neuronal necrosis, but there was no clear association between level of expression and clinical outcome. Increased blood-brain barrier permeability and complement C3 depletion may have a role in determining outcome from bacterial meningitis. Therapeutic use of citicoline or caspase inhibitors is unlikely to have beneficial effects in patients with meningitis. PMID:22415003
Flow cytometric characterization of cerebrospinal fluid cells.
de Graaf, Marieke T; de Jongste, Arjen H C; Kraan, Jaco; Boonstra, Joke G; Sillevis Smitt, Peter A E; Gratama, Jan W
2011-09-01
Flow cytometry facilitates the detection of a large spectrum of cellular characteristics on a per cell basis, determination of absolute cell numbers and detection of rare events with high sensitivity and specificity. White blood cell (WBC) counts in cerebrospinal fluid (CSF) are important for the diagnosis of many neurological disorders. WBC counting and differential can be performed by microscopy, hematology analyzers, or flow cytometry. Flow cytometry of CSF is increasingly being considered as the method of choice in patients suspected of leptomeningeal localization of hematological malignancies. Additionally, in several neuroinflammatory diseases such as multiple sclerosis and paraneoplastic neurological syndromes, flow cytometry is commonly performed to obtain insight into the immunopathogenesis of these diseases. Technically, the low cellularity of CSF samples, combined with the rapidly declining WBC viability, makes CSF flow cytometry challenging. Comparison of flow cytometry with microscopic and molecular techniques shows that each technique has its own advantages and is ideally combined. We expect that increasing the number of flow cytometric parameters that can be simultaneously studied within one sample, will further refine the information on CSF cell subsets in low-cellular CSF samples and enable to define cell populations more accurately. Copyright © 2011 International Clinical Cytometry Society.
Use of duraseal in repair of cerebrospinal fluid leaks.
Chin, Christopher J; Kus, Lukas; Rotenberg, Brian W
2010-10-01
The purpose of our article is to review the use of the DuraSeal Sealant System (Confluent Surgical Inc., Waltham, MA) in the repair of complex cerebrospinal fluid (CSF) leaks in endoscopic skull-base surgery. Retrospective chart review. London Health Sciences Centre. A database of endoscopic skull-base cases between 2007 and 2009 that involved CSF leakage repaired with DuraSeal was created. Demographic data and operative reports were collected and analyzed qualitatively. Recurrence of CSF leak after repair. Five cases were identified that met study criteria. In four of the five cases, the repair was successful. There were no complications related to DuraSeal use. Comparison to a subset of patients using Tisseel Fibrin Sealant (Baxter, Toronto, ON) for repair did not show a significant difference in failure rate (χ2 = 0.029, p = .858). There are a variety of techniques described to repair CSF rhinorrhea, with various studies demonstrating the advantages of using tissue glues in CSF leak repairs. We used DuraSeal in five patients to enhance graft strength and form a watertight seal. The system was effective in the majority of patients. Our study is the first to report on endoscopic endonasal repair of CSF leaks using DuraSeal.
Vitamin B6 in plasma and cerebrospinal fluid of children.
Albersen, Monique; Bosma, Marjolein; Jans, Judith J M; Hofstede, Floris C; van Hasselt, Peter M; de Sain-van der Velden, Monique G M; Visser, Gepke; Verhoeven-Duif, Nanda M
2015-01-01
Over the past years, the essential role of vitamin B6 in brain development and functioning has been recognized and genetic metabolic disorders resulting in functional vitamin B6 deficiency have been identified. However, data on B6 vitamers in children are scarce. B6 vitamer concentrations in simultaneously sampled plasma and cerebrospinal fluid (CSF) of 70 children with intellectual disability were determined by ultra performance liquid chromatography-tandem mass spectrometry. For ethical reasons, CSF samples could not be obtained from healthy children. The influence of sex, age, epilepsy and treatment with anti-epileptic drugs, were investigated. The B6 vitamer composition of plasma (pyridoxal phosphate (PLP) > pyridoxic acid > pyridoxal (PL)) differed from that of CSF (PL > PLP > pyridoxic acid > pyridoxamine). Strong correlations were found for B6 vitamers in and between plasma and CSF. Treatment with anti-epileptic drugs resulted in decreased concentrations of PL and PLP in CSF. We provide concentrations of all B6 vitamers in plasma and CSF of children with intellectual disability (±epilepsy), which can be used in the investigation of known and novel disorders associated with vitamin B6 metabolism as well as in monitoring of the biochemical effects of treatment with vitamin B6.
Peng, Tao; Zhou, Yan; Li, Jinyi; Li, Jinghong; Wan, Wencui; Jia, Yanjie
2014-06-01
To investigate the diagnostic value of Delta-like 1 ligand (DLL1) in cerebrospinal fluid (CSF) and serum, in tuberculous meningitis (TBM). Patients with a definite diagnosis of central nervous system infection (TBM, viral meningitis/encephalitis or bacterial meningitis) were prospectively enrolled alongside patients with intracranial metastatic tumour and patients with no diagnosis (who served as controls). DLL1 content in CSF and serum was measured quantitatively by enzyme-linked immunosorbent assay; analyses were blinded. A total of 173 patients were enrolled: 62 with TBM; 38 with viral meningitis/encephalitis; 26 with bacterial meningitis; 17 with intracranial metastatic tumour; 30 with no diagnosis. CSF DLL1 content was highest for TBM; there were no differences in CSF DLL1 between the other groups. Serum DLL1 content was highest for the TBM and intracranial metastatic tumour groups, with significant differences between the TBM group and the viral meningitis/encephalitis, bacterial meningitis and nondiagnosed groups. There were no differences in serum DLL1 between the viral meningitis/encephalitis, bacterial meningitis and nondiagnosed groups, or between the TBM group and the tumour group. As a new biomarker, DLL1 may be of great clinical importance in the diagnosis of TBM. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Lu, Yu Yu; Wang, Hsin Yi; Lin, Ying; Lin, Wan Yu
2012-09-01
Radionuclide Cisternography (RNC) is of potential value in pointing out the sites of cerebrospinal fluid (CSF) leakage in patients with spontaneous intracranial hypotension (SIH). In the current report, we present two patients who underwent RNC for suspected CSF leakage. Both patients underwent magnetic resonance imaging (MRI) and RNC for evaluation. We describe a simple method to increase the detection ability of RNC for CSF leakage in patients with SIH.
Soluble Megalin is Reduced in Cerebrospinal Fluid Samples of Alzheimer's Disease Patients.
Spuch, Carlos; Antequera, Desireé; Pascual, Consuelo; Abilleira, Soledad; Blanco, María; Moreno-Carretero, María José; Romero-López, Jesús; Ishida, Tetsuya; Molina, Jose Antonio; Villarejo, Alberto; Bermejo-Pareja, Felix; Carro, Eva
2015-01-01
Megalin or low-density lipoprotein receptor-related protein-2 is a member of the low-density lipoprotein receptor family, which has been linked to Alzheimer's disease (AD) by clearing brain amyloid β-peptide (Aβ) across the blood-cerebrospinal fluid barrier at the choroid plexus. Here, we found a soluble form of megalin secreted from choroid plexus epithelial cells. Soluble megalin levels were also localized in the human cerebrospinal fluid (CSF), being reduced in AD patients. We have also shown that soluble megalin binding to Aβ is decreased in the CSF of AD patients, suggesting that decreased sequestration of Aβ in the CSF could be associated with defective clearance of Aβ and an increase of brain Aβ levels. Thus, therapies, which increase megalin expression, at the choroid plexus and/or enhance circulating soluble megalin hold potential to control brain Aβ-related pathologies in AD.
Soluble Megalin is Reduced in Cerebrospinal Fluid Samples of Alzheimer’s Disease Patients
Spuch, Carlos; Antequera, Desireé; Pascual, Consuelo; Abilleira, Soledad; Blanco, María; Moreno-Carretero, María José; Romero-López, Jesús; Ishida, Tetsuya; Molina, Jose Antonio; Villarejo, Alberto; Bermejo-Pareja, Felix; Carro, Eva
2015-01-01
Megalin or low-density lipoprotein receptor-related protein-2 is a member of the low-density lipoprotein receptor family, which has been linked to Alzheimer’s disease (AD) by clearing brain amyloid β-peptide (Aβ) across the blood–cerebrospinal fluid barrier at the choroid plexus. Here, we found a soluble form of megalin secreted from choroid plexus epithelial cells. Soluble megalin levels were also localized in the human cerebrospinal fluid (CSF), being reduced in AD patients. We have also shown that soluble megalin binding to Aβ is decreased in the CSF of AD patients, suggesting that decreased sequestration of Aβ in the CSF could be associated with defective clearance of Aβ and an increase of brain Aβ levels. Thus, therapies, which increase megalin expression, at the choroid plexus and/or enhance circulating soluble megalin hold potential to control brain Aβ-related pathologies in AD. PMID:25926771
Padilla-Zambrano, Huber S.; Tomás-Zapico, Cristina; García, Benjamin Fernández
2018-01-01
This concept article aims to show the rationale of targeting extracellular α-Synuclein (α-Syn) from cerebrospinal fluid (CSF) as a new strategy to remove this protein from the brain in Parkinson’s disease (PD). Misfolding and intracellular aggregation of α-synuclein into Lewy bodies are thought to be crucial in the pathogenesis of PD. Recent research has shown that small amounts of monomeric and oligomeric α-synuclein are released from neuronal cells by exocytosis and that this extracellular alpha-synuclein contributes to neurodegeneration, progressive spreading of alpha-synuclein pathology, and neuroinflammation. In PD, extracellular oligomeric-α-synuclein moves in constant equilibrium between the interstitial fluid (ISF) and the CSF. Thus, we expect that continuous depletion of oligomeric-α-synuclein in the CSF will produce a steady clearance of the protein in the ISF, preventing transmission and deposition in the brain. PMID:29570693
Menéndez-González, Manuel; Padilla-Zambrano, Huber S; Tomás-Zapico, Cristina; García, Benjamin Fernández
2018-03-23
This concept article aims to show the rationale of targeting extracellular α-Synuclein (α-Syn) from cerebrospinal fluid (CSF) as a new strategy to remove this protein from the brain in Parkinson's disease (PD). Misfolding and intracellular aggregation of α-synuclein into Lewy bodies are thought to be crucial in the pathogenesis of PD. Recent research has shown that small amounts of monomeric and oligomeric α-synuclein are released from neuronal cells by exocytosis and that this extracellular alpha-synuclein contributes to neurodegeneration, progressive spreading of alpha-synuclein pathology, and neuroinflammation. In PD, extracellular oligomeric-α-synuclein moves in constant equilibrium between the interstitial fluid (ISF) and the CSF. Thus, we expect that continuous depletion of oligomeric-α-synuclein in the CSF will produce a steady clearance of the protein in the ISF, preventing transmission and deposition in the brain.
Comparison of lacosamide concentrations in cerebrospinal fluid and serum in patients with epilepsy.
May, Theodor W; Brandt, Christian; Helmer, Renate; Bien, Christian G; Cawello, Willi
2015-07-01
This study was carried out to estimate the exposure of the central nervous system (CNS) to the antiepileptic drug (AED) lacosamide, under steady state conditions, in patients with epilepsy who take oral lacosamide alongside up to three other AEDs. Twenty-seven serum and cerebral spinal fluid (CSF) samples were collected from 21 patients receiving lacosamide for the treatment of epilepsy (50-600 mg/day over two or three doses). This included 23 time-matched pairs of serum and CSF samples from 19 patients. The concentration of lacosamide in each sample was determined using high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS). Linear regression was used to characterize the relationship between the CSF-to-serum ratio of lacosamide concentration and the time since dosing, the daily lacosamide dose, or the daily dose normalized by volume of distribution (Vd , approximated to total body water), and between the drug concentrations in each compartment (CSF vs. serum). Concentrations of lacosamide in CSF (mean ± standard deviation [SD] 7.37 ± 3.73 μg/ml, range 1.24-14.95, n = 27) and serum (mean ± SD 8.16 ± 3.82 μg/ml, range 2.29-15.45, n = 27) samples showed a good correlation over the dose range investigated. The mean CSF-to-serum ratio of lacosamide concentrations was 0.897 ± 0.193 (range 0.492-1.254, n = 23 time-matched pairs) and was independent of lacosamide dose. Drug concentrations in the CSF are often used to indicate those in the brain interstitial fluid. In patients with epilepsy who follow a stable oral AED dosing regimen, lacosamide concentration in CSF is approximately 85% of that found in serum, suggesting that serum may be a valuable indicator of lacosamide concentration in the CNS. Wiley Periodicals, Inc. © 2015 International League Against Epilepsy.
Predicting Fluid Flow in Stressed Fractures: A Quantitative Evaluation of Methods
NASA Astrophysics Data System (ADS)
Weihmann, S. A.; Healy, D.
2015-12-01
Reliable estimation of fracture stability in the subsurface is crucial to the success of exploration and production in the petroleum industry, and also for wider applications to earthquake mechanics, hydrogeology and waste disposal. Previous work suggests that fracture stability is related to fluid flow in crystalline basement rocks through shear or tensile instabilities of fractures. Our preliminary scoping analysis compares the fracture stability of 60 partly open (apertures 1.5-3 cm) and electrically conductive (low acoustic amplitudes relative to matrix) fractures from a 16 m section of a producing zone in a basement well in Bayoot field, Yemen, to a non-producing zone in the same well (also 16 m). We determine the Critically Stressed Fractures (CSF; Barton et al., 1995) and dilatation tendency (Td; Ferrill et al., 1999). We find that: 1. CSF (Fig. 1) is a poor predictor of high fluid flow in the inflow zone; 88% of the fractures are predicted to be NOT critically stressed and yet they all occur within a zone of high fluid flow rate 2. Td (Fig. 2) is also a poor predictor of high fluid flow in the inflow zone; 67% of the fractures have a LOW Td(< 0.6) 3. For the non-producing zone CSF is a very reliable predictor (100% are not critically stressed) whereas the values of Tdare consistent with their location in non-producing interval (81% are < 0.6) (Fig. 3 & 4). In summary, neither method correlates well with the observed abundance of hydraulically conductive fractures within the producing zone. Within the non-producing zone CSF and Td make reasonably accurate predictions. Fractures may be filled or partially filled with drilling mud or a lower density and electrically conductive fill such as clay in the producing zone and therefore appear (partly) open. In situ stress, fluid pressure, rock properties (friction, strength) and fracture orientation data used as inputs for the CSF and Td calculations are all subject to uncertainty. Our results suggest that scope exists to systematically quantify and explore the impacts of these uncertainties for better predictions of geomechanical stability and fluid conductivity in the subsurface.
Adachi, Kristina; Song, Sophie X; Kao, Roy L; Van Dyne, Elizabeth; Kempert, Pamela; Deville, Jaime G
2016-08-01
A 19-year-old girl with a history of precursor B acute lymphoblastic leukemia in remission presented with fever, headache, and a skin rash. Cerebrospinal fluid (CSF) examination reported pleocytosis with blast-like cells concerning for a central nervous system leukemic relapse. After the patient showed significant improvement on intravenous acyclovir, a repeat lumbar puncture revealed normalization of CSF. The abnormal CSF cells were reviewed and ultimately determined to be activated and atypical lymphocytes. The patient recovered uneventfully. Atypical lymphocytes resembling leukemic blasts are an unusual finding in viral meningitis. Varicella zoster virus reactivation should be considered during initial evaluation for central nervous system relapse of leukemia.
Bharucha, Tehmina; Chanthongthip, Anisone; Phuangpanom, Soumphou; Phonemixay, Ooyanong; Sengvilaipaseuth, Onanong; Vongsouvath, Manivanh; Lee, Sue; Newton, Paul N.; Dubot-Pérès, Audrey
2016-01-01
Background The use of filter paper as a simple, inexpensive tool for storage and transportation of blood, ‘Dried Blood Spots’ or Guthrie cards, for diagnostic assays is well-established. In contrast, there are a paucity of diagnostic evaluations of dried cerebrospinal fluid (CSF) spots. These have potential applications in low-resource settings, such as Laos, where laboratory facilities for central nervous system (CNS) diagnostics are only available in Vientiane. In Laos, a major cause of CNS infection is Japanese encephalitis virus (JEV). We aimed to develop a dried CSF spot protocol and to evaluate its diagnostic performance using the World Health Organisation recommended anti-JEV IgM antibody capture enzyme-linked immunosorbent assay (JEV MAC-ELISA). Methodology and Principal Findings Sample volumes, spotting techniques and filter paper type were evaluated using a CSF-substitute of anti-JEV IgM positive serum diluted in Phosphate Buffer Solution (PBS) to end-limits of detection by JEV MAC-ELISA. A conventional protocol, involving eluting one paper punch in 200μl PBS, did not detect the end-dilution, nor did multiple punches utilising diverse spotting techniques. However, pre-cut filter paper enabled saturation with five times the volume of CSF-substitute, sufficiently improving sensitivity to detect the end-dilution. The diagnostic accuracy of this optimised protocol was compared with routine, neat CSF in a pilot, retrospective study of JEV MAC-ELISA on consecutive CSF samples, collected 2009–15, from three Lao hospitals. In comparison to neat CSF, 132 CSF samples stored as dried CSF spots for one month at 25–30°C showed 81.6% (65.7–92.3 95%CI) positive agreement, 96.8% (91.0–99.3 95%CI) negative agreement, with a kappa coefficient of 0.81 (0.70–0.92 95%CI). Conclusions/Significance The novel design of pre-cut filter paper saturated with CSF could provide a useful tool for JEV diagnostics in settings with limited laboratory access. It has the potential to improve national JEV surveillance and inform vaccination policies. The saturation of filter paper has potential use in the wider context of pathogen detection, including dried spots for detecting other analytes in CSF, and other body fluids. PMID:26986061
Bakken, J S; Bruun, J N; Gaustad, P; Tasker, T C
1986-01-01
A single intravenous dose of 2.0 g of amoxicillin and 0.2 g of potassium clavulanate was given to patients with bacterial meningitis, and the pharmacokinetics of both drugs in the cerebrospinal fluid (CSF) and plasma were evaluated. Twenty-one patients aged 14 to 76 years were studied. Both amoxicillin and potassium clavulanate were detectable in the CSF as early as 1 h and reached peak concentrations by approximately 2 h. The highest mean CSF concentrations were 2.25 micrograms/ml for amoxicillin and 0.25 micrograms/ml for potassium clavulanate and were found in patients with moderately or severely inflamed meninges. The CSF penetration relative to plasma for amoxicillin and potassium clavulanate was 5.8 and 8.4%, respectively. These levels suggest that the amoxicillin-potassium clavulanate combination may be effective for the treatment of bacterial meningitis caused by beta-lactamase-producing pathogens. PMID:3777911
Cerebrospinal Fluid Shunting Complications in Children
Hanak, Brian W.; Bonow, Robert H.; Harris, Carolyn A.; Browd, Samuel R.
2018-01-01
Although cerebrospinal fluid (CSF) shunt placement is the most common procedure performed by pediatric neurosurgeons, shunts remain among the most failure-prone life-sustaining medical devices implanted in modern medical practice. This article provides an overview of the mechanisms of CSF shunt failure for the 3 most commonly employed definitive CSF shunts in the practice of pediatric neurosurgery: ventriculoperitoneal, ventriculopleural, and ventriculoatrial. The text has been partitioned into the broad modes of shunt failure: obstruction, infection, mechanical shunt failure, overdrainage, and distal catheter site-specific failures. Clinical management strategies for the various modes of shunt failure are discussed as are research efforts directed towards reducing shunt complication rates. As it is unlikely that CSF shunting will become an obsolete procedure in the foreseeable future, it is incumbent on the pediatric neurosurgery community to maintain focused efforts to improve our understanding of and management strategies for shunt failure and shunt-related morbidity. PMID:28249297
Cerebrospinal fluid monocytes in bacterial meningitis, viral meningitis, and neuroborreliosis.
Martinot, M; Greigert, V; Souply, L; Rosolen, B; De Briel, D; Mohseni Zadeh, M; Kaiser, J-D
2018-04-05
Cerebrospinal fluid (CSF) leukocytes analysis is commonly used to diagnose meningitis and to differentiate bacterial from viral meningitis. Interpreting CSF monocytes can be difficult for physicians, especially in France where lymphocytes and monocytes results are sometimes pooled. We assessed SF monocytes in patients presenting with microbiologically confirmed meningitis (CSF leukocyte count>10/mm 3 for adults or >30/mm 3 for children<2 months), i.e. bacterial meningitis (BM), viral meningitis (VM), and neuroborreliosis (NB). Two-hundred patients (82 BM, 86 VM, and 32 NB) were included. The proportions of monocytes were higher in VM (median 8%; range 0-57%) than in BM (median 5%; range 0-60%, P=0.03) or NB (median 5%; range 0-53%, P=0.46), with a high value overlap between conditions. CSF monocytes should not be used to discriminate BM from VM and NB because of value overlaps. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
The predictive value of cerebrospinal fluid tap-test in normal pressure hydrocephalus.
Damasceno, B P; Carelli, E F; Honorato, D C; Facure, J J
1997-06-01
Eighteen patients (mean age of 66.5 years) with normal pressure hydrocephalus (NPH) underwent a ventriculo-peritoneal shunt surgery. Prior to operation a cerebrospinal fluid tap-test (CSF-TT) was performed with measurements of gait pattern and psychometric functions (memory, visuo-motor speed and visuo-constructive skills) before and after the removal of 50 ml CSF by lumbar puncture (LP). Fifteen patients improved and 3 were unchanged after surgery. Short duration of disease, gait disturbance preceding mental deterioration, wide temporal horns and small sulci on CT-scan were associated with good outcome after shunting. There was a good correlation between the results of CSF-TT and shunt surgery (chi 2 = 4.11, phi = 0.48, p < 0.05), with gait test showing highest correlation (r = 0.99, p = 0.01). In conclusion, this version of CSF-TT proved to be an effective test to predict improvement after shunting in patients with NPH.
Tullberg, Mats; Blennow, Kaj; Månsson, Jan-Eric; Fredman, Pam; Tisell, Magnus; Wikkelsö, Carsten
2008-01-01
Background The aim of this study was to explore biochemical changes in the cerebrospinal fluid (CSF) induced by shunt surgery and the relationship between these changes and clinical improvement. Methods We measured clinical symptoms and analysed lumbar CSF for protein content, neurodegeneration and neurotransmission markers in patients with secondary (SNPH, n = 17) and idiopathic NPH (INPH, n = 18) before and 3 months after shunt surgery. Patients were divided into groups according to whether or not there was improvement in clinical symptoms after surgery. Results Preoperatively, the only pathological findings were elevated neurofilament protein (NFL), significantly more so in the SNPH patients than in the INPH patients, and elevated albumin content. Higher levels of NFL correlated with worse gait, balance, wakefulness and neuropsychological performance. Preoperatively, no differences were seen in any of the CSF biomarkers between patients that improved after surgery and those that did not improve. Postoperatively, a greater improvement in gait and balance performance correlated with a more pronounced reduction in NFL. Levels of albumin, albumin ratio, neuropeptide Y, vasoactive intestinal peptide and ganglioside GD3 increased significantly after shunting in both groups. In addition, Gamma amino butyric acid increased significantly in SNPH and tau in INPH. Conclusion We conclude that a number of biochemical changes occur after shunt surgery, but there are no marked differences between the SNPH and INPH patients. The results indicate that NFL may be a marker that can predict a surgically reversible state in NPH. PMID:18439296
Muñoz-Gómez, Sigridh; Wirkowski, Elizabeth; Cunha, Burke A
2015-01-01
Because external ventricular drains (EVDs) provide access to cerebrospinal fluid (CSF), there is potential for EVD associated acute bacterial meningitis (EVD-AM). Post-craniotomy, in patients with EVDs, one or more CSF abnormalities are commonly present making the diagnosis of EVD-AM problematic. EVD-AM was defined as elevated CSF lactic acid (>6 nmol/L), plus CSF marked pleocytosis (>50 WBCs/mm(3)), plus a positive Gram stain (same morphology as CSF isolate), plus a positive CSF culture of neuropathogen (same morphology as Gram stained organism). We reviewed 22 adults with EVDs to determine if our four CSF parameters combined accurately identified EVD-AM. No single or combination of <4 CSF parameters correctly diagnosed or ruled out EVD-AM. Combined our four CSF parameters clearly differentiated EVD-AM from one case of pseudomeningitis due to E. cloacae. We conclude that our four CSF criteria combined are useful in diagnosing EVD-AM in adults. Copyright © 2015 Elsevier Inc. All rights reserved.
Pahlavian, Soroush Heidari; Bunck, Alexander C.; Thyagaraj, Suraj; Giese, Daniel; Loth, Francis; Hedderich, Dennis M.; Kröger, Jan Robert; Martin, Bryn A.
2016-01-01
Abnormal alterations in cerebrospinal fluid (CSF) flow are thought to play an important role in pathophysiology of various craniospinal disorders such as hydrocephalus and Chiari malformation. Three directional phase contrast MRI (4D Flow) has been proposed as one method for quantification of the CSF dynamics in healthy and disease states, but prior to further implementation of this technique, its accuracy in measuring CSF velocity magnitude and distribution must be evaluated. In this study, an MR-compatible experimental platform was developed based on an anatomically detailed 3D printed model of the cervical subarachnoid space and subject specific flow boundary conditions. Accuracy of 4D Flow measurements was assessed by comparison of CSF velocities obtained within the in vitro model with the numerically predicted velocities calculated from a spatially averaged computational fluid dynamics (CFD) model based on the same geometry and flow boundary conditions. Good agreement was observed between CFD and 4D Flow in terms of spatial distribution and peak magnitude of through-plane velocities with an average difference of 7.5% and 10.6% for peak systolic and diastolic velocities, respectively. Regression analysis showed lower accuracy of 4D Flow measurement at the timeframes corresponding to low CSF flow rate and poor correlation between CFD and 4D Flow in-plane velocities. PMID:27043214
Suppression of glymphatic fluid transport in a mouse model of Alzheimer's disease.
Peng, Weiguo; Achariyar, Thiyagarajan M; Li, Baoman; Liao, Yonghong; Mestre, Humberto; Hitomi, Emi; Regan, Sean; Kasper, Tristan; Peng, Sisi; Ding, Fengfei; Benveniste, Helene; Nedergaard, Maiken; Deane, Rashid
2016-09-01
Glymphatic transport, defined as cerebrospinal fluid (CSF) peri-arterial inflow into brain, and interstitial fluid (ISF) clearance, is reduced in the aging brain. However, it is unclear whether glymphatic transport affects the distribution of soluble Aβ in Alzheimer's disease (AD). In wild type mice, we show that Aβ40 (fluorescently labeled Aβ40 or unlabeled Aβ40), was distributed from CSF to brain, via the peri-arterial space, and associated with neurons. In contrast, Aβ42 was mostly restricted to the peri-arterial space due mainly to its greater propensity to oligomerize when compared to Aβ40. Interestingly, pretreatment with Aβ40 in the CSF, but not Aβ42, reduced CSF transport into brain. In APP/PS1 mice, a model of AD, with and without extensive amyloid-β deposits, glymphatic transport was reduced, due to the accumulation of toxic Aβ species, such as soluble oligomers. CSF-derived Aβ40 co-localizes with existing endogenous vascular and parenchymal amyloid-β plaques, and thus, may contribute to the progression of both cerebral amyloid angiopathy and parenchymal Aβ accumulation. Importantly, glymphatic failure preceded significant amyloid-β deposits, and thus, may be an early biomarker of AD. By extension, restoring glymphatic inflow and ISF clearance are potential therapeutic targets to slow the onset and progression of AD. Copyright © 2016 Elsevier Inc. All rights reserved.
Felbaum, Daniel R; Mueller, Kyle; Anaizi, Amjad; Mason, Robert B; Jean, Walter C; Voyadzis, Jean M
2016-12-28
Suboccipital craniotomy is a workhorse neurosurgical operation for approaching the posterior fossa but carries a high risk of pseudomeningocele and cerebrospinal fluid (CSF) leak. We describe our experience with a simple T-shaped fascial opening that preserves the occipital myofascial cuff as compared to traditional methods to reduce this risk. A single institution, retrospective review of prospectively collected database was performed of patients that underwent a suboccipital craniectomy or craniotomy. Patient data was reviewed for craniotomy or craniectomy, dural graft, and/or sealant use as well as CSF complications. A pseudomeningocele was defined as a subcutaneous collection of cerebrospinal fluid palpable clinically and confirmed on imaging. A CSF leak was defined as a CSF-cutaneous fistula manifested by CSF leaking through the wound. All patients underwent regular postoperative visits of two weeks, one month, and three months. Our retrospective review identified 33 patients matching the inclusion criteria. Overall, our cohort had a 21% (7/33) rate of clinical and radiographic pseudomeningocele formation with 9% (3/33) requiring surgical revision or a separate procedure. The rate of clinical and radiographic pseudomeningocele formation in the myofascial cuff preservation technique was less than standard techniques (12% and 31%, respectively). Revision or further surgical procedures were also reduced in the myofascial cuff preservation technique vs. the standard technique (6% vs 13%). Preservation of the myofascial cuff during posterior fossa surgery is a simple and adoptable technique that reduces the rate of pseudomeningocele formation and CSF leak as compared with standard techniques.
Chern, Alexander; Hunter, Jacob B; Bennett, Marc L
2017-01-01
To determine if cranioplasty techniques following translabyrinthine approaches to the cerebellopontine angle are cost-effective. Retrospective case series. One hundred eighty patients with available financial data who underwent translabyrinthine approaches at a single academic referral center between 2005 and 2015. Cranioplasty with a dural substitute, layered fat graft, and a resorbable mesh plate secured with screws Main Outcome Measures: billing data was obtained for each patient's hospital course for translabyrinthine approaches and postoperative cerebrospinal fluid (CSF) leaks. One hundred nineteen patients underwent translabyrinthine approaches with an abdominal fat graft closure, with a median cost of $25759.89 (range, $15885.65-$136433.07). Sixty-one patients underwent translabyrinthine approaches with a dural substitute, abdominal fat graft, and a resorbable mesh for closure, with a median cost of $29314.97 (range, $17674.28-$111404.55). The median cost of a CSF leak was $50401.25 (range, $0-$384761.71). The additional cost of a CSF leak when shared by all patients who underwent translabyrinthine approaches is $6048.15. The addition of a dural substitute and a resorbable mesh plate after translabyrinthine approaches reduced the CSF leak from 12 to 1.9%, an 84.2% reduction, and a median savings per patient of $2932.23. Applying our cohort's billing data to previously published cranioplasty techniques, costs, and leak rate improvements after translabyrinthine approaches, all techniques were found to be cost-effective. Resorbable mesh cranioplasty is cost-effective at reducing CSF leaks after translabyrinthine approaches. Per our billing data and achieving the same CSF leak rate, cranioplasty costs exceeding $5090.53 are not cost-effective.
Aeinehband, Shahin; Behbahani, Homira; Grandien, Alf; Nilsson, Bo; Ekdahl, Kristina N.; Lindblom, Rickard P. F.; Piehl, Fredrik; Darreh-Shori, Taher
2013-01-01
Acetylcholine (ACh), the classical neurotransmitter, also affects a variety of nonexcitable cells, such as endothelia, microglia, astrocytes and lymphocytes in both the nervous system and secondary lymphoid organs. Most of these cells are very distant from cholinergic synapses. The action of ACh on these distant cells is unlikely to occur through diffusion, given that ACh is very short-lived in the presence of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), two extremely efficient ACh-degrading enzymes abundantly present in extracellular fluids. In this study, we show compelling evidence for presence of a high concentration and activity of the ACh-synthesizing enzyme, choline-acetyltransferase (ChAT) in human cerebrospinal fluid (CSF) and plasma. We show that ChAT levels are physiologically balanced to the levels of its counteracting enzymes, AChE and BuChE in the human plasma and CSF. Equilibrium analyses show that soluble ChAT maintains a steady-state ACh level in the presence of physiological levels of fully active ACh-degrading enzymes. We show that ChAT is secreted by cultured human-brain astrocytes, and that activated spleen lymphocytes release ChAT itself rather than ACh. We further report differential CSF levels of ChAT in relation to Alzheimer’s disease risk genotypes, as well as in patients with multiple sclerosis, a chronic neuroinflammatory disease, compared to controls. Interestingly, soluble CSF ChAT levels show strong correlation with soluble complement factor levels, supporting a role in inflammatory regulation. This study provides a plausible explanation for the long-distance action of ACh through continuous renewal of ACh in extracellular fluids by the soluble ChAT and thereby maintenance of steady-state equilibrium between hydrolysis and synthesis of this ubiquitous cholinergic signal substance in the brain and peripheral compartments. These findings may have important implications for the role of cholinergic signaling in states of inflammation in general and in neurodegenerative disease, such as Alzheimer’s disease and multiple sclerosis in particular. PMID:23840379
Henriksen, Louise T; Nersting, Jacob; Raja, Raheel A; Frandsen, Thomas L; Rosthøj, Steen; Schrøder, Henrik; Albertsen, Birgitte K
2014-07-01
L-asparaginase is an important drug in the treatment of childhood acute lymphoblastic leukaemia (ALL). Cerebrospinal fluid (CSF) asparagine depletion is considered a marker of asparaginase effect in the central nervous system (CNS) and may play a role in CNS-directed anti-leukaemia therapy. The objective of this study was to describe CSF asparagine depletion during 30 weeks of pegylated asparaginase therapy, 1000 iu/m(2) i.m. every second week, and to correlate CSF asparagine concentration with serum L-asparaginase enzyme activity. Danish children (1-17 years) with ALL, treated according to the Nordic Society of Paediatric Haematology and Oncology ALL2008 protocol, standard and intermediate risk, were included. CSF samples were obtained throughout L-asparaginase treatment at every scheduled lumbar puncture. A total of 128 samples from 31 patients were available for analysis. Median CSF asparagine concentration decreased from a pre-treatment level of 5·3 μmol/l to median levels ≤1·5 μmol/l. However, only 4/31 patients (five samples) had CSF asparagine concentrations below the limit of detection (0·1 μmol/l). In 11 patients, 24 paired same day serum and CSF samples were obtained. A decrease in CSF asparagine corresponded to serum enzyme activities above 50 iu/l. Higher serum enzyme activities were not followed by more extensive depletion. In conclusion, pegylated asparaginase 1000 iu/m(2) i.m. every second week effectively reduced CSF asparagine levels. © 2014 John Wiley & Sons Ltd.
Tomoda, Y; Korogi, Y; Aoki, T; Morioka, T; Takahashi, H; Ohno, M; Takeshita, I
2008-03-01
The pathogenesis of cerebrospinal fluid (CSF) hypovolemia is supposed to be caused by CSF leakage through small dural defects. To compare source three-dimensional (3D) fast spin-echo (FSE) images of magnetic resonance (MR) myelography with radionuclide cisternography findings, and to evaluate the feasibility of MR myelography in the detection of CSF leakage. A total of 67 patients who were clinically suspected of CSF hypovolemia underwent indium-111 radionuclide cisternography, and 27 of those who had direct findings of CSF leakage were selected for evaluation. MR myelography with 3D FSE sequences (TR/TE 6000/203 ms) was performed at the lumbar spine for all patients. We evaluated source images and maximum intensity projection (MIP) images of MR myelography, and the findings were correlated with radionuclide cisternography findings. MR myelography of five healthy volunteers was used as a reference. The MR visibility of the CSF leakage was graded as definite (leakage clearly visible), possible (leakage poorly seen), or absent (not shown). CSF leakage was identified with source 3D FSE images in 22 (81.5%) of 27 patients. Of the 22 patients, 16 were graded as definite and six were graded as possible. For the definite cases, 3D FSE images clearly showed the extent of the leaked CSF in the paraspinal structures. In the remaining five patients with absent findings, radionuclide cisternography showed only slight radionuclide activity out of the arachnoid space. Source 3D FSE images of MR myelography seem useful in the detection of CSF leakage. Invasive radionuclide cisternography may be reserved for equivocal cases only.
Cerebrospinal fluid neopterin decay characteristics after initiation of antiretroviral therapy.
Yilmaz, Aylin; Yiannoutsos, Constantin T; Fuchs, Dietmar; Price, Richard W; Crozier, Kathryn; Hagberg, Lars; Spudich, Serena; Gisslén, Magnus
2013-05-10
Neopterin, a biomarker of macrophage activation, is elevated in the cerebrospinal fluid (CSF) of most HIV-infected individuals and decreases after initiation of antiretroviral therapy (ART). We studied decay characteristics of neopterin in CSF and blood after commencement of ART in HIV-infected subjects and estimated the set-point levels of CSF neopterin after ART-mediated viral suppression. CSF and blood neopterin were longitudinally measured in 102 neurologically asymptomatic HIV-infected subjects who were treatment-naïve or had been off ART for ≥ 6 months. We used a non-linear model to estimate neopterin decay in response to ART and a stable neopterin set-point attained after prolonged ART. Seven subjects with HIV-associated dementia (HAD) who initiated ART were studied for comparison. Non-HAD patients were followed for a median 84.7 months. Though CSF neopterin concentrations decreased rapidly after ART initiation, it was estimated that set-point levels would be below normal CSF neopterin levels (<5.8 nmol/L) in only 60/102 (59%) of these patients. Pre-ART CSF neopterin was the primary predictor of set-point (P <0.001). HAD subjects had higher baseline median CSF neopterin levels than non-HAD subjects (P <0.0001). Based on the non-HAD model, only 14% of HAD patients were predicted to reach normal levels. After virologically suppressive ART, abnormal CSF neopterin levels persisted in 41% of non-HAD and the majority of HAD patients. ART is not fully effective in ameliorating macrophage activation in CNS as well as blood, especially in subjects with higher pre-ART levels of immune activation.
Takahashi, Waka; Nakada, Taka-aki; Abe, Ryuzo; Tanaka, Kumiko; Matsumura, Yosuke; Oda, Shigeto
2014-08-01
Interleukin 6 (IL-6) is a proinflammatory cytokine produced during infections. We hypothesized that IL-6 levels in the cerebrospinal fluid (CSF) would be elevated in bacterial meningitis and useful for diagnosing and predicting neurologic outcomes. For the differentiation of bacterial meningitis, serum and CSF samples were obtained from patients with an altered level of consciousness. Patients were classified into 3 groups: bacterial meningitis, nonbacterial central nervous system disease, and other site sepsis. Of the 70 patients included in this study, there were 13 in the bacterial meningitis group, 21 in the nonbacterial central nervous system disease group, and 36 in the other site sepsis group. The CSF IL-6 level was significantly higher in the bacterial meningitis group than in the other 2 groups (P<.0001). Of the 5 CSF parameters assessed, CSF IL-6 level exhibited the largest area under the receiver operating characteristic curve (0.962), with a cut-off value of 644 pg/mL (sensitivity, 92.3%; specificity, 89.5%). To examine a potential association between a high CSF level and neurologic outcome, CSF IL-6 levels were divided into 4 quartiles, and each level was compared with the frequency of a good neurologic outcome. The frequency of a good neurologic outcome was significantly lower in the highest CSF IL-6 quartile than in the other 3 quartiles (odds ratio, 0.18; 95% confidence interval, 0.05-0.69; P=.013). Measurement of the CSF IL-6 level is useful for diagnosing bacterial meningitis. Copyright © 2014 Elsevier Inc. All rights reserved.
Queto, Túlio; Vasconcelos, Zilton F M; Luz, Ricardo Alves; Anselmo, Carina; Guiné, Ana Amélia A; e Silva, Patricia Machado R; Farache, Júlia; Cunha, José Marcos T; Bonomo, Adriana C; Gaspar-Elsas, Maria Ignez C; Xavier-Elsas, Pedro
2011-05-09
Granulocyte Colony-Stimulating Factor (G-CSF), which mobilizes hemopoietic stem cells (HSC), is believed to protect HSC graft recipients from graft-versus-host disease by enhancing Th2 cytokine secretion. Accordingly, G-CSF should aggravate Th2-dependent allergic pulmonary inflammation and the associated eosinophilia. We evaluated the effects of G-CSF in a model of allergic pulmonary inflammation. Allergic pulmonary inflammation was induced by repeated aerosol allergen challenge in ovalbumin-sensitized C57BL/6J mice. The effects of allergen challenge and of G-CSF pretreatment were evaluated by monitoring: a) eosinophilia and cytokine/chemokine content of bronchoalveolar lavage fluid, pulmonary interstitium, and blood; b) changes in airway resistance; and c) changes in bone-marrow eosinophil production. Contrary to expectations, G-CSF pretreatment neither induced nor enhanced allergic pulmonary inflammation. Instead, G-CSF: a) suppressed accumulation of infiltrating eosinophils in bronchoalveolar, peribronchial and perivascular spaces of challenged lungs; and b) prevented ovalbumin challenge-induced rises in airway resistance. G-CSF had multiple regulatory effects on cytokine and chemokine production: in bronchoalveolar lavage fluid, levels of IL-1 and IL-12 (p40), eotaxin and MIP-1a were decreased; in plasma, KC, a neutrophil chemoattractant, was increased, while IL-5 was decreased and eotaxin was unaffected. In bone-marrow, G-CSF: a) prevented the increase in bone-marrow eosinophil production induced by ovalbumin challenge of sensitized mice; and b) selectively stimulated neutrophil colony formation. These observations challenge the view that G-CSF deviates cytokine production towards a Th2 profile in vivo, and suggest that this neutrophil-selective hemopoietin affects eosinophilic inflammation by a combination of effects on lung cytokine production and bone-marrow hemopoiesis. Copyright © 2011 Elsevier Inc. All rights reserved.
Sarkar, Mahua; Grossman, Robert G; Toups, Elizabeth G; Chow, Diana S-L
2017-11-30
In the present study, a sensitive and robust LC-MS/MS method has been developed and validated for the quantification of riluzole in human plasma and cerebrospinal fluid (CSF) in clinical samples from patients with spinal cord injury (SCI). Riluzole and its labeled internal standard (IS) were isolated from plasma and CSF by liquid-liquid extraction using ethyl acetate. Riluzole (m/z 235→166) and IS (m/z 238→169) were detected by electrospray ionization (ESI) using multiple reaction monitoring (MRM) in a positive mode. The assay was linear in the concentration range of 0.5 (LLOQ, signal/noise ratio>10)-800ng/ml in plasma, and 1.0 (LLOQ)-800ng/ml in CSF samples. The intra- and inter-day accuracy in plasma were 94.2-110.0% and 97.8-102.0%, respectively, and those in CSF were 87.6-105.1% and 91.9-98.8%, respectively. The intra- and inter-day precision were 2.2-7.2% and 4.0-9.1%, respectively, in plasma, and 1.4-14.1% and 2.6-11.5%, respectively in CSF. Matrix effect was negligible from both matrices with signal percentages of 97.6-100.6% in plasma and 99.4-106.4% in CSF. The recoveries were >75% in plasma, >84% in CSF with low protein (53.9mg/dl), and >68% in CSF with high protein (348.2mg/dl). This method was successfully applied to quantify riluzole concentrations in plasma and CSF from patients with SCI. Copyright © 2017 Elsevier B.V. All rights reserved.
Constantinescu, R; Krýsl, D; Bergquist, F; Andrén, K; Malmeström, C; Asztély, F; Axelsson, M; Menachem, E B; Blennow, K; Rosengren, L; Zetterberg, H
2016-04-01
Clinical symptoms and long-term outcome of autoimmune encephalitis are variable. Diagnosis requires multiple investigations, and treatment strategies must be individually tailored. Better biomarkers are needed for diagnosis, to monitor disease activity and to predict long-term outcome. The value of cerebrospinal fluid (CSF) markers of neuronal [neurofilament light chain protein (NFL), and total tau protein (T-tau)] and glial cell [glial fibrillary acidic protein (GFAP)] damage in patients with autoimmune encephalitis was investigated. Demographic, clinical, magnetic resonance imaging, CSF and antibody-related data of 25 patients hospitalized for autoimmune encephalitis and followed for 1 year were retrospectively collected. Correlations between these data and consecutive CSF levels of NFL, T-tau and GFAP were investigated. Disability, assessed by the modified Rankin scale, was used for evaluation of disease activity and long-term outcome. The acute stage of autoimmune encephalitis was accompanied by high CSF levels of NFL and T-tau, whereas normal or significantly lower levels were observed after clinical improvement 1 year later. NFL and T-tau reacted in a similar way but at different speeds, with T-tau reacting faster. CSF levels of GFAP were initially moderately increased but did not change significantly later on. Final outcome (disability at 1 year) directly correlated with CSF-NFL and CSF-GFAP levels at all time-points and with CSF-T-tau at 3 ± 1 months. This correlation remained significant after age adjustment for CSF-NFL and T-tau but not for GFAP. In autoimmune encephalitis, CSF levels of neuronal and glial cell damage markers appear to reflect disease activity and long-term disability. © 2016 EAN.
Vanderstichele, Hugo Marcel Johan; Janelidze, Shorena; Demeyer, Leentje; Coart, Els; Stoops, Erik; Herbst, Victor; Mauroo, Kimberley; Brix, Britta; Hansson, Oskar
2016-05-31
Reduced cerebrospinal fluid (CSF) concentration of amyloid-β1-42 (Aβ1-42) reflects the presence of amyloidopathy in brains of subjects with Alzheimer's disease (AD). To qualify the use of Aβ1-42/Aβ1-40 for improvement of standard operating procedures (SOP) for measurement of CSF Aβ with a focus on CSF collection, storage, and analysis. Euroimmun ELISAs for CSF Aβ isoforms were used to set up a SOP with respect to recipient properties (low binding, polypropylene), volume of tubes, freeze/thaw cycles, addition of detergents (Triton X-100, Tween-20) in collection or storage tubes or during CSF analysis. Data were analyzed with linear repeated measures and mixed effects models. Optimization of CSF analysis included a pre-wash of recipients (e.g., tubes, 96-well plates) before sample analysis. Using the Aβ1-42/Aβ1-40 ratio, in contrast to Aβ1-42, eliminated effects of tube type, additional freeze/thaw cycles, or effect of CSF volumes for polypropylene storage tubes. 'Low binding' tubes reduced the loss of Aβ when aliquoting CSF or in function of additional freeze/thaw cycles. Addition of detergent in CSF collection tubes resulted in an almost complete absence of variation in function of collection procedures, but affected the concentration of Aβ isoforms in the immunoassay. The ratio of Aβ1-42/Aβ1-40 is a more robust biomarker than Aβ1-42 toward (pre-) analytical interfering factors. Further, 'low binding' recipients and addition of detergent in collection tubes are able to remove effects of SOP-related confounding factors. Integration of the Aβ1-42/Aβ1-40 ratio and 'low-binding tubes' into guidance criteria may speed up worldwide standardization of CSF biomarker analysis.
Ahmed, Omar H; Marcus, Sonya; Tauber, Jenna R; Wang, Binhuan; Fang, Yixin; Lebowitz, Richard A
2017-01-01
Objective Perioperative lumbar drain (LD) use in the setting of endoscopic cerebrospinal fluid (CSF) leak repair is a well-established practice. However, recent data suggest that LDs may not provide significant benefit and may thus confer unnecessary risk. To examine this, we conducted a meta-analysis to investigate the effect of LDs on postoperative CSF leak recurrence following endoscopic repair of CSF rhinorrhea. Data Sources A comprehensive search was performed with the following databases: Ovid MEDLINE (1947 to November 2015), EMBASE (1974 to November 2015), Cochrane Review, and PubMed (1990 to November 2015). Review Method A meta-analysis was performed according to PRISMA guidelines. Results A total of 1314 nonduplicate studies were identified in our search. Twelve articles comprising 508 cases met inclusion criteria. Overall, use of LDs was not associated with significantly lower postoperative CSF leak recurrence rates following endoscopic repair of CSF rhinorrhea (odds ratio: 0.89, 95% confidence interval: 0.40-1.95) as compared with cases performed without LDs. Subgroup analysis of only CSF leaks associated with anterior skull base resections (6 studies, 153 cases) also demonstrated that lumbar drainage did not significantly affect rates of successful repair (odds ratio: 2.67, 95% confidence interval: 0.64-11.10). Conclusions There is insufficient evidence to support that adjunctive lumbar drainage significantly reduces postoperative CSF leak recurrence in patients undergoing endoscopic CSF leak repair. Subgroup analysis examining only those patients whose CSF leaks were associated with anterior skull base resections demonstrated similar results. More level 1 and 2 studies are needed to further investigate the efficacy of LDs, particularly in the setting of patients at high risk for CSF leak recurrence.
Geijselaers, Stefan L C; Aalten, Pauline; Ramakers, Inez H G B; De Deyn, Peter Paul; Heijboer, Annemieke C; Koek, Huiberdina L; OldeRikkert, Marcel G M; Papma, Janne M; Reesink, Fransje E; Smits, Lieke L; Stehouwer, Coen D A; Teunissen, Charlotte E; Verhey, Frans R J; van der Flier, Wiesje M; Biessels, Geert Jan
2018-01-01
Abnormal insulin signaling in the brain has been linked to Alzheimer's disease (AD). To evaluate whether cerebrospinal fluid (CSF) insulin levels are associated with cognitive performance and CSF amyloid-β and Tau. Additionally, we explore whether any such association differs by sex or APOE ɛ4 genotype. From 258 individuals participating in the Parelsnoer Institute Neurodegenerative Diseases, a nationwide multicenter memory clinic population, we selected 138 individuals (mean age 66±9 years, 65.2% male) diagnosed with subjective cognitive impairment (n = 45), amnestic mild cognitive impairment (n = 44), or AD (n = 49), who completed a neuropsychological assessment, including tests of global cognition and memory performance, and who underwent lumbar puncture. We measured CSF levels of insulin, amyloid-β1-42, total (t-)Tau, and phosphorylated (p-)Tau. CSF insulin levels did not differ between the diagnostic groups (p = 0.136). Across the whole study population, CSF insulin was unrelated to cognitive performance and CSF biomarkers of AD, after adjustment for age, sex, body mass index, diabetes status, and clinic site (all p≥0.131). Importantly, however, we observed effect modification by sex and APOE ɛ4 genotype. Specifically, among women, higher insulin levels in the CSF were associated with worse global cognition (standardized regression coefficient -0.483; p = 0.008) and higher p-Tau levels (0.353; p = 0.040). Among non-carriers of the APOE ɛ4 allele, higher CSF insulin was associated with higher t-Tau (0.287; p = 0.008) and p-Tau (0.246; p = 0.029). Our findings provide further evidence for a relationship between brain insulin signaling and AD pathology. It also highlights the need to consider sex and APOE ɛ4 genotype when assessing the role of insulin.
Meany, Holly J; Fox, Elizabeth; McCully, Cynthia; Tucker, Chris; Balis, Frank M
2008-08-01
Erlotinib hydrochloride is a small molecule inhibitor of epidermal growth factor receptor (EGFR). EGFR is over-expressed in primary brain tumors and solid tumors that metastasize to the central nervous system. We evaluated the plasma and cerebrospinal fluid (CSF) pharmacokinetics of erlotinib and its active metabolite OSI-420 after an intravenous (IV) dose in a non-human primate model. Erlotinib was administered as a 1 h IV infusion to four adult rhesus monkeys. Serial blood and CSF samples were drawn over 48 h and erlotinib and OSI-420 were quantified with an HPLC/tandem mass spectroscopic assay. Pharmacokinetic parameters were estimated using non-compartmental and compartmental methods. CSF penetration was calculated from the AUC(CSF):AUC(plasma). Erlotinib disappearance from plasma after a short IV infusion was biexponential with a mean terminal half-life of 5.2 h and a mean clearance of 128 ml/min per m(2). OSI-420 exposure (AUC) in plasma was 30% (range 12-59%) of erlotinib, and OSI-420 clearance was more than 5-fold higher than erlotinib. Erlotinib and OSI-420 were detectable in CSF. The CSF penetration (AUC(CSF):AUC(plasma)) of erlotinib and OSI-420 was <5% relative to total plasma concentration, but CSF drug exposure was approximately 30% of plasma free drug exposure, which was calculated from published plasma protein binding values. The IV administration of erlotinib was well tolerated. Erlotinib and its active metabolite OSI-420 are measurable in CSF after an IV dose. The drug exposure (AUC) in the CSF is limited relative to total plasma concentrations but is substantial relative the free drug exposure in plasma.
Hagberg, Lars; Cinque, Paola; Gisslen, Magnus; Brew, Bruce J; Spudich, Serena; Bestetti, Arabella; Price, Richard W; Fuchs, Dietmar
2010-06-03
HIV-1 invades the central nervous system (CNS) in the context of acute infection, persists thereafter in the absence of treatment, and leads to chronic intrathecal immunoactivation that can be measured by the macrophage activation marker, neopterin, in cerebrospinal fluid (CSF). In this review we describe our experience with CSF neopterin measurements in 382 untreated HIV-infected patients across the spectrum of immunosuppression and HIV-related neurological diseases, in 73 untreated AIDS patients with opportunistic CNS infections, and in 233 treated patients.In untreated patients, CSF neopterin concentrations are almost always elevated and increase progressively as immunosuppression worsens and blood CD4 cell counts fall. However, patients with HIV dementia exhibit particularly high CSF neopterin concentrations, above those of patients without neurological disease, though patients with CNS opportunistic infections, including CMV encephalitis and cryptococcal meningitis, also exhibit high levels of CSF neopterin. Combination antiretroviral therapy, with its potent effect on CNS HIV infection and CSF HIV RNA, mitigates both intrathecal immunoactivation and lowers CSF neopterin. However, despite suppression of plasma and CSF HIV RNA to below the detection limits of clinical assays (<50 copies HIV RNA/mL), CSF neopterin often remains mildly elevated, indicating persistent low-level intrathecal immune activation and raising the important questions of whether this elevation is driven by continued CNS infection and whether it causes continued indolent CNS injury.Although nonspecific, CSF neopterin can serve as a useful biomarker in the diagnosis of HIV dementia in the setting of confounding conditions, in monitoring the CNS inflammatory effects of antiretroviral treatment, and give valuable information to the cause of ongoing brain injury.
Peluso, Michael J; Ferretti, Francesca; Peterson, Julia; Lee, Evelyn; Fuchs, Dietmar; Boschini, Antonio; Gisslén, Magnus; Angoff, Nancy; Price, Richard W; Cinque, Paola; Spudich, Serena
2012-09-10
To characterize HIV-infected patients with neurosymptomatic cerebrospinal fluid (CSF) 'escape', defined as detectable CSF HIV RNA in the setting of treatment-suppressed plasma levels or CSF RNA more than 1-log higher than plasma RNA. Retrospective case series. Four urban medical centers in the United States and Europe. Virologically controlled HIV-infected patients on antiretroviral therapy (ART) with progressive neurologic abnormalities who were determined to have CSF 'escape'. INTERVENTION Optimization of ART based upon drug susceptibility and presumed central nervous system exposure. Levels of CSF HIV RNA and inflammatory markers, clinical signs and symptoms, and MRI findings. Ten patients presented with new neurologic abnormalities, which included sensory, motor, and cognitive manifestations. Median CSF HIV RNA was 3900 copies/ml (range 134-9056), whereas median plasma HIV RNA was 62 copies/ml (range <50 to 380). Median CD4 T-cell count was 482 cells/μl (range 290-660). All patients had been controlled to less than 500 copies/ml for median 27.5 months (range 2-96) and five of 10 had been suppressed to less than 50 copies/ml for median 19.5 months (range 2-96). Patients had documentation of a stable ART regimen for median 21 months (range 9-60). All had CSF pleocytosis or elevated CSF protein; seven of eight had abnormalities on MRI; and six of seven harbored CSF resistance mutations. Following optimization of ART, eight of nine patients improved clinically. The development of neurologic symptoms in patients on ART with low or undetectable plasma HIV levels may be an indication of CSF 'escape'. This study adds to a growing body of literature regarding this rare condition in well controlled HIV infection.
Niu, Jing-Zhong; Zhang, Yan-Bo; Li, Mei-Yi; Liu, Li-Li
2011-12-25
The present study was to investigate the effect of cerebrospinal fluid (CSF) from the rats with hypoxic preconditioning (HPC) on apoptosis of cultured hippocampal neurons in neonate rats under oxygen glucose deprivation (OGD). Adult Wistar rats were exposed to 3 h of hypoxia for HPC, and then their CSF was taken out. Cultured hippocampal neurons from the neonate rats were randomly divided into four groups (n = 6): normal control group, OGD group, normal CSF group and HPC CSF group. OGD group received 1.5 h of incubation in glucose-free Earle's solution containing 1 mmol/L Na2S2O4, and normal and HPC CSF groups were subjected to 1 d of corresponding CSF treatments followed by 1.5 h OGD. The apoptosis of neurons was analyzed by confocal laser scanning microscope and flow cytometry using Annexin V/PI double staining. Moreover, protein expressions of Bcl-2 and Bax were detected by immunofluorescence. The results showed that few apoptotic cells were observed in normal control group, whereas the number of apoptotic cells was greatly increased in OGD group. Both normal and HPC CSF could decrease the apoptosis of cultured hippocampal neurons injured by OGD (P < 0.01). Notably, the protective effect of HPC CSF was stronger than that of normal one (P < 0.01). Compared to OGD group, normal and HPC CSF groups both showed significantly higher levels of Bcl-2 (P < 0.01), and Bcl-2 expression level in HPC CSF group was even higher than that in normal CSF group (P < 0.01). Whereas the expressions of Bax in normal and HPC CSF groups were significantly lower than that in OGD group (P < 0.01), and the Bax expression in HPC CSF group was even lower than that in normal CSF group (P < 0.01). These results suggest that CSF from hypoxic-preconditioned rats could degrade apoptotic rate of OGD-injured hippocampal neurons by up-regulating expression of Bcl-2 and down-regulating expression of Bax.
Anxiety in major depression and cerebrospinal fluid free gamma-aminobutyric acid.
Mann, J John; Oquendo, Maria A; Watson, Kalycia Trishana; Boldrini, Maura; Malone, Kevin M; Ellis, Steven P; Sullivan, Gregory; Cooper, Thomas B; Xie, Shan; Currier, Dianne
2014-10-01
Low gamma-aminobutyric acid (GABA) is implicated in both anxiety and depression pathophysiology. They are often comorbid, but most clinical studies have not examined these relationships separately. We investigated the relationship of cerebrospinal fluid (CSF) free GABA to the anxiety and depression components of a major depressive episode (MDE) and to monoamine systems. Patients with a DSM-IV major depressive episode (N = 167: 130 major depressive disorder; 37 bipolar disorder) and healthy volunteers (N = 38) had CSF free GABA measured by gas chromatography mass spectroscopy. Monoamine metabolites were assayed by high performance liquid chromatography. Symptomatology was assessed by Hamilton depression rating scale. Psychic anxiety severity increased with age and correlated with lower CSF free GABA, controlling for age. CSF free GABA declined with age but was not related to depression severity. Other monoamine metabolites correlated positively with CSF GABA but not with psychic anxiety or depression severity. CSF free GABA was lower in MDD compared with bipolar disorder and healthy volunteers. GABA levels did not differ based on a suicide attempt history in mood disorders. Recent exposure to benzodiazepines, but not alcohol or past alcoholism, was associated with a statistical trend for more severe anxiety and lower CSF GABA. Lower CSF GABA may explain increasing severity of psychic anxiety in major depression with increasing age. This relationship is not seen with monoamine metabolites, suggesting treatments targeting the GABAergic system should be evaluated in treatment-resistant anxious major depression and in older patients. © 2014 Wiley Periodicals, Inc.
Kleine, Tilmann O; Nebe, C Thomas; Löwer, Christa; Lehmitz, Reinhard; Kruse, Rolf; Geilenkeuser, Wolf-Jochen; Dorn-Beineke, Alexandra
2009-08-01
Flow cytometry (FCM) is used with haematology analyzers (HAs) to count cells and differentiate leukocytes in cerebrospinal fluid (CSF). To evaluate the FCM techniques of HAs, 10 external DGKL trials with CSF controls were carried out in 2004 to 2008. Eight single platform HAs with and without CSF equipment were evaluated with living blood leukocytes and erythrocytes in CSF like DGKL controls: Coulter (LH750,755), Abbott CD3200, CD3500, CD3700, CD4000, Sapphire, ADVIA 120(R) CSF assay, and Sysmex XE-2100(R). Results were compared with visual counting of native cells in Fuchs-Rosenthal chamber, unstained, and absolute values of leukocyte differentiation, assayed by dual platform analysis with immune-FCM (FACSCalibur, CD45, CD14) and the chamber counts. Reference values X were compared with HA values Y by statistical evaluation with Passing/Bablock (P/B) linear regression analysis to reveal conformity of both methods. The HAs, studied, produced no valid results with DGKL CSF controls, because P/B regression revealed no conformity with the reference values due to:-blank problems with impedance analysis,-leukocyte loss with preanalytical erythrocyte lysis procedures, especially of monocytes,-inaccurate results with ADVIA cell sphering and cell differentiation with algorithms and enzyme activities (e.g., peroxidase). HA techniques have to be improved, e.g., using no erythrocyte lysis and CSF adequate techniques, to examine CSF samples precise and accurate. Copyright 2009 International Society for Advancement of Cytometry.
Carpenter, Linda L; Tyrka, Audrey R; McDougle, Christopher J; Malison, Robert T; Owens, Michael J; Nemeroff, Charles B; Price, Lawrence H
2004-04-01
Previous studies have reported elevated concentrations of cerebrospinal fluid (CSF) corticotropin-releasing factor (CRF) in patients with major depression. Elevations of CSF CRF have also been reported in adult laboratory animals exposed to the stress of brief maternal deprivation or maternal neglect in the neonatal or preweaning period. The present study was designed to determine whether major depression and a history of perceived early adversity in childhood are independently associated with elevated CSF CRF concentrations in adults. In this case-control study, 27 medication-free adults with major depression and 25 matched controls underwent standardized lumbar puncture for collection of a single CSF sample at 1200. Subjects provided data about significant adverse early-life experiences and rated their global perceived level of stress during pre-school and preteen years on a six-point Likert scale. The mean difference in CSF CRF between depressed patients and controls did not reach statistical significance. In a regression model, perceived early-life stress was a significant predictor of CSF CRF, but depression was not. Perinatal adversity and perceived adversity in the preteen adversity years (ages 6-13 years) were both independently associated with decreasing CSF CRF concentrations. The relationship observed between perceived early-life stress and adult CSF CRF concentrations in this study closely parallels recent preclinical findings. More work is needed to elucidate the critical nature and timing of early events that may be associated with enduring neuroendocrine changes in humans.
The late and dual origin of cerebrospinal fluid-contacting neurons in the mouse spinal cord
Petracca, Yanina L.; Sartoretti, Maria Micaela; Di Bella, Daniela J.; Marin-Burgin, Antonia; Carcagno, Abel L.; Schinder, Alejandro F.; Lanuza, Guillermo M.
2016-01-01
Considerable progress has been made in understanding the mechanisms that control the production of specialized neuronal types. However, how the timing of differentiation contributes to neuronal diversity in the developing spinal cord is still a pending question. In this study, we show that cerebrospinal fluid-contacting neurons (CSF-cNs), an anatomically discrete cell type of the ependymal area, originate from surprisingly late neurogenic events in the ventral spinal cord. CSF-cNs are identified by the expression of the transcription factors Gata2 and Gata3, and the ionic channels Pkd2l1 and Pkd1l2. Contrasting with Gata2/3+ V2b interneurons, differentiation of CSF-cNs is independent of Foxn4 and takes place during advanced developmental stages previously assumed to be exclusively gliogenic. CSF-cNs are produced from two distinct dorsoventral regions of the mouse spinal cord. Most CSF-cNs derive from progenitors circumscribed to the late-p2 and the oligodendrogenic (pOL) domains, whereas a second subset of CSF-cNs arises from cells bordering the floor plate. The development of these two subgroups of CSF-cNs is differentially controlled by Pax6, they adopt separate locations around the postnatal central canal and they display electrophysiological differences. Our results highlight that spatiotemporal mechanisms are instrumental in creating neural cell diversity in the ventral spinal cord to produce distinct classes of interneurons, motoneurons, CSF-cNs, glial cells and ependymal cells. PMID:26839365
ANXIETY IN MAJOR DEPRESSION AND CEREBROSPINAL FLUID FREE GAMMA-AMINOBUTYRIC ACID
Mann, J. John; Oquendo, Maria A.; Watson, Kalycia Trishana; Boldrini, Maura; Malone, Kevin M.; Ellis, Steven P.; Sullivan, Gregory; Cooper, Thomas B.; Xie, Shan; Currier, Dianne
2016-01-01
Background Low gamma-aminobutyric acid (GABA) is implicated in both anxiety and depression pathophysiology. They are often comorbid, but most clinical studies have not examined these relationships separately. We investigated the relationship of cerebrospinal fluid (CSF) free GABA to the anxiety and depression components of a major depressive episode (MDE) and to monoamine systems. Methods and Materials Patients with a DSM-IV major depressive episode (N = 167: 130 major depressive disorder; 37 bipolar disorder) and healthy volunteers (N = 38) had CSF free GABA measured by gas chromatography mass spectroscopy. Monoamine metabolites were assayed by high performance liquid chromatography. Symptomatology was assessed by Hamilton depression rating scale. Results Psychic anxiety severity increased with age and correlated with lower CSF free GABA, controlling for age. CSF free GABA declined with age but was not related to depression severity. Other monoamine metabolites correlated positively with CSF GABA but not with psychic anxiety or depression severity. CSF free GABA was lower in MDD compared with bipolar disorder and healthy volunteers. GABA levels did not differ based on a suicide attempt history in mood disorders. Recent exposure to benzodiazepines, but not alcohol or past alcoholism, was associated with a statistical trend for more severe anxiety and lower CSF GABA. Conclusions Lower CSF GABA may explain increasing severity of psychic anxiety in major depression with increasing age. This relationship is not seen with monoamine metabolites, suggesting treatments targeting the GABAergic system should be evaluated in treatment-resistant anxious major depression and in older patients. PMID:24865448
Qvarnstrom, Yvonne; Xayavong, Maniphet; da Silva, Ana Cristina Aramburu; Park, Sarah Y; Whelen, A Christian; Calimlim, Precilia S; Sciulli, Rebecca H; Honda, Stacey A A; Higa, Karen; Kitsutani, Paul; Chea, Nora; Heng, Seng; Johnson, Stuart; Graeff-Teixeira, Carlos; Fox, LeAnne M; da Silva, Alexandre J
2016-01-01
Angiostrongylus cantonensis is the most common infectious cause of eosinophilic meningitis. Timely diagnosis of these infections is difficult, partly because reliable laboratory diagnostic methods are unavailable. The aim of this study was to evaluate the usefulness of a real-time polymerase chain reaction (PCR) assay for the detection of A. cantonensis DNA in human cerebrospinal fluid (CSF) specimens. A total of 49 CSF specimens from 33 patients with eosinophilic meningitis were included: A. cantonensis DNA was detected in 32 CSF specimens, from 22 patients. Four patients had intermittently positive and negative real-time PCR results on subsequent samples, indicating that the level of A. cantonensis DNA present in CSF may fluctuate during the course of the illness. Immunodiagnosis and/or supplemental PCR testing supported the real-time PCR findings for 30 patients. On the basis of these observations, this real-time PCR assay can be useful to detect A. cantonensis in the CSF from patients with eosinophilic meningitis. © The American Society of Tropical Medicine and Hygiene.
Kawaguchi, Tomohiro; Arakawa, Kazuya; Nomura, Kazuhiro; Ogawa, Yoshikazu; Katori, Yukio; Tominaga, Teiji
2017-12-01
Endoscopic endonasal surgery, an innovative surgical technique, is used to approach sinus lesions, lesions of the skull base, and intradural tumors. The cooperation of experienced otolaryngologists and neurosurgeons is important to achieve safe and reliable surgical results. The bath plug closure method is a treatment option for patients with cerebrospinal fluid(CSF)leakage. Although it includes dural and/or intradural procedures, surgery tends to be performed by otolaryngologists because its indications, detailed maneuvers, and pitfalls are not well recognized by neurosurgeons. We reviewed the cases of patients with CSF leakage treated by using the bath plug closure method with an endoscopic endonasal approach at our institution. Three patients were treated using the bath plug closure method. CSF leakage was caused by a meningocele in two cases and trauma in one case. No postoperative intracranial complications or recurrence of CSF leakage were observed. The bath plug closure method is an effective treatment strategy and allows neurosurgeons to gain in-depth knowledge of the treatment options for CSF leakage by using an endoscopic endonasal approach.
Hata, Masahiro; Tanaka, Toshihisa; Kazui, Hiroaki; Ishii, Ryouhei; Canuet, Leonides; Pascual-Marqui, Roberto D; Aoki, Yasunori; Ikeda, Shunichiro; Sato, Shunsuke; Suzuki, Yukiko; Kanemoto, Hideki; Yoshiyama, Kenji; Iwase, Masao
2017-09-01
Recently, cerebrospinal fluid (CSF) biomarkers related to Alzheimer's disease (AD) have garnered a lot of clinical attention. To explore neurophysiological traits of AD and parameters for its clinical diagnosis, we examined the association between CSF biomarkers and electroencephalography (EEG) parameters in 14 probable AD patients. Using exact low-resolution electromagnetic tomography (eLORETA), artifact-free 40-sesond EEG data were estimated with current source density (CSD) and lagged phase synchronization (LPS) as the EEG parameters. Correlations between CSF biomarkers and the EEG parameters were assessed. Patients with AD showed significant negative correlation between CSF beta-amyloid (Aβ)-42 concentration and the logarithms of CSD over the right temporal area in the theta band. Total tau concentration was negatively correlated with the LPS between the left frontal eye field and the right auditory area in the alpha-2 band in patients with AD. Our study results suggest that AD biomarkers, in particular CSF Aβ42 and total tau concentrations are associated with the EEG parameters CSD and LPS, respectively. Our results could yield more insights into the complicated pathology of AD.
An Antidepressant Decreases CSF Aβ Production in Healthy Individuals and in Transgenic AD Mice
Sheline, Yvette I.; West, Tim; Yarasheski, Kevin; Swarm, Robert; Jasielec, Mateusz S.; Fisher, Jonathan R.; Ficker, Whitney D.; Yan, Ping; Xiong, Chengjie; Frederiksen, Christine; Grzelak, Monica V.; Chott, Robert; Bateman, Randall J.; Morris, John C.; Mintun, Mark A.; Lee, Jin-Moo; Cirrito, John R.
2014-01-01
Serotonin signaling suppresses generation of amyloid-β (Aβ) in vitro and in animal models of Alzheimer’s disease (AD). We show that in an aged transgenic AD mouse model (APP/PS1 plaque-bearing mice), the antidepressant citalopram, a selective serotonin reuptake inhibitor (SSRI), decreased Aβ in brain interstitial fluid (ISF) in a dose-dependent manner. Growth of individual amyloid plaques was assessed in plaque-bearing mice that were chronically administered citalopram. Citalopram arrested the growth of pre-existing plaques and reduced the appearance of new plaques by 78%. In healthy human volunteers, citalopram’s effects on Aβ production and Aβ concentrations in cerebrospinal fluid (CSF) were measured prospectively using stable-isotope labeling kinetics (SILK), with CSF sampling during acute dosing of citalopram. Aβ production in CSF was slowed by 37% in the citalopram group compared to placebo. This change was associated with a 38% decrease in total CSF Aβ concentrations in the drug-treated group. The ability to safely decrease Aβ concentrations is potentially important as a preventive strategy for AD. This study demonstrates key target engagement for future AD prevention trials. PMID:24828079
Kong, Ping; Zhang, Ben-Shu; Lei, Ping; Kong, Xiao-Dong; Zhang, Shi-Shuang; Li, Dai; Zhang, Yun
2015-08-01
Parkinson's disease is a degenerative disorder of the central nervous system. In spite of extensive research, neither the cause nor the mechanisms have been firmly established thus far. One assumption is that certain toxic substances may exist in the cerebro-spinal fluid (CSF) of Parkinson's disease patients. To confirm the neurotoxicity of CSF and study the potential correlation between neurotoxicity and the severity of Parkinson's disease, CSF was added to cultured cells. By observation of cell morphology, changes in the levels of lactate dehydrogenase, the ratio of tyrosine hydroxylase-positive cells, and the expression of tyrosine hydroxylase mRNA and protein, the differences between the two groups were shown. The created in vitro model of dopaminergic neurons using primary culture of mouse embryonic mesencephalic tissue is suitable for the study of neurotoxicity. The observations of the present study indicated that CSF from Parkinson's disease patients contains factors that can cause specific injury to cultured dopaminergic neurons. However, no obvious correlation was found between the neurotoxicity of CSF and the severity of Parkinson's disease.
Baldi, Pablo C.; Araj, George F.; Racaro, Graciela C.; Wallach, Jorge C.; Fossati, Carlos A.
1999-01-01
The diagnosis of human neurobrucellosis usually relies on the detection of antibodies to Brucella lipopolysaccharide (LPS) in cerebrospinal fluid (CSF) by agglutination tests or enzyme-linked immunosorbent assay (ELISA). Here we describe the detection of immunoglobulin G (IgG) to cytoplasmic proteins (CP) of Brucella spp. by ELISA and Western blotting in seven CSF samples from five patients with neurobrucellosis. While IgG to CP (titers of 200 to 12,800) and IgG to LPS (800 to 6,400) were found in the CSF of these patients, these antibodies were not detected in CSF samples from two patients who had systemic brucellosis without neurological involvement. The latter, however, had serum IgG and IgM to both LPS and CP. No reactivity to these antigens was found in CSF samples from 14 and 20 patients suffering from nonbrucellar meningitis and noninfectious diseases, respectively. These findings suggest that, in addition to its usefulness in the serological diagnosis of human systemic brucellosis, the ELISA with CP antigen can be used for the specific diagnosis of human neurobrucellosis. PMID:10473531
Djenoune, Lydia; Khabou, Hanen; Joubert, Fanny; Quan, Feng B.; Nunes Figueiredo, Sophie; Bodineau, Laurence; Del Bene, Filippo; Burcklé, Céline; Tostivint, Hervé; Wyart, Claire
2014-01-01
Over 90 years ago, Kolmer and Agduhr identified spinal cerebrospinal fluid-contacting neurons (CSF-cNs) based on their morphology and location within the spinal cord. In more than 200 vertebrate species, they observed ciliated neurons around the central canal that extended a brush of microvilli into the cerebrospinal fluid (CSF). Although their morphology is suggestive of a primitive sensory cell, their function within the vertebrate spinal cord remains unknown. The identification of specific molecular markers for these neurons in vertebrates would benefit the investigation of their physiological roles. PKD2L1, a transient receptor potential channel that could play a role as a sensory receptor, has been found in cells contacting the central canal in mouse. In this study, we demonstrate that PKD2L1 is a specific marker for CSF-cNs in the spinal cord of mouse (Mus musculus), macaque (Macaca fascicularis) and zebrafish (Danio rerio). In these species, the somata of spinal PKD2L1+ CSF-cNs were located below or within the ependymal layer and extended an apical bulbous extension into the central canal. We found GABAergic PKD2L1-expressing CSF-cNs in all three species. We took advantage of the zebrafish embryo for its transparency and rapid development to identify the progenitor domains from which pkd2l1+ CSF-cNs originate. pkd2l1+ CSF-cNs were all GABAergic and organized in two rows—one ventral and one dorsal to the central canal. Their location and marker expression is consistent with previously described Kolmer–Agduhr cells. Accordingly, pkd2l1+ CSF-cNs were derived from the progenitor domains p3 and pMN defined by the expression of nkx2.2a and olig2 transcription factors, respectively. Altogether our results suggest that a system of CSF-cNs expressing the PKD2L1 channel is conserved in the spinal cord across bony vertebrate species. PMID:24834029
Wilson, Michele O; Barrell, Graham K; Prickett, Timothy C R; Espiner, Eric A
2018-01-01
C-type natriuretic peptide (CNP) is a paracrine growth factor widely expressed within tissues of the central nervous system. Consistent with this is the high concentration of CNP in cerebrospinal fluid (CSF), exceeding levels in the systemic circulation. CNP abundance is high in hypothalamus and especially enriched in pituitary tissue where - in contrast to hypothalamus - processing to CNP-22 is minimal. Recently we have shown that dexamethasone acutely raises CNP peptides throughout the brain as well as in CSF and plasma. Postulating that molecular forms of CNP would differ in central tissues compared to forms in pituitary and plasma, we have characterized the molecular forms of CNP in tissues (hypothalamus, anterior and posterior pituitary gland) and associated fluids (CSF and plasma) using size-exclusion high performance liquid chromatography (SE-HPLC) and radioimmunoassay in control (saline-treated) and dexamethasone-treated adult sheep. Three immunoreactive-CNP components were identified which were consistent with proCNP (1-103), CNP-53 and CNP-22, but the presence and proportions of these different fragments differed among tissues. Peaks consistent with CNP-53 were the dominant form in all tissues and fluids. Peaks consistent with proCNP, conspicuous in hypothalamic extracts, were negligible in CSF whereas proportions of low molecular weight immunoreactivity (IR) consistent with CNP-22 were similar in hypothalamus, posterior pituitary gland and CSF. In contrast, in both plasma and the anterior pituitary gland, proportions of higher molecular weight IR, consistent with CNP-53 and proCNP, predominated, and low molecular weight IR consistent with CNP-22 was very low. After dexamethasone, proCNP like material - but not other forms - was increased in all samples except CSF, consistent with increased synthesis and secretion. In conclusion, immunoreactive forms of CNP in central tissues differ from those identified in anterior pituitary tissue and plasma - suggesting that the anterior pituitary gland may contribute to systemic levels of CNP in some physiological settings. Copyright © 2017 Elsevier Inc. All rights reserved.
Innovative real CSF leak simulation model for rhinology training: human cadaveric design.
AlQahtani, Abdulaziz A; Albathi, Abeer A; Alhammad, Othman M; Alrabie, Abdulkarim S
2018-04-01
To study the feasibility of designing a human cadaveric simulation model of real CSF leak for rhinology training. The laboratory investigation took place at the surgical academic center of Prince Sultan Military Medical City between 2016 and 2017. Five heads of human cadaveric specimens were cannulated into the intradural space through two frontal bone holes. Fluorescein-dyed fluid was injected intracranialy, then endoscopic endonasal iatrogenic skull base defect was created with observation of fluid leak, followed by skull base reconstruction. The outcome measures included subjective assessment of integrity of the design, the ability of creating real CSF leak in multiple site of skull base and the possibility of watertight closure by various surgical techniques. The fluid filled the intradural space in all specimens without spontaneous leak from skull base or extra sinus areas. Successfully, we demonstrated fluid leak from all areas after iatrogenic defect in the cribriform plate, fovea ethmoidalis, planum sphenoidale sellar and clival regions. Watertight closure was achieved in all defects using different reconstruction techniques (overly, underlay and gasket seal closure). The design is simulating the real patient with CSF leak. It has potential in the learning process of acquiring and maintaining the surgical skills of skull base reconstruction before direct involvement of the patient. This model needs further evaluation and competence measurement as training tools in rhinology training.
Gueorguieva, Ivelina; Clark, Simon R; McMahon, Catherine J; Scarth, Sylvia; Rothwell, Nancy J; Tyrrell, Pippa J; Tyrell, Pippa J; Hopkins, Stephen J; Rowland, Malcolm
2008-03-01
What is already known about this subject? The naturally occurring interlukin-1 receptor antagonist (IL-1RA) markedly protects rodents against ischaemic, excitotoxic and traumatic brain injury, suggesting it may be of therapeutic value. When administered intravenously to patients soon after stroke, IL-1RA is safe and reduces the peripheral inflammatory response. However, IL-1RA is a large protein (17 kDa), which may limit brain penetration, thereby limiting its potential utility in brain injury. What this study adds. The purpose of these experiments was to determine the pharmacokinetics of IL-1RA in cerebrospinal fluid (CSF) of patients, to allow modelling that would aid development of therapeutic regimens. Peripherally administered IL-1RA crosses slowly into and out of the CSF of patients with subarachnoid haemorrhage and, at steady state, CSF IL-1RA concentration (range 115-886 ng ml(-1)) was similar to that found to be neuroprotective in rats (range 91-232 ng ml(-1)), although there was considerable variability among patients. However, there is a large concentration gradient of IL-1RA between plasma and CSF. These CSF:plasma data are consistent with very low permeation of IL-1RA into the CSF and elimination kinetics from it controlled by the volumetric turnover of CSF. The naturally occurring interlukin-1 receptor antagonist (IL-1RA) markedly protects rodents against ischaemic, excitotoxic and traumatic brain injury, suggesting it may be of therapeutic value. The aim was to determine the pharmacokinetics of IL-1RA in cerebrospinal fluid (CSF) of patients, to allow modelling that would aid development of therapeutic regimens. When administered intravenously to patients soon after stroke, IL-1RA is safe and reduces the peripheral inflammatory response. However, IL-1RA is a large protein (17 kDa), which may limit brain penetration, thereby limiting its potential utility in brain injury. In seven patients with subarchnoid haemorrhage (SAH), IL-1RA was administered by intravenous bolus, then infusion for 24 h, and both blood and CSF, via external ventricular drains, were sampled during and after stopping the infusion. Plasma steady-state concentrations were rapidly attained and maintained throughout the infusion, whereas CSF concentrations rose slowly towards a plateau during the 24-h infusion, reaching at best only 4% of that in plasma. Plasma kinetic parameters were within the literature range. Modelling of the combined data yielded rate constants entering and leaving the CSF of 0.0019 h(-1)[relative standard error (RSE) = 19%] and 0.1 h(-1) (RSE = 19%), respectively. Peripherally administered IL-1RA crosses slowly into and out of the CSF of patients with SAH. However, there is a large concentration gradient of IL-1RA between plasma and CSF. These CSF:plasma data are consistent with very low permeation of IL-1RA into the CSF and elimination kinetics from it controlled by the volumetric turnover of CSF.
Takayanagui, O M; Bonato, P S; Dreossi, S A C; Lanchote, V L
2002-01-01
Aims Albendazole (ABZ) is effective in the treatment of neurocysticercosis. ABZ undergoes extensive metabolism to (+) and (−)-albendazole sulphoxide (ASOX), which are further metabolized to albendazole sulphone (ASON). We have investigated the distribution of (+)-ASOX (−)-ASOX, and ASON in cerebrospinal fluid (CSF) of patients with neurocysticercosis. Methods Twelve patients with a diagnosis of active brain parenchymal neurocysticercosis treated with albendazole for 8 days (15 mg kg−1 day−1) were investigated. On day 8, serial blood samples were collected during the dose interval (0–12 h) and one CSF sample was taken from each patient by lumbar puncture at different time points up to 12 h after the last albendazole dose. Albendazole metabolites were determined in CSF and plasma samples by h.p.l.c. using a Chiralpak AD column and fluorescence detection. Population curves for CSF albendazole metabolite concentration vs time were constructed. Results The mean plasma/CSF ratios were 2.6 (95% CI: 1.9, 3.3) for (+)-ASOX and 2.7 (95% CI: 1.8, 3.7) for (−)-ASOX, with the two-tailed P value of 0.9873 being non-significant. These data indicate that the transport of ASOX through the blood–brain barrier is not enantioselective, but rather depends on passive diffusion. The present results suggest the accumulation of the (+)-ASOX metabolite in the CSF of patients with neurocysticercosis. The CSF AUC(+)/AUC(−) ratio was 3.4 for patients receiving albendazole every 12 h. The elimination half-life of both ASOX enantiomers in CSF was 2.5 h. ASOX was the predominant metabolite in the CSF compared with ASON; the CSF AUCASOX/AUCASON ratio was approximately 20 and the elimination half-life of ASON in CSF was 2.6 h. Conclusions We have demonstrated accumulation of the (+)-ASOX metabolite in CSF, which was about three times greater than the (−) antipode. ASOX concentrations were approximately 20 times higher than those observed for the ASON metabolite. PMID:12207631
Lenfestey, Robert W; Smith, P Brian; Moody, M Anthony; Clark, Reese H; Cotten, C Michael; Seed, Patrick C; Benjamin, Daniel K
2007-09-01
Infection is a common and potentially devastating complication following placement of ventriculoperitoneal (VP) shunts and cerebrospinal fluid (CSF) reservoirs in neonates. The goal of this study was to determine the normal ranges for cell count parameters in neonates with VP shunts and CSF reservoirs, as well as to determine the predictive value of CSF parameters as markers of infection. The authors evaluated neonates from 150 different neonatal intensive care units of the Pediatrix Medical Group who had undergone a lumbar puncture, VP shunt insertion, or CSF reservoir placement between 1997 and 2004. Data were collected from 9704 neonates with a mean birthweight of 2573 g and a mean gestational age of 35 weeks. Of these neonates, 181 had VP shunt insertions or CSF reservoir placements. In neonates with negative CSF cultures, significant differences were found between those with and without VP shunts or CSF reservoirs when comparing red blood cell (RBC) count (620/mm' compared with 155/mm3, p < 0.05), absolute eosinophil count (4/mm3 compared with 2/mm3, p < 0.001), protein levels (179 mg/dl compared with 115 mg/dl, p < 0.001), and glucose levels (27.5 mg/dl compared with 49 mg/dl, p < 0.001). No significant difference was found between white blood cell (WBC) counts in neonates with or without VP shunts who had negative CSF cultures. The sensitivity and specificity of a cutoff value of 20 WBCs/mm3 for diagnosing meningitis in neonates with positive cultures and intraventricular drainage devices were 67% and 62%, respectively. Although differences exist between CSF parameters found in neonates with or without VP shunts or CSF reservoirs, only the difference in RBC count is large enough to be clinically significant. The authors found that the utility of CSF parameters in neonates with VP shunts or CSF reservoirs was limited due to poor diagnostic sensitivity and specificity.
Sugawara, Taku; Itoh, Yasunobu; Hirano, Yoshitaka; Higashiyama, Naoki; Shimada, Yoichi; Kinouchi, Hiroyuki; Mizoi, Kazuo
2005-10-01
Extradural or subcutaneous cerebrospinal fluid (CSF) leakage is a common complication after spinal surgery and is associated with the risks of poor wound healing, meningitis, and pseudomeningocele. Numerous methods to prevent postoperative CSF leakage are available, but pressure-tight dural closure remains difficult, especially with synthetic surgical membranes. The efficacy of a novel dural closure technique was assessed by detecting extradural or subcutaneous CSF leakage on magnetic resonance imaging. The novel dural closure technique using absorbable polyglactin acid sheet and fibrin glue and the conventional procedure using only fibrin glue were evaluated retrospectively by identifying extradural or subcutaneous CSF leakage on magnetic resonance imaging scans in the acute (2-7 d) and chronic (3-6 mo) postoperative stages after spinal intradural surgery in 53 patients. The incidence of extradural and subcutaneous CSF leakage was significantly lower (P < 0.05) in the acute (20%) and chronic (0%) stages using polyglactin acid sheet and fibrin glue in 15 patients compared with that in the acute (81%) and chronic (24%) stages using only fibrin glue in 38 patients. One patient in the fibrin glue-only group required repair surgery for cutaneous CSF leakage. The combination of polyglactin acid sheet and fibrin glue can achieve water-tight closure after spinal intradural surgery and can minimize the risk of intractable postoperative CSF leakage. This simple, economical technique is recommended for dural closure after spinal intradural surgery.
Mantzoros, C; Flier, J S; Lesem, M D; Brewerton, T D; Jimerson, D C
1997-06-01
Studies in rodents have shown that leptin acts in the central nervous system to modulate food intake and energy metabolism. To evaluate the possible role of leptin in the weight loss of anorexia nervosa, this study compared cerebrospinal fluid (CSF) and plasma leptin concentrations in anorexic patients and controls. Subjects included 11 female patients with anorexia nervosa studied at low weight and after treatment, and 15 healthy female controls. Concentrations of leptin in blood and CSF were measured by RIA. Patients with anorexia nervosa, compared to controls, had decreased concentrations of leptin in CSF (98 +/- 26 vs. 160 +/- 58 pg/mL; P < 0.0005) and plasma (1.75 +/- 0.46 vs. 7.01 +/- 3.92 ng/mL; P < 0.005). The CSF to plasma leptin ratio, however, was higher for patients (0.060 +/- 0.023) than for controls (0.025 +/- 0.007; P < 0.0001). At posttreatment testing, although patients had not yet reached normal body weight, CSF and plasma leptin concentrations had increased to normal levels. These results demonstrate the dynamic changes in plasma and CSF leptin during positive energy balance in anorexia nervosa. The results further suggest that normalization of CSF leptin levels before full weight restoration during treatment of anorexic patients could contribute to resistance to weight gain and/or incomplete weight recovery.
Dahl, Viktor; Lee, Evelyn; Peterson, Julia; Spudich, Serena S.; Leppla, Idris; Sinclair, Elizabeth; Fuchs, Dietmar; Palmer, Sarah
2011-01-01
Background. Despite suppression of plasma human immunodeficiency virus type 1 (HIV-1) RNA by antiretroviral therapy to levels below clinical assay detection, infection and immune activation may persist within the central nervous system and possibly lead to continued brain injury. We hypothesized that intensifying therapy would decrease cerebrospinal fluid (CSF) infection and immune activation. Methods. This was a 12-week, randomized, open-label pilot study comparing addition of the integrase inhibitor raltegravir to no treatment augmentation, with an option for rollover to raltegravir. CSF and plasma were analyzed for HIV-1 RNA using a single-copy assay. CSF and blood immune activation was assessed by neopterin concentrations and CD4+ and CD8+ T-cell surface antigen expression. Results. Primary analysis compared 14 intensified (including rollovers) to 9 nonintensified subject experiences. Median HIV-1 RNA levels in all samples were lower in CSF (<.3 copies/mL) than in plasma (<.9 copies/mL; P < .0001), and raltegravir did not reduce HIV-1 RNA, CSF neopterin, or CD4+ and CD8+ T-cell activation. Conclusions. Raltegravir intensification did not reduce intrathecal immunoactivation or alter CSF HIV-1 RNA levels in subjects with baseline viral suppression. With and without raltegravir intensification, HIV RNA levels in CSF were very low in the enrolled subjects. Clinical Trials Registration. NCT00672932. PMID:22021620
Tanada, H; Ikemoto, T; Masutani, R; Tanaka, H; Takubo, T
2014-02-01
In this study, we evaluated the performance of the ADVIA 120 hematology system for cerebrospinal fluid (CSF) assay. Cell counts and leukocyte differentials in CSF were examined with the ADVIA 120 hematology system, while simultaneously confirming an effective hemolysis agent for automated CSF cell counts. The detection limits of both white blood cell (WBC) counts and red blood cell (RBC) counts on the measurement of CSF cell counts by the ADVIA 120 hematology system were superior at 2 cells/μL (10(-6) L). The WBC count was linear up to 9.850 cells/μL, and the RBC count was linear up to approximately 20 000 cells/μL. The intrarun reproducibility indicated good precision. The leukocyte differential of CSF cells, performed by the ADVIA120 hematology system, showed good correlation with the microscopic procedure. The VersaLyse hemolysis solution efficiently lysed the samples without interfering with cell counts and leukocyte differential, even in a sample that included approximately 50 000/μL RBC. These data show the ADVIA 120 hematology system correctly measured the WBC count and leukocyte differential in CSF. The VersaLyse hemolysis solution is considered to be optimal for hemolysis treatment of CSF when measuring cell counts and differentials by the ADVIA 120 hematology system. © 2013 John Wiley & Sons Ltd.
The Management of Cerebrospinal Fluid Leak After Anterior Cervical Decompression Surgery.
Zhai, Jiliang; Panchal, Ripul R; Tian, Ye; Wang, Shujie; Zhao, Lijuan
2018-03-01
Cerebrospinal fluid (CSF) leak is a rare but potentially troublesome and occasionally catastrophic complication after anterior cervical decompression surgery. There is limited literature describing this complication, and the management of CSF leak varies. The aim of this study was to retrospectively review the treatment of cases with CSF leak and develop a management algorithm. A series of 14 patients with CSF leak from January 2011 to May 2016 were included in this study. Their characteristics, management of CSF leak, and outcomes were documented. There were 5 male and 9 female patients. Mean age at surgery was 57.1±9.9 years (range, 37-76 years). All instances of CSF leak, except 1 noted postoperatively, were indirectly repaired intraoperatively. A closed straight wound drain was placed for all patients. A lumbar subarachnoid drain was placed immediately after surgery in 4 patients and postoperatively in 7 patients. In 1 patient, lumbar drain placement was unsuccessful. In 2 additional patients, the surgeon decided not to place a lumbar drain. One patient developed meningitis and recovered after antibiotic therapy with meropenem and vancomycin. Another patient had a deep wound infection and required a revision surgery. Wound drains and lumbar drains should be immediately considered when CSF leak is identified. Antibiotics also should be considered to prevent intradural infection. [Orthopedics. 2018; 41(2):e283-e288.]. Copyright 2018, SLACK Incorporated.
Kassem, Mohammad W; Chern, Joshua; Loukas, Marios; Tubbs, R Shane
2017-12-01
Intraosseous (IO) vascular access has been used since the Second World War and is warranted when there is an emergency and/or urgent need to replenish the vascular pool. Despite long-term and satisfactory results from delivering large quantities of intravenous fluid via the medullary space of bone, use of this space for a distant receptacle for cerebrospinal fluid (CSF) diversion has seldom been considered. The current paper reviews the literature regarding the bony medullary space as a receptacle for intravenous fluid and CSF. Previous authors have demonstrated the potential of the diploic space of the calvaria for CSF shunting. Pugh and colleagues tested the ability of the cranium to receive and absorb a small amount of tracer fluid. The literature suggests that intraosseous placement of ventricular diversionary shunts is an alternative to more traditional sites such as the pleural cavity and peritoneum. When these latter locations are not available or are contraindicated, placement in the medullary space of bone is another option available to the surgeon.
Johnson, J A; O'Halloran, P J; Crimmins, D; Caird, J
2016-11-01
Ventriculoperitoneal (VP) shunt insertion is the most common cerebrospinal fluid (CSF) diversionary procedure used for the treatment of chronic hydrocephalus. Sterile CSF ascites is a rare complication of VP shunt insertion. This can arise from either an overproduction of CSF or inadequate filtration of CSF at the level of the peritoneum. By either mechanism, the development of CSF ascites requires an intact VP shunt. The authors discuss two paediatric cases diagnosed with suprasellar pilocytic astrocytomas treated with platinum-based chemotherapy, who subsequently developed sterile CSF ascites. We review the literature with regard to CSF malabsorption and discuss it as a contributing factor to shunt malfunction. CSF malabsorption with resultant ascites is a rare complication of VP shunting with many etiologies. Two common predisposing factors included the use of platinum-based chemotherapeutic agents, as well as the specific neuropathology. Further analysis of these two entities is needed in order to elucidate their role in contributing to the development of CSF ascites in this patient cohort.
Park, Ki-Su; Lee, Chang-Heon; Park, Seong-Hyun; Hwang, Sung-Kyoo; Hwang, Jeong-Hyun
2017-01-01
The purpose of this study was to investigate whether the intensity of trauma influences the pathogenesis of traumatic chronic subdural hematoma (CSDH). Thirty-one patients treated surgically for traumatic CSDH were divided into high-impact and lowimpact groups according to the intensity of trauma. They were respectively evaluated with respect to clinical and radiological findings at presentation, and the subdural concentrations of interleukin-6 (IL-6), interleukin-8 (IL-8), vascular endothelial growth factor (VEGF), basic fibroblast growth factor, and beta-trace protein (ΒTP) [a highly specific protein in the cerebrospinal fluid (CSF)] related to the pathogenesis of CSDH. If ΒTP (subdural fluid/serum) was > 2, an admixture of CSF to the subdural fluid was indicated. The ΒTP (subdural fluid/serum) was > 2 in all patients with a traumatic CSDH. The mean concentration of subdural ΒTP in the high-impact group was higher than in the low-impact group (6.1 mg/L versus 3.9 mg/L), and the difference was statistically significant (p=0.02). In addition, mean concentrations of IL-6, IL-8 and VEGF were higher in the high-impact group, as compared to the low-impact group, though the differences did not reach statistical significance. Trauma may be related to CSF leakage into the subdural space in CSDH, and the intensity of trauma may influence the amount of CSF leakage. Although there is no direct correlation between the amount of CSF leakage and other subdural molecules, the intensity of trauma may be associated with larger concentrations of molecules in traumatic CSDH.
Horses experimentally infected with Sarcocystis neurona develop altered immune responses in vitro.
Witonsky, Sharon G; Ellison, Siobhan; Yang, Jibing; Gogal, Robert M; Lawler, Heather; Suzuki, Yasuhiro; Sriranganathan, Namalwar; Andrews, Frank; Ward, Daniel; Lindsay, David S
2008-10-01
Equine protozoal myeloencephalitis (EPM) due to Sarcocystis neurona infection is 1 of the most common neurologic diseases in horses in the United States. The mechanisms by which most horses resist disease, as well as the possible mechanisms by which the immune system may be suppressed in horses that develop EPM, are not known. Therefore, the objectives of this study were to determine whether horses experimentally infected with S. neurona developed suppressed immune responses. Thirteen horses that were negative for S. neurona antibodies in serum and cerebrospinal fluid (CSF) were randomly assigned to control (n = 5) or infected (n = 8) treatment groups. Neurologic exams and cerebrospinal fluid analyses were performed prior to, and following, S. neurona infection. Prior to, and at multiple time points following infection, immune parameters were determined. All 8 S. neurona-infected horses developed clinical signs consistent with EPM, and had S. neurona antibodies in the serum and CSF. Both infected and control horses had increased percentages (P < 0.05) of B cells at 28 days postinfection. Infected horses had significantly decreased (P < 0.05) proliferation responses as measured by thymidine incorporation to nonspecific mitogens phorbol myristate acetate (PMA) and ionomycin (I) as soon as 2 days postinfection.
Ren, Chao; Liu, Xiaoyun; Wan, Meirong; Geng, Deqin; Ge, Wei; Li, Jinmei; Zhang, Weiwei
2013-12-01
In order to set up a base for stem cells to be widely used in clinical medicine, we tried to optimize, in this study, the technique that induces human mesenchymal stem cells (hMSCs) to differentiate into neural stem cells by using cerebrospinal fluid (CSF) from the different groups. After the induction, presence of neural stem cells was confirmed with microscope observation, flow cytometry analysis, immunohistochemistry and fluorescent immunohistochemistry. At the same time, we also compared and analysed the data of the number of stem cells when it totally met the requirements for clinical treatment and the days required. At last, we confirmed that hMSCs could be induced to differentiate into neural stem cells, and that the number of cells totally met the requirements for clinical treatment. But there were some differences both in the number of cells and the days required. Among the groups, the group that marrow mesenchymal stem cells from patients own induced by CSF from healthy volunteers used the shortest time and the quantity of the cells was significantly higher than those of the others.
Neider, Daniel; Lindström, Leif H; Bodén, Robert
2016-01-01
Background The objective of this study was to investigate the association between 5-hydroxyindoleacetic acid (5-HIAA) and homovanillic acid (HVA) in cerebrospinal fluid (CSF), bullying, and later suicide among patients with schizophrenia. Methods Ninety-nine patients with schizophrenia were included. Correlations of clinical factors, 5-HIAA and HVA, and later suicide were investigated. Results Twelve patients committed suicide (12%) during a 28-year follow-up period. Later suicide was correlated to bullying in childhood (P=0.02) and a lower quotient of HVA/5-HIAA in CSF (P<0.05). Conclusion Suicide in schizophrenia is related to childhood exposedness and CSF neurotransmitter levels. PMID:27468235
Mizowaki, Takashi; Sasayama, Takashi; Tanaka, Kazuhiro; Mizukawa, Katsu; Takata, Kumi; Nakamizo, Satoshi; Tanaka, Hirotomo; Nagashima, Hiroaki; Nishihara, Masamitsu; Hirose, Takanori; Itoh, Tomoo; Kohmura, Eiji
2015-09-01
Signal transducers and activators of transcription 3 (STAT3) are activated by various cytokines and oncogenes; however, the activity and pathogenesis of STAT3 in diffuse large B cell lymphoma of the central nervous system have not been thoroughly elucidated. We investigated the phosphorylation levels of STAT3 in 40 specimens of primary central nervous system diffuse large B-cell lymphoma (PCNS DLBCL) and analyzed the association between phsopho-STAT3 (pSTAT3) expression and cerebrospinal fluid (CSF) concentration of interleukin-10 (IL-10) or IL-6. Immunohistochemistry and Western blot analysis revealed that most of the specimens in PCNS DLBCL expressed pSTST3 protein, and a strong phosphorylation levels of STAT3 was statistically associated with high CSF IL-10 levels, but not with CSF IL-6 levels. Next, we demonstrated that recombinant IL-10 and CSF containing IL-10 induced the phosphorylation of STAT3 in PCNS DLBCL cells. Furthermore, molecular subtype classified by Hans' algorithm was correlated with pSTAT3 expression levels and CSF IL-10 levels. These results suggest that the STAT3 activity is correlated with CSF IL-10 level, which is a useful marker for STAT3 activity in PCNS DLBCLs.
Hölttä, Mikko; Minthon, Lennart; Hansson, Oskar; Holmén-Larsson, Jessica; Pike, Ian; Ward, Malcolm; Kuhn, Karsten; Rüetschi, Ulla; Zetterberg, Henrik; Blennow, Kaj; Gobom, Johan
2015-02-06
Many disease processes in the brain are reflected in the protein composition of the cerebrospinal fluid (CSF). In addition to proteins, CSF also contains a large number of endogenous peptides whose potential as disease biomarkers largely remains to be explored. We have developed a novel workflow in which multiplex isobaric labeling is used for simultaneous quantification of endogenous CSF peptides and proteins by liquid chromatography coupled with mass spectrometry. After the labeling of CSF samples, endogenous peptides are separated from proteins by ultrafiltration. The proteins retained on the filters are trypsinized, and the tryptic peptides are collected separately. We evaluated this technique in a comparative pilot study of CSF peptide and protein profiles in eight patients with Alzheimer's disease (AD) and eight nondemented controls. We identified several differences between the AD and control group among endogenous peptides derived from proteins known to be associated with AD, including neurosecretory protein VGF (ratios AD/controls 0.45-0.81), integral membrane protein 2B (ratios AD/controls 0.72-0.84), and metallothionein-3 (ratios AD/controls 0.51-0.61). Analysis of tryptic peptides identified several proteins that were altered in the AD group, some of which have previously been reported as changed in AD, for example, VGF (ratio AD/controls 0.70).
Update on the core and developing cerebrospinal fluid biomarkers for Alzheimer disease
Babić, Mirjana; Švob Štrac, Dubravka; Mück-Šeler, Dorotea; Pivac, Nela; Stanić, Gabrijela; Hof, Patrick R.; Šimić, Goran
2014-01-01
Alzheimer disease (AD) is a complex neurodegenerative disorder, whose prevalence will dramatically rise by 2050. Despite numerous clinical trials investigating this disease, there is still no effective treatment. Many trials showed negative or inconclusive results, possibly because they recruited only patients with severe disease, who had not undergone disease-modifying therapies in preclinical stages of AD before severe degeneration occurred. Detection of AD in asymptomatic at risk individuals (and a few presymptomatic individuals who carry an autosomal dominant monogenic AD mutation) remains impractical in many of clinical situations and is possible only with reliable biomarkers. In addition to early diagnosis of AD, biomarkers should serve for monitoring disease progression and response to therapy. To date, the most promising biomarkers are cerebrospinal fluid (CSF) and neuroimaging biomarkers. Core CSF biomarkers (amyloid β1-42, total tau, and phosphorylated tau) showed a high diagnostic accuracy but were still unreliable for preclinical detection of AD. Hence, there is an urgent need for detection and validation of novel CSF biomarkers that would enable early diagnosis of AD in asymptomatic individuals. This article reviews recent research advances on biomarkers for AD, focusing mainly on the CSF biomarkers. In addition to core CSF biomarkers, the potential usefulness of novel CSF biomarkers is discussed. PMID:25165049
Fibrinogen is not elevated in the cerebrospinal fluid of patients with multiple sclerosis
2011-01-01
Background Elevated plasma fibrinogen levels are a well known finding in acute infectious diseases, acute stroke and myocardial infarction. However its role in the cerebrospinal fluid (CSF) of acute and chronic central (CNS) and peripheral nervous system (PNS) diseases is unclear. Findings We analyzed CSF and plasma fibrinogen levels together with routine parameters in patients with multiple sclerosis (MS), acute inflammatory diseases of the CNS (bacterial and viral meningoencephalitis, BM and VM) and PNS (Guillain-Barré syndrome; GBS), as well as in non-inflammatory neurological controls (OND) in a total of 103 patients. Additionally, MS patients underwent cerebral MRI scans at time of lumbar puncture. CSF and plasma fibrinogen levels were significantly lower in patients with MS and OND patients as compared to patients with BM, VM and GBS. There was a close correlation between fibrinogen levels and albumin quotient (rho = 0.769, p < 0.001) which strongly suggests passive transfer of fibrinogen through the blood-CSF-barrier during acute inflammation. Hence, in MS, the prototype of chronic neuroinflammation, CSF fibrinogen levels were not elevated and could not be correlated to clinical and neuroradiological outcome parameters. Conclusions Although previous work has shown clear evidence of the involvement of fibrinogen in MS pathogenesis, this is not accompanied by increased fibrinogen in the CSF compartment. PMID:22029888
Brain-wide pathway for waste clearance captured by contrast-enhanced MRI.
Iliff, Jeffrey J; Lee, Hedok; Yu, Mei; Feng, Tian; Logan, Jean; Nedergaard, Maiken; Benveniste, Helene
2013-03-01
The glymphatic system is a recently defined brain-wide paravascular pathway for cerebrospinal fluid (CSF) and interstitial fluid (ISF) exchange that facilitates efficient clearance of solutes and waste from the brain. CSF enters the brain along para-arterial channels to exchange with ISF, which is in turn cleared from the brain along para-venous pathways. Because soluble amyloid β clearance depends on glymphatic pathway function, we proposed that failure of this clearance system contributes to amyloid plaque deposition and Alzheimer's disease progression. Here we provide proof of concept that glymphatic pathway function can be measured using a clinically relevant imaging technique. Dynamic contrast-enhanced MRI was used to visualize CSF-ISF exchange across the rat brain following intrathecal paramagnetic contrast agent administration. Key features of glymphatic pathway function were confirmed, including visualization of para-arterial CSF influx and molecular size-dependent CSF-ISF exchange. Whole-brain imaging allowed the identification of two key influx nodes at the pituitary and pineal gland recesses, while dynamic MRI permitted the definition of simple kinetic parameters to characterize glymphatic CSF-ISF exchange and solute clearance from the brain. We propose that this MRI approach may provide the basis for a wholly new strategy to evaluate Alzheimer's disease susceptibility and progression in the live human brain.
Brain-wide pathway for waste clearance captured by contrast-enhanced MRI
Iliff, Jeffrey J.; Lee, Hedok; Yu, Mei; Feng, Tian; Logan, Jean; Nedergaard, Maiken; Benveniste, Helene
2013-01-01
The glymphatic system is a recently defined brain-wide paravascular pathway for cerebrospinal fluid (CSF) and interstitial fluid (ISF) exchange that facilitates efficient clearance of solutes and waste from the brain. CSF enters the brain along para-arterial channels to exchange with ISF, which is in turn cleared from the brain along para-venous pathways. Because soluble amyloid β clearance depends on glymphatic pathway function, we proposed that failure of this clearance system contributes to amyloid plaque deposition and Alzheimer’s disease progression. Here we provide proof of concept that glymphatic pathway function can be measured using a clinically relevant imaging technique. Dynamic contrast-enhanced MRI was used to visualize CSF-ISF exchange across the rat brain following intrathecal paramagnetic contrast agent administration. Key features of glymphatic pathway function were confirmed, including visualization of para-arterial CSF influx and molecular size-dependent CSF-ISF exchange. Whole-brain imaging allowed the identification of two key influx nodes at the pituitary and pineal gland recesses, while dynamic MRI permitted the definition of simple kinetic parameters to characterize glymphatic CSF-ISF exchange and solute clearance from the brain. We propose that this MRI approach may provide the basis for a wholly new strategy to evaluate Alzheimer’s disease susceptibility and progression in the live human brain. PMID:23434588
Gorgievski-Hrisoho, Meri; Schumacher, Jean-Daniel; Vilimonovic, Nevenka; Germann, Daniel; Matter, Lukas
1998-01-01
Enteroviruses (EV) are among the most common causes of aseptic meningitis. Standard diagnostic techniques are often too slow and lack sensitivity to be of clinical relevance. EV RNA can be detected within 5 h by a commercially available reverse transcription-PCR (RT-PCR) test kit. Cerebrospinal fluid (CSF) samples from 68 patients presenting with aseptic meningitis during a summer outbreak in Switzerland were examined in parallel with cell culture and commercial RT-PCR. RT-PCR was positive in all 16 CSF specimens positive by cell culture (100%). In addition, 42 of 52 (80%) CSF samples negative by cell culture were PCR positive. In 26 of these 42 (62%) patients, viral culture from other sites (throat swab or stool) was also positive. The CSF virus culture took 3 to 7 days to become positive. Echovirus 30 was the type most often isolated in this outbreak. The sensitivity of CSF RT-PCR based on clinical diagnosis during this aseptic meningitis outbreak in patients with negative bacterial culture results was 85%, i.e., considerably higher than the sensitivity of CSF virus culture (24%). We conclude that this commercial RT-PCR assay allows a positive diagnosis with minimal delay and may thus influence clinical decisions. PMID:9705364
Nagashima, Hiroaki; Mizukawa, Katsu; Taniguchi, Masaaki; Yamamoto, Yusuke; Kohmura, Eiji
Gorham's syndrome is a rare bone disorder characterized by massive osteolysis of unknown etiology. There are no reports of comorbidity involving cerebrospinal fluid (CSF) leakage and Chiari I malformation with Gorham's syndrome. Here, we report an unusual case of an acute presyrinx state complicated by bacterial meningitis due to CSF leakage and Chiari I malformation associated with Gorham's disease of the skull base. A 25-year-old woman with Chiari I malformation associated with Gorham's syndrome presented with aggressive paresthesia following bacterial meningitis. Axial magnetic resonance imaging (MRI) and computed tomography (CT) cisternography revealed CSF leakage in the right petrous apex. A presyrinx state was diagnosed based on the clinical symptoms and MRI findings. With resolution of the bacterial meningitis, the spinal edema and tonsillar ectopia also improved. Surgical repair of the CSF leakage was performed by an endoscopic endonasal transsphenoidal approach to prevent recurrence of meningitis. The postoperative course was uneventful. Skull base osteolysis in Gorham's syndrome may induce Chiari I malformation and CSF leakage. We should pay attention to acute progression of clinical symptoms because Gorham's syndrome may predispose to development of Chiari I malformation and may be complicated by CSF leakage. Copyright © 2017 Polish Neurological Society. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
Han, Zong-Li; He, Dong-Sheng; Mao, Zhi-Gang; Wang, Hai-Jun
2008-06-01
To determine the incidence, risk factors, diagnostic procedures, and management of cerebrospinal fluid (CSF) leaks following trans-sphenoidal pituitary macroadenoma surgery. Retrospective analysis of 592 patients. Intra- and post-operative CSF leaks occurred in 14.2 and 4.4% of patients, respectively. Surgical revision, tumor consistency, and tumor margins were independently associated with intra-operative leaks, while the tumor size, consistency, and margins were risk factors of post-operative leaks. The intra-operative leak rate of ACTH adenomas was greater than all other types combined; the incidence of post-operative CSF leaks was highest for FSH adenomas. There were no significant differences among various techniques and we achieved an initial repair success rates of 83.3 and 92.9% for intra- and post-operative CSF leaks, respectively. Of the 26 patients with post-operative CSF leaks, five were complicated by meningitis and four by post-infectious hydrocephalus which required ventriculoperitoneal shunts. CSF leaks have a propensity to occur in cases with fibrous tumors or tumors with indistinct margin and may have some relationship with the tumor type. Endoscopic and microscopic repairs were shown to be effective techniques in managing these types of leaks. Post-infectious hydrocephalus may influence the outcome of the repair and ventriculoperitoneal shunts were necessary in some cases.
Peyrl, Andreas; Sauermann, Robert; Chocholous, Monika; Azizi, Amedeo A; Jäger, Walter; Höferl, Martina; Slavc, Irene
2014-02-01
Assessment of the optimal drug dose for intrathecal therapy in children is challenging because of the non-linear increase in cerebrospinal fluid (CSF) volume throughout childhood and potential differences in the elimination rate in children versus adults. The present study was designed to prospectively collect pharmacokinetic and safety data on age-adapted intrathecal liposomal cytarabine in children aged >3 years. Sixteen patients with malignant brain tumours were included in the study. Children aged 3-10 years received liposomal cytarabine 35 mg with concomitant dexamethasone, and those aged >10 years received 50 mg. Serial CSF and plasma samples were collected before administration and 1 h, 12 h, 24 h, 1 week and 2 weeks post-dosing. CSF was analysed for free and encapsulated cytarabine, and plasma was analysed for free cytarabine. The average elimination half-life values in children aged 3-10 years and in those aged >10 years, treated with liposomal cytarabine 35 mg and 50 mg, respectively, were 40.9 and 43.7 h for free cytarabine and 31.5 and 36.4 h for encapsulated cytarabine in CSF. Although these values were lower than those previously reported, cytarabine concentrations exceeded the cytotoxic threshold of 0.1 mg/L in all patients until 1 week post-intraventricular administration. Cytarabine concentrations in plasma were negligible. In general, liposomal cytarabine was well tolerated, with relevant but manageable toxicities. Liposomal cytarabine in doses of 35 mg for children aged 3-10 years and 50 mg for older patients shows sufficient drug exposure for at least 1 week and appears to be well tolerated.
Frankfort, Suzanne V; van Campen, Jos P C M; Tulner, Linda R; Beijnen, Jos H
2008-09-01
By using surface enhanced laser desorption/ionisation- time of flight mass spectrometry (SELDI-TOF MS) an amyloid beta (Abeta) profile was shown in cerebrospinal fluid (CSF) of patients with dementia. To investigate the Abeta-profile in serum with SELDI-TOF MS, to evaluate if this profile resembles CSF profiles and to investigate the correlation between intensity of Abeta-peptide-peaks in serum and clinical, demographical and genetic variables. Duplicate profiling of Abeta by an SELDI-TOF MS immunocapture assay was performed in 106 patients, suffering from Alzheimer's Disease or Vascular Dementia and age-matched non-demented control patients. Linear regression analyses were performed to investigate the intensities of four selected Abeta peaks as dependent variables in relation to the independent clinical, demographic or genetic variables. Abeta37, Abeta38 and Abeta40 were found among additional unidentified Abeta peptides, with the most pronounced Abeta peak at a molecular mass of 7752. This profile partly resembled the CSF profile. The clinical diagnosis was not a predictive independent variable, however ABCB1 genotypes C1236T, G2677T/A, age and creatinine level showed to be related to Abeta peak intensities in multivariate analyses. We found an Abeta profile in serum that partly resembled the CSF profile in demented patients. Age, creatinine levels, presence of the APOE epsilon4 allele and ABCB1 genotypes (C1236T and G2677T/A) were correlated with the Abeta serum profile. The role of P-gp as an Abeta transporter and the role of ABCB1 genotypes deserves further research. The investigated serum Abeta profile is probably not useful in the diagnosis of dementia.
Jones, Claire F; Lee, Jae H T; Burstyn, Uri; Okon, Elena B; Kwon, Brian K; Cripton, Peter A
2013-10-01
Despite considerable effort over the last four decades, research has failed to translate into consistently effective treatment options for spinal cord injury (SCI). This is partly attributed to differences between the injury response of humans and rodent models. Some of this difference could be because the cerebrospinal fluid (CSF) layer of the human spine is relatively large, while that of the rodents is extremely thin. We sought to characterize the fluid impulse induced in the CSF by experimental SCIs of moderate and high human-like severity, and to compare this with previous studies in which fluid impulse has been associated with neural tissue injury. We used a new in vivo pig model (n = 6 per injury group, mean age 124.5 days, 20.9 kg) incorporating four miniature pressure transducers that were implanted in pairs in the subarachnoid space, cranial, and caudal to the injury at 30 mm and 100 mm. Tissue sparing was assessed with Eriochrome Cyanine and Neutral Red staining. The median peak pressures near the injury were 522.5 and 868.8 mmHg (range 96.7-1430.0) and far from the injury were 7.6 and 36.3 mmHg (range 3.8-83.7), for the moderate and high injury severities, respectively. Pressure impulse (mmHg.ms), apparent wave speed, and apparent attenuation factor were also evaluated. The data indicates that the fluid pressure wave may be sufficient to affect the severity and extent of primary tissue damage close to the injury site. However, the CSF pressure was close to normal physiologic values at 100 mm from the injury. The high injury severity animals had less tissue sparing than the moderate injury severity animals; this difference was statistically significant only within 1.6 mm of the epicenter. These results indicate that future research seeking to elucidate the mechanical origins of primary tissue damage in SCI should consider the effects of CSF. This pig model provides advantages for basic and preclinical SCI research due to its similarities to human scale, including the existence of a human-like CSF fluid layer.
NASA Technical Reports Server (NTRS)
Alperin, Noam; Barr, Yael; Lee, Sang H.; Mason,Sara; Bagci, Ahmet M.
2015-01-01
Preliminary results are based on analyses of data from 17 crewmembers. The initial analysis compares pre to post-flight changes in total cerebral blood flow (CBF) and craniospinal CSF flow volume. Total CBF is obtained by summation of the mean flow rates through the 4 blood vessels supplying the brain (right and left internal carotid and vertebral arteries). Volumetric flow rates were obtained using an automated lumen segmentation technique shown to have 3-4-fold improved reproducibility and accuracy over manual lumen segmentation (6). Two cohorts, 5 short-duration and 8 long-duration crewmembers, who were scanned within 3 to 8 days post landing were included (4 short-duration crewmembers with MRI scans occurring beyond 10 days post flight were excluded). The VIIP Clinical Practice Guideline (CPG) classification is being used initially as a measure for VIIP syndrome severity. Median CPG scores of the short and long-duration cohorts were similar, 2. Mean preflight total CBF for the short and long-duration cohorts were similar, 863+/-144 and 747+/-119 mL/min, respectively. Percentage CBF changes for all short duration crewmembers were 11% or lower, within the range of normal physiological fluctuations in healthy individuals. In contrast, in 4 of the 8 long-duration crewmembers, the change in CBF exceeded the range of normal physiological fluctuation. In 3 of the 4 subjects an increase in CBF was measured. Large pre to post-flight changes in the craniospinal CSF flow volume were found in 6 of the 8 long-duration crewmembers. Box-Whisker plots of the CPG and the percent CBF and CSF flow changes for the two cohorts are shown in Figure 4. Examples of CSF flow waveforms for a short and two long-duration (CPG 0 and 3) are shown in Figure 5. Changes in CBF and CSF flow dynamics larger than normal physiological fluctuations were observed in the long-duration crewmembers. Changes in CSF flow were more pronounced than changes in CBF. Decreased CSF flow dynamics were observed in a subject with VIIP signs. Study limitations include a slightly longer landing-to-MRI scan period for the short-duration cohort and limited sensitivity of the subjective discrete ordinal CPG scale. This limitation can be overcome by using imaging based parametric measures of VIIP severity such as globe deformation measures.
de Leon, Mony J; Pirraglia, Elizabeth; Osorio, Ricardo S; Glodzik, Lidia; Saint-Louis, Les; Kim, Hee-Jin; Fortea, Juan; Fossati, Silvia; Laska, Eugene; Siegel, Carole; Butler, Tracy; Li, Yi; Rusinek, Henry; Zetterberg, Henrik; Blennow, Kaj
2018-01-01
Cerebrospinal fluid (CSF) studies consistently show that CSF levels of amyloid-beta 1-42 (Aβ42) are reduced and tau levels increased prior to the onset of cognitive decline related to Alzheimer's disease (AD). However, the preclinical prediction accuracy for low CSF Aβ42 levels, a surrogate for brain Aβ42 deposits, is not high. Moreover, the pathology data suggests a course initiated by tauopathy contradicting the contemporary clinical view of an Aβ initiated cascade. CSF Aβ42 and tau data from 3 normal aging cohorts (45-90 years) were combined to test both cross-sectional (n = 766) and longitudinal (n = 651) hypotheses: 1) that the relationship between CSF levels of Aβ42 and tau are not linear over the adult life-span; and 2) that non-linear models improve the prediction of cognitive decline. Supporting the hypotheses, the results showed that a u-shaped quadratic fit (Aβ2) best describes the relationship for CSF Aβ42 with CSF tau levels. Furthermore we found that the relationship between Aβ42 and tau changes with age-between 45 and 70 years there is a positive linear association, whereas between 71 and 90 years there is a negative linear association between Aβ42 and tau. The quadratic effect appears to be unique to Aβ42, as Aβ38 and Aβ40 showed only positive linear relationships with age and CSF tau. Importantly, we observed the prediction of cognitive decline was improved by considering both high and low levels of Aβ42. Overall, these data suggest an earlier preclinical stage than currently appreciated, marked by CSF elevations in tau and accompanied by either elevations or reductions in Aβ42. Future studies are needed to examine potential mechanisms such as failing CSF clearance as a common factor elevating CSF Aβxx analyte levels prior to Aβ42 deposition in brain.
Akhtar, Rizwan S; Licata, Joseph P; Luk, Kelvin C; Shaw, Leslie M; Trojanowski, John Q; Lee, Virginia M-Y
2018-03-03
Biomarkers for α-synuclein are needed for diagnosis and prognosis in Parkinson's disease (PD). Endogenous auto-antibodies to α-synuclein could serve as biomarkers for underlying synucleinopathy, but previous assessments of auto-antibodies have shown variability and inconsistent clinical correlations. We hypothesized that auto-antibodies to α-synuclein could be diagnostic for PD and explain its clinical heterogeneity. To test this hypothesis, we developed an enzyme-linked immunosorbent assay for measuring α-synuclein auto-antibodies in human samples. We evaluated 69 serum samples (16 healthy controls (HC) and 53 PD patients) and 145 CSF samples (52 HC and 93 PD patients) from our Institution. Both serum and CSF were available for 24 participants. Males had higher auto-antibody levels than females in both fluids. CSF auto-antibody levels were significantly higher in PD patients as compared to HC, whereas serum levels were not significantly different. CSF auto-antibody levels did not associate with amyloid-β 1-42 , total tau, or phosphorylated tau. CSF auto-antibody levels correlated with performance on the Montreal Cognitive Assessment, even when controlled for CSF amyloidβ 1-42 . CSF hemoglobin levels, as a proxy for contamination of CSF by blood during lumbar puncture, did not influence these observations. Using recombinant α-synuclein with N- and C-terminal truncations, we found that CSF auto-antibodies target amino acids 100 through 120 of α-synuclein. We conclude that endogenous CSF auto-antibodies are significantly higher in PD patients as compared to HC, suggesting that they could indicate the presence of underlying synucleinopathy. These auto-antibodies associate with poor cognition, independently of CSF amyloidβ 1-42 ., and target a select C-terminal region of α-synuclein. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Lu, Cheng; Zhang, Yuyi; Chen, Mingyu; Zhong, Ping; Chen, Yuancheng; Yu, Jicheng; Wu, Xiaojie; Wu, Jufang
2016-01-01
Meropenem is used to manage postneurosurgical meningitis, but its population pharmacokinetics (PPK) in plasma and cerebrospinal fluid (CSF) in this patient group are not well-known. Our aims were to (i) characterize meropenem PPK in plasma and CSF and (ii) recommend favorable dosing regimens in postneurosurgical meningitis patients. Eighty-two patients were enrolled to receive meropenem infusions of 2 g every 8 h (q8h), 1 g q8h, or 1 g q6h for at least 3 days. Serial blood and CSF samples were collected, and concentrations were determined and analyzed via population modeling. Probabilities of target attainment (PTA) were predicted via Monte Carlo simulations, using the target of unbound meropenem concentrations above the MICs for at least 40% of dosing intervals in plasma and at least of 50% or 100% of dosing intervals in CSF. A two-compartment model plus another CSF compartment best described the data. The central, intercentral/peripheral, and intercentral/CSF compartment clearances were 22.2 liters/h, 1.79 liters/h, and 0.01 liter/h, respectively. Distribution volumes of the central and peripheral compartments were 17.9 liters and 3.84 liters, respectively. The CSF compartment volume was fixed at 0.13 liter, with its clearance calculated by the observed drainage amount. The multiplier for the transfer from the central to the CSF compartment was 0.172. Simulation results show that the PTAs increase as infusion is prolonged and as the daily CSF drainage volume decreases. A 4-hour infusion of 2 g q8h with CSF drainage of less than 150 ml/day, which provides a PTA of >90% for MICs of ≤8 mg/liter in blood and of ≤0.5 mg/liter or 0.25 mg/liter in CSF, is recommended. (This study has been registered at ClinicalTrials.gov under identifier NCT02506686.) PMID:27572392
Sah, Renu; Ekhator, Nosakhare N; Jefferson-Wilson, Lena; Horn, Paul S; Geracioti, Thomas D
2014-02-01
Accruing evidence indicates that neuropeptide Y (NPY), a peptide neurotransmitter, is a resilience-to-stress factor in humans. We previously reported reduced cerebrospinal fluid (CSF) NPY concentrations in combat-related posttraumatic stress disorder (PTSD) subjects as compared with healthy, non-combat-exposed volunteers. Here we report CSF NPY in combat-exposed veterans with and without PTSD. We quantified NPY concentrations in morning CSF from 11 male subjects with PTSD from combat in Iraq and/or Afghanistan and from 14 combat-exposed subjects without PTSD. NPY-like immunoreactivity (NPY-LI) was measured by EIA. The relationship between CSF NPY and clinical symptoms, as measured by the Clinician-Administered PTSD Scale (CAPS) and Beck Depression Inventory (BDI), was assessed, as was the relationship between combat exposure scale (CES) scores and CSF NPY. As compared with the combat-exposed comparison subjects without PTSD, individuals with PTSD had significantly lower concentrations of CSF NPY [mean CSF NPY was 258. 6 ± 21.64 pg/mL in the combat trauma-no PTSD group but only 180.5 ± 12.62 pg/mL in PTSD patients (p=0.008)]. After adjusting for CES and BDI scores the two groups were still significantly different with respect to NPY. Importantly, CSF NPY was negatively correlated with composite CAPS score and intrusive (re-experiencing) subscale scores, but did not significantly correlate with CES or BDI scores. Our current findings further suggest that NPY may regulate the manifestation of PTSD symptomatology, and extend previous observations of low CSF NPY concentrations in the disorder. Central nervous system NPY may be a clinically important pharmacotherapeutic target, and/or diagnostic measure, for PTSD. Published by Elsevier Ltd.
Van Broeck, Bianca; Timmers, Maarten; Ramael, Steven; Bogert, Jennifer; Shaw, Leslie M; Mercken, Marc; Slemmon, John; Van Nueten, Luc; Engelborghs, Sebastiaan; Streffer, Johannes Rolf
2016-05-19
Cerebrospinal fluid (CSF) amyloid-beta (Aβ) peptides are predictive biomarkers for Alzheimer's disease and are proposed as pharmacodynamic markers for amyloid-lowering therapies. However, frequent sampling results in fluctuating CSF Aβ levels that have a tendency to increase compared with baseline. The impact of sampling frequency, volume, catheterization procedure, and ibuprofen pretreatment on CSF Aβ levels using continuous sampling over 36 h was assessed. In this open-label biomarker study, healthy participants (n = 18; either sex, age 55-85 years) were randomized into one of three cohorts (n = 6/cohort; high-frequency sampling). In all cohorts except cohort 2 (sampling started 6 h post catheterization), sampling through lumbar catheterization started immediately post catheterization. Cohort 3 received ibuprofen (800 mg) before catheterization. Following interim data review, an additional cohort 4 (n = 6) with an optimized sampling scheme (low-frequency and lower volume) was included. CSF Aβ(1-37), Aβ(1-38), Aβ(1-40), and Aβ(1-42) levels were analyzed. Increases and fluctuations in mean CSF Aβ levels occurred in cohorts 1-3 at times of high-frequency sampling. Some outliers were observed (cohorts 2 and 3) with an extreme pronunciation of this effect. Cohort 4 demonstrated minimal fluctuation of CSF Aβ both on a group and an individual level. Intersubject variability in CSF Aβ profiles over time was observed in all cohorts. CSF Aβ level fluctuation upon catheterization primarily depends on the sampling frequency and volume, but not on the catheterization procedure or inflammatory reaction. An optimized low-frequency sampling protocol minimizes or eliminates fluctuation of CSF Aβ levels, which will improve the capability of accurately measuring the pharmacodynamic read-out for amyloid-lowering therapies. ClinicalTrials.gov NCT01436188 . Registered 15 September 2011.
Dislich, Bastian; Wohlrab, Felix; Bachhuber, Teresa; Müller, Stephan A.; Kuhn, Peer-Hendrik; Hogl, Sebastian; Meyer-Luehmann, Melanie; Lichtenthaler, Stefan F.
2015-01-01
Analysis of murine cerebrospinal fluid (CSF) by quantitative mass spectrometry is challenging because of low CSF volume, low total protein concentration, and the presence of highly abundant proteins such as albumin. We demonstrate that the CSF proteome of individual mice can be analyzed in a quantitative manner to a depth of several hundred proteins in a robust and simple workflow consisting of single ultra HPLC runs on a benchtop mass spectrometer. The workflow is validated by a comparative analysis of BACE1−/− and wild-type mice using label-free quantification. The protease BACE1 cleaves the amyloid precursor protein (APP) as well as several other substrates and is a major drug target in Alzheimer's disease. We identified a total of 715 proteins with at least 2 unique peptides and quantified 522 of those proteins in CSF from BACE1−/− and wild-type mice. Several proteins, including the known BACE1 substrates APP, APLP1, CHL1 and contactin-2 showed lower abundance in the CSF of BACE1−/− mice, demonstrating that BACE1 substrate identification is possible from CSF. Additionally, ectonucleotide pyrophosphatase 5 was identified as a novel BACE1 substrate and validated in cells using immunoblots and by an in vitro BACE1 protease assay. Likewise, receptor-type tyrosine-protein phosphatase N2 and plexin domain-containing 2 were confirmed as BACE1 substrates by in vitro assays. Taken together, our study shows the deepest characterization of the mouse CSF proteome to date and the first quantitative analysis of the CSF proteome of individual mice. The BACE1 substrates identified in CSF may serve as biomarkers to monitor BACE1 activity in Alzheimer patients treated with BACE inhibitors. PMID:26139848
Radoš, Milan; Klarica, Marijan; Mučić-Pucić, Branka; Nikić, Ines; Raguž, Marina; Galkowski, Valentina; Mandić, Dora; Orešković, Darko
2014-08-28
The aim of this study was to perform for the first time the intracranial volumetric analysis of cerebrospinal fluid (CSF) and brain parenchyma in the supratentorial and infratentorial space in a 30-year-old female patient with hydranencephaly and macrocephaly. A head scan performed using a 3T magnetic resonance was followed by manual segmentation of the brain parenchyma and CSF on T2 coronal brain sections. The volume of CSF and brain parenchyma was measured separately for the supratentorial and infratentorial space. The total volume of the intracranial space was 3645.5 cm3. In the supratentorial space, the volume of CSF was 3375.2 cm3 and the volume of brain parenchyma was 80.3 cm3. In the infratentorial space, the volume of CSF was 101.3 cm3 and the volume of the brain parenchyma was 88.7 cm3. In the supratentorial space, there was severe malacia of almost all brain parenchyma with no visible remnants of the choroid plexuses. Infratentorial structures of the brainstem and cerebellum were hypoplastic but completely developed. Since our patient had no choroid plexuses in the supratentorial space and no obstruction between dural sinuses and CSF, development of hydrocephalus and macrocephaly cannot be explained by the classic hypothesis of CSF physiology with secretion, unidirectional circulation, and absorption as its basic postulates. However, the origin and turnover of the enormous amount of intracranial CSF volume, at least 10-fold larger than normal, and the mechanisms of macroencephaly development could be elucidated by the new hypothesis of CSF physiology recently published by our research team.
Daly, R C; Su, T P; Schmidt, P J; Pickar, D; Murphy, D L; Rubinow, D R
2001-02-01
Anabolic androgen steroid abuse is associated with multiple psychiatric symptoms and is a significant public health problem. The biological mechanisms underlying behavioral symptom development are poorly understood. We examined levels of monoamine metabolites, neurohormones, and neuropeptides in the cerebrospinal fluid (CSF) of 17 healthy men, at baseline and following 6 days of methyltestosterone (MT) administration (3 days of 40 mg/d, then 3 days of 240 mg/d). Subjects received MT or placebo in a fixed sequence, with neither subjects nor raters aware of the order. Potential relationships were examined between CSF measures, CSF MT levels, and behavioral changes measured on a visual analog scale. Following MT administration, levels of 3-methoxy-4-hydroxyphenylglycol (MHPG) were significantly lower (mean +/- SD, 103.8 +/- 47 vs 122.0 +/- 50.7 pmol/mL; P<.01), and 5-hydroxyindoleacetic acid (5-HIAA) levels were significantly higher (mean +/- SD, 104.7 +/- 31.3 vs 86.9 +/- 23.6 pmol/mL; P<.01). No significant MT-related changes were observed in CSF levels of corticotropin, norepinephrine, cortisol, arginine vasopressin, prolactin, corticotropin-releasing hormone, beta-endorphin, and somatotropin release-inhibiting factor. Changes in CSF 5-HIAA significantly correlated with increases in "activation" symptoms (energy, sexual arousal, and diminished sleep) (r = 0.55; P =.02). No significant correlation was observed between changes in CSF and plasma MT, CSF MHPG, and behavioral symptoms. Short-term anabolic androgenic steroid use affects brain neurochemistry, increasing CSF 5-HIAA and decreasing MHPG. Changes in 5-HIAA levels caused by anabolic androgenic steroids are related to the behavioral changes we observed. In this small sample, we did not observe a significant relationship between behavioral measures and either dose of MT or CSF and plasma levels of MT.
Plasma and cerebrospinal fluid pharmacokinetics of erlotinib and its active metabolite OSI-420.
Broniscer, Alberto; Panetta, John C; O'Shaughnessy, Melinda; Fraga, Charles; Bai, Feng; Krasin, Matthew J; Gajjar, Amar; Stewart, Clinton F
2007-03-01
To report cerebrospinal fluid (CSF) penetration of erlotinib and its metabolite OSI-420. Pharmacokinetic measurements were done in plasma (days 1, 2, 3, and 8 of therapy) and, concurrently, in plasma and CSF (before and at 1, 2, 4, 8, and 24 h after dose on day 34 of therapy) in an 8-year-old patient diagnosed with glioblastoma who received local irradiation and oral erlotinib in a phase I protocol. CSF samples were collected from a ventriculoperitoneal shunt, which was externalized because of infection. Erlotinib concentrations were determined by liquid chromatography/mass spectrometry. CSF penetration of erlotinib and OSI-420 were estimated by a compartmental model and by calculating the ratio of CSF to plasma 24-h area under concentration-time curve (AUC(0-24)). This patient was assigned to receive erlotinib at a dose level of 70 mg/m(2), but the actual daily dose was 75 mg (78 mg/m(2)). Erlotinib and OSI-420 plasma pharmacokinetic variables on days 8 and 34 overlapped to suggest that steady state had been reached. Whereas erlotinib and OSI-420 AUC(0-24) in plasma on day 34 were 30,365 and 2,527 ng h/mL, respectively, the correspondent AUC(0-24) in the CSF were 2,129 and 240 ng h/mL, respectively. Erlotinib and OSI-420 CSF penetration were 7% and approximately 9%, respectively, using both estimate methods. The maximum steady-state CSF concentration of erlotinib was approximately 130 ng/mL (325 nmol/L). The plasma pharmacokinetics of erlotinib in this child overlapped with results described in adults. Oral administration of erlotinib achieves CSF concentrations comparable with those active against several cancer cell lines in preclinical models.
Holmberg, Dag; Franzén-Röhl, Elisabeth; Idro, Richard; Opoka, Robert O; Bangirana, Paul; Sellgren, Carl M; Wickström, Ronny; Färnert, Anna; Schwieler, Lilly; Engberg, Göran; John, Chandy C
2017-07-28
One-fourth of children with cerebral malaria (CM) retain cognitive sequelae up to 2 years after acute disease. The kynurenine pathway of the brain, forming neuroactive metabolites, e.g. the NMDA-receptor antagonist kynurenic acid (KYNA), has been implicated in long-term cognitive dysfunction in other CNS infections. In the present study, the association between the kynurenine pathway and neurologic/cognitive complications in children with CM was investigated. Cerebrospinal fluid (CSF) concentrations of KYNA and its precursor kynurenine in 69 Ugandan children admitted for CM to Mulago Hospital, Kampala, Uganda, between 2008 and 2013 were assessed. CSF kynurenine and KYNA were compared to CSF cytokine levels, acute and long-term neurologic complications, and long-term cognitive impairments. CSF kynurenine and KYNA from eight Swedish children without neurological or infectious disease admitted to Astrid Lindgren's Children's Hospital were quantified and used for comparison. Children with CM had significantly higher CSF concentration of kynurenine and KYNA than Swedish children (P < 0.0001 for both), and CSF kynurenine and KYNA were positively correlated. In children with CM, CSF kynurenine and KYNA concentrations were associated with coma duration in children of all ages (P = 0.003 and 0.04, respectively), and CSF kynurenine concentrations were associated with worse overall cognition (P = 0.056) and attention (P = 0.003) at 12-month follow-up in children ≥5 years old. CSF KYNA and kynurenine are elevated in children with CM, indicating an inhibition of glutamatergic and cholinergic signaling. This inhibition may lead acutely to prolonged coma and long-term to impairment of attention and cognition.
Cerebrospinal fluid neopterin decay characteristics after initiation of antiretroviral therapy
2013-01-01
Background Neopterin, a biomarker of macrophage activation, is elevated in the cerebrospinal fluid (CSF) of most HIV-infected individuals and decreases after initiation of antiretroviral therapy (ART). We studied decay characteristics of neopterin in CSF and blood after commencement of ART in HIV-infected subjects and estimated the set-point levels of CSF neopterin after ART-mediated viral suppression. Methods CSF and blood neopterin were longitudinally measured in 102 neurologically asymptomatic HIV-infected subjects who were treatment-naïve or had been off ART for ≥ 6 months. We used a non-linear model to estimate neopterin decay in response to ART and a stable neopterin set-point attained after prolonged ART. Seven subjects with HIV-associated dementia (HAD) who initiated ART were studied for comparison. Results Non-HAD patients were followed for a median 84.7 months. Though CSF neopterin concentrations decreased rapidly after ART initiation, it was estimated that set-point levels would be below normal CSF neopterin levels (<5.8 nmol/L) in only 60/102 (59%) of these patients. Pre-ART CSF neopterin was the primary predictor of set-point (P <0.001). HAD subjects had higher baseline median CSF neopterin levels than non-HAD subjects (P <0.0001). Based on the non-HAD model, only 14% of HAD patients were predicted to reach normal levels. Conclusions After virologically suppressive ART, abnormal CSF neopterin levels persisted in 41% of non-HAD and the majority of HAD patients. ART is not fully effective in ameliorating macrophage activation in CNS as well as blood, especially in subjects with higher pre-ART levels of immune activation. PMID:23664008
Felbaum, Daniel R; Anaizi, Amjad; Mason, Robert B; Jean, Walter C; Voyadzis, Jean M
2016-01-01
Introduction: Suboccipital craniotomy is a workhorse neurosurgical operation for approaching the posterior fossa but carries a high risk of pseudomeningocele and cerebrospinal fluid (CSF) leak. We describe our experience with a simple T-shaped fascial opening that preserves the occipital myofascial cuff as compared to traditional methods to reduce this risk. Methods: A single institution, retrospective review of prospectively collected database was performed of patients that underwent a suboccipital craniectomy or craniotomy. Patient data was reviewed for craniotomy or craniectomy, dural graft, and/or sealant use as well as CSF complications. A pseudomeningocele was defined as a subcutaneous collection of cerebrospinal fluid palpable clinically and confirmed on imaging. A CSF leak was defined as a CSF-cutaneous fistula manifested by CSF leaking through the wound. All patients underwent regular postoperative visits of two weeks, one month, and three months. Results: Our retrospective review identified 33 patients matching the inclusion criteria. Overall, our cohort had a 21% (7/33) rate of clinical and radiographic pseudomeningocele formation with 9% (3/33) requiring surgical revision or a separate procedure. The rate of clinical and radiographic pseudomeningocele formation in the myofascial cuff preservation technique was less than standard techniques (12% and 31%, respectively). Revision or further surgical procedures were also reduced in the myofascial cuff preservation technique vs. the standard technique (6% vs 13%). Conclusions: Preservation of the myofascial cuff during posterior fossa surgery is a simple and adoptable technique that reduces the rate of pseudomeningocele formation and CSF leak as compared with standard techniques. PMID:28133584
Hossein-nezhad, Arash; Fatemi, Roya Pedram; Ahmad, Rili; Peskind, Elaine R.; Zabetian, Cyrus P.; Hu, Shu-Ching; Shi, Min; Wahlestedt, Claes; Zhang, Jing; Faghihi, Mohammad Ali
2016-01-01
Background: Parkinson’s disease (PD) is a debilitating neurological disorder for which prognostic and diagnostic biomarkers are lacking. Cerebrospinal fluid (CSF) is an accessible body fluid that comes into direct contact with the central nervous system (CNS) and acts as a nuclease-free repository where RNA transcripts shed by brain tissues can reside for extended periods of time. Objective: We studied the RNA species present in the CSF of PD patients to identify novel diagnostic biomarkers. Methods: Small volumes of CSF from 27 PD patients and 30 healthy age- and sex-matched controls were used for RNA extraction followed by next-generation sequencing (RNA-seq) using the Illumina platform. CSF contains a number of fragmented RNA species that were individually sequenced and analyzed. Comparing PD to control subjects, we observed a pool of dysregulated sequencing tags that were further analyzed and validated by quantitative real-time PCR (qRT-PCR). Results: A total of 201 differentially expressed sequencing tags (DETs), including 92 up-regulated and 109 down-regulated DETs were identified. We validated the following DETs by real time PCR in the patient samples: Dnmt1, Ezh2, CCR3, SSTR5,PTPRC, UBC, NDUFV2, BMP7, SCN9, SCN9 antisense (AC010127.3), and long noncoding RNAs AC079630 and UC001lva.4 (close to the LRRK2 gene locus), as potential PD biomarkers. Conclusions: The CSF is a unique environment that contains many species of RNA. Our work demonstrates that CSF can potentially be used to identify biomarkers for the detection and tracking of disease progression and evaluation of therapeutic outcomes. PMID:26889637
Outcomes of endoscopic repair of cerebrospinal fluid rhinorrhea without lumbar drains.
Adams, Austin S; Russell, Paul T; Duncavage, James A; Chandra, Rakesh K; Turner, Justin H
2016-11-01
Lumbar drains (LD) are commonly used during endoscopic repair of cerebrospinal fluid (CSF) rhinorrhea, either to facilitate graft healing or to monitor CSF fluid dynamics. However, the indications and necessity of LD placement remains controversial. The current study sought to evaluate endoscopic CSF leak repair outcomes in the setting of limited LD use. Patients who underwent endoscopic repair of CSF rhinorrhea between 2004 and 2014 were identified by a review of medical records. Demographic and clinical data were extracted and compared between patients who had surgery with and patients who had surgery without a perioperative LD. A univariate analysis was performed to identify factors predictive of recurrence. A total of 107 patients (116 surgical procedures) were identified, with a mean follow-up of 15.8 months. Eighty-eight of 107 patients (82.2%) had surgery without an LD. The mean hospital stay was 4.48 days in the LD group versus 1.03 days in the non-LD group (p < 0.00001). There was no difference in recurrence rate between the LD and non-LD groups. Predictors of recurrence included repair technique (p = 0.04) and size of defect (p = 0.005). Body mass index, leak site (ethmoid, sphenoid, frontal), and etiology (spontaneous, iatrogenic, traumatic) were not predictive of leak recurrence. Use of LDs in endoscopic CSF leak repair was not associated with reduced recurrence rates, regardless of leak etiology, and resulted in a significant increase in hospital length of stay. Although the use of perioperative LDs to monitor CSF dynamics may have some therapeutic and diagnostic advantages, it may not be associated with clinically significant improvements in patient outcomes or recurrence rates.
Shi, Min; Movius, James; Dator, Romel; Aro, Patrick; Zhao, Yanchun; Pan, Catherine; Lin, Xiangmin; Bammler, Theo K.; Stewart, Tessandra; Zabetian, Cyrus P.; Peskind, Elaine R.; Hu, Shu-Ching; Quinn, Joseph F.; Galasko, Douglas R.; Zhang, Jing
2015-01-01
Finding robust biomarkers for Parkinson disease (PD) is currently hampered by inherent technical limitations associated with imaging or antibody-based protein assays. To circumvent the challenges, we adapted a staged pipeline, starting from our previous proteomic profiling followed by high-throughput targeted mass spectrometry (MS), to identify peptides in human cerebrospinal fluid (CSF) for PD diagnosis and disease severity correlation. In this multicenter study consisting of training and validation sets, a total of 178 subjects were randomly selected from a retrospective cohort, matching age and sex between PD patients, healthy controls, and neurological controls with Alzheimer disease (AD). From ∼14,000 unique peptides displaying differences between PD and healthy control in proteomic investigations, 126 peptides were selected based on relevance and observability in CSF using bioinformatic analysis and MS screening, and then quantified by highly accurate and sensitive selected reaction monitoring (SRM) in the CSF of 30 PD patients versus 30 healthy controls (training set), followed by diagnostic (receiver operating characteristics) and disease severity correlation analyses. The most promising candidates were further tested in an independent cohort of 40 PD patients, 38 AD patients, and 40 healthy controls (validation set). A panel of five peptides (derived from SPP1, LRP1, CSF1R, EPHA4, and TIMP1) was identified to provide an area under curve (AUC) of 0.873 (sensitivity = 76.7%, specificity = 80.0%) for PD versus healthy controls in the training set. The performance was essentially confirmed in the validation set (AUC = 0.853, sensitivity = 82.5%, specificity = 82.5%). Additionally, this panel could also differentiate the PD and AD groups (AUC = 0.990, sensitivity = 95.0%, specificity = 97.4%). Furthermore, a combination of two peptides belonging to proteins TIMP1 and APLP1 significantly correlated with disease severity as determined by the Unified Parkinson's Disease Rating Scale motor scores in both the training (r = 0.381, p = 0.038)j and the validation (r = 0.339, p = 0.032) sets. The novel panel of CSF peptides, if validated in independent cohorts, could be used to assist in clinical diagnosis of PD and has the potential to help monitoring or predicting disease progression. PMID:25556233
Spinal cerebrospinal fluid leak as the cause of chronic subdural hematomas in nongeriatric patients.
Beck, Jürgen; Gralla, Jan; Fung, Christian; Ulrich, Christian T; Schucht, Philippe; Fichtner, Jens; Andereggen, Lukas; Gosau, Martin; Hattingen, Elke; Gutbrod, Klemens; Z'Graggen, Werner J; Reinert, Michael; Hüsler, Jürg; Ozdoba, Christoph; Raabe, Andreas
2014-12-01
The etiology of chronic subdural hematoma (CSDH) in nongeriatric patients (≤ 60 years old) often remains unclear. The primary objective of this study was to identify spinal CSF leaks in young patients, after formulating the hypothesis that spinal CSF leaks are causally related to CSDH. All consecutive patients 60 years of age or younger who underwent operations for CSDH between September 2009 and April 2011 at Bern University Hospital were included in this prospective cohort study. The patient workup included an extended search for a spinal CSF leak using a systematic algorithm: MRI of the spinal axis with or without intrathecal contrast application, myelography/fluoroscopy, and postmyelography CT. Spinal pathologies were classified according to direct proof of CSF outflow from the intrathecal to the extrathecal space, presence of extrathecal fluid accumulation, presence of spinal meningeal cysts, or no pathological findings. The primary outcome was proof of a CSF leak. Twenty-seven patients, with a mean age of 49.6 ± 9.2 years, underwent operations for CSDH. Hematomas were unilateral in 20 patients and bilateral in 7 patients. In 7 (25.9%) of 27 patients, spinal CSF leakage was proven, in 9 patients (33.3%) spinal meningeal cysts in the cervicothoracic region were found, and 3 patients (11.1%) had spinal cysts in the sacral region. The remaining 8 patients (29.6%) showed no pathological findings. The direct proof of spinal CSF leakage in 25.9% of patients suggests that spinal CSF leaks may be a frequent cause of nongeriatric CSDH.
Gafoor, V Abdul; Smita, B; Jose, James
2017-01-01
Idiopathic intracranial hypertension (IIH) is increased intracranial pressure (ICP) with normal cerebrospinal fluid (CSF) contents, in the absence of an intracranial mass, hydrocephalus, or other identifiable causes. The current knowledge of the treatment outcome of IIH is limited, and the data on the natural history of this entity are scant. The objective of the study is to study the treatment response of IIH by serially measuring the CSF opening pressure and to delineate the factors influencing the same. A prospective observational study in a cohort of fifty patients with IIH in whom CSF opening pressure was serially measured at pre-specified intervals. The mean CSF opening pressure at baseline was 302.4 ± 51.69 mm of H 2 O (range: 220-410). Even though a higher body mass index (BMI) showed a trend toward a higher CSF opening pressure, the association was not significant ( P = 0.168). However, the age of the patient had a significant negative correlation with the CSF pressure ( P = 0.006). The maximum reduction in CSF pressure occurred in the first 3 months of treatment, and thereafter it plateaued. Remission was attained in 12 (24%) patients. BMI had the strongest association with remission ( P = 0.001). In patients with IIH, treatment response is strongly related to BMI. However, patients with normal BMI are also shown to relapse and hence should have continuous, long-term follow-up. The reduction in CSF pressure attained in the first 3 months could reflect the long-term response to treatment.
Increased cortisol in the cerebrospinal fluid of women with functional hypothalamic amenorrhea.
Brundu, Benedetta; Loucks, Tammy L; Adler, Lauri J; Cameron, Judy L; Berga, Sarah L
2006-04-01
The proximate cause of functional hypothalamic amenorrhea (FHA) is reduced GnRH drive. The concomitant increase in circulating cortisol suggests that psychogenic stress plays an etiologic role, but others have argued for a strictly metabolic cause, such as undernutrition or excessive exercise. Indeed, our finding that the cerebrospinal fluid (CSF) concentration of CRH was not elevated in FHA cast doubt about the extent of hypothalamic-pituitary-adrenal activation in FHA and, therefore, we wondered whether central cortisol levels were elevated. We tested the null hypothesis that CSF cortisol levels would be comparable in FHA and eumenorrheic women (EW). The study is a cross-sectional comparison. The study was set in a general clinical research center at an academic medical center. Fifteen women with FHA who were of normal body weight and 14 EW participated. Blood samples were collected at 15-min intervals for 24 h, followed by procurement of 25 ml CSF. Cortisol, cortisol-binding globulin (CBG), and SHBG levels in blood and CSF were the main outcome measures. CSF cortisol concentrations were 30% greater when serum cortisol was 16% higher in FHA compared with EW. Circulating CBG, but not SHBG, was increased in FHA and, thus, the circulating free cortisol index was similar in FHA and EW. Because CBG and SHBG were nil in CSF, the increase in CSF cortisol in FHA was unbound. The hypothalamic-pituitary-adrenal axis is activated in FHA. The maintenance of CRH drive despite increased CSF cortisol indicates resistance to cortisol feedback inhibition. The mechanisms mediating feedback resistance likely involve altered hippocampal corticosteroid reception and serotonergic and GABAergic neuromodulation.
Pires, Frederico Ribeiro; Franco, Andréia Christine Bonotto Farias; Gilio, Alfredo Elias; Troster, Eduardo Juan
2017-01-01
To evaluate Bacterial Meningitis Score (BMS) on its own and in association with Cerebrospinal Fluid (CSF) lactate dosage in order to distinguish bacterial from aseptic meningitis. Children diagnosed with meningitis at a tertiary hospital between January/2011 and December/2014 were selected. All data were obtained upon admission. BMS was applied and included: CSF Gram staining (2 points); CSF neutrophil count ≥1,000 cells/mm3 (1 point); CSF protein ≥80 mg/dL (1 point); peripheral blood neutrophil count ≥10,000 cells/mm3 (1 point) and seizures upon/before arrival (1 point). Cutoff value for CSF lactate was ≥30 mg/dL. Sensitivity, specificity and negative predictive value of several BMS cutoffs and BMS associated with high CSF lactate were evaluated for prediction of bacterial meningitis. Among 439 eligible patients, 94 did not have all data available to complete the score, and 345 patients were included: 7 in bacterial meningitis group and 338 in aseptic meningitis group. As predictive factors of bacterial meningitis, BMS ≥1 had 100% sensitivity (95%CI 47.3-100), 64.2% specificity (58.8-100) and 100% negative predictive value (97.5-100); BMS ≥2 or BMS ≥1 associated with high CSF lactate also showed 100% sensitivity (47.3-100); but 98.5% specificity (96.6-99.5) and 100% negative predictive value (98.3-100). 2 point BMS in association with CSF lactate dosage had the same sensitivity and negative predictive value, with increased specificity for diagnosis of bacterial meningitis when compared with 1-point BMS.
Stapleton, Amanda L; Tyler-Kabara, Elizabeth C; Gardner, Paul A; Snyderman, Carl H; Wang, Eric W
2017-02-01
To determine the risk factors associated with cerebrospinal fluid (CSF) leak following endoscopic endonasal surgery (EES) for pediatric skull base lesions. Retrospective chart review of pediatric patients (ages 1 month to 18 years) treated for skull base lesions with EES from 1999 to 2014. Five pathologies were reviewed: craniopharyngioma, clival chordoma, pituitary adenoma, pituitary carcinoma, and Rathke's cleft cyst. Fisher's exact tests were used to evaluate the different factors to determine which had a statistically higher risk of leading to a post-operative CSF leak. 55 pediatric patients were identified who underwent 70 EES's for tumor resection. Of the 70 surgeries, 47 surgeries had intraoperative CSF leaks that were repaired at the time of surgery. 11 of 47 (23%) surgeries had post-operative CSF leaks that required secondary operative repair. Clival chordomas had the highest CSF leak rate at 36%. There was no statistical difference in leak rate based on the type of reconstruction, although 28% of cases that used a vascularized flap had a post-operative leak, whereas only 9% of those cases not using a vascularized flap had a leak. Post-operative hydrocephalus and perioperative use of a lumbar drain were not significant risk factors. Pediatric patients with an intra-operative CSF leak during EES of the skull base have a high rate of post-operative CSF leaks. Clival chordomas appear to be a particularly high-risk group. The use of vascularized flaps and perioperative lumbar drains did not statistically decrease the rate of post-operative CSF leak. Copyright © 2017 Elsevier B.V. All rights reserved.
The late and dual origin of cerebrospinal fluid-contacting neurons in the mouse spinal cord.
Petracca, Yanina L; Sartoretti, Maria Micaela; Di Bella, Daniela J; Marin-Burgin, Antonia; Carcagno, Abel L; Schinder, Alejandro F; Lanuza, Guillermo M
2016-03-01
Considerable progress has been made in understanding the mechanisms that control the production of specialized neuronal types. However, how the timing of differentiation contributes to neuronal diversity in the developing spinal cord is still a pending question. In this study, we show that cerebrospinal fluid-contacting neurons (CSF-cNs), an anatomically discrete cell type of the ependymal area, originate from surprisingly late neurogenic events in the ventral spinal cord. CSF-cNs are identified by the expression of the transcription factors Gata2 and Gata3, and the ionic channels Pkd2l1 and Pkd1l2. Contrasting with Gata2/3(+) V2b interneurons, differentiation of CSF-cNs is independent of Foxn4 and takes place during advanced developmental stages previously assumed to be exclusively gliogenic. CSF-cNs are produced from two distinct dorsoventral regions of the mouse spinal cord. Most CSF-cNs derive from progenitors circumscribed to the late-p2 and the oligodendrogenic (pOL) domains, whereas a second subset of CSF-cNs arises from cells bordering the floor plate. The development of these two subgroups of CSF-cNs is differentially controlled by Pax6, they adopt separate locations around the postnatal central canal and they display electrophysiological differences. Our results highlight that spatiotemporal mechanisms are instrumental in creating neural cell diversity in the ventral spinal cord to produce distinct classes of interneurons, motoneurons, CSF-cNs, glial cells and ependymal cells. © 2016. Published by The Company of Biologists Ltd.
Kim, Dana; Kim, Young-Sam; Shin, Dong Wun; Park, Chang-Shin
2016-01-01
No disease-modifying therapies (DMT) for neurodegenerative diseases (NDs) have been established, particularly for Alzheimer's disease (AD) and Parkinson's disease (PD). It is unclear why candidate drugs that successfully demonstrate therapeutic effects in animal models fail to show disease-modifying effects in clinical trials. To overcome this hurdle, patients with homogeneous pathologies should be detected as early as possible. The early detection of AD patients using sufficiently tested biomarkers could demonstrate the potential usefulness of combining biomarkers with clinical measures as a diagnostic tool. Cerebrospinal fluid (CSF) biomarkers for NDs are being incorporated in clinical trials designed with the aim of detecting patients earlier, evaluating target engagement, collecting homogeneous patients, facilitating prevention trials, and testing the potential of surrogate markers relative to clinical measures. In this review we summarize the latest information on CSF biomarkers in NDs, particularly AD and PD, and their use in clinical trials. The large number of issues related to CSF biomarker measurements and applications has resulted in relatively few clinical trials on CSF biomarkers being conducted. However, the available CSF biomarker data obtained in clinical trials support the advantages of incorporating CSF biomarkers in clinical trials, even though the data have mostly been obtained in AD trials. We describe the current issues with and ongoing efforts for the use of CSF biomarkers in clinical trials and the plans to harness CSF biomarkers for the development of DMT and clinical routines. This effort requires nationwide, global, and multidisciplinary efforts in academia, industry, and regulatory agencies to facilitate a new era. PMID:27819412
Kim, Dana; Kim, Young Sam; Shin, Dong Wun; Park, Chang Shin; Kang, Ju Hee
2016-10-01
No disease-modifying therapies (DMT) for neurodegenerative diseases (NDs) have been established, particularly for Alzheimer's disease (AD) and Parkinson's disease (PD). It is unclear why candidate drugs that successfully demonstrate therapeutic effects in animal models fail to show disease-modifying effects in clinical trials. To overcome this hurdle, patients with homogeneous pathologies should be detected as early as possible. The early detection of AD patients using sufficiently tested biomarkers could demonstrate the potential usefulness of combining biomarkers with clinical measures as a diagnostic tool. Cerebrospinal fluid (CSF) biomarkers for NDs are being incorporated in clinical trials designed with the aim of detecting patients earlier, evaluating target engagement, collecting homogeneous patients, facilitating prevention trials, and testing the potential of surrogate markers relative to clinical measures. In this review we summarize the latest information on CSF biomarkers in NDs, particularly AD and PD, and their use in clinical trials. The large number of issues related to CSF biomarker measurements and applications has resulted in relatively few clinical trials on CSF biomarkers being conducted. However, the available CSF biomarker data obtained in clinical trials support the advantages of incorporating CSF biomarkers in clinical trials, even though the data have mostly been obtained in AD trials. We describe the current issues with and ongoing efforts for the use of CSF biomarkers in clinical trials and the plans to harness CSF biomarkers for the development of DMT and clinical routines. This effort requires nationwide, global, and multidisciplinary efforts in academia, industry, and regulatory agencies to facilitate a new era.
Development of a cerebrospinal fluid lateral reservoir model in rhesus monkeys (Macaca mulatta).
Lester McCully, Cynthia M; Bacher, John; MacAllister, Rhonda P; Steffen-Smith, Emilie A; Saleem, Kadharbatcha; Thomas, Marvin L; Cruz, Rafael; Warren, Katherine E
2015-02-01
Rapid, serial, and humane collection of cerebrospinal fluid (CSF) in nonhuman primates (NHP) is an essential element of numerous research studies and is currently accomplished via two different models. The CSF reservoir model (FR) combines a catheter in the 4th ventricle with a flexible silastic reservoir to permit circulating CSF flow. The CSF lateral port model (LP) consists of a lateral ventricular catheter and an IV port that provides static access to CSF and volume restrictions on sample collection. The FR model is associated with an intensive, prolonged recovery and frequent postsurgical hydrocephalus and nonpatency, whereas the LP model is associated with an easier recovery. To maximize the advantages of both systems, we developed the CSF lateral reservoir model (LR), which combines the beneficial features of the 2 previous models but avoids their limitations by using a reservoir for circulating CSF flow combined with catheter placement in the lateral ventricle. Nine adult male rhesus monkeys were utilized in this study. Pre-surgical MRI was performed to determine the coordinates of the lateral ventricle and location of choroid plexus (CP). The coordinates were determined to avoid the CP and major blood vessels. The predetermined coordinates were 100% accurate, according to MRI validation. The LR system functioned successfully in 67% of cases for 221 d, and 44% remain functional at 426 to 510 d postoperatively. Compared with established models, our LR model markedly reduced postoperative complications and recovery time. Development of the LR model was successful in rhesus macaques and is a useful alternative to the FR and LP methods of CSF collection from nonhuman primates.
Modified Graded Repair of Cerebrospinal Fluid Leaks in Endoscopic Endonasal Transsphenoidal Surgery
Park, Jae-Hyun; Choi, Jai Ho; Kim, Young-Il; Kim, Sung Won
2015-01-01
Objective Complete sellar floor reconstruction is critical to avoid postoperative cerebrospinal fluid (CSF) leakage during transsphenoidal surgery. Recently, the pedicled nasoseptal flap has undergone many modifications and eventually proved to be valuable and efficient. However, using these nasoseptal flaps in all patients who undergo transsphenoidal surgery, including those who had none or only minor CSF leakage, appears to be overly invasive and time-consuming. Methods Patients undergoing endoscopic endonasal transsphenoidal tumor surgery within a 5 year-period were reviewed. Since 2009, we classified the intraoperative CSF leakage into grades from 0 to 3. Sellar floor reconstruction was tailored to each leak grade. We did not use any tissue grafts such as abdominal fat and did not include any procedures of CSF diversions such as lumbar drainage. Results Among 200 cases in 188 patients (147 pituitary adenoma and 41 other pathologies), intraoperative CSF leakage was observed in 27.4% of 197 cases : 14.7% Grade 1, 4.6% Grade 2a, 3.0% Grade 2b, and 5.1% Grade 3. Postoperative CSF leakage was observed in none of the cases. Septal bone buttress was used for Grade 1 to 3 leakages instead of any other foreign materials. Pedicled nasoseptal flap was used for Grades 2b and 3 leakages. Unused septal bones and nasoseptal flaps were repositioned. Conclusion Modified classification of intraoperative CSF leaks and tailored repair technique in a multilayered fashion using an en-bloc harvested septal bone and vascularized nasoseptal flaps is an effective and reliable method for the prevention of postoperative CSF leaks. PMID:26279811
Yen, Hsiu-Chuan; Wei, Hsing-Ju; Chen, Ting-Wei
2013-01-01
F2-isoprostanes (F2-IsoPs) are a gold marker of lipid peroxidation in vivo, whereas F4-neuroprostanes (F4-NPs) measured in cerebrospinal fluid (CSF) or brain tissue selectively indicate neuronal oxidative damage. Gas chromatography/negative-ion chemical-ionization mass spectrometry (GC/NICI-MS) is the most sensitive and robust method for quantifying these compounds, which is essential for CSF samples because abundance of these compounds in CSF is very low. The present study revealed potential interferences on the analysis of F2-IsoPs and F4-NPs in CSF by GC/NICI-MS due to the use of improper analytical methods that have been employed in the literature. First, simultaneous quantification of F2-IsoPs and F4-NPs in CSF samples processed for F4-NPs analysis could cause poor chromatographic separation and falsely higher F2-IsoPs values for CSF samples with high levels of F2-IsoPs and F4-NPs. Second, retention of unknown substances in GC columns from CSF samples during F4-NPs analysis and from plasma samples during F2-IsoPs analysis might interfere with F4-NPs analysis of subsequent runs, which could be solved by holding columns at a high temperature for a period of time after data acquisition. Therefore, these special issues should be taken into consideration when performing analysis of F2-IsoPs and F4-NPs in CSF to avoid misleading results.
Yen, Hsiu-Chuan; Wei, Hsing-Ju; Chen, Ting-Wei
2013-01-01
F2-isoprostanes (F2-IsoPs) are a gold marker of lipid peroxidation in vivo, whereas F4-neuroprostanes (F4-NPs) measured in cerebrospinal fluid (CSF) or brain tissue selectively indicate neuronal oxidative damage. Gas chromatography/negative-ion chemical-ionization mass spectrometry (GC/NICI-MS) is the most sensitive and robust method for quantifying these compounds, which is essential for CSF samples because abundance of these compounds in CSF is very low. The present study revealed potential interferences on the analysis of F2-IsoPs and F4-NPs in CSF by GC/NICI-MS due to the use of improper analytical methods that have been employed in the literature. First, simultaneous quantification of F2-IsoPs and F4-NPs in CSF samples processed for F4-NPs analysis could cause poor chromatographic separation and falsely higher F2-IsoPs values for CSF samples with high levels of F2-IsoPs and F4-NPs. Second, retention of unknown substances in GC columns from CSF samples during F4-NPs analysis and from plasma samples during F2-IsoPs analysis might interfere with F4-NPs analysis of subsequent runs, which could be solved by holding columns at a high temperature for a period of time after data acquisition. Therefore, these special issues should be taken into consideration when performing analysis of F2-IsoPs and F4-NPs in CSF to avoid misleading results. PMID:23957004
Riancho, Javier; Vázquez-Higuera, José Luis; Pozueta, Ana; Lage, Carmen; Kazimierczak, Martha; Bravo, María; Calero, Miguel; Gonalezález, Andrea; Rodríguez, Eloy; Lleó, Alberto; Sánchez-Juan, Pascual
2017-01-01
MicroRNAs have been postulated as potential biomarkers for Alzheimer's disease (AD). Exosomes are nanovesicles which transport microRNAs, proteins, and other cargos. It has been hypothesized that the exosome traffic might be increased in neurodegenerative disorders. i) To assess the cerebrospinal fluid (CSF) microRNA profile in a group of AD patients and control subjects and to validate a group of microRNAs previously reported by other authors. ii) To compare microRNA levels in whole CSF and in the exosome-enriched fraction in AD patients. A panel of 760 microRNAs was analyzed in the CSF of 10 AD patients and 10 healthy subjects. Among microRNAs differently expressed, we selected those that had been previously reported by other authors. Candidates were validated in a larger group by individual qPCR assays. MicroRNA expression was also evaluated in exosome-enriched CSF samples of patients with AD and controls. Fifteen microRNAs were differently expressed in AD. MiR-9-5p, miR-134, and miR-598 were selected as candidates for further analysis. MiR-9-5p and miR-598 were detected in 50 and 75% of control CSF samples, respectively, while they were not detected in any AD CSF samples. We observed an opposite pattern when we evaluated the microRNA expression in the exosome-enriched CSF AD samples. No pattern variations were noted among healthy subjects. These data propose miR-9-5p and miR-598 as potential biomarkers for AD. Further studies in plasma and other body fluids will confirm their potential role as easily accessible biomarkers. In addition, our data suggest that exosome trafficking is different between AD and control subjects raising the need to take this phenomenon into consideration in future studies of AD biomarkers.
Pranzatelli, M R; Allison, T J; McGee, N R; Tate, E D
2018-02-27
Studies of cerebrospinal fluid (CSF) γδ T cells in children are limited, due especially to the lack of control data. In adults, gamma/delta T cells (TCR-γδ) residing in the intrathecal space are sometimes involved in neuroinflammation. To evaluate the possible role of γδ T cells in paediatric neuroinflammation, we immunophenotyped cerebrospinal fluid (CSF) and blood lymphocytes using flow cytometry in a case-control study of 100 children with non-inflammatory neurological disorders (NIND), 312 with opsoclonus-myoclonus (OMS) and 23 with other inflammatory neurological disorders (OIND). In NIND, the negative correlation between CSF γδ T cell frequency and patient age was striking: median frequency of 27% in infants and 3·3% in teens. Interindividual variations were largest in the youngest. There was no gender effect. In all OMS, after correcting for age, only a small effect of OMS severity remained. Measurement of markers for γδ T cell activation [human leucocyte antigen D-related (HLA-DR)], maturation (CD45RA, CD45RO) or intracellular cytokine staining [interleukin (IL)-4, interferon (IFN)-γ] failed to discriminate OMS and NIND groups. Of seven OMS immunotherapies/combinations, none altered the frequency of total CSF γδ T cells or subsets significantly. In OIND, the CSF γδ T cell frequency was < 10% for single samples of other paraneoplastic disorders [anti-neuronal nuclear antibody (ANNA)-1, PCA-1, teratoma-associated syndrome], cerebellar ataxia (post-infectious, ataxia-telangiectasia), acute disseminated encephalomyelitis, neuroborreliosis and encephalitis. This study provides new insights into CSF γδ T cells in the paediatric population. Although their role in CSF remains elusive, the negative age correlation, resistance to immunotherapy and our age cut-off references for NIND are important findings for the design of future paediatric studies. © 2018 British Society for Immunology.
Takizawa, Ken; Matsumae, Mitsunori; Hayashi, Naokazu; Hirayama, Akihiro; Yatsushiro, Satoshi; Kuroda, Kagayaki
2017-10-18
Magnetic resonance imaging (MRI) does not only ascertain morphological features, but also measures physiological properties such as fluid velocity or pressure gradient. The purpose of this study was to investigate cerebrospinal fluid (CSF) dynamics in patients with morphological abnormalities such as enlarged brain ventricles and subarachnoid spaces. We used a time-resolved three dimensional phase contrast (3D-PC) MRI technique to quantitatively evaluate CSF dynamics in the Sylvian aqueduct of healthy elderly individuals and patients with either idiopathic normal pressure hydrocephalus (iNPH) or Alzheimer's disease (AD) presenting with ventricular enlargement. Nineteen healthy elderly individuals, ten iNPH patients, and seven AD patients (all subjects ≥ 60 years old) were retrospectively evaluated 3D-PC MRI. The CSF velocity, pressure gradient, and rotation in the Sylvian aqueduct were quantified and compared between the three groups using Kolmogorov-Smirnov and Mann-Whitney U tests. There was no statistically significant difference in velocity among the three groups. The pressure gradient was not significantly different between the iNPH and AD groups, but was significantly different between the iNPH group and the healthy controls (p < 0.001), and similarly, between the AD group and the healthy controls (p < 0.001). Rotation was not significantly different between the iNPH and AD groups, but was significantly different between the iNPH group and healthy controls (p < 0.001), and similarly, between the AD group and the healthy controls (p < 0.001). Quantitative analysis of CSF dynamics with time resolved 3D-PC MRI revealed differences and similarities in the Sylvian aqueduct between healthy elderly individuals, iNPH patients, and AD patients. The results showed that CSF motion is in a hyperdynamic state in both iNPH and AD patient groups compared to healthy elderly individuals, and that iNPH patients and AD patients display similar CSF motion profiles.
Agah, Elmira; Zardoui, Arshia; Saghazadeh, Amene; Ahmadi, Mona; Tafakhori, Abbas; Rezaei, Nima
2018-01-01
Identifying a reliable biomarker may accelerate diagnosis of multiple sclerosis (MS) and lead to early management of the disease. Accumulating evidence suggest that cerebrospinal fluid (CSF) and peripheral blood concentration of osteopontin (OPN) may have diagnostic and prognostic value in MS. We conducted a systematic review and meta-analysis of studies that measured peripheral blood and CSF levels of OPN in MS patients and controls to evaluate the diagnostic potential of this biomarker better. We searched PubMed, Web of Science and Scopus databases to find articles that measured OPN concentration in peripheral blood and CSF samples from MS patients up to October 19, 2016. Q statistic tests and the I2 index were applied for heterogeneity assessment. If the I2 index was less than 40%, the fixed-effects model was used for meta-analysis. Random-effects meta-analysis was chosen if the I2 value was greater than 40%. After removal of duplicates, 918 articles were identified, and 27 of them fulfilled the inclusion criteria. We included 22 eligible studies in the final meta-analysis. MS patients, in general, had considerably higher levels of OPN in their CSF and blood when compared to all types of controls (p<0.05). When the comparisons were made between different subtypes of MS patients and controls, the results pointed to significantly higher levels of OPN in CSF of MS subgroups (p<0.05). All subtypes of MS patients, except CIS patients, had increased blood levels of OPN compared to controls (p<0.05). In the second set of meta-analyses, we compared the peripheral blood and CSF concentrations of OPN between MS patient subtypes. CIS patients had significantly lower levels of OPN both in their peripheral blood and CSF compared to patients with progressive subtypes of MS (p<0.05). CSF concentration of OPN was significantly higher among RRMS patients compared to the CIS patients and SPMS patients (P<0.05). Finally, patients with active MS had significantly higher OPN levels in their CSF compared to patients with stable disease (P = 0.007). The result of this study confirms that increased levels of OPN exist in CSF and peripheral blood of MS patients and strengthens the evidence regarding the clinical utility of OPN as a promising and validated biomarker for MS.
Young, S N; Davis, B A; Gauthier, S
1982-01-01
Phenylacetic acid, p-hydroxyphenylacetic acid, m-hydroxyphenylacetic acid, phenylalanine, indoleacetic acid, 5-hydroxyindoleacetic acid and tryptophan were measured in lumbar and cisternal cerebrospinal fluid (CSF) taken during pneumoencephalography. The data suggest that the concentration of the acid metabolites of the trace amines tryptamine, phenylethylamine, p-tyramine and m-tyramine in lumbar CSF are influenced by the system that transports these acids out of CSF. In cisternal CSF this mechanism does not operate and more information can be obtained on the metabolism of the parent amines in the CNS. Our data indicate that (1) m-tyramine is relatively unimportant quantitatively (2) the rate of metabolism of phenylethylamine in human brain is similar to that of 5-hydroxytryptamine (3) the most important variable controlling the synthesis of phenylethylamine is the activity of aromatic amino acid decarboxylase (4) p-tyramine is synthesised at about half the rate of phenylethylamine and is thus quantitatively important in metabolic terms. PMID:6181210
Liquid-Based Cytology of the Cerebrospinal Fluid in a Case of Cryptococcal Meningitis.
Choi, Jiwoon; Kim, Se Hoon
2018-01-01
Cryptococcus neoformans is the most common microorganism found in cerebrospinal fluid (CSF) cytology and causes life-threatening infections in immunocompromised hosts. Although its cytomorphologic features in conventional smear cytology have been well described, those in liquid-based cytology have rarely been. A 73-year-old woman with diffuse large B-cell lymphoma presented with mental confusion and a spiking fever. To rule out infectious conditions, CSF examination was performed. A cytology slide that was prepared using the ThinPrep method showed numerous spherical yeast-form organisms with diameters of 4-11 μm and thick capsules. Occasional asymmetrical, narrow-based budding but no true hyphae or pseudohyphae were observed. Gomori methenamine silver staining was positive. Cryptococcosis was confirmed in blood and CSF through the cryptococcal antigen test and culture. Liquid-based cytology allows for a clean background and additional slides for ancillary testing, facilitating the detection of microorganisms in CSF specimens, particularly when the number of organisms is small.
Liquid-Based Cytology of the Cerebrospinal Fluid in a Case of Cryptococcal Meningitis
Choi, Jiwoon; Kim, Se Hoon
2018-01-01
Cryptococcus neoformans is the most common microorganism found in cerebrospinal fluid (CSF) cytology and causes life-threatening infections in immunocompromised hosts. Although its cytomorphologic features in conventional smear cytology have been well described, those in liquid-based cytology have rarely been. A 73-year-old woman with diffuse large B-cell lymphoma presented with mental confusion and a spiking fever. To rule out infectious conditions, CSF examination was performed. A cytology slide that was prepared using the ThinPrep method showed numerous spherical yeast-form organisms with diameters of 4–11 μm and thick capsules. Occasional asymmetrical, narrow-based budding but no true hyphae or pseudohyphae were observed. Gomori methenamine silver staining was positive. Cryptococcosis was confirmed in blood and CSF through the cryptococcal antigen test and culture. Liquid-based cytology allows for a clean background and additional slides for ancillary testing, facilitating the detection of microorganisms in CSF specimens, particularly when the number of organisms is small. PMID:29069886
Arning, Erland; Bottiglieri, Teodoro
2016-01-01
We describe a simple stable isotope dilution method for accurate and precise measurement of cerebrospinal fluid (CSF) 5-methyltetrahydrofolate (5-MTHF) as a clinical diagnostic test. 5-MTHF is the main biologically active form of folic acid and is involved in regulation of homocysteine and DNA synthesis. Measurement of 5-MTHF in CSF provides diagnostic information regarding diseases affecting folate metabolism within the central nervous system, in particular inborn errors of folate metabolism. Determination of 5-MTHF in CSF (50 μL) was performed utilizing high performance liquid chromatography coupled with electrospray positive ionization tandem mass spectrometry (HPLC-ESI-MS/MS). 5-MTHF in CSF is determined by a 1:2 dilution with internal standard (5-MTHF-(13)C5) and injected directly onto the HPLC-ESI-MS/MS system. Each assay is quantified using a five-point standard curve (25-400 nM) and has an analytical measurement range of 3-1000 nM.
Passage of delta sleep-inducing peptide (DSIP) across the blood-cerebrospinal fluid barrier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zlokovic, B.V.; Segal, M.B.; Davson, H.
1988-05-01
Unidirectional flux of /sup 125/I-labeled DSIP at the blood-tissue interface of the blood-cerebrospinal fluid (CSF) barrier was studied in the perfused in situ choroid plexuses of the lateral ventricles of the sheep. Arterio-venous loss of /sup 125/I-radioactivity suggested a low-to-moderate permeability of the choroid epithelium to the intact peptide from the blood side. A saturable mechanism with Michaelis-Menten type kinetics with high affinity and very low capacity (approximate values: Kt = 5.0 +/- 0.4 nM; Vmax = 272 +/- 10 fmol.min-1) was demonstrated at the blood-tissue interface of the choroid plexus. The clearance of DSIP from the ventricles during ventriculo-cisternalmore » perfusion in the rabbit indicated no significant flux of the intact peptide out of the CSF. The results suggest that DSIP crosses the blood-CSF barrier, while the system lacks the specific mechanisms for removal from the CSF found with most, if not all, amino acids and several peptides.« less
Makkonen, I; Kokki, H; Kuikka, J; Turpeinen, U; Riikonen, R
2011-10-01
A positive effect of fluoxetine has been shown in some children with autism. The present study was undertaken to correlate striatal dopamine transporter (DAT) binding and cerebrospinal fluid insulin-like growth factor-1 (CSF-IGF-1) with clinical response in autistic children (n=13, age 5-16 years) after a 6-month fluoxetine treatment. Good clinical responders (n=6) had a decrease (p=0.031) in DAT binding as assessed using single-photon emission computed tomography with [123I]-nor-β-CIT, whereas poor responders had a trend to an increase. An increase in CSF-IGF-1 (p=0.003) was detected after the treatment period, but no correlation between the clinical response and CSF-IGF-1 was found. In conclusion, fluoxetine decreases DAT binding indicating alleviation of the hyperdopaminergic state and increases CSF-IGF-1 concentration, which may also have a neuroprotective effect against dopamine-induced neurotoxicity in autistic children. © Georg Thieme Verlag KG Stuttgart · New York.
Wan, Yingfeng; Xie, Jixi; Xie, Dajiang; Xue, Zhaoliang; Wang, Yirong; Yang, Shuxu
2016-12-01
The etiology of chronic subdural hematoma (CSDH) in patients is diverse. The primary objective of this article was to discuss one of the causes, spontaneous intracranial hypotension with spinal cerebrospinal fluid (CSF) leak, which is usually neglected by the neurosurgeon. All the consecutive 15 patients who underwent operation for CSDHs between June 2012 and June 2014 at Sir Run Run Shaw Hospital of Zhejiang University were included in this retrospective cohort study. The clinical and imaging data of these patients with CSDHs due to spinal CSF leak were retrospectively studied. Fifteen patients, with a mean age of 53.8 ± 8.3 years, underwent operations for CSDH. Hematomas were unilateral in 4 patients and bilateral in 11 patients. Among these patients, eight patients had recurrence of hematomas after operation due to neglect of spinal CSF leak. All patients had fully recovery. Spinal CSF leak is a cause of cSDH, which is overlooked by the doctor.
Carrillo, Maria C; Blennow, Kaj; Soares, Holly; Lewczuk, Piotr; Mattsson, Niklas; Oberoi, Pankaj; Umek, Robert; Vandijck, Manu; Salamone, Salvatore; Bittner, Tobias; Shaw, Leslie M; Stephenson, Diane; Bain, Lisa; Zetterberg, Henrik
2013-03-01
Recognizing that international collaboration is critical for the acceleration of biomarker standardization efforts and the efficient development of improved diagnosis and therapy, the Alzheimer's Association created the Global Biomarkers Standardization Consortium (GBSC) in 2010. The consortium brings together representatives of academic centers, industry, and the regulatory community with the common goal of developing internationally accepted common reference standards and reference methods for the assessment of cerebrospinal fluid (CSF) amyloid β42 (Aβ42) and tau biomarkers. Such standards are essential to ensure that analytical measurements are reproducible and consistent across multiple laboratories and across multiple kit manufacturers. Analytical harmonization for CSF Aβ42 and tau will help reduce confusion in the AD community regarding the absolute values associated with the clinical interpretation of CSF biomarker results and enable worldwide comparison of CSF biomarker results across AD clinical studies. Copyright © 2013 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.
Darunavir concentrations in cerebrospinal fluid and blood in HIV-1-infected individuals.
Yilmaz, Aylin; Izadkhashti, Arash; Price, Richard W; Mallon, Patrick W; De Meulder, Marc; Timmerman, Philip; Gisslén, Magnus
2009-04-01
Darunavir is the most recently licensed protease inhibitor currently used in treatment-experienced HIV-infected individuals. Our objective was to determine darunavir concentrations in cerebrospinal fluid (CSF) and plasma in subjects receiving antiretroviral treatment regimens containing ritonavir-boosted darunavir. Darunavir concentrations were determined by liquid chromatography tandem mass spectrometry in 14 paired CSF and plasma samples from eight HIV-1-infected individuals. The lower limit of quantification was 5.0 ng/ml. All of the 14 CSF samples had detectable darunavir concentrations with a median darunavir concentration of 34.2 ng/ml (range 15.9-212.0 ng/ml). The median (range) plasma darunavir concentration was 3930 (1800-12900) ng/ml. All CSF samples had detectable darunavir concentrations. Most of them exceeded or were in the same range as levels needed to inhibit replication of wild type virus, making it probable that darunavir, at least to some extent, contributes to the suppression of HIV replication in the central nervous system.
Pulsatile flow in ventricular catheters for hydrocephalus
NASA Astrophysics Data System (ADS)
Giménez, Á.; Galarza, M.; Thomale, U.; Schuhmann, M. U.; Valero, J.; Amigó, J. M.
2017-05-01
The obstruction of ventricular catheters (VCs) is a major problem in the standard treatment of hydrocephalus, the flow pattern of the cerebrospinal fluid (CSF) being one important factor thereof. As a first approach to this problem, some of the authors studied previously the CSF flow through VCs under time-independent boundary conditions by means of computational fluid dynamics in three-dimensional models. This allowed us to derive a few basic principles which led to designs with improved flow patterns regarding the obstruction problem. However, the flow of the CSF has actually a pulsatile nature because of the heart beating and blood flow. To address this fact, here we extend our previous computational study to models with oscillatory boundary conditions. The new results will be compared with the results for constant flows and discussed. It turns out that the corrections due to the pulsatility of the CSF are quantitatively small, which reinforces our previous findings and conclusions. This article is part of the themed issue `Mathematical methods in medicine: neuroscience, cardiology and pathology'.
Alperin, Noam; Lee, Sang H; Bagci, Ahmet M
2015-10-01
To add the hydrostatic component of the cerebrospinal fluid (CSF) pressure to magnetic resonance imaging (MRI)-derived intracranial pressure (ICP) measurements in the upright posture for derivation of pressure value in a central cranial location often used in invasive ICP measurements. Additional analyses were performed using data previously collected from 10 healthy subjects scanned in supine and sitting positions with a 0.5T vertical gap MRI scanner (GE Medical). Pulsatile blood and CSF flows to and from the brain were quantified using cine phase-contrast. Intracranial compliance and pressure were calculated using a previously described method. The vertical distance between the location of the CSF flow measurement and a central cranial location was measured manually in the mid-sagittal T1 -weighted image obtained in the upright posture. The hydrostatic pressure gradient of a CSF column with similar height was then added to the MR-ICP value. After adjustment for the hydrostatic component, the mean ICP value was reduced by 7.6 mmHg. Mean ICP referenced to the central cranial level was -3.4 ± 1.7 mmHg compared to the unadjusted value of +4.3 ± 1.8 mmHg. In the upright posture, the hydrostatic pressure component needs to be added to the MRI-derived ICP values for compatibility with invasive ICP at a central cranial location. © 2015 Wiley Periodicals, Inc.
Gueorguieva, Ivelina; Clark, Simon R; McMahon, Catherine J; Scarth, Sylvia; Rothwell, Nancy J; Tyrell, Pippa J; Hopkins, Stephen J; Rowland, Malcolm
2008-01-01
Aim The naturally occurring interlukin-1 receptor antagonist (IL-1RA) markedly protects rodents against ischaemic, excitotoxic and traumatic brain injury, suggesting it may be of therapeutic value. The aim was to determine the pharmacokinetics of IL-1RA in cerebrospinal fluid (CSF) of patients, to allow modelling that would aid development of therapeutic regimens. Methods When administered intravenously to patients soon after stroke, IL-1RA is safe and reduces the peripheral inflammatory response. However, IL-1RA is a large protein (17 kDa), which may limit brain penetration, thereby limiting its potential utility in brain injury. In seven patients with subarchnoid haemorrhage (SAH), IL-1RA was administered by intravenous bolus, then infusion for 24 h, and both blood and CSF, via external ventricular drains, were sampled during and after stopping the infusion. Results Plasma steady-state concentrations were rapidly attained and maintained throughout the infusion, whereas CSF concentrations rose slowly towards a plateau during the 24-h infusion, reaching at best only 4% of that in plasma. Plasma kinetic parameters were within the literature range. Modelling of the combined data yielded rate constants entering and leaving the CSF of 0.0019 h−1[relative standard error (RSE) = 19%] and 0.1 h−1 (RSE = 19%), respectively. Conclusions Peripherally administered IL-1RA crosses slowly into and out of the CSF of patients with SAH. However, there is a large concentration gradient of IL-1RA between plasma and CSF. These CSF:plasma data are consistent with very low permeation of IL-1RA into the CSF and elimination kinetics from it controlled by the volumetric turnover of CSF. What is already known about this subject? The naturally occurring interlukin-1 receptor antagonist (IL-1RA) markedly protects rodents against ischaemic, excitotoxic and traumatic brain injury, suggesting it may be of therapeutic value.When administered intravenously to patients soon after stroke, IL-1RA is safe and reduces the peripheral inflammatory response.However, IL-1RA is a large protein (17 kDa), which may limit brain penetration, thereby limiting its potential utility in brain injury. What this study adds The purpose of these experiments was to determine the pharmacokinetics of IL-1RA in cerebrospinal fluid (CSF) of patients, to allow modelling that would aid development of therapeutic regimens.Peripherally administered IL-1RA crosses slowly into and out of the CSF of patients with subarachnoid haemorrhage and, at steady state, CSF IL-1RA concentration (range 115–886 ng ml−1) was similar to that found to be neuroprotective in rats (range 91–232 ng ml−1), although there was considerable variability among patients.However, there is a large concentration gradient of IL-1RA between plasma and CSF.These CSF:plasma data are consistent with very low permeation of IL-1RA into the CSF and elimination kinetics from it controlled by the volumetric turnover of CSF. PMID:17875190
Can the Risks of Cerebrospinal Fluid Leak After Vestibular Schwannoma Surgery Be Predicted?
Russel, Adrien; Hoffmann, Charles P; Nguyen, Duc T; Beurton, Renaud; Parietti-Winkler, Cécile
2017-02-01
Identifying predictive factors of cerebrospinal fluid (CSF) leak after translabyrinthine approach (TLA) for vestibular schwannoma. Retrospective study. Tertiary care center. All patients (n = 275) operated for a vestibular schwannoma by TLA between 2004 and 2013 were included. Vestibular schwannoma surgery by TLA. The rate of postoperative CSF leak considering the age, sex, body mass index (BMI), tumor staging, and duration of surgical procedure. A logistic regression model was used to identify the predictors and compute a biometric predictive model of CSF leak. Thirty-three patients (12.0%) developed a CSF leak after surgery. In a multivariable model, an increased risk of CSF leak was found for younger patients (OR 0.95, 95% CI 0.92-0.98), longer duration of surgery (OR 1.85, 95% CI 1.12-3.05), and the male sex (0 = male; 1 = female; OR 0.22, 95% CI 0.09-0.54), while also adjusting for BMI. The probability of developing a CSF leak after vestibular schwannoma surgery was calculated using a statistical prediction model, with a percentage of false negative of 7.0% and an overall correct prediction of 88.4%. The predictors of CSF leak after TLA for vestibular schwannoma are young age, male sex, longer duration of surgery, which adjusting for BMI. In this regard, the surgical team should adapt its management during pre- and postoperative period to decrease the likelihood of a leak.
2013-01-01
Background The objectives of the study were to characterize the expression of the α- and β-subunits of granulocyte-macrophage colony stimulating factor (GM-CSF) receptor in bovine cumulus cells and oocytes and to determine the effect of exogenous GM-CSF on cumulus cells expansion, oocyte maturation, IGF-2 transcript expression and subsequent competence for embryonic development. Methods Cumulus-oocyte complexes (COC) were obtained by aspirating follicles 3- to 8-mm in diameter with an 18 G needle connected to a vacuum pump at −50 mmHg. Samples of cumulus cells and oocytes were used to detect GM- CSF receptor by immunofluorescence. A dose–response experiment was performed to estimate the effect of GM-CSF on cumulus cell expansion and nuclear/cytoplasmic maturation. Also, the effect of GM-CSF on IGF-2 expression was evaluated in oocytes and cumulus cells after in vitro maturation by Q-PCR. Finally, a batch of COC was randomly assigned to in vitro maturation media consisting of: 1) synthetic oviductal fluid (SOF, n = 212); 2) synthetic oviductal fluid supplemented with 100 ng/ml of GM-CSF (SOF + GM-CSF, n = 224) or 3) tissue culture medium (TCM 199, n = 216) and then subsequently in vitro fertilized and cultured for 9 days. Results Immunoreactivity for both α and β GM-CSF receptors was localized in the cytoplasm of both cumulus cells and oocytes. Oocytes in vitro matured either with 10 or 100 ng/ml of GM-CSF presented a higher (P < 0.05) cumulus cells expansion than that of the control group (0 ng/ml of GM-CSF). GM-CSF did not affect the proportion of oocytes in metaphase II, cortical granules dispersion and IGF-2 expression. COC exposed to 100 ng/ml of GM-CSF during maturation did not display significant differences in terms of embryo cleavage rate (50.4% vs. 57.5%), blastocyst development at day 7 (31.9% vs. 28.7%) and at day 9 (17.4% vs. 17.9%) compared to untreated control (SOF alone, P = 0.2). Conclusions GM-CSF enhanced cumulus cell expansion of in vitro matured bovine COC. However, GM-CSF did not increase oocyte nuclear or cytoplasmic maturation rates, IGF-2 expression or subsequent embryonic development. PMID:23799974
Diagnosis of Meningococcal Meningitis by Broad-Range Bacterial PCR with Cerebrospinal Fluid
Kotilainen, Pirkko; Jalava, Jari; Meurman, Olli; Lehtonen, Olli-Pekka; Rintala, Esa; Seppälä, Olli-Pekka; Eerola, Erkki; Nikkari, Simo
1998-01-01
We used broad-range bacterial PCR combined with DNA sequencing to examine prospectively cerebrospinal fluid (CSF) samples from patients with suspected meningitis. Fifty-six CSF samples from 46 patients were studied during the year 1995. Genes coding for bacterial 16S and/or 23S rRNA genes could be amplified from the CSF samples from five patients with a clinical picture consistent with acute bacterial meningitis. For these patients, the sequenced PCR product shared 98.3 to 100% homology with the Neisseria meningitidis sequence. For one patient, the diagnosis was initially made by PCR alone. Of the remaining 51 CSF samples, for 50 (98.0%) samples the negative PCR findings were in accordance with the negative findings by bacterial culture and Gram staining, as well as with the eventual clinical diagnosis for the patient. However, the PCR test failed to detect the bacterial rRNA gene in one CSF sample, the culture of which yielded Listeria monocytogenes. These results invite new research efforts to be focused on the application of PCR with broad-range bacterial primers to improve the etiologic diagnosis of bacterial meningitis. In a clinical setting, Gram staining and bacterial culture still remain the cornerstones of diagnosis. PMID:9665992
Bonin, Serena; Zanotta, Nunzia; Sartori, Arianna; Bratina, Alessio; Manganotti, Paolo; Trevisan, Giusto; Comar, Manola
2018-02-01
Cerebrospinal fluid (CSF) analysis in patients with particular neurologic disorders is a powerful tool to evaluate specific central nervous system inflammatory markers for diagnostic needs, because CSF represents the specific immune micro-environment to the central nervous system. CSF samples from 49 patients with multiple sclerosis (MS), chronic inflammatory demyelinating polyneuropathy (CIDP), and non-inflammatory neurologic disorders (NIND) as controls were submitted to protein expression profiles of 47 inflammatory biomarkers by multiplex Luminex bead assay to investigate possible differences in the inflammatory process for MS and CIDP. Our results showed differences in CSF cytokine levels in MS and CIDP; in particular, IL12 (p40) was significantly highly expressed in MS in comparison with CIDP and NIND, while SDF-1α and SCGF-β were significantly highly expressed in CIDP cohort when compared to MS and NIND. IL-9, IL-13, and IL-17 had higher expression levels in NIND if compared with the other groups. Our study showed that, despite some common pathogenic mechanisms, central and peripheral nervous system demyelinating diseases, such as MS and CIDP, differ in some specific inflammatory soluble proteins in CSF, underlining differences in the immune response involved in those autoimmune diseases.
Nicholson, James; Azim, Syed; Rebecchi, Mario J; Galbavy, William; Feng, Tian; Reinsel, Ruth; Rizwan, Sabeen; Fowler, Christopher J; Benveniste, Helene; Kaczocha, Martin
2015-01-01
There is compelling evidence in humans that peripheral endocannabinoid signaling is disrupted in obesity. However, little is known about the corresponding central signaling. Here, we have investigated the relationship between gender, leptin, body mass index (BMI) and levels of the endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG) in the serum and cerebrospinal fluid (CSF) of primarily overweight to obese patients with osteoarthritis. Patients (20 females, 15 males, age range 44-78 years, BMI range 24-42) undergoing total knee arthroplasty for end-stage osteoarthritis were recruited for the study. Endocannabinoids were quantified by liquid chromatography - mass spectrometry. AEA and 2-AG levels in the serum and CSF did not correlate with either age or BMI. However, 2-AG levels in the CSF, but not serum, correlated negatively with CSF leptin levels (Spearman's ρ -0.48, P=0.0076, n=30). No such correlations were observed for AEA and leptin. In the patient sample investigated, there is a negative association between 2-AG and leptin levels in the CSF. This is consistent with pre-clinical studies in animals, demonstrating that leptin controls the levels of hypothalamic endocannabinoids that regulate feeding behavior.
Siravegna, Giulia; Geuna, Elena; Mussolin, Benedetta; Crisafulli, Giovanni; Bartolini, Alice; Galizia, Danilo; Casorzo, Laura; Sarotto, Ivana; Scaltriti, Maurizio; Sapino, Anna; Bardelli, Alberto; Montemurro, Filippo
2017-01-01
Background Central nervous system (CNS) involvement contributes to significant morbidity and mortality in patients with human epidermal growth factor receptor 2 (HER2)-positive metastatic breast cancer (mBC) and represents a major challenge for clinicians. Liquid biopsy of cerebrospinal fluid (CSF)-derived circulating tumour DNA (ctDNA) harbours clinically relevant genomic alterations in patients with CNS metastases and could be effective in tracking tumour evolution. Methods In a HER2-positive mBC patient with brain metastases, we applied droplet digital PCR (ddPCR) and next-generation whole exome sequencing (WES) analysis to measure ctDNA dynamic changes in CSF and plasma collected during treatment. Results Baseline CSF-derived ctDNA analysis revealed TP53 and PIK3CA mutations as well as ERBB2 and cMYC amplification. Post-treatment ctDNA analysis showed decreased markers level in plasma, consistent with extra-CNS disease control, while increased in the CSF, confirming poor treatment benefit in the CNS. Discussion Analysis of ctDNA in the CSF of HER2-positive mBC is feasible and could represent a useful companion for clinical management of brain metastases. PMID:29067216
Tsunoda, A; Mitsuoka, H; Sato, K; Kanayama, S
2000-06-01
Our purpose was to quantify the intracranial cerebrospinal fluid (CSF) volume components using an original MRI-based segmentation technique and to investigate whether a CSF volume index is useful for diagnosis of normal pressure hydrocephalus (NPH). We studied 59 subjects: 16 patients with NPH, 14 young and 13 elderly normal volunteers, and 16 patients with cerebrovascular disease. Images were acquired on a 1.5-T system, using a 3D-fast asymmetrical spin-echo (FASE) method. A region-growing method (RGM) was used to extract the CSF spaces from the FASE images. Ventricular volume (VV) and intracranial CSF volume (ICV) were measured, and a VV/ICV ratio was calculated. Mean VV and VV/ICV ratio were higher in the NPH group than in the other groups, and the differences were statistically significant, whereas the mean ICV value in the NPH group was not significantly increased. Of the 16 patients in the NPH group, 13 had VV/ICV ratios above 30%. In contrast, no subject in the other groups had a VV/ICV ratios higher than 30%. We conclude that these CSF volume parameters, especially the VV/ICV ratio, are useful for the diagnosis of NPH.
Cerebrospinal Fluid B Cells Correlate with Early Brain Inflammation in Multiple Sclerosis
Kuenz, Bettina; Lutterotti, Andreas; Ehling, Rainer; Gneiss, Claudia; Haemmerle, Monika; Rainer, Carolyn; Deisenhammer, Florian; Schocke, Michael; Berger, Thomas; Reindl, Markus
2008-01-01
Background There is accumulating evidence from immunological, pathological and therapeutic studies that B cells are key components in the pathophysiology of multiple sclerosis (MS). Methodology/Principal Findings In this prospective study we have for the first time investigated the differences in the inflammatory response between relapsing and progressive MS by comparing cerebrospinal fluid (CSF) cell profiles from patients at the onset of the disease (clinically isolated syndrome, CIS), relapsing-remitting (RR) and chronic progressive (CP) MS by flow cytometry. As controls we have used patients with other neurological diseases. We have found a statistically significant accumulation of CSF mature B cells (CD19+CD138−) and plasma blasts (CD19+CD138+) in CIS and RRMS. Both B cell populations were, however, not significantly increased in CPMS. Further, this accumulation of B cells correlated with acute brain inflammation measured by magnetic resonance imaging and with inflammatory CSF parameters such as the number of CSF leukocytes, intrathecal immunoglobulin M and G synthesis and intrathecal production of matrix metalloproteinase (MMP)-9 and the B cell chemokine CxCL-13. Conclusions Our data support an important role of CSF B cells in acute brain inflammation in CIS and RRMS. PMID:18596942
Kruse, Niels; Mollenhauer, Brit
2015-11-01
The quantification of α-Synuclein in cerebrospinal fluid (CSF) as a biomarker has gained tremendous interest in the last years. Several commercially available immunoassays are emerging. We here describe the full validation of one commercially available ELISA assay for the quantification of α-Synuclein in human CSF (Covance alpha-Synuclein ELISA kit). The study was conducted within the BIOMARKAPD project in the European initiative Joint Program for Neurodegenerative Diseases (JPND). We investigated the effect of several pre-analytical and analytical confounders: i.e. (1) need for centrifugation of freshly drawn CSF, (2) sample stability, (3) delay of freezing, (4) volume of storage aliquots, (5) freeze/thaw cycles, (6) thawing conditions, (7) dilution linearity, (8) parallelism, (9) spike recovery, and (10) precision. None of these confounders influenced the levels of α-Synuclein in CSF significantly. We found a very high intra-assay precision. The inter-assay precision was lower than expected due to different performances of kit lots used. Overall the validated immunoassay is useful for the quantification of α-Synuclein in human CSF. Copyright © 2015 Elsevier B.V. All rights reserved.
Antioxidant capacity and protein oxidation in cerebrospinal fluid of amyotrophic lateral sclerosis.
Siciliano, G; Piazza, S; Carlesi, C; Del Corona, A; Franzini, M; Pompella, A; Malvaldi, G; Mancuso, M; Paolicchi, A; Murri, L
2007-05-01
The causes of Amyotrophic Lateral Sclerosis (ALS) are unknown. A bulk of evidence supports the hypothesis that oxidative stress and mitochondrial dysfunction can be implicated in ALS pathogenesis. METHODS =: We assessed, in cerebrospinal fluid (CSF) and in plasma of 49 ALS patients and 8 controls, the amount of oxidized proteins (AOPP, advanced oxidation protein products), the total antioxidant capacity (FRA, the ferric reducing ability), and, in CSF, two oxidation products, the 4-hydroxynonenal and the sum of nitrites plus nitrates. The FRA was decreased (p = 0.003) in CSF, and AOPP were increased in both CSF (p = 0.0039) and plasma (p = 0.001) of ALS patients. The content of AOPP was differently represented in CSF of ALS clinical subsets, resulting in increase in the common and pseudopolyneuropathic forms (p < 0.001) and nearly undetectable in the bulbar form, as in controls. The sum of nitrites plus nitrates and 4-hydroxynonenal were unchanged in ALS patients compared with controls. Our results, while confirming the occurrence of oxidative stress in ALS, indicate how its effects can be stratified and therefore implicated differently in the pathogenesis of different clinical forms of ALS.
Jain, Kartik; Ringstad, Geir; Eide, Per-Kristian; Mardal, Kent-André
2017-09-01
Obstruction to the cerebrospinal fluid (CSF) outflow caused by the herniation of cerebellar tonsils as a result of Chiari malformation type I leads to altered CSF hydrodynamics. This contribution explores the minutest characteristics of the CSF hydrodynamics in cervical subarachnoid space (SAS) of a healthy subject and 2 Chiari patients by performing highly resolved direct numerical simulation. The lattice Boltzmann method is used for the simulations because of its scalability on modern supercomputers that allow us to simulate up to approximately 10 9 cells while resolving the Kolmogorov microscales. The results depict that whereas the complex CSF flow remains largely laminar in the SAS of a healthy subject, constriction of the cranio-vertebral junction in Chiari I patients causes manifold fluctuations in the hydrodynamics of the CSF. These fluctuations resemble a flow that is in a transitional regime rather than laminar or fully developed turbulence. The fluctuations confine near the cranio-vertebral junction and are triggered due to the tonsillar herniation, which perturbs the flow as a result of altered anatomy of the SAS. Copyright © 2016 John Wiley & Sons, Ltd.
Determination of nitrate in biological fluids by HPLC.
Ashraf, Muhammad; Ghalloo, Bilal Ahmed; Hayat, Muhammad Munawar; Rahman, Jameel; Ejaz, Samina; Iqbal, Muhammad; -Nasim, Faizul Hassan
2017-01-01
Nitrate is the stable product of nitric oxide, which is physiologically active radical, an immunomodulator and a neuromodulator; its quantification in biological fluids is important to study the physiological and biochemical nature. Therefore, the purpose of this study was to quantify nitrate in different biological fluids like serum, cerebrospinal fluid (CSF) and ascetic fluid (ASF) using HPLC technique. A new HPLC method for the estimation of nitrate in serum, CSF and ASF was developed using the mobile phase of 1.0mM each of Na 2 CO 3 and NaHCO 3 (1:1, v/v, pH 5 with H 3 PO 4 ) at a flow rate of 1.0mLmin -1 . Eluate was detected at 220nm with the retention time of nitrate 2.55 min. The LOD and LOQ values of nitrate were 0.03μgmL -1 and 0.098μgmL -1 , respectively. Nitrate was eluted through SAX Hypersil column of 150 × 4.6mm, id, 5μm particle size. Run time was 10min. The method was validated according to the FDA guidelines and was found linear in the range of 0.39 to 50μgmL -1 and CV was <3%, within limits of FDA guidelines. The method was used successfully for the estimation of nitrate in biological fluids like serum, CSF and ASF of 20 patients each. This is an alternate and reproducible method for the detection of nitrates in biological fluids.
Calhoun, Darlene A; Maheshwari, Akhil; Christensen, Robert D
2003-08-01
Granulocyte colony-stimulating factor (G-CSF) is present in liquids swallowed by the fetus and neonate; specifically, amniotic fluid, colostrum, and human milk. The swallowed G-CSF has local effects on enteric cells, which express the G-CSF receptor. However, some portion of the G-CSF ingested by the fetus and neonate might be absorbed into the circulation and have systemic actions, such as stimulating neutrophil production. To assess this possibility we sought to determine if circulating G-CSF concentrations of neonates increase after enteral administration of recombinant human granulocyte colony-stimulating factor (rhG-CSF). This was a single-center, prospective, blinded, randomized, 2 x 2 crossover study, with each infant receiving 1 dose of rhG-CSF (100 microg/kg) and 1 dose of placebo. Plasma G-CSF concentrations were measured at 2 and 4 hours after administration of the test solution. No significant change in plasma G-CSF concentration was observed after the enteral administration of rhG-CSF. On this basis, we conclude that orally administered rhG-CSF is not absorbed in significant quantities, and we speculate that the G-CSF swallowed by the fetus and neonate has local but not systemic effects.
Fan, Hui; Papouskova, Barbora; Lemr, Karel; Wigginton, Jane G; Schug, Kevin A
2014-08-01
Although there are existing methods for determining estrogen in human bodily fluids including blood plasma and serum, very little information is available regarding estrogen levels in human cerebrospinal fluid (CSF), which is critical to assess in studies of neuroprotective functions and diffusion of neuroprotective estrogens across the blood-brain barrier. To address this problem, a liquid chromatography with tandem mass spectrometry method for the simultaneous quantification of four endogenous estrogens (estrone, 17α-estradiol, 17β-estradiol, and estriol) in human CSF was developed. An aliquot (300 μL) of human CSF was bulk derivatized using dansyl chloride in the sample and 10 μL was directly injected onto a restricted-access media trap column for protein removal. No off-line sample extraction or cleanup was needed. The limits of detection of estrone, 17α-estradiol, 17β-estradiol, and estriol were 17, 28, 13, and 30 pg/mL, respectively, which is in the parts-per-trillion regime. The method was then applied to human CSF collected from ischemic trauma patients. Endogenous estrogens were detected and quantified, demonstrating the effectiveness of this method. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bumb, J M; Enning, F; Mueller, J K; van der List, Till; Rohleder, C; Findeisen, P; Noelte, I; Schwarz, E; Leweke, F M
2016-07-01
Melatonin, which plays an important role for regulation of circadian rhythms and the sleep/wake cycle has been linked to the pathophysiology of major depressive and bipolar disorder. Here we investigated melatonin levels in cerebrospinal fluid (CSF) and serum of depression and bipolar patients to elucidate potential differences and commonalities in melatonin alterations across the two disorders. Using enzyme-linked immunosorbent assays, CSF and serum melatonin levels were measured in 108 subjects (27 healthy volunteers, 44 depressed and 37 bipolar patients). Covariate adjusted multiple regression analysis was used to investigate group differences in melatonin levels. In CSF, melatonin levels were significantly decreased in bipolar (P<0.001), but not major depressive disorder. In serum, we observed a significant melatonin decrease in major depressive (P=0.003), but not bipolar disorder. No associations were found between serum and CSF melatonin levels or between melatonin and measures of symptom severity or sleep disruptions in either condition. This study suggests the presence of differential, body fluid specific alterations of melatonin levels in bipolar and major depressive disorder. Further, longitudinal studies are required to explore the disease phase dependency of melatonin alterations and to mechanistically explore the causes and consequences of site-specific alterations. Copyright © 2016 Elsevier Inc. All rights reserved.
A rapid method for preparation of the cerebrospinal fluid proteome.
Larssen, Eivind; Brede, Cato; Hjelle, Anne Bjørnstad; Øysaed, Kjell Birger; Tjensvoll, Anne Bolette; Omdal, Roald; Ruoff, Peter
2015-01-01
The cerebrospinal fluid (CSF) proteome is of great interest for investigation of diseases and conditions involving the CNS. However, the presence of high-abundance proteins (HAPs) can interfere with the detection of low-abundance proteins, potentially hindering the discovery of new biomarkers. Therefore, an assessment of the CSF subproteome composition requires depletion strategies. Existing methods are time consuming, often involving multistep protocols. Here, we present a rapid, accurate, and reproducible method for preparing the CSF proteome, which allows the identification of a high number of proteins. This method involves acetonitrile (ACN) precipitation for depleting HAPs, followed by immediate trypsination. As an example, we demonstrate that this method allows discrimination between multiple sclerosis patients and healthy subjects. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The cerebrospinal fluid biomarker profile in an HIV-infected subject with Alzheimer's disease.
Mäkitalo, Signar; Mellgren, Åsa; Borgh, Ellen; Kilander, Lena; Skillbäck, Tobias; Zetterberg, Henrik; Gisslén, Magnus
2015-01-01
It is a challenge to differentiate between HIV-associated neurocognitive disorders (HAND) and other types of neurocognitive disease in the ageing HIV-infected population. Here we describe a 63 year old HIV-infected woman who had a history, neuropsychological test result, and PET examination consistent with characteristic Alzheimer's disease (AD). The cerebrospinal fluid (CSF) biomarker profile was analogous to the profile typically found in AD in HIV-negative patients with increased t-tau and p-tau, a decreased level of Aβ42 and normal levels of CSF neurofilament light protein and sAPPα and sAPPβ, distinctly different from findings in HIV-associated dementia (HAD). Assessment of CSF biomarkers may be a valuable tool for clinicians to distinguish between HAD and AD.
Nakamura, Hiroshi; Matsuyama, Yukihiro; Yoshihara, Hisatake; Sakai, Yoshihito; Katayama, Yoshito; Nakashima, Shojiro; Takamatsu, Jyunki; Ishiguro, Naoki
2005-07-01
A prospective randomized study evaluating the efficacy of autologous fibrin tissue adhesive for decreasing postoperative cerebrospinal fluid (CSF) leak in spinal cord surgery. To compare postoperative CSF leak in 3 groups (i.e., autologous fibrin tissue adhesive used, commercial fibrin glue used, and no fibrin tissue adhesive used) of patients undergoing spinal surgery who needed dural incision. Spinal cord operations, particularly when dural incision is inevitable, sometimes involve postoperative CSF leak. Because CSF leak is a serious complication, countermeasure is necessary to prevent it after dural suture. Commercial fibrin tissue adhesive was formerly used. Because the possibility of prion infection was widely noticed, commercial fibrin tissue adhesive containing animal components has been used less often. In 13 of 39 cases in which dural incision would be made, 400 mL whole blood was drawn, and autologous fibrin tissue adhesive was made of plasma. Cases were divided into 3 groups: (1) dural closure alone, (2) use of autologous fibrin tissue adhesive after dural closure, and (3) use of commercial fibrin tissue adhesive after dural closure. The primary outcome measure was determined as postoperative (3 days) volume of drainage fluid, and results were analyzed using the analysis of variance. The secondary outcome measure was general blood test, coagulation assay, and plasma fibrinogen, and these were analyzed also using the analysis of variance. There was a significant difference in the primary outcome between the autologous and control groups. No complications such as infection or continuous CSF leak were observed in any case. The mean volume of drainage fluid was 586.2 mL in the group with autologous fibrin tissue adhesive and 1026.1 mL in the group without fibrin tissue adhesive. The volume of drainage fluid was significantly lower in the former group than that in the latter group. There was no statistical difference between the volumes of the group with autologous adhesive and with commercial adhesive (639.2 mL). We used autologous fibrin tissue adhesive as a new sealant after dural closure instead of commercial fibrin tissue adhesive. No definitive CSF leak was observed, and the volume of drainage fluid was significantly lower in the group with autologous fibrin tissue adhesive than that in the group without fibrin tissue adhesive. The use of autologous fibrin tissue adhesive was superior to that of commercial fibrin tissue adhesive in cost.
Yoon, Hyung Shin; Hattori, Kotaro; Ogawa, Shintaro; Sasayama, Daimei; Ota, Miho; Teraishi, Toshiya; Kunugi, Hiroshi
Many studies have investigated cerebrospinal fluid (CSF) monoamine metabolite levels in depressive disorders. However, their clinical significance is still unclear. We tried to determine whether CSF monoamine metabolite levels could be a state-dependent marker for major depressive disorder (MDD) based on analyses stratified by clinical variables in a relatively large sample. Subjects were 75 patients with MDD according to DSM-IV criteria and 87 healthy controls, matched for age, sex, and ethnicity (Japanese). They were recruited between May 2010 and November 2013. We measured homovanillic acid (HVA), 5-hydroxyindoleacetic acid (5-HIAA), and 3-methoxy-4-hydroxyphenylethyleneglycol (MHPG) in CSF samples by high-performance liquid chromatography. We analyzed the relationships of the metabolite levels with age, sex, diagnosis, psychotropic medication use, and depression severity. There was a weak positive correlation between age and 5-HIAA levels in controls (ρ = 0.26, P < .016) and a similar trend in patients, while sex was unrelated to any metabolite. All monoamine metabolites in moderately to severely depressed patients (17-item Hamilton Depression Rating Scale score > 12) were significantly lower than those in controls (P < .0005 for all 3 metabolites). We found that antidepressants decreased the levels of 5-HIAA (ρ = -0.39, P < .001) and MHPG (ρ = -0.49, P < .0001) and that antipsychotics increased levels of HVA (ρ = 0.24, P < .05). There was a strong correlation between HVA and 5-HIAA levels (controls: ρ = 0.79, P = .000001; MDD: ρ = 0.66, P = .000001). HVA levels (ρ = -0.43, P < .001) and 5-HIAA levels (ρ = -0.23, P < .05), but not MHPG levels (ρ = -0.18, P > .1), were related to depression severity. CSF 5-HIAA and HVA levels could be state-dependent markers in MDD patients. Since 5-HIAA levels greatly decrease with the use of antidepressants, HVA levels might be more useful in the clinical setting. © Copyright 2017 Physicians Postgraduate Press, Inc.
Osorio, Ricardo S; Ducca, Emma L; Wohlleber, Margaret E; Tanzi, Emily B; Gumb, Tyler; Twumasi, Akosua; Tweardy, Samuel; Lewis, Clifton; Fischer, Esther; Koushyk, Viachaslau; Cuartero-Toledo, Maria; Sheikh, Mohammed O; Pirraglia, Elizabeth; Zetterberg, Henrik; Blennow, Kaj; Lu, Shou-En; Mosconi, Lisa; Glodzik, Lidia; Schuetz, Sonja; Varga, Andrew W; Ayappa, Indu; Rapoport, David M; de Leon, Mony J
2016-06-01
To evaluate the role of orexin-A with respect to cerebrospinal fluid (CSF) Alzheimer disease (AD) biomarkers, and explore its relationship to cognition and sleep characteristics in a group of cognitively normal elderly individuals. Subjects were recruited from multiple community sources for National Institutes of Health supported studies on normal aging, sleep and CSF biomarkers. Sixty-three participants underwent home monitoring for sleep-disordered breathing, clinical, sleep and cognitive evaluations, as well as a lumbar puncture to obtain CSF. Individuals with medical history or with magnetic resonance imaging evidence of disorders that may affect brain structure or function were excluded. Correlation and linear regression analyses were used to assess the relationship between orexin-A and CSF AD-biomarkers controlling for potential sociodemographic and sleep confounders. Levels of orexin-A, amyloid beta 42 (Aβ42), phosphorylated-tau (P-Tau), total-tau (T-Tau), Apolipoprotein E4 status, age, years of education, reported total sleep time, number of awakenings, apnea-hypopnea indices (AHI), excessive daytime sleepiness, and a cognitive battery were analyzed. Subjects were 69.59 ± 8.55 years of age, 57.1% were female, and 30.2% were apolipoprotein E4+. Orexin-A was positively correlated with Aβ42, P-Tau, and T-Tau. The associations between orexin-A and the AD-biomarkers were driven mainly by the relationship between orexin-A and P-Tau and were not influenced by other clinical or sleep characteristics that were available. Orexin-A is associated with increased P-Tau in normal elderly individuals. Increases in orexin-A and P-Tau might be a consequence of the reduction in the proportion of the deeper, more restorative slow wave sleep and rapid eye movement sleep reported with aging. Clinicaltrials.gov registration number NCT01962779. © 2016 Associated Professional Sleep Societies, LLC.
CCL11 is increased in the CNS in chronic traumatic encephalopathy but not in Alzheimer's disease.
Cherry, Jonathan D; Stein, Thor D; Tripodis, Yorghos; Alvarez, Victor E; Huber, Bertrand R; Au, Rhoda; Kiernan, Patrick T; Daneshvar, Daniel H; Mez, Jesse; Solomon, Todd M; Alosco, Michael L; McKee, Ann C
2017-01-01
CCL11, a protein previously associated with age-associated cognitive decline, is observed to be increased in the brain and cerebrospinal fluid (CSF) in chronic traumatic encephalopathy (CTE) compared to Alzheimer's disease (AD). Using a cohort of 23 deceased American football players with neuropathologically verified CTE, 50 subjects with neuropathologically diagnosed AD, and 18 non-athlete controls, CCL11 was measured with ELISA in the dorsolateral frontal cortex (DLFC) and CSF. CCL11 levels were significantly increased in the DLFC in subjects with CTE (fold change = 1.234, p < 0.050) compared to non-athlete controls and AD subjects with out a history of head trauma. This increase was also seen to correlate with years of exposure to American football (β = 0.426, p = 0.048) independent of age (β = -0.046, p = 0.824). Preliminary analyses of a subset of subjects with available post-mortem CSF showed a trend for increased CCL11 among individuals with CTE (p = 0.069) mirroring the increase in the DLFC. Furthermore, an association between CSF CCL11 levels and the number of years exposed to football (β = 0.685, p = 0.040) was observed independent of age (β = -0.103, p = 0.716). Finally, a receiver operating characteristic (ROC) curve analysis demonstrated CSF CCL11 accurately distinguished CTE subjects from non-athlete controls and AD subjects (AUC = 0.839, 95% CI 0.62-1.058, p = 0.028). Overall, the current findings provide preliminary evidence that CCL11 may be a novel target for future CTE biomarker studies.
CCL11 is increased in the CNS in chronic traumatic encephalopathy but not in Alzheimer’s disease
Stein, Thor D.; Tripodis, Yorghos; Alvarez, Victor E.; Huber, Bertrand R.; Au, Rhoda; Kiernan, Patrick T.; Daneshvar, Daniel H.; Mez, Jesse; Solomon, Todd M.; Alosco, Michael L.; McKee, Ann C.
2017-01-01
CCL11, a protein previously associated with age-associated cognitive decline, is observed to be increased in the brain and cerebrospinal fluid (CSF) in chronic traumatic encephalopathy (CTE) compared to Alzheimer’s disease (AD). Using a cohort of 23 deceased American football players with neuropathologically verified CTE, 50 subjects with neuropathologically diagnosed AD, and 18 non-athlete controls, CCL11 was measured with ELISA in the dorsolateral frontal cortex (DLFC) and CSF. CCL11 levels were significantly increased in the DLFC in subjects with CTE (fold change = 1.234, p < 0.050) compared to non-athlete controls and AD subjects with out a history of head trauma. This increase was also seen to correlate with years of exposure to American football (β = 0.426, p = 0.048) independent of age (β = -0.046, p = 0.824). Preliminary analyses of a subset of subjects with available post-mortem CSF showed a trend for increased CCL11 among individuals with CTE (p = 0.069) mirroring the increase in the DLFC. Furthermore, an association between CSF CCL11 levels and the number of years exposed to football (β = 0.685, p = 0.040) was observed independent of age (β = -0.103, p = 0.716). Finally, a receiver operating characteristic (ROC) curve analysis demonstrated CSF CCL11 accurately distinguished CTE subjects from non-athlete controls and AD subjects (AUC = 0.839, 95% CI 0.62–1.058, p = 0.028). Overall, the current findings provide preliminary evidence that CCL11 may be a novel target for future CTE biomarker studies. PMID:28950005
Monge Argilés, J A; Blanco Cantó, M A; Leiva Salinas, C; Flors, L; Muñoz Ruiz, C; Sánchez Payá, J; Gasparini Berenguer, R; Leiva Santana, C
2014-09-01
The goals of this study were to compare the early diagnostic utility of Alzheimer disease biomarkers in the CSF with those in brain MRI in conditions found in our clinical practice, and to ascertain the diagnostic accuracy of both techniques used together. Between 2008 and 2009, we included 30 patients with mild cognitive impairment (MCI) who were examined using 1.5 Tesla brain MRI and AD biomarker analysis in CSF. MRI studies were evaluated by 2 radiologists according to the Korf́s visual scale. CSF biomarkers were analysed using INNOTEST reagents for Aβ1-42, total-tau and phospho-tau181p. We evaluated clinical changes 2 years after inclusion. By 2 years after inclusion, 15 of the original 30 patients (50%) had developed AD (NINCDS-ADRA criteria). The predictive utility of AD biomarkers in CSF (RR 2.7; 95% CI, 1.1-6.7; P<.01) was greater than that of MRI (RR 1.5; 95% CI 95%, 0.7-3.4; P<.2); using both techniques together yielded a sensitivity and a negative predictive value of 100%. Normal results on both complementary tests ruled out progression to AD (100%) within 2 years of inclusion. Our results show that the diagnostic accuracy of biomarkers in CSF is higher than that of biomarkers in MRI. Combined use of both techniques is highly accurate for either early diagnosis or exclusion of AD in patients with MCI. Copyright © 2013 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.
Nguyen, Bach Hoang; Phan, Dieu Hong Nu; Nguyen, Hien Xuan; Le, An Van; Alberti, Alberto
2015-07-04
Streptococcus suis (S. suis) serotype 2 has recently become the most prevalent cause of meningitis in adults in many areas of Vietnam. This study provides data on S. suis molecular diagnosis in central Vietnam using a real-time polymerase chain reaction (PCR) assay targeting the S. suis serotype 2 cps2J gene. Additionally, 16S-23S rDNA intragenic spacer (ITS)-based phylogenic analysis of strains isolated from cerebrospinal fluid (CSF) in Thua Thien Hue Province, Vietnam, is presented and discussed. Pathogenic bacteria were isolated from 40 CSF samples, and 18 were identified as S. suis by culture-dependent methods. Capsular serotyping was assessed by real-time PCR. ITS sequences were obtained after traditional PCR and were used in phylogenic analyses. Pathogenic bacteria were isolated from 36 out of 40 CSF samples. A total of 18 S. suis strains were isolated and assigned to serotype 2 by real-time PCR. One CSF sample, negative when tested by culture-dependent methods, was positive to S. suis serotype 2 by real-time PCR. Pairwise alignments of the 18 ITS sequences did not reveal any variable nucleotide position, and resulted in a single sequence type. Sequences were similar to S. suis serotype 2 reference ITS sequences (> 98.1%), and there was no lack of an ITS spacer region in the isolates. S. suis serotype 2 is the most prevalent serotype in central Vietnam. Real-time PCR assay proved to be a reliable diagnostic method for early detection of S. suis 2 in CSF samples.
Pye, I F; Aber, G M
1982-01-01
The concentrations of inorganic ions and glucose in the plasma and CSF of 11 patients with "steady-state" chronic renal failure have been measured and their CSF: plasma interrelations studied. The results have been compared with the corresponding data from 34 control subjects. In the patients with renal failure, there was a positive correlation between raised CSF and plasma potassium concentrations. In contrast to the impaired potassium homeostasis, normal CSF magnesium and calcium concentrations were observed despite wide variations in the plasma concentrations of these ions. PMID:7085915
Weiss, Nicolas; Rosselli, Matteo; Mouri, Sarah; Galanaud, Damien; Puybasset, Louis; Agarwal, Banwari; Thabut, Dominique; Jalan, Rajiv
2017-04-01
Although hepatic encephalopathy (HE) on the background of acute on chronic liver failure (ACLF) is associated with high mortality rates, it is unknown whether this is due to increased blood-brain barrier permeability. Specific gravity of cerebrospinal fluid measured by CT is able to estimate blood-cerebrospinal fluid-barrier permeability. This study aimed to assess cerebrospinal fluid specific gravity in acutely decompensated cirrhosis and to compare it in patients with or without ACLF and with or without hepatic encephalopathy. We identified all the patients admitted for acute decompensation of cirrhosis who underwent a brain CT-scan. Those patients could present acute decompensation with or without ACLF. The presence of hepatic encephalopathy was noted. They were compared to a group of stable cirrhotic patients and healthy controls. Quantitative brain CT analysis used the Brainview software that gives the weight, the volume and the specific gravity of each determined brain regions. Results are given as median and interquartile ranges and as relative variation compared to the control/baseline group. 36 patients presented an acute decompensation of cirrhosis. Among them, 25 presented with ACLF and 11 without ACLF; 20 presented with hepatic encephalopathy grade ≥ 2. They were compared to 31 stable cirrhosis patients and 61 healthy controls. Cirrhotic patients had increased cerebrospinal fluid specific gravity (CSF-SG) compared to healthy controls (+0.4 %, p < 0.0001). Cirrhotic patients with ACLF have decreased CSF-SG as compared to cirrhotic patients without ACLF (-0.2 %, p = 0.0030) that remained higher than in healthy controls. The presence of hepatic encephalopathy did not modify CSF-SG (-0.09 %, p = 0.1757). Specific gravity did not differ between different brain regions according to the presence or absence of either ACLF or HE. In patients with acute decompensation of cirrhosis, and those with ACLF, CSF specific gravity is modified compared to both stable cirrhotic patients and healthy controls. This pattern is observed even in the absence of hepatic encephalopathy suggesting that blood-CSF barrier impairment is manifest even in absence of overt hepatic encephalopathy.
Albumin heterogeneity in low-abundance fluids. The case of urine and cerebro-spinal fluid.
Bruschi, Maurizio; Santucci, Laura; Candiano, Giovanni; Ghiggeri, Gian Marco
2013-12-01
Serum albumin is a micro-heterogeneous protein composed of at least 40 isoforms. Its heterogeneity is even more pronounced in biological fluids other than serum, the major being urine and cerebrospinal fluid. Modification 'in situ' and/or selectivity of biological barriers, such as in the kidney, determines the final composition of albumin and may help in definition of inflammatory states. This review focuses on various aspects of albumin heterogeneity in low 'abundance fluids' and highlights the potential source of information in diseases. The electrical charge of the protein in urine and CSF is modified but with an opposite change and depending on clinical conditions. In normal urine, the bulk of albumin is more anionic than in serum for the presence of ten times more fatty acids that introduce equivalent anionic charges and modify hydrophobicity of the protein. At the same time, urinary albumin is more glycosylated compared to the serum homolog. Finally, albumin fragments can be detected in urine in patients with proteinuria. For albumin in CSF, we lack information relative to normal conditions since ethical problems do not allow normal CSF to be studied. In multiple sclerosis, the albumin charge in CSF is more cationic than in serum, this change possibly involving structural anomalies or small molecules bindings. Massively fatty albumin could be toxic for tubular cells and be eliminated on this basis. Renal handling of glycosylated albumin can alter the normal equilibrium of filtration/reabsorption and trigger mechanisms leading to glomerulosclerosis and tubulo-interstitial fibrosis. This article is part of a Special Issue entitled Serum Albumin. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.
Elliott, I; Dittrich, S; Paris, D; Sengduanphachanh, A; Phoumin, P; Newton, P N
2013-01-01
We investigated whether dried cerebrospinal fluid (CSF) conserved on filter paper can be used as a substrate for accurate PCR diagnosis of important causes of bacterial meningitis in the Lao PDR. Using mock CSF, we investigated and optimized filter paper varieties, paper punch sizes, elution volumes and quantities of DNA template to achieve sensitive and reliable detection of bacterial DNA from filter paper specimens. FTA Elute Micro Card™ (Whatman, Maidstone, UK) was the most sensitive, consistent and practical variety of filter paper. Following optimization, the lower limit of detection for Streptococcus pneumoniae from dried mock CSF spots was 14 genomic equivalents (GE)/μL (interquartile range 5.5 GE/μL) or 230 (IQR 65) colony forming units/mL. A prospective clinical evaluation for S. pneumoniae, S. suis and Neisseria meningitidis was performed. Culture and PCR performed on fresh liquid CSF from patients admitted with a clinical diagnosis of meningitis (n = 73) were compared with results derived from dried CSF spots. Four of five fresh PCR-positive CSF samples also tested PCR positive from dried CSF spots, with one patient under the limit of detection. In a retrospective study of S. pneumoniae samples (n = 20), the median (IQR; range) CSF S. pneumoniae bacterial load was 1.1 × 104 GE/μL (1.2 × 105; 1 to 6.1 × 106 DNA GE/μL). Utilizing the optimized methodology, we estimate an extrapolated sensitivity of 90%, based on the range of CSF genome counts found in Laos. Dried CSF filter paper spots could potentially help us to better understand the epidemiology of bacterial meningitis in resource-poor settings and guide empirical treatments and vaccination policies. PMID:23738720
Njoku, Chinedu J.; Saville, William J. A.; Reed, Stephen M.; Oglesbee, Michael J.; Rajala-Schultz, Päivi J.; Stich, Roger W.
2002-01-01
Equine protozoal myeloencephalitis (EPM) is a disease of horses that is primarily associated with infection with the apicomplexan Sarcocystis neurona. Infection with this parasite alone is not sufficient to induce the disease, and the mechanism of neuropathogenesis associated with EPM has not been reported. Nitric oxide (NO) functions as a neurotransmitter, a vasodilator, and an immune effector and is produced in response to several parasitic protozoa. The purpose of this work was to determine if the concentration of NO metabolites (NOx−) in the cerebrospinal fluid (CSF) is correlated with the development of EPM. CSF NOx− levels were measured before and after transport-stressed, acclimated, or dexamethasone-treated horses (n = 3 per group) were experimentally infected with S. neurona sporocysts. CSF NOx− levels were also compared between horses that were diagnosed with EPM after natural infection with S. neurona and horses that did not have clinical signs of disease or that showed no evidence of infection with the parasite (n = 105). Among the experimentally infected animals, the mean CSF NOx− levels of the transport-stressed group, which had the most severe clinical signs, was reduced after infection, while these values were found to increase after infection in the remaining groups that had less severe signs of EPM. Under natural conditions, horses with EPM (n = 65) had a lower mean CSF NOx− concentration than clinically normal horses with antibodies (Abs) against S. neurona (n = 15) in CSF, and horses that developed ataxia (n = 81) had a significantly lower mean CSF NOx− concentration than horses that did not have neurologic signs (n = 24). In conclusion, lower CSF NOx− levels were associated with clinical EPM, suggesting that measurement of CSF NOx− levels could improve the accuracy of diagnostic tests that are based upon detection of S. neurona-specific Abs in CSF alone and that reduced NO levels could be causatively related to the development of EPM. PMID:11986267
Cho, Ji Young; Chan, Chee Keong; Lee, Sang-Ho; Choi, Won-Chul; Maeng, Dae Hyeon; Lee, Ho-Yeon
2012-06-01
Retrospective review To determine the efficacy of management of cerebrospinal fluid (CSF) leakage after the anterior thoracic approach. CSF leakage after incidental durotomy commonly occurs after anterior thoracic ossification of posterior longitudinal ligament (OPLL) surgery. Pseudomeningocele will invariably form under such circumstances. Among them, uncontrolled CSF leakage with a fistulous condition is problematic. As a solution, we have managed these durotomies with chest drains alone without any CSF drainage by the concept of a "volume-controlled pseudomeningocele." Between 2001 and 2009, CSF leakage occurred in 26 patients (37.7%) of the total 69 patients who underwent anterior decompression for thoracic OPLL. In the initial 11 cases, subarachnoid drainage was utilized as an augmentive measure in combination with chest tube drainage in the postoperative period (group A). In the subsequent 15 cases, the durotomy was managed in a similar manner but in the absence of any subarachnoid drainage (group B). Various parameters such as the duration of postoperative hospital stay, clinical outcome score, drainage output, resolution of CSF leakage, complications, and additional surgery performed were analyzed and compared between the 2 groups. A resolution of the CSF leakage grading system was also proposed for the residual pseudomeningocele that formed in each group. There were statistically no significant differences in the outcome parameters between the 2 groups and also in patients with grade I or grade II residual pseudomeningocele of the new grading system. Two complications occurred in group A. No reexploration for persistent CSF leakage was required in both groups. CSF leakage managed with controlled chest tube drainage can produce a comparable result with those with additional subarachnoid drainage when watertight dural repair is impossible. The concept of controlled pseudomeningocele may be a useful and practical technique for the treatment of CSF leakage after anterior thoracic OPLL surgery.
Amyloid and tau cerebrospinal fluid biomarkers in HIV infection.
Gisslén, Magnus; Krut, Jan; Andreasson, Ulf; Blennow, Kaj; Cinque, Paola; Brew, Bruce J; Spudich, Serena; Hagberg, Lars; Rosengren, Lars; Price, Richard W; Zetterberg, Henrik
2009-12-22
Because of the emerging intersections of HIV infection and Alzheimer's disease, we examined cerebrospinal fluid (CSF) biomarkers related of amyloid and tau metabolism in HIV-infected patients. In this cross-sectional study we measured soluble amyloid precursor proteins alpha and beta (sAPPalpha and sAPPbeta), amyloid beta fragment 1-42 (Abeta1-42), and total and hyperphosphorylated tau (t-tau and p-tau) in CSF of 86 HIV-infected (HIV+) subjects, including 21 with AIDS dementia complex (ADC), 25 with central nervous system (CNS) opportunistic infections and 40 without neurological symptoms and signs. We also measured these CSF biomarkers in 64 uninfected (HIV-) subjects, including 21 with Alzheimer's disease, and both younger and older controls without neurological disease. CSF sAPPalpha and sAPPbeta concentrations were highly correlated and reduced in patients with ADC and opportunistic infections compared to the other groups. The opportunistic infection group but not the ADC patients had lower CSF Abeta1-42 in comparison to the other HIV+ subjects. CSF t-tau levels were high in some ADC patients, but did not differ significantly from the HIV+ neuroasymptomatic group, while CSF p-tau was not increased in any of the HIV+ groups. Together, CSF amyloid and tau markers segregated the ADC patients from both HIV+ and HIV- neuroasymptomatics and from Alzheimer's disease patients, but not from those with opportunistic infections. Parallel reductions of CSF sAPPalpha and sAPPbeta in ADC and CNS opportunistic infections suggest an effect of CNS immune activation or inflammation on neuronal amyloid synthesis or processing. Elevation of CSF t-tau in some ADC and CNS infection patients without concomitant increase in p-tau indicates neural injury without preferential accumulation of hyperphosphorylated tau as found in Alzheimer's disease. These biomarker changes define pathogenetic pathways to brain injury in ADC that differ from those of Alzheimer's disease.
Croteau, David; Letendre, Scott; Best, Brookie M.; Ellis, Ronald J.; Breidinger, Sheila; Clifford, David; Collier, Ann; Gelman, Benjamin; Marra, Christina; Mbeo, Gilbert; McCutchan, Allen; Morgello, Susan; Simpson, David; Way, Lauren; Vaida, Florin; Ueland, Susan; Capparelli, Edmund; Grant, Igor
2010-01-01
HIV-associated neurocognitive disorders continue to be common. Antiretrovirals that achieve higher concentrations in cerebrospinal fluid (CSF) are associated with better control of HIV and improved cognition. The objective of this study was to measure total raltegravir (RAL) concentrations in CSF and to compare them with matched concentrations in plasma and in vitro inhibitory concentrations. Eighteen subjects with HIV-1 infection were enrolled based on the use of RAL-containing regimens and the availability of CSF and matched plasma samples. RAL was measured in 21 CSF and plasma pairs by liquid chromatography-tandem mass spectrometry, and HIV RNA was detected by reverse transcription-PCR (RT-PCR). RAL concentrations were compared to the 50% inhibitory concentration (IC50) for wild-type HIV-1 (3.2 ng/ml). Volunteers were predominantly middle-aged white men with AIDS and without hepatitis C virus (HCV) coinfection. The median concurrent CD4+ cell count was 276/μl, and 28% of CD4+ cell counts were below 200/μl. HIV RNA was detectable in 38% of plasma specimens and 4% of CSF specimens. RAL was present in all CSF specimens, with a median total concentration of 14.5 ng/ml. The median concentration in plasma was 260.9 ng/ml, with a median CSF-to-plasma ratio of 0.058. Concentrations in CSF correlated with those in with plasma (r2, 0.24; P, 0.02) but not with the postdose sampling time (P, >0.50). RAL concentrations in CSF exceeded the IC50 for wild-type HIV in all specimens by a median of 4.5-fold. RAL is present in CSF and reaches sufficiently high concentrations to inhibit wild-type HIV in all individuals. As a component of effective antiretroviral regimens or as the main antiretroviral, RAL likely contributes to the control of HIV replication in the nervous system. PMID:20876368
Krauss, J K; Regel, J P; Vach, W; Jüngling, F D; Droste, D W; Wakhloo, A K
1997-01-01
We investigate the predictive value of cerebrospinal fluid (CSF) flow void on outcome after shunting in a prospective series of patients with idiopathic normal pressure hydrocephalus (NPH). The degree and extension of CSF flow void were examined on T2-weighted magnetic resonance imaging scans of 37 elderly patients with idiopathic NPH who underwent subsequent shunting. The degree of flow void was assessed in comparison with the signal of large cerebral arteries. The extension was evaluated via the calculation of sum scores for the occurrence of flow void in different locations of the ventricular system. Those parameters were not considered in the decision to perform shunting. CSF flow void in the aqueduct and the adjacent third and fourth ventricles of the 37 patients with idiopathic NPH was compared with that of 37 age-matched control patients. CSF flow void scores in patients with idiopathic NPH were investigated for correlations between postoperative outcome scores and ventricular width indices. No difference was found between the occurrence of aqueductal CSF flow void in patients with idiopathic NPH and the control group. A significant difference, however, was noted for the extension of the CSF flow void, which was greater in the NPH group. Postoperative improvement was found in 33 of 37 patients with idiopathic NPH at a mean follow-up of 15.6 months. Only small, statistically not significant correlations were found between CSF flow void and postoperative outcome. Flow void sum scores, however, correlated significantly with ventricular width indices. The degree and extension of CSF flow void on T2-weighted magnetic resonance imaging scans have little predictive value for outcome after shunting in patients with idiopathic NPH. The greater extension of the CSF flow void in patients with NPH is most likely related to increased ventricular width. It is not useful to consider CSF flow void findings on conventional magnetic resonance imaging scans in making the decision to offer shunting in patients with idiopathic NPH.
Wang, Qiang; Wu, Yuanxing; Chen, Biyao; Zhou, Jianxin
2015-01-01
To identify changes in cefoperazone/sulbactam penetration into cerebrospinal fluid (CSF) after craniotomy and to investigate preliminarily whether cefoperazone/sulbactam CSF concentration can reach therapeutic level when administered intravenously after neurosurgical operation. Neurosurgical patients with an indwelling ventricular drainage pipe who received prophylactic cefoperazone/sulbactam for the treatment of intracranial infection were received a cefoperazone/sulbactam 2:1, 3.0-g infusion for 3 hours every 6 hours for 24 h. Venous blood and CSF specimens were collected to determine cefoperazone/sulbactam concentrations. The cefoperazone and sulbactam concentrations in serum were highest at the second hour (237.54 ± 336.72 mg/L and 66.52 ± 80.38 mg/L, respectively) and then decreased. The cefoperazone and sulbactam concentrations in CSF were highest at the 4th hour (39.22 ± 75.55 mg/L and 6.24 ± 8.35 mg/L, respectively) and then decreased. CSF penetration measured by the ratio of peak concentrations (CSF/serum) was 8.6% ± 7.2% for cefoperazone and 13.5% ± 11.9% for sulbactam, CSF penetration measured by the ratio of trough concentrations (CSF/serum) was 13.4% ± 5.3% for cefoperazone and 106.5% ± 87.5% for sulbactam. CSF penetration represented by the ratio of area under the curve (AUC) of CSF and serum was 14.5% for cefoperazone and 22.6% for sulbactam. Neurosurgical impairment of the blood-brain barrier may improve the CSF penetration of these drugs, but it is difficult to reach the MIC90 of resistant bacteria. If single intravenous administration time was extended to 3 hours, the serum concentrations of drugs were able to meet the PK/PD standard (T> MIC%> 50%) for treating common, highly resistant bacteria. The CSF penetration of cefoperazone/sulbactam may be enhanced after neurosurgical impairment of the blood-brain barrier. This study is a pilot research of cefoperazone/sulbactam using in neurosurgical individuals, However, it needs to be confirmed by further large-scale studies.
Morio, Yasuo; Meshitsuka, Shunsuke; Yamane, Koji; Nanjo, Yoshiro; Teshima, Ryota
2010-01-01
There have been few reports describing substances related to oxidative and intermediary metabolism in the cerebrospinal fluid (CSF) in patients with spinal degenerative disorders. This study investigated whether the concentrations of metabolites in the CSF differed between patients with spinal degenerative disorders and controls, and whether the concentrations of these metabolites correlated with the severity of symptoms. CSF samples were obtained from 30 patients with cervical myelopathy (Group M), 30 patients with lumbar radiculopathy (Group R), and 10 volunteers (control). Metabolites in these CSF samples were measured by nuclear magnetic resonance spectroscopy. There were no differences in the concentrations of lactate, alanine, acetate, glutamate, pyruvate, or citrate between Groups M and R, between Group M and the control, or between Group R and the control. In Group M, neither symptom duration nor the Japanese Orthopaedic Association score correlated with the concentration of any metabolite. In Group R, the symptom duration positively correlated with the concentration of lactate, glutamate, and citrate in CSF. The duration of nerve root block showed a negative correlation with the concentrations of acetate in CSF of the patients in Group R. In patients with lumbar radiculopathy, there is a possibility of increased aerobic metabolic activity or decreased gluconeogenic activity in patients with shorter symptom duration, and increased aerobic metabolic activity in patients with severe inflammation around a nerve root. PMID:20490871
Eide, Per K; Ringstad, Geir
2018-01-01
The glymphatic system plays a key role for clearance of waste solutes from the rodent brain. We recently found evidence of glymphatic circulation in the human brain when using magnetic resonance imaging (MRI) contrast agent as cerebrospinal fluid (CSF) tracer in conjunction with multiple MRI acquisitions (gMRI). The present study explored the hypothesis that reduced glymphatic clearance in entorhinal cortex (ERC) may be instrumental in idiopathic normal pressure hydrocephalus (iNPH) dementia. gMRI acquisitions were obtained over a 24-48 h time span in cognitively affected iNPH patients and non-cognitively affected patients with suspected CSF leaks. The CSF tracer enrichment was determined as changes in normalized MRI T1 signal units. The study included 30 patients with iNPH and 8 individuals with suspected CSF leaks (i.e. reference individuals). Compared to reference individuals, iNPH patients presented with higher medial temporal lobe atrophy score and Evan's index and inferior ERC thickness. We found delayed clearance of the intrathecal CSF tracer gadobutrol from CSF, the ERC and adjacent white matter, suggesting impaired glymphatic circulation. Reduced clearance and accumulation of toxic waste product such as amyloid-β may be a mechanism behind dementia in iNPH. Glymphatic MRI (gMRI) may become a tool for assessment of early dementia.
Detection of Bacterial Meningitis Pathogens by PCR-Mass Spectrometry in Cerebrospinal Fluid.
Jing-Zi, Piao; Zheng-Xin, He; Wei-Jun, Chen; Yong-Qiang, Jiang
2018-06-01
Acute bacterial meningitis remains a life-threatening infectious disease with considerable morbidity and mortality. DNA-based detection methods are an urgent requisite for meningitis-causing bacterial pathogens for the prevention of outbreaks and control of infections. We proposed a novel PCR-mass spectrometry (PCR-Mass) assay for the simultaneous detection of four meningitis-causing agents, Neisseria meningitidis, Streptococcus pneumoniae, Haemophilus influenzae, and Mycobacterium tuberculosis in the present study. A total of 138 cerebrospinal fluid (CSF) samples (including 56 CSF culture positive, 44 CSF culture negative, and 38 CSF control) were enrolled and analyzed by PCR/Mass. Results were compared to real-time PCR detection. These four targeting pathogens could be discriminated without cross-reaction by the accurate detection of the corresponding extension products with different masses. The limits of detection were 102 copies/reaction for S. pneumoniae, H. influenzae, and N. meningitidis and 103 for M. tuberculosis. The evaluation of the culture-positive CSF specimens from the meningitis patients provided an overall agreement rate of 85.7% with PCR-Mass and real-time PCR. The PCR-Mass was also able to detect the targeting pathogens from culture-negative CSF specimens from meningitis patients receiving early antibiotic treatment. PCR-Mass could be used for the molecular detection of bacterial meningitis and tuberculosis, especially when early antibiotic treatment has been administered to the suspected patients.
Li, Yingmei; Pan, Wenying; Connolly, Ian D.; Reddy, Sunil; Nagpal, Seema
2017-01-01
Cerebral spinal fluid (CSF) from brain tumor patients contains tumor cellular and cell-free DNA (cfDNA), which provides a less-invasive and routinely accessible method to obtain tumor genomic information. In this report, we used droplet digital PCR to test mutant tumor DNA in CSF of a patient to monitor the treatment response of metastatic melanoma leptomeningeal disease (LMD). The primary melanoma was known to have a BRAFV600E mutation, and the patient was treated with whole brain radiotherapy and BRAF inhibitors. We collected 9 CSF samples over 6 months. The mutant cfDNA fraction gradually decreased from 53 % (time of diagnosis) to 0 (time of symptom alleviation) over the first 6 time points. Three months after clinical improvement, the patient returned with severe symptoms and the mutant cfDNA was again detected in CSF at high levels. The mutant DNA fraction corresponded well with the patient’s clinical response. We used whole exome sequencing to examine the mutation profiles of the LMD tumor DNA in CSF before therapeutic response and after disease relapse, and discovered a canonical cancer mutation PTENR130* at both time points. The cellular and cfDNA revealed similar mutation profiles, suggesting cfDNA is representative of LMD cells. This study demonstrates the potential of using cellular or cfDNA in CSF to monitor treatment response for LMD. PMID:26961773
Tau Phosphorylation Pathway Genes and Cerebrospinal Fluid Tau Levels in Alzheimer’s Disease
Bekris, Lynn M.; Millard, Steve; Lutz, Franziska; Li, Gail; Galasko, Doug R.; Farlow, Martin R.; Quinn, Joseph F.; Kaye, Jeffrey A.; Leverenz, James B.; Tsuang, Debby W.; Yu, Chang-En; Peskind, Elaine R.
2013-01-01
Alzheimer’s disease (AD) is characterized by the presence in the brain of amyloid plaques, consisting predominately of the amyloid β peptide (Aβ), and neurofibrillary tangles, consisting primarily of tau. Hyper-phosphorylated-tau (p-tau) contributes to neuronal damage, and both p-tau and total-tau (t-tau) levels are elevated in AD cerebrospinal fluid (CSF) compared to cognitively normal controls. Our hypothesis was that increased ratios of CSF phosphorylated-tau levels relative to total-tau levels correlate with regulatory region genetic variation of kinase or phosphatase genes biologically associated with the phosphorylation status of tau. Eighteen SNPs located within 5′ and 3′ regions of 5 kinase and 4 phosphatase genes, as well as two SNPs within regulatory regions of the MAPT gene were chosen for this analysis. The study sample consisted of 101 AD patients and 169 cognitively normal controls. Rs7768046 in the FYN kinase gene and rs913275 in the PPP2R4 phosphatase gene were both associated with CSF p-tau and t-tau levels in AD. These SNPs were also differentially associated with either CSF t-tau (rs7768046) or CSF p-tau (rs913275) relative to t-tau levels in AD compared to controls. These results suggest that rs7768046 and rs913275 both influence CSF tau levels in an AD-associated manner. PMID:22927204
Huan, Tao; Xian, Jia Wen; Leung, Wing Nang; Li, Liang; Chan, Chun Wai
2016-11-01
Cerebrospinal fluid (CSF) is an important biofluid for diagnosis of and research on neurological diseases. However, in-depth metabolomic profiling of CSF remains an analytical challenge due to the small volume of samples, particularly in small animal models. In this work, we report the application of a high-performance chemical isotope labeling (CIL) liquid chromatography-mass spectrometry (LC-MS) workflow for CSF metabolomics in Gastrodia elata and Uncaria rhynchophylla water extract (GUW)-treated experimental cerebral ischemia model of rat. The GUW is a commonly used Traditional Chinese Medicine (TCM) for hypertension and brain disease. This study investigated the amine- and phenol-containing biomarkers in the CSF metabolome. After GUW treatment for 7 days, the neurological deficit score was significantly improved with infarct volume reduction, while the integrity of brain histological structure was preserved. Over 1957 metabolites were quantified in CSF by dansylation LC-MS. The analysis of this comprehensive list of metabolites suggests that metabolites associated with oxidative stress, inflammatory response, and excitotoxicity change during GUW-induced alleviation of ischemic injury. This work is significant in that (1) it shows CIL LC-MS can be used for in-depth profiling of the CSF metabolome in experimental ischemic stroke and (2) identifies several potential molecular targets (that might mediate the central nervous system) and associate with pharmacodynamic effects of some frequently used TCMs.
Sakji-Dupré, Lilia; Le Rhun, Emilie; Templier, Carole; Desmedt, Eve; Blanchet, Benoit; Mortier, Laurent
2015-08-01
Anti-BRAF agents, including vemurafenib, have modified the prognosis for patients with melanoma. However, a difference can still be observed between extracerebral and cerebral responses. The aim of this study was to investigate the diffusion of vemurafenib in cerebrospinal fluid (CSF) from patients treated for brain metastatic BRAF-V600 mutated melanoma. Six patients treated with vemurafenib 960 mg twice daily were included. These patients had undergone a lumbar puncture because of suspicions of leptomeningeal metastasis, along with simultaneous blood sampling to measure vemurafenib level. The concentrations of vemurafenib in the CSF and the plasma were measured by high-performance liquid chromatography. The mean plasma and CSF concentrations of vemurafenib were 53.4±26.2 and 0.47±0.37 mg/l, respectively. The mean ratio of the CSF : plasma concentration was 0.98±0.84%. No relationship was found between plasma and CSF concentrations (P=0.8). In conclusion, our preliminary results highlight for the first time a low CSF vemurafenib penetration rate associated with a large interindividual variability in patients treated for metastatic BRAF-V600 mutated melanoma and brain metastases. Further investigations with larger cohorts are required to study the relationship between CSF vemurafenib concentrations and cerebral response. Copyright © 2015 Wolters Kluwer Health, Inc. All rights reserved.
Ramos González, E J; Ramirez Jirano, L J; García Martínez, D Z; Ortiz, G G; Jave Suárez, L F; Leal Cortes, C A; Bitzer Quintero, O K
2018-03-08
Multiple sclerosis (MS) is a chronic, demyelinating, autoimmune disease of the central nervous system causing neuroinflammation. Experimental autoimmune encephalitis (EAE) is a model of the disease. MS is classically treated with interferon beta (IFN-β) and glatiramer acetate (GA). Melatonin (MLT) has been reported to modulate immune system responses. The aim of the present study is to analyse the effects of MLT administration in comparison with the first-line treatments for MS (IFN-β and GA). EAE was induced in male Sprague-Dawley rats; the animals subsequently received either IFN-β, GA, or MLT. Cerebrospinal fluid (CSF) samples were analysed by multiplex assay to determine the levels of proinflammatory cytokines. The neurological evaluation of EAE was also recorded. All immunised animals developed EAE. We evaluated the first relapse-remission cycle, observing that IFN-β and GA had better results than MLT in the clinical evaluation. Neither EAE nor any of the treatments administered modified CSF IL-1β and IL-12p70 concentrations. However, IFN-β and MLT did decrease CSF TNF-α concentrations. Further studies are needed to evaluate the molecular mechanisms involved in the behaviour of MLT in EAE, and to quantify other cytokines in different biological media in order for MLT to be considered an anti-inflammatory agent capable of regulating MS. Copyright © 2018 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.
Cabrerizo, María; Trallero, Gloria; Pena, María José; Cilla, Amaia; Megias, Gregoria; Muñoz-Almagro, Carmen; Del Amo, Eva; Roda, Diana; Mensalvas, Ana Isabel; Moreno-Docón, Antonio; García-Costa, Juan; Rabella, Nuria; Omeñaca, Manuel; Romero, María Pilar; Sanbonmatsu-Gámez, Sara; Pérez-Ruiz, Mercedes; Santos-Muñoz, María José; Calvo, Cristina
2015-11-01
Human parechoviruses (HPeV) have been recently recognized as important viral agents in paediatric infections. The aims of this study were to investigate the HPeV infection prevalence in infants <1 month in Spain and, secondly, to analyse the clinical and epidemiological characteristics of the infected patients compared with those infected by enterovirus (EV). Infants <1 month with neurological or systemic symptoms were included in a multicentre prospective study. EV and HPeV detection by RT-PCR and genotyping were performed in cerebrospinal fluids (CSF), sera or throat swabs. Out of the total of 84 infants studied during 2013, 32 were EV positive (38 %) and 9 HPeV positive (11 %). HPeV-3 was identified in eight cases and HPeV-5 in one. Mean age of HPeV-positive patients was 18 days. Diagnoses were fever without source (FWS) (67 %), clinical sepsis (22 %) and encephalitis (11 %). Leukocytes in blood and CSF were normal. Pleocytosis (p = 0.03) and meningitis (p = 0.001) were significantly more frequent in patients with EV infections than with HPeV. Although HPeV-3 infections were detected less frequently than EV, they still account for approximately 10 % of the cases analysed in infants younger than 1 month. HPeV-3 was mainly associated with FWS and without leukocytosis and pleocytosis in CSF. In these cases, HPeV screening is desirable to identify the aetiologic agent and prevent unnecessary treatment and prolonged hospitalization.
Yoo, In Young; Chun, Sejong; Song, Dong Joon; Huh, Hee Jae; Lee, Nam Yong
2016-11-01
We compared the BacT/Alert system FAN and FAN Plus media to conventional media for culturing cerebrospinal fluid (CSF) with 2,545 samples. FAN/FAN Plus bottles showed better performance for isolating microorganisms in CSF than conventional media (positive rate, 7.2% [182/2,545] versus 3.1% [80/2,545]). The incremental recovery rate of Cryptococcus neoformans from FAN Plus bottles was higher than that from FAN bottles. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Kurzbuch, Arthur R; Magdum, Shailendra; Jayamohan, Jayaratnam
2017-04-01
Intradiploic cerebrospinal fluid (CSF) collections are rare findings. The authors describe two pediatric patients with iatrogenically induced occipital CSF collections after decompressive surgery for Chiari I malformation. The first patient presents a large occipital intradiploic pseudomeningocele and the second patient an intradiploic pseudomeningocele merging with an ossified occipitocervical pseudomeningocele. Though being rarities after decompression for Chiari I malformation, intradiploic fluid collection and ossified pseudomeningocele should be considered if patients represent with aggravating presurgical or new symptoms.
Viral loads of cerebrospinal fluid in infants with enterovirus meningitis.
Kawashima, Hisashi; Ioi, Hiroaki; Ishii, Chiako; Hasegawa, Yuka; Amaha, Masahiro; Kashiwagi, Yasuyo; Takekuma, Kouji; Hoshika, Akinori; Watanabe, Yasuo
2008-01-01
For a better understanding of the role of the viral load, free radicals, and cytokines in viral meningitis, we surveyed cerebrospinal fluid (CSF) obtained from patients below 1 year of age who showed positive for enterovirus. In their first examinations interleukin (IL)-6 and free radicals increased whereas pleocytosis was rarely observed. IL-6 decreased within the short period. Viral loads and free radicals increased simultaneously. IL-6 and free radicals of CSF are helpful for diagnosis and treatment of viral meningitis at an early stage. (c) 2008 Wiley-Liss, Inc.
Increased CSF Homocysteine in Pathological Gamblers Compared with Healthy Controls
ERIC Educational Resources Information Center
Nordin, Conny; Sjodin, Ingemar
2009-01-01
Neurocognitive disturbances suggesting a frontal lobe dysfunction have been observed in pathological gamblers and alcohol dependents. Given that a high homocysteine level has been suggested to be a mediating factor in alcohol-related cognitive decline, we have determined homocysteine and cobalamine in cerebrospinal fluid (CSF) obtained from 11…
Weisfelt, Martijn; van de Beek, Diederik; Spanjaard, Lodewijk; Reitsma, Johannes B; de Gans, Jan
2006-01-01
Background A low cerebrospinal fluid (CSF) white-blood cell count (WBC) has been identified as an independent risk factor for adverse outcome in adults with bacterial meningitis. Whereas a low CSF WBC indicates the presence of sepsis with early meningitis in patients with meningococcal infections, the relation between CSF WBC and outcome in patients with pneumococcal meningitis is not understood. Methods We examined the relation between CSF WBC, bacteraemia and sepsis in a prospective cohort study that included 352 episodes of pneumococcal meningitis, confirmed by CSF culture, occurring in patients aged >16 years. Results CSF WBC was recorded in 320 of 352 episodes (91%). Median CSF WBC was 2530 per mm3 (interquartile range 531–6983 per mm3) and 104 patients (33%) had a CSF WBC <1000/mm3. Patients with a CSF WBC <1000/mm3 were more likely to have an unfavourable outcome (defined as a Glasgow Outcome Scale score of 1–4) than those with a higher WBC (74 of 104 [71%] vs. 87 of 216 [43%]; P < 0.001). CSF WBC was significantly associated with blood WBC (Spearman's test 0.29), CSF protein level (0.20), thrombocyte count (0.21), erythrocyte sedimentation rate (-0.15), and C-reactive protein levels (-0.18). Patients with a CSF WBC <1000/mm3 more often had a positive blood culture (72 of 84 [86%] vs. 138 of 196 [70%]; P = 0.01) and more often developed systemic complications (cardiorespiratory failure, sepsis) than those with a higher WBC (53 of 104 [51%] vs. 69 of 216 [32%]; P = 0.001). In a multivariate analysis, advanced age (Odds ratio per 10-year increments 1.22, 95%CI 1.02–1.45), a positive blood culture (Odds ratio 2.46, 95%CI 1.17–5.14), and a low thrombocyte count on admission (Odds ratio per 100,000/mm3 increments 0.67, 95% CI 0.47–0.97) were associated with a CSF WBC <1000/mm3. Conclusion A low CSF WBC in adults with pneumococcal meningitis is related to the presence of signs of sepsis and systemic complications. Invasive pneumococcal infections should possibly be regarded as a continuum from meningitis to sepsis. PMID:17038166
Cerebrospinal fluid Aβ42 levels and APP processing pathway genes in Parkinson's disease.
Bekris, Lynn M; Tsuang, Debby W; Peskind, Elaine R; Yu, Chang E; Montine, Thomas J; Zhang, Jing; Zabetian, Cyrus P; Leverenz, James B
2015-06-01
Of recent interest is the finding that certain cerebrospinal fluid (CSF) biomarkers traditionally linked to Alzheimer's disease (AD), specifically amyloid beta protein (Aβ), are abnormal in PD CSF. The aim of this exploratory investigation was to determine whether genetic variation within the amyloid precursor protein (APP) processing pathway genes correlates with CSF Aβ42 levels in Parkinson's disease (PD). Parkinson's disease (n = 86) and control (n = 161) DNA were genotyped for 19 regulatory region tagging single-nucleotide polymorphisms (SNPs) within nine genes (APP, ADAM10, BACE1, BACE2, PSEN1, PSEN2, PEN2, NCSTN, and APH1B) involved in the cleavage of APP. The SNP genotypes were tested for their association with CSF biomarkers and PD risk while adjusting for age, sex, and APOE ɛ4 status. Significant correlation with CSF Aβ42 levels in PD was observed for two SNPs, (APP rs466448 and APH1B rs2068143). Conversely, significant correlation with CSF Aβ42 levels in controls was observed for three SNPs (APP rs214484, rs2040273, and PSEN1 rs362344). In addition, results of this exploratory investigation suggest that an APP SNP and an APH1B SNP are marginally associated with PD CSF Aβ42 levels in APOE ɛ4 noncarriers. Further hypotheses generated include that decreased CSF Aβ42 levels are in part driven by genetic variation in APP processing genes. Additional investigation into the relationship between these findings and clinical characteristics of PD, including cognitive impairment, compared with other neurodegenerative diseases, such as AD, are warranted. © 2015 International Parkinson and Movement Disorder Society. © 2015 International Parkinson and Movement Disorder Society.
Vogelgsang, Jonathan; Wedekind, Dirk; Bouter, Caroline; Klafki, Hans-W.; Wiltfang, Jens
2018-01-01
Analysis of cerebrospinal fluid (CSF) is one of the key tools for the state-of-the-art differential diagnosis of dementias. Dementia due to Alzheimer’s disease (AD) is characterized by elevated CSF levels of total Tau (tTau) and phospho-181-Tau (pTau) and low CSF amyloid-β42 (Aβ42). Discrepancies in the laboratory analysis of human materials are well known and much effort has been put into harmonization procedures. In this study, we measured CSF biomarkers of more than 100 patients obtained under clinical routine conditions in two different clinical laboratories. The CSF biomarker levels obtained from the two different sites were significantly correlated: R2 = 0.7129 (tTau, p < 0.001), 0.7914 (pTau, p < 0.001), 0.5078 (Aβ42, p < 0.001), 0.5739 (Aβ40, p < 0.001), and 0.4308 (Aβ42/40, p < 0.001). However, the diagnostic classifications of the Aβ42, tTau, and pTau levels of identical subjects into normal versus pathological range made by the two different sites showed substantial discrepancies (31.5%, 29.6%, and 25.0% discordant cases, respectively). Applying Aβ42/40, instead of CSF Aβ42 alone, lead to a reduction of the discordant cases to 16.8%. Our findings suggest that CSF Aβ42/40 can outperform Aβ42 as a biomarker for AD neuropathology, not only under well-controlled study conditions but also in real life clinical routine. Thus, we recommend the inclusion of Aβ42/40 as a CSF biomarker in the diagnostic procedure. PMID:29439341
Mohamed, Susan; Riva, Roberto; Contin, Manuela
2016-08-15
We present a simple, fast and validated method for the determination of nimodipine in plasma and cerebrospinal fluid (CSF) of patients with subarachnoid haemorrhage using ultra high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Plasma or CSF 250μL aliquots were pretreated with acetonitrile spiked with lacosamide as internal standard. The chromatographic separation was performed on a Fusion (3μm) 50×2.0mm I.D. column with gradient elution of 0.1% (v/v) formic acid in water and 0.1% (v/v) formic acid in acetonitrile at a flow rate of 0.35mL/min. The MS/MS ion transitions were 419.1→343 for nimodipine and 251.1→91 for the internal standard. The linearity was determined from 2.0 to 40.0ng/mL in plasma and 40.0-800.0pg/mL in CSF. The lower limit of quantitation (LLOQ) of nimodipine was 0.4ng/mL in plasma and 40pg/mL in CSF. The mean recovery for nimodipine was ≥75% in plasma and ≥90% in CSF at all three considered concentrations. Intra- and interassay precision and accuracy were ≤15% at all quality control concentrations in plasma and CSF. The method was applied to measure plasma and CSF concentrations of nimodipine in a series of patients with subarachnoid haemorrhage treated with intravenous nimodipine. The present procedure, omitting time-consuming liquid-liquid extraction and drying steps, is faster, simpler and cheaper than published LC-MS/MS analytical methods for nimodipine in plasma and the first validated one for nimodipine in CSF. Copyright © 2016 Elsevier B.V. All rights reserved.
2011-01-01
Introduction The objective of this study was to determine the ability of various parameters commonly used for the diagnosis of acute meningitis to differentiate between bacterial and viral meningitis, in adult patients with a negative direct cerebrospinal fluid (CSF) examination. Methods This was a prospective study, started in 1997, including all patients admitted to the emergency unit with acute meningitis and a negative direct CSF examination. Serum and CSF samples were taken immediately on admission. The patients were divided into two groups according to the type of meningitis: bacterial (BM; group I) or viral (VM; group II). The CSF parameters investigated were cytology, protein, glucose, and lactate; the serum parameters evaluated were C-reactive protein and procalcitonin. CSF/serum glucose and lactate ratios were also assessed. Results Of the 254 patients with meningitis with a negative direct CSF examination, 35 had BM and 181, VM. The most highly discriminative parameters for the differential diagnosis of BM proved to be CSF lactate, with a sensitivity of 94%, a specificity of 92%, a negative predictive value of 99%, a positive predictive value of 82% at a diagnostic cut-off level of 3.8 mmol/L (area under the curve (AUC), 0.96; 95% confidence interval (CI), 0.95 to 1), and serum procalcitonin, with a sensitivity of 95%, a specificity of 100%, a negative predictive value of 100%, and a positive predictive value of 97% at a diagnostic cut-off level of 0.28 ng/ml (AUC, 0.99; 95% CI, 0.99 to 1). Conclusions Serum procalcitonin and CSF lactate concentrations appear to be the most highly discriminative parameters for the differential diagnosis of BM and VM. PMID:21645387
Na, Yong-Jin; Jin, Jun-O; Lee, Mi-Sook; Song, Min-Gyu; Lee, Kyu-Sup; Kwak, Jong-Young
2008-01-01
Immunological abnormalities of cell-mediated and humoral immunity might be associated with the pathogenesis of endometriosis. This study has examined the effects of peritoneal fluid obtained from patients with endometriosis (ePF) on the phenotypic characteristics of macrophages and dendritic cells (DCs) derived from monocytes. Monocytes were obtained from healthy young volunteers and cultured with ePF (n=12) or a control PF (cPF) (n=5) in the presence or absence of macrophage-colony stimulating factor (M-CSF) or IL-4 plus granulocyte macrophage-colony stimulating factor (GM-CSF). The ePF was demonstrated to increase expression levels of CD14 and CD64 on isolated monocytes in the presence or absence of M-CSF. Compared with cPF, addition of 10% ePF to GM-CSF plus IL-4-treated monocytes significantly down-regulated CD1a expression and up-regulated CD64 expression, but did not enhance expression levels of class II MHC. ePF had no effect, however, on tumor necrosis factor-alpha-induced maturation of DC. Levels of IL-6, IL-10 and M-CSF production were higher in ePF-treated than cPF-treated monocytes for both cell culture conditions with GM-CSF plus IL-4 and M-CSF. A neutralizing IL-6 antibody, but not an IL-10 antibody, abrogated the ePF-induced down-regulation of CD1a, up-regulation of CD64 and secretion of M-CSF. These results suggest that ePF favorably induces monocyte differentiation toward macrophages rather than DCs, and that this effect is mediated by IL-6. A reciprocal mode of cell differentiation between macrophages and DCs in response to ePF may be related to the pathogenesis of endometriosis.
Malla, Kalpana K.; Malla, Tejesh; Rao, K. Seshagiri; Basnet, Sahisnuta; Shah, Ravi
2013-01-01
Objectives: This study aimed to test whether C-reactive protein (CRP) measurement could differentiate between different types of meningitis and become a routine test. Methods: A prospective study included 140 children admitted to Manipal Teaching Hospital, Pokhara, Nepal, between July 2009 and June 2011. The subjects had a blood test and detailed cerebrospinal fluid (CSF) analysis, including blood and CSF CRP levels. Results: Of those admitted, 31.1% had pyogenic meningitis (PM), 26.2% partially treated meningitis (PPM), 33% viral meningitis (VM), and 9.7% tubercular meningitis (TBM), with 26.4% controls. Organisms were isolated in 12.5% of the cases by blood culture and 25% of cases through CSF culture. Blood CRP was positive in all groups, with the highest values in PM (53.12 ± 28.88 mg/dl) and PPM (47.55 ± 34.34 mg/dl); this was not statistically significant (P = 0.08). The CSF CRP levels were significantly higher (P <0.001) in PM (45.75 ± 28.50 mg/dl) and PPM (23.11 ± 23.98 mg/dl). The sensitivity and specificity of blood CRP was 90.62%, 88.88%, 64.7%, 70% and 32.4%, 30.97%, 24.52%, 26.12% and that of CSF CRP was 96.87%, 66.66%, 20.58%, 10% and 74.73%, 63.71%, 50.94%, 55.35% for PM, PPM, VM and TBM, respectively. Conclusion: Because of its high sensitivity, both CSF CRP and blood CRP can be used to screen for bacterial meningitis (both PM and PPM). CSF CRP screening yielded results with a higher specificity than blood CRP; hence, it can be a supportive test along with CSF cytology, biochemistry, and microbiology for diagnosing meningitis. PMID:23573388
Pires, Frederico Ribeiro; Franco, Andréia Christine Bonotto Farias; Gilio, Alfredo Elias; Troster, Eduardo Juan
2017-01-01
ABSTRACT Objective: To evaluate Bacterial Meningitis Score (BMS) on its own and in association with Cerebrospinal Fluid (CSF) lactate dosage in order to distinguish bacterial from aseptic meningitis. Methods: Children diagnosed with meningitis at a tertiary hospital between January/2011 and December/2014 were selected. All data were obtained upon admission. BMS was applied and included: CSF Gram staining (2 points); CSF neutrophil count ≥1,000 cells/mm3 (1 point); CSF protein ≥80 mg/dL (1 point); peripheral blood neutrophil count ≥10,000 cells/mm3 (1 point) and seizures upon/before arrival (1 point). Cutoff value for CSF lactate was ≥30 mg/dL. Sensitivity, specificity and negative predictive value of several BMS cutoffs and BMS associated with high CSF lactate were evaluated for prediction of bacterial meningitis. Results: Among 439 eligible patients, 94 did not have all data available to complete the score, and 345 patients were included: 7 in bacterial meningitis group and 338 in aseptic meningitis group. As predictive factors of bacterial meningitis, BMS ≥1 had 100% sensitivity (95%CI 47.3-100), 64.2% specificity (58.8-100) and 100% negative predictive value (97.5-100); BMS ≥2 or BMS ≥1 associated with high CSF lactate also showed 100% sensitivity (47.3-100); but 98.5% specificity (96.6-99.5) and 100% negative predictive value (98.3-100). Conclusions: 2 point BMS in association with CSF lactate dosage had the same sensitivity and negative predictive value, with increased specificity for diagnosis of bacterial meningitis when compared with 1-point BMS. PMID:29185620
Cohen, Salomon; Jones, Samuel H; Dhandapani, Sivashanmugam; Negm, Hazem M; Anand, Vijay K; Schwartz, Theodore H
2018-01-01
Postoperative cerebrospinal fluid (CSF) leak is a persistent, albeit much less prominent, complication following endonasal endoscopic surgery. The pathology with highest risk is suprasellar meningiomas. A postoperative lumbar drain (LD) is used to decrease the risk of CSF leak but is not universally accepted. To compare the rates of postoperative CSF leak between patients with and without LD who underwent endonasal endoscopic surgical resection of suprasellar meningiomas. A consecutive series of newly diagnosed suprasellar meningiomas was drawn from a prospectively acquired database of endonasal endoscopic surgeries at our institution. An intraoperative, preresection LD was placed and left open at 5 cc/h for ∼48 h. In a subset of patients, the LD could not be placed. Rates of postoperative CSF leak were compared between patients with and without an LD. Twenty-five patients underwent endonasal endoscopic surgical resection of suprasellar meningiomas. An LD could not be placed in 2 patients. There were 2 postoperative CSF leaks (8%), both of which occurred in the patients who did not have an LD (P = .0033). The average body mass index (BMI) of the patients in whom the LD could not be placed was 39.1 kg/m2, compared with 27.6 kg/m2 for those in whom the LD could be placed (P = .009). In the subgroup of obese patients (BMI > 30 kg/m2), LD placement was protective against postoperative CSF leak (P = .022). The inability to place an LD in patients with obesity is a risk factor for postoperative CSF leak. An LD may be useful to prevent postoperative CSF leak, particularly in patients with elevated BMI. Copyright © 2017 by the Congress of Neurological Surgeons
Halstead, E Scott; Umstead, Todd M; Davies, Michael L; Kawasawa, Yuka Imamura; Silveyra, Patricia; Howyrlak, Judie; Yang, Linlin; Guo, Weichao; Hu, Sanmei; Hewage, Eranda Kurundu; Chroneos, Zissis C
2018-01-05
Influenza A viruses cause life-threatening pneumonia and lung injury in the lower respiratory tract. Application of high GM-CSF levels prior to infection has been shown to reduce morbidity and mortality from pathogenic influenza infection in mice, but the mechanisms of protection and treatment efficacy have not been established. Mice were infected intranasally with influenza A virus (PR8 strain). Supra-physiologic levels of GM-CSF were induced in the airways using the double transgenic GM-CSF (DTGM) or littermate control mice starting on 3 days post-infection (dpi). Assessment of respiratory mechanical parameters was performed using the flexiVent rodent ventilator. RNA sequence analysis was performed on FACS-sorted airway macrophage subsets at 8 dpi. Supra-physiologic levels of GM-CSF conferred a survival benefit, arrested the deterioration of lung mechanics, and reduced the abundance of protein exudates in bronchoalveolar (BAL) fluid to near baseline levels. Transcriptome analysis, and subsequent validation ELISA assays, revealed that excess GM-CSF re-directs macrophages from an "M1-like" to a more "M2-like" activation state as revealed by alterations in the ratios of CXCL9 and CCL17 in BAL fluid, respectively. Ingenuity pathway analysis predicted that GM-CSF surplus during IAV infection elicits expression of anti-inflammatory mediators and moderates M1 macrophage pro-inflammatory signaling by Type II interferon (IFN-γ). Our data indicate that application of high levels of GM-CSF in the lung after influenza A virus infection alters pathogenic "M1-like" macrophage inflammation. These results indicate a possible therapeutic strategy for respiratory virus-associated pneumonia and acute lung injury.
Belogurov, A A; Ivanova, O M; Lomakin, Y A; Ziganshin, R H; Vaskina, M I; Knorre, V D; Klimova, E A; Gabibov, A G; Ivanov, V T; Govorun, V M
2016-11-01
Differential diagnosis of bacterial and viral meningitis is an urgent problem of the modern clinical medicine. Early and accurate detection of meningitis etiology largely determines the strategy of its treatment and significantly increases the likelihood of a favorable outcome for the patient. In the present work, we analyzed the peptidome and cytokine profiles of cerebrospinal fluid (CSF) of 17 patients with meningitis of bacterial and viral etiology and of 20 neurologically healthy controls. In addition to the identified peptides (potential biomarkers), we found significant differences in the cytokine status of the CSF of the patients. We found that cut-off of 100 pg/ml of IL-1β, TNF, and GM-CSF levels discriminates bacterial and viral meningitis with 100% specificity and selectivity. We demonstrated for the first time the reduction in the level of two cytokines, IL-13 and GM-CSF, in the CSF of patients with viral meningitis in comparison with the controls. The decrease in GM-CSF level in the CSF of patients with viral meningitis can be explained by a disproportionate increase in the levels of cytokines IL-10, IFN-γ, and IL-4, which inhibit the GM-CSF expression, whereas IL-1, IL-6, and TNF activate it. These observations suggest an additional approach for differential diagnosis of bacterial and viral meningitis based on the normalized ratio IL-10/IL-1β and IL-10/TNF > 1, as well as on the ratio IFN-γ/IL-1β and IFN-γ/TNF < 0.1. Our findings extend the panel of promising clinical and diagnostic biomarkers of viral and bacterial meningitis and reveal opposite changes in the cytokine expression in meningitis due to compensatory action of pro- and antiinflammatory factors.
Gandhoke, Gurpreet S; Pease, Matthew; Smith, Kenneth J; Sekula, Raymond F
2017-09-01
To perform a cost-minimization study comparing the supraorbital and endoscopic endonasal (EEA) approach with or without craniotomy for the resection of olfactory groove meningiomas (OGMs). We built a decision tree using probabilities of gross total resection (GTR) and cerebrospinal fluid (CSF) leak rates with the supraorbital approach versus EEA with and without additional craniotomy. The cost (not charge or reimbursement) at each "stem" of this decision tree for both surgical options was obtained from our hospital's finance department. After a base case calculation, we applied plausible ranges to all parameters and carried out multiple 1-way sensitivity analyses. Probabilistic sensitivity analyses confirmed our results. The probabilities of GTR (0.8) and CSF leak (0.2) for the supraorbital craniotomy were obtained from our series of 5 patients who underwent a supraorbital approach for the resection of an OGM. The mean tumor volume was 54.6 cm 3 (range, 17-94.2 cm 3 ). Literature-reported rates of GTR (0.6) and CSF leak (0.3) with EEA were applied to our economic analysis. Supraorbital craniotomy was the preferred strategy, with an expected value of $29,423, compared with an EEA cost of $83,838. On multiple 1-way sensitivity analyses, supraorbital craniotomy remained the preferred strategy, with a minimum cost savings of $46,000 and a maximum savings of $64,000. Probabilistic sensitivity analysis found the lowest cost difference between the 2 surgical options to be $37,431. Compared with EEA, supraorbital craniotomy provides substantial cost savings in the treatment of OGMs. Given the potential differences in effectiveness between approaches, a cost-effectiveness analysis should be undertaken. Copyright © 2017 Elsevier Inc. All rights reserved.
DE Simone, Roberto; Ranieri, Angelo; Bonavita, Vincenzo
2017-03-01
Two critical functions for the control of intracranial fluids dynamics are carried on the venous side of the perfusion circuit: the first is the avoidance of cortical veins collapse during the physiological increases of cerebrospinal fluid (CSF) pressure in which they are immersed. The second, is the generation of an abrupt venous pressure drop at the confluence of the cortical veins with the dural sinuses that is required to allow a CSF outflow rate balanced with its production. There is evidence that both of these effects are ensured by a Starling resistor mechanism (a fluid dynamic construct that governs the flow in collapsible tubes exposed to variable external pressure) acting at the confluence of cortical veins in the dural sinus. This implies that, in normal circumstances of perfusion balance, a certain degree of venous collapse physiologically occurs at the distal end of the cortical vein. This is passively modulated by the transmural pressure of the venous wall (i.e. the difference between internal blood pressure and external CSF pressure). The mechanism provides that the blood pressure of the cortical vein upstream the collapsed segment is dynamically maintained a few mmHg higher than the CSF pressure, so as to prevent their collapse during the large physiological fluctuations of the intracranial pressure. Moreover, the partial collapse of the vein confluence also generates a sharp pressure drop of the blood entering into the sinus. The CSF is drained in dural sinus through arachnoid villi proportionally to its pressure gradient with the sinus blood. The venous pressure drop between cortical veins and dural sinus is therefore needed to ensure that the CSF can leave the cranio-spinal space with the same speed with which it is produced, without having to reach a too high pressure, which would compress the cortical veins. Notably, the mechanism requires that the walls of the dural sinuses are rigid enough to avoid the collapse under the external cerebrospinal fluid pressure, and predicts that in the presence of excessively flexible dural sinuses, the system admits a second point of balance between cerebral fluid pressure and dural sinus pressure, at higher values. The second balance state is due to the triggering of a self-limiting venous collapse feedback loop between the CSF pressure, that compresses the sinus, and the subsequent increase of the dural sinus pressure, that further raises the intracranial pressure. The loop may stabilize only when the maximum stretching allowed by the venous wall is reached. Then, a new relatively stable and self-sustaining balance state is achieved, at the price of a higher CSF and dural sinus pressure values. We propose that this model is crucially involved in Idiopatic Intracranial Hypertension pathogenesis with and without papilledema, a condition that could be described as a pathological new balance state, relatively stable, between intracranial and dural venous pressure, at higher absolute values.
More Than the Brain's Drain: Does Cerebrospinal Fluid Help the Brain Convey Messages?
ERIC Educational Resources Information Center
Travis, John
1999-01-01
Examines the role of cerebrospinal fluid (CSF), a clear, colorless liquid that constantly bathes the brain and spinal cord. Scientists argue that cerebrospinal fluid carries important signals for sleep, appetite, and sex. Evaluates past and current research documenting the purpose of cerebrospinal fluid in the brain. (CCM)
Ziu, Mateo; Jimenez, David F
2013-11-01
Presented herein is a review of the history of fat graft use in preventing iatrogenic cerebrospinal fluid (CSF) rhinorrhea after transsphenoidal surgery. Since the first transsphenoidal surgeries were described in the early 1900s, the techniques of sellar packing to prevent CSF leak have evolved. Kanavel, Halstead, and Cushing used bismuth- or iodine-soaked gauze. Under Dandy's influence, fascia lata was the first autologous material to be used for the repair and prevention of CSF rhinorrhea. The use of autologous fat graft for this purpose has only been reported in recent decades. Montgomery was the first to use abdominal fat to obliterate the middle ear cavity in 1964, and Collins reported the first transsphenoidal application of fat graft in 1973. Other reports by Kirchner, Tindall, and Wilson followed. Copyright © 2013. Published by Elsevier Inc.
Demel, Anja; Feilke, Katharina; Wolf, Martin; Poets, Christian F; Franz, Axel R
2014-01-01
Near-infrared spectroscopy (NIRS) is increasingly used in neonatal intensive care. We investigated the impact of skin, bone, and cerebrospinal fluid (CSF) layer thickness in term and preterm infants on absorption-(μa) and/or reduced scattering coefficients (μs') measured by multidistance frequency-domain (FD)-NIRS. Transcranial ultrasound was performed to measure the layer thicknesses. Correlations were only statistically significant for μa at 692 nm with bone thickness and μs' at 834 nm with skin thickness. There is no evidence that skin, bone, or CSF thickness have an important effect on μa and μs'. Layer thicknesses of skin, bone, and CSF in the range studied do not seem to affect cerebral oxygenation measurements by multidistance FD-NIRS significantly.
Exploring the Virchow–Robin spaces function: A unified theory of brain diseases
Cherian, Iype; Beltran, Margarita; Kasper, Ekkehard M.; Bhattarai, Binod; Munokami, Sunil; Grasso, Giovanni
2016-01-01
Background: Cerebrospinal fluid (CSF) transport across the central nervous system (CNS) is no longer believed to be on the conventional lines. The Virchow–Robin space (VRS) that facilitates CSF transport from the basal cisterns into the brain interstitial fluid (ISF) has gained interest in a whole new array of studies. Moreover, new line of evidence suggests that VRS may be involved in different pathological mechanisms of brain diseases. Methods: Here, we review emerging studies proving the feasible role of VRS in sleep, Alzheimer's disease, chronic traumatic encephalopathy, and traumatic brain injury (TBI). Results: In this study, we have outlined the possible role of VRS in different pathological conditions. Conclusion: The new insights into the physiology of the CSF circulation may have important clinical relevance for understanding the mechanisms underlying brain pathologies and their cure. PMID:27857861
Yu, Nian; Zhang, Qiao-Quan; Zhang, Kang; Xie, Yuan; Zhu, Hai-Qing; Lin, Xing-Jian; Di, Qing
2016-09-01
This study was to investigate the differences of lymphocyte in the cerebrospinal fluid (CSF) of patients with syphilis meningitis (SM) and tuberculous meningitis (TBM) for new diagnostic insights. Totally, 79 cases of SM and 45 cases of TBM were enrolled. In the CSF, the CD4, CD45RO or CD20 positive lymphocytes were detected by immunohistochemistry. The proportion of CD4 T cells in the CSF lymphocytes in patients with SM was significantly higher than that in patients with TBM (p < 0.05). After medical therapy, there was a significantly decline trend of the CD4 T-cell proportion in both groups (p < 0.05). The proportion of CD45RO T cells in CSF lymphocytes of patients with SM was less than that of patients with TBM (p < 0.05). After medical therapy, the positive ratio of CD45RO T cells was increased in the CSF of both group patients (p < 0.05). The proportion of CD20B cells in the CSF lymphocytes was not obviously different between the two groups during every stage. In conclusion, there are strong differences of CD4 and CD45RO T-cell ratio, but not the CD20 B cells in the meningitis. CD4 and CD45RO T cells in CSF are a useful complement in differentially diagnosing SM and TBM; it contributes to further understand the pathogenesis and prognosis of SM and TBM. © 2016 APMIS. Published by John Wiley & Sons Ltd.
Sankaranarayani, R; Nalini, A; Rao Laxmi, T; Raju, T R
2010-01-05
Although definite evidences are available to state that, neuronal activity is a prime determinant of animal behavior, the specific relationship between local field potentials of the motor cortex after intervention with CSF from human patients and animal behavior have remained opaque. The present study has investigated whether cerebrospinal fluid from sporadic amyotrophic lateral sclerosis (sALS) patients could disrupt neuronal activity of the motor cortex, which could be associated with disturbances in the motor performance of adult rats. CSF from ALS patients (ALS-CSF) was infused into the lateral ventricle of Wistar rats. After 24h, the impact of ALS-CSF on the local field potentials (LFPs) of the motor cortex and on the motor behavior of animals were examined. The results indicate that ALS-CSF produced a bivariate distribution on the relative power values of the LFPs of the motor cortex 24h following infusion. However, the behavioral results did not show bimodality, instead showed consistent decrease in motor performance: on rotarod and grip strength meter. The neuronal activity of the motor cortex negatively correlated with the duration of ALS symptoms at the time of lumbar puncture. Although the effect of ALS-CSF was more pronounced at 24h following infusion, the changes observed in LFPs and motor performance appeared to revert to baseline values at later time points of testing. In the current study, we have shown that, ALS-CSF has the potential to perturb neuronal activity of the rat motor cortex which was associated with poor performance on motor function tests.
Zhao, Jing; Ye, Xin; Xu, Yan; Chen, Minjiang; Zhong, Wei; Sun, Yun; Yang, Zhenfan; Zhu, Guanshan; Gu, Yi; Wang, Mengzhao
2016-12-01
Central nervous system (CNS) is the prevalent site for metastases in epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI)-relapsed NSCLC patients. To understand the EGFR mutation status in paired cerebrospinal fluid (CSF) and plasma samples after EGFR-TKI treatment failure might be useful to guide the treatment of intra- and extracranial tumors in those patients. Paired CSF and plasma samples were collected from seven NSCLC patients with CNS metastases after EGFR-TKI failure. EGFR mutations were tested by amplification refractory mutation system (ARMS) and droplet digital PCR (ddPCR) methods. Gefitinib concentrations were evaluated by high-performance liquid chromatography-mass spectrometry (HPLC-MS/MS). EGFR mutations were detected in all seven CSF samples, including three of E19-Del, three of L858R and one of E19-Del&T790M by both methods. On the other hand, majority of the matched plasma samples (5/7) were negative for EGFR mutations by both methods. The other two plasma samples were positive for E19-Del&T790M by ddPCR, and one of them had undetectable T790M by ARMS. Gefitinib concentration in CSF was much lower than that in plasma (mean CSF/plasma ratio: 1.8 %). After EGFR-TKI failure, majority of the NSCLC patients with CNS metastases remained positive detection of EGFR sensitive mutations in CSF, but much less detection in the matched plasma. Significantly low exposure of gefitinib in CSF might explain the intracranial protection of the EGFR sensitive mutation positive tumor cells.
Fructose levels are markedly elevated in cerebrospinal fluid compared to plasma in pregnant women.
Hwang, Janice J; Johnson, Andrea; Cline, Gary; Belfort-DeAguiar, Renata; Snegovskikh, Denis; Khokhar, Babar; Han, Christina S; Sherwin, Robert S
2015-01-01
Fructose, unlike glucose, promotes feeding behavior in rodents and its ingestion exerts differential effects in the human brain. However, plasma fructose is typically 1/1000 th of glucose levels and it is unclear to what extent fructose crosses the blood-brain barrier. We investigated whether local endogenous central nervous system (CNS) fructose production from glucose via the polyol pathway (glucose → sorbitol → fructose) contributes to brain exposure to fructose. In this observational study, fasting glucose, sorbitol and fructose concentrations were measured using gas-chromatography-liquid mass spectroscopy in cerebrospinal fluid (CSF), maternal plasma, and venous cord blood collected from 25 pregnant women (6 lean, 10 overweight/obese, and 9 T2DM/gestational DM) undergoing spinal anesthesia and elective cesarean section. As expected, CSF glucose was ~ 60% of plasma glucose levels. In contrast, fructose was nearly 20-fold higher in CSF than in plasma (p < 0.001), and CSF sorbitol was ~ 9-times higher than plasma levels (p < 0.001). Moreover, CSF fructose correlated positively with CSF glucose (ρ 0.45, p = 0.02) and sorbitol levels (ρ 0.75, p < 0.001). Cord blood sorbitol was also ~ 7-fold higher than maternal plasma sorbitol levels (p = 0.001). There were no differences in plasma, CSF, and cord blood glucose, fructose, or sorbitol levels between groups. These data raise the possibility that fructose may be produced endogenously in the human brain and that the effects of fructose in the human brain and placenta may extend beyond its dietary consumption.
Black, Perry
2002-03-01
Cerebrospinal fluid (CSF) leaks are relatively common following spinal surgery. A midline dural tear in the spine is readily repaired by direct application of sutures; however, far-lateral or ventral dural tears are problematic. Fat is an ideal sealant because it is impermeable to water. In this paper the author reports his experience with using fat grafts for the prevention or repair of CSF leaks and proposes a technique in which a large sheet of fat, harvested from the patient's subcutaneous layer, is used to cover not only the dural tear(s) but all of the exposed dura and is tucked into the lateral recess. This procedure prevents CSF from seeping around the fat, which may be tacked to the dura with a few sutures. Fibrin glue is spread on the surface of the fat and is further covered with Surgicel or Gelfoam. For ventral dural tears (associated with procedures in which disc material is excised), fat is packed into the disc space to seal off the ventral dural leak. Dural suture lines following spinal intradural exploration are prophylatically protected from CSF leakage in the same manner. With one exception, 27 dural tears noted during 1650 spinal procedures were successfully repaired using this technique. There was one case of postoperative CSF leakage in 140 cases in which intradural exploration for tumor or other lesions was undertaken. Both postoperative CSF leaks were controlled by applying additional skin sutures. The use of a fat graft is recommended as a rapid, effective means of prevention and repair of CSF leaks following spinal surgery.
Spontaneous nasal cerebrospinal fluid leaks and empty sella syndrome: a clinical association.
Schlosser, Rodney J; Bolger, William E
2003-01-01
Spontaneous, idiopathic nasal meningoencephaloceles are herniations of arachnoid/dura and cerebrospinal fluid (CSF) through anatomically fragile sites within the skull base. Empty sella syndrome occurs when intracranial contents herniate through the sellar diaphragm filling the sella turcica with CSF and giving the radiographic appearance of an absent pituitary gland. The objective of this study was to examine the association between spontaneous encephaloceles/CSF leaks and empty sella syndrome because of their similar clinical features and potential common pathophysiology. Retrospective. Sixteen patients were treated for spontaneous encephaloceles between 1996 and 2001. All 16 patients had associated CSF leaks. Five patients had multiple simultaneous encephaloceles. Fifteen patients with imaging of the sella turcica had empty (10 patients) or partially empty (5 patients) sellas. One patient did not have complete imaging of the sella. Three patients had lumbar punctures with measurement of CSF pressure during computed tomography cisternograms because of multiple skull base defects. Mean CSF pressure was 28.3 cm of water (range, 19-34 cm; normal, 0-15 cm). Thirteen of 16 patients (81%) were obese women (mean body mass index 35.9 kg/m2; normal, <25 kg/m2). Mean follow-up was 14.2 months with 100% success in closure of the defects after one procedure. Spontaneous meningoencephaloceles and CSF leaks are strongly associated with radiographic findings of an empty sella and suggest a common pathophysiology. The underlying condition probably represents a form of intracranial hypertension that exerts hydrostatic pressure at anatomically weakened sites within the skull base. Otolaryngologists should be familiar with this disease entity and the implications intracranial hypertension has on patient management.
Kiska, D L; Orkiszewski, D R; Howell, D; Gilligan, P H
1994-01-01
We evaluated the performance of CRYPTO-LEX (Trinity Laboratories, Inc., Raleigh, N. C.), a new mouse immunoglobulin M monoclonal antibody latex agglutination reagent which reacts with the capsular polysaccharide of the four serogroups of Cryptococcus neoformans. This test was compared with CALAS (Meridian Diagnostics, Cincinnati, Ohio) for the ability to detect cryptococcal antigen in serum and cerebrospinal fluid (CSF). A total of 580 clinical specimens (327 serum and 253 CSF samples), primarily from human immunodeficiency virus-infected patients, were tested in this study. Sixty-seven specimens (44 serum and 23 CSF samples) were positive for cryptococcal antigen with both tests, and 511 (282 serum and 229 CSF samples) were negative. The two latex reagents agreed for 326 of 327 serum specimens (44 positives and 282 negatives). One serum specimen with a titer of 1:2 was CALAS positive but CRYPTO-LEX negative. The titer correlation coefficient for the two tests was 0.884 when two highly discordant serum specimens were eliminated from analysis of the data. The two latex tests agreed for 252 of 253 CSF specimens (23 positives and 229 negatives). One specimen with a titer of 1:2 was positive with CALAS and negative by CRYPTO-LEX. The correlation coefficient of the two tests for CSF titers was 0.886. The sensitivity and specificity of CRYPTO-LEX were 97 and 100%, respectively, with a 99.6% correlation with CALAS. These data show that the performance of CRYPTO-LEX is comparable to that of CALAS for detection of cryptococcal antigen in serum and CSF. PMID:7814566
Cerebrospinal Fluid Particles in Alzheimer Disease and Parkinson Disease
Yang, Yue; Keene, C. Dirk; Peskind, Elaine R.; Galasko, Douglas R.; Hu, Shu-Ching; Cudaback, Eiron; Wilson, Angela M.; Li, Ge; Yu, Chang-En; Montine, Kathleen S.; Zhang, Jing; Baird, Geoffrey S.; Hyman, Bradley T.; Montine, Thomas J.
2015-01-01
Human cerebrospinal fluid (CSF) contains diverse lipid particles, including lipoproteins that are distinct from their plasma counterparts and contain apolipoprotein (apo) E isoforms, apoJ, and apoAI, and extracellular vesicles, which can be detected by annexin V binding. The aim of this study was to develop a method to quantify CSF particles and evaluate their relationship to aging and neurodegenerative diseases. We used a flow cytometric assay to detect annexin V-, apoE-, apoAI-, apoJ- and amyloid (A) β42-positive particles in CSF from 131 research volunteers who were neurologically normal or had mild cognitive impairment (MCI), Alzheimer disease (AD) dementia, or Parkinson disease. APOE ε4/ε4 participants had CSF apoE-positive particles that were more frequently larger but at an 88% lower level vs. those in APOE ε3/ε3 or APOE ε3/ε4 patients; this finding was reproduced in conditioned medium from mouse primary glial cell cultures with targeted replacement of apoE. CSF apoE-positive and β-amyloid (Aβ42)-positive particle concentrations were persistently reduced one-third to one-half in middle and older age subjects; apoAI-positive particle concentration progressively increased approximately 2-fold with age. Both apoAI-positive and annexin V-positive CSF particle levels were reduced one-third to one-half in CSF of MCI and/or AD dementia patients vs. age-matched controls. Our approach provides new methods to investigate CNS lipid biology in relation to neurodegeneration and perhaps develop new biomarkers for diagnosis or treatment monitoring. PMID:26083568
Characterization of Acid Sphingomyelinase Activity in Human Cerebrospinal Fluid
Mühle, Christiane; Huttner, Hagen B.; Walter, Silke; Reichel, Martin; Canneva, Fabio; Lewczuk, Piotr; Gulbins, Erich; Kornhuber, Johannes
2013-01-01
Background As a key enzyme in sphingolipid metabolism, acid sphingomyelinase (ASM) is involved in the regulation of cell fate and signaling via hydrolysis of sphingomyelin to form ceramide. While increased activity of the lysosomal form has been associated with various pathological conditions, there are few studies on secretory ASM limited only to cell models, plasma or serum. Methods An optimized assay based on a fluorescent substrate was applied to measure the ASM activity in cerebrospinal fluid (CSF) collected from mice and from 42 patients who were classified as controls based on normal routine CSF values. Results We have detected ASM activity in human CSF, established a sensitive quantitative assay and characterized the enzyme’s properties. The enzyme resembles plasmatic ASM including protein stability and Zn2+-dependence but the assays differ considerably in the optimal detergent concentration. Significantly increased activities in the CSF of ASM transgenic mice and undetectable levels in ASM knock-out mice prove that the measured ASM activity originates from the ASM-encoding gene SMPD1. CSF localized ASM activities were comparable to corresponding serum ASM levels at their respective optimal reaction conditions, but no correlation was observed. The large variance in ASM activity was independent of sex, age or analyzed routine CSF parameters. Conclusions Human and mouse CSF contain detectable levels of secretory ASM, which are unrelated to serum ASM activities. Further investigations in humans and in animal models will help to elucidate the role of this enzyme in human disease and to assess its value as a potential biomarker for disease type, severity, progress or therapeutic success. PMID:23658784
Fructose Levels Are Markedly Elevated in Cerebrospinal Fluid Compared to Plasma in Pregnant Women
Hwang, Janice J.; Johnson, Andrea; Cline, Gary; Belfort-DeAguiar, Renata; Snegovskikh, Denis; Khokhar, Babar; Han, Christina S.; Sherwin, Robert S.
2015-01-01
Background Fructose, unlike glucose, promotes feeding behavior in rodents and its ingestion exerts differential effects in the human brain. However, plasma fructose is typically 1/1000th of glucose levels and it is unclear to what extent fructose crosses the blood-brain barrier. We investigated whether local endogenous central nervous system (CNS) fructose production from glucose via the polyol pathway (glucose→sorbitol→fructose) contributes to brain exposure to fructose. Methods In this observational study, fasting glucose, sorbitol and fructose concentrations were measured using gas-chromatography-liquid mass spectroscopy in cerebrospinal fluid (CSF), maternal plasma, and venous cord blood collected from 25 pregnant women (6 lean, 10 overweight/obese, and 9 T2DM/gestational DM) undergoing spinal anesthesia and elective cesarean section. Results As expected, CSF glucose was ~60% of plasma glucose levels. In contrast, fructose was nearly 20-fold higher in CSF than in plasma (p < 0.001), and CSF sorbitol was ~9-times higher than plasma levels (p < 0.001). Moreover, CSF fructose correlated positively with CSF glucose (ρ 0.45, p = 0.02) and sorbitol levels (ρ 0.75, p < 0.001). Cord blood sorbitol was also ~7-fold higher than maternal plasma sorbitol levels (p = 0.001). There were no differences in plasma, CSF, and cord blood glucose, fructose, or sorbitol levels between groups. Conclusions These data raise the possibility that fructose may be produced endogenously in the human brain and that the effects of fructose in the human brain and placenta may extend beyond its dietary consumption. PMID:26035307
Singla, Neil K; Parulan, Cherri; Samson, Roselle; Hutchinson, Joel; Bushnell, Rick; Beja, Evelyn G; Ang, Robert; Royal, Mike A
2012-09-01
This is the first study to compare plasma and cerebrospinal fluid (CSF) pharmacokinetics of intravenous (IV), oral (PO), or rectal (PR) formulations of acetaminophen. Healthy male subjects (N = 6) were randomized to receive a single dose of IV (OFIRMEV(®) ; Cadence) 1,000 mg (15 minute infusion), PO (2 Tylenol(®) 500 mg caplets; McNeil Consumer Healthcare), or PR acetaminophen (2 Feverall(®) 650 mg suppositories; Actavis) with a 1-day washout period between doses. The 1,300 mg PR concentrations were standardized to 1,000 mg. Acetaminophen plasma and CSF levels were obtained at T0, 0.25, 0.5, 0.75, 1, 2, 3, 4, and 6 hours. IV acetaminophen showed earlier and higher plasma and CSF levels compared with PO or PR administration. CSF bioavailability over 6 hours (AUC(0-6)) for IV, PO, and PR 1 g was 24.9, 14.2, and 10.3 μg·h/mL, respectively. No treatment-related adverse events were reported. One subject was replaced because of premature failure of his lumbar spinal catheter. The mean CSF level in the IV group was similar to plasma from 3 to 4 hours and higher from 4 hours on. Absorption phase, variability in plasma, and CSF were greater in PO and PR groups than variability with IV administration. These results demonstrate that earlier and greater CSF penetration occurs as a result of the earlier and higher plasma peak with IV administration compared with PO or PR. © 2012 Lotus Clinical Research, LLC. Pain Practice © 2012 World Institute of Pain.
Heaton, Chase M; Goldberg, Andrew N; Pletcher, Steven D; Glastonbury, Christine M
2012-07-01
Anatomic variations in skull base anatomy may predispose the surgeon to inadvertent skull base injury with resultant cerebrospinal fluid (CSF) leak during functional endoscopic sinus surgery (ESS). Our objective was to compare preoperative sinus imaging of patients who underwent FESS with and without CSF leak to elucidate these variations. In this retrospective case-control study, 18 patients with CSF leak following FESS for chronic rhinosinusitis (CRS) from 2000 to 2011 were compared to 18 randomly selected patients who underwent preoperative imaging for FESS for CRS. Measurements were obtained from preoperative computed tomography images with specific attention to anatomic differences in cribriform plate and ethmoid roof heights in the coronal plane, and the skull base angle in the sagittal plane. Mean values of measured variables were compared using a nonparametric Mann-Whitney test. When compared to controls, patients with CSF leak demonstrated a greater angle of the skull base in the sagittal plane (P < .001) and a greater slope of the skull base in the coronal plane (P < .006). A lower cribriform height relative to ethmoid roof height was also noted in cases of CSF leak as compared to controls (P < .04). A steep skull base angle in the sagittal plane, a greater slope of the skull base in the coronal plane, and a low cribriform height relative to the ethmoid roof predispose the patient to CSF leak during FESS. Preoperative review of imaging with specific attention paid to these anatomic variations may help to prevent iatrogenic CSF leak. Copyright © 2012 The American Laryngological, Rhinological, and Otological Society, Inc.
Cerebrospinal fluid dynamics study in communicating hydrocephalus.
Ramesh, Vengalathur Ganesan; Narasimhan, Vidhya; Balasubramanian, Chandramouli
2017-01-01
Communicating hydrocephalus often poses a challenge in diagnosis and management decisions. The objective of this study is to measure the opening pressure (P o ), pressure volume index (PVI), and cerebrospinal fluid outflow resistance (R out ), in patients with communicating hydrocephalus using bolus lumbar injection method and to evaluate its diagnostic and prognostic value. The study was conducted in 50 patients with communicating hydrocephalus, including normal pressure hydrocephalus (NPH) (19), post-meningitic hydrocephalus (23) and post-traumatic hydrocephalus (8). An improvised bolus lumbar injection method [the Madras Institute of Neurology (MIN) method] was used. In the NPH Group, the CSF dynamics studies correlated well with the clinico-radiological classification. The prediction of shunt responsiveness by CSF dynamics studies correlated with good outcome in 87.5%. In the post-meningitic hydrocephalus group, the value of CSF dynamics studies in predicting patients needing shunt was 89.5%. The CSF dynamics studies detected patients who needed shunt earlier than clinical or radiological indications. In the post-traumatic hydrocephalus group, 62.5% of patients improved with the treatment based on CSF dynamics studies. The improvised bolus lumbar injection method (MIN method) is a very simple test with fairly reliable and reproducible results. Study of CSF dynamics is a valuable tool in communicating hydrocephalus for confirmation of diagnosis and predicting shunt responsiveness. This is the first time that the value of CSF dynamics has been studied in patients with post-meningitic hydrocephalus. It was also useful for early selection of cases for shunting and for identifying patients with atrophic ventriculomegaly, thereby avoiding unnecessary shunt.
Cerebrospinal fluid dynamics study in communicating hydrocephalus
Ramesh, Vengalathur Ganesan; Narasimhan, Vidhya; Balasubramanian, Chandramouli
2017-01-01
Context: Communicating hydrocephalus often poses a challenge in diagnosis and management decisions. Aims: The objective of this study is to measure the opening pressure (Po), pressure volume index (PVI), and cerebrospinal fluid outflow resistance (Rout), in patients with communicating hydrocephalus using bolus lumbar injection method and to evaluate its diagnostic and prognostic value. Materials and Methods: The study was conducted in 50 patients with communicating hydrocephalus, including normal pressure hydrocephalus (NPH) (19), post-meningitic hydrocephalus (23) and post-traumatic hydrocephalus (8). An improvised bolus lumbar injection method [the Madras Institute of Neurology (MIN) method] was used. Results: In the NPH Group, the CSF dynamics studies correlated well with the clinico-radiological classification. The prediction of shunt responsiveness by CSF dynamics studies correlated with good outcome in 87.5%. In the post-meningitic hydrocephalus group, the value of CSF dynamics studies in predicting patients needing shunt was 89.5%. The CSF dynamics studies detected patients who needed shunt earlier than clinical or radiological indications. In the post-traumatic hydrocephalus group, 62.5% of patients improved with the treatment based on CSF dynamics studies. Conclusions: The improvised bolus lumbar injection method (MIN method) is a very simple test with fairly reliable and reproducible results. Study of CSF dynamics is a valuable tool in communicating hydrocephalus for confirmation of diagnosis and predicting shunt responsiveness. This is the first time that the value of CSF dynamics has been studied in patients with post-meningitic hydrocephalus. It was also useful for early selection of cases for shunting and for identifying patients with atrophic ventriculomegaly, thereby avoiding unnecessary shunt. PMID:28484522
Bárcena, A; Mestre, C; Cañizal, J M; Rivero, B; Lobato, R D
1997-01-01
This investigation has been undertaken to analyze the findings with both the cerebrospinal fluid (CSF) pressure (Pcsf) and CSF pulse pressure (PP) in order to predict the outcome of patients with the syndrome of idiopathic normal pressure hydrocephalus (NPH). Accordingly, a prospective clinical study was planned in which two groups of patients with NPH, having analogous prevalence of several matched clinical and radiological parameters, were separated on the basis of their positive or negative response to shunting. Both the resting Pcsf and CSF PP profiles were compared in these two groups, and between them and normal controls. CSF PP amplitude and CSF PP latency correlated directly in conditions associated with either normal or high compliance (controls and patients with Alzheimer-like disorders), whereas this correlation was inverse in states of low compliance (NPH). On the other hand, shunt-responders showed a resting Pcsf significantly higher than both non-responders and controls. The following conclusions were obtained: 1) CSF PP is a high-amplitude and relative low-latency wave in NPH when compared with controls: 2) CSF PP amplitude and latency correlate directly in normal subjects and in those with primary cerebral atrophy; 3) a non-reversible stage of NPH could be conceived in contradistinction to the reversible one, in both of which an inverse correlation between the amplitude and the latency takes place, the main difference between them being the resting Pcsf, which is significantly lower in the former than in the latter, depending on the degree of atrophic changes developed.