Sample records for fluid discs corotation

  1. Low mass planet migration in magnetically torqued dead zones - I. Static migration torque

    NASA Astrophysics Data System (ADS)

    McNally, Colin P.; Nelson, Richard P.; Paardekooper, Sijme-Jan; Gressel, Oliver; Lyra, Wladimir

    2017-12-01

    Motivated by models suggesting that the inner planet forming regions of protoplanetary discs are predominantly lacking in viscosity-inducing turbulence, and are possibly threaded by Hall-effect generated large-scale horizontal magnetic fields, we examine the dynamics of the corotation region of a low-mass planet in such an environment. The corotation torque in an inviscid, isothermal, dead zone ought to saturate, with the libration region becoming both symmetrical and of a uniform vortensity, leading to fast inward migration driven by the Lindblad torques alone. However, in such a low viscosity situation, the material on librating streamlines essentially preserves its vortensity. If there is relative radial motion between the disc gas and the planet, the librating streamlines will no longer be symmetrical. Hence, if the gas is torqued by a large-scale magnetic field so that it undergoes a net inflow or outflow past the planet, driving evolution of the vortensity and inducing asymmetry of the corotation region, the corotation torque can grow, leading to a positive torque. In this paper, we treat this effect by applying a symmetry argument to the previously studied case of a migrating planet in an inviscid disc. Our results show that the corotation torque due to a laminar Hall-induced magnetic field in a dead zone behaves quite differently from that studied previously for a viscous disc. Furthermore, the magnetic field induced corotation torque and the dynamical corotation torque in a low viscosity disc can be regarded as one unified effect.

  2. Influence of toroidal magnetic field in multiaccreting tori

    NASA Astrophysics Data System (ADS)

    Pugliese, D.; Montani, G.

    2018-06-01

    We analysed the effects of a toroidal magnetic field in the formation of several magnetized accretion tori, dubbed as ringed accretion discs (RADs), orbiting around one central Kerr supermassive black hole (SMBH) in active galactic nuclei (AGNs), where both corotating and counterotating discs are considered. Constraints on tori formation and emergence of RADs instabilities, accretion on to the central attractor and tori collision emergence, are investigated. The results of this analysis show that the role of the central BH spin-mass ratio, the magnetic field and the relative fluid rotation and tori rotation with respect the central BH, are crucial elements in determining the accretion tori features, providing ultimately evidence of a strict correlation between SMBH spin, fluid rotation, and magnetic fields in RADs formation and evolution. More specifically, we proved that magnetic field and discs rotation are in fact strongly constrained, as tori formation and evolution in RADs depend on the toroidal magnetic fields parameters. Eventually, this analysis identifies specific classes of tori, for restrict ranges of magnetic field parameter, that can be observed around some specific SMBHs identified by their dimensionless spin.

  3. Numerical modelling of flow and heat transfer in the rotating disc cavities of a turboprop engine.

    PubMed

    Faragher, J; Ooi, A

    2001-05-01

    A numerical analysis of the flow and heat transfer in the cavity between two co-rotating discs with axial inlet and radial outflow of fluid, a configuration common in gas turbine engines, is described. The results are compared with the experimental data of Northrop and Owen. The effectiveness of the k-epsilon turbulence model with the two-layer zonal model for near-wall treatment of Chen and Patel is tested for this type of flow. Using three-dimensional models it is shown that modelling discrete holes at the outlet as opposed to a continuous slot, which is the approximation inherent in the two-dimensional axisymmetric model, has little effect on the predicted Nusselt number distribution along the disc surface. Results of a conjugate heat transfer analysis of a spacer in the turbine section of a turboprop engine are then presented.

  4. Low mass planet migration in magnetically torqued dead zones - II. Flow-locked and runaway migration, and a torque prescription

    NASA Astrophysics Data System (ADS)

    McNally, Colin P.; Nelson, Richard P.; Paardekooper, Sijme-Jan

    2018-04-01

    We examine the migration of low mass planets in laminar protoplanetary discs, threaded by large scale magnetic fields in the dead zone that drive radial gas flows. As shown in Paper I, a dynamical corotation torque arises due to the flow-induced asymmetric distortion of the corotation region and the evolving vortensity contrast between the librating horseshoe material and background disc flow. Using simulations of laminar torqued discs containing migrating planets, we demonstrate the existence of the four distinct migration regimes predicted in Paper I. In two regimes, the migration is approximately locked to the inward or outward radial gas flow, and in the other regimes the planet undergoes outward runaway migration that eventually settles to fast steady migration. In addition, we demonstrate torque and migration reversals induced by midplane magnetic stresses, with a bifurcation dependent on the disc surface density. We develop a model for fast migration, and show why the outward runaway saturates to a steady speed, and examine phenomenologically its termination due to changing local disc conditions. We also develop an analytical model for the corotation torque at late times that includes viscosity, for application to discs that sustain modest turbulence. Finally, we use the simulation results to develop torque prescriptions for inclusion in population synthesis models of planet formation.

  5. Low-mass planet migration in magnetically torqued dead zones - II. Flow-locked and runaway migration, and a torque prescription

    NASA Astrophysics Data System (ADS)

    McNally, Colin P.; Nelson, Richard P.; Paardekooper, Sijme-Jan

    2018-07-01

    We examine the migration of low-mass planets in laminar protoplanetary discs, threaded by large-scale magnetic fields in the dead zone that drive radial gas flows. As shown in Paper I, a dynamical corotation torque arises due to the flow-induced asymmetric distortion of the corotation region and the evolving vortensity contrast between the librating horseshoe material and background disc flow. Using simulations of laminar torqued discs containing migrating planets, we demonstrate the existence of the four distinct migration regimes predicted in Paper I. In two regimes, the migration is approximately locked to the inward or outward radial gas flow, and in the other regimes the planet undergoes outward runaway migration that eventually settles to fast steady migration. In addition, we demonstrate torque and migration reversals induced by mid-plane magnetic stresses, with a bifurcation dependent on the disc surface density. We develop a model for fast migration, and show why the outward runaway saturates to a steady speed, and examine phenomenologically its termination due to changing local disc conditions. We also develop an analytical model for the corotation torque at late times that includes viscosity, for application to discs that sustain modest turbulence. Finally, we use the simulation results to develop torque prescriptions for inclusion in population synthesis models of planet formation.

  6. On the energy dissipation rate at the inner edge of circumbinary discs

    NASA Astrophysics Data System (ADS)

    Terquem, Caroline; Papaloizou, John C. B.

    2017-01-01

    We study, by means of numerical simulations and analysis, the details of the accretion process from a disc on to a binary system. We show that energy is dissipated at the edge of a circumbinary disc and this is associated with the tidal torque that maintains the cavity: angular momentum is transferred from the binary to the disc through the action of compressional shocks and viscous friction. These shocks can be viewed as being produced by fluid elements that drift into the cavity and, before being accreted, are accelerated on to trajectories that send them back to impact the disc. The rate of energy dissipation is approximately equal to the product of potential energy per unit mass at the disc's inner edge and the accretion rate, estimated from the disc parameters just beyond the cavity edge, that would occur without the binary. For very thin discs, the actual accretion rate on to the binary may be significantly less. We calculate the energy emitted by a circumbinary disc taking into account energy dissipation at the inner edge and also irradiation arising there from reprocessing of light from the stars. We find that, for tight PMS binaries, the SED is dominated by emission from the inner edge at wavelengths between 1-4 and 10 μm. This may apply to systems like CoRoT 223992193 and V1481 Ori.

  7. Dusty disc-planet interaction with dust-free simulations

    NASA Astrophysics Data System (ADS)

    Chen, Jhih-Wei; Lin, Min-Kai

    2018-05-01

    Protoplanets may be born into dust-rich environments if planetesimals formed through streaming or gravitational instabilities, or if the protoplanetary disc is undergoing mass loss due to disc winds or photoevaporation. Motivated by this possibility, we explore the interaction between low mass planets and dusty protoplanetary discs with focus on disc-planet torques. We implement Lin & Youdin's newly developed, purely hydrodynamic model of dusty gas into the PLUTO code to simulate dusty protoplanetary discs with an embedded planet. We find that for imperfectly coupled dust and high metallicity, e.g. Stokes number 10-3 and dust-to-gas ratio Σd/Σg = 0.5, a `bubble' develops inside the planet's co-orbital region, which introduces unsteadiness in the flow. The resulting disc-planet torques sustain large amplitude oscillations that persists well beyond that in simulations with perfectly coupled dust or low dust-loading, where co-rotation torques are always damped. We show that the desaturation of the co-rotation torques by finite-sized particles is related to potential vorticity generation from the misalignment of dust and gas densities. We briefly discuss possible implications for the orbital evolution of protoplanets in dust-rich discs. We also demonstrate Lin & Youdin's dust-free framework reproduces previous results pertaining to dusty protoplanetary discs, including dust-trapping by pressure bumps, dust settling, and the streaming instability.

  8. Counter-rotating accretion discs

    NASA Astrophysics Data System (ADS)

    Dyda, S.; Lovelace, R. V. E.; Ustyugova, G. V.; Romanova, M. M.; Koldoba, A. V.

    2015-01-01

    Counter-rotating discs can arise from the accretion of a counter-rotating gas cloud on to the surface of an existing corotating disc or from the counter-rotating gas moving radially inwards to the outer edge of an existing disc. At the interface, the two components mix to produce gas or plasma with zero net angular momentum which tends to free-fall towards the disc centre. We discuss high-resolution axisymmetric hydrodynamic simulations of viscous counter-rotating discs for the cases where the two components are vertically separated and radially separated. The viscosity is described by an isotropic α-viscosity including all terms in the viscous stress tensor. For the vertically separated components, a shear layer forms between them and the middle part of this layer free-falls to the disc centre. The accretion rates are increased by factors of ˜102-104 over that for a conventional disc rotating in one direction with the same viscosity. The vertical width of the shear layer and the accretion rate are strongly dependent on the viscosity and the mass fraction of the counter-rotating gas. In the case of radially separated components where the inner disc corotates and the outer disc rotates in the opposite direction, a gap between the two components opens and closes quasi-periodically. The accretion rates are ≳25 times larger than those for a disc rotating in one direction with the same viscosity.

  9. Constraints on radial migration in spiral galaxies - II. Angular momentum distribution and preferential migration

    NASA Astrophysics Data System (ADS)

    Daniel, Kathryne J.; Wyse, Rosemary F. G.

    2018-05-01

    The orbital angular momentum of individual stars in galactic discs can be permanently changed through torques from transient spiral patterns. Interactions at the corotation resonance dominate these changes and have the further property of conserving orbital circularity. We derived in an earlier paper an analytic criterion that an unperturbed stellar orbit must satisfy in order for such an interaction to occur, i.e. for it to be in a trapped orbit around corotation. We here use this criterion in an investigation of how the efficiency of induced radial migration for a population of disc stars varies with the angular momentum distribution of that population. We frame our results in terms of the velocity dispersion of the population, this being an easier observable than is the angular momentum distribution. Specifically, we investigate how the fraction of stars in trapped orbits at corotation varies with the velocity dispersion of the population, for a system with an assumed flat rotation curve. Our analytic results agree with the finding from simulations that radial migration is less effective in populations with `hotter' kinematics. We further quantify the dependence of this trapped fraction on the strength of the spiral pattern, finding a higher trapped fraction for higher amplitude perturbations.

  10. Trapping of low-mass planets outside the truncated inner edges of protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Miranda, Ryan; Lai, Dong

    2018-02-01

    We investigate the migration of a low-mass (≲10 M⊕) planet near the inner edge of a protoplanetary disc using two-dimensional viscous hydrodynamics simulations. We employ an inner boundary condition representing the truncation of the disc at the stellar corotation radius. As described by Tsang, wave reflection at the inner disc boundary modifies the Type I migration torque on the planet, allowing migration to be halted before the planet reaches the inner edge of the disc. For low-viscosity discs (α ≲ 10-3), planets may be trapped with semi-major axes as large as three to five times the inner disc radius. In general, planets are trapped closer to the inner edge as either the planet mass or the disc viscosity parameter α increases, and farther from the inner edge as the disc thickness is increased. This planet trapping mechanism may impact the formation and migration history of close-in compact multiplanet systems.

  11. Radial migration in numerical simulations of Milky-Way sized galaxies

    NASA Astrophysics Data System (ADS)

    Grand, R. J. J.; Kawata, D.

    2016-09-01

    We show that in ßrm N-body simulations of isolated spiral discs, spiral arms appear to transient, recurring features that co-rotate with the stellar disc stars at all radii. As a consequence, stars around the spiral arm continually feel a tangential force from the spiral and gain/lose angular momentum at all radii where spiral structure exists, without gaining significant amounts of random energy. We demonstrate that the ubiquitous radial migration in these simulations can be seen as outward (inward) systematic streaming motions along the trailing (leading) side of the spiral arms. We characterise these spiral induced peculiar motions and compare with those of the Milky Way obtained from APOGEE red clump data. We find that transient, co-rotating spiral arms are consistent with the data, in contrast with density wave-like spirals which are qualitatively inconsistent. In addition, we show that, in our simulations, radial migration does not change the radial metallicity gradient significantly, and broadens the metallicity distribution function at all radii, similar to some previous studies.

  12. VizieR Online Data Catalog: Li enrichment histories of the thick/thin disc (Fu+, 2018)

    NASA Astrophysics Data System (ADS)

    Fu, X.; Romano, D.; Bragaglia, A.; Mucciarelli, A.; Lind, K.; Delgado Mena, E.; Sousa, S. G.; Randich, S.; Bressan, A.; Sbordone, L.; Martell, S.; Korn, A. J.; Abia, C.; Smiljanic, R.; Jofre, P.; Pancino, E.; Tautvaisiene, G.; Tang, B.; Lanzafame, A. C.; Magrini, L.; Carraro, G.; Bensby, T.; Damiani, F.; Alfaro, E. J.; Flaccomio, E.; Morbidelli, L.; Zaggia, S.; Lardo, C.; Monaco, L.; Frasca, A.; Donati, P.; Drazdauskas, A.; Chorniy, Y.; Bayo, A.; Kordopatis, G.

    2017-11-01

    To investigate the Galactic lithium enrichment history we se- lect well-measured main sequence field stars with UVES spectra from the GES iDR4 catalogue. In our selection, 1884 UVES stars are marked as field stars, including those of the Galactic disc and halo designated as MW (GEMW) fields, standard CoRoT (GES D_CR) field, standard radial velocity (GES DRV) field, and stars to the Galactic Bulge direction (GEMWBL). (1 data file).

  13. Kelvin-Helmholtz instability of counter-rotating discs

    NASA Astrophysics Data System (ADS)

    Quach, Dan; Dyda, Sergei; Lovelace, Richard V. E.

    2015-01-01

    Observations of galaxies and models of accreting systems point to the occurrence of counter-rotating discs where the inner part of the disc (r < r0) is corotating and the outer part is counter-rotating. This work analyses the linear stability of radially separated co- and counter-rotating thin discs. The strong instability found is the supersonic Kelvin-Helmholtz instability. The growth rates are of the order of or larger than the angular rotation rate at the interface. The instability is absent if there is no vertical dependence of the perturbation. That is, the instability is essentially three dimensional. The non-linear evolution of the instability is predicted to lead to a mixing of the two components, strong heating of the mixed gas, and vertical expansion of the gas, and annihilation of the angular momenta of the two components. As a result, the heated gas will free-fall towards the disc's centre over the surface of the inner disc.

  14. Accretion of clumpy cold gas onto massive black hole binaries: the challenging formation of extended circumbinary structures

    NASA Astrophysics Data System (ADS)

    Maureira-Fredes, Cristián; Goicovic, Felipe G.; Amaro-Seoane, Pau; Sesana, Alberto

    2018-05-01

    Massive black hole binaries (MBHBs) represent an unavoidable outcome of hierarchical galaxy formation, but their dynamical evolution at sub-parsec scales is poorly understood. In gas rich environments, an extended, steady circumbinary gaseous disc could play an important role in the MBHB evolution, facilitating its coalescence. However, how gas on galactic scales is transported to the nuclear region to form and maintain such a stable structure is unclear. In the aftermath of a galaxy merger, cold turbulent gas condenses into clumps and filaments that can be randomly scattered towards the nucleus. This provides a natural way of feeding the binary with intermittent pockets of gas. The aim of this work is to investigate the gaseous structures arising from this interaction. We employ a suite of smoothed-particle-hydrodynamic simulations to study the influence of the infall rate and angular momentum distribution of the incoming clouds on the formation and evolution of structures around the MBHB. We find that the continuous supply of discrete clouds is a double-edge sword, resulting in intermittent formation and disruption of circumbinary structures. Anisotropic cloud distributions featuring an excess of co-rotating events generate more prominent co-rotating circumbinary discs. Similar structures are seen when mostly counter-rotating clouds are fed to the binary, even though they are more compact and less stable. In general, our simulations do not show the formation of extended smooth and stable circumbinary discs, typically assumed in analytical and numerical investigations of the the long term evolution of MBHBs.

  15. Impact of Cosmological Satellites on Stellar Discs: Dissecting One Satellite at a Time

    NASA Astrophysics Data System (ADS)

    Hu, Shaoran; Sijacki, Debora

    2018-05-01

    Within the standard hierarchical structure formation scenario, Milky Way-mass dark matter haloes have hundreds of dark matter subhaloes with mass ≳ 108 M⊙. Over the lifetime of a galactic disc a fraction of these may pass close to the central region and interact with the disc. We extract the properties of subhaloes, such as their mass and trajectories, from a realistic cosmological simulation to study their potential effect on stellar discs. We find that massive subhalo impacts can generate disc heating, rings, bars, warps, lopsidedness as wells as spiral structures in the disc. Specifically, strong counter-rotating single-armed spiral structures form each time a massive subhalo passes through the disc. Such single-armed spirals wind up relatively quickly (over 1 - 2 Gyrs) and are generally followed by co-rotating two-armed spiral structures that both develop and wind up more slowly. In our simulations self-gravity in the disc is not very strong and these spiral structures are found to be kinematic density waves. We demonstrate that there is a clear link between each spiral mode in the disc and a given subhalo that caused it, and by changing the mass of the subhalo we can modulate the strength of the spirals. Furthermore, we find that the majority of subhaloes interact with the disc impulsively, such that the strength of spirals generated by subhaloes is proportional to the total torque they exert. We conclude that only a handful of encounters with massive subhaloes is sufficient for re-generating and sustaining spiral structures in discs over their entire lifetime.

  16. Simulating a slow bar in the low surface brightness galaxy UGC 628

    NASA Astrophysics Data System (ADS)

    Chequers, Matthew H.; Spekkens, Kristine; Widrow, Lawrence M.; Gilhuly, Colleen

    2016-12-01

    We present a disc-halo N-body model of the low surface brightness galaxy UGC 628, one of the few systems that harbours a `slow' bar with a ratio of corotation radius to bar length of R ≡ R_c/a_b ˜ 2. We select our initial conditions using SDSS DR10 photometry, a physically motivated radially variable mass-to-light ratio profile, and rotation curve data from the literature. A global bar instability grows in our submaximal disc model, and the disc morphology and dynamics agree broadly with the photometry and kinematics of UGC 628 at times between peak bar strength and the onset of buckling. Prior to bar formation, the disc and halo contribute roughly equally to the potential in the galaxy's inner region, giving the disc enough self-gravity for bar modes to grow. After bar formation, there is significant mass redistribution, creating a baryon-dominated inner and dark matter-dominated outer disc. This implies that, unlike most other low surface brightness galaxies, UGC 628 is not dark matter dominated everywhere. Our model nonetheless implies that UGC 628 falls on the same relationship between dark matter fraction and rotation velocity found for high surface brightness galaxies, and lends credence to the argument that the disc mass fraction measured at the location where its contribution to the potential peaks is not a reliable indicator of its dynamical importance at all radii.

  17. Fluid flow and convective transport of solutes within the intervertebral disc.

    PubMed

    Ferguson, Stephen J; Ito, Keita; Nolte, Lutz P

    2004-02-01

    Previous experimental and analytical studies of solute transport in the intervertebral disc have demonstrated that for small molecules diffusive transport alone fulfils the nutritional needs of disc cells. It has been often suggested that fluid flow into and within the disc may enhance the transport of larger molecules. The goal of the study was to predict the influence of load-induced interstitial fluid flow on mass transport in the intervertebral disc. An iterative procedure was used to predict the convective transport of physiologically relevant molecules within the disc. An axisymmetric, poroelastic finite-element structural model of the disc was developed. The diurnal loading was divided into discrete time steps. At each time step, the fluid flow within the disc due to compression or swelling was calculated. A sequentially coupled diffusion/convection model was then employed to calculate solute transport, with a constant concentration of solute being provided at the vascularised endplates and outer annulus. Loading was simulated for a complete diurnal cycle, and the relative convective and diffusive transport was compared for solutes with molecular weights ranging from 400 Da to 40 kDa. Consistent with previous studies, fluid flow did not enhance the transport of low-weight solutes. During swelling, interstitial fluid flow increased the unidirectional penetration of large solutes by approximately 100%. Due to the bi-directional temporal nature of disc loading, however, the net effect of convective transport over a full diurnal cycle was more limited (30% increase). Further study is required to determine the significance of large solutes and the timing of their delivery for disc physiology.

  18. Slow deformation of intervertebral discs.

    PubMed

    Broberg, K B

    1993-01-01

    Intervertebral discs exhibit pronounced time-dependent deformations when subjected to load variations. These deformations are caused by fluid flow to and from the disc and by viscoelastic deformation of annulus fibres. The fluid flow is caused by differences between mechanical and osmotic pressure. A mechanical model of lumbar disc functions allows one to calculate both the extent of fluid flow and its implications for disc height as well as the role played by viscoelastic deformation of annulus fibres. From such calculations changes in body height are estimated. Experimental results already documented in the literature offer bases for the determination of the parameters involved. Body height variations are studied, both those related to normal diurnal rhythmicity and those related to somewhat exceptional circumstances. The normal diurnal fluid flow is found to be about +/- 40% of the disc fluid content late in the evening. Viscoelastic deformation of annulus fibres contributes approximately one quarter of the height change obtained after several hours normal activity, but dominates during the first hour.

  19. Collective dynamics of large aspect ratio dusty plasma in an inhomogeneous plasma background: Formation of the co-rotating vortex series

    NASA Astrophysics Data System (ADS)

    Choudhary, Mangilal; Mukherjee, S.; Bandyopadhyay, P.

    2018-02-01

    In this paper, the collective dynamics of large aspect ratio dusty plasma is studied over a wide range of discharge parameters. An inductively coupled diffused plasma, which creates an electrostatic trap to confine the negatively charged grains, is used to form a large volume (or large aspect ratio) dusty plasma at low pressure. For introducing the dust grains into the potential well, a unique technique using secondary DC glow discharge plasma is employed. The dust dynamics is recorded in a two-dimension (2D) plane at a given axial location. The dust fluid exhibits wave-like behavior at low pressure (p < 0.06 mbar) and high rf power (P > 3 W). The mixed motion, waves and vortices, is observed at an intermediate gas pressure (p ˜ 0.08 mbar) and low power (P < 3 W). Above the threshold value of gas pressure (p > 0.1 mbar), the clockwise and anti-clockwise co-rotating vortex series are observed on edges of the dust cloud, whereas the particles in the central region show random motion. These vortices are only observed above the threshold width of the dust cloud. The occurrence of the co-rotating vortices is understood on the basis of the charge gradient of dust particles, which is orthogonal to the gravity. The charge gradient is a consequence of the plasma inhomogeneity from the central region to the outer edge of the dust fluid. Since a vortex has the characteristic size in the dissipative medium; therefore, a series of the co-rotating vortex on both sides of dusty plasma is observed. The experimental results on the vortex formation and its multiplicity are compared to an available theoretical model and are found to be in close agreement.

  20. Viscous driving of global oscillations in accretion discs around black holes

    NASA Astrophysics Data System (ADS)

    Miranda, Ryan; Horák, Jiří; Lai, Dong

    2015-01-01

    We examine the role played by viscosity in the excitation of global oscillation modes (both axisymmetric and non-axisymmetric) in accretion discs around black holes using two-dimensional hydrodynamic simulations. The turbulent viscosity is modelled by the α-ansatz, with different equations of state. We consider both discs with transonic radial inflows across the innermost stable circular orbit, and stationary discs truncated by a reflecting wall at their inner edge, representing a magnetosphere. In transonic discs, viscosity can excite several types of global oscillation modes. These modes are either axisymmetric with frequencies close to multiples of the maximum radial epicyclic frequency κmax, non-axisymmetric with frequencies close to multiples of the innermost stable orbit frequency ΩISCO, or hybrid modes whose frequencies are linear combinations of these two frequencies. Small values of the viscosity parameter α primarily produce non-axisymmetric modes, while axisymmetric modes become dominant for large α. The excitation of these modes may be related to an instability of the sonic point, at which the radial infall speed is equal to the sound speed of the gas. In discs with a reflective inner boundary, we explore the effect of viscosity on trapped p modes which are intrinsically overstable due to the corotation resonance effect. The effect of viscosity is either to reduce the growth rates of these modes, or to completely suppress them and excite a new class of higher frequency modes. The latter requires that the dynamic viscosity scales positively with the disc surface density, indicating that it is a result of the classic viscous overstability effect.

  1. Slit-lamp technique of draining interface fluid following Descemet's stripping endothelial keratoplasty.

    PubMed

    Srinivasan, Sathish; Rootman, David S

    2007-09-01

    To describe a new slit-lamp technique for draining interface fluid to manage complete donor disc detachments following Descemet's stripping (automated) endothelial keratoplasty (DSEK/DSAEK). Interventional case series. Five DSEK/DSAEK patients presented on the first postoperative day with complete detachment of the donor lenticule. Slit-lamp biomicroscopy showed interface fluid preventing attachment of the donor disc to the host stromal bed. A new slit-lamp technique is described to drain the interface fluid. This technique involved completely filling the anterior chamber with an air bubble using a 30-gauge needle on a 3 ml syringe. Following this, a 0.12 forceps was used to open the inferior mid-peripheral corneal drainage slit to drain the interface fluid. This technique was successful in draining the interface fluid in all five patients, leading to immediate complete reattachment of the donor disc. Donor disc detachments following DSEK/DSAEK can be successfully managed by this slit-lamp technique of draining the interface fluid.

  2. Design and simulation of a new bidirectional actuator for haptic systems featuring MR fluid

    NASA Astrophysics Data System (ADS)

    Hung, Nguyen Quoc; Tri, Diep Bao; Cuong, Vo Van; Choi, Seung-Bok

    2017-04-01

    In this research, a new configuration of bidirectional actuator featuring MR fluid (BMRA) is proposed for haptic application. The proposed BMRA consists of a driving disc, a driving housing and a driven disc. The driving disc is placed inside the driving housing and rotates counter to each other by a servo DC motor and a bevel gear system. The driven shaft is also placed inside the housing and next to the driving disc. The gap between the two disc and the gap between the discs and the housing are filled with MR fluid. On the driven disc, two mutual magnetic coils are placed. By applying currents to the two coils mutually, the torque at the output shaft, which is fixed to the driven disc, can be controlled with positive, zero or negative value. This make the actuator be suitable for haptic application. After a review of MR fluid and its application, configuration of the proposed BMRA is presented. The modeling of the actuator is then derived based on Bingham rheological model of MRF and magnetic finite element analysis (FEA). The optimal design of the actuator is then performed to minimize the mass of the BMRA. From the optimal design result, performance characteristics of the actuator is simulated and detailed design of a prototype actuator is conducted.

  3. Orbital tori for non-axisymmetric galaxies

    NASA Astrophysics Data System (ADS)

    Binney, James

    2018-02-01

    Our Galaxy's bar makes the Galaxy's potential distinctly non-axisymmetric. All orbits are affected by non-axisymmetry, and significant numbers are qualitatively changed by being trapped at a resonance with the bar. Orbital tori are used to compute these effects. Thick-disc orbits are no less likely to be trapped by corotation or a Lindblad resonance than thin-disc orbits. Perturbation theory is used to create non-axisymmetric orbital tori from standard axisymmetric tori, and both trapped and untrapped orbits are recovered to surprising accuracy. Code is added to the TorusModeller library that makes it as easy to manipulate non-axisymmetric tori as axisymmetric ones. The augmented TorusModeller is used to compute the velocity structure of the solar neighbourhood for bars of different pattern speeds and a simple action-based distribution function. The technique developed here can be applied to any non-axisymmetric potential that is stationary in a rotating from - hence also to classical spiral structure.

  4. System and method for continuous solids slurry depressurization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leininger, Thomas Frederick; Steele, Raymond Douglas; Yen, Hsien-Chin William

    A continuous slag processing system includes a rotating parallel disc pump, coupled to a motor and a brake. The rotating parallel disc pump includes opposing discs coupled to a shaft, an outlet configured to continuously receive a fluid at a first pressure, and an inlet configured to continuously discharge the fluid at a second pressure less than the first pressure. The rotating parallel disc pump is configurable in a reverse-acting pump mode and a letdown turbine mode. The motor is configured to drive the opposing discs about the shaft and against a flow of the fluid to control a differencemore » between the first pressure and the second pressure in the reverse-acting pump mode. The brake is configured to resist rotation of the opposing discs about the shaft to control the difference between the first pressure and the second pressure in the letdown turbine mode.« less

  5. Stream dynamics between 1 AU and 2 AU: A detailed comparison of observations and theory

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Pizzo, V.; Lazarus, A.; Gazis, P. R.

    1984-01-01

    A radial alignment of three solar wind stream structures observed by IMP-7 and -8 (at 1.0 AU) and Voyager 1 and 2 (in the range 1.4 to 1.8 AU) in late 1977 is presented. It is demonstrated that several important aspects of the observed dynamical evolution can be both qualitatively and quantitatively described with a single-fluid 2-D MHD numerical model of quasi-steady corotating flow, including accurate prediction of: (1) the formation of a corotating shock pair at 1.75 AU in the case of a simple, quasi-steady stream; (2) the coalescence of the thermodynamic and magnetic structures associated with the compression regions of two neighboring, interacting, corotating streams; and (3) the dynamical destruction of a small (i.e., low velocity-amplitude, short spatial-scale) stream by its overtaking of a slower moving, high-density region associated with a preceding transient flow. The evolution of these flow systems is discussed in terms of the concepts of filtering and entrainment.

  6. The ATLAS3D project - XXVI. H I discs in real and simulated fast and slow rotators

    NASA Astrophysics Data System (ADS)

    Serra, Paolo; Oser, Ludwig; Krajnović, Davor; Naab, Thorsten; Oosterloo, Tom; Morganti, Raffaella; Cappellari, Michele; Emsellem, Eric; Young, Lisa M.; Blitz, Leo; Davis, Timothy A.; Duc, Pierre-Alain; Hirschmann, Michaela; Weijmans, Anne-Marie; Alatalo, Katherine; Bayet, Estelle; Bois, Maxime; Bournaud, Frédéric; Bureau, Martin; Crocker, Alison F.; Davies, Roger L.; de Zeeuw, P. T.; Khochfar, Sadegh; Kuntschner, Harald; Lablanche, Pierre-Yves; McDermid, Richard M.; Sarzi, Marc; Scott, Nicholas

    2014-11-01

    One quarter of all nearby early-type galaxies (ETGs) outside Virgo host a disc/ring of H I with size from a few to tens of kpc and mass up to ˜109 M⊙. Here we investigate whether this H I is related to the presence of a stellar disc within the host making use of the classification of ETGs in fast and slow rotators (FR/SR). We find a large diversity of H I masses and morphologies within both families. Surprisingly, SRs are detected as often, host as much H I and have a similar rate of H I discs/rings as FRs. Accretion of H I is therefore not always linked to the growth of an inner stellar disc. The weak relation between H I and stellar disc is confirmed by their frequent kinematical misalignment in FRs, including cases of polar and counterrotating gas. In SRs the H I is usually polar. This complex picture highlights a diversity of ETG formation histories which may be lost in the relative simplicity of their inner structure and emerges when studying their outer regions. We find that Λ CDM hydrodynamical simulations have difficulties reproducing the H I properties of ETGs. The gas discs formed in simulations are either too massive or too small depending on the star formation feedback implementation. Kinematical misalignments match the observations only qualitatively. The main point of conflict is that nearly all simulated FRs and a large fraction of all simulated SRs host corotating H I. This establishes the H I properties of ETGs as a novel challenge to simulations.

  7. Value for controlling flow of cryogenic fluid

    DOEpatents

    Knapp, Philip A.

    1996-01-01

    A valve is provided for accurately controlling the flow of cryogenic fluids such as liquid nitrogen. The valve comprises a combination of disc and needle valves affixed to a valve stem in such a manner that the disc and needle are free to rotate about the stem, but are constrained in lateral and vertical movements. This arrangement provides accurate and precise fluid flow control and positive fluid isolation.

  8. Normal stress differences from Oldroyd 8-constant framework: Exact analytical solution for large-amplitude oscillatory shear flow

    NASA Astrophysics Data System (ADS)

    Saengow, C.; Giacomin, A. J.

    2017-12-01

    The Oldroyd 8-constant framework for continuum constitutive theory contains a rich diversity of popular special cases for polymeric liquids. In this paper, we use part of our exact solution for shear stress to arrive at unique exact analytical solutions for the normal stress difference responses to large-amplitude oscillatory shear (LAOS) flow. The nonlinearity of the polymeric liquids, triggered by LAOS, causes these responses at even multiples of the test frequency. We call responses at a frequency higher than twice the test frequency higher harmonics. We find the new exact analytical solutions to be compact and intrinsically beautiful. These solutions reduce to those of our previous work on the special case of the corotational Maxwell fluid. Our solutions also agree with our new truncated Goddard integral expansion for the special case of the corotational Jeffreys fluid. The limiting behaviors of these exact solutions also yield new explicit expressions. Finally, we use our exact solutions to see how η∞ affects the normal stress differences in LAOS.

  9. Mechanistic modeling of modular co-rotating twin-screw extruders.

    PubMed

    Eitzlmayr, Andreas; Koscher, Gerold; Reynolds, Gavin; Huang, Zhenyu; Booth, Jonathan; Shering, Philip; Khinast, Johannes

    2014-10-20

    In this study, we present a one-dimensional (1D) model of the metering zone of a modular, co-rotating twin-screw extruder for pharmaceutical hot melt extrusion (HME). The model accounts for filling ratio, pressure, melt temperature in screw channels and gaps, driving power, torque and the residence time distribution (RTD). It requires two empirical parameters for each screw element to be determined experimentally or numerically using computational fluid dynamics (CFD). The required Nusselt correlation for the heat transfer to the barrel was determined from experimental data. We present results for a fluid with a constant viscosity in comparison to literature data obtained from CFD simulations. Moreover, we show how to incorporate the rheology of a typical, non-Newtonian polymer melt, and present results in comparison to measurements. For both cases, we achieved excellent agreement. Furthermore, we present results for the RTD, based on experimental data from the literature, and found good agreement with simulations, in which the entire HME process was approximated with the metering model, assuming a constant viscosity for the polymer melt. Copyright © 2014. Published by Elsevier B.V.

  10. The Hercules stream as seen by APOGEE-2 South

    NASA Astrophysics Data System (ADS)

    Hunt, Jason A. S.; Bovy, Jo; Pérez-Villegas, Angeles; Holtzman, Jon A.; Sobeck, Jennifer; Chojnowski, Drew; Santana, Felipe A.; Palicio, Pedro A.; Wegg, Christopher; Gerhard, Ortwin; Almeida, Andrés; Bizyaev, Dmitry; Fernandez-Trincado, Jose G.; Lane, Richard R.; Longa-Peña, Penélope; Majewski, Steven R.; Pan, Kaike; Roman-Lopes, Alexandre

    2018-02-01

    The Hercules stream is a group of comoving stars in the solar neighbourhood, which can potentially be explained as a signature of either the outer Lindblad resonance (OLR) of a fast Galactic bar or the corotation resonance (CR) of a slower bar. In either case, the feature should be present over a large area of the disc. With the recent commissioning of the APOGEE-2 Southern spectrograph we can search for the Hercules stream at (l, b) = (270°, 0), a direction in which the Hercules stream, if caused by the bar's OLR, would be strong enough to be detected using only the line-of-sight velocities. We clearly detect a narrow, Hercules-like feature in the data that can be traced from the solar neighbourhood to a distance of about 4 kpc. The detected feature matches well the line-of-sight velocity distribution from the fast-bar (OLR) model. Confronting the data with a model where the Hercules stream is caused by the CR of a slower bar leads to a poorer match, as the corotation model does not predict clearly separated modes, possibly because the slow-bar model is too hot.

  11. Bifurcation and response analysis of a nonlinear flexible rotating disc immersed in bounded compressible fluid

    NASA Astrophysics Data System (ADS)

    Remigius, W. Dheelibun; Sarkar, Sunetra; Gupta, Sayan

    2017-03-01

    Use of heavy gases in centrifugal compressors for enhanced oil extraction have made the impellers susceptible to failures through acousto-elastic instabilities. This study focusses on understanding the dynamical behavior of such systems by considering the effects of the bounded fluid housed in a casing on a rotating disc. First, a mathematical model is developed that incorporates the interaction between the rotating impeller - modelled as a flexible disc - and the bounded compressible fluid medium in which it is immersed. The nonlinear effects arising due to large deformations of the disc have been included in the formulation so as to capture the post flutter behavior. A bifurcation analysis is carried out with the disc rotational speed as the bifurcation parameter to investigate the dynamical behavior of the coupled system and estimate the stability boundaries. Parametric studies reveal that the relative strengths of the various dissipation mechanisms in the coupled system play a significant role that affect the bifurcation route and the post flutter behavior in the acousto-elastic system.

  12. Computational Fluid Dynamics (CFD) investigation onto passenger car disk brake design

    NASA Astrophysics Data System (ADS)

    Munisamy, Kannan M.; Kanasan Moorthy, Shangkari K.

    2013-06-01

    The aim of this study is to investigate the flow and heat transfer in ventilated disc brakes using Computational Fluid Dynamics (CFD). NACA Series blade is designed for ventilated disc brake and the cooling characteristic is compared to the baseline design. The ventilated disc brakes are simulated using commercial CFD software FLUENTTM using simulation configuration that was obtained from experiment data. The NACA Series blade design shows improvements in Nusselt number compared to baseline design.

  13. Development of collagen fibers and vasculature of the fetal TMJ.

    PubMed

    Yang, L; Wang, H; Wang, M; Ohta, Y; Suwa, F

    1992-10-01

    Using 12 human fetuses, histological development and changes in connective fiber structure and fine vascular patterns have been investigated in various fetal gestational stages by light and scanning electron microscopy. The main arterial supply of the articular disc was from the bilaminar region and pterygoideus lateralis muscle. The vascular network on the disc surface was related with fluid secretion. When the bilaminar region was compressed, it caused ischemia and fibrosis as the main pathological changes in TMJ derangement. A decrease in fluid from blood vessels might occur in TMJ degeneration. Collagen fibers in the disc passed mainly anteroposteriorly. In the anterior and posterior bands, muscular tendon fibers came from the pterygoideus lateralis muscle and superior stratum of the bilaminar region. In the posterior band three-dimensional structures of collagen fibers suitable for load bearing were observed. The compass network and process on the disc showed the normal structure that is formed gradually and has functions including dispersion, pressure bearing, friction-proofing and storage of the synovial fluid. Attachments of the disc were suitable for disc function. Large elastic fibers in the posterolateral part of the superior stratum of the bilaminar region may be antagonistic to the upper head of the pterygoideus lateralis muscle fibers passing medioanteriorly, indicating that this antagonism is available for disc function.

  14. Exact solutions for oscillatory shear sweep behaviors of complex fluids from the Oldroyd 8-constant framework

    NASA Astrophysics Data System (ADS)

    Saengow, Chaimongkol; Giacomin, A. Jeffrey

    2018-03-01

    In this paper, we provide a new exact framework for analyzing the most commonly measured behaviors in large-amplitude oscillatory shear flow (LAOS), a popular flow for studying the nonlinear physics of complex fluids. Specifically, the strain rate sweep (also called the strain sweep) is used routinely to identify the onset of nonlinearity. By the strain rate sweep, we mean a sequence of LAOS experiments conducted at the same frequency, performed one after another, with increasing shear rate amplitude. In this paper, we give exact expressions for the nonlinear complex viscosity and the corresponding nonlinear complex normal stress coefficients, for the Oldroyd 8-constant framework for oscillatory shear sweeps. We choose the Oldroyd 8-constant framework for its rich diversity of popular special cases (we list 18 of these). We evaluate the Fourier integrals of our previous exact solution to get exact expressions for the real and imaginary parts of the complex viscosity, and for the complex normal stress coefficients, as functions of both test frequency and shear rate amplitude. We explore the role of infinite shear rate viscosity on strain rate sweep responses for the special case of the corotational Jeffreys fluid. We find that raising η∞ raises the real part of the complex viscosity and lowers the imaginary. In our worked examples, we thus first use the corotational Jeffreys fluid, and then, for greater accuracy, we use the Johnson-Segalman fluid, to describe the strain rate sweep response of molten atactic polystyrene. For our comparisons with data, we use the Spriggs relations to generalize the Oldroyd 8-constant framework to multimode. Our generalization yields unequivocally, a longest fluid relaxation time, used to assign Weissenberg and Deborah numbers to each oscillatory shear flow experiment. We then locate each experiment in the Pipkin space.

  15. Turbine disc sealing assembly

    DOEpatents

    Diakunchak, Ihor S.

    2013-03-05

    A disc seal assembly for use in a turbine engine. The disc seal assembly includes a plurality of outwardly extending sealing flange members that define a plurality of fluid pockets. The sealing flange members define a labyrinth flow path therebetween to limit leakage between a hot gas path and a disc cavity in the turbine engine.

  16. Two-dimensional adiabatic flows on to a black hole - I. Fluid accretion

    NASA Astrophysics Data System (ADS)

    Blandford, Roger D.; Begelman, Mitchell C.

    2004-03-01

    When gas accretes on to a black hole, at a rate either much less than or much greater than the Eddington rate, it is likely to do so in an `adiabatic' or radiatively inefficient manner. Under fluid (as opposed to magnetohydrodynamic) conditions, the disc should become convective and evolve toward a state of marginal instability. We model the resulting disc structure as `gyrentropic', with convection proceeding along common surfaces of constant angular momentum, Bernouilli function and entropy, called `gyrentropes'. We present a family of two-dimensional, self-similar models that describes the time-averaged disc structure. We then suppose that there is a self-similar, Newtonian torque, which dominates the angular momentum transport and that the Prandtl number is large so that convection dominates the heat transport. The torque drives inflow and meridional circulation and the resulting flow is computed. Convective transport will become ineffectual near the disc surface. It is conjectured that this will lead to a large increase of entropy across a `thermal front', which we identify as the effective disc surface and the base of an outflow. The conservation of mass, momentum and energy across this thermal front permits a matching of the disc models to self-similar outflow solutions. We then demonstrate that self-similar disc solutions can be matched smoothly on to relativistic flows at small radius and thin discs at large radius. This model of adiabatic accretion is contrasted with some alternative models that have been discussed recently. The disc models developed in this paper should be useful for interpreting numerical, fluid dynamical simulations. Related principles to those described here may govern the behaviour of astrophysically relevant, magnetohydrodynamic disc models.

  17. An affine model of the dynamics of astrophysical discs

    NASA Astrophysics Data System (ADS)

    Ogilvie, Gordon I.

    2018-06-01

    Thin astrophysical discs are very often modelled using the equations of 2D hydrodynamics. We derive an extension of this model that describes more accurately the behaviour of a thin disc in the absence of self-gravity, magnetic fields, and complex internal motions. The ideal fluid theory is derived directly from Hamilton's Principle for a 3D fluid after making a specific approximation to the deformation gradient tensor. We express the equations in Eulerian form after projection on to a reference plane. The disc is thought of as a set of fluid columns, each of which is capable of a time-dependent affine transformation, consisting of a translation together with a linear transformation in three dimensions. Therefore, in addition to the usual 2D hydrodynamics in the reference plane, the theory allows for a deformation of the mid-plane (as occurs in warped discs) and for the internal shearing motions that accompany such deformations. It also allows for the vertical expansions driven in non-circular discs by a variation of the vertical gravitational field around the horizontal streamlines, or by a divergence of the horizontal velocity. The equations of the affine model embody conservation laws for energy and potential vorticity, even for non-planar discs. We verify that they reproduce exactly the linear theories of 3D warped and eccentric discs in a secular approximation. However, the affine model does not rely on any secular or small-amplitude assumptions and should be useful in more general circumstances.

  18. PATHOGENESIS OF OPTIC DISC EDEMA IN RAISED INTRACRANIAL PRESSURE

    PubMed Central

    Hayreh, Sohan Singh

    2015-01-01

    Optic disc edema in raised intracranial pressure was first described in 1853. Ever since, there has been a plethora of controversial hypotheses to explain its pathogenesis. I have explored the subject comprehensively by doing basic, experimental and clinical studies. My objective was to investigate the fundamentals of the subject, to test the validity of the previous theories, and finally, based on all these studies, to find a logical explanation for the pathogenesis. My studies included the following issues pertinent to the pathogenesis of optic disc edema in raised intracranial pressure: the anatomy and blood supply of the optic nerve, the roles of the sheath of the optic nerve, of the centripetal flow of fluids along the optic nerve, of compression of the central retinal vein, and of acute intracranial hypertension and its associated effects. I found that, contrary to some previous claims, an acute rise of intracranial pressure was not quickly followed by production of optic disc edema. Then, in rhesus monkeys, I produced experimentally chronic intracranial hypertension by slowly increasing in size space-occupying lesions, in different parts of the brain. Those produced raised cerebrospinal fluid pressure (CSFP) and optic disc edema, identical to those seen in patients with elevated CSFP. Having achieved that, I investigated various aspects of optic disc edema by ophthalmoscopy, stereoscopic color fundus photography and fluorescein fundus angiography, and light microscopic, electron microscopic, horseradish peroxidase and axoplasmic transport studies, and evaluated the effect of opening the sheath of the optic nerve on the optic disc edema. This latter study showed that opening the sheath resulted in resolution of optic disc edema on the side of the sheath fenestration, in spite of high intracranial CSFP, proving that a rise of CSFP in the sheath was the essential pre-requisite for the development of optic disc edema. I also investigated optic disc edema with raised CSFP in patients, by evaluating optic disc and fundus changes by stereoscopic fundus photography and fluorescein fundus angiography. Based on the combined information from all the studies discussed above, it is clear that the pathogenesis of optic disc edema in raised intracranial pressure is a mechanical phenomenon. It is primarily due to a rise of CSFP in the optic nerve sheath, which produces axoplasmic flow stasis in the optic nerve fibers in the surface nerve fiber layer and prelaminar region of the optic nerve head. Axoplasmic flow stasis then results in swelling of the nerve fibers, and consequently of the optic disc. Swelling of the nerve fibers and of the optic disc secondarily compresses the fine, low-pressure venules in that region, resulting in venous stasis and fluid leakage; that leads to the accumulation of extracellular fluid. Contrary to the previous theories, the various vascular changes seen in optic disc edema are secondary and not primary. Thus, optic disc edema in raised CSFP is due to a combination of swollen nerve fibers and the accumulation of extracellular fluid. My studies also provided information about the pathogeneses of visual disturbances in raised intracranial pressure. PMID:26453995

  19. Pathogenesis of optic disc edema in raised intracranial pressure.

    PubMed

    Hayreh, Sohan Singh

    2016-01-01

    Optic disc edema in raised intracranial pressure was first described in 1853. Ever since, there has been a plethora of controversial hypotheses to explain its pathogenesis. I have explored the subject comprehensively by doing basic, experimental and clinical studies. My objective was to investigate the fundamentals of the subject, to test the validity of the previous theories, and finally, based on all these studies, to find a logical explanation for the pathogenesis. My studies included the following issues pertinent to the pathogenesis of optic disc edema in raised intracranial pressure: the anatomy and blood supply of the optic nerve, the roles of the sheath of the optic nerve, of the centripetal flow of fluids along the optic nerve, of compression of the central retinal vein, and of acute intracranial hypertension and its associated effects. I found that, contrary to some previous claims, an acute rise of intracranial pressure was not quickly followed by production of optic disc edema. Then, in rhesus monkeys, I produced experimentally chronic intracranial hypertension by slowly increasing in size space-occupying lesions, in different parts of the brain. Those produced raised cerebrospinal fluid pressure (CSFP) and optic disc edema, identical to those seen in patients with elevated CSFP. Having achieved that, I investigated various aspects of optic disc edema by ophthalmoscopy, stereoscopic color fundus photography and fluorescein fundus angiography, and light microscopic, electron microscopic, horseradish peroxidase and axoplasmic transport studies, and evaluated the effect of opening the sheath of the optic nerve on the optic disc edema. This latter study showed that opening the sheath resulted in resolution of optic disc edema on the side of the sheath fenestration, in spite of high intracranial CSFP, proving that a rise of CSFP in the sheath was the essential pre-requisite for the development of optic disc edema. I also investigated optic disc edema with raised CSFP in patients, by evaluating optic disc and fundus changes by stereoscopic fundus photography and fluorescein fundus angiography. Based on the combined information from all the studies discussed above, it is clear that the pathogenesis of optic disc edema in raised intracranial pressure is a mechanical phenomenon. It is primarily due to a rise of CSFP in the optic nerve sheath, which produces axoplasmic flow stasis in the optic nerve fibers in the surface nerve fiber layer and prelaminar region of the optic nerve head. Axoplasmic flow stasis then results in swelling of the nerve fibers, and consequently of the optic disc. Swelling of the nerve fibers and of the optic disc secondarily compresses the fine, low-pressure venules in that region, resulting in venous stasis and fluid leakage; that leads to the accumulation of extracellular fluid. Contrary to the previous theories, the various vascular changes seen in optic disc edema are secondary and not primary. Thus, optic disc edema in raised CSFP is due to a combination of swollen nerve fibers and the accumulation of extracellular fluid. My studies also provided information about the pathogeneses of visual disturbances in raised intracranial pressure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. What makes the family of barred disc galaxies so rich: damping stellar bars in spinning haloes

    NASA Astrophysics Data System (ADS)

    Collier, Angela; Shlosman, Isaac; Heller, Clayton

    2018-05-01

    We model and analyse the secular evolution of stellar bars in spinning dark matter (DM) haloes with the cosmological spin λ ˜ 0-0.09. Using high-resolution stellar and DM numerical simulations, we focus on angular momentum exchange between stellar discs and DM haloes of various axisymmetric shapes - spherical, oblate, and prolate. We find that stellar bars experience a diverse evolution that is guided by the ability of parent haloes to absorb angular momentum, J, lost by the disc through the action of gravitational torques, resonant and non-resonant. We confirm that dynamical bar instability is accelerated via resonant J-transfer to the halo. Our main findings relate to the long-term secular evolution of disc-halo systems: with an increasing λ, bars experience less growth and basically dissolve after they pass through vertical buckling instability. Specifically, with increasing λ, (1) the vertical buckling instability in stellar bars colludes with inability of the inner halo to absorb J - this emerges as the main factor weakening or destroying bars in spinning haloes; (2) bars lose progressively less J, and their pattern speeds level off; (3) bars are smaller, and for λ ≳ 0.06 cease their growth completely following buckling; (4) bars in λ > 0.03 haloes have ratio of corotation-to-bar radii, RCR/Rb > 2, and represent so-called slow bars without offset dust lanes. We provide a quantitative analysis of J-transfer in disc-halo systems, and explain the reasons for absence of growth in fast spinning haloes and its observational corollaries. We conclude that stellar bar evolution is substantially more complex than anticipated, and bars are not as resilient as has been considered so far.

  1. A three-dimensional model of co-rotating streams in the solar wind. 2: Hydrodynamic streams

    NASA Technical Reports Server (NTRS)

    Pizzo, V. J.

    1979-01-01

    Theoretical aspects of corotating solar wind dynamics on a global scale are explored by means of numerical simulations executed with a nonlinear, inviscid, adiabatic, single-fluid, three-dimensional (3-D) hydrodynamic formulation. A simple, hypothetical 3-D stream structure is defined on a source surface located at 35 solar radius and carefully documents its evolution to 1 AU under the influence of solar rotation. By manipulating the structure of this prototype configuration at the source surface, it is possible to elucidate the factors most strongly affecting stream evolution: (1) the intrinsic correlations among density, temperature, and velocity existing near the source; (2) the amplitude of the stream; (3) the longitudinal breadth of the stream; (4) the latitudinal breadth of the stream; and (5) the heliographic latitude of the centroid of the stream.

  2. Free Falling in Stratified Fluids

    NASA Astrophysics Data System (ADS)

    Lam, Try; Vincent, Lionel; Kanso, Eva

    2017-11-01

    Leaves falling in air and discs falling in water are examples of unsteady descents due to complex interaction between gravitational and aerodynamic forces. Understanding these descent modes is relevant to many branches of engineering and science such as estimating the behavior of re-entry space vehicles to studying biomechanics of seed dispersion. For regularly shaped objects falling in homogenous fluids, the motion is relatively well understood. However, less is known about how density stratification of the fluid medium affects the falling behavior. Here, we experimentally investigate the descent of discs in both pure water and in stable linearly stratified fluids for Froude numbers Fr 1 and Reynolds numbers Re between 1000 -2000. We found that stable stratification (1) enhances the radial dispersion of the disc at landing, (2) increases the descent time, (3) decreases the inclination (or nutation) angle, and (4) decreases the fluttering amplitude while falling. We conclude by commenting on how the corresponding information can be used as a predictive model for objects free falling in stratified fluids.

  3. Existence of Corotating and Counter-Rotating Vortex Pairs for Active Scalar Equations

    NASA Astrophysics Data System (ADS)

    Hmidi, Taoufik; Mateu, Joan

    2017-03-01

    In this paper, we study the existence of corotating and counter-rotating pairs of simply connected patches for Euler equations and the {(SQG)_{α}} equations with {α in (0,1)}. From the numerical experiments implemented for Euler equations in Deem and Zabusky (Phys Rev Lett 40(13):859-862, 1978), Pierrehumbert (J Fluid Mech 99:129-144, 1980), Saffman and Szeto (Phys Fluids 23(12):2339-2342, 1980) it is conjectured the existence of a curve of steady vortex pairs passing through the point vortex pairs. There are some analytical proofs based on variational principle (Keady in J Aust Math Soc Ser B 26:487-502, 1985; Turkington in Nonlinear Anal Theory Methods Appl 9(4):351-369, 1985); however, they do not give enough information about the pairs, such as the uniqueness or the topological structure of each single vortex. We intend in this paper to give direct proofs confirming the numerical experiments and extend these results for the {(SQG)_{α}} equation when {α in (0,1)}. The proofs rely on the contour dynamics equations combined with a desingularization of the point vortex pairs and the application of the implicit function theorem.

  4. Estimation of bipolar jets from accretion discs around Kerr black holes

    NASA Astrophysics Data System (ADS)

    Kumar, Rajiv; Chattopadhyay, Indranil

    2017-08-01

    We analyse flows around a rotating black hole and obtain self-consistent accretion-ejection solutions in full general relativistic prescription. Entire energy-angular momentum parameter space is investigated in the advective regime to obtain shocked and shock-free accretion solutions. Jet equations of motion are solved along the von Zeipel surfaces computed from the post-shock disc, simultaneously with the equations of accretion disc along the equatorial plane. For a given spin parameter, the mass outflow rate increases as the shock moves closer to the black hole, but eventually decreases, maximizing at some intermediate value of shock location. Interestingly, we obtain all types of possible jet solutions, for example, steady shock solution with multiple critical points, bound solution with two critical points and smooth solution with single critical point. Multiple critical points may exist in jet solution for spin parameter as ≥ 0.5. The jet terminal speed generally increases if the accretion shock forms closer to the horizon and is higher for corotating black hole than the counter-rotating and the non-rotating one. Quantitatively speaking, shocks in jet may form for spin parameter as > 0.6 and jet shocks range between 6rg and 130rg above the equatorial plane, while the jet terminal speed vj∞ > 0.35 c if Bernoulli parameter E≥1.01 for as > 0.99.

  5. Gaseous isotope separation using solar wind phenomena.

    PubMed

    Wang, C G

    1980-12-01

    A large evacuated drum-like chamber fitted with supersonic nozzles in the center, with the chamber and the nozzles corotating, can separate gaseous fluids according to their molecular weights. The principle of separation is essentially the same as that of the solar wind propagation, in which components of the plasma fluid are separated due to their difference in the time-of-flight. The process can inherently be very efficient, serving as a pump as well as a separator, and producing well over 10(5) separative work units (kg/year) for the hydrogen/deuterium mixture at high-velocity flows.

  6. Application of the Bernoulli enthalpy concept to the study of vortex noise and jet impingement noise

    NASA Technical Reports Server (NTRS)

    Yates, J. E.

    1978-01-01

    A complete theory of aeroacoustics of homentropic fluid media is developed and compared with previous theories. The theory is applied to study the interaction of sound with vortex flows, for the DC-9 in a standard take-off configuration. The maximum engine-wake interference noise is estimated to be 3 or 4 db in the ground plane. It is shown that the noise produced by a corotating vortex pair departs significantly from the compact M scaling law for eddy Mach numbers (M) greater than 0.1. An estimate of jet impingement noise is given that is in qualitative agreement with experimental results. The increased noise results primarily from the nonuniform acceleration of turbulent eddies through the stagnation point flow. It is shown that the corotating vortex pair can be excited or de-excited by an externally applied sound field. The model is used to qualitatively explain experimental results on excited jets.

  7. Migration of accreting planets in radiative discs from dynamical torques

    NASA Astrophysics Data System (ADS)

    Pierens, A.; Raymond, S. N.

    2016-11-01

    We present the results of hydrodynamical simulations of the orbital evolution of planets undergoing runaway gas accretion in radiative discs. We consider accreting disc models with constant mass flux through the disc, and where radiative cooling balances the effect of viscous heating and stellar irradiation. We assume that 20-30 M⊕ giant planet cores are formed in the region where viscous heating dominates and migrate outward under the action of a strong entropy-related corotation torque. In the case where gas accretion is neglected and for an α viscous stress parameter α = 2 × 10-3, we find evidence for strong dynamical torques in accreting discs with accretion rates {dot{M}}≳ 7× 10^{-8} M_{⊙} yr{}^{-1}. Their main effect is to increase outward migration rates by a factor of ˜2 typically. In the presence of gas accretion, however, runaway outward migration is observed with the planet passing through the zero-torque radius and the transition between the viscous heating and stellar heating dominated regimes. The ability for an accreting planet to enter a fast migration regime is found to depend strongly on the planet growth rate, but can occur for values of the mass flux through the disc of {dot{M}}≳ 5× 10^{-8} M_{⊙} yr{}^{-1}. We find that an episode of runaway outward migration can cause an accreting planet formed in the 5-10 au region to temporarily orbit at star-planet separations as large as ˜60-70 au. However, increase in the amplitude of the Lindblad torque associated with planet growth plus change in the streamline topology near the planet systematically cause the direction of migration to be reversed. Subsequent evolution corresponds to the planet migrating inward rapidly until it becomes massive enough to open a gap in the disc and migrate in the type II regime. Our results indicate that a planet can reach large orbital distances under the combined effect of dynamical torques and gas accretion, but an alternative mechanism is required to explain the presence of massive planets on wide orbits.

  8. Two-fluid dusty shocks: simple benchmarking problems and applications to protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Lehmann, Andrew; Wardle, Mark

    2018-05-01

    The key role that dust plays in the interstellar medium has motivated the development of numerical codes designed to study the coupled evolution of dust and gas in systems such as turbulent molecular clouds and protoplanetary discs. Drift between dust and gas has proven to be important as well as numerically challenging. We provide simple benchmarking problems for dusty gas codes by numerically solving the two-fluid dust-gas equations for steady, plane-parallel shock waves. The two distinct shock solutions to these equations allow a numerical code to test different forms of drag between the two fluids, the strength of that drag and the dust to gas ratio. We also provide an astrophysical application of J-type dust-gas shocks to studying the structure of accretion shocks on to protoplanetary discs. We find that two-fluid effects are most important for grains larger than 1 μm, and that the peak dust temperature within an accretion shock provides a signature of the dust-to-gas ratio of the infalling material.

  9. The application of CAD, CAE & CAM in development of butterfly valve’s disc

    NASA Astrophysics Data System (ADS)

    Asiff Razif Shah Ranjit, Muhammad; Hanie Abdullah, Nazlin

    2017-06-01

    The improved design of a butterfly valve disc is based on the concept of sandwich theory. Butterfly valves are mostly used in various industries such as oil and gas plant. The primary failure modes for valves are indented disc, keyways and shaft failure and the cavitation damage. Emphasis on the application of CAD, a new model of the butterfly valve’s disc structure was designed. The structure analysis was analysed using the finite element analysis. Butterfly valve performance factors can be obtained is by using Computational Fluid Dynamics (CFD) software to simulate the physics of fluid flow in a piping system around a butterfly valve. A comparison analysis was done using the finite element to justify the performance of the structure. The second application of CAE is the computational fluid flow analysis. The upstream pressure and the downstream pressure was analysed to calculate the cavitation index and determine the performance throughout each opening position of the valve. The CAM process was done using 3D printer to produce a prototype and analysed the structure in form of prototype. The structure was downscale fabricated based on the model designed initially through the application of CAD. This study is utilized the application of CAD, CAE and CAM for a better improvement of the butterfly valve’s disc components.

  10. In Vitro Ability of a Novel Nanohydroxyapatite Oral Rinse to Occlude Dentine Tubules

    PubMed Central

    Hill, Robert G.; Chen, Xiaohui; Gillam, David G.

    2015-01-01

    Objectives. The aim of the study was to investigate the ability of a novel nanohydroxyapatite (nHA) desensitizing oral rinse to occlude dentine tubules compared to selected commercially available desensitizing oral rinses. Methods. 25 caries-free extracted molars were sectioned into 1 mm thick dentine discs. The dentine discs (n = 25) were etched with 6% citric acid for 2 minutes and rinsed with distilled water, prior to a 30-second application of test and control oral rinses. Evaluation was by (1) Scanning Electron Microscopy (SEM) of the dentine surface and (2) fluid flow measurements through a dentine disc. Results. Most of the oral rinses failed to adequately cover the dentine surface apart from the nHa oral rinse. However the hydroxyapatite, 1.4% potassium oxalate, and arginine/PVM/MA copolymer oral rinses, appeared to be relatively more effective than the nHA test and negative control rinses (potassium nitrate) in relation to a reduction in fluid flow measurements. Conclusions. Although the novel nHA oral rinse demonstrated the ability to occlude the dentine tubules and reduce the fluid flow measurements, some of the other oral rinses appeared to demonstrate a statistically significant reduction in fluid flow through the dentine disc, in particular the arginine/PVM/MA copolymer oral rinse. PMID:26161093

  11. Fluid dynamics of the magnetic field dependent thermosolutal convection and viscosity between coaxial contracting discs

    NASA Astrophysics Data System (ADS)

    Khan, Aamir; Shah, Rehan Ali; Shuaib, Muhammad; Ali, Amjad

    2018-06-01

    The effects of magnetic field dependent (MFD) thermosolutal convection and MFD viscosity of the fluid dynamics are investigated between squeezing discs rotating with different velocities. The unsteady constitutive expressions of mass conservation, modified Navier-Stokes, Maxwell and MFD thermosolutal convection are coupled as a system of ordinary differential equations. The corresponding solutions for the transformed radial and azimuthal momentum as well as solutions for the azimuthal and axial induced magnetic field equations are determined, also the MHD pressure and torque which the fluid exerts on the upper disc is derived and discussed in details. In the case of smooth discs the self-similar equations are solved using Homotopy Analysis Method (HAM) with appropriate initial guesses and auxiliary parameters to produce an algorithm with an accelerated and assured convergence. The validity and accuracy of HAM results is proved by comparison of the HAM solutions with numerical solver package BVP4c. It has been shown that magnetic Reynolds number causes to decrease magnetic field distributions, fluid temperature, axial and tangential velocity. Also azimuthal and axial components of magnetic field have opposite behavior with increase in MFD viscosity. Applications of the study include automotive magneto-rheological shock absorbers, novel aircraft landing gear systems, heating up or cooling processes, biological sensor systems and biological prosthetic etc.

  12. The origin of blueshifted absorption features in the X-ray spectrum of PG 1211+143: outflow or disc

    NASA Astrophysics Data System (ADS)

    Gallo, L. C.; Fabian, A. C.

    2013-07-01

    In some radio-quiet active galactic nuclei (AGN), high-energy absorption features in the X-ray spectra have been interpreted as ultrafast outflows (UFOs) - highly ionized material (e.g. Fe XXV and Fe XXVI) ejected at mildly relativistic velocities. In some cases, these outflows can carry energy in excess of the binding energy of the host galaxy. Needless to say, these features demand our attention as they are strong signatures of AGN feedback and will influence galaxy evolution. For the same reason, alternative models need to be discussed and refuted or confirmed. Gallo and Fabian proposed that some of these features could arise from resonance absorption of the reflected spectrum in a layer of ionized material located above and corotating with the accretion disc. Therefore, the absorbing medium would be subjected to similar blurring effects as seen in the disc. A priori, the existence of such plasma above the disc is as plausible as a fast wind. In this work, we highlight the ambiguity by demonstrating that the absorption model can describe the ˜7.6 keV absorption feature (and possibly other features) in the quasar PG 1211+143, an AGN that is often described as a classic example of a UFO. In this model, the 2-10 keV spectrum would be largely reflection dominated (as opposed to power law dominated in the wind models) and the resonance absorption would be originating in a layer between about 6 and 60 gravitational radii. The studies of such features constitute a cornerstone for future X-ray observatories like Astro-H and Athena+. Should our model prove correct, or at least important in some cases, then absorption will provide another diagnostic tool with which to probe the inner accretion flow with future missions.

  13. Bar formation as driver of gas inflows in isolated disc galaxies

    NASA Astrophysics Data System (ADS)

    Fanali, R.; Dotti, M.; Fiacconi, D.; Haardt, F.

    2015-12-01

    Stellar bars are a common feature in massive disc galaxies. On a theoretical ground, the response of gas to a bar is generally thought to cause nuclear starbursts and, possibly, AGN activity once the perturbed gas reaches the central supermassive black hole. By means of high-resolution numerical simulations, we detail the purely dynamical effects that a forming bar exerts on the gas of an isolated disc galaxy. The galaxy is initially unstable to the formation of non-axisymmetric structures, and within ˜1 Gyr it develops spiral arms that eventually evolve into a central stellar bar on kpc scale. A first major episode of gas inflow occurs during the formation of the spiral arms while at later times, when the stellar bar is establishing, a low-density region is carved between the bar corotational and inner Lindblad resonance radii. The development of such `dead zone' inhibits further massive gas inflows. Indeed, the gas inflow reaches its maximum during the relatively fast bar-formation phase and not, as often assumed, when the bar is fully formed. We conclude that the low efficiency of long-lived, evolved bars in driving gas towards galactic nuclei is the reason why observational studies have failed to establish an indisputable link between bars and AGNs. On the other hand, the high efficiency in driving strong gas inflows of the intrinsically transient process of bar formation suggests that the importance of bars as drivers of AGN activity in disc galaxies has been overlooked so far. We finally prove that our conclusions are robust against different numerical implementations of the hydrodynamics routinely used in galaxy evolution studies.

  14. On the radial oxygen distribution in the Galactic disc

    NASA Astrophysics Data System (ADS)

    Mishurov, Yu. N.; Tkachenko, R. V.

    2018-01-01

    The binned oxygen distribution, derived using new Cepheid observations, demonstrates wriggling radial pattern with different gradients in various ranges of Galactic radius, in particular a plateau distribution within 7 ≲ r ≲ 9 kpc (for the solar distance r⊙ = 7.9 kpc) where the mean Galactic abundance is about 0.2 dex higher than the solar one. Our modelling of oxygen synthesis in the Galactic disc is based on the refine theory that takes into account the combined effect of corotation resonance and turbulent diffusion on the disc enrichment. The theory fits to observations best of all if the time-scale (t_f=-f/\\dot{f}) of gas infall rate f(r, t) (where r and t are the Galactocentric radius and time, respectively) on to the disc is tf ∼ 2-3 Gyr whereas the fit is the worst if tf ∼ 6 Gyr (the last means that the high rate of gas infall at present epoch ∼1.5 M⊙ yr-1 does not satisfy the observed oxygen radial distribution). For inside-out scenario, further studies are necessary. Using the derived mean masses of newly synthesized oxygen ejected per core-collapsed supernova and theoretical oxygen yields, we compute the initial upper masses, mU, of stars that can explode as core-collapsed supernovae. Our estimates show that if tf ∼ 2 Gyr in the framework of rotating stars, their mU are no more than 24 M⊙, but if tf ∼ 3 Gyr in model of rotating stars or in the case of non-rotating star mU can be as high as 40-50 M⊙ like Wolf-Rayet stars that are considered as candidates for Types Ib/c supernovae.

  15. The binary millisecond pulsar PSR J1023+0038 during its accretion state - I. Optical variability

    NASA Astrophysics Data System (ADS)

    Shahbaz, T.; Linares, M.; Nevado, S. P.; Rodríguez-Gil, P.; Casares, J.; Dhillon, V. S.; Marsh, T. R.; Littlefair, S.; Leckngam, A.; Poshyachinda, S.

    2015-11-01

    We present time-resolved optical photometry of the binary millisecond `redback' pulsar PSR J1023+0038 (=AY Sex) during its low-mass X-ray binary phase. The light curves taken between 2014 January and April show an underlying sinusoidal modulation due to the irradiated secondary star and accretion disc. We also observe superimposed rapid flaring on time-scales as short as ˜20 s with amplitudes of ˜0.1-0.5 mag and additional large flare events on time-scales of ˜5-60 min with amplitudes of ˜0.5-1.0 mag. The power density spectrum of the optical flare light curves is dominated by a red-noise component, typical of aperiodic activity in X-ray binaries. Simultaneous X-ray and UV observations by the Swift satellite reveal strong correlations that are consistent with X-ray reprocessing of the UV light, most likely in the outer regions of the accretion disc. On some nights we also observe sharp-edged, rectangular, flat-bottomed dips randomly distributed in orbital phase, with a median duration of ˜250 s and a median ingress/egress time of ˜20 s. These rectangular dips are similar to the mode-switching behaviour between disc `active' and `passive' luminosity states, observed in the X-ray light curves of other redback millisecond pulsars. This is the first time that the optical analogue of the X-ray mode-switching has been observed. The properties of the passive- and active-state light curves can be explained in terms of clumpy accretion from a trapped inner accretion disc near the corotation radius, resulting in rectangular, flat-bottomed optical and X-ray light curves.

  16. A corotation electric field model of the Earth derived from Swarm satellite magnetic field measurements

    NASA Astrophysics Data System (ADS)

    Maus, Stefan

    2017-08-01

    Rotation of the Earth in its own geomagnetic field sets up a primary corotation electric field, compensated by a secondary electric field of induced electrical charges. For the geomagnetic field measured by the Swarm constellation of satellites, a derivation of the global corotation electric field inside and outside of the corotation region is provided here, in both inertial and corotating reference frames. The Earth is assumed an electrical conductor, the lower atmosphere an insulator, followed by the corotating ionospheric E region again as a conductor. Outside of the Earth's core, the induced charge is immediately accessible from the spherical harmonic Gauss coefficients of the geomagnetic field. The charge density is positive at high northern and southern latitudes, negative at midlatitudes, and increases strongly toward the Earth's center. Small vertical electric fields of about 0.3 mV/m in the insulating atmospheric gap are caused by the corotation charges located in the ionosphere above and the Earth below. The corotation charges also flow outward into the region of closed magnetic field lines, forcing the plasmasphere to corotate. The electric field of the corotation charges further extends outside of the corotating regions, contributing radial outward electric fields of about 10 mV/m in the northern and southern polar caps. Depending on how the magnetosphere responds to these fields, the Earth may carry a net electric charge.

  17. Heat transfer in a rotating cavity with a stationary stepped casing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mirzaee, I.; Quinn, P.; Wilson, M.

    1999-04-01

    In the system considered here, corotating turbine disks are cooled by air supplied at the periphery of the system. The system comprises two corotating disks, connected by a rotating cylindrical hub and shrouded by a stepped, stationary cylindrical outer casing. Cooling air enters the system through holes in the periphery of one disk, and leaves through the clearances between the outer casing and the disks. The paper describes a combined computational and experimental study of the heat transfer in the above-described system. In the experiments, one rotating disk is heated, the hub and outer casing are insulated, and the othermore » disk is quasi-adiabatic. Thermocouples and fluxmeters attached to the heated disc enable the Nusselt numbers, Nu, to be determined for a wide range of rotational speeds and coolant flow rates. Computations are carried out using an axisymmetric elliptic solver incorporating the Launder-Sharma low-Reynolds-number {kappa}-{epsilon} turbulence model. The flow structure is shown to be complex and depends strongly on the so-called turbulent flow parameter, {lambda}{sub T}, which incorporates both rotational speed and flow rate. For a given value of {lambda}{sub T}, the computations show that Nu increases as Re{sub {phi}}, the rotational Reynolds number, increases. Despite the complexity of the flow, the agreement between the computed and measured Nusselt numbers is reasonably good.« less

  18. The effect of power-law body forces on a thermally driven flow between concentric rotating spheres

    NASA Technical Reports Server (NTRS)

    Macaraeg, M. G.

    1986-01-01

    A numerical study is conducted to determine the effect of power-law body forces on a thermally-driven axisymmetric flow field confined between concentric co-rotating spheres. This study is motivated by Spacelab geophysical fluid-flow experiments, which use an electrostatic force on a dielectric fluid to simulate gravity; this force exhibits a (1/r)sup 5 distribution. Meridional velocity is found to increase when the electrostatic body force is imposed, relative to when the body force is uniform. Correlation among flow fields with uniform, inverse-square, and inverse-quintic force fields is obtained using a modified Grashof number.

  19. The effect of power law body forces on a thermally-driven flow between concentric rotating spheres

    NASA Technical Reports Server (NTRS)

    Macaraeg, M. G.

    1985-01-01

    A numerical study is conducted to determine the effect of power-law body forces on a thermally-driven axisymmetric flow field confined between concentric co-rotating spheres. This study is motivated by Spacelab geophysical fluid-flow experiments, which use an electrostatic force on a dielectric fluid to simulate gravity; this force exhibits a (1/r)sup 5 distribution. Meridional velocity is found to increase when the electrostatic body force is imposed, relative to when the body force is uniform. Correlation among flow fields with uniform, inverse-square, and inverse-quintic force fields is obtained using a modified Grashof number.

  20. A rigidly rotating magnetosphere model for circumstellar emission from magnetic OB stars

    NASA Astrophysics Data System (ADS)

    Townsend, R. H. D.; Owocki, S. P.

    2005-02-01

    We present a semi-analytical approach for modelling circumstellar emission from rotating hot stars with a strong dipole magnetic field tilted at an arbitrary angle to the rotation axis. By assuming the rigid-field limit in which material driven (e.g. in a wind outflow) from the star is forced to remain in strict rigid-body corotation, we are able to solve for the effective centrifugal-plus-gravitational potential along each field line, and thereby identify the location of potential minima where material is prone to accumulate. Applying basic scalings for the surface mass flux of a radiatively driven stellar wind, we calculate the circumstellar density distribution that obtains once ejected plasma settles into hydrostatic stratification along field lines. The resulting accumulation surface resembles a rigidly rotating, warped disc, tilted such that its average surface normal lies between the rotation and magnetic axes. Using a simple model of the plasma emissivity, we calculate time-resolved synthetic line spectra for the disc. Initial comparisons show an encouraging level of correspondence with the observed rotational phase variations of Balmer-line emission profiles from magnetic Bp stars such as σ Ori E.

  1. Corot's 'gout' and a 'gipsy' girl.

    PubMed

    Panush, R B; Caldwell, J R; Panush, R S

    1990-09-05

    Representations of rheumatic disease in art provide insight into artistic expression, help us understand the evolution and perhaps the etiology of rheumatic diseases, and remind us of great contributions by artists in adverse circumstances. We noted hand deformities characteristic of inflammatory arthritis in Jean-Baptiste-Camille Corot's Gipsy Girl With Mandolin (1870 to 1875), National Gallery of Art, Washington, DC. Corot suffered with what probably was gout beginning in 1866. We are unaware that arthritis has been observed in Corot's subjects or that Corot's depiction of arthritis has been appreciated from the perspective of his own rheumatic disease. Examination of other Corot portraits identifies some with blurred hand details consistent with the artist's style and the remainder with normal hands. These observations suggest that the artist portrayed specific anatomic abnormalities in the "Gipsy Girl's" hand, indicating familiarity with inflammatory arthritis. It is speculative whether this was Corot's own or the model's arthritis; we favor the interpretation that Corot's gout was reflected in this particular work. We thus add a new perspective to Corot's Gipsy Girl With Mandolin-a subject with arthritis, a painter knowledgeable about arthritis, and a painting that therefore might be understood at least in part from an appreciation of the artist's specific illness.

  2. A three-dimensional model of corotating streams in the solar wind. 1: Theoretical foundations

    NASA Technical Reports Server (NTRS)

    Pizzo, V. J.

    1978-01-01

    The theoretical and mathematical background pertinent to the study of steady, corotating solar wind structure in all three spatial dimensions (3-D) is discussed. The dynamical evolution of the plasma in interplanetary space (defined as the region beyond roughly 35 solar radii where the flow is supersonic) is approximately described by the nonlinear, single fluid, polytropic (magneto-) hydrodynamic equations. Efficient numerical techniques for solving this complex system of coupled, hyperbolic partial differential equations are outlined. The formulation is inviscid and nonmagnetic, but methods allow for the potential inclusion of both features with only modest modifications. One simple, highly idealized, hydrodynamic model stream is examined to illustrate the fundamental processes involved in the 3-D dynamics of stream evolution. Spatial variations in the rotational stream interaction mechanism were found to produce small nonradial flows on a global scale that lead to the transport of mass, energy, and momentum away from regions of relative compression and into regions of relative rarefaction.

  3. [Intra-articular injections of hyaluronic acid for anterior disc displacement of temporomandibular joint].

    PubMed

    Long, X

    2017-03-09

    Anterior disc displacement (ADD) of temporomandibular joint (TMJ) is regarded as one of the major findings in temporomandibular disorders (TMD). It is related to joint noise, pain, mandibular dysfunction, degenerative change and osteoarthritis. In the mean time, the pathological changes were found in synovial membrane and synovial fluid. Hyaluronic acid is a principal component of the synovial fluid which plays an important role in nutrition, lubrication, anti-inflammation and cartilage repair. The synthesis, molecule weight, and concentration of hyaluronic acid are decreased during TMD and cause TMJ degenerative changes. The clinical conditions, pathological changes, the mechanism of action for hyaluronic acid and the treatment of anterior disc displacement of TMJ are discussed in this article.

  4. Stellar motion induced by gravitational instabilities in protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Michael, Scott; Durisen, R. H.

    2010-07-01

    We test the effect of assumptions about stellar motion on the behaviour of gravitational instabilities (GIs) in protoplanetary discs around solar-type stars by performing two simulations that are identical in all respects except the treatment of the star. In one simulation, the star is assumed to remain fixed at the centre of the inertial reference frame. In the other, stellar motion is handled properly by including an indirect potential in the hydrodynamic equations to model the star's reference frame as one which is accelerated by star/disc interactions. The discs in both simulations orbit a solar mass star, initially extend from 2.3 to 40 au with a ϖ-1/2 surface density profile, and have a total mass of 0.14 Msolar. The γ = 5/3 ideal gas is assumed to cool everywhere with a constant cooling time of two outer rotation periods. The overall behaviour of the disc evolution is similar, except for weakening in various measures of GI activity by about at most tens of per cent for the indirect potential case. Overall conclusions about disc evolution in earlier papers by our group, where the star was always assumed to be fixed in an inertial frame, remain valid. There is no evidence for independent one-armed instabilities, like the Stimulation by the Long-range Interaction of Newtonian Gravity (SLING), in either simulation. On the other hand, the stellar motion about the system centre of mass (COM) in the simulation with the indirect potential is substantial, up to 0.25 au during the burst phase, as GIs initiate, and averaging about 0.9 au during the asymptotic phase, when the GIs reach an overall balance of heating and cooling. These motions appear to be a stellar response to non-linear interactions between discrete global spiral modes in both the burst and asymptotic phases of the evolution, and the star's orbital motion about the COM reflects the orbit periods of disc material near the corotation radii of the dominant spiral waves. This motion is, in principle, large enough to be observable and could be confused with stellar wobble due to the presence of one or more super-Jupiter mass protoplanets orbiting at 10's au. We discuss why the excursions in our simulation are so much larger than those seen in simulations by Rice et al.

  5. Are solar brightness variations faculae- or spot-dominated?

    NASA Astrophysics Data System (ADS)

    Shapiro, A. I.; Solanki, S. K.; Krivova, N. A.; Yeo, K. L.; Schmutz, W. K.

    2016-05-01

    Context. Regular spaceborne measurements have revealed that solar brightness varies on multiple timescales, variations on timescales greater than a day being attributed to a surface magnetic field. Independently, ground-based and spaceborne measurements suggest that Sun-like stars show a similar, but significantly broader pattern of photometric variability. Aims: To understand whether the broader pattern of stellar variations is consistent with the solar paradigm, we assess relative contributions of faculae and spots to solar magnetically-driven brightness variability. We investigate how the solar brightness variability and its facular and spot contributions depend on the wavelength, timescale of variability, and position of the observer relative to the ecliptic plane. Methods: We performed calculations with the SATIRE model, which returns solar brightness with daily cadence from solar disc area coverages of various magnetic features. We took coverages as seen by an Earth-based observer from full-disc SoHO/MDI and SDO/HMI data and projected them to mimic out-of-ecliptic viewing by an appropriate transformation. Results: Moving the observer away from the ecliptic plane increases the amplitude of 11-year variability as it would be seen in Strömgren (b + y)/2 photometry, but decreases the amplitude of the rotational brightness variations as it would appear in Kepler and CoRoT passbands. The spot and facular contributions to the 11-year solar variability in the Strömgren (b + y)/2 photometry almost fully compensate each other so that the Sun appears anomalously quiet with respect to its stellar cohort. Such a compensation does not occur on the rotational timescale. Conclusions: The rotational solar brightness variability as it would appear in the Kepler and CoRoT passbands from the ecliptic plane is spot-dominated, but the relative contribution of faculae increases for out-of-ecliptic viewing so that the apparent brightness variations are faculae-dominated for inclinations less than about I = 45°. Over the course of the 11-year activity cycle, the solar brightness variability is faculae-dominated shortwards of 1.2 μm independently of the inclination.

  6. Global stability behaviour for the BEK family of rotating boundary layers

    NASA Astrophysics Data System (ADS)

    Davies, Christopher; Thomas, Christian

    2017-12-01

    Numerical simulations were conducted to investigate the linear global stability behaviour of the Bödewadt, Ekman, von Kármán (BEK) family of flows, for cases where a disc rotates beneath an incompressible fluid that is also rotating. This extends the work reported in recent studies that only considered the rotating-disc boundary layer with a von Kármán configuration, where the fluid that lies above the boundary layer remains stationary. When a homogeneous flow approximation is made, neglecting the radial variation of the basic state, it can be shown that linearised disturbances are susceptible to absolute instability. We shall demonstrate that, despite this prediction of absolute instability, the disturbance development exhibits globally stable behaviour in the BEK boundary layers with a genuine radial inhomogeneity. For configurations where the disc rotation rate is greater than that of the overlying fluid, disturbances propagate radially outwards and there is only a convective form of instability. This replicates the behaviour that had previously been documented when the fluid did not rotate beyond the boundary layer. However, if the fluid rotation rate is taken to exceed that of the disc, then the propagation direction reverses and disturbances grow while convecting radially inwards. Eventually, as they approach regions of smaller radii, where stability is predicted according to the homogeneous flow approximation, the growth rates reduce until decay takes over. Given sufficient time, such disturbances can begin to diminish at every radial location, even those which are positioned outwards from the radius associated with the onset of absolute instability. This leads to the confinement of the disturbance development within a finitely bounded region of the spatial-temporal plane.

  7. CFD modeling of an ultrasonic separator for the removal of lipid particles from pericardial suction blood.

    PubMed

    Trippa, Giuliana; Ventikos, Yiannis; Taggart, David P; Coussios, Constantin-C

    2011-02-01

    A computational fluid dynamics (CFD) model is presented to simulate the removal of lipid particles from blood using a novel ultrasonic quarter-wavelength separator. The Lagrangian-Eulerian CFD model accounts for conservation of mass and momentum, for the presence of lipid particles of a range of diameters, for the acoustic force as experienced by the particles in the blood, as well as for gravity and other particle-fluid interaction forces. In the separator, the liquid flows radially inward within a fluid chamber formed between a disc-shaped transducer and a disc-shaped reflector. Following separation of the lipid particles, blood exits the separator axially through a central opening on the disc-shaped reflector. Separator diameters studied varied between 12 and 18 cm, and gap sizes between the discs of 600 μm, 800 μm and 1 mm were considered. Results show a strong effect of residence time of the particles within the chamber on the separation performance. Different separator configurations were identified, which could give a lipid removal performance of 95% or higher when processing 62.5 cm (3)/min of blood. The developed model provides a design method for the selection of geometric and operating parameters for the ultrasonic separator.

  8. Flow stagnation at Enceladus: The effects of neutral gas and charged dust

    NASA Astrophysics Data System (ADS)

    Omidi, N.; Tokar, R. L.; Averkamp, T.; Gurnett, D. A.; Kurth, W. S.; Wang, Z.

    2012-06-01

    Enceladus is one of Saturn's most active moons. It ejects neutral gas and dust particles from its southern plumes with velocities of hundreds of meters per second. The interaction between the ejected material and the corotating plasma in Saturn's magnetosphere leads to flow deceleration in ways that remain to be understood. The most effective mechanism for the interaction between the corotating plasma and the neutral gas is charge exchange which replaces the hotter corotating ions with nearly stationary cold ions that are subsequently accelerated by the motional electric field. Dust particles in the plume can become electrically charged through electron absorption and couple to the plasma through the motional electric field. The objective of this study is to determine the level of flow deceleration associated with each of these processes using Cassini RPWS dust impact rates, Cassini Plasma Spectrometer (CAPS) plasma data, and 3-D electromagnetic hybrid (kinetic ions, fluid electrons) simulations. Hybrid simulations show that the degree of flow deceleration by charged dust varies considerably with the spatial distribution of dust particles. Based on the RPWS observations of dust impacts during the E7 Cassini flyby of Enceladus, we have constructed a dust model consisting of multiple plumes. Using this model in the hybrid simulation shows that when the dust density is high enough for complete absorption of electrons at the point of maximum dust density, the corotating flow is decelerated by only a few km/s. This is not sufficient to account for the CAPS observation of flow stagnation in the interaction region. On the other hand, charge exchange with neutral gas plumes similar to the modeled dust plumes but with base (plume opening) densities of ˜109 cm-3 result in flow deceleration similar to that observed by CAPS. The results indicate that charge exchange with neutral gas is the dominant mechanism for flow deceleration at Enceladus.

  9. Galactic rings revisited. II. Dark gaps and the locations of resonances in early-to-intermediate-type disc galaxies

    NASA Astrophysics Data System (ADS)

    Buta, Ronald J.

    2017-10-01

    Dark gaps are commonly seen in early-to-intermediate-type barred galaxies having inner and outer rings or related features. In this paper, the morphologies of 54 barred and oval ringed galaxies have been examined with the goal of determining what the dark gaps are telling us about the structure and evolution of barred galaxies. The analysis is based mainly on galaxies selected from the Galaxy Zoo 2 data base and the Catalogue of Southern Ringed Galaxies. The dark gaps between inner and outer rings are of interest because of their likely association with the L4 and L5 Lagrangian points that would be present in the gravitational potential of a bar or oval. Since the points are theoretically expected to lie very close to the corotation resonance (CR) of the bar pattern, the gaps provide the possibility of locating corotation in some galaxies simply by measuring the radius rgp of the gap region and setting rCR=rgp. With the additional assumption of generally flat rotation curves, the locations of other resonances can be predicted and compared with observed morphological features. It is shown that this `gap method' provides remarkably consistent interpretations of the morphology of early-to-intermediate-type barred galaxies. The paper also brings attention to cases where the dark gaps lie inside an inner ring, rather than between inner and outer rings. These may have a different origin compared to the inner/outer ring gaps.

  10. Liquid Crystal Phase Behaviour of Attractive Disc-Like Particles

    PubMed Central

    Wu, Liang; Jackson, George; Müller, Erich A.

    2013-01-01

    We employ a generalized van der Waals-Onsager perturbation theory to construct a free energy functional capable of describing the thermodynamic properties and orientational order of the isotropic and nematic phases of attractive disc particles. The model mesogen is a hard (purely repulsive) cylindrical disc particle decorated with an anisotropic square-well attractive potential placed at the centre of mass. Even for isotropic attractive interactions, the resulting overall inter-particle potential is anisotropic, due to the orientation-dependent excluded volume of the underlying hard core. An algebraic equation of state for attractive disc particles is developed by adopting the Onsager trial function to characterize the orientational order in the nematic phase. The theory is then used to represent the fluid-phase behaviour (vapour-liquid, isotropic-nematic, and nematic-nematic) of the oblate attractive particles for varying values of the molecular aspect ratio and parameters of the attractive potential. When compared to the phase diagram of their athermal analogues, it is seen that the addition of an attractive interaction facilitates the formation of orientationally-ordered phases. Most interestingly, for certain aspect ratios, a coexistence between two anisotropic nematic phases is exhibited by the attractive disc-like fluids. PMID:23965962

  11. Liquid crystal phase behaviour of attractive disc-like particles.

    PubMed

    Wu, Liang; Jackson, George; Müller, Erich A

    2013-08-08

    We employ a generalized van der Waals-Onsager perturbation theory to construct a free energy functional capable of describing the thermodynamic properties and orientational order of the isotropic and nematic phases of attractive disc particles. The model mesogen is a hard (purely repulsive) cylindrical disc particle decorated with an anisotropic square-well attractive potential placed at the centre of mass. Even for isotropic attractive interactions, the resulting overall inter-particle potential is anisotropic, due to the orientation-dependent excluded volume of the underlying hard core. An algebraic equation of state for attractive disc particles is developed by adopting the Onsager trial function to characterize the orientational order in the nematic phase. The theory is then used to represent the fluid-phase behaviour (vapour-liquid, isotropic-nematic, and nematic-nematic) of the oblate attractive particles for varying values of the molecular aspect ratio and parameters of the attractive potential. When compared to the phase diagram of their athermal analogues, it is seen that the addition of an attractive interaction facilitates the formation of orientationally-ordered phases. Most interestingly, for certain aspect ratios, a coexistence between two anisotropic nematic phases is exhibited by the attractive disc-like fluids.

  12. Planetary transit candidates in Corot-IRa01 field

    NASA Astrophysics Data System (ADS)

    Carpano, S.; Cabrera, J.; Alonso, R.; Barge, P.; Aigrain, S.; Almenara, J.-M.; Bordé, P.; Bouchy, F.; Carone, L.; Deeg, H. J.; de La Reza, R.; Deleuil, M.; Dvorak, R.; Erikson, A.; Fressin, F.; Fridlund, M.; Gondoin, P.; Guillot, T.; Hatzes, A.; Jorda, L.; Lammer, H.; Léger, A.; Llebaria, A.; Magain, P.; Moutou, C.; Ofir, A.; Ollivier, M.; Janot-Pacheco, E.; Pätzold, M.; Pont, F.; Queloz, D.; Rauer, H.; Régulo, C.; Renner, S.; Rouan, D.; Samuel, B.; Schneider, J.; Wuchterl, G.

    2009-10-01

    Context: CoRoT is a pioneering space mission devoted to the analysis of stellar variability and the photometric detection of extrasolar planets. Aims: We present the list of planetary transit candidates detected in the first field observed by CoRoT, IRa01, the initial run toward the Galactic anticenter, which lasted for 60 days. Methods: We analysed 3898 sources in the coloured bands and 5974 in the monochromatic band. Instrumental noise and stellar variability were taken into account using detrending tools before applying various transit search algorithms. Results: Fifty sources were classified as planetary transit candidates and the most reliable 40 detections were declared targets for follow-up ground-based observations. Two of these targets have so far been confirmed as planets, CoRoT-1b and CoRoT-4b, for which a complete characterization and specific studies were performed. The CoRoT space mission, launched on December 27th 2006, has been developed and is operated by CNES, with contributions from Austria, Belgium, Brazil, ESA, Germany, and Spain. Four French laboratories associated with the CNRS (LESIA, LAM, IAS ,OMP) collaborate with CNES on the satellite development. First CoRoT data are available to the public from the CoRoT archive: http://idoc-corot.ias.u-psud.fr.

  13. Reduction of turbulent skin-friction drag by oscillating discs

    NASA Astrophysics Data System (ADS)

    Wise, Daniel; Ricco, Pierre

    2013-11-01

    A new drag-reduction method, based on the active technique proposed by Ricco & Hahn (2013), i.e. steadily rotating flush-mounted discs, is studied by DNS. The effect of sinusoidally oscillating discs on the turbulent channel-flow drag is investigated at Reτ = 180 , based on the friction velocity of the stationary-wall case and the half channel height. A parametric investigation on the disc diameter, tip velocity and oscillation period yielded a maximum drag reduction of 18.5%. Regions of net power saved, calculated by considering the power spent to enforce the disc motion against the viscous resistance of the fluid, are found to reach up to 6.5% for low disc tip velocities. Significantly, the characteristic time-scale for the oscillating disc forcing is double that for the steadily rotating discs, representing a further step towards industrial implementation. The oscillating disc forcing, similar to the steadily rotating disc forcing, creates streamwise-elongated structures between the discs. These structures - largely unaffected by the periodic wall forcing and persisting throughout the entire period of the oscillation - are the main contributor to the additional Reynolds stresses term created by the disc forcing, and are important for the drag reduction mechanism.

  14. Flow field prediction in full-scale Carrousel oxidation ditch by using computational fluid dynamics.

    PubMed

    Yang, Yin; Wu, Yingying; Yang, Xiao; Zhang, Kai; Yang, Jiakuan

    2010-01-01

    In order to optimize the flow field in a full-scale Carrousel oxidation ditch with many sets of disc aerators operating simultaneously, an experimentally validated numerical tool, based on computational fluid dynamics (CFD), was proposed. A full-scale, closed-loop bioreactor (Carrousel oxidation ditch) in Ping Dingshan Sewage Treatment Plant in Ping Dingshan City, a medium-sized city in Henan Province of China, was evaluated using CFD. Moving wall model was created to simulate many sets of disc aerators which created fluid motion in the ditch. The simulated results were acceptable compared with the experimental data and the following results were obtained: (1) a new method called moving wall model could simulate the flow field in Carrousel oxidation ditch with many sets of disc aerators operating simultaneously. The whole number of cells of grids decreased significantly, thus the calculation amount decreased, and (2) CFD modeling generally characterized the flow pattern in the full-scale tank. 3D simulation could be a good supplement for improving the hydrodynamic performance in oxidation ditch designs.

  15. [Vitrectomy and gas-fluid exchange for the treatment of serous macular detachment due to optic disc pit: long-term evaluation].

    PubMed

    Moreira Neto, Carlos Augusto; Moreira Junior, Carlos Augusto

    2013-01-01

    To evaluate 5 patients with serous macular detachment due to optic disc pit that were submitted to pars plana vitrectomy and were followed for at least 7 years. Patients were submitted to pars plana vitrectomy, posterior hyaloid removal, autologous serum injection and gas-fluid exchange, without laser photocoagulation, and were evaluated pre and post-operatively with visual acuity and Amsler grid testing, retinography, and recently, with autofluorescence imaging and high resolution OCT. All 5 eyes improved visual acuity significantly following the surgical procedure maintaining good vision throughout the follow-up period. Mean pre-operative visual acuity was 20/400 and final visual acuity was 20/27 with a mean follow-up time of 13.6 years. No recurrences of serous detachments were observed. OCT examinations demonstrated an attached retina up to the margin of the pit. Serous macular detachments due to optic disc pits were adequately treated with pars plana vitrectomy and gas fluid exchange, without the need for laser photocoagulation, maintaining excellent visual results for a long period of time.

  16. Optimal design of disc-type magneto-rheological brake for mid-sized motorcycle: experimental evaluation

    NASA Astrophysics Data System (ADS)

    Sohn, Jung Woo; Jeon, Juncheol; Nguyen, Quoc Hung; Choi, Seung-Bok

    2015-08-01

    In this paper, a disc-type magneto-rheological (MR) brake is designed for a mid-sized motorcycle and its performance is experimentally evaluated. The proposed MR brake consists of an outer housing, a rotating disc immersed in MR fluid, and a copper wire coiled around a bobbin to generate a magnetic field. The structural configuration of the MR brake is first presented with consideration of the installation space for the conventional hydraulic brake of a mid-sized motorcycle. The design parameters of the proposed MR brake are optimized to satisfy design requirements such as the braking torque, total mass of the MR brake, and cruising temperature caused by the magnetic-field friction of the MR fluid. In the optimization procedure, the braking torque is calculated based on the Herschel-Bulkley rheological model, which predicts MR fluid behavior well at high shear rate. An optimization tool based on finite element analysis is used to obtain the optimized dimensions of the MR brake. After manufacturing the MR brake, mechanical performances regarding the response time, braking torque and cruising temperature are experimentally evaluated.

  17. CHARACTERIZATION OF CoRoT TARGET FIELDS WITH BERLIN EXOPLANET SEARCH TELESCOPE. II. IDENTIFICATION OF PERIODIC VARIABLE STARS IN THE LRc2 FIELD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kabath, P.; Fruth, T.; Rauer, H.

    2009-04-15

    We report on photometric observations of the CoRoT LRc2 field with the new robotic Berlin Exoplanet Search Telescope II (BEST II). The telescope system was installed and commissioned at the Observatorio Cerro Armazones, Chile, in 2007. BEST II is a small aperture telescope with a wide field of view dedicated to the characterization of the stellar variability primarily in CoRoT target fields with high stellar densities. The CoRoT stellar field LRc2 was observed with BEST II up to 20 nights in 2007 July and August. From the acquired data containing about 100,000 stars, 426 new periodic variable stars were identifiedmore » and 90% of them are located within the CoRoT exoplanetary CCD segments and may be of further interest for CoRoT additional science programs.« less

  18. Osmosis and viscoelasticity both contribute to time-dependent behaviour of the intervertebral disc under compressive load: A caprine in vitro study.

    PubMed

    Emanuel, Kaj S; van der Veen, Albert J; Rustenburg, Christine M E; Smit, Theodoor H; Kingma, Idsart

    2018-03-21

    The mechanical behaviour of the intervertebral disc highly depends on the content and transport of interstitial fluid. It is unknown, however, to what extent the time-dependent behaviour can be attributed to osmosis. Here we investigate the effect of both mechanical and osmotic loading on water content, nucleus pressure and disc height. Eight goat intervertebral discs, immersed in physiological saline, were subjected to a compressive force with a pressure needle inserted in the nucleus. The loading protocol was: 10 N (6 h); 150 N (42 h); 10 N (24 h). Half-way the 150 N-phase (24 h), we eliminated the osmotic gradient by adding 26% poly-ethylene glycol to the surrounding fluid. For 62 additional discs, we determined the water content of both nucleus and annulus after 6, 24, 48, or 72 h. The compressive load was initially counterbalanced by the hydrostatic pressure in the nucleus. The load forced 4.3% of the water out of the nucleus, which reduced nucleus pressure by 44(±6)%. Reduction of the osmotic gradient disturbed the equilibrium disc height, and a significant loss of annulus water content was found. Remarkably, pressure and water content of the nucleus pulposus remained unchanged. This shows that annulus water content is important in the response to axial loading. After unloading, in the absence of an osmotic gradient, there was substantial viscoelastic recovery of 53(±11)% of the disc height, without a change in water content. However, for restoration of the nucleus pressure and for full restoration of disc height, restoration of the osmotic gradient was needed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Red giants observed by CoRoT and APOGEE: The evolution of the Milky Way's radial metallicity gradient

    NASA Astrophysics Data System (ADS)

    Anders, F.; Chiappini, C.; Minchev, I.; Miglio, A.; Montalbán, J.; Mosser, B.; Rodrigues, T. S.; Santiago, B. X.; Baudin, F.; Beers, T. C.; da Costa, L. N.; García, R. A.; García-Hernández, D. A.; Holtzman, J.; Maia, M. A. G.; Majewski, S.; Mathur, S.; Noels-Grotsch, A.; Pan, K.; Schneider, D. P.; Schultheis, M.; Steinmetz, M.; Valentini, M.; Zamora, O.

    2017-04-01

    Using combined asteroseismic and spectroscopic observations of 418 red-giant stars close to the Galactic disc plane (6 kpc < RGal ≲ 13 kpc, | ZGal| < 0.3 kpc), we measure the age dependence of the radial metallicity distribution in the Milky Way's thin disc over cosmic time. The slope of the radial iron gradient of the young red-giant population (-0.058 ± 0.008 [stat.] ±0.003 [syst.] dex/kpc) is consistent with recent Cepheid measurements. For stellar populations with ages of 1-4 Gyr the gradient is slightly steeper, at a value of -0.066 ± 0.007 ± 0.002 dex/kpc, and then flattens again to reach a value of -0.03 dex/kpc for stars with ages between 6 and 10 Gyr. Our results are in good agreement with a state-of-the-art chemo-dynamical Milky-Way model in which the evolution of the abundance gradient and its scatter can be entirely explained by a non-varying negative metallicity gradient in the interstellar medium, together with stellar radial heating and migration. We also offer an explanation for why intermediate-age open clusters in the solar neighbourhood can be more metal-rich, and why their radial metallicity gradient seems to be much steeper than that of the youngest clusters. Already within 2 Gyr, radial mixing can bring metal-rich clusters from the innermost regions of the disc to Galactocentric radii of 5 to 8 kpc. We suggest that these outward-migrating clusters may be less prone to tidal disruption and therefore steepen the local intermediate-age cluster metallicity gradient. Our scenario also explains why the strong steepening of the local iron gradient with age is not seen in field stars. In the near future, asteroseismic data from the K2 mission will allow for improved statistics and a better coverage of the inner-disc regions, thereby providing tighter constraints on theevolution of the central parts of the Milky Way.

  20. [Analysis of factors related to the number of mesenchymal stem cells derived from synovial fluid of the temporomandibular joint].

    PubMed

    Sun, Y P; Zheng, Y H; Zhang, Z G

    2017-06-09

    Objective: To analyze related factors on the number of mesenchymal stem cells in the synovial fluid of the temporomandibular joint (TMJ) and provide an research basis for understanding of the source and biological role of mesenchymal stem cells derived from synovial fluid in TMJ. Methods: One hundred and twenty-two synovial fluid samples from 91 temporomandibular disorders (TMD) patients who visited in Department of TMJ Center, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University from March 2013 to December 2013 were collected in this study, and 6 TMJ synovial fluid samples from 6 normal volunteers who were studying in the North Campus of Sun Yat-sen University were also collected, so did their clinical information. Then the relation between the number of mesenchymal stem cells derived from synovial fluid and the health status of the joints, age of donor, disc perforation, condylar bony destruction, blood containing and visual analogue scale score of pain were investigated using Mann-Whitney U test and Spearman rank correlation test. Results: The number of mesenchymal stem cells derived from synovial fluid had no significant relation with visual analogue scale score of pain ( r= 0.041, P= 0.672), blood containing ( P= 0.063), condylar bony destruction ( P= 0.371). Linear correlation between the number of mesenchymal stem cells derived from synovial fluid and age of donor was very week ( r= 0.186, P= 0.043). The number of mesenchymal stem cells up-regulated when the joint was in a disease state ( P= 0.001). The disc perforation group had more mesenchymal stem cells in synovial fluid than without disc perforation group ( P= 0.042). Conclusions: The number of mesenchymal stem cells derived from synovial fluid in TMJ has no correlation with peripheral blood circulation and condylar bony destruction, while has close relation with soft tissue structure damage of the joint.

  1. Cryogenic Cam Butterfly Valve

    NASA Technical Reports Server (NTRS)

    McCormack, Kenneth J. (Inventor)

    2016-01-01

    A cryogenic cam butterfly valve has a body that includes an axially extending fluid conduit formed there through. A disc lug is connected to a back side of a valve disc and has a circular bore that receives and is larger than a cam of a cam shaft. The valve disc is rotatable for a quarter turn within the body about a lug axis that is offset from the shaft axis. Actuating the cam shaft in the closing rotational direction first causes the camming side of the cam of the cam shaft to rotate the disc lug and the valve disc a quarter turn from the open position to the closed position. Further actuating causes the camming side of the cam shaft to translate the valve disc into sealed contact with the valve seat. Opening rotational direction of the cam shaft reverses these motions.

  2. RETRACTION: Unsteady flow and heat transfer of viscous incompressible fluid with temperature-dependent viscosity due to a rotating disc in a porous medium

    NASA Astrophysics Data System (ADS)

    Attia, H. A.

    2007-04-01

    It has come to the attention of the Institute of Physics that this article should not have been submitted for publication owing to its plagiarism of an earlier paper (Hossain A, Hossain M A and Wilson M 2001 Unsteady flow of viscous incompressible fluid with temperature-dependent viscosity due to a rotating disc in presence of transverse magnetic field and heat transfer Int. J. Therm. Sci. 40 11-20). Therefore this article has been retracted by the Institute of Physics and by the author, Hazem Ali Attia.

  3. A fluid-solid coupling simulation method for convection heat transfer coefficient considering the under-vehicle condition

    NASA Astrophysics Data System (ADS)

    Tian, C.; Weng, J.; Liu, Y.

    2017-11-01

    The convection heat transfer coefficient is one of the evaluation indexes of the brake disc performance. The method used in this paper to calculate the convection heat transfer coefficient is a fluid-solid coupling simulation method, because the calculation results through the empirical formula method have great differences. The model, including a brake disc, a car body, a bogie and flow field, was built, meshed and simulated in the software FLUENT. The calculation models were K-epsilon Standard model and Energy model. The working condition of the brake disc was considered. The coefficient of various parts can be obtained through the method in this paper. The simulation result shows that, under 160 km/h speed, the radiating ribs have the maximum convection heat transfer coefficient and the value is 129.6W/(m2·K), the average coefficient of the whole disc is 100.4W/(m2·K), the windward of ribs is positive-pressure area and the leeward of ribs is negative-pressure area, the maximum pressure is 2663.53Pa.

  4. Long-term outcomes of pars plana vitrectomy without internal limiting membrane peeling for optic disc pit maculopathy.

    PubMed

    Avci, R; Yilmaz, S; Inan, U U; Kaderli, B; Kurt, M; Yalcinbayir, O; Yildiz, M; Yucel, A

    2013-12-01

    To evaluate the results of surgical treatment of maculopathy secondary to congenital optic pit anomaly with pars plana vitrectomy (PPV), endolaser to the temporal edge of the optic disc and C3F8 tamponade without internal limiting membrane (ILM) peeling. Thirteen eyes of 12 patients with serous macular detachment and/or macular retinoschisis secondary to congenital optic disc pit (ODP) were included in the study. All eyes underwent PPV, posterior hyaloid removal, endolaser photocoagulation on the temporal margin of the optic disc and 12% C3F8 gas tamponade. Anatomic success and functional outcome determined retrospectively by optical coherence tomography and measurement of best corrected visual acuity (BCVA), respectively were the main outcome parameters. Two lines or more improvement in BCVA was obtained in 11 eyes and 6 of these eyes had 20/40 or better BCVA at the final visit. Subretinal or intraretinal fluid was completely resorbed postoperatively in 12 eyes but a little intraretinal fluid persisted in one eye at the 16-month follow-up. Better visual improvement was observed in patients treated by earlier surgical intervention. PPV, C3F8 gas tamponade and endolaser to the optic disc margin without ILM peeling may yield favourable results in the treatment of ODP maculopathy.

  5. Mechanical Characterization of the Human Lumbar Intervertebral Disc Subjected to Impact Loading Conditions

    NASA Astrophysics Data System (ADS)

    Jamison, David, IV

    Low back pain is a large and costly problem in the United States. Several working populations, such as miners, construction workers, forklift operators, and military personnel, have an increased risk and prevalence of low back pain compared to the general population. This is due to exposure to repeated, transient impact shocks, particularly while operating vehicles or other machinery. These shocks typically do not cause acute injury, but rather lead to pain and injury over time. The major focus in low back pain is often the intervertebral disc, due to its role as the major primary load-bearing component along the spinal column. The formation of a reliable standard for human lumbar disc exposure to repeated transient shock could potentially reduce injury risk for these working populations. The objective of this project, therefore, is to characterize the mechanical response of the lumbar intervertebral disc subjected to sub-traumatic impact loading conditions using both cadaveric and computational models, and to investigate the possible implications of this type of loading environment for low back pain. Axial, compressive impact loading events on Naval high speed boats were simulated in the laboratory and applied to human cadaveric specimen. Disc stiffness was higher and hysteresis was lower than quasi-static loading conditions. This indicates a shift in mechanical response when the disc is under impact loads and this behavior could be contributing to long-term back pain. Interstitial fluid loss and disc height changes were shown to affect disc impact mechanics in a creep study. Neutral zone increased, while energy dissipation and low-strain region stiffness decreased. This suggests that the disc has greater clinical instability during impact loading with progressive creep and fluid loss, indicating that time of day should be considered for working populations subjected to impact loads. A finite element model was developed and validated against cadaver specimen subjected to impacts in the laboratory. Analysis showed greater total von Mises stress and pore pressure in the components of the disc under transient shocks compared to static or quasi-static loading. These findings support the idea that impact shocks cause a change in mechanical response and are potentially damaging to the disc in the long term.

  6. First Solid Evidence for a Rocky Exoplanet - Mass and density of smallest exoplanet finally measured

    NASA Astrophysics Data System (ADS)

    2009-09-01

    The longest set of HARPS measurements ever made has firmly established the nature of the smallest and fastest-orbiting exoplanet known, CoRoT-7b, revealing its mass as five times that of Earth's. Combined with CoRoT-7b's known radius, which is less than twice that of our terrestrial home, this tells us that the exoplanet's density is quite similar to the Earth's, suggesting a solid, rocky world. The extensive dataset also reveals the presence of another so-called super-Earth in this alien solar system. "This is science at its thrilling and amazing best," says Didier Queloz, leader of the team that made the observations. "We did everything we could to learn what the object discovered by the CoRoT satellite looks like and we found a unique system." In February 2009, the discovery by the CoRoT satellite [1] of a small exoplanet around a rather unremarkable star named TYC 4799-1733-1 was announced one year after its detection and after several months of painstaking measurements with many telescopes on the ground, including several from ESO. The star, now known as CoRoT-7, is located towards the constellation of Monoceros (the Unicorn) at a distance of about 500 light-years. Slightly smaller and cooler than our Sun, CoRoT-7 is also thought to be younger, with an age of about 1.5 billion years. Every 20.4 hours, the planet eclipses a small fraction of the light of the star for a little over one hour by one part in 3000 [2]. This planet, designated CoRoT-7b, is only 2.5 million kilometres away from its host star, or 23 times closer than Mercury is to the Sun. It has a radius that is about 80% greater than the Earth's. The initial set of measurements, however, could not provide the mass of the exoplanet. Such a result requires extremely precise measurements of the velocity of the star, which is pulled a tiny amount by the gravitational tug of the orbiting exoplanet. The problem with CoRoT-7b is that these tiny signals are blurred by stellar activity in the form of "starspots" (just like sunspots on our Sun), which are cooler regions on the surface of the star. Therefore, the main signal is linked to the rotation of the star, with makes one complete revolution in about 23 days. To get an answer, astronomers had to call upon the best exoplanet-hunting device in the world, the High Accuracy Radial velocity Planet Searcher (HARPS) spectrograph attached to the ESO 3.6-metre telescope at the La Silla Observatory in Chile. "Even though HARPS is certainly unbeaten when it comes to detecting small exoplanets, the measurements of CoRoT-7b proved to be so demanding that we had to gather 70 hours of observations on the star," says co-author François Bouchy. HARPS delivered, allowing the astronomers to tease out the 20.4-hour signal in the data. This figure led them to infer that CoRoT-7b has a mass of about five Earth masses, placing it in rare company as one of the lightest exoplanets yet found. "Since the planet's orbit is aligned so that we see it crossing the face of its parent star - it is said to be transiting - we can actually measure, and not simply infer, the mass of the exoplanet, which is the smallest that has been precisely measured for an exoplanet [3]," says team member Claire Moutou. "Moreover, as we have both the radius and the mass, we can determine the density and get a better idea of the internal structure of this planet." With a mass much closer to that of Earth than, for example, ice giant Neptune's 17 Earth masses, CoRoT-7b belongs to the category of "super-Earth" exoplanets. About a dozen of these bodies have been detected, though in the case of CoRoT-7b, this is the first time that the density has been measured for such a small exoplanet. The calculated density is close to Earth's, suggesting that the planet's composition is similarly rocky. "CoRoT-7b resulted in a 'tour de force' of astronomical measurements. The superb light curves of the space telescope CoRoT gave us the best radius measurement, and HARPS the best mass measurement for an exoplanet. Both were needed to discover a rocky planet with the same density as the Earth," says co-author Artie Hatzes. CoRoT-7b earns another distinction as the closest known exoplanet to its host star, which also makes it the fastest - it orbits its star at a speed of more than 750 000 kilometres per hour, more than seven times faster than the Earth's motion around the Sun. "In fact, CoRoT-7b is so close that the place may well look like Dante's Inferno, with a probable temperature on its 'day-face' above 2000 degrees and minus 200 degrees on its night face. Theoretical models suggest that the planet may have lava or boiling oceans on its surface. With such extreme conditions this planet is definitively not a place for life to develop," says Queloz. As a further testament to HARPS' sublime precision, the astronomers found from their dataset that CoRoT-7 hosts another exoplanet slightly further away than CoRoT-7b. Designated CoRoT-7c, it circles its host star in 3 days and 17 hours and has a mass about eight times that of Earth, so it too is classified as a super-Earth. Unlike CoRoT-7b, this sister world does not pass in front of its star as seen from Earth, so astronomers cannot measure its radius and thus its density. Given these findings, CoRoT-7 stands as the first star known to have a planetary system made of two short period super-Earths with one that transits its host. Notes [1] The CoRoT mission is a cooperation between France and its international partners: ESA, Austria, Belgium, Brazil, Germany and Spain. [2] We see exactly the same effect in our Solar System when Mercury or Venus transits the solar disc, as Venus did on 8 June 2004. In the past centuries such events were used to estimate the Sun-Earth distance, with extremely useful implications for astrophysics and celestial mechanics. [3] Gliese 581e, also discovered with HARPS, has a minimum mass about twice the Earth's mass (see ESO 15/09), but the exact geometry of the orbit is undefined, making its real mass unknown. In the case of CoRoT-7b, as the planet is transiting, the geometry is well defined, allowing the astronomers to measure the mass of the planet precisely. More information This research was presented in a paper to appear in a special issue of the Astronomy and Astrophysics journal on CoRoT, volume 506-1, 22 October 2009: "The CoRoT-7 planetary system: two orbiting Super-Earths", by D. Queloz et al. The team is composed of D. Queloz, R. Alonso, C. Lovis, M. Mayor, F. Pepe, D. Segransan, and S. Udry (Observatoire de Genève, Switzerland), F. Bouchy, F. and G. Hébrard, G. (IAP, Paris, France), C. Moutou, M. Barbieri, P. Barge, M. Deleuil, L. Jorda, and A. Llebaria (Laboratoire d'Astrophysique de Marseille, France), A. Hatzes, D. Gandolfi, E. Guenther, M. Hartmann, and G. Wuchterl (Thüringer Landessternwarte Tautenburg, Germany), M. Auvergne, A. Baglin, D. Rouan, and J. Schneider (LESIA, CNRS, Observatoire de Paris, France), W. Benz (University of Bern, Switzerland), P. Bordé, A. Léger, and M. Ollivier (IAS, UMR 8617 CNRS, Université Paris-Sud, France), H. Deeg (Instituto de Astrofísica de Canarias, Spain), R. Dvorak (University of Vienna, Austria), A. Erikson and H. Rauer (DLR, Berlin, Germany), S. Ferraz Mello (IAG-Universidade de Sao Paulo, Brazil), M. Fridlund (European Space Agency, ESTEC, The Netherlands), M. Gillon and P. Magain (Université de Liège, Belgium), T. Guillot (Observatoire de la Côte d'Azur, CNRS UMR 6202, Nice France), H. Lammer (Austrian Academy of Sciences), T. Mazeh (Tel Aviv University, Israel), and M. Pätzold (Köln University, Germany). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  7. The Roles of Tidal Evolution and Evaporative Mass Loss in the Origin of CoRoT-7 b

    NASA Technical Reports Server (NTRS)

    Jackson, Brian; Miller, Neil; Barnes, Rory; Raymond, Sean N.; Fortney, Jonathan J.; Greenberg, Richard

    2010-01-01

    CoRoT-7 b is the first confirmed rocky exoplanet, but, with an orbital semimajor axis of 0.0172 au, its origins may be unlike any rocky planet in our Solar System. In this study, we consider the roles of tidal evolution and evaporative mass loss in CoRoT-7 b's history, which together have modified the planet's mass and orbit. If CoRoT-7 b has always been a rocky body, evaporation may have driven off almost half its original mass, but the mass loss may depend sensitively on the extent of tidal decay of its orbit. As tides caused CoRoT-7 b's orbit to decay, they brought the planet closer to its host star, thereby enhancing the mass loss rate. Such a large mass loss also suggests the possibility that CoRoT-7 b began as a gas giant planet and had its original atmosphere completely evaporated. In this case, we find that CoRoT-7 b's original mass probably did not exceed 200 Earth masses (about two-third of a Jupiter mass). Tides raised on the host star by the planet may have significantly reduced the orbital semimajor axis, perhaps causing the planet to migrate through mean-motion resonances with the other planet in the system, CoRoT-7 c. The coupling between tidal evolution and mass loss may be important not only for CoRoT-7 b but also for other close-in exoplanets, and future studies of mass loss and orbital evolution may provide insight into the origin and fate of close-in planets, both rocky and gaseous.

  8. Corotating Magnetic Reconnection Site in Saturn’s Magnetosphere

    NASA Astrophysics Data System (ADS)

    Yao, Z. H.; Coates, A. J.; Ray, L. C.; Rae, I. J.; Grodent, D.; Jones, G. H.; Dougherty, M. K.; Owen, C. J.; Guo, R. L.; Dunn, W. R.; Radioti, A.; Pu, Z. Y.; Lewis, G. R.; Waite, J. H.; Gérard, J.-C.

    2017-09-01

    Using measurements from the Cassini spacecraft in Saturn’s magnetosphere, we propose a 3D physical picture of a corotating reconnection site, which can only be driven by an internally generated source. Our results demonstrate that the corotating magnetic reconnection can drive an expansion of the current sheet in Saturn’s magnetosphere and, consequently, can produce Fermi acceleration of electrons. This reconnection site lasted for longer than one of Saturn’s rotation period. The long-lasting and corotating natures of the magnetic reconnection site at Saturn suggest fundamentally different roles of magnetic reconnection in driving magnetospheric dynamics (e.g., the auroral precipitation) from the Earth. Our corotating reconnection picture could also potentially shed light on the fast rotating magnetized plasma environments in the solar system and beyond.

  9. Departure from corotation of the Io plasma torus - Local plasma production

    NASA Technical Reports Server (NTRS)

    Pontius, D. H., Jr.; Hill, T. W.

    1982-01-01

    The departure of the Jovian magnetosphere from rigid corotation is adequately explained by outward plasma transport at distances where L is greater than approximately 10. The departure of 5% observed in the Io plasma torus, however, is too large to be accounted for simply by plasma transport. Local plasma production is proposed as the main factor determining the corotation lag in the torus. The outward pick-up current provided by ionization of neutral atoms is calculated and related to the current produced in the ionosphere by the corotation lag. This leads to an expression giving the corotation lag of the torus as a function of radial distance. Charge transfer is found to be an important process, allowing the majority of the torus mass to be ejected from the magnetosphere in a neutral state. Thus, the mass loading rate is found to be several times that inferred from examination of the corotation lag associated with outward plasma transport.

  10. Frictional Torque on a Rotating Disc

    ERIC Educational Resources Information Center

    Mungan, Carl E.

    2012-01-01

    Resistance to motion often includes a dry frictional term independent of the speed of an object and a fluid drag term varying linearly with speed in the viscous limit. (At higher speeds, quadratic drag can also occur.) Here, measurements are performed for an aluminium disc mounted on bearings that is given an initial twist and allowed to spin…

  11. Characterizing bars in low surface brightness disc galaxies

    NASA Astrophysics Data System (ADS)

    Peters, Wesley; Kuzio de Naray, Rachel

    2018-05-01

    In this paper, we use B-band, I-band, and 3.6 μm azimuthal light profiles of four low surface brightness galaxies (LSBs; UGC 628, F568-1, F568-3, F563-V2) to characterize three bar parameters: length, strength, and corotation radius. We employ three techniques to measure the radius of the bars, including a new method using the azimuthal light profiles. We find comparable bar radii between the I-band and 3.6 μm for all four galaxies when using our azimuthal light profile method, and that our bar lengths are comparable to those in high surface brightness galaxies (HSBs). In addition, we find the bar strengths for our galaxies to be smaller than those for HSBs. Finally, we use Fourier transforms of the B-band, I-band, and 3.6 μm images to characterize the bars as either `fast' or `slow' by measuring the corotation radius via phase profiles. When using the B- and I-band phase crossings, we find three of our galaxies have faster than expected relative bar pattern speeds for galaxies expected to be embedded in centrally dense cold dark matter haloes. When using the B-band and 3.6 μm phase crossings, we find more ambiguous results, although the relative bar pattern speeds are still faster than expected. Since we find a very slow bar in F563-V2, we are confident that we are able to differentiate between fast and slow bars. Finally, we find no relation between bar strength and relative bar pattern speed when comparing our LSBs to HSBs.

  12. Growth Inhibition Test for Identification of Mycoplasma Species Utilizing Dried Antiserum-Impregnated Paper Discs

    PubMed Central

    Stanbridge, Eric; Hayflick, Leonard

    1967-01-01

    The growth inhibition test for identifying Mycoplasma species has been modified by drying antibody-impregnated paper discs at 5 C. When stored at −20 C, these discs have been found to retain their inhibitory activity for longer than 7 months. Since these discs can be stored for long period of time, significant advantages over present methods result. When, for example, discs are arranged on a ring, a single test can be used for the identification of an unknown human species. Valuable antisera can be distributed to other laboratories on paper discs in much less volume than can fluid antiserum. Considerable savings of time result from prior preparation of many discs that can then be stored and used over a long period of time. The growth-inhibiting antibody is stable, and the activity is not enhanced by a heat-labile accessory factor from fresh guinea pig serum which increases the antibody titer in the metabolic inhibition test. Images PMID:5340308

  13. Stellar Rotation: New Insight from CoRoT

    NASA Astrophysics Data System (ADS)

    Catala, C.; Goupil, M. J.; Michel, E.; Baglin, A.; de Medeiros, J. Renan; Gondoin, Ph.

    2009-02-01

    We present an overview of the new insight provided by the CoRoT satellite on stellar rotation. Thanks to its ultra-high precision, high duty cycle, long photometric monitoring of thousands of stars, CoRoT gives us a powerful tool to study stellar rotational modulation, and therefore to measure stellar rotational periods and to study active structures at the surface of stars. This paper presents preliminary results concerning this type of study. CoRoT will also provide us with an insight of internal stellar rotation via the measurement and exploitation of rotational splittings of oscillation modes. This approach to stellar rotation with CoRoT will require a careful analysis of the oscillation power spectra, which is in progress, but prospects for such measurements are presented.

  14. TIME-DEPENDENT COROTATION RESONANCE IN BARRED GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yu-Ting; Taam, Ronald E.; Pfenniger, Daniel, E-mail: ytwu@asiaa.sinica.edu.tw, E-mail: daniel.pfenniger@unige.ch, E-mail: taam@asiaa.sinica.edu.tw

    2016-10-20

    The effective potential neighboring the corotation resonance region in barred galaxies is shown to be strongly time-dependent in any rotating frame, due to the competition of nearby perturbations of similar strengths with differing rotation speeds. Contrary to the generally adopted assumption that in the bar rotating frame the corotation region should possess four stationary equilibrium points (Lagrange points), with high quality N -body simulations, we localize the instantaneous equilibrium points (EPs) and find that they circulate or oscillate broadly in azimuth with respect to the pattern speeds of the inner or outer perturbations. This implies that at the particle levelmore » the Jacobi integral is not well conserved around the corotation radius. That is, angular momentum exchanges decouple from energy exchanges, enhancing the chaotic diffusion of stars through the corotation region.« less

  15. Antioxidant capacity of synovial fluid in the temporomandibular joint correlated with radiological morphology of temporomandibular disorders.

    PubMed

    Ishimaru, Kyoko; Ohba, Seigo; Yoshimura, Hitoshi; Matsuda, Shinpei; Ishimaru, Jun-Ichi; Sano, Kazuo

    2015-02-01

    We investigated the correlation between the antioxidant capacity of synovial fluid and radiological findings of intra-articular structures in patients with disorders of the temporomandibular joint (TMJ). We recruited 21 patients (9 men and 12 women, aged 18-84 years of age) with such disorders, excluding myofascial pain and dysfunction syndrome, or other muscular disorders. The clinical variables recorded included age, sex, interincisal distance, and visual analogue pain scores (VAS). Radiological findings were obtained from diagnostic arthrogram and cone-beam computed tomography (CT). The antioxidant capacity of the synovial fluid was measured by chemiluminescence. Eleven patients were radiologically diagnosed with closed lock, and the remaining 10 with no closed lock. An anchored intra-articular disc was most often seen on cone-beam CT (n=19) followed by perforated disc (n=7), osteoarthrosis (n=7), and anterior disc displacement without reduction (n=5). Although there were no significant differences between antioxidant capacity and age, sex, VAS, or any findings on cone-beam CT, antioxidant capacity was significantly decreased in the patients with closed lock compared with those who did not have closed lock (p=0.02). The results suggest an association between the oxidative stress of the synovial fluid and closed-lock in disorders of the TMJ. Copyright © 2014 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  16. Transiting exoplanets from the CoRoT space mission. XI. CoRoT-8b: a hot and dense sub-Saturn around a K1 dwarf

    NASA Astrophysics Data System (ADS)

    Bordé, P.; Bouchy, F.; Deleuil, M.; Cabrera, J.; Jorda, L.; Lovis, C.; Csizmadia, S.; Aigrain, S.; Almenara, J. M.; Alonso, R.; Auvergne, M.; Baglin, A.; Barge, P.; Benz, W.; Bonomo, A. S.; Bruntt, H.; Carone, L.; Carpano, S.; Deeg, H.; Dvorak, R.; Erikson, A.; Ferraz-Mello, S.; Fridlund, M.; Gandolfi, D.; Gazzano, J.-C.; Gillon, M.; Guenther, E.; Guillot, T.; Guterman, P.; Hatzes, A.; Havel, M.; Hébrard, G.; Lammer, H.; Léger, A.; Mayor, M.; Mazeh, T.; Moutou, C.; Pätzold, M.; Pepe, F.; Ollivier, M.; Queloz, D.; Rauer, H.; Rouan, D.; Samuel, B.; Santerne, A.; Schneider, J.; Tingley, B.; Udry, S.; Weingrill, J.; Wuchterl, G.

    2010-09-01

    Aims: We report the discovery of CoRoT-8b, a dense small Saturn-class exoplanet that orbits a K1 dwarf in 6.2 days, and we derive its orbital parameters, mass, and radius. Methods: We analyzed two complementary data sets: the photometric transit curve of CoRoT-8b as measured by CoRoT and the radial velocity curve of CoRoT-8 as measured by the HARPS spectrometer. Results: We find that CoRoT-8b is on a circular orbit with a semi-major axis of 0.063 ± 0.001 AU. It has a radius of 0.57 ± 0.02 RJ, a mass of 0.22 ± 0.03 MJ, and therefore a mean density of 1.6 ± 0.1 g cm-3. Conclusions: With 67% of the size of Saturn and 72% of its mass, CoRoT-8b has a density comparable to that of Neptune (1.76 g cm-3). We estimate its content in heavy elements to be 47-63 {M}_⊕, and the mass of its hydrogen-helium envelope to be 7-23 {M}_⊕. At 0.063 AU, the thermal loss of hydrogen of CoRoT-8b should be no more than 0.1% over an assumed integrated lifetime of 3 Ga. Observations made with SOPHIE spectrograph at Observatoire de Haute Provence, France (PNP.07B.MOUT), and the HARPS spectrograph at ESO La Silla Observatory (081.C-0388 and 083.C-0186). The CoRoT space mission, launched on December 27, 2006, has been developed and is operated by the CNES with the contribution of Austria, Belgium, Brasil, ESA, Germany, and Spain.Both data sets are available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/520/A66

  17. Relationship between disc injury and manual lifting: a poroelastic finite element model study.

    PubMed

    Natarajan, R N; Williams, J R; Lavender, S A; An, H S; Anderson, G B

    2008-02-01

    Understanding how failure originates in a lumbar motion segment subjected to loading conditions that are representative of manual lifting is important because it will pave the way for a better formulation of the exposure-injury relationship. The aim of the current investigation was to use a poroelastic finite element model of a human lumbar disc to determine its biomechanical characteristics under loading conditions that corresponded to three different, commonly occurring lifting activities and to identify the most hazardous type of loading with regard to damage to the disc. The current study showed that asymmetric lifting may increase the risk of back injury and pain. Lifting that involved lateral bending (asymmetric lifting) of the trunk was found to produce stresses at a localized area in the annulus, annuluar fibres, end plates, and facet joints that were higher than their respective tissue failure strength. Thus asymmetric lifting, if performed over a large number of cycles, might help to propagate this localized failure of the disc tissue to a larger area, owing to fatigue. The analyses also showed that largest fluid exchange between the nucleus and the end plates occurred during asymmetric lifting. If the fluid exchange is restricted owing to end plate calcification or sclerosis of the subchondral bone, high intradiscal pressure might develop, leading to higher disc bulge causing back pain.

  18. Ground-based photometric support for the CoRoT mission by the CoRoT-Hungarian Asteroseismology Group

    NASA Astrophysics Data System (ADS)

    Bognár, Zs.; Paparó, M.

    2012-12-01

    The CoRoT-Hungarian Asteroseismology Group was established in 2005 and joined the preparatory work of the CoRoT Mission via an ESA PECS project. After the successful launch of the telescope, we have continued our work of ground-based multi-colour photometric observations and contributed to the analyses of CoRoT data. Our observations were focused on δ Scuti, γ Doradus, and RR Lyrae stars. The follow-up of some selected targets' pulsations in different wavelengths has provided valuable information for mode identification. We provided additional support by the confirmation of relatively faint variables' spectral types. We proved that our ground-based observations can help in the interpretation of a target with a contaminated CoRoT light curve. In this paper, we summarize our most important results of the photometric support for the CoRoT Mission. The CoRoT space mission was developed and is operated by the French space agency CNES, with participation of ESA's RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain.

  19. Computer simulation of refining process of a high consistency disc refiner based on CFD

    NASA Astrophysics Data System (ADS)

    Wang, Ping; Yang, Jianwei; Wang, Jiahui

    2017-08-01

    In order to reduce refining energy consumption, the ANSYS CFX was used to simulate the refining process of a high consistency disc refiner. In the first it was assumed to be uniform Newton fluid of turbulent state in disc refiner with the k-ɛ flow model; then meshed grids and set the boundary conditions in 3-D model of the disc refiner; and then was simulated and analyzed; finally, the viscosity of the pulp were measured. The results show that the CFD method can be used to analyze the pressure and torque on the disc plate, so as to calculate the refining power, and streamlines and velocity vectors can also be observed. CFD simulation can optimize parameters of the bar and groove, which is of great significance to reduce the experimental cost and cycle.

  20. Automated assembly of microfluidic "lab-on-a-disc"

    NASA Astrophysics Data System (ADS)

    Berger, M.; Müller, T.; Voebel, T.; Baum, C.; Glennon, T.; Mishra, R.; Kinahan, D.; King, D.; Ducrée, J.; Brecher, C.

    2018-02-01

    Point-of-care (POC) testing attracts more and more attention in the medical health sector because of their specific property to perform the diagnostic close to the patient. The fast diagnosis right at the hospital or the doctor's office improves the medical reaction time and the chances for a successful healing process. One of this POC test systems is a "Lab-on-a-Disc" (LoaD) which looks like a compact disc crisscrossed with microfluidic tubes and cavities. The fluid to be analysed is placed in the LoaD and an external device then rotates the LoaD. The cavities inside the LoaD and the centrifugal force ensure a clearly defined sequence of the analysis. Furthermore, we aim for an inexpensive manufacture of the medical product without neglecting its quality and functionality. Therefore, the Fraunhofer IPT works on an assembly cell to implement dissoluble films concisely into the disc. This dissoluble film demonstrates its successful usage as a gate for the fluid, which opens after a predefined moment in the cycle. Furthermore, we investigate to integrate a laser welding process into our gantry system and demonstrate its efficiency with the welding of polymer discs. This procedure is clinically safe because no further laser absorption material is needed in the sealing process, which might pollute the LoaD. Moreover, this process allows the alignment of several discs before the welding and therefore leads to precisely manufactured LoaDs in large quantities. All these methods together enable a fast, costefficient and reliable mass production to bring POC testing among the people.

  1. CoRoT-7b: SUPER-EARTH OR SUPER-Io?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, Rory; Kaib, Nathan A.; Raymond, Sean N.

    2010-02-01

    CoRoT-7b, a planet about 70% larger than the Earth orbiting a Sun-like star, is the first-discovered rocky exoplanet, and hence has been dubbed a 'super-Earth'. Some initial studies suggested that since the planet is so close to its host star, it receives enough insolation to partially melt its surface. However, these past studies failed to take into consideration the role that tides may play in this system. Even if the planet's eccentricity has always been zero, we show that tidal decay of the semimajor axis could have been large enough that the planet formed on a wider orbit which receivedmore » less insolation. Moreover, CoRoT-7b could be tidally heated at a rate that dominates its geophysics and drives extreme volcanism. In this case, CoRoT-7b is a 'super-Io' that, like Jupiter's volcanic moon, is dominated by volcanism and rapid resurfacing. Such heating could occur with an eccentricity of just 10{sup -5}. This small value could be driven by CoRoT-7c if its own eccentricity is larger than {approx}10{sup -4}. CoRoT-7b may be the first of a class of planetary super-Ios likely to be revealed by the CoRoT and Kepler spacecraft.« less

  2. Excitation of Non-Axisymmetric g-MOde Oscillations by Corotation Resonance in Thin Relativistic Disks

    NASA Astrophysics Data System (ADS)

    Kato, Shoji

    2002-02-01

    Various modes of oscillations are trapped in the inner region of geometrically thin relativistic disks. Among these oscillations, non-axisymmetric g-mode oscillations have been less studied compared with other modes of oscillations. The modes are, however, interesting since a corotation resonance appears in the trapped region. We mathematically examine whether the modes can be excited by the effects of the corotation resonance. This examination is made under an assumption that the inner and outer Lindblad radii are sufficiently separated in the opposite directions from the corotation radius. The results of analyses suggest that the waves are excited by the corotation resonance. The presence of the excitation suggests that the non-axisymmetric trapped g-mode oscillations are one of possible candidates for the quasi-periodic oscillations of a few hundred to kHz observed in some X-ray sources.

  3. Flow of “stress power-law” fluids between parallel rotating discs with distinct axes

    DOE PAGES

    Srinivasan, Shriram; Karra, Satish

    2015-04-16

    The problem of flow between parallel rotating discs with distinct axes corresponds to the case of flow in an orthogonal rheometer and has been studied extensively for different fluids since the instrument's inception. All the prior studies presume a constitutive prescription of the fluid stress in terms of the kinematical variables. In this paper, we approach the problem from a different perspective, i.e., a constitutive specification of the symmetric part of the velocity gradient in terms of the Cauchy stress. Such an approach ensures that the boundary conditions can be incorporated in a manner quite faithful to real world experimentsmore » with the instrument. Interestingly, the choice of the boundary condition is critical to the solvability of the problem for the case of creeping/Stokes flow. Furthermore, when the no-slip condition is enforced at the boundaries, depending on the model parameters and axes offset, the fluid response can show non-uniqueness or unsolvability, features which are absent in a conventional constitutive specification. In case of creeping/Stokes flow with prescribed values of the stress, the fluid response is indeterminate. We also record the response of a particular case of the given “stress power-law” fluid; one that cannot be attained by the conventional power-law fluids.« less

  4. VALVE

    DOEpatents

    Arkelyan, A.M.; Rickard, C.L.

    1962-04-17

    A gate valve for controlling the flow of fluid in separate concentric ducts or channels by means of a single valve is described. In one position, the valve sealing discs engage opposed sets of concentric ducts leading to the concentric pipes defining the flow channels to block flow therethrough. In another position, the discs are withdrawn from engagement with the opposed ducts and at the same time a bridging section is interposed therebetween to define concentric paths coextensive with and connecting the opposed ducts to facilitate flow therebetween. A wedge block arrangement is employed with each sealing disc to enable it to engage the ducts. The wedge block arrangement also facilitates unobstructcd withdrawal of the discs out of the intervening space between the sets of ducts. (AEC)

  5. Wave disc engine apparatus

    DOEpatents

    Muller, Norbert; Piechna, Janusz; Sun, Guangwei; Parraga, Pablo-Francisco

    2018-01-02

    A wave disc engine apparatus is provided. A further aspect employs a constricted nozzle in a wave rotor channel. A further aspect provides a sharp bend between an inlet and an outlet in a fluid pathway of a wave rotor, with the bend being spaced away from a peripheral edge of the wave rotor. A radial wave rotor for generating electricity in an automotive vehicle is disclosed in yet another aspect.

  6. Enforcing dust mass conservation in 3D simulations of tightly coupled grains with the PHANTOM SPH code

    NASA Astrophysics Data System (ADS)

    Ballabio, G.; Dipierro, G.; Veronesi, B.; Lodato, G.; Hutchison, M.; Laibe, G.; Price, D. J.

    2018-06-01

    We describe a new implementation of the one-fluid method in the SPH code PHANTOM to simulate the dynamics of dust grains in gas protoplanetary discs. We revise and extend previously developed algorithms by computing the evolution of a new fluid quantity that produces a more accurate and numerically controlled evolution of the dust dynamics. Moreover, by limiting the stopping time of uncoupled grains that violate the assumptions of the terminal velocity approximation, we avoid fatal numerical errors in mass conservation. We test and validate our new algorithm by running 3D SPH simulations of a large range of disc models with tightly and marginally coupled grains.

  7. Mechanical Vibrations Reduce the Intervertebral Disc Swelling and Muscle Atrophy from Bed Rest

    NASA Technical Reports Server (NTRS)

    Holguin, Nilsson; Muir, Jesse; Evans, Harlan J.; Qin, Yi-Xian; Rubin, Clinton; Wagshul, Mark; Judex, Stefan

    2007-01-01

    Loss of functional weight bearing, such as experienced during space flight or bed rest (BR), distorts intervertebral disc (IVD) and muscle morphology. IVDs are avascular structures consisting of cells that may derive their nutrition and waste removal from the load induced fluid flow into and out of the disc. A diurnal cycle is produced by forces related to weight bearing and muscular activity, and comprised of a supine and erect posture over a 24 hr period. A diurnal cycle will include a disc volume change of approx. 10-13%. However, in space there are little or no diurnal changes because of the microgravity, which removes the gravitational load and compressive forces to the back muscles. The BR model and the etiology of the disc swelling and muscle atrophy could provide insight into those subjects confined to bed for chronic disease/injury and aging. We hypothesize that extremely low-magnitude, high frequency mechanical vibrations will abate the disc degeneration and muscle loss associated with long-term BR.

  8. Hypergolic ignitor

    NASA Technical Reports Server (NTRS)

    Taylor, Eric S. (Inventor); Myers, W. Neill (Inventor); Martin, Michael A. (Inventor)

    2005-01-01

    An ignitor for use with the MC-1 rocket engine has a cartridge bounded by two end caps with rupture disc assemblies connected thereto. A piston assembly within the cartridge moves from one end of the cartridge during the ignition process. The inlet of the ignitor communicates with a supply taken from the discharge of the fuel pump. When the pump is initially started, the pressure differential bursts the first rupture disc to begin the movement of the piston assembly toward the discharge end. The pressurization of the cartridge causes the second rupture disc to rupture and hypergolic fluid contained within the cartridge is discharged out the ignitor outlet.

  9. CFD Approach To Investigate The Flow Characteristics In Bi-Directional Ventilated Disc Brake

    NASA Astrophysics Data System (ADS)

    Munisamy, Kannan M.; Yusoff, Mohd. Zamri; Shuaib, Norshah Hafeez; Thangaraju, Savithry K.

    2010-06-01

    This paper presents experimental and Computational Fluids Dynamics (CFD) investigations of the flow in ventilated brake discs. Development of an experiment rig with basic measuring devices are detailed out and following a validation study, the possible improvement in the brake cooling can be further analyzed using CFD analysis. The mass flow rate is determined from basic flow measurement technique following that the conventional bi-directional passenger car is simulated using commercial CFD software FLUENT™. The CFD simulation is used to investigate the flow characteristics in between blade flow of the bi-directional ventilated disc brake.

  10. The COROT Archive at LAEFF

    NASA Astrophysics Data System (ADS)

    Velasco, Almudena; Gutiérrez, Raúl; Solano, Enrique; García-Torres, Miguel; López, Mauro; Sarro, Luis Manuel

    We describe here the main capabilities of the COROT archive. The archive (http://sdc.laeff.inta.es/corotfa/jsp/searchform.jsp), managed at LAEFF in the framework of the Spanish Virtual Observatory (http://svo.laeff.inta.es), has been developed following the standards and requirements defined by IVOA (http://www.ivoa.net). The COROT archive at LAEFF will be publicly available by the end of 2008.

  11. Flow visualization in radial flow through stationary and corotating parallel disks

    NASA Astrophysics Data System (ADS)

    Mochizuki, S.; Tanaka, M.; Yang, Wen-Jei

    Paraffin mist is used here as a tracer to observe the patterns in the radial flow through both stationary and corotating parallel disks. The periodic and alternative generation of separation bubbles on both disks and the resulting flow fluctuation and turbulent flow in the radial channel are studied. Stall cells are visualized around the outer rim of the corotating disks.

  12. Secondary Vortex Structures in Vortex Generator Induced Flow

    NASA Astrophysics Data System (ADS)

    Velte, Clara; Okulov, Valery; Hansen, Martin

    2010-11-01

    Passive rectangular vane actuators can induce a longitudinal vortex that redistributes the momentum in the boundary layer to control the flow. Recent experiments [1] as well as previous studies [2] have shown that a secondary vortex of opposite sign is generated along with the primary one, supposedly from local separation of the boundary layer due to the primary vortex. 2D flow visualizations of a vortex in the vicinity of a boundary support this hypothesis [3]. These secondary vortices are studied for various configurations -- single generator, counter- and co-rotating cascades. The objective is to study their removal through cancelation in cascades using Stereoscopic Particle Image Velocimetry and flow visualization.[4pt] [1] Velte, Hansen and Okulov, J. Fluid Mech. 619, 2009.[0pt] [2] Zhang, Int. J. Heat Fluid Flow 21 2000.[0pt] [3] Harris, Miller and Williamson, APS abstract 2009.

  13. Role of load history in intervertebral disc mechanics and intradiscal pressure generation.

    PubMed

    Hwang, David; Gabai, Adam S; Yu, Miao; Yew, Alvin G; Hsieh, Adam H

    2012-01-01

    Solid-fluid interactions play an important role in mediating viscoelastic behaviour of biological tissues. In the intervertebral disc, water content is governed by a number of factors, including age, disease and mechanical loads, leading to changes in stiffness characteristics. We hypothesized that zonal stress distributions depend on load history, or the prior stresses experienced by the disc. To investigate these effects, rat caudal motion segments were subjected to compressive creep biomechanical testing in vitro using a protocol that consisted of two phases: a Prestress Phase (varied to represent different histories of load) followed immediately by an Exertion Phase, identical across all Prestress groups. Three analytical models were used to fit the experimental data in order to evaluate load history effects on gross and zonal disc mechanics. Model results indicated that while gross transient response was insensitive to load history, there may be changes in the internal mechanics of the disc. In particular, a fluid transport model suggested that the role of the nucleus pulposus in resisting creep during Exertion depended on Prestress conditions. Separate experiments using similarly defined load history regimens were performed to verify these predictions by measuring intradiscal pressure with a fibre optic sensor. We found that the ability for intradiscal pressure generation was load history-dependent and exhibited even greater sensitivity than predicted by analytical models. A 0.5 MPa Exertion load resulted in 537.2 kPa IDP for low magnitude Prestress compared with 373.7 kPa for high magnitude Prestress. Based on these measurements, we developed a simple model that may describe the pressure-shear environment in the nucleus pulposus. These findings may have important implications on our understanding of how mechanical stress contributes to disc health and disease etiology.

  14. Existence of a component corotating with the earth in high-latitude disturbance magnetic fields

    NASA Technical Reports Server (NTRS)

    Suzuki, A.; Kim, J. S.; Sugiura, M.

    1982-01-01

    A study of the data from the high-latitude North American IMS network of magnetic stations suggests that there is a component in substorm perturbations that corotates with the earth. It is as yet not certain whether the existence of this component stems from the corotation of a part of the magnetospheric plasma involved in the substorm mechanism or if it is a 'phase change' resulting from the control of the substorm manifestations by the earth's main magnetic field which is not axially symmetric. There are other geophysical phenomena showing a persistence of longitudinal variations corotating with the earth. These phenomena are of significance for a better understanding of ionosphere-magnetosphere coupling.

  15. An experimental and finite element poroelastic creep response analysis of an intervertebral hydrogel disc model in axial compression.

    PubMed

    Silva, P; Crozier, S; Veidt, M; Pearcy, M J

    2005-07-01

    A hydrogel intervertebral disc (IVD) model consisting of an inner nucleus core and an outer anulus ring was manufactured from 30 and 35% by weight Poly(vinyl alcohol) hydrogel (PVA-H) concentrations and subjected to axial compression in between saturated porous endplates at 200 N for 11 h, 30 min. Repeat experiments (n=4) on different samples (N=2) show good reproducibility of fluid loss and axial deformation. An axisymmetric nonlinear poroelastic finite element model with variable permeability was developed using commercial finite element software to compare axial deformation and predicted fluid loss with experimental data. The FE predictions indicate differential fluid loss similar to that of biological IVDs, with the nucleus losing more water than the anulus, and there is overall good agreement between experimental and finite element predicted fluid loss. The stress distribution pattern indicates important similarities with the biological IVD that includes stress transference from the nucleus to the anulus upon sustained loading and renders it suitable as a model that can be used in future studies to better understand the role of fluid and stress in biological IVDs.

  16. Digital pressure transducer for use at high temperatures

    DOEpatents

    Karplus, Henry H. B.

    1981-01-01

    A digital pressure sensor for measuring fluid pressures at relatively high temperatures includes an electrically conducting fiber coupled to the fluid by a force disc that causes tension in the fiber to be a function of fluid pressure. The tension causes changes in the mechanical resonant frequency of the fiber, which is caused to vibrate in a magnetic field to produce an electrical signal from a positive-feedback amplifier at the resonant frequency. A count of this frequency provides a measure of the fluid pressure.

  17. Digital pressure transducer for use at high temperatures

    DOEpatents

    Karplus, H.H.B.

    A digital pressure sensor for measuring fluid pressures at relatively high temperatures includes an electrically conducting fiber coupled to the fluid by a force disc that causes tension in the fiber to be a function of fluid pressure. The tension causes changes in the mechanical resonant frequency of the fiber, which is caused to vibrate in a magnetic field to produce an electrical signal from a positive-feedback amplifier at the resonant frequency. A count of this frequency provides a measure of the fluid pressure.

  18. The flow in the spiral arms of slowly rotating bar-spiral models

    NASA Astrophysics Data System (ADS)

    Patsis, P. A.; Tsigaridi, L.

    2017-07-01

    We use response models to study the stellar and gaseous flows in the spiral arm regions of slow rotating barred-spiral potentials. We vary the pattern speed so that the corotation-to bar radius ratios (Rc/Rb) are in the range 2 < Rc/Rb < 3. We find in general two sets of spirals, one inside and one outside corotation, which are reinforced by two different dynamical mechanisms. The bar and the spirals inside corotation are supported by regular orbits, while the spirals beyond corotation are associated with the "chaotic spirals", both in the stellar as well as in the gaseous case. The main difference in the two flows is the larger dispersion of velocities we encounter in the stellar (test-particles) models. The inner and the outer spirals are in general not connected. In most cases we find an oval component inside corotation, that surrounds the inner barred-spiral structure and separates it from the outer spirals. In the gaseous models, clumps of local overdensities are formed along the inner arms as the gas shocks in the spirals region, while clumps in the spirals beyond corotation are formed as the flows along the two outer arms meet and join each other close to the unstable Lagrangian points of the system.

  19. Fluid Dynamical Profiles and Constants of Motionfrom d-Branes

    NASA Astrophysics Data System (ADS)

    Jackiw, R.; Polychronakos, A. P.

    Various fluid mechanical systems enjoy a hidden, higher-dimensional dynamical Poincaré symmetry, which arises owing to their descent from a Nambu-Goto action. Also, for the same reason, there are equivalence transformations between different models. These interconnections, summarized by the diagram below, are discussed in our paper.

  20. Europe looks forward to COROT launch

    NASA Astrophysics Data System (ADS)

    2006-12-01

    While CNES is completing preparations for the launch from Baikonur/Kazakhstan, ESA and a large number of European scientists involved in the mission are eagerly awaiting this event and the first scientific results to come through. What is COROT? COROT stands for ‘Convection Rotation and planetary Transits’. The name describes the mission’s scientific goals. ‘Convection and rotation’ refer to the satellite’s capability to probe stellar interiors, studying the acoustic waves that ripple across the surface of stars, a technique called asteroseismology. ‘Transit’ refers to the technique whereby the presence of a planet orbiting a star can be inferred from the dimming starlight caused when the planet passes in front of it. To achieve its twin scientific objectives, COROT will monitor some 120,000 stars with its 30-centimetre telescope. COROT will lead a bold new search for planets around other stars. In the decade since the first discovery in 1995 of an exoplanet (51 Pegasi b), more than 200 other such planets outside our solar system have been detected using ground-based observatories. The COROT space telescope promises to find many more during its two-and-a-half-year mission, expanding the frontiers of our knowledge towards ever-smaller planets. Many of the planets COROT will detect are expected to be 'hot Jupiters', gaseous worlds. An unknown percentage of those detected are expected to be rocky planets, maybe just a few times larger than the Earth (or smaller, even). If COROT finds such planets, they will constitute a new class of planet altogether. While it is looking at a star, COROT will also be able to detect 'starquakes', acoustic waves generated deep inside a star that send ripples across its surface, altering its brightness. The exact nature of the ripples allows astronomers to calculate the star's precise mass, age and chemical composition. COROT’s European dimension The COROT mission was first proposed by CNES back in 1996. A call for potential European partners was issued in 1999. CNES gave the green light to build the spacecraft in 2000 and is now leading the mission. Its international partners are ESA, Austria, Belgium, Germany, Spain and Brazil. CNES is responsible for the overall system and for the launch contract with Franco-Russian company Starsem, which is providing the Soyuz launch service. The contributions of the other international partners range from the provision of hardware items to ground stations, complementary ground-based observation of targets to be studied by COROT and analysis of the scientific data to come. ESA is playing a crucial role in the mission. It has contributed the optics for the telescope positioned at the heart of the spacecraft and has carried out payload testing. The telescope’s baffle was developed by a team at ESA’s technical centre ESTEC. ESA has also provided the onboard data processing units. And under this truly collaborative effort, a number of scientists from various European countries - Denmark, Switzerland, the United Kingdom and Portugal - have been selected as Co-Investigators following open competition. As a result of ESA’s participation, scientists from its Member States will also be given access to COROT data.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Z. H.; Coates, A. J.; Ray, L. C.

    Using measurements from the Cassini spacecraft in Saturn’s magnetosphere, we propose a 3D physical picture of a corotating reconnection site, which can only be driven by an internally generated source. Our results demonstrate that the corotating magnetic reconnection can drive an expansion of the current sheet in Saturn’s magnetosphere and, consequently, can produce Fermi acceleration of electrons. This reconnection site lasted for longer than one of Saturn’s rotation period. The long-lasting and corotating natures of the magnetic reconnection site at Saturn suggest fundamentally different roles of magnetic reconnection in driving magnetospheric dynamics (e.g., the auroral precipitation) from the Earth. Ourmore » corotating reconnection picture could also potentially shed light on the fast rotating magnetized plasma environments in the solar system and beyond.« less

  2. Human Cartilage Endplate Permeability Varies with Degeneration and Intervertebral Disc Site

    PubMed Central

    DeLucca, John F.; Cortes, Daniel H.; Jacobs, Nathan T.; Vresilovic, Edward J.; Duncan, Randall L.; Elliott, Dawn M.

    2016-01-01

    Despite the critical functions the human cartilage endplate (CEP) plays in the intervertebral disc, little is known about its structural and mechanical properties and their changes with degeneration. Quantifying these changes with degeneration is important for understanding how the CEP contributes to the function and pathology of the disc. Therefore the objectives of this study were to quantify the effect of disc degeneration on human CEP mechanical properties, determine the influence of superior and inferior disc site on mechanics and composition, and simulate the role of collagen fibers in CEP and disc mechanics using a validated finite element model. Confined compression data and biochemical composition data were used in a biphasic-swelling model to calculate compressive extrafibrillar elastic and permeability properties. Tensile properties were obtained by applying published tensile test data to an ellipsoidal fiber distribution. Results showed that with degeneration CEP permeability decreased 50–60% suggesting that transport is inhibited in the degenerate disc. CEP fibers are organized parallel to the vertebrae and nucleus pulposus and may contribute to large shear strains (0.1–0.2) and delamination failure of the CEP commonly seen in herniated disc tissue. Fiber-reinforcement also reduces CEP axial strains thereby enhancing fluid flux by a factor of 1.8. Collectively, these results suggest that the structure and mechanics of the CEP may play critical roles in the solute transport and disc mechanics. PMID:26874969

  3. Purely hydrodynamic ordering of rotating disks at a finite Reynolds number.

    PubMed

    Goto, Yusuke; Tanaka, Hajime

    2015-01-28

    Self-organization of moving objects in hydrodynamic environments has recently attracted considerable attention in connection to natural phenomena and living systems. However, the underlying physical mechanism is much less clear due to the intrinsically nonequilibrium nature, compared with self-organization of thermal systems. Hydrodynamic interactions are believed to play a crucial role in such phenomena. To elucidate the fundamental physical nature of many-body hydrodynamic interactions at a finite Reynolds number, here we study a system of co-rotating hard disks in a two-dimensional viscous fluid at zero temperature. Despite the absence of thermal noise, this system exhibits rich phase behaviours, including a fluid state with diffusive dynamics, a cluster state, a hexatic state, a glassy state, a plastic crystal state and phase demixing. We reveal that these behaviours are induced by the off-axis and many-body nature of nonlinear hydrodynamic interactions and the finite time required for propagating the interactions by momentum diffusion.

  4. On a class of unsteady three-dimensional Navier Stokes solutions relevant to rotating disc flows: Threshold amplitudes and finite time singularities

    NASA Technical Reports Server (NTRS)

    Hall, Philip; Balakumar, P.

    1990-01-01

    A class of exact steady and unsteady solutions of the Navier Stokes equations in cylindrical polar coordinates is given. The flows correspond to the motion induced by an infinite disc rotating with constant angular velocity about the z-axis in a fluid occupying a semi-infinite region which, at large distances from the disc, has velocity field proportional to (x,-y,O) with respect to a Cartesian coordinate system. It is shown that when the rate of rotation is large, Karman's exact solution for a disc rotating in an otherwise motionless fluid is recovered. In the limit of zero rotation rate a particular form of Howarth's exact solution for three-dimensional stagnation point flow is obtained. The unsteady form of the partial differential system describing this class of flow may be generalized to time-periodic equilibrium flows. In addition the unsteady equations are shown to describe a strongly nonlinear instability of Karman's rotating disc flow. It is shown that sufficiently large perturbations lead to a finite time breakdown of that flow whilst smaller disturbances decay to zero. If the stagnation point flow at infinity is sufficiently strong, the steady basic states become linearly unstable. In fact there is then a continuous spectrum of unstable eigenvalues of the stability equations but, if the initial value problem is considered, it is found that, at large values of time, the continuous spectrum leads to a velocity field growing exponentially in time with an amplitude decaying algebraically in time.

  5. Phase Variations, Transits and Eclipses of the Misfit CoRoT-2b

    NASA Astrophysics Data System (ADS)

    Cowan, Nicolas; Deming, Drake; Gillon, Michael; Knutson, Heather; Madhusudhan, Nikku; Rauscher, Emily

    2011-05-01

    We propose to observe the nearby transiting hot Jupiter CoRoT-2b for a little over one planetary orbit on two occasions, yielding two secondary eclipses, a transit, and a full phase curve in each of the 3.6 and 4.5 micron channels. These data will help resolve the unique nature of this bloated planet: CoRoT-2b is the only hot Jupiter that is poorly fit by either inverted or non-inverted spectral models (Deming et al. 2011). Two hypotheses have been proposed to explain the peculiar mid-IR colors of CoRoT-2b, and thermal phase measurements with Spitzer's continuous, high-precision photometry will be able to distinguish between them: the planet has a non-inverted atmosphere but is losing mass to its host star, or the planet has a peculiar kind of temperature inversion due to mysterious atmospheric scatterers. CoRoT-2b is also among the most inflated hot Jupiters and, because of its relatively large mass, cannot be reconciled with interior evolution models, despite a small but non-zero eccentricity. A recent planetary collision may be necessary to explain the planet's youthful radius (Guillot & Havel 2011). Finally, the planet's extremely young host star, CoRoT-2, is the most chromospherically active of all transit hosts. This appears to be a common thread connecting all of its planet's peculiarities: the high UV flux of the star will drive mass loss, as well as photochemistry. Most importantly, the radius measurement of the planet at optical wavelengths may be contaminated by star spots. Mid-IR transit measurements from Spitzer will help resolve the mystery of CoRoT-2b's inflated radius.

  6. Non-radial pulsations in Be stars. Preparation of the COROT space mission.

    NASA Astrophysics Data System (ADS)

    Gutierrez-Soto, J.

    2006-12-01

    The space mission COROT scheduled to be launched in December 2006, will provide ultra high precision, relative stellar photometry for very long continuous observing runs. Up to ten stars will be observed in the seismology fields with a photometric accuracy of 1 ppm, and several thousands in the exoplanet fields with an accuracy of a few 10-4 and colour information. The observations of Be stars with COROT will provide photometric time series with unprecedented quality. Their analysis will allow us to qualitatively improve our knowledge and understanding of the pulsational characteristics of Be stars. In consequence, we have started a research project aimed at observing Be stars both in the seismology and exoplanet fields of COROT. In this thesis we present the first step of this project, which is the preparation and study of the sample of Be stars that will be observed by COROT. We have performed photometric analysis of all Be stars located in the seismology fields. Special emphasis has been given to two Be stars (NW Ser and V1446 Aql) in which we have detected multiperiodic variability and which we have modelled in terms of stellar pulsations. We have also performed an in-depth spectroscopic study of NW Ser and modelled the non-radial pulsations taking into account the rotational effects. A technique to search for faint Be stars based on CCD photometry has also been developed. We present here a list of faint Be stars located in the exoplanet fields of COROT detected with this technique and which we propose as targets for COROT. In addition, we have proven that our period-analysis techniques are suitable to detect multiperiodicity in large temporal baseline data. In particular, we have detected non-radial pulsations in some Be stars in the low-metallicity galaxy SMC.

  7. Elemental abundances in corotating events

    NASA Technical Reports Server (NTRS)

    Vonrosenvinge, T. T.; Mcguire, R. E.

    1986-01-01

    Large, persistent solar-wind streams in 1973 and 1974 produced corotating interaction regions which accelerated particles to energies of a few MeV/nucleon. The proton to helium ratio (H/He) reported was remarkably constant at a value (22 + or - 5) equal to that in the solar wind (32 + or - 3), suggesting that particles were being accelerated directly out of the solar wind. Preliminary results from a similar study approximately 11 years (i.e., one solar cycle) later are reported. Corotating events were identified by surveying the solar wind data, energetic particle time-histories and anisotropies. This data was all obtained from the ISEE-3/ICE spacecraft. These events also show H/He ratios similar to that in the solar wind. In addition, other corotating events were examined at times when solar flare events could have injected particles into the corresponding corotating interaction regions. It was found that in these cases there is evidence for H/He ratios which are significantly different from that of the solar wind but which are consistent with the range of values found in solar flare events.

  8. Generalized Boussinesq-Scriven surface fluid model with curvature dissipation for liquid surfaces and membranes.

    PubMed

    Aguilar Gutierrez, Oscar F; Herrera Valencia, Edtson E; Rey, Alejandro D

    2017-10-01

    Curvature dissipation is relevant in synthetic and biological processes, from fluctuations in semi-flexible polymer solutions, to buckling of liquid columns, tomembrane cell wall functioning. We present a micromechanical model of curvature dissipation relevant to fluid membranes and liquid surfaces based on a parallel surface parameterization and a stress constitutive equation appropriate for anisotropic fluids and fluid membranes.The derived model, aimed at high curvature and high rate of change of curvature in liquid surfaces and membranes, introduces additional viscous modes not included in the widely used 2D Boussinesq-Scriven rheological constitutive equation for surface fluids.The kinematic tensors that emerge from theparallel surface parameterization are the interfacial rate of deformation and the surface co-rotational Zaremba-Jaumann derivative of the curvature, which are used to classify all possibledissipative planar and non-planar modes. The curvature dissipation function that accounts for bending, torsion and twist rates is derived and analyzed under several constraints, including the important inextensional bending mode.A representative application of the curvature dissipation model to the periodic oscillation in nano-wrinkled outer hair cells show how and why curvature dissipation decreases with frequency, and why the 100kHz frequency range is selected. These results contribute to characterize curvature dissipation in membranes and liquid surfaces. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Propeller installation effects on turboprop aircraft acoustics

    NASA Astrophysics Data System (ADS)

    Chirico, Giulia; Barakos, George N.; Bown, Nicholas

    2018-06-01

    Propeller installation options for a twin-engined turboprop aircraft are evaluated at cruise conditions, aiming to identify the quieter configuration. Computational fluid dynamics is used to investigate the near-field acoustics and transfer functions are employed to estimate the interior cabin noise. Co-rotating and counter-rotating installation options are compared. The effect of propeller synchrophasing is also considered. The employed method captures the complexity of the acoustic field generated by the interactions of the propeller sound fields among each other and with the airframe, showing also the importance of simulating the whole problem to predict the actual noise on a flying aircraft. Marked differences among the various layouts are observed. The counter-rotating top-in option appears the best in terms of acoustics, the top-out propeller rotation leading to louder noise because of inflow conditions and the occurrence of constructive acoustic interferences. Synchrophasing is shown to be beneficial for co-rotating propellers, specially regarding the interior noise, because of favorable effects in the interaction between the propeller direct sound field and the noise due to the airframe. An angle closer to the maximum relative blade shift was found to be the best choice, yielding, however, higher sound levels than those provided by the counter-rotating top-in layout.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pugliese, D.; Stuchlík, Z., E-mail: d.pugliese.physics@gmail.com, E-mail: zdenek.stuchlik@physics.cz

    We analyze the possibility that several instability points may be formed, due to the Paczyński mechanism of violation of mechanical equilibrium, in the orbiting matter around a supermassive Kerr black hole. We consider a recently proposed model of a ringed accretion disk, made up by several tori (rings) that can be corotating or counter-rotating relative to the Kerr attractor due to the history of the accretion process. Each torus is governed by the general relativistic hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. We prove that the number of the instability points is generally limited and depends onmore » the dimensionless spin of the rotating attractor.« less

  11. The vast thin plane of M31 corotating dwarfs: an additional fossil signature of the M31 merger and of its considerable impact in the whole Local Group

    NASA Astrophysics Data System (ADS)

    Hammer, François; Yang, Yanbin; Fouquet, Sylvain; Pawlowski, Marcel S.; Kroupa, Pavel; Puech, Mathieu; Flores, Hector; Wang, Jianling

    2013-06-01

    The recent discovery by Ibata et al. of a vast thin disc of satellites (VTDS) around M31 offers a new challenge for the understanding of the Local Group properties. This comes in addition to the unexpected proximity of the Magellanic Clouds (MCs) to the Milky Way (MW), and to another vast polar structure (VPOS), which is almost perpendicular to our Galaxy disc. We find that the VTDS plane is coinciding with several stellar, tidally induced streams in the outskirts of M31, and, that its velocity distribution is consistent with that of the giant stream (GS). This is suggestive of a common physical mechanism, likely linked to merger tidal interactions, knowing that a similar argument may apply to the VPOS at the MW location. Furthermore, the VTDS is pointing towards the MW, being almost perpendicular to the MW disc, as the VPOS is. We compare these properties to the modelling of M31 as an ancient, gas-rich major merger, which has been successfully used to predict the M31 substructures and the GS origin. We find that without fine tuning, the induced tidal tails are lying in the VTDS plane, providing a single and common origin for many stellar streams and for the vast stellar structures surrounding both the MW and M31. The model also reproduces quite accurately positions and velocities of the VTDS spheroidal dwarfs. Our conjecture leads to a novel interpretation of the Local Group past history, as a gigantic tidal tail due to the M31 ancient merger is expected to send material towards the MW, including the MCs. Such a link between M31 and the MW is expected to be quite exceptional, though it may be in qualitative agreement with the reported rareness of MW-MCs systems in nearby galaxies.

  12. VizieR Online Data Catalog: Algorithm for correcting CoRoT raw light curves (Mislis+, 2010)

    NASA Astrophysics Data System (ADS)

    Mislis, D.; Schmitt, J. H. M. M.; Carone, L.; Guenther, E. W.; Patzold, M.

    2010-10-01

    Requirements : gfortran (or g77, ifort) compiler Input Files : The input files sould be raw CoRoT txt files (http://idoc-corot.ias.u-psud.fr/index.jsp) with names CoRoT*.txt Run the cda by typing C>: ./cda.csh (code and data sould be in the same directory) Output files : CDA creates one ascii output file with name - CoRoT*.R.cor for R filter (2 data files).

  13. Effects of Kinetic Processes in Shaping Io's Global Plasma Environment: A 3D Hybrid Model

    NASA Technical Reports Server (NTRS)

    Lipatov, Alexander S.; Combi, Michael R.

    2004-01-01

    The global dynamics of the ionized and neutral components in the environment of Io plays an important role in the interaction of Jupiter's corotating magnetospheric plasma with Io. The stationary simulation of this problem was done in the MHD and the electrodynamics approaches. One of the main significant results from the simplified two-fluid model simulations was a production of the structure of the double-peak in the magnetic field signature of the I0 flyby that could not be explained by standard MHD models. In this paper, we develop a method of kinetic ion simulation. This method employs the fluid description for electrons and neutrals whereas for ions multilevel, drift-kinetic and particle, approaches are used. We also take into account charge-exchange and photoionization processes. Our model provides much more accurate description for ion dynamics and allows us to take into account the realistic anisotropic ion distribution that cannot be done in fluid simulations. The first results of such simulation of the dynamics of ions in the Io's environment are discussed in this paper.

  14. Noise properties of the CoRoT data. A planet-finding perspective

    NASA Astrophysics Data System (ADS)

    Aigrain, S.; Pont, F.; Fressin, F.; Alapini, A.; Alonso, R.; Auvergne, M.; Barbieri, M.; Barge, P.; Bordé, P.; Bouchy, F.; Deeg, H.; de La Reza, R.; Deleuil, M.; Dvorak, R.; Erikson, A.; Fridlund, M.; Gondoin, P.; Guterman, P.; Jorda, L.; Lammer, H.; Léger, A.; Llebaria, A.; Magain, P.; Mazeh, T.; Moutou, C.; Ollivier, M.; Pätzold, M.; Queloz, D.; Rauer, H.; Rouan, D.; Schneider, J.; Wuchter, G.; Zucker, S.

    2009-10-01

    In this short paper, we study the photometric precision of stellar light curves obtained by the CoRoT satellite in its planet-finding channel, with a particular emphasis on the time scales characteristic of planetary transits. Together with other articles in the same issue of this journal, it forms an attempt to provide the building blocks for a statistical interpretation of the CoRoT planet and eclipsing binary catch to date. After pre-processing the light curves so as to minimise long-term variations and outliers, we measure the scatter of the light curves in the first three CoRoT runs lasting more than 1 month, using an iterative non-linear filter to isolate signal on the time scales of interest. The behaviour of the noise on 2 h time scales is described well by a power-law with index 0.25 in R-magnitude, ranging from 0.1 mmag at R=11.5 to 1 mmag at R=16, which is close to the pre-launch specification, though still a factor 2-3 above the photon noise due to residual jitter noise and hot pixel events. There is evidence of slight degradation in the performance over time. We find clear evidence of enhanced variability on hour time scales (at the level of 0.5 mmag) in stars identified as likely giants from their R magnitude and B-V colour, which represent approximately 60 and 20% of the observed population in the directions of Aquila and Monoceros, respectively. On the other hand, median correlated noise levels over 2 h for dwarf stars are extremely low, reaching 0.05 mmag at the bright end. The CoRoT space mission, launched on December 27, 2006, has been developed and is operated by the CNES, with the contribution of Austria, Belgium, Brazil, ESA, Germany, and Spain. CoRoT data become publicly available one year after release to the Co-Is of the mission from the CoRoT archive: http://idoc-corot.ias.u-psud.fr/.

  15. Transiting exoplanets from the CoRoT space mission. IV. CoRoT-Exo-4b: a transiting planet in a 9.2 day synchronous orbit

    NASA Astrophysics Data System (ADS)

    Aigrain, S.; Collier Cameron, A.; Ollivier, M.; Pont, F.; Jorda, L.; Almenara, J. M.; Alonso, R.; Barge, P.; Bordé, P.; Bouchy, F.; Deeg, H.; de La Reza, R.; Deleuil, M.; Dvorak, R.; Erikson, A.; Fridlund, M.; Gondoin, P.; Gillon, M.; Guillot, T.; Hatzes, A.; Lammer, H.; Lanza, A. F.; Léger, A.; Llebaria, A.; Magain, P.; Mazeh, T.; Moutou, C.; Paetzold, M.; Pinte, C.; Queloz, D.; Rauer, H.; Rouan, D.; Schneider, J.; Wuchter, G.; Zucker, S.

    2008-09-01

    CoRoT, the first space-based transit search, provides ultra-high-precision light curves with continuous time-sampling over periods of up to 5 months. This allows the detection of transiting planets with relatively long periods, and the simultaneous study of the host star's photometric variability. In this Letter, we report the discovery of the transiting giant planet CoRoT-Exo-4b and use the CoRoT light curve to perform a detailed analysis of the transit and determine the stellar rotation period. The CoRoT light curve was pre-processed to remove outliers and correct for orbital residuals and artefacts due to hot pixels on the detector. After removing stellar variability about each transit, the transit light curve was analysed to determine the transit parameters. A discrete autocorrelation function method was used to derive the rotation period of the star from the out-of-transit light curve. We determine the periods of the planetary orbit and star's rotation of 9.20205 ± 0.00037 and 8.87 ± 1.12 days respectively, which is consistent with this being a synchronised system. We also derive the inclination, i = 90.00_-0.085+0.000 in degrees, the ratio of the orbital distance to the stellar radius, a/Rs = 17.36-0.25+0.05, and the planet-to-star radius ratio R_p/R_s=0.1047-0.0022+0.0041. We discuss briefly the coincidence between the orbital period of the planet and the stellar rotation period and its possible implications for the system's migration and star-planet interaction history. The CoRoT space mission, launched on December 27th 2006, has been developed and is operated by CNES, with the contribution of Austria, Belgium, Brazil, ESA, Germany, and Spain. The first CoRoT data will be available to the public in February 2009 from the CoRoT archive: http://idoc-corot.ias.u-psud.fr/ Figures 1, 4 and 5 are only available in electronic form at http://www.aanda.org

  16. Size and density sorting of dust grains in SPH simulations of protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Pignatale, F. C.; Gonzalez, J.-F.; Cuello, Nicolas; Bourdon, Bernard; Fitoussi, Caroline

    2017-07-01

    The size and density of dust grains determine their response to gas drag in protoplanetary discs. Aerodynamical (size × density) sorting is one of the proposed mechanisms to explain the grain properties and chemical fractionation of chondrites. However, the efficiency of aerodynamical sorting and the location in the disc in which it could occur are still unknown. Although the effects of grain sizes and growth in discs have been widely studied, a simultaneous analysis including dust composition is missing. In this work, we present the dynamical evolution and growth of multicomponent dust in a protoplanetary disc using a 3D, two-fluid (gas+dust) smoothed particle hydrodynamics code. We find that the dust vertical settling is characterized by two phases: a density-driven phase that leads to a vertical chemical sorting of dust and a size-driven phase that enhances the amount of lighter material in the mid-plane. We also see an efficient radial chemical sorting of the dust at large scales. We find that dust particles are aerodynamically sorted in the inner disc. The disc becomes sub-solar in its Fe/Si ratio on the surface since the early stage of evolution but sub-solar Fe/Si can be also found in the outer disc-mid-plane at late stages. Aggregates in the disc mimic the physical and chemical properties of chondrites, suggesting that aerodynamical sorting played an important role in determining their final structure.

  17. Human cartilage endplate permeability varies with degeneration and intervertebral disc site.

    PubMed

    DeLucca, John F; Cortes, Daniel H; Jacobs, Nathan T; Vresilovic, Edward J; Duncan, Randall L; Elliott, Dawn M

    2016-02-29

    Despite the critical functions the human cartilage endplate (CEP) plays in the intervertebral disc, little is known about its structural and mechanical properties and their changes with degeneration. Quantifying these changes with degeneration is important for understanding how the CEP contributes to the function and pathology of the disc. Therefore the objectives of this study were to quantify the effect of disc degeneration on human CEP mechanical properties, determine the influence of superior and inferior disc site on mechanics and composition, and simulate the role of collagen fibers in CEP and disc mechanics using a validated finite element model. Confined compression data and biochemical composition data were used in a biphasic-swelling model to calculate compressive extrafibrillar elastic and permeability properties. Tensile properties were obtained by applying published tensile test data to an ellipsoidal fiber distribution. Results showed that with degeneration CEP permeability decreased 50-60% suggesting that transport is inhibited in the degenerate disc. CEP fibers are organized parallel to the vertebrae and nucleus pulposus and may contribute to large shear strains (0.1-0.2) and delamination failure of the CEP commonly seen in herniated disc tissue. Fiber-reinforcement also reduces CEP axial strains thereby enhancing fluid flux by a factor of 1.8. Collectively, these results suggest that the structure and mechanics of the CEP may play critical roles in the solute transport and disc mechanics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Micropulse laser for persistent optic disc pit maculopathy. A case report.

    PubMed

    Valdés-Lara, Carlos Andrés; Crim, Nicolás; García-Aguirre, Gerardo; Lule, Ismael Ávila; Morales-Cantón, Virgilio

    2018-06-01

    Optic disc pits (ODP) are rare and congenital anomalies of the optic disc, sometimes remaining asymptomatic. However, serous macular detachment or optic disc maculopathy is the most common complication, causing significant visual deterioration, without a current consensus about treatment. We describe a case of ODP maculopathy that was treated successfully with micropulse laser. A patient with ODP maculopathy remained with macular serous detachment after nine months of follow up after pars plana vitrectomy. Subthreshold micropulse laser was used to treat macular serous detachment, achieving a significant improvement in central macular thickness after one session. Subthreshold micropulse laser is designed to stimulate the retinal pigment epithelium without damage to the photoreceptors, resulting in absorption of subretinal and intraretinal fluid. Macular serous detachment in patients with ODP requires a prompt diagnosis and treatment to avoid damage to photoreceptors. Subthreshold micropulse laser is a potential treatment for eyes with ODP and macular serous detachment complication.

  19. Incidence and evolution of subretinal precipitates in optic disc pit maculopathy.

    PubMed

    Chatziralli, Irini; Theodossiadis, George; Brouzas, Dimitrios; Theodossiadis, Panagiotis

    2017-06-26

    To study the evolution of subretinal precipitates coexistent with optic disc pit (ODP) maculopathy from their appearance at baseline examination until their absorption after successful treatment. Participants in this retrospective, multicenter study were 42 patients with ODP maculopathy, in whom complete ocular examination was performed, including visual acuity (VA) measurement, slit-lamp examination, color or red-free fundus photography, and optical coherence tomography at baseline after surgical treatment. Out of 42 cases, 17 (40.5%) cases of ODP maculopathy, which were examined between 2002 and 2015, were found to have subretinal precipitates associated with multilayer fluid accumulation at baseline. Precipitates were located at the outer part of the photoreceptor layer and remained for 3-6 months after successful treatment and absorption of subretinal fluid. The mean VA was 0.99 ± 0.21 logMAR at baseline and improved to 0.54 ± 0.25 logMAR at the final examination. Macular precipitates in association with signs of disease chronicity, such as multilayer fluid accumulation, became evident at baseline examination. Precipitates' disappearance in 15 out of 17 cases coincided with the absorption of subretinal fluid. The relative low VA at baseline probably could be attributed to the chronicity of the disease.

  20. A Structurally and Functionally Biomimetic Biphasic Scaffold for Intervertebral Disc Tissue Engineering

    PubMed Central

    Choy, Andrew Tsz Hang; Chan, Barbara Pui

    2015-01-01

    Tissue engineering offers high hopes for the treatment of intervertebral disc (IVD) degeneration. Whereas scaffolds of the disc nucleus and annulus have been extensively studied, a truly biomimetic and mechanically functional biphasic scaffold using naturally occurring extracellular matrix is yet to be developed. Here, a biphasic scaffold was fabricated with collagen and glycosaminoglycans (GAGs), two of the most abundant extracellular matrix components in the IVD. Following fabrication, the scaffold was characterized and benchmarked against native disc. The biphasic scaffold was composed of a collagen-GAG co-precipitate making up the nucleus pulposus-like core, and this was encapsulated in multiple lamellae of photochemically crosslinked collagen membranes comprising the annulus fibrosus-like lamellae. On mechanical testing, the height of our engineered disc recovered by ~82-89% in an annulus-independent manner, when compared with the 99% recovery exhibited by native disc. The annulus-independent nature of disc height recovery suggests that the fluid replacement function of the engineered nucleus pulposus core might mimic this hitherto unique feature of native disc. Biphasic scaffolds comprised of 10 annulus fibrosus-like lamellae had the best overall mechanical performance among the various designs owing to their similarity to native disc in most aspects, including elastic compliance during creep and recovery, and viscous compliance during recovery. However, the dynamic mechanical performance (including dynamic stiffness and damping factor) of all the biphasic scaffolds was similar to that of the native discs. This study contributes to the rationalized design and development of a biomimetic and mechanically viable biphasic scaffold for IVD tissue engineering. PMID:26115332

  1. Asteroseismology of OB stars with CoRoT

    NASA Astrophysics Data System (ADS)

    Degroote, P.; Aerts, C.; Samadi, R.; Miglio, A.; Briquet, M.; Auvergne, M.; Baglin, A.; Baudin, F.; Catala, C.; Michel, E.

    2010-12-01

    The CoRoT satellite is revolutionizing the photometric study of massive O-type and B-type stars. During its long runs, CoRoT observed the entire main sequence B star domain, from typical hot β Cep stars, via cooler hybrid p- and g-mode pulsators to the SPB stars near the edge of the instability strip. CoRoT lowers the sensitivity barrier from the typical mmag-precision reached from the ground, to the μmag-level reached from space. Within the wealth of detected and identified pulsation modes, relations have been found in the form of multiplets, combination of frequencies, and frequency- and period spacings. This wealth of observational evidence is finally providing strong constraints to test current models of the internal structure and pulsations of hot stars. Aside from the expected opacity driven modes with infinite lifetime, other unexpected types of variability are detected in massive stars, such as modes of stochastic nature. The simultaneous observation of all these light curve characteristics implies a challenge for both observational asteroseismology and stellar modelling. The CoRoT space mission was developed and is operated by the French space agency CNES, with participation of ESA's RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain.

  2. The SpaceInn SISMA archive

    NASA Astrophysics Data System (ADS)

    Rainer, Monica; Poretti, Ennio; Mistò, Angelo; Rosa Panzera, Maria

    2017-10-01

    The Spectroscopic Indicators in a SeisMic Archive (SISMA) has been built in the framework of the FP7 SpaceInn project to contain the 7013 HARPS spectra observed during the CoRoT asteroseismic groundbased program, along with their variability and asteroseismic indicators. The spectra pertain to 261 stars spread around the whole Herztsprung-Russell diagram: 72 of them were CoRoT targets while the others were observed in order to better characterize their variability classes. The Legacy Data lightcurves of the CoRoT targets are also stored in the archive.

  3. Models of red giants in the CoRoT asteroseismology fields combining asteroseismic and spectroscopic constraints

    NASA Astrophysics Data System (ADS)

    Nadège, Lagarde

    The availability of asteroseismic constraints for a large sample of red-giant stars from the CoRoT and Kepler missions paves the way for various statistical studies of the seismic properties of stellar populations. We use a detailed spectroscopic study of 19 CoRoT red-giant stars (Morel et al. 2014) to compare theoretical stellar evolution models to observations of the open cluster NGC 6633 and field stars. This study is already published in Lagarde et al. (2015)

  4. Spiral stellar density waves and the flattening of abundance gradients in the warm gas component of spiral galaxies

    NASA Astrophysics Data System (ADS)

    Vorobyov, E. I.

    2006-08-01

    Motivated by recent observations of plateaus and minima in the radial abundance distributions of heavy elements in the Milky Way and some other spiral galaxies, we propose a dynamical mechanism for the formation of such features around corotation. Our numerical simulations show that the non-axisymmetric gravitational field of spiral density waves generates cyclone and anticylone gas flows in the vicinity of corotation. The anticyclones flatten the pre-existing negative abundance gradients by exporting many more atoms of heavy elements outside corotation than importing inside it. This process is very efficient and forms plateaus of several kiloparsec in size around corotation after two revolution periods of a galaxy. The strength of anticyclones and, consequently, the sizes of plateaus depend on the pitch angle of spiral arms and are expected to increase along the Hubble sequence.

  5. ExoDat Information System at CeSAM

    NASA Astrophysics Data System (ADS)

    Agneray, F.; Moreau, C.; Chabaud, P.; Damiani, C.; Deleuil, M.

    2014-05-01

    CoRoT (Convection Rotation and planetary transits) is a space based mission led by French space agency (CNES) in association with French and international laboratories. One of CoRoT's goal is to detect exoplanets by the transit method. The Exoplanet Database (Exodat) is a VO compliant information system for the CoRoT exoplanet program. The main functions of ExoDat are to provide a source catalog for the observation fields and targets selection; to characterize the CoRoT targets (spectral type, variability , contamination...);and to support follow up programs. ExoDat is built using the AstroNomical Information System (ANIS) developed by the CeSAM (Centre de donneeS Astrophysique de Marseille). It offers download of observation catalogs and additional services like: search, extract and display data by using a combination of criteria, object list, and cone-search interfaces. Web services have been developed to provide easy access for user's softwares and pipelines.

  6. Gas Seal Pad With Herringbone-Grooved Rotor-Stiffness and Load Capacity

    NASA Technical Reports Server (NTRS)

    Flemming, David P.

    2006-01-01

    The principle of herringbone-grooved journal bearings has been applied to the case of a seal disc running under a finger seal pad. The inward pumping action of herringbone grooves on the disc generates load capacity and stiffness to maintain a fluid film and prevent contact of the pad and disc. This mechanism does not depend on a converging film under the pad, such as analyzed in previous works. Analysis shows that significant stiffness and load capacity can be supplied by herringbone grooves. In order for the grooves to be effective, the seal pressure drop must be taken outside of the grooved portion of the rotor, but this may be acceptable in order to gain freedom from maintaining a precise film convergence.

  7. EXO-DAT: AN INFORMATION SYSTEM IN SUPPORT OF THE CoRoT/EXOPLANET SCIENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deleuil, M.; Meunier, J. C.; Moutou, C.

    2009-08-15

    Exo-Dat is a database and an information system created primarily in support of the exoplanet program of the COnvection ROtation and planetary Transits (CoRoT) mission. In the directions of CoRoT pointings, it provides a united interface to several sets of data: stellar published catalogs, photometric and spectroscopic data obtained during the mission preparation, results from the mission and from follow-up observations, and several mission-specific technical parameters. The new photometric data constitute the subcatalog Exo-Cat, and give consistent 4-color photometry of 14.0 million stars with a completeness to 19th magnitude in the r-filter. It covers several zones in the galactic planemore » around CoRoT pointings, with a total area of 209 deg{sup 2}. This Exo-Dat information system provides essential technical support to the ongoing CoRoT light-curve analyses and ground-based follow-up by supplying additional complementary information such as the prior knowledge of the star's fundamental parameters or its contamination level inside the large CoRoT photometric mask. The database is fully interfaced with VO tools and thus benefits from existing visualization and analysis tools like TOPCAT or ALADIN. It is accessible to the CoRoT community through the Web, and will be gradually opened to the public. It is the ideal tool to prepare the foreseen statistical studies of the properties of the exoplanetary systems. As a VO-compliant system, such analyses could thus benefit from the most up-to-date classifier tools.« less

  8. The origin of kinematically distinct cores and misaligned gas discs in galaxies from cosmological simulations

    NASA Astrophysics Data System (ADS)

    Taylor, Philip; Federrath, Christoph; Kobayashi, Chiaki

    2018-06-01

    Integral field spectroscopy surveys provide spatially resolved gas and stellar kinematics of galaxies. They have unveiled a range of atypical kinematic phenomena, which require detailed modelling to understand. We present results from a cosmological simulation that includes stellar and AGN feedback. We find that the distribution of angles between the gas and stellar angular momenta of galaxies is not affected by projection effects. We examine five galaxies (≈6 per cent of well resolved galaxies) that display atypical kinematics; two of the galaxies have kinematically distinct cores (KDC), while the other three have counter-rotating gas and stars. All five form the majority of their stars in the field, subsequently falling into cosmological filaments where the relative orientation of the stellar angular momentum and the bulk gas flow leads to the formation of a counter-rotating gas disc. The accreted gas exchanges angular momentum with pre-existing co-rotating gas causing it to fall to the centre of the galaxy. This triggers low-level AGN feedback, which reduces star formation. Later, two of the galaxies experience a minor merger (stellar mass ratio ˜1/10) with a galaxy on a retrograde orbit compared to the spin of the stellar component of the primary. This produces the KDCs, and is a different mechanism than suggested by other works. The role of minor mergers in the kinematic evolution of galaxies may have been under-appreciated in the past, and large, high-resolution cosmological simulations will be necessary to gain a better understanding in this area.

  9. Transiting exoplanets from the CoRoT space mission . VI. CoRoT-Exo-3b: the first secure inhabitant of the brown-dwarf desert

    NASA Astrophysics Data System (ADS)

    Deleuil, M.; Deeg, H. J.; Alonso, R.; Bouchy, F.; Rouan, D.; Auvergne, M.; Baglin, A.; Aigrain, S.; Almenara, J. M.; Barbieri, M.; Barge, P.; Bruntt, H.; Bordé, P.; Collier Cameron, A.; Csizmadia, Sz.; de La Reza, R.; Dvorak, R.; Erikson, A.; Fridlund, M.; Gandolfi, D.; Gillon, M.; Guenther, E.; Guillot, T.; Hatzes, A.; Hébrard, G.; Jorda, L.; Lammer, H.; Léger, A.; Llebaria, A.; Loeillet, B.; Mayor, M.; Mazeh, T.; Moutou, C.; Ollivier, M.; Pätzold, M.; Pont, F.; Queloz, D.; Rauer, H.; Schneider, J.; Shporer, A.; Wuchterl, G.; Zucker, S.

    2008-12-01

    Context: The CoRoT space mission routinely provides high-precision photometric measurements of thousands of stars that have been continuously observed for months. Aims: The discovery and characterization of the first very massive transiting planetary companion with a short orbital period is reported. Methods: A series of 34 transits was detected in the CoRoT light curve of an F3V star, observed from May to October 2007 for 152 days. The radius was accurately determined and the mass derived for this new transiting, thanks to the combined analysis of the light curve and complementary ground-based observations: high-precision radial-velocity measurements, on-off photometry, and high signal-to-noise spectroscopic observations. Results: CoRoT-Exo-3b has a radius of 1.01 ± 0.07 R_Jup and transits around its F3-type primary every 4.26 days in a synchronous orbit. Its mass of 21.66 ± 1.0 M_Jup, density of 26.4 ± 5.6 g cm-3, and surface gravity of logg = 4.72 clearly distinguish it from the regular close-in planet population, making it the most intriguing transiting substellar object discovered so far. Conclusions: With the current data, the nature of CoRoT-Exo-3b is ambiguous, as it could either be a low-mass brown-dwarf or a member of a new class of “superplanets”. Its discovery may help constrain the evolution of close-in planets and brown-dwarfs better. Finally, CoRoT-Exo-3b confirms the trend that massive transiting giant planets (M ≥ 4 M_Jup) are found preferentially around more massive stars than the Sun. The CoRoT space mission, launched on December 27th 2006, has been developed and is operating by CNES, with the contribution of Austria, Belgium, Brasil, ESA, Germany and Spain. The first CoRoT data will be available to the public in February 2009 from the CoRoT archive: http://idoc-corot.ias.u-psud.fr/ Table of the COROT photometry is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/491/889

  10. A meta-model analysis of a finite element simulation for defining poroelastic properties of intervertebral discs.

    PubMed

    Nikkhoo, Mohammad; Hsu, Yu-Chun; Haghpanahi, Mohammad; Parnianpour, Mohamad; Wang, Jaw-Lin

    2013-06-01

    Finite element analysis is an effective tool to evaluate the material properties of living tissue. For an interactive optimization procedure, the finite element analysis usually needs many simulations to reach a reasonable solution. The meta-model analysis of finite element simulation can be used to reduce the computation of a structure with complex geometry or a material with composite constitutive equations. The intervertebral disc is a complex, heterogeneous, and hydrated porous structure. A poroelastic finite element model can be used to observe the fluid transferring, pressure deviation, and other properties within the disc. Defining reasonable poroelastic material properties of the anulus fibrosus and nucleus pulposus is critical for the quality of the simulation. We developed a material property updating protocol, which is basically a fitting algorithm consisted of finite element simulations and a quadratic response surface regression. This protocol was used to find the material properties, such as the hydraulic permeability, elastic modulus, and Poisson's ratio, of intact and degenerated porcine discs. The results showed that the in vitro disc experimental deformations were well fitted with limited finite element simulations and a quadratic response surface regression. The comparison of material properties of intact and degenerated discs showed that the hydraulic permeability significantly decreased but Poisson's ratio significantly increased for the degenerated discs. This study shows that the developed protocol is efficient and effective in defining material properties of a complex structure such as the intervertebral disc.

  11. A wireless sequentially actuated microvalve system

    NASA Astrophysics Data System (ADS)

    Baek, Seung-Ki; Yoon, Yong-Kyu; Jeon, Hye-Seon; Seo, Soonmin; Park, Jung-Hwan

    2013-04-01

    A wireless microvalve system was fabricated based on induction heating for flow control in microfluidics by sequential valve opening. In this approach, we used paraffin wax as a flow plug, which can be changed from solid to liquid with adjacent heating elements operated by induction heating. Programmable opening of valves was devised by using different thermal responses of metal discs to a magnetic field. Copper and nickel discs with a diameter of 2.5 mm and various thicknesses (50, 100 and 200 µm) were prepared as heating elements by a laser cutting method, and they were integrated in the microfluidic channel as part of the microvalve. A calorimetric test was used to measure the thermal properties of the discs in terms of kinds of metal and disc thickness. Sequential openings of the microvalves were performed using the difference in the thermal response of 100 µm thick copper disc and 50 µm thick nickel disc for short-interval openings and 200 µm thick copper disc and 100-µm-thick nickel disc for long-interval openings. The thermal effect on fluid samples as a result of induction heating of the discs was studied by investigating lysozyme denaturation. More heat was generated in heating elements made of copper than in those made of nickel, implying differences in the thermal response of heating elements made of copper and nickel. Also, the thickness of the heating elements affected the thermal response in the elements. Valve openings for short intervals of 1-5 s and long intervals of 15-23 s were achieved by using two sets of heating elements. There was no significant change in lysozyme activity by increasing the temperature of the heating discs. This study demonstrates that a wireless sequentially actuated microvalve system can provide programmed valve opening, portability, ease of fabrication and operation, disposability, and low cost.

  12. Computational prediction of hemolysis in a centrifugal ventricular assist device.

    PubMed

    Pinotti, M; Rosa, E S

    1995-03-01

    This paper describes the use of computational fluid dynamics (CFD) to predict numerically the hemolysis in centrifugal pumps. A numerical hydrodynamical model, based on the full Navier-Stokes equation, was used to obtain the flow in a vaneless centrifugal pump (of corotating disks type). After proper postprocessing, critical zones in the channel were identified by means of two-dimensional color-coded maps of %Hb release. Simulation of different conditions revealed that flow behavior at the entrance region of the channel is the main cause of blood trauma in such devices. A useful feature resulting from the CFD simulation is the visualization of critical flow zones that are impossible to determine experimentally with in vitro hemolysis tests.

  13. Plasma observations near Saturn - Initial results from Voyager 1

    NASA Technical Reports Server (NTRS)

    Bridge, H. S.; Belcher, J. W.; Lazarus, A. J.; Olbert, S.; Sullivan, J. D.; Bagenal, F.; Gazis, P. R.; Hartle, R. E.; Ogilvie, K. W.; Scudder, J. D.

    1981-01-01

    The Voyager 1 encounter with Saturn and its satellites yielded extensive measurements of magnetospheric low-energy plasma electrons and positive ions, both heavy and light, probably of hydrogen and nitrogen or oxygen. At radial distances between 15 and 7 Saturn radii on the inbound trajectory, the plasma appears to corotate with a velocity within 20% of that theoretically expected for rigid corotation. The Titan data, taken while the moon was inside the Saturn magnetosphere, shows a clear signature characteristic of the interaction between a subsonic corotating magnetospheric plasma and the atmospheric or ionospheric exosphere of Titan.

  14. A Study of Small Satellites Captured in Corotation Resonance

    NASA Astrophysics Data System (ADS)

    Santos Araújo, Nilton Carlos; Vieira Neto, E.

    2013-05-01

    Abstract (2,250 Maximum Characters): Currently we find in the solar system several types of celestial objects such as planets, satellites, rings, etc.. The dynamics of these objects have always been interesting for studies, mainly the satellites and rings of Saturn. We have the knowledge that these satellites and rings undergo various types of orbital resonances. These resonances are responsible for the formation of numerous structures in the rings such as, for example, almost the entire structure of A ring. Thus we see how important it is to examine the nature of these resonant interactions in order to understand the characteristics observed in the satellites and rings of Saturn. In this work we highlight the corotation resonance, which occurs when the velocity pattern of the potential disturbing frequency is equal to the orbital frequency of a satellite. In the Saturnian system there are three satellites, Aegaeon, Anthe and Methone that are in corotation resonance with Mimas. In this paper we study, through numerical simulations, corotation resonance of the G ring arc of Saturn with Tethys and Mimas, while Mimas is migrating. Ours initial results show that no particles escape from the corotational resonance while Mimas migrate, that is, it is very robust. We also show the effects and consequences of Tethys migration on Mimas and de G arc.

  15. A design strategy for the use of vortex generators to manage inlet-engine distortion using computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Levy, Ralph

    1991-01-01

    A reduced Navier-Stokes solution technique was successfully used to design vortex generator installations for the purpose of minimizing engine face distortion by restructuring the development of secondary flow that is induced in typical 3-D curved inlet ducts. The results indicate that there exists an optimum axial location for this installation of corotating vortex generators, and within this configuration, there exists a maximum spacing between generator blades above which the engine face distortion increases rapidly. Installed vortex generator performance, as measured by engine face circumferential distortion descriptors, is sensitive to Reynolds number and thereby the generator scale, i.e., the ratio of generator blade height to local boundary layer thickness. Installations of corotating vortex generators work well in terms of minimizing engine face distortion within a limited range of generator scales. Hence, the design of vortex generator installations is a point design, and all other conditions are off design. In general, the loss levels associated with a properly designed vortex generator installation are very small; thus, they represent a very good method to manage engine face distortion. This study also showed that the vortex strength, generator scale, and secondary flow field structure have a complicated and interrelated influence over engine face distortion, over and above the influence of the initial arrangement of generators.

  16. Taylor dispersion of colloidal particles in narrow channels

    NASA Astrophysics Data System (ADS)

    Sané, Jimaan; Padding, Johan T.; Louis, Ard A.

    2015-09-01

    We use a mesoscopic particle-based simulation technique to study the classic convection-diffusion problem of Taylor dispersion for colloidal discs in confined flow. When the disc diameter becomes non-negligible compared to the diameter of the pipe, there are important corrections to the original Taylor picture. For example, the colloids can flow more rapidly than the underlying fluid, and their Taylor dispersion coefficient is decreased. For narrow pipes, there are also further hydrodynamic wall effects. The long-time tails in the velocity autocorrelation functions are altered by the Poiseuille flow.

  17. Hermetically sealed superconducting magnet motor

    DOEpatents

    DeVault, Robert C.; McConnell, Benjamin W.; Phillips, Benjamin A.

    1996-01-01

    A hermetically sealed superconducting magnet motor includes a rotor separated from a stator by either a radial gap, an axial gap, or a combined axial and radial gap. Dual conically shaped stators are used in one embodiment to levitate a disc-shaped rotor made of superconducting material within a conduit for moving cryogenic fluid. As the rotor is caused to rotate when the field stator is energized, the fluid is pumped through the conduit.

  18. Astrophysical fluid dynamics

    NASA Astrophysics Data System (ADS)

    Ogilvie, Gordon I.

    2016-06-01

    > These lecture notes and example problems are based on a course given at the University of Cambridge in Part III of the Mathematical Tripos. Fluid dynamics is involved in a very wide range of astrophysical phenomena, such as the formation and internal dynamics of stars and giant planets, the workings of jets and accretion discs around stars and black holes and the dynamics of the expanding Universe. Effects that can be important in astrophysical fluids include compressibility, self-gravitation and the dynamical influence of the magnetic field that is `frozen in' to a highly conducting plasma. The basic models introduced and applied in this course are Newtonian gas dynamics and magnetohydrodynamics (MHD) for an ideal compressible fluid. The mathematical structure of the governing equations and the associated conservation laws are explored in some detail because of their importance for both analytical and numerical methods of solution, as well as for physical interpretation. Linear and nonlinear waves, including shocks and other discontinuities, are discussed. The spherical blast wave resulting from a supernova, and involving a strong shock, is a classic problem that can be solved analytically. Steady solutions with spherical or axial symmetry reveal the physics of winds and jets from stars and discs. The linearized equations determine the oscillation modes of astrophysical bodies, as well as their stability and their response to tidal forcing.

  19. Pressure Relief Devices

    NASA Astrophysics Data System (ADS)

    Manha, William D.

    2010-09-01

    Pressure relief devices are used in pressure systems and on pressure vessels to prevent catastrophic rupture or explosion from excessive pressure. Pressure systems and pressure vessels have manufacturers maximum rated operating pressures or maximum design pressures(MDP) for which there are relatively high safety factors and minimum risk of rupture or explosion. Pressure systems and pressure vessels that have a potential to exceed the MDP by being connected to another higher pressure source, a compressor, or heat to water(boiler) are required to have over-pressure protecting devices. Such devices can be relief valves and/or burst discs to safely relieve potentially excessive pressure and prevent unacceptable ruptures and explosions which result in fail-safe pressure systems and pressure vessels. Common aerospace relief valve and burst disc requirements and standards will be presented. This will include the NASA PSRP Interpretation Letter TA-88-074 Fault Tolerance of Systems Using Specially Certified Burst Disks that dictates burst disc requirements for payloads on Shuttle. Two recent undesirable manned space payloads pressure relief devices and practices will be discussed, as well as why these practices should not be continued. One example for discussion is the use of three burst discs that have been placed in series to comply with safety requirements of three controls to prevent a catastrophic hazard of the over-pressurization and rupture of pressure system and/or vessels. The cavities between the burst discs are evacuated and are the reference pressures for activating the two upstream burst discs. If the upstream burst disc leaks into the reference cavity, the reference pressure increases and it can increase the burst disc activating pressure and potentially result in the burst disc assembly being ineffective for over pressure protection. The three burst discs-in-series assembly was found acceptable because the burst discs are designed for minimum risk(DFMR) of leakage into the reference cavity. Since the burst discs are DFMR, a single burst disc would suffice, without adding the two leak-into-reference cavity failure modes. A single DFMR burst disc is preferable. An Alpha Magnetic Spectrometer - 02 burst disc assembly, with three-in-series burst discs test failure, necessitated the deletion of one of the burst discs, will be presented. Payload relief valves require periodic retests were extended significantly beyond the normal one year retest period because of the reduced ISS down mass capability which followed the Columbia accident. The acceptability of the extended retest period was determined by analysis, materials stability, benign environment, relatively inert fluid exposure, etc.(The policy letter, NC4-02-205 Guidelines for Certification and Verification of Pressure System Control Hardware, that permitted this action will be provided even though this application is not recommended for extending relief valve annual retest requirements.) The first crack pressure of a relief valve after an extended inactive period can be higher than the set crack pressure. Extrapolation of the extended inactive period and increased crack pressure could result in ineffective over pressure protection. Thus, relief valves with a ring or lever for activation are recommended so the relief valve can periodically be verified to open, functionality verified and the extended relief valve retest period should be discouraged. Stainless Steel cylindrical poppet-in-cylindrical housing check valves should never be used in a fluid with ions for an extended period of time, because the poppet is vulnerable to seizing or not functioning as a relief valve, even though the specifications, crack pressure, reseat pressure, maximum flow, and reseat leak look very much like the specifications for a relief valve. The technical reasons for this avoidance of using check valves as a relief valve will be discussed. The presentation will be summarized and recommendations made.

  20. COROT mission: accurate stellar photometry

    NASA Astrophysics Data System (ADS)

    Costes, Vincent; Bodin, Pierre; Levacher, Patrick; Auvergne, Michel

    2004-06-01

    The COROT mission is dedicated to stellar seismology and search for telluric extra-solar planets. The development is led by CNES in association with French laboratories (LESIA, LAM and IAS) and several European partners (Germany, Belgium, Austria, Spain, ESA and Brasilia). The COROT seismology program will measure periodic variations with amplitude of 2.10 -6 of the photon flux emitted by bright stars. The COROT exoplanet program will detect the presence of exoplanets using the radiometric occultation method. The need is to detect photons flux variations about 7×10-4 for one hour integration time. Such performance will permit to detect occultations on a very large number of stars: magnitude between 12 and 15.5. The satellite Preliminary Design Review has been held on January 2004 while the instrument is already in development phase with a Critical Design Review in April 2004 and a delivery of the flight model in March 2005. The launch is scheduled in June 2006. This paper recalls the mission, describes the payload and its main noise performances.

  1. Binary centrifugal microfluidics enabling novel, digital addressable functions for valving and routing.

    PubMed

    Wang, Guanghui; Tan, Jie; Tang, Minghui; Zhang, Changbin; Zhang, Dongying; Ji, Wenbin; Chen, Junhao; Ho, Ho-Pui; Zhang, Xuping

    2018-03-16

    Centrifugal microfluidics or lab-on-a-disc (LOAD) is a promising branch of lab-on-a-chip or microfluidics. Besides effective fluid transportation and inherently available density-based sample separation in centrifugal microfluidics, uniform actuation of flow on the disc makes the platform compact and scalable. However, the natural radially outward centrifugal force in a LOAD system limits its capacity to perform complex fluid manipulation steps. In order to increase the fluid manipulation freedom and integration capacity of the LOAD system, we propose a binary centrifugal microfluidics platform. With the help of Euler force, our platform allows free switching of both left and right states based on a rather simple mechanical structure. The periodical switching of state would provide a "clock" signal for a sequence of droplet binary logic operations. With the binary state platform and the "clock" signal, we can accurately handle the droplet separately in each time step with a maximum main frequency of about 10 S s-1 (switching per second). Apart from droplet manipulations such as droplet generation and metering, we also demonstrate a series of droplet logic operations, such as binary valving, droplet routing and digital addressable droplet storage. Furthermore, complex bioassays such as the Bradford assay and DNA purification assay are demonstrated on a binary platform, which is totally impossible for a traditional LOAD system. Our binary platform largely improves the capability for logic operation on the LOAD platform, and it is a simple and promising approach for microfluidic lab-on-a-disc large-scale integration.

  2. Servo Driven Corotation: Development of AN Inertial Clock.

    NASA Astrophysics Data System (ADS)

    Cheung, Wah-Kwan Stephen

    An inertial clock to test non-metricity of gravity is proposed here. A first, room-temperature, servo corotation -protected, double magnetically suspended precision rotor system is developed for this purpose. The specific goal was to exhibit the properties of such a clock in its entirety at whatever level of precision was achievable. A monolithic system has been completed for these preliminary studies. It includes particular development of individual experimental sub-systems (a hybrid double magnetic suspension; a diffusion pumping system; a microcomputer -controlled eddy-current drive system; and the angular period measuring schemes for the doubly suspended rotors). Double magnetic suspension had been investigated by Beams for other purposes. The upper transducer is optical but parametrized and the lower transducer employs the frequency modulation characteristic of a LC tank circuit. The doubly suspended rotors corotate so that the upper rotor is servoed to rotate at the same angular velocity as that of the lower rotor. This creates a "drag free" environment for the lower rotor and effectively eliminates the gas drag on the lower rotor. Consequently, the decay time constant of the lower rotor increases. With other means of protection, the lower rotor will then, with perfect system operation, suffer no drag and therefore become the inertial time keeper. A commercial microcomputer is introduced to execute the servo-corotation. The tests thus far are, with one exception, run at atmospheric pressure. An idealized analysis for open and closed loop corotation is shown. Such analysis includes only the viscous drag acting on the corotating rotors. The analysis suggests that angular position control be added to the present feedback drive which is of derivative nature only. Open and closed corotation runs show that a strong torsional coupling besides that of the gas drag exists between the rotors. When misalignment of the support pole pieces is deliberately made significant, a stronger coupling between the rotors results. The coupling is suspected to be magnetic in nature. The complicated geometry of the double magnetic suspension scheme makes it difficult to evaluate the known mechanical cranking effect applied to this situation.

  3. The use of twin screw extruders for feeding coal against pressures of up to 1500 PSI

    NASA Technical Reports Server (NTRS)

    Wiedmann, W.; Mack, W. A.

    1977-01-01

    Recent tests with a twin-screw, co-rotating extruder which was successfully used to convey and feed coal against pressures of up to 1500 psi are described. Intermeshing and self-wiping, co-rotating twin-screws give greatly improved conveying and pressure built-up capabilities and avoid hangup and eventual decomposition of coal particles in the screw flights. The conveying action of intermeshing, self-wiping, co-rotating extruder systems approaches that of a positive displacement pump. With this feature, it is possible to maintain very accurate control over all aspects of product conveyance in the extruder, i.e., intake, conveyance and pressure buildup.

  4. VizieR Online Data Catalog: Corot photometry of TYC 455-791-1 (Strassmeier+, 2017)

    NASA Astrophysics Data System (ADS)

    Strassmeier, K. G.; Granzer, T.; Mallonn, M.; Weber, M.; Weingrill, J.

    2016-11-01

    From the original CoRoT white-light flux obtained on two consecutive runs, we filter out obvious outliers from the SAA (south Atlantic Anomaly). The third column are the remaining CoRoT data points. The two data set were merged using individual zero-points of 716386.54e- for the first data set and 721882.56e- for the second data set, respectively. The magnitudes thus calculates are in column four. The last column is the combined model of the transit plus a 12th order Fourier-series fit to the out-of-transit data. (1 data file).

  5. Consistent linearization of the element-independent corotational formulation for the structural analysis of general shells

    NASA Technical Reports Server (NTRS)

    Rankin, C. C.

    1988-01-01

    A consistent linearization is provided for the element-dependent corotational formulation, providing the proper first and second variation of the strain energy. As a result, the warping problem that has plagued flat elements has been overcome, with beneficial effects carried over to linear solutions. True Newton quadratic convergence has been restored to the Structural Analysis of General Shells (STAGS) code for conservative loading using the full corotational implementation. Some implications for general finite element analysis are discussed, including what effect the automatic frame invariance provided by this work might have on the development of new, improved elements.

  6. The COROT ground-based archive and access system

    NASA Astrophysics Data System (ADS)

    Solano, E.; González-Riestra, R.; Catala, C.; Baglin, A.

    2002-01-01

    A prototype of the COROT ground-based archive and access system is presented here. The system has been developed at LAEFF and it is based on the experience gained at Laboratorio de Astrofisica Espacial y Fisica Fundamental (LAEFF) with the INES (IUE Newly Extracted System) Archive.

  7. Super-Cavitating Flow Around Two-Dimensional Conical, Spherical, Disc and Stepped Disc Cavitators

    NASA Astrophysics Data System (ADS)

    Sooraj, S.; Chandrasekharan, Vaishakh; Robson, Rony S.; Bhanu Prakash, S.

    2017-08-01

    A super-cavitating object is a high speed submerged object that is designed to initiate a cavitation bubble at the nose which extends past the aft end of the object, substantially reducing the skin friction drag that would be present if the sides of the object were in contact with the liquid in which the object is submerged. By reducing the drag force the thermal energy consumption to move faster can also be minimised. The super-cavitation behavioural changes with respect to Cavitators of various geometries have been studied by varying the inlet velocity. Two-dimensional computational fluid dynamics analysis has been carried out by applying k-ε turbulence model. The variation of drag coefficient, cavity length with respect to cavitation number and inlet velocity are analyzed. Results showed conical Cavitator with wedge angle of 30° has lesser drag coefficient and cavity length when compared to conical Cavitators with wedge angles 45° and 60°, spherical, disc and stepped disc Cavitators. Conical cavitator 60° and disc cavitator have the maximum cavity length but with higher drag coefficient. Also there is significant variation of supercavitation effect observed between inlet velocities of 32 m/s to 40 m/s.

  8. Cancer-adipose tissue interaction and fluid flow synergistically modulate cell kinetics, HER2 expression, and trastuzumab efficacy in gastric cancer.

    PubMed

    Akutagawa, Takashi; Aoki, Shigehisa; Yamamoto-Rikitake, Mihoko; Iwakiri, Ryuichi; Fujimoto, Kazuma; Toda, Shuji

    2018-04-25

    Early local tumor invasion in gastric cancer results in likely encounters between cancer cells and submucosal and subserosal adipose tissue, but these interactions remain to be clarified. Microenvironmental mechanical forces, such as fluid flow, are known to modulate normal cell kinetics, but the effects of fluid flow on gastric cancer cells are poorly understood. We analyzed the cell kinetics and chemosensitivity in gastric cancer using a simple in vitro model that simultaneously replicated the cancer-adipocyte interaction and physical microenvironment. Gastric cancer cells (MKN7 and MKN74) were seeded on rat adipose tissue fragment-embedded discs or collagen discs alone. To generate fluid flow, samples were placed on a rotatory shaker in a CO 2 incubator. Proliferation, apoptosis, invasion, and motility-related molecules were analyzed by morphometry and immunostaining. Proteins were evaluated by western blot analysis. Chemosensitivity was investigated by trastuzumab treatment. Adipose tissue and fluid flow had a positive synergistic effect on the proliferative potential and invasive capacity of gastric cancer cells, and adipose tissue inhibited apoptosis in these cells. Adipose tissue upregulated ERK1/2 signaling in gastric cancer cells, but downregulated p38 signaling. Notably, adipose tissue and fluid flow promoted membranous and cytoplasmic HER2 expression and modulated chemosensitivity to trastuzumab in gastric cancer cells. We have demonstrated that cancer-adipocyte interaction and physical microenvironment mutually modulate gastric cancer cell kinetics. Further elucidation of the microenvironmental regulation in gastric cancer will be very important for the development of strategies involving molecular targeted therapy.

  9. Hermetically sealed superconducting magnet motor

    DOEpatents

    DeVault, R.C.; McConnell, B.W.; Phillips, B.A.

    1996-07-02

    A hermetically sealed superconducting magnet motor includes a rotor separated from a stator by either a radial gap, an axial gap, or a combined axial and radial gap. Dual conically shaped stators are used in one embodiment to levitate a disc-shaped rotor made of superconducting material within a conduit for moving cryogenic fluid. As the rotor is caused to rotate when the field stator is energized, the fluid is pumped through the conduit. 6 figs.

  10. On Long Baroclinic Rossby Waves in the Tropical North Atlantic Observed From Profiling Floats

    DTIC Science & Technology

    2007-05-16

    15b and 15c). Reclosing of vortex isolines while forming a new corotating eddy pair typically indicates excitation of periodical auto-oscillations in...important dynamical effect as reclosing of vortex isolines between corotating eddies, which are components of the semiannual standing Rossby wave

  11. Transiting exoplanets from the CoRoT space mission. VIII. CoRoT-7b: the first super-Earth with measured radius

    NASA Astrophysics Data System (ADS)

    Léger, A.; Rouan, D.; Schneider, J.; Barge, P.; Fridlund, M.; Samuel, B.; Ollivier, M.; Guenther, E.; Deleuil, M.; Deeg, H. J.; Auvergne, M.; Alonso, R.; Aigrain, S.; Alapini, A.; Almenara, J. M.; Baglin, A.; Barbieri, M.; Bruntt, H.; Bordé, P.; Bouchy, F.; Cabrera, J.; Catala, C.; Carone, L.; Carpano, S.; Csizmadia, Sz.; Dvorak, R.; Erikson, A.; Ferraz-Mello, S.; Foing, B.; Fressin, F.; Gandolfi, D.; Gillon, M.; Gondoin, Ph.; Grasset, O.; Guillot, T.; Hatzes, A.; Hébrard, G.; Jorda, L.; Lammer, H.; Llebaria, A.; Loeillet, B.; Mayor, M.; Mazeh, T.; Moutou, C.; Pätzold, M.; Pont, F.; Queloz, D.; Rauer, H.; Renner, S.; Samadi, R.; Shporer, A.; Sotin, Ch.; Tingley, B.; Wuchterl, G.; Adda, M.; Agogu, P.; Appourchaux, T.; Ballans, H.; Baron, P.; Beaufort, T.; Bellenger, R.; Berlin, R.; Bernardi, P.; Blouin, D.; Baudin, F.; Bodin, P.; Boisnard, L.; Boit, L.; Bonneau, F.; Borzeix, S.; Briet, R.; Buey, J.-T.; Butler, B.; Cailleau, D.; Cautain, R.; Chabaud, P.-Y.; Chaintreuil, S.; Chiavassa, F.; Costes, V.; Cuna Parrho, V.; de Oliveira Fialho, F.; Decaudin, M.; Defise, J.-M.; Djalal, S.; Epstein, G.; Exil, G.-E.; Fauré, C.; Fenouillet, T.; Gaboriaud, A.; Gallic, A.; Gamet, P.; Gavalda, P.; Grolleau, E.; Gruneisen, R.; Gueguen, L.; Guis, V.; Guivarc'h, V.; Guterman, P.; Hallouard, D.; Hasiba, J.; Heuripeau, F.; Huntzinger, G.; Hustaix, H.; Imad, C.; Imbert, C.; Johlander, B.; Jouret, M.; Journoud, P.; Karioty, F.; Kerjean, L.; Lafaille, V.; Lafond, L.; Lam-Trong, T.; Landiech, P.; Lapeyrere, V.; Larqué, T.; Laudet, P.; Lautier, N.; Lecann, H.; Lefevre, L.; Leruyet, B.; Levacher, P.; Magnan, A.; Mazy, E.; Mertens, F.; Mesnager, J.-M.; Meunier, J.-C.; Michel, J.-P.; Monjoin, W.; Naudet, D.; Nguyen-Kim, K.; Orcesi, J.-L.; Ottacher, H.; Perez, R.; Peter, G.; Plasson, P.; Plesseria, J.-Y.; Pontet, B.; Pradines, A.; Quentin, C.; Reynaud, J.-L.; Rolland, G.; Rollenhagen, F.; Romagnan, R.; Russ, N.; Schmidt, R.; Schwartz, N.; Sebbag, I.; Sedes, G.; Smit, H.; Steller, M. B.; Sunter, W.; Surace, C.; Tello, M.; Tiphène, D.; Toulouse, P.; Ulmer, B.; Vandermarcq, O.; Vergnault, E.; Vuillemin, A.; Zanatta, P.

    2009-10-01

    Aims: We report the discovery of very shallow (Δ F/F ≈ 3.4× 10-4), periodic dips in the light curve of an active V = 11.7 G9V star observed by the CoRoT satellite, which we interpret as caused by a transiting companion. We describe the 3-colour CoRoT data and complementary ground-based observations that support the planetary nature of the companion. Methods: We used CoRoT colours information, good angular resolution ground-based photometric observations in- and out- of transit, adaptive optics imaging, near-infrared spectroscopy, and preliminary results from radial velocity measurements, to test the diluted eclipsing binary scenarios. The parameters of the host star were derived from optical spectra, which were then combined with the CoRoT light curve to derive parameters of the companion. Results: We examined all conceivable cases of false positives carefully, and all the tests support the planetary hypothesis. Blends with separation >0.40´´or triple systems are almost excluded with a 8 × 10-4 risk left. We conclude that, inasmuch we have been exhaustive, we have discovered a planetary companion, named CoRoT-7b, for which we derive a period of 0.853 59 ± 3 × 10-5 day and a radius of Rp = 1.68 ± 0.09 R_Earth. Analysis of preliminary radial velocity data yields an upper limit of 21 M_Earth for the companion mass, supporting the finding. Conclusions: CoRoT-7b is very likely the first Super-Earth with a measured radius. This object illustrates what will probably become a common situation with missions such as Kepler, namely the need to establish the planetary origin of transits in the absence of a firm radial velocity detection and mass measurement. The composition of CoRoT-7b remains loosely constrained without a precise mass. A very high surface temperature on its irradiated face, ≈1800-2600 K at the substellar point, and a very low one, ≈50 K, on its dark face assuming no atmosphere, have been derived. The CoRoT space mission, launched on 27 December 2006, has been developed and is operated by CNES, with the contribution of Austria, Belgium, Brazil, ESA, Germany, and Spain. First CoRoT data are available to the public from the CoRoT archive: http://idoc-corot.ias.u-psud.fr. The complementary observations were obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT) which is operated by NRC in Canada, INSU-CNRS in France, and the University of Hawaii; ESO Telescopes at the La Silla and Paranal Observatories under programme ID 081.C-0413(C), DDT 282.C-5015; the IAC80 telescope operated by the Instituto de Astrofísica de Tenerife at the Observatorio del Teide; the Isaac Newton Telescope (INT), operated on the island of La Palma by the Isaac Newton group in the Spanish Observatorio del Roque de Los Muchachos of the Instituto de Astrofisica de Canarias; and at the Anglo-Australian Telescope that have been funded by the Optical Infrared Coordination network (OPTICON), a major international collaboration supported by the Research Infrastructures Programme of the European Commissions Sixth Framework Programme; Radial-velocity observations were obtained with the SOPHIE spectrograph at the 1.93m telescope of Observatoire de Haute Provence, France.

  12. The wettability and swelling of selected mucoadhesive polymers in simulated saliva and vaginal fluids.

    PubMed

    Rojewska, M; Olejniczak-Rabinek, M; Bartkowiak, A; Snela, A; Prochaska, K; Lulek, J

    2017-08-01

    The surface properties play a particularly important role in the mucoadhesive drug delivery systems. In these formulations, the adsorption of polymer matrix to mucous membrane is limited by the wetting and swelling process of the polymer structure. Hence, the performance of mucoadhesive drug delivery systems made of polymeric materials depends on multiple factors, such as contact angle, surface free energy and water absorption rate. The aim of our study was to analyze the effect of model saliva and vaginal fluids on the wetting properties of selected mucoadhesive (Carbopol 974P NF, Noveon AA-1, HEC) and film-forming (Kollidon VA 64) polymers as well as their blends at the weight ratio 1:1 and 1:1:1, prepared in the form of discs. Surface properties of the discs were determined by measurements of advancing contact angle on the surface of polymers and their blends using the sessile drop method. The surface energy was determined by the OWRK method. Additionally, the mass swelling factor and hydration percentage of examined polymers and their blends in simulated biological fluids were evaluated. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Two-component gravitational instability in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Marchuk, A. A.; Sotnikova, N. Y.

    2018-04-01

    We applied a criterion of gravitational instability, valid for two-component and infinitesimally thin discs, to observational data along the major axis for seven spiral galaxies of early types. Unlike most papers, the dispersion equation corresponding to the criterion was solved directly without using any approximation. The velocity dispersion of stars in the radial direction σR was limited by the range of possible values instead of a fixed value. For all galaxies, the outer regions of the disc were analysed up to R ≤ 130 arcsec. The maximal and sub-maximal disc models were used to translate surface brightness into surface density. The largest destabilizing disturbance stars can exert on a gaseous disc was estimated. It was shown that the two-component criterion differs a little from the one-fluid criterion for galaxies with a large surface gas density, but it allows to explain large-scale star formation in those regions where the gaseous disc is stable. In the galaxy NGC 1167 star formation is entirely driven by the self-gravity of the stars. A comparison is made with the conventional approximations which also include the thickness effect and with models for different sound speed cg. It is shown that values of the effective Toomre parameter correspond to the instability criterion of a two-component disc Qeff < 1.5-2.5. This result is consistent with previous theoretical and observational studies.

  14. Quantitative measurement of intervertebral disc signal using MRI.

    PubMed

    Niemeläinen, R; Videman, T; Dhillon, S S; Battié, M C

    2008-03-01

    To investigate the spinal cord as an alternative intra-body reference to cerebrospinal fluid (CSF) in evaluating thoracic disc signal intensity. T2-weighted magnetic resonance imaging (MRI) images of T6-T12 were obtained using 1.5 T machines for a population-based sample of 523 men aged 35-70 years. Quantitative data on the signal intensities were acquired using an image analysis program (SpEx). A random sample of 30 subjects and intraclass correlation coefficients (ICC) were used to examine the repeatability of the spinal cord measurements. The validity of using the spinal cord as a reference was examined by correlating cord and CSF samples. Finally, thoracic disc signal was validated by correlating it with age without adjustment and adjusting for either cord or CSF. Pearson's r was used for correlational analyses. The repeatability of the spinal cord signal measurements was extremely high (>or=0.99). The correlations between the signals of spinal cord and CSF by level were all above 0.9. The spinal cord-adjusted disc signal and age correlated similarly with CSF-adjusted disc signal and age (r=-0.30 to -0.40 versus r=-0.26 to -0.36). Adjacent spinal cord is a good alternative reference to the current reference standard, CSF, for quantitative measurements of disc signal intensity. Clearly fewer levels were excluded when using spinal cord as compared to CSF due to missing reference samples.

  15. Dynamics of multiple bodies in a corotation resonance

    NASA Astrophysics Data System (ADS)

    A'Hearn, Joseph; Hedman, Matthew

    2018-04-01

    The orbital evolution of multiple massive bodies trapped in the same corotation resonance site has not yet been studied in depth, but could be relevant to the origins and history of small moons like Saturn's moon Aegaeon. We conduct numerical simulations of multiple bodies trapped within a corotation resonance and examine what happens to these bodies when they have close encounters. Compared to simulations with equal mass bodies, simulations with one body more massive than the others may be more likely to feature an asymmetry in the phase space of semi-major axis and mean longitude. That is, bodies on one side of phase space have a slightly greater tendency to lose angular momentum, while bodies on the other side gain angular momentum. With this asymmetry, the transfer of angular momentum during gravitational encounters makes it more likely for the most massive body rather than other bodies to approach the center of the corotation site. More work is needed to determine if this sort of process can significantly affect the orbital evolution of small moons like Aegaeon.

  16. Spinning Disc Technology – Residence Time Distribution and Efficiency in Textile Wastewater Treatment Application

    NASA Astrophysics Data System (ADS)

    Iacob Tudose, E. T.; Zaharia, C.

    2018-06-01

    The spinning disc (SD) technology has received increased attention in the last years due to its enhanced fluid flow features resulting in improved property transfers. The actual study focuses on characterization of the flow within a spinning disc system based on experimental data used to establish the residence time distribution (RTD) and its dependence on the feeding liquid flowrate and the disc rotational speed. To obtain these data, an inert tracer (sodium chloride) was injected as a pulse input in the liquid stream entering the disc and the salt concentration of the liquid leaving the disc was continuously recorded. The obtained data indicate that an increase in the liquid flowrate from 10 L/h to 30 L/h determines a narrower RTD function. Also, at rotational speed of 200 rpm, the residence time distribution is broader than that for 500 rpm and 800 rpm. The RTD data suggest that depending on the needed flow characteristics, one can choose a certain flowrate and rotational speed domain for its application. Also, the SD technology was used to process textile wastewater treated with bentonite (as both coagulation and discoloration agent) in order to investigate whether the quality indicators such as the total suspended solid content, turbidity and discoloration, can be improved. The experimental results are promising since the discoloration and the removals of suspended solids attained values of over 40%, and respectively, 50 %, depending on the effluent flowrate (10 l/h and 30 L/h), and the disc rotational speed (200 rpm, 550 rpm and 850 rpm) without any other addition of chemicals, or initiation of other simultaneous treatment processes (e.g., advanced oxidative, or reductive, or biochemical processes). This recommends spinning disc technology as a suitable and promising tool to improve different wastewater characteristics.

  17. Mode extraction from time series: from the challenges of COROT to those of Eddington

    NASA Astrophysics Data System (ADS)

    Appourchaux, T.; Moreira, O.; Berthomieu, G.; Toutain, T.

    2004-01-01

    With more than 30 years of experience in extraction of eigenmodes from power spectra of solar signals, we are now almost ready to apply this knowledge onto the forecoming missions: COROT and Eddington. However the fitting task differs by 3 orders of magnitude; COROT will be able to get time series of stellar light for some 30 stars, while Eddington will be able to gather such data for about 50000 stars. While for COROT, our current tools can be applied by hand, the case of Eddington is significantly more complex. We are looking forward having automatic fitting procedures that will allow to recover mode parameters for about 90% of the solar-like stars. Unfortunately, about 10% of these stars will require some more delicate attention that will cost time to take care of. We will use the example of the infamous HD 57006, known to be quite evolved with a difficult eigenmode spectrum, to explain how a star can evolve from an easy-to-fit target (90% of the solar-like stars) to a difficult-to-fit (10% of the remaining stars). In the latter case, new techniques for detecting narrow peaks (g-mode like) out of broad peaks (p-mode like) has been devised in the context of the hare-and-hound exercise of COROT. This and other techniques will be used to implement the automatic fitting procedure for the remaining 10% of Eddington solar-like stars.

  18. Radiation effects on space-based stellar photometry: theoretical models and empirical results for CoRoT Space Telescope

    NASA Astrophysics Data System (ADS)

    Pinheiro da Silva, L.; Rolland, G.; Lapeyrere, V.; Auvergne, M.

    2008-03-01

    Convection, Rotation and planetary Transits (CoRoT) is a space mission dedicated to stellar seismology and the search for extrasolar planets. Both scientific programs are based on very high precision photometry and require long, uninterrupted observations. The instrument is based on an afocal telescope and a wide-field camera, consisting of four E2V-4280 CCD devices. This set is mounted on a recurrent platform for insertion in low Earth orbit. The CoRoT satellite has been recently launched for a nominal mission duration of three years. In this work, we discuss the impact of space radiation on CoRoT CCDs, in sight of the in-flight characterization results obtained during the satellite's commissioning phase, as well as the very first observational data. We start by describing the population of trapped particles at the satellite altitude, and by presenting a theoretical prediction for the incoming radiation fluxes seen by the CCDs behind shielding. Empirical results regarding particle impact rates and their geographical distribution are then presented and discussed. The effect of particle impacts is also statistically characterized, with respect to the ionizing energy imparted to the CCDs and the size of impact trails. Based on these results, we discuss the effects of space radiation on precise and time-resolved stellar photometry from space. Finally, we present preliminary results concerning permanent radiation damage on CoRoT CCDs, as extrapolated from the data available at the beginning of the satellite's lifetime.

  19. A 0.8-2.4 μm Transmission spectrum of the hot Jupiter CoRoT-1b

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlawin, E.; Herter, T.; Zhao, M.

    Hot Jupiters with brightness temperatures ≳2000 K can have TiO and VO molecules as gaseous species in their atmospheres. The TiO and VO molecules can potentially induce temperature inversions in hot Jupiter atmospheres and also have an observable signature of large optical to infrared transit depth ratios. Previous transmission spectra of very hot Jupiters have shown a lack of TiO and VO, but only in planets that also appear to lack temperature inversions. We measure the transmission spectrum of CoRoT-1b, a hot Jupiter that was predicted to have a temperature inversion potentially due to significant TiO and VO in itsmore » atmosphere. We employ the multi-object spectroscopy method using the SpeX and MORIS instruments on the Infrared Telescope Facility (IRTF) and the Gaussian process method to model red noise. By using a simultaneous reference star on the slit for calibration and a wide slit to minimize slit losses, we achieve transit depth precision of 0.03%-0.09%, comparable to the atmospheric scale height but detect no statistically significant molecular features. We combine our IRTF data with optical CoRoT transmission measurements to search for differences in the optical and near-infrared absorption that would arise from TiO/VO. Our IRTF spectrum and the CoRoT photometry disfavor a TiO/VO-rich spectrum for CoRoT-1b, suggesting that the atmosphere has another absorber that could create a temperature inversion or that the blackbody-like emission from the planet is due to a spectroscopically flat cloud, dust, or haze layer that smoothes out molecular features in both CoRoT-1b's emission and transmission spectra. This system represents the faintest planet hosting star (K = 12.2) with a measured planetary transmission spectrum.« less

  20. Transiting exoplanets from the CoRoT space mission. XXVII. CoRoT-28b, a planet orbiting an evolved star, and CoRoT-29b, a planet showing an asymmetric transit

    NASA Astrophysics Data System (ADS)

    Cabrera, J.; Csizmadia, Sz.; Montagnier, G.; Fridlund, M.; Ammler-von Eiff, M.; Chaintreuil, S.; Damiani, C.; Deleuil, M.; Ferraz-Mello, S.; Ferrigno, A.; Gandolfi, D.; Guillot, T.; Guenther, E. W.; Hatzes, A.; Hébrard, G.; Klagyivik, P.; Parviainen, H.; Pasternacki, Th.; Pätzold, M.; Sebastian, D.; Tadeu dos Santos, M.; Wuchterl, G.; Aigrain, S.; Alonso, R.; Almenara, J.-M.; Armstrong, J. D.; Auvergne, M.; Baglin, A.; Barge, P.; Barros, S. C. C.; Bonomo, A. S.; Bordé, P.; Bouchy, F.; Carpano, S.; Chaffey, C.; Deeg, H. J.; Díaz, R. F.; Dvorak, R.; Erikson, A.; Grziwa, S.; Korth, J.; Lammer, H.; Lindsay, C.; Mazeh, T.; Moutou, C.; Ofir, A.; Ollivier, M.; Pallé, E.; Rauer, H.; Rouan, D.; Samuel, B.; Santerne, A.; Schneider, J.

    2015-07-01

    Context. We present the discovery of two transiting extrasolar planets by the satellite CoRoT. Aims: We aim at a characterization of the planetary bulk parameters, which allow us to further investigate the formation and evolution of the planetary systems and the main properties of the host stars. Methods: We used the transit light curve to characterize the planetary parameters relative to the stellar parameters. The analysis of HARPS spectra established the planetary nature of the detections, providing their masses. Further photometric and spectroscopic ground-based observations provided stellar parameters (log g, Teff, v sin i) to characterize the host stars. Our model takes the geometry of the transit to constrain the stellar density into account, which when linked to stellar evolutionary models, determines the bulk parameters of the star. Because of the asymmetric shape of the light curve of one of the planets, we had to include the possibility in our model that the stellar surface was not strictly spherical. Results: We present the planetary parameters of CoRoT-28b, a Jupiter-sized planet (mass 0.484 ± 0.087 MJup; radius 0.955 ± 0.066 RJup) orbiting an evolved star with an orbital period of 5.208 51 ± 0.000 38 days, and CoRoT-29b, another Jupiter-sized planet (mass 0.85 ± 0.20 MJup; radius 0.90 ± 0.16 RJup) orbiting an oblate star with an orbital period of 2.850 570 ± 0.000 006 days. The reason behind the asymmetry of the transit shape is not understood at this point. Conclusions: These two new planetary systems have very interesting properties and deserve further study, particularly in the case of the star CoRoT-29. The CoRoT space mission, launched on December 27th 2006, was developed and is operated by CNES, with the contribution of Austria, Belgium, Brazil, ESA (RSSD and Science Programme), Germany, and Spain. Based on observations obtained with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias, in time allocated by OPTICON and the Spanish Time Allocation Committee (CAT). The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement number RG226604 (OPTICON). This work makes use of observations from the LCOGT network.Appendices are available in electronic form at http://www.aanda.org

  1. The GAPS Programme with HARPS-N at TNG . XIV. Investigating giant planet migration history via improved eccentricity and mass determination for 231 transiting planets

    NASA Astrophysics Data System (ADS)

    Bonomo, A. S.; Desidera, S.; Benatti, S.; Borsa, F.; Crespi, S.; Damasso, M.; Lanza, A. F.; Sozzetti, A.; Lodato, G.; Marzari, F.; Boccato, C.; Claudi, R. U.; Cosentino, R.; Covino, E.; Gratton, R.; Maggio, A.; Micela, G.; Molinari, E.; Pagano, I.; Piotto, G.; Poretti, E.; Smareglia, R.; Affer, L.; Biazzo, K.; Bignamini, A.; Esposito, M.; Giacobbe, P.; Hébrard, G.; Malavolta, L.; Maldonado, J.; Mancini, L.; Martinez Fiorenzano, A.; Masiero, S.; Nascimbeni, V.; Pedani, M.; Rainer, M.; Scandariato, G.

    2017-06-01

    We carried out a Bayesian homogeneous determination of the orbital parameters of 231 transiting giant planets (TGPs) that are alone or have distant companions; we employed differential evolution Markov chain Monte Carlo methods to analyse radial-velocity (RV) data from the literature and 782 new high-accuracy RVs obtained with the HARPS-N spectrograph for 45 systems over 3 years. Our work yields the largest sample of systems with a transiting giant exoplanet and coherently determined orbital, planetary, and stellar parameters. We found that the orbital parameters of TGPs in non-compact planetary systems are clearly shaped by tides raised by their host stars. Indeed, the most eccentric planets have relatively large orbital separations and/or high mass ratios, as expected from the equilibrium tide theory. This feature would be the outcome of planetary migration from highly eccentric orbits excited by planet-planet scattering, Kozai-Lidov perturbations, or secular chaos. The distribution of α = a/aR, where a and aR are the semi-major axis and the Roche limit, for well-determined circular orbits peaks at 2.5; this agrees with expectations from the high-eccentricity migration (HEM), although it might not be limited to this migration scenario. The few planets of our sample with circular orbits and α> 5 values may have migrated through disc-planet interactions instead of HEM. By comparing circularisation times with stellar ages, we found that hot Jupiters with a< 0.05 au have modified tidal quality factors 105 ≲ Q'p ≲ 109, and that stellar Q's ≳ 106 - 107 are required to explain the presence of eccentric planets at the same orbital distance. As aby-product of our analysis, we detected a non-zero eccentricity e = 0.104-0.018+0.021 for HAT-P-29; we determined that five planets that were previously regarded to be eccentric or to have hints of non-zero eccentricity, namely CoRoT-2b, CoRoT-23b, TrES-3b, HAT-P-23b, and WASP-54b, have circular orbits or undetermined eccentricities; we unveiled curvatures caused by distant companions in the RV time series of HAT-P-2, HAT-P-22, and HAT-P-29; we significantly improved the orbital parameters of the long-period planet HAT-P-17c; and we revised the planetary parameters of CoRoT-1b, which turned out to be considerably more inflated than previously found. Full Tables 1, 2, 5-9 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/602/A107

  2. Principles of operation and data reduction techniques for the loft drag disc turbine transducer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silverman, S.

    An analysis of the single- and two-phase flow data applicable to the loss-of-fluid test (LOFT) is presented for the LOFT drag turbine transducer. Analytical models which were employed to correlate the experimental data are presented.

  3. Risk of Microgravity-Induced Visual Impairment and Elevated Intracranial Pressure (VIIP)

    NASA Technical Reports Server (NTRS)

    Otto, Christian

    2011-01-01

    Eight cases identified, represent 23.5% of the 34 crewmembers flown on the ISS, with inflight visual changes and pre-to-postflight refractive changes. In some cases, the changes were transient while in others they are persistent with varying degrees of visual impairment. (1) Decreased intraocular pressure (IOP) postflight was observed in 3 cases. (2) Fundoscopic exams revealed postflight findings of choroidal folds in 4 cases, optic disc edema in 5 cases and presence of cotton wool spots in 3 cases. (3) Optical coherence tomography (OCT) confirmed findings of choroidal folds and disc edema and documented retinal nerve fiber layer thickening (4 cases). (4) Findings from MRI examinations showed posterior globe flattening (5 cases) and optic nerve sheath distension (6 cases). (5) Opening cerebrospinal fluid (CSF) pressure was elevated in 4 cases postflight reflecting raised intracranial pressure. While the etiology remains unknown, hypotheses speculate that venous insufficiency or hypertension in the brain caused by cephalad fluid shifts during spaceflight are possible mechanisms for ocular changes in astronauts.

  4. Mechanical thermal motor

    NASA Technical Reports Server (NTRS)

    Hein, L. A.; Myers, W. N. (Inventor)

    1976-01-01

    An apparatus is described for converting thermal energy such as solar energy into mechanical motion for driving fluid pumps and similar equipment. The thermal motor comprises an inner concentric cylinder carried by a stationary core member. The core member has a cylindrical disc plate fixed adjacent to a lower portion and extending radially from it. An outer concentric cylinder rotatably carried on the disc plate defining a space between the inner and outer concentric cylinders. A spiral tubular member encircles the inner concentric cylinder and is contained within the space between the inner and outer cylinders. One portion is connected to the inner concentric cylinder and a second portion connected to the outer concentric cylinder. A heated fluid is conveyed through the tubular member and is periodically cooled causing the tubular member to expand and contract. This causes the outer concentric cylinder to reciprocally rotate on the base plate accordingly. The reciprocating motion of the outer concentric cylinder is then utilized to drive a pump member in a pump chamber.

  5. Acoustic transducer

    DOEpatents

    Drumheller, Douglas S.

    1997-01-01

    An acoustic transducer comprising a one-piece hollow mandrel into the outer surface of which is formed a recess with sides perpendicular to the central axis of the mandrel and separated by a first distance and with a bottom parallel to the central axis and within which recess are a plurality of washer-shaped discs of a piezoelectric material and at least one disc of a temperature-compensating material with the discs being captured between the sides of the recess in a pre-stressed interference fit, typically at 2000 psi of compressive stress. The transducer also includes a power supply and means to connect to a measurement device. The transducer is intended to be used for telemetry between a measurement device located downhole in an oil or gas well and the surface. The transducer is of an construction that is stronger with fewer joints that could leak fluids into the recess holding the piezoelectric elements than is found in previous acoustic transducers.

  6. Local stability of galactic discs in modified dynamics

    NASA Astrophysics Data System (ADS)

    Shenavar, Hossein; Ghafourian, Neda

    2018-04-01

    The local stability of stellar and fluid discs, under a new modified dynamical model, is surveyed by using WKB approximation. The exact form of the modified Toomre criterion is derived for both types of systems and it is shown that the new model is, in all situations, more locally stable than Newtonian model. In addition, it has been proved that the central surface density of the galaxies plays an important role in the local stability in the sense that low surface brightness (LSB) galaxies are more stable than high surface brightness (HSBs). Furthermore, the growth rate in the new model is found to be lower than the Newtonian one. We found that, according to this model, the local instability is related to the ratio of surface density of the disc to a critical surface density Σcrit. We provide observational evidence to support this result based on star formation rate in HSBs and LSBs.

  7. The COROT telescope

    NASA Astrophysics Data System (ADS)

    Viard, Thierry

    2017-11-01

    The COROT telescope, of which the customer is the French "INSU" / "CNES" (Institut National des Sciences de l'Univers / Centre National des Etudes Spatiales) is in fact a very precise and stable imaging instrument, which will be pointed towards fixed areas in the sky (each containing more than 3000 target stars) for periods of at least 5 months, in order to carry out its two missions.

  8. The SpaceInn-SISMA Database: Characterization of a Large Sample of Variable and Active Stars by Means of Harps Spectra

    NASA Astrophysics Data System (ADS)

    Rainer, M.; Poretti, E.; Mistò, A.; Panzera, M. R.; Molinaro, M.; Cepparo, F.; Roth, M.; Michel, E.; Monteiro, M. J. P. F. G.

    2016-12-01

    We created a large database of physical parameters and variability indicators by fully reducing and analyzing the large number of spectra taken to complement the asteroseismic observations of the COnvection, ROtation and planetary Transits (CoRoT) satellite. 7103 spectra of 261 stars obtained with the ESO echelle spectrograph HARPS have been stored in the VO-compliant database Spectroscopic Indicators in a SeisMic Archive (SISMA), along with the CoRoT photometric data of the 72 CoRoT asteroseismic targets. The remaining stars belong to the same variable classes of the CoRoT targets and were observed to better characterize the properties of such classes. Several useful variability indicators (mean line profiles, indices of differential rotation, activity and emission lines) together with v\\sin I and radial-velocity measurements have been extracted from the spectra. The atmospheric parameters {T}{eff},{log}g, and [Fe/H] have been computed following a homogeneous procedure. As a result, we fully characterize a sample of new and known variable stars by computing several spectroscopic indicators, also providing some cases of simultaneous photometry and spectroscopy.

  9. Corotating pressure waves without streams in the solar wind

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.

    1983-01-01

    Voyager 1 and 2 magnetic field and plasma data are presented which demonstrate the existence of large scale, corotating, non-linear pressure waves between 2 AU and 4 AU that are not accompanied by fast streams. The pressure waves are presumed to be generated by corotating streams near the Sun. For two of the three pressure waves that are discussed, the absence of a stream is probably a real, physical effect, viz., a consequence of deceleration of the stream by the associated compression wave. For the third pressure wave, the apparent absence of a stream may be a geometrical effect; it is likely that the stream was at latitudes just above those of the spacecraft, while the associated shocks and compression wave extended over a broader range of latitudes so that they could be observed by the spacecraft. It is suggested that the development of large-scale non-linear pressure waves at the expense of the kinetic energy of streams produces a qualitative change in the solar wind in the outer heliosphere. Within a few AU the quasi-stationary solar wind structure is determined by corotating streams whose structure is determined by the boundary conditions near the Sun.

  10. A photometric study of Be stars located in the seismology fields of COROT

    NASA Astrophysics Data System (ADS)

    Gutiérrez-Soto, J.; Fabregat, J.; Suso, J.; Lanzara, M.; Garrido, R.; Hubert, A.-M.; Floquet, M.

    2007-12-01

    Context: In preparation for the COROT mission, an exhaustive photometric study of Be stars located in the seismology fields of the mission has been performed. The very precise and long-time-spanned photometric observations gathered by the COROT satellite will give important clues on the origin of the Be phenomenon. Aims: The aim of this work is to find short-period variable Be stars located in the seismology fields of COROT, and to study and characterise their pulsational properties. Methods: Light curves obtained at the Observatorio de Sierra Nevada, together with data from Hipparcos and ASAS-3 for a total of 84 Be stars, were analysed in order to search for short-term variations. We applied standard Fourier techniques and non-linear least-square fitting to the time series. Results: We found 7 multiperiodic, 21 mono-periodic and 26 non-variable Be stars. Short-term variability was detected in 74% of early-type Be stars and in 31% of mid- to late-type Be stars. We show that non-radial pulsations are more frequent among Be stars than in slow-rotating B stars of the same spectral range. Appendix A is only available in electronic form at http://www.aanda.org

  11. Towards a better understanding of tidal dissipation at corotation layers in differentially rotating stars and planets

    NASA Astrophysics Data System (ADS)

    Astoul, A.; Mathis, S.; Baruteau, C.; André, Q.

    2017-12-01

    Star-planet tidal interactions play a significant role in the dynamical evolution of close-in planetary systems. We investigate the propagation and dissipation of tidal inertial waves in a stellar/planetary convective region. We take into account a latitudinal differential rotation for the background flow, similar to what is observed in the envelope of low-mass stars like the Sun. Previous works have shown that differential rotation significantly alters the propagation and dissipation properties of inertial waves. In particular, when the Doppler-shifted tidal frequency vanishes in the fluid, a critical layer forms where tidal dissipation can be greatly enhanced. Our present work develops a local analytic model to better understand the propagation and dissipation properties of tidally forced inertial waves at critical layers.

  12. The origin of the eccentricities of the rings of Uranus

    NASA Technical Reports Server (NTRS)

    Goldreich, P.; Tremaine, S.

    1981-01-01

    The effect of gravitational perturbations from a nearby satellite on the eccentricity e of a narrow particulate ring is considered. The perturbations near a resonance in an eccentric ring may be divided into corotation and Lindblad terms. For small e, the corotation terms damp e, whereas the Lindblad terms excite e. In the absence of saturation the corotation terms win by a small margin, and e damps. However, if the perturbations open gaps at the strongest resonances, then the Lindblad terms win, and e grows. This result offers an explanation for the existence of both circular and eccentric rings around Uranus. It is also shown that eccentricity changes induced by circular rings on eccentric satellite orbits are similar to those induced by satellites with circular orbits on eccentric rings.

  13. HD 50844: a new look at δ Scuti stars from CoRoT space photometry

    NASA Astrophysics Data System (ADS)

    Poretti, E.; Michel, E.; Garrido, R.; Lefèvre, L.; Mantegazza, L.; Rainer, M.; Rodríguez, E.; Uytterhoeven, K.; Amado, P. J.; Martín-Ruiz, S.; Moya, A.; Niemczura, E.; Suárez, J. C.; Zima, W.; Baglin, A.; Auvergne, M.; Baudin, F.; Catala, C.; Samadi, R.; Alvarez, M.; Mathias, P.; Paparò, M.; Pápics, P.; Plachy, E.

    2009-10-01

    Context: Aims: This work presents the results obtained by CoRoT on HD 50844, the only δ Sct star observed in the CoRoT initial run (57.6 d). The aim of these CoRoT observations was to investigate and characterize for the first time the pulsational behaviour of a δ Sct star, when observed at a level of precision and with a much better duty cycle than from the ground. Methods: The 140 016 datapoints were analysed using independent approaches (SigSpec software and different iterative sine-wave fittings) and several checks performed (splitting of the timeseries in different subsets, investigation of the residual light curves and spectra). A level of 10-5 mag was reached in the amplitude spectra of the CoRoT timeseries. The space monitoring was complemented by ground-based high-resolution spectroscopy, which allowed the mode identification of 30 terms. Results: The frequency analysis of the CoRoT timeseries revealed hundreds of terms in the frequency range 0-30 d-1. All the cross-checks confirmed this new result. The initial guess that δ Sct stars have a very rich frequency content is confirmed. The spectroscopic mode identification gives theoretical support since very high-degree modes (up to ℓ=14) are identified. We also prove that cancellation effects are not sufficient in removing the flux variations associated to these modes at the noise level of the CoRoT measurements. The ground-based observations indicate that HD 50844 is an evolved star that is slightly underabundant in heavy elements, located on the Terminal Age Main Sequence. Probably due to this unfavourable evolutionary status, no clear regular distribution is observed in the frequency set. The predominant term (f_1=6.92 d-1) has been identified as the fundamental radial mode combining ground-based photometric and spectroscopic data. Conclusions: The CoRoT space mission was developed and is operated by the French space agency CNES, with participation of ESA's RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain. This work is based on ground-based observations made with ESO telescopes at the La Silla Observatory under the ESO Large Programme LP178.D-0361 and on data collected at the Observatorio de Sierra Nevada (Spain), at the Observatorio Astronómico Nacional San Pedro Mártir (Mexico), and at the Piszkéstetö Mountain Station of Konkoly Observatory (Hungary). Table 2 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/506/85 Current address: Laboratoire AIM, CEA/DSM CNRS Université Paris Diderot, CEA, IRFU, SAp, centre de Saclay, 91191 Gif-sur-Yvette, France.

  14. Transiting exoplanets from the CoRoT space mission. XVII. The hot Jupiter CoRoT-17b: a very old planet

    NASA Astrophysics Data System (ADS)

    Csizmadia, Sz.; Moutou, C.; Deleuil, M.; Cabrera, J.; Fridlund, M.; Gandolfi, D.; Aigrain, S.; Alonso, R.; Almenara, J.-M.; Auvergne, M.; Baglin, A.; Barge, P.; Bonomo, A. S.; Bordé, P.; Bouchy, F.; Bruntt, H.; Carone, L.; Carpano, S.; Cavarroc, C.; Cochran, W.; Deeg, H. J.; Díaz, R. F.; Dvorak, R.; Endl, M.; Erikson, A.; Ferraz-Mello, S.; Fruth, Th.; Gazzano, J.-C.; Gillon, M.; Guenther, E. W.; Guillot, T.; Hatzes, A.; Havel, M.; Hébrard, G.; Jehin, E.; Jorda, L.; Léger, A.; Llebaria, A.; Lammer, H.; Lovis, C.; MacQueen, P. J.; Mazeh, T.; Ollivier, M.; Pätzold, M.; Queloz, D.; Rauer, H.; Rouan, D.; Santerne, A.; Schneider, J.; Tingley, B.; Titz-Weider, R.; Wuchterl, G.

    2011-07-01

    We report on the discovery of a hot Jupiter-type exoplanet, CoRoT-17b, detected by the CoRoT satellite. It has a mass of 2.43 ± 0.30 MJup and a radius of 1.02 ± 0.07 RJup, while its mean density is 2.82 ± 0.38 g/cm3. CoRoT-17b is in a circular orbit with a period of 3.7681 ± 0.0003 days. The host star is an old (10.7 ± 1.0 Gyr) main-sequence star, which makes it an intriguing object for planetary evolution studies. The planet's internal composition is not well constrained and can range from pure H/He to one that can contain ~380 earth masses of heavier elements. The CoRoT space mission, launched on December 27th 2006, has been developed and is operated by CNES, with the contribution of Austria, Belgium, Brazil, ESA (RSSD and Science Programme), Germany and Spain. Part of the observations were obtained at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii. Based on observations made with HARPS spectrograph on the 3.6-m European Organisation for Astronomical Research in the Southern Hemisphere telescope at La Silla Observatory, Chile (ESO program 184.C-0639). Based on observations made with the IAC80 telescope operated on the island of Tenerife by the Instituto de Astrofísica de Canarias in the Spanish Observatorio del Teide. Part of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.

  15. Pulsations in the late-type Be star HD 50 209 detected by CoRoT

    NASA Astrophysics Data System (ADS)

    Diago, P. D.; Gutiérrez-Soto, J.; Auvergne, M.; Fabregat, J.; Hubert, A.-M.; Floquet, M.; Frémat, Y.; Garrido, R.; Andrade, L.; de Batz, B.; Emilio, M.; Espinosa Lara, F.; Huat, A.-L.; Janot-Pacheco, E.; Leroy, B.; Martayan, C.; Neiner, C.; Semaan, T.; Suso, J.; Catala, C.; Poretti, E.; Rainer, M.; Uytterhoeven, K.; Michel, E.; Samadi, R.

    2009-10-01

    Context: The presence of pulsations in late-type Be stars is still a matter of controversy. It constitutes an important issue to establish the relationship between non-radial pulsations and the mass-loss mechanism in Be stars. Aims: To contribute to this discussion, we analyse the photometric time series of the B8IVe star HD 50 209 observed by the CoRoT mission in the seismology field. Methods: We use standard Fourier techniques and linear and non-linear least squares fitting methods to analyse the CoRoT light curve. In addition, we applied detailed modelling of high-resolution spectra to obtain the fundamental physical parameters of the star. Results: We have found four frequencies which correspond to gravity modes with azimuthal order m=0,-1,-2,-3 with the same pulsational frequency in the co-rotating frame. We also found a rotational period with a frequency of 0.679 cd-1 (7.754 μHz). Conclusions: HD 50 209 is a pulsating Be star as expected from its position in the HR diagram, close to the SPB instability strip. Based on observations made with the CoRoT satellite, with FEROS at the 2.2 m telescope of the La Silla Observatory under the ESO Large Programme LP178.D-0361 and with Narval at the Télescope Bernard Lyot of the Pic du Midi Observatory. Current address: Valencian International University (VIU), José Pradas Gallen s/n, 12006 Castellón, Spain. Current address: Laboratoire AIM, CEA/DSM-CNRS-Université Paris Diderot; CEA, IRFU, SAp, centre de Saclay, 91191 Gif-sur-Yvette, France.

  16. Vortices and the saturation of the vertical shear instability in protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Latter, Henrik N.; Papaloizou, John

    2018-03-01

    If sufficiently irradiated by its central star, a protoplanetary disc falls into an equilibrium state exhibiting vertical shear. This state may be subject to a hydrodynamical instability, the `vertical shear instability' (VSI), whose breakdown into turbulence transports a moderate amount of angular momentum while also facilitating planet formation, possibly via the production of small-scale vortices. In this paper, we show that VSI modes (a) exhibit arbitrary spatial profiles and (b) remain non-linear solutions to the incompressible local equations, no matter their amplitude. The modes are themselves subject to parasitic Kelvin-Helmholtz instability, though the disc rotation significantly impedes the parasites and permits the VSI to attain large amplitudes (fluid velocities ≲ 10 per cent the sound speed). This `delay' in saturation probably explains the prominence of the VSI linear modes in global simulations. More generally, the parasites may set the amplitude of VSI turbulence in strongly irradiated discs. They are also important in breaking the axisymmetry of the flow, via the unavoidable formation of vortices. The vortices, however, are not aligned with the orbital plane and thus express a pronounced z-dependence. We also briefly demonstrate that the vertical shear has little effect on the magnetorotational instability, whereas magnetic fields easily quench the VSI, a potential issue in the ionized surface regions of the disc and also at larger radii.

  17. Effects of photophoresis on the dust distribution in a 3D protoplanetary disc

    NASA Astrophysics Data System (ADS)

    Cuello, N.; Gonzalez, J.-F.; Pignatale, F. C.

    2016-05-01

    Photophoresis is a physical process based on momentum exchange between an illuminated dust particle and its gaseous environment. Its net effect in protoplanetary discs (PPD) is the outward transport of solid bodies from hot to cold regions. This process naturally leads to the formation of ring-shaped features where dust piles up. In this work, we study the dynamical effects of photophoresis in PPD by including the photophoretic force in the two-fluid (gas+dust) smoothed particle hydrodynamics (SPH) code developed by Barrière-Fouchet et al. (2005). We find that the conditions of pressure and temperature encountered in the inner regions of PPD result in important photophoretic forces, which dramatically affect the radial motion of solid bodies. Moreover, dust particles have different equilibrium locations in the disc depending on their size and their intrinsic density. The radial transport towards the outer parts of the disc is more efficient for silicates than for iron particles, which has important implications for meteoritic composition. Our results indicate that photophoresis must be taken into account in the inner regions of PPD to fully understand the dynamics and the evolution of the dust composition.

  18. A whirling plane of satellite galaxies around Centaurus A challenges cold dark matter cosmology

    NASA Astrophysics Data System (ADS)

    Müller, Oliver; Pawlowski, Marcel S.; Jerjen, Helmut; Lelli, Federico

    2018-02-01

    The Milky Way and Andromeda galaxies are each surrounded by a thin plane of satellite dwarf galaxies that may be corotating. Cosmological simulations predict that most satellite galaxy systems are close to isotropic with random motions, so those two well-studied systems are often interpreted as rare statistical outliers. We test this assumption using the kinematics of satellite galaxies around the Centaurus A galaxy. Our statistical analysis reveals evidence for corotation in a narrow plane: Of the 16 Centaurus A satellites with kinematic data, 14 follow a coherent velocity pattern aligned with the long axis of their spatial distribution. In standard cosmological simulations, <0.5% of Centaurus A–like systems show such behavior. Corotating satellite systems may be common in the universe, challenging small-scale structure formation in the prevailing cosmological paradigm.

  19. The SARS algorithm: detrending CoRoT light curves with Sysrem using simultaneous external parameters

    NASA Astrophysics Data System (ADS)

    Ofir, Aviv; Alonso, Roi; Bonomo, Aldo Stefano; Carone, Ludmila; Carpano, Stefania; Samuel, Benjamin; Weingrill, Jörg; Aigrain, Suzanne; Auvergne, Michel; Baglin, Annie; Barge, Pierre; Borde, Pascal; Bouchy, Francois; Deeg, Hans J.; Deleuil, Magali; Dvorak, Rudolf; Erikson, Anders; Mello, Sylvio Ferraz; Fridlund, Malcolm; Gillon, Michel; Guillot, Tristan; Hatzes, Artie; Jorda, Laurent; Lammer, Helmut; Leger, Alain; Llebaria, Antoine; Moutou, Claire; Ollivier, Marc; Päetzold, Martin; Queloz, Didier; Rauer, Heike; Rouan, Daniel; Schneider, Jean; Wuchterl, Guenther

    2010-05-01

    Surveys for exoplanetary transits are usually limited not by photon noise but rather by the amount of red noise in their data. In particular, although the CoRoT space-based survey data are being carefully scrutinized, significant new sources of systematic noises are still being discovered. Recently, a magnitude-dependant systematic effect was discovered in the CoRoT data by Mazeh et al. and a phenomenological correction was proposed. Here we tie the observed effect to a particular type of effect, and in the process generalize the popular Sysrem algorithm to include external parameters in a simultaneous solution with the unknown effects. We show that a post-processing scheme based on this algorithm performs well and indeed allows for the detection of new transit-like signals that were not previously detected.

  20. Global multifluid simulations of the magnetorotational instability in radially stratified protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Rodgers-Lee, D.; Ray, T. P.; Downes, T. P.

    2016-11-01

    The redistribution of angular momentum is a long standing problem in our understanding of protoplanetary disc (PPD) evolution. The magnetorotational instability (MRI) is considered a likely mechanism. We present the results of a study involving multifluid global simulations including Ohmic dissipation, ambipolar diffusion and the Hall effect in a dynamic, self-consistent way. We focus on the turbulence resulting from the non-linear development of the MRI in radially stratified PPDs and compare with ideal magnetohydrodynamics simulations. In the multifluid simulations, the disc is initially set up to transition from a weak Hall-dominated regime, where the Hall effect is the dominant non-ideal effect but approximately the same as or weaker than the inductive term, to a strong Hall-dominated regime, where the Hall effect dominates the inductive term. As the simulations progress, a substantial portion of the disc develops into a weak Hall-dominated disc. We find a transition from turbulent to laminar flow in the inner regions of the disc, but without any corresponding overall density feature. We introduce a dimensionless parameter, αRM, to characterize accretion with αRM ≳ 0.1 corresponding to turbulent transport. We calculate the eddy turnover time, teddy, and compared this with an effective recombination time-scale, trcb, to determine whether the presence of turbulence necessitates non-equilibrium ionization calculations. We find that trcb is typically around three orders of magnitude smaller than teddy. Also, the ionization fraction does not vary appreciably. These two results suggest that these multifluid simulations should be comparable to single-fluid non-ideal simulations.

  1. Inertia-gravity wave radiation from the merging of two co-rotating vortices in the f-plane shallow water system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugimoto, Norihiko, E-mail: nori@phys-h.keio.ac.jp

    Inertia-gravity wave radiation from the merging of two co-rotating vortices is investigated numerically in a rotating shallow water system in order to focus on cyclone–anticyclone asymmetry at different values of the Rossby number (Ro). A numerical study is conducted on a model using a spectral method in an unbounded domain to estimate the gravity wave flux with high accuracy. Continuous gravity wave radiation is observed in three stages of vortical flows: co-rotating of the vortices, merging of the vortices, and unsteady motion of the merged vortex. A cyclone–anticyclone asymmetry appears at all stages at smaller Ro (≤20). Gravity waves frommore » anticyclones are always larger than those from cyclones and have a local maximum at smaller Ro (∼2) compared with that for an idealized case of a co-rotating vortex pair with a constant rotation rate. The source originating in the Coriolis acceleration has a key role in cyclone–anticyclone asymmetry in gravity waves. An additional important factor is that at later stages, the merged axisymmetric anticyclone rotates faster than the elliptical cyclone due to the effect of the Rossby deformation radius, since a rotation rate higher than the inertial cutoff frequency is required to radiate gravity waves.« less

  2. A modified CoRoT detrend algorithm and the discovery of a new planetary companion

    NASA Astrophysics Data System (ADS)

    Boufleur, Rodrigo C.; Emilio, Marcelo; Janot-Pacheco, Eduardo; Andrade, Laerte; Ferraz-Mello, Sylvio; do Nascimento, José-Dias, Jr.; de La Reza, Ramiro

    2018-01-01

    We present MCDA, a modification of the COnvection ROtation and planetary Transits (CoRoT) detrend algorithm (CDA) suitable to detrend chromatic light curves. By means of robust statistics and better handling of short-term variability, the implementation decreases the systematic light-curve variations and improves the detection of exoplanets when compared with the original algorithm. All CoRoT chromatic light curves (a total of 65 655) were analysed with our algorithm. Dozens of new transit candidates and all previously known CoRoT exoplanets were rediscovered in those light curves using a box-fitting algorithm. For three of the new cases, spectroscopic measurements of the candidates' host stars were retrieved from the ESO Science Archive Facility and used to calculate stellar parameters and, in the best cases, radial velocities. In addition to our improved detrend technique, we announce the discovery of a planet that orbits a 0.79_{-0.09}^{+0.08} R⊙ star with a period of 6.718 37 ± 0.000 01 d and has 0.57_{-0.05}^{+0.06} RJ and 0.15 ± 0.10 MJ. We also present the analysis of two cases in which parameters found suggest the existence of possible planetary companions.

  3. Brakes. Auto Mechanics Curriculum Guide. Module 6. Instructor's Guide.

    ERIC Educational Resources Information Center

    Allain, Robert

    This module is the sixth of nine modules in the competency-based Missouri Auto Mechanics Curriculum Guide. Eight units cover: introduction to automotive brake systems; disc and drum brake system components and how they operate; properties of brake fluid and procedures for bleeding the brake system; diagnosing and determining needed repairs on…

  4. Active fluid mixing with magnetic microactuators for capture of salmonella

    NASA Astrophysics Data System (ADS)

    Hanasoge, S.; Owen, D.; Ballard, M.; Mills, Z.; Xu, J.; Erickson, M.; Hesketh, P. J.; Alexeev, A.

    2016-05-01

    Detection of low concentrations of bacteria in food samples is a challenging process. Key to this process is the separation of the target from the food matrix. We demonstrate magnetic beads and magnetic micro-cilia based microfluidic mixing and capture, which are particularly useful for pre-concentrating the target. The first method we demonstrate makes use of magnetic microbeads held on to NiFe discs on the surface of the substrate. These beads are rotated around the magnetic discs by rotating the external magnetic field. The second method we demonstrate shows the use of cilia which extends into the fluid and is manipulated by a rotating external field. Magnetic micro-features were fabricated by evaporating NiFe alloy at room temperature, on to patterned photoresist. The high magnetic permeability of NiFe allows for maximum magnetic force on the features. The magnetic features were actuated using an external rotating magnet up to frequencies of 50Hz. We demonstrate active mixing produced by the microbeads and the cilia in a microchannel. Also, we demonstrate the capture of target species in a sample using microbeads.

  5. Asteroseismology and mass loss in Be stars. Study with CoRoT

    NASA Astrophysics Data System (ADS)

    Diago, P. D.

    The general aim of this work is the study of Be stars with the CoRoT space mission. The mechanisms responsible of the production and dynamics of the circumstellar gas in Be stars are still not constrained. Observations of non-radial pulsation beating phenomena connected to outbursts point toward a relevance of pulsation, but this mechanism cannot be generalized. In this regard, the observation of classical Be stars with the high-precision CoRoT satellite is providing important keys to understand the physics of these objects and the nature of the Be phenomenon. In order to study the light variations of the selected stars we use photometric and spectroscopic observations. These observations allow us to extract frequencies, amplitudes and phases of these variations. As we will show, these light variations can be connected with pulsations on the stellar surface. For carrying out the frequency analysis we have developed a new code based on standard Fourier analysis. The point is that this code, called PASPER, allows the frequency analysis of large sets of light curves in an automatic mode. This Ph.D. thesis is arranged as follows: In the first three Chapters we describe the scientific framework of this project, giving a brief description on Asteroseismology, presenting the current status of Be stars, and describing the basics of the Fourier analysis and the rudiments of the time series analysis. At the early begin of this Ph.D. thesis, the CoRoT satellite was still on ground getting ready for the launch. In this context, we perform a search for short-period B and Be star variables in the low metallicity environment of the Magellanic Clouds. This study constitutes the Part I of this Ph.D. thesis. This Part has a double goal: i) to test the frequency analysis codes; and ii) to detect observationally beta Cephei and SPB-like B-type pulsators in low metallicity environments, actually not predicted by the pulsational theory and models. This constitutes the PartI. Part II is devoted to the study of Be stars with the CoRoT space mission. Here we depict a complete review on the CoRoT mission. We also describe the results on the analysis of three Be stars from the CoRoT exoplanet field. Finally, we present the results on the frequency analysis of the late Be star HD50209, observed in the seismology field of the \\corot satellite. The analysis of this Be star has revealed up to sixty frequencies, grouped in six different and separated sets, attributed to g-mode pulsations. Finally, we resume the main conclusions of the whole project, including prospects and future work to be done. An addendum with all the published results derived from this project has been added at the end of this Part II. Part III encloses the Appendixes, providing a brief summary of this work in Spanish, a complete description on basic equations of non-radial oscillation, the user guide of the PASPER code and the user guide of the KURTZ_BOS code.

  6. Acoustic transducer

    DOEpatents

    Drumheller, D.S.

    1997-12-30

    An acoustic transducer is described comprising a one-piece hollow mandrel into the outer surface of which is formed a recess with sides perpendicular to the central axis of the mandrel and separated by a first distance and with a bottom parallel to the central axis and within which recess are a plurality of washer-shaped discs of a piezoelectric material and at least one disc of a temperature-compensating material with the discs being captured between the sides of the recess in a pre-stressed interference fit, typically at 2,000 psi of compressive stress. The transducer also includes a power supply and means to connect to a measurement device. The transducer is intended to be used for telemetry between a measurement device located downhole in an oil or gas well and the surface. The transducer is of an construction that is stronger with fewer joints that could leak fluids into the recess holding the piezoelectric elements than is found in previous acoustic transducers. 4 figs.

  7. Brownian motion of non-wetting droplets held on a flat solid by gravity

    NASA Astrophysics Data System (ADS)

    Pomeau, Yves

    2013-12-01

    At equilibrium a small liquid droplet standing on a solid (dry) horizontal surface it does not wet rests on this surface on a small disc. As predicted and observed if such a droplet is in a low-viscosity vapor the main source of drag for a motion along the surface is the viscous dissipation in the liquid near the disc of contact. This dissipation is minimized by a Huygens-like motion coupling rolling and translation in such a way that the fluid near the disc of contact is almost motionless with respect to the solid. Because of this reduced drag and the associated large mobility the coefficient of Brownian diffusion is much larger than its standard Stokes-Enstein value. This is correct if the weight of the droplet is sufficient to keep it on the solid, instead of being lifted by thermal noise. The coupling between translation along the surface and rotation could be measured by correlated random angular deviations and horizontal displacement in this Brownian motion.

  8. Self-sustained flow oscillations and heat transfer in radial flow through co-rotating parallel disks

    NASA Astrophysics Data System (ADS)

    Mochizuki, S.; Inoue, T.

    1990-03-01

    An experimental study was conducted to determine the fluid flow and heat transfer characteristics in a passage formed by two parallel rotating disks. The local heat transfer coefficients along the disk radius were measured in detail and the flow patterns between the two rotating disks were visualized by using paraffin mist and a laser-light sheet. It was disclosed that: (1) the self-sustained laminar flow separation which is characteristic of the stationary disks still exists even when the disks are set in motion, giving significant influence to the heat transfer; (2) for small source flow Reynolds number, Re, and large rotational Reynolds number, Re(omega), rotating stall dominates the heat transfer; and (3) heat transfer for steady laminar flow occurs only when Re is less than 1200 and Re(omega) is less than 20.

  9. Stream interfaces and energetic ions II: Ulysses test of Pioneer results

    NASA Technical Reports Server (NTRS)

    Intriligator, Devrie S.; Siscoe, George L.; Wibberenz, Gerd; Kunow, Horst; Gosling, John T.

    1995-01-01

    Ulysses measurements of energetic and solar wind particles taken near 5 AU between 20 and 30 degrees south latitude during a well-developed recurring corotating interaction region (CIR) show that the CIR's corotating energetic ion population (CEIP) associated with the trailing reverse shock starts within the CIR at the stream interface. This is consistent with an earlier result obtained by Pioneers 10 and 11 in the ecliptic plane between 4 and 6 AU. The Ulysses/Pioneer finding is noteworthy since the stream interface is not magnetically connected to the reverse shock, but lies 12-17 corotation hours from it. Thus, the finding seems to be inconsistent with the basic model that generates CEIP particles at the reverse shock and propagates them along field lines. Eliminating the inconsistency probably entails an extension of the standard model such as cross-field diffusion or a non-shock energization process operating near the stream interface closer to the sun.

  10. Elemental abundances in corotating events

    NASA Technical Reports Server (NTRS)

    Vonrosenvinge, T. T.; Mcguire, R. E.

    1985-01-01

    Large, persistent solar-wind streams in 1973 and 1974 produced corotating interaction regions which accelerated particles to energies of a few MeV/nucleon. The proton to helium ratio (H/He) was remarkably constant at a value (22 + or 5) equal to that in the solar wind (21 + or - 3), suggesting that particles were being accelerated directly out of the solar wind. Preliminary results were presented from a similar study approximately 11 years (i.e., one solar cycle) later. Corotating events have been identified by surveying the solar wind data, energetic particle time-histories and anisotropies. This data was all obtained from the ISEE-3/ICE spacecraft. These events also show H/He ratios similar to that in the solar wind. It is flund that in these cases there is evidence for H/He ratios which are significantly different from that of the solar wind but which are consistent with the range of values found in solar flare events.

  11. On the Voyager 1 Zero Radial Velocity Measurements in the Inner Heliosheath

    NASA Astrophysics Data System (ADS)

    Pogorelov, N. V.; Borovikov, S. N.; Kryukov, I.; Zank, G. P.

    2011-12-01

    Theoretical analysis of the Voyager 1 data revealed a very small, or even negative, value of the solar wind (SW) radial velocity component. This should not be surprising if we take into account time-dependent processes that take place in the inner heliosheath (IHS). We analyze solar cycle modeling of the SW interaction with the local interstellar medium (LISM) and demonstrate the existence of small and negative values of the SW radial velocity. It shown that, in reality, a similar picture can be observed in the outer heliosheath (OHS), where on the contrary, extended regions of the positive radial velocity are observed. Another scenario discussed in this talk is related to effects of transients, such as global merged interaction regions and corotating interacting regions. Numerical results are obtained with the SW-LISM interaction model developed in the UAHuntsville and implemented in the Multi-Scale Fluid-Kinetic Simulation Suite. This model treats ions magnetohydrodynamically while the transport of neutral atoms is performed kinetically by solving the Boltzmann equation with a Monte Carlo approach or using a multi-fluid approach developed in mid-90's by G. P. Zank. Pickup ions (PUIs) can be treated as a separate fluid. The evolution of the PUI-generated turbulence is addressed on the differential level by adding three additional equations, which are solved self-consistently with the MHD-kinetic system of equations.

  12. Tori sequences as remnants of multiple accreting periods of Kerr SMBHs

    NASA Astrophysics Data System (ADS)

    Pugliese, D.; Stuchlík, Z.

    2018-03-01

    Super-massive black holes (SMBHs) hosted in active galactic nuclei (AGNs) can be characterized by multi-accreting periods as the attractors interact with the environment during their life-time. These multi-accretion episodes should leave traces in the matter orbiting the attractor. Counterrotating and even misaligned structures orbiting around the SMBHs would be consequences of these episodes. Our task in this work is to consider situations where such accretions occur and to trace their remnants represented by several toroidal accreting fluids, corotating or counterrotating relative to the central Kerr attractor, and created in various regimes during the evolution of matter configurations around SMBHs. We focus particularly on the emergence of matter instabilities, i.e., tori collisions, accretion onto the central Kerr black hole, or creation of jet-like structures (proto-jets). Each orbiting configuration is governed by the general relativistic hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluid. We prove that sequences of configurations and hot points, where an instability occurs, characterize the Kerr SMBHs, depending mainly on their spin-mass ratios. The occurrence of tori accretion or collision are strongly constrained by the fluid rotation with respect to the central black hole and the relative rotation with respect to each other. Our investigation provides characteristic of attractors where traces of multi-accreting episodes can be found and observed.

  13. Ultracentrifuge for separating fluid mixtures

    DOEpatents

    Lowry, Ralph A.

    1976-01-01

    1. A centrifuge for the separation of fluid mixtures having light and heavy fractions comprising a cylindrical rotor, disc type end-plugs closing the ends of the rotor, means for mounting said rotor for rotation about its cylindrical axis, a housing member enclosing the rotor, a vacuum chamber in said housing about the central portion of the rotor, a collection chamber at each end of the housing, the innermost side of which is substantially formed by the outer face of the end-plug, means for preventing flow of the fluid from the collection chambers to said vacuum chamber, at least one of said end-plugs having a plurality of holes therethrough communicating between the collection chamber adjacent thereto and the inside of the rotor to induce countercurrent flow of the fluid in the centrifuge, means for feeding fluid to be processed into the centrifuge, means communicating with the collection chambers to extract the light and heavy separated fractions of the fluid, and means for rotating the rotor.

  14. How important is non-ideal physics in simulations of sub-Eddington accretion on to spinning black holes?

    NASA Astrophysics Data System (ADS)

    Foucart, Francois; Chandra, Mani; Gammie, Charles F.; Quataert, Eliot; Tchekhovskoy, Alexander

    2017-09-01

    Black holes with accretion rates well below the Eddington rate are expected to be surrounded by low-density, hot, geometrically thick accretion discs. This includes the two black holes being imaged at subhorizon resolution by the Event Horizon Telescope. In these discs, the mean free path for Coulomb interactions between charged particles is large, and the accreting matter is a nearly collisionless plasma. Despite this, numerical simulations have so far modelled these accretion flows using ideal magnetohydrodynamics. Here, we present the first global, general relativistic, 3D simulations of accretion flows on to a Kerr black hole including the non-ideal effects most likely to affect the dynamics of the disc: the anisotropy between the pressure parallel and perpendicular to the magnetic field, and the heat flux along magnetic field lines. We show that for both standard and magnetically arrested discs, the pressure anisotropy is comparable to the magnetic pressure, while the heat flux remains dynamically unimportant. Despite this large pressure anisotropy, however, the time-averaged structure of the accretion flow is strikingly similar to that found in simulations treating the plasma as an ideal fluid. We argue that these similarities are largely due to the interchangeability of the viscous and magnetic shear stresses as long as the magnetic pressure is small compared to the gas pressure, and to the subdominant role of pressure/viscous effects in magnetically arrested discs. We conclude by highlighting outstanding questions in modelling the dynamics of low-collisionality accretion flows.

  15. Photographic Reading Center of the Idiopathic Intracranial Hypertension Treatment Trial (IIHTT): Methods and Baseline Results

    PubMed Central

    Fischer, William S.; Wall, Michael; McDermott, Michael P.; Kupersmith, Mark J.; Feldon, Steven E.

    2015-01-01

    Purpose. To describe the methods used by the Photographic Reading Center (PRC) of the Idiopathic Intracranial Hypertension Treatment Trial (IIHTT) and to report baseline assessments of papilledema severity in participants. Methods. Stereoscopic digital images centered on the optic disc and the macula were collected using certified personnel and photographic equipment. Certification of the camera system included standardization and calibration using a model eye. Lay readers assessed disc photos of all eyes using the Frisén grade and performed quantitative measurements of papilledema. Frisén grades by PRC were compared with site investigator clinical grades. Spearman rank correlations were used to quantify associations among disc features and selected clinical variables. Results. Frisén grades according to the PRC and site investigator's grades, matched exactly in 48% of the study eyes and 42% of the fellow eyes and within one grade in 94% of the study eyes and 92% of the fellow eyes. Frisén grade was strongly correlated (r > 0.65, P < 0.0001) with quantitative measures of disc area. Cerebrospinal fluid pressure was weakly associated with Frisén grade and disc area determinations (r ≤ 0.31). Neither Frisén grade nor any fundus feature was associated with perimetric mean deviation. Conclusions. In a prospective clinical trial, lay readers agreed reasonably well with physicians in assessing Frisén grade. Standardization of camera systems enhanced consistency of photographic quality across study sites. Images were affected more by sensors with poor dynamic range than by poor resolution. Frisén grade is highly correlated with quantitative assessment of disc area. (ClinicalTrials.gov number, NCT01003639.) PMID:26024112

  16. Photographic Reading Center of the Idiopathic Intracranial Hypertension Treatment Trial (IIHTT): Methods and Baseline Results.

    PubMed

    Fischer, William S; Wall, Michael; McDermott, Michael P; Kupersmith, Mark J; Feldon, Steven E

    2015-05-01

    To describe the methods used by the Photographic Reading Center (PRC) of the Idiopathic Intracranial Hypertension Treatment Trial (IIHTT) and to report baseline assessments of papilledema severity in participants. Stereoscopic digital images centered on the optic disc and the macula were collected using certified personnel and photographic equipment. Certification of the camera system included standardization and calibration using a model eye. Lay readers assessed disc photos of all eyes using the Frisén grade and performed quantitative measurements of papilledema. Frisén grades by PRC were compared with site investigator clinical grades. Spearman rank correlations were used to quantify associations among disc features and selected clinical variables. Frisén grades according to the PRC and site investigator's grades, matched exactly in 48% of the study eyes and 42% of the fellow eyes and within one grade in 94% of the study eyes and 92% of the fellow eyes. Frisén grade was strongly correlated (r > 0.65, P < 0.0001) with quantitative measures of disc area. Cerebrospinal fluid pressure was weakly associated with Frisén grade and disc area determinations (r ≤ 0.31). Neither Frisén grade nor any fundus feature was associated with perimetric mean deviation. In a prospective clinical trial, lay readers agreed reasonably well with physicians in assessing Frisén grade. Standardization of camera systems enhanced consistency of photographic quality across study sites. Images were affected more by sensors with poor dynamic range than by poor resolution. Frisén grade is highly correlated with quantitative assessment of disc area. (ClinicalTrials.gov number, NCT01003639.).

  17. The tip of the iceberg: the frequency content of the δ Sct star HD 50844 from CoRoT space photometry

    NASA Astrophysics Data System (ADS)

    Poretti, E.; Mantegazza, L.; Rainer, M.; Uytterhoeven, K.; Michel, E.; Baglin, A.; Auvergne, M.; Catala, C.; Samadi, R.; Rodríguez, E.; Garrido, R.; Amado, P.; Martín-Ruiz, S.; Moya, A.; Suárez, J. C.; Baudin, F.; Zima, W.; Alvarez, M.; Mathias, P.; Paparó, M.; Pápics, P.; Plachy, E.

    2009-09-01

    It has been suggested that the detection of a wealth of very low amplitude modes in δ Sct stars was only a matter of signal-to-noise ratio. Access to this treasure, impossible from the ground, is one of the scientific aims of the space mission CoRoT, developed and operated by CNES. This work presents the results obtained on HD 50844: the 140,016 datapoints allowed us to reach the level of 10-5 mag in the amplitude spectra. The frequency analysis of the CoRoT timeseries revealed hundreds of terms in the frequency range 0-30 d-1. The initial guess that δ Sct stars have a very rich frequency content is confirmed. The spectroscopic mode identification gives theoretical support since very high-degree modes (up to = 14) are identified. We also prove that cancellation effects are not sufficient in removing the flux variations associated to these modes at the noise level of the CoRoT measurements. The ground-based observations indicate that HD 50844 is an evolved star that is slightly underabundant in heavy elements, located on the Terminal Age Main Sequence. The predominant term (f1 = 6.92 d-1) has been identified as the fundamental radial mode combining ground-based photometric and spectroscopic data.

  18. Corotation of an intermittent solar wind source

    NASA Technical Reports Server (NTRS)

    Croft, T. A.

    1972-01-01

    The measured electron content of the solar wind in mid-1970 exhibited a region of relatively high electron density that reappeared at intervals of about 27.8 days. It is shown that the repeating event cannot be reconciled with the concept of a long-enduring steady flow, even though the recurrence period is close to the rotation period of the sun. This evidence of transients is inferred from the short duration of each appearance of the interval of higher density; each should last for roughly one corotation interval if it is caused by a steady stream. The radio path was approximately 0.8 AU long, and the corotation interval exceeded 3 days. Other aspects of the content data patterns support the view that such transient events are common in the solar wind. The mid-1970 repeating event is an unusually good example of the intermittent character of flow regions in the solar wind that fluctuate on a time scale of days but endure as identifiable regions for many months. A sputtering corotating source of thin solar plasma streams could explain this series of events; it could also be explained in terms of a stream that is steady in density and speed but undulating north-south so that it passes into and out of the 0.8 AU radio path in a matter of a day or less.

  19. CoRoT 101186644: A transiting low-mass dense M-dwarf on an eccentric 20.7-day period orbit around a late F-star. Discovered in the CoRoT lightcurves

    NASA Astrophysics Data System (ADS)

    Tal-Or, L.; Mazeh, T.; Alonso, R.; Bouchy, F.; Cabrera, J.; Deeg, H. J.; Deleuil, M.; Faigler, S.; Fridlund, M.; Hébrard, G.; Moutou, C.; Santerne, A.; Tingley, B.

    2013-05-01

    We present the study of the CoRoT transiting planet candidate 101186644, also named LRc01_E1_4780. Analysis of the CoRoT lightcurve and the HARPS spectroscopic follow-up observations of this faint (mV = 16) candidate revealed an eclipsing binary composed of a late F-type primary (Teff = 6090 ± 200 K) and a low-mass, dense late M-dwarf secondary on an eccentric (e = 0.4) orbit with a period of ~20.7 days. The M-dwarf has a mass of 0.096 ± 0.011 M⊙, and a radius of 0.104-0.006+0.026 R⊙, which possibly makes it the smallest and densest late M-dwarf reported so far. Unlike the claim that theoretical models predict radii that are 5-15% smaller than measured for low-mass stars, this one seems to have a radius that is consistent and might even be below the radius predicted by theoretical models. Based on observations made with the 1-m telescope at the Wise Observatory, Israel, the Swiss 1.2-m Leonhard Euler telescope at La Silla Observatory, Chile, the IAC-80 telescope at the Observatory del Teide, Canarias, Spain, and the 3.6-m telescope at La Silla Observatory (ESO), Chile (program 184.C-0639).

  20. Three-dimensional multi-fluid simulations of Titan's interaction with Saturn's magnetosphere: Comparisons with Cassini's T55 flyby

    NASA Astrophysics Data System (ADS)

    Snowden, D.; Winglee, R.

    2013-08-01

    We describe a new multi-fluid model of Titan's interaction with Saturn's magnetosphere that includes finer resolution in Titan's ionosphere, photoionization, electron-impact ionization, dissociative recombination, and ion-neutral coupling in the momentum and energy equations. We compare simulation results to data from Cassini's T55 flyby to show that including magnetospheric electron-impact ionization in Titan's nightside ionosphere is necessary to calculate electron densities, electron temperatures, and ion velocities that are consistent with Cassini observations. However, similar to other studies, we find that the electron-impact ionization rate calculated by the model needs to be significantly reduced to produce an electron density that is in agreement with the observations. We also find that an upstream plasma flow with significant components northward and radially outward from Saturn is needed to reproduce the gradual increase in electron density observed during the ingress portion of T55. This suggests that Titan was in a nonideal environment with a plasma flow oriented away from the direction of corotation during T55 and likely during the subsequent flybys T56, T57, T58, and T59 when similar electron density enhancements were seen on the inbound portion of Cassini's trajectory.

  1. Spontaneous Resolution of Long-Standing Macular Detachment due to Optic Disc Pit with Significant Visual Improvement.

    PubMed

    Parikakis, Efstratios A; Chatziralli, Irini P; Peponis, Vasileios G; Karagiannis, Dimitrios; Stratos, Aimilianos; Tsiotra, Vasileia A; Mitropoulos, Panagiotis G

    2014-01-01

    To report a case of spontaneous resolution of a long-standing serous macular detachment associated with an optic disc pit, leading to significant visual improvement. A 63-year-old female presented with a 6-month history of blurred vision and micropsia in her left eye. Her best-corrected visual acuity was 6/24 in the left eye, and fundoscopy revealed serous macular detachment associated with optic disc pit, which was confirmed by optical coherence tomography (OCT). The patient was offered vitrectomy as a treatment alternative, but she preferred to be reviewed conservatively. Three years after initial presentation, neither macular detachment nor subretinal fluid was evident in OCT, while the inner segment/outer segment (IS/OS) junction line was intact. Her visual acuity was improved from 6/24 to 6/12 in her left eye, remaining stable at the 6-month follow-up after resolution. We present a case of spontaneous resolution of a long-standing macular detachment associated with an optic disc pit with significant visual improvement, postulating that the integrity of the IS/OS junction line may be a prognostic factor for final visual acuity and suggesting OCT as an indicator of visual prognosis and the probable necessity of a surgical management.

  2. Kepler orbits in the Stokesian sedimentation of discs

    NASA Astrophysics Data System (ADS)

    Chajwa, Rahul; Menon, Narayanan; Ramaswamy, Sriram

    We study experimentally the settling dynamics of a pair of falling discs in a viscous fluid (Re 10-4), in a quasi-two-dimensional geometry with the vector normal to the discs, and the trajectory of the centres of the discs, lying in a plane. For initial conditions that are symmetric about the settling direction, we find periodic or scattering orbits of the settling pair [S. Jung et al., PRE 74, 035302 (2006)], and account for these in a purely far-field analysis [S. Kim, Int J Multiphase Flow 11, 699 (1985)]. In particular, we show that the problem of a symmetrically settling pair of spheroids can be mapped to the Kepler two-body problem. The solution to this problem gives a sharp transition between bound and scattering trajectories which is consistent with experimental observations. For initial conditions where the motions of the particles are not symmetric about the settling direction, we obtain yet another separatrix between full rotations and periodic oscillations which we study within an effective Hamiltonian description of this inertialess and entirely dissipative dynamical system. Present addresses - RC: ICTS-TIFR, Hessarghatta, Bengaluru 560 089; NM: Physics Department, UMass Amherst MA 01003; SR: Dept of Physics, IISc, Bengaluru 560 012 SR was supported in part by a J C Bose Fellowship of the SERB, India.

  3. YSOVAR II: Mapping YSO Inner Disk Structure in NGC 2264 with Simultaneous Spitzer and CoRoT Time Series Photometry

    NASA Astrophysics Data System (ADS)

    Stauffer, John; Morales-Calderon, Maria; Rebull, Luisa; Affer, Laura; Alencar, Sylvia; Allen, Lori; Barrado, David; Bouvier, Jerome; Calvet, Nuria; Carey, Sean; Carpenter, John; Ciardi, David; Covey, Kevin; D'Alessio, Paola; Espaillat, Catherine; Favata, Fabio; Flaccomio, Ettore; Forbrich, Jan; Furesz, Gabor; Hartman, Lee; Herbst, William; Hillenbrand, Lynne; Holtzman, Jon; Hora, Joe; Marchis, Franck; McCaughrean, Mark; Micela, Giusi; Mundt, Reinhard; Plavchan, Peter; Turner, Neal; Skrutzkie, Mike; Smith, Howard; Song, Inseok; Szentgyorgi, Andy; Terebey, Susan; Vrba, Fred; Wasserman, Lawrence; Watson, Alan; Whitney, Barbara; Winston, Elaine; Wood, Kenny

    2011-05-01

    We propose a simultaneous, continuous 30 day observation of the star forming region NGC2264 with Spitzer and CoRoT. NGC2264 is the only nearby, rich star-forming region which can be observed with CoRoT; it is by definition then the only nearby, rich star-forming region where a simultaneous Spitzer/CoRoT campaign is possible. Fortunately, the visibility windows for the two spacecraft overlap, allowing this program to be done in the Nov. 25, 2011 to Jan. 4, 2012 time period. For 10 days, we propose to map the majority of the cluster (a 35'x35' region) to a depth of 48 seconds per point, with each epoch taking 1.7 hours, allowing of order 12 epochs per day. For the other 20 days, we propose to obtaining staring-mode data for two positions in the cluster having a high density of cluster members. We also plan to propose for a variety of other ground and space-based data, most of which would also be simultaneous with the Spitzer and CoRoT observing. These data will allow us to address many astrophysical questions related to the structure and evolution of the disks of young stars and the interaction of those disks with the forming star. The data may also help inform models of planet formation since planets form and migrate through the pre-main sequence disks during the 0.5-5 Myr age range of stars in NGC2264. The data we collect will also provide an archive of the variability properties of young stars that is unmatched in its accuracy, sensitivity, cadence and duration and which therefore could inspire investigation of phenomena which we cannot now imagine. The CoRoT observations have been approved, contingent on approval of a simultaneous Spitzer observing program (this proposal).

  4. Gas and stellar spiral arms and their offsets in the grand-design spiral galaxy M51

    NASA Astrophysics Data System (ADS)

    Egusa, Fumi; Mentuch Cooper, Erin; Koda, Jin; Baba, Junichi

    2017-02-01

    Theoretical studies on the response of interstellar gas to a gravitational potential disc with a quasi-stationary spiral arm pattern suggest that the gas experiences a sudden compression due to standing shock waves at spiral arms. This mechanism, called a galactic shock wave, predicts that gas spiral arms move from downstream to upstream of stellar arms with increasing radius inside a corotation radius. In order to investigate if this mechanism is at work in the grand-design spiral galaxy M51, we have measured azimuthal offsets between the peaks of stellar mass and gas mass distributions in its two spiral arms. The stellar mass distribution is created by the spatially resolved spectral energy distribution fitting to optical and near-infrared images, while the gas mass distribution is obtained by high-resolution CO and H I data. For the inner region (r ≤ 150 arcsec), we find that one arm is consistent with the galactic shock while the other is not. For the outer region, results are less certain due to the narrower range of offset values, the weakness of stellar arms, and the smaller number of successful offset measurements. The results suggest that the nature of two inner spiral arms is different, which is likely due to an interaction with the companion galaxy.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, K.; Itow, Y.; Rott, C., E-mail: koun@stelab.nagoya-u.ac.jp, E-mail: rott@skku.edu, E-mail: itow@stelab.nagoya-u.ac.jp

    Dark matter could be captured in the Sun and self-annihilate, giving rise to an observable neutrino flux. Indirect searches for dark matter looking for this signal with neutrino telescopes have resulted in tight constraints on the interaction cross-section of dark matter with ordinary matter. We investigate how robust limits are against astro-physical uncertainties. We study the effect of the velocity distribution of dark matter in our Galaxy on capture rates in the Sun. We investigate four sources of uncertainties: orbital speed of the Sun, escape velocity of dark matter from the halo, dark matter velocity distribution functions and existence ofmore » a dark disc. We find that even extreme cases currently discussed do not decrease the sensitivity of indirect detection significantly because the capture is achieved over a broad range of the velocity distribution by integration over the velocity distribution. The effect of the uncertainty in the high-velocity tail of dark matter halo is very marginal as the capture process is rather inefficient at this region. The difference in capture rate in the Sun for various scenarios is compared to the expected change in event rates for direct detection. The possibility of co-rotating structure with the Sun can largely boost the signal and hence makes the interpretation of indirect detection conservative compared to direct detection.« less

  6. Magnetorotational instability in protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Salmeron, Raquel; Wardle, Mark

    2005-07-01

    We investigate the linear growth and vertical structure of the magnetorotational instability (MRI) in weakly ionized, stratified accretion discs. The magnetic field is initially vertical and dust grains are assumed to have settled towards the mid-plane, so charges are carried by electrons and ions only. Solutions are obtained at representative radial locations from the central protostar for different choices of the initial magnetic field strength, sources of ionization, disc structure and configuration of the conductivity tensor. The MRI is active over a wide range of magnetic field strengths and fluid conditions in low-conductivity discs. Moreover, no evidence was found of a low-limit field strength below which unstable modes do not exist. For the minimum-mass solar nebula model, incorporating cosmic ray ionization, perturbations grow at 1 au for B<~ 8 G. For a significant subset of these strengths (200mG <~B<~ 5G), the maximum growth rate is of the order of the ideal magnetohydrodynamic (MHD) rate (0.75Ω). Hall conductivity modifies the structure and growth rate of global unstable modes at 1 au for all magnetic field strengths that support MRI. As a result, at this radius, modes obtained with a full conductivity tensor grow faster and are active over a more extended cross-section of the disc than perturbations in the ambipolar diffusion limit. For relatively strong fields (e.g. B>~ 200 mG), ambipolar diffusion alters the envelope shapes of the unstable modes, which peak at an intermediate height, instead of being mostly flat as modes in the Hall limit are in this region of parameter space. Similarly, when cosmic rays are assumed to be excluded from the disc by the winds emitted by the magnetically active protostar, unstable modes grow at this radius for B<~ 2 G. For strong fields, perturbations exhibit a kink at the height where X-ray ionization becomes active. Finally, for R= 5 au (10 au), unstable modes exist for B<~ 800 mG (B<~ 250 mG) and the maximum growth rate is close to the ideal-MHD rate for 20 <~B<~ 500 mG (2 <~B<~ 50 mG). Similarly, perturbations incorporating Hall conductivity have a higher wavenumber and grow faster than solutions in the ambipolar diffusion limit for B<~ 100 mG (B<~ 10 mG). Unstable modes grow even at the mid-plane for B>~ 100 mG (B~ 1 mG), but for weaker fields, a small dead region exists. This study shows that, despite the low magnetic coupling, the magnetic field is dynamically important for a large range of fluid conditions and field strengths in protostellar discs. An example of such magnetic activity is the generation of MRI unstable modes, which are supported at 1 au for field strengths up to a few gauss. Hall diffusion largely determines the structure and growth rate of these perturbations for all studied radii. At radii of order 1 au, in particular, it is crucial to incorporate the full conductivity tensor in the analysis of this instability and more generally in studies of the dynamics of astrophysical discs.

  7. Advection of nematic liquid crystals by chaotic flow

    NASA Astrophysics Data System (ADS)

    O'Náraigh, Lennon

    2017-04-01

    Consideration is given to the effects of inhomogeneous shear flow (both regular and chaotic) on nematic liquid crystals in a planar geometry. The Landau-de Gennes equation coupled to an externally prescribed flow field is the basis for the study: this is solved numerically in a periodic spatial domain. The focus is on a limiting case where the advection is passive, such that variations in the liquid-crystal properties do not feed back into the equation for the fluid velocity. The main tool for analyzing the results (both with and without flow) is the identification of the fixed points of the dynamical equations without flow, which are relevant (to varying degrees) when flow is introduced. The fixed points are classified as stable/unstable and further as either uniaxial or biaxial. Various models of passive shear flow are investigated. When tumbling is present, the flow is shown to have a strong effect on the liquid-crystal morphology; however, the main focus herein is on the case without tumbling. Accordingly, the main result of the work is that only the biaxial fixed point survives as a solution of the Q-tensor dynamics under the imposition of a general flow field. This is because the Q-tensor experiences not only transport due to advection but also co-rotation relative to the local vorticity field. A second result is that all families of fixed points survive for certain specific velocity fields, which we classify. We single out for close study those velocity fields for which the influence of co-rotation effectively vanishes along the Lagrangian trajectories of the imposed velocity field. In this scenario, the system exhibits coarsening arrest, whereby the liquid-crystal domains are "frozen in" to the flow structures, and the growth in their size is thus limited.

  8. Monitoring a high-amplitude δ Scuti star for 152 days: discovery of 12 additional modes and modulation effects in the light curve of CoRoT 101155310

    NASA Astrophysics Data System (ADS)

    Poretti, E.; Rainer, M.; Weiss, W. W.; Bognár, Zs.; Moya, A.; Niemczura, E.; Suárez, J. C.; Auvergne, M.; Baglin, A.; Baudin, F.; Benkő, J. M.; Debosscher, J.; Garrido, R.; Mantegazza, L.; Paparó, M.

    2011-04-01

    Aims: The detection of small-amplitude nonradial modes in high-amplitude δ Sct (HADS) variables has been very elusive until at least five of them were detected in the light curve of V974 Oph obtained from ground-based observations. The combination of radial and nonradial modes has a high asteroseismic potential, thanks to the strong constraints we can put in the modelling. The continuous monitoring of ASAS 192647-0030.0 ≡ CoRoT 101155310 (P = 0.1258 d, V = 13.4) ensured from space by the CoRoT (COnvection, ROtation and planetary Transits) mission constitutes a unique opportunity to exploit such potential. Methods: The 22270 CoRoT measurements were performed in the chromatic mode. They span 152 d and cover 1208 consecutive cycles. After the correction for one jump and the long-term drift, the level of the noise turned out to be 29 μmag. The phase shifts and amplitude ratios of the coloured CoRoT data, the HARPS spectra, and the period-luminosity relation were used to determine a self-consistent physical model. In turn, it allowed us to model the oscillation spectrum, also giving feedback on the internal structure of the star. Results: In addition to the fundamental radial mode f1 = 7.949 d-1 with harmonics up to 10f1, we detected 12 independent terms. Linear combinations were also found and the light curve was solved by means of 61 frequencies (smallest amplitude 0.10 mmag). The newest result is the detection of a periodic modulation of the f1 mode (triplets at ± 0.193 d-1 centred on f1 and 2f1), discussed as a rotational effect or as an extension of the Blazhko effect to HADS stars. The physical model suggests that CoRoT 101155310 is an evolved star, with a slight subsolar metallic abundance, close to the terminal age main sequence. All the 12 additional terms are identified with mixed modes in the predicted overstable region. The CoRoT space mission was developed and is operated by the French space agency CNES, with the participation of ESA's RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain. This work uses ground-based spectroscopic observations made with the HARPS instrument at the 3.6 m-ESO telescope (La Silla, Chile) under the ESO Large Programme LP182.D-0356 and complementary photometric measurements made at the Piszkéstető Mountain Station of Konkoly Observatory (Hungary).Table 1 is also, and Table 2 only, available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/528/A147

  9. Modelling and validation of magnetorheological brake responses using parametric approach

    NASA Astrophysics Data System (ADS)

    Z, Zainordin A.; A, Abdullah M.; K, Hudha

    2013-12-01

    Magnetorheological brake (MR Brake) is one x-by-wire systems which performs better than conventional brake systems. MR brake consists of a rotating disc that is immersed with Magnetorheological Fluid (MR Fluid) in an enclosure of an electromagnetic coil. The applied magnetic field will increase the yield strength of the MR fluid where this fluid was used to decrease the speed of the rotating shaft. The purpose of this paper is to develop a mathematical model to represent MR brake with a test rig. The MR brake model is developed based on actual torque characteristic which is coupled with motion of a test rig. Next, the experimental are performed using MR brake test rig and obtained three output responses known as angular velocity response, torque response and load displacement response. Furthermore, the MR brake was subjected to various current. Finally, the simulation results of MR brake model are then verified with experimental results.

  10. Fluid-flow of a row of jets in crossflow - A numerical study

    NASA Technical Reports Server (NTRS)

    Kim, S.-W.; Benson, T. J.

    1992-01-01

    A detailed computer-visualized flow field of a row of jets in a confined crossflow is presented. The Reynolds averaged Navier-Stokes equations are solved using a finite volume method that incorporates a partial differential equation for incremental pressure to obtain a divergence-free flow field. The turbulence is described by a multiple-time-scale turbulence model. The computational domain includes the upstream region of the circular jet so that the interaction between the jet and the crossflow is simulated accurately. It is shown that the row of jets in the crossflow is characterized by a highly complex flow field that includes a horse-shoe vortex and two helical vortices whose secondary velocity components are co-rotating in space. It is also shown that the horse-shoe vortex is a ring of reversed flows located along the circumference of the jet exit.

  11. Hydromagnetic conditions near the core-mantle boundary

    NASA Technical Reports Server (NTRS)

    Backus, George E.

    1995-01-01

    The main results of the grant were (1) finishing the manuscript of a proof of completeness of the Poincare modes in an incompressible nonviscous fluid corotating with a rigid ellipsoidal boundary, (2) partial completion of a manuscript describing a definition of helicity that resolved questions in the literature about calculating the helicities of vector fields with complicated topologies, and (3) the beginning of a reexamination of the inverse problem of inferring properties of the geomagnetic field B just outside the core-mantle boundary (CMB) from measurements of elements of B at and above the earth's surface. This last work has led to a simple general formalism for linear and nonlinear inverse problems that appears to include all the inversion schemes so far considered for the uniqueness problem in geomagnetic inversion. The technique suggests some new methods for error estimation that form part of this report.

  12. Stream interfaces and energetic ions 2: Ulysses test of Pioneer results

    NASA Technical Reports Server (NTRS)

    Intriligator, Devrie S.; Siscoe, George L.; Wibberez, Gerd; Kunow, Horst; Gosling, John T.

    1995-01-01

    Ulysses measurements of energetic and solar wind particles taken near 5 AU between 20 and 30 degrees south latitude during a well-developed recurring corotating interaction region (CIR) show that the CIR's corotating energetic ion population (CEIP) associated with the trailing reverse shock starts within the CIR at the stream interface. This is consistent with an earlier result obtained by Pioneers 10 and 11 in the ecliptic plane between 4 and 6 AU. The Ulysses/Pioneer finding noteworthy since the stream interface is not magnetically connected to the reverse shock but lies 12-17 corotation hours from it. Thus, the finding to be inconsistent with the basic model that generates CEIP particles at the reverse shock and propagates them along field lines Eliminating the inconsistency probably entails an extension of the standard model. We consider two possible extensions cross-field diffusion and energetic particles generation closer to the sun in the gap between the stream interface and the reverse shock.

  13. Comparison of stellar and gasdynamics of a barred galaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Contopoulos, G.; Gottesman, S.T.; Hunter, J.H. Jr.

    1989-08-01

    The stellar and gas dynamics of several models of barred galaxies were studied, and results for some representative cases are reported for galaxies in which the stars and gas respond to the same potentials. Inside corotation there are two main families of periodic orbits, designated x1 and 4/1. Close to the center, the x1 orbits are like elongated ellipses. As the 4/1 resonance is approached, these orbits become like lozenges, with apices along the bar and perpendicular to it. The family 4/1 consists of orbits like parallelograms which produce the boxy component of the bar. The orbits in spirals outsidemore » corotation enhance the spiral between the outer -4/1 resonance and the outer Lindblad resonance. Between corotation and the -4/1 resonance in strong spirals, the orbits are mostly stochastic and fill almost circular rings. A spiral field must be added to gasdynamical models to obtain gaseous arms extending from the end of a bar. 38 refs.« less

  14. Comparisons between stellar models and reliability of the theoretical models

    NASA Astrophysics Data System (ADS)

    Lebreton, Yveline; Montalbán, Josefina

    2010-07-01

    The high quality of the asteroseismic data provided by space missions such as CoRoT (Michel et al. in The CoRoT Mission, ESA Spec. Publ. vol. 1306, p. 39, 2006) or expected from new operating missions such as Kepler (Christensen-Dalsgaard et al. in Commun. Asteroseismol. 150:350, 2007) requires the capacity of stellar evolution codes to provide accurate models whose numerical precision is better than the expected observational errors (i.e. below 0.1 μHz on the frequencies in the case of CoRoT). We present a review of some thorough comparisons of stellar models produced by different evolution codes, involved in the CoRoT/ESTA activities (Monteiro in Evolution and Seismic Tools for Stellar Astrophysics, 2009). We examine the numerical aspects of the computations as well as the effects of different implementations of the same physics on the global quantities, physical structure and oscillations properties of the stellar models. We also discuss a few aspects of the input physics.

  15. A whirling plane of satellite galaxies around Centaurus A challenges cold dark matter cosmology.

    PubMed

    Müller, Oliver; Pawlowski, Marcel S; Jerjen, Helmut; Lelli, Federico

    2018-02-02

    The Milky Way and Andromeda galaxies are each surrounded by a thin plane of satellite dwarf galaxies that may be corotating. Cosmological simulations predict that most satellite galaxy systems are close to isotropic with random motions, so those two well-studied systems are often interpreted as rare statistical outliers. We test this assumption using the kinematics of satellite galaxies around the Centaurus A galaxy. Our statistical analysis reveals evidence for corotation in a narrow plane: Of the 16 Centaurus A satellites with kinematic data, 14 follow a coherent velocity pattern aligned with the long axis of their spatial distribution. In standard cosmological simulations, <0.5% of Centaurus A-like systems show such behavior. Corotating satellite systems may be common in the universe, challenging small-scale structure formation in the prevailing cosmological paradigm. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  16. Fluid mechanics of heart valves.

    PubMed

    Yoganathan, Ajit P; He, Zhaoming; Casey Jones, S

    2004-01-01

    Valvular heart disease is a life-threatening disease that afflicts millions of people worldwide and leads to approximately 250,000 valve repairs and/or replacements each year. Malfunction of a native valve impairs its efficient fluid mechanic/hemodynamic performance. Artificial heart valves have been used since 1960 to replace diseased native valves and have saved millions of lives. Unfortunately, despite four decades of use, these devices are less than ideal and lead to many complications. Many of these complications/problems are directly related to the fluid mechanics associated with the various mechanical and bioprosthetic valve designs. This review focuses on the state-of-the-art experimental and computational fluid mechanics of native and prosthetic heart valves in current clinical use. The fluid dynamic performance characteristics of caged-ball, tilting-disc, bileaflet mechanical valves and porcine and pericardial stented and nonstented bioprostheic valves are reviewed. Other issues related to heart valve performance, such as biomaterials, solid mechanics, tissue mechanics, and durability, are not addressed in this review.

  17. Long-wave theory for a new convective instability with exponential growth normal to the wall.

    PubMed

    Healey, J J

    2005-05-15

    A linear stability theory is presented for the boundary-layer flow produced by an infinite disc rotating at constant angular velocity in otherwise undisturbed fluid. The theory is developed in the limit of long waves and when the effects of viscosity on the waves can be neglected. This is the parameter regime recently identified by the author in a numerical stability investigation where a curious new type of instability was found in which disturbances propagate and grow exponentially in the direction normal to the disc, (i.e. the growth takes place in a region of zero mean shear). The theory describes the mechanisms controlling the instability, the role and location of critical points, and presents a saddle-point analysis describing the large-time evolution of a wave packet in frames of reference moving normal to the disc. The theory also shows that the previously obtained numerical solutions for numerically large wavelengths do indeed lie in the asymptotic long-wave regime, and so the behaviour and mechanisms described here may apply to a number of cross-flow instability problems.

  18. Comparison of Ocular Outcomes in Two 14-Day Bed Rest Studies

    NASA Technical Reports Server (NTRS)

    Cromwell, R. L.; Zanello, S. B.; Yarbough, P. O.; Taibbi, G.; Vizzeri, G.

    2011-01-01

    Reports of astronauts visual changes raised concern about ocular health during long-duration spaceflight. Some of these findings included hyperopic shifts, choroidal folds, optic disc edema, retinal nerve fiber layer (RNFL) thickening, and cotton wool spots. While the etiology remains unknown, hypotheses speculate that hypertension in the brain caused by cephalad fluid shifts during spaceflight is a possible mechanism for these ocular changes. Head-down tilt (HDT) bed rest is a spaceflight analog that induces cephalad fluid shifts. In addition, previous studies of the HDT position demonstrated body fluid shifts associated with changes in intraocular pressure (IOP). For these reasons, vision monitoring of HDT bed rest subjects was implemented for NASA bed rest studies. Subjects selected for these studies were healthy adults (14 males and 5 females). Average age was 37.5 plus or minus 9.1 years, weight was 77.4 plus or minus 11.3 Kg, and height was 173.4 plus or minus 7.2 14 cm. Controlled conditions followed for all NASA bed rest studies were implemented. These conditions included factors such as eating a standardized diet, maintaining a strict sleep wake cycle, and remaining in bed for 24 hours each day. In one study, subjects maintained a horizontal (0 degree) position while in bed and were exercised six days per week with an integrated resistance and aerobic training (iRAT) program. In the other study, subjects were placed at 6 degrees HDT while in bed and did not engage in exercise. All subjects underwent pre- and post bed rest vision testing. While the battery of vision tests for each study was not identical, measures common to both studies will be presented. These measures included IOP and measures that provided an indication of optic disc swelling as derived from optical coherence tomography (OCT) testing: average retinal nerve fiber layer (RNFL) thickness (millimeters), disc area (square millimeters), rim area (square millimters), and average cup to disc (C/D) ratio. For all measures, there was no significant difference between subject groups for pre-bed rest testing. Post bed rest values also remained similar between groups. Comparison of pre- to post bed rest testing within each group did not demonstrate any statistical differences. These preliminary results from 14-day bed rest studies suggest that the combination of exercise and horizontal bed rest as compared to 6 degrees HDT bed rest did not produce differences in the ocular response with regard to IOP and optic disc parameters. The ocular measures reported here only included pre- and post bed rest time points. Further investigation is needed to examine both the acute response and long term adaptation of structural and functional ocular parameters in the bed rest platform and determine its usefulness for studying spaceflight phenomena. From a clinical perspective, the ability to study ocular responses in the controlled environment of the bed rest platform can provide valuable information for the care of patients restricted to bed rest.

  19. Observações no âmbito dos "additional programs" do satélite COROT

    NASA Astrophysics Data System (ADS)

    Janot Pacheco, E.

    2003-08-01

    O satélite Fraco-europeu COROT fará fotometria de altissima precisão (pretende-se atingir uma parte em um milhão), grande campo (3x3 graus) e por longos períodos, de duas regiões pré-determinadas do céu, com 10 graus de raio. Suas finalidades básicas serão estudos em sismologia estelar e a procura de exoplanetas. A comunidade astronômica brasileira participará dessa missão espacial, com direitos iguais aos dos parceiros europeus. Isso se deve a que o satélite utilizará a estação de recepção de dados de Natal (INPE), 5 a 6 brasileiros participarão das equipes de software e cientistas do país atuarão na fase de pré-lançamento. Apresentamos nesta comunicação sugestões para a preparação de propostas de observações com COROT, no âmbito dos Programas Adicionais, que contemplam outros projetos que não de sismologia ou exoplanetas. As últimas definições técnicas e decisões tomadas na 4th Corot Week de junho último serão igualmente apresentadas, em particular quanto às regiões de observação escolhidas e quanto aos procedimentos a seguir para se propor observações.

  20. Asteroseismology of hybrid δ Scuti-γ Doradus pulsating stars

    NASA Astrophysics Data System (ADS)

    Sánchez Arias, J. P.; Córsico, A. H.; Althaus, L. G.

    2017-01-01

    Context. Hybrid δ Scuti-γ Doradus pulsating stars show acoustic (p) oscillation modes typical of δ Scuti variable stars, and gravity (g) pulsation modes characteristic of γ Doradus variable stars simultaneously excited. Observations from space missions such as MOST, CoRoT, and Kepler have revealed a large number of hybrid δ Scuti-γ Doradus pulsators, thus paving the way for an exciting new channel of asteroseismic studies. Aims: We perform detailed asteroseismological modelling of five hybrid δ Scuti-γ Doradus stars. Methods: A grid-based modeling approach was employed to sound the internal structure of the target stars using stellar models ranging from the zero-age main sequence to the terminal-age main sequence, varying parameters such as stellar mass, effective temperature, metallicity and core overshooting. Their adiabatic radial (ℓ = 0) and non-radial (ℓ = 1,2,3) p and g mode periods were computed. Two model-fitting procedures were used to search for asteroseismological models that best reproduce the observed pulsation spectra of each target star. Results: We derive the fundamental parameters and the evolutionary status of five hybrid δ Scuti-γ Doradus variable stars recently observed by the CoRoT and Kepler space missions: CoRoT 105733033, CoRoT 100866999, KIC 11145123, KIC 9244992, and HD 49434. The asteroseismological model for each star results from different criteria of model selection, in which we take full advantage of the richness of periods that characterises the pulsation spectra for this kind of star.

  1. A Model for Plasma Transport in a Corotation-Dominated Magnetosphere.

    NASA Astrophysics Data System (ADS)

    Pontius, Duane Henry, Jr.

    1988-06-01

    The gross structures of the magnetospheres of the outer planets are decided by processes quite different from those predominant in that of the earth. The terrestrial plasmapause, the boundary beyond which plasma motion is principally determined by magnetospheric interaction with the solar wind, is typically inside geosynchronous orbit. Within the plasmasphere, rotational effects are present, but gravity exceeds the centrifugal force of corotation. In contrast, the Jovian plasmasphere extends to a distance at least twenty times farther than synchronous orbit, affording a large region where rotational effects are expected to he clearly manifest (Brice and Ioannidis, 1970). The goal of this thesis is to develop an appropriate theoretical model for treating the problem of plasma transport in a corotation dominated plasmasphere. The model presented here is intended to describe the radial transport of relatively cold plasma having an azimuthally uniform distribution in a dipolar magnetic field. The approach is conceptually similar to that of the radial diffusion model in that small scale motions are examined to infer global consequences, but the physical understanding of those small scale motions is quite different. In particular, discrete flux tubes of small cross section are assumed to move over distances large compared to their widths. The present model also differs from the corotating convection model by introducing a mechanism whereby the conservation of flux tube content along flowlines is violated. However, it is quite possible that a global convection pattern co -exists with the motions described here, leading to longitudinal asymmetries in the plasma distribution.

  2. The influence of exogenous cross-linking and compressive creep loading on intradiscal pressure.

    PubMed

    Chuang, Shih-Youeng; Lin, Leou-Chyr; Hedman, Thomas P

    2010-10-01

    This study involves a biomechanical evaluation of a prospective injectable treatment for degenerative discs. The high osmolarity of the non-degenerated nucleus pulposus attracts water contributing to the hydrostatic behavior of the tissue. This intradiscal pressure is known to drop as fluid is exuded from the matrix due to compressive loading. The objective of this study was to compare the changes in intradiscal pressure in control and genipin cross-linked intervertebral discs. Thirty bovine lumbar motion segments were randomly divided into a phosphate-buffered saline control group and a 0.33% genipin group and soaked at room temperature for 2 days. A needle pressure sensor was held in the center of the disc while short-term and static creep compressive loads were applied. The control group demonstrated a 25% higher average intradiscal pressure compared to genipin-treated discs under 750 N compressive load (p=0.029). Depressurization during static compressive creep was 56% higher in the control than in the genipin group (p=0.014). These results suggest cross-linking induced changes in the poroelastic properties of the involved tissues affected the mechanics of compressive load support in the disc with lower levels of nucleus pressure, a corresponding decrease in the elastic expansion of the annulus, and an increased axial compressive loading of the inner and outer annulus tissues. It is possible that concurrent changes in hydraulic permeability and proteoglycan retention known to be associated with genipin cross-linking were also contributors to poroelastic changes. Reduction of peak pressures and moderation of pressure fluctuations could be beneficial relative to discogenic pain.

  3. Rapid surface colony counts determination with three new miniaturised techniques.

    PubMed

    Malik, K A

    1977-01-01

    Three different miniaturised methods for the rapid surface viable counting are described. The methods were tried in parallel to seven different existing methods (Table 1) for viable counts and were found to be easier, quicker and insome cases more accurate. The techniques require about 10% of the material and time needed for conventional spread-plates method and the results were in no way inferior to that (Table 1 and 2). Mini agar discs were cut aseptically with an especially designed stainless steel agar disc cutter (25 mm internal and 28 mm external diameter, Fig. 1b) or with a test tube of similar diameter. The area of the resulted mini-agar-disc of 25 mm diameter was kept such (about 1/10th of the normal plate) that the ratio of the colony-bearing area to the inoculm remained the same as on big plates in spread-plate-method (Table 2). In normal Petri dishes (about 90 mm diameter) up to seven mini agar discs were possible to cut. Each small agar disc was seperated from the other mini-disc by a distance of at least 6 mm (Fig. 1a). The empty place around the disc was still enlarged during over drying of the plates and during incubation. This created complete isolation from the neighbouring disc. For micro-determination of surface viable counts 10 micronl from each dilution was delivered on a well-dired mini-disc with a piston micropipette. The inoculm was immediately spread on the whole mini-disc with a specially designed flame sterilizable platinum-Mini-spreader (Fig. 2a). No spinning of the plate was needed. Alternatively the dropping pipette and spreader was replaced by a calibrated platinum wire Loop-spreader (Fig. 2b). A loop of 3 mm internal diameter made from a platinum-iridium wire of 0.75 mm thickness proved most useful and carried a drop of 10 micronl. Differences especially in surface tension of various diluting fluids did not influence to drop of this size and no recalibration was needed for water and nutrient broth. The loop was further shaped to Loop-spreader form. From each bacterial suspension 10 micronl were carried and spread on each mini-disc. The method is useful for pathogenic organisms as the loop can readily be flame sterilized. For routine purposes where only approximate numbers of bacteria need to be known a still rapid semiquantitative method was deviced making use of a calibrated stainless steel Stamping-disc (Fig. 2c). A disc of 25mm diameter and 1 mm thickness delivered approximateyl 10 microlitres of supensions and was found to be most useful to stamp seven dilutions on a single plate. In collections and bacteriology laboratories where by conventional methods large number of plates are to be plated and counted the presented techniques could prove most convenient, rapid and economical.

  4. The Thermal Equilibrium Solution of a Generic Bipolar Quantum Hydrodynamic Model

    NASA Astrophysics Data System (ADS)

    Unterreiter, Andreas

    The thermal equilibrium state of a bipolar, isothermic quantum fluid confined to a bounded domain ,d = 1,2 or d = 3 is entirely described by the particle densities n, p, minimizing the energy where G1,2 are strictly convex real valued functions, . It is shown that this variational problem has a unique minimizer in and some regularity results are proven. The semi-classical limit is carried out recovering the minimizer of the limiting functional. The subsequent zero space charge limit leads to extensions of the classical boundary conditions. Due to the lack of regularity the asymptotics can not be settled on Sobolev embedding arguments. The limit is carried out by means of a compactness-by-convexity principle.

  5. Restoration of the photoreceptor layer and improvement of visual acuity in successfully treated optic disc pit maculopathy: a long follow-up study by optical coherence tomography.

    PubMed

    Theodossiadis, George P; Grigoropoulos, Vlassis G; Liarakos, Vasilis S; Rouvas, Alexandros; Emfietzoglou, Ioannis; Theodossiadis, Panagiotis G

    2012-07-01

    To investigate by optical coherence tomography (OCT) the evolution of the photoreceptor layer and its association with best-corrected visual acuity (BCVA) in optic disc pit (ODP) maculopathy after successful surgical treatment. Fourteen eyes of 14 patients were included in this study, and followed up from 36 to 95 months (mean 57.36 ± 18.32 months). The follow-up period started at the time of complete subretinal fluid absorption. Examination was performed by time-domain OCT before and after treatment. Spectral-domain OCT was used after treatment. Parameters assessed were type of elevation, central foveal thickness, time elapsed from onset to treatment, type of treatment, BCVA, and inner segment outer segment (IS/OS) junction line. The IS/OS junction was characterized after treatment as intact, interrupted, or absent (not distinguishable). Significant restoration of the IS/OS junction line was first noticed between 6 and 12 months after fluid absorption (p = 0.02; Wilcoxon signed rank test). Restoration was continuous up to the 24th month of postoperative examination after fluid absorption (p = 0.14; Wilcoxon signed rank test). BCVA was 0.99 ± 0.38 logMar before treatment, 0.81 ± 0.26 logMar (p = 0.011; paired t-test) immediately after fluid absorption and 0.61 ± 0.33 logMar (p = 0.026; one-way ANOVA) 24 months after fluid resolution. BCVA was significantly positively correlated with the integrity of the IS/OS junction line during follow-up (Pearson r = 0.775; p < 0.001). The IS/OS junction restoration cannot be detected immediately after fluid resolution in the majority of cases. It became evident 6-12 months later and was completed 24 months after fluid absorption. Improvement in BCVA was noticed only during the first 2 years of follow-up. No significant changes were noticed in BCVA or the IS/OS line after 2 years. Among the studied variables, the final photoreceptor layer condition and BCVA immediately after fluid absorption are the main factors predicting final BCVA after successful surgical treatment of ODP maculopathy.

  6. Bulk properties and near-critical behaviour of SiO2 fluid

    NASA Astrophysics Data System (ADS)

    Green, Eleanor C. R.; Artacho, Emilio; Connolly, James A. D.

    2018-06-01

    Rocky planets and satellites form through impact and accretion processes that often involve silicate fluids at extreme temperatures. First-principles molecular dynamics (FPMD) simulations have been used to investigate the bulk thermodynamic properties of SiO2 fluid at high temperatures (4000-6000 K) and low densities (500-2240 kg m-3), conditions which are relevant to protoplanetary disc condensation. Liquid SiO2 is highly networked at the upper end of this density range, but depolymerises with increasing temperature and volume, in a process characterised by the formation of oxygen-oxygen (Odbnd O) pairs. The onset of vaporisation is closely associated with the depolymerisation process, and is likely to be non-stoichiometric at high temperature, initiated via the exsolution of O2 molecules to leave a Si-enriched fluid. By 6000 K the simulated fluid is supercritical. A large anomaly in the constant-volume heat capacity occurs near the critical temperature. We present tabulated thermodynamic properties for silica fluid that reconcile observations from FPMD simulations with current knowledge of the SiO2 melting curve and experimental Hugoniot curves.

  7. Experimental study of the thermal stability of hydrocarbon fuels

    NASA Technical Reports Server (NTRS)

    Marteney, P. J.; Colket, M. B.; Vranos, A.

    1982-01-01

    The thermal stability of two hydrocarbon fuels (premium diesel and regular diesel) was determined in a flow reactor under conditions representing operation of an aircraft gas turbine engine. Temperature was varied from 300 to 750 F (422 to 672 K) for fuel flows of 2.84 to 56.8 liters/hr (corresponding to 6.84 x 0.00010 to 1.63 x 0.010 kg/sec for regular diesel fuel and 6.55 x 0.00010 to 1.37 x 0.010 kg/sec for premium diesel fuel); test times varied between 1 and 8 hr. The rate of deposition was obtained through measurement of weight gained by metal discs fixed along the channel wall. The rate of deposit formation is best correlated by an Arrhenius expression. The sample discs in the flow reactor were varied among stainless steel, aluminum and brass; fuels were doped with quinoline, indole, and benzoyl perioxide to yield nitrogen or oxygen concentrations of approximately 1000 ppm. The most substantial change in rate was an increase in deposits for brass discs; other disc materials or the additives caused only small perturbations. Tests were also conducted in a static reactor at temperatures of 300 to 800 F for times of 30 min to 2 1/2 hr. Much smaller deposition was found, indicating the importance of fluid transport in the mechanism.

  8. An Overview of Energetic Particle Measurements in the Jovian Magnetosphere with the EPAC Sensor on Ulysses.

    PubMed

    Keppler, E; Blake, J B; Fränz, M; Korth, A; Krupp, N; Quenby, J J; Witte, M; Woch, J

    1992-09-11

    Observations of ions and electrons of probable Jovian origin upstream of Jupiter were observed after a corotating interplanetary particle event. During the passage of Ulysses through the Jovian bow shock, magnetopause, and outer magnetosphere, the fluxes of energetic particles were surprisingly low. During the passage through the "middle magnetosphere," corotating fluxes were observed within the current sheet near the jovimagnetic equato. During the outbound pass, fluxes were variably directed; in the later part of the flyby, they were probably related to high-latitude phenomena.

  9. Comparisons for ESTA-Task3: ASTEC, CESAM and CLÉS

    NASA Astrophysics Data System (ADS)

    Christensen-Dalsgaard, J.

    The ESTA activity under the CoRoT project aims at testing the tools for computing stellar models and oscillation frequencies that will be used in the analysis of asteroseismic data from CoRoT and other large-scale upcoming asteroseismic projects. Here I report results of comparisons between calculations using the Aarhus code (ASTEC) and two other codes, for models that include diffusion and settling. It is found that there are likely deficiencies, requiring further study, in the ASTEC computation of models including convective cores.

  10. Plasmapause Dynamics Observed During the 17 March and 28 June 2013 Storms

    NASA Astrophysics Data System (ADS)

    Bishop, R. L.; Coster, A. J.; Turner, D. L.; Nikoukar, R.; Lemon, C.; Roeder, J. L.; Shumko, M.; Bhatt, R.; Payne, C.; Bust, G. S.

    2017-12-01

    Earth's plasmasphere is a region of cold (T ≤ 1 eV), dense (n 101 to 104 cm-3) plasma located in the inner magnetosphere and coincident with a portion of the ionosphere that co-rotates with the planet in the geomagnetic field. Plasmaspheric plasma originates in the ionosphere and fills the magnetic flux tubes on which the corotation electric field dominates over the convection electric field. The corotation electric field results from Earth's spinning magnetic field while the convection electric field results from the solar wind driving of global plasma convection within the magnetosphere. The outer boundary of the plasmasphere is the plasmapause, and it corresponds to the transition region between corotation-driven vs. convection-driven plasmas. When the convection electric field is enhanced during active solar wind periods, such as magnetic storms, the plasmasphere can rapidly erode to L 2.5 or less. During subsequent quiet periods of low solar wind speed and weak interplanetary magnetic field (IMF), ionospheric outflow from lower altitudes refills the plasmasphere over the course of several days or more, with the plasmapause expanding to higher L-shells. The combination of convection, corotation, and ionospheric plasma outflow during and after a storm leads to characteristic features such as plasmaspheric shoulders, notches, and plumes. In this presentation, we focus on the dynamics of the plasmapause during two storms in 2013: March 17 and June 28. The minimum Dst for the two storms were -139 and -98 nT, respectively. We examine plasmapause dynamics utilizing data from an extensive global network of ground-based scientific GPS receivers ( 4000) and line-of-sight observations from the GPS receivers on the COSMIC and C/NOFS satellites, along with data from THEMIS and van Allen Probes, and Millstone Hill Incoherent Scatter Radar. Using the various datasets, we will compare the pre-storm and storm-time plasmasphere. We will also examine the location, evolution, and erosion time scales of the plasmapause during the active portion of the storm using a combination of the observational data, the assimilative PDA model, and the RCM-E model.

  11. MOST detects corotating bright spots on the mid-O-type giant ξ Persei

    NASA Astrophysics Data System (ADS)

    Ramiaramanantsoa, Tahina; Moffat, Anthony F. J.; Chené, André-Nicolas; Richardson, Noel D.; Henrichs, Huib F.; Desforges, Sébastien; Antoci, Victoria; Rowe, Jason F.; Matthews, Jaymie M.; Kuschnig, Rainer; Weiss, Werner W.; Sasselov, Dimitar; Rucinski, Slavek M.; Guenther, David B.

    2014-06-01

    We have used the MOST (Microvariability and Oscillations of STars) microsatellite to obtain four weeks of contiguous high-precision broad-band visual photometry of the O7.5III(n)((f)) star ξ Persei in 2011 November. This star is well known from previous work to show prominent DACs (discrete absorption components) on time-scales of about 2 d from UV spectroscopy and non-radial pulsation with one (l = 3) p-mode oscillation with a period of 3.5 h from optical spectroscopy. Our MOST-orbit (101.4 min) binned photometry fails to reveal any periodic light variations above the 0.1 mmag 3σ noise level for periods of a few hours, while several prominent Fourier peaks emerge at the 1 mmag level in the two-day period range. These longer period variations are unlikely due to pulsations, including gravity modes. From our simulations based upon a simple spot model, we deduce that we are seeing the photometric modulation of several corotating bright spots on the stellar surface. In our model, the starting times (random) and lifetimes (up to several rotations) vary from one spot to another yet all spots rotate at the same period of 4.18 d, the best-estimated rotation period of the star. This is the first convincing reported case of corotating bright spots on an O star, with important implications for drivers of the DACs (resulting from corotating interaction regions) with possible bright-spot generation via a breakout at the surface of a global magnetic field generated by a subsurface convection zone.

  12. Dynamic Young Stars and their Disks: A Temporal View of NGC 2264 with Spitzer and CoRoT

    NASA Astrophysics Data System (ADS)

    Cody, Ann Marie; Stauffer, John; Bouvier, Jèrôme

    2014-01-01

    Variability is a signature feature of young stars. Among the well known light curve phenomena are periodic variations attributed to surface spots and irregular changes associated with accretion or circumstellar disk material. While decades of photometric monitoring have provided a framework for classifying young star variability, we still know surprisingly little about its underlying mechanisms and connections to the surrounding disks. In the past few years, dedicated photometric monitoring campaigns from the ground and space have revolutionized our view of young stars in the time domain. We present a selection of optical and infrared time series from several recent campaigns, highlighting the Coordinated Synoptic Investigation of NGC 2264 ("CSI 2264")- a joint30-day effort with the Spitzer, CoRoT, and MOST telescopes. The extraordinary photometric precision, high cadence, and long time baseline of these observations is now enabling correlation of variability properties at very different wavelengths, corresponding to locations from the stellar surface to the inner 0.1 AU of the disk. We present some results of the CSI 2264 program, including new classes of optical/infrared behavior. Further efforts to tie observed variability features to physical models will provide insights into the inner disk environment at a time when planet formation may be underway. Based on data from the Spitzer and CoRoT missions. The CoRoT space mission was developed and is operated by the French space agency CNES, with participation of ESA-s RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Do Nascimento, J.-D. Jr.; Da Costa, J. S.; Castro, M.

    The question of whether the Sun is peculiar within the class of solar-type stars has been the subject of active investigation over the past three decades. Although several solar twins have been found with stellar parameters similar to those of the Sun (albeit in a range of Li abundances and with somewhat different compositions), their rotation periods are unknown, except for 18 Sco, which is younger than the Sun and with a rotation period shorter than solar. It is difficult to obtain rotation periods for stars of solar age from ground-based observations, as a low-activity level implies a shallow rotationalmore » modulation of their light curves. CoRoT has provided space-based long time series from which the rotation periods of solar twins as old as the Sun could be estimated. Based on high-signal-to-noise, high-resolution spectroscopic observations gathered at the Subaru Telescope, we show that the star CoRoT ID 102684698 is a somewhat evolved solar twin with a low Li abundance. Its rotation period is 29 {+-} 5 days, compatible with its age (6.7 Gyr) and low lithium content, A{sub Li} {approx}< 0.85 dex. Interestingly, our CoRoT solar twin seems to have enhanced abundances of the refractory elements with respect to the Sun, a typical characteristic of most nearby twins. With a magnitude V {approx_equal} 14.1, ID 102684698 is the first solar twin revealed by CoRoT, the farthest field solar twin so far known, and the only solar twin older than the Sun for which a rotation period has been determined.« less

  14. Detection of a westward hotspot offset in the atmosphere of hot gas giant CoRoT-2b

    NASA Astrophysics Data System (ADS)

    Dang, Lisa; Cowan, Nicolas B.; Schwartz, Joel C.; Rauscher, Emily; Zhang, Michael; Knutson, Heather A.; Line, Michael; Dobbs-Dixon, Ian; Deming, Drake; Sundararajan, Sudarsan; Fortney, Jonathan J.; Zhao, Ming

    2018-03-01

    Short-period planets exhibit day-night temperature contrasts of hundreds to thousands of kelvin. They also exhibit eastward hotspot offsets whereby the hottest region on the planet is east of the substellar point1; this has been widely interpreted as advection of heat due to eastward winds2. We present thermal phase observations of the hot Jupiter CoRoT-2b obtained with the Infrared Array Camera (IRAC) on the Spitzer Space Telescope. These measurements show the most robust detection to date of a westward hotspot offset of 23 ± 4°, in contrast with the nine other planets with equivalent measurements3-10. The peculiar infrared flux map of CoRoT-2b may result from westward winds due to non-synchronous rotation11 or magnetic effects12,13, or partial cloud coverage, that obscure the emergent flux from the planet's eastern hemisphere14-17. Non-synchronous rotation and magnetic effects may also explain the planet's anomalously large radius12,18. On the other hand, partial cloud coverage could explain the featureless dayside emission spectrum of the planet19,20. If CoRoT-2b is not tidally locked, then it means that our understanding of star-planet tidal interaction is incomplete. If the westward offset is due to magnetic effects, our result represents an opportunity to study an exoplanet's magnetic field. If it has eastern clouds, then it means that a greater understanding of large-scale circulation on tidally locked planets is required.

  15. 3D MHD Simulations of Waves Excited in an Accretion Disk by a Rotating Magnetized Star

    NASA Astrophysics Data System (ADS)

    Lovelace, R. V. E.; Romanova, M. M.

    2014-01-01

    We present results of global 3D MHD simulations of warp and density waves in accretion disks excited by a rotating star with a misaligned dipole magnetic field. A wide range of cases are considered. We find for example that if the star's magnetosphere corotates approximately with the inner disk, then a strong one-arm bending wave or warp forms. The warp corotates with the star and has a maximum amplitude (|zω|/r ~ 0.3) between the corotation radius and the radius of the vertical resonance. If the magnetosphere rotates more slowly than the inner disk, then a bending wave is excited at the disk-magnetosphere boundary, but it does not form a large-scale warp. In this case the angular rotation of the disk [Ω(r,z = 0)] has a maximum as a function of r so that there is an inner region where dΩ/dr > 0. In this region we observe radially trapped density waves in approximate agreement with the theoretical prediction of a Rossby wave instability in this region.

  16. Variations of the Electron Fluxes in the Terrestrial Radiation Belts Due To the Impact of Corotating Interaction Regions and Interplanetary Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Benacquista, R.; Boscher, D.; Rochel, S.; Maget, V.

    2018-02-01

    In this paper, we study the variations of the radiation belts electron fluxes induced by the interaction of two types of solar wind structures with the Earth magnetosphere: the corotating interaction regions and the interplanetary coronal mass ejections. We use a statistical method based on the comparison of the preevent and postevent fluxes. Applied to the National Oceanic and Atmospheric Administration-Polar Operational Environmental Satellites data, this gives us the opportunity to extend previous studies focused on relativistic electrons at geosynchronous orbit. We enlighten how corotating interaction regions and Interplanetary Coronal Mass Ejections can impact differently the electron belts depending on the energy and the L shell. In addition, we provide a new insight concerning these variations by considering their amplitude. Finally, we show strong relations between the intensity of the magnetic storms related to the events and the variation of the flux. These relations concern both the capacity of the events to increase the flux and the deepness of these increases.

  17. Implications of the Corotation Theorem on the MRI in Axial Symmetry

    NASA Astrophysics Data System (ADS)

    Montani, G.; Cianfrani, F.; Pugliese, D.

    2016-08-01

    We analyze the linear stability of an axially symmetric ideal plasma disk, embedded in a magnetic field and endowed with a differential rotation. This study is performed by adopting the magnetic flux function as the fundamental dynamical variable, in order to outline the role played by the corotation theorem on the linear mode structure. Using some specific assumptions (e.g., plasma incompressibility and propagation of the perturbations along the background magnetic field), we select the Alfvénic nature of the magnetorotational instability, and, in the geometric optics limit, we determine the dispersion relation describing the linear spectrum. We show how the implementation of the corotation theorem (valid for the background configuration) on the linear dynamics produces the cancellation of the vertical derivative of the disk angular velocity (we check such a feature also in the standard vector formalism to facilitate comparison with previous literature, in both the axisymmetric and three-dimensional cases). As a result, we clarify that the unstable modes have, for a stratified disk, the same morphology, proper of a thin-disk profile, and the z-dependence has a simple parametric role.

  18. Towards a theory for Neptune's arc rings

    NASA Technical Reports Server (NTRS)

    Goldreich, P.; Tremaine, S.; Borderies, N.

    1986-01-01

    It is proposed that the incomplete rings of Neptune consist of a number of short arcs centered on the corotation resonances of a single satellite. The satellite must have a radius of the order of 100 km or more and move on an inclined orbit. Corotation resonances are located at potential maxima. Thus, mechanical energy dissipated by interparticle collisions must be continually replenished to prevent the arcs from spreading. It is shown that each corotation resonance is associated with a nearby Lindblad resonance, which excites the ring particles' orbital eccentricity, thus supplying the energy required to maintain the arc. The ultimate energy reservoir is the satellite's orbital energy. Therefore, interaction with the arcs damps the satellite's orbital inclination. The self-gravity of the arcs limits their contraction and enforces a relation between arc length and mass. The estimated arc masses are so small, of the order of 10 to the 16th g, that the satellite's orbital inclination suffers negligible decay over the age of the solar system. The inferred surface mass densities are comparable to those found in the major rings of Saturn and Uranus.

  19. Measurements of the rotation rate of the jovian mid-to-low latitude ionosphere

    NASA Astrophysics Data System (ADS)

    Johnson, Rosie E.; Stallard, Tom S.; Melin, Henrik; Miller, Steve; Nichols, Jonathan D.

    2016-12-01

    Previous studies of Jupiter's upper atmosphere often assume that the mid-to-low latitude ionosphere is corotating, but a model describing an observed asymmetry in hydrogen Lyman-α emission (∼1000 km above the 1 bar level) disagrees with this assumption. From measurements of the Doppler shifted H3+ν2 Q (1 ,0-) line at 3.953 μm using the IRTF, the line-of-sight velocities of the H3+ ions were derived in the planetary reference frame and found to be 0.091 ± 0.25 km s-1, 0.0082 ± 0.30 km s-1 and 0.31 ± 0.51 km s-1 in 1998, 2007 and 2013 respectively. These zero velocities represent corotation at the mid-to-low latitude region of Jupiter's ionosphere. There is no evidence of flows associated with the hydrogen Lyman-α emission asymmetries detected in the peak H3+ emission layer (∼550 km above the 1 bar level), and we assert that the H3+ ions in Jupiter's mid-to-low latitude are rigidly corotating.

  20. Indirect competitive assays on DVD for direct multiplex detection of drugs of abuse in oral fluids.

    PubMed

    Zhang, Lingling; Li, Xiaochun; Li, Yunchao; Shi, Xiaoli; Yu, Hua-Zhong

    2015-02-03

    On-site oral fluid testing for drugs of abuse has become prominent in order to take immediate administrative action in an enforcement process. Herein, we report a DVD technology-based indirect competitive immunoassay platform for the quantitative detection of drugs of abuse. A microfluidic approach was adapted to prepare multiplex immunoassays on a standard DVD-R, an unmodified multimode DVD/Blu-Ray drive to read signal, and a free disc-quality analysis software program to process the data. The DVD assay platform was successfully demonstrated for the simultaneous, quantitative detection of drug candidates (morphine and cocaine) in oral fluids with high selectivity. The detection limit achieved was as low as 1.0 ppb for morphine and 5.0 ppb for cocaine, comparable with that of standard mass spectrometry and ELISA methods.

  1. From CoRoT 102899501 to the Sun. A time evolution model of chromospheric activity on the main sequence

    NASA Astrophysics Data System (ADS)

    Gondoin, P.; Gandolfi, D.; Fridlund, M.; Frasca, A.; Guenther, E. W.; Hatzes, A.; Deeg, H. J.; Parviainen, H.; Eigmüller, P.; Deleuil, M.

    2012-12-01

    Aims: The present study reports measurements of the rotation period of a young solar analogue, estimates of its surface coverage by photospheric starspots and of its chromospheric activity level, and derivations of its evolutionary status. Detailed observations of many young solar-type stars, such as the one reported in the present paper, provide insight into rotation and magnetic properties that may have prevailed on the Sun in its early evolution. Methods: Using a model based on the rotational modulation of the visibility of active regions, we analysed the high-accuracy CoRoT lightcurve of the active star CoRoT 102899501. Spectroscopic follow-up observations were used to derive its fundamental parameters. We compared the chromospheric activity level of Corot 102899501 with the R'HK index distribution vs age established on a large sample of solar-type dwarfs in open clusters. We also compared the chromospheric activity level of this young star with a model of chromospheric activity evolution established by combining relationships between the R'HK index and the Rossby number with a recent model of stellar rotation evolution on the main sequence. Results: We measure the spot coverage of the stellar surface as a function of time and find evidence for a tentative increase from 5 - 14% at the beginning of the observing run to 13-29% 35 days later. A high level of magnetic activity on Corot 102899501 is corroborated by a strong emission in the Balmer and Ca ii H and K lines (R'HK ~ -4). The starspots used as tracers of the star rotation constrain the rotation period to 1.625 ± 0.002 days and do not show evidence for differential rotation. The effective temperature (Teff = 5180 ± 80 K), surface gravity (log g = 4.35 ± 0.1), and metallicity ([M/H] = 0.05 ± 0.07 dex) indicate that the object is located near the evolutionary track of a 1.09 ± 0.12 M⊙ pre-main sequence star at an age of 23 ± 10 Myr. This value is consistent with the "gyro-age" of about 8-25 Myr, inferred using a parameterization of the stellar rotation period as a function of colour index and time established for the I-sequence of stars in stellar clusters. Conclusions: We conclude that the high magnetic activity level and fast rotation of CoRoT 102899501 are manifestations of its stellar youth consistent with its estimated evolutionary status and with the detection of a strong Li i λ6707.8 Å absorption line in its spectrum. We argue that a magnetic activity level comparable to that observed on CoRot 102899501 could have been present on the Sun at the time of planet formation. Based on observations obtained with CoRoT, a space project operated by the French Space Agency, CNES, with participation of the Science Programme of ESA, ESTEC/RSSD, Austria, Belgium, Brazil, Germany and Spain.Based on observations made with the Anglo-Australian Telescope; the 2.1-m Otto Struve telescope at McDonald Observatory, Texas, USA; the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias, in time allocated by the NOT "Fast-Track" Service Programme, OPTICON, and the Spanish Time Allocation Committee (CAT).The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement number RG226604 (OPTICON).

  2. SCISEAL: A CFD Code for Analysis of Fluid Dynamic Forces in Seals

    NASA Technical Reports Server (NTRS)

    Althavale, Mahesh M.; Ho, Yin-Hsing; Przekwas, Andre J.

    1996-01-01

    A 3D CFD code, SCISEAL, has been developed and validated. Its capabilities include cylindrical seals, and it is employed on labyrinth seals, rim seals, and disc cavities. State-of-the-art numerical methods include colocated grids, high-order differencing, and turbulence models which account for wall roughness. SCISEAL computes efficient solutions for complicated flow geometries and seal-specific capabilities (rotor loads, torques, etc.).

  3. Solar Wind Features Responsible for Magnetic Storms and Substorms During the Declining Phase of the Solar Cycle: 197

    NASA Technical Reports Server (NTRS)

    Tsurutani, B.; Arballo, J.

    1994-01-01

    We examine interplanetary data and geomagnetic activity indices during 1974 when two long-lasting solar wind corotating streams existed. We find that only 3 major storms occurred during 1974, and all were associated with coronal mass ejections. Each high speed stream was led by a shock, so the three storms had sudden commencements. Two of the 1974 major storms were associated with shock compression of preexisting southward fields and one was caused by southward fields within a magnetic cloud. Corotating streams were responsible for recurring moderate to weak magnetic storms.

  4. Affirmation of triggered Jovian radio emissions and their attribution to corotating radio lasers

    NASA Technical Reports Server (NTRS)

    Calvert, W.

    1985-01-01

    It is argued that the original statistical evidence for the existence of triggered radio emissions and corotating radio lasers on Jupiter remains valid notwithstanding the critique of Desch and Kaiser (1985). The Voyager radio spectrograms used to identify the triggered emissions are analyzed and the results are discussed. It is shown that the critique by Desch and Kaiser is unjustified because it is not based on the original event criteria, i.e., the correlation between the occurrence of Jovian auroral kilometric radiation and fast-drift type III solar bursts in the same frequency.

  5. Recirculation System for Geothermal Energy Recovery in Sedimentary Formations: Laboratory Experiments and Numerical Simulations

    NASA Astrophysics Data System (ADS)

    Elkhoury, J. E.; Detwiler, R. L.; Serajian, V.; Bruno, M. S.

    2012-12-01

    Geothermal energy resources are more widespread than previously thought and have the potential for providing a significant amount of sustainable clean energy worldwide. In particular, hot permeable sedimentary formations provide many advantages over traditional geothermal recovery and enhanced geothermal systems in low permeability crystalline formations. These include: (1) eliminating the need for hydraulic fracturing, (2) significant reduction in risk for induced seismicity, (3) reducing the need for surface wastewater disposal, (4) contributing to decreases in greenhouse gases, and (5) potential use for CO2 sequestration. Advances in horizontal drilling, completion, and production technology from the oil and gas industry can now be applied to unlock these geothermal resources. Here, we present experimental results from a laboratory scale circulation system and numerical simulations aimed at quantifying the heat transfer capacity of sedimentary rocks. Our experiments consist of fluid flow through a saturated and pressurized sedimentary disc of 23-cm diameter and 3.8-cm thickness heated along its circumference at a constant temperature. Injection and production ports are 7.6-cm apart in the center of the disc. We used DI de-aired water and mineral oil as working fluids and explored temperatures from 20 to 150 oC and flow rates from 2 to 30 ml/min. We performed experiments on sandstone samples (Castlegate and Kirby) with different porosity, permeability and thermal conductivity to evaluate the effect of hydraulic and thermal properties on the heat transfer capacity of sediments. The producing fluid temperature followed an exponential form with time scale transients between 15 and 45 min. Steady state outflow temperatures varied between 60% and 95% of the set boundary temperature, higher percentages were observed for lower temperatures and flow rates. We used the flow and heat transport simulator TOUGH2 to develop a numerical model of our laboratory setting. Given the remarkable match between our observations and numerical results, we extended our model to explore a wider range of thermal and hydrological parameters beyond the experimental conditions. Our results prove the capability of heat transfer in sedimentary formations for geothermal energy production.) Sandstone sample with two thermally insulating Teflon caps (white discs). In and out arrows indicate the flow direction while the sample is heated along its circumference (heater not shown). B) Example of a 2D temperature distribution during injection. White x shows the location of the flow ports, inlet (left) and outlet (right). Red is the set boundary temperature and blue is the fluid temperature at the inlet.

  6. Aerodynamic optimization of wind turbine rotor using CFD/AD method

    NASA Astrophysics Data System (ADS)

    Cao, Jiufa; Zhu, Weijun; Wang, Tongguang; Ke, Shitang

    2018-05-01

    The current work describes a novel technique for wind turbine rotor optimization. The aerodynamic design and optimization of wind turbine rotor can be achieved with different methods, such as the semi-empirical engineering methods and more accurate computational fluid dynamic (CFD) method. The CFD method often provides more detailed aerodynamics features during the design process. However, high computational cost limits the application, especially for rotor optimization purpose. In this paper, a CFD-based actuator disc (AD) model is used to represent turbulent flow over a wind turbine rotor. The rotor is modeled as a permeable disc of equivalent area where the forces from the blades are distributed on the circular disc. The AD model is coupled with a Reynolds Averaged Navier-Stokes (RANS) solver such that the thrust and power are simulated. The design variables are the shape parameters comprising the chord, the twist and the relative thickness of the wind turbine rotor blade. The comparative aerodynamic performance is analyzed between the original and optimized reference wind turbine rotor. The results showed that the optimization framework can be effectively and accurately utilized in enhancing the aerodynamic performance of the wind turbine rotor.

  7. Vortex formation through inertial wave focusing

    NASA Astrophysics Data System (ADS)

    Duran-Matute, Matias; Flor, Jan-Bert; Godeferd, Fabien

    2011-11-01

    We present a novel experimental and numerical study on the formation of columnar vortical structures by inertial waves in a rotating fluid. Two inertial-wave cones are generated by a vertically oscillating torus in a fluid in solid body rotation At the tip of the cones, there is a singular point towards which the energy of the waves gets focused. The particularity of this configuration, as compared to those of previous experiments (e.g. oscillating sphere or disc), is that the singular point's position within the fluid leads to complex non-linear wave interaction, which may lead to the formation of a localized vortex that expands in the vertical in the form of a Taylor column. Using detailed PIV measurements we consider the flow evolution from the localized wave overturning motion to the Taylor column formation as well as the inertial wave dynamics during this process, The results are discussed in the context of turbulence in rotating fluids. We acknowledge financial support from projects ANR ANISO and CIBLE.

  8. The Synergistic Effects of MoS2 and Liquid Lubrication

    NASA Astrophysics Data System (ADS)

    Buttery, M.; Roberts, E.; Stanley, S.; Murer, J.

    2015-09-01

    We present an overview of a three-stage program on the potential for hybrid lubrication of MoS2 and PFPE fluids (Fomblin Z25 & Braycote 601EF) performed at the European Space Tribology Laboratory (ESTL).Tests were performed using a spiral orbit tribometer (SOT) and a pin-on-disc tribometer (POD), demonstrating encouraging results. Hybrid lubrication allows for extended periods of in-air running of MoS2 with no detrimental effect to the subsequent in-vacuum lifetime. In addition, hybrid lubrication was shown to be synergistic, with the lifetime of the hybrid fluid/MoS2 lubrication extended in comparison to the individual constituents, with no detriment to the friction.

  9. The Fine Transverse Structure of a Vortex Flow Beyond the Edge of a Disc Rotating in a Stratified Fluid

    NASA Astrophysics Data System (ADS)

    Chashechkin, Yu. D.; Bardakov, R. N.

    2018-02-01

    By the methods of schlieren visualization, the evolution of elements of the fine structure of transverse vortex loops formed in the circular vortex behind the edge of a disk rotating in a continuously stratified fluid is traced for the first time. An inhomogeneous distribution of the density of a table-salt solution in a basin was formed by the continuous-squeezing method. The development of periodic perturbations at the outer boundary of the circular vortex and their transformation at the vortex-loop vertex are traced. A slow change in the angular size of the structural elements in the supercritical-flow mode is noted.

  10. Magnetorotational instability in protoplanetary discs: the effect of dust grains

    NASA Astrophysics Data System (ADS)

    Salmeron, Raquel; Wardle, Mark

    2008-08-01

    We investigate the linear growth and vertical structure of the magnetorotational instability (MRI) in weakly ionized, stratified protoplanetary discs. The magnetic field is initially vertical and dust grains are assumed to be well mixed with the gas over the entire vertical dimension of the disc. For simplicity, all the grains are assumed to have the same radius (a = 0.1,1 or 3μm) and constitute a constant fraction (1 per cent) of the total mass of the gas. Solutions are obtained at representative radial locations (R = 5 and 10 au) from the central protostar for a minimum-mass solar nebula model and different choices of the initial magnetic field strength, configuration of the diffusivity tensor and grain sizes. We find that when no grain are present, or they are >~1μm in radius, the mid-plane of the disc remains magnetically coupled for field strengths up to a few gauss at both radii. In contrast, when a population of small grains (a = 0.1μm) is mixed with the gas, the section of the disc within two tidal scaleheights from the mid-plane is magnetically inactive and only magnetic fields weaker than ~50 mG can effectively couple to the fluid. At 5 au, Ohmic diffusion dominates for z/H <~ 1 when the field is relatively weak (B <~ a few milligauss), irrespective of the properties of the grain population. Conversely, at 10 au this diffusion term is unimportant in all the scenarios studied here. High above the mid-plane (z/H >~ 5), ambipolar diffusion is severe and prevents the field from coupling to the gas for all B. Hall diffusion is dominant for a wide range of field strengths at both radii when dust grains are present. The growth rate, wavenumber and range of magnetic field strengths for which MRI-unstable modes exist are all drastically diminished when dust grains are present, particularly when they are small (a ~ 0.1μm). In fact, MRI perturbations grow at 5 au (10 au) for B <~ 160 mG (130 mG) when 3μm grains are mixed with the gas. This upper limit on the field strength is reduced to only ~16 mG (10 mG) when the grain size is reduced to 0.1μm. In contrast, when the grains are assumed to have settled, MRI-unstable modes are found for B <~ 800 mG at 5 au and 250 mG at 10 au. Similarly, as the typical size of the dust grains diminishes, the vertical extent of the dead zone increases, as expected. For 0.1μm grains, the disc is magnetically inactive within two scaleheights of the mid-plane at both radii, but perturbations grow over the entire section of the disc for grain sizes of 1μm or larger. When dust grains are mixed with the gas, perturbations that incorporate Hall diffusion grow faster, and are active over a more extended cross-section of the disc, than those obtained under the ambipolar diffusion approximation. Note that the stabilizing effect of small dust grains (e.g. a = 0.1μm) is not strong enough to completely suppress the perturbations. We find, in fact, that even in this scenario, the magnetic field is able to couple to the gas and shear over a range of fluid conditions. Despite the low-magnetic coupling, MRI modes grow for a range of magnetic field strengths and Hall diffusion largely determines the properties of the perturbations in the inner regions of the disc.

  11. HERO - A 3D general relativistic radiative post-processor for accretion discs around black holes

    NASA Astrophysics Data System (ADS)

    Zhu, Yucong; Narayan, Ramesh; Sadowski, Aleksander; Psaltis, Dimitrios

    2015-08-01

    HERO (Hybrid Evaluator for Radiative Objects) is a 3D general relativistic radiative transfer code which has been tailored to the problem of analysing radiation from simulations of relativistic accretion discs around black holes. HERO is designed to be used as a post-processor. Given some fixed fluid structure for the disc (i.e. density and velocity as a function of position from a hydrodynamic or magnetohydrodynamic simulation), the code obtains a self-consistent solution for the radiation field and for the gas temperatures using the condition of radiative equilibrium. The novel aspect of HERO is that it combines two techniques: (1) a short-characteristics (SC) solver that quickly converges to a self-consistent disc temperature and radiation field, with (2) a long-characteristics (LC) solver that provides a more accurate solution for the radiation near the photosphere and in the optically thin regions. By combining these two techniques, we gain both the computational speed of SC and the high accuracy of LC. We present tests of HERO on a range of 1D, 2D, and 3D problems in flat space and show that the results agree well with both analytical and benchmark solutions. We also test the ability of the code to handle relativistic problems in curved space. Finally, we discuss the important topic of ray defects, a major limitation of the SC method, and describe our strategy for minimizing the induced error.

  12. Vertebral end-plate fractures as a result of high rate pressure loading in the nucleus of the young adult porcine spine.

    PubMed

    Brown, Stephen H M; Gregory, Diane E; McGill, Stuart M

    2008-01-01

    In a healthy spine, end-plate fractures occur from excessive pressurization of the intervening nucleus. Younger spines are most susceptible to such type of injury due to the highly hydraulic nature of their intervertebral discs. The purpose of this paper was to confirm this fracture mechanism of the healthy spine through the pressurization of the nucleus in the absence of external compressive loading. Sixteen functional porcine spine units were dissected and both injection and pressure transducer needles were inserted into the nucleus of the intervertebral disc. Hydraulic fluid was rapidly injected into the nucleus until failure occurred. Peak pressure and rate of pressure development were monitored. Spine units were dissected to determine the type and location of fracture. Fifteen of the 16 spine units fractured (the remaining unit had a degenerated disc). Of the 15 fractures, 13 occurred at the posterior margin of the end-plate along the lines of the growth plates. A slightly exponential relationship was found between peak pressure and its rate of development (R(2) = 0.544). Also, in each of the growth-plate fractured specimens, nuclear material was forcefully emitted, during fracture, from the intervertebral disc into the vertebral foramen. The posterior end-plate fractures produced here are similar to those often seen in young adult humans. This provides insight into a mechanism of fracture development through pressurization of the nucleus that might be seen in older adolescents and younger adults during athletic events or mild trauma.

  13. Could CoRoT-7b and Kepler-10b be remnants of evaporated gas or ice giants?

    PubMed Central

    Leitzinger, M.; Odert, P.; Kulikov, Yu.N.; Lammer, H.; Wuchterl, G.; Penz, T.; Guarcello, M.G.; Micela, G.; Khodachenko, M.L.; Weingrill, J.; Hanslmeier, A.; Biernat, H.K.; Schneider, J.

    2011-01-01

    We present thermal mass loss calculations over evolutionary time scales for the investigation if the smallest transiting rocky exoplanets CoRoT-7b (∼1.68REarth) and Kepler-10b (∼1.416REarth) could be remnants of an initially more massive hydrogen-rich gas giant or a hot Neptune-class exoplanet. We apply a thermal mass loss formula which yields results that are comparable to hydrodynamic loss models. Our approach considers the effect of the Roche lobe, realistic heating efficiencies and a radius scaling law derived from observations of hot Jupiters. We study the influence of the mean planetary density on the thermal mass loss by placing hypothetical exoplanets with the characteristics of Jupiter, Saturn, Neptune, and Uranus to the orbital location of CoRoT-7b at 0.017 AU and Kepler-10b at 0.01684 AU and assuming that these planets orbit a K- or G-type host star. Our findings indicate that hydrogen-rich gas giants within the mass domain of Saturn or Jupiter cannot thermally lose such an amount of mass that CoRoT-7b and Kepler-10b would result in a rocky residue. Moreover, our calculations show that the present time mass of both rocky exoplanets can be neither a result of evaporation of a hydrogen envelope of a “Hot Neptune” nor a “Hot Uranus”-class object. Depending on the initial density and mass, these planets most likely were always rocky planets which could lose a thin hydrogen envelope, but not cores of thermally evaporated initially much more massive and larger objects. PMID:21969736

  14. Xi Per [O7.5 III(n)((f))]: DACs, NRPs and Now Co-rotating Hot Spots with MOST

    NASA Astrophysics Data System (ADS)

    Ramiaramanantsoa, Tahina; Moffat, A.; Chene, A.-N.; Desforges, S.; Henrichs, H.; MOST Science Team

    2013-06-01

    We have used the MOST (Microvariability and Oscillations of Stars) microsatellite to obtain four weeks of contiguous high-precision broadband visual photometry in Nov 2011 along with several simultaneous nights of ground-based medium-resolution high signal-to-noise optical spectroscopic monitoring of the O7.5III star xi Persei. This star is well known from previous work to show prominent DACs (Discrete Absorption Components) on times-scales of about two days from UV spectroscopy and NRP (Non Radial Pulsation) with one (l=3) p-mode oscillation of period 3.5 hours from optical spectroscopy. Our MOST-orbit (101 min) binned photometry fails to reveal any coherent pulsations above the 0.1 mmag 3-sigma noise level for periods of hours, while several prominent Fourier peaks emerge at the 1 mmag level in the two-day period range. These longer-period variations are unlikely due to pulsations; rather we deduce from our simulations based upon a simple spot model that we are seeing the photometric modulation of several co-rotating hot spots on the stellar surface, whose lifetimes vary yet they all rotate at the same (probable) period of 4 days, i.e. the best-estimated stellar rotation period. We are in the process of examining if our new optical spectra at a cadence of ~ 5 minutes and signal-to-noise ~ 150 reveal any periodicities on hour and day timescales. This may be the first reported case of co-rotating hot spots on an O star, with important implications for drivers of the DACs (resulting from CIRs, Corotating Interaction Regions) and possible generation via a subsurface convection zone.

  15. Vortex Generators in a Streamline-Traced, External-Compression Supersonic Inlet

    NASA Technical Reports Server (NTRS)

    Baydar, Ezgihan; Lu, Frank K.; Slater, John W.; Trefny, Charles J.

    2017-01-01

    Vortex generators within a streamline-traced, external-compression supersonic inlet for Mach 1.66 were investigated to determine their ability to increase total pressure recovery and reduce total pressure distortion. The vortex generators studied were rectangular vanes arranged in counter-rotating and co-rotating arrays. The vane geometric factors of interest included height, length, spacing, angle-of-incidence, and positions upstream and downstream of the inlet terminal shock. The flow through the inlet was simulated numerically through the solution of the steady-state, Reynolds-averaged Navier-Stokes equations on multi-block, structured grids using the Wind-US flow solver. The vanes were simulated using a vortex generator model. The inlet performance was characterized by the inlet total pressure recovery and the radial and circumferential total pressure distortion indices at the engine face. Design of experiments and statistical analysis methods were applied to quantify the effect of the geometric factors of the vanes and search for optimal vane arrays. Co-rotating vane arrays with negative angles-of-incidence positioned on the supersonic diffuser were effective in sweeping low-momentum flow from the top toward the sides of the subsonic diffuser. This distributed the low-momentum flow more evenly about the circumference of the subsonic diffuser and reduced distortion. Co-rotating vane arrays with negative angles-of-incidence or counter-rotating vane arrays positioned downstream of the terminal shock were effective in mixing higher-momentum flow with lower-momentum flow to increase recovery and decrease distortion. A strategy of combining a co-rotating vane array on the supersonic diffuser with a counter-rotating vane array on the subsonic diffuser was effective in increasing recovery and reducing distortion.

  16. Sub-corotating region of Saturn's magnetosphere: Cassini observations of the azimuthal field and implications for the ionospheric Pederesen Current (Invited)

    NASA Astrophysics Data System (ADS)

    Smith, E. J.; Dougherty, M. K.; Zhou, X.

    2010-12-01

    A consensus model of Saturn’s magnetosphere that has broad acceptance consists of four regions in which the plasma and field are corotating, sub-corotating or undergoing Vasyliunas or Dungey convection. In this model, the sub-corotating magnetosphere contains a large scale circuital current system comprised of radial, field-aligned and ionospheric currents. A quantitative rendering of this system developed by S. Cowley and E. Bunch relates the azimuthal field component, B phi, that causes the field to spiral to the ionospheric Pedersen current , Ip. Cassini measurements of B phi over the four year interval between 2005 and 2008 that are widely distributed in radial distance, latitude and local time have been used to compute Ip from a Bunce-Cowley formula. A striking north-south asymmetry of the global magnetosphere has been found. In the southern hemisphere, the magnitude and variation of Ip with invariant colatitude, θ, agree qualitatively with the model but Ip (θ) is shifted poleward by about 10°. In the northern hemisphere, however, the data fail to reproduce the profile of Ip (θ) predicted by the model but are dominated by two high latitude currents having the wrong polarities. Possible causes of this asymmetry are seasonal variations (summer in the southern hemisphere) and/or asymmetric plasma outflow from the inner magnetosphere such as the plumes extending southward from Enceladus. Another finding is a significant local time dependence of Ip(θ) rather than the axisymmetry assumed in the model. There is a close correspondence with the model in the noon sector. The currents in the midnight and dawn sectors are significantly larger than in the noon sector and the current in the dusk sector is dramatically weaker.

  17. Could CoRoT-7b and Kepler-10b be remnants of evaporated gas or ice giants?

    PubMed

    Leitzinger, M; Odert, P; Kulikov, Yu N; Lammer, H; Wuchterl, G; Penz, T; Guarcello, M G; Micela, G; Khodachenko, M L; Weingrill, J; Hanslmeier, A; Biernat, H K; Schneider, J

    2011-10-01

    We present thermal mass loss calculations over evolutionary time scales for the investigation if the smallest transiting rocky exoplanets CoRoT-7b (∼1.68REarth) and Kepler-10b (∼1.416REarth) could be remnants of an initially more massive hydrogen-rich gas giant or a hot Neptune-class exoplanet. We apply a thermal mass loss formula which yields results that are comparable to hydrodynamic loss models. Our approach considers the effect of the Roche lobe, realistic heating efficiencies and a radius scaling law derived from observations of hot Jupiters. We study the influence of the mean planetary density on the thermal mass loss by placing hypothetical exoplanets with the characteristics of Jupiter, Saturn, Neptune, and Uranus to the orbital location of CoRoT-7b at 0.017 AU and Kepler-10b at 0.01684 AU and assuming that these planets orbit a K- or G-type host star. Our findings indicate that hydrogen-rich gas giants within the mass domain of Saturn or Jupiter cannot thermally lose such an amount of mass that CoRoT-7b and Kepler-10b would result in a rocky residue. Moreover, our calculations show that the present time mass of both rocky exoplanets can be neither a result of evaporation of a hydrogen envelope of a "Hot Neptune" nor a "Hot Uranus"-class object. Depending on the initial density and mass, these planets most likely were always rocky planets which could lose a thin hydrogen envelope, but not cores of thermally evaporated initially much more massive and larger objects.

  18. Presenting new exoplanet candidates for the CoRoT chromatic light curves

    NASA Astrophysics Data System (ADS)

    Boufleur, Rodrigo; Emilio, Marcelo; Andrade, Laerte; Janot-Pacheco, Eduardo; De La Reza, Ramiro

    2015-08-01

    One of the most promising topics of modern Astronomy is the discovery and characterization of extrasolar planets due to its importance for the comprehension of planetary formation and evolution. Missions like MOST (Microvariability and Oscillations of Stars Telescope) (Walker et al., 2003) and especially the satellites dedicated to the search for exoplanets CoRoT (Convection, Rotation and planetary Transits) (Baglin et al., 1998) and Kepler (Borucki et al., 2003) produced a great amount of data and together account for hundreds of new discoveries. An important source of error in the search for planets with light curves obtained from space observatories are the displacements occuring in the data due to external causes. This artificial charge generation phenomenon associated with the data is mainly caused by the impact of high energy particles onto the CCD (Pinheiro da Silva et al. 2008), although other sources of error, not as well known also need to be taken into account. So, an effective analysis of the light curves depends a lot on the mechanisms employed to deal with these phenomena. To perform our research, we developed and applied a different method to fix the light curves, the CDAM (Corot Detrend Algorithm Modified), inspired by the work of Mislis et al. (2012). The paradigms were obtained using the BLS method (Kovács et al., 2002). After a semiautomatic pre-analysis associated with a visual inspection of the planetary transits signatures, we obtained dozens of exoplanet candidates in very good agreement with the literature and also new unpublished cases. We present the study results and characterization of the new cases for the chromatic channel public light curves of the CoRoT satellite.

  19. Identification of molting fluid carboxypeptidase A (MF-CPA) in Bombyx mori.

    PubMed

    Ote, Manabu; Mita, Kazuei; Kawasaki, Hideki; Daimon, Takaaki; Kobayashi, Masahiko; Shimada, Toru

    2005-07-01

    Using microarray analyses, we identified carboxypeptidase A (MF-CPA), which was induced during pupal ecdysis in the wing discs of Bombyx mori. Here, we report the functional characterization of MF-CPA. MF-CPA has amino acid sequence similarities with the proteins in the carboxypeptidase A/B subfamily, from human to nematode. The MF-CPA gene is expressed during the molting periods in the epithelial tissues. MF-CPA is detected in the molting fluid, which fills the space between the old and new cuticle during molting. By Western blot analysis, we show that MF-CPA is secreted as a zymogen and processed in the molting fluid. Recombinant MF-CPA expressed in the insect cells has carboxypeptidase A activity. We propose that MF-CPA degrades the proteins from the old cuticle during the molting periods and contributes to recycling of the amino acids.

  20. Evaluation of tartar control dentifrices in in vitro models of dentin sensitivity.

    PubMed

    Mason, S; Levan, A; Crawford, R; Fisher, S; Gaffar, A

    1991-01-01

    The effects of anticalculus dentifrices were compared with other commercially available dentifrices in in vitro models of dentin sensitivity. Changes in the hydraulic conductance of dentin discs were measured with and without a smear layer before and after treatment and also after a post-treatment acid etch. The capacity of dentifrices to occlude open dentinal tubules in vitro was also assessed by scanning electron microscopy (SEM). There was good correlation (R = 0.98) between our test and values reported in the literature. Tartar control dentifrices gave reductions in fluid flow rates through the dentin discs comparable to those obtained with Promise, Sensodyne, Thermodent and Denquel. Additionally, tartar control dentifrices did not remove microcrystalline debris (smear layers) from the surfaces of dentin in vitro. These results were confirmed by SEM. Thus, according to the hydrodynamic theory of dentin sensitivity, these in vitro results suggest that pyrophosphate-containing dentifrices should reduce dentinal sensitivity.

  1. The rigid shell component for superrotation in planetary atmospheres: Angular momentum budget, mechanical analog and simulation of the spin up process

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Harris, I.

    1981-01-01

    An analysis of superrotation in the atmosphere of planets, with rotation axis perpendicular to the orbital plane is presented. As the atmosphere expands, Hadley cells develop producing a redistribution of mass and angular momentum. A three dimensional thermally driven zonally symmetric spectral model and Laplace transformation simulate the time evolution of a fluid leading from corotation under globally uniform heating to superrotation under globally nonuniform heating. For high viscosities the rigid shell component of atmospheric superrotation can be understood in analogy with a pirouette. During spin up angular momentum is transferred to the planet. For low iscosities, the process is reversed. A tendency toward geostrophy, combined with increase of surface pressure toward the poles (due to meridional mass transport), induces the atmosphere to subrotate temporarily at lower altitudes. Resultant viscous shear near the surface permits angular momentum to flow from the planet into the atmosphere propagating upwards to produce high altitude superrotation rates.

  2. Viscoelastic flow in rotating curved pipes

    NASA Astrophysics Data System (ADS)

    Chen, Yitung; Chen, Huajun; Zhang, Jinsuo; Zhang, Benzhao

    2006-08-01

    Fully developed viscoelastic flows in rotating curved pipes with circular cross section are investigated theoretically and numerically employing the Oldroyd-B fluid model. Based on Dean's approximation, a perturbation solution up to the secondary order is obtained. The governing equations are also solved numerically by the finite volume method. The theoretical and numerical solutions agree with each other very well. The results indicate that the rotation, as well as the curvature and elasticity, plays an important role in affecting the friction factor, the secondary flow pattern and intensity. The co-rotation enhances effects of curvature and elasticity on the secondary flow. For the counter-rotation, there is a critical rotational number RΩ', which can make the effect of rotation counteract the effect of curvature and elasticity. Complicated flow behaviors are found at this value. For the relative creeping flow, RΩ' can be estimated according to the expression RΩ'=-4Weδ. Effects of curvature and elasticity at different rotational numbers on both relative creeping flow and inertial flow are also analyzed and discussed.

  3. Radial variations of large-scale magnetohydrodynamic fluctuations in the solar wind

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Goldstein, M. L.

    1983-01-01

    Two time periods are studied for which comprehensive data coverage is available at both 1 AU using IMP-8 and ISEE-3 and beyond using Voyager 1. One of these periods is characterized by the predominance of corotating stream interactions. Relatively small scale transient flows characterize the second period. The evolution of these flows with heliocentric distance is studied using power spectral techniques. The evolution of the transient dominated period is consistent with the hypothesis of turbulent evolution including an inverse cascade of large scales. The evolution of the corotating period is consistent with the entrainment of slow streams by faster streams in a deterministic model.

  4. Nuclear physics of reverse electron flow at pulsar polar caps

    NASA Astrophysics Data System (ADS)

    Jones, P. B.

    2010-01-01

    Protons produced in electromagnetic showers formed by the reverse electron flux are usually the largest component of the time-averaged polar cap open magnetic flux line current in neutron stars with positive corotational charge density. Although the electric field boundary conditions in the corotating frame are time independent, instabilities on both medium and short time-scales cause the current to alternate between states in which either protons or positrons and ions form the major component. These properties are briefly discussed in relation to nulling and microstructure in radio pulsars, pair production in an outer gap and neutron stars with high surface temperatures.

  5. Dispersion and characterization of Thermoplastic Polyurethane/Multiwalled Carbon Nanotubes in co-rotative twin screw extruder

    NASA Astrophysics Data System (ADS)

    Benedito, Adolfo; Buezas, Ignacio; Giménez, Enrique; Galindo, Begoña

    2010-06-01

    The dispersion of multi-walled carbon nanotubes in thermoplastic polyurethanes has been done in co-rotative twin screw extruder through a melt blending process. A specific experimental design was prepared taking into account different compounding parameters such as feeding, temperature profile, screw speed, screw design, and carbon nanotube loading. The obtained samples were characterized by thermogravimetric analysis (TGA), light transmission microscopy, dynamic rheometry, and dynamic mechanical analysis. The objective of this work has been to study the dispersion quality of the carbon nanotubes and the effect of different compounding parameters to optimize them for industrial scale-up to final applications.

  6. The formation of fragments at corotation in isothermal protoplanetary disks

    NASA Astrophysics Data System (ADS)

    Durisen, Richard H.; Hartquist, Thomas W.; Pickett, Megan K.

    2008-09-01

    Numerical hydrodynamics simulations have established that disks which are evolved under the condition of local isothermality will fragment into small dense clumps due to gravitational instabilities when the Toomre stability parameter Q is sufficiently low. Because fragmentation through disk instability has been suggested as a gas giant planet formation mechanism, it is important to understand the physics underlying this process as thoroughly as possible. In this paper, we offer analytic arguments for why, at low Q, fragments are most likely to form first at the corotation radii of growing spiral modes, and we support these arguments with results from 3D hydrodynamics simulations.

  7. Relatively stable, large-amplitude Alfvenic waves seen at 2.5 and 5.0 AU

    NASA Technical Reports Server (NTRS)

    Mavromichalaki, H.; Moussas, X.; Quenby, J. J.; Valdes-Galicia, J. F.; Smith, E. J.

    1988-01-01

    Pioneer 11 and 10 observations of the wave structure seen in a corotating interaction region at 2.5 AU on day 284 of 1973 and 8 days later at 5 AU reveal large-amplitude Alfvenic structures with many detailed correlations seen between their features at the two radial distances. Hodogram analysis suggests the dominance of near plane polarized, transverse Alfvenic mode fluctuations with periods between 2 min and one hour or more. Some wave evolution close to the Corotating Interaction Region (CIR) shock is noticed, but waves towards the center of the compression seem to propagate with little damping between the spacecraft observation positions.

  8. The Formation of CIRs at Stream-Stream Interfaces and Resultant Geomagnetic Activity

    NASA Technical Reports Server (NTRS)

    Richardson, I. G.

    2005-01-01

    Corotating interaction regions (CIRs) are regions of compressed plasma formed at the leading edges of corotating high-speed solar wind streams originating in coronal holes as they interact with the preceding slow solar wind. Although particularly prominent features of the solar wind during the declining and minimum phases of the 11-year solar cycle, they may also be present at times of higher solar activity. We describe how CIRs are formed, and their geomagnetic effects, which principally result from brief southward interplanetary magnetic field excursions associated with Alfven waves. Seasonal and long-term variations in these effects are briefly discussed.

  9. Photometric and spectroscopic variability of the B5IIIe star HD 171219

    NASA Astrophysics Data System (ADS)

    Andrade, L.; Janot-Pacheco, E.; Emilio, M.; Frémat, Y.; Neiner, C.; Poretti, E.; Mathias, P.; Rainer, M.; Suárez, J. C.; Uytterhoeven, K.; Briquet, M.; Diago, P. D.; Fabregat, J.; Gutiérrez-Soto, J.

    2017-07-01

    We analyzed the star HD 171219, one of the relatively bright Be stars observed in the seismo field of the CoRoT satellite, in order to determine its physical and pulsation characteristics. Classical Be stars are main-sequence objects of mainly B-type, whose spectra show, or have shown at some epoch, Balmer lines in emission and an infrared excess. Both characteristics are attributed to an equatorially concentrated circumstellar disk fed by non-periodic mass-loss episodes (outbursts). Be stars often show nonradial pulsation gravity modes and, as more recently discovered, stochastically excited oscillations. Applying the CLEANEST algorithm to the high-cadence and highly photometrically precise measurements of the HD 171219 light curve led us to perform an unprecedented detailed analysis of its nonradial pulsations. Tens of frequencies have been detected in the object compatible with nonradial g-modes. Additional high-resolution ground-based spectroscopic observations were obtained at La Silla (HARPS) and Haute Provence (SOPHIE) observatories during the month preceding CoRoT observations. Additional information was obtained from low-resolution spectra from the BeSS database. From spectral line fitting we determined physical parameters of the star, which is seen equator-on (I = 90°). We also found in the ground data the same frequencies as in CoRoT data. Additionally, we analyzed the circumstellar activity through the traditional method of violet to red emission Hα line variation. A quintuplet was identified at approximately 1.113 c d-1 (12.88 μHz) with a separation of 0.017 c d-1 that can be attributed to a pulsation degree ℓ 2. The light curve shows six small- to medium-scale outbursts during the CoRoT observations. The intensity of the main frequencies varies after each outburst, suggesting a possible correlation between the nonradial pulsations regime and the feeding of the envelope. The CoRoT space mission was developed and operated by the French space agency CNES, with participation of ESA's RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain. This work is partially based on observations made with the 3.6-m telescope at La Silla Observatory under the ESO Large Programme LP185.D-0056.

  10. CSI 2264: Characterizing Young Stars in NGC 2264 With Short-Duration Periodic Flux Dips in Their Light Curves

    NASA Astrophysics Data System (ADS)

    Stauffer, John; Cody, Ann Marie; McGinnis, Pauline; Rebull, Luisa; Hillenbrand, Lynne A.; Turner, Neal J.; Carpenter, John; Plavchan, Peter; Carey, Sean; Terebey, Susan; Morales-Calderón, María; Alencar, Silvia H. P.; Bouvier, Jerome; Venuti, Laura; Hartmann, Lee; Calvet, Nuria; Micela, Giusi; Flaccomio, Ettore; Song, Inseok; Gutermuth, Rob; Barrado, David; Vrba, Frederick J.; Covey, Kevin; Padgett, Debbie; Herbst, William; Gillen, Edward; Lyra, Wladimir; Medeiros Guimaraes, Marcelo; Bouy, Herve; Favata, Fabio

    2015-04-01

    We identify nine young stellar objects (YSOs) in the NGC 2264 star-forming region with optical CoRoT light curves exhibiting short-duration, shallow periodic flux dips. All of these stars have infrared excesses that are consistent with their having inner disk walls near the Keplerian co-rotation radius. The repeating photometric dips have FWHMs generally less than 1 day, depths almost always less than 15%, and periods (3 < P < 11 days) consistent with dust near the Keplerian co-rotation period. The flux dips vary considerably in their depth from epoch to epoch, but usually persist for several weeks and, in two cases, were present in data collected in successive years. For several of these stars, we also measure the photospheric rotation period and find that the rotation and dip periods are the same, as predicted by standard “disk-locking” models. We attribute these flux dips to clumps of material in or near the inner disk wall, passing through our line of sight to the stellar photosphere. In some cases, these dips are also present in simultaneous Spitzer IRAC light curves at 3.6 and 4.5 microns. We characterize the properties of these dips, and compare the stars with light curves exhibiting this behavior to other classes of YSOs in NGC 2264. A number of physical mechanisms could locally increase the dust scale height near the inner disk wall, and we discuss several of those mechanisms; the most plausible mechanisms are either a disk warp due to interaction with the stellar magnetic field or dust entrained in funnel-flow accretion columns arising near the inner disk wall. Based on data from the Spitzer and CoRoT missions, as well as the Canada France Hawaii Telescope (CFHT) MegaCam CCD, and the European Southern Observatory Very Large Telescope, Paranal Chile, under program 088.C-0239. The CoRoT space mission was developed and is operated by the French space agency CNES, with participation of ESA’s RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain. MegaCam is a joint project of CFHT and CEA/DAPNIA, which is operated by the National Research Council (NRC) of Canada, the Institute National des Sciences de l’Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii.

  11. Homogeneous studies of transiting extrasolar planets - IV. Thirty systems with space-based light curves

    NASA Astrophysics Data System (ADS)

    Southworth, John

    2011-11-01

    I calculate the physical properties of 32 transiting extrasolar planet and brown-dwarf systems from existing photometric observations and measured spectroscopic parameters. The systems studied include 15 observed by the CoRoT satellite, 10 by Kepler and five by the Deep Impact spacecraft. Inclusion of the objects studied in previous papers leads to a sample of 58 transiting systems with homogeneously measured properties. The Kepler data include observations from Quarter 2, and my analyses of several of the systems are the first to be based on short-cadence data from this satellite. The light curves are modelled using the JKTEBOP code, with attention paid to the treatment of limb darkening, contaminating light, orbital eccentricity, correlated noise and numerical integration over long exposure times. The physical properties are derived from the light-curve parameters, spectroscopic characteristics of the host star and constraints from five sets of theoretical stellar model predictions. An alternative approach using a calibration from eclipsing binary star systems is explored and found to give comparable results whilst imposing a much smaller computational burden. My results are in good agreement with published properties for most of the transiting systems, but discrepancies are identified for CoRoT-5, CoRoT-8, CoRoT-13, Kepler-5 and Kepler-7. Many of the error bars quoted in the literature are underestimated. Refined orbital ephemerides are given for CoRoT-8 and for the Kepler planets. Asteroseismic constraints on the density of the host stars are in good agreement with the photometric equivalents for HD 17156 and TrES-2, but not for HAT-P-7 and HAT-P-11. Complete error budgets are generated for each transiting system, allowing identification of the observations best-suited to improve measurements of their physical properties. Whilst most systems would benefit from further photometry and spectroscopy, HD 17156, HD 80606, HAT-P-7 and TrES-2 are now extremely well characterized. HAT-P-11 is an exceptional candidate for studying starspots. The orbital ephemerides of some transiting systems are becoming uncertain and they should be re-observed in the near future. The primary results from the current work and from previous papers in the series have been placed in an online catalogue, from where they can be obtained in a range of formats for reference and further study. TEPCat is available at

  12. Transiting exoplanets from the CoRoT space mission . XIII. CoRoT-13b: a dense hot Jupiter in transit around a star with solar metallicity and super-solar lithium content

    NASA Astrophysics Data System (ADS)

    Cabrera, J.; Bruntt, H.; Ollivier, M.; Díaz, R. F.; Csizmadia, Sz.; Aigrain, S.; Alonso, R.; Almenara, J.-M.; Auvergne, M.; Baglin, A.; Barge, P.; Bonomo, A. S.; Bordé, P.; Bouchy, F.; Carone, L.; Carpano, S.; Deleuil, M.; Deeg, H. J.; Dvorak, R.; Erikson, A.; Ferraz-Mello, S.; Fridlund, M.; Gandolfi, D.; Gazzano, J.-C.; Gillon, M.; Guenther, E. W.; Guillot, T.; Hatzes, A.; Havel, M.; Hébrard, G.; Jorda, L.; Léger, A.; Llebaria, A.; Lammer, H.; Lovis, C.; Mazeh, T.; Moutou, C.; Ofir, A.; von Paris, P.; Pätzold, M.; Queloz, D.; Rauer, H.; Rouan, D.; Santerne, A.; Schneider, J.; Tingley, B.; Titz-Weider, R.; Wuchterl, G.

    2010-11-01

    We announce the discovery of the transiting planet CoRoT-13b. Ground-based follow-up in CFHT and IAC80 confirmed CoRoT's observations. The mass of the planet was measured with the HARPS spectrograph and the properties of the host star were obtained analyzing HIRES spectra from the Keck telescope. It is a hot Jupiter-like planet with an orbital period of 4.04 days, 1.3 Jupiter masses, 0.9 Jupiter radii, and a density of 2.34 g cm-3. It orbits a G0V star with T_eff = 5 945 K, M* = 1.09 M⊙, R_* = 1.01 R⊙, solar metallicity, a lithium content of + 1.45 dex, and an estimated age of between 0.12 and 3.15 Gyr. The lithium abundance of the star is consistent with its effective temperature, activity level, and age range derived from the stellar analysis. The density of the planet is extreme for its mass, implies that heavy elements are present with a mass of between about 140 and 300 {M}⊕. The CoRoT space mission, launched on December 27th 2006, has been developed and is operated by CNES, with the contribution of Austria, Belgium, Brazil, ESA (RSSD and Science Programme), Germany and Spain. Part of the observations were obtained at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii. Based on observations made with HARPS spectrograph on the 3.6-m European Organisation for Astronomical Research in the Southern Hemisphere telescope at La Silla Observatory, Chile (ESO program 184.C-0639). Based on observations made with the IAC80 telescope operated on the island of Tenerife by the Instituto de Astrofísica de Canarias in the Spanish Observatorio del Teide. Part of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  13. On the formation modes in vortex interaction for multiple co-axial co-rotating vortex rings

    NASA Astrophysics Data System (ADS)

    Qin, Suyang; Liu, Hong; Xiang, Yang

    2018-01-01

    Interaction among multiple vortices is of particular importance to biological locomotion. It plays an essential role in the force and energy capture. This study examines the motion and dynamics of multiple co-axial co-rotating vortex rings. The vortex rings, which have the same formation time, are successively generated in a piston-cylinder apparatus by accurately controlling the interval time. The flow fields are visualized by the finite-time Lyapunov exponent and then repelling Lagrangian coherent structures (r-LCSs) are determined. Two types of vortex interactions ("strong" and "weak") are defined by investigating the r-LCSs: a strong interaction is indicated by connected r-LCSs showing a channel for fluid transport (termed as a "flux window"); a weak interaction is indicated by disconnected r-LCSs between the vortex rings. For strong interaction, leapfrogging and merger of vortex rings can happen in the later stage of the evolution process; however, the rings are separated for weak interaction. Two distinct formation modes, the formation enhancement mode (FEM) and formation restraint mode (FRM), refer to the effect of one or multiple vortex ring(s) on the initial circulation of the subsequently formed vortex ring. In the FEM, the circulation of a vortex ring is larger than that of an isolated (without interaction) vortex ring. On the other hand, the situation is opposite in the FRM. A dimensionless number reflecting the interaction mechanism, "structure stretching number" S*, is proposed, which evaluates the induced effect of the wake vortices on the formation of a vortex ring. A limiting S* (SL*=(2 ±0.4 ) ×1 0-4) is the bifurcation point of the two formation modes. The augmentation of circulation reaches up to 10% for the FEM when S*SL*), the circulation decreases for at most 20%. The newly defined formation modes and number could shed light on the understanding of the dynamics of multiple vortex ring flows.

  14. Subarachnoidal-pleural fistula (SAPF) as an unusual cause of persistent pleural effusion. Beta-trace protein as a marker for SAPF. Case report and review of the literature.

    PubMed

    Deseyne, S; Vanhouteghem, K; Hallaert, G; Delanghe, J; Malfait, T

    2015-02-01

    We describe a case of a 56-year-old woman who developed a recurrent pleural effusion after a thoracoscopic resection of an anterior bulging thoracic disc hernia (level D9-D10). Despite several evacuating pleural punctions, dyspnea reoccurred due to recurrent pleural effusion, the same side as the disc resection. Because of increasing headache after each punction, a subarachnoidal pleural fistula (SAPF) was suspected. Although magnetic resonance imaging (MRI) showed features suggestive of SAPF, there was not enough evidence to justify a new thorascopy. Cerebrospinal fluid (CSF) leakage into the thoracic and abdominal cavity has been described as a result of trauma or surgery. Detection of beta-trace protein (BTP, a brain-specific protein) has been described to detect CSF fistulae causing rhino- and otoliquorrhea. Similarly, BTP determination could be used to identify the presence of CSF at other anatomical sites such as the thoracic cavity. Therefore, we decided to determine the concentration of BTP in the pleural effusion of this patient. BTP was assayed using immunonephelometry. The patient's BTP pleural fluid concentration was 14·0 mg/l, which was a 25-fold increase compared with the BTP serum concentration. After insertion of a subarachnoidal lumbal catheter, a video-assisted thorascopy was performed. Leakage of liquor through the parietal pleura into the thoracic cavity was observed. The SAPF was closed using a durasis patch and DuraSeal®. Postoperatively, there was no reoccurrence of pleural fluid. SAPF has to be included to the differential diagnosis of patients with persistent pleural effusion after spinal surgery. This case illustrates the importance of BTP in diagnosing SAPF, especially in cases where major therapeutic consequences may need to be drawn.

  15. The Shapes of Splash-Form Tektites: Their Geometrical Analysis, Classification and Mechanics of Formation

    NASA Astrophysics Data System (ADS)

    Stauffer, Mel R.; Butler, Samuel L.

    2010-12-01

    Splash-form tektites are found with a wide range of sizes and in an intriguing array of shapes ranging from spheres to flat discs to dumbbells. Despite the considerable interest that exists in tektites, there has been relatively little effort to develop rational shape descriptors and to understand the origin of their shapes based on basic physics. Tektites represent a natural laboratory experiment that can be analyzed to better understand the physics of rotating fluid drops. In this paper, we propose a classification scheme based on the axial ratios of ellipsoids, and we analyze the frequency of tektite shapes using a database of over 1,000 measured tektites. We show that the shape distribution for tektites from Thailand and Vietnam are very similar and that the most common tektites are moderately deformed discs but there exist also a significant number of moderately deformed dumbbells, and we argue that this distribution comes about because fluid drops first deform as oblate forms and then undergo a non-axisymmetric instability to become prolate. We also find that the largest tektites are most likely to be weakly deformed oblate objects while the most strongly deformed and most highly prolate forms are considerably smaller. A numerical model for the evolution of an axisymmetric fluid drop, such as a tektite in its molten early stage, is presented which demonstrates that drops that deform relatively slowly over a longer period of time are likely to develop central thinning while those that deform more rapidly are more likely to retain the shape of an ellipsoid. For the numerical parameters used the characteristic time scale for deformation was less than 1 s.

  16. Fluid pressure development beneath the décollement at the Nankai subduction zone: its implications for slow earthquakes

    NASA Astrophysics Data System (ADS)

    Hirose, T.; Kamiya, N.; Yamamoto, Y.; Heuer, V.; Inagaki, F.; Kubo, Y.

    2017-12-01

    Pore fluid pressure along a fault zone is very important for understanding earthquake generation processes in subduction zones. However, quantitative constraints on the pore pressure are quite limited. Here we report two estimates of the pore pressure developed within the underthrust sediments in the Nankai Trough off Cape Muroto, Japan, using the shipboard data obtained during IODP Expedition 370 (Heuer et al., 2017). First estimates are based on the depth trend of porosity data in the lower Shikoku Basin (LSB) facies, in which the décollement zone has propagated. Porosities in the LSB facies generally decrease with depth, but turn to increase by 5-7% below the décollement zone at 760 mbsf. Deeper than 830 mbsf, porosities resume a general compaction trend. By applying the method followed by Screaton et al. (2002) in which the downward porosity-increase is reflected by an excess pore pressure, we estimated the highest excess pore pressure of 4.2 MPa (λ* = 0.4: a ratio of excess pore pressure to effective overburden stress) at 1020 mbsf within the underthrust sediments. Another estimate is based on the analysis of upwelling drilling-mud flow from the borehole, which is a direct evidence the development of overpressure. We assumed that the borehole penetrated a disc-shaped high pore pressure zone with 10 m thickness and the steady-state flow. Then the pore pressure for a given radius of the disc-shaped zone, which is necessary for explaining the observed flow rate, was calculated using Darcy's law. The calculation yields that the pore pressure exceeded by 2-4 MPa above hydrostatic in case of the 10-13 m2 permeability and the 100-1000 m radius of the disc-shaped zone. Our analysis indicates a significant development of excess pore pressure beneath the décollement zone, most likely at the depth of 1020 mbsf where the highest overpressure was estimated from the downhole porosity trend and also an anomaly in relative hydrocarbon gas concentrations. Friction experiments by Sawai et al. (2016) show that a transition from stable to unstable slip behavior appears with increasing pore fluid pressure that is a prerequisite for the generation of slow earthquakes. Thus, slow earthquakes that occurred off Cape Muroto (Obara & Kato, 2016) can be attributed with the observed significant overpressure beneath the décollement.

  17. MRI signal distribution within the intervertebral disc as a biomarker of adolescent idiopathic scoliosis and spondylolisthesis.

    PubMed

    Gervais, Julien; Périé, Delphine; Parent, Stefan; Labelle, Hubert; Aubin, Carl-Eric

    2012-12-03

    Early stages of scoliosis and spondylolisthesis entail changes in the intervertebral disc (IVD) structure and biochemistry. The current clinical use of MR T2-weighted images is limited to visual inspection. Our hypothesis is that the distribution of the MRI signal intensity within the IVD in T2-weighted images depends on the spinal pathology and on its severity. Therefore, this study aims to develop the AMRSID (analysis of MR signal intensity distribution) method to analyze the 3D distribution of the MR signal intensity within the IVD and to evaluate their sensitivity to scoliosis and spondylolisthesis and their severities. This study was realized on 79 adolescents who underwent a MRI acquisition (sagittal T2-weighted images) before their orthopedic or surgical treatment. Five groups were considered: low severity scoliosis (Cobb angle ≤50°), high severity scoliosis (Cobb angles >50°), low severity spondylolisthesis (Meyerding grades I and II), high severity spondylolisthesis (Meyerding grades III, IV and V) and control. The distribution of the MRI signal intensity within the IVD was analyzed using the descriptive statistics of histograms normalized by either cerebrospinal fluid or bone signal intensity, weighted centers and volume ratios. Differences between pathology and severity groups were assessed using one- and two-way ANOVAs. There were significant (p < 0.05) variations of indices between scoliosis, spondylolithesis and control groups and between low and high severity groups. The cerebrospinal fluid normalization was able to detect differences between healthy and pathologic IVDs whereas the bone normalization, which reflects both bone and IVD health, detected more differences between the severities of these pathologies. This study proves for the first time that changes in the intervertebral disc, non visible to the naked eye on sagittal T2-weighted MR images of the spine, can be detected from specific indices describing the distribution of the MR signal intensity. Moreover, these indices are able to discriminate between scoliosis and spondylolisthesis and their severities, and provide essential information on the composition and structure of the discs whatever the pathology considered. The AMRSID method may have the potential to complement the current diagnostic tools available in clinics to improve the diagnostic with earlier biomarkers, the prognosis of evolution and the treatment options of scoliosis and spondylolisthesis.

  18. Surveillance of Ocular Parameters and Visual Function in Bed Rest Subjects

    NASA Technical Reports Server (NTRS)

    Cromwell, Ronita L.

    2011-01-01

    Recent visual changes in astronauts have raised concern about ocular health during long duration spaceflight. Seven cases have been documented in astronauts who spent 6 months aboard the International Space Station. These astronauts were male ranging in age from 45 to 55 years old. All astronauts exhibited pre- to post flight refractive changes. Decreased intraocular pressure (IOP) post flight was observed in 3 cases. Fundoscopic exams revealed post flight findings of choroidal folds in 4 cases, optic disc edema in 5 cases and the presence of cotton wool spots in 3 cases. Optical coherence tomography (OCT) confirmed findings of choroidal folds and disc edema, and also documented retinal nerve fiber layer thickening (5 cases). Findings from MRI examinations showed posterior globe flattening (5 cases), optic nerve sheath distention (6 cases) and torturous optic nerves (2 cases). Of the 7 cases, intracranial pressure was measured on 4 astronauts. These 4 showed elevated ICP post-flight that remained elevated for as long as 19 months in one case. While the etiology remains unknown, hypotheses speculate that venous insufficiency or hypertension in the brain caused by cephalad fluid shifts during spaceflight are possible mechanisms for ocular changes seen in astronauts. Head-down tilt bed rest is a spaceflight analog that induces cephalad fluid shifts. This study is designed to provide ocular monitoring of bed rest subjects and determine whether clinically relevant changes are found. Ocular Changes

  19. Analysis by NASA's VESGEN Software of Vascular Branching in the Human Retina with a Ground-Based Microgravity Analog

    NASA Technical Reports Server (NTRS)

    Parsons-Wingerter, Patricia; Vyas, Ruchi J.; Raghunandan, Sneha; Vu, Amanda C.; Zanello, Susana B.; Ploutz-Snyder, Robert; Taibbi, Giovanni; Vizzeri, Gianmarco

    2016-01-01

    Significant risks for visual impairment were discovered recently in astronauts following spaceflight, especially after long-duration missions.1 We hypothesize that microgravity-induced fluid shifts result in pathological changes within the retinal vasculature that precede visual and other ocular impairments. We therefore are analyzing retinal vessels in healthy subjects with NASA's VESsel GENeration Analysis (VESGEN) software2 before and after head-down tilt (HDT), a ground-based microgravity analog For our preliminary study of masked images, two groups of venous trees with and without small veins (G=7) were clearly identified by VESGEN analysis. Upon completing all images and unmasking the subject status of pre- and post- HDT, we will determine whether differences in the presence or absence of small veins are important correlates, and perhaps reliable predictors, of other ocular and physiological adaptations to prolonged HDT and microgravity. Greater peripapillary retinal thickening was measured following 70-day HDT bed rest than 14-day HDT bed rest, suggesting that time of HDT may increase the amount of optic disc swelling.3 Spectralis OCT detected retinal nerve fiber layer thickening post HDT, without clinical signs of optic disc edema. Such changes may have resulted from HDT-induced cephalad fluid shifts. Clinical methods for examining adaptive microvascular remodeling in the retina to microgravity space flight are currently not established.

  20. MRI features of cervical articular process degenerative joint disease in Great Dane dogs with cervical spondylomyelopathy.

    PubMed

    Gutierrez-Quintana, Rodrigo; Penderis, Jacques

    2012-01-01

    Cervical spondylomyelopathy or Wobbler syndrome commonly affects the cervical vertebral column of Great Dane dogs. Degenerative changes affecting the articular process joints are a frequent finding in these patients; however, the correlation between these changes and other features of cervical spondylomyelopathy are uncertain. We described and graded the degenerative changes evident in the cervical articular process joints from 13 Great Danes dogs with cervical spondylomyelopathy using MR imaging, and evaluated the relationship between individual features of cervical articular process joint degeneration and the presence of spinal cord compression, vertebral foraminal stenosis, intramedullary spinal cord changes, and intervertebral disc degenerative changes. Degenerative changes affecting the articular process joints were common, with only 13 of 94 (14%) having no degenerative changes. The most severe changes were evident between C4-C5 and C7-T1 intervertebral spaces. Reduction or loss of the hyperintense synovial fluid signal on T2-weighted MR images was the most frequent feature associated with articular process joint degenerative changes. Degenerative changes of the articular process joints affecting the synovial fluid or articular surface, or causing lateral hypertrophic tissue, were positively correlated with lateral spinal cord compression and vertebral foraminal stenosis. Dorsal hypertrophic tissue was positively correlated with dorsal spinal cord compression. Disc-associated spinal cord compression was recognized less frequently. © 2011 Veterinary Radiology & Ultrasound.

  1. Radiatively driven relativistic jets in Schwarzschild space-time

    NASA Astrophysics Data System (ADS)

    Vyas, Mukesh K.; Chattopadhyay, Indranil

    2018-06-01

    Context. Aims: We carry out a general relativistic study of radiatively driven conical fluid jets around non-rotating black holes and investigate the effects and significance of radiative acceleration, as well as radiation drag. Methods: We apply relativistic equations of motion in curved space-time around a Schwarzschild black hole for axis-symmetric one-dimensional jet in steady state, plying through the radiation field of the accretion disc. Radiative moments are computed using information of curved space-time. Slopes of physical variables at the sonic points are found using L'Hôpital's rule and employing Runge-Kutta's fourth order method to solve equations of motion. The analysis is carried out using the relativistic equation of state of the jet fluid. Results: The terminal speed of the jet depends on how much thermal energy is converted into jet momentum and how much radiation momentum is deposited onto the jet. Many classes of jet solutions with single sonic points, multiple sonic points, as well as those having radiation driven internal shocks are obtained. Variation of all flow variables along the jet-axis has been studied. Highly energetic electron-proton jets can be accelerated by intense radiation to terminal Lorentz factors γT 3. Moderate terminal speed vT 0.5 is obtained for moderately luminous discs. Lepton dominated jets may achieve γT 10. Conclusions: Thermal driving of the jet itself and radiation driving by accretion disc photons produce a wide-ranging jet solutions starting from moderately strong jets to the relativistic ones. Interplay of intensity, the nature of the radiation field, and the energetics of the jet result in a variety of jet solutions. We show that radiation field is able to induce steady shocks in jets, one of the criteria to explain high-energy power-law emission observed in spectra of some of the astrophysical objects.

  2. A new automated high pressure reaction vessel for preparation of radiopharmaceuticals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ropchan, J.R.; Ricci, T.; Low, J.

    A continual growth in positron emission tomography (PET) has placed an increasing need for routine production of radiopharmaceuticals with minimization of radiation exposure to the chemist. The authors have developed the first remote, completely automated stainless-steel reaction vessel (SSRV) for the high temperature and pressure syntheses of any radiolabeled organic compounds (i.e. amino acids). The SSRV is composed of six major parts: (1) a top plate, which contains the four ports for the addition and withdrawal of solutions (2) a rotating inner disc, which controls the opening and closing of the four ports (3) a housing unit, for the O-ringsmore » and rotating disc (4) a fluid chamber, (5) a stepping motor, which drives the rotating disc and (6) a push-button control box, which operates the entire system. After cyclotron production of the radiolabeled precursor, activation of the appropriate buttons on the control box advance the rotating disc to the desired ports in the sequence of events where the reagents are added or withdrawn from the SSRV. Heating is supplied by a specially made hot plate mounted on an electrically operated jack. The SSRV is cooled via an external cooling system (nitrogen gas cooled in liquid nitrogen). The present system is easily adaptable to a microprocessing unit. This SSRV is successfully employed in the preparation of pure C-11 labeled DL-leucine, DL-alanine and DL-phenylalanine with high radiochemical yields (50-75%) and activities (typical activity in the final product(s) 240-400 mCi).« less

  3. On the effect of galactic outflows in cosmological simulations of disc galaxies

    NASA Astrophysics Data System (ADS)

    Valentini, Milena; Murante, Giuseppe; Borgani, Stefano; Monaco, Pierluigi; Bressan, Alessandro; Beck, Alexander M.

    2017-09-01

    We investigate the impact of galactic outflow modelling on the formation and evolution of a disc galaxy, by performing a suite of cosmological simulations with zoomed-in initial conditions (ICs) of a Milky Way-sized halo. We verify how sensitive the general properties of the simulated galaxy are to the way in which stellar feedback triggered outflows are implemented, keeping ICs, simulation code and star formation (SF) model all fixed. We present simulations that are based on a version of the gadget3 code where our sub-resolution model is coupled with an advanced implementation of smoothed particle hydrodynamics that ensures a more accurate fluid sampling and an improved description of gas mixing and hydrodynamical instabilities. We quantify the strong interplay between the adopted hydrodynamic scheme and the sub-resolution model describing SF and feedback. We consider four different galactic outflow models, including the one introduced by Dalla Vecchia & Schaye (2012) and a scheme that is inspired by the Springel & Hernquist (2003) model. We find that the sub-resolution prescriptions adopted to generate galactic outflows are the main shaping factor of the stellar disc component at low redshift. The key requirement that a feedback model must have to be successful in producing a disc-dominated galaxy is the ability to regulate the high-redshift SF (responsible for the formation of the bulge component), the cosmological infall of gas from the large-scale environment, and gas fall-back within the galactic radius at low redshift, in order to avoid a too high SF rate at z = 0.

  4. The minimum mass of detectable planets in protoplanetary discs and the derivation of planetary masses from high-resolution observations.

    PubMed

    Rosotti, Giovanni P; Juhasz, Attila; Booth, Richard A; Clarke, Cathie J

    2016-07-01

    We investigate the minimum planet mass that produces observable signatures in infrared scattered light and submillimetre (submm) continuum images and demonstrate how these images can be used to measure planet masses to within a factor of about 2. To this end, we perform multi-fluid gas and dust simulations of discs containing low-mass planets, generating simulated observations at 1.65, 10 and 850 μm. We show that the minimum planet mass that produces a detectable signature is ∼15 M ⊕ : this value is strongly dependent on disc temperature and changes slightly with wavelength (favouring the submm). We also confirm previous results that there is a minimum planet mass of ∼20 M ⊕ that produces a pressure maximum in the disc: only planets above this threshold mass generate a dust trap that can eventually create a hole in the submm dust. Below this mass, planets produce annular enhancements in dust outwards of the planet and a reduction in the vicinity of the planet. These features are in steady state and can be understood in terms of variations in the dust radial velocity, imposed by the perturbed gas pressure radial profile, analogous to a traffic jam. We also show how planet masses can be derived from structure in scattered light and submm images. We emphasize that simulations with dust need to be run over thousands of planetary orbits so as to allow the gas profile to achieve a steady state and caution against the estimation of planet masses using gas-only simulations.

  5. Padé approximant for normal stress differences in large-amplitude oscillatory shear flow

    NASA Astrophysics Data System (ADS)

    Poungthong, P.; Saengow, C.; Giacomin, A. J.; Kolitawong, C.; Merger, D.; Wilhelm, M.

    2018-04-01

    Analytical solutions for the normal stress differences in large-amplitude oscillatory shear flow (LAOS), for continuum or molecular models, normally take the inexact form of the first few terms of a series expansion in the shear rate amplitude. Here, we improve the accuracy of these truncated expansions by replacing them with rational functions called Padé approximants. The recent advent of exact solutions in LAOS presents an opportunity to identify accurate and useful Padé approximants. For this identification, we replace the truncated expansion for the corotational Jeffreys fluid with its Padé approximants for the normal stress differences. We uncover the most accurate and useful approximant, the [3,4] approximant, and then test its accuracy against the exact solution [C. Saengow and A. J. Giacomin, "Normal stress differences from Oldroyd 8-constant framework: Exact analytical solution for large-amplitude oscillatory shear flow," Phys. Fluids 29, 121601 (2017)]. We use Ewoldt grids to show the stunning accuracy of our [3,4] approximant in LAOS. We quantify this accuracy with an objective function and then map it onto the Pipkin space. Our two applications illustrate how to use our new approximant reliably. For this, we use the Spriggs relations to generalize our best approximant to multimode, and then, we compare with measurements on molten high-density polyethylene and on dissolved polyisobutylene in isobutylene oligomer.

  6. Two-stream modeling of plasmaspheric refilling

    NASA Technical Reports Server (NTRS)

    Guiter, S. M.; Gombosi, T. I.; Rasmussen, C. E.

    1995-01-01

    Plasmaspheric refilling on an L = 4 flux tube was studied by using a time-dependent, hydrodynamic plasmaspheric flow model in which the ion streams from the two hemispheres are treated as distinct fluids. In the model the continuity, momentum, and energy equations of a two-ion (O(+) and H(+)), quasi-neutral, currentless plasma are solved along a closed geomagnetic field line; diffusive equilibrium is not assumed. collisions between all stream pairs and with neutral species are included. The model includes a corotating, tilted dipole magnetic field and neutral winds. Ionospheric sources and sinks are accounted for in a self-consistent manner. Electrons are assumed to be heated by photoelectrons. The model flux tube extends from a 200-km altitude in one hemisphere to a 200-km altitude in the other hemisphere. Initially, the upwelling streams pass through each other practically unimpeded. When the streams approach the boundary in the conjugate ionosphere, a shock develops there, which moves upward and dissipates slowly; at about the same time a reverse shock develops in the hemisphere of origin, which moves upward. After about 1 hour, large shocks develop in each stream near the equator; these shocks move toward the equator and downward after crossing the equator. However, these shocks are probably artificial, because counterstreaming flows occur in each H(+) fluid, which the model can only handle by creating shocks.

  7. Surgical approach and optic coherence tomographic evaluation of optic disc anomaly in association with serous macular detachment.

    PubMed

    Güven, Dilek; Balcıoğlu, Nihal; Türker, Cağrı; Baydar, Yasemin; Sendül, Yekta

    2013-12-01

    Serous macular detachment (SMD) may accompany optic disc pit (ODP) and cause visual loss if untreated. We want to present different therapeutic approaches and interesting optical coherence tomography (OCT) findings in three consecutive cases. In this case series, two patients with SMD and one patient with partial macular detachment and inferior retinal detachment accompanying ODP were evaluated before and after surgical intervention clinically and by spectral-domain OCT. The patients were 44 (case 1), 22 (case 2) and 24 (case 3) years old. Pars plana vitrectomy (PPV) + silicone oil + laser, PPV + sulfur hexafluoride gas (SF6) + laser and pneumatic retinopexy were applied, respectively. The patients were followed for 18, 15 and 14 months. Preoperative best-corrected visual acuities (BCVAs) were 5/100, 7/10 and counting fingers at 1 m. Vision improved in all cases with resolution of subretinal fluid. Final BCVAs were 3/10, 10/10 and 1/10, respectively. OCT images revealed optic disc anomaly details and changes after surgical intervention, photoreceptor outer segment alterations at the detached area and macular surface changes. Surgical intervention should be tailored individually in cases with SMD. OCT is efficient for in vivo evaluation of this pathological condition and anatomical outcomes of surgery.

  8. Large-eddy substitution via vortex cancellation for wall turbulence control

    NASA Technical Reports Server (NTRS)

    Mcginley, C. B.; Beeler, G. B.

    1985-01-01

    A system of co-rotating longitudinal vortices was used to introduce streamline (as opposed to wall) curvature into a turbulent wall flow. Two methods of vortex cancellation, unwinding and self-annihilation, were tested as a means of removing the vortices once they had processed most of the incoming turbulent boundary layer. Vortex unwinding, which uses vorticity of the opposite sign, was shown to be a viable method for cancelling the co-rotating vortices. Vortex self-annihilation, caused by interference effects resulting from a close initial spanwise vortex spacing, eliminated the vortices within 60 delta downstream. In each case, reductions in boundary layer entrainment were found once the vortices were cancelled.

  9. Solar-like stars as seen by CoRoT

    NASA Astrophysics Data System (ADS)

    Garcia, R. A.; Appourchaux, T.; Baglin, A.; Auvergne, M.; Barban, C.; Baudin, F.; Michel, E.; Mosser, B.; Samadi, R.; Data Analysis Team D. A. T

    2008-12-01

    For more than a year, photometric high-quality data have been achieved from the CoRoT (COnvection ROtation and Planetary Transits; Baglin et al. 2006, Michel et al. 2008) min- isatellite developed by the French space agency (CNES) in collaboration with the Science Program of ESA, Austria, Belgium, Brazil Germany and Spain. The power spectrum of 4 dif- ferent solar-like stars (stars having sub-surface convective zones showing an acoustic (p) mode spectrum) has been obtained with unprecedented quality allowing the precise study of their seismic properties. These solar-like stars are F stars with masses in the range 1.0 to 1.4 M⊙ and are significantly hotter than the Sun.

  10. Effects of Complex Interplanetary Structures on the Dynamics of the Earth's Outer Radiation Belt During the 16-30 September 2014 Period: II) Corotating Solar Wind Stream

    NASA Astrophysics Data System (ADS)

    Souza, V. M. C. E. S.; Da Silva, L. A.; Sibeck, D. G.; Alves, L. R.; Jauer, P. R.; Dias Silveira, M. V.; Medeiros, C.; Marchezi, J.; Rockenbach, M.; Baker, D. N.; Kletzing, C.; Kanekal, S. G.; Georgiou, M.; Mendes, O., Jr.; Dal Lago, A.; Vieira, L. E. A.

    2015-12-01

    We present a case study describing the dynamics of the outer radiation belt for two different solar wind conditions. First, we discuss a dropout of outer belt energetic electron fluxes corresponding to the arrival of an interplanetary coronal mass ejection (ICME) followed by a corotating stream in September 2014. Second, we discuss the reformation of the outer radiation belt that began on September 22nd. We find that the arrival of the ICME and the corotating interaction region that preceded the stream cause a long-duration (many day) dropout of high-energy electrons. The recovery in radiation belt fluxes only begins when the high-speed stream begins to develop IMF Bz fluctuations and auroral activity resumes. Furthermore, during periods in which several consecutive solar wind structures appear, the first structure primes the outer radiation belt prior to the interaction of the subsequent solar wind structures with the magnetosphere. Consequently, the evolution of the outer radiation belt through the solar cycle is significantly affected by the dominant structure of each phase of the cycle. We use energetic electron and magnetic field observations provided by the Van Allen Probes, THEMIS, and GOES missions.

  11. Dawnside Variability of Magnetic Field in High Latitude Regions of Saturn's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Davies, E. H.; Masters, A.; Dougherty, M. K.; Sergis, N.

    2017-12-01

    Magnetic field lines at high latitudes in Saturn's post dawn sector tend to exhibit a swept-back configuration with respect to the direction of planetary rotation. This is a result of equatorial mass loading (mostly from the moon Enceladus) and the inability of planet to accelerate this plasma to co-rotation velocities, owing to plasma sinks in the system and the finite conductivity of the ionosphere. Results of a survey of high latitude magnetic field measurements within the dawn-noon sector from the Magnetometer Instrument (MAG) on the Cassini Spacecraft are presented. Data from 2004 to 2016 are used, representing almost the entire duration of the mission. 39 examples of field lines deviating in the direction of planetary rotation from their default configuration of sweep-back are found. These deviations represent the field sweeping forward towards a co-rotating (or occasionally super co-rotating) configuration, and occur transiently, on a timescale of hours. An analysis of these events, using data from the Magnetospheric Imaging Instrument (MIMI) is carried out. Several of the perturbed field events are found to correspond with the detection of high energy (on the order of 100 keV) electrons local to the spacecraft. It is suggested that these events are examples of return flow from magnetotail reconnection.

  12. Semi-empirical seismic relations of A-F stars from COROT and Kepler legacy data

    NASA Astrophysics Data System (ADS)

    Moya, A.; Suárez, J. C.; García Hernández, A.; Mendoza, M. A.

    2017-10-01

    Asteroseismology is witnessing a revolution, thanks to high-precise asteroseismic space data (MOST, COROT, Kepler, BRITE) and their large ground-based follow-up programs. Those instruments have provided an unprecedented large amount of information, which allows us to scrutinize its statistical properties in the quest for hidden relations among pulsational and/or physical observables. This approach might be particularly useful for stars whose pulsation content is difficult to interpret. This is the case of intermediate-mass classical pulsating stars (I.e. γ Dor, δ Scuti, hybrids) for which current theories do not properly predict the observed oscillation spectra. Here, we establish a first step in finding such hidden relations from data mining techniques for these stars. We searched for those hidden relations in a sample of δ Scuti and hybrid stars observed by COROT and Kepler (74 and 153, respectively). No significant correlations between pairs of observables were found. However, two statistically significant correlations emerged from multivariable correlations in the observed seismic data, which describe the total number of observed frequencies and the largest one, respectively. Moreover, three different sets of stars were found to cluster according to their frequency density distribution. Such sets are in apparent agreement with the asteroseismic properties commonly accepted for A-F pulsating stars.

  13. Investigation of process temperature and screw speed on properties of a pharmaceutical solid dispersion using corotating and counter-rotating twin-screw extruders.

    PubMed

    Keen, Justin M; Martin, Charlie; Machado, Augie; Sandhu, Harpreet; McGinity, James W; DiNunzio, James C

    2014-02-01

    The use of corotating twin screw hot-melt extruders to prepare amorphous drug/polymer systems has become commonplace. As small molecule drug candidates exiting discovery pipelines trend towards higher MW and become more structurally complicated, the acceptable operating space shifts below the drug melting point. The objective of this research is to investigate the extrusion process space, which should be selected to ensure that the drug is solubilized in the polymer with minimal thermal exposure, is critical in ensuring the performance, stability and purity of the solid dispersion. The properties of a model solid dispersion were investigated using both corotating and counter-rotating hot-melt twin-screw extruders operated at various temperatures and screw speeds. The solid state and dissolution performance of the resulting solid dispersions was investigated and evaluated in context of thermodynamic predictions from Flory-Huggins Theory. In addition, the residence time distributions were measured using a tracer, modelled and characterized. The amorphous content in the resulting solid dispersions was dependent on the combination of screw speed, temperature and operating mode. The counter-rotating extruder was observed to form amorphous solid dispersions at a slightly lower temperature and with a narrower residence time distribution, which also exhibited a more desirable shape. © 2013 Royal Pharmaceutical Society.

  14. CSI 2264: Simultaneous Optical and Infrared Light Curves of Young Disk-bearing Stars in NGC 2264 with CoRoT and Spitzer—Evidence for Multiple Origins of Variability

    NASA Astrophysics Data System (ADS)

    Cody, Ann Marie; Stauffer, John; Baglin, Annie; Micela, Giuseppina; Rebull, Luisa M.; Flaccomio, Ettore; Morales-Calderón, María; Aigrain, Suzanne; Bouvier, Jèrôme; Hillenbrand, Lynne A.; Gutermuth, Robert; Song, Inseok; Turner, Neal; Alencar, Silvia H. P.; Zwintz, Konstanze; Plavchan, Peter; Carpenter, John; Findeisen, Krzysztof; Carey, Sean; Terebey, Susan; Hartmann, Lee; Calvet, Nuria; Teixeira, Paula; Vrba, Frederick J.; Wolk, Scott; Covey, Kevin; Poppenhaeger, Katja; Günther, Hans Moritz; Forbrich, Jan; Whitney, Barbara; Affer, Laura; Herbst, William; Hora, Joseph; Barrado, David; Holtzman, Jon; Marchis, Franck; Wood, Kenneth; Medeiros Guimarães, Marcelo; Lillo Box, Jorge; Gillen, Ed; McQuillan, Amy; Espaillat, Catherine; Allen, Lori; D'Alessio, Paola; Favata, Fabio

    2014-04-01

    We present the Coordinated Synoptic Investigation of NGC 2264, a continuous 30 day multi-wavelength photometric monitoring campaign on more than 1000 young cluster members using 16 telescopes. The unprecedented combination of multi-wavelength, high-precision, high-cadence, and long-duration data opens a new window into the time domain behavior of young stellar objects. Here we provide an overview of the observations, focusing on results from Spitzer and CoRoT. The highlight of this work is detailed analysis of 162 classical T Tauri stars for which we can probe optical and mid-infrared flux variations to 1% amplitudes and sub-hour timescales. We present a morphological variability census and then use metrics of periodicity, stochasticity, and symmetry to statistically separate the light curves into seven distinct classes, which we suggest represent different physical processes and geometric effects. We provide distributions of the characteristic timescales and amplitudes and assess the fractional representation within each class. The largest category (>20%) are optical "dippers" with discrete fading events lasting ~1-5 days. The degree of correlation between the optical and infrared light curves is positive but weak; notably, the independently assigned optical and infrared morphology classes tend to be different for the same object. Assessment of flux variation behavior with respect to (circum)stellar properties reveals correlations of variability parameters with Hα emission and with effective temperature. Overall, our results point to multiple origins of young star variability, including circumstellar obscuration events, hot spots on the star and/or disk, accretion bursts, and rapid structural changes in the inner disk. Based on data from the Spitzer and CoRoT missions. The CoRoT space mission was developed and is operated by the French space agency CNES, with participation of ESA's RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain.

  15. Plasmapause Variations During the 17 March 2013 Identified by Ground-based and Space-based GPS Signals

    NASA Astrophysics Data System (ADS)

    Bishop, R. L.; Coster, A. J.; Turner, D. L.; Nikoukar, R.; Lemon, C.; Bust, G. S.; Roeder, J. L.

    2016-12-01

    Earth's plasmasphere is a region of cold (T ≤ 1 eV), dense (n 101 to 104 cm-3) plasma located in the inner magnetosphere and coincident with a portion of the ionosphere that co-rotates with the planet in the geomagnetic field. Plasmaspheric plasma originates in the ionosphere and fills the magnetic flux tubes on which the corotation electric field dominates over the convection electric field. The corotation electric field results from Earth's spinning magnetic field while the convection electric field results from the solar wind driving of global plasma convection within the magnetosphere. The outer boundary of the plasmasphere is the plasmapause, and it corresponds to the transition region between corotation-driven vs. convection-driven plasmas. During quiet periods of low solar wind speed and weak interplanetary magnetic field (IMF), ionospheric outflow from lower altitudes can fill the plasmasphere over the course of several days with the plasmapause expanding to higher L-shells. However, when the convection electric field is enhanced during active solar wind periods, such as magnetic storms, the plasmasphere can be rapidly eroded to L 2.5 or less leading to many interesting magnetospheric and ionospheric features such as plasmapause erosion, plasmaspheric plumes and ionospheric plasma outflows. In this presentation, we focus on the dynamics of the plasmapause as observed by ground-based and space-borne GPS receivers. We will focus on the period 15 March to 19 March 2013, which includes the on-set and recovery periods of a strong geomagnetic storm. We will examine the location and erosion time scales of the plasmapause during the active portion of the storm. An extensive global network of ground-based scientific receivers ( 4000) will be utilized in the study. Space-based observations will be obtained from data from the CORISS GPS radio occultation (RO) sensor on the C/NOFS satellite as well as the COSMIC GPS RO sensors.

  16. VizieR Online Data Catalog: Spectroscopic Indicators in SeisMic Archive (SISMA) (Rainer+, 2016)

    NASA Astrophysics Data System (ADS)

    Rainer, M.; Poretti, E.; Misto, A.; Panzera, M. R.; Molinaro, M.; Cepparo, F.; Roth, M.; Michel, E.; Monteiro, M. J. P. F. G.

    2017-02-01

    We created a large database of physical parameters and variability indicators by fully reducing and analyzing the large number of spectra taken to complement the asteroseismic observations of the COnvection, ROtation and planetary Transits (CoRoT) satellite. CoRoT was launched on 2006 December 27 and it was retired on 2013 June 24. 7103 spectra of 261 stars obtained with the ESO echelle spectrograph High Accuracy Radial velocity Planet Searcher (HARPS) have been stored in the VO-compliant database Spectroscopic Indicators in a SeisMic Archive (SISMA; http://sisma.brera.inaf.it/), along with the CoRoT photometric data of the 72 CoRoT asteroseismic targets. The ground-based activities started with the Large Programme 178.D-0361 using the FEROS spectrograph at the 2.2m telescope of the ESO-La Silla Observatory, and continued with the Large Programmes LP182.D-0356 and LP185.D-0056 using the HARPS instrument at the 3.6m ESO telescope. In the framework of the awarded two HARPS Large Programmes, 15 nights were allocated each semester over nine semesters, from 2008 December to 2013 January, for a total of 135 nights. The HARPS spectrograph covers the spectral range from 3780 to 6910Å, distributed over echelle orders 89-161. We usually used it in the high-efficiency mode EGGS, with resolving power R=80000 to obtain high signal-to-noise ratio (S/N) spectroscopic time series. All of the data (reduced spectra, indicators, and photometric series) are stored as either FITS or PDF files in the SISMA archive and can be accessed at http://sisma.brera.inaf.it/. The data can also be accessed through the Seismic Plus portal (http://voparis-spaceinn.obspm.fr/seismic-plus/), developed in the framework of the SpaceInn project in order to gather and help coordinated access to several different solar and stellar seismic data sources. (1 data file).

  17. Spin-up flow of ferrofluids: Asymptotic theory and experimental measurements

    NASA Astrophysics Data System (ADS)

    Chaves, Arlex; Zahn, Markus; Rinaldi, Carlos

    2008-05-01

    We treat the flow of ferrofluid in a cylindrical container subjected to a uniform rotating magnetic field, commonly referred to as spin-up flow. A review of theoretical and experimental results published since the phenomenon was first observed in 1967 shows that the experimental data from surface observations of tracer particles are inadequate for the assessment of bulk flow theories. We present direct measurements of the bulk flow by using the ultrasound velocity profile method, and torque measurements for water and kerosene based ferrofluids, showing the fluid corotating with the field in a rigid-body-like fashion throughout most of the bulk region of the container, except near the air-fluid interface, where it was observed to counter-rotate. We obtain an extension of the spin diffusion theory of Zaitsev and Shliomis, using the regular perturbation method. The solution is rigorously valid for αK≪√3/2 , where αK is the Langevin parameter evaluated by using the applied field magnitude, and provides a means for obtaining successively higher contributions of the nonlinearity of the equilibrium magnetization response and the spin-magnetization coupling in the magnetization relaxation equation. Because of limitations in the sensitivity of our apparatus, experiments were carried out under conditions for which α ˜1. Still, under such conditions the predictions of the analysis are in good qualitative agreement with the experimental observations. An estimate of the spin viscosity is obtained from comparison of flow measurements and theoretical results of the extrapolated wall velocity from the regular perturbation method. The estimated value lies in the range of 10-8-10-12kgms-1 and is several orders of magnitude higher than that obtained from dimensional analysis of a suspension of noninteracting particles in a Newtonian fluid.

  18. Characteristics of solar-like oscillations in red giants observed in the CoRoT exoplanet field

    NASA Astrophysics Data System (ADS)

    Hekker, S.; Kallinger, T.; Baudin, F.; De Ridder, J.; Barban, C.; Carrier, F.; Hatzes, A. P.; Weiss, W. W.; Baglin, A.

    2009-10-01

    Context: Observations during the first long run (~150 days) in the exo-planet field of CoRoT increase the number of G-K giant stars for which solar-like oscillations are observed by a factor of 100. This opens the possibility to study the characteristics of their oscillations in a statistical sense. Aims: We aim to understand the statistical distribution of the frequencies of maximum oscillation power (ν_max) in red giants and to search for a possible correlation between ν_max and the large separation (Δ ν). Methods: Red giants with detectable solar-like oscillations are identified using both semi-automatic and manual procedures. For these stars, we determine ν_max as the centre of a Gaussian fit to the oscillation power excess. For the determination of Δ ν, we use the autocorrelation of the Fourier spectra, the comb response function and the power spectrum of the power spectrum. Results: The resulting ν_max distribution shows a pronounced peak between 20-40 μHz. For about half of the stars we obtain Δ ν with at least two methods. The correlation between ν_max and Δ ν follows the same scaling relation as inferred for solar-like stars. Conclusions: The shape of the ν_max distribution can partly be explained by granulation at low frequencies and by white noise at high frequencies, but the population density of the observed stars turns out to be also an important factor. From the fact that the correlation between Δ ν and ν_max for red giants follows the same scaling relation as obtained for sun-like stars, we conclude that the sound travel time over the pressure scale height of the atmosphere scales with the sound travel time through the whole star irrespective of evolution. The fraction of stars for which we determine Δ ν does not correlate with ν_max in the investigated frequency range, which confirms theoretical predictions. The CoRoT space mission which was developed and is operated by the French space agency CNES, with participation of ESA's RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain. Light curves can be retrieved from the CoRoT archive: http://idoc-corot.ias.u-psud.fr Table 1 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/506/465

  19. Structural and core parameters of the hot B subdwarf KPD 0629-0016 from CoRoT g-mode asteroseismology

    NASA Astrophysics Data System (ADS)

    Van Grootel, V.; Charpinet, S.; Fontaine, G.; Green, E. M.; Brassard, P.

    2010-12-01

    Context. The asteroseismic exploitation of long period, g-mode hot B subdwarf pulsators (sdBVs), undermined so far by limitations associated with ground-based observations, has now become possible, thanks to high quality data obtained from space such as those recently gathered with the CoRoT (COnvection, ROtation, and planetary Transits) satellite. Aims: We propose a detailed seismic analysis of the sdBVs star KPD 0629-0016, the first compact pulsator monitored with CoRoT, using the g-mode pulsations recently uncovered by that space-borne observatory during short run SRa03. Methods: We use a forward modeling approach on the basis of our latest sdB models, which are now suitable for the accurate computation of the g-mode pulsation properties. The simultaneous match of the independent periods observed in KPD 0629-0016 with those of the models leads objectively to the identification of the pulsation modes and, more importantly, to the determination of the structural and core parameters of the star. Results: The optimal model we found closely reproduces the 18 observed periods retained in our analysis at a 0.23% level on average. These are identified as low-degree (ℓ = 1 and 2), intermediate-order (k = -9 through -74) g-modes. The structural and core parameters for KPD 0629-0016 are the following (formal fitting errors only): Teff = 26 290 ± 530 K, log g = 5.450 ± 0.034, M_* = 0.471 ± 0.002 M⊙, log (Menv/M_*) = -2.42 ± 0.07, log (1-Mcore/M_*) = -0.27 ± 0.01, and Xcore(C+O) = 0.41 ± 0.01. We additionally derive an age of 42.6 ± 1.0 Myr after the zero-age extreme horizontal branch, the radius R = 0.214 ± 0.009 R⊙, the luminosity L = 19.7 ± 3.2 L⊙, the absolute magnitude MV = 4.23 ± 0.13, the reddening index E(B-V) = 0.128 ± 0.023, and the distance d = 1190 ± 115 pc. Conclusions: The advent of high-precision time-series photometry from space with instruments like CoRoT now allows as demonstrated with KPD 0629-0016 the full exploitation of g-modes as deep probes of the internal structure of these stars, in particular for determining the mass of the convective core and its chemical composition. The CoRoT space mission, launched on December 27th 2006, has been developped and is operated by CNES, with the contribution of Austria, Belgium, Brasil, ESA, Germany, and Spain.

  20. Subretinal fluid is common in experimental non-arteritic anterior ischemic optic neuropathy

    PubMed Central

    Yu, C; Ho, J K; Liao, Y J

    2014-01-01

    Purpose Anterior ischemic optic neuropathy (AION) is an important cause of acute vision loss for which several animal models exist. It has been associated with subretinal fluid in a previous study on patients but not yet so in animal models. Patients and Methods A patient presented with acute non-arteritic AION (NAION) and underwent ophthalmic evaluation and testing including fluorescein angiography and spectral-domain optical coherence tomography (SD-OCT). On the basis of the patient's findings, we used SD-OCT circular and volume scans to analyze retinal changes in a murine model of NAION. Results One week after left eye vision loss, the patient had clinical and imaging findings consistent with NAION. On SD-OCT, there was prominent peripapillary retinal thickening consistent with intra-retinal edema and sub-foveolar fluid. Inspired by the findings in human AION, we looked for similar changes in murine NAION using SD-OCT. The circular scan did not adequately detect the presence of subretinal fluid. Using the 25-line scan, which covered a larger part of the posterior pole, we found that 100% of murine AION resulted in subretinal fluid at day 1. The subretinal fluid resolved by week 1. Conclusion This study detailed a case of clinical NAION associated with intra-retinal and subretinal fluid. We also found that subretinal fluid was common in murine photochemical thrombosis model of AION and could be found far away from the optic disc. PMID:25257770

  1. VizieR Online Data Catalog: CoRoT observation log (N2-4.4) (CoRoT, 2009-2016)

    NASA Astrophysics Data System (ADS)

    COROT Team

    2014-03-01

    CoRoT is a space astronomy mission devoted to the study of the variability with time of stars brightness, with an extremely high accuracy (100 times better than from the ground), on very long durations (up to 150 days) and a very high duty cycle (more than 90%). The mission was led by CNES in association with four french laboratories, and 7 participating countries and agencies (Austria, Belgium, Brazil, Germany, Spain, and the ESA Science Programme). The satellite is composed of a PROTEUS platform (the 3rd in the serie), and a unique instrument: a stellar photometer. It has been launched on December 27th 2006 by a Soyuz Rocket, from Baikonour. The mission has lasted almost 6 years (the nominal 3 years duration and a 3 years extension) and has observed more than 160 000 stars. It stopped to send data suddenly on November 2nd 2012. CoRoT is performing Ultra High Precision Photomery of Stars to detect and characterise the variability of their luminosity with two main directions: - variability of the object itself: oscillations, rotation, magnetic activity - variability due to external causes as bodies in orbit around the star: planets and stars The original scientific objectives were focussed on the study of stellar pulsations (asteroseismology) to probe the internal structure of stars, and the detection of small exoplanets through their "transit in front of their host star, and the measurement of their size. This lead to introduce two modes of observations, working simultaneously: - The bright star mode dedicated to very precise seismology of a small sample of bright and closeby stars (data presented in file momentarily named "astero.dat", but should change in the near future to to "bright star.dat") - The faint star mode, observing a very large number of stars at the same time, to detect transits, which are rare events, as they imply the alignment of the star, the planet and the observer (data presented in momentarily named "exo.dat" but should change in the near future to "faint star.dat"). The large amount of data gathered in this mode mode turned out to be extremely fruitful for many topics of stellar physics. Due to project constraints, two regions of the sky were accessible (circles of 10 degrees centered on the equator around alpha=06:50 and alpha=18:50). They are called the CoRoT eyes: the fisrt one is called the "anticenter" eye, whereas the second one is called the "center eye". Each pointing covers 1.4x2.8 square degrees The CoRoT project is still processing the data, aiming at at removing instrumental artifacts and defects. Therefore the format and content of the catalog is still somehow evolving. More details on the data can be found in the "CoRoTN2versions_30sept2014.pdf" document available on the vizier ftp as well as project websites listed in the "See also" field below. (3 data files).

  2. Corot telescope (COROTEL)

    NASA Astrophysics Data System (ADS)

    Viard, Thierry; Mathieu, Jean-Claude; Fer, Yann; Bouzou, Nathalie; Spalinger, Etienne; Chataigner, Bruno; Bodin, Pierre; Magnan, Alain; Baglin, Annie

    2017-11-01

    COROTEL is the telescope of the COROT Satellite which aims at measuring stellar flux variations very accurately. To perform this mission, COROTEL has to be very well protected against straylight (from Sun and Earth) and must be very stable with time. Thanks to its high experience in this field, Alcatel Alenia Space has proposed, manufactured and tested an original telescope concept associated with a high baffling performance. Since its delivery to LAM (Laboratoire d'Astrophysique de Marseille, CNRS) the telescope has passed successfully the qualification tests at instrument level performed by CNES. Now, the instrument is mounted on a Proteus platform and should be launched end of 2006. The satellite should bring to scientific community for the first time precious data coming from stars and their possible companions.

  3. Anisotropy and corotation of galactic cosmic rays.

    PubMed

    Amenomori, M; Ayabe, S; Bi, X J; Chen, D; Cui, S W; Danzengluobu; Ding, L K; Ding, X H; Feng, C F; Feng, Zhaoyang; Feng, Z Y; Gao, X Y; Geng, Q X; Guo, H W; He, H H; He, M; Hibino, K; Hotta, N; Hu, Haibing; Hu, H B; Huang, J; Huang, Q; Jia, H Y; Kajino, F; Kasahara, K; Katayose, Y; Kato, C; Kawata, K; Labaciren; Le, G M; Li, A F; Li, J Y; Lou, Y-Q; Lu, H; Lu, S L; Meng, X R; Mizutani, K; Mu, J; Munakata, K; Nagai, A; Nanjo, H; Nishizawa, M; Ohnishi, M; Ohta, I; Onuma, H; Ouchi, T; Ozawa, S; Ren, J R; Saito, T; Saito, T Y; Sakata, M; Sako, T K; Sasaki, T; Shibata, M; Shiomi, A; Shirai, T; Sugimoto, H; Takita, M; Tan, Y H; Tateyama, N; Torii, S; Tsuchiya, H; Udo, S; Wang, B; Wang, H; Wang, X; Wang, Y G; Wu, H R; Xue, L; Yamamoto, Y; Yan, C T; Yang, X C; Yasue, S; Ye, Z H; Yu, G C; Yuan, A F; Yuda, T; Zhang, H M; Zhang, J L; Zhang, N J; Zhang, X Y; Zhang, Y; Zhang, Yi; Zhaxisangzhu; Zhou, X X

    2006-10-20

    The intensity of Galactic cosmic rays is nearly isotropic because of the influence of magnetic fields in the Milky Way. Here, we present two-dimensional high-precision anisotropy measurement for energies from a few to several hundred teraelectronvolts (TeV), using the large data sample of the Tibet Air Shower Arrays. Besides revealing finer details of the known anisotropies, a new component of Galactic cosmic ray anisotropy in sidereal time is uncovered around the Cygnus region direction. For cosmic-ray energies up to a few hundred TeV, all components of anisotropies fade away, showing a corotation of Galactic cosmic rays with the local Galactic magnetic environment. These results have broad implications for a comprehensive understanding of cosmic rays, supernovae, magnetic fields, and heliospheric and Galactic dynamic environments.

  4. Asymptotics for Large Time of Global Solutions to the Generalized Kadomtsev-Petviashvili Equation

    NASA Astrophysics Data System (ADS)

    Hayashi, Nakao; Naumkin, Pavel I.; Saut, Jean-Claude

    We study the large time asymptotic behavior of solutions to the generalized Kadomtsev-Petviashvili (KP) equations where σ= 1 or σ=- 1. When ρ= 2 and σ=- 1, (KP) is known as the KPI equation, while ρ= 2, σ=+ 1 corresponds to the KPII equation. The KP equation models the propagation along the x-axis of nonlinear dispersive long waves on the surface of a fluid, when the variation along the y-axis proceeds slowly [10]. The case ρ= 3, σ=- 1 has been found in the modeling of sound waves in antiferromagnetics [15]. We prove that if ρ>= 3 is an integer and the initial data are sufficiently small, then the solution u of (KP) satisfies the following estimates: for all t∈R, where κ= 1 if ρ= 3 and κ= 0 if ρ>= 4. We also find the large time asymptotics for the solution.

  5. Trumpet Laminectomy Microdecompression for Lumbal Canal Stenosis

    PubMed Central

    Yasuda, Muneyoshi; Arifin, Muhammad Zafrullah; Takayasu, Masakazu; Faried, Ahmad

    2014-01-01

    Microsurgery techniques are useful innovations towards minimizing the insult of canal stenosis. Here, we describe the trumpet laminectomy microdecompression (TLM) technique, advantages and disadvantages. Sixty-two TLM patients with lumbar disc herniation, facet hypertrophy or yellow ligament or intracanal granulation tissue. The symptoms are low back pain, dysesthesia and severe pain on both legs. Spine levels operated Th11-S1; the patients who had trumpet-type fenestration, 62.9% had hypertrophy of the facet joint, 11.3% had intracanal granulation tissue, 79.1% had hypertrophy of the yellow ligament and 64.5% had disc herniation. The average of procedure duration was 68.9 min and intraoperative blood loss was 47.4 mL. Intraoperative complications were found in 3.2% of patients, with dural damage but without cerebrospinal fluid leakage. The TLM can be performed for all ages and all levels of spinal canal stenosis, without the complication of spondilolistesis. The TLM has a shorter duration, with minimal intraoperative blood loss. PMID:25346821

  6. Large scale motions of multiple limit-cycle high Reynolds number annular and toroidal rotor/stator cavities

    NASA Astrophysics Data System (ADS)

    Bridel-Bertomeu, Thibault; Gicquel, L. Y. M.; Staffelbach, G.

    2017-06-01

    Rotating cavity flows are essential components of industrial applications but their dynamics are still not fully understood when it comes to the relation between the fluid organization and monitored pressure fluctuations. From computer hard-drives to turbo-pumps of space launchers, designed devices often produce flow oscillations that can either destroy the component prematurely or produce too much noise. In such a context, large scale dynamics of high Reynolds number rotor/stator cavities need better understanding especially at the flow limit-cycle or associated statistically stationary state. In particular, the influence of curvature as well as cavity aspect ratio on the large scale organization and flow stability at a fixed rotating disc Reynolds number is fundamental. To probe such flows, wall-resolved large eddy simulation is applied to two different rotor/stator cylindrical cavities and one annular cavity. Validation of the predictions proves the method to be suited and to capture the disc boundary layer patterns reported in the literature. It is then shown that in complement to these disc boundary layer analyses, at the limit-cycle the rotating flows exhibit characteristic patterns at mid-height in the homogeneous core pointing the importance of large scale features. Indeed, dynamic modal decomposition reveals that the entire flow dynamics are driven by only a handful of atomic modes whose combination links the oscillatory patterns observed in the boundary layers as well as in the core of the cavity. These fluctuations form macro-structures, born in the unstable stator boundary layer and extending through the homogeneous inviscid core to the rotating disc boundary layer, causing its instability under some conditions. More importantly, the macro-structures significantly differ depending on the configuration pointing the need for deeper understanding of the influence of geometrical parameters as well as operating conditions.

  7. Synergistic activity of lysozyme and antifungal agents against Candida albicans biofilms on denture acrylic surfaces.

    PubMed

    Samaranayake, Y H; Cheung, B P K; Parahitiyawa, N; Seneviratne, C J; Yau, J Y Y; Yeung, K W S; Samaranayake, L P

    2009-02-01

    Denture related oral candidiasis is a recalcitrant fungal infection not easily resolved by topical antifungals. The antimycotic protein lysozyme, in saliva is an important host defense mechanism although its activity against Candida biofilms on denture acrylic has not been evaluated. (i) To establish a clinically relevant denture acrylic assay model to develop standardized Candida albicans biofilms, and (ii) assess the inhibitory effects of lysozyme alone and, the latter combined with antifungals (nystatin, amphotericin B, ketoconazole and 5-fluorocytosine) on sessile Candida cells and, finally (iii) to visualize the accompanying ultrastructural changes. The rotating-disc biofilm reactor was used to develop standardized 48 h Candida biofilms on acrylic discs in YNB/100 mM glucose medium and the biofilm metabolic activity was monitored using a tetrazolium reduction assay. The biofilm metabolic activity was similar in 18 identical denture acrylic discs (p<0.05) thus validating the rotating-disc biofilm model. Very low concentrations of lysozyme (6.25 microg/ml) significantly (p<0.01) inhibited Candida biofilm formation indicating that lysozyme may likely regulate intra-oral Candida biofilm development. Although 100 microg/ml lysozyme killed 45% of sessile Candida cells, further increasing its concentration (up to 240 microg/ml) had no such effect. Nystatin, amphotericin B, and ketoconazole in association with 100 microg/ml lysozyme exhibited effective synergistic killing of biofilm Candida in comparison to drug-free controls. Scanning electron and confocal scanning laser microscopy analysis confirmed the latter trends. Our results indicate that agents found in biological fluids such as lysozyme could be a safe adjunct to antifungals in future treatment strategies for recalcitrant candidal infections.

  8. Hanging drop crystal growth apparatus and method

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C. (Inventor); Smith, Robbie E. (Inventor)

    1989-01-01

    An apparatus (10) is constructed having a cylindrical enclosure (16) within which a disc-shaped wicking element (18) is positioned. A well or recess (22) is cut into an upper side (24) of this wicking element, and a glass cover plate or slip (28) having a protein drop disposed thereon is sealably positioned on the wicking element (18), with drop (12) being positioned over well or recess (22). A flow of control fluid is generated by a programmable gradient former (16), with this control fluid having a vapor pressure that is selectively variable. This flow of control fluid is coupled to the wicking element (18) where control fluid vapor diffusing from walls (26) of the recess (22) is exposed to the drop (12), forming a vapor pressure gradient between the drop (12) and the control fluid vapor. Initially, this gradient is adjusted to draw solvent from the drop (12) at a relatively high rate, and as the critical supersaturation point is approached (the point at which crystal nucleation occurs), the gradient is reduced to more slowly draw solvent from the drop (12). This allows discrete protein molecules more time to orient themselves into an ordered crystalline lattice, producing protein crystals which, when processed by X-ray crystallography, possess a high degree of resolution.

  9. Models of red giants in the CoRoT asteroseismology fields combining asteroseismic and spectroscopic constraints - The open cluster NGC 6633 and field stars-

    NASA Astrophysics Data System (ADS)

    Lagarde, Nadège; Miglio, Andrea; Eggenberger, Patrick; Morel, Thierry; Montalbàn, Josefina; Mosser, Benoit

    2015-08-01

    The availability of asteroseismic constraints for a large sample of red giant stars from the CoRoT and Kepler missions paves the way for various statistical studies of the seismic properties of stellar populations.We use the first detailed spectroscopic study of CoRoT red-giant stars (Morel et al 2014) to compare theoretical stellar evolution models to observations of the open cluster NGC 6633 and field stars.In order to explore the effects of rotation-induced mixing and thermohaline instability, we compare surface abundances of carbon isotopic ratio and lithium with stellar evolution predictions. These chemicals are sensitive to extra-mixing on the red-giant branch.We estimate mass, radius, and distance for each star using the seismic constraints. We note that the Hipparcos and seismic distances are different. However, the uncertainties are such that this may not be significant. Although the seismic distances for the cluster members are self consistent they are somewhat larger than the Hipparcos distance. This is an issue that should be considered elsewhere. Models including thermohaline instability and rotation-induced mixing, together with the seismically determined masses can explain the chemical properties of red-giants targets. Tighter constraints on the physics of the models would be possible if there were detailed knowledge of the core rotation rate and the asymptotic period spacing.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nutzman, Philip A.; Fabrycky, Daniel C.; Fortney, Jonathan J., E-mail: pnutzman@ucolick.org

    Spectroscopic follow-up of dozens of transiting planets has revealed the degree of alignment between the equators of stars and the orbits of the planets they host. Here we determine a method, applicable to spotted stars, that can reveal the same information from the photometric discovery data, with no need for follow-up. A spot model fit to the global light curve, parameterized by the spin orientation of the star, predicts when the planet will transit the spots. Observing several spot crossings during different transits then leads to constraints on the spin-orbit alignment. In cases where stellar spots are small, the stellarmore » inclination, i{sub s} , and hence the true alignment, rather than just the sky projection, can be obtained. This method has become possible with the advent of space telescopes such as CoRoT and Kepler, which photometrically monitor transiting planets over a nearly continuous, long time baseline. We apply our method to CoRoT-2 and find the projected spin-orbit alignment angle, {lambda} = 4.{sup 0}7 {+-} 12.{sup 0}3, in excellent agreement with a previous determination that employed the Rossiter-McLaughlin effect. The large spots of the parent star, CoRoT-2, limit our precision on i{sub s} : 84{sup 0} {+-} 36{sup 0}, where i{sub s} < 90{sup 0}(> 90{sup 0}) indicates that the rotation axis is tilted toward (away from) the line of sight.« less

  11. The analysis of influence of field of co-rotation on motion of submicronic particles in the Earth's plasmasphere

    NASA Astrophysics Data System (ADS)

    Yakovlev, A. B.

    2018-05-01

    The analysis of the motion of micro-particles with radii of several dozens of nanometers in the Earth's plasmasphere has confirmed that the earlier proved statement about conservation of the form for an orbit of a particle with constant electric charge which moves in superposition of the central gravitational field and the field of a magnetic dipole is true also for the case of a quasi-equilibrium electric charge. For a wide range of altitudes and the sizes of micro-particles other forces that act on the charged grain make considerably smaller impact on its motion. On the basis of numerical simulation it has been shown that for motion in an equatorial plane the field of co-rotation leads to very small monotonous growth of the semimajor axis and an orbit eccentricity, and for not-equatorial orbits there are fluctuations of the semimajor axis, an eccentricity and an inclination of an orbit with the period that considerably exceeds the period of orbital motion. In this paper, on the basis of the analysis of the canonical equations of the motion of a micro-particle in superposition of the central gravitational field and the field of co-rotation the explanation of the time dependences obtained numerically for the basic characteristics of an orbit of a micro-particle is proposed.

  12. Filtered Rayleigh scattering mixing measurements of merging and non-merging streamwise vortex interactions in supersonic flow

    NASA Astrophysics Data System (ADS)

    Ground, Cody R.; Gopal, Vijay; Maddalena, Luca

    2018-04-01

    By introducing large-scale streamwise vortices into a supersonic flow it is possible to enhance the rate of mixing between two fluid streams. However, increased vorticity content alone does not explicitly serve as a predictor of mixing enhancement. Additional factors, particularly the mutual interactions occurring between neighboring vortical structures, affect the underlying fundamental physics that influence the rate at which the fluids mix. As part of a larger systematic study on supersonic streamwise vortex interactions, this work experimentally quantifies the average rate of mixing of helium and air in the presence of two separate modes of vortex interaction, the merging and non-merging of a pair of co-rotating vortices. In these experiments vortex-generating expansion ramps are placed on a strut injector. The freestream Mach number is set at 2.5 and helium is injected as a passive scalar. Average injectant mole fractions at selected flow planes downstream of the injector are measured utilizing the filtered Rayleigh scattering technique. The filtered Rayleigh scattering measurements reveal that, in the domain surveyed, the merging vortex interaction strongly displaces the plume from its initial horizontal orientation while the non-merging vortex interaction more rapidly mixes the helium and air. The results of the current experiments are consistent with associated knowledge derived from previous analyses of the two studied configurations which have included the detailed experimental characterization of entrainment, turbulent kinetic energy, and vorticity of both modes of vortex interaction.

  13. Collagenases in human synovial fluid

    PubMed Central

    Harris, Edward D.; DiBona, Donald R.; Krane, Stephen M.

    1969-01-01

    An enzyme which degrades native collagen at neutral pH has been isolated from cultures of rheumatoid synovium in vitro, but little or no collagenolytic activity has been found in homogenates of fresh rheumatoid synovium. Similar to most other mammalian collagenases this synovial enzyme is readily inhibited by serum proteins. Proteins of synovial fluid are derived largely from serum and synovial fluid from noninflamed joints was found to inhibit synovial collagenase; the inhibitor was destroyed by trypsin, but not by hyaluronidase. Inhibitory activity was reduced in approximately one-half of the fluids from patients with rheumatoid arthritis. In a total of nine synovial fluids, collagenolytic activity was detectable. This activity was not present in constant amounts in synovial fluids aspirated at different times from the same patient and tended to vary inversely with the titer of inhibitory proteins. The collagenolytic activity in the synovial fluids from different patients was variably inhibited by serum proteins. Two distinct collagenases were detected in some rheumatoid synovial fluids and separated by gel filtration. One, labeled “B” enzyme, with an estimated molecular weight 20,000-25,000 resembled the collagenase obtained from synovial cultures. The other, labeled “A” enzyme degraded collagen fibrils as well as collagen in solution. Disc electrophoresis on acrylamide gels and electron microscopy of segment long spacing (SLS) aggregates of reaction products of the enzymes at 27°C demonstrated that both “A” and “B” enzymes cleaved collagen molecules at a point three-quarters from the amino terminal end of the molecule. Thus collagen degradation in rheumatoid arthritis could result from the operation of these two collagenases. Images PMID:4309955

  14. Influence of fluid viscosity and wetting on multiscale viscoelastic lubrication in soft tribological contacts.

    PubMed

    Selway, Nichola; Chan, Vincent; Stokes, Jason R

    2017-02-22

    Friction (and lubrication) between soft contacts is prevalent in many natural and engineered systems and plays a crucial role in determining their functionality. The contribution of viscoelastic hysteresis losses to friction in these systems has been well-established and defined for dry contacts; however, the influence of fluid viscosity and wetting on these components of friction has largely been overlooked. We provide systematic experimental evidence of the influence of lubricant viscosity and wetting on lubrication across multiple regimes within a viscoelastic contact. These effects are investigated for comparatively smooth and rough elastomeric contacts (PTFE-PDMS and PDMS-PDMS) lubricated by a series of Newtonian fluids with systematically controlled viscosity and static wetting properties, using a ball-on-disc tribometer. The distinct tribological behaviour, characterised generally by a decrease in the friction coefficient with increasing fluid viscosity and wettability, is explained in terms of lubricant dewetting and squeeze-out dynamics and their impact on multi-scale viscoelastic dissipation mechanisms at the bulk-, asperity-, sub-asperity- and molecular-scale. It is proposed that lubrication within the (non-molecularly) smooth contact is governed by localised fluid entrapment and molecular-scale (interfacial) viscoelastic effects, while additional rubber hysteresis stimulated by fluid-asperity interactions, combined with rapid fluid drainage at low speeds within the rough contact, alter the general shape of the Stribeck curve. This fluid viscosity effect is in some agreement with theoretical predictions. Conventional methods for analysing and interpreting tribological data, which typically involve scaling sliding velocity with lubricant viscosity, need to be revised for viscoelastic contacts with consideration of these indirect viscosity effects.

  15. Movable anode x-ray source with enhanced anode cooling

    DOEpatents

    Bird, C.R.; Rockett, P.D.

    1987-08-04

    An x-ray source is disclosed having a cathode and a disc-shaped anode with a peripheral surface at constant radius from the anode axis opposed to the cathode. The anode has stub axle sections rotatably carried in heat conducting bearing plates which are mounted by thermoelectric coolers to bellows which normally bias the bearing plates to a retracted position spaced from opposing anode side faces. The bellows cooperate with the x-ray source mounting structure for forming closed passages for heat transport fluid. Flow of such fluid under pressure expands the bellows and brings the bearing plates into heat conducting contact with the anode side faces. A worm gear is mounted on a shaft and engages serrations in the anode periphery for rotating the anode when flow of coolant is terminated between x-ray emission events. 5 figs.

  16. Movable anode x-ray source with enhanced anode cooling

    DOEpatents

    Bird, Charles R.; Rockett, Paul D.

    1987-01-01

    An x-ray source having a cathode and a disc-shaped anode with a peripheral surface at constant radius from the anode axis opposed to the cathode. The anode has stub axle sections rotatably carried in heat conducting bearing plates which are mounted by thermoelectric coolers to bellows which normally bias the bearing plates to a retracted position spaced from opposing anode side faces. The bellows cooperate with the x-ray source mounting structure for forming closed passages for heat transport fluid. Flow of such fluid under pressure expands the bellows and brings the bearing plates into heat conducting contact with the anode side faces. A worm gear is mounted on a shaft and engages serrations in the anode periphery for rotating the anode when flow of coolant is terminated between x-ray emission events.

  17. BOOK REVIEW: Relativistic Figures of Equilibrium

    NASA Astrophysics Data System (ADS)

    Mars, M.

    2009-08-01

    Compact fluid bodies in equilibrium under its own gravitational field are abundant in the Universe and a proper treatment of them can only be carried out using the full theory of General Relativity. The problem is of enormous complexity as it involves two very different regimes, namely the interior and the exterior of the fluid, coupled through the surface of the body. This problem is very challenging both from a purely theoretical point of view, as well as regarding the obtaining of realistic models and the description of their physical properties. It is therefore an excellent piece of news that the book 'Relativistic Figures of Equilibrium' by R Meinel, M Ansorg, A Kleinwächter, G Neugebauer and D Petroff has been recently published. This book approaches the topic in depth and its contents will be of interest to a wide range of scientists working on gravitation, including theoreticians in general relativity, mathematical physicists, astrophysicists and numerical relativists. This is an advanced book that intends to present some of the present-day results on this topic. The most basic results are presented rather succinctly, and without going into the details, of their derivations. Although primarily not intended to serve as a textbook, the presentation is nevertheless self-contained and can therefore be of interest both for experts on the field as well as for anybody wishing to learn more about rotating self-gravitating compact bodies in equilibrium. It should be remarked, however, that this book makes a rather strong selection of topics and concentrates fundamentally on presenting the main results obtained by the authors during their research in this field. The book starts with a chapter where the fundamental aspects of rotating fluids in equilibrium, including its thermodynamic properties, are summarized. Of particular interest are the so-called mass-shedding limit, which is the limit where the body is rotating so fast that it is on the verge of starting losing material, and the black hole transition, where rotating fluids are seen to approach black holes for suitable limits of their parameters. As the authors themselves mention, one of the emphasis of this book is placed 'on the rigorous treatment of simple models instead of trying to describe real objects with their many complex facets...'. After discussing constant density models both in Newtonian theory (the Maclaurin spheroids) and in the non-rotating relativistic case (the Schwarzschild interior model), the book concentrates on the so-called rigidly rotating disc of dust. Chapter two is mainly devoted to deriving this model and presenting its physical properties. The derivation is based in the so-called inverse scattering method of integrable systems and on a thorough knowledge of the theory of integration on Riemann surfaces. The details, which take up about one fifth of the whole length, are difficult to follow for any reader without a previous mastering of the techniques involved. For the expert, however, this part of the book is very useful because it brings together all the steps required for the complete determination of the solution. After the derivation of the disc of dust, the physical properties of the resulting one-parameter family of solutions are described, including its multipole moment structure, the existence of ergospheres, the Newtonian limit or the motion of test particles. Of particular interest is the transition from the disc of dust to the extreme black hole configuration corresponding to the limit when the parameter describing the fluid approaches its upper end. After this chapter devoted to exact models, the book looks at the problem from a completely different point of view, namely by using numerical methods. This tool has proven to be fundamental for a proper study of this physical problem. This book concentrates on the so-called pseudo-spectral methods and the use of multidomains adapted to the different regions of the spacetime with qualitatively different behaviours. The presentation of the main ideas behind this method is very clear and accessible even to the non-expert. The book then is devoted to presenting both qualitative and quantitative results for a number of models with different equations of state. The case treated more in depth is the constant density case, but results for polytropic equations of state as well as a degenerate ideal gas of neutrons and strange quark matter are also presented. The emphasis is put on the exploration of the parameter space for a fixed equation of state. This is done by studying the various limiting cases involved, namely the non-rotating limit, the Newtonian limit, the mass-shedding limit, the infinite central pressure limit, the transition from one rotating body to several bodies, the black hole limit and the disc limit. The emerging picture in the constant density case is a division of the parameter space into an infinite number of classes, all connected through the Maclaurin spheroids and approaching the limiting case of a Maclaurin disc of dust, which in turn is the Newtonian limit of the relativistic disc of dust. Although the phase space of solutions differs for other equations of state, the main feature of having classes of solutions remains. Despite the inherent complexity and variety of possible behaviours, the authors manage to describe the results in a very lucid manner, and the resulting picture emerges very clearly. The presentation also includes many well-chosen figures, which clarify greatly the understanding of the results and makes this chapter very informative indeed. Furthermore, the book has a related webpage (http://www.tpi.uni-jena.de/gravity/relastro/rfe/) where the source codes for calculating various figures of equilibrium are publicly available. Besides considering single fluids, configurations where a central and very compact object is surrounded by a ring of fluid are also treated to some extent. The central object may be a Newtonian point mass, a black hole or a rotating disc of dust. Special emphasis is put in studying the Komar mass of the central object, which is shown to be negative in several circumstances. The book ends with a very brief description of stability of rotating configurations and a number of appendices summarizing some of the more technical material needed for the main body. In summary, this book is a very valuable tool for anybody wishing to learn more about relativistic rotating bodies in equilibrium. The combination of exact analytic results and numerical methods makes it of particular interest, as both aspects are important in this field and their combined use gives rise to a much deeper understanding of the subject. The book contains many results and in general it is pleasant to read, the most arid part being the derivation of the disk of dust solution. The book is perhaps excessively brief at some places, but overall it is an excellent reference on this topic.

  18. VizieR Online Data Catalog: Basic properties of Kepler and CoRoT targets (Yildiz+, 2016)

    NASA Astrophysics Data System (ADS)

    Yildiz, M.; Celik Orhan, Z.; Kayhan, C.

    2018-01-01

    The basic data of certain Kepler (79 stars) and CoRoT (seven stars) target stars, compiled from the literature, are listed in Table A1. Oscillation frequencies of three stars (Procyon A, HD 2151 and HD 146233) were obtained from ground-based observations (Bedding et al., 2010ApJ...713..935B; Bedding et al., 2007ApJ...663.1315B and Bazot et al. 2012, Cat. J/A+A/544/A106, respectively). These stars are also listed in this table, with data for the Sun for comparison. For most stars, we provide B-V and V-K colours (SIMBAD data base) from photometric observations, and surface gravity [log(g)], effective temperature (TeS) and metallicity ([Fe/H]) from spectroscopic observations. (2 data files).

  19. UTM, a universal simulator for lightcurves of transiting systems

    NASA Astrophysics Data System (ADS)

    Deeg, Hans

    2009-02-01

    The Universal Transit Modeller (UTM) is a light-curve simulator for all kinds of transiting or eclipsing configurations between arbitrary numbers of several types of objects, which may be stars, planets, planetary moons, and planetary rings. Applications of UTM to date have been mainly in the generation of light-curves for the testing of detection algorithms. For the preparation of such test for the Corot Mission, a special version has been used to generate multicolour light-curves in Corot's passbands. A separate fitting program, UFIT (Universal Fitter) is part of the UTM distribution and may be used to derive best fits to light-curves for any set of continuously variable parameters. UTM/UFIT is written in IDL code and its source is released in the public domain under the GNU General Public License.

  20. VizieR Online Data Catalog: BEST-II catalog of variables: CoRoT SRc02 field (Klagyivik+, 2016)

    NASA Astrophysics Data System (ADS)

    Klagyivik, P.; Csizmadia, S.; Pasternacki, T.; Cabrera, J.; Chini, R.; Eigmuller, P.; Erikson, A.; Fruth, T.; Kabath, P.; Lemke, R.; Murphy, M.; Rauer, H.; Titz-Weider, R.

    2018-03-01

    The observations were performed with the BEST II telescope located at the Universitats-sternwarte Bochum near the Observatorio Cerro Armazones in Chile. The system consists of a Takahashi 25 cm Baker-Ritchey-Chretien telescope equipped with a 4kx4k Finger Lakes CCD. The corresponding field of view is 1.7°x1.7°, with an angular resolution of 1.5"/pixel. In order to maximize the photon yield and to get more accurate photometry of the fainter stars, no filter was used. The exposure time was 120 s for all of the images. BEST II observed the CoRoT target field SRc02 during a total of 32 nights between 2009 May 4 and July 28. (3 data files).

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Font, Joan; Beckman, John E.; Fathi, Kambiz

    In this Letter, we introduce a technique for finding resonance radii in a disk galaxy. We use a two-dimensional velocity field in H{alpha} emission obtained with Fabry-Perot interferometry, derive the classical rotation curve, and subtract it off, leaving a residual velocity map. As the streaming motions should reverse sign at corotation, we detect these reversals and plot them in a histogram against galactocentric radius, excluding points where the amplitude of the reversal is smaller than the measurement uncertainty. The histograms show well-defined peaks which we assume to occur at resonance radii, identifying corotations as the most prominent peaks corresponding tomore » the relevant morphological features of the galaxy (notably bars and spiral arm systems). We compare our results with published measurements on the same galaxies using other methods and different types of data.« less

  2. An in-depth study of HD 174966 with CoRoT photometry and HARPS spectroscopy. Large separation as a new observable for δ Scuti stars

    NASA Astrophysics Data System (ADS)

    García Hernández, A.; Moya, A.; Michel, E.; Suárez, J. C.; Poretti, E.; Martín-Ruíz, S.; Amado, P. J.; Garrido, R.; Rodríguez, E.; Rainer, M.; Uytterhoeven, K.; Rodrigo, C.; Solano, E.; Rodón, J. R.; Mathias, P.; Rolland, A.; Auvergne, M.; Baglin, A.; Baudin, F.; Catala, C.; Samadi, R.

    2013-11-01

    Aims: The aim of this work was to use a multi-approach technique to derive the most accurate values possible of the physical parameters of the δ Sct star HD 174966, which was observed with the CoRoT satellite. In addition, we searched for a periodic pattern in the frequency spectra with the goal of using it to determine the mean density of the star. Methods: First, we extracted the frequency content from the CoRoT light curve. Then, we derived the physical parameters of HD 174966 and carried a mode identification out from the spectroscopic and photometric observations. We used this information to look for the models fulfilling all the conditions and discussed the inaccuracies of the method because of the rotation effects. In a final step, we searched for patterns in the frequency set using a Fourier transform, discussed its origin, and studied the possibility of using the periodicity to obtain information about the physical parameters of the star. Results: A total of 185 peaks were obtained from the Fourier analysis of the CoRoT light curve, all of which were reliable pulsating frequencies. From the spectroscopic observations, 18 oscillation modes were detected and identified, and the inclination angle (62.5°-17.5+7.5) and the rotational velocity of the star (142 km s-1) were estimated. From the multi-colour photometric observations, only three frequencies were detected that correspond to the main ones in the CoRoT light curve. We looked for periodicities within the 185 frequencies and found a quasiperiodic pattern Δν ~ 64 μHz. Using the inclination angle, the rotational velocity, and an Echelle diagram (showing a double comb outside the asymptotic regime), we concluded that the periodicity corresponds to a large separation structure. The quasiperiodic pattern allowed us to discriminate models from a grid. As a result, the value of the mean density is achieved with a 6% uncertainty. So, the Δν pattern could be used as a new observable for A-F type stars. The CoRoT space mission was developed and is operated by the French space agency CNES, with participation of ESA's RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain.This work is based on ground-based observations made with the ESO 3.6 m telescope at La Silla Observatory under the ESO Large Programme LP182.D-0356, and on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck-Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC), and on observations made at Observatoire de Haute Provence (CNRS), France, and at Observatorio de Sierra Nevada (OSN), Spain, operated by the Instituto de Astrofísica de Andalucía (CSIC). This research has made use of both the Simbad database, operated at CDS, Strasbourg, France, and the Astrophysics Data System, provided by NASA, USA.Table 6 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/559/A63

  3. Serous retinal detachment accompanied by MEWDS in a myopic patient with dome-shaped macula.

    PubMed

    Shin, Min Kyu; Byon, Ik Soo; Park, Sung Who; Lee, Ji Eun

    2014-01-01

    Macular serous retinal detachment (MSRD) is a rare complication in highly myopic patients with an inferior staphyloma, tilted disc, or dome-shaped macula. Multiple evanescent white dot syndrome (MEWDS) presents with sudden visual loss and multiple yellowish dots that resolve spontaneously within several weeks. The authors report the development and spontaneous resolution of subretinal fluid accompanied by MEWDS in a myopic patient with a dome-shaped macula. Dysfunction of the retinal pigment epithelium due to MEWDS likely induced temporary MSRD in this patient. Copyright 2014, SLACK Incorporated.

  4. Flow and coherent structures around circular cylinders in shallow water

    NASA Astrophysics Data System (ADS)

    Zeng, Jie; Constantinescu, George

    2017-06-01

    Eddy-resolving numerical simulations are conducted to investigate the dynamics of the large-scale coherent structures around a circular cylinder in an open channel under very shallow flow conditions where the bed friction significantly affects the wake structure. Results are reported for three test cases, for which the ratio between the cylinder diameter, D, and the channel depth, H, is D/H = 10, 25, and 50, respectively. Simulation results show that a horseshoe vortex system forms in all test cases and the dynamics of the necklace vortices is similar to that during the breakaway sub-regime observed for cases when a laminar horseshoe vortex forms around the base of the cylinder. Given the shallow conditions and turbulence in the incoming channel flow, the necklace vortices occupy a large fraction of the flow depth (they penetrate until the free surface in the shallower cases with D/H = 25 and 50). The oscillations of the necklace vortices become less regular with increasing polar angle magnitude and can induce strong amplification of the bed shear stress beneath their cores. Strong interactions are observed between the legs of the necklace vortices and the eddies shed in the separated shear layers in the cases with D/H = 25 and 50. In these two cases, a vortex-street type wake is formed and strong three-dimensional effects are observed in the near-wake flow. A secondary instability in the form of arrays of co-rotating parallel horizontal vortices develops. Once the roller vortices get away from the cylinder, the horizontal vortices in the array orient themselves along the streamwise direction. This instability is not present for moderately shallow conditions (e.g., D/H ≈ 1) nor for very shallow cases when the wake changes to an unsteady bubble type (e.g., D/H = 50). For cases when this secondary instability is present, the horizontal vortices extend vertically over a large fraction of the flow depth and play an important role in the vertical mixing of fluid situated at the wake edges (e.g., by transporting the near-bed, lower-velocity fluid toward the free surface and vice versa). The largest amplification of the bed shear stress in the near-wake region is observed beneath these horizontal vortices, which means that they would play an important role in promoting bed erosion behind the cylinder in the case of a loose bed. Simulation results suggest that these co-rotating vortices form as a result of the interactions between the legs of the main necklace vortices and the vortical eddies contained into the newly forming roller at the back of the cylinder. The paper also analyzes how D/H affects the separation angle on the cylinder, the size of the recirculation bubble, the bed friction velocity distributions, and turbulence statistics.

  5. F Ring Core Stability: Corotation Resonance Plus Antiresonance

    NASA Technical Reports Server (NTRS)

    Cuzzi, Jeffrey N.; Marouf, Essam; French, Richard; Jacobson, Robert

    2014-01-01

    The decades-or-longer stability of the narrow F Ring core in a sea of orbital chaos appears to be due to an unusual combination of traditional corotation resonance and a novel kind of "antiresonance". At a series of specific locations in the F Ring region, apse precession between synodic encounters with Prometheus allows semimajor axis perturbations to promptly cancel before significant orbital period changes can occur. This cancellation fails for particles that encounter Prometheus when it is near its apoapse, especially during periods of antialignment of its apse with that of the F Ring. At these times, the strength of the semimajor axis perturbation is large (tens of km) and highly nonsinusoidal in encounter longitude, making it impossible to cancel promptly on a subsequent encounter and leading to chaotic orbital diffusion. Only particles that consistently encounter Prometheus away from its apoapse can use antiresonance to maintain stable orbits, implying that the true mean motion nF of the stable core must be defined by a corotational resonance of the form nF = nP(-kappa)P/m, where (nP, kappaP) are Prometheus' mean motion and epicycle frequency. To test this hypothesis we used the fact that Cassini RSS occultations only sporadically detect a "massive" F Ring core, composed of several-cm-and-larger particles. We regressed the inertial longitudes of 24 Cassini RSS (and VGR) detections and 43 nondetections to a common epoch, using a comb of candidate nP, and then folded them modulo the anticipated m-number of the corotational resonance (Prometheus m = 110 outer CER), to see if clustering appears. We find the "true F Ring core" is actually arranged in a series of short longitudinal arcs separated by nearly empty longitudes, orbiting at a well determined semimajor axis of 140222.4 km (from 2005-2012 at least). Small particles seen by imaging and stellar occultations spread quickly in azimuth and obscure this clumpy structure. Small chaotic variations in the mean motion and/or apse longitude of Prometheus quickly become manifest in the F Ring core, and we suggest that the core must adapt to these changes for the F Ring to maintain stability over timescales of decades and longer

  6. Estimation of a super-resolved PSF for the data reduction of undersampled stellar observations. Deriving an accurate model for fitting photometry with Corot space telescope

    NASA Astrophysics Data System (ADS)

    Pinheiro da Silva, L.; Auvergne, M.; Toublanc, D.; Rowe, J.; Kuschnig, R.; Matthews, J.

    2006-06-01

    Context: .Fitting photometry algorithms can be very effective provided that an accurate model of the instrumental point spread function (PSF) is available. When high-precision time-resolved photometry is required, however, the use of point-source star images as empirical PSF models can be unsatisfactory, due to the limits in their spatial resolution. Theoretically-derived models, on the other hand, are limited by the unavoidable assumption of simplifying hypothesis, while the use of analytical approximations is restricted to regularly-shaped PSFs. Aims: .This work investigates an innovative technique for space-based fitting photometry, based on the reconstruction of an empirical but properly-resolved PSF. The aim is the exploitation of arbitrary star images, including those produced under intentional defocus. The cases of both MOST and COROT, the first space telescopes dedicated to time-resolved stellar photometry, are considered in the evaluation of the effectiveness and performances of the proposed methodology. Methods: .PSF reconstruction is based on a set of star images, periodically acquired and presenting relative subpixel displacements due to motion of the acquisition system, in this case the jitter of the satellite attitude. Higher resolution is achieved through the solution of the inverse problem. The approach can be regarded as a special application of super-resolution techniques, though a specialised procedure is proposed to better meet the PSF determination problem specificities. The application of such a model to fitting photometry is illustrated by numerical simulations for COROT and on a complete set of observations from MOST. Results: .We verify that, in both scenarios, significantly better resolved PSFs can be estimated, leading to corresponding improvements in photometric results. For COROT, indeed, subpixel reconstruction enabled the successful use of fitting algorithms despite its rather complex PSF profile, which could hardly be modeled otherwise. For MOST, whose direct-imaging PSF is closer to the ordinary, comparison to other models or photometry techniques were carried out and confirmed the potential of PSF reconstruction in real observational conditions.

  7. The Source of Planetary Period Oscillations in Saturn's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Khurana, Krishan K.; Mitchell, Jonathan L.; Mueller, Ingo C. F.

    2017-04-01

    In this presentation, we resolve a three-decades old mystery of how Saturn is able to modulate its kilometric wave radiation and many field and plasma parameters at the planetary rotation period even though its magnetic field is extremely axisymmetric. Such waves emanating from the auroral regions of planets lacking solid surfaces have been used as clocks to measure the lengths of their days, because asymmetric internal magnetic fields spin-modulate wave amplitudes. A review by Carbary and Mitchell (2013, Periodicities in Saturn's magnetosphere, Reviews of Geophysics, 51, 1-30) on the topic summarized findings from over 200 research articles, on what the phenomena is, how it is manifested in a host of magnetospheric and auroral parameters; examined several proposed models and pointed out their shortcomings. The topic has now been explored in several topical international workshops, but the problem has remained unsolved so far. By quantitatively modeling the amplitudes and phases of these oscillations in the magnetic field observed by the Cassini spacecraft, we have now uncovered the generation mechanism responsible for these oscillations. We show that the observed oscillations are the manifestations of two global convectional conveyor belts excited in Saturn's upper atmosphere by auroral heating below its northern and southern auroral belts. We demonstrate that a feedback process develops in Saturn system such that the magnetosphere expends energy to drive convection in Saturn's upper stratosphere but gains back an amplified share in the form of angular momentum that it uses to enforce corotation in the magnetosphere and power its aurorae and radio waves. In essence, we have uncovered a new mechanism (convection assisted loss of angular momentum in an atmosphere) by which gaseous planets lose their angular momentum to their magnetospheres and outflowing plasma at rates far above previous predictions. We next show how the m = 1 convection system in the upper atmosphere generates the observed plasma and magnetic field periodicities. This breakthrough in our understanding of an important planetary physics problem has immediate and extensive applications in fields as diverse as theoretical fluid dynamics, planetary angular momentum loss, maintenance of corotation in planetary magnetospheres, astrophysical magneto-braking and future telescopic observations of planets and exoplanets.

  8. Gaseous spiral structure and mass drift in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Kim, Yonghwi; Kim, Woong-Tae

    2014-05-01

    We use hydrodynamic simulations to investigate non-linear gas responses to an imposed stellar spiral potential in disc galaxies. The gaseous medium is assumed to be infinitesimally thin, isothermal, and unmagnetized. We consider various spiral-arm models with differing strength and pattern speed. We find that the extent and shapes of gaseous arms as well as the related mass drift rate depend rather sensitively on the arm pattern speed. In models where the arm pattern is rotating slow, the gaseous arms extend across the corotation resonance (CR) all the way to the outer boundary, with a pitch angle slightly smaller than that of the stellar counterpart. In models with a fast rotating pattern, on the other hand, spiral shocks are much more tightly wound than the stellar arms, and cease to exist in the regions near and outside the CR where mathcal {M}_perp /sin p_* gtrsim 25-40, with mathcal {M}_perp denoting the perpendicular Mach number of a rotating gas relative to the arms with pitch angle p*. Inside the CR, the arms drive mass inflows at a rate of ˜0.05-3.0 M⊙ yr-1 to the central region, with larger values corresponding to stronger and slower arms. The contribution of the shock dissipation, external torque, and self-gravitational torque to the mass inflow is roughly 50, 40, and 10 per cent, respectively. We demonstrate that the distributions of line-of-sight velocities and spiral-arm densities can be a useful diagnostic tool to distinguish if the spiral pattern is rotating fast or slow.

  9. Laser apparatus

    DOEpatents

    Lewis, Owen; Stogran, Edmund M.

    1980-01-01

    Laser apparatus is described wherein an active laser element, such as the disc of a face-pumped laser, is mounted in a housing such that the weight of the element is supported by glass spheres which fill a chamber defined in the housing between the walls of the housing and the edges of the laser element. The uniform support provided by the spheres enable the chamber and the pump side of the laser element to be sealed without affecting the alignment or other optical properties of the laser element. Cooling fluid may be circulated through the sealed region by way of the interstices between the spheres. The spheres, and if desired also the cooling fluid may contain material which absorbs radiation at the wavelength of parasitic emissions from the laser element. These parasitic emissions enter the spheres through the interface along the edge surface of the laser element and it is desirable that the index of refraction of the spheres and cooling fluid be near the index of refraction of the laser element. Thus support, cooling, and parasitic suppression functions are all accomplished through the use of the arrangement.

  10. Comparison of Ocular Outcomes in Two 14-Day Bed Rest Studies

    NASA Technical Reports Server (NTRS)

    Cromwell, Ronita L.; Zanello, S. B.; Yarbough, P. O.; Tabbi, G.; Vizzeri, G.

    2012-01-01

    Reports of astronauts' visual changes have raised concern about ocular health during long-duration spaceflight. Some of these findings include globe flattening with hyperopic shifts, choroidal folds, optic disc edema, retinal nerve fiber layer (RNFL) thickening, and cotton wool spots. While the etiology remains unknown, it is hypothesized that, in predisposed individuals, hypertension in the brain may follow cephalad fluid shifts during spaceflight. This possible mechanism of ocular changes may also apply to analogous cases of idiopathic intracranial hypertension (IIH) or pseudotumor cerebri on Earth patients. Head-down t ilt (HDT) bed rest is a spaceflight analog that induces cephalad fluid shifts. Previous studies of the HDT position demonstrated body fluid shifts associated with changes in intraocular pressure (IOP) but the conditions of bed rest varied among experiments, making it difficult to compare data and draw conclusions. For these reasons, vision evaluation of bed rest subjects was implemented for NASA bed rest studies since 2010, in an attempt to monitor vision health in subjects subjected to bed rest. Vision monitoring is thus currently performed in all NASA-conducted bed rest campaigns

  11. Plasma observations near jupiter: initial results from voyager 1.

    PubMed

    Bridge, H S; Belcher, J W; Lazarus, A J; Sullivan, J D; McNutt, R L; Bagenal, F; Scudder, J D; Sittler, E C; Siscoe, G L; Vasyliunas, V M; Goertz, C K; Yeates, C M

    1979-06-01

    Extensive measurements of low-energy positive ions and electrons were made throughout the Jupiter encounter of Voyager 1. The bow shock and magneto-pause were crossed several times at distances consistent with variations in the upstream solar wind pressure measured on Voyager 2. During the inbound pass, the number density increased by six orders of magnitude between the innermost magnetopause crossing at approximately 47 Jupiter radii and near closest approach at approximately 5 Jupiter radii; the plasma flow during this period was predominately in the direction of corotation. Marked increases in number density were observed twice per planetary rotation, near the magnetic equator. Jupiterward of the Io plasma torus, a cold, corotating plasma was observed and the energylcharge spectra show well-resolved, heavy-ion peaks at mass-to-charge ratios A/Z* = 8, 16, 32, and 64.

  12. OBSERVATIONS OF BINARY STARS WITH THE DIFFERENTIAL SPECKLE SURVEY INSTRUMENT. IV. OBSERVATIONS OF KEPLER, CoRoT, AND HIPPARCOS STARS FROM THE GEMINI NORTH TELESCOPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horch, Elliott P.; Howell, Steve B.; Everett, Mark E.

    2012-12-01

    We present the results of 71 speckle observations of binary and unresolved stars, most of which were observed with the DSSI speckle camera at the Gemini North Telescope in 2012 July. The main purpose of the run was to obtain diffraction-limited images of high-priority targets for the Kepler and CoRoT missions, but in addition, we observed a number of close binary stars where the resolution limit of Gemini was used to better determine orbital parameters and/or confirm results obtained at or below the diffraction limit of smaller telescopes. Five new binaries and one triple system were discovered, and first orbitsmore » are calculated for other two systems. Several systems are discussed in detail.« less

  13. Saturn's outer magnetosphere

    NASA Technical Reports Server (NTRS)

    Schardt, A. W.; Behannon, K. W.; Carbary, J. F.; Eviatar, A.; Lepping, R. P.; Siscoe, G. L.

    1983-01-01

    Similarities between the Saturnian and terrestrial outer magnetosphere are examined. Saturn, like Earth, has a fully developed magnetic tail, 80 to 100 RS in diameter. One major difference between the two outer magnetospheres is the hydrogen and nitrogen torus produced by Titan. This plasma is, in general, convected in the corotation direction at nearly the rigid corotation speed. Energies of magnetospheric particles extend to above 500 keV. In contrast, interplanetary protons and ions above 2 MeV have free access to the outer magnetosphere to distances well below the Stormer cutoff. This access presumably occurs through the magnetotail. In addition to the H+, H2+, and H3+ ions primarily of local origin, energetic He, C, N, and O ions are found with solar composition. Their flux can be substantially enhanced over that of interplanetary ions at energies of 0.2 to 0.4 MeV/nuc.

  14. Gravitational waves from plunges into Gargantua

    NASA Astrophysics Data System (ADS)

    Compère, Geoffrey; Fransen, Kwinten; Hertog, Thomas; Long, Jiang

    2018-05-01

    We analytically compute time domain gravitational waveforms produced in the final stages of extreme mass ratio inspirals of non-spinning compact objects into supermassive nearly extremal Kerr black holes. Conformal symmetry relates all corotating equatorial orbits in the geodesic approximation to circular orbits through complex conformal transformations. We use this to obtain the time domain Teukolsky perturbations for generic equatorial corotating plunges in closed form. The resulting gravitational waveforms consist of an intermediate polynomial ringdown phase in which the decay rate depends on the impact parameters, followed by an exponential quasi-normal mode decay. The waveform amplitude exhibits critical behavior when the orbital angular momentum tends to a minimal value determined by the innermost stable circular orbit. We show that either near-critical or large angular momentum leads to a significant extension of the LISA observable volume of gravitational wave sources of this kind.

  15. CoRoT/ESTA TASK 1 and TASK 3 comparison of the internal structure and seismic properties of representative stellar models. Comparisons between the ASTEC, CESAM, CLES, GARSTEC and STAROX codes

    NASA Astrophysics Data System (ADS)

    Lebreton, Yveline; Montalbán, Josefina; Christensen-Dalsgaard, Jørgen; Roxburgh, Ian W.; Weiss, Achim

    2008-08-01

    We compare stellar models produced by different stellar evolution codes for the CoRoT/ESTA project, comparing their global quantities, their physical structure, and their oscillation properties. We discuss the differences between models and identify the underlying reasons for these differences. The stellar models are representative of potential CoRoT targets. Overall we find very good agreement between the five different codes, but with some significant deviations. We find noticeable discrepancies (though still at the per cent level) that result from the handling of the equation of state, of the opacities and of the convective boundaries. The results of our work will be helpful in interpreting future asteroseismology results from CoRoT.

  16. Plasma observations near Jupiter - Initial results from Voyager 1

    NASA Technical Reports Server (NTRS)

    Bridge, H. S.; Belcher, J. W.; Lazarus, A. J.; Sullivan, J. D.; Mcnutt, R. L.; Bagenal, F.; Scudder, J. D.; Sittler, E. C.; Siscoe, G. L.; Vasyliunas, V. M.

    1979-01-01

    Extensive measurements of low-energy positive ions and electrons were made throughout the Jupiter encounter of Voyager 1. The bow shock and magnetopause were crossed several times at distances consistent with variations in the upstream solar wind pressure measured on Voyager 2. During the inbound pass, the number density increased by six orders of magnitude between the innermost magnetopause crossing at approximately 47 Jupiter radii and near closest approach at approximately 5 Jupiter radii; the plasma flow during this period was predominately in the direction of corotation. Marked increases in number density were observed twice per planetary rotation, near the magnetic equator. Jupiterward of the Io plasma torus, a cold, corotating plasma was observed and the energy/charge spectra show well-resolved, heavy-ion peaks at mass-to-charge ratios equal to 8, 16, 32, and 64.

  17. SEISMIC DIAGNOSTICS OF RED GIANTS: FIRST COMPARISON WITH STELLAR MODELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montalban, J.; Miglio, A.; Noels, A.

    2010-10-01

    The clear detection with CoRoT and KEPLER of radial and non-radial solar-like oscillations in many red giants paves the way for seismic inferences on the structure of such stars. We present an overview of the properties of the adiabatic frequencies and frequency separations of radial and non-radial oscillation modes for an extended grid of models. We highlight how their detection allows a deeper insight into the internal structure and evolutionary state of red giants. In particular, we find that the properties of dipole modes constitute a promising seismic diagnostic tool of the evolutionary state of red giant stars. We comparemore » our theoretical predictions with the first 34 days of KEPLER data and predict the frequency diagram expected for red giants in the CoRoT exofield in the galactic center direction.« less

  18. Association of corotating magnetic sector structure with Jupiters decameter-wave radio emissions

    NASA Technical Reports Server (NTRS)

    Barrow, C. H.

    1979-01-01

    Chree (superposed epoch) analyses of Jupiter's decameter-wave radio emission taken from the new Thieman (1979) catalog show highly significant correlation with solar activity indicated by the geomagnetic Ap index. The correlation effects can be explained in terms of corotating interplanetary magnetic sector features. At times when the solar wind velocity is relatively low, about 300 to 350 km/s, a sector boundary can encounter the Earth and Jupiter almost simultaneously during the period immediately before opposition. After opposition this will not normally occur as the solar wind velocities necessary are too low. The correlation effects are much enhanced for the three apparitions of 1962-1964 during which a relatively stable and long-lived sector pattern was present. Chree analyses for this period indicate periodicities, approximately equal to half the solar rotation period, in the Jupiter data.

  19. Electric fields and field-aligned currents in polar regions of the solar corona: 3-D MHD consideration

    NASA Technical Reports Server (NTRS)

    Pisanko, Yu. V.

    1995-01-01

    The calculation of the solar rotation electro-dynamical effects in the near-the-Sun solar wind seems more convenient from the non-inertial corotating reference frame. This implies some modification of the 3-D MHD equations generally on the base of the General Theory of Relativity. The paper deals with the search of stationary (in corotating non-inertial reference frame) solutions of the modified 3-D MHD equations for the in near-the-Sun high latitude sub-alfvenic solar wind. The solution is obtained requiring electric fields and field-aligned electric currents in the high latitude near-the-Sun solar wind. Various scenario are explored self-consistently via a number of numerical experiments. The analogy with the high latitude Earth's magnetosphere is used for the interpretation of the results. Possible observational manifestations are discussed.

  20. A search for tight hierarchical triple systems amongst the eclipsing binaries in the CoRoT fields

    NASA Astrophysics Data System (ADS)

    Hajdu, T.; Borkovits, T.; Forgács-Dajka, E.; Sztakovics, J.; Marschalkó, G.; Benkő, J. M.; Klagyivik, P.; Sallai, M. J.

    2017-10-01

    We report a comprehensive search for hierarchical triple stellar system candidates amongst eclipsing binaries (EBs) observed by the CoRoT spacecraft. We calculate and check eclipse timing variation (ETV) diagrams for almost 1500 EBs in an automated manner. We identify five relatively short period Algol systems for which our combined light-curve and complex ETV analyses (including both the light-travel time effect and short-term dynamical third-body perturbations) resulted in consistent third-body solutions. The computed periods of the outer bodies are between 82 and 272 d (with an alternative solution of 831 d for one of the targets). We find that the inner and outer orbits are near coplanar in all but one case. The dynamical masses of the outer subsystems determined from the ETV analyses are consistent with both the results of our light-curve analyses and the spectroscopic information available in the literature. One of our candidate systems exhibits outer eclipsing events as well, the locations of which are in good agreement with the ETV solution. We also report another certain triply eclipsing triple system that, however, is lacking a reliable ETV solution due to the very short time range of the data, and four new blended systems (composite light curves of two EBs each), where we cannot decide whether the components are gravitationally bounded or not. Amongst these blended systems, we identify the longest period and highest eccentricity EB in the entire CoRoT sample.

  1. Galaxy Rotation and Rapid Supermassive Binary Coalescence

    NASA Astrophysics Data System (ADS)

    Holley-Bockelmann, Kelly; Khan, Fazeel Mahmood

    2015-09-01

    Galaxy mergers usher the supermassive black hole (SMBH) in each galaxy to the center of the potential, where they form an SMBH binary. The binary orbit shrinks by ejecting stars via three-body scattering, but ample work has shown that in spherical galaxy models, the binary separation stalls after ejecting all the stars in its loss cone—this is the well-known final parsec problem. However, it has been shown that SMBH binaries in non-spherical galactic nuclei harden at a nearly constant rate until reaching the gravitational wave regime. Here we use a suite of direct N-body simulations to follow SMBH binary evolution in both corotating and counterrotating flattened galaxy models. For N > 500 K, we find that the evolution of the SMBH binary is convergent and is independent of the particle number. Rotation in general increases the hardening rate of SMBH binaries even more effectively than galaxy geometry alone. SMBH binary hardening rates are similar for co- and counterrotating galaxies. In the corotating case, the center of mass of the SMBH binary settles into an orbit that is in corotation resonance with the background rotating model, and the coalescence time is roughly a few 100 Myr faster than a non-rotating flattened model. We find that counterrotation drives SMBHs to coalesce on a nearly radial orbit promptly after forming a hard binary. We discuss the implications for gravitational wave astronomy, hypervelocity star production, and the effect on the structure of the host galaxy.

  2. Investigation of Co-rotation Lag in Saturn's Dayside Magnetosphere and Comparison with the Nightside

    NASA Astrophysics Data System (ADS)

    Smith, E. J.; Dougherty, M. K.

    2016-12-01

    Two previous studies of co-rotation lag concentrated on 13 identical high-inclination Cassini orbits. In the first, measurements of the magnetospheric field azimuthal component, Bϕ, were restricted to the southern hemisphere, near midnight, from the equator and perikron to maximum latitude 70°. Comparison with the prevailing model of the magnetosphere-ionosphere interaction yielded conclusions that the ionospheric conductivity, Σp, was independent of ionospheric co-latitude, θi, and the ratio of magnetospheric to planetary field angular velocities, ω/Ωs, equaled, 1- exp(-Bθi), an unexpected exponential dependence on a single parameter. Both model parameters exhibited significant temporal variations from orbit to orbit leading to variations in the ionospheric profiles of Pedersen current, Ip. The second 13 orbit study of Bϕ extended to the north hemisphere where lagging fields alternated with leading and co-rotating fields. It was concluded that the difference was actually a local- time dependence with lagging -fields- only occurring after midnight and the mixed rotations before midnight. Again, Σp was independent of θi and ω/Ωs = 1- exp(-Bθi). Both studies raised the questions: How general is the exponential dependence of 1-ω/Ωs? Is it restricted to midnight or hold as well in the dayside magnetosphere? What is the cause of this dependence that differs from the model? The analysis of Bϕ has been extended to four nearly-identical north-south orbits near noon. The results and conclusions of this third study will be reported.

  3. Astrossismologia e o satélite COROT

    NASA Astrophysics Data System (ADS)

    Andrade, L. B. P.; Janot Pacheco, E.

    2003-08-01

    Este trabalho centra-se em atividades na fase de pré-lançamento do satélite COROT, da agência espacial francesa (CNES), a ser lançado em 2005. O satélite será dedicado à sismologia estelar e à procura de exoplanetas. Nosso programa de trabalho centra-se em dois pontos principais: (1) efetuar uma procura detalhada nos campos COROT de alvos astrofísicos de especial interesse; (2) participar das análises espectroscópicas prévias de alvos selecionados para determinação de parâmetros físicos das estrelas com a maior precisão possível. Na presente etapa, priorizou-se o primeiro ponto do projeto. Foi feito um levantamento geral dos objetos astrofísicos encontrados nos dois campos de observação, centrados em 06H50M e 18H50M, com raios de 10 minutos. Concluiu-se que as estrelas B-Be deverão ser observadas no campo sismológico, enquanto que as anãs brancas deverão sê-lo no campo exoplanetário. Objetos a serem observados foram escolhidos de forma a estarem próximos de alvos principais dos programas centrais do satélite. Paralelamente, estudos e pesquisas bibliográficas foram feitos para compreender os assuntos de interesse principal, ou seja, as pulsações não-radiais de estrelas Ob-Be

  4. GALAXY ROTATION AND RAPID SUPERMASSIVE BINARY COALESCENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holley-Bockelmann, Kelly; Khan, Fazeel Mahmood, E-mail: k.holley@vanderbilt.edu

    2015-09-10

    Galaxy mergers usher the supermassive black hole (SMBH) in each galaxy to the center of the potential, where they form an SMBH binary. The binary orbit shrinks by ejecting stars via three-body scattering, but ample work has shown that in spherical galaxy models, the binary separation stalls after ejecting all the stars in its loss cone—this is the well-known final parsec problem. However, it has been shown that SMBH binaries in non-spherical galactic nuclei harden at a nearly constant rate until reaching the gravitational wave regime. Here we use a suite of direct N-body simulations to follow SMBH binary evolutionmore » in both corotating and counterrotating flattened galaxy models. For N > 500 K, we find that the evolution of the SMBH binary is convergent and is independent of the particle number. Rotation in general increases the hardening rate of SMBH binaries even more effectively than galaxy geometry alone. SMBH binary hardening rates are similar for co- and counterrotating galaxies. In the corotating case, the center of mass of the SMBH binary settles into an orbit that is in corotation resonance with the background rotating model, and the coalescence time is roughly a few 100 Myr faster than a non-rotating flattened model. We find that counterrotation drives SMBHs to coalesce on a nearly radial orbit promptly after forming a hard binary. We discuss the implications for gravitational wave astronomy, hypervelocity star production, and the effect on the structure of the host galaxy.« less

  5. Polarized curvature radiation in pulsar magnetosphere

    NASA Astrophysics Data System (ADS)

    Wang, P. F.; Wang, C.; Han, J. L.

    2014-07-01

    The propagation of polarized emission in pulsar magnetosphere is investigated in this paper. The polarized waves are generated through curvature radiation from the relativistic particles streaming along curved magnetic field lines and corotating with the pulsar magnetosphere. Within the 1/γ emission cone, the waves can be divided into two natural wave-mode components, the ordinary (O) mode and the extraordinary (X) mode, with comparable intensities. Both components propagate separately in magnetosphere, and are aligned within the cone by adiabatic walking. The refraction of O mode makes the two components separated and incoherent. The detectable emission at a given height and a given rotation phase consists of incoherent X-mode and O-mode components coming from discrete emission regions. For four particle-density models in the form of uniformity, cone, core and patches, we calculate the intensities for each mode numerically within the entire pulsar beam. If the corotation of relativistic particles with magnetosphere is not considered, the intensity distributions for the X-mode and O-mode components are quite similar within the pulsar beam, which causes serious depolarization. However, if the corotation of relativistic particles is considered, the intensity distributions of the two modes are very different, and the net polarization of outcoming emission should be significant. Our numerical results are compared with observations, and can naturally explain the orthogonal polarization modes of some pulsars. Strong linear polarizations of some parts of pulsar profile can be reproduced by curvature radiation and subsequent propagation effect.

  6. Requirements for Radial Migration: How Does the Migrating Fraction Depend on Stellar Velocity Dispersion?

    NASA Astrophysics Data System (ADS)

    Tolfree, K. J. D.; Wyse, R. F. G.

    2014-03-01

    Radial migration is a mechanism that can rearrange the orbital angular momentum of stars in a spiral disk without inducing kinematic heating. When radial migration is very efficient, a large fraction of disk stars experience significant changes in their orbital angular momenta over a short period of time. Such scenarios have strong implications for the chemical and kinematic evolution of disk galaxies. We have undertaken an investigation of the physical dependencies of the efficiency of radial migration on stellar kinematics and spiral structure by deriving the fraction of stars that can migrate radially. In order for a star in a spiral disk to migrate radially, it must first be “captured” in a family of resonant orbits near the radius of corotation with a transient spiral pattern. To date, the only analytic criterion for capture has been for stars in circular orbits. We present the capture criterion for disk stars on non-circular orbits. We then use our analytically derived capture criterion to model the radial distribution of the captured fraction in an exponential disk with a flat rotation curve. Further, we derive the dependence of the total captured fraction in the disk on the radial component of the stellar velocity dispersion (σR) and the amplitude of the spiral perturbation to the underlying potential evaluated at corotation (|Φs|CR). We find that within an annulus centered around corotation where σR is constant, the captured fraction goes as e-σR2/|Φs|CR.

  7. Contrasting natural histories of thoracic spine pneumatocysts: resolution versus rapid enlargement

    PubMed Central

    Wilkinson, V H; Carroll, T; Hoggard, N

    2011-01-01

    An intraosseous pneumatocyst is an unusual cause of gas in a vertebral body and is rarely reported in the thoracic spine. We report the evolution of thoracic spine pneumatocysts, one that enlarged rapidly with resorption of fluid and one that resolved. A 65-year-old female with lower back and left leg pain underwent MRI of the lumbar spine, which demonstrated a well-defined lesion in a T10 vertebral body of low-signal on T1 and T2 weighted imaging. CT confirmed this as a gas-containing cyst. Review of previous imaging showed that this lesion had initially contained fluid and had expanded rapidly over 14 months. It also showed smaller pneumatocysts, which had resolved. The variable natural history and imaging features of pneumatocysts make them an important differential diagnosis of an intravertebral lesion. Their aetiology is not known, but previous case reports suggest that they can occur spontaneously or in association with vacuum phenomenon in adjacent discs or facet joints. Previous reports have observed that they can fill with granulation tissue or fluid, and the case we report demonstrates that this fluid can be resorbed and that the pneumatocyst can undergo rapid enlargement. A pneumatocyst is a differential diagnosis for an expanding intravertebral lesion of indeterminate MRI characteristics. The diagnosis can be made with CT if the lesion is gas or gas and fluid filled. PMID:21415298

  8. On the mechanism of self gravitating Rossby interfacial waves in proto-stellar accretion discs

    NASA Astrophysics Data System (ADS)

    Yellin-Bergovoy, Ron; Heifetz, Eyal; Umurhan, Orkan M.

    2016-05-01

    The dynamical response of edge waves under the influence of self-gravity is examined in an idealised two-dimensional model of a proto-stellar disc, characterised in steady state as a rotating vertically infinite cylinder of fluid with constant density except for a single density interface at some radius ?. The fluid in basic state is prescribed to rotate with a Keplerian profile ? modified by some additional azimuthal sheared flow. A linear analysis shows that there are two azimuthally propagating edge waves, kin to the familiar Rossby waves and surface gravity waves in terrestrial studies, which move opposite to one another with respect to the local basic state rotation rate at the interface. Instability only occurs if the radial pressure gradient is opposite to that of the density jump (unstably stratified) where self-gravity acts as a wave stabiliser irrespective of the stratification of the system. The propagation properties of the waves are discussed in detail in the language of vorticity edge waves. The roles of both Boussinesq and non-Boussinesq effects upon the stability and propagation of these waves with and without the inclusion of self-gravity are then quantified. The dynamics involved with self-gravity non-Boussinesq effect is shown to be a source of vorticity production where there is a jump in the basic state density In addition, self-gravity also alters the dynamics via the radial main pressure gradient, which is a Boussinesq effect. Further applications of these mechanical insights are presented in the conclusion including the ways in which multiple density jumps or gaps may or may not be stable.

  9. Cerebrospinal fluid leaks following spinal surgery: use of fat grafts for prevention and repair. Technical note.

    PubMed

    Black, Perry

    2002-03-01

    Cerebrospinal fluid (CSF) leaks are relatively common following spinal surgery. A midline dural tear in the spine is readily repaired by direct application of sutures; however, far-lateral or ventral dural tears are problematic. Fat is an ideal sealant because it is impermeable to water. In this paper the author reports his experience with using fat grafts for the prevention or repair of CSF leaks and proposes a technique in which a large sheet of fat, harvested from the patient's subcutaneous layer, is used to cover not only the dural tear(s) but all of the exposed dura and is tucked into the lateral recess. This procedure prevents CSF from seeping around the fat, which may be tacked to the dura with a few sutures. Fibrin glue is spread on the surface of the fat and is further covered with Surgicel or Gelfoam. For ventral dural tears (associated with procedures in which disc material is excised), fat is packed into the disc space to seal off the ventral dural leak. Dural suture lines following spinal intradural exploration are prophylatically protected from CSF leakage in the same manner. With one exception, 27 dural tears noted during 1650 spinal procedures were successfully repaired using this technique. There was one case of postoperative CSF leakage in 140 cases in which intradural exploration for tumor or other lesions was undertaken. Both postoperative CSF leaks were controlled by applying additional skin sutures. The use of a fat graft is recommended as a rapid, effective means of prevention and repair of CSF leaks following spinal surgery.

  10. Randomized Controlled Trial to Reduce Bacterial Colonization of Surgical Drains After Breast and Axillary Operations

    PubMed Central

    Degnim, Amy C.; Scow, Jeffrey S.; Hoskin, Tanya L.; Miller, Joyce P.; Loprinzi, Margie; Boughey, Judy C.; Jakub, James W.; Throckmorton, Alyssa; Patel, Robin; Baddour, Larry M.

    2014-01-01

    Objective To determine if bacterial colonization of drains can be reduced by local antiseptic interventions. Summary Background Drains are a potential source of bacterial entry into surgical wounds and may contribute to surgical site infection (SSI) after breast surgery. Methods Following IRB approval, patients undergoing total mastectomy and/or axillary lymph node dissection were randomized to standard drain care (control) or drain antisepsis (treated). Standard drain care comprised twice daily cleansing with alcohol swabs. Antisepsis drain care included 1) a chlorhexidine disc at the drain exit site and 2) irrigation of the drain bulb twice daily with dilute sodium hypochlorite (Dakin’s) solution. Cultures results of drain fluid and tubing were compared between control and antisepsis groups. Results Overall, 100 patients with 125 drains completed the study with 48 patients (58 drains) in the control group and 52 patients (67 drains) in the antisepsis group. Cultures of drain bulb fluid at one week were positive (1+ or greater growth) in 66% (38/58) of control drains compared to 21% of antisepsis drains (14/67), (p=0.0001). Drain tubing cultures demonstrated >50 CFU in 19% (8/43) of control drains versus 0% (0/53) of treated drains (p=0.004). SSI was diagnosed in 6 patients (6%) - 5 patients in the control group and 1 patient in the antisepsis group (p=0.06). Conclusions Simple and inexpensive local antiseptic interventions with a chlorhexidine disc and hypochlorite solution reduce bacterial colonization of drains. Based on these data, further study of drain antisepsis and its potential impact on SSI rate is warranted. PMID:23518704

  11. Intracranial hypotension headache caused by a massive cerebrospinal fluid leak successfully treated with a targeted c2 epidural blood patch: a case report.

    PubMed

    Sykes, Kenneth T; Yi, Xiaobin

    2013-01-01

    Cervical epidural steroid injections, administered either interlaminarly or transforaminally, are common injection therapies used in many interventional pain management practices to treat cervicalgia or cervicobrachial pain secondary to spondylosis or intervertebral disc displacement of the cervical spine. Among the risks associated with these procedures are the risk for inadvertent dural puncture and the development of positional headache from intracranial hypotension. We report the case of a 31-year-old woman with a history of migraine and cervicalgia from cervical spine spondylosis and cervical disc degenerative disease that developed an intractable orthostatic headache accompanied by nausea and vomiting after a therapeutic high cervical intralaminar epidural steroid injection was administered directly to the C1-C2 spinal level. Although the initial magnetic resonance imaging of the brain was unremarkable, a computed tomography myelogram study revealed a massive cerebrospinal fluid (CSF) leak from the cervical spine.  Repeated cervical epidural blood patches using a catheter targeted to the high cervical spine (C2) to inject 15 mL of autologous blood was required to totally alleviate her symptoms after she failed conservative therapy. Determining the optimal location or approach to administer an epidural blood patch can be a challenge depending on the location of the CSF leak. Our case demonstrates that targeted cervical epidural blood patch placement using an easily manipulated catheter under fluoroscopic guidance is a safe and effective approach to treat a massive CSF leak in the high cervical spine region caused by prior therapeutic cervical spine epidural steroid injection.

  12. Magnetic shear-flow instability in thin accretion discs

    NASA Astrophysics Data System (ADS)

    Rüdiger, G.; Primavera, L.; Arlt, R.; Elstner, D.

    1999-07-01

    The possibility that the magnetic shear-flow instability (also known as the `Balbus-Hawley' instability) might give rise to turbulence in a thin accretion disc is investigated through numerical simulations. The study is linear and the fluid disc is supposed to be incompressible and differentially rotating with a simple velocity profile with Omega~R^-q. The simplicity of the model is counterbalanced by the fact that the study is fully global in all three spatial directions with boundaries on each side; finite diffusivities are also allowed. The investigation is also carried out for several values of the azimuthal wavenumber of the perturbations in order to analyse whether non-axisymmetric modes might be preferred, which may produce, in a non-linear extension of the study, a self-sustained magnetic field. We find the final pattern steady, with similar kinetic and magnetic energies and the angular momentum always transported outwards. Despite the differential rotation, there are only small differences for the eigenvalues for various non-axisymmetric eigensolutions. Axisymmetric instabilities are by no means preferred; in fact for Prandtl numbers between 0.1 and 1, the azimuthal wavenumbers m=0,1,2(10^16gs^-1). All three quantities appear to be equally readily excited. The equatorial symmetry is quadrupolar for the magnetic field and dipolar for the flow field system. The maximal magnetic field strength required to cause the instability is almost independent of the magnetic Prandtl number. With typical white dwarf values, a magnetic amplitude of 10^5G is estimated.

  13. Gravitational instability and star formation in NGC 628

    NASA Astrophysics Data System (ADS)

    Marchuk, A. A.

    2018-05-01

    The gas-stars instability criterion for infinitesimally thin disc was applied to the galaxy NGC 628. Instead of using the azimuthally averaged profiles of data, the maps of the gas surface densities (THINGS, HERACLES), of the velocity dispersions of stars (VENGA) and gas (THINGS), and of the surface brightness of the galaxy (S4G) were analysed. All these maps were collected for the same region with a noticeable star formation rate and were superimposed on each other. Using the data on the rotation, curve values of Qeff were calculated for each pixel in the image. The areas within the contours Qeff < 3 were compared with the ongoing star formation regions (ΣSFR > 0.007 M⊙ yr-1 kpc-2) and showed a good coincidence between them. The Romeo-Falstad disc instability diagnostics taking into account the thickness of the stellar and gas layers does not change the result. If the one-fluid instability criterion is used, the coincidence is worse. The analysis was carried out for the area r < 0.5r25. Leroy et al. using azimuthally averaged data obtained Qeff ≈ 3-4 for this area of the disc, which makes it stable against non-axisymmetric perturbations and gas dissipation, and does not predict the location of star-forming regions. Since, in the galaxies, the distribution of hydrogen and the regions of star formation is often patchy, the relationship between gravitational instability and star formation should be sought using data maps rather than azimuthally averaged data.

  14. Spaceflight-Induced Intracranial Hypertension: An Overview

    NASA Technical Reports Server (NTRS)

    Traver, William J.

    2011-01-01

    This slide presentation is an overview of the some of the known results of spaceflight induced intracranial hypertension. Historical information from Gemini 5, Apollo, and the space shuttle programs indicated that some vision impairment was reported and a comparison between these historical missions and present missions is included. Optic Disc Edema, Globe Flattening, Choroidal Folds, Hyperopic Shifts and Raised Intracranial Pressure has occurred in Astronauts During and After Long Duration Space Flight. Views illustrate the occurrence of Optic Disc Edema, Globe Flattening, and Choroidal Folds. There are views of the Arachnoid Granulations and Venous return, and the question of spinal or venous compliance issues is discussed. The question of increased blood flow and its relation to increased Cerebrospinal fluid (CSF) is raised. Most observed on-orbit papilledema does not progress, and this might be a function of plateau homeostasis for the higher level of intracranial pressure. There are seven cases of astronauts experiencing in flight and post flight symptoms, which are summarized and follow-up is reviewed along with a comparison of the treatment options. The question is "is there other involvement besides vision," and other Clinical implications are raised,

  15. Multiplexed BioCD for prostate specific antigen detection

    NASA Astrophysics Data System (ADS)

    Wang, Xuefeng; Zhao, Ming; Nolte, David D.

    2008-02-01

    Specific protein concentrations in human body fluid can serve as diagnostic markers for some diseases, and a quantitative and high-throughput technique for multiplexed protein detection would speed up diagnosis and facilitate medical research. For this purpose, our group developed the BioCD, a spinning-disc interferometric biosensor on which antibody is immobilized. The detection system adopts a common-path scheme making it ultra stable. The scaling mass sensitivity is below 10 pg/mm for protein surface density. A 25000-spot antibody BioCD was fabricated to measure the concentration of prostate specific antigen (PSA), a protein indicating prostate cancer if its level is high. Statistical analysis of our immunoassay results projects that the detection limit of PSA would reach 20 pg/ml in a 2 mg/ml background solution. For future prospects, a multiplexed BioCD can be produced for simultaneous diagnosis of diverse diseases. For instance, 100 markers above 200 pg/ml could be measured on a single disc given that the detection limit is inversely proportional to square root of the number of spots.

  16. Visual Impairment and Intracranial Hypertension: An Emerging Spaceflight Risk

    NASA Technical Reports Server (NTRS)

    Fogarty, Jennifer A.; Polk, J. D.; Tarver, W.; Gibson, C. R.; Sargsyan, A.; Taddeo, T.; Alexander, D.; Otto, C.

    2010-01-01

    What is the risk? Given that astronauts exposed to microgravity experience a cephalad fluid shift, and that both symptomatic and asymptomatic astronauts have exhibited optic nerve sheath edema on MRI, there is a high probability that all astronauts have some degree of increased intracranial pressure (ICP; intracranial hypertension), and that those susceptible (via eye architecture, anatomy, narrow optic disc) have a high likelihood of developing papilledema (optic disc edema, globe flattening), choroidal folds, and/or hyperopic shifts and that the degree of edema may determine long-term or permanent vision impairment or loss. Back to back panels on this topic have been developed to address this emerging risk. The first panel will focus on the 6 clinical cases with emphasis on ophthalmic findings and imaging techniques used pre-, in-, and post-flight. The second panel will discuss the operational mitigation and medical requirements, the potential role of CO2 on ISS, and the research approach being developed. In total these back to back panels will explore what is known about this risk, what has been done immediately to address it, and how an integrated research model is being developed.

  17. Reading disc-based bioassays with standard computer drives.

    PubMed

    Yu, Hua-Zhong; Li, Yunchao; Ou, Lily M-L

    2013-02-19

    Traditional methods of disease diagnosis are both time-consuming and labor-intensive, and many tests require expensive instrumentation and trained professionals, which restricts their use to biomedical laboratories. Because patients can wait several days (even weeks) for the results, the consequences of delayed treatment could be disastrous. Therefore, affordable and simple point-of-care (POC) biosensor devices could fill a diagnostic niche in the clinic or even at home, as personal glucose meters do for diabetics. These devices would allow patients to check their own health conditions and enable physicians to make prompt treatment decisions, which could improve the chances for rapid recovery and cure. Compact discs (CDs) provide inexpensive substrate materials for the preparation of microarray biochips, and conventional computer drives/disc players can be adapted as precise optical reading devices for signal processing. Researchers can employ the polycarbonate (PC) base of a CD as an alternative substrate to glass slides or silicon wafers for the preparation of microanalytical devices. Using the characteristic optical phenomena occurring on the metal layer of a CD, researchers can develop biosensors based on advanced spectroscopic readout (interferometry or surface plasmon resonance). If researchers integrate microfluidic functions with CD mechanics, they can control fluid transfer through the spinning motion of the disc, leading to "lab-on-a-CD" devices. Over the last decade, our laboratory has focused on the construction of POC biosensor devices from off-the-shelf CDs or DVDs and standard computer drives. Besides the initial studies of the suitability of CDs for surface and materials chemistry research (fabrication of self-assembled monolayers and oxide nanostructures), we have demonstrated that an ordinary optical drive, without modification of either the hardware or the software driver, can function as the signal transducing element for reading disc-based bioassays quantitatively. In this Account, we first provide a brief introduction to CD-related materials chemistry and microfluidics research. Then we describe the mild chemistry developed in our laboratory for the preparation of computer-readable biomolecular screening assays: photochemical activation of the polycarbonate (PC) disc surface and immobilization and delivery of probe and target biomolecules. We thoroughly discuss the analysis of the molecular recognition events: researchers can "read" these devices quantitatively with an unmodified optical drive of any personal computer. Finally, and critically, we illustrate our digitized molecular diagnosis approach with three trial systems: DNA hybridization, antibody-antigen binding, and ultrasensitive lead detection with a DNAzyme assay. These examples demonstrate the broad potential of this new analytical/diagnostic tool for medical screening, on-site food/water safety testing, and remote environmental monitoring.

  18. Instabilities of conducting fluid flows in cylindrical shells under external forcing

    NASA Astrophysics Data System (ADS)

    Burguete, Javier; Miranda, Montserrat

    2010-11-01

    Flows created in neutral conducting flows remain one of the less studied topics of fluid dynamics, in spite of their relevance both in fundamental research (dynamo action, turbulence suppression) and applications (continuous casting, aluminium production, biophysics). Here we present the effect of a time-dependent magnetic field parallel to the axis of circular cavities. Due to the Lenz's law, the time-dependent magnetic field generates an azymuthal current, that produces a radial force. This force produces the destabilization of the static fluid layer, and a flow is created. The geommetry of the experimental cell is a disc layer with external diameter smaller than 94 mm, with or without internal hole. The layer is up to 20mm depth, and we use as conducting fluid an In-Ga-Sn alloy. There is no external current applied on the problem, only an external magnetic field. This field evolves harmonically with a frequency up to 10Hz, small enough to not to observe skin depth effects. The magnitude ranges from 0 to 0.1 T. With a threshold of 0.01T a dynamical behaviour is observed, and the main characteristics of this flow have been determined: different temporal resonances and spatial patterns with differents symmetries (squares, hexagonal, triangles,...).

  19. Back pain in space and post-flight spine injury: Mechanisms and countermeasure development

    NASA Astrophysics Data System (ADS)

    Sayson, Jojo V.; Lotz, Jeffrey; Parazynski, Scott; Hargens, Alan R.

    2013-05-01

    During spaceflight many astronauts experience moderate to severe lumbar pain and deconditioning of paraspinal muscles. There is also a significant incidence of herniated nucleus pulposus (HNP) in astronauts post-flight being most prevalent in cervical discs. Relief of in-flight lumbar back pain is facilitated by assuming a knee-to-chest position. The pathogenesis of lumbar back pain during spaceflight is most likely discogenic and somatic referred (from the sinuvertebral nerves) due to supra-physiologic swelling of the lumbar intervertebral discs (IVDs) due to removal of gravitational compressive loads in microgravity. The knee-to-chest position may reduce lumbar back pain by redistributing stresses through compressive loading to the IVDs, possibly reducing disc volume by fluid outflow across IVD endplates. IVD stress redistribution may reduce Type IV mechanoreceptor nerve impulse propagation in the annulus fibrosus and vertebral endplate resulting in centrally mediated pain inhibition during spinal flexion. Countermeasures for lumbar back pain may include in-flight use of: (1) an axial compression harness to prevent excessive IVD expansion and spinal column elongation; (2) the use of an adjustable pulley exercise developed to prevent atrophy of spine muscle stabilisers; and (3) other exercises that provide Earth-like annular stress with low-load repetitive active spine rotation movements. The overall objective of these countermeasures is to promote IVD health and to prevent degenerative changes that may lead to HNPs post-flight. In response to "NASA's Critical Path Roadmap Risks and Questions" regarding disc injury and higher incidence of HNPs after space flight (Integrated Research Plan Gap-B4), future studies will incorporate pre- and post-flight imaging of International Space Station long-duration crew members to investigate mechanisms of lumbar back pain as well as degeneration and damage to spinal structures. Quantitative results on morphological, biochemical, metabolic, and kinematic spinal changes in the lumbar spine may aid further development of countermeasures to prevent lumbar back pain in microgravity and reduce the incidence of HNPs post-flight.

  20. Equilibrium star formation in a constant Q disc: model optimization and initial tests

    NASA Astrophysics Data System (ADS)

    Zheng, Zheng; Meurer, Gerhardt R.; Heckman, Timothy M.; Thilker, David A.; Zwaan, Martin A.

    2013-10-01

    We develop a model for the distribution of the interstellar medium (ISM) and star formation in galaxies based on recent studies that indicate that galactic discs stabilize to a constant stability parameter, which we combine with prescriptions of how the phases of the ISM are determined and for the star formation law (SFL). The model predicts the gas surface mass density and star formation intensity of a galaxy given its rotation curve, stellar surface mass density and the gas velocity dispersion. This model is tested on radial profiles of neutral and molecular ISM surface mass density and star formation intensity of 12 galaxies selected from the H I Nearby Galaxy Survey sample. Our tests focus on intermediate radii (0.3 to 1 times the optical radius) because there are insufficient data to test the outer discs and the fits are less accurate in detail in the centre. Nevertheless, the model produces reasonable agreement with the ISM mass and star formation rate integrated over the central region in all but one case. To optimize the model, we evaluate four recipes for the stability parameter, three recipes for apportioning the ISM into molecular and neutral components, and eight versions of the SFL. We find no clear-cut best prescription for the two-fluid (gas and stars) stability parameter Q2f and therefore for simplicity, we use the Wang and Silk approximation (QWS). We found that an empirical scaling between the molecular-to-neutral ISM ratio (Rmol) and the stellar surface mass density proposed by Leroy et al. works marginally better than the other two prescriptions for this ratio in predicting the ISM profiles, and noticeably better in predicting the star formation intensity from the ISM profiles produced by our model with the SFLs we tested. Thus, in the context of our modelled ISM profiles, the linear molecular SFL and the two-component SFL work better than the other prescriptions we tested. We incorporate these relations into our `constant Q disc' model.

  1. Drift-resonant, relativistic electron acceleration at the outer planets: Insights from the response of Saturn's radiation belts to magnetospheric storms

    NASA Astrophysics Data System (ADS)

    Roussos, E.; Kollmann, P.; Krupp, N.; Paranicas, C.; Dialynas, K.; Sergis, N.; Mitchell, D. G.; Hamilton, D. C.; Krimigis, S. M.

    2018-05-01

    The short, 7.2-day orbital period of Cassini's Ring Grazing Orbits (RGO) provided an opportunity to monitor how fast the effects of an intense magnetospheric storm-time period (days 336-343/2016) propagated into Saturn's electron radiation belts. Following the storms, Cassini's MIMI/LEMMS instrument detected a transient extension of the electron radiation belts that in subsequent orbits moved towards the inner belts, intensifying them in the process. This intensification was followed by an equally fast decay, possibly due to the rapid absorption of MeV electrons by the planet's main rings. Surprisingly, all this cycle was completed within four RGOs, effectively in less than a month. That is considerably faster than the year-long time scales of Saturn's proton radiation belt evolution. In order to explain this difference, we propose that electron radial transport is partly controlled by the variability of global scale electric fields which have a fixed local time pointing. Such electric fields may distort significantly the orbits of a particular class of energetic electrons that cancel out magnetospheric corotation due to their westward gradient and curvature drifts (termed "corotation-resonant" or "local-time stationary" electrons) and transport them radially between the ring current and the radiation belts within several days and few weeks. The significance of the proposed process is highlighted by the fact that corotation resonance at Saturn occurs for electrons of few hundred keV to several MeV. These are the characteristic energies of seed electrons from the ring current that sustain the radiation belts of the planet. Our model's feasibility is demonstrated through the use of a simple test-particle simulation, where we estimate that uniform but variable electric fields with magnitudes lower that 1.0 mV/m can lead to a very efficient transport of corotation resonant electrons. Such electric fields have been consistently measured in the magnetosphere, and here we provide additional evidence showing that they may be constantly present all the way down to the outer edge of Saturn's main rings, further supporting our model. The implications of our findings are not limited to Saturn. Corotation resonance at Jupiter occurs for electrons with energies above about 10 MeV throughout the quasi-dipolar, energetic particle-trapping region of the magnetosphere. The proposed process could in principle then lead to rapid transport and adiabatic acceleration electrons into ultra-relativistic energies. The observation by Galileo's EPD/LEMMS instrument of an intense Jovian acceleration event at the orbital distance of Ganymede during the mission's C22 orbit, when > 11 MeV electron fluxes were preferentially enhanced, provides additional support to our transport model and insights on the origin of that orbit's extreme energetic electron environment. Finally, if the mode of radial transport that we describe here is a dominant one, radial diffusion coefficients (DLL) would be subject to strong energy, pitch angle and species dependencies.

  2. Comparison of animal discs used in disc research to human lumbar disc: torsion mechanics and collagen content.

    PubMed

    Showalter, Brent L; Beckstein, Jesse C; Martin, John T; Beattie, Elizabeth E; Espinoza Orías, Alejandro A; Schaer, Thomas P; Vresilovic, Edward J; Elliott, Dawn M

    2012-07-01

    Experimental measurement and normalization of in vitro disc torsion mechanics and collagen content for several animal species used in intervertebral disc research and comparing these with the human disc. To aid in the selection of appropriate animal models for disc research by measuring torsional mechanical properties and collagen content. There is lack of data and variability in testing protocols for comparing animal and human disc torsion mechanics and collagen content. Intervertebral disc torsion mechanics were measured and normalized by disc height and polar moment of inertia for 11 disc types in 8 mammalian species: the calf, pig, baboon, goat, sheep, rabbit, rat, and mouse lumbar discs, and cow, rat, and mouse caudal discs. Collagen content was measured and normalized by dry weight for the same discs except the rat and the mouse. Collagen fiber stretch in torsion was calculated using an analytical model. Measured torsion parameters varied by several orders of magnitude across the different species. After geometric normalization, only the sheep and pig discs were statistically different from human discs. Fiber stretch was found to be highly dependent on the assumed initial fiber angle. The collagen content of the discs was similar, especially in the outer annulus where only the calf and goat discs were statistically different from human. Disc collagen content did not correlate with torsion mechanics. Disc torsion mechanics are comparable with human lumbar discs in 9 of 11 disc types after normalization by geometry. The normalized torsion mechanics and collagen content of the multiple animal discs presented are useful for selecting and interpreting results for animal disc models. Structural organization of the fiber angle may explain the differences that were noted between species after geometric normalization.

  3. Marshburn works with Marangoni Experiment Hardware in Kibo

    NASA Image and Video Library

    2013-03-19

    ISS035e006147 (19 March 2013) --- NASA astronaut Tom Marshburn, Expedition 35 flight engineer, works on the Marangoni Inside core cleaning in the Kibo Japanese Experiment Module onboard the Earth-orbiting International Space Station. Marangoni convection is the flow driven by the presence of a surface tension gradient which can be produced by temperature difference at a liquid/gas interface. The convection in liquid bridge of silicone oil is generated by heating the one disc higher than the other. Scientists are observing flow patterns of how fluids move to learn more about how heat is transferred in microgravity.

  4. On the differences in element abundances of energetic ions from corotating events and from large solar events

    NASA Technical Reports Server (NTRS)

    Reames, D. V.; Richardson, I. G.; Barbier, L. M.

    1991-01-01

    The abundances of energetic ions accelerated from high-speed solar wind streams by shock waves formed at corotating interaction regions (CIRs) where high-speed streams overtake the lower-speed solar wind are examined. The observed element abundances appear to represent those of the high-speed solar wind, unmodified by the shock acceleration. These abundances, relative to those in the solar photosphere, are organized by the first ionization potential (FIP) of the ions in a way that is different from the FIP effect commonly used to describe differences between abundances in the solar photosphere and those in the solar corona, solar energetic particles (SEPs), and the low-speed solar wind. In contrast, the FIP effect of the ion abundances in the CIR events is characterized by a smaller amplitude of the differences between high-FIP and low-FIP ions and by elevated abundances of He, C, and S.

  5. Angular velocity of gravitational radiation from precessing binaries and the corotating frame

    NASA Astrophysics Data System (ADS)

    Boyle, Michael

    2013-05-01

    This paper defines an angular velocity for time-dependent functions on the sphere and applies it to gravitational waveforms from compact binaries. Because it is geometrically meaningful and has a clear physical motivation, the angular velocity is uniquely useful in helping to solve an important—and largely ignored—problem in models of compact binaries: the inverse problem of deducing the physical parameters of a system from the gravitational waves alone. It is also used to define the corotating frame of the waveform. When decomposed in this frame, the waveform has no rotational dynamics and is therefore as slowly evolving as possible. The resulting simplifications lead to straightforward methods for accurately comparing waveforms and constructing hybrids. As formulated in this paper, the methods can be applied robustly to both precessing and nonprecessing waveforms, providing a clear, comprehensive, and consistent framework for waveform analysis. Explicit implementations of all these methods are provided in accompanying computer code.

  6. Mirroring of fast solar flare electrons on a downstream corotating interaction region

    NASA Technical Reports Server (NTRS)

    Anderson, K. A.; Sommers, J.; Lin, R. P.; Pick, M.; Chaizy, P.; Murphy, N.; Smith, E. J.; Phillips, J. L.

    1995-01-01

    We discuss an example of confinement of fast solar electrons by a discrete solar wind-interplanetary magnetic field structure on February 22, 1991. The structure is about 190,000 km in width and is clearly defined by changes in the direction of the magnetic field at the Ulysses spacecraft. This structure carries electrons moving toward the Sun as well as away from the Sun. A loss cone in the angular distribution of the fast electrons shows that mirroring, presumably magnetic, takes place downstream from the spacecraft. Following passage of this narrow structure, the return flux vanishes for 21 min after which time the mirroring resumes and persists for several hours. We identify the enhanced magnetic field region lying downstream from the Ulysses spacecraft that is responsible for the mirroring to be a corotating stream interaction region. Backstreaming suprathermal electron measurements by the Los Alamos National Laboratory plasma experiment on the Ulysses spacecraft support this interpretation.

  7. Spectral Properties of Suprathermal Heavy Ions in Corotating Interaction Regions at 1 AU

    NASA Astrophysics Data System (ADS)

    Filwett, R. J.; Desai, M. I.; Ebert, R. W.; Dayeh, M. A.

    2017-12-01

    Suprathermal particles are an important constituent of the seed population that is accelerated in interplanetary events. Despite their importance, the origin of these particles and the acceleration mechanism they undergo is poorly understood. Using data from Wind/EPACT/STEP and ACE/ULEIS we examined the 0.03-3.0MeV nucleon-1 H-Fe spectra in 41 corotating interaction regions (CIRs). We fit power-law functions to the data to obtain the spectral index γ and break energy Eo. We examined the energy and species-to-species variation of both γ and Eo. Our results show Eo decreases systematically with decreasing Q/M scaling as (Q/M)α. Additionally, we compared the expected compression ratio, H, as determined by γ, to the observed magnetic and density compression ratios. We discuss these results and their implications to local vs. non-local suprathermal particle acceleration and transport in CIRs.

  8. The outer magnetosphere. [composition and comparison with earth

    NASA Technical Reports Server (NTRS)

    Schardt, A. W.; Behannon, K. W.; Lepping, R. P.; Carbary, J. F.; Eviatar, A.; Siscoe, G. L.

    1984-01-01

    Similarities between the Saturnian and terrestrial outer magnetosphere are examined. Saturn, like earth, has a fully developed magnetic tail, 80 to 100 RS in diameter. One major difference between the two outer magnetospheres is the hydrogen and nitrogen torus produced by Titan. This plasma is, in general, convected in the corotation direction at nearly the rigid corotation speed. Energies of magnetospheric particles extend to above 500 keV. In contrast, interplanetary protons and ions above 2 MeV have free access to the outer magnetosphere to distances well below the Stormer cutoff. This access presumably occurs through the magnetotail. In addition to the H+, H2+, and H3+ ions primarily of local origin, energetic He, C, N, and O ions are found with solar composition. Their flux can be substantially enhanced over that of interplanetary ions at energies of 0.2 to 0.4 MeV/nuc.

  9. Muon and neutron observations in connection with the corotating interaction regions

    NASA Astrophysics Data System (ADS)

    da Silva, M. R.; Dal Lago, A.; Echer, E.; de Lucas, A.; Gonzalez, W. D.; Schuch, N. J.; Munakata, K.; Vieira, L. E. A.; Guarnieri, F. L.

    Ground cosmic ray observations are used for studying several kinds of interplanetary structures. The cosmic ray data has different responses to each kind of interplanetary structure. This article has as objective to study cosmic ray muon and neutron signatures due to the passage of corotating interaction region (CIR) in the interplanetary medium, and identify the signatures in the cosmic ray data due to these events. The cosmic ray muon data used in this work are recorded by the multidirectional muon detector installed at INPE’s Observatório Espacial do Sul OES/CRSPE/INPE-MCT, in São Martinho da Serra, RS (Brazil) and the neutron data was recorded by the neutron monitor installed in Newark (USA). The CIR events were selected in the period from 2001 to 2004. CIRs clearly affect cosmic ray density in the interplanetary medium in the Earth’s vicinity, where the magnetic field plays an important role.

  10. GAUDI: A Preparatory Archive for the COROT Mission

    NASA Astrophysics Data System (ADS)

    Solano, E.; Catala, C.; Garrido, R.; Poretti, E.; Janot-Pacheco, E.; Gutiérrez, R.; González, R.; Mantegazza, L.; Neiner, C.; Fremat, Y.; Charpinet, S.; Weiss, W.; Amado, P. J.; Rainer, M.; Tsymbal, V.; Lyashko, D.; Ballereau, D.; Bouret, J. C.; Hua, T.; Katz, D.; Lignières, F.; Lüftinger, T.; Mittermayer, P.; Nesvacil, N.; Soubiran, C.; van't Veer-Menneret, C.; Goupil, M. J.; Costa, V.; Rolland, A.; Antonello, E.; Bossi, M.; Buzzoni, A.; Rodrigo, C.; Aerts, C.; Butler, C. J.; Guenther, E.; Hatzes, A.

    2005-01-01

    The GAUDI database (Ground-based Asteroseismology Uniform Database Interface) is a preparatory archive for the COROT (Convection, Rotation, and Planetary Transits) mission developed at the Laboratorio de Astrofísica Espacial y Física Fundamental (Laboratory for Space Astrophysics and Theoretical Physics, Spain). Its intention is to make the ground-based observations obtained in preparation of the asteroseismology program available in a simple and efficient way. It contains spectroscopic and photometric data together with inferred physical parameters for more than 1500 objects gathered since 1998 January 1998 in 6 years of observational campaigns. In this paper, the main functions and characteristics of the system are described. Based on observations collected at La Silla (ESO proposals 67.D-0169, 69.D-0166, and 70.D-0110), Telescopio Nazionale Galileo (proposal 6-20-068), Observatoire de Haute-Provence, the South African Astronomical Observatory, Tautenburg Observatory, and Sierra Nevada Observatory.

  11. Study of MRI in stratified viscous plasma configuration

    NASA Astrophysics Data System (ADS)

    Carlevaro, Nakia; Montani, Giovanni; Renzi, Fabrizio

    2017-02-01

    We analyze the morphology of the magneto-rotational instability (MRI) for a stratified viscous plasma disk configuration in differential rotation, taking into account the so-called corotation theorem for the background profile. In order to select the intrinsic Alfvénic nature of MRI, we deal with an incompressible plasma and we adopt a formulation of the local perturbation analysis based on the use of the magnetic flux function as a dynamical variable. Our study outlines, as consequence of the corotation condition, a marked asymmetry of the MRI with respect to the equatorial plane, particularly evident in a complete damping of the instability over a positive critical height on the equatorial plane. We also emphasize how such a feature is already present (although less pronounced) even in the ideal case, restoring a dependence of the MRI on the stratified morphology of the gravitational field.

  12. Modeling the Enceladus Plasma and Neutral Torus in Saturn's Inner Magnetosphere

    NASA Astrophysics Data System (ADS)

    Jia, Yingdong; Russell, C. T.; Khurana, K. K.; Gombosi, T. I.

    2010-10-01

    Saturn's moon Enceladus, produces hundreds of kilograms of water vapor every second. These water molecules form a neutral torus which is comparable to the Io torus in the Jovian system. These molecules become ionized producing a plasma disk in the inner magnetosphere of Saturn which exchanges momentum with the "corotating” magnetospheric plasma. To balance the centripetal force of this plasma disk, Saturn's magnetic field is stretched in the radial direction and to accelerate the azimuthal speed to corotational values, the field is stretched in the azimuthal direction. At Enceladus the massive pickup of new ions from its plume slows down the corotating flow and breaks this force balance, causing plasma flows in the radial direction. Such radial flows in the inner magnetosphere of Saturn are supported by Cassini observations using various particle and field instruments. In this study we develop a global model of the inner magnetosphere of Saturn in an attempt to reproduce such processes.

  13. [Research progress of intervertebral disc endogenous stem cells for intervertebral disc regeneration].

    PubMed

    Liang, Hang; Deng, Xiangyu; Shao, Zengwu

    2017-10-01

    To summarize the research progress of intervertebral disc endogenous stem cells for intervertebral disc regeneration and deduce the therapeutic potential of endogenous repair for intervertebral disc degeneration. The original articles about intervertebral disc endogenous stem cells for intervertebral disc regeneration were extensively reviewed; the reparative potential in vivo and the extraction and identification in vitro of intervertebral disc endogenous stem cells were analyzed; the prospect of endogenous stem cells for intervertebral disc regeneration was predicted. Stem cell niche present in the intervertebral discs, from which stem cells migrate to injured tissues and contribute to tissues regeneration under certain specific microenvironment. Moreover, the migration of stem cells is regulated by chemokines system. Tissue specific progenitor cells have been identified and successfully extracted and isolated. The findings provide the basis for biological therapy of intervertebral disc endogenous stem cells. Intervertebral disc endogenous stem cells play a crucial role in intervertebral disc regeneration. Therapeutic strategy of intervertebral disc endogenous stem cells is proven to be a promising biological approach for intervertebral disc regeneration.

  14. Comparison of Animal Discs Used in Disc Research to Human Lumbar Disc: Torsion Mechanics and Collagen Content

    PubMed Central

    Showalter, Brent L.; Beckstein, Jesse C.; Martin, John T.; Beattie, Elizabeth E.; Orías, Alejandro A. Espinoza; Schaer, Thomas P.; Vresilovic, Edward J.; Elliott, Dawn M.

    2012-01-01

    Study Design Experimental measurement and normalization of in vitro disc torsion mechanics and collagen content for several animal species used in intervertebral disc research and comparing these to the human disc. Objective To aid in the selection of appropriate animal models for disc research by measuring torsional mechanical properties and collagen content. Summary of Background Data There is lack of data and variability in testing protocols for comparing animal and human disc torsion mechanics and collagen content. Methods Intervertebral disc torsion mechanics were measured and normalized by disc height and polar moment of inertia for 11 disc types in 8 mammalian species: the calf, pig, baboon, goat, sheep, rabbit, rat, and mouse lumbar, and cow, rat, and mouse caudal. Collagen content was measured and normalized by dry weight for the same discs except the rat and mouse. Collagen fiber stretch in torsion was calculated using an analytical model. Results Measured torsion parameters varied by several orders of magnitude across the different species. After geometric normalization, only the sheep and pig discs were statistically different from human. Fiber stretch was found to be highly dependent on the assumed initial fiber angle. The collagen content of the discs was similar, especially in the outer annulus where only the calf and goat discs were statistically different from human. Disc collagen content did not correlate with torsion mechanics. Conclusion Disc torsion mechanics are comparable to human lumbar discs in 9 of 11 disc types after normalization by geometry. The normalized torsion mechanics and collagen content of the multiple animal discs presented is useful for selecting and interpreting results for animal models of the disc. Structural composition of the disc, such as initial fiber angle, may explain the differences that were noted between species after geometric normalization. PMID:22333953

  15. Large Amplitude IMF Fluctuations in Corotating Interaction Regions: Ulysses at Midlatitudes

    NASA Technical Reports Server (NTRS)

    Tsurutani, Bruce T.; Ho, Christian M.; Arballo, John K.; Goldstein, Bruce E.; Balogh, Andre

    1995-01-01

    Corotating Interaction Regions (CIRs), formed by high-speed corotating streams interacting with slow speed streams, have been examined from -20 deg to -36 deg heliolatitudes. The high-speed streams emanate from a polar coronal hole that Ulysses eventually becomes fully embedded in as it travels towards the south pole. We find that the trailing portion of the CIR, from the interface surface (IF) to the reverse shock (RS), contains both large amplitude transverse fluctuations and magnitude fluctuations. Similar fluctuations have been previously noted to exist within CIRs detected in the ecliptic plane, but their existence has not been explained. The normalized magnetic field component variances within this portion of the CIR and in the trailing high-speed stream are approximately the same, indicating that the fluctuations in the CIR are compressed Alfven waves. Mirror mode structures with lower intensities are also observed in the trailing portion of the CIR, presumably generated from a local instability driven by free energy associated with compression of the high-speed solar wind plasma. The mixture of these two modes (compressed Alfven waves and mirror modes) plus other modes generated by three wave processes (wave-shock interactions) lead to a lower Alfvenicity within the trailing portion of the CfR than in the high-speed stream proper. The results presented in this paper suggest a mechanism for generation of large amplitude B(sub z) fluctuations within CIRS. Such phenomena have been noted to be responsible for the generation of moderate geomagnetic storms during the declining phase of the solar cycle.

  16. The Origin of the Moon Within a Terrestrial Synestia

    NASA Astrophysics Data System (ADS)

    Lock, Simon J.; Stewart, Sarah T.; Petaev, Michail I.; Leinhardt, Zoë; Mace, Mia T.; Jacobsen, Stein B.; Cuk, Matija

    2018-04-01

    The giant impact hypothesis remains the leading theory for lunar origin. However, current models struggle to explain the Moon's composition and isotopic similarity with Earth. Here we present a new lunar origin model. High-energy, high-angular-momentum giant impacts can create a post-impact structure that exceeds the corotation limit, which defines the hottest thermal state and angular momentum possible for a corotating body. In a typical super-corotation-limit body, traditional definitions of mantle, atmosphere, and disk are not appropriate, and the body forms a new type of planetary structure, named a synestia. Using simulations of cooling synestias combined with dynamic, thermodynamic, and geochemical calculations, we show that satellite formation from a synestia can produce the main features of our Moon. We find that cooling drives mixing of the structure, and condensation generates moonlets that orbit within the synestia, surrounded by tens of bars of bulk silicate Earth vapor. The moonlets and growing moon are heated by the vapor until the first major element (Si) begins to vaporize and buffer the temperature. Moonlets equilibrate with bulk silicate Earth vapor at the temperature of silicate vaporization and the pressure of the structure, establishing the lunar isotopic composition and pattern of moderately volatile elements. Eventually, the cooling synestia recedes within the lunar orbit, terminating the main stage of lunar accretion. Our model shifts the paradigm for lunar origin from specifying a certain impact scenario to achieving a Moon-forming synestia. Giant impacts that produce potential Moon-forming synestias were common at the end of terrestrial planet formation.

  17. ON THE HORSESHOE DRAG OF A LOW-MASS PLANET. II. MIGRATION IN ADIABATIC DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masset, F. S.; Casoli, J., E-mail: frederic.masset@cea.f, E-mail: jules.casoli@cea.f, E-mail: frederic.masset@cea.f

    2009-09-20

    We evaluate the horseshoe drag exerted on a low-mass planet embedded in a gaseous disk, assuming the disk's flow in the co-orbital region to be adiabatic. We restrict this analysis to the case of a planet on a circular orbit, and we assume a steady flow in the corotating frame. We also assume that the corotational flow upstream of the U-turns is unperturbed, so that we discard saturation effects. In addition to the classical expression for the horseshoe drag in barotropic disks, which features the vortensity gradient across corotation, we find an additional term which scales with the entropy gradient,more » and whose amplitude depends on the perturbed pressure at the stagnation point of the horseshoe separatrices. This additional torque is exerted by evanescent waves launched at the horseshoe separatrices, as a consequence of an asymmetry of the horseshoe region. It has a steep dependence on the potential's softening length, suggesting that the effect can be extremely strong in the three-dimensional case. We describe the main properties of the co-orbital region (the production of vortensity during the U-turns, the appearance of vorticity sheets at the downstream separatrices, and the pressure response), and we give torque expressions suitable to this regime of migration. Side results include a weak, negative feedback on migration, due to the dependence of the location of the stagnation point on the migration rate, and a mild enhancement of the vortensity-related torque at a large entropy gradient.« less

  18. Monitoring of the turbulent solar wind with the upgraded Large Phased Array of the Lebedev Institute of Physics: First results

    NASA Astrophysics Data System (ADS)

    Shishov, V. I.; Chashei, I. V.; Oreshko, V. V.; Logvinenko, S. V.; Tyul'bashev, S. A.; Subaev, I. A.; Svidskii, P. M.; Lapshin, V. B.; Dagkesamanskii, R. D.

    2016-12-01

    The design properties and technical characteristics of the upgraded Large Phased Array (LPA) are briefly described. The results of an annual cycle of observations of interplanetary scintillations of radio sources on the LPA with the new 96-beam BEAM 3 system are presented. Within a day, about 5000 radio sources displaying second-timescale fluctuations in their flux densities due to interplanetary scintillations were observed. At present, the parameters of many of these radio sources are unknown. Therefore, the number of sources with root-mean-square flux-density fluctuations greater than 0.2 Jy in a 3° × 3° area of sky was used to characterize the scintillation level. The observational data obtained during the period of the maximum of solar cycle 24 can be interpreted using a three-component model for the spatial structure of the solar wind, consisting of a stable global component, propagating disturbances, and corotating structures. The global component corresponds to the spherically symmetric structure of the distribution of the turbulent interplanetary plasma. Disturbances propagating from the Sun are observed against the background of the global structure. Propagating disturbances recorded at heliocentric distances of 0.4-1 AU and at all heliolatitudes reach the Earth's orbit one to two days after the scintillation enhancement. Enhancements of ionospheric scintillations are observed during night-time. Corotating disturbances have a recurrence period of 27 d . Disturbances of the ionosphere are observed as the coronal base of a corotating structure approaches the western edge of the solar limb.

  19. Are pulsars spun up or down by SASI spiral modes?

    NASA Astrophysics Data System (ADS)

    Kazeroni, Rémi; Guilet, Jérôme; Foglizzo, Thierry

    2017-10-01

    Pulsars may either be spun up or down by hydrodynamic instabilities during the supernova explosion of massive stars. Besides rapidly rotating cases related to bipolar explosions, stellar rotation may affect the explosion of massive stars in the more common situations where the centrifugal force is minor. Using 2D simulations of a simplified set-up in cylindrical geometry, we examine the impact of rotation on the standing accretion shock instability (SASI) and the corotation instability, also known as low-T/|W|. The influence of rotation on the saturation amplitude of these instabilities depends on the specific angular momentum in the accretion flow and the ratio of the shock to the neutron star radii. The spiral mode of SASI becomes more vigorous with faster rotation only if this ratio is large enough. A corotation instability develops at large rotation rates and impacts the dynamics more dramatically, leading to a strong one-armed spiral wave. Non-axisymmetric instabilities are able to redistribute angular momentum radially and affect the pulsar spin at birth. A systematic study of the relationship between the core rotation period of the progenitor and the initial pulsar spin is performed. Stellar rotation rates for which pulsars are spun up or down by SASI are estimated. Rapidly spinning progenitors are modestly spun down by spiral modes, less than ˜30 per cent, when a corotation instability develops. Given the observational constraints on pulsar spin periods at birth, this suggests that rapid rotation might not play a significant hydrodynamic role in most core-collapse supernovae.

  20. Modeling Enceladus and its torus in Saturn's magnetosphere (Invited)

    NASA Astrophysics Data System (ADS)

    Jia, Y.; Russell, C. T.; Khurana, K. K.; Gombosi, T. I.

    2010-12-01

    The dynamics of the saturnian magnetosphere is controlled by the planetary spin at a rate of about 10.5 hours. The second icy moon of Saturn, Enceladus, orbits at 4 planetary radii deep in the inner magnetosphere. Enceladus creates neutrals at a rate of hundreds of kilograms per second. These neutrals are ionized and picked up by the ambient plasma and spun up to the corotational velocity to form a plasma disk. Consequently, the gas and plasma density peak close to the Enceladus orbit. In the gas torus, the majority of the gas particles travel at their keplerian speed of 14 km/s, while the bulk of the plasma rotates at 30-40 km/s as a response to the rigid spinning of the saturnian magnetic field. The corotating plasma torus feels a centrifugal force that is balanced by the magnetic tension force. To balance the centripetal force of this plasma disk, Saturn’s magnetic field is stretched in both radial and azimuthal directions. At Enceladus the massive pickup of new ions from its plume slows down the corotating flow and breaks this force balance to cause plasma flows in the radial direction of Saturn. Such radial flows in the inner magnetosphere of Saturn are supported by Cassini observations using various particle and field instruments. In this study we summarize the lessons learned from recent Cassini observations and our numerical simulation effort of the local interactions at Enceladus, and model the inner magnetosphere of Saturn to reproduce the force balance processes. The neutral torus is treated as a background in this axis-symmetric model.

  1. An Experimental Study of Penny-shaped Fluid-driven Cracks in an Elastic Matrix

    NASA Astrophysics Data System (ADS)

    Stone, Howard

    2015-11-01

    When a pressurized fluid is injected into an elastic matrix, the fluid generates a fracture that grows along a plane and forms a fluid-filled disc-like shape. For example, such problems occur in various natural and industrial applications involving the subsurface of Earth, such as hydraulic fracturing operations. We report a laboratory study of such a fluid-driven crack in a gelatin matrix, study the crack shape as a function of time, and investigate the influence of different experimental parameters such as the injection flow rate, Young's modulus of the matrix, and fluid viscosity. We find that the crack radius increases with time as a power law, which has been predicted both for the limit where viscous effects in the flow along the crack opening control the rate of crack propagation, as well as the limit where fracture toughness controls crack propagation. We vary experimental parameters to probe the physical limits and highlight that for our typical parameters both effects can be significant. Also, we measure the time evolution of crack shape, which has not been studied before. The rescaled crack shapes collapse at longer times, based on an appropriate scaling argument, and again we compare the scaling arguments in different physical limits. The gelatin system provides a useful laboratory model for further studies of fluid-driven cracks, some of which we will mention as they are inspired by the physics of hydraulic fracturing. This work is part of the PhD thesis of Ching-Yao Lai and is a collaboration with Drs. Zhong Zheng and Jason Wexler (Princeton University) and Professor Emilie Dressaire (NYU). Department of Mechanical and Aerospace Engineering.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pugliese, D.; Stuchlík, Z., E-mail: d.pugliese.physics@gmail.com, E-mail: zdenek.stuchlik@physics.cz

    We investigate a model of a ringed accretion disk, made up by several rings rotating around a supermassive Kerr black hole attractor. Each toroid of the ringed disk is governed by the general relativity hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. Properties of the tori can then be determined by an appropriately defined effective potential reflecting the background Kerr geometry and the centrifugal effects. The ringed disks could be created in various regimes during the evolution of matter configurations around supermassive black holes. Therefore, both corotating and counterrotating rings have to be considered as being a constituentmore » of the ringed disk. We provide constraints on the model parameters for the existence and stability of various ringed configurations and discuss occurrence of accretion onto the Kerr black hole and possible launching of jets from the ringed disk. We demonstrate that various ringed disks can be characterized by a maximum number of rings. We present also a perturbation analysis based on evolution of the oscillating components of the ringed disk. The dynamics of the unstable phases of the ringed disk evolution seems to be promising in relation to high-energy phenomena demonstrated in active galactic nuclei.« less

  3. A dispersion model for predicting the extent of starch liquefaction by Bacillus licheniformis alpha-amylase during reactive extrusion.

    PubMed

    Komolprasert, V; Ofoli, R Y

    1991-03-25

    A Baker-Perkins corotating twin screw extruder was used as a bioreactor to hydrolyze pregelantinized corn starch by themophilic Bacillus licheniformis alpha-amylase. The extruder was modeled as a tube, and characterized as a closed system. This characterization is not in the thermodynamic sense; rather, it relates to the profile of a tracer fluid upon entry to and exit from the reaction zone. The reaction kinetics were modeled by a modified first-order equation, which allowed the dispersion equation to be solved analytically with the Danckwerts boundary condition. Data from several extrusion runs were super-imposed to obtain a profile to evaluate the model. The dispersion number, determined from the first and second moments of the RTD curve, was primarily a function of the length of the reaction zone. There was good agreement between predictions and experimental data, especially at low dispersion numbers. In general, the axial dispersion model appears to be suitable for analysis of enzymatic reactions of up to 30% conversion. At a fixed flow rate and constant temperature, the extent of starch conversion depends significantly on moisture content, residence time and enzyme dosage, but not on screw speed.

  4. Exact Analytic Solution for a Ballistic Orbiting Wind

    NASA Astrophysics Data System (ADS)

    Wilkin, Francis P.; Hausner, Harry

    2017-07-01

    Much theoretical and observational work has been done on stellar winds within binary systems. We present a new solution for a ballistic wind launched from a source in a circular orbit. The solution is that of a single wind—no second wind is included in the system and the shocks that arise are those due to the orbiting wind interacting with itself. Our method emphasizes the curved streamlines in the corotating frame, where the flow is steady-state, allowing us to obtain an exact solution for the mass density at all pre-shock locations. Assuming an initially isotropic wind, fluid elements launched from the interior hemisphere of the wind will be the first to cross other streamlines, resulting in a spiral structure bounded by two shock surfaces. Streamlines from the outer wind hemisphere later intersect these shocks as well. An analytic solution is obtained for the geometry of the two shock surfaces. Although the inner and outer shock surfaces asymptotically trace Archimedean spirals, our tail solution suggests many crossings where the shocks overlap, beyond which the analytic solution cannot be continued. Our solution can be readily extended to an initially anisotropic wind.

  5. Do inertial wave interactions control the rate of energy dissipation of rotating turbulence?

    NASA Astrophysics Data System (ADS)

    Cortet, Pierre-Philippe; Campagne, Antoine; Machicoane, Nathanael; Gallet, Basile; Moisy, Frederic

    2015-11-01

    The scaling law of the energy dissipation rate, ɛ ~U3 / L (with U and L the characteristic velocity and lengthscale), is one of the most robust features of fully developed turbulence. How this scaling is affected by a background rotation is still a controversial issue with importance for geo and astrophysical flows. At asymptotically small Rossby numbers Ro = U / ΩL , i.e. in the weakly nonlinear limit, wave-turbulence arguments suggest that ɛ should be reduced by a factor Ro . Such scaling has however never been evidenced directly, neither experimentally nor numerically. We report here direct measurements of the injected power, and therefore of ɛ, in an experiment where a propeller is rotating at a constant rate in a large volume of fluid rotating at Ω. In co-rotation, we find a transition between the wave-turbulence scaling at small Ro and the classical Kolmogorov law at large Ro . The transition between these two regimes is characterized from experiments varying the propeller and tank dimensions. In counter-rotation, the scenario is much richer with the observation of an additional peak of dissipation, similar to the one found in Taylor-Couette experiments.

  6. Role of angular momentum and cosmic censorship in (2+1)-dimensional rotating shell collapse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, Robert B.; Oh, John J.; Park, Mu-In

    2009-03-15

    We study the gravitational collapse problem of rotating shells in three-dimensional Einstein gravity with and without a cosmological constant. Taking the exterior and interior metrics to be those of stationary metrics with asymptotically constant curvature, we solve the equations of motion for the shells from the Darmois-Israel junction conditions in the corotating frame. We study various collapse scenarios with arbitrary angular momentum for a variety of geometric configurations, including anti-de Sitter, de Sitter, and flat spaces. We find that the collapsing shells can form a BTZ black hole, a three-dimensional Kerr-dS spacetime, and an horizonless geometry of point masses undermore » certain initial conditions. For pressureless dust shells, the curvature singularity is not formed due to the angular momentum barrier near the origin. However when the shell pressure is nonvanishing, we find that for all types of shells with polytropic-type equations of state (including the perfect fluid and the generalized Chaplygin gas), collapse to a naked singularity is possible under generic initial conditions. We conclude that in three dimensions angular momentum does not in general guard against violation of cosmic censorship.« less

  7. The CoRoT B-type binary HD 50230: a prototypical hybrid pulsator with g-mode period and p-mode frequency spacings⋆

    NASA Astrophysics Data System (ADS)

    Degroote, P.; Aerts, C.; Michel, E.; Briquet, M.; Pápics, P. I.; Amado, P.; Mathias, P.; Poretti, E.; Rainer, M.; Lombaert, R.; Hillen, M.; Morel, T.; Auvergne, M.; Baglin, A.; Baudin, F.; Catala, C.; Samadi, R.

    2012-06-01

    Context. B-type stars are promising targets for asteroseismic modelling, since their frequency spectrum is relatively simple. Aims: We deduce and summarise observational constraints for the hybrid pulsator, HD 50230, earlier reported to have deviations from a uniform period spacing of its gravity modes. The combination of spectra and a high-quality light curve measured by the CoRoT satellite allow a combined approach to fix the position of HD 50230 in the HR diagram. Methods: To describe the observed pulsations, classical Fourier analysis was combined with short-time Fourier transformations and frequency spacing analysis techniques. Visual spectra were used to constrain the projected rotation rate of the star and the fundamental parameters of the target. In a first approximation, the combined information was used to interpret multiplets and spacings to infer the true surface rotation rate and a rough estimate of the inclination angle. Results: We identify HD 50230 as a spectroscopic binary and characterise the two components. We detect the simultaneous presence of high-order g modes and low-order p and g-modes in the CoRoT light curve, but were unable to link them to line profile variations in the spectroscopic time series. We extract the relevant information from the frequency spectrum, which can be used for seismic modelling, and explore possible interpretations of the pressure mode spectrum. The CoRoT space mission was developed and is operated by the French space agency CNES, with participation of ESA's RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain. Based on observations made with the ESO telescopes at La Silla Observatory under the ESO Large Programme LP182.D-0356, and on observations made with the Mercator Telescope, operated on the island of La Palma by the Flemish Community, at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, and on observations obtained with the HERMES spectrograph, which is supported by the Fund for Scientific Research of Flanders (FWO), Belgium, the Research Council of K.U. Leuven, Belgium, the Fonds National de la Recherche Scientifique (FNRS), Belgium, the Royal Observatory of Belgium, the Observatoire de Genève, Switzerland and the Thüringer Landessternwarte Tautenburg, Germany.Appendix A is available in electronic form at http://www.aanda.org

  8. CSI 2264: Characterizing Young Stars in NGC 2264 with Stochastically Varying Light Curves

    NASA Astrophysics Data System (ADS)

    Stauffer, John; Cody, Ann Marie; Rebull, Luisa; Hillenbrand, Lynne A.; Turner, Neal J.; Carpenter, John; Carey, Sean; Terebey, Susan; Morales-Calderón, María; Alencar, Silvia H. P.; McGinnis, Pauline; Sousa, Alana; Bouvier, Jerome; Venuti, Laura; Hartmann, Lee; Calvet, Nuria; Micela, Giusi; Flaccomio, Ettore; Song, Inseok; Gutermuth, Rob; Barrado, David; Vrba, Frederick J.; Covey, Kevin; Herbst, William; Gillen, Edward; Medeiros Guimarães, Marcelo; Bouy, Herve; Favata, Fabio

    2016-03-01

    We provide CoRoT and Spitzer light curves and other supporting data for 17 classical T Tauri stars in NGC 2264 whose CoRoT light curves exemplify the “stochastic” light curve class as defined in 2014 by Cody et al. The most probable physical mechanism to explain the optical variability within this light curve class is time-dependent mass accretion onto the stellar photosphere, producing transient hot spots. Where we have appropriate spectral data, we show that the veiling variability in these stars is consistent in both amplitude and timescale with the optical light curve morphology. The veiling variability is also well-correlated with the strength of the He I 6678 Å emission line, predicted by models to arise in accretion shocks on or near the stellar photosphere. Stars with accretion burst light curve morphology also have variable mass accretion. The stochastic and accretion burst light curves can both be explained by a simple model of randomly occurring flux bursts, with the stochastic light curve class having a higher frequency of lower amplitude events. Members of the stochastic light curve class have only moderate mass accretion rates. Their Hα profiles usually have blueshifted absorption features, probably originating in a disk wind. The lack of periodic signatures in the light curves suggests that little of the variability is due to long-lived hot spots rotating into or out of our line of sight; instead, the primary driver of the observed photometric variability is likely to be instabilities in the inner disk that lead to variable mass accretion. Based on data from the Spitzer and CoRoT missions, as well as the Canada-France-Hawaii Telescope (CFHT) MegaCam CCD, and the European Southern Observatory Very Large Telescope, Paranal Chile, under program 088.C-0239. The CoRoT space mission was developed and is operated by the French space agency CNES, with particpiation of ESA’s RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain. MegaCam is a joint project of CFHT and CEA/DAPNIA, which is operated by the National Research Council (NRC) of Canada, the Institute National des Sciences de l’Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii.

  9. CSI 2264: Accretion process in classical T Tauri stars in the young cluster NGC 2264

    NASA Astrophysics Data System (ADS)

    Sousa, A. P.; Alencar, S. H. P.; Bouvier, J.; Stauffer, J.; Venuti, L.; Hillenbrand, L.; Cody, A. M.; Teixeira, P. S.; Guimarães, M. M.; McGinnis, P. T.; Rebull, L.; Flaccomio, E.; Fürész, G.; Micela, G.; Gameiro, J. F.

    2016-02-01

    Context. NGC 2264 is a young stellar cluster (~3 Myr) with hundreds of low-mass accreting stars that allow a detailed analysis of the accretion process taking place in the pre-main sequence. Aims: Our goal is to relate the photometric and spectroscopic variability of classical T Tauri stars to the physical processes acting in the stellar and circumstellar environment, within a few stellar radii from the star. Methods: NGC 2264 was the target of a multiwavelength observational campaign with CoRoT, MOST, Spitzer, and Chandra satellites and photometric and spectroscopic observations from the ground. We classified the CoRoT light curves of accreting systems according to their morphology and compared our classification to several accretion diagnostics and disk parameters. Results: The morphology of the CoRoT light curve reflects the evolution of the accretion process and of the inner disk region. Accretion burst stars present high mass-accretion rates and optically thick inner disks. AA Tau-like systems, whose light curves are dominated by circumstellar dust obscuration, show intermediate mass-accretion rates and are located in the transition of thick to anemic disks. Classical T Tauri stars with spot-like light curves correspond mostly to systems with a low mass-accretion rate and low mid-IR excess. About 30% of the classical T Tauri stars observed in the 2008 and 2011 CoRoT runs changed their light-curve morphology. Transitions from AA Tau-like and spot-like to aperiodic light curves and vice versa were common. The analysis of the Hα emission line variability of 58 accreting stars showed that 8 presented a periodicity that in a few cases was coincident with the photometric period. The blue and red wings of the Hα line profiles often do not correlate with each other, indicating that they are strongly influenced by different physical processes. Classical T Tauri stars have a dynamic stellar and circumstellar environment that can be explained by magnetospheric accretion and outflow models, including variations from stable to unstable accretion regimes on timescales of a few years. Full Tables 2 and 3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/586/A47

  10. F Ring Core Stability: Corotation Resonance Plus Antiresonance

    NASA Astrophysics Data System (ADS)

    Cuzzi, Jeffrey N.; Marouf, Essam; French, Richard; Jacobson, Robert

    2014-11-01

    The decades-or-longer stability of the narrow F Ring core in a sea of orbital chaos appears to be due to an unusual combination of traditional corotation resonance and a novel kind of “antiresonance”. At a series of specific locations in the F Ring region, apse precession between synodic encounters with Prometheus allows semimajor axis perturbations to promptly cancel before significant orbital period changes can occur (Cuzzi et al. 2014, Icarus 232, 157-175). This cancellation fails for particles that encounter Prometheus when it is near its apoapse, especially during periods of antialignment of its apse with that of the F Ring. At these times, the strength of the semimajor axis perturbation is large (tens of km) and highly nonsinusoidal in encounter longitude, making it impossible to cancel promptly on a subsequent encounter and leading to chaotic orbital diffusion. Only particles that consistently encounter Prometheus away from its apoapse can use antiresonance to maintain stable orbits, implying that the true mean motion nF of the stable core must be defined by a corotational resonance of the form nF = nP-κP/m, where (nP, κP) are Prometheus’ mean motion and epicycle frequency. To test this hypothesis we used the fact that Cassini RSS occultations only sporadically detect a “massive” F Ring core, composed of several-cm-and-larger particles. We regressed the inertial longitudes of 24 Cassini RSS (and VGR) detections and 43 nondetections to a common epoch, using a comb of candidate nP, and then folded them modulo the anticipated m-number of the corotational resonance (Prometheus m=110 outer CER), to see if clustering appears. We find the “true F Ring core” is actually arranged in a series of short longitudinal arcs separated by nearly empty longitudes, orbiting at a well determined semimajor axis of 140222.4km (from 2005-2012 at least). Small particles seen by imaging and stellar occultations spread quickly in azimuth and obscure this clumpy structure. Small chaotic variations in the mean motion and/or apse longitude of Prometheus quickly become manifest in the F Ring core, and we suggest that the core must adapt to these changes for the F Ring to maintain stability over timescales of decades and longer.

  11. Searching for transiting circumbinary planets in CoRoT and ground-based data using CB-BLS

    NASA Astrophysics Data System (ADS)

    Ofir, A.; Deeg, H. J.; Lacy, C. H. S.

    2009-10-01

    Aims: Already from the initial discoveries of extrasolar planets it was apparent that their population and environments are far more diverse than initially postulated. Discovering circumbinary (CB) planets will have many implications, and in this context it will again substantially diversify the environments that produce and sustain planets. We search for transiting CB planets around eclipsing binaries (EBs). Methods: CB-BLS is a recently-introduced algorithm for the detection of transiting CB planets around EBs. We describe progress in search sensitivity, generality and capability of CB-BLS, and detection tests of CB-BLS on simulated data. We also describe an analytical approach for the determination of CB-BLS detection limits, and a method for the correct detrending of intrinsically-variable stars. Results: We present some blind-tests with simulated planets injected to real CoRoT data. The presented upgrades to CB-BLS allowed it to detect all the blind tests successfully, and these detections were in line with the detection limits analysis. We also correctly detrend bright eclipsing binaries from observations by the TrES planet search, and present some of the first results of applying CB-BLS to multiple real light curves from a wide-field survey. Conclusions: CB-BLS is now mature enough for its application to real data, and the presented processing scheme will serve as the template for our future applications of CB-BLS to data from wide-field surveys such as CoRoT. Being able to put constraints even on non-detection will help to determine the correct frequency of CB planets, contributing to the understanding of planet formation in general. Still, searching for transiting CB planets is still a learning experience, similarly to the state of transiting planets around single stars only a few years ago. The recent rapid progress in this front, coupled with the exquisite quality of space-based photometry, allows to realistically expect that if transiting CB planets exist - then they will soon be found. Based on observations obtained with CoRoT, a space project operated by the French Space Agency, CNES, with participation of the Science Programme of ESA, ESTEC/RSSD, Austria, Belgium, Brazil, Germany and Spain.

  12. Application of computational fluid dynamics to closed-loop bioreactors: I. Characterization and simulation of fluid-flow pattern and oxygen transfer.

    PubMed

    Littleton, Helen X; Daigger, Glen T; Strom, Peter F

    2007-06-01

    A full-scale, closed-loop bioreactor (Orbal oxidation ditch, Envirex brand technologies, Siemens, Waukesha, Wisconsin), previously examined for simultaneous biological nutrient removal (SBNR), was further evaluated using computational fluid dynamics (CFD). A CFD model was developed first by imparting the known momentum (calculated by tank fluid velocity and mass flowrate) to the fluid at the aeration disc region. Oxygen source (aeration) and sink (consumption) terms were introduced, and statistical analysis was applied to the CFD simulation results. The CFD model was validated with field data obtained from a test tank and a full-scale tank. The results indicated that CFD could predict the mixing pattern in closed-loop bioreactors. This enables visualization of the flow pattern, both with regard to flow velocity and dissolved-oxygen-distribution profiles. The velocity and oxygen-distribution gradients suggested that the flow patterns produced by directional aeration in closed-loop bioreactors created a heterogeneous environment that can result in dissolved oxygen variations throughout the bioreactor. Distinct anaerobic zones on a macroenvironment scale were not observed, but it is clear that, when flow passed around curves, a secondary spiral flow was generated. This second current, along with the main recirculation flow, could create alternating anaerobic and aerobic conditions vertically and horizontally, which would allow SBNR to occur. Reliable SBNR performance in Orbal oxidation ditches may be a result, at least in part, of such a spatially varying environment.

  13. Cerebrospinal fluid leaks following spinal or posterior fossa surgery: use of fat grafts for prevention and repair.

    PubMed

    Black, P

    2000-01-01

    Cerebrospinal fluid (CSF) leaks are relatively common following spinal or posterior fossa surgery. A midline dural tear in the spine is readily repaired by direct application of a suture. However, far-lateral or ventral dural tears are problematic. Fat is an ideal sealant because it is impermeable to water. In this paper the author reports his experience with using fat grafts for the prevention or repair of CSF leaks and proposes a technique in which a large sheet of fat, harvested from the patient's subcutaneous layer, is used to cover not only the dural tear(s) but all of the exposed dura and is tucked into the lateral recess. This procedure prevents CSF from seeping around the fat, which may be tacked to the dura with a few sutures. Fibrin glue is spread on the surface of the fat and is further covered with Surgicel or Gelfoam. For ventral dural tears (associated with procedures in which disc material is excised), fat is packed into the disc space to seal off the ventral dural leak. Leaks in the posterior fossa are managed similarly to those in the spine. Dural suture lines, following suboccipital or spinal intradural exploration, are prophylactically protected from CSF leakage in the same manner. With one exception, 27 dural tears noted during 1650 spinal procedures were successfully repaired using this technique. There was one case of postoperative CSF leakage in 150 cases in which intradural exploration for tumor or other lesions was undertaken. Both postoperative CSF leaks were controlled by applying additional skin sutures. The use of a fat graft is recommended as a rapid, effective means of prevention and repair of CSF leaks following posterior fossa and spinal surgery.

  14. Electromagnetic versus Lense-Thirring alignment of black hole accretion discs

    NASA Astrophysics Data System (ADS)

    Polko, Peter; McKinney, Jonathan C.

    2017-01-01

    Accretion discs and black holes (BHs) have angular momenta that are generally misaligned, which can lead to warped discs and bends in any jets produced. We examine whether a disc that is misaligned at large radii can be aligned more efficiently by the torque of a Blandford-Znajek (BZ) jet than by Lense-Thirring (LT) precession. To obtain a strong result, we will assume that these torques maximally align the disc, rather than cause precession, or disc tearing. We consider several disc states that include radiatively inefficient thick discs, radiatively efficient thin discs, and super-Eddington accretion discs. The magnetic field strength of the BZ jet is chosen as either from standard equipartition arguments or from magnetically arrested disc (MAD) simulations. We show that standard thin accretion discs can reach spin-disc alignment out to large radii long before LT would play a role, due to the slow infall time that gives even a weak BZ jet time to align the disc. We show that geometrically thick radiatively inefficient discs and super-Eddington discs in the MAD state reach spin-disc alignment near the BH when density profiles are shallow as in magnetohydrodynamical simulations, while the BZ jet aligns discs with steep density profiles (as in advection-dominated accretion flows) out to larger radii. Our results imply that the BZ jet torque should affect the cosmological evolution of BH spin magnitude and direction, spin measurements in active galactic nuclei and X-ray binaries, and the interpretations for Event Horizon Telescope observations of discs or jets in strong-field gravity regimes.

  15. Czech cryogenic fluid dynamics inspired by Russ Donnelly

    NASA Astrophysics Data System (ADS)

    Skrbek, Ladislav

    2015-11-01

    Following nearly five years of work along with Russ in Eugene on cryogenic turbulent convection and quantum grid turbulence, two laboratories in Prague and in Brno have been established to continue experimental research in cryogenic fluid dynamics using all three forms of cryogenic 4He - cold helium gas, normal liquid He I and superfluid He - as excellent multi-purpose working fluids. We review some of our investigations of very high Rayleigh number cryogenic thermal convection and classical and quantum turbulence in liquid helium. In particular, we discuss heat transfer efficiency of turbulent Rayleigh-Benard convection and the role of non-Oberbeck-Boussinesq conditions on possible transition to its ultimate regime; our second sound attenuation experiments probing both steady state and decaying coflow, counterflow and pure superflow of He II through channels of square cross-section including the concept of effective kinematic viscosity. We then introduce visualization experiments of classical and quantum flows of liquid helium using micron-size hydogen/deuterium particles and our recent results on transition to quantum turbulence based on the revisited experiments with a torsionally oscillating disc. Supported by GACR P203/11/0442 and 203/14/02005S.

  16. Characterization of an entomopathogenic fungi target integument protein, Bombyx mori single domain von Willebrand factor type C, in the silkworm, Bombyx mori.

    PubMed

    Han, F; Lu, A; Yuan, Y; Huang, W; Beerntsen, B T; Huang, J; Ling, E

    2017-06-01

    The insect cuticle works as the first line of defence to protect insects from pathogenic infections and water evaporation. However, the old cuticle must be shed in order to enter the next developmental stage. During each ecdysis, moulting fluids are produced and secreted into the area among the old and new cuticles. In a previous study, the protein Bombyx mori single domain von Willebrand factor type C (BmSVWC; BGIBMGA011399) was identified in the moulting fluids of Bo. mori and demonstrated to regulate ecdysis. In this study we show that in Bo. mori larvae, BmSVWC primarily locates to the integument (epidermal cells and cuticle), wing discs and head. During the moulting stage, BmSVWC is released into the moulting fluids, and is then produced again by epidermal cells after ecdysis. Fungal infection was shown to decrease the amount of BmSVWC in the cuticle, which indicates that BmSVWC is a target protein of entomopathogenic fungi. Thus, BmSVWC is mainly involved in maintaining the integrity of the integument structure, which serves to protect insects from physical damage and pathogenic infection. © 2017 The Royal Entomological Society.

  17. A study of the acoustic-optic effect in nematics

    NASA Astrophysics Data System (ADS)

    Hayes, C. F.

    1980-12-01

    The program of this contract has been to study the acousto-optic effect which occurs in nematic liquid crystals when excited by acoustic waves. Both theory and practical application are presented. Hydrodynamic equations were solved which govern the streaming and obtained a solution for the magnitude of the fluid speed and flow pattern for a small disc shaped liquid crystal. A sample, doped with grains, was used to test the solution experimentally. A series of cells was constructed and tested which, in fact, showed that an acoustic wavefront pattern can be visualized with this technique. During the second year of the contract we developed and tested a mathematical model which prescribes how a cell should be constructed in terms of: the densities of the cell walls, liquid crystal, and surrounding fluids; the thickness of the cell walls and liquid crystal layer; the acoustic speeds in cell wall (shear and longitudinal), liquid crystal, and surrounding fluids; acoustic frequency; and the incident acoustic bean angle. Cells were also constructed and tested in which an electric field could be applied simultaneously with the acoustic wave in such a way that the sensitivity of the cell to the acoustic field could be adjusted.

  18. Kinematic Evaluation of Association between Disc Bulge Migration, Lumbar Segmental Mobility, and Disc Degeneration in the Lumbar Spine Using Positional Magnetic Resonance Imaging

    PubMed Central

    Hu, Jonathan K.; Morishita, Yuichiro; Montgomery, Scott R.; Hymanson, Henry; Taghavi, Cyrus E.; Do, Duc; Wang, Jeff C.

    2011-01-01

    Degenerative disc disease and disc bulge in the lumbar spine are common sources of lower back pain. Little is known regarding disc bulge migration and lumbar segmental mobility as the lumbar spine moves from flexion to extension. In this study, 329 symptomatic (low back pain with or without neurological symptoms) patients with an average age of 43.5 years with varying degrees of disc degeneration were examined to characterize the kinematics of the lumbar intervertebral discs through flexion, neutral, and extension weight-bearing positions. In this population, disc bulge migration associated with dynamic motion of the lumbar spine significantly increased with increased grade of disk degeneration. Although no obvious trends relating the migration of disc bulge and angular segmental mobility were seen, translational segmental mobility tended to increase with disc bulge migration in all of the degenerative disc states. It appears that many factors, both static (intervertebral disc degeneration or disc height) and dynamic (lumbar segmental mobility), affect the mechanisms of lumbar disc bulge migration. PMID:24353937

  19. Imaginal Disc Abnormalities in Lethal Mutants of Drosophila

    PubMed Central

    Shearn, Allen; Rice, Thomas; Garen, Alan; Gehring, Walter

    1971-01-01

    Late lethal mutants of Drosophila melanogaster, dying after the larval stage of development, were isolated. The homozygous mutant larvae were examined for abnormal imaginal disc morphology, and the discs were injected into normal larval hosts to test their capacities to differentiate into adult structures. In about half of the mutants analyzed, disc abnormalities were found. Included among the abnormalities were missing discs, small discs incapable of differentiating, morphologically normal discs with limited capacities for differentiation, and discs with homeotic transformations. In some mutants all discs were affected, and in others only certain discs. The most extreme abnormal phenotype is a class of “discless” mutants. The viability of these mutant larvae indicates that the discs are essential only for the development of an adult and not of a larva. The late lethals are therefore a major source of mutants for studying the genetic control of disc formation. Images PMID:5002822

  20. Intermediate mass black holes in AGN discs - I. Production and growth

    NASA Astrophysics Data System (ADS)

    McKernan, B.; Ford, K. E. S.; Lyra, W.; Perets, H. B.

    2012-09-01

    Here we propose a mechanism for efficiently growing intermediate mass black holes (IMBH) in discs around supermassive black holes. Stellar mass objects can efficiently agglomerate when facilitated by the gas disc. Stars, compact objects and binaries can migrate, accrete and merge within discs around supermassive black holes. While dynamical heating by cusp stars excites the velocity dispersion of nuclear cluster objects (NCOs) in the disc, gas in the disc damps NCO orbits. If gas damping dominates, NCOs remain in the disc with circularized orbits and large collision cross-sections. IMBH seeds can grow extremely rapidly by collisions with disc NCOs at low relative velocities, allowing for super-Eddington growth rates. Once an IMBH seed has cleared out its feeding zone of disc NCOs, growth of IMBH seeds can become dominated by gas accretion from the active galactic nucleus (AGN) disc. However, the IMBH can migrate in the disc and expand its feeding zone, permitting a super-Eddington accretion rate to continue. Growth of IMBH seeds via NCO collisions is enhanced by a pile-up of migrators. We highlight the remarkable parallel between the growth of IMBH in AGN discs with models of giant planet growth in protoplanetary discs. If an IMBH becomes massive enough it can open a gap in the AGN disc. IMBH migration in AGN discs may stall, allowing them to survive the end of the AGN phase and remain in galactic nuclei. Our proposed mechanisms should be more efficient at growing IMBH in AGN discs than the standard model of IMBH growth in stellar clusters. Dynamical heating of disc NCOs by cusp stars is transferred to the gas in an AGN disc helping to maintain the outer disc against gravitational instability. Model predictions, observational constraints and implications are discussed in a companion paper (Paper II).

  1. A Multifluid Numerical Algorithm for Interpenetrating Plasma Dynamics

    NASA Astrophysics Data System (ADS)

    Ghosh, Debojyoti; Kavouklis, Christos; Berger, Richard; Chapman, Thomas; Hittinger, Jeffrey

    2017-10-01

    Interpenetrating plasmas occur in situations including inertial confinement fusion experiments, where plasmas ablate off the hohlraum and capsule surfaces and interact with each other, and in high-energy density physics experiments that involve the collision of plasma streams ablating off discs irradiated by laser beams. Single-fluid, multi-species hydrodynamic models are not well-suited to study this interaction because they cannot support more than a single fluid velocity; this results in unphysical solutions. Though kinetic models yield accurate solutions for multi-fluid interactions, they are prohibitively expensive for at-scale three-dimensional (3D) simulations. In this study, we propose a multifluid approach where the compressible fluid equations are solved for each ion species and the electrons. Electrostatic forces and inter-species friction and thermal equilibration couple the species. A high-order finite-volume algorithm with explicit time integration is used to solve on a 3D Cartesian domain, and a high-order Poisson solver is used to compute the electrostatic potential. We present preliminary results for the interpenetration of two plasma streams in vacuum and in the presence of a gas fill. This work was performed under the auspices of the U.S. DOE by Lawrence Livermore National Laboratory under Contract No. DE-AC52- 07NA27344 and funded by the LDRD Program at LLNL under project tracking code 17-ERD-081.

  2. The effect of parental factors in children with large cup-to-disc ratios.

    PubMed

    Park, Hae-Young Lopilly; Ha, Min Ji; Shin, Sun Young

    2017-01-01

    To investigate large cup-to-disc ratios (CDR) in children and to determine the relationship between parental CDR and clinical characteristics associated with glaucoma. Two hundred thirty six children aged 6 to 12 years with CDR ≥ 0.6 were enrolled in this study. Subjects were classified into two groups based on parental CDR: disc suspect children with disc suspect (CDR ≥0.6) parents and disc suspect children without disc suspect parents. Ocular variables were compared between the two groups. Of the 236 disc suspect children, 100 (42.4%) had at least one disc suspect parent. Intraocular pressure (IOP) was higher in disc suspect children with disc suspect parents (16.52±2.66 mmHg) than in disc suspect children without disc suspect parents (14.38±2.30 mmHg, p = 0.023). In the group with disc suspect parents, vertical CDR significantly correlated with IOP (R = -0.325, p = 0.001), average retinal nerve fiber layer (RNFL) thickness (R = -0.319, p = 0.001), rim area (R = -0.740, p = 0.001), and cup volume (R = 0.499, p = 0.001). However, spherical equivalent (R = 0.333, p = 0.001), AL (R = -0.223, p = 0.009), and disc area (R = 0.325, p = 0.001) significantly correlated with vertical CDR in disc suspect children without disc suspect parents, in contrast to those with disc suspect parents. Larger vertical CDR was associated with the presence of disc suspect parents (p = 0.001), larger disc area (p = 0.001), thinner rim area (p = 0.001), larger average CDR (p = 0.001), and larger cup volume (p = 0.021). Family history of large CDR was a significant factor associated with large vertical CDR in children. In children with disc suspect parents, there were significant correlations between IOP and average RNFL thickness and vertical CDR.

  3. Constraining physics of very hot super-Earths with the James Webb Telescope. The case of CoRot-7b

    NASA Astrophysics Data System (ADS)

    Samuel, B.; Leconte, J.; Rouan, D.; Forget, F.; Léger, A.; Schneider, J.

    2014-03-01

    Context. Transit detection from space using ultra-precise photometry led to the first detection of super-Earths with solid surfaces: CoRot-7b and Kepler-10b. Because they lie only a few stellar radii from their host stars, these two rocky planets are expected to be extremely hot. Aims: Assuming that these planets are in a synchronous rotation state and receive strong stellar winds and fluxes, previous studies have suggested that they must be atmosphere-free and that a lava ocean is present on their hot dayside. In this article, we use several dedicated thermal models of the irradiated planet to study how observations with NIRSPEC on the James Webb Space Telescope (JWST) could further confirm and constrain, or reject the atmosphere-free lava ocean planet model for very hot super-Earths. Methods: Using CoRoT-7b as a working case, we explore the consequences on the phase-curve of a non tidal-locked rotation, with the presence/absence of an atmosphere, and for different values of the surface albedo. We then simulate future observations of the reflected light and thermal emission from CoRoT-7b with NIRSPEC-JWST and look for detectable signatures, such as time lag, of those peculiarities. We also study the possibility to retrieve the latitudinal surface temperature distribution from the observed SED. Results: We demonstrate that we should be able to constrain several parameters after observations of two orbits (42 h) thanks to the broad range of wavelengths accessible with JWST: i) the Bond albedo is retrieved to within ±0.03 in most cases. ii) The lag effect allows us to retrieve the rotation period within 3 h of a non phase-locked planet, whose rotation would be half the orbital period; for longer period, the accuracy is reduced. iii) Any spin period shorter than a limit in the range 30-800 h, depending on the thickness of the thermal layer in the soil, would be detected. iv) The presence of a thick gray atmosphere with a pressure of one bar, and a specific opacity higher than 10-5 m-2 kg-1 is detectable. v) With spectra up to 4.5 μm, the latitudinal temperature profile can be retrieved to within 30 K with a risk of a totally wrong solution in 5% of the cases. This last result is obtained for a signal-to-noise ratio around 5 per resel, which should be reached on Corot-7 after a total exposure time of ~70 h with NIRSPEC and only three hours on a V = 8 star. Conclusions: We conclude that it should thus be possible to distinguish the reference situation of a lava ocean with phase-locking and no atmosphere from other cases. In addition, obtaining the surface temperature map and the albedo brings important constraints on the nature or the physical state of the soil of hot super-Earths.

  4. Effects of disc warping on the inclination evolution of star-disc-binary systems

    NASA Astrophysics Data System (ADS)

    Zanazzi, J. J.; Lai, Dong

    2018-07-01

    Several recent studies have suggested that circumstellar discs in young stellar binaries may be driven into misalignement with their host stars due to the secular gravitational interactions between the star, disc, and the binary companion. The disc in such systems is twisted/warped due to the gravitational torques from the oblate central star and the external companion. We calculate the disc warp profile, taking into account the bending wave propagation and viscosity in the disc. We show that for typical protostellar disc parameters, the disc warp is small, thereby justifying the `flat-disc' approximation adopted in previous theoretical studies. However, the viscous dissipation associated with the small disc warp/twist tends to drive the disc towards alignment with the binary or the central star. We calculate the relevant time-scales for the alignment. We find that the alignment is effective for sufficiently cold discs with strong external torques, especially for systems with rapidly rotating stars, but is ineffective for the majority of the star-disc-binary systems. Viscous warp-driven alignment may be necessary to account for the observed spin-orbit alignment in multiplanet systems if these systems are accompanied by an inclined binary companion.

  5. Dissipative advective accretion disc solutions with variable adiabatic index around black holes

    NASA Astrophysics Data System (ADS)

    Kumar, Rajiv; Chattopadhyay, Indranil

    2014-10-01

    We investigated accretion on to black holes in presence of viscosity and cooling, by employing an equation of state with variable adiabatic index and multispecies fluid. We obtained the expression of generalized Bernoulli parameter which is a constant of motion for an accretion flow in presence of viscosity and cooling. We obtained all possible transonic solutions for a variety of boundary conditions, viscosity parameters and accretion rates. We identified the solutions with their positions in the parameter space of generalized Bernoulli parameter and the angular momentum on the horizon. We showed that a shocked solution is more luminous than a shock-free one. For particular energies and viscosity parameters, we obtained accretion disc luminosities in the range of 10- 4 - 1.2 times Eddington luminosity, and the radiative efficiency seemed to increase with the mass accretion rate too. We found steady state shock solutions even for high-viscosity parameters, high accretion rates and for wide range of composition of the flow, starting from purely electron-proton to lepton-dominated accretion flow. However, similar to earlier studies of inviscid flow, accretion shock was not obtained for electron-positron pair plasma.

  6. Simulating Dynamic Equilibria: A Class Experiment

    NASA Astrophysics Data System (ADS)

    Harrison, John A.; Buckley, Paul D.

    2000-08-01

    A first-order reversible reaction is simulated on an overhead projector using small coins or discs. A simulation is carried out in which initially there are 24 discs representing reactant A and none representing reactant B. At the end of each minute half of the reactant A discs get converted to reactant B, and one quarter of the reactant B discs get converted to reactant A discs. Equilibrium is established with 8 A discs and 16 B discs, and no further net change is observed as the simulation continues. Another simulation beginning with 48 A discs and 0 B discs leads at equilibrium to 16 A discs and 32 B discs. These results illustrate how dynamic equilibria are established and allow the introduction of the concept of an equilibrium constant. Le Châtelier's principle is illustrated by further simulations.

  7. Gas turbine sealing apparatus

    DOEpatents

    Wiebe, David J; Wessell, Brian J; Ebert, Todd; Beeck, Alexander; Liang, George; Marussich, Walter H

    2013-02-19

    A gas turbine includes forward and aft rows of rotatable blades, a row of stationary vanes between the forward and aft rows of rotatable blades, an annular intermediate disc, and a seal housing apparatus. The forward and aft rows of rotatable blades are coupled to respective first and second portions of a disc/rotor assembly. The annular intermediate disc is coupled to the disc/rotor assembly so as to be rotatable with the disc/rotor assembly during operation of the gas turbine. The annular intermediate disc includes a forward side coupled to the first portion of the disc/rotor assembly and an aft side coupled to the second portion of the disc/rotor assembly. The seal housing apparatus is coupled to the annular intermediate disc so as to be rotatable with the annular intermediate disc and the disc/rotor assembly during operation of the gas turbine.

  8. L'astronomie dans le monde

    NASA Astrophysics Data System (ADS)

    Manfroid, J.

    2009-06-01

    L'ESA en route vers les origines de l'univers; Record de distance; Blob primordial; Novae; Expansion de l'univers; Plat ou pas?; L'eau sur Mars; Bombardement massif; M87; CoRoT; EX Lupi; Première pour ALMA; Kohoutek 4-55; Arp 194

  9. Manipulator having thermally conductive rotary joint for transferring heat from a test specimen

    DOEpatents

    Haney, S.J.; Stulen, R.H.; Toly, N.F.

    1983-05-03

    A manipulator for rotatably moving a test specimen in an ultra-high vacuum chamber includes a translational unit movable in three mutually perpendicular directions. A manipulator frame is rigidly secured to the translational unit for rotatably supporting a rotary shaft. A first copper disc is rigidly secured to an end of the rotary shaft for rotary movement within the vacuum chamber. A second copper disc is supported upon the first disc. The second disc receives a cryogenic cold head and does not rotate with the first disc. The second disc receives a cryogenic cold head and does not rotate with the first disc. A sapphire plate is interposed between the first and second discs to prevent galling of the copper material while maintaining high thermal conductivity between the first and second discs. A spring is disposed on the shaft to urge the second disc toward the first disc and compressingly engage the interposed sapphire plate. A specimen mount is secured to the first disc for rotation within the vacuum chamber. The specimen maintains high thermal conductivity with the second disc receiving the cryogenic transfer line.

  10. Active micromachines: Microfluidics powered by mesoscale turbulence

    PubMed Central

    Thampi, Sumesh P.; Doostmohammadi, Amin; Shendruk, Tyler N.; Golestanian, Ramin; Yeomans, Julia M.

    2016-01-01

    Dense active matter, from bacterial suspensions and microtubule bundles driven by motor proteins to cellular monolayers and synthetic Janus particles, is characterized by mesoscale turbulence, which is the emergence of chaotic flow structures. By immersing an ordered array of symmetric rotors in an active fluid, we introduce a microfluidic system that exploits spontaneous symmetry breaking in mesoscale turbulence to generate work. The lattice of rotors self-organizes into a spin state where neighboring discs continuously rotate in permanent alternating directions due to combined hydrodynamic and elastic effects. Our virtual prototype demonstrates a new research direction for the design of micromachines powered by the nematohydrodynamic properties of active turbulence. PMID:27419229

  11. On the diversity and statistical properties of protostellar discs

    NASA Astrophysics Data System (ADS)

    Bate, Matthew R.

    2018-04-01

    We present results from the first population synthesis study of protostellar discs. We analyse the evolution and properties of a large sample of protostellar discs formed in a radiation hydrodynamical simulation of star cluster formation. Due to the chaotic nature of the star formation process, we find an enormous diversity of young protostellar discs, including misaligned discs, and discs whose orientations vary with time. Star-disc interactions truncate discs and produce multiple systems. Discs may be destroyed in dynamical encounters and/or through ram-pressure stripping, but reform by later gas accretion. We quantify the distributions of disc mass and radii for protostellar ages up to ≈105 yr. For low-mass protostars, disc masses tend to increase with both age and protostellar mass. Disc radii range from of order 10 to a few hundred au, grow in size on time-scales ≲ 104 yr, and are smaller around lower mass protostars. The radial surface density profiles of isolated protostellar discs are flatter than the minimum mass solar nebula model, typically scaling as Σ ∝ r-1. Disc to protostar mass ratios rarely exceed two, with a typical range of Md/M* = 0.1-1 to ages ≲ 104 yr and decreasing thereafter. We quantify the relative orientation angles of circumstellar discs and the orbit of bound pairs of protostars, finding a preference for alignment that strengths with decreasing separation. We also investigate how the orientations of the outer parts of discs differ from the protostellar and inner disc spins for isolated protostars and pairs.

  12. Novel localized heating technique on centrifugal microfluidic disc with wireless temperature monitoring system.

    PubMed

    Joseph, Karunan; Ibrahim, Fatimah; Cho, Jongman

    2015-01-01

    Recent advances in the field of centrifugal microfluidic disc suggest the need for electrical interface in the disc to perform active biomedical assays. In this paper, we have demonstrated an active application powered by the energy harvested from the rotation of the centrifugal microfluidic disc. A novel integration of power harvester disc onto centrifugal microfluidic disc to perform localized heating technique is the main idea of our paper. The power harvester disc utilizing electromagnetic induction mechanism generates electrical energy from the rotation of the disc. This contributes to the heat generation by the embedded heater on the localized heating disc. The main characteristic observed in our experiment is the heating pattern in relative to the rotation of the disc. The heating pattern is monitored wirelessly with a digital temperature sensing system also embedded on the disc. Maximum temperature achieved is 82 °C at rotational speed of 2000 RPM. The technique proves to be effective for continuous heating without the need to stop the centrifugal motion of the disc.

  13. Linear analysis of the evolution of nearly polar low-mass circumbinary discs

    NASA Astrophysics Data System (ADS)

    Lubow, Stephen H.; Martin, Rebecca G.

    2018-01-01

    In a recent paper Martin & Lubow showed through simulations that an initially tilted disc around an eccentric binary can evolve to polar alignment in which the disc lies perpendicular to the binary orbital plane. We apply linear theory to show both analytically and numerically that a nearly polar aligned low-mass circumbinary disc evolves to polar alignment and determine the alignment time-scale. Significant disc evolution towards the polar state around moderately eccentric binaries can occur for typical protostellar disc parameters in less than a typical disc lifetime for binaries with orbital periods of order 100 yr or less. Resonant torques are much less effective at truncating the inner parts of circumbinary polar discs than the inner parts of coplanar discs. For polar discs, they vanish for a binary eccentricity of unity. The results agree with the simulations in showing that discs can evolve to a polar state. Circumbinary planets may then form in such discs and reside on polar orbits.

  14. Unexpected series of regular frequency spacing of δ Scuti stars in the non-asymptotic regime - I. The methodology

    DOE PAGES

    Paparo, M.; Benko, J. M.; Hareter, M.; ...

    2016-05-11

    In this study, a sequence search method was developed to search the regular frequency spacing in δ Scuti stars through visual inspection and an algorithmic search. We searched for sequences of quasi-equally spaced frequencies, containing at least four members per sequence, in 90 δ Scuti stars observed by CoRoT. We found an unexpectedly large number of independent series of regular frequency spacing in 77 δ Scuti stars (from one to eight sequences) in the non-asymptotic regime. We introduce the sequence search method presenting the sequences and echelle diagram of CoRoT 102675756 and the structure of the algorithmic search. Four sequencesmore » (echelle ridges) were found in the 5–21 d –1 region where the pairs of the sequences are shifted (between 0.5 and 0.59 d –1) by twice the value of the estimated rotational splitting frequency (0.269 d –1). The general conclusions for the whole sample are also presented in this paper. The statistics of the spacings derived by the sequence search method, by FT (Fourier transform of the frequencies), and the statistics of the shifts are also compared. In many stars more than one almost equally valid spacing appeared. The model frequencies of FG Vir and their rotationally split components were used to formulate the possible explanation that one spacing is the large separation while the other is the sum of the large separation and the rotational frequency. In CoRoT 102675756, the two spacings (2.249 and 1.977 d –1) are in better agreement with the sum of a possible 1.710 d –1 large separation and two or one times, respectively, the value of the rotational frequency.« less

  15. CSI 2264: Characterizing Young Stars in NGC 2264 With Short-Duration Periodic Flux Dips in Their Light Curves

    NASA Technical Reports Server (NTRS)

    Stauffer, John; Cody, Ann Marie; McGinnis, Pauline; Rebull, Luisa; Hillenbrand, Lynne A.; Turner, Neal J.; Carpenter, John; Plavchan, Peter; Carey, Sean; Terebey, Susan; hide

    2015-01-01

    We identify nine young stellar objects (YSOs) in the NGC 2264 star-forming region with optical CoRoT light curves exhibiting short-duration, shallow, periodic flux dips. All of these stars have infrared (IR) excesses that are consistent with their having inner disk walls near the Keplerian corotation radius. The repeating photometric dips have FWHM generally less than one day, depths almost always less than 15%, and periods (3 < P < 11 days) consistent with dust near the Keplerian co-rotation period. The flux dips vary considerably in their depth from epoch to epoch, but usually persist for several weeks and, in two cases, were present in data collected on successive years. For several of these stars, we also measure the photospheric rotation period and find that the rotation and dip periods are the same, as predicted by standard \\disk-locking" models. We attribute these flux dips to clumps of material in or near the inner disk wall, passing through our line of sight to the stellar photosphere. In some cases, these dips are also present in simultaneous Spitzer IRAC light curves at 3.6 and 4.5 microns. We characterize the properties of these dips, and compare the stars with light curves exhibiting this behavior to other classes of YSO in NGC 2264. A number of physical mechanisms could locally increase the dust scale height near the inner disk wall, and we discuss several of those mechanisms; the most plausible mechanisms are either a disk warp due to interaction with the stellar magnetic field or dust entrained in funnel- ow accretion columns arising near the inner disk wall.

  16. Plasma observations near saturn: initial results from voyager 1.

    PubMed

    Bridge, H S; Belcher, J W; Lazarus, A J; Olbert, S; Sullivan, J D; Bagenal, F; Gazis, P R; Hartle, R E; Ogilvie, K W; Scudder, J D; Sittler, E C; Eviatar, A; Siscoe, G L; Goertz, C K; Vasyliunas, V M

    1981-04-10

    Extensive measurements of low-energy plasma electrons and positive ions were made during the Voyager 1 encounter with Saturn and its satellites. The magnetospheric plasma contains light and heavy ions, probably hydrogen and nitrogen or oxygen; at radial distances between 15 and 7 Saturn-radii (Rs) on the inbound trajectory, the plasma appears to corotate with a velocity within 20 percent of that expected for rigid corotation. The general morphology of Saturn's magnetosphere is well represented by a plasma sheet that extends from at least 5 to 17 Rs, is symmetrical with respect to Saturn's equatorial plane and rotation axis, and appears to be well ordered by the magnetic shell parameter L (which represents the equatorial distance of a magnetic field line measured in units of Rs). Within this general configuration, two distinct structures can be identified: a central plasma sheet observed from L = 5 to L = 8 in which the density decreases rapidly away from the equatorial plane, and a more extended structure from L = 7 to beyond 18 Rs in which the density profile is nearly flat for a distance +/- 1.8 Rs off the plane and falls rapidly thereafter. The encounter with Titan took place inside the magnetosphere. The data show a clear signature characteristic of the interaction between a subsonic corotating magnetospheric plasma and the atmospheric or ionospheric exosphere of Titan. Titan appears to be a significant source of ions for the outer magnetosphere. The locations of bow shock crossings observed inbound and outbound indicate that the shape of the Saturnian magnetosphere is similar to that of Earth and that the position of the stagnation point scales approximately as the inverse one-sixth power of the ram pressure.

  17. The nature of arms in spiral galaxies. III. Azimuthal profiles

    NASA Astrophysics Data System (ADS)

    del Rio, M. S.; Cepa, J.

    1998-12-01

    In this paper we analyse the structure of a small sample of galaxies using a set of CCD images in standard photometric bands presented in a previous paper (del Rio & Cepa 1998a, hereafter \\cite{p2}). The galaxies are NGC 157, 753, 895, 4321, 6764, 6814, 6951, 7479 and 7723, and the selected bands were B and I. Seven galaxies are grand design, i.e. they have two long and symmetric arms, second in the classification of \\cite{ee87} (1987), and are the best laboratories for testing the predictions of the spiral density wave (SDW) theory. Two of the galaxies have intermediate arms, i.e., they are not so well defined. They are selected to compare the results with those found in the grand design spirals. Using the method of analyse the azimuthal flux profiles presented by \\cite{c88} (1988) and Beckman & Cepa (1990) (hereafter \\cite{bc90}) and assuming that star formation is triggered by a spiral density wave, we look for evidence of the existence of a corotation radius, as predicted by the SDW theory. We have determined the corotation radius in all but two grand design galaxies, and, tentatively, in the other four. Galaxies with very weak arms (such as NGC 753 and NGC 6951) or arms which are not well defined (such as NGC 6764 and NGC 7723) present difficulties when employing the azimuthal profile method, but even in these cases, the method is powerful enough to give a good estimate of the value of corotation, which must then be confirmed (or discarded) by other independent methods (del Rio & Cepa 1998b, hereafter \\cite{p4}).

  18. Plasmas in Saturn's magnetosphere

    NASA Technical Reports Server (NTRS)

    Frank, L. A.; Burek, B. G.; Ackerson, K. L.; Wolfe, J. H.; Mihalov, J. D.

    1980-01-01

    The solar wind plasma analyzer on board Pioneer 2 provides first observations of low-energy positive ions in the magnetosphere of Saturn. Measurable intensities of ions within the energy-per-unit charge (E/Q) range 100 eV to 8 keV are present over the planetocentric radial distance range about 4 to 16 R sub S in the dayside magnetosphere. The plasmas are found to be rigidly corotating with the planet out to distances of at least 10 R sub S. At radial distances beyond 10 R sub S, the bulk flows appear to be in the corotation direction but with lesser speeds than those expected from rigid corotation. At radial distances beyond the orbit of Rhea at 8.8 R sub S, the dominant ions are most likely protons and the corresponding typical densities and temperatures are 0.5/cu cm and 1,000,000 K, respectively, with substantial fluctuations. It is concluded that the most likely source of these plasmas in the photodissociation of water frost on the surface of the ring material with subsequent ionization of the products and radially outward diffusion. The presence of this plasma torus is expected to have a large influence on the dynamics of Saturn's magnetosphere since the pressure ratio beta of these plasmas approaches unity at radial distances as close to the planet as 6.5 R sub S. On the basis of these observational evidences it is anticipated that quasi-periodic outward flows of plasma, accompanied with a reconfiguration of the magnetosphere beyond about 6.5 R sub S, will occur in the local night sector in order to relieve the plasma pressure from accretion of plasma from the rings.

  19. Unexpected series of regular frequency spacing of δ Scuti stars in the non-asymptotic regime - I. The methodology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paparo, M.; Benko, J. M.; Hareter, M.

    In this study, a sequence search method was developed to search the regular frequency spacing in δ Scuti stars through visual inspection and an algorithmic search. We searched for sequences of quasi-equally spaced frequencies, containing at least four members per sequence, in 90 δ Scuti stars observed by CoRoT. We found an unexpectedly large number of independent series of regular frequency spacing in 77 δ Scuti stars (from one to eight sequences) in the non-asymptotic regime. We introduce the sequence search method presenting the sequences and echelle diagram of CoRoT 102675756 and the structure of the algorithmic search. Four sequencesmore » (echelle ridges) were found in the 5–21 d –1 region where the pairs of the sequences are shifted (between 0.5 and 0.59 d –1) by twice the value of the estimated rotational splitting frequency (0.269 d –1). The general conclusions for the whole sample are also presented in this paper. The statistics of the spacings derived by the sequence search method, by FT (Fourier transform of the frequencies), and the statistics of the shifts are also compared. In many stars more than one almost equally valid spacing appeared. The model frequencies of FG Vir and their rotationally split components were used to formulate the possible explanation that one spacing is the large separation while the other is the sum of the large separation and the rotational frequency. In CoRoT 102675756, the two spacings (2.249 and 1.977 d –1) are in better agreement with the sum of a possible 1.710 d –1 large separation and two or one times, respectively, the value of the rotational frequency.« less

  20. The GTC exoplanet transit spectroscopy survey. III. No asymmetries in the transit of CoRoT-29b

    NASA Astrophysics Data System (ADS)

    Pallé, E.; Chen, G.; Alonso, R.; Nowak, G.; Deeg, H.; Cabrera, J.; Murgas, F.; Parviainen, H.; Nortmann, L.; Hoyer, S.; Prieto-Arranz, J.; Nespral, D.; Cabrera Lavers, A.; Iro, N.

    2016-05-01

    Context. The launch of the exoplanet space missions obtaining exquisite photometry from space has resulted in the discovery of thousands of planetary systems with very different physical properties and architectures. Among them, the exoplanet CoRoT-29b was identified in the light curves the mission obtained in summer 2011, and presented an asymmetric transit light curve, which was tentatively explained via the effects of gravity darkening. Aims: Transits of CoRoT-29b are measured with precision photometry, to characterize the reported asymmetry in their transit shape. Methods: Using the OSIRIS spectrograph at the 10-m GTC telescope, we perform spectro-photometric differential observations, which allow us to both calculate a high-accuracy photometric light curve, and a study of the color-dependence of the transit. Results: After careful data analysis, we find that the previously reported asymmetry is not present in either of two transits, observed in July 2014 and July 2015 with high photometric precisions of 300 ppm over 5 min. Due to the relative faintness of the star, we do not reach the precision necessary to perform transmission spectroscopy of its atmosphere, but we see no signs of color-dependency of the transit depth or duration. Conclusions: We conclude that the previously reported asymmetry may have been a time-dependent phenomenon, which did not occur in more recent epochs. Alternatively, instrumental effects in the discovery data may need to be reconsidered. Light curves are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/589/A62

  1. Evaluation of space shuttle main engine fluid dynamic frequency response characteristics

    NASA Technical Reports Server (NTRS)

    Gardner, T. G.

    1980-01-01

    In order to determine the POGO stability characteristics of the space shuttle main engine liquid oxygen (LOX) system, the fluid dynamic frequency response functions between elements in the SSME LOX system was evaluated, both analytically and experimentally. For the experimental data evaluation, a software package was written for the Hewlett-Packard 5451C Fourier analyzer. The POGO analysis software is documented and consists of five separate segments. Each segment is stored on the 5451C disc as an individual program and performs its own unique function. Two separate data reduction methods, a signal calibration, coherence or pulser signal based frequency response function blanking, and automatic plotting features are included in the program. The 5451C allows variable parameter transfer from program to program. This feature is used to advantage and requires only minimal user interface during the data reduction process. Experimental results are included and compared with the analytical predictions in order to adjust the general model and arrive at a realistic simulation of the POGO characteristics.

  2. Regressed relations for forced convection heat transfer in a direct injection stratified charge rotary engine

    NASA Technical Reports Server (NTRS)

    Lee, Chi M.; Schock, Harold J.

    1988-01-01

    Currently, the heat transfer equation used in the rotary combustion engine (RCE) simulation model is taken from piston engine studies. These relations have been empirically developed by the experimental input coming from piston engines whose geometry differs considerably from that of the RCE. The objective of this work was to derive equations to estimate heat transfer coefficients in the combustion chamber of an RCE. This was accomplished by making detailed temperature and pressure measurements in a direct injection stratified charge (DISC) RCE under a range of conditions. For each specific measurement point, the local gas velocity was assumed equal to the local rotor tip speed. Local physical properties of the fluids were then calculated. Two types of correlation equations were derived and are described in this paper. The first correlation expresses the Nusselt number as a function of the Prandtl number, Reynolds number, and characteristic temperature ratio; the second correlation expresses the forced convection heat transfer coefficient as a function of fluid temperature, pressure and velocity.

  3. A new in vivo animal model to create intervertebral disc degeneration characterized by MRI, radiography, CT/discogram, biochemistry, and histology.

    PubMed

    Zhou, HaoWei; Hou, ShuXun; Shang, WeiLin; Wu, WenWen; Cheng, Yao; Mei, Fang; Peng, BaoGan

    2007-04-15

    A new in vivo sheep model was developed that produced disc degeneration through the injection of 5-bromodeoxyuridine (BrdU) into the intervertebral disc. This process was studied using magnetic resonance imaging (MRI), radiography, CT/discogram, histology, and biochemistry. To develop a sheep model of intervertebral disc degeneration that more faithfully mimics the pathologic hallmarks of human intervertebral disc degeneration. Recent studies have shown age-related alterations in proteoglycan structure and organization in human intervertebral discs. An animal model that involves the use of age-related changes in disc cells can be beneficial over other more invasive degenerative models that involves directly damaging the matrix of disc tissue. Twelve sheep were injected with BrdU or vehicle (phosphate-buffered saline) into the central region of separate lumbar discs. Intact discs were used as controls. At the 2-, 6-, 10-, and 14-week time points, discs underwent MRI, radiography, histology, and biochemical analyses. A CT/discogram study was performed at the 14-week time point. MRI demonstrated a progressive loss of T2-weighted signal intensity at BrdU-injected discs over the 14-week study period. Radiograph findings included osteophyte and disc space narrowing formed by 10 weeks post-BrdU treatment. CT discography demonstrated internal disc disruption in several BrdU-treated discs at the 14-week time point. Histology showed a progressive loss of the normal architecture and cell density of discs from the 2-week time point to the 14-week time point. A progressive loss of cell proliferation capacity, water content, and proteoglycans was also documented. BrdU injection into the central region of sheep discs resulted in degeneration of intervertebral discs. This progressive, degenerative process was confirmed using MRI, histology, and by observing changes in biochemistry. Degeneration occurred in a manner that was similar to that observed in human disc degeneration.

  4. Investigation of Product Performance of Al-Metal Matrix Composites Brake Disc using Finite Element Analysis

    NASA Astrophysics Data System (ADS)

    Fatchurrohman, N.; Marini, C. D.; Suraya, S.; Iqbal, AKM Asif

    2016-02-01

    The increasing demand of fuel efficiency and light weight components in automobile sectors have led to the development of advanced material parts with improved performance. A specific class of MMCs which has gained a lot of attention due to its potential is aluminium metal matrix composites (Al-MMCs). Product performance investigation of Al- MMCs is presented in this article, where an Al-MMCs brake disc is analyzed using finite element analysis. The objective is to identify the potentiality of replacing the conventional iron brake disc with Al-MMCs brake disc. The simulation results suggested that the MMCs brake disc provided better thermal and mechanical performance as compared to the conventional cast iron brake disc. Although, the Al-MMCs brake disc dissipated higher maximum temperature compared to cast iron brake disc's maximum temperature. The Al-MMCs brake disc showed a well distributed temperature than the cast iron brake disc. The high temperature developed at the ring of the disc and heat was dissipated in circumferential direction. Moreover, better thermal dissipation and conduction at brake disc rotor surface played a major influence on the stress. As a comparison, the maximum stress and strain of Al-MMCs brake disc was lower than that induced on the cast iron brake disc.

  5. Are Collapsed Cervical Discs Amenable to Total Disc Arthroplasty?: Analysis of Prospective Clinical Data With 2-Year Follow Up.

    PubMed

    Patwardhan, Avinash G; Carandang, Gerard; Voronov, Leonard I; Havey, Robert M; Paul, Gary A; Lauryssen, Carl; Coric, Domagoj; Dimmig, Thomas; Musante, David

    2016-12-15

    Analysis of prospectively collected radiographic data. To investigate the influence of preoperative index-level range of motion (ROM) and disc height on postoperative ROM after cervical total disc arthroplasty (TDA) using compressible disc prostheses. Clinical studies demonstrate benefits of motion preservation over fusion; however, questions remain unanswered as to which preoperative factors have the ability to identify patients who are most likely to have good postoperative motion, which is the primary rationale for TDA. We analyzed prospectively collected data from a single-arm, multicenter study with 2-year follow up of 30 patients with 48 implanted levels. All received compressible cervical disc prostheses of 6 mm-height (M6C, Spinal Kinetics, Sunnyvale, CA). The influence of index-level preoperative disc height and ROM (each with two levels: below-median and above-median) on postoperative ROM was analyzed using 2 x 2 ANOVA. We further analyzed the radiographic outcomes of a subset of discs with preoperative height less than 3 mm, the so-called "collapsed" discs. Shorter (3.0 ± 0.4 mm) discs were significantly less mobile preoperatively than taller (4.4 ± 0.5 mm) discs (6.7° vs. 10.5°, P = 0.01). The postoperative ROM did not differ between the shorter and taller discs (5.6° vs. 5.0°, P = 0.63). Tall discs that were less mobile preoperatively had significantly smaller postoperative ROM than short discs with above-median preoperative mobility (P < 0.05). The "collapsed discs" (n = 8) were less mobile preoperatively compared with all discs combined (5.1° vs. 8.6°, P < 0.01). These discs were distracted to more than two times the preoperative height, from 2.6 to 5.7 mm, and had significantly greater postoperative ROM than all discs combined (7.6° vs. 5.3°, P < 0.05). We observed a significant interaction between preoperative index-level disc height and ROM in influencing postoperative ROM. Although limited by small sample size, the results suggest discs with preoperative height less than 3 mm may be amenable to disc arthroplasty using compressible disc prostheses. 2.

  6. CT morphometry of adult thoracic intervertebral discs.

    PubMed

    Fletcher, Justin G R; Stringer, Mark D; Briggs, Christopher A; Davies, Tilman M; Woodley, Stephanie J

    2015-10-01

    Despite being commonly affected by degenerative disorders, there are few data on normal thoracic intervertebral disc dimensions. A morphometric analysis of adult thoracic intervertebral discs was, therefore, undertaken. Archival computed tomography scans of 128 recently deceased individuals (70 males, 58 females, 20-79 years) with no known spinal pathology were analysed to determine thoracic disc morphometry and variations with disc level, sex and age. Reliability was assessed by intraclass correlation coefficients (ICCs). Anterior and posterior intervertebral disc heights and axial dimensions were significantly greater in men (anterior disc height 4.0±1.4 vs 3.6±1.3 mm; posterior disc height 3.6±0.90 vs 3.4±0.93 mm; p<0.01). Disc heights and axial dimensions at T4-5 were similar or smaller than at T2-3, but thereafter increased caudally (mean anterior disc height T4-5 and T10-11, 2.7±0.7 and 5.4±1.2 mm, respectively, in men; 2.6±0.8 and 5.1±1.3 mm, respectively, in women; p<0.05). Except at T2-3, anterior disc height decreased with advancing age and anteroposterior and transverse disc dimensions increased; posterior and middle disc heights and indices of disc shape showed no consistent statistically significant changes. Most parameters showed substantial to almost perfect agreement for intra- and inter-rater reliability. Thoracic disc morphometry varies significantly and consistently with disc level, sex and age. This study provides unique reference data on adult thoracic intervertebral disc morphometry, which may be useful when interpreting pathological changes and for future biomechanical and functional studies.

  7. Quantitating Human Optic Disc Topography

    NASA Astrophysics Data System (ADS)

    Graebel, William P.; Cohan, Bruce E.; Pearch, Andrew C.

    1980-07-01

    A method is presented for quantitatively expressing the topography of the human optic disc, applicable in a clinical setting to the diagnosis and management of glaucoma. Pho-tographs of the disc illuminated by a pattern of fine, high contrast parallel lines are digitized. From the measured deviation of the lines as they traverse the disc surface, disc topography is calculated, using the principles of optical sectioning. The quantitators applied to express this topography have the the following advantages : sensitivity to disc shape; objectivity; going beyond the limits of cup-disc ratio estimates and volume calculations; perfect generality in a mathematical sense; an inherent scheme for determining a non-subjective reference frame to compare different discs or the same disc over time.

  8. Asymmetric MHD outflows/jets from accreting T Tauri stars

    NASA Astrophysics Data System (ADS)

    Dyda, S.; Lovelace, R. V. E.; Ustyugova, G. V.; Lii, P. S.; Romanova, M. M.; Koldoba, A. V.

    2015-06-01

    Observations of jets from young stellar objects reveal the asymmetric outflows from some sources. A large set of 2.5D magnetohydrodynamic simulations was carried out for axisymmetric viscous/diffusive disc accretion to rotating magnetized stars for the purpose of assessing the conditions where the outflows are asymmetric relative to the equatorial plane. We consider initial magnetic fields that are symmetric about the equatorial plane and consist of a radially distributed field threading the disc (disc field) and a stellar dipole field. (1) For pure disc-fields the symmetry or asymmetry of the outflows is affected by the mid-plane plasma β of the disc. For discs with small plasma β, outflows are symmetric to within 10 per cent over time-scales of hundreds of inner disc orbits. For higher β discs, the coupling of the upper and lower coronal plasmas is broken, and quasi-periodic field motion leads to asymmetric episodic outflows. (2) Accreting stars with a stellar dipole field and no disc-field exhibit episodic, two component outflows - a magnetospheric wind and an inner disc wind. Both are characterized by similar velocity profiles but the magnetospheric wind has densities ≳ 10 times that of the disc wind. (3) Adding a disc field parallel to the stellar dipole field enhances the magnetospheric winds but suppresses the disc wind. (4) Adding a disc field which is antiparallel to the stellar dipole field in the disc suppresses the magnetospheric and disc winds. Our simulations reproduce some key features of observations of asymmetric outflows of T Tauri stars.

  9. The Correlation between Insertion Depth of Prodisc-C Artificial Disc and Postoperative Kyphotic Deformity: Clinical Importance of Insertion Depth of Artificial Disc.

    PubMed

    Lee, Do-Youl; Kim, Se-Hoon; Suh, Jung-Keun; Cho, Tai-Hyoung; Chung, Yong-Gu

    2012-09-01

    This study was designed to investigate the correlation between insertion depth of artificial disc and postoperative kyphotic deformity after Prodisc-C total disc replacement surgery, and the range of artificial disc insertion depth which is effective in preventing postoperative whole cervical or segmental kyphotic deformity. A retrospective radiological analysis was performed in 50 patients who had undergone single level total disc replacement surgery. Records were reviewed to obtain demographic data. Preoperative and postoperative radiographs were assessed to determine C2-7 Cobb's angle and segmental angle and to investigate postoperative kyphotic deformity. A formula was introduced to calculate insertion depth of Prodisc-C artificial disc. Statistical analysis was performed to search the correlation between insertion depth of Prodisc-C artificial disc and postoperative kyphotic deformity, and to estimate insertion depth of Prodisc-C artificial disc to prevent postoperative kyphotic deformity. In this study no significant statistical correlation was observed between insertion depth of Prodisc-C artificial disc and postoperative kyphotic deformity regarding C2-7 Cobb's angle. Statistical correlation between insertion depth of Prodisc-C artificial disc and postoperative kyphotic deformity was observed regarding segmental angle (p<0.05). It failed to estimate proper insertion depth of Prodisc-C artificial disc effective in preventing postoperative kyphotic deformity. Postoperative segmental kyphotic deformity is associated with insertion depth of Prodisc-C artificial disc. Anterior located artificial disc leads to lordotic segmental angle and posterior located artificial disc leads to kyphotic segmental angle postoperatively. But C2-7 Cobb's angle is not affected by artificial disc location after the surgery.

  10. Ranges of Cervical Intervertebral Disc Deformation During an In Vivo Dynamic Flexion–Extension of the Neck

    PubMed Central

    Yu, Yan; Mao, Haiqing; Li, Jing-Sheng; Tsai, Tsung-Yuan; Cheng, Liming; Wood, Kirkham B.; Li, Guoan; Cha, Thomas D.

    2017-01-01

    While abnormal loading is widely believed to cause cervical spine disc diseases, in vivo cervical disc deformation during dynamic neck motion has not been well delineated. This study investigated the range of cervical disc deformation during an in vivo functional flexion–extension of the neck. Ten asymptomatic human subjects were tested using a combined dual fluoroscopic imaging system (DFIS) and magnetic resonance imaging (MRI)-based three-dimensional (3D) modeling technique. Overall disc deformation was determined using the changes of the space geometry between upper and lower endplates of each intervertebral segment (C3/4, C4/5, C5/6, and C6/7). Five points (anterior, center, posterior, left, and right) of each disc were analyzed to examine the disc deformation distributions. The data indicated that between the functional maximum flexion and extension of the neck, the anterior points of the discs experienced large changes of distraction/compression deformation and shear deformation. The higher level discs experienced higher ranges of disc deformation. No significant difference was found in deformation ranges at posterior points of all the discs. The data indicated that the range of disc deformation is disc level dependent and the anterior region experienced larger changes of deformation than the center and posterior regions, except for the C6/7 disc. The data obtained from this study could serve as baseline knowledge for the understanding of the cervical spine disc biomechanics and for investigation of the biomechanical etiology of disc diseases. These data could also provide insights for development of motion preservation surgeries for cervical spine. PMID:28334358

  11. Ranges of Cervical Intervertebral Disc Deformation During an In Vivo Dynamic Flexion-Extension of the Neck.

    PubMed

    Yu, Yan; Mao, Haiqing; Li, Jing-Sheng; Tsai, Tsung-Yuan; Cheng, Liming; Wood, Kirkham B; Li, Guoan; Cha, Thomas D

    2017-06-01

    While abnormal loading is widely believed to cause cervical spine disc diseases, in vivo cervical disc deformation during dynamic neck motion has not been well delineated. This study investigated the range of cervical disc deformation during an in vivo functional flexion-extension of the neck. Ten asymptomatic human subjects were tested using a combined dual fluoroscopic imaging system (DFIS) and magnetic resonance imaging (MRI)-based three-dimensional (3D) modeling technique. Overall disc deformation was determined using the changes of the space geometry between upper and lower endplates of each intervertebral segment (C3/4, C4/5, C5/6, and C6/7). Five points (anterior, center, posterior, left, and right) of each disc were analyzed to examine the disc deformation distributions. The data indicated that between the functional maximum flexion and extension of the neck, the anterior points of the discs experienced large changes of distraction/compression deformation and shear deformation. The higher level discs experienced higher ranges of disc deformation. No significant difference was found in deformation ranges at posterior points of all the discs. The data indicated that the range of disc deformation is disc level dependent and the anterior region experienced larger changes of deformation than the center and posterior regions, except for the C6/7 disc. The data obtained from this study could serve as baseline knowledge for the understanding of the cervical spine disc biomechanics and for investigation of the biomechanical etiology of disc diseases. These data could also provide insights for development of motion preservation surgeries for cervical spine.

  12. The presence of pleiotrophin in the human intervertebral disc is associated with increased vascularization: an immunohistologic study.

    PubMed

    Johnson, William E B; Patterson, Angela M; Eisenstein, Stephen M; Roberts, Sally

    2007-05-20

    An immunohistological study of surgical specimens of human intervertebral disc. To examine the presence of pleiotrophin in diseased or damaged intervertebral disc tissue and the association between its presence and the extent of tissue vascularization and innervation. Increased levels of pleiotrophin, a growth and differentiation factor that is active in various pathophysiologic processes, including angiogenesis, has been associated with osteoarthritic changes of human articular cartilage. The association between pleiotrophin expression and pathologic conditions of the human intervertebral disc is unknown. Specimens of human lumbar intervertebral discs, obtained following surgical discectomy, were divided into 3 groups: non-degenerated discs (n = 7), degenerated discs (n = 6), and prolapsed discs (n = 11). Serial tissue sections of each specimen were immunostained to determine the presence of pleiotrophin, blood vessels (CD34-positive endothelial cells), and nerves (neurofilament 200 kDa [NF200]-positive nerve fibers). Pleiotrophin immunoreactivity was seen in disc cells, endothelial cells, and in the extracellular matrix in most specimens of intervertebral disc but was most prevalent in vascularized tissue in prolapsed discs. There was a significant correlation between the presence of pleiotrophin-positive disc cells and that of CD34-positive blood vessels. NF200-positive nerves were seen in vascularized areas of more degenerated discs, but nerves did not appear to codistribute with blood vessels or pleiotrophin positivity in prolapsed discs. Pleiotrophin is present in pathologic human intervertebral discs, and its prevalence and distribution suggest that it may play a role in neovascularization of diseased or damaged disc tissue.

  13. Recurrent solar wind streams observed by interplanetary scintillation of 3C 48

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, T.; Kakinuma, T.

    1972-10-01

    The interplanetary scintillation of 3C 48 was observed by two spaced receivers (69.3 MHz) during February and March 1971. The recurrent property of the observed velocity increase of the solar wind is clearly seen, and their recurrent period is 24 to 25 days. This value is shorter than the synodic period of 27 days, but this deviation may be explained by the displacement of the closest point to the Sun on the line of sight for 3C 48. A comparison with the data of the wind velocity obtained by apace probes shows that the observed enhancements are associated with twomore » high-velocity streams corotating around the Sun. The enhancements of the scintillation index precede by about two days the velocity enhancements, and it may be concluded that such enhancement of the scintillation index has resulted from the compressed region of the interplanetary plasma formed in front of the high-velocity corotating stream. (auth)« less

  14. ORIGIN OF THE CHAOTIC MOTION OF THE SATURNIAN SATELLITE ATLAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renner, S.; Vienne, A.; Cooper, N. J.

    2016-05-01

    We revisit the dynamics of Atlas. Using Cassini ISS astrometric observations spanning 2004 February to 2013 August, Cooper et al. found evidence that Atlas is currently perturbed by both a 54:53 corotation eccentricity resonance (CER) and a 54:53 Lindblad eccentricity resonance (LER) with Prometheus. They demonstrated that the orbit of Atlas is chaotic, with a Lyapunov time of order 10 years, as a direct consequence of the coupled resonant interaction (CER/LER) with Prometheus. Here we investigate the interactions between the two resonances using the CoraLin analytical model, showing that the chaotic zone fills almost all the corotation sites occupied bymore » the satellite's orbit. Four 70:67 apse-type mean motion resonances with Pandora are also overlapping, but these resonances have a much weaker effect. Frequency analysis allows us to highlight the coupling between the 54:53 resonances, and confirms that a simplified system including the perturbations due to Prometheus and Saturn's oblateness only captures the essential features of the dynamics.« less

  15. The generation of tire cornering forces in aircraft with a free-swiveling nose gear

    NASA Technical Reports Server (NTRS)

    Daugherty, R. H.; Stubbs, S. M.

    1985-01-01

    An experimental investigation was conducted to study the effect of various parameters on the cornering forces produced by a rolling aircraft tire installed on a tilted, free-swiveling nose gear. The parameters studied included tilt angle, trial, tire inflation pressure, rake angle, vertical load, and whether or not a twin tire configuration corotates. These parameters were evaluated by measuring the cornering force produced by an aircraft tire installed on the nose gear of a modified vehicle as it was towed slowly. Cornering force coefficient increased with increasing tilt angle. Increasing trial or rake angle decreased the magnitude of the cornering force coefficient. Tire inflation pressure had no effect on the cornering force coefficient. Increasing vertical load decreased the cornering force coefficient. When the tires of a twin tire system rotated independently, the cornering force coefficients were the same as those for the single-tire configuration. When the twin tire system was made to corotate, however, the cornering force coefficients increased significantly.

  16. Detecting planets in Kepler lightcurves using methods developed for CoRoT.

    NASA Astrophysics Data System (ADS)

    Grziwa, S.; Korth, J.; Pätzold, M.

    2011-10-01

    Launched in March 2009, Kepler is the second space telescope dedicated to the search for extrasolar planets. NASA released 150.000 lightcurves to the public in 2010 and announced that Kepler has found 1.235 candidates. The Rhenish Institute for Environmental Research (RIU-PF) is one of the detection groups from the CoRoT space mission. RIU-PF developed the software package EXOTRANS for the detection of transits in stellar lightcurves. EXOTRANS is designed for the fast automated processing of huge amounts of data and was easily adapted to the analysis of Kepler lightcurves. The use of different techniques and philosophies helps to find more candidates and to rule out others. We present the analysis of the Kepler lightcurves with EXOTRANS. Results of our filter (trend, harmonic) and detection (dcBLS) techniques are compared with the techniques used by Kepler (PDC, TPS). The different approaches to rule out false positives are discussed and additional candidates found by EXOTRANS are presented.

  17. Plasma and electric field boundaries at high and low altitudes on July 29, 1977

    NASA Technical Reports Server (NTRS)

    Fennell, J. F.; Johnson, R. G.; Young, D. T.; Torbert, R. B.; Moore, T. E.

    1982-01-01

    Hot plasma observations at high and low altitudes were compared. The plasma ion composition at high altitudes outside the plasmasphere was 0+. Heavy ions were also observed at low altitudes outside the plasmasphere. It is shown that at times these ions are found well below the plasmapause inside the plasmasphere. Comparisons of the low altitude plasma and dc electric fields show that the outer limits of the plasmasphere is not always corotating at the low L-shells. The corotation boundary, the estimated plasmapause boundary at the boundary of the inner edge of plasma sheet ions were at the same position. The inner edge of plasma sheet electrons is observed at higher latitudes than the plasmasphere boundary during disturbed times. The inner edge of the plasma sheaths shows a strong dawn to dusk asymmetry. At the same time the inner edge of the ring current and plasma sheath also moves to high latitudes reflecting an apparent inflation of the magnetosphere.

  18. In-flight measurements of propeller blade deformation on a VUT100 cobra aeroplane using a co-rotating camera system

    NASA Astrophysics Data System (ADS)

    Boden, F.; Stasicki, B.; Szypuła, M.; Ružička, P.; Tvrdik, Z.; Ludwikowski, K.

    2016-07-01

    Knowledge of propeller or rotor blade behaviour under real operating conditions is crucial for optimizing the performance of a propeller or rotor system. A team of researchers, technicians and engineers from Avia Propeller, DLR, EVEKTOR and HARDsoft developed a rotating stereo camera system dedicated to in-flight blade deformation measurements. The whole system, co-rotating with the propeller at its full speed and hence exposed to high centrifugal forces and strong vibration, had been successfully tested on an EVEKTOR VUT 100 COBRA aeroplane in Kunovice (CZ) within the project AIM2—advanced in-flight measurement techniques funded by the European Commission (contract no. 266107). This paper will describe the work, starting from drawing the first sketch of the system up to performing the successful flight test. Apart from a description of the measurement hardware and the applied IPCT method, the paper will give some impressions of the flight test activities and discuss the results obtained from the measurements.

  19. Diffusion-plus-drift models for the mass leakage from centrifugal magnetospheres of magnetic hot-stars

    NASA Astrophysics Data System (ADS)

    Owocki, Stanley P.; Cranmer, Steven R.

    2018-03-01

    In the subset of luminous, early-type stars with strong, large-scale magnetic fields and moderate to rapid rotation, material from the star's radiatively driven stellar wind outflow becomes trapped by closed magnetic loops, forming a centrifugally supported, corotating magnetosphere. We present here a semi-analytic analysis of how this quasi-steady accumulation of wind mass can be balanced by losses associated with a combination of an outward, centrifugally driven drift in the region beyond the Kepler co-rotation radius, and an inward/outward diffusion near this radius. We thereby derive scaling relations for the equilibrium spatial distribution of mass, and the associated emission measure for observational diagnostics like Balmer line emission. We discuss the potential application of these relations for interpreting surveys of the emission line diagnostics for OB stars with centrifugally supported magnetospheres. For a specific model of turbulent field-line-wandering rooted in surface motions associated with the iron opacity bump, we estimate values for the associated diffusion and drift coefficients.

  20. The envelope of the power spectra of over a thousand δ Scuti stars. The T̅eff - νmax scaling relation

    NASA Astrophysics Data System (ADS)

    Barceló Forteza, S.; Roca Cortés, T.; García, R. A.

    2018-06-01

    CoRoT and Kepler high-precision photometric data allowed the detection and characterization of the oscillation parameters in stars other than the Sun. Moreover, thanks to the scaling relations, it is possible to estimate masses and radii for thousands of solar-type oscillating stars. Recently, a Δν - ρ relation has been found for δ Scuti stars. Now, analysing several hundreds of this kind of stars observed with CoRoT and Kepler, we present an empiric relation between their frequency at maximum power of their oscillation spectra and their effective temperature. Such a relation can be explained with the help of the κ-mechanism and the observed dispersion of the residuals is compatible with they being caused by the gravity-darkening effect. Table A.1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/614/A46

  1. Origin of the Chaotic Motion of the Saturnian Satellite Atlas

    NASA Astrophysics Data System (ADS)

    Renner, S.; Cooper, N. J.; El Moutamid, M.; Sicardy, B.; Vienne, A.; Murray, C. D.; Saillenfest, M.

    2016-05-01

    We revisit the dynamics of Atlas. Using Cassini ISS astrometric observations spanning 2004 February to 2013 August, Cooper et al. found evidence that Atlas is currently perturbed by both a 54:53 corotation eccentricity resonance (CER) and a 54:53 Lindblad eccentricity resonance (LER) with Prometheus. They demonstrated that the orbit of Atlas is chaotic, with a Lyapunov time of order 10 years, as a direct consequence of the coupled resonant interaction (CER/LER) with Prometheus. Here we investigate the interactions between the two resonances using the CoraLin analytical model, showing that the chaotic zone fills almost all the corotation sites occupied by the satellite's orbit. Four 70:67 apse-type mean motion resonances with Pandora are also overlapping, but these resonances have a much weaker effect. Frequency analysis allows us to highlight the coupling between the 54:53 resonances, and confirms that a simplified system including the perturbations due to Prometheus and Saturn's oblateness only captures the essential features of the dynamics.

  2. A study of the cornering forces generated by aircraft tires on a tilted, free-swiveling nose gear

    NASA Technical Reports Server (NTRS)

    Daugherty, R. H.; Stubbs, S. M.

    1985-01-01

    An experimental investigation was conducted to study the effect of various parameters on the cornering forces produced by a rolling aircraft tire installed on a tilted, free-swiveling nose gear. The parameters studied included tilt angle, trial, tire inflation pressure, rake angle, vertical load, and whether or not a twin tire configuration corotates. These parameters were evaluated by measuring the cornering force produced by an aircraft tire installed on the nose gear of a modified vehicle as it was towed slowly. Cornering force coefficient increased with increasing tilt angle. Increasing trial or rake angle decreased the magnitude of the cornering force coefficient. Tire inflation pressure had no effect on the cornering force coefficient. Increasing vertical load decreased the cornering force coefficient. When the tires of a twin tire system rotated independently, the cornering force coefficients were the same as those for the single-tire configuration. When the twin tire system was made to corotate, however, the cornering force coefficients increased significantly.

  3. Production and fate of the G ring arc particles due to Aegaeon (Saturn LIII)

    NASA Astrophysics Data System (ADS)

    Madeira, Gustavo; Sfair, R.; Mourão, D. C.; Giuliatti Winter, S. M.

    2018-04-01

    The G ring arc hosts the smallest satellite of Saturn, Aegaeon, observed with a set of images sent by Cassini spacecraft. Along with Aegaeon, the arc particles are trapped in a 7:6 corotation eccentric resonance with the satellite Mimas. Due to this resonance, both Aegaeon and the arc material are confined to within 60° of corotating longitudes. The arc particles are dust grains which can have their orbital motions severely disturbed by the solar radiation force. Our numerical simulations showed that Aegaeon is responsible for depleting the arc dust population by removing them through collisions. The solar radiation force hastens these collisions by removing most of the 10 μm sized grains in less than 40 yr. Some debris released from Aegaeon's surface by meteoroid impacts can populate the arc. However, it would take 30 000 yr for Aegaeon to supply the observed amount of arc material, and so it is unlikely that Aegaeon alone is the source of dust in the arc.

  4. MRI evaluation of spontaneous intervertebral disc degeneration in the alpaca cervical spine.

    PubMed

    Stolworthy, Dean K; Bowden, Anton E; Roeder, Beverly L; Robinson, Todd F; Holland, Jacob G; Christensen, S Loyd; Beatty, Amanda M; Bridgewater, Laura C; Eggett, Dennis L; Wendel, John D; Stieger-Vanegas, Susanne M; Taylor, Meredith D

    2015-12-01

    Animal models have historically provided an appropriate benchmark for understanding human pathology, treatment, and healing, but few animals are known to naturally develop intervertebral disc degeneration. The study of degenerative disc disease and its treatment would greatly benefit from a more comprehensive, and comparable animal model. Alpacas have recently been presented as a potential large animal model of intervertebral disc degeneration due to similarities in spinal posture, disc size, biomechanical flexibility, and natural disc pathology. This research further investigated alpacas by determining the prevalence of intervertebral disc degeneration among an aging alpaca population. Twenty healthy female alpacas comprised two age subgroups (5 young: 2-6 years; and 15 older: 10+ years) and were rated according to the Pfirrmann-grade for degeneration of the cervical intervertebral discs. Incidence rates of degeneration showed strong correlations with age and spinal level: younger alpacas were nearly immune to developing disc degeneration, and in older animals, disc degeneration had an increased incidence rate and severity at lower cervical levels. Advanced disc degeneration was present in at least one of the cervical intervertebral discs of 47% of the older alpacas, and it was most common at the two lowest cervical intervertebral discs. The prevalence of intervertebral disc degeneration encourages further investigation and application of the lower cervical spine of alpacas and similar camelids as a large animal model of intervertebral disc degeneration. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  5. Archival-grade optical disc design and international standards

    NASA Astrophysics Data System (ADS)

    Fujii, Toru; Kojyo, Shinichi; Endo, Akihisa; Kodaira, Takuo; Mori, Fumi; Shimizu, Atsuo

    2015-09-01

    Optical discs currently on the market exhibit large variations in life span among discs, making them unsuitable for certain business applications. To assess and potentially mitigate this problem, we performed accelerated degradation testing under standard ISO conditions, determined the probable disc failure mechanisms, and identified the essential criteria necessary for a stable disc composition. With these criteria as necessary conditions, we analyzed the physical and chemical changes that occur in the disc components, on the basis of which we determined technological measures to reduce these degradation processes. By applying these measures to disc fabrication, we were able to develop highly stable optical discs.

  6. Thermal analysis of disc brakes using finite element method

    NASA Astrophysics Data System (ADS)

    Jaenudin, Jamari, J.; Tauviqirrahman, M.

    2017-01-01

    Disc brakes are components of a vehicle that serve to slow or stop the rotation of the wheel. This paper discusses the phenomenon of heat distribution on the brake disc during braking. Heat distribution on the brake disc is caused by kinetic energy changing into mechanical energy. Energy changes occur during the braking process due to friction between the surface of the disc and a disc pad. The temperature resulting from this friction rises high. This thermal analysis on brake discs is aimed to evaluate the performance of an electric car in the braking process. The aim of this study is to analyze the thermal behavior of the brake discs using the Finite Element Method (FEM) through examining the heat distribution on the brake disc using 3-D modeling. Results obtained from the FEM reflect the effects of high heat due to the friction between the disc pad with the disc rotor. Results of the simulation study are used to identify the effect of the heat distribution that occurred during the braking process.

  7. Manipulator having thermally conductive rotary joint for transferring heat from a test specimen

    DOEpatents

    Haney, Steven J.; Stulen, Richard H.; Toly, Norman F.

    1985-01-01

    A manipulator for rotatably moving a test specimen in an ultra-high vacuum chamber includes a translational unit movable in three mutually perpendicular directions. A manipulator frame is rigidly secured to the translational unit for rotatably supporting a rotary shaft. A first copper disc is rigidly secured to an end of the rotary shaft for rotary movement within the vacuum chamber. A second copper disc is supported upon the first disc. The second disc receives a cryogenic cold head and does not rotate with the first disc. A sapphire plate is interposed between the first and second discs to prevent galling of the copper material while maintaining high thermal conductivity between the first and second discs. A spring is disposed on the shaft to urge the second disc toward the first disc and compressingly engage the interposed sapphire plate. A specimen mount is secured to the first disc for rotation within the vacuum chamber. The specimen maintains high thermal conductivity with the second disc receiving the cryogenic transfer line.

  8. Circumplanetary discs around young giant planets: a comparison between core-accretion and disc instability

    NASA Astrophysics Data System (ADS)

    Szulágyi, J.; Mayer, L.; Quinn, T.

    2017-01-01

    Circumplanetary discs can be found around forming giant planets, regardless of whether core accretion or gravitational instability built the planet. We carried out state-of-the-art hydrodynamical simulations of the circumplanetary discs for both formation scenarios, using as similar initial conditions as possible to unveil possible intrinsic differences in the circumplanetary disc mass and temperature between the two formation mechanisms. We found that the circumplanetary discs' mass linearly scales with the circumstellar disc mass. Therefore, in an equally massive protoplanetary disc, the circumplanetary discs formed in the disc instability model can be only a factor of 8 more massive than their core-accretion counterparts. On the other hand, the bulk circumplanetary disc temperature differs by more than an order of magnitude between the two cases. The subdiscs around planets formed by gravitational instability have a characteristic temperature below 100 K, while the core-accretion circumplanetary discs are hot, with temperatures even greater than 1000 K when embedded in massive, optically thick protoplanetary discs. We explain how this difference can be understood as the natural result of the different formation mechanisms. We argue that the different temperatures should persist up to the point when a full-fledged gas giant forms via disc instability; hence, our result provides a convenient criterion for observations to distinguish between the two main formation scenarios by measuring the bulk temperature in the planet vicinity.

  9. Diagenetic and compositional controls of wettability in siliceous sedimentary rocks, Monterey Formation, California

    NASA Astrophysics Data System (ADS)

    Hill, Kristina M.

    Modified imbibition tests were performed on 69 subsurface samples from Monterey Formation reservoirs in the San Joaquin Valley to measure wettability variation as a result of composition and silica phase change. Contact angle tests were also performed on 6 chert samples from outcrop and 3 nearly pure mineral samples. Understanding wettability is important because it is a key factor in reservoir fluid distribution and movement, and its significance rises as porosity and permeability decrease and fluid interactions with reservoir grain surface area increase. Although the low permeability siliceous reservoirs of the Monterey Formation are economically important and prolific, a greater understanding of factors that alter their wettability will help better develop them. Imbibition results revealed a strong trend of decreased wettability to oil with increased detrital content in opal-CT phase samples. Opal-A phase samples exhibited less wettability to oil than both opal-CT and quartz phase samples of similar detrital content. Subsurface reservoir samples from 3 oil fields were crushed to eliminate the effect of capillary pressure and cleansed of hydrocarbons to eliminate wettability alterations by asphaltene, then pressed into discs of controlled density. Powder discs were tested for wettability by dispensing a controlled volume of water and motor oil onto the surface and measuring the time required for each fluid to imbibe into the sample. The syringe and software of a CAM101 tensiometer were used to control the amount of fluid dispensed onto each sample, and imbibition completion times were determined by high-speed photography for water drops; oil drop imbibition was significantly slower and imbibition was timed and determined visually. Contact angle of water and oil drops on polished chert and mineral sample surfaces was determined by image analysis and the Young-Laplace equation. Oil imbibition was significantly slower with increased detrital composition and faster with increased silica content in opal-CT and quartz phase samples, implying decreased wettability to oil with increased detrital (clay) content. However, contact angle tests showed that opal-CT is more wetting to oil with increased detritus and results for oil on quartz-phase samples were inconsistent between different proxies for detritus over their very small compositional range. Water contact angle trends also showed inconsistent wetting trends compared to imbibition tests. We believe this is because the small range in bulk detrital composition between the "pure" samples used in contact angle tests was close to analytical error and because small-scale spatial compositional variability may be significant enough to effect wettability. These experiments show that compositional variables significantly affect wettability, outweighing the effect of silica phase.

  10. Planet-disc interaction in laminar and turbulent discs

    NASA Astrophysics Data System (ADS)

    Stoll, Moritz H. R.; Picogna, Giovanni; Kley, Wilhelm

    2017-07-01

    In weakly ionised discs turbulence can be generated through the vertical shear instability (VSI). Embedded planets are affected by a stochastic component in the torques acting on them, which can impact their migration. In this work we study the interplay between a growing planet embedded in a protoplanetary disc and the VSI turbulence. We performed a series of 3D hydrodynamical simulations for locally isothermal discs with embedded planets in the mass range from 5 to 100 Earth masses. We study planets embedded in an inviscid disc that is VSI unstable, becomes turbulent, and generates angular momentum transport with an effective α = 5 × 10-4. This is compared to the corresponding viscous disc using exactly this α-value. In general we find that the planets have only a weak impact on the disc turbulence. Only for the largest planet (100 M⊕) does the turbulent activity become enhanced inside of the planet. The depth and width of a gap created by the more massive planets (30,100 M⊕) in the turbulent disc equal exactly that of the corresponding viscous case, leading to very similar torque strengths acting on the planet, with small stochastic fluctuations for the VSI disc. At the gap edges vortices are generated that are stronger and longer-lived in the VSI disc. Low mass planets (with Mp ≤ 10 M⊕) do not open gaps in the disc in either case, but generate for the turbulent disc an overdensity behind the planet that exerts a significant negative torque. This can boost the inward migration in VSI turbulent discs well above the Type I rate. Owing to the finite turbulence level in realistic 3D discs the gap depth will always be limited and migration will not stall in inviscid discs.

  11. Kinematics of a selectively constrained radiolucent anterior lumbar disc: comparisons to hybrid and circumferential fusion.

    PubMed

    Daftari, Tapan K; Chinthakunta, Suresh R; Ingalhalikar, Aditya; Gudipally, Manasa; Hussain, Mir; Khalil, Saif

    2012-10-01

    Despite encouraging clinical outcomes of one-level total disc replacements reported in literature, there is no compelling evidence regarding the stability following two-level disc replacement and hybrid constructs. The current study is aimed at evaluating the multidirectional kinematics of a two-level disc arthroplasty and hybrid construct with disc replacement adjacent to rigid circumferential fusion, compared to two-level fusion using a novel selectively constrained radiolucent anterior lumbar disc. Nine osteoligamentous lumbosacral spines (L1-S1) were tested in the following sequence: 1) Intact; 2) One-level disc replacement; 3) Hybrid; 4) Two-level disc replacement; and 5) Two-level fusion. Range of motion (at both implanted and adjacent level), and center of rotation in sagittal plane were recorded and calculated. At the level of implantation, motion was restored when one-level disc replacement was used but tended to decrease with two-level disc arthroplasty. The findings also revealed that both one-level and two-level disc replacement and hybrid constructs did not significantly change adjacent level kinematics compared to the intact condition, whereas the two-level fusion construct demonstrated a significant increase in flexibility at the adjacent level. The location of center of rotation in the sagittal plane at L4-L5 for the one-level disc replacement construct was similar to that of the intact condition. The one-level disc arthroplasty tended to mimic a motion profile similar to the intact spine. However, the two-level disc replacement construct tended to reduce motion and clinical stability of a two-level disc arthroplasty requires additional investigation. Hybrid constructs may be used as a surgical alternative for treating two-level lumbar degenerative disc disease. Published by Elsevier Ltd.

  12. Polar alignment of a protoplanetary disc around an eccentric binary II: Effect of binary and disc parameters

    NASA Astrophysics Data System (ADS)

    Martin, Rebecca G.; Lubow, Stephen H.

    2018-06-01

    In a recent paper Martin & Lubow showed that a circumbinary disc around an eccentric binary can undergo damped nodal oscillations that lead to the polar (perpendicular) alignment of the disc relative to the binary orbit. The disc angular momentum vector aligns to the eccentricity vector of the binary. We explore the robustness of this mechanism for a low mass disc (0.001 of the binary mass) and its dependence on system parameters by means of hydrodynamic disc simulations. We describe how the evolution depends upon the disc viscosity, temperature, size, binary mass ratio, orbital eccentricity and inclination. We compare results with predictions of linear theory. We show that polar alignment of a low mass disc may occur over a wide range of binary-disc parameters. We discuss the application of our results to the formation of planetary systems around eccentric binary stars.

  13. Effects of 30-Day Head-Down Bed Rest on Ocular Structures and Visual Function in a Healthy Subject

    PubMed Central

    Taibbi, Giovanni; Kaplowitz, Kevin; Cromwell, Ronita L.; Godley, Bernard F.; Zanello, Susana B.; Vizzeri, Gianmarco

    2013-01-01

    Introduction We report ocular changes occurring in a healthy human subject enrolled in a bed rest (BR) study designed to replicate the effects of a low-gravity environment. Case report A 25-year-old Caucasian male spent 30 consecutive days in a 6° head-down-tilt position at the NASA Flight Analogs Research Unit. Comprehensive ophthalmologic exams, optic disc stereo-photography, Standard Automated Perimetry (SAP) and optic disc Spectralis OCT scans were performed at baseline, immediately post-BR (BR+0) and 6 months post-BR. Main outcome measures: changes in best-corrected visual acuity, intraocular pressure (IOP), cycloplegic refraction, SAP and Spectralis OCT measures. At BR+0 IOP was 11 and 10 mmHg in the right (OD) and left eye (OS), respectively (a bilateral 4 mmHg decrease compared to baseline); SAP documented a possible bilateral symmetrical inferior scotoma; Spectralis OCT showed an average 19.4 μm (+5.2%) increase in peripapillary retinal thickness, and an average 0.03 mm3 (+5.0%) increase in peripapillary retinal volume bilaterally. However, there were no clinically detectable signs of optic disc edema. 6 months post-BR, IOP was 13 and 14 mmHg in OD and OS, respectively, and the scotoma had resolved. Spectralis OCT measurements matched the ones recorded at baseline. Discussion In this subject, a reduction in IOP associated with subtle structural and functional changes compared to baseline were documented after prolonged head-down BR. These changes may be related to cephalad fluid shifts in response to tilt. Further studies should clarify whether decreased translaminar pressure (i.e., the difference between IOP and intracranial pressure) may be responsible for these findings. PMID:23447853

  14. Influence of abutment material and luting cements color on the final color of all ceramics.

    PubMed

    Dede, Dogu Ömür; Armaganci, Arzu; Ceylan, Gözlem; Cankaya, Soner; Celik, Ersan

    2013-11-01

    The purpose of this study is to evaluate the effects of different abutment materials and luting cements color on the final color of implant-supported all-ceramic restorations. Ten A2 shade IPS e.max Press disc shape all-ceramic specimens were prepared (11 × 1.5 mm). Three different shades (translucent, universal and white opaque) of disc shape luting cement specimens were prepared (11 × 0.2 mm). Three different (zirconium, gold-palladium and titanium) implant abutments and one composite resin disc shape background specimen were prepared at 11 mm diameter and appropriate thicknesses. All ceramic specimens colors were measured with each background and luting cement samples on a teflon mold. A digital spectrophotometer used for measurements and data recorded as CIE L*a*b* color co-ordinates. An optical fluid applied on to the samples to provide a good optical connection and measurements on the composite resin background was saved as the control group. ΔE values were calculated from the ΔL, Δa and Δb values between control and test groups and data were analyzed with one-way variance analysis (ANOVA) and mean values were compared by the Tukey HSD test (α = 0.05). One-way ANOVA of ΔL, Δa, Δb and ΔE values of control and test groups revealed significant differences for backgrounds and seldom for cement color groups (p the 0.05). Only zirconium implant abutment groups and gold palladium abutment with universal shade cement group were found to be clinically acceptable (ΔE ≤ 3.0). Using titanium or gold-palladium abutments for implant supported all ceramics will be esthetically questionable and white opaque cement will be helpful to mask the dark color of titanium abutment.

  15. Open cycle ocean thermal energy conversion system

    DOEpatents

    Wittig, J. Michael

    1980-01-01

    An improved open cycle ocean thermal energy conversion system including a flash evaporator for vaporizing relatively warm ocean surface water and an axial flow, elastic fluid turbine having a vertical shaft and axis of rotation. The warm ocean water is transmitted to the evaporator through a first prestressed concrete skirt-conduit structure circumferentially situated about the axis of rotation. The unflashed warm ocean water exits the evaporator through a second prestressed concrete skirt-conduit structure located circumferentially about and radially within the first skirt-conduit structure. The radially inner surface of the second skirt conduit structure constitutes a cylinder which functions as the turbine's outer casing and obviates the need for a conventional outer housing. The turbine includes a radially enlarged disc element attached to the shaft for supporting at least one axial row of radially directed blades through which the steam is expanded. A prestressed concrete inner casing structure of the turbine has upstream and downstream portions respectively situated upstream and downstream from the disc element. The radially outer surfaces of the inner casing portions and radially outer periphery of the axially interposed disc cooperatively form a downwardly radially inwardly tapered surface. An annular steam flowpath of increasing flow area in the downward axial direction is radially bounded by the inner and outer prestressed concrete casing structures. The inner casing portions each include a transversely situated prestressed concrete circular wall for rotatably supporting the turbine shaft and associated structure. The turbine blades are substantially radially coextensive with the steam flowpath and receive steam from the evaporator through an annular array of prestressed concrete stationary vanes which extend between the inner and outer casings to provide structural support therefor and impart a desired flow direction to the steam.

  16. Detailed Validation Assessment of Turbine Stage Disc Cavity Rotating Flows

    NASA Astrophysics Data System (ADS)

    Kanjiyani, Shezan

    The subject of this thesis is concerned with the amount of cooling air assigned to seal high pressure turbine rim cavities which is critical for performance as well as component life. Insufficient air leads to excessive hot annulus gas ingestion and its penetration deep into the cavity compromising disc life. Excessive purge air, adversely affects performance. Experiments on a rotating turbine stage rig which included a rotor-stator forward disc cavity were performed at Arizona State University. The turbine rig has 22 vanes and 28 blades, while the rim cavity is composed of a single-tooth rim lab seal and a rim platform overlap seal. Time-averaged static pressures were measured in the gas path and the cavity, while mainstream gas ingestion into the cavity was determined by measuring the concentration distribution of tracer gas (carbon dioxide). Additionally, particle image velocimetry (PIV) was used to measure fluid velocity inside the rim cavity between the lab seal and the overlap. The data from the experiments were compared to an 360-degree unsteady RANS (URANS) CFD simulations. Although not able to match the time-averaged test data satisfactorily, the CFD simulations brought to light the unsteadiness present in the flow during the experiment which the slower response data did not fully capture. To interrogate the validity of URANS simulations in capturing complex rotating flow physics, the scope of this work also included to validating the CFD tool by comparing its predictions against experimental LDV data in a closed rotor-stator cavity. The enclosed cavity has a stationary shroud, a rotating hub, and mass flow does not enter or exit the system. A full 360 degree numerical simulation was performed comparing Fluent LES, with URANS turbulence models. Results from these investigations point to URANS state of art under-predicting closed cavity tangential velocity by 32% to 43%, and open rim cavity effectiveness by 50% compared to test data. The goal of this thesis is to assess the validity of URANS turbulence models in more complex rotating flows, compare accuracy with LES simulations, suggest CFD settings to better simulate turbine stage mainstream/disc cavity interaction with ingestion, and recommend experimentation techniques.

  17. Proto-planetary disc evolution and dispersal

    NASA Astrophysics Data System (ADS)

    Rosotti, Giovanni Pietro

    2015-05-01

    Planets form from gas and dust discs in orbit around young stars. The timescale for planet formation is constrained by the lifetime of these discs. The properties of the formed planetary systems depend thus on the evolution and final dispersal of the discs, which is the main topic of this thesis. Observations reveal the existence of a class of discs called "transitional", which lack dust in their inner regions. They are thought to be the last stage before the complete disc dispersal, and hence they may provide the key to understanding the mechanisms behind disc evolution. X-ray photoevaporation and planet formation have been studied as possible physical mechanisms responsible for the final dispersal of discs. However up to now, these two phenomena have been studied separately, neglecting any possible feedback or interaction. In this thesis we have investigated what is the interplay between these two processes. We show that the presence of a giant planet in a photo-evaporating disc can significantly shorten its lifetime, by cutting the inner regions from the mass reservoir in the exterior of the disc. This mechanism produces transition discs that for a given mass accretion rate have larger holes than in models considering only X-ray photo-evaporation, constituting a possible route to the formation of accreting transition discs with large holes. These discs are found in observations and still constitute a puzzle for the theory. Inclusion of the phenomenon called "thermal sweeping", a violent instability that can destroy a whole disc in as little as 10 4 years, shows that the outer disc left can be very short-lived (depending on the X-ray luminosity of the star), possibly explaining why very few non accreting transition discs are observed. However the mechanism does not seem to be efficient enough to reconcile with observations. In this thesis we also show that X-ray photo-evaporation naturally explains the observed correlation between stellar masses and accretion rates and is therefore the ideal candidate for driving disc evolution. Another process that can influence discs is a close encounter with another star. In this thesis we develop a model to study the effect of stellar dynamics in the natal stellar cluster on the discs, following for the first time at the same time the stellar dynamics together with the evolution of the discs. We find that, although close encounters with stars are unlikely to change significantly the mass of a disc, they can change substantially its size, hence imposing an upper limit on the observed disc radii. Finally, we investigated in this thesis whether discs can be reformed after their dispersal. If a star happens to be in a region that is currently forming stars, it can accrete material from the interstellar medium. This mechanism may result in the production of "second generation" discs such that in a given star forming region a few percent of stars may still possess a disc, in tentative agreement with observations of so called "old accretors", which are difficult to explain within the current paradigm of disc evolution and dispersal.

  18. Orbital alignment of circumbinary planets that form in misaligned circumbinary discs: the case of Kepler-413b

    NASA Astrophysics Data System (ADS)

    Pierens, A.; Nelson, R. P.

    2018-06-01

    Although most of the circumbinary planets detected by the Kepler spacecraft are on orbits that are closely aligned with the binary orbital plane, the systems Kepler-413 and Kepler-453 exhibit small misalignments of ˜2.5°. One possibility is that these planets formed in a circumbinary disc whose midplane was inclined relative to the binary orbital plane. Such a configuration is expected to lead to a warped and twisted disc, and our aim is to examine the inclination evolution of planets embedded in these discs. We employed 3D hydrodynamical simulations that examine the disc response to the presence of a modestly inclined binary with parameters that match the Kepler-413 system, as a function of disc parameters and binary inclinations. The discs all develop slowly varying warps, and generally display very small amounts of twist. Very slow solid body precession occurs because a large outer disc radius is adopted. Simulations of planets embedded in these discs resulted in the planet aligning with the binary orbit plane for disc masses close to the minimum mass solar nebular, such that nodal precession of the planet was controlled by the binary. For higher disc masses, the planet maintains near coplanarity with the local disc midplane. Our results suggest that circumbinary planets born in tilted circumbinary discs should align with the binary orbit plane as the disc ages and loses mass, even if the circumbinary disc remains misaligned from the binary orbit. This result has important implications for understanding the origins of the known circumbinary planets.

  19. Mass ratio from Doppler beaming and Rømer delay versus ellipsoidal modulation in the Kepler data of KOI-74

    NASA Astrophysics Data System (ADS)

    Bloemen, S.; Marsh, T. R.; Degroote, P.; Østensen, R. H.; Pápics, P. I.; Aerts, C.; Koester, D.; Gänsicke, B. T.; Breedt, E.; Lombaert, R.; Pyrzas, S.; Copperwheat, C. M.; Exter, K.; Raskin, G.; Van Winckel, H.; Prins, S.; Pessemier, W.; Frémat, Y.; Hensberge, H.; Jorissen, A.; Van Eck, S.

    2012-05-01

    We present a light-curve analysis and radial velocity study of KOI-74, an eclipsing A star + white dwarf binary with a 5.2-d orbit. Aside from new spectroscopy covering the orbit of the system, we used 212 d of publicly available Kepler observations and present the first complete light-curve fitting to these data, modelling the eclipses and transits, ellipsoidal modulation, reflection and Doppler beaming. Markov chain Monte Carlo simulations are used to determine the system parameters and uncertainty estimates. Our results are in agreement with earlier studies, except that we find an inclination of 87°.0 ± 0°.4, which is significantly lower than the previously published value. The altered inclination leads to different values for the relative radii of the two stars and therefore also the mass ratio deduced from the ellipsoidal modulations seen in this system. We find that the mass ratio derived from the radial velocity amplitude (q= 0.104 ± 0.004) disagrees with that derived from the ellipsoidal modulation (q= 0.052 ± 0.004 assuming corotation). This was found before, but with our smaller inclination, the discrepancy is even larger than previously reported. Accounting for the rapid rotation of the A-star, instead of assuming corotation with the binary orbit, is found to increase the discrepancy even further by lowering the mass ratio to q= 0.047 ± 0.004. These results indicate that one has to be extremely careful in using the amplitude of an ellipsoidal modulation signal in a close binary to determine the mass ratio, when a proof of corotation is not firmly established. The same problem could arise whenever an ellipsoidal modulation amplitude is used to derive the mass of a planet orbiting a host star that is not in corotation with the planet's orbit. The radial velocities that can be inferred from the detected Doppler beaming in the light curve are found to be in agreement with our spectroscopic radial velocity determination. We also report the first measurement of Rømer delay in a light curve of a compact binary. This delay amounts to -56 ± 17 s and is consistent with the mass ratio derived from the radial velocity amplitude. The firm establishment of this mass ratio at q= 0.104 ± 0.004 leaves little doubt that the companion of KOI-74 is a low-mass white dwarf.

  20. Audiovisual Bounce-Inducing Effect: Attention Alone Does Not Explain Why the Discs Are Bouncing

    ERIC Educational Resources Information Center

    Grassi, Massimo; Casco, Clara

    2009-01-01

    Two discs moving from opposite points in space, overlapping and stopping at the other disc's starting point, can be seen as either bouncing or streaming through each other. With silent displays, observers report the discs as streaming, whereas if a sound is played when the discs touch each other, observers report the discs as bouncing. The origin…

  1. Formation of neuronal pathways in the imaginal discs of Drosophila melanogaster.

    PubMed

    Jan, Y N; Ghysen, A; Christoph, I; Barbel, S; Jan, L Y

    1985-09-01

    We have followed the formation of neuronal pathways in different imaginal discs of Drosophila. The pattern is highly reproducible for a given disc type but distinct for each type of discs: in leg discs, several neurons are present before metamorphosis and provide two major pathways that are joined by later neurons; in the wing and haltere discs, a few pairs of neurons appear after the onset of metamorphosis and pioneer the major pathways; in antenna discs, no pioneers are detected before massive neuronal differentiation begins. The mechanisms used for axonal guidance seem common to all discs, and the differences between discs can be accounted for simply by differences in the arrangement and birth time of pioneer neurons. Different subsets of pioneer neurons are deleted by mutations such as scute and engrailed.

  2. The GEOFLOW experiment missions in the Fluid Science Laboratory on ISS

    NASA Astrophysics Data System (ADS)

    Picker, Gerold; Carpy, Rodrigo; Fabritius, Gerd; Dettmann, Jan; Minster, Olivier; Winter, Josef; Ranebo, Hans; Dewandre, Thierry; Castiglione, Luigi; Mazzoni, Stefano; Egbers, Christoph; Futterer, Birgit

    The GEOFLOW I experiment has been successfully performed on the International Space Sta-tion (ISS) in 2008 in the Columbus module in order to study the stability, pattern formation and transition to turbulence in a viscous incompressible fluid layer enclosed in two concentric co-rotating spheres subject to a radial temperature gradient and a radial volumetric force field. The objective of the study is the experimental investigation of large scale astrophysical and geophysical phenomena in spherical geometry stipulated by rotation, thermal convections and radial gravity fields. These systems include earth outer core or mantle convection, differen-tial rotation effects in the sun, atmosphere of gas planets as well as a variety of engineering applications. The GEOFLOW I experimental instrument consists of an experiment insert for operation in the Fluid Science Laboratory, which is part of the Columbus Module of the ISS. It was first launched in February 2008 together with Columbus Module on STS 122, operated periodically for 9 month and returned to ground after 14 month on orbit with STS 119. The primary objective was the experimental modelling of outer earth core convection flow. In order to allow for variations of the characteristic scaling for different physical phenomena, the experiment was designed and qualified for a total of nine flights to the ISS, with ground refurbishment and geometrical or fluid modification after each mission. The second mission of GEOFLOW (II) is currently under preparation in terms of hardware refurbishment and modification, as well as science parameter development in order to allow use of a new experimental model fluid with a strongly temperature dependent viscosity, a adaptation of the experimental thermal parameter range in order to provide a representative model for earth mantle convection. The GEOFLOW II instrument is foreseen to be launched with the second mission of the Eu-ropean Automated Transfer Vehicle (ATV). The flight to ISS is planned on ATV 2 "Johannes-Kepler" and foreseen for launch with Ariane 5 in November / December 2010. The objective of the presentation is to give an overview on the Geoflow instrument, its scien-tific performances, the experimental procedures with particular focus on the evolution of the instrument and experiment from its first mission to the second mission. The GEOFLOW project is funded by ESA/ESTEC for the industrial activities and the support of the GEOFLOW science topical team and by German Aerospace Center DLR for the ground based research at BTU Cottbus/Germany. The flight hardware was developed and built by an industrial team led by ASTRIUM Space Transportation Friedrichshafen/Germany.

  3. The relationship between quantitative measures of disc height and disc signal intensity with Pfirrmann score of disc degeneration.

    PubMed

    Salamat, Sara; Hutchings, John; Kwong, Clemens; Magnussen, John; Hancock, Mark J

    2016-01-01

    To assess the relationship between quantitative measures of disc height and signal intensity with the Pfirrmann disc degeneration scoring system and to test the inter-rater reliability of the quantitative measures. Participants were 76 people who had recently recovered from their last episode of acute low back pain and underwent MRI scan on a single 3T machine. At all 380 lumbar discs, quantitative measures of disc height and signal intensity were made by 2 independent raters and compared to Pfirrmann scores from a single radiologist. For quantitative measures of disc height and signal intensity a "raw" score and 2 adjusted ratios were calculated and the relationship with Pfirrmann scores was assessed. The inter-tester reliability of quantitative measures was also investigated. There was a strong linear relationship between quantitative disc signal intensity and Pfirrmann scores for grades 1-4, but not for grades 4 and 5. For disc height only, Pfirrmann grade 5 had significantly reduced disc height compared to all other grades. Results were similar regardless of whether raw or adjusted scores were used. Inter-rater reliability for the quantitative measures was excellent (ICC > 0.97). Quantitative measures of disc signal intensity were strongly related to Pfirrmann scores from grade 1 to 4; however disc height only differentiated between grade 4 and 5 Pfirrmann scores. Using adjusted ratios for quantitative measures of disc height or signal intensity did not significantly alter the relationship with Pfirrmann scores.

  4. Effects of disc mid-plane evolution on CO snowline location

    NASA Astrophysics Data System (ADS)

    Panić, O.; Min, M.

    2017-05-01

    Temperature changes in the planet forming disc mid-planes carry important physico-chemical consequences, such as the effect on the locations of the condensation fronts of molecules - the snowlines. Snowlines impose major chemical gradients and possibly foster grain growth. The aim of this paper is to understand how disc mid-plane temperature changes with gas and dust evolution, and identify trends that may influence planet formation or allow to constrain disc evolution observationally. We calculate disc temperature, hydrostatic equilibrium and dust settling in a mutually consistent way from a grid of disc models at different stages of gas loss, grain growth and hole opening. We find that the CO snowline location depends very strongly on disc properties. The CO snowline location migrates closer to the star for increasing degrees of gas dispersal and dust growth. Around a typical A-type star, the snowline can be anywhere between several tens and a few hundred au, depending on the disc properties such as gas mass and grain size. In fact, gas loss is as efficient as dust evolution in settling discs, and flat discs may be gas-poor counterparts of flared discs. Our results, in the context of different pre-main-sequence evolution of the luminosity in low- and intermediate-mass stars suggest very different thermal (and hence chemical) histories in these two types of discs. Discs of T Tauri stars settle and cool down, while discs of Herbig Ae stars may remain rather warm throughout the pre-main sequence.

  5. Kozai-Lidov disc instability

    NASA Astrophysics Data System (ADS)

    Lubow, Stephen H.; Ogilvie, Gordon I.

    2017-08-01

    Recent results by Martin et al. showed in 3D smoothed particle hydrodynamics simulations that tilted discs in binary systems can be unstable to the development of global, damped Kozai-Lidov (KL) oscillations in which the discs exchange tilt for eccentricity. We investigate the linear stability of KL modes for tilted inviscid discs under the approximations that the disc eccentricity is small and the disc remains flat. By using 1D equations, we are able to probe regimes of large ratios of outer to inner disc edge radii that are realistic for binary systems of hundreds of astronomical unit separations and are not easily probed by multidimensional simulations. For order unity binary mass ratios, KL instability is possible for a window of disc aspect ratios H/r in the outer parts of a disc that roughly scale as (nb/n)2 ≲ H/r ≲ nb/n, for binary orbital frequency nb and orbital frequency n at the disc outer edge. We present a framework for understanding the zones of instability based on the determination of branches of marginally unstable modes. In general, multiple growing eccentric KL modes can be present in a disc. Coplanar apsidal-nodal precession resonances delineate instability branches. We determine the range of tilt angles for unstable modes as a function of disc aspect ratio. Unlike the KL instability for free particles that involves a critical (minimum) tilt angle, disc instability is possible for any non-zero tilt angle depending on the disc aspect ratio.

  6. Liquid-film electron stripper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gavin, B.F.

    1986-12-02

    This patent describes an improved liquid-film electron stripper for high intensity heavy ion beams comprising: at least one rotatable disc mounted in a housing, means for rotating the disc, a liquid reservoir operatively connected to the housing, means for directing liquid from the reservoir onto the rotatable disc for forming a film of liquid as liquid is spun from the disc, the disc being configured to define a sharp edge located at one side of the periphery of the disc, and configured to include a flat, smooth radially outer section located adjacent the sharp edge, the liquid being directed ontomore » the flat, smooth section of the disc, the means for directing liquid onto the disc including a nozzle positioned with respect to the disc so that liquid from the nozzle impinges at about a 90/sup 0/ angle with respect to the flat, smooth surface of the disc, and liquid film terminator means located in spaced relation to the disc and approximately perpendicular to a formed liquid film, the terminator means comprising at least one ribbon of material secured to the housing.« less

  7. In Vitro Maturation and In Vivo Integration and Function of an Engineered Cell-Seeded Disc-like Angle Ply Structure (DAPS) for Total Disc Arthroplasty.

    PubMed

    Martin, J T; Gullbrand, S E; Kim, D H; Ikuta, K; Pfeifer, C G; Ashinsky, B G; Smith, L J; Elliott, D M; Smith, H E; Mauck, R L

    2017-11-17

    Total disc replacement with an engineered substitute is a promising avenue for treating advanced intervertebral disc disease. Toward this goal, we developed cell-seeded disc-like angle ply structures (DAPS) and showed through in vitro studies that these constructs mature to match native disc composition, structure, and function with long-term culture. We then evaluated DAPS performance in an in vivo rat model of total disc replacement; over 5 weeks in vivo, DAPS maintained their structure, prevented intervertebral bony fusion, and matched native disc mechanical function at physiologic loads in situ. However, DAPS rapidly lost proteoglycan post-implantation and did not integrate into adjacent vertebrae. To address this, we modified the design to include polymer endplates to interface the DAPS with adjacent vertebrae, and showed that this modification mitigated in vivo proteoglycan loss while maintaining mechanical function and promoting integration. Together, these data demonstrate that cell-seeded engineered discs can replicate many characteristics of the native disc and are a viable option for total disc arthroplasty.

  8. Rethinking Black Hole Accretion Discs

    NASA Astrophysics Data System (ADS)

    Salvesen, Greg

    Accretion discs are staples of astrophysics. Tapping into the gravitational potential energy of the accreting material, these discs are highly efficient machines that produce copious radiation and extreme outflows. While interesting in their own right, accretion discs also act as tools to study black holes and directly influence the properties of the Universe. Black hole X-ray binaries are fantastic natural laboratories for studying accretion disc physics and black hole phenomena. Among many of the curious behaviors exhibited by these systems are black hole state transitions -- complicated cycles of dramatic brightening and dimming. Using X-ray observations with high temporal cadence, we show that the evolution of the accretion disc spectrum during black hole state transitions can be described by a variable disc atmospheric structure without invoking a radially truncated disc geometry. The accretion disc spectrum can be a powerful diagnostic for measuring black hole spin if the effects of the disc atmosphere on the emergent spectrum are well-understood; however, properties of the disc atmosphere are largely unconstrained. Using statistical methods, we decompose this black hole spin measurement technique and show that modest uncertainties regarding the disc atmosphere can lead to erroneous spin measurements. The vertical structure of the disc is difficult to constrain due to our ignorance of the contribution to hydrostatic balance by magnetic fields, which are fundamental to the accretion process. Observations of black hole X-ray binaries and the accretion environments near supermassive black holes provide mounting evidence for strong magnetization. Performing numerical simulations of accretion discs in the shearing box approximation, we impose a net vertical magnetic flux that allows us to effectively control the level of disc magnetization. We study how dynamo activity and the properties of turbulence driven by the magnetorotational instability depend on the magnetized state of the gas, spanning weak-to-strong disc magnetization regimes. We also demonstrate that a background poloidal magnetic flux is required to form and sustain a strongly magnetized accretion disc. This thesis motivates the need for understanding how magnetic fields affect the observed spectrum from black hole accretion discs.

  9. Ensuring long-term reliability of the data storage on optical disc

    NASA Astrophysics Data System (ADS)

    Chen, Ken; Pan, Longfa; Xu, Bin; Liu, Wei

    2008-12-01

    "Quality requirements and handling regulation of archival optical disc for electronic records filing" is released by The State Archives Administration of the People's Republic of China (SAAC) on its network in March 2007. This document established a complete operative managing process for optical disc data storage in archives departments. The quality requirements of the optical disc used in archives departments are stipulated. Quality check of the recorded disc before filing is considered to be necessary and the threshold of the parameter of the qualified filing disc is set down. The handling regulations for the staffs in the archives departments are described. Recommended environment conditions of the disc preservation, recording, accessing and testing are presented. The block error rate of the disc is selected as main monitoring parameter of the lifetime of the filing disc and three classes pre-alarm lines are created for marking of different quality check intervals. The strategy of monitoring the variation of the error rate curve of the filing discs and moving the data to a new disc or a new media when the error rate of the disc reaches the third class pre-alarm line will effectively guarantee the data migration before permanent loss. Only when every step of the procedure is strictly implemented, it is believed that long-term reliability of the data storage on optical disc for archives departments can be effectively ensured.

  10. How do accretion discs break?

    NASA Astrophysics Data System (ADS)

    Dogan, Suzan

    2016-07-01

    Accretion discs are common in binary systems, and they are often found to be misaligned with respect to the binary orbit. The gravitational torque from a companion induces nodal precession in misaligned disc orbits. In this study, we first calculate whether this precession is strong enough to overcome the internal disc torques communicating angular momentum. We compare the disc precession torque with the disc viscous torque to determine whether the disc should warp or break. For typical parameters precession wins: the disc breaks into distinct planes that precess effectively independently. To check our analytical findings, we perform 3D hydrodynamical numerical simulations using the PHANTOM smoothed particle hydrodynamics code, and confirm that disc breaking is widespread and enhances accretion on to the central object. For some inclinations, the disc goes through strong Kozai cycles. Disc breaking promotes markedly enhanced and variable accretion and potentially produces high-energy particles or radiation through shocks. This would have significant implications for all binary systems: e.g. accretion outbursts in X-ray binaries and fuelling supermassive black hole (SMBH) binaries. The behaviour we have discussed in this work is relevant to a variety of astrophysical systems, for example X-ray binaries, where the disc plane may be tilted by radiation warping, SMBH binaries, where accretion of misaligned gas can create effectively random inclinations and protostellar binaries, where a disc may be misaligned by a variety of effects such as binary capture/exchange, accretion after binary formation.

  11. Notochord Cells in Intervertebral Disc Development and Degeneration

    PubMed Central

    McCann, Matthew R.; Séguin, Cheryle A.

    2016-01-01

    The intervertebral disc is a complex structure responsible for flexibility, multi-axial motion, and load transmission throughout the spine. Importantly, degeneration of the intervertebral disc is thought to be an initiating factor for back pain. Due to a lack of understanding of the pathways that govern disc degeneration, there are currently no disease-modifying treatments to delay or prevent degenerative disc disease. This review presents an overview of our current understanding of the developmental processes that regulate intervertebral disc formation, with particular emphasis on the role of the notochord and notochord-derived cells in disc homeostasis and how their loss can result in degeneration. We then describe the role of small animal models in understanding the development of the disc and their use to interrogate disc degeneration and associated pathologies. Finally, we highlight essential development pathways that are associated with disc degeneration and/or implicated in the reparative response of the tissue that might serve as targets for future therapeutic approaches. PMID:27252900

  12. Physical Properties of the Double Kerr Solution

    NASA Astrophysics Data System (ADS)

    Herdeiro, Carlos A. R.; Rebelo, Carmen

    We consider two special cases, dubbed counter-rotating and co-rotating of the double-Kerr solution, in four spacetime dimensions. We discuss how various physical properties of the black holes vary as the distance between them varies, namely: the horizon angular velocity and extremality condition, the horizon and ergo-surface geometry.

  13. Developing NanoFoil-Heated Thin-Film Thermal Battery

    DTIC Science & Technology

    2013-09-01

    buffer discs (in gray) sandwiching the NanoFoil disc (in yellow). Two Microtherm discs (in dark gray) bracketed the sandwich to prevent excessive heat...of the fuse strip with a Microtherm disc. Cathode Electrolyte Anode Microtherm Heat paper NanoFoil Buffer Agilent 34970A 606.5 Nichrome wire Maccor...gray) sandwiching the NanoFoil disc (in yellow). Two Microtherm discs (in dark gray) bracketed the sandwich to prevent excessive heat loss

  14. Is there any relationship between proinflammatory mediator levels in disc material and myelopathy with cervical disc herniation and spondylosis? A non-randomized, prospective clinical study

    PubMed Central

    Asir, Alparslan; Cetinkal, Ahmet; Gedik, Nursal; Kutlay, Ahmet Murat; Çolak, Ahmet; Kurtar, Sedat; Simsek, Hakan

    2007-01-01

    The proinflammatory mediator (PIM) levels were assessed in surgically removed samples of herniated cervical intervertebral discs. The objective of this study was to investigate if there is a correlation between the levels of PIMs in disc material and myelopathy associated with cervical intervertebral disc herniation and spondylosis. The role of proinflammatory mediators in the degeneration of intervertebral disc and the inflammatory effects of disc herniations on radicular pain has been previously published. However, the possible relationship between PIMs and myelopathy related to cervical disc herniation and spondylosis has not been investigated before. Thirty-two patients undergoing surgery for cervical disc herniation and spondylosis were investigated. Surgically obtained disc materials, stored at 70°C, were classified into two groups: cervical disc herniation alone or with myelopathy. Biochemical preparation and solid phase enzyme amplified sensitivity immunoassay (ELISIA) analysis of the samples were performed to assess the concentration of mediators in the samples. Very similar values of interleukin-6 were found in both groups whereas the concentrations of mediators were significantly higher in myelopathy group. This study has demonstrated that PIMs are involved in cervical intervertebral disc degeneration with higher concentrations in the samples associated with myelopathy. PMID:17476536

  15. Regular frequency patterns in the young δ Scuti star HD 261711 observed by the CoRoT and MOST satellites

    NASA Astrophysics Data System (ADS)

    Zwintz, K.; Fossati, L.; Guenther, D. B.; Ryabchikova, T.; Baglin, A.; Themessl, N.; Barnes, T. G.; Matthews, J. M.; Auvergne, M.; Bohlender, D.; Chaintreuil, S.; Kuschnig, R.; Moffat, A. F. J.; Rowe, J. F.; Rucinski, S. M.; Sasselov, D.; Weiss, W. W.

    2013-04-01

    Context. The internal structure of pre-main-sequence (PMS) stars is poorly constrained at present. This could change significantly through high-quality asteroseismological observations of a sample of such stars. Aims: We concentrate on an asteroseismological study of HD 261711, a rather hot δ Scuti-type pulsating member of the young open cluster NGC 2264 located at the blue border of the instability region. HD 261711 was discovered to be a PMS δ Scuti star using the time series photometry obtained by the MOST satellite in 2006. Methods: High-precision, time-series photometry of HD 261711 was obtained by the MOST and CoRoT satellites in four separate new observing runs that are put into context with the star's fundamental atmospheric parameters obtained from spectroscopy. Frequency Analysis was performed using Period04. The spectral analysis was performed using equivalent widths and spectral synthesis. Results: With the new MOST data set from 2011/12 and the two CoRoT light curves from 2008 and 2011/12, the δ Scuti variability was confirmed and regular groups of frequencies were discovered. The two pulsation frequencies identified in the data from the first MOST observing run in 2006 are confirmed and 23 new δ Scuti-type frequencies were discovered using the CoRoT data. Weighted average frequencies for each group were determined and are related to l = 0 and l = 1 p-modes. Evidence for amplitude modulation of the frequencies in two groups is seen. The effective temperature (Teff) was derived to be 8600 ± 200 K, log g is 4.1 ± 0.2, and the projected rotational velocity (υsini) is 53 ± 1 km s-1. Using our Teff value and the radius of 1.8 ± 0.5 R⊙ derived from spectral energy distribution (SED) fitting, we get a luminosity log L/L⊙ of 1.20 ± 0.14 which agrees well to the seismologically determined values of 1.65 R⊙ and, hence, a log L/L⊙ of 1.13. The radial velocity of 14 ± 2 km s-1 we derived for HD 261711, confirms the star's membership to NGC 2264. Conclusions: Our asteroseismic models suggest that HD 261711 is a δ Scuti-type star close to the zero-age main sequence (ZAMS) with a mass of 1.8 to 1.9 M⊙. With an age of about 10 million years derived from asteroseismology, the star is either a young ZAMS star or a late PMS star just before the onset of hydrogen-core burning. The observed splittings about the l = 0 and 1 parent modes may be an artifact of the Fourier derived spectrum of frequencies with varying amplitudes. The CoRoT space mission was developed and is operated by the French space agency CNES, with participation of ESA's RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain.Based on data from the MOST satellite, a Canadian Space Agency mission, jointly operated by Microsatellite Systems Canada Inc. (MSCI), formerly part of Dynacon, Inc., the University of Toronto Institute for Aerospace Studies and the University of British Columbia with the assistance of the University of Vienna.Reduced spectra are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/552/A68

  16. MDCK cells are capable of water secretion and reabsorption in response to changes in the ionic environment.

    PubMed

    Capra, Janne P; Eskelinen, Sinikka M

    2017-01-01

    A prerequisite for tissue electrolyte homeostasis is highly regulated ion and water transport through kidney or intestinal epithelia. In the present work, we monitored changes in the cell and luminal volumes of type II Madin-Darby canine kidney (MDCK) cells grown in a 3D environment in response to drugs, or to changes in the composition of the basal extracellular fluid. Using fluorescent markers and high-resolution spinning disc confocal microscopy, we could show that lack of sodium and potassium ions in the basal fluid (tetramethylammonium chloride (TMACl) buffer) induces a rapid increase in the cell and luminal volumes. This transepithelial water flow could be regulated by inhibitors and agonists of chloride channels. Hence, the driving force for the transepithelial water flow is chloride secretion, stimulated by hyperpolarization. Chloride ion depletion of the basal fluid (using sodium gluconate buffer) induces a strong reduction in the lumen size, indicating reabsorption of water from the lumen to the basal side. Lumen size also decreased following depolarization of the cell interior by rendering the membrane permeable to potassium. Hence, MDCK cells are capable of both absorption and secretion of chloride ions and water; negative potential within the lumen supports secretion, while depolarizing conditions promote reabsorption.

  17. Microliter-sized ionization device and method

    NASA Technical Reports Server (NTRS)

    Simac, Robert M. (Inventor); Wernlund, Roger F. (Inventor); Cohen, Martin J. (Inventor)

    1999-01-01

    A microliter-sized metastable ionization device with a cavity, a sample gas inlet, a corona gas inlet and a gas outlet. A first electrode has a hollow and disposed in the cavity and is in fluid communication with the sample gas inlet. A second electrode is in fluid communication with the corona gas inlet and is disposed around the first electrode adjacent the hollow end thereof. A gap forming means forms a corona gap between the first and second electrodes. A first power supply is connected to the first electrode and the second power supply is connected to the second electrode for generating a corona discharge across the corona gap. A collector has a hollow end portion disposed in the cavity which is in fluid communications with the gas outlet for the outgassing and detection of ionized gases. The first electrode can be a tubular member aligned concentrically with a cylindrical second electrode. The gap forming means can be in annular disc projecting radially inwardly from the cylindrical second electrode. The collector can have a tubular opening aligned coaxially with the first electrode and has an end face spaced a short distance from an end face of the first electrode forming a small active volume therebetween for the generation and detection of small quantities of trace analytes.

  18. Effect of collagen fibre orientation on intervertebral disc torsion mechanics.

    PubMed

    Yang, Bo; O'Connell, Grace D

    2017-12-01

    The intervertebral disc is a complex fibro-cartilaginous material, consisting of a pressurized nucleus pulposus surrounded by the annulus fibrosus, which has an angle-ply structure. Disc injury and degeneration are noted by significant changes in tissue structure and function, which significantly alters stress distribution and disc joint stiffness. Differences in fibre orientation are thought to contribute to changes in disc torsion mechanics. Therefore, the objective of this study was to evaluate the effect of collagen fibre orientation on internal disc mechanics under compression combined with axial rotation. We developed and validated a finite element model (FEM) to delineate changes in disc mechanics due to fibre orientation from differences in material properties. FEM simulations were performed with fibres oriented at [Formula: see text] throughout the disc (uniform by region and fibre layer). The initial model was validated by published experimental results for two load conditions, including [Formula: see text] axial compression and [Formula: see text] axial rotation. Once validated, fibre orientation was rotated by [Formula: see text] or [Formula: see text] towards the horizontal plane, resulting in a decrease in disc joint torsional stiffness. Furthermore, we observed that axial rotation caused a sinusoidal change in disc height and radial bulge, which may be beneficial for nutrient transport. In conclusion, including anatomically relevant fibre angles in disc joint FEMs is important for understanding stress distribution throughout the disc and will be important for understanding potential causes for disc injury. Future models will include regional differences in fibre orientation to better represent the fibre architecture of the native disc.

  19. Regression Analysis of Optical Coherence Tomography Disc Variables for Glaucoma Diagnosis.

    PubMed

    Richter, Grace M; Zhang, Xinbo; Tan, Ou; Francis, Brian A; Chopra, Vikas; Greenfield, David S; Varma, Rohit; Schuman, Joel S; Huang, David

    2016-08-01

    To report diagnostic accuracy of optical coherence tomography (OCT) disc variables using both time-domain (TD) and Fourier-domain (FD) OCT, and to improve the use of OCT disc variable measurements for glaucoma diagnosis through regression analyses that adjust for optic disc size and axial length-based magnification error. Observational, cross-sectional. In total, 180 normal eyes of 112 participants and 180 eyes of 138 participants with perimetric glaucoma from the Advanced Imaging for Glaucoma Study. Diagnostic variables evaluated from TD-OCT and FD-OCT were: disc area, rim area, rim volume, optic nerve head volume, vertical cup-to-disc ratio (CDR), and horizontal CDR. These were compared with overall retinal nerve fiber layer thickness and ganglion cell complex. Regression analyses were performed that corrected for optic disc size and axial length. Area-under-receiver-operating curves (AUROC) were used to assess diagnostic accuracy before and after the adjustments. An index based on multiple logistic regression that combined optic disc variables with axial length was also explored with the aim of improving diagnostic accuracy of disc variables. Comparison of diagnostic accuracy of disc variables, as measured by AUROC. The unadjusted disc variables with the highest diagnostic accuracies were: rim volume for TD-OCT (AUROC=0.864) and vertical CDR (AUROC=0.874) for FD-OCT. Magnification correction significantly worsened diagnostic accuracy for rim variables, and while optic disc size adjustments partially restored diagnostic accuracy, the adjusted AUROCs were still lower. Axial length adjustments to disc variables in the form of multiple logistic regression indices led to a slight but insignificant improvement in diagnostic accuracy. Our various regression approaches were not able to significantly improve disc-based OCT glaucoma diagnosis. However, disc rim area and vertical CDR had very high diagnostic accuracy, and these disc variables can serve to complement additional OCT measurements for diagnosis of glaucoma.

  20. Gravitational Instabilities in a Protosolar-like Disc

    NASA Astrophysics Data System (ADS)

    Evans, Mark Graham

    2018-02-01

    This thesis presents a study of protoplanetary discs around young, low mass protostars. Such discs are believed to be massive enough to develop gravitational instabilities, which subsequently form spiral structures. The dynamical and chemical evolutions of a protosolar-like, gravitationally unstable disc are explored and the spiral structure in the disc is found to shock-heat material. This affects the chemical composition via enhanced desorption rates and endothermic reaction rates and through global mixing of the disc. As a result, the gravitational instability in the model disc leads to transient and permanent changes in the disc chemistry, and also provides a chemically-rich midplane in contrast to simulations of more evolved discs. Secondly, radiative transfer calculations are performed for the dust continuum, and model-tailored grid construction is found to improve the accuracy of the resultant flux images. Continuum observations of the model disc are synthesised and the spiral structure (driven by the gravitational instability) is shown to be readily detectable with ALMA across a range of frequencies, disc inclinations and dust opacities. The derivation of disc mass from the observed flux densities is explored but the method commonly utilised is found to be unreliable and underestimate the disc mass. Therefore, it is concluded that gravitational instabilities could be retrospectively validated in discs previously thought not massive enough to be self-gravitating. Finally, radiative transfer calculations are performed for molecular line transitions. Methods for improving the accuracy of line flux images are explored and the validity of assuming local thermodynamic equilibrium is assessed. Observations of the line fluxes are synthesised without noise and the spiral structure is found to be traced to an extent by all transitions considered, which is not necessarily congruent with the underlying distribution of the molecular species. The disc is seen in absorption in all transitions considered, due to the global mixing of the disc, which suggests absorption features could be a signature of gravitational instability in young protoplanetary discs. The sensitivities required to detect flux originating in spiral features are determined and it is found that a dedicated observation with ALMA should be capable of spatially resolving spiral structure in a Class 0 disc. Whether the spiral structure can be also be determined from spectral features is explored, which is shown to only be reliable with PV diagrams of nearly edge-on discs. The derivation of protostellar mass from PV diagrams is also explored and found to most likely be unreliable for gravitationally unstable discs.

Top