Sample records for fluid displacement processes

  1. Water displacement mercury pump

    DOEpatents

    Nielsen, Marshall G.

    1985-01-01

    A water displacement mercury pump has a fluid inlet conduit and diffuser, a valve, a pressure cannister, and a fluid outlet conduit. The valve has a valve head which seats in an opening in the cannister. The entire assembly is readily insertable into a process vessel which produces mercury as a product. As the mercury settles, it flows into the opening in the cannister displacing lighter material. When the valve is in a closed position, the pressure cannister is sealed except for the fluid inlet conduit and the fluid outlet conduit. Introduction of a lighter fluid into the cannister will act to displace a heavier fluid from the cannister via the fluid outlet conduit. The entire pump assembly penetrates only a top wall of the process vessel, and not the sides or the bottom wall of the process vessel. This insures a leak-proof environment and is especially suitable for processing of hazardous materials.

  2. Water displacement mercury pump

    DOEpatents

    Nielsen, M.G.

    1984-04-20

    A water displacement mercury pump has a fluid inlet conduit and diffuser, a valve, a pressure cannister, and a fluid outlet conduit. The valve has a valve head which seats in an opening in the cannister. The entire assembly is readily insertable into a process vessel which produces mercury as a product. As the mercury settles, it flows into the opening in the cannister displacing lighter material. When the valve is in a closed position, the pressure cannister is sealed except for the fluid inlet conduit and the fluid outlet conduit. Introduction of a lighter fluid into the cannister will act to displace a heavier fluid from the cannister via the fluid outlet conduit. The entire pump assembly penetrates only a top wall of the process vessel, and not the sides or the bottom wall of the process vessel. This insures a leak-proof environment and is especially suitable for processing of hazardous materials.

  3. Effects of aperture variability and wettability on immiscible displacement in fractures

    NASA Astrophysics Data System (ADS)

    Yang, Zhibing; Méheust, Yves; Neuweiler, Insa

    2017-04-01

    Fluid-fluid displacement in porous and fractured media is an important process. Understanding and controlling this process is key to many practical applications, such as hydrocarbon recovery, geological storage of CO2, groundwater remediation, etc. Here, we numerically study fluid-fluid displacement in rough-walled fractures. We focus on the combined effect of wettability and fracture surface topography on displacement patterns and interface growth. We develop a novel numerical model to simulate dynamic fluid invasion under the influence of capillary and viscous forces. The capillary force is calculated using the two principal curvatures (aperture-induced curvature and in-plane curvature) at the fluid-fluid interface, and the viscous force is taken into account by solving the fluid pressure distribution. The aperture field of a fracture is represented by a spatially correlated random field, which is described by a power spectrum for the fracture wall topography and a cutoff wave-length. We numerically produce displacement patterns ranging from stable displacement, capillary fingering, and viscous fingering, as well as the transitions between them. We show that both reducing the aperture variability and increasing the contact angle (from drainage to weak imbibition) stabilize the displacement due to the influence of the in-plane curvature, an effect analogous to that of the cooperative pore filling in porous media. Implications of these results will be discussed.

  4. Polymeric nanospheres as a displacement fluid in enhanced oil recovery

    NASA Astrophysics Data System (ADS)

    Hendraningrat, Luky; Zhang, Julien

    2015-12-01

    This paper presents the investigation of using nanoscale polyacrylamide-based spheres (nanospheres) as a displacement fluid in enhanced oil recovery (EOR). Coreflood experiments were conducted to evaluate the impact of nanospheres and its concentration dispersed in model formation water on oil recovery during a tertiary oil recovery process. The coreflood results showed that nanospheres can enhance residual oil recovery in the sandstone rock samples and its concentration showed a significant impact into incremental oil. By evaluating the contact angle, it was observed that wettability alteration also might be involved in the possible oil displacement mechanism in this process together with fluid behavior and permeability to water that might divert injected fluid into unswept oil areas and enhance the residual oil recovery. These investigations promote nanospheres aqueous disperse solution as a potential displacement fluid in EOR.

  5. Gas-assisted gravity drainage (GAGD) process for improved oil recovery

    DOEpatents

    Rao, Dandina N [Baton Rouge, LA

    2012-07-10

    A rapid and inexpensive process for increasing the amount of hydrocarbons (e.g., oil) produced and the rate of production from subterranean hydrocarbon-bearing reservoirs by displacing oil downwards within the oil reservoir and into an oil recovery apparatus is disclosed. The process is referred to as "gas-assisted gravity drainage" and comprises the steps of placing one or more horizontal producer wells near the bottom of a payzone (i.e., rock in which oil and gas are found in exploitable quantities) of a subterranean hydrocarbon-bearing reservoir and injecting a fluid displacer (e.g., CO.sub.2) through one or more vertical wells or horizontal wells. Pre-existing vertical wells may be used to inject the fluid displacer into the reservoir. As the fluid displacer is injected into the top portion of the reservoir, it forms a gas zone, which displaces oil and water downward towards the horizontal producer well(s).

  6. Deformation of interface in a partially miscible system during favorable displacement

    NASA Astrophysics Data System (ADS)

    Suzuki, Ryuta; Nagatsu, Yuichiro; Mishra, Manoranjan; Ban, Takahiko

    2017-11-01

    The Saffman-Taylor instability triggers a well-known viscous fingering (VF, called unfavorable displacement), occurring when a less viscous fluid displaces a more viscous one in porous media or in a Hele-Shaw cell because the boundary of the two fluids becomes hydrodynamically unstable. In the reverse situation (called favorable displacement) in which a more viscous fluid displaces a less viscous one, no instabilities occur due to hydrodynamically stable system. It has been reported that the favorable displacements become unstable by several physicochemical effects. So far, studies of both displacements have focused on fluids that are either fully miscible or immiscible. However, little attention has been paid to displacements in partially miscible system. Here, we have discovered that a partial miscibility triggers fingering instability in a favorable displacement without any chemical reactions. The occurrence of this new instability is induced by not hydrodynamic effects but a thermodynamic effect that is so-called Korteweg effect in which convection is induced during phase separation process in a partially miscible system.

  7. Viscoelastic effects on residual oil distribution in flows through pillared microchannels.

    PubMed

    De, S; Krishnan, P; van der Schaaf, J; Kuipers, J A M; Peters, E A J F; Padding, J T

    2018-01-15

    Multiphase flow through porous media is important in a number of industrial, natural and biological processes. One application is enhanced oil recovery (EOR), where a resident oil phase is displaced by a Newtonian or polymeric fluid. In EOR, the two-phase immiscible displacement through heterogonous porous media is usually governed by competing viscous and capillary forces, expressed through a Capillary number Ca, and viscosity ratio of the displacing and displaced fluid. However, when viscoelastic displacement fluids are used, elastic forces in the displacement fluid also become significant. It is hypothesized that elastic instabilities are responsible for enhanced oil recovery through an elastic microsweep mechanism. In this work, we use a simplified geometry in the form of a pillared microchannel. We analyze the trapped residual oil size distribution after displacement by a Newtonian fluid, a nearly inelastic shear thinning fluid, and viscoelastic polymers and surfactant solutions. We find that viscoelastic polymers and surfactant solutions can displace more oil compared to Newtonian fluids and nearly inelastic shear thinning polymers at similar Ca numbers. Beyond a critical Ca number, the size of residual oil blobs decreases significantly for viscoelastic fluids. This critical Ca number directly corresponds to flow rates where elastic instabilities occur in single phase flow, suggesting a close link between enhancement of oil recovery and appearance of elastic instabilities. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Djabbarah, N.F.

    A miscible displacement process for recovering oil from a subterranean, oil-containing formation penetrated by at least one injection well and at least one spaced-apart production well and having fluid communication between the injection and the production wells is described comprising: (a) injecting a slug of til oil into the formation through the injection well; (b) injecting a slug of a displacing fluid into the formation through the injection well, the displacing fluid being selected from the group consisting of carbon monoxide, carbon dioxide, methane, nitrogen, air, flue gas, combustion gas and mixtures thereof, the injection of the tall oil loweringmore » the minimum miscibility pressure of the displacing fluid in the formation oil; and (c) recovering the oil through the production well.« less

  9. Pore-scale observation and 3D simulation of wettability effects on supercritical CO2 - brine immiscible displacement in drainage

    NASA Astrophysics Data System (ADS)

    Hu, R.; Wan, J.; Chen, Y.

    2016-12-01

    Wettability is a factor controlling the fluid-fluid displacement pattern in porous media and significantly affects the flow and transport of supercritical (sc) CO2 in geologic carbon sequestration. Using a high-pressure micromodel-microscopy system, we performed drainage experiments of scCO2 invasion into brine-saturated water-wet and intermediate-wet micromodels; we visualized the scCO2 invasion morphology at pore-scale under reservoir conditions. We also performed pore-scale numerical simulations of the Navier-Stokes equations to obtain 3D details of fluid-fluid displacement processes. Simulation results are qualitatively consistent with the experiments, showing wider scCO2 fingering, higher percentage of scCO2 and more compact displacement pattern in intermediate-wet micromodel. Through quantitative analysis based on pore-scale simulation, we found that the reduced wettability reduces the displacement front velocity, promotes the pore-filling events in the longitudinal direction, delays the breakthrough time of invading fluid, and then increases the displacement efficiency. Simulated results also show that the fluid-fluid interface area follows a unified power-law relation with scCO2 saturation, and show smaller interface area in intermediate-wet case which suppresses the mass transfer between the phases. These pore-scale results provide insights for the wettability effects on CO2 - brine immiscible displacement in geologic carbon sequestration.

  10. Instability of displacement of Oldroyd-B fluid by air in a Hele-Shaw cell

    NASA Astrophysics Data System (ADS)

    Daripa, Prabir

    2014-03-01

    We study the displacement of an Oldroyd-B fluid in a Hele-Shaw cell when driven by air. In particular, we explicitly obtain an analytical expression for the growth rate of instability which depends on the relaxation and retardation (time) constants, denoted by λ, and λ1 respectively, appearing in the Oldroyd-B constitutive relations. When these two constants are zero, we recover the classical Saffman-Taylor result for a Newtonian liquid displaced by air. Our results show that this displacement process is more unstable than the case when a Newtonian fluid is displaced by air. The analytical results are plotted and compared with numerical results on this unstable displacement process available in the literature. The agreement is found to be excellent. In particular, results show that the non-Newtonian case (i.e., Oldroyd-B) is more unstable than the Newtonian case. Supported by an NPRP Grant # 08-777-1-141 from the Qatar National Research Fund (a member of the Qatar Foundation). The statements made herein are solely the responsibility of the author.

  11. Novel Shapes of Miscible Interfaces Observed

    NASA Technical Reports Server (NTRS)

    Balasubramaniam, Ramaswamy; Rashidnia, Nasser

    2001-01-01

    The dynamics of miscible displacements in a cylindrical tube are being investigated experimentally and numerically, with a view to understand the complex processes that occur, for example, in enhanced oil recovery, hydrology, and filtration. We have observed complex shapes of the interface between two liquids that mix with each other when the less viscous liquid is displaced by the more viscous one in a tube. A less viscous fluid that displaces a more viscous fluid is known to propagate in the form of a "finger," and a flight experiment proposed by Maxworthy et al. to investigate the miscible-interface dynamics is currently being developed by NASA. From the current theory of miscible displacements, which was developed for a porous medium satisfying Darcy's law, it can be shown that in the absence of gravity the interface between the fluids is destabilized and thus susceptible to fingering only when a more viscous fluid is displaced by a less viscous one. Therefore, if the interface is initially flat and the more viscous fluid displaces the less viscous fluid, the interface ought to be stable and remain flat. However, numerical simulations by Chen and Meiburg for such displacement in a cylindrical tube show that the interface is unstable and a finger of the more viscous fluid is indeed formed. Preliminary experiments performed at the NASA Glenn Research Center show that not only can fingering occur when the more viscous fluid displaces a less viscous one in a cylindrical tube, but also that under certain conditions the advancing finger achieves a sinuous or snakelike shape. These experiments were performed using silicone oils in a vertical pipette of small diameter. In the initial configuration, the more viscous fluid rested on top of the less viscous one, and the interface was nominally flat. A dye was added to the upper liquid for ease of observation of the interface between the fluids. The flow was initiated by draining the lower fluid from the bottom of the pipette, at speeds less than 0.1 mm/sec.

  12. The effect of initial resident fluid saturation on the interaction between resident and infiltrating fluids in porous media

    NASA Astrophysics Data System (ADS)

    Hsu, S. Y.; Chen, H.; Huang, Q. Z.; Lee, T. Y.; Chiu, Y.; Chang, L. C.; Lamorski, K.; Sławiński, C.; Tsao, C. W.

    2017-12-01

    The interplay between resident ("old") fluid already in the vadose zone and infiltrating ("new") fluid was examined with micromodel experiments. The geometric patterns of the micromodels are based on a pore doublet and a 2D pore geometry of a sand-packing soil scanned by Micro X-Ray CT. We studied the old and new fluid interaction during imbibition process subject to different evaporation times (different the initial old fluid saturations). The results found that, in the pore-doublet micromodel experiment, the old fluid was mixed and displaced by the new fluid, and an increase in the initial old fluid saturation led to a decrease in the amount of old fluid displaced by the new fluid. On the other hand, the most of the old fluid in the micromodel of 2D sand-packing pore geometry was displaced by and mixed with the new fluid. However, a small amount of the initial old fluid that occupied pore throats remained untouched by the new fluid due to the air blockage. The amount of untouched old fluid increased as the initial old fluid saturation decreased. Our finding reveals the effect of pore geometry and inital old fluid distribution on the interaction between resident and infiltrating fluids.

  13. Viscous and gravitational contributions to mixing during vertical brine transport in water-saturated porous media

    PubMed Central

    Flowers, Tracey C.; Hunt, James R.

    2010-01-01

    The transport of fluids miscible with water arises in groundwater contamination and during remediation of the subsurface environment. For concentrated salt solutions, i.e., brines, the increased density and viscosity determine mixing processes between these fluids and ambient groundwater. Under downward flow conditions, gravitational and viscous forces work against each other to determine the interfacial mixing processes. Historically, mixing has been modeled as a dispersive process, as viscous fingering, and as a combination of both using approaches that were both analytical and numerical. A compilation of previously reported experimental data on vertical miscible displacements by fluids with significant density and viscosity contrasts reveals some agreement with a stability analysis presented by Hill (1952). Additional experimental data on one-dimensional dispersion during downward displacement of concentrated salt solutions by freshwater and freshwater displacement by brines support the stability analysis and provides an empirical representation for dispersion coefficients as functions of a gravity number and a mobility ratio. PMID:20300476

  14. Lattice Boltzmann simulation of immiscible fluid displacement in porous media: Homogeneous versus heterogeneous pore network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Haihu, E-mail: haihu.liu@mail.xjtu.edu.cn; James Weir Fluids Laboratory, Department of Mechanical and Aerospace Engineering, University of Strathclyde, Glasgow G1 1XJ; Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801

    Injection of anthropogenic carbon dioxide (CO{sub 2}) into geological formations is a promising approach to reduce greenhouse gas emissions into the atmosphere. Predicting the amount of CO{sub 2} that can be captured and its long-term storage stability in subsurface requires a fundamental understanding of multiphase displacement phenomena at the pore scale. In this paper, the lattice Boltzmann method is employed to simulate the immiscible displacement of a wetting fluid by a non-wetting one in two microfluidic flow cells, one with a homogeneous pore network and the other with a randomly heterogeneous pore network. We have identified three different displacement patterns,more » namely, stable displacement, capillary fingering, and viscous fingering, all of which are strongly dependent upon the capillary number (Ca), viscosity ratio (M), and the media heterogeneity. The non-wetting fluid saturation (S{sub nw}) is found to increase nearly linearly with logCa for each constant M. Increasing M (viscosity ratio of non-wetting fluid to wetting fluid) or decreasing the media heterogeneity can enhance the stability of the displacement process, resulting in an increase in S{sub nw}. In either pore networks, the specific interfacial length is linearly proportional to S{sub nw} during drainage with equal proportionality constant for all cases excluding those revealing considerable viscous fingering. Our numerical results confirm the previous experimental finding that the steady state specific interfacial length exhibits a linear dependence on S{sub nw} for either favorable (M ≥ 1) or unfavorable (M < 1) displacement, and the slope is slightly higher for the unfavorable displacement.« less

  15. Capillary filling rules and displacement mechanisms for spontaneous imbibition of CO2 for carbon storage and EOR using micro-model experiments and pore scale simulation

    NASA Astrophysics Data System (ADS)

    Chapman, E.; Yang, J.; Crawshaw, J.; Boek, E. S.

    2012-04-01

    In the 1980s, Lenormand et al. carried out their pioneering work on displacement mechanisms of fluids in etched networks [1]. Here we further examine displacement mechanisms in relation to capillary filling rules for spontaneous imbibition. Understanding the role of spontaneous imbibition in fluid displacement is essential for refining pore network models. Generally, pore network models use simple capillary filling rules and here we examine the validity of these rules for spontaneous imbibition. Improvement of pore network models is vital for the process of 'up-scaling' to the field scale for both enhanced oil recovery (EOR) and carbon sequestration. In this work, we present our experimental microfluidic research into the displacement of both supercritical CO2/deionised water (DI) systems and analogous n-decane/air - where supercritical CO2 and n-decane are the respective wetting fluids - controlled by imbibition at the pore scale. We conducted our experiments in etched PMMA and silicon/glass micro-fluidic hydrophobic chips. We first investigate displacement in single etched pore junctions, followed by displacement in complex network designs representing actual rock thin sections, i.e. Berea sandstone and Sucrosic dolomite. The n-decane/air experiments were conducted under ambient conditions, whereas the supercritical CO2/DI water experiments were conducted under high temperature and pressure in order to replicate reservoir conditions. Fluid displacement in all experiments was captured via a high speed video microscope. The direction and type of displacement the imbibing fluid takes when it enters a junction is dependent on the number of possible channels in which the wetting fluid can imbibe, i.e. I1, I2 and I3 [1]. Depending on the experiment conducted, the micro-models were initially filled with either DI water or air before the wetting fluid was injected. We found that the imbibition of the wetting fluid through a single pore is primarily controlled by the geometry of the pore body rather than the downstream pore throat sizes, contrary to the established capillary filling rules as used in current pore network models. Our experimental observations are confirmed by detailed lattice-Boltzmann pore scale computer simulations of fluid displacement in the same geometries. This suggests that capillary filling rules for imbibition as used in pore network models may need to be revised. [1] G. Lenormand, C. Zarcone and A. Sarr, J. Fluid Mech. 135 , 337-353 (1983).

  16. Study of the fluid flow characteristics in a porous medium for CO2 geological storage using MRI.

    PubMed

    Song, Yongchen; Jiang, Lanlan; Liu, Yu; Yang, Mingjun; Zhou, Xinhuan; Zhao, Yuechao; Dou, Binlin; Abudula, Abuliti; Xue, Ziqiu

    2014-06-01

    The objective of this study was to understand fluid flow in porous media. Understanding of fluid flow process in porous media is important for the geological storage of CO2. The high-resolution magnetic resonance imaging (MRI) technique was used to measure fluid flow in a porous medium (glass beads BZ-02). First, the permeability was obtained from velocity images. Next, CO2-water immiscible displacement experiments using different flow rates were investigated. Three stages were obtained from the MR intensity plot. With increasing CO2 flow rate, a relatively uniform CO2 distribution and a uniform CO2 front were observed. Subsequently, the final water saturation decreased. Using core analysis methods, the CO2 velocities were obtained during the CO2-water immiscible displacement process, which were applied to evaluate the capillary dispersion rate, viscous dominated fractional flow, and gravity flow function. The capillary dispersion rate dominated the effects of capillary, which was largest at water saturations of 0.5 and 0.6. The viscous-dominant fractional flow function varied with the saturation of water. The gravity fractional flow reached peak values at the saturation of 0.6. The gravity forces played a positive role in the downward displacements because they thus tended to stabilize the displacement process, thereby producing increased breakthrough times and correspondingly high recoveries. Finally, the relative permeability was also reconstructed. The study provides useful data regarding the transport processes in the geological storage of CO2. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.

  17. Forced imbibition through model porous media

    NASA Astrophysics Data System (ADS)

    Odier, Celeste; Levache, Bertrand; Bartolo, Denis

    2016-11-01

    A number of industrial and natural process ultimately rely on two-phase flow in heterogeneous media. One of the most prominent example is oil recovery which has driven fundamental and applied research in this field for decades. Imbibition occurs when a wetting fluid displaces an immiscible fluid e.g. in a porous media. Using model microfluidic experiment we control both the geometry and wetting properties of the heterogenous media, and show that the typical front propagation picture fails when imbibition is forced and the displacing fluid is less viscous than the non-wetting fluid. We identify and quantitatively characterize four different flow regimes at the pore scale yielding markedly different imbibition patterns at large scales. In particular we will discuss the transition from a conventional 2D-front propagation scenario to a regime where the meniscus dynamics is an intrinsically 3D process.

  18. Viscous fingering with partially miscible fluids

    NASA Astrophysics Data System (ADS)

    Fu, Xiaojing; Cueto-Felgueroso, Luis; Juanes, Ruben

    2017-10-01

    Viscous fingering—the fluid-mechanical instability that takes place when a low-viscosity fluid displaces a high-viscosity fluid—has traditionally been studied under either fully miscible or fully immiscible fluid systems. Here we study the impact of partial miscibility (a common occurrence in practice) on the fingering dynamics. Through a careful design of the thermodynamic free energy of a binary mixture, we develop a phase-field model of fluid-fluid displacements in a Hele-Shaw cell for the general case in which the two fluids have limited (but nonzero) solubility into one another. We show, by means of high-resolution numerical simulations, that partial miscibility exerts a powerful control on the degree of fingering: fluid dissolution hinders fingering while fluid exsolution enhances fingering. We also show that, as a result of the interplay between compositional exchange and the hydrodynamic pattern-forming process, stronger fingering promotes the system to approach thermodynamic equilibrium more quickly.

  19. Instability in Immiscible Fluids Displacement from Cracks and Porous Samples

    NASA Astrophysics Data System (ADS)

    Smirnov, N. N.; Nikitin, V. F.; Ivashnyov, O. E.

    2002-01-01

    problems of terrestrial engineering and technology. Surface tension affected flows in porous media could be much better understood in microgravity studies eliminating the masking effects of gravity. Saffman-Taylor instability of the interface could bring to formation and growth of "fingers" of gas penetrating the bulk fluid. The growth of fingers and their further coalescence could not be described by the linear analysis. Growth of fingers causes irregularity of the mixing zone. The tangential velocity difference on the interface separating fluids of different densities and viscousities could bring to a Kelvin-Helmholtz instability resulting in "diffusion of fingers" partial regularization of the displacement mixing zone. Thus combination of the two effects would govern the flow in the displacement process. fracture under a pressure differential displacing the high viscosity residual fracturing fluid. There are inherent instability and scalability problems associated with viscous fingering that play a key role in the cleanup procedure. Entrapment of residual fracturing fluid by the gas flow lowers down the quality of a fracture treatment leaving most of fluid in the hydraulic fracture thus decreasing the production rate. The gravity effects could play essential role in vertical hydraulic fractures as the problem is scale dependent. displacement of viscous fluid by a less viscous one in a two-dimensional channel with vertical breaks, and to determine characteristic size of entrapment zones. Extensive direct numerical simulations allow to investigate the sensitivity of the displacement process to variation of values of the main governing parameters. were found for the two limiting cases: infinitely wide cell, and narrow cell with an infinitely small gap between the finger and the side walls. governing parameters. The obtained solutions allowed to explain the physical meaning of the exiting empirical criteria for the beginning of viscous fingering and the growth of a number of fingers in the cell, and allowed us to make some additional suggestions for the cleanup procedure. depending on the resident fluid properties, for which the displacement still remains stable. viscous one were carried out. Validation of the code was performed by comparing the results of model problems simulations with the existing solutions published in literature. Being in a good agreement with the previously obtained results, nevertheless, the developed code is an advanced one. While the existing codes could operate with linear equations and regular geometry and initial disturbances only, the new code permits taking into account non-linear effects as well. characterizing the quality of displacement. The functional dependence of the dimensionless criteria on the values of governing parameters needs further investigations. Services, an international company in the oil and gas industry.

  20. Experimental viscous fingering in a tapered radial Hele-Shaw cell

    NASA Astrophysics Data System (ADS)

    Bongrand, Gregoire; Tsai, Peichun Amy; Complex Fludis Group Team

    2017-11-01

    The fluid-fluid displacement in porous media is a common process that finds direct applications in various fields, such as enhanced oil recovery and geological CO2 sequestration. In this work, we experimentally investigate the influence of converging cells on viscous fingering instabilities using a radially-tapered cell. For air displacing oil, in contrast to the classical Saffman-Taylor fingering, our results show that a converging gradient in a radial propagation can provide a stabilizing effect and hinder fingering. For a fixed gap gradient and thickness, with increasing injection rates we find a stable displacement under small flow rates, whereas unstable fingering occurs above a certain threshold. We further investigate this critical flow rate delineating the stable and unstable regimes for different gap gradients. These results reveal that the displacement efficiency not only depends on the fluid properties but also on the interfacial velocity and channel structure. The latter factors provide a useful and convenient control to either trigger or inhibit fingering instability. NSERC Discovery, Accelerator, and CRC programs.

  1. Universality Results for Multi-layer Radial Hele-Shaw Flows

    NASA Astrophysics Data System (ADS)

    Daripa, Prabir; Gin, Craig; Daripa Research Team

    2014-03-01

    Saffman-Taylor instability is a well known viscosity driven instability of an interface separating two immiscible fluids. We study linear stability of this displacement process in multi-layer radial Hele-Shaw geometry involving an arbitrary number of immiscible fluid phases. Universal stability results have been obtained and applied to design displacement processes that are considerably less unstable than the pure Saffman-Taylor case. In particular, we derive universal formula which gives specific values of the viscosities of the fluid layers corresponding to smallest unstable band. Other similar universal results will also be presented. The talk is based on ongoing work. Supported by an NPRP Grant # 08-777-1-141 from the Qatar National Research Fund (a member of the Qatar Foundation). The statements made herein are solely the responsibility of the authors.

  2. Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yortsos, Yanis C.

    In this report, the thrust areas include the following: Internal drives, vapor-liquid flows, combustion and reaction processes, fluid displacements and the effect of instabilities and heterogeneities and the flow of fluids with yield stress. These find respective applications in foamy oils, the evolution of dissolved gas, internal steam drives, the mechanics of concurrent and countercurrent vapor-liquid flows, associated with thermal methods and steam injection, such as SAGD, the in-situ combustion, the upscaling of displacements in heterogeneous media and the flow of foams, Bingham plastics and heavy oils in porous media and the development of wormholes during cold production.

  3. The impact of fluid topology on residual saturations - A pore-network model study

    NASA Astrophysics Data System (ADS)

    Doster, F.; Kallel, W.; van Dijke, R.

    2014-12-01

    In two-phase flow in porous media only fractions of the resident fluid are mobilised during a displacement process and, in general, a significant amount of the resident fluid remains permanently trapped. Depending on the application, entrapment is desirable (geological carbon storage), or it should be obviated (enhanced oil recovery, contaminant remediation). Despite its utmost importance for these applications, predictions of trapped fluid saturations for macroscopic systems, in particular under changing displacement conditions, remain challenging. The models that aim to represent trapping phenomena are typically empirical and require tracking of the history of the state variables. This exacerbates the experimental verification and the design of sophisticated displacement technologies that enhance or impede trapping. Recently, experiments [1] have suggested that a macroscopic normalized Euler number, quantifying the topology of fluid distributions, could serve as a parameter to predict residual saturations based on state variables. In these experiments the entrapment of fluids was visualised through 3D micro CT imaging. However, the experiments are notoriously time consuming and therefore only allow for a sparse sampling of the parameter space. Pore-network models represent porous media through an equivalent network structure of pores and throats. Under quasi-static capillary dominated conditions displacement processes can be modeled through simple invasion percolation rules. Hence, in contrast to experiments, pore-network models are fast and therefore allow full sampling of the parameter space. Here, we use pore-network modeling [2] to critically investigate the knowledge gained through observing and tracking the normalized Euler number. More specifically, we identify conditions under which (a) systems with the same saturations but different normalized Euler numbers lead to different residual saturations and (b) systems with the same saturations and the same normalized Euler numbers but different process histories yield the same residual saturations. Special attention is given to contact angle and process histories with varying drainage and imbibition periods. [1] Herring et al., Adv. Water. Resour., 62, 47-58 (2013) [2] Ryazanov et al., Transp. Porous Media, 80, 79-99 (2009).

  4. Universality Results for Multi-phase Hele-Shaw Flows

    NASA Astrophysics Data System (ADS)

    Daripa, Prabir

    2013-03-01

    Saffman-Taylor instability is a well known viscosity driven instability of an interface separating two immiscible fluids. We study linear stability of displacement processes in a Hele-Shaw cell involving an arbitrary number of immiscible fluid phases. This is a problem involving many interfaces. Universal stability results have been obtained for this multi-phase immiscible flow in the sense that the results hold for arbitrary number of interfaces. These stability results have been applied to design displacement processes that are considerably less unstable than the pure Saffman-Taylor case. In particular, we derive universal formula which gives specific values of the viscosities of the fluid layers corresponding to smallest unstable band. Other similar universal results will also be presented. The talk is based on the following paper. This work was supported by the Qatar National Research Fund (a member of The Qatar Foundation).

  5. Direction dependence of displacement time for two-fluid electroosmotic flow.

    PubMed

    Lim, Chun Yee; Lam, Yee Cheong

    2012-03-01

    Electroosmotic flow that involves one fluid displacing another fluid is commonly encountered in various microfludic applications and experiments, for example, current monitoring technique to determine zeta potential of microchannel. There is experimentally observed anomaly in such flow, namely, the displacement time is flow direction dependent, i.e., it depends if it is a high concentration fluid displacing a low concentration fluid, or vice versa. Thus, this investigation focuses on the displacement flow of two fluids with various concentration differences. The displacement time was determined experimentally with current monitoring method. It is concluded that the time required for a high concentration solution to displace a low concentration solution is smaller than the time required for a low concentration solution to displace a high concentration solution. The percentage displacement time difference increases with increasing concentration difference and independent of the length or width of the channel and the voltage applied. Hitherto, no theoretical analysis or numerical simulation has been conducted to explain this phenomenon. A numerical model based on finite element method was developed to explain the experimental observations. Simulations showed that the velocity profile and ion distribution deviate significantly from a single fluid electroosmotic flow. The distortion of ion distribution near the electrical double layer is responsible for the displacement time difference for the two different flow directions. The trends obtained from simulations agree with the experimental findings.

  6. Direction dependence of displacement time for two-fluid electroosmotic flow

    PubMed Central

    Lim, Chun Yee; Lam, Yee Cheong

    2012-01-01

    Electroosmotic flow that involves one fluid displacing another fluid is commonly encountered in various microfludic applications and experiments, for example, current monitoring technique to determine zeta potential of microchannel. There is experimentally observed anomaly in such flow, namely, the displacement time is flow direction dependent, i.e., it depends if it is a high concentration fluid displacing a low concentration fluid, or vice versa. Thus, this investigation focuses on the displacement flow of two fluids with various concentration differences. The displacement time was determined experimentally with current monitoring method. It is concluded that the time required for a high concentration solution to displace a low concentration solution is smaller than the time required for a low concentration solution to displace a high concentration solution. The percentage displacement time difference increases with increasing concentration difference and independent of the length or width of the channel and the voltage applied. Hitherto, no theoretical analysis or numerical simulation has been conducted to explain this phenomenon. A numerical model based on finite element method was developed to explain the experimental observations. Simulations showed that the velocity profile and ion distribution deviate significantly from a single fluid electroosmotic flow. The distortion of ion distribution near the electrical double layer is responsible for the displacement time difference for the two different flow directions. The trends obtained from simulations agree with the experimental findings. PMID:22662083

  7. Visualizing and quantifying the crossover from capillary fingering to viscous fingering in a rough fracture

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Feng; Fang, Shu; Wu, Dong-Sheng; Hu, Ran

    2017-09-01

    Immiscible fluid-fluid displacement in permeable media is important in many subsurface processes, including enhanced oil recovery and geological CO2 sequestration. Controlled by capillary and viscous forces, displacement patterns of one fluid displacing another more viscous one exhibit capillary and viscous fingering, and crossover between the two. Although extensive studies investigated viscous and capillary fingering in porous media, a few studies focused on the crossover in rough fractures, and how viscous and capillary forces affect the crossover remains unclear. Using a transparent fracture-visualization system, we studied how the two forces impact the crossover in a horizontal rough fracture. Drainage experiments of water displacing oil were conducted at seven flow rates (capillary number log10Ca ranging from -7.07 to -3.07) and four viscosity ratios (M=1/1000,1/500,1/100 and 1/50). We consistently observed lower invading fluid saturations in the crossover zone. We also proposed a phase diagram for the displacement patterns in a rough fracture that is consistent with similar studies in porous media. Based on real-time imaging and statistical analysis of the invasion morphology, we showed that the competition between capillary and viscous forces is responsible for the saturation reduction in the crossover zone. In this zone, finger propagation toward the outlet (characteristic of viscous fingering) as well as void-filling in the transverse/backward directions (characteristic of capillary fingering), are both suppressed. Therefore, the invading fluid tends to occupy larger apertures with higher characteristic front velocity, promoting void-filling toward the outlet with thinner finger growth and resulting in a larger volume of defending fluid left behind.

  8. Andreas Acrivos Dissertation Award: Onset of Dynamic Wetting Failure - The Mechanics of High-Speed Fluid Displacement

    NASA Astrophysics Data System (ADS)

    Vandre, Eric

    2014-11-01

    Dynamic wetting is crucial to processes where a liquid displaces another fluid along a solid surface, such as the deposition of a coating liquid onto a moving substrate. Dynamic wetting fails when process speed exceeds some critical value, leading to incomplete fluid displacement and transient phenomena that impact a variety of applications, such as microfluidic devices, oil-recovery systems, and splashing droplets. Liquid coating processes are particularly sensitive to wetting failure, which can induce air entrainment and other catastrophic coating defects. Despite the industrial incentives for careful control of wetting behavior, the hydrodynamic factors that influence the transition to wetting failure remain poorly understood from empirical and theoretical perspectives. This work investigates the fundamentals of wetting failure in a variety of systems that are relevant to industrial coating flows. A hydrodynamic model is developed where an advancing fluid displaces a receding fluid along a smooth, moving substrate. Numerical solutions predict the onset of wetting failure at a critical substrate speed, which coincides with a turning point in the steady-state solution path for a given set of system parameters. Flow-field analysis reveals a physical mechanism where wetting failure results when capillary forces can no longer support the pressure gradients necessary to steadily displace the receding fluid. Novel experimental systems are used to measure the substrate speeds and meniscus shapes associated with the onset of air entrainment during wetting failure. Using high-speed visualization techniques, air entrainment is identified by the elongation of triangular air films with system-dependent size. Air films become unstable to thickness perturbations and ultimately rupture, leading to the entrainment of air bubbles. Meniscus confinement in a narrow gap between the substrate and a stationary plate is shown to delay air entrainment to higher speeds for a variety of water/glycerol solutions. In addition, liquid pressurization (relative to ambient air) further postpones air entrainment when the meniscus is located near a sharp corner along the plate. Recorded critical speeds compare well to predictions from the model, supporting the hydrodynamic mechanism for the onset of wetting failure. Lastly, the industrial practice of curtain coating is investigated using the hydrodynamic model. Due to the complexity of this system, a new computational approach is developed combining a finite element method and lubrication theory in order to improve the efficiency of the numerical analysis. Results show that the onset of wetting failure varies strongly with the operating conditions of this system. In addition, stresses from the air flow dramatically affect the steady wetting behavior of curtain coating. Ultimately, these findings emphasize the important role of two-fluid displacement mechanics in high-speed wetting systems.

  9. Numerical simulation of miscible viscous fingering with viscosity change in a displacing fluid by chemical reaction

    NASA Astrophysics Data System (ADS)

    Omori, Keiichiro; Nagatsu, Yuichiro

    2017-11-01

    Viscous fingering (VF) with viscosity changes by chemical reactions in case of miscible systems have been investigated both experimentally and theoretically in the recent years. Nagatsu et al. investigated experimentally miscible VF in which viscosity of the displaced fluid or the displacing one is changed by fast chemical reaction They showed that VF was more dense by the viscosity increase whereas less dense by the viscosity increase regardless of whether the viscosity change occurs in the displaced fluid or displacing one. From a theoretical viewpoint, numerical simulation performed on the reactive VF where viscosity of the displaced fluid is changed by instantaneously fast chemical reaction. The results had a good agreement with those in the corresponding experiment. In this work, we have conducted numerical simulation on such reactive VF where viscosity of the displacing fluid is changed. We have found the results have a good agreement with the corresponding experimental ones.

  10. Fluid front displacement dynamics affecting pressure fluctuations and phase entrapment in porous media

    NASA Astrophysics Data System (ADS)

    Moebius, F.; Or, D.

    2012-04-01

    Many natural and engineering processes involve motion of fluid fronts in porous media, from infiltration and drainage in hydrology to reservoir management in petroleum engineering. Macroscopically smooth and continuous motion of displacement fronts involves numerous rapid interfacial jumps and local reconfigurations. Detailed observations of displacement processes in micromodels illustrate the wide array of fluid interfacial dynamics ranging from irregular jumping-pinning motions to gradual pore scale invasions. The pressure fluctuations associated with interfacial motions reflect not only pore geometry (as traditionally hypothesized) but there is a strong influence of boundary conditions (e.g., mean drainage rate). The time scales associated with waiting time distribution of individual invasion events and decay time of inertial oscillations (following a rapid interfacial jump) provide a means for distinguishing between displacement regimes. Direct observations using high-speed camera combined with concurrent pressure signal measurements were instrumental in clarifying influences of flow rates, pore size, and gravity on burst size distribution and waiting times. We compared our results with the early experimental and theoretical study on burst size and waiting time distribution during slow drainage processes of Måløy et al. [Måløy et al., 1992]. Results provide insights on critical invasion events that exert strong influence on macroscopic phenomena such as front morphology and residual phase entrapment behind leading to hysteresis. Måløy, K. J., L. Furuberg, J. Feder, and T. Jossang (1992), Dynamics of Slow Drainage in Porous-Media, Phys Rev Lett, 68(14), 2161-2164.

  11. 30 CFR 250.514 - Well-control fluids, equipment, and operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... displace kill-weight fluid from the wellbore and/or riser to an underbalanced state, you must obtain... displacing the kill-weight fluid and provide detailed step-by-step written procedures describing how you will... barriers, (3) BOP procedures you will use while displacing kill-weight fluids, and (4) Procedures you will...

  12. 30 CFR 250.514 - Well-control fluids, equipment, and operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... displace kill-weight fluid from the wellbore and/or riser to an underbalanced state, you must obtain... displacing the kill-weight fluid and provide detailed step-by-step written procedures describing how you will... barriers, (3) BOP procedures you will use while displacing kill-weight fluids, and (4) Procedures you will...

  13. 30 CFR 250.614 - Well-control fluids, equipment, and operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... device. (d) Before you displace kill-weight fluid from the wellbore and/or riser to an underbalanced... your APM your reasons for displacing the kill-weight fluid and provide detailed step-by-step written... integrity of independent barriers, (3) BOP procedures you will use while displacing kill weight fluids, and...

  14. 30 CFR 250.614 - Well-control fluids, equipment, and operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... device. (d) Before you displace kill-weight fluid from the wellbore and/or riser to an underbalanced... your APM your reasons for displacing the kill-weight fluid and provide detailed step-by-step written... integrity of independent barriers, (3) BOP procedures you will use while displacing kill weight fluids, and...

  15. Modeling the Impact of Fracture Growth on Fluid Displacements in Deformable Porous Media

    NASA Astrophysics Data System (ADS)

    Santillán, D.; Cueto-Felgueroso, L.; Juanes, R.

    2015-12-01

    Coupled flow and geomechanics is a critical research challenge in engineering and the geosciences. The flow of a fluid through a deformable porous media is present in manyenvironmental, industrial, and biological processes,such as the removal of pollutants from underground water bodies, enhanced geothermal systems, unconventional hydrocarbon resources or enhanced oil recovery techniques. However, the injection of a fluid can generate or propagate fractures, which are preferential flow paths. Using numerical simulation, we study the interplay between injection and rock mechanics, and elucidate fracture propagation as a function of injection rate, initial crack topology and mechanical rock properties. Finally, we discuss the role of fracture growth on fluid displacements in porous media. Figure: An example of fracture (in red) propagated in a porous media (in blue)

  16. The formation of spikes in the displacement of miscible fluids

    NASA Technical Reports Server (NTRS)

    Rashidnia, N.; Balasubramaniam, R.; Schroer, R. T.

    2004-01-01

    We report on experiments in which a more viscous fluid displaces a less viscous one in a vertical cylindrical tube. These experiments were performed using silicone oils in a vertical pipette of small diameter. The more viscous fluid also had a slightly larger density than the less viscous fluid. In the initial configuration, the fluids were at rest, and the interface was nominally flat. A dye was added to the more viscous fluid for ease of observation of the interface between the fluids. The flow was initiated by pumping the more viscous fluid into the less viscous one. The displacement velocity was such that the Reynolds number was smaller than unity and the Peclet number for mass transfer between the fluids was large compared to unity. For upward displacement of the more viscous fluid from an initially stable configuration, an axisymmetric finger was observed under all conditions. However, a needle-shaped spike was seen to propagate from the main finger in many cases, similar to that observed by Petitjeans and Maxworthy for the displacement of a more viscous fluid by a less viscous one.

  17. Investigation of instability of displacement front in non-isothermal flow problems

    NASA Astrophysics Data System (ADS)

    Syulyukina, Natalia; Pergament, Anna

    2012-11-01

    In this paper, we investigate the issues of front instability arising in non-isothermal flow displacement processes. The problem of two-phase flow of immiscible fluids, oil and water, is considered, including sources and dependence of viscosity on temperature. Three-dimensional problem with perturbation close to the injection well was considered to find the characteristic scale of the instability. As a result of numerical calculations, theoretical studies on the development of the instability due to the fact that the viscosity of the displacing fluid is less than the viscosity of the displaced have been confirmed. The influence of temperature on the evolution of the instability was considered. For this purpose, the dependence of oil viscosity on temperature has been added to the problem. Numerical calculations were carried out for different values of temperature and it was shown that with increasing of production rate. Thus, it has been demonstrated that the selection of the optimal temperature for injected fluids a possible way for stimulation of oil production also delaying the field water-flooding. This work was supporting by the RFBR grant 12-01-00793-a.

  18. Lattice Boltzmann simulations of immiscible displacement process with large viscosity ratios

    NASA Astrophysics Data System (ADS)

    Rao, Parthib; Schaefer, Laura

    2017-11-01

    Immiscible displacement is a key physical mechanism involved in enhanced oil recovery and carbon sequestration processes. This multiphase flow phenomenon involves a complex interplay of viscous, capillary, inertial and wettability effects. The lattice Boltzmann (LB) method is an accurate and efficient technique for modeling and simulating multiphase/multicomponent flows especially in complex flow configurations and media. In this presentation we present numerical simulation results of displacement process in thin long channels. The results are based on a new psuedo-potential multicomponent LB model with multiple relaxation time collision (MRT) model and explicit forcing scheme. We demonstrate that the proposed model is capable of accurately simulating the displacement process involving fluids with a wider range of viscosity ratios (>100) and which also leads to viscosity-independent interfacial tension and reduction of some important numerical artifacts.

  19. Mixing in three-phase systems: Implications for enhanced oil recovery and unconventional gas extraction

    NASA Astrophysics Data System (ADS)

    Jimenez-Martinez, J.; Porter, M. L.; Hyman, J.; Carey, J. W.; Viswanathan, H. S.

    2015-12-01

    Although the mixing of fluids within a porous media is a common process in natural and industrial systems, how the degree of mixing depends on the miscibility of multiple phases is poorly characterized. Often, the direct consequence of miscible mixing is the modification of the resident fluid (brine and hydrocarbons) rheological properties. We investigate supercritical (sc)CO2 displacement and mixing processes in a three-phase system (scCO2, oil, and H2O) using a microfluidics experimental system that accommodates the high pressures and temperatures encountered in fossil fuel extraction operations. The miscibility of scCO2 with the resident fluids, low with aqueous solutions and high with hydrocarbons, impacts the mixing processes that control sweep efficiency in enhanced oil recovery (EOR) and the unlocking of the system in unconventional oil and gas extraction. Using standard volume-averaging techniques we upscale the aqueous phase saturation to the field-scale (i.e., Darcy scale) and interpret the results as a simpler two-phase system. This process allows us to perform a statistical analysis to quantify i) the degree of heterogeneity in the system resulting from the immiscible H2O and ii) how that heterogeneity impacts mixing between scCO2 and oil and their displacement. Our results show that when scCO2 is used for miscible displacement, the presence of an aqueous solution, which is common in secondary and tertiary EOR and unconventional oil and gas extraction, strongly impacts the mixing of scCO2 with the hydrocarbons due to low scCO2-H2O miscibility. H2O, which must be displaced advectively by the injected scCO2, introduces spatio-temporal variability into the system that acts as a barrier between the two miscibile fluids. This coupled with the effect of viscosity contrast, i.e., viscous fingering, has an impact on the mixing of the more miscible pair.

  20. A Theoretical and Experimental Study for a Developing Flow in a Thin Fluid Gap

    NASA Astrophysics Data System (ADS)

    Wu, Qianhong; Lang, Ji; Jen, Kei-Peng; Nathan, Rungun; Vucbmss Team

    2016-11-01

    In this paper, we report a novel theoretical and experimental approach to examine a fast developing flow in a thin fluid gap. Although the phenomena are widely observed in industrial applications and biological systems, there is a lack of analytical approach that captures the instantaneous fluid response to a sudden impact. An experimental setup was developed that contains a piston instrumented with a laser displacement sensor and a pressure transducer. A sudden impact was imposed on the piston, creating a fast compaction on the thin fluid gap underneath. The motion of the piston was captured by the laser displacement sensor, and the fluid pressure build-up and relaxation was recorded by the pressure transducer. For this dynamic process, a novel analytical approach was developed. It starts with the inviscid limit when the viscous fluid effect has no time to appear. This short process is followed by a developing flow, in which the inviscid core flow region decreases and the viscous wall region increases until the entire fluid gap is filled with viscous fluid flow. A boundary layer integral method is used during the process. Lastly, the flow is completely viscous dominant featured by a typical squeeze flow in a thin gap. Excellent agreement between the theory and the experiment was achieved. The study presented herein, filling the gap in the literature, will have broad impact in industrial and biomedical applications. This research was supported by the National Science Foundation under Award #1511096.

  1. Fluid displacement during droplet formation at microfluidic flow-focusing junctions.

    PubMed

    Huang, Haishui; He, Xiaoming

    2015-11-07

    Microdroplets and microcapsules have been widely produced using microfluidic flow-focusing junctions for biomedical and chemical applications. However, the multiphase microfluidic flow at the flow-focusing junction has not been well investigated. In this study, the displacement of two (core and shell) aqueous fluids that disperse into droplets altogether in a carrier oil emulsion was investigated both numerically and experimentally. It was found that extensive displacement of the two aqueous fluids within the droplet during its formation could occur as a result of the shear effect of the carrier fluid and the capillary effect of interfacial tension. We further identified that the two mechanisms of fluid displacement can be evaluated by two dimensionless parameters. The quantitative relationship between the degree of fluid displacement and these two dimensionless parameters was determined experimentally. Finally, we demonstrated that the degree of fluid displacement could be controlled to generate hydrogel microparticles of different morphologies using planar or nonplanar flow-focusing junctions. These findings should provide useful guidance to the microfluidic production of microscale droplets or capsules for various biomedical and chemical applications.

  2. Controlling Viscous Fingering Using Time-Dependent Strategies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, Howard; Zheng, Zhong; Kim, Hyoungsoo

    Control and stabilization of viscous fingering of immiscible fluids impacts a wide variety of pressure-driven multiphase flows. Here, we report theoretical and experimental results on time-dependent control strategy by manipulating the gap thickness b(t) in a lifting Hele-Shaw cell in the power-law form b(t) = b 1t 1/7. Experimental results show good quantitative agreement with the predictions of linear stability analysis. Furthermore, by choosing the value of a single time-independent control parameter we can either totally suppress the viscous fingering instability or maintain a series of non-splitting viscous fingers during the fluid displacement process. Besides the gap thickness of amore » Hele-Shaw cell, in principle, time-dependent control strategies can also be placed on the injection rate, viscosity of the displaced fluid, and interfacial tensions between the two fluids.« less

  3. Controlling Viscous Fingering Using Time-Dependent Strategies

    DOE PAGES

    Stone, Howard; Zheng, Zhong; Kim, Hyoungsoo

    2015-10-20

    Control and stabilization of viscous fingering of immiscible fluids impacts a wide variety of pressure-driven multiphase flows. Here, we report theoretical and experimental results on time-dependent control strategy by manipulating the gap thickness b(t) in a lifting Hele-Shaw cell in the power-law form b(t) = b 1t 1/7. Experimental results show good quantitative agreement with the predictions of linear stability analysis. Furthermore, by choosing the value of a single time-independent control parameter we can either totally suppress the viscous fingering instability or maintain a series of non-splitting viscous fingers during the fluid displacement process. Besides the gap thickness of amore » Hele-Shaw cell, in principle, time-dependent control strategies can also be placed on the injection rate, viscosity of the displaced fluid, and interfacial tensions between the two fluids.« less

  4. Fluid volume displacement at the oval and round windows with air and bone conduction stimulation.

    PubMed

    Stenfelt, Stefan; Hato, Naohito; Goode, Richard L

    2004-02-01

    The fluids in the cochlea are normally considered incompressible, and the fluid volume displacement of the oval window (OW) and the round window (RW) should be equal and of opposite phase. However, other channels, such as the cochlear and vestibular aqueducts, may affect the fluid flow. To test if the OW and RW fluid flows are equal and of opposite phase, the volume displacement was assessed by multiple point measurement at the windows with a laser Doppler vibrometer. This was done during air conduction (AC) stimulation in seven fresh human temporal bones, and with bone conduction (BC) stimulation in eight temporal bones and one human cadaver head. With AC stimulation, the average volume displacement of the two windows is within 3 dB, and the phase difference is close to 180 degrees for the frequency range 0.1 to 10 kHz. With BC stimulation, the average volume displacement difference between the two windows is greater: below 2 kHz, the volume displacement at the RW is 5 to 15 dB greater than at the OW and above 2 kHz more fluid is displaced at the OW. With BC stimulation, lesions at the OW caused only minor changes of the fluid flow at the RW.

  5. Fluid volume displacement at the oval and round windows with air and bone conduction stimulation

    NASA Astrophysics Data System (ADS)

    Stenfelt, Stefan; Hato, Naohito; Goode, Richard L.

    2004-02-01

    The fluids in the cochlea are normally considered incompressible, and the fluid volume displacement of the oval window (OW) and the round window (RW) should be equal and of opposite phase. However, other channels, such as the cochlear and vestibular aqueducts, may affect the fluid flow. To test if the OW and RW fluid flows are equal and of opposite phase, the volume displacement was assessed by multiple point measurement at the windows with a laser Doppler vibrometer. This was done during air conduction (AC) stimulation in seven fresh human temporal bones, and with bone conduction (BC) stimulation in eight temporal bones and one human cadaver head. With AC stimulation, the average volume displacement of the two windows is within 3 dB, and the phase difference is close to 180° for the frequency range 0.1 to 10 kHz. With BC stimulation, the average volume displacement difference between the two windows is greater: below 2 kHz, the volume displacement at the RW is 5 to 15 dB greater than at the OW and above 2 kHz more fluid is displaced at the OW. With BC stimulation, lesions at the OW caused only minor changes of the fluid flow at the RW.

  6. Wettability Control on Fluid-Fluid Displacements in Patterned Microfluidics

    NASA Astrophysics Data System (ADS)

    Zhao, B.; Trojer, M.; Cueto-Felgueroso, L.; Juanes, R.

    2014-12-01

    Two-phase flow in porous media is important in many natural and industrial processes like geologic CO2 sequestration, enhanced oil recovery, and water infiltration in soil. While it is well known that the wetting properties of porous media can vary drastically depending on the type of media and the pore fluids, the effect of wettability on fluid displacement continues to challenge our microscopic and macroscopic descriptions. Here we study this problem experimentally, starting with the classic experiment of two-phase flow in a capillary tube. We image the shape of the meniscus and measure the associated capillary pressure for a wide range of capillary numbers. We confirm that wettability exerts a fundamental control on meniscus deformation, and synthesize new observations on the dependence of the dynamic capillary pressure on wetting properties (contact angle) and flow conditions (viscosity contrast and capillary number). We compare our experiments to a macroscopic phase-field model of two-phase flow. We use the insights gained from the capillary tube experiments to explore the viscous fingering instability in the Hele-Shaw geometry in the partial-wetting regime. A key difference between a Hele-Shaw cell and a porous medium is the existence of micro-structures (i.e. pores and pore throats). To investigate how these micro-structrues impact fluid-fluid displacement, we conduct experiments on a planar microfluidic device patterned with vertical posts. We track the evolution of the fluid-fluid interface and elucidate the impact of wetting on the cooperative nature of fluid displacement during pore invasion events. We use the insights gained from the capillary tube and patterned microfluidics experiments to elucidate the effect of wetting properties on viscous fingering and capillary fingering in a Hele-Shaw cell filled with glass beads, where we observe a contact-angle-dependent stabilizing behavior for the emerging flow instabilities, as the system transitions from drainage to imbibition.

  7. 33 CFR 154.2203 - Facility requirements for barge vapor overpressure and vacuum protection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... displacement system must provide a pressure-sensing device that activates an alarm that satisfies the... located in the fluid displacement system's piping downstream of any devices that could potentially isolate... to inject the fluid. (d) A fluid displacement system must provide a pressure-sensing device that is...

  8. A mixed boundary representation to simulate the displacement of a biofluid by a biomaterial in porous media.

    PubMed

    Widmer, René P; Ferguson, Stephen J

    2011-05-01

    Characterization of the biomaterial flow through porous bone is crucial for the success of the bone augmentation process in vertebroplasty. The biofluid, biomaterial, and local morphological bone characteristics determine the final shape of the filling, which is important both for the post-treatment mechanical loading and the risk of intraoperative extraosseous leakage. We have developed a computational model that describes the flow of biomaterials in porous bone structures by considering the material porosity, the region-dependent intrinsic permeability of the porous structure, the rheological properties of the biomaterial, and the boundary conditions of the filling process. To simulate the process of the substitution of a biofluid (bone marrow) by a biomaterial (bone cement), we developed a hybrid formulation to describe the evolution of the fluid boundary and properties and coupled it to a modified version of Darcy's law. The apparent rheological properties are derived from a fluid-fluid interface tracking algorithm and a mixed boundary representation. The region- specific intrinsic permeability of the bone is governed by an empirical relationship resulting from a fitting process of experimental data. In a first step, we verified the model by studying the displacement process in spherical domains, where the spreading pattern is known in advance. The mixed boundary model demonstrated, as expected, that the determinants of the spreading pattern are the local intrinsic permeability of the porous matrix and the ratio of the viscosity of the fluids that are contributing to the displacement process. The simulations also illustrate the sensitivity of the mixed boundary representation to anisotropic permeability, which is related to the directional dependent microstructural properties of the porous medium. Furthermore, we compared the nonlinear finite element model to different published experimental studies and found a moderate to good agreement (R(2)=0.9895 for a one-dimensional bone core infiltration test and a 10.94-16.92% relative error for a three-dimensional spreading pattern study, respectively) between computational and experimental results.

  9. Fluid displacement from intraluminal thrombus of abdominal aortic aneurysm as a result of uniform compression.

    PubMed

    van Noort, Kim; Schuurmann, Richte Cl; Wermelink, Bryan; Slump, Cornelis H; Kuijpers, Karel C; de Vries, Jean-Paul Pm

    2017-10-01

    Objectives The results after aneurysm repair with an endovascular aneurysm sealing (EVAS) system are dependent on the stability of the aneurysm sac and particularly the intraluminal abdominal aortic thrombus (ILT). The postprocedural ILT volume is decreased compared with preprocedural ILT volume in aortic aneurysm patients treated with EVAS. We hypothesize that ILT is not stable in all patients and pressurization of the ILT may result in displacement of fluids from the ILT, no differently than serum is displaced from whole blood when it settles. To date, the mechanism and quantification of fluid displacement from ILT are unknown. Methods The study included 21 patients who underwent elective open abdominal aortic aneurysm repair. The ILT was harvested as a routine procedure during the operation. After excision of a histologic sample of the ILT specimen in four patients, ILT volume was measured and the ILT was compressed in a dedicated compression setup designed to apply uniform compression of 200 mmHg for 5 min. After compression, the volumes of the remaining thrombus and the displaced fluid were measured. Results The median (interquartile-range) of ILT volume before compression was 60 (66) mL, and a median of 5.7 (8.4) mL of fluid was displaced from the ILT after compression, resulting in a median thrombus volume decrease of 11% (10%). Fluid components can be up to 31% of the entire ILT volume. Histologic examination of four ILT specimens showed a reduction of the medial layer of the ILT after compression, which was the result of compression of fluid-containing canaliculi. Conclusions Applying pressure of 200 mmHg to abdominal aortic aneurysm ILT resulted in the displacement of fluid, with a large variation among patients. Fluid displacement may result in decrease of ILT volume during and after EVAS, which might have implications on pre-EVAS volume planning and on stability of the endobags during follow-up which may lead to migration, endoleak or both.

  10. How Does a Liquid Wet a Solid? Hydrodynamics of Dynamic Contact Angles

    NASA Technical Reports Server (NTRS)

    Rame, Enrique

    2001-01-01

    A contact line is defined at the intersection of a solid surface with the interface between two immiscible fluids. When one fluid displaces another immiscible fluid along a solid surface, the process is called dynamic wetting and a "moving" contact line (one whose position relative to the solid changes in time) often appears. The physics of dynamic wetting controls such natural and industrial processes as spraying of paints and insecticides, dishwashing, film formation and rupture in the eye and in the alveoli, application of coatings, printing, drying and imbibition of fibrous materials, oil recovery from porous rocks, and microfluidics.

  11. MISCIBLE FLUID DISPLACEMENT STABILITY IN UNCONFINED POROUS MEDIA: TWO-DIMENSIONAL FLOW EXPERIMENTS AND SIMULATIONS

    EPA Science Inventory

    In situ flushing groundwater remediation technologies, such as cosolvent flushing, rely on the stability of the interface between the resident and displacing fluids for efficient removal of contaminants. Contrasts in density and viscosity between the resident and displacing flui...

  12. 30 CFR 250.1709 - What are my well-control fluid requirements?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... kill-weight fluid from the wellbore and/or riser to an underbalanced state, you must obtain approval... displacing the kill-weight fluid and provide detailed step-by-step written procedures describing how you will... barriers, (c) BOP procedures you will use while displacing kill weight fluids, and (d) Procedures you will...

  13. 30 CFR 250.1709 - What are my well-control fluid requirements?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... kill-weight fluid from the wellbore and/or riser to an underbalanced state, you must obtain approval... displacing the kill-weight fluid and provide detailed step-by-step written procedures describing how you will... barriers, (c) BOP procedures you will use while displacing kill weight fluids, and (d) Procedures you will...

  14. High resolution pipette

    DOEpatents

    Beroz, Justin Douglas; Hart, Anastasios John

    2016-06-07

    A pipette includes a movable piston and a diaphragm that at least partly defines a fluid chamber enclosing a volume of working fluid. The piston displaces a volumetric amount of the working fluid in the chamber when moved. In response, the diaphragm displaces a smaller volumetric amount of fluid outside the chamber. A deamplification ratio is defined by the ratio of the volume displaced by the diaphragm to the volume displaced by the piston. The deamplification ratio is adjustable by adjusting or changing the diaphragm and/or by adjusting the size of the fluid chamber. The deamplifying pipette enables measuring and dispensing of very small volumes of liquid and is easily adapted to commercially available pipette components. Pipette components such as a pipette tip or adaptor may include a diaphragm to enable deamplification of the nominal volume capacity of a given pipette device.

  15. Drift due to viscous vortex rings

    NASA Astrophysics Data System (ADS)

    Morrell, Thomas; Spagnolie, Saverio; Thiffeault, Jean-Luc

    2016-11-01

    Biomixing is the study of fluid mixing due to swimming organisms. While large organisms typically produce turbulent flows in their wake, small organisms produce less turbulent wakes; the main mechanism of mixing is the induced net particle displacement (drift). Several experiments have examined this drift for small jellyfish, which produce vortex rings that trap and transport a fair amount of fluid. Inviscid theory implies infinite particle displacements for the trapped fluid, so the effect of viscosity must be included to understand the damping of real vortex motion. We use a model viscous vortex ring to compute particle displacements and other relevant quantities, such as the integrated moments of the displacement. Fluid entrainment at the tail end of a growing vortex 'envelope' is found to play an important role in the total fluid transport and drift. Partially supported by NSF Grant DMS-1109315.

  16. Research on the porous flow of the mechanism of viscous-elastic fluids displacing residual oil droplets in micro pores

    NASA Astrophysics Data System (ADS)

    Dong, Guanyu

    2018-03-01

    In order to analyze the microscopic stress field acting on residual oil droplets in micro pores, calculate its deformation, and explore the hydrodynamic mechanism of viscous-elastic fluids displacing oil droplets, the viscous-elastic fluid flow equations in micro pores are established by choosing the Upper Convected Maxwell constitutive equation; the numerical solutions of the flow field are obtained by volume control and Alternate Direction Implicit methods. From the above, the velocity field and microscopic stress field; the forces acting on residual oil droplets; the deformations of residual oil droplets by various viscous-elastic displacing fluids and at various Wiesenberg numbers are calculated and analyzed. The result demonstrated that both the normal stress and horizontal force acting on the residual oil droplets by viscous-elastic fluids are much larger compared to that of inelastic fluid; the distribution of normal stress changes abruptly; under the condition of the same pressure gradient in the system under investigation, the ratio of the horizontal forces acting on the residual oil droplets by different displacing fluids is about 1:8:20, which means that under the above conditions, the driving force on a oil droplet is 20 times higher for a viscous-elastic fluid compared to that of a Newtonian Fluid. The conclusions are supportive of the mechanism that viscous-elastic driving fluids can increase the Displacement Efficiency. This should be of help in designing new chemicals and selecting Enhanced Oil Recovery systems.

  17. Flow regimes for fluid injection into a confined porous medium

    DOE PAGES

    Zheng, Zhong; Guo, Bo; Christov, Ivan C.; ...

    2015-02-24

    We report theoretical and numerical studies of the flow behaviour when a fluid is injected into a confined porous medium saturated with another fluid of different density and viscosity. For a two-dimensional configuration with point source injection, a nonlinear convection–diffusion equation is derived to describe the time evolution of the fluid–fluid interface. In the early time period, the fluid motion is mainly driven by the buoyancy force and the governing equation is reduced to a nonlinear diffusion equation with a well-known self-similar solution. In the late time period, the fluid flow is mainly driven by the injection, and the governingmore » equation is approximated by a nonlinear hyperbolic equation that determines the global spreading rate; a shock solution is obtained when the injected fluid is more viscous than the displaced fluid, whereas a rarefaction wave solution is found when the injected fluid is less viscous. In the late time period, we also obtain analytical solutions including the diffusive term associated with the buoyancy effects (for an injected fluid with a viscosity higher than or equal to that of the displaced fluid), which provide the structure of the moving front. Numerical simulations of the convection–diffusion equation are performed; the various analytical solutions are verified as appropriate asymptotic limits, and the transition processes between the individual limits are demonstrated.« less

  18. Wettability control on fluid-fluid displacements in patterned microfluidics

    NASA Astrophysics Data System (ADS)

    Zhao, B.; MacMinn, C. W.; Juanes, R.

    2015-12-01

    Two-phase flow in porous media is important in many natural and industrial processes like geologic CO2 sequestration, enhanced oil recovery, and water infiltration in soil. While it is well known that the wetting properties of porous media can vary drastically depending on the type of media and the pore fluids, the effect of wettability on fluid displacement continues to challenge our microscopic and macroscopic descriptions. Here we conduct two-phase flow experiments via radial displacement of viscous silicone oil by water, in planar microfluidic devices patterned with vertical posts. These devices allow for visualization of flow through a complex but well-defined microstructure. In addition, the surface energy of the devices can be tuned over a wide range of contact angles, allowing us to access different wettability conditions. We use a fluorescent dye to measure the in-plane water saturation. We perform constant-rate injection experiments with highly unfavorable mobility contrast (viscosity of injected water is 350 times less than the displaced silicone oil) at injection rates over four orders of magnitude. We focus on three particular wetting conditions: drainage (θ=120°), weak imbibition (θ=60°), and strong imbibition (θ=7°). In drainage, we observe a transition from viscous fingering at high capillary numbers to a morphology that, in contrast with conventional knowledge, is different from capillary fingering. In weak imbibition, we observe an apparent stabilization of flow instabilities, as a result of cooperative invasion at the pore scale. In strong imbibition, we find that the flow behavior is heavily influenced by a precursor front that emanates from the main imbibition front. The nature of the precursor front depends on the capillary number. At intermediate capillary numbers, the precursor front consists primarily of corner flow that connects the surface of neighboring posts, forming ramified fingers. The progress of corner flow is overtaken by the spreading of precursor film (~1 um thick) at lower capillary numbers. The ensuing main imbibition front preferentially invades areas already coated by the precursor film, forming a more compact invasion pattern. Our work demonstrates the important, yet intricate, impact of wettability on the morphology of fluid-fluid displacement in porous media.

  19. Primary drainage in geological fractures: Effects of aperture variability and wettability

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Méheust, Y.; Neuweiler, I.

    2017-12-01

    Understanding and controlling fluid-fluid displacement in porous and fractured media is a key asset for many practical applications, such as the geological storage of CO2, hydrocarbon recovery, groundwater remediation, etc. We numerically investigate fluid-fluid displacement in rough-walled fractures with a focus on the combined effect of wettability, the viscous contrast between the two fluids, and fracture surface topography on drainage patterns and interface growth. A model has been developed to simulate the dynamic displacement of one fluid by another immiscible one in a rough geological fracture; the model takes both capillary and viscous forces into account. Capillary pressures at the fluid-fluid interface are calculated based on the Young-Laplace equation using the two principal curvatures (aperture-induced curvature and in-plane curvature) [1], while viscous forces are calculated by continuously solving the fluid pressure field in the fracture. The aperture field of a fracture is represented by a spatially correlated random field, with a power spectral density of the fracture wall topographies scaling as a power law, and a cutoff wave-length above which the Fourier modes of the two walls are identical [2]. We consider flow scenarios with both rectangular and radial configurations. Results show that the model is able to produce displacement patterns of compact displacement, capillary fingering, and viscous fingering, as well as the transitions between them. Both reducing the aperture variability and increasing the contact angle (from drainage to weak imbibition) can stabilize the displacement due to the influence of the in-plane curvature, an effect analogous to that of the cooperative pore filling in porous media. These results suggest that for geometries typical of geological fractures we can extend the phase diagram in the parameter space of capillary number and mobility ratio by another dimension to take into account the combined effect of wettability and fracture aperture topography. References: [1] Yang, Z. et al. (2012), A generalized approach for estimation of in-plane curvature in invasion percolation models for drainage in fractures. Wat. Resour. Res., 48(9), W09507. [2] Yang, Z. et al. (2016), Fluid trapping during capillary displacement in fractures. Adv. Water Resour., 95, 264-275.

  20. Blocking Gastric Lipase Adsorption and Displacement Processes with Viscoelastic Biopolymer Adsorption Layers.

    PubMed

    Scheuble, Nathalie; Lussi, Micha; Geue, Thomas; Carrière, Frédéric; Fischer, Peter

    2016-10-10

    Delayed fat digestion might help to fight obesity. Fat digestion begins in the stomach by adsorption of gastric lipases to oil/water interfaces. In this study we show how biopolymer covered interfaces can act as a physical barrier for recombinant dog gastric lipase (rDGL) adsorption and thus gastric lipolysis. We used β-lactoglobulin (β-lg) and thermosensitive methylated nanocrystalline cellulose (metNCC) as model biopolymers to investigate the role of interfacial fluid dynamics and morphology for interfacial displacement processes by rDGL and polysorbate 20 (P20) under gastric conditions. Moreover, the influence of the combination of the flexible β-lg and the elastic metNCC was studied. The interfaces were investigated combining interfacial techniques, such as pendant drop, interfacial shear and dilatational rheology, and neutron reflectometry. Displacement of biopolymer layers depended mainly on the fluid dynamics and thickness of the layers, both of which were drastically increased by the thermal induced gelation of metNCC at body temperature. Soft, thin β-lg interfaces were almost fully displaced from the interface, whereas the composite β-lg-metNCC layer thermogelled to a thick interfacial layer incorporating β-lg as filler material and therefore resisted higher shear forces than a pure metNCC layer. Hence, with metNCC alone lipolysis by rDGL was inhibited, whereas the layer performance could be increased by the combination with β-lg.

  1. Free-piston regenerative hot gas hydraulic engine

    NASA Technical Reports Server (NTRS)

    Beremand, D. G. (Inventor)

    1980-01-01

    A displacer piston which is driven pneumatically by a high-pressure or low-pressure gas is included in a free-piston regenerative hydraulic engine. Actuation of the displacer piston circulates the working fluid through a heater, a regenerator and a cooler. The present invention includes an inertial mass such as a piston or a hydraulic fluid column to effectively store and supply energy during portions of the cycle. Power is transmitted from the working fluid to a hydraulic fluid across a diaphragm or lightweight piston to achieve a hydraulic power out-put. The displacer piston of the present invention may be driven pneumatically, hydraulically or electromagnetically. In addition, the displacer piston and the inertial mass of the present invention may be positioned on the same side of the diaphragm member or may be separated by the diaphragm member.

  2. Two-Phase Flow Simulations through Experimentally Studied Porous Media Analogies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crandall, D.M.; Ahmadi, G.; Smith, D.H.

    2007-07-01

    The amount of CO2 that can be sequestered in deep brine reservoirs is dependant on fluid-fluid-solid interactions within heterogeneous porous media. Displacement of an in-place fluid by a less viscous invading fluid does not displace 100% of the defending fluid, due to capillary and viscous fingering. This has been studied experimentally and numerically with the use of pore-throat flow cells and pore-level models, respectively, in the last two decades. This current work solves the full Navier-Stokes and continuity equations in a random pore-throat geometry using the Volume of Fluid (VOF) method. To verify that the VOF model can be accuratelymore » applied within narrow apertures, qualitative agreement with the well-documented phenomenon of viscous fingering in a Hele-Shaw cell is first presented. While this motion is similar to the fingering observed in geological media, the random structure of rock restricts flow patterns not captured by flow in Hele-Shaw cells. To mimic this heterogeneous natural geometry, a novel experimental flowcell was created. Experiments of constant-rate injection of air into the water saturated model are described. This situation, where a non-wetting, invading fluid displaces a surface-wetting, more-viscous fluid, is known as drainage. As the injection flow rate was increased, a change from stable displacement fronts to dendritic fingering structures was observed, with a corresponding decrease in the fractal dimension of the interface and a decrease in the final saturation of invading air. Predictions of the VOF computational modeling within the same flowcell geometry are then shown to be in good agreement with the experimental results. Percent saturation and the fractal dimension of the invading fluid were calculated from the numerical model and shown to be similar to the experimental findings for air invasion of a watersaturated domain. The fluid properties (viscosity and density) were than varied and the viscosity ratio and capillary number of the fluids were shown to affect the percent of displaced fluid, with lower capillary number and higher viscosity ratio displacing a greater amount of the wetting fluid. Displacement of a non-wetting, in-place fluid by a less viscous, wetting fluid (the case of imbibition; contact angle > 90°) is then studied with the numerical model. The invading fluid is shown to preferentially move into small throats and displace a larger percent of the in-place fluid than observed in the drainage case. The interface was also observed to have a higher fractal dimension, closer to 2. These results highlight the potential for greater fundamental understanding of liquid-gas-solid interactions in heterogeneous, porous media that can be obtained from computational fluid dynamics (CFD). Situations, which are difficult to experimentally study, can be examined with CFD in a manner that more accurately accounts for the geological conditions relevant to CO2 sequestration. This allows for greater accuracy in the prediction of storage capacity within known geological structures. This study shows that as the contact angle between the invading fluid and the defending fluid increase, a greater portion of the porous medium is invaded. Thus, a greater portion of CO2 can be sequestered in reservoirs that are not strongly water wet. Low flow rates are shown to increase the final percent saturation of the invading fluid as well, regardless of wetting conditions.« less

  3. Reciprocating Magnetic Refrigerator

    NASA Technical Reports Server (NTRS)

    Johnson, D. L.

    1985-01-01

    Unit cools to 4 K by adiabatic demagnetization. Two porous matrices of paramagnetic material gadolinium/gallium/garnet held in long piston called displacer, machined out of Micarta (phenol formaldehyde polymer). Holes in side of displacer allow heat-exchange fluid to flow to and through matrices within. Piston seals on displacer prevent substantial mixing of fluid in two loops. Magnetic refrigerator provides continuous rather than "one-shot" cooling.

  4. Experimental study of droplet formation of dense suspensions

    NASA Astrophysics Data System (ADS)

    Martensson, Gustaf; Carson, Fabian

    2017-11-01

    As with the jet printing of dyes and other low-viscosity fluids, the jetting of dense fluid suspensions is dependent on the repeatable break-off of the fluid filament into well-formed droplets. It is well known that the break-off of dense suspensions is dependent on the volume fraction of the solid phase, particle size and morphology, fluid phase viscosity et cetera, see for example van Deen et al. (2013). The purpose of this study is to establish a deeper understanding of the formation process of droplets of dense suspensions. Previous experiments have utilised a filament break-off device (FilBO) developed in-house. These experiments utilise an ejection device based on rapid volumetric displacement of the fluid through a conical nozzle. The suspension samples consist of a resin-based flux and spherical particles with diameters of dp = 5 - 25 μ m. A droplet of of the suspension with a volume of Vdrop = 2 - 50 nl is ejected from the nozzle. Correlations between droplet speed and the temporal development of the volumetric displacement will be presented. Further results relating break-off length and rate versus particle diameter, volume fraction and probe speed will be presented.

  5. Mathematical inference in one point microrheology

    NASA Astrophysics Data System (ADS)

    Hohenegger, Christel; McKinley, Scott

    2016-11-01

    Pioneered by the work of Mason and Weitz, one point passive microrheology has been successfully applied to obtaining estimates of the loss and storage modulus of viscoelastic fluids when the mean-square displacement obeys a local power law. Using numerical simulations of a fluctuating viscoelastic fluid model, we study the problem of recovering the mechanical parameters of the fluid's memory kernel using statistical inference like mean-square displacements and increment auto-correlation functions. Seeking a better understanding of the influence of the assumptions made in the inversion process, we mathematically quantify the uncertainty in traditional one point microrheology for simulated data and demonstrate that a large family of memory kernels yields the same statistical signature. We consider both simulated data obtained from a full viscoelastic fluid simulation of the unsteady Stokes equations with fluctuations and from a Generalized Langevin Equation of the particle's motion described by the same memory kernel. From the theory of inverse problems, we propose an alternative method that can be used to recover information about the loss and storage modulus and discuss its limitations and uncertainties. NSF-DMS 1412998.

  6. In-Situ Ultra Low Frequency Poroelastic Response of a Natural Macro-Fracture

    NASA Astrophysics Data System (ADS)

    Guglielmi, Y.; Cappa, F.; Rutqvist, J.; Tsang, C.; Gaffet, S.

    2008-12-01

    The seismic visibility of macro-fractures filled with fluids is a central problem in the exploration of thermo- hydro-mechanical and chemical processes that occur in Earth' s subsurface. Most studies have been concerned (1) with cracks of a small size relative to the seismic wavelength (2) with "core-sized" samples of single macro-fractures. In comparison, in-situ studies of macro-fractures are very rare and no real estimate is made of the relevance of this convenient "core-sized" data to in-situ reservoirs in general. In this study, we present a new experimental approach to in-situ characterize mechanical and hydraulic properties of fractures using the innovative HPPP protocol. This protocol allows simultaneous high-frequency (120.2 Hz) sampling of normal displacement and fluid pressure in a borehole intersecting the fracture. We show preliminary results conducted in a single fracture vertically embedded in a carbonate reservoir that contains 3 sets of macro-fractures with an average 2m spacing. Two HPPP probes were set, spaced one meter vertically in the fracture. Two types of ULF seismic sources are applied: a fluid pressure pulse injected in the fracture and a hammer hit at a point located 5m far from the fracture plane. There is a highly non-linear variation of fracture normal displacement-versus- fluid pressure as a function of frequency, the higher the frequency, the lower the displacement spectral amplitude is. The pressure pulse and the hammer hit allow exploring the fracture poroelastic response in the [0 - 3Hz] frequency range. The fracture plays the role of a "low-pass" filter for fluid pressure waves; only a quasi-static pressure signal being registered at the receiver. The displacement wave propagation is more complex resulting in uncoupled quasi-static-pressure-2Hz-deformation signals at the receiver. For low magnitude seismic sources (low amplitude pulse and seismic wave), the fracture natural resonance is amplified resulting in separate signals power spectral peaks. When fluid pressure is enough increased, hydraulic diffusion takes place at frequencies lower than 1.2 Hz. Poroelastic effects related to static hydraulic diffusion and to wave propagation were described separately using a linear elastic model where the fracture was treated as a displacement discontinuity across which stresses are continuous but displacement are discontinuous. It appears that the dynamic fracture normal stiffness at 2 to 3 Hz is a factor of 2.8 higher than the static stiffness although the fracture displays a high hydraulic aperture of 10-4 m. This surprising result is related to a high heterogeneity of the fracture channel network with a large porosity/permeability contrast that does not allow fluid displacement under dynamic loading. The HPPP approach appears as a possibility to in-situ characterize such fractures static to seismic poroelastic heterogeneous properties.

  7. Pump having pistons and valves made of electroactive actuators

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph (Inventor)

    1997-01-01

    The present invention provides a pump for inducing a displacement of a fluid from a first medium to a second medium, including a conduit coupled to the first and second media, a transducing material piston defining a pump chamber in the conduit and being transversely displaceable for increasing a volume of the chamber to extract the fluid from the first medium to the chamber and for decreasing the chamber volume to force the fluid from the chamber to the second medium, a first transducing material valve mounted in the conduit between the piston and the first medium and being transversely displaceable from a closed position to an open position to admit the fluid to the chamber, and control means for changing a first field applied to the piston to displace the piston for changing the chamber volume and for changing a second field applied to the first valve to change the position of the first valve.

  8. A monolithic Lagrangian approach for fluid-structure interaction problems

    NASA Astrophysics Data System (ADS)

    Ryzhakov, P. B.; Rossi, R.; Idelsohn, S. R.; Oñate, E.

    2010-11-01

    Current work presents a monolithic method for the solution of fluid-structure interaction problems involving flexible structures and free-surface flows. The technique presented is based upon the utilization of a Lagrangian description for both the fluid and the structure. A linear displacement-pressure interpolation pair is used for the fluid whereas the structure utilizes a standard displacement-based formulation. A slight fluid compressibility is assumed that allows to relate the mechanical pressure to the local volume variation. The method described features a global pressure condensation which in turn enables the definition of a purely displacement-based linear system of equations. A matrix-free technique is used for the solution of such linear system, leading to an efficient implementation. The result is a robust method which allows dealing with FSI problems involving arbitrary variations in the shape of the fluid domain. The method is completely free of spurious added-mass effects.

  9. 3D Deformation at the Coso Geothermal Field - Observations and Models

    NASA Astrophysics Data System (ADS)

    Hetland, E. A.; Hager, B. H.; McClusky, S.; King, R. W.

    2001-12-01

    Over the past decade, rapid ground deformation has been measured over the Coso geothermal field in Eastern CA using InSAR and GPS. InSAR resolves changes in distance along the line-of-sight (LOS) to the satellite with high spatial coverage. In the Coso geothermal field the maximum LOS displacements are up to 35 mm/yr. The inclination of the LOS is acute (about 20 degrees), hence the majority of the deformation resolved with InSAR is vertical, however LOS displacements are also affected by horizontal displacements. The ratio of the sensitivity of LOS displacements to vertical and horizontal displacements is at most 5 to 2, for horizontal displacements inline with the LOS. GPS is able to resolve large horizontal displacements in this area, leading to the conclusion that the InSAR LOS displacement fields are non-trivially affected by horizontal displacements. Additionally, since the horizontal displacements are large, GPS is also able to resolve vertical displacements. Moreover, the GPS three component velocities are fairly consistent with the LOS displacements from InSAR. This deformation has been largely attributed to subsidence as fluid is extracted from the geothermal reservoir. The reservoir has been previously modeled as deflating elliptical volumes and as collapsing sills. The elliptical volumes are described as Mogi sources, which are mathematically given as point forces along a line. The collapsing sills are treated as Okada dislocations for finite area faults with pure tensile displacements across them. In both of these dislocation models of the reservoir, the elastic moduli of the rock remains constant with changing fluid pressure. Actual reservoirs are more likely composed of regions of rock permeated with fluid-filled cracks and pores. In such a composite material, changing the pore-fluid pressure changes the elastic moduli of the region. These moduli changes cause the region to deform under loading, thus resulting in observed surface displacements. The surface displacements resulting from models with varying moduli of the reservoir rock are markedly different from patterns of surface displacements resulting from models in which the reservoir is treated as dislocations. For a given reservoir size, the differences in displacements from the various models are clearest in the horizontal displacement field, differing by up to a factor of two. We use finite element models with simple reservoir geometries to investigate the sensitivity of both vertical and horizontal displacements to the chosen reservoir model.

  10. Dynamic of Air Invasion in an Immersed Granular Layer

    NASA Astrophysics Data System (ADS)

    Varas, G.; Ramos, G.; Géminard, J. C.; Vidal, V.

    2014-12-01

    Displacement processes (typically, grains displaced by a fluid) are the driving mechanism which control the dynamics of many geological processes (e.g. oil extraction, air sparging, piercement structures). They also play an important role in a wide range of industrial applications, from ground water hydrology and soil mechanics to agricultural engineering. The interaction between one or more moving fluids (e.g. rising gas immersed in a granular medium) and grains control the dynamics of these phenomena. Due to their economic and ecological importance, it is essential to understand the variety and potentiality of these phenomena. When an ascending air passes trough an immersed granular bed its fluidized producing the grains to start to move. When this process is repeated, its created a fluidized zone that evolves over time. Here, we investigate the morphology and dynamics of the region invaded by air as a function of a dimensionless parameter χ which accounts for the relative effects of the gravity and the capillarity. We propose new experimental observations on the air invasion regimes and on the morphology of the fluidized zone, in particular its growth dynamics.

  11. Brownian Motion.

    ERIC Educational Resources Information Center

    Lavenda, Bernard H.

    1985-01-01

    Explains the phenomenon of Brownian motion, which serves as a mathematical model for random processes. Topics addressed include kinetic theory, Einstein's theory, particle displacement, and others. Points out that observations of the random course of a particle suspended in fluid led to the first accurate measurement of atomic mass. (DH)

  12. Stirling cycle engine and refrigeration systems

    NASA Technical Reports Server (NTRS)

    Higa, W. H. (Inventor)

    1976-01-01

    A Stirling cycle heat engine is disclosed in which displacer motion is controlled as a function of the working fluid pressure P sub 1 and a substantially constant pressure P sub 0. The heat engine includes an auxiliary chamber at the constant pressure P sub 0. An end surface of a displacer piston is disposed in the auxiliary chamber. During the compression portion of the engine cycle when P sub 1 rises above P sub 0 the displacer forces the working fluid to pass from the cold chamber to the hot chamber of the engine. During the expansion portion of the engine cycle the heated working fluid in the hot chamber does work by pushing down on the engine's drive piston. As the working fluid pressure P sub 1 drops below P sub 0 the displacer forces most of the working fluid in the hot chamber to pass through the regenerator to the cold chamber. The engine is easily combinable with a refrigeration section to provide a refrigeration system in which the engine's single drive piston serves both the engine and the refrigeration section.

  13. Effect of middle ear fluid on sound transmission and auditory brainstem response in guinea pigs.

    PubMed

    Guan, Xiying; Gan, Rong Z

    2011-07-01

    Combined measurements of middle ear transfer function and auditory brainstem response (ABR) in live guinea pigs with middle ear effusion (MEE) are reported in this paper. The MEE model was created by injecting saline into the middle ear cavity. Vibrations of the tympanic membrane (TM), the tip of the incus, and the round window membrane (RWM) were measured with a laser vibrometer at frequencies of 0.2-40 kHz when the middle ear fluid increased from 0 to 0.2 ml (i.e., full fill of the cavity). The click and pure tone ABRs were recorded as the middle ear fluid increased. Fluid introduction reduced mobility of the TM, incus and RWM mainly at high frequencies (f > 1 kHz). The magnitude of this reduction was related to the volume of fluid. The displacement transmission ratio of the TM to incus varied with frequency and fluid level. The volume displacement ratio of the oval window to round window was approximately 1.0 over most frequencies. Elevation of ABR thresholds and prolongation of ABR latencies were observed as fluid level increased. Reduction of TM displacement correlated well with elevation of ABR threshold at 0.5-8 kHz. Alterations in the ratio of ossicular displacements before and after fluid induction are consistent with fluid-induced changes in complex ossicular motions. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Pore invasion dynamics during fluid front displacement in porous media determine functional pore size distribution and phase entrapment

    NASA Astrophysics Data System (ADS)

    Moebius, F.; Or, D.

    2012-12-01

    Dynamics of fluid fronts in porous media shape transport properties of the unsaturated zone and affect management of petroleum reservoirs and their storage properties. What appears macroscopically as smooth and continuous motion of a displacement fluid front may involve numerous rapid interfacial jumps often resembling avalanches of invasion events. Direct observations using high-speed camera and pressure sensors in sintered glass micro-models provide new insights on the influence of flow rates, pore size, and gravity on invasion events and on burst size distribution. Fundamental differences emerge between geometrically-defined pores and "functional" pores invaded during a single burst (invasion event). The waiting times distribution of individual invasion events and decay times of inertial oscillations (following a rapid interfacial jump) are characteristics of different displacement regimes. An invasion percolation model with gradients and including the role of inertia provide a framework for linking flow regimes with invasion sequences and phase entrapment. Model results were compared with measurements and with early studies on invasion burst sizes and waiting times distribution during slow drainage processes by Måløy et al. [1992]. The study provides new insights into the discrete invasion events and their weak links with geometrically-deduced pore geometry. Results highlight factors controlling pore invasion events that exert strong influence on macroscopic phenomena such as front morphology and residual phase entrapment shaping hydraulic properties after the passage of a fluid front.

  15. Investigation of foam flow in a 3D printed porous medium in the presence of oil.

    PubMed

    Osei-Bonsu, Kofi; Grassia, Paul; Shokri, Nima

    2017-03-15

    Foams demonstrate great potential for displacing fluids in porous media which is applicable to a variety of subsurface operations such as the enhanced oil recovery and soil remediation. The application of foam in these processes is due to its unique ability to reduce gas mobility by increasing its effective viscosity and to divert gas to un-swept low permeability zones in porous media. The presence of oil in porous media is detrimental to the stability of foams which can influence its success as a displacing fluid. In the present work, we have conducted a systematic series of experiments using a well-characterised porous medium manufactured by 3D printing technique to evaluate the influence of oil on the dynamics of foam displacement under different boundary conditions. The effects of the type of oil, foam quality and foam flow rate were investigated. Our results reveal that generation of stable foam is delayed in the presence of light oil in the porous medium compared to heavy oil. Additionally, it was observed that the dynamics of oil entrapment was dictated by the stability of foam in the presence of oil. Furthermore, foams with high gas fraction appeared to be less stable in the presence of oil lowering its recovery efficiency. Pore-scale inspection of foam-oil dynamics during displacement revealed formation of a less stable front as the foam quality increased, leading to less oil recovery. This study extends the physical understanding of oil displacement by foam in porous media and provides new physical insights regarding the parameters influencing this process. Copyright © 2016. Published by Elsevier Inc.

  16. Lattice Boltzmann simulation of immiscible displacement in the cavity with different channel configurations

    NASA Astrophysics Data System (ADS)

    Lou, Qin; Zang, Chenqiang; Yang, Mo; Xu, Hongtao

    In this work, the immiscible displacement in a cavity with different channel configurations is studied using an improved pseudo-potential lattice Boltzmann equation (LBE) model. This model overcomes the drawback of the dependence of the fluid properties on the grid size, which exists in the original pseudo-potential LBE model. The approach is first validated by the Laplace law. Then, it is employed to study the immiscible displacement process. The influences of different factors, such as the surface wettability, the distance between the gas cavity and liquid cavity and the surface roughness of the channel are investigated. Numerical results show that the displacement efficiency increases and the displacement time decreases with the increase of the surface contact angle. On the other hand, the displacement efficiency increases with increasing distance between the gas cavity and the liquid cavity at first and finally reaches a constant value. As for the surface roughness, two structures (a semicircular cavity and a semicircular bulge) are studied. The comprehensive results show that although the displacement processes for both the structures depend on the surface wettability, they present quite different behaviors. Specially, for the roughness structure constituted by the semicircular cavity, the displacement efficiency decreases and displacement time increases evidently with the size of the semicircular cavity for the small contact angle. The trend slows down as the increase of the contact angle. Once the contact angle exceeds a certain value, the size of the semicircular cavity almost has no influence on the displacement process. While for the roughness structure of a semicircular bulge, the displacement efficiency increases with the size of bulge first and then it decreases for the small contact angle. The displacement efficiency increases first and finally reaches a constant for the large contact angle. The results also show that the displacement time has an extreme value in these cases for the small contact angles.

  17. Fluid Retention and Rostral Fluid Shift in Sleep-Disordered Breathing.

    PubMed

    Kasai, Takatoshi

    2016-01-01

    Sleep-disordered breathing (SDB) is common and adversely affects cardiovascular morbidity and mortality. Despite multifactorial pathogenesis, SDB is prevalent in patients with fluid retention disorders, such as drug-resistant hypertension, end-stage renal disease, and heart failure, suggesting that fluid retention may play a role in the pathogenesis of SDB. During the day, fluid is likely to accumulate in the legs, and upon lying down at night is displaced from the legs. Many data suggest that some of this fluid displaced from the legs may redistribute to the upper body and predispose to SDB. This review article will highlight evidence for a relationship between SDB and fluid retention or rostral fluid shift, and discuss mechanisms that link them.

  18. The evolution of fabric with displacement in natural brittle faults

    NASA Astrophysics Data System (ADS)

    Mittempergher, S.; Di Toro, G.; Gratier, J.; Aretusini, S.; Boullier-Bertrand, A.

    2011-12-01

    In experiments performed at room temperature on gouges, a characteristic clast size distribution (CSD) is produced with increasing strain, and shear localization is documented to begin after few millimetres of sliding. But in natural faults active at depth in the crust, mechanical processes are associated with fluid-rock interactions, which might control the deformation and strength recovery. We aim to investigate the microstructural, geochemical and mineralogical evolution of low-displacement faults with increasing shear strain. The faults (cataclasite- and pseudotachylyte-bearing) are hosted in tonalite and were active at 9-11 km and 250-300°C. The samples were collected on a large glacier-polished outcrop, where major faults (accommodating up to 4300 mm of displacement) exploit pre-existing magmatic joints and are connected by a network of secondary fractures and faults (accommodating up to 500 mm of displacement) breaking intact tonalite. We performed optical and cathodoluminescence (CL) microscope, Scanning Electron Microscope (SEM), Energy Dispersive X-ray Spectroscopy (EDS), Rietveld X-Ray Powder Diffraction and microprobe chemical analysis in deformation zones of secondary faults with various offsets in order to evaluate the transfer of chemical species between dissolution zones and protected zones. Image analysis techniques were applied on SEM-BSE and optical microscope images to compute the CSD in samples, which experienced an increasing amount of strain. The secondary fractures are up to 5 mm thick. Within the first 20 mm of displacement, shear localizes along Y and R1 surfaces and a cataclastic foliation develops. The CSD evolves from a fractal dimension D of 1.3 in fractures without visible displacement to values above 2 after the first 500 mm of displacement. Chemical maps and CL images indicate that the foliation in cataclasite results from the rotation and fragmentation of clasts, with dissolution of quartz and passive concentration of Ti oxides and titanite in the foliation planes. The cataclasites are cemented by pervasive precipitation of K-feldspar plagues and idiomorphic, randomly oriented, epidote and chlorite. We conclude that the textures of these small displacement (< 500 mm) faults are controlled by brittle processes (fracture propagation and cataclastic comminution) similar to those reproduced in friction experiments performed on granite gouge (e.g., Beeler et al., 1996; Logan, 2007). Then progressively, stress driven fluid-rock reactions develop as fracturing and grain size reduction allows the kinetics of these reactions to be more efficient and fracture interconnection allows fluid infiltration. Healing of microfractures and fault rock cementation caused a rapid posteismic recovery of fault strength. References Beeler, N.M., Tullis, T.E., Blanpied, L., Weeks, J.D., 1996. Frictional behaviour of large displacement experimental faults. Journal of Geophysical Research 101, B4, 8697-8715. Logan, J.M., 2007. The progression from damage to localization of displacement observed in laboratory testing of porous rocks, in Lewis, H., and Couples, G.D. (eds.) The relationship between damage and localization. Geological Society of London Special Publication 289, 75-87.

  19. The cell biology of polycystic kidney disease

    PubMed Central

    Chapin, Hannah C.

    2010-01-01

    Polycystic kidney disease is a common genetic disorder in which fluid-filled cysts displace normal renal tubules. Here we focus on autosomal dominant polycystic kidney disease, which is attributable to mutations in the PKD1 and PKD2 genes and which is characterized by perturbations of renal epithelial cell growth control, fluid transport, and morphogenesis. The mechanisms that connect the underlying genetic defects to disease pathogenesis are poorly understood, but their exploration is shedding new light on interesting cell biological processes and suggesting novel therapeutic targets. PMID:21079243

  20. Macroscopic constitutive equations of thermo-poroelasticity derived using eigenstrain-eigenstress approaches

    NASA Astrophysics Data System (ADS)

    Suvorov, Alexander P.; Selvadurai, A. P. S.

    2011-06-01

    Macroscopic constitutive equations for thermoelastic processes in a fluid-saturated porous medium are re-derived using the notion of eigenstrain or, equivalently, eigenstress. The eigenstrain-stress approach is frequently used in micromechanics of solid multi-phase materials, such as composites. Simple derivations of the stress-strain constitutive relations and the void occupancy relationship are presented for both fully saturated and partially saturated porous media. Governing coupled equations for the displacement components and the fluid pressure are also obtained.

  1. PARTICLE DISPLACEMENTS ON THE WALL OF A BOREHOLE FROM INCIDENT PLANE WAVES.

    USGS Publications Warehouse

    Lee, M.W.

    1987-01-01

    Particle displacements from incident plane waves at the wall of a fluid-filled borehole are formulated by applying the seismic reciprocity theorem to far-field displacement fields. Such displacement fields are due to point forces acting on a fluid-filled borehole under the assumption of long wavelengths. The displacement fields are analyzed to examine the effect of the borehole on seismic wave propagation, particularly for vertical seismic profiling (VSP) measurements. When the shortest wavelength of interest is approximately 25 times longer than the borehole's diameter, the scattered displacements are proportional to the first power of incident frequency and borehole diameter. When the shortest wavelength of interest is about 40 times longer than the borehole's diameter, borehole effects on VSP measurements using a wall-locking geophone are negligible.

  2. The response of fluid-saturated reservoirs to lunisolar tides: Part 1. Background parameters of tidal components in ground displacements and groundwater level

    NASA Astrophysics Data System (ADS)

    Besedina, A. N.; Vinogradov, E. A.; Gorbunova, E. M.; Kabychenko, N. V.; Svintsov, I. S.; Pigulevskiy, P. I.; Svistun, V. K.; Shcherbina, S. V.

    2015-01-01

    The first part of this work is dedicated to the response of different-age structures to lunisolar tides, which can be considered as a sounding signal for monitoring the state of fluid-saturated reservoirs. The complex approach to processing the data obtained at the testing sites of the Institute of Geosphere Dynamics of the Russian Academy of Sciences, Institute of Geophysics of the National Academy of Sciences of Ukraine, and KIEV station of the IRIS seismic network is applied for recognizing the tides against the hydrogeological, barometric, and seismic series. The comparative analysis of the experimental and theoretical values of the diurnal and semidiurnal tidal components in the time series of ground displacements is carried out. The tidal variations in the groundwater level are compared with the tidal components revealed in the ground displacement of the different-age structure of the Moscow Basin and Ukrainian Shield, which are parts of the East European artesian region. The differences in the tidal responses of the groundwater level and ground displacement probably suggest that the state of the massif is affected by certain additional factors associated, e.g., with the passage of earthquake-induced seismic waves and the changes in the hydrogeodynamic environment.

  3. Nondestructive analysis of three-dimensional objects using a fluid displacement method

    USDA-ARS?s Scientific Manuscript database

    Quantification of three-dimensional (3-D) objects has been a real challenge in agricultural, hydrological and environmental studies. We designed and tested a method that is capable of quantifying 3-D objects using measurements of fluid displacement. The device consists of a stand that supports a mov...

  4. A new method to simulate the effects of viscous fingering on miscible displacement processes in porous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vossoughi, S.; Green, D.W.; Smith, J.E.

    This paper presents a new method to simulate the effects of viscous fingering on miscible displacement processes in porous media. The method is based on the numerical solution of a general form of the convection-dispersion equation. In this equation the convection term is represented by a fractional flow function. The fractional flow function is derived from Darcy's law using a concentration-dependent, average viscosity and relative flow area to each fluid at any point in the bed. The method was extended to the description of a polymer flood by including retention and inaccessible pore volume. A Langmuir-type model for polymer retentionmore » in the rock was used. The resulting convection-dispersion equation for displacement by polymer was then solved numerically by the use of a finite element method with linear basis functions and Crank-Nicholson derivative approximation. History matches were performed on four sets of laboratory data to verify the model. These were: an unfavorable viscosity ratio displacement, stable displacement of glycerol by polymer solution, unstable displacement of brine by a slug of polymer solution, and a favorable viscosity ratio displacement. In general, computed results from the model matched laboratory data closely. Good agreement of the model with experiments over a significant range of variables lends support to the analysis.« less

  5. A new hysteresis model based on force-displacement characteristics of magnetorheological fluid actuators subjected to squeeze mode operation

    NASA Astrophysics Data System (ADS)

    Chen, Peng; Bai, Xian-Xu; Qian, Li-Jun; Choi, Seung-Bok

    2017-06-01

    This paper presents a new hysteresis model based on the force-displacement characteristics of magnetorheological (MR) fluid actuators (or devices) subjected to squeeze mode operation. The idea of the proposed model is originated from experimental observation of the field-dependent hysteretic behavior of MR fluids, which shows that from a view of rate-independence of hysteresis, a gap width-dependent hysteresis is occurred in the force-displacement relationship instead of the typical relationship of the force-velocity. To effectively and accurately portray the hysteresis behavior, the gap width-dependent hysteresis elements, the nonlinear viscous effect and the inertial effect are considered for the formulation of the hysteresis model. Then, a model-based feedforward force tracking control scheme is established through an observer which can estimate the virtual displacement. The effectiveness of the proposed hysteresis model is validated through the identification and prediction of the damping force of MR fluids in the squeeze mode. In addition, it is shown that superior force tracking performance of the feedforward control associated with the proposed hysteresis mode is evaluated by adopting several tracking trajectories.

  6. Steady propagation of Bingham plugs in 2D channels

    NASA Astrophysics Data System (ADS)

    Zamankhan, Parsa; Takayama, Shuichi; Grotberg, James

    2009-11-01

    The displacement of the yield-stress liquid plugs in channels and tubes occur in many biological systems and industrial processes. Among them is the propagation of mucus plugs in the respiratory tracts as may occur in asthma, cystic fibrosis, or emphysema. In this work the steady propagation of mucus plugs in a 2D channel is studied numerically, assuming that the mucus is a pure Bingham fluid. The governing equations are solved by a mixed-discontinuous finite element formulation and the free surface is resolved with the method of spines. The constitutive equation for a pure Bingham fluid is modeled by a regularization method. Fluid inertia is neglected, so the controlling parameters in a steady displacement are; the capillary number, Ca, Bingham number ,Bn, and the plug length. According to the numerical results, the yield stress behavior of the plug modifies the plug shape, the pattern of the streamlines and the distribution of stresses in the plug domain and along the walls in a significant way. The distribution along the walls is a major factor in studying cell injuries. This work is supported through the grant NIH HL84370.

  7. 3D Simulation of Multiple Simultaneous Hydraulic Fractures with Different Initial Lengths in Rock

    NASA Astrophysics Data System (ADS)

    Tang, X.; Rayudu, N. M.; Singh, G.

    2017-12-01

    Hydraulic fracturing is widely used technique for extracting shale gas. During this process, fractures with various initial lengths are induced in rock mass with hydraulic pressure. Understanding the mechanism of propagation and interaction between these induced hydraulic cracks is critical for optimizing the fracking process. In this work, numerical results are presented for investigating the effect of in-situ parameters and fluid properties on growth and interaction of multi simultaneous hydraulic fractures. A fully coupled 3D fracture simulator, TOUGH- GFEM is used for simulating the effect of different vital parameters, including in-situ stress, initial fracture length, fracture spacing, fluid viscosity and flow rate on induced hydraulic fractures growth. This TOUGH-GFEM simulator is based on 3D finite volume method (FVM) and partition of unity element method (PUM). Displacement correlation method (DCM) is used for calculating multi - mode (Mode I, II, III) stress intensity factors. Maximum principal stress criteria is used for crack propagation. Key words: hydraulic fracturing, TOUGH, partition of unity element method , displacement correlation method, 3D fracturing simulator

  8. Quantitative assessment of reflux in commercially available needle-free IV connectors.

    PubMed

    Hull, Garret J; Moureau, Nancy L; Sengupta, Shramik

    2018-01-01

    Blood reflux is caused by changes in pressure within intravascular catheters upon connection or disconnection of a syringe or intravenous tubing from a needle-free connector (NFC). Changes in pressure, differing with each brand of NFC, may result in fluid movement and blood reflux that can contribute to intraluminal catheter occlusions and increase the potential for central-line associated bloodstream infections (CLABSI). In this study, 14 NFC brands representing each of the four market-categories of NFCs were selected for evaluation of fluid movement occurring during connection and disconnection of a syringe. Study objectives were to 1) theoretically estimate amount of blood reflux volume in microliters (μL) permitted by each NFC based on exact component measurements, and 2) experimentally measure NFC volume of fluid movement for disconnection reflux of negative, neutral and anti-reflux NFC and fluid movement for connection reflux of positive displacement NFC. The results demonstrated fluid movement/reflux volumes of 9.73 μL to 50.34 μL for negative displacement, 3.60 μL to 10.80 μL for neutral displacement, and 0.02 μL to 1.73 μL for pressure-activated anti-reflux NFC. Separate experiment was performed measuring connection reflux of 18.23 μL to 38.83 μL for positive displacement NFC connectors. This study revealed significant differences in reflux volumes for fluid displacement based on NFC design. While more research is needed on effects of blood reflux in catheters and NFCs, results highlight the need to consider NFCs based on performance of individual connector designs, rather than manufacturer designation of positive, negative and neutral marketing categories for NFCs without anti-reflux mechanisms.

  9. Miscible displacement of a non-Newtonian fluid in a capillary tube

    NASA Astrophysics Data System (ADS)

    Soori, Tejaswi; Ward, Thomas

    2017-11-01

    This talk focuses on experiments conducted to further our understanding of how to displace an aqueous polymer within a capillary tube (diameter < 1 mm) using a Newtonian fluid. Estimates of the residual film were measured as a function of Reynolds (Re), viscous Atwood (At) and Péclet (Pé) numbers. Aqueous polymers were prepared by mixing ϕ = 0.01-0.1% (wt/wt) Carboxymethyl Cellulose (CMC) in water. We measure the shear viscosity of the aqueous polymer over a broad range of shear rates and fit the data obtained to the Carreau fluid parameters. Separately we measure the average bulk diffusion coefficient of the aqueous polymer and water in water and aqueous polymer phases respectively. Previous studies on the immiscible displacement of polymers have shown residual film thickness to be dependent on the tube diameter. We will investigate if this is true when the two fluids are miscible in nature. American Chemical Society Petroleum Research Fund.

  10. A visualization study on two-phase gravity drainage in porous media by using magnetic resonance imaging.

    PubMed

    Teng, Ying; Liu, Yu; Jiang, Lanlan; Song, Yongchen; Zhao, Jiafei; Zhang, Yi; Wang, Dayong

    2016-09-01

    Gravity drainage characteristics are important to improve our understanding of gas-liquid or liquid-liquid two-phase flow in porous media. Stable or unstable displacement fronts that controlled by the capillary force, viscous force, gravitational force, etc., are relevant features of immiscible two-phase flow. In this paper, three dimensionless parameters, namely, the gravity number, the capillary number and the Bond number, were used to describe the effect of the above mentioned forces on two-phase drainage features, including the displacement front and final displacing-phase saturation. A series of experiments on the downward displacement of a viscous fluid by a less viscous fluid in a vertical vessel that is filled with quartz beads are performed by using magnetic resonance imaging (MRI). The experimental results indicate that the wetting properties at both high and low capillary numbers exert remarkable control on the fluid displacement. When the contact angle is lower than 90°, i.e., the displaced phase is the wetting phase, the average velocity Vf of the interface of the two phases (displacement front velocity) is observably lower than when the displaced phase is the non-wetting phase (contact angle higher than 90°). The results show that a fingering phenomenon occurs when the gravity number G is less than the critical gravity number G'=Δμ/μg. Moreover, the higher Bond number results in higher final displacing-phase saturation, whereas the capillary number has an opposite effect. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Fractional Brownian motion run with a multi-scaling clock mimics diffusion of spherical colloids in microstructural fluids.

    PubMed

    Park, Moongyu; Cushman, John Howard; O'Malley, Dan

    2014-09-30

    The collective molecular reorientations within a nematic liquid crystal fluid bathing a spherical colloid cause the colloid to diffuse anomalously on a short time scale (i.e., as a non-Brownian particle). The deformations and fluctuations of long-range orientational order in the liquid crystal profoundly influence the transient diffusive regimes. Here we show that an anisotropic fractional Brownian process run with a nonlinear multiscaling clock effectively mimics this collective and transient phenomenon. This novel process has memory, Gaussian increments, and a multiscale mean square displacement that can be chosen independently from the fractal dimension of a particle trajectory. The process is capable of modeling multiscale sub-, super-, or classical diffusion. The finite-size Lyapunov exponents for this multiscaling process are defined for future analysis of related mixing processes.

  12. Bioinspired model of mechanical energy harvesting based on flexoelectric membranes.

    PubMed

    Rey, Alejandro D; Servio, P; Herrera-Valencia, E E

    2013-02-01

    Membrane flexoelectricity is an electromechanical coupling process that describes membrane electrical polarization due to bending and membrane bending under electric fields. In this paper we propose, formulate, and characterize a mechanical energy harvesting system consisting of a deformable soft flexoelectric thin membrane subjected to harmonic forcing from contacting bulk fluids. The key elements of the energy harvester are formulated and characterized, including (i) the mechanical-to-electrical energy conversion efficiency, (ii) the electromechanical shape equation connecting fluid forces with membrane curvature and electric displacement, and (iii) the electric power generation and efficiency. The energy conversion efficiency is cast as the ratio of flexoelectric coupling to the product of electric and bending elasticity. The device is described by a second-order curvature dynamics coupled to the electric displacement equation and as such results in mechanical power absorption with a resonant peak whose amplitude decreases with bending viscosity. The electric power generation is proportional to the conversion factor and the power efficiency decreases with frequency. Under high bending viscosity, the power efficiency increases with the conversion factor and under low viscosities it decreases with the conversion factor. The theoretical results presented contribute to the ongoing experimental efforts to develop mechanical energy harvesting from fluid flow energy through solid-fluid interactions and electromechanical transduction.

  13. Coupled Modeling of Flow, Transport, and Deformation during Hydrodynamically Unstable Displacement in Fractured Rocks

    NASA Astrophysics Data System (ADS)

    Jha, B.; Juanes, R.

    2015-12-01

    Coupled processes of flow, transport, and deformation are important during production of hydrocarbons from oil and gas reservoirs. Effective design and implementation of enhanced recovery techniques such as miscible gas flooding and hydraulic fracturing requires modeling and simulation of these coupled proceses in geologic porous media. We develop a computational framework to model the coupled processes of flow, transport, and deformation in heterogeneous fractured rock. We show that the hydrocarbon recovery efficiency during unstable displacement of a more viscous oil with a less viscous fluid in a fractured medium depends on the mechanical state of the medium, which evolves due to permeability alteration within and around fractures. We show that fully accounting for the coupling between the physical processes results in estimates of the recovery efficiency in agreement with observations in field and lab experiments.

  14. A two-layer model for buoyant inertial displacement flows in inclined pipes

    NASA Astrophysics Data System (ADS)

    Etrati, Ali; Frigaard, Ian A.

    2018-02-01

    We investigate the inertial flows found in buoyant miscible displacements using a two-layer model. From displacement flow experiments in inclined pipes, it has been observed that for significant ranges of Fr and Re cos β/Fr, a two-layer, stratified flow develops with the heavier fluid moving at the bottom of the pipe. Due to significant inertial effects, thin-film/lubrication models developed for laminar, viscous flows are not effective for predicting these flows. Here we develop a displacement model that addresses this shortcoming. The complete model for the displacement flow consists of mass and momentum equations for each fluid, resulting in a set of four non-linear equations. By integrating over each layer and eliminating the pressure gradient, we reduce the system to two equations for the area and mean velocity of the heavy fluid layer. The wall and interfacial stresses appear as source terms in the reduced system. The final system of equations is solved numerically using a robust, shock-capturing scheme. The equations are stabilized to remove non-physical instabilities. A linear stability analysis is able to predict the onset of instabilities at the interface and together with numerical solution, is used to study displacement effectiveness over different parametric regimes. Backflow and instability onset predictions are made for different viscosity ratios.

  15. A new method to simulate the effects of viscous fingering on miscible displacement processes in porous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vossoughi, S.; Green, D.W.; Smith, J.E.

    Dispersion and viscous fingering are important parameters in miscible displacement. Effects of dispersion on concentration profiles in porous media can be simulated when the viscosity ratio is favorable. The capability to simulate viscous fingering is limited. This paper presents a new method to simulate effects of viscous fingering on miscible displacement processes in porous media. The method is based on the numerical solution of a general form of the convection-dispersion equation. In this equation the convection term is represented by a fractional flow function. The fractional flow function is derived from Darcy's law by using a concentration-dependent average viscosity andmore » relative flow area to each fluid at any point in the bed. The method was extended to the description of a polymer flood by including retention and inaccessible PV. A Langmuir-type model for polymer retention in the rock was used. The resulting convection-dispersion equation for displacement by polymer was solved numerically by the use of a finite-element method with linear basis functions and Crank-Nicholson derivative approximation. History matches were performed on four sets of laboratory data to verify the model: (1) an unfavorable viscosity ratio displacement, (2) stable displacement of glycerol by polymer solution, (3) unstable displacement of brine by a slug of polymer solution, and (4) a favorable viscosity ratio displacement. In general, computed results from the model matched laboratory data closely. Good agreement of the model with experiments over a significant range of variables lends support to the analysis.« less

  16. Two-layer displacement flow of miscible fluids with viscosity ratio: Experiments

    NASA Astrophysics Data System (ADS)

    Etrati, Ali; Alba, Kamran; Frigaard, Ian A.

    2018-05-01

    We investigate experimentally the density-unstable displacement flow of two miscible fluids along an inclined pipe. This means that the flow is from the top to bottom of the pipe (downwards), with the more dense fluid above the less dense. Whereas past studies have focused on iso-viscous displacements, here we consider viscosity ratios in the range 1/10-10. Our focus is on displacements where the degree of transverse mixing is low-moderate, and thus a two-layer, stratified flow is observed. A wide range of parameters is covered in order to observe the resulting flow regimes and to understand the effect of the viscosity contrast. The inclination of the pipe (β) is varied from near horizontal β = 85° to near vertical β = 10°. At each angle, the flow rate and viscosity ratio are varied at fixed density contrast. Flow regimes are mapped in the (Fr, Re cos β/Fr)-plane, delineated in terms of interfacial instability, front dynamics, and front velocity. Amongst the many observations, we find that viscosifying the less dense fluid tends to significantly destabilize the flow. Different instabilities develop at the interface and in the wall-layers.

  17. Fingering dynamics on the adsorbed solute with influence of less viscous and strong sample solvent.

    PubMed

    Rana, Chinar; Mishra, Manoranjan

    2014-12-07

    Viscous fingering is a hydrodynamic instability that sets in when a low viscous fluid displaces a high viscous fluid and creates complex patterns in porous media flows. Fundamental facets of the displacement process, such as the solute concentration distribution, spreading length, and the solute mixing, depend strongly on the type of pattern created by the unstable interface of the underlying fluids. In the present study, the frontal interface of the sample shows viscous fingering and the strong solvent causes the retention of the solute to depend on the solvent concentration. This work presents a computational investigation to explore the effect of the underlying physico-chemical phenomena, (i.e., the combined effects of solvent strength, retention, and viscous fingering) on the dynamics of the adsorbed solute. A linear adsorption isotherm has been assumed between the mobile and stationary phases of the solute. We carried out the numerical simulations by considering a rectangular Hele-Shaw cell as an analog to 2D-porous media containing a three component system (displacing fluid, sample solvent, solute) to map out the evolution of the solute concentration. We observed that viscous fingering at the frontal interface of the strong sample solvent intensifies the band broadening of the solute zone. Also notable increase in the spreading dynamics of the solute has been observed for less viscous and strong sample solvent as compared to the high viscous sample slices or in the pure dispersive case. On the contrary, the solute gets intensively mixed at early times for more viscous sample in comparison to less viscous one. The results of the simulations are in qualitative agreement with the behavior observed in the liquid chromatography column experiments.

  18. Buoyant miscible displacement flows in a nonuniform Hele-Shaw cell

    NASA Astrophysics Data System (ADS)

    Walling, E.; Mollaabbasi, R.; Taghavi, S. M.

    2018-03-01

    Miscible displacement flows within the gap of a nonuniform Hele-Shaw cell are considered, theoretically and experimentally. The cell is vertical and it can be diverging or converging. A light fluid displaces a heavy fluid downwards. The displacement imposed velocity is sufficiently large so that diffusive effects are negligible within our time scale of interest. For certain flow parameters, the displacement flow is characterized by a symmetric, two-dimensional penetration of the light fluid into the heavy one, for which a lubrication approximation approach is developed to simplify the governing equations and find a semianalytical solution for the flux functions. The solutions reveal how the cell nonuniformity may affect the propagation of the interface between the two fluids, versus the other flow parameters, i.e., the viscosity ratio (m ) and a buoyancy number (χ ), for which a detailed flow regime classification is presented. Our results demonstrate that the presence of nonuniformity adds a unique spatiotemporal nature to these displacements which is not the case for uniform cell flows. The combination of the model and experiments reveals the existence of self-spreading, spike, and unstable (viscous fingering) flow regimes, which may occur at various spatial positions within the cell. A converging cell may allow a transition from spike to self-spreading or unstable regime, whereas a diverging cell may offer a transition from self-spreading or unstable to spike regime. Our work demonstrates that the novel spatiotemporal nature of nonuniform cell flows must be considered through the numerical solution of the interface propagation equation, to yield accurate predictions about the flow behaviors at various spatial positions.

  19. Lagrangian Fluid Element Tracking and Estimation of Local Displacement Speeds in Turbulent Premixed Flames

    NASA Astrophysics Data System (ADS)

    Ramji, Sarah Ann

    Improved understanding of turbulence-flame interactions in premixed combustion can be achieved using fully 3D time-resolved multi-kHz multi-scalar experimental measurements. These interactions may be represented by the evolution of various Lagrangian quantities described by theoretical Lagrangian Fluid Elements (LFEs). The data used in this work came from two experimental campaigns that used simultaneous T-PIV and OH/CH2O PLIF, at Sandia National Labs and the Air Force Research Lab at Wright-Patterson. In this thesis, an algorithm to accurately track LFEs through this 4D experimental space has been developed and verified by cross-correlation with the T-PIV seed particle fields. A novel method to measure the local instantaneous displacement speed in 3D has been developed, using this algorithm to track control masses of fluid that interact with the flame front. Statistics of the displacement speed have been presented, and the effects of local turbulence and flame topological properties on the displacement speed have been studied.

  20. Wettability control on fluid-fluid displacements in patterned microfluidics and porous media

    NASA Astrophysics Data System (ADS)

    Juanes, Ruben; Trojer, Mathias; Zhao, Benzhong

    2014-11-01

    While it is well known that the wetting properties are critical in two-phase flows in porous media, the effect of wettability on fluid displacement continues to challenge our microscopic and macroscopic descriptions. Here we study this problem experimentally, starting with the classic experiment of two-phase flow in a capillary tube. We image the shape of the meniscus and measure the associated capillary pressure for a wide range of capillary numbers. We synthesize new observations on the dependence of the dynamic capillary pressure on wetting properties (contact angle) and flow conditions (viscosity contrast and capillary number). We then conduct experiments on a planar microfluidic device patterned with vertical posts. We track the evolution of the fluid-fluid interface and elucidate the impact of wetting on the cooperative nature of fluid displacement during pore invasion events. We use the insights gained from the capillary tube and patterned microfluidics experiments to elucidate the effect of wetting properties on viscous fingering and capillary fingering in a Hele-Shaw cell filled with glass beads, where we observe a contact-angle-dependent stabilizing behavior for the emerging flow instabilities, as the system transitions from drainage to imbibition.

  1. Transient motion of mucus plugs in respiratory airways

    NASA Astrophysics Data System (ADS)

    Zamankhan, Parsa; Hu, Yingying; Helenbrook, Brian; Takayama, Shuichi; Grotberg, James B.

    2011-11-01

    Airway closure occurs in lung diseases such as asthma, cystic fibrosis, or emphysema which have an excess of mucus that forms plugs. The reopening process involves displacement of mucus plugs in the airways by the airflow of respiration. Mucus is a non-Newtonian fluid with a yield stress; therefore its behavior can be approximated by a Bingham fluid constitutive equation. In this work the reopening process is approximated by simulation of a transient Bingham fluid plug in a 2D channel. The governing equations are solved by an Arbitrary Lagrangian Eulerian (ALE) finite element method through an in-house code. The constitutive equation for the Bingham fluid is implemented through a regularization method. The effects of the yield stress on the flow features and wall stresses are discussed with applications to potential injuries to the airway epithelial cells which form the wall. The minimum driving pressure for the initiation of the motion is computed and its value is related to the mucus properties and the plug shape. Supported by HL84370 and HL85156.

  2. Assessment of brine migration risks along vertical pathways due to CO2 injection

    NASA Astrophysics Data System (ADS)

    Kissinger, Alexander; Class, Holger

    2015-04-01

    Global climate change, shortage of resources and the growing usage of renewable energy sources has lead to a growing demand for the utilization of subsurface systems. Among these competing uses are Carbon Capture and Storage (CCS), geothermal energy, nuclear waste disposal, 'renewable' methane or hydrogen storage as well as the ongoing production of fossil resources like oil, gas and coal. Additionally, these technologies may also create conflicts with essential public interests such as water supply. For example, the injection of CO2 into the subsurface causes an increase in pressure reaching far beyond the actual radius of influence of the CO2 plume, potentially leading to large amounts of displaced salt water. In this work we focus on the large scale impacts of CO2 storage on brine migration but the methodology and the obtained results may also apply to other fields like waste water disposal, where large amounts of fluid are injected into the subsurface. In contrast to modeling on the reservoir scale the spatial scale required for this work is much larger in both vertical and lateral direction, as the regional hydrogeology has to be considered. Structures such as fault zones, hydrogeological windows in the Rupelian clay or salt domes are considered as potential pathways for displaced fluids into shallow systems and their influence has to be taken into account. We put the focus of our investigations on the latter type of scenario, since there is still a poor understanding of the role that salt diapirs would play in CO2 storage projects. As there is hardly any field data available on this scale, we compare different levels of model complexity in order to identify the relevant processes for brine displacement and simplify the modeling process wherever possible, for example brine injection vs. CO2 injection, simplified geometries vs. the complex formation geometry and the role of salt induced density differences on flow. Further we investigate the impact of the displaced brine due to CO2 injection and compare it to the natural fluid exchange between shallow and deep aquifers in order to asses possible damage.

  3. Fast inertial particle manipulation in oscillating flows

    NASA Astrophysics Data System (ADS)

    Thameem, Raqeeb; Rallabandi, Bhargav; Hilgenfeldt, Sascha

    2017-05-01

    It is demonstrated that micron-sized particles suspended in fluid near oscillating interfaces experience strong inertial displacements above and beyond the fluid streaming. Experiments with oscillating bubbles show rectified particle lift over extraordinarily short (millisecond) times. A quantitative model on both the oscillatory and the steady time scales describes the particle displacement relative to the fluid motion. The formalism yields analytical predictions confirming the observed scaling behavior with particle size and experimental control parameters. It applies to a large class of oscillatory flows with applications from particle trapping to size sorting.

  4. Cryogenic cooler apparatus

    DOEpatents

    Wheatley, J.C.; Paulson, D.N.; Allen, P.C.

    1983-01-04

    A Malone-type final stage for utilization in a Stirling cycle cryogenic cooler apparatus includes a displacer slidable within a vessel. [sup 4]He, [sup 3]He, or a mixture thereof is made to flow in a pulsating unidirectional manner through a regenerator in the displacer by utilization of check valves in separate fluid channels. Stacked copper screen members extend through the channels and through a second static thermodynamic medium within the displacer to provide efficient lateral heat exchange and enable cooling to temperatures in the range of 3--4 K. Another embodiment utilizes sintered copper particles in the regenerator. Also described is a final stage that has a non-thermally conducting displacer having passages with check valves for directing fluid past a regenerator formed in the surrounding vessel. 10 figs.

  5. Cryogenic cooler apparatus

    DOEpatents

    Wheatley, John C.; Paulson, Douglas N.; Allen, Paul C.

    1983-01-01

    A Malone-type final stage for utilization in a Stirling cycle cryogenic cooler apparatus includes a displacer slidable within a vessel. .sup.4 He, .sup.3 He, or a mixture thereof is made to flow in a pulsating unidirectional manner through a regenerator in the displacer by utilization of check valves in separate fluid channels. Stacked copper screen members extend through the channels and through a second static thermodynamic medium within the displacer to provide efficient lateral heat exchange and enable cooling to temperatures in the range of 3-4 K. Another embodiment utilizes sintered copper particles in the regenerator. Also described is a final stage that has a non-thermally conducting displacer having passages with check valves for directing fluid past a regenerator formed in the surrounding vessel.

  6. Application of the boundary integral method to immiscible displacement problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masukawa, J.; Horne, R.N.

    1988-08-01

    This paper presents an application of the boundary integral method (BIM) to fluid displacement problems to demonstrate its usefulness in reservoir simulation. A method for solving two-dimensional (2D), piston-like displacement for incompressible fluids with good accuracy has been developed. Several typical example problems with repeated five-spot patterns were solved for various mobility ratios. The solutions were compared with the analytical solutions to demonstrate accuracy. Singularity programming was found to be a major advantage in handling flow in the vicinity of wells. The BIM was found to be an excellent way to solve immiscible displacement problems. Unlike analytic methods, it canmore » accommodate complex boundary shapes and does not suffer from numerical dispersion at the front.« less

  7. Modeling the Impact of Deformation on Unstable Miscible Displacements in Porous Media

    NASA Astrophysics Data System (ADS)

    Santillán, D.; Cueto-Felgueroso, L.

    2014-12-01

    Coupled flow and geomechanics is a critical research challenge in engineering and the geosciences. The simultaneous flow of two or more fluids with different densities or viscosities through deformable media is ubiquitous in environmental, industrial, and biological processes, including the removal of non-aqueous phase liquids from underground water bodies, the geological storage of CO2, and current challenges in energy technologies, such as enhanced geothermal systems, unconventional hydrocarbon resources or enhanced oil recovery techniques. Using numerical simulation, we study the interplay between viscous-driven flow instabilities (viscous fingering) and rock mechanics, and elucidate the structure of the displacement patterns as a function of viscosity contrast, injection rate and rock mechanical properties. Finally, we discuss the role of medium deformation on transport and mixing processes in porous media.

  8. Automated contact angle estimation for three-dimensional X-ray microtomography data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klise, Katherine A.; Moriarty, Dylan; Yoon, Hongkyu

    2015-11-10

    Multiphase flow in capillary regimes is a fundamental process in a number of geoscience applications. The ability to accurately define wetting characteristics of porous media can have a large impact on numerical models. In this paper, a newly developed automated three-dimensional contact angle algorithm is described and applied to high-resolution X-ray microtomography data from multiphase bead pack experiments with varying wettability characteristics. The algorithm calculates the contact angle by finding the angle between planes fit to each solid/fluid and fluid/fluid interface in the region surrounding each solid/fluid/fluid contact point. Results show that the algorithm is able to reliably compute contactmore » angles using the experimental data. The in situ contact angles are typically larger than flat surface laboratory measurements using the same material. Furthermore, wetting characteristics in mixed-wet systems also change significantly after displacement cycles.« less

  9. Role of head of turbulent 3-D density currents in mixing during slumping regime

    NASA Astrophysics Data System (ADS)

    Bhaganagar, Kiran

    2017-02-01

    A fundamental study was conducted to shed light on entrainment and mixing in buoyancy-driven Boussinesq density currents. Large-eddy simulation was performed on lock-exchange (LE) release density currents—an idealized test bed to generate density currents. As dense fluid was released over a sloping surface into an ambient lighter fluid, the dense fluid slumps to the bottom and forms a characteristic head of the current. The dynamics of the head dictated the mixing processes in LE currents. The key contribution of this study is to resolve an ongoing debate on mixing: We demonstrate that substantial mixing occurs in the early stages of evolution in an LE experiment and that entrainment is highly inhomogeneous and unsteady during the slumping regime. Guided by the flow physics, entrainment is calculated using two different but related perspectives. In the first approach, the entrainment parameter (E) is defined as the fraction of ambient fluid displaced by the head that entrains into the current. It is an indicator of the efficiency in which ambient fluid is displaced into the current and it serves as an important metric to compare the entrainment of dense currents over different types of surfaces, e.g., roughness configuration. In the second approach, E measures the net entrainment in the current at an instantaneous time t over the length of the current. Net entrainment coefficient is a metric to compare the effects of flow dynamical conditions, i.e., lock-aspect ratio that dictates the fraction of buoyancy entering the head, and also the effect of the sloping angle. Together, the entrainment coefficient and the net entrainment coefficient provide an insight into the entrainment process. The "active" head of the current acts as an engine that mixes the ambient fluid with the existing dense fluid, the 3-D lobes and clefts on the frontal end of the current causes recirculation of the ambient fluid into the current, and Kelvin-Helmholtz rolls are the mixers that entrain the ambience into the current. Buoyancy and shear production occur at the interface in the head region of the current, and transport of turbulence kinetic energy (TKE) by Reynolds stresses results in high TKE.

  10. Wettability control on fluid-fluid displacements in patterned microfluidics

    NASA Astrophysics Data System (ADS)

    Zhao, Benzhong; MacMinn, Christopher; Juanes, Ruben

    2015-11-01

    Two-phase flow in porous media is important in many natural and industrial processes. While it is well known the wetting properties of porous media can vary drastically depending on the media and the pore fluids, their effect continues to challenge our microscopic and macroscopic descriptions. We conduct experiments via radial displacement of silicone oil by water in microfluidic devices patterned with vertical posts. These devices allow for flow visualization in a complex but well-defined microstructure. Additionally, the surface energy of the devices can be tuned over a wide range of contact angles. We perform injection experiments with highly unfavorable mobility contrast at rates over four orders of magnitude. We focus on three wetting conditions: drainage θ = 120°, weak imbibition θ = 60°, and strong imbibition θ = 7°. In drainage, we see a transition from viscous fingering at high capillary numbers to a morphology that differs from capillary fingering. In weak imbibition, we observe stabilization of flow due to cooperative invasion at the pore scale. In strong imbibition, we find the flow is heavily influenced by a precursor front that emanates from the main imbibition front. Our work shows the important, yet intricate, impact of wettability on immiscible flow in porous media.

  11. Wettability and Flow Rate Impacts on Immiscible Displacement: A Theoretical Model

    NASA Astrophysics Data System (ADS)

    Hu, Ran; Wan, Jiamin; Yang, Zhibing; Chen, Yi-Feng; Tokunaga, Tetsu

    2018-04-01

    When a more viscous fluid displaces a less viscous one in porous media, viscous pressure drop stabilizes the displacement front against capillary pressure fluctuation. For this favorable viscous ratio conditions, previous studies focused on the front instability under slow flow conditions but did not address competing effects of wettability and flow rate. Here we study how this competition controls displacement patterns. We propose a theoretical model that describes the crossover from fingering to stable flow as a function of invading fluid contact angle θ and capillary number Ca. The phase diagram predicted by the model shows that decreasing θ stabilizes the displacement for θ≥45° and the critical contact angle θc increases with Ca. The boundary between corner flow and cooperative filling for θ < 45° is also described. This work extends the classic phase diagram and has potential applications in predicting CO2 capillary trapping and manipulating wettability to enhance gas/oil displacement efficiency.

  12. Acoustic streaming: an arbitrary Lagrangian-Eulerian perspective.

    PubMed

    Nama, Nitesh; Huang, Tony Jun; Costanzo, Francesco

    2017-08-25

    We analyse acoustic streaming flows using an arbitrary Lagrangian Eulerian (ALE) perspective. The formulation stems from an explicit separation of time scales resulting in two subproblems: a first-order problem, formulated in terms of the fluid displacement at the fast scale, and a second-order problem, formulated in terms of the Lagrangian flow velocity at the slow time scale. Following a rigorous time-averaging procedure, the second-order problem is shown to be intrinsically steady, and with exact boundary conditions at the oscillating walls. Also, as the second-order problem is solved directly for the Lagrangian velocity, the formulation does not need to employ the notion of Stokes drift, or any associated post-processing, thus facilitating a direct comparison with experiments. Because the first-order problem is formulated in terms of the displacement field, our formulation is directly applicable to more complex fluid-structure interaction problems in microacoustofluidic devices. After the formulation's exposition, we present numerical results that illustrate the advantages of the formulation with respect to current approaches.

  13. Mapping three-dimensional oil distribution with π-EPI MRI measurements at low magnetic field

    NASA Astrophysics Data System (ADS)

    Li, Ming; Xiao, Dan; Romero-Zerón, Laura; Marica, Florea; MacMillan, Bryce; Balcom, Bruce J.

    2016-08-01

    Magnetic resonance imaging (MRI) is a robust tool to image oil saturation distribution in rock cores during oil displacement processes. However, a lengthy measurement time for 3D measurements at low magnetic field can hinder monitoring the displacement. 1D and 2D MRI measurements are instead often undertaken to monitor the oil displacement since they are faster. However, 1D and 2D images may not completely reflect the oil distribution in heterogeneous rock cores. In this work, a high-speed 3D MRI technique, π Echo Planar Imaging (π-EPI), was employed at 0.2 T to monitor oil displacement. Centric scan interleaved sampling with view sharing in k-t space was employed to improve the temporal resolution of the π-EPI measurements. A D2O brine was employed to distinguish the hydrocarbon and water phases. A relatively homogenous glass bead pack and a heterogeneous Spynie core plug were employed to show different oil displacement behaviors. High quality 3D images were acquired with π-EPI MRI measurements. Fluid quantification with π-EPI compared favorably with FID, CPMG, 1D-DHK-SPRITE, 3D Fast Spin Echo (FSE) and 3D Conical SPRITE measurements. π-EPI greatly reduced the gradient duty cycle and improved sensitivity, compared to FSE and Conical SPRITE measurements, enabling dynamic monitoring of oil displacement processes. For core plug samples with sufficiently long lived T2, T2∗, π-EPI is an ideal method for rapid 3D saturation imaging.

  14. Data on cost analysis of drilling mud displacement during drilling operation.

    PubMed

    Okoro, Emeka Emmanuel; Dosunmu, Adewale; Iyuke, Sunny E

    2018-08-01

    The focus of this research was to present a data article for analyzing the cost of displacing a drilling fluid during the drilling operation. The cost of conventional Spud, KCl and Pseudo Oil base (POBM) muds used in drilling oil and gas wells are compared with that of a Reversible Invert Emulsion Mud. The cost analysis is limited to three sections for optimum and effective Comparison. To optimize drilling operations, it is important that we specify the yardstick by which drilling performance is measured. The most relevant yardstick is the cost per foot drilled. The data have shown that the prices for drilling mud systems are a function of the mud system formulation cost for that particular mud weight and maintenance per day. These costs for different mud systems and depend on the base fluid. The Reversible invert emulsion drilling fluid, eliminates the cost acquired in displacing Pseudo Oil Based mud (POBM) from the well, possible formation damage (permeability impairment) resulting from the use of viscous pill in displacing the POBM from the wellbore, and also eliminates the risk of taking a kick during mud change-over. With this reversible mud system, the costs of special fluids that are rarely applied for the well-completion purpose (cleaning of thick mud filter cake) may be reduced to the barest minimum.

  15. Lattice Boltzmann model for three-phase viscoelastic fluid flow

    NASA Astrophysics Data System (ADS)

    Xie, Chiyu; Lei, Wenhai; Wang, Moran

    2018-02-01

    A lattice Boltzmann (LB) framework is developed for simulation of three-phase viscoelastic fluid flows in complex geometries. This model is based on a Rothman-Keller type model for immiscible multiphase flows which ensures mass conservation of each component in porous media even for a high density ratio. To account for the viscoelastic effects, the Maxwell constitutive relation is correctly introduced into the momentum equation, which leads to a modified lattice Boltzmann evolution equation for Maxwell fluids by removing the normal but excess viscous term. Our simulation tests indicate that this excess viscous term may induce significant errors. After three benchmark cases, the displacement processes of oil by dispersed polymer are studied as a typical example of three-phase viscoelastic fluid flow. The results show that increasing either the polymer intrinsic viscosity or the elastic modulus will enhance the oil recovery.

  16. Pore-scale Evaluation of Immiscible Fluid Characteristics and Displacements: Comparison Between Ambient- and Supercritical-Condition Experimental Studies

    NASA Astrophysics Data System (ADS)

    Herring, A. L.; Wildenschild, D.; Andersson, L.; Harper, E.; Sheppard, A.

    2015-12-01

    The transport of immiscible fluids within porous media is a topic of great importance for a wide range of subsurface processes; e.g. oil recovery, geologic sequestration of CO2, gas-water mass transfer in the vadose zone, and remediation of non-aqueous phase liquids (NAPLs) from groundwater. In particular, the trapping and mobilization of nonwetting phase fluids (e.g. oil, CO2, gas, or NAPL in water-wet media) is of significant concern; and has been well documented to be a function of both wetting and nonwetting fluid properties, morphological characteristics of the porous medium, and system history. However, generalization of empirical trends and results for application between different fluid-fluid-medium systems requires careful consideration and characterization of the relevant system properties. We present a comprehensive and cohesive description of nonwetting phase behaviour as observed via a suite of three dimensional x-ray microtomography imaging experiments investigating immiscible fluid flow, trapping, and interfacial interactions of wetting (brine) and nonwetting (air, oil, and supercritical CO2) phase in sandstones and synthetic media. Microtomographic images, acquired for drainage and imbibition flow processes, allow for precise and extensive characterization of nonwetting phase fluid saturation, topology, and connectivity; imaging results are paired with externally measured capillary pressure data to provide a comprehensive description of fluid states. Fluid flow and nonwetting phase trapping behaviour is investigated as a function of system history, morphological metrics of the geologic media, and nonwetting phase fluid characteristics; and particular emphasis is devoted to the differences between ambient condition (air-brine) and reservoir condition (supercritical CO2-brine) studies. Preliminary results provide insight into the applicability of using ambient condition experiments to explore reservoir condition processes, and also elucidate the underlying physics of trapping and mobilization of nonwetting phase fluids.

  17. Spiral pattern in a radial displacement involving a reaction-producing gel.

    PubMed

    Nagatsu, Yuichiro; Hayashi, Atsushi; Ban, Mitsumasa; Kato, Yoshihito; Tada, Yutaka

    2008-08-01

    We have shown experimentally that the pattern created by the displacement of a more viscous fluid by a less viscous one in a radial Hele-Shaw cell develops not radially but spirally when a more viscous sodium polyacrylate solution is displaced by a less viscous trivalent iron ion (Fe3+) solution with a sufficiently high concentration of Fe3+ . Another experiment revealed that an instantaneous chemical reaction takes place between the two fluids, and at high Fe3+ concentrations it produces a film of the gel at the contact plane. The gel film is proposed to be responsible for the spiral pattern.

  18. Spiral pattern in a radial displacement involving a reaction-producing gel

    NASA Astrophysics Data System (ADS)

    Nagatsu, Yuichiro; Hayashi, Atsushi; Ban, Mitsumasa; Kato, Yoshihito; Tada, Yutaka

    2008-08-01

    We have shown experimentally that the pattern created by the displacement of a more viscous fluid by a less viscous one in a radial Hele-Shaw cell develops not radially but spirally when a more viscous sodium polyacrylate solution is displaced by a less viscous trivalent iron ion (Fe3+) solution with a sufficiently high concentration of Fe3+ . Another experiment revealed that an instantaneous chemical reaction takes place between the two fluids, and at high Fe3+ concentrations it produces a film of the gel at the contact plane. The gel film is proposed to be responsible for the spiral pattern.

  19. West Hackberry Tertiary Project. Quarterly technical progress report, July 1--September 30, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The goal of the West Hackberry Tertiary Project is to demonstrate the technical and economic feasibility of combining air injection with the Double Displacement Process for tertiary oil recovery. The Double Displacement Process is the gas displacement of a water invaded oil column for the purpose of recovering oil through gravity drainage. The novel aspect of this project is the use of air as the injection fluid. The target reservoir for the project is the Camerina C-1,2,3 Sand located on the West Flank of West Hackberry Field in Cameron Parish, Louisiana. If successful, this project will demonstrate that the usemore » of air injection in the Double Displacement Process can economically recover oil in reservoirs where tertiary oil recovery is presented uneconomic. During this quarter, the West Hackberry Tertiary Project completed the first ten months of air injection operations. Plots of air injection rates and cumulative air injected are included in this report as attachments. The following events are reviewed in this quarter`s technical progress report: (1) successful workovers on the Gulf Land D Nos. 44, 45 and 51 and the Watkins No. 3; (2) the unsuccessful repair attempt on the Watkins No. 16; (3) gathering of additional bottom hole pressure data; (4) air compressor operations and repairs; and (5) technology transfer activities.« less

  20. Instabilities and pattern formation on the pore scale

    NASA Astrophysics Data System (ADS)

    Juel, Anne

    What links a baby's first breath to adhesive debonding, enhanced oil recovery, or even drop-on-demand devices? All these processes involve moving or expanding bubbles displacing fluid in a confined space, bounded by either rigid or elastic walls. In this talk, we show how spatial confinement may either induce or suppress interfacial instabilities and pattern formation in such flows. We demonstrate that a simple change in the bounding geometry can radically alter the behaviour of a fluid-displacing air finger both in rigid and elastic vessels. A rich array of propagation modes, including steady and oscillatory fingers, is uncovered when air displaces oil from axially uniform tubes that have local variations in flow resistance within their cross-sections. Moreover, we show that the experimentally observed states can all be captured by a two-dimensional depth-averaged model for bubble propagation through wide channels. Viscous fingering in Hele-Shaw cells is a classical and widely studied fluid-mechanical instability: when air is injected into the narrow, liquid-filled gap between parallel rigid plates, the axisymmetrically expanding air-liquid interface tends to be unstable to non-axisymmetric disturbances. We show how the introduction of wall elasticity (via the replacement of the upper bounding plate by an elastic membrane) can weaken or even suppress the fingering instability by allowing changes in cell confinement through the flow-induced deflection of the boundary. The presence of a deformable boundary also makes the system prone to additional solid-mechanical instabilities, and these wrinkling instabilities can in turn enhance viscous fingering. The financial support of EPSRC and the Leverhulme Trust is gratefully acknowledged.

  1. Hemodynamics model of fluid-solid interaction in internal carotid artery aneurysms.

    PubMed

    Bai-Nan, Xu; Fu-Yu, Wang; Lei, Liu; Xiao-Jun, Zhang; Hai-Yue, Ju

    2011-01-01

    The objective of this study is to present a relatively simple method to reconstruct cerebral aneurysms as 3D numerical grids. The method accurately duplicates the geometry to provide computer simulations of the blood flow. Initial images were obtained by using CT angiography and 3D digital subtraction angiography in DICOM format. The image was processed by using MIMICS software, and the 3D fluid model (blood flow) and 3D solid model (wall) were generated. The subsequent output was exported to the ANSYS workbench software to generate the volumetric mesh for further hemodynamic study. The fluid model was defined and simulated in CFX software while the solid model was calculated in ANSYS software. The force data calculated firstly in the CFX software were transferred to the ANSYS software, and after receiving the force data, total mesh displacement data were calculated in the ANSYS software. Then, the mesh displacement data were transferred back to the CFX software. The data exchange was processed in workbench software. The results of simulation could be visualized in CFX-post. Two examples of grid reconstruction and blood flow simulation for patients with internal carotid artery aneurysms were presented. The wall shear stress, wall total pressure, and von Mises stress could be visualized. This method seems to be relatively simple and suitable for direct use by neurosurgeons or neuroradiologists, and maybe a practical tool for planning treatment and follow-up of patients after neurosurgical or endovascular interventions with 3D angiography.

  2. Symmetric Phase-Only Filtering in Particle-Image Velocimetry

    NASA Technical Reports Server (NTRS)

    Wemet, Mark P.

    2008-01-01

    Symmetrical phase-only filtering (SPOF) can be exploited to obtain substantial improvements in the results of data processing in particle-image velocimetry (PIV). In comparison with traditional PIV data processing, SPOF PIV data processing yields narrower and larger amplitude correlation peaks, thereby providing more-accurate velocity estimates. The higher signal-to-noise ratios associated with the higher amplitude correlation peaks afford greater robustness and reliability of processing. SPOF also affords superior performance in the presence of surface flare light and/or background light. SPOF algorithms can readily be incorporated into pre-existing algorithms used to process digitized image data in PIV, without significantly increasing processing times. A summary of PIV and traditional PIV data processing is prerequisite to a meaningful description of SPOF PIV processing. In PIV, a pulsed laser is used to illuminate a substantially planar region of a flowing fluid in which particles are entrained. An electronic camera records digital images of the particles at two instants of time. The components of velocity of the fluid in the illuminated plane can be obtained by determining the displacements of particles between the two illumination pulses. The objective in PIV data processing is to compute the particle displacements from the digital image data. In traditional PIV data processing, to which the present innovation applies, the two images are divided into a grid of subregions and the displacements determined from cross-correlations between the corresponding sub-regions in the first and second images. The cross-correlation process begins with the calculation of the Fourier transforms (or fast Fourier transforms) of the subregion portions of the images. The Fourier transforms from the corresponding subregions are multiplied, and this product is inverse Fourier transformed, yielding the cross-correlation intensity distribution. The average displacement of the particles across a subregion results in a displacement of the correlation peak from the center of the correlation plane. The velocity is then computed from the displacement of the correlation peak and the time between the recording of the two images. The process as described thus far is performed for all the subregions. The resulting set of velocities in grid cells amounts to a velocity vector map of the flow field recorded on the image plane. In traditional PIV processing, surface flare light and bright background light give rise to a large, broad correlation peak, at the center of the correlation plane, that can overwhelm the true particle- displacement correlation peak. This has made it necessary to resort to tedious image-masking and background-subtraction procedures to recover the relatively small amplitude particle-displacement correlation peak. SPOF is a variant of phase-only filtering (POF), which, in turn, is a variant of matched spatial filtering (MSF). In MSF, one projects a first image (denoted the input image) onto a second image (denoted the filter) as part of a computation to determine how much and what part of the filter is present in the input image. MSF is equivalent to cross-correlation. In POF, the frequency-domain content of the MSF filter is modified to produce a unitamplitude (phase-only) object. POF is implemented by normalizing the Fourier transform of the filter by its magnitude. The advantage of POFs is that they yield correlation peaks that are sharper and have higher signal-to-noise ratios than those obtained through traditional MSF. In the SPOF, these benefits of POF can be extended to PIV data processing. The SPOF yields even better performance than the POF approach, which is uniquely applicable to PIV type image data. In SPOF as now applied to PIV data processing, a subregion of the first image is treated as the input image and the corresponding subregion of the second image is treated as the filter. The Fourier transforms from both the firs and second- image subregions are normalized by the square roots of their respective magnitudes. This scheme yields optimal performance because the amounts of normalization applied to the spatial-frequency contents of the input and filter scenes are just enough to enhance their high-spatial-frequency contents while reducing their spurious low-spatial-frequency content. As a result, in SPOF PIV processing, particle-displacement correlation peaks can readily be detected above spurious background peaks, without need for masking or background subtraction.

  3. Method, apparatus and system for controlling fluid flow

    DOEpatents

    McMurtrey, Ryan D.; Ginosar, Daniel M.; Burch, Joesph V.

    2007-10-30

    A system, apparatus and method of controlling the flow of a fluid are provided. In accordance with one embodiment of the present invention, a flow control device includes a valve having a flow path defined therethrough and a valve seat in communication with the flow path with a valve stem disposed in the valve seat. The valve stem and valve seat are cooperatively configured to cause mutual relative linear displacement thereof in response to rotation of the valve stem. A gear member is coupled with the rotary stem and a linear positioning member includes a portion which complementarily engages the gear member. Upon displacement of the linear positioning member along a first axis, the gear member and rotary valve stem are rotated about a second axis and the valve stem and valve seat are mutually linearly displaced to alter the flow of fluid through the valve.

  4. 1- and 2-particle Microrheology of Hyaluronic Acid

    NASA Astrophysics Data System (ADS)

    Sagan, Austin; Kearns, Sarah; Ross, David; Das, Moumita; Thurston, George; Franklin, Scott

    2015-03-01

    Hyaluronic acid (also called HA or Hyaluronan) is a high molecular weight polysaccaride ubiquitous in the extracellular matrix of soft tissue such as cartilage, skin, the eye's vitreous gel and synovial fluid. It has been shown to play an important role in mechanotransduction, cell migration and proliferation, and in tissue morphodynamics. We present a confocal microrheology study of hyaluronic acid of varying concentrations. The mean squared displacement (MSD) of sub-micron colloidal tracer particles is tracked in two dimensions and shows a transition from diffusive motion at low concentrations to small-time trapping by the protein network as the concentration increases. Correlations between particle motion can be used to determine an effective mean-squared displacement which deviates from the single-particle MSD as the fluid becomes less homogeneous. The real and effective mean-squared displacements are used to probe the local and space-averaged frequency dependent rheological properties of the fluid as the concentration changes.

  5. Multiphase flows with digital and traditional microfluidics

    NASA Astrophysics Data System (ADS)

    Nilsson, Michael A.

    Multi-phase fluid systems are an important concept in fluid mechanics, seen every day in how fluids interact with solids, gases, and other fluids in many industrial, medical, agricultural, and other regimes. In this thesis, the development of a two-dimensional digital microfluidic device is presented, followed by the development of a two-phase microfluidic diagnostic tool designed to simulate sandstone geometries in oil reservoirs. In both instances, it is possible to take advantage of the physics involved in multiphase flows to affect positive outcomes in both. In order to make an effective droplet-based digital microfluidic device, one must be able to precisely control a number of key processes including droplet positioning, motion, coalescence, mixing, and sorting. For planar or open microfluidic devices, many of these processes have yet to be demonstrated. A suitable platform for an open system is a superhydrophobic surface, as suface characteristics are critical. Great efforts have been spent over the last decade developing hydrophobic surfaces exhibiting very large contact angles with water, and which allow for high droplet mobility. We demonstrate that sanding Teflon can produce superhydrophobic surfaces with advancing contact angles of up to 151° and contact angle hysteresis of less than 4°. We use these surfaces to characterize droplet coalescence, mixing, motion, deflection, positioning, and sorting. This research culminates with the presentation of two digital microfluidic devices: a droplet reactor/analyzer and a droplet sorter. As global energy usage increases, maximizing oil recovery from known reserves becomes a crucial multiphase challenge in order to meet the rising demand. This thesis presents the development of a microfluidic sandstone platform capable of quickly and inexpensively testing the performance of fluids with different rheological properties on the recovery of oil. Specifically, these microfluidic devices are utilized to examine how shear-thinning, shear-thickening, and viscoelastic fluids affect oil recovery. This work begins by looking at oil displacement from a microfluidic sandstone device, then investigates small-scale oil recovery from a single pore, and finally investigates oil displacement from larger scale, more complex microfluidic sandstone devices of varying permeability. The results demonstrate that with careful fluid design, it is possible to outperform current commercial additives using the patent-pending fluid we developed. Furthermore, the resulting microfluidic sandstone devices can reduce the time and cost of developing and testing of current and new enhanced oil recovery fluids.

  6. Oil/water displacement in microfluidic packed beds under weakly water-wetting conditions: competition between precursor film flow and piston-like displacement

    NASA Astrophysics Data System (ADS)

    Tanino, Yukie; Zacarias-Hernandez, Xanat; Christensen, Magali

    2018-02-01

    Optical microscopy was used to measure depth-averaged oil distribution in a quasi-monolayer of crushed marble packed in a microfluidic channel as it was displaced by water. By calibrating the transmitted light intensity to oil thickness, we account for depth variation in the fluid distribution. Experiments reveal that oil saturation at water breakthrough decreases with increasing Darcy velocity, U_{ {w}}, between capillary numbers {Ca} = μ _{ {w}} U_{ {w}}/σ = 9× 10^{-7} and 9× 10^{-6}, where μ _{ {w}} is the dynamic viscosity of water and σ is the oil/water interfacial tension, under the conditions considered presently. In contrast, end-point (long-time) remaining oil saturation depends only weakly on U_{ {w}}. This transient dependence on velocity is attributed to the competition between precursor film flow, which controls early time invasion dynamics but is inefficient at displacing oil, and piston-like displacement, which controls ultimate oil recovery. These results demonstrate that microfluidic experiments using translucent grains and fluids are a convenient tool for quantitative investigation of sub-resolution liquid/liquid displacement in porous media.

  7. How did Archimedes discover the law of buoyancy by experiment?

    NASA Astrophysics Data System (ADS)

    Kuroki, Hidetaka

    2016-03-01

    After Archimedes and Vitruvius era, for more than 2000 years, it has been believed that the displaced water measurement of golden crown is impossible, and at his Eureka moment, Archimedes discovered the law of buoyancy (Proposition 7 of his principles) and proved the theft of a goldsmith by weighing the golden crown in water. A previous study showed that a small amount of displaced water was able to be measured with enough accuracy by the introduced method. Archimedes measured the weight of displaced water. He did not find the law of buoyancy but rather specific gravity of things at the moment. After which, Archimedes continued to measure the specific gravity of various solids and fluids. Through these measurements, he reached the discovery of the law of buoyancy directly by experiment. In this paper, the process to the discovery of Archimedes' principle (Proposition 5) is presented.

  8. Simulation of hydrocephalus condition in infant head

    NASA Astrophysics Data System (ADS)

    Wijayanti, Erna; Arif, Idam

    2014-03-01

    Hydrocephalus is a condition of an excessive of cerebrospinal fluid in brain. In this paper, we try to simulate the behavior of hydrocephalus conditions in infant head by using a hydro-elastic model which is combined with orthotropic elastic skull and with the addition of suture that divide the skull into two lobes. The model then gives predictions for the case of stenosis aqueduct by varying the cerebral aqueduct diameter, time constant and brain elastic modulus. The hydrocephalus condition which is shown by the significant value of ventricle displacement, as the result shows, is occurred when the aqueduct is as resistant as brain parenchyma for the flow of cerebrospinal fluid. The decrement of brain elastic modulus causes brain parenchyma displacement value approach ventricle displacement value. The smaller of time constant value causes the smaller value of ventricle displacement.

  9. A device for real-time live-cell microscopy during dynamic dual-modal mechanostimulation

    NASA Astrophysics Data System (ADS)

    Lorusso, D.; Nikolov, H. N.; Chmiel, T.; Beach, R. J.; Sims, S. M.; Dixon, S. J.; Holdsworth, D. W.

    2017-03-01

    Mechanotransduction - the process by which cells sense and respond to mechanical stimuli - is essential for several physiological processes including skeletal homeostasis. Mammalian cells are thought to be sensitive to different modes of mechanical stimuli, including vibration and fluid shear. To better understand the mechanisms underlying the early stages of mechanotransduction, we describe the development of devices for mechanostimulation (by vibration and fluid shear) of live cells that can be integrated with real-time optical microscopy. The integrated system can deliver up to 3 Pa of fluid shear simultaneous with high-frequency sinusoidal vibrations up to 1 g. Stimuli can be applied simultaneously or independently to cells during real-time microscopic imaging. A custom microfluidic chamber was prepared from polydimethylsiloxane on a glass-bottom cell culture dish. Fluid flow was applied with a syringe pump to induce shear stress. This device is compatible with a custom-designed motion control vibration system. A voice coil actuates the system that is suspended on linear air bushings. Accelerations produced by the system were monitored with an on-board accelerometer. Displacement was validated optically using particle tracking digital high-speed imaging (1200 frames per second). During operation at nominally 45 Hz and 0.3 g, displacements were observed to be within 3.56% of the expected value. MC3T3-E1 osteoblast like cells were seeded into the microfluidic device and loaded with the calcium sensitive fluorescent probe fura-2, then mounted onto the dual-modal mechanostimulation platform. Cells were then imaged and monitored for fluorescence emission. In summary, we have developed a system to deliver physiologically relevant vibrations and fluid shear to live cells during real-time imaging and photometry. Monitoring the behavior of live cells loaded with appropriate fluorescent probes will enable characterization of the signals activated during the initial stages of mechanotransduction.

  10. Influence of process fluids properties on component surface convective heat emission

    NASA Astrophysics Data System (ADS)

    Ivanova, T. N.; Korshunov, A. I.; Zavialov, P. M.

    2018-03-01

    When grinding with metal-working process fluid, a thin layer of inhibited liquid is formed between the component and the grinding wheel under the action of viscous forces. This can be defined as a hydrodynamic boundary layer or a thermal boundary layer. In this work, the thickness of the layers is studied depending on the viscosity of the fluid, inertia forces, velocity and pressure of the flow; also the causes of their occurrence are identified. It is established that under turbulent flow, the viscosity of the flow and the diffusion rate are much higher than in laminar flow, which also affects heat emission. Calculation of heat transfer in a single-phase chemically homogeneous medium of process liquids has shown that their properties, such as viscosity, thermal conductivity, density and heat capacity are of primary importance. The results of experimental studies of these characteristics are presented. When determining the heat transfer coefficient, functional correlations between the physical variables of the process fluid and the change in time and space have been established. As a result of the studies carried out to determine the heat transfer coefficient of a plate immersed in the process fluid, it is established that the intensification of the cooling process of the treated surface immersed in the coolant is more intense than with other methods of coolant supplying. An increase in the pulsation rate of the process liquid flow and the length of the flow displacement path leads to an increase in the heat transfer coefficient of the treated surface and a decrease in the temperature that arises during grinding.

  11. Towards the Early Detection of Breast Cancer in Young Women

    DTIC Science & Technology

    2006-10-01

    approach. 4. Poroelastic model for tissue deformation: We have implemented the model of Netti et al. in a finite element program in order to simulate...changes would not be expected. 44Interstitial Fluid Flow 5. Conclusions A poroelastic model that includes the effects of fluid flow and the possibility of...images to produce a displacement field. Using this displacement field, and an assumed linear elastic model for the tissue, an inverse problem is solved

  12. A Simple Apparatus for Demonstrating Fluid Forces and Newton's Third Law

    NASA Astrophysics Data System (ADS)

    Mohazzabi, Pirooz; James, Mark C.

    2012-12-01

    Over 2200 years ago, in order to determine the purity of a golden crown of the king of Syracuse, Archimedes submerged the crown in water and determined its volume by measuring the volume of the displaced water. This simple experiment became the foundation of what eventually became known as Archimedes' principle: An object fully or partially immersed in a fluid is buoyed up by a force equal to the weight of the fluid displaced by the object. The principle is used to explain all questions regarding buoyancy, and the method is still prescribed for determination of the volume of irregularly shaped objects.2

  13. Exact Integral Solutions for Two-Phase Flow

    NASA Astrophysics Data System (ADS)

    McWhorter, David B.; Sunada, Daniel K.

    1990-03-01

    Exact integral solutions for the horizontal, unsteady flow of two viscous, incompressible fluids are derived. Both one-dimensional and radial displacements are calculated with full consideration of capillary drive and for arbitrary capillary-hydraulic properties. One-dimensional, unidirectional displacement of a nonwetting phase is shown to occur increasingly like a shock front as the pore-size distribution becomes wider. This is in contrast to the situation when an inviscid nonwetting phase is displaced. The penetration of a nonwetting phase into porous media otherwise saturated by a wetting phase occurs in narrow, elongate distributions. Such distributions result in rapid and extensive penetration by the nonwetting phase. The process is remarkably sensitive to the capillary-hydraulic properties that determine the value of knw/kw at large wetting phase saturations, a region in which laboratory measurements provide the least resolution. The penetration of a nonwetting phase can be expected to be dramatically affected by the presence of fissures, worm holes, or other macropores. Calculations for radial displacement of a nonwetting phase resident at a small initial saturation show the displacement to be inefficient. The fractional flow of the nonwetting phase falls rapidly and, for a specific example, becomes 1% by the time one pore volume of water has been injected.

  14. Stabilization of miscible viscous fingering by a step-growth polymerization reaction

    NASA Astrophysics Data System (ADS)

    Bunton, Patrick; Stewart, Simone; Marin, Daniela; Tullier, Michael; Meiburg, Eckart; Pojman, John

    2017-11-01

    Viscous fingering is a hydrodynamic instability that occurs when a more mobile fluid displaces a fluid of lower mobility. Viscous fingering is often undesirable in industrial processes such as secondary petroleum recovery where it limits resource recovery. Linear stability analysis by Hejazi et al. (2010) has predicted that a non-monotonic viscosity profile at an otherwise unstable interface can in some instances stabilize the flow. We use step-growth polymerization at the interface between two miscible monomers as a model system. A dithiol monomer displacing a diacrylate react to form a linear polymer that behaves as a Newtonian fluid. Viscous fingering was imaged in a horizontal Hele-Shaw cell via Schlieren, which is sensitive to polymer conversion. By varying reaction rate via initiator concentration along with flow rate, we demonstrated increasing stabilization of the flow with increasing Damkohler number (ratio of the reaction rate to the flow rate). Results were compared with regions of predicted stability from the results of Hejazi et al. (2010). When the advection outran the reaction, viscous fingering occurred as usual. However, when the reaction was able to keep pace with the advection, the increased viscosity at the interface stabilized the flow. We acknowledge support from NSF CBET-1335739 and NSF CBET 1511653.

  15. DEVELOPMENT AND OPTIMIZATION OF GAS-ASSISTED GRAVITY DRAINAGE (GAGD) PROCESS FOR IMPROVED LIGHT OIL RECOVERY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dandina N. Rao; Subhash C. Ayirala; Madhav M. Kulkarni

    This report describes the progress of the project ''Development and Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery'' for the duration of the second project year (October 1, 2003--September 30, 2004). There are three main tasks in this research project. Task 1 is scaled physical model study of GAGD process. Task 2 is further development of vanishing interfacial tension (VIT) technique for miscibility determination. Task 3 is determination of multiphase displacement characteristics in reservoir rocks. In Section I, preliminary design of the scaled physical model using the dimensional similarity approach has been presented. Scaled experiments onmore » the current physical model have been designed to investigate the effect of Bond and capillary numbers on GAGD oil recovery. Experimental plan to study the effect of spreading coefficient and reservoir heterogeneity has been presented. Results from the GAGD experiments to study the effect of operating mode, Bond number and capillary number on GAGD oil recovery have been reported. These experiments suggest that the type of the gas does not affect the performance of GAGD in immiscible mode. The cumulative oil recovery has been observed to vary exponentially with Bond and capillary numbers, for the experiments presented in this report. A predictive model using the bundle of capillary tube approach has been developed to predict the performance of free gravity drainage process. In Section II, a mechanistic Parachor model has been proposed for improved prediction of IFT as well as to characterize the mass transfer effects for miscibility development in reservoir crude oil-solvent systems. Sensitivity studies on model results indicate that provision of a single IFT measurement in the proposed model is sufficient for reasonable IFT predictions. An attempt has been made to correlate the exponent (n) in the mechanistic model with normalized solute compositions present in both fluid phases. IFT measurements were carried out in a standard ternary liquid system of benzene, ethanol and water using drop shape analysis and capillary rise techniques. The experimental results indicate strong correlation among the three thermodynamic properties solubility, miscibility and IFT. The miscibility determined from IFT measurements for this ternary liquid system is in good agreement with phase diagram and solubility data, which clearly indicates the sound conceptual basis of VIT technique to determine fluid-fluid miscibility. Model fluid systems have been identified for VIT experimentation at elevated pressures and temperatures. Section III comprises of the experimental study aimed at evaluating the multiphase displacement characteristics of the various gas injection EOR process performances using Berea sandstone cores. During this reporting period, extensive literature review was completed to: (1) study the gravity drainage concepts, (2) identify the various factors influencing gravity stable gas injection processes, (3) identify various multiphase mechanisms and fluid dynamics operative during the GAGD process, and (4) identify important dimensionless groups governing the GAGD process performance. Furthermore, the dimensional analysis of the GAGD process, using Buckingham-Pi theorem to isolate the various dimensionless groups, as well as experimental design based on these dimensionless quantities have been completed in this reporting period. On the experimental front, recommendations from previous WAG and CGI have been used to modify the experimental protocol. This report also includes results from scaled preliminary GAGD displacements as well as the details of the planned GAGD corefloods for the next quarter. The technology transfer activities have mainly consisted of preparing technical papers, progress reports and discussions with industry personnel for possible GAGD field tests.« less

  16. Interface instabilities during displacements of two miscible fluids in a vertical pipe

    NASA Astrophysics Data System (ADS)

    Scoffoni, J.; Lajeunesse, E.; Homsy, G. M.

    2001-03-01

    We study experimentally the downward vertical displacement of one miscible fluid by another in a vertical pipe at sufficiently high velocities for diffusive effects to be negligible. For certain viscosity ratios and flow rates, the interface between the two fluids can destabilize. We determine the dimensionless flow rate Uc above which the instability is triggered and its dependence on the viscous ratio M, resulting in a stability map Uc=Uc(M). Two different instability modes have been observed: an asymmetric "corkscrew" mode and an axisymmetric one. We remark that the latter is always eventually disturbed by "corkscrew" type instabilities. We speculate that these instabilities are driven by the viscosity stratification and are analogous to those already observed in core annular flows of immiscible fluids.

  17. Analytical and variational numerical methods for unstable miscible displacement flows in porous media

    NASA Astrophysics Data System (ADS)

    Scovazzi, Guglielmo; Wheeler, Mary F.; Mikelić, Andro; Lee, Sanghyun

    2017-04-01

    The miscible displacement of one fluid by another in a porous medium has received considerable attention in subsurface, environmental and petroleum engineering applications. When a fluid of higher mobility displaces another of lower mobility, unstable patterns - referred to as viscous fingering - may arise. Their physical and mathematical study has been the object of numerous investigations over the past century. The objective of this paper is to present a review of these contributions with particular emphasis on variational methods. These algorithms are tailored to real field applications thanks to their advanced features: handling of general complex geometries, robustness in the presence of rough tensor coefficients, low sensitivity to mesh orientation in advection dominated scenarios, and provable convergence with fully unstructured grids. This paper is dedicated to the memory of Dr. Jim Douglas Jr., for his seminal contributions to miscible displacement and variational numerical methods.

  18. Manipulation of viscous fingering in a radially tapered cell geometry

    NASA Astrophysics Data System (ADS)

    Bongrand, Grégoire; Tsai, Peichun Amy

    2018-06-01

    When a more mobile fluid displaces another immiscible one in a porous medium, viscous fingering propagates with a partial sweep, which hinders oil recovery and soil remedy. We experimentally investigate the feasibility of tuning such fingering propagation in a nonuniform narrow passage with a radial injection, which is widely used in various applications. We show that a radially converging cell can suppress the common viscous fingering observed in a uniform passage, and a full sweep of the displaced fluid is then achieved. The injection flow rate Q can be further exploited to manipulate the viscous fingering instability. For a fixed gap gradient α , our experimental results show a full sweep at a small Q but partial displacement with fingering at a sufficient Q . Finally, by varying α , we identify and characterize the variation of the critical threshold between stable and unstable displacements. Our experimental results reveal good agreement with theoretical predictions by a linear stability analysis.

  19. Lattice Boltzmann simulations of liquid CO2 displacing water in a 2D heterogeneous micromodel at reservoir pressure conditions.

    PubMed

    Chen, Yu; Li, Yaofa; Valocchi, Albert J; Christensen, Kenneth T

    2018-05-01

    We employed the color-fluid lattice Boltzmann multiphase model to simulate liquid CO 2 displacing water documented in experiments in a 2D heterogeneous micromodel at reservoir pressure conditions. The main purpose is to investigate whether lattice Boltzmann simulation can reproduce the CO 2 invasion patterns observed in these experiments for a range of capillary numbers. Although the viscosity ratio used in the simulation matches the experimental conditions, the viscosity of the fluids in the simulation is higher than that of the actual fluids used in the experiments. Doing so is required to enhance numerical stability, and is a common strategy employed in the literature when using the lattice Boltzmann method to simulate CO 2 displacing water. The simulations reproduce qualitatively similar trends of changes in invasion patterns as the capillary number is increased. However, the development of secondary CO 2 pathways, a key feature of the invasion patterns in the simulations and experiments, is found to occur at a much higher capillary number in the simulations compared with the experiments. Additional numerical simulations were conducted to investigate the effect of the absolute value of viscosity on the invasion patterns while maintaining the viscosity ratio and capillary number fixed. These results indicate that the use of a high viscosity (which significantly reduces the inertial effect in the simulations) suppresses the development of secondary CO 2 pathways, leading to a different fluid distribution compared with corresponding experiments at the same capillary number. Therefore, inertial effects are not negligible in drainage process with liquid CO 2 and water despite the low Reynolds number based on the average velocity, as the local velocity can be much higher due to Haines jump events. These higher velocities, coupled with the low viscosity of CO 2 , further amplifies the inertial effect. Therefore, we conclude that caution should be taken when using proxy fluids that only rely on the capillary number and viscosity ratio in both experiment and simulation. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Coupled fluid-structure interaction. Part 1: Theory. Part 2: Application

    NASA Technical Reports Server (NTRS)

    Felippa, Carlos A.; Ohayon, Roger

    1991-01-01

    A general three dimensional variational principle is obtained for the motion of an acoustic field enclosed in a rigid or flexible container by the method of canonical decomposition applied to a modified form of the wave equation in the displacement potential. The general principle is specialized to a mixed two-field principle that contains the fluid displacement potential and pressure as independent fields. Semidiscrete finite element equations of motion based on this principle are derived and sample cases are given.

  1. Pattern formation during healing of fluid-filled cracks: an analog experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    F. Renard; D. K. Dysthe; J. G. Feder

    2009-11-01

    The formation and subsequent healing of cracks and crack networks may control such diverse phenomena as the strengthening of fault zones between earthquakes, fluid migrations in the Earth's crust, or the transport of radioactive materials in nuclear waste disposal. An intriguing pattern-forming process can develop during healing of fluid-filled cracks, where pockets of fluid remain permanently trapped in the solid as the crack tip is displaced driven by surface energy. Here, we present the results of analog experiments in which a liquid was injected into a colloidal inorganic gel to obtain penny-shaped cracks that were subsequently allowed to close andmore » heal under the driving effect of interfacial tension. Depending on the properties of the gel and the injected liquid, two modes of healing were obtained. In the first mode, the crack healed completely through a continuous process. The second mode of healing was discontinuous and was characterized by a 'zipper-like' closure of a front that moved along the crack perimeter, trapping fluid that may eventually form inclusions trapped in the solid. This instability occurred only when the velocity of the crack tip decreased to zero. Our experiments provide a cheap and simple analog to reveal how aligned arrays of fluid inclusions may be captured along preexisting fracture planes and how small amounts of fluids can be permanently trapped in solids, modifying irreversibly their material properties.« less

  2. Stability of miscible displacements across stratified porous media

    NASA Astrophysics Data System (ADS)

    Shariati, Maryam; Yortsos, Yanis C.

    2001-08-01

    We consider the stability of miscible displacements across stratified porous media, where the heterogeneity is along the direction of displacement. Asymptotic results for long and short wavelengths are derived. It is found that heterogeneity has a long-wave effect on the instability, which, in the absence of gravity, becomes nontrivial when the viscosity profiles are nonmonotonic. In the latter case, profiles with end-point viscosities, predicted to be stable using the Saffman-Taylor criterion, can become unstable, if the permeability contrast in the direction of displacement is sufficiently large. Conversely, profiles with end-point viscosities predicted to be unstable, can become stable, if the permeability decrease in the direction of displacement is sufficiently large. Analogous results are found in the presence of gravity, but without the nonmonotonic restriction on the viscosity profile. The increase or decrease in the propensity for instability as the permeability increases or decreases, respectively, reflects the variation of the two different components of the effective fluid mobility. While permeability remains frozen in space, viscosity varies following the concentration field. Thus, the condition for instability does not solely depend on the overall fluid mobility, as in the case of displacements in homogeneous media, but it is additionally dependent on the permeability variation.

  3. Axial dispersion of non-Newtonian fluids in porous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Payne, L.W.; Parker, H.W.

    1973-01-01

    Mixing of liquids in the direction parallel to flow through porous media, usually termed axial dispersion, is a significant factor in regard to chromatography columns, packed bed reactors, and miscible displacement methods for the recovery of petroleum. For this reason, axial dispersion rates have frequently been investigated, but practically investigations have employed low viscosity Newtonian fluid such as water and light hydrocarbons. In this research, pseudoplastic fluids having a power law exponent as low as 0.6 were employed at very low flow rates to facilitate the observation of non-Newtonian effects on axial dispersion rates. The flow system used in thismore » investigation was a vertically oriented glass bead pack. Glass beads of 470 mu nominal size were packed into the flow cell while vibrating the cell. The studies were conducted by displacing an undyed solution from the bead pack with a dyed solution at a constant rate aor visa versa. Vertical, downward flow was used in all displacements. (10 refs.)« less

  4. [Intra-articular injections of hyaluronic acid for anterior disc displacement of temporomandibular joint].

    PubMed

    Long, X

    2017-03-09

    Anterior disc displacement (ADD) of temporomandibular joint (TMJ) is regarded as one of the major findings in temporomandibular disorders (TMD). It is related to joint noise, pain, mandibular dysfunction, degenerative change and osteoarthritis. In the mean time, the pathological changes were found in synovial membrane and synovial fluid. Hyaluronic acid is a principal component of the synovial fluid which plays an important role in nutrition, lubrication, anti-inflammation and cartilage repair. The synthesis, molecule weight, and concentration of hyaluronic acid are decreased during TMD and cause TMJ degenerative changes. The clinical conditions, pathological changes, the mechanism of action for hyaluronic acid and the treatment of anterior disc displacement of TMJ are discussed in this article.

  5. Fluid-structural dynamics of ground-based and microgravity caloric tests

    NASA Technical Reports Server (NTRS)

    Kassemi, M.; Oas, J. G.; Deserranno, Dimitri

    2005-01-01

    Microgravity caloric tests aboard the 1983 SpaceLab1 mission produced nystagmus results with an intensity comparable to those elicited during post- and pre- flight tests, thus contradicting the basic premise of Barany's convection hypothesis for caloric stimulation. In this work, we present a dynamic fluid structural analysis of the caloric stimulation of the lateral semicircular canal based on two simultaneous driving forces for the endolymphatic flow: natural convection driven by the temperature-dependent density variation in the bulk fluid and expansive convection caused by direct volumetric displacement of the endolymph during the thermal irrigation. Direct numerical simulations indicate that on earth, the natural convection mechanism is dominant. But in the microgravity environment of orbiting spacecraft, where buoyancy effects are mitigated, expansive convection becomes the sole mechanism for producing cupular displacement. A series of transient 1 g and microgravity case studies are presented to delineate the differences between the dynamics of the 1 g and microgravity endolymphatic flows. The impact of these different flow dynamics on the endolymph-cupula fluid-structural interactions is also analyzed based on the time evolutions of cupular displacement and velocity and the transcupular pressure differences.

  6. Fluid-structural dynamics of ground-based and microgravity caloric tests.

    PubMed

    Kassemi, M; Oas, J G; Deserranno, Dimitri

    2005-01-01

    Microgravity caloric tests aboard the 1983 SpaceLab1 mission produced nystagmus results with an intensity comparable to those elicited during post- and pre- flight tests, thus contradicting the basic premise of Barany's convection hypothesis for caloric stimulation. In this work, we present a dynamic fluid structural analysis of the caloric stimulation of the lateral semicircular canal based on two simultaneous driving forces for the endolymphatic flow: natural convection driven by the temperature-dependent density variation in the bulk fluid and expansive convection caused by direct volumetric displacement of the endolymph during the thermal irrigation. Direct numerical simulations indicate that on earth, the natural convection mechanism is dominant. But in the microgravity environment of orbiting spacecraft, where buoyancy effects are mitigated, expansive convection becomes the sole mechanism for producing cupular displacement. A series of transient 1 g and microgravity case studies are presented to delineate the differences between the dynamics of the 1 g and microgravity endolymphatic flows. The impact of these different flow dynamics on the endolymph-cupula fluid-structural interactions is also analyzed based on the time evolutions of cupular displacement and velocity and the transcupular pressure differences.

  7. Validation of a 3D computational fluid-structure interaction model simulating flow through an elastic aperture.

    PubMed

    Quaini, A; Canic, S; Glowinski, R; Igo, S; Hartley, C J; Zoghbi, W; Little, S

    2012-01-10

    This work presents a validation of a fluid-structure interaction computational model simulating the flow conditions in an in vitro mock heart chamber modeling mitral valve regurgitation during the ejection phase during which the trans-valvular pressure drop and valve displacement are not as large. The mock heart chamber was developed to study the use of 2D and 3D color Doppler techniques in imaging the clinically relevant complex intra-cardiac flow events associated with mitral regurgitation. Computational models are expected to play an important role in supporting, refining, and reinforcing the emerging 3D echocardiographic applications. We have developed a 3D computational fluid-structure interaction algorithm based on a semi-implicit, monolithic method, combined with an arbitrary Lagrangian-Eulerian approach to capture the fluid domain motion. The mock regurgitant mitral valve corresponding to an elastic plate with a geometric orifice, was modeled using 3D elasticity, while the blood flow was modeled using the 3D Navier-Stokes equations for an incompressible, viscous fluid. The two are coupled via the kinematic and dynamic conditions describing the two-way coupling. The pressure, the flow rate, and orifice plate displacement were measured and compared with numerical simulation results. In-line flow meter was used to measure the flow, pressure transducers were used to measure the pressure, and a Doppler method developed by one of the authors was used to measure the axial displacement of the orifice plate. The maximum recorded difference between experiment and numerical simulation for the flow rate was 4%, the pressure 3.6%, and for the orifice displacement 15%, showing excellent agreement between the two. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. A numerical approach for assessing effects of shear on equivalent permeability and nonlinear flow characteristics of 2-D fracture networks

    NASA Astrophysics Data System (ADS)

    Liu, Richeng; Li, Bo; Jiang, Yujing; Yu, Liyuan

    2018-01-01

    Hydro-mechanical properties of rock fractures are core issues for many geoscience and geo-engineering practices. Previous experimental and numerical studies have revealed that shear processes could greatly enhance the permeability of single rock fractures, yet the shear effects on hydraulic properties of fractured rock masses have received little attention. In most previous fracture network models, single fractures are typically presumed to be formed by parallel plates and flow is presumed to obey the cubic law. However, related studies have suggested that the parallel plate model cannot realistically represent the surface characters of natural rock fractures, and the relationship between flow rate and pressure drop will no longer be linear at sufficiently large Reynolds numbers. In the present study, a numerical approach was established to assess the effects of shear on the hydraulic properties of 2-D discrete fracture networks (DFNs) in both linear and nonlinear regimes. DFNs considering fracture surface roughness and variation of aperture in space were generated using an originally developed code DFNGEN. Numerical simulations by solving Navier-Stokes equations were performed to simulate the fluid flow through these DFNs. A fracture that cuts through each model was sheared and by varying the shear and normal displacements, effects of shear on equivalent permeability and nonlinear flow characteristics of DFNs were estimated. The results show that the critical condition of quantifying the transition from a linear flow regime to a nonlinear flow regime is: 10-4 〈 J < 10-3, where J is the hydraulic gradient. When the fluid flow is in a linear regime (i.e., J < 10-4), the relative deviation of equivalent permeability induced by shear, δ2, is linearly correlated with J with small variations, while for fluid flow in the nonlinear regime (J 〉 10-3), δ2 is nonlinearly correlated with J. A shear process would reduce the equivalent permeability significantly in the orientation perpendicular to the sheared fracture as much as 53.86% when J = 1, shear displacement Ds = 7 mm, and normal displacement Dn = 1 mm. By fitting the calculated results, the mathematical expression for δ2 is established to help choose proper governing equations when solving fluid flow problems in fracture networks.

  9. Axisymmetric flows from fluid injection into a confined porous medium

    NASA Astrophysics Data System (ADS)

    Guo, Bo; Zheng, Zhong; Celia, Michael A.; Stone, Howard A.

    2016-02-01

    We study the axisymmetric flows generated from fluid injection into a horizontal confined porous medium that is originally saturated with another fluid of different density and viscosity. Neglecting the effects of surface tension and fluid mixing, we use the lubrication approximation to obtain a nonlinear advection-diffusion equation that describes the time evolution of the sharp fluid-fluid interface. The flow behaviors are controlled by two dimensionless groups: M, the viscosity ratio of displaced fluid relative to injected fluid, and Γ, which measures the relative importance of buoyancy and fluid injection. For this axisymmetric geometry, the similarity solution involving R2/T (where R is the dimensionless radial coordinate and T is the dimensionless time) is an exact solution to the nonlinear governing equation for all times. Four analytical expressions are identified as asymptotic approximations (two of which are new solutions): (i) injection-driven flow with the injected fluid being more viscous than the displaced fluid (Γ ≪ 1 and M < 1) where we identify a self-similar solution that indicates a parabolic interface shape; (ii) injection-driven flow with injected and displaced fluids of equal viscosity (Γ ≪ 1 and M = 1), where we find a self-similar solution that predicts a distinct parabolic interface shape; (iii) injection-driven flow with a less viscous injected fluid (Γ ≪ 1 and M > 1) for which there is a rarefaction wave solution, assuming that the Saffman-Taylor instability does not occur at the reservoir scale; and (iv) buoyancy-driven flow (Γ ≫ 1) for which there is a well-known self-similar solution corresponding to gravity currents in an unconfined porous medium [S. Lyle et al. "Axisymmetric gravity currents in a porous medium," J. Fluid Mech. 543, 293-302 (2005)]. The various axisymmetric flows are summarized in a Γ-M regime diagram with five distinct dynamic behaviors including the four asymptotic regimes and an intermediate regime. The implications of the regime diagram are discussed using practical engineering projects of geological CO2 sequestration, enhanced oil recovery, and underground waste disposal.

  10. The interaction between a solid body and viscous fluid by marker-and-cell method

    NASA Technical Reports Server (NTRS)

    Cheng, R. Y. K.

    1976-01-01

    A computational method for solving nonlinear problems relating to impact and penetration of a rigid body into a fluid type medium is presented. The numerical techniques, based on the Marker-and-Cell method, gives the pressure and velocity of the flow field. An important feature in this method is that the force and displacement of the rigid body interacting with the fluid during the impact and sinking phases are evaluated from the boundary stresses imposed by the fluid on the rigid body. A sample problem of low velocity penetration of a rigid block into still water is solved by this method. The computed time histories of the acceleration, pressure, and displacement of the block show food agreement with experimental measurements. A sample problem of high velocity impact of a rigid block into soft clay is also presented.

  11. Variable delivery, fixed displacement pump

    DOEpatents

    Sommars, Mark F.

    2001-01-01

    A variable delivery, fixed displacement pump comprises a plurality of pistons reciprocated within corresponding cylinders in a cylinder block. The pistons are reciprocated by rotation of a fixed angle swash plate connected to the pistons. The pistons and cylinders cooperate to define a plurality of fluid compression chambers each have a delivery outlet. A vent port is provided from each fluid compression chamber to vent fluid therefrom during at least a portion of the reciprocal stroke of the piston. Each piston and cylinder combination cooperates to close the associated vent port during another portion of the reciprocal stroke so that fluid is then pumped through the associated delivery outlet. The delivery rate of the pump is varied by adjusting the axial position of the swash plate relative to the cylinder block, which varies the duration of the piston stroke during which the vent port is closed.

  12. Glyceryl ether sulfonates for use in oil recovery fluids and processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCoy, D.R.

    1984-08-21

    Petroleum may be recovered from petroleum containing formations having high salinity by injecting into the formation an aqueous fluid containing an effective amount of a surface active agent characterized by the formula: R/sub 1/(OCH/sub 2/CH(OH)CH/sub 2/) /SUB m/ (R/sub 2/) /SUB n/ OR/sub 3/SO/sub 3/X wherein R/sub 1/ is an alkyl or alkylaryl radical, m is an integer of from 1 to 10, R/sub 2/ is an ethoxy radical and/or 1,2-propoxy radical, n is an integer of from 0 to 10, R/sub 3/ is an ethylene or 1,3-propylene radical, X is a sodium, potassium or ammonium cation; and driving themore » fluid through the formation and thereby displacing and recovering petroleum from the formation.« less

  13. Integrated hydraulic cooler and return rail in camless cylinder head

    DOEpatents

    Marriott, Craig D [Clawson, MI; Neal, Timothy L [Ortonville, MI; Swain, Jeff L [Flushing, MI; Raimao, Miguel A [Colorado Springs, CO

    2011-12-13

    An engine assembly may include a cylinder head defining an engine coolant reservoir, a pressurized fluid supply, a valve actuation assembly, and a hydraulic fluid reservoir. The valve actuation assembly may be in fluid communication with the pressurized fluid supply and may include a valve member displaceable by a force applied by the pressurized fluid supply. The hydraulic fluid reservoir may be in fluid communication with the valve actuation assembly and in a heat exchange relation to the engine coolant reservoir.

  14. Fault and fracture patterns in low porosity chalk and their potential influence on sub-surface fluid flow-A case study from Flamborough Head, UK

    NASA Astrophysics Data System (ADS)

    Sagi, D. A.; De Paola, N.; McCaffrey, K. J. W.; Holdsworth, R. E.

    2016-10-01

    To better understand fault zone architecture and fluid flow in mesoscale fault zones, we studied normal faults in chalks with displacements up to 20 m, at two representative localities in Flamborough Head (UK). At the first locality, chalk contains cm-thick, interlayered marl horizons, whereas at the second locality marl horizons were largely absent. Cm-scale displacement faults at both localities display ramp-flat geometries. Mesoscale fault patterns in the marl-free chalk, including a larger displacement fault (20 m) containing multiple fault strands, show widespread evidence of hydraulically-brecciated rocks, whereas clays smears along fault planes, and injected into open fractures, and a simpler fault zone architecture is observed where marl horizons are present. Hydraulic brecciation and veins observed in the marl-free chalk units suggest that mesoscale fault patterns acted as localized fault conduit allowing for widespread fluid flow. On the other hand, mesoscale fault patterns developed in highly fractured chalk, which contains interlayered marl horizons can act as localized barriers to fluid flow, due to the sealing effect of clays smears along fault planes and introduced into open fractures in the damage zone. To support our field observations, quantitative analyses carried out on the large faults suggest a simple fault zone in the chalk with marl units with fracture density/connectivity decreasing towards the protolith. Where marls are absent, density is high throughout the fault zone, while connectivity is high only in domains nearest the fault core. We suggest that fluid flow in fractured chalk is especially influenced by the presence of marls. When present, it can smear onto fault planes, forming localised barriers. Fluid flow along relatively large displacement faults is additionally controlled by the complexity of the fault zone, especially the size/geometry of weakly and intensely connected damage zone domains.

  15. Estimating fluid-induced stress change from observed deformation

    DOE PAGES

    Vasco, D. W.; Harness, Paul; Pride, Steve; ...

    2016-12-19

    Observed deformation is sensitive to a changing stress field within the Earth. There are, however, several impediments to a direct inversion of geodetic measurements for changes in stress. Estimating six independent components of stress change from a smaller number of displacement or strain components is inherently non-unique. The reliance upon surface measurements leads to a loss of resolution, due to the attenuation of higher spatial frequencies in the displacement field with distance from a source. Here, we adopt a technique suited to the estimation of stress changes due to the injection and/or withdrawal of fluids at depth. In this approachmore » the surface displacement data provides an estimate of the volume change responsible for the deformation, rather than stress changes themselves. The inversion for volume change is constrained by the fluid fluxes into and out of the reservoir. The distribution of volume change is used to calculate the displacements in the region above the reservoir. Estimates of stress change follow from differentiating the displacement field in conjunction with a geomechanical model of the o verburden. We also apply the technique to Interferometric Synthetic Aperture Radar (InSAR) observations gathered over a petroleum reservoir in the San Joaquin Valley of California. An analysis of the InSAR range changes reveals that the stress field in the overburden varies rapidly both in space and in time. The inferred stress variations are found to be compatible with the documented failure of a well in the field.« less

  16. Estimating fluid-induced stress change from observed deformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasco, D. W.; Harness, Paul; Pride, Steve

    Observed deformation is sensitive to a changing stress field within the Earth. There are, however, several impediments to a direct inversion of geodetic measurements for changes in stress. Estimating six independent components of stress change from a smaller number of displacement or strain components is inherently non-unique. The reliance upon surface measurements leads to a loss of resolution, due to the attenuation of higher spatial frequencies in the displacement field with distance from a source. Here, we adopt a technique suited to the estimation of stress changes due to the injection and/or withdrawal of fluids at depth. In this approachmore » the surface displacement data provides an estimate of the volume change responsible for the deformation, rather than stress changes themselves. The inversion for volume change is constrained by the fluid fluxes into and out of the reservoir. The distribution of volume change is used to calculate the displacements in the region above the reservoir. Estimates of stress change follow from differentiating the displacement field in conjunction with a geomechanical model of the o verburden. We also apply the technique to Interferometric Synthetic Aperture Radar (InSAR) observations gathered over a petroleum reservoir in the San Joaquin Valley of California. An analysis of the InSAR range changes reveals that the stress field in the overburden varies rapidly both in space and in time. The inferred stress variations are found to be compatible with the documented failure of a well in the field.« less

  17. Numerical models of caldera deformation: Effects of multiphase and multicomponent hydrothermal fluid flow

    USGS Publications Warehouse

    Hutnak, M.; Hurwitz, S.; Ingebritsen, S.E.; Hsieh, P.A.

    2009-01-01

    Ground surface displacement (GSD) in large calderas is often interpreted as resulting from magma intrusion at depth. Recent advances in geodetic measurements of GSD, notably interferometric synthetic aperture radar, reveal complex and multifaceted deformation patterns that often require complex source models to explain the observed GSD. Although hydrothermal fluids have been discussed as a possible deformation agent, very few quantitative studies addressing the effects of multiphase flow on crustal mechanics have been attempted. Recent increases in the power and availability of computing resources allow robust quantitative assessment of the complex time-variant thermal interplay between aqueous fluid flow and crustal deformation. We carry out numerical simulations of multiphase (liquid-gas), multicomponent (H 2O-CO2) hydrothermal fluid flow and poroelastic deformation using a range of realistic physical parameters and processes. Hydrothermal fluid injection, circulation, and gas formation can generate complex, temporally and spatially varying patterns of GSD, with deformation rates, magnitudes, and geometries (including subsidence) similar to those observed in several large calderas. The potential for both rapid and gradual deformation resulting from magma-derived fluids suggests that hydrothermal fluid circulation may help explain deformation episodes at calderas that have not culminated in magmatic eruption.

  18. Slump Flows inside Pipes: Numerical Results and Comparison with Experiments

    NASA Astrophysics Data System (ADS)

    Malekmohammadi, S.; Naccache, M. F.; Frigaard, I. A.; Martinez, D. M.

    2008-07-01

    In this work an analysis of the buoyancy-driven slumping flow inside a pipe is presented. This flow usually occurs when an oil well is sealed by a plug cementing process, where a cement plug is placed inside the pipe filled with a lower density fluid, displacing it towards the upper cylinder wall. Both the cement and the surrounding fluids have a non Newtonian behavior. The cement is viscoplastic and the surrounding fluid presents a shear thinning behavior. A numerical analysis was performed to evaluate the effects of some governing parameters on the slump length development. The conservation equations of mass and momentum were solved via a finite volume technique, using Fluent software (Ansys Inc.). The Volume of Fluid surface-tracking method was used to obtain the interface between the fluids and the slump length as a function of time. The results were obtained for different values of fluids densities differences, fluids rheology and pipe inclinations. The effects of these parameters on the interface shape and on the slump length versus time curve were analyzed. Moreover, the numerical results were compared to experimental ones, but some differences are observed, possibly due to chemical effects at the interface.

  19. Cascadia Slow Earthquakes: Strategies for Time Independent Inversion of Displacement Fields

    NASA Astrophysics Data System (ADS)

    Szeliga, W. M.; Melbourne, T. I.; Miller, M. M.; Santillan, V. M.

    2004-12-01

    Continuous observations using Global Positioning System geodesy (CGPS) have revealed periodic slow or silent earthquakes along the Cascadia subduction zone with a spectrum of timing and periodicity. These creep events perturb time series of GPS observations and yield coherent displacement fields that relate to the extent and magnitude of fault displacement. In this study, time independent inversions of the surface displacement fields that accompany eight slow earthquakes characterize slip distributions along the plate interface for each event. The inversions employed in this study utilize Okada's elastic dislocation model and a non- negative least squares approach. Methodologies for optimizing the slip distribution smoothing parameter for a particular station distribution have also been investigated, significantly reducing the number of possible slip distributions and the range of estimates for total moment release for each event. The discretized slip distribution calculated for multiple creep events identifies areas of the Cascadia plate interface where slip persistently recurs. The current hypothesis, that slow earthquakes are modulated by forced fluid flow, leads to the possibility that some regions of the Cascadia plate interface may display fault patches preferentially exploited by fluid flow. Thus, the identification of regions of the plate interface that repeatedly slip during slow events may yield important information regarding the identification of these fluid pathways.

  20. Acoustic Analysis of a Sandwich Non Metallic Panel for Roofs by FEM and Experimental Validation

    NASA Astrophysics Data System (ADS)

    Nieto, P. J. García; del Coz Díaz, J. J.; Vilán, J. A. Vilán; Rabanal, F. P. Alvarez

    2007-12-01

    In this paper we have studied the acoustic behavior of a sandwich non metallic panel for roofs by the finite element method (FEM). This new field of analysis is the fully coupled solution of fluid flows with structural interactions, commonly referred to as fluid-structure interaction (FSI). It is the natural next step to take in the simulation of mechanical systems. The finite element analysis of acoustic-fluid/structure interactions using potential-based or displacement-based Lagrangian formulations is now well established. The non-linearity is due to the `fluid-structure interaction' (FSI) that governs the problem. In a very considerable range of problems the fluid displacement remains small while interaction is substantial. In this category falls our problem, in which the structural motion influence and react with the generation of pressures in two reverberation rooms. The characteristic of acoustic insulation of the panel is calculated basing on the pressures for different frequencies and points in the transmission rooms. Finally the conclusions reached are shown.

  1. Mixed variational formulations of finite element analysis of elastoacoustic/slosh fluid-structure interaction

    NASA Technical Reports Server (NTRS)

    Felippa, Carlos A.; Ohayon, Roger

    1991-01-01

    A general three-field variational principle is obtained for the motion of an acoustic fluid enclosed in a rigid or flexible container by the method of canonical decomposition applied to a modified form of the wave equation in the displacement potential. The general principle is specialized to a mixed two-field principle that contains the fluid displacement potential and pressure as independent fields. This principle contains a free parameter alpha. Semidiscrete finite-element equations of motion based on this principle are displayed and applied to the transient response and free-vibrations of the coupled fluid-structure problem. It is shown that a particular setting of alpha yields a rich set of formulations that can be customized to fit physical and computational requirements. The variational principle is then extended to handle slosh motions in a uniform gravity field, and used to derive semidiscrete equations of motion that account for such effects.

  2. Spiral pattern in a radial displacement in a Hele-Shaw cell

    NASA Astrophysics Data System (ADS)

    Ban, Mitsumasa; Nagatsu, Yuichiro; Hayashi, Atsushi; Kato, Yoshihiro; Tada, Yutaka

    2008-11-01

    When a reactive and miscible less-viscous liquid displaces a more-viscous liquid in a Hele-Shaw cell, reactive miscible viscous fingering takes place. We have experimentally shown that the pattern created by the displacement of a more-viscous fluid by a less-viscous one in a radial Hele-Shaw cell develops not radially but spirally when a more-viscous sodium polyacrylate solution is displaced by a less-viscous trivalent iron ion (Fe^3+) solution with a sufficiently high concentration of Fe^3+. Another experiment in order to investigate the mechanism of spiral pattern formation revealed that an instantaneous chemical reaction takes place between the two fluids and at high Fe^3+ concentrations it produces a film of the gel at the contact plane. The gel is formed by three-dimensional network structures between the polyacrylate solution and the trivalent iron ion (Fe^3+) solution. We have proposed a physical model that the gel's film is responsible for the form of the spiral pattern.

  3. Semantic modeling of the structural and process entities during plastic deformation of crystals and rocks

    NASA Astrophysics Data System (ADS)

    Babaie, Hassan; Davarpanah, Armita

    2016-04-01

    We are semantically modeling the structural and dynamic process components of the plastic deformation of minerals and rocks in the Plastic Deformation Ontology (PDO). Applying the Ontology of Physics in Biology, the PDO classifies the spatial entities that participate in the diverse processes of plastic deformation into the Physical_Plastic_Deformation_Entity and Nonphysical_Plastic_Deformation_Entity classes. The Material_Physical_Plastic_Deformation_Entity class includes things such as microstructures, lattice defects, atoms, liquid, and grain boundaries, and the Immaterial_Physical_Plastic_Deformation_Entity class includes vacancies in crystals and voids along mineral grain boundaries. The objects under the many subclasses of these classes (e.g., crystal, lattice defect, layering) have spatial parts that are related to each other through taxonomic (e.g., Line_Defect isA Lattice_Defect), structural (mereological, e.g., Twin_Plane partOf Twin), spatial-topological (e.g., Vacancy adjacentTo Atom, Fluid locatedAlong Grain_Boundary), and domain specific (e.g., displaces, Fluid crystallizes Dissolved_Ion, Void existsAlong Grain_Boundary) relationships. The dynamic aspect of the plastic deformation is modeled under the dynamical Process_Entity class that subsumes classes such as Recrystallization and Pressure_Solution that define the flow of energy amongst the physical entities. The values of the dynamical state properties of the physical entities (e.g., Chemical_Potential, Temperature, Particle_Velocity) change while they take part in the deformational processes such as Diffusion and Dislocation_Glide. The process entities have temporal parts (phases) that are related to each other through temporal relations such as precedes, isSubprocessOf, and overlaps. The properties of the physical entities, defined under the Physical_Property class, change as they participate in the plastic deformational processes. The properties are categorized into dynamical, constitutive, spatial, temporal, statistical, and thermodynamical. The dynamical properties, categorized under the Dynamical_Rate_Property and Dynamical_State_Property classes, subsume different classes of properties (e.g., Fluid_Flow_Rate, Temperature, Chemical_Potential, Displacement, Electrical_Charge) based on the physical domain (e.g., fluid, heat, chemical, solid, electrical). The properties are related to the objects under the Physical_Entity class through diverse object type (e.g., physicalPropertyOf) and data type (e.g., Fluid_Pressure unit 'MPa') properties. The changes of the dynamical properties of the physical entities, described by the empirical laws (equations) modeled by experimental structural geologists, are modeled through the Physical_Property_Dependency class that subsumes the more specialized constitutive, kinetic, and thermodynamic expressions of the relationships among the dynamic properties. Annotation based on the PDO will make it possible to integrate and reuse experimental plastic deformation data, knowledge, and simulation models, and conduct semantic-based search of the source data originating from different rock testing laboratories.

  4. Microfluidic study for investigating migration and residual phenomena of supercritical CO2 in porous media

    NASA Astrophysics Data System (ADS)

    Park, Gyuryeong; Wang, Sookyun; Lee, Minhee; Um, Jeong-Gi; Kim, Seon-Ok

    2017-04-01

    The storage of CO2 in underground geological formation such as deep saline aquifers or depleted oil and gas reservoirs is one of the most promising technologies for reducing the atmospheric CO2 release. The processes in geological CO2 storage involves injection of supercritical CO2 (scCO2) into porous formations saturated with brine and initiates CO2 flooding with immiscible displacement. The CO2 migration and porewater displacement within geological formations, and , consequentially, the storage efficiency are governed by the interaction of fluid and rock properties and are affected by the interfacial tension, capillarity, and wettability in supercritical CO2-brine-mineral systems. This study aims to observe the displacement pattern and estimate storage efficiency by using micromodels. This study aims to conduct scCO2 injection experiments for visualization of distribution of injected scCO2 and residual porewater in transparent pore networks on microfluidic chips under high pressure and high temperature conditions. In order to quantitatively analyze the porewater displacement by scCO2 injection under geological CO2 storage conditions, the images of invasion patterns and distribution of CO2 in the pore network are acquired through a imaging system with a microscope. The results from image analysis were applied in quantitatively investigating the effects of major environmental factors and scCO2 injection methods on porewater displacement process by scCO2 and storage efficiency. The experimental observation results could provide important fundamental information on capillary characteristics of reservoirs and improve our understanding of CO2 sequestration progress.

  5. A mechanical model for complex fault patterns induced by fluid overpressures due to dehydration reaction within evaporitic rocks

    NASA Astrophysics Data System (ADS)

    de Paola, N.; Collettini, C.; Trippetta, F.; Barchi, M. R.; Minelli, G.

    2006-12-01

    Complex fault patterns, i.e. faults which exhibit a diverse range of strikes, may develop under a weak/absent regional tectonic field (e.g. polygonal faults). We studied a complex synsedimentary fault pattern, geometrically similar to polygonal fault systems, developed during an early Jurassic faulting episode and exposed in the Umbria-Marche Apennines (Italy). Along the passive margin of the African plate, these faults disrupt the Early Jurassic platform overlying the Triassic Evaporites, and bound the subsiding basins where a pelagic succession was successively deposited. We digitised the fault pattern at the regional scale on the grounds of the available geological maps, characterising each fault in terms of attitude, length and throw (i.e. vertical displacement). Fault statistical analysis shows a largely scattered orientation, a high grade of fragmentation, an average length of about 10 km and a constant length/displacement ratio. The measured stratigraphic throw ranges from 300 m to 700 m leading to very low long-term fault slip rates (less than 0.1 mm/yr). We propose a mechanical model where Jurassic faulting has been strongly influenced by the onset of dehydration of the Triassic Evaporites, made of interbedded gypsum layers and dolostones. Dehydration, i.e. anhydritization of the gypsum rich layers, initiated during burial at 1000 m of depth. During initial phases of dehydration increasing fluid pressures trapped at the gypsum-dolostones interface, promote hydrofracturing and faulting within the dolostone layers and subsequent fluid release. Fluid expulsion produces volume contraction of the dehydrating rocks causing vertical thinning and horizontal isotropic extension. This state of non-plane strain is accommodated within the composite gypsum-dolostones sequence by a mix of ductile (flowage and boudinage) and brittle (hydrofracturing and faulting) deformation processes. The stress field caused by the former processes, consistent with an almost isotropic stress distribution within the horizontal plane, explains well the studied complex fault pattern and seems to be dominant over the far-field regional extensional tectonics.

  6. Crossover from capillary fingering to viscous fingering in a rough fracture

    NASA Astrophysics Data System (ADS)

    Hu, R.; Chen, Y.; Wu, D. S.

    2017-12-01

    Controlled by the competition between capillary and viscous forces, the displacement patterns of one fluid displacing another more viscous one exhibit capillary fingering, viscous fingering, and the crossover between the two. Although extensive studies have investigated viscous and capillary fingerings in porous and fractured media, a few studies focused on the crossover in rough fractures, and how viscous and capillary forces affect the crossover remains unclear. Using a transparent fracture visualization system, we studied how the competition impacts the crossover in a horizontal rough fracture. Drainage experiments of water displacing oil were conducted at seven flow rates (capillary number log10Ca ranging from -7.07 to -3.07) and four viscosity ratios (M = 1/1000, 1/500, 1/100 and 1/50). We consistently observed lower invading fluid saturations in the crossover zone. In addition, we proposed a phase diagram for the displacement patterns in a rough fracture that is consistent with similar studies in porous media. Based on real-time imaging and statistical analysis of the invasion morphology, we showed that the competition between the capillary and viscous forces is responsible for the saturation reduction in the crossover zone. In this zone, finger propagation toward the outlet (characteristic of viscous fingering) as well as void-filling in the transverse and backward directions (characteristic of capillary fingering), are both suppressed. Therefore, the invading fluid tends to occupy larger apertures with higher characteristic front velocity, promoting void-filling toward the outlet with thinner finger growth and resulting in a larger volume of defending fluid left behind.

  7. Salinity effects during immiscible displacement in porous media: electrokinetic stabilization of viscous fingering

    NASA Astrophysics Data System (ADS)

    Mirzadeh, Mohammad; Bazant, Martin

    2017-11-01

    Interfacial instabilities are ubiquitous in Fluid Mechanics and have been one of the main the subjects of pattern formation. However, these instabilities could lead to inefficiencies which are undesired in many applications. For instance, viscous fingering results in residual trapping of oil during secondary recovery when a low-viscosity fluid, e.g. water, is used for injection. In their seminal work, Saffman and Taylor showed that the onset of this instability is controlled by the viscosity ratio of the two fluids. However, other physiochemical processes could enhance or suppress viscous fingering. Here we consider the role of salinity effects on the front stability. Our recent theory suggests that viscous fingering could be controlled, and even suppressed, by appropriately injecting electric currents. However, even in the absence of any external currents, strong electrokinetic coupling (present in small pores when the electric double layers overlap) can reduce viscous fingering by increasing the ``effective viscosity'' of the injected fluid. These findings suggest that it might be possible to improve extraction efficiencies by appropriately controlling the salt concentration of the injected fluid.

  8. Macroscopic constitutive equations of thermo-poroviscoelasticity derived using eigenstrains

    NASA Astrophysics Data System (ADS)

    Suvorov, A. P.; Selvadurai, A. P. S.

    2010-10-01

    Macroscopic constitutive equations for thermo-viscoelastic processes in a fully saturated porous medium are re-derived from basic principles of micromechanics applicable to solid multi-phase materials such as composites. Simple derivations of the constitutive relations and the void occupancy relationship are presented. The derivations use the notion of eigenstrain or, equivalently, eigenstress applied to the separate phases of a porous medium. Governing coupled equations for the displacement components and the fluid pressure are also obtained.

  9. Numerical and experimental study of actuator performance on piezoelectric microelectromechanical inkjet print head.

    PubMed

    Van So, Pham; Jun, Hyun Woo; Lee, Jaichan

    2013-12-01

    We have investigated the actuator performance of a piezoelectrically actuated inkjet print head via the numerical and experimental analysis. The actuator consisting of multi-layer membranes, such as piezoelectric, elastic and other buffer layers, and ink chamber was fabricated by MEMS processing. The maximum displacement of the actuator membrane obtained in the experiment is explained by numerical analysis. A simulation of the actuator performance with fluidic damping shows that the resonant frequency of the membrane in liquid is reduced from its resonant frequency in air by a factor of three, which was also verified in the experiment. These simulation and experimental studies demonstrate how much "dynamic force," in terms of a membrane's maximum displacement, maximum force and driving frequency, can be produced by an actuator membrane interacting with fluid.

  10. Small hydraulic turbine drives

    NASA Technical Reports Server (NTRS)

    Rostafinski, W. A.

    1970-01-01

    Turbine, driven by the fluid being pumped, requires no external controls, is completely integrated into the flow system, and has bearings which utilize the main fluid for lubrication and cooling. Torque capabilities compare favorably with those developed by positive displacement hydraulic motors.

  11. Flowmeter for Clear and Translucent Fluids

    NASA Technical Reports Server (NTRS)

    White, P. R.

    1985-01-01

    Transducer with only three moving parts senses flow of clear or translucent fluid. Displacement of diaphragm by force of flow detected electrooptically and displayed by panel meter or other device. Transducer used to measure flow of gasoline to automobile engine.

  12. 10 CFR 960.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... which there is recurrent movement, which is usually indicated by small, periodic displacements or... of fluids, expressed as the ratio of the volume of interconnected pores and openings to the volume of... displacement of the side relative to one another parallel to the fracture or zone of fractures. Faulting means...

  13. 10 CFR 960.2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... which there is recurrent movement, which is usually indicated by small, periodic displacements or... of fluids, expressed as the ratio of the volume of interconnected pores and openings to the volume of... displacement of the side relative to one another parallel to the fracture or zone of fractures. Faulting means...

  14. 10 CFR 960.2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... which there is recurrent movement, which is usually indicated by small, periodic displacements or... of fluids, expressed as the ratio of the volume of interconnected pores and openings to the volume of... displacement of the side relative to one another parallel to the fracture or zone of fractures. Faulting means...

  15. 10 CFR 960.2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... which there is recurrent movement, which is usually indicated by small, periodic displacements or... of fluids, expressed as the ratio of the volume of interconnected pores and openings to the volume of... displacement of the side relative to one another parallel to the fracture or zone of fractures. Faulting means...

  16. Simulation of Magnetic Field Assisted Finishing (MFAF) Process Utilizing Smart MR Polishing Tool

    NASA Astrophysics Data System (ADS)

    Barman, Anwesa; Das, Manas

    2017-02-01

    Magnetic field assisted finishing process is an advanced finishing process. This process is capable of producing nanometer level surface finish. In this process magnetic field is applied to control the finishing forces using magnetorheological polishing medium. In the current study, permanent magnet is used to provide the required magnetic field in the finishing zone. The working gap between the workpiece and the magnet is filled with MR fluid which is used as the polishing brush to remove surface undulations from the top surface of the workpiece. In this paper, the distribution of magnetic flux density on the workpiece surface and behaviour of MR polishing medium during finishing are analyzed using commercial finite element packages (Ansys Maxwell® and Comsol®). The role of magnetic force in the indentation of abrasive particles on the workpiece surface is studied. A two-dimensional simulation study of the steady, laminar, and incompressible MR fluid flow behaviour during finishing process is carried out. The material removal and surface roughness modelling of the finishing process are also presented. The indentation force by a single active abrasive particle on the workpiece surface is modelled during simulation. The velocity profile of MR fluid with and without application of magnetic field is plotted. It shows non-Newtonian property without application of magnetic field. After that the total material displacement due to one abrasive particle is plotted. The simulated roughness profile is in a good agreement with the experimental results. The conducted study will help in understanding the fluid behavior and the mechanism of finishing during finishing process. Also, the modelling and simulation of the process will help in achieving better finishing performance.

  17. Experimental pressure solution creep of quartz by indenter technique

    NASA Astrophysics Data System (ADS)

    Gratier, J.; Guiguet, R.; Renard, F.; Jenatton, L.

    2006-12-01

    The principle of the experiment is to measure the displacement-rate of indenter that dissolve mineral under stress in order to establish creep laws. A stainless steel cylindrical indenter (200 microns diameter) mounted under a free-moving piston is put in contact with a crystal of quartz in presence of its saturated solution. A dead weigh put on the piston sets the stress. The device is maintained within pressure vessel during several weeks or months at constant temperature and fluid pressure. The depths of the dissolution holes are measured at the end of the experiments. Various types of experimental protocols have been used with difference (i) about quartz (synthetic or natural), (ii) about the nature of the solution (Na0H N, H20, dry), (iii) about the way the contact solid/solution/solid is filled (iv) about the relation between stress and optical quartz axis. Results are shown as displacement-rate versus stress relations for the 4 configurations, with always the same temperature (350°C), solution (NaOH N) and fluid pressure (200 MPa) and with several weeks or months of duration. When using dry contact or water no significant hole may be seen. Short durations (days) never allowed measurable hole to develop. The results show a large scattering of displacement-rates for same stress values, even for the same protocol. From observations under microscope two explanations are possible either a strong effect of the roughening of the dissolution interface that evolve with time and that seems to play a crucial role in the displacement-rate versus stress relation or some effects of temporary undersaturating during the experiment due to experimental perturbations. The results also show a large overlapping between the displacement-rates obtained with the 4 protocols. Plotting all the results on the same log-log diagram shows a displacement-rate versus stress relation that fit a power law with a stress exponent of 1.75. Due to the relatively high stress values this is not in contradiction with theoretical approaches. The relative homogeneity of the displacement-rate versus stress relations when taking into account the variability of the nature of the sample (synthetic or natural) and the variability of the stress versus optical axis orientation lead to the idea that diffusion is the rate-limiting process.

  18. Faults simulations for three-dimensional reservoir-geomechanical models with the extended finite element method

    NASA Astrophysics Data System (ADS)

    Prévost, Jean H.; Sukumar, N.

    2016-01-01

    Faults are geological entities with thicknesses several orders of magnitude smaller than the grid blocks typically used to discretize reservoir and/or over-under-burden geological formations. Introducing faults in a complex reservoir and/or geomechanical mesh therefore poses significant meshing difficulties. In this paper, we consider the strong-coupling of solid displacement and fluid pressure in a three-dimensional poro-mechanical (reservoir-geomechanical) model. We introduce faults in the mesh without meshing them explicitly, by using the extended finite element method (X-FEM) in which the nodes whose basis function support intersects the fault are enriched within the framework of partition of unity. For the geomechanics, the fault is treated as an internal displacement discontinuity that allows slipping to occur using a Mohr-Coulomb type criterion. For the reservoir, the fault is either an internal fluid flow conduit that allows fluid flow in the fault as well as to enter/leave the fault or is a barrier to flow (sealing fault). For internal fluid flow conduits, the continuous fluid pressure approximation admits a discontinuity in its normal derivative across the fault, whereas for an impermeable fault, the pressure approximation is discontinuous across the fault. Equal-order displacement and pressure approximations are used. Two- and three-dimensional benchmark computations are presented to verify the accuracy of the approach, and simulations are presented that reveal the influence of the rate of loading on the activation of faults.

  19. Quartz ball valve

    NASA Technical Reports Server (NTRS)

    Goetz, C.; Ingle, W. M. (Inventor)

    1980-01-01

    A ball valve particularly suited for use in the handling of highly corrosive fluids is described. It is characterized by a valve housing formed of communicating segments of quartz tubing, a pair of communicating sockets disposed in coaxial alignment with selected segments of tubing for establishing a pair of inlet ports communicating with a common outlet port, a ball formed of quartz material supported for displacement between the sockets and configured to be received alternately thereby, and a valve actuator including a rod attached to the ball for selectively displacing the ball relative to each of the sockets for controlling fluid flow through the inlet ports.

  20. Decoupling of rotational and translational diffusion in supercooled colloidal fluids

    PubMed Central

    Edmond, Kazem V.; Elsesser, Mark T.; Hunter, Gary L.; Pine, David J.; Weeks, Eric R.

    2012-01-01

    We use confocal microscopy to directly observe 3D translational and rotational diffusion of tetrahedral clusters, which serve as tracers in colloidal supercooled fluids. We find that as the colloidal glass transition is approached, translational and rotational diffusion decouple from each other: Rotational diffusion remains inversely proportional to the growing viscosity whereas translational diffusion does not, decreasing by a much lesser extent. We quantify the rotational motion with two distinct methods, finding agreement between these methods, in contrast with recent simulation results. The decoupling coincides with the emergence of non-Gaussian displacement distributions for translation whereas rotational displacement distributions remain Gaussian. Ultimately, our work demonstrates that as the glass transition is approached, the sample can no longer be approximated as a continuum fluid when considering diffusion. PMID:23071311

  1. Minimized Capillary End Effect During CO2 Displacement in 2-D Micromodel by Manipulating Capillary Pressure at the Outlet Boundary in Lattice Boltzmann Method

    NASA Astrophysics Data System (ADS)

    Kang, Dong Hun; Yun, Tae Sup

    2018-02-01

    We propose a new outflow boundary condition to minimize the capillary end effect for a pore-scale CO2 displacement simulation. The Rothman-Keller lattice Boltzmann method with multi-relaxation time is implemented to manipulate a nonflat wall and inflow-outflow boundaries with physically acceptable fluid properties in 2-D microfluidic chip domain. Introducing a mean capillary pressure acting at CO2-water interface to the nonwetting fluid at the outlet effectively prevents CO2 injection pressure from suddenly dropping upon CO2 breakthrough such that the continuous CO2 invasion and the increase of CO2 saturation are allowed. This phenomenon becomes most pronounced at capillary number of logCa = -5.5, while capillary fingering and massive displacement of CO2 prevail at low and high capillary numbers, respectively. Simulations with different domain length in homogeneous and heterogeneous domains reveal that capillary pressure and CO2 saturation near the inlet are reproducible compared with those with a proposed boundary condition. The residual CO2 saturation uniquely follows the increasing tendency with increasing capillary number, corroborated by experimental evidences. The determination of the mean capillary pressure and its sensitivity are also discussed. The proposed boundary condition is commonly applicable to other pore-scale simulations to accurately capture the spatial distribution of nonwetting fluid and corresponding displacement ratio.

  2. Fluid Dynamics of Carbon Dioxide Disposal into Saline Aquifers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, Julio Enrique

    2003-01-01

    Injection of carbon dioxide (CO 2) into saline aquifers has been proposed as a means to reduce greenhouse gas emissions (geological carbon sequestration). Large-scale injection of CO 2 will induce a variety of coupled physical and chemical processes, including multiphase fluid flow, fluid pressurization and changes in effective stress, solute transport, and chemical reactions between fluids and formation minerals. This work addresses some of these issues with special emphasis given to the physics of fluid flow in brine formations. An investigation of the thermophysical properties of pure carbon dioxide, water and aqueous solutions of CO 2 and NaCl has beenmore » conducted. As a result, accurate representations and models for predicting the overall thermophysical behavior of the system CO 2-H 2O-NaCl are proposed and incorporated into the numerical simulator TOUGH2/ECO2. The basic problem of CO 2 injection into a radially symmetric brine aquifer is used to validate the results of TOUGH2/ECO2. The numerical simulator has been applied to more complex flow problem including the CO 2 injection project at the Sleipner Vest Field in the Norwegian sector of the North Sea and the evaluation of fluid flow dynamics effects of CO 2 injection into aquifers. Numerical simulation results show that the transport at Sleipner is dominated by buoyancy effects and that shale layers control vertical migration of CO 2. These results are in good qualitative agreement with time lapse surveys performed at the site. High-resolution numerical simulation experiments have been conducted to study the onset of instabilities (viscous fingering) during injection of CO 2 into saline aquifers. The injection process can be classified as immiscible displacement of an aqueous phase by a less dense and less viscous gas phase. Under disposal conditions (supercritical CO 2) the viscosity of carbon dioxide can be less than the viscosity of the aqueous phase by a factor of 15. Because of the lower viscosity, the CO 2 displacement front will have a tendency towards instability. Preliminary simulation results show good agreement between classical instability solutions and numerical predictions of finger growth and spacing obtained using different gas/liquid viscosity ratios, relative permeability and capillary pressure models. Further studies are recommended to validate these results over a broader range of conditions.« less

  3. Analytical volcano deformation source models

    USGS Publications Warehouse

    Lisowski, Michael; Dzurisin, Daniel

    2007-01-01

    Primary volcanic landforms are created by the ascent and eruption of magma. The ascending magma displaces and interacts with surrounding rock and fluids as it creates new pathways, flows through cracks or conduits, vesiculates, and accumulates in underground reservoirs. The formation of new pathways and pressure changes within existing conduits and reservoirs stress and deform the surrounding rock. Eruption products load the crust. The pattern and rate of surface deformation around volcanoes reflect the tectonic and volcanic processes transmitted to the surface through the mechanical properties of the crust.

  4. An Experimental and numerical Study for squeezing flow

    NASA Astrophysics Data System (ADS)

    Nathan, Rungun; Lang, Ji; Wu, Qianhong; Vucbmss Team

    2017-11-01

    We report an experimental and numerical study to examine the transient squeezing flow driven by sudden external impacts. The phenomenon is widely observed in industrial applications, e.g. squeeze dampers, or in biological systems, i.e. joints lubrication. However, there is a lack of investigation that captures the transient flow feature during the process. An experimental setup was developed that contains a piston instrumented with a laser displacement sensor and a pressure transducer. The heavy piston was released from rest, creating a fast compaction on the thin fluid gap underneath. The motion of the piston and the fluid pressure build-up was recorded. For this dynamic process, a CFD simulation was performed which shows excellent agreement with the experimental data. Both the numerical and experimental results show that, the squeezing flow starts with the inviscid limit when the viscous fluid effect has no time to appear, and thereafter becomes a developing flow, in which the inviscid core flow region decreases and the viscous wall region increases until the entire fluid gap is filled with viscous fluid flow. The study presented herein, filling the gap in the literature, will have broad impacts in industrial and biomedical applications. This research was supported by the National Science Foundation under Award 1511096, and supported by the Seed Grant from The Villanova Center for the Advancement of Sustainability in Engineering (VCASE).

  5. Dispersion effects in the miscible displacement of two fluids in a duct of large aspect ratio

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Frigaard, I. A.

    We study miscible displacements in long ducts in the dispersive limit of small \\varepsilon Pe, where \\varepsilon ≪ 1 is the inverse aspect ratio and Pe the Péclet number. We consider the class of generalized Newtonian fluids, with specified closure laws for the fluid properties of the concentration-dependent mixture. Regardless of viscosity ratio and the constitutive laws of the pure fluids, for sufficiently small \\varepsilon Pe these displacements are characterized by rapid cross-stream diffusion and slow streamwise dispersion, i.e. the concentration appears to be near-uniform across the duct and spreads slowly as it translates. Using the multiple-scales method we derive the leading-order asymptotic approximation to the average fluid concentration bar{c}_0. We show that bar{c}_0 evolves on the slow timescale t ˜ (\\varepsilon Pe)^{-1}, and satisfies a nonlinear diffusion equation in a frame of reference moving with the mean speed of the flow. In the case that the two fluids have identical rheologies and the concentration represents a passive tracer, the diffusion equation is linear. For Newtonian fluids we recover the classical results of Taylor (l953), Aris (1956), and for power-law fluids those of Vartuli et al. (1995). In the case that the fluids differ and/or that mixing is non-passive, bar{c}_0 satisfies a nonlinear diffusion equation in the moving frame of reference. Given a specific mixing/closure law for the rheological properties, we are able to compute the dispersive diffusivity D_T(bar{c}_0) and predict spreading along the channel. We show that D_T(bar{c}_0) can vary significantly with choice of mixing law and discuss why. This also opens the door to possibilities of controlling streamwise spreading by the rheological design of reactive mixtures, i.e. including chemical additives such that the rheology of the mixture behaves very differently to the rheology of either pure fluid. Computed examples illustrate the potential effects that might be achieved.

  6. External gear pumps operating with non-Newtonian fluids: Modelling and experimental validation

    NASA Astrophysics Data System (ADS)

    Rituraj, Fnu; Vacca, Andrea

    2018-06-01

    External Gear Pumps are used in various industries to pump non-Newtonian viscoelastic fluids like plastics, paints, inks, etc. For both design and analysis purposes, it is often a matter of interest to understand the features of the displacing action realized by meshing of the gears and the description of the behavior of the leakages for this kind of pumps. However, very limited work can be found in literature about methodologies suitable to model such phenomena. This article describes the technique of modelling external gear pumps that operate with non-Newtonian fluids. In particular, it explains how the displacing action of the unit can be modelled using a lumped parameter approach which involves dividing fluid domain into several control volumes and internal flow connections. This work is built upon the HYGESim simulation tool, conceived by the authors' research team in the last decade, which is for the first time extended for the simulation of non-Newtonian fluids. The article also describes several comparisons between simulation results and experimental data obtained from numerous experiments performed for validation of the presented methodology. Finally, operation of external gear pump with fluids having different viscosity characteristics is discussed.

  7. Mineral displacement and -dissolution processes and their relevance to rock porosity and permeability in Rotliegend sandstones of the Altmark natural gas field (central Germany) - results from CO2 laboratory batch experiments

    NASA Astrophysics Data System (ADS)

    Pudlo, Dieter; Enzmann, Frieder; Heister, Katja; Werner, Lars; Ganzer, Leonhard; Reitenbach, Viktor; Henkel, Steven; Albrecht, Daniel; Gaupp, Reinhard

    2014-05-01

    The Rotliegend reservoir sandstones of the Altmark area (central Germany) comprise the second largest natural gas field of Europe. These sandstones were deposited on a playa-like continental platform with braided river systems, ephemeral lakes and aeolian dunes under semi-arid conditions. Some of the pristine, red coloured deposits suffered intensive late diagenetic alteration and are now preserved as bleached, high porous and permeable sandstones. To evaluate the relevance of distinct fluids and their fluid-rock alteration reactions on such bleaching processes we performed laboratory static batch experiments on the Altmark sandstones. These 4-6 week lasting runs were conducted with CO2 saturated synthetic brines under typical Altmark reservoir conditions (p= 20 MPa, T= 125°C). Thereby mineralogical, petrophysical and (hydro- and geo-) chemical rock features were maintained prior and after the experiments. Chemical data proved the dissolution of carbonate and sulphate minerals during the runs, whereas the variation in abundance of further elements was within the detection limit of analytical accuracy. However, FE-SEM investigations on used, evaporated brines reveal the presence of illite and chlorite minerals within a matrix of Ca-, Si-, Fe, Al-, Na- and S components (carbonate, anhydrite, albite and Fe-(hydr-) oxides ?). By porosity and relative permeability measurements an increase in both rock features was observed after the runs, indicating that mineral dissolution and/or (clay) fine migration/detachment occurred during the experiments. Mineral dissolution, especially of pore-filling cements (e.g. carbonate-, sulphate minerals) is also deduced by BET analysis, in determining the specific surface of the sandstones. The size of these reactive surfaces increased after the experiments, suggesting that after the dissolution of pore-filling cements, formerly armoured grain rimming clay cutans were exposed to potential migrating fluids. These findings are also supported by µ-CT investigations. Here, the achieved 3D modelling data indicate an increase in reactive surface areas exposed to the pore space (which is in accord to the BET observations), as well as an enhancement in rock porosity and permeability after the runs. Moreover, these simulations showed that a remarkable mass (mineral) transfer was induced by the experiments, which led to a displacement of the porosity and permeability distribution in the sandstones and therefore a change in the fluid flow characteristics within the rocks - a parameter most important for every fluid-rock process. These observations are quite astonishing because they suggest that not only fluid velocity (e.g. during fluid flow experiments) might detach and transport grain rimming (clay) minerals, but also that physico-chemical reactions may enforce the release of such solids, even during almost static p-/T-/Xfluid conditions, as used in our experiments.

  8. A closed-form analytical model for predicting 3D boundary layer displacement thickness for the validation of viscous flow solvers

    NASA Astrophysics Data System (ADS)

    Kumar, V. R. Sanal; Sankar, Vigneshwaran; Chandrasekaran, Nichith; Saravanan, Vignesh; Natarajan, Vishnu; Padmanabhan, Sathyan; Sukumaran, Ajith; Mani, Sivabalan; Rameshkumar, Tharikaa; Nagaraju Doddi, Hema Sai; Vysaprasad, Krithika; Sharan, Sharad; Murugesh, Pavithra; Shankar, S. Ganesh; Nejaamtheen, Mohammed Niyasdeen; Baskaran, Roshan Vignesh; Rahman Mohamed Rafic, Sulthan Ariff; Harisrinivasan, Ukeshkumar; Srinivasan, Vivek

    2018-02-01

    A closed-form analytical model is developed for estimating the 3D boundary-layer-displacement thickness of an internal flow system at the Sanal flow choking condition for adiabatic flows obeying the physics of compressible viscous fluids. At this unique condition the boundary-layer blockage induced fluid-throat choking and the adiabatic wall-friction persuaded flow choking occur at a single sonic-fluid-throat location. The beauty and novelty of this model is that without missing the flow physics we could predict the exact boundary-layer blockage of both 2D and 3D cases at the sonic-fluid-throat from the known values of the inlet Mach number, the adiabatic index of the gas and the inlet port diameter of the internal flow system. We found that the 3D blockage factor is 47.33 % lower than the 2D blockage factor with air as the working fluid. We concluded that the exact prediction of the boundary-layer-displacement thickness at the sonic-fluid-throat provides a means to correctly pinpoint the causes of errors of the viscous flow solvers. The methodology presented herein with state-of-the-art will play pivotal roles in future physical and biological sciences for a credible verification, calibration and validation of various viscous flow solvers for high-fidelity 2D/3D numerical simulations of real-world flows. Furthermore, our closed-form analytical model will be useful for the solid and hybrid rocket designers for the grain-port-geometry optimization of new generation single-stage-to-orbit dual-thrust-motors with the highest promising propellant loading density within the given envelope without manifestation of the Sanal flow choking leading to possible shock waves causing catastrophic failures.

  9. Visual analysis of immiscible displacement processes in porous media under ultrasound effect

    NASA Astrophysics Data System (ADS)

    Naderi, Khosrow; Babadagli, Tayfun

    2011-05-01

    The effect of sonic waves, in particular, ultrasonic radiation, on immiscible displacement in porous media and enhanced oil recovery has been of interest for more than five decades. Attempts were made to investigate the effect through core scale experimental or theoretical models. Visual experiments are useful to scrutinize the reason for improved oil recovery under acoustic waves of different frequency but are not abundant in literature. In this paper, we report observations and analyses as to the effects of ultrasonic energy on immiscible displacement and interaction of the fluid matrix visually in porous media through two-dimensional (2D) sand pack experiments. 2D glass bead models with different wettabilities were saturated with different viscosity oils and water was injected into the models. The experiments were conducted with and without ultrasound. Dynamic water injection experiments were preferred as they had both viscous and capillary forces in effect. The displacement patterns were evaluated both in terms of their shape, size, and the interface characteristics quantitatively and qualitatively to account for the effects of ultrasonic waves on the displacement and the reason for increased oil production under this type of sonic wave. More compact clusters were observed when ultrasonic energy was present in water-wet systems. In the oil-wet cases, more oil was produced after breakthrough when ultrasound was applied and no compact clusters were formed in contrast to the water-wet cases.

  10. Modeling fluid transport in 2d paper networks

    NASA Astrophysics Data System (ADS)

    Tirapu Azpiroz, Jaione; Fereira Silva, Ademir; Esteves Ferreira, Matheus; Lopez Candela, William Fernando; Bryant, Peter William; Ohta, Ricardo Luis; Engel, Michael; Steiner, Mathias Bernhard

    2018-02-01

    Paper-based microfluidic devices offer great potential as a low-cost platform to perform chemical and biochemical tests. Commercially available formats such as dipsticks and lateral-flow test devices are widely popular as they are easy to handle and produce fast and unambiguous results. While these simple devices lack precise control over the flow to enable integration of complex functionality for multi-step processes or the ability to multiplex several tests, intense research in this area is rapidly expanding the possibilities. Modeling and simulation is increasingly more instrumental in gaining insight into the underlying physics driving the processes inside the channels, however simulation of flow in paper-based microfluidic devices has barely been explored to aid in the optimum design and prototyping of these devices for precise control of the flow. In this paper, we implement a multiphase fluid flow model through porous media for the simulation of paper imbibition of an incompressible, Newtonian fluid such as when water, urine or serum is employed. The formulation incorporates mass and momentum conservation equations under Stokes flow conditions and results in two coupled Darcy's law equations for the pressures and saturations of the wetting and non-wetting phases, further simplified to the Richard's equation for the saturation of the wetting fluid, which is then solved using a Finite Element solver. The model tracks the wetting fluid front as it displaces the non-wetting fluid by computing the time-dependent saturation of the wetting fluid. We apply this to the study of liquid transport in two-dimensional paper networks and validate against experimental data concerning the wetting dynamics of paper layouts of varying geometries.

  11. Buckling shells are also swimmers

    NASA Astrophysics Data System (ADS)

    Quilliet, Catherine; Dyfcom Bubbleboost Team

    We present an experimental and numerical study on the displacement of shells undergoing deformations in a fluid. When submitted to cycles of pressure difference between outside and inside, a shell buckles and debuckles, showing a succession of shapes and a dynamics that are different during the two phases. Hence such objects are likely to swim, including at low Reynolds (microscopic scale). We studied the swimming of buckling/debuckling shells at macroscopic scale using different approaches (force quantization, shape recording, displacement along a frictionless rail, study of external flow using PIV), and showed that inertia plays a role in propulsion, even in situations where dimensionless numbers correspond also to microswimmers in water. Different fluid viscosities were explored, showing an optimum for the displacement. Interestingly, the most favorable cases lead to displacements in the same direction and sense during both motor stroke (buckling phase) and recovery stroke (de-buckling phase). This work opens the route for the synthesis with high throughput of abusively simple synthetic swimmers, possibly gathered into nanorobots, actuated by a scalar field such as the pressure in echographic devices. Universite Grenoble Alpes, CNRS, European Research Council.

  12. Poroelastic Modeling as a Proof of Concept for Modular Representation of Coupled Geophysical Processes

    NASA Astrophysics Data System (ADS)

    Walker, R. L., II; Knepley, M.; Aminzadeh, F.

    2017-12-01

    We seek to use the tools provided by the Portable, Extensible Toolkit for Scientific Computation (PETSc) to represent a multiphysics problem in a form that decouples the element definition from the fully coupled equation through the use of pointwise functions that imitate the strong form of the governing equation. This allows allows individual physical processes to be expressed as independent kernels that may be then coupled with the existing finite element framework, PyLith, and capitalizes upon the flexibility offered by the solver, data management, and time stepping algorithms offered by PETSc. To demonstrate a characteristic example of coupled geophysical simulation devised in this manner, we present a model of a synthetic poroelastic environment, with and without the consideration of inertial effects, with fluid initially represented as a single phase. Matrix displacement and fluid pressure serve as the desired unknowns, with the option for various model parameters represented as dependent variables of the central unknowns. While independent of PyLith, this model also serves to showcase the adaptability of physics kernels for synthetic forward modeling. In addition, we seek to expand the base case to demonstrate the impact of modeling fluid as single phase compressible versus a single incompressible phase. As a goal, we also seek to include multiphase fluid modeling, as well as capillary effects.

  13. Mapping bone interstitial fluid movement: Displacement of ferritin tracer during histological processing

    PubMed Central

    Ciani, Cesare; Doty, Stephen B.; Fritton, Susannah P.

    2014-01-01

    Bone interstitial fluid flow is thought to play a fundamental role in the mechanical stimulation of bone cells, either via shear stresses or cytoskeletal deformations. Recent evidence indicates that osteocytes are surrounded by a fiber matrix that may be involved in the mechanotransduction of external stimuli as well as in nutrient exchange. In our previous tracer studies designed to map how different-sized molecules travel through the bone porosities, we found that injected ferritin was confined to blood vessels and did not pass into the mineralized matrix. However, other investigators have shown that ferritin forms halo-shaped labeling that enters the mineralized matrix around blood vessels. This labeling is widely used to explain normal interstitial fluid movement in bone; in particular, it is said to demonstrate bulk centrifugal interstitial fluid movement away from a highly pressurized vascular porosity. In addition, appositional ferritin fronts are said to demonstrate centrifugal interstitial fluid movement from the medullary canal to the periosteal surface. The purpose of this study was to investigate the conflicting ferritin labeling results by evaluating the role of different histological processes in the formation of ferritin “halos.” Ferritin was injected into the rat vasculature and allowed to circulate for 5 min. Samples obtained from tibiae were reacted for different times with Perl's reagent and then were either paraffin-embedded or sectioned with a cryostat. Halo-like labeling surrounding vascular pores was found in all groups, ranging from 1.2–3.9% for the samples treated with the shortest histological processes (unembedded, frozen sections) to 5.6–15% for the samples treated with the longest histological processes (paraffin-embedded sections). These results indicate that different histological processing methods are able to create ferritin “halos,” with some processing methods allowing more redistribution of the ferritin tracer than others. Based on these results and the fact that “halo” labeling has not been found with any other tracer, as we seek to further delineate the movement of interstitial fluid and the role it plays in bone mechanotransduction, we believe that ferritin “halo” labeling should not be used to demonstrate physiological bone interstitial fluid flow. PMID:15964255

  14. Mapping bone interstitial fluid movement: displacement of ferritin tracer during histological processing.

    PubMed

    Ciani, Cesare; Doty, Stephen B; Fritton, Susannah P

    2005-09-01

    Bone interstitial fluid flow is thought to play a fundamental role in the mechanical stimulation of bone cells, either via shear stresses or cytoskeletal deformations. Recent evidence indicates that osteocytes are surrounded by a fiber matrix that may be involved in the mechanotransduction of external stimuli as well as in nutrient exchange. In our previous tracer studies designed to map how different-sized molecules travel through the bone porosities, we found that injected ferritin was confined to blood vessels and did not pass into the mineralized matrix. However, other investigators have shown that ferritin forms halo-shaped labeling that enters the mineralized matrix around blood vessels. This labeling is widely used to explain normal interstitial fluid movement in bone; in particular, it is said to demonstrate bulk centrifugal interstitial fluid movement away from a highly pressurized vascular porosity. In addition, appositional ferritin fronts are said to demonstrate centrifugal interstitial fluid movement from the medullary canal to the periosteal surface. The purpose of this study was to investigate the conflicting ferritin labeling results by evaluating the role of different histological processes in the formation of ferritin "halos." Ferritin was injected into the rat vasculature and allowed to circulate for 5 min. Samples obtained from tibiae were reacted for different times with Perl's reagent and then were either paraffin-embedded or sectioned with a cryostat. Halo-like labeling surrounding vascular pores was found in all groups, ranging from 1.2-3.9% for the samples treated with the shortest histological processes (unembedded, frozen sections) to 5.6-15% for the samples treated with the longest histological processes (paraffin-embedded sections). These results indicate that different histological processing methods are able to create ferritin "halos," with some processing methods allowing more redistribution of the ferritin tracer than others. Based on these results and the fact that "halo" labeling has not been found with any other tracer, as we seek to further delineate the movement of interstitial fluid and the role it plays in bone mechanotransduction, we believe that ferritin "halo" labeling should not be used to demonstrate physiological bone interstitial fluid flow.

  15. Direct Numerical Simulation of Low Capillary Number Pore Scale Flows

    NASA Astrophysics Data System (ADS)

    Esmaeilzadeh, S.; Soulaine, C.; Tchelepi, H.

    2017-12-01

    The arrangement of void spaces and the granular structure of a porous medium determines multiple macroscopic properties of the rock such as porosity, capillary pressure, and relative permeability. Therefore, it is important to study the microscopic structure of the reservoir pores and understand the dynamics of fluid displacements through them. One approach for doing this, is direct numerical simulation of pore-scale flow that requires a robust numerical tool for prediction of fluid dynamics and a detailed understanding of the physical processes occurring at the pore-scale. In pore scale flows with a low capillary number, Eulerian multiphase methods are well-known to produce additional vorticity close to the interface. This is mainly due to discretization errors which lead to an imbalance of capillary pressure and surface tension forces that causes unphysical spurious currents. At the pore scale, these spurious currents can become significantly stronger than the average velocity in the phases, and lead to unphysical displacement of the interface. In this work, we first investigate the capability of the algebraic Volume of Fluid (VOF) method in OpenFOAM for low capillary number pore scale flow simulations. Afterward, we compare VOF results with a Coupled Level-Set Volume of Fluid (CLSVOF) method and Iso-Advector method. It has been shown that the former one reduces the VOF's unphysical spurious currents in some cases, and both are known to capture interfaces sharper than VOF. As the conclusion, we will investigate that whether the use of CLSVOF or Iso-Advector will lead to less spurious velocities and more accurate results for capillary driven pore-scale multiphase flows or not. Keywords: Pore-scale multiphase flow, Capillary driven flows, Spurious currents, OpenFOAM

  16. Effect of Capillary Tube’s Shape on Capillary Rising Regime for Viscos Fluids

    NASA Astrophysics Data System (ADS)

    Soroush, F.; Moosavi, A.

    2018-05-01

    When properties of the displacing fluid are considered, the rising profile of the penetrating fluid in a capillary tube deviates from its classical Lucas-Washburn profile. Also, shape of capillary tube can affect the rising profile in different aspects. In this article, effect of capillary tube’s shape on the vertical capillary motion in presence of gravity is investigated by considering the properties of the displacing fluid. According to the fact that the differential equation of the capillary rising for a non-simple wall type is very difficult to solve analytically, a finite element simulation model is used for this study. After validation of the simulation model with an experiment that has been done with a simple capillary tube, shape of the capillary tube’s wall is changed in order to understand its effects on the capillary rising and different motion regimes that may appear according to different geometries. The main focus of this article is on the sinusoidal wall shapes and comparing them with a simple wall.

  17. The development of laser speckle or particle image displacement velocimetry. Part 1: The role of photographic parameters

    NASA Technical Reports Server (NTRS)

    Lourenco, L. M. M.; Krothapalli, A.

    1987-01-01

    One of the difficult problems in experimental fluid dynamics remains the determination of the vorticity field in fluid flows. Recently, a novel velocity measurement technique, commonly known as Laser Speckle or Particle Image Displacement Velocimetry became available. This technique permits the simultaneous visualization of the 2 dimensional streamline pattern in unsteady flows and the quantification of the velocity field. The main advantage of this new technique is that the whole 2 dimensional velocity field can be recorded with great accuracy and spatial resolution, from which the instantaneous vorticity field can be easily obtained. A apparatus used for taking particle displacement images is described. Local coherent illumination by the probe laser beam yielded Young's fringes of good quality at almost every location of the flow field. These fringes were analyzed and the velocity and vorticity fields were derived. Several conclusions drawn are discussed.

  18. Buoyant miscible displacement flow of shear-thinning fluids: Experiments and Simulations

    NASA Astrophysics Data System (ADS)

    Ale Etrati Khosroshahi, Seyed Ali; Frigaard, Ian

    2017-11-01

    We study displacement flow of two miscible fluids with density and viscosity contrast in an inclined pipe. Our focus is mainly on displacements where transverse mixing is not significant and thus a two-layer, stratified flow develops. Our experiments are carried out in a long pipe, covering a wide range of flow-rates, inclination angles and viscosity ratios. Density and viscosity contrasts are achieved by adding Glycerol and Xanthan gum to water, respectively. At each angle, flow rate and viscosity ratio are varied and density contrast is fixed. We identify and map different flow regimes, instabilities and front dynamics based on Fr , Re / Frcosβ and viscosity ratio m. The problem is also studied numerically to get a better insight into the flow structure and shear-thinning effects. Numerical simulations are completed using OpenFOAM in both pipe and channel geometries and are compared against the experiments. Schlumberger, NSERC.

  19. Hydraulically actuated fuel injector including a pilot operated spool valve assembly and hydraulic system using same

    DOEpatents

    Shafer, Scott F.

    2002-01-01

    The present invention relates to hydraulic systems including hydraulically actuated fuel injectors that have a pilot operated spool valve assembly. One class of hydraulically actuated fuel injectors includes a solenoid driven pilot valve that controls the initiation of the injection event. However, during cold start conditions, hydraulic fluid, typically engine lubricating oil, is particularly viscous and is often difficult to displace through the relatively small drain path that is defined past the pilot valve member. Because the spool valve typically responds slower than expected during cold start due to the difficulty in displacing the relatively viscous oil, accurate start of injection timing can be difficult to achieve. There also exists a greater difficulty in reaching the higher end of the cold operating speed range. Therefore, the present invention utilizes a fluid evacuation valve to aid in displacement of the relatively viscous oil during cold start conditions.

  20. Pore-scale simulation of liquid CO2 displacement of water using a two-phase lattice Boltzmann model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Haihu; Valocchi, Albert J.; Werth, Charles J.

    A lattice Boltzmann color-fluid model, which was recently proposed by Liu et al. [H. Liu, A.J. Valocchi, and Q. Kang. Three-dimensional lattice Boltzmann model for immiscible two-phase flow simulations. Phys. Rev. E, 85:046309, 2012.] based on a concept of continuum surface force, is improved to simulate immiscible two-phase flows in porous media. The new improvements allow the model to account for different kinematic viscosities of both fluids and to model fluid-solid interactions. The capability and accuracy of this model is first validated by two benchmark tests: a layered two-phase flow with a viscosity ratio, and a dynamic capillary intrusion. Thismore » model is then used to simulate liquid CO2 (LCO2) displacing water in a dual-permeability pore network. The extent and behavior of LCO2 preferential flow (i.e., fingering) is found to depend on the capillary number (Ca), and three different displacement patterns observed in previous micromodel experiments are reproduced. The predicted variation of LCO2 saturation with Ca, as well as variation of specific interfacial length with LCO2 saturation, are both in good agreement with the experimental observations. To understand the effect of heterogeneity on pore-scale displacement, we also simulate LCO2 displacing water in a randomly heterogeneous pore network, which has the same size and porosity as the dual-permeability pore network. In comparison to the dual-permeability case, the transition from capillary fingering to viscous fingering occurs at a higher Ca, and LCO2 saturation is higher at low Ca but lower at high Ca. In either pore network, the LCO2-water specific interfacial length is found to obey a power-law dependence on LCO2 saturation.« less

  1. Increased Urine Production Due to Leg Fluid Displacement Reduces Hours of Undisturbed Sleep.

    PubMed

    Kiba, Keisuke; Hirayama, Akihide; Yoshikawa, Motokiyo; Yamamoto, Yutaka; Torimoto, Kazumasa; Shimizu, Nobutaka; Tanaka, Nobumichi; Fujimoto, Kiyohide; Uemura, Hirotsugu

    2017-07-03

    To investigate whether or not the leg fluid displacement observed when moving from the standing to recumbent position at bedtime reduces the hours of undisturbed sleep (HUS). Men aged 50 years or older who were hospitalized for urological diseases were investigated. Body water evaluation was performed three times with a bioelectric impedance method: (i) 17:00, (ii) 30 min after (short-term), and (iii) waking up (long-term). A frequency volume chart was used to evaluate the status of nocturnal urine production, and the factors affecting HUS were investigated. A total of 50 patients (mean age: 68 years) were enrolled. Short-term changes in extracellular fluid (ECF in the legs showed a significant positive correlation with urine production per unit of time at the first nocturnal voiding (UFN/HUS) (r = 0.45, P = 0.01). In the comparison between patients who had <3 HUS vs. those who had ≥3 HUS, the <3 HUS group showed significantly greater short-term changes in leg fluid volume, night-time water intake (17:00-06:00), and UFN/HUS. Multivariate analysis to assess the risk factors for <3 HUS indicated UFN/HUS as a risk factor in the overall model, and short-term changes in leg ECF and night-time water intake as risk factors in the model that only considered factors before sleep. Nocturnal leg fluid displacement may increase urine production leading up to first voiding after going to bed, and consequently, induce early awakening after falling asleep. © 2017 John Wiley & Sons Australia, Ltd.

  2. Intrinsically irreversible heat engine

    DOEpatents

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-01-01

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.

  3. Intrinsically irreversible heat engine

    DOEpatents

    Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1984-01-01

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. the second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.

  4. Intrinsically irreversible heat engine

    DOEpatents

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-12-25

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat. 11 figs.

  5. Contrasting effects of lower body positive pressure on upper airways resistance and partial pressure of carbon dioxide in men with heart failure and obstructive or central sleep apnea.

    PubMed

    Kasai, Takatoshi; Motwani, Shveta S; Yumino, Dai; Gabriel, Joseph M; Montemurro, Luigi Taranto; Amirthalingam, Vinoban; Floras, John S; Bradley, T Douglas

    2013-03-19

    This study sought to test the effects of rostral fluid displacement from the legs on transpharyngeal resistance (Rph), minute volume of ventilation (Vmin), and partial pressure of carbon dioxide (PCO2) in men with heart failure (HF) and either obstructive (OSA) or central sleep apnea (CSA). Overnight rostral fluid shift relates to severity of OSA and CSA in men with HF. Rostral fluid displacement may facilitate OSA if it shifts into the neck and increases Rph, because pharyngeal obstruction causes OSA. Rostral fluid displacement may also facilitate CSA if it shifts into the lungs and induces reflex augmentation of ventilation and reduces PCO2, because a decrease in PCO2 below the apnea threshold causes CSA. Men with HF were divided into those with mainly OSA (obstructive-dominant, n = 18) and those with mainly CSA (central-dominant, n = 10). While patients were supine, antishock trousers were deflated (control) or inflated for 15 min (lower body positive pressure [LBPP]) in random order. LBPP reduced leg fluid volume and increased neck circumference in both obstructive- and central-dominant groups. However, in contrast to the obstructive-dominant group in whom LBPP induced an increase in Rph, a decrease in Vmin, and an increase in PCO2, in the central-dominant group, LBPP induced a reduction in Rph, an increase in Vmin, and a reduction in PCO2. These findings suggest mechanisms by which rostral fluid shift contributes to the pathogenesis of OSA and CSA in men with HF. Rostral fluid shift could facilitate OSA if it induces pharyngeal obstruction, but could also facilitate CSA if it augments ventilation and lowers PCO2. Copyright © 2013 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  6. Hemodynamics model of fluid–solid interaction in internal carotid artery aneurysms

    PubMed Central

    Fu-Yu, Wang; Lei, Liu; Xiao-Jun, Zhang; Hai-Yue, Ju

    2010-01-01

    The objective of this study is to present a relatively simple method to reconstruct cerebral aneurysms as 3D numerical grids. The method accurately duplicates the geometry to provide computer simulations of the blood flow. Initial images were obtained by using CT angiography and 3D digital subtraction angiography in DICOM format. The image was processed by using MIMICS software, and the 3D fluid model (blood flow) and 3D solid model (wall) were generated. The subsequent output was exported to the ANSYS workbench software to generate the volumetric mesh for further hemodynamic study. The fluid model was defined and simulated in CFX software while the solid model was calculated in ANSYS software. The force data calculated firstly in the CFX software were transferred to the ANSYS software, and after receiving the force data, total mesh displacement data were calculated in the ANSYS software. Then, the mesh displacement data were transferred back to the CFX software. The data exchange was processed in workbench software. The results of simulation could be visualized in CFX-post. Two examples of grid reconstruction and blood flow simulation for patients with internal carotid artery aneurysms were presented. The wall shear stress, wall total pressure, and von Mises stress could be visualized. This method seems to be relatively simple and suitable for direct use by neurosurgeons or neuroradiologists, and maybe a practical tool for planning treatment and follow-up of patients after neurosurgical or endovascular interventions with 3D angiography. PMID:20812022

  7. Behavior of CO2/water flow in porous media for CO2 geological storage.

    PubMed

    Jiang, Lanlan; Yu, Minghao; Liu, Yu; Yang, Mingjun; Zhang, Yi; Xue, Ziqiu; Suekane, Tetsuya; Song, Yongchen

    2017-04-01

    A clear understanding of two-phase fluid flow properties in porous media is of importance to CO 2 geological storage. The study visually measured the immiscible and miscible displacement of water by CO 2 using MRI (magnetic resonance imaging), and investigated the factor influencing the displacement process in porous media which were filled with quartz glass beads. For immiscible displacement at slow flow rates, the MR signal intensity of images increased because of CO 2 dissolution; before the dissolution phenomenon became inconspicuous at flow rate of 0.8mLmin -1 . For miscible displacement, the MR signal intensity decreased gradually independent of flow rates, because supercritical CO 2 and water became miscible in the beginning of CO 2 injection. CO 2 channeling or fingering phenomena were more obviously observed with lower permeable porous media. Capillary force decreases with increasing particle size, which would increase permeability and allow CO 2 and water to invade into small pore spaces more easily. The study also showed CO 2 flow patterns were dominated by dimensionless capillary number, changing from capillary finger to stable flow. The relative permeability curve was calculated using Brooks-Corey model, while the results showed the relative permeability of CO 2 slightly decreases with the increase of capillary number. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Micro-scale displacement of NAPL by surfactant and microemulsion in heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    Javanbakht, Gina; Arshadi, Maziar; Qin, Tianzhu; Goual, Lamia

    2017-07-01

    Industrial processes such as remediation of oil-contaminated aquifers and enhanced oil recovery (EOR) often utilize chemical additives to increase the removal of non-aqueous phase liquids (NAPLs) from subsurface formations. Although the majority of crude oils are classified as LNAPLs, they often contain heavy molecules (DNAPLs) such as asphaltenes that tend to adsorb on minerals and alter their wettability. Effective additives are therefore those that can reduce the threshold capillary pressure, thus mobilizing LNAPL inside pore spaces and solubilizing DNAPL from rock surfaces. Nonionic surfactants in brine have often been injected to oil or contaminated aquifer formations in order to enhance NAPL displacement through IFT reduction. Recent studies revealed that surfactant-based microemulsions have a higher tendency to alter the wettability of surfaces, compared to surfactants alone, leading to more effective NAPL removal. However, the impact of these additives on pore-scale displacement mechanisms and multi-phase fluid occupancy in porous media is, to date, still unclear. In this study, x-ray microtomography experiments were performed to investigate the impact of surfactants and microemulsions on the mobilization and solubilization of NAPL in heterogeneous rocks. Saturation profiles indicated that an incremental NAPL removal was attained by addition of microemulsion to brine, compared with surfactant. Residual cluster size distributions revealed that microemulsions could break up large clusters into smaller disconnected ones, improving their mobilization in the rock. In-situ contact angle measurements showed that microemulsions could reverse the wettability of rough contaminated surfaces to a higher extent than surfactants. Unlike surfactant alone, the surfactant-solvent blend in the carrier fluid of microemulsions was able to penetrate rough grain surfaces, particularly those of dolomite cement, and desorb asphaltenes in the form of small-emulsified NAPL droplets, which were eventually washed away by the continuous flow process. The greater wettability alteration caused by microemulsions resulted in a lower threshold capillary pressure, which in turn promoted the mobilization of NAPL ganglia more than surfactant alone.

  9. Dynamics of foam flow in porous media in the presence of oil

    NASA Astrophysics Data System (ADS)

    Shokri, N.; Osei-Bonsu, K.

    2016-12-01

    Foams demonstrate great potential for fluid displacement in porous media which is important in a number of subsurface operations such as the enhanced oil recovery and soil remediation. The application of foam in these processes is down to its unique ability to reduce gas mobility by increasing its effective viscosity and to divert gas to un-swept low permeability zones in porous media [1-4]. To investigate the fundamental aspects of foam flow in porous media, we have conducted a systematic series of experiment using a well-characterised porous medium manufactured by a high resolution 3D printer. This enabled us to design and control the properties of porous media with high accuracy. The model porous medium was initially saturated with oil. Then the pre-generated foam was injected into the model at well-defined injection rates to displace oil. The dynamics of foam-oil displacement in porous media was recorded using a digital camera controlled by a computer [5]. The recorded images were analysed in MATLAB to determine the dynamics of foam-oil displacement under different boundary conditions. Effects of the type of oil, foam quality and foam flow rate were investigated. Our results reveal that generation of stable foam is delayed in the presence of light oil in the porous medium compared to the heavy oil. Furthermore, higher foam quality appears to be less stable in the presence of oil lowering its recovery efficiency. Pore-scale inspection of foam-oil patterns formed during displacement revealed formation of a more stable front in the case of lower foam quality which affected the oil recovery efficiency. This study extends the physical understanding of governing mechanisms controlling oil displacement by foam in porous media. Grassia, P., E. Mas-Hernandez, N. Shokri, S.J. Cox, G. Mishuris, W.R. Rossen (2014), J. Fluid Mech., 751, 346-405. Grassia, P., C. Torres-Ulloa, S. Berres, E. Mas-Hernandez, N. Shokri (2016), European Physical Journal E, 39 (4), 42. Mas-Hernandez, E., P. Grassia, N. Shokri (2015), Colloids and Surfaces A: Physicochem. Eng. Aspects, 473, 123-132. Osei-Bonsu, K., N. Shokri, P. Grassia (2015), Colloids and Surfaces A: Physicochem. Eng. Aspects, 481, 514-526. Osei-Bonsu, K., N. Shokri, P. Grassia (2016), J. Colloid Interface Sci., 462, 288-296.

  10. 40 CFR 147.3013 - Information to be considered for Class I wells.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) WATER PROGRAMS (CONTINUED) STATE, TRIBAL, AND EPA-ADMINISTERED UNDERGROUND INJECTION CONTROL... pressure changes, native fluid displacement, and direction of movement of the injected fluid; and (2) Methods to be used for sampling, and for measurement and calculation of flow. (b) In addition to the...

  11. 40 CFR 147.3013 - Information to be considered for Class I wells.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) WATER PROGRAMS (CONTINUED) STATE, TRIBAL, AND EPA-ADMINISTERED UNDERGROUND INJECTION CONTROL... pressure changes, native fluid displacement, and direction of movement of the injected fluid; and (2) Methods to be used for sampling, and for measurement and calculation of flow. (b) In addition to the...

  12. 40 CFR 147.3013 - Information to be considered for Class I wells.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) WATER PROGRAMS (CONTINUED) STATE, TRIBAL, AND EPA-ADMINISTERED UNDERGROUND INJECTION CONTROL... pressure changes, native fluid displacement, and direction of movement of the injected fluid; and (2) Methods to be used for sampling, and for measurement and calculation of flow. (b) In addition to the...

  13. 40 CFR 147.3013 - Information to be considered for Class I wells.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) WATER PROGRAMS (CONTINUED) STATE, TRIBAL, AND EPA-ADMINISTERED UNDERGROUND INJECTION CONTROL... pressure changes, native fluid displacement, and direction of movement of the injected fluid; and (2) Methods to be used for sampling, and for measurement and calculation of flow. (b) In addition to the...

  14. Combining solvent thermodynamic profiles with functionality maps of the Hsp90 binding site to predict the displacement of water molecules.

    PubMed

    Haider, Kamran; Huggins, David J

    2013-10-28

    Intermolecular interactions in the aqueous phase must compete with the interactions between the two binding partners and their solvating water molecules. In biological systems, water molecules in protein binding sites cluster at well-defined hydration sites and can form strong hydrogen-bonding interactions with backbone and side-chain atoms. Displacement of such water molecules is only favorable when the ligand can form strong compensating hydrogen bonds. Conversely, water molecules in hydrophobic regions of protein binding sites make only weak interactions, and the requirements for favorable displacement are less stringent. The propensity of water molecules for displacement can be identified using inhomogeneous fluid solvation theory (IFST), a statistical mechanical method that decomposes the solvation free energy of a solute into the contributions from different spatial regions and identifies potential binding hotspots. In this study, we employed IFST to study the displacement of water molecules from the ATP binding site of Hsp90, using a test set of 103 ligands. The predicted contribution of a hydration site to the hydration free energy was found to correlate well with the observed displacement. Additionally, we investigated if this correlation could be improved by using the energetic scores of favorable probe groups binding at the location of hydration sites, derived from a multiple copy simultaneous search (MCSS) method. The probe binding scores were not highly predictive of the observed displacement and did not improve the predictivity when used in combination with IFST-based hydration free energies. The results show that IFST alone can be used to reliably predict the observed displacement of water molecules in Hsp90. However, MCSS can augment IFST calculations by suggesting which functional groups should be used to replace highly displaceable water molecules. Such an approach could be very useful in improving the hit-to-lead process for new drug targets.

  15. Viscous Fingering in Deformable Systems

    NASA Astrophysics Data System (ADS)

    Guan, Jian Hui; MacMinn, Chris

    2017-11-01

    Viscous fingering is a classical hydrodynamic instability that occurs when an invading fluid is injected into a porous medium or a Hele-Shaw cell that contains a more viscous defending fluid. Recent work has shown that viscous fingering in a Hele-Shaw cell is supressed when the flow cell is deformable. However, the mechanism of suppression relies on a net volumetric expansion of the flow area. Here, we study flow in a novel Hele-Shaw cell consisting of a rigid bottom plate and a flexible top plate that deforms in a way that is volume-conserving. In other words, fluid injection into the flow cell leads to a local expansion of the flow area (outward displacement of the flexible surface) that must be coupled to non-local contraction (inward displacement of the flexible surface). We explore the impact of this volumetric confinement on steady viscous flow and on viscous fingering. We would like to thank EPSRC for the funding for this work.

  16. Effect of Eccentricity on the Static and Dynamic Performance of a Turbulent Hybrid Bearing

    NASA Technical Reports Server (NTRS)

    Sanandres, Luis A.

    1991-01-01

    The effect of journal eccentricity on the static and dynamic performance of a water lubricated, 5-recess hybrid bearing is presented in detail. The hydrostatic bearing has been designed to operate at a high speed and with a large level of external pressurization. The operating conditions determine the flow in the bearing to be highly turbulent and strongly dominated by fluid inertia effects. The analysis covers the spectrum of journal center displacements directed towards the middle of a recess and towards the mid-land portion between two consecutive recesses. Predicted dynamic force coefficients are uniform for small to moderate eccentricities. For large journal center displacements, fluid cavitation and recess position determine large changes in the bearing dynamic performance. The effect of fluid inertia force coefficients on the threshold speed of instability and whirl ratio of a single mass flexible rotor is discussed.

  17. Topical viscosity control for light hydrocarbon displacing fluids in petroleum recovery and in fracturing fluids for well stimulation

    DOEpatents

    Heller, John P.; Dandge, Dileep K.

    1986-01-01

    Solvent-type flooding fluids comprising light hydrocarbons in the range of ethane to hexane (and mixtures thereof) are used to displace crude oil in formations having temperatures of about 20 degrees to about 150 degrees Centigrade and pressures above about 650 psi, the light hydrocarbons having dissolved therein from about 0.05% to about 3% of an organotin compound of the formula R.sub.3 SnF where each R is independently an alkyl, aryl or alkyaryl group from 3 to 12 carbon atoms. Under the pressures and temperatures described, the organotin compounds become pentacoordinated and linked through the electronegative bridges, forming polymers within the light hydrocarbon flooding media to render them highly viscous. Under ambient conditions, the viscosity control agents will not readily be produced from the formation with either crude oil or water, since they are insoluble in the former and only sparingly soluble in the latter.

  18. Nature of self-diffusion in two-dimensional fluids

    NASA Astrophysics Data System (ADS)

    Choi, Bongsik; Han, Kyeong Hwan; Kim, Changho; Talkner, Peter; Kidera, Akinori; Lee, Eok Kyun

    2017-12-01

    Self-diffusion in a two-dimensional simple fluid is investigated by both analytical and numerical means. We investigate the anomalous aspects of self-diffusion in two-dimensional fluids with regards to the mean square displacement, the time-dependent diffusion coefficient, and the velocity autocorrelation function (VACF) using a consistency equation relating these quantities. We numerically confirm the consistency equation by extensive molecular dynamics simulations for finite systems, corroborate earlier results indicating that the kinematic viscosity approaches a finite, non-vanishing value in the thermodynamic limit, and establish the finite size behavior of the diffusion coefficient. We obtain the exact solution of the consistency equation in the thermodynamic limit and use this solution to determine the large time asymptotics of the mean square displacement, the diffusion coefficient, and the VACF. An asymptotic decay law of the VACF resembles the previously known self-consistent form, 1/(t\\sqrt{{ln}t}), however with a rescaled time.

  19. The Shear Mechanisms of Natural Fractures during the Hydraulic Stimulation of Shale Gas Reservoirs.

    PubMed

    Zhang, Zhaobin; Li, Xiao

    2016-08-23

    The shearing of natural fractures is important in the permeability enhancement of shale gas reservoirs during hydraulic fracturing treatment. In this work, the shearing mechanisms of natural fractures are analyzed using a newly proposed numerical model based on the displacement discontinuities method. The fluid-rock coupling system of the model is carefully designed to calculate the shearing of fractures. Both a single fracture and a complex fracture network are used to investigate the shear mechanisms. The investigation based on a single fracture shows that the non-ignorable shearing length of a natural fracture could be formed before the natural fracture is filled by pressurized fluid. Therefore, for the hydraulic fracturing treatment of the naturally fractured shale gas reservoirs, the shear strength of shale is generally more important than the tensile strength. The fluid-rock coupling propagation processes of a complex fracture network are simulated under different crustal stress conditions and the results agree well with those of the single fracture. The propagation processes of complex fracture network show that a smaller crustal stress difference is unfavorable to the shearing of natural fractures, but is favorable to the formation of complex fracture network.

  20. The Shear Mechanisms of Natural Fractures during the Hydraulic Stimulation of Shale Gas Reservoirs

    PubMed Central

    Zhang, Zhaobin; Li, Xiao

    2016-01-01

    The shearing of natural fractures is important in the permeability enhancement of shale gas reservoirs during hydraulic fracturing treatment. In this work, the shearing mechanisms of natural fractures are analyzed using a newly proposed numerical model based on the displacement discontinuities method. The fluid-rock coupling system of the model is carefully designed to calculate the shearing of fractures. Both a single fracture and a complex fracture network are used to investigate the shear mechanisms. The investigation based on a single fracture shows that the non-ignorable shearing length of a natural fracture could be formed before the natural fracture is filled by pressurized fluid. Therefore, for the hydraulic fracturing treatment of the naturally fractured shale gas reservoirs, the shear strength of shale is generally more important than the tensile strength. The fluid-rock coupling propagation processes of a complex fracture network are simulated under different crustal stress conditions and the results agree well with those of the single fracture. The propagation processes of complex fracture network show that a smaller crustal stress difference is unfavorable to the shearing of natural fractures, but is favorable to the formation of complex fracture network. PMID:28773834

  1. Reflection and transmission coefficients of a single layer in poroelastic media.

    PubMed

    Corredor, Robiel Martinez; Santos, Juan E; Gauzellino, Patricia M; Carcione, José M

    2014-06-01

    Wave propagation in poroelastic media is a subject that finds applications in many fields of research, from geophysics of the solid Earth to material science. In geophysics, seismic methods are based on the reflection and transmission of waves at interfaces or layers. It is a relevant canonical problem, which has not been solved in explicit form, i.e., the wave response of a single layer, involving three dissimilar media, where the properties of the media are described by Biot's theory. The displacement fields are recast in terms of potentials and the boundary conditions at the two interfaces impose continuity of the solid and fluid displacements, normal and shear stresses, and fluid pressure. The existence of critical angles is discussed. The results are verified by taking proper limits-zero and 100% porosity-by comparison to the canonical solutions corresponding to single-phase solid (elastic) media and fluid media, respectively, and the case where the layer thickness is zero, representing an interface separating two poroelastic half-spaces. As examples, it was calculated the reflection and transmission coefficients for plane wave incident at a highly permeable and compliant fluid-saturated porous layer, and the case where the media are saturated with the same fluid.

  2. Method and device for producing a tactile display using an electrorheological fluid

    NASA Technical Reports Server (NTRS)

    Garner, H. Douglas (Inventor)

    1996-01-01

    A tactile display device utilizes an electrorheological fluid to activate a plurality of tactile dots. A voltage is selectively produced uniformly across an electrorheological fluid flowing between a common ground electrode and a plurality of conductive dot electrodes, thereby producing an increase in the fluid's viscosity to the extent that fluid flow between the two electrodes is restricted. The flow restriction produces a build-up of electrorheological fluid in a corresponding dot actuator chamber. The resulting pressure increase in the chamber displaces an elastic diaphragm fixed to a display surface to form a lump which can be perceived by the reader as one dot in a Braille character cell. A flow regulation system provides a continually pressurized flow system and provides for free flow of the electrorheological fluid through the plurality of dot actuator chambers when they are not activated. The device is adaptable to printed circuit techniques and can simultaneously display tactile dots representative of a full page of Braille characters stored on a medium such as a tape cassette or to display tactile dots representative of non-Braille data appearing on a computer monitor or contained on another data storage medium. In an alternate embodiment, the elastic diaphragm drives a plurality of spring-loaded pins provided with positive stops to maintain consistent displacements of the pins in both their actuated and nonactuated positions.

  3. Tactile display device using an electrorheological fluid

    NASA Technical Reports Server (NTRS)

    Garner, H. Douglas (Inventor)

    1994-01-01

    A tactile display device utilizes an electrorheological fluid to activate a plurality of tactile dots. A voltage is selectively produced uniformly across an electrorheological fluid flowing between a common ground electrode and a plurality of conductive dot electrodes, thereby producing an increase in the fluid's viscosity to the extent that fluid flow between the two electrodes is restricted. The flow restriction produces a build-up of electrorheological fluid in a corresponding dot actuator chamber. The resulting pressure increase in the chamber displaces an elastic diaphragm fixed to a display surface to form a lump which can be perceived by the reader as one dot in a Braille character cell. A flow regulation system provides a continually pressurized flow system and provides for free flow of the electrorheological fluid through the plurality of dot actuator chambers when they are not activated. The device is adaptable to printed circuit techniques and can simultaneously display tactile dots representative of a full page of Braille characters stored on a medium such as a tape cassette or to display tactile dots representative of non-Braille data appearing on a computer monitor or contained on another data storage medium. In an alternate embodiment, the elastic diaphragm drives a plurality of spring-loaded pins provided with positive stops to maintain consistent displacements of the pins in both their actuated and nonactuated positions.

  4. Along fault friction and fluid pressure effects on the spatial distribution of fault-related fractures

    NASA Astrophysics Data System (ADS)

    Maerten, Laurent; Maerten, Frantz; Lejri, Mostfa

    2018-03-01

    Whatever the processes involved in the natural fracture development in the subsurface, fracture patterns are often affected by the local stress field during propagation. This homogeneous or heterogeneous local stress field can be of mechanical and/or tectonic origin. In this contribution, we focus on the fracture-pattern development where active faults perturb the stress field, and are affected by fluid pressure and sliding friction along the faults. We analyse and geomechanically model two fractured outcrops in UK (Nash Point) and in France (Les Matelles). We demonstrate that the observed local radial joint pattern is best explained by local fluid pressure along the faults and that observed fracture pattern can only be reproduced when fault friction is very low (μ < 0.2). Additionally, in the case of sub-vertical faults, we emphasize that the far field horizontal stress ratio does not affect stress trajectories, or fracture patterns, unless fault normal displacement (dilation or contraction) is relatively large.

  5. Stability of a secondary-type recovery process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, S.C.

    1970-04-21

    To provide good mobility control and to protect the components of the micellar dispersion displacing fluid from ''leaching'' into the drive fluid (water), the front portion of the drive fluid contained a mobility reducing agent, an electrolyte, and a semipolar organic compound. Berea sandstone cores (20.2 percent porosity, 336 md permeability) were saturated with water from Henry lease in Illinois (18,000 ppM TDS), flooded with sweet black crude oil (7 cp at 72/sup 0/F) from the Henry lease, and waterflooded with Henry lease water. A recovery of 93.9 percent of original oil in place was obtained by a micellar dispersionmore » followed by the mobility buffer. The micellar dispersion contained ammonium petroleum sulfonate, crude column overhead (a heavy naptha), isopropanol, p-nonyl phenol, water and sodium hydroxide. No. 530 Pusher, water from the Palestine water reservoir in Palestine, Illinois (450 ppM TDS), 50 ppM ammonium thiocyanate, n-butanol, and isopropyl alcohol (to facilitate the solubilization of the polymer) were in the mobility buffer.« less

  6. Stability of a secondary-type recovery process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, S.C.

    1970-07-14

    To provide good mobility control and to protect the components of the micellar dispersion displacing fluid from ''leaching'' into the drive fluid (water), the front portion of the drive fluid contained a mobility reducing agent, an electrolyte, and a semipolar organic compound. Berea sandstone cores (20.2 percent porosity, 336 md permeability) were saturated with water from Henry lease in Illinois (18,000 ppM TDS), flooded with sweet black crude oil (7 cp at 72/sup 0/F) from the Henry lease, and waterflooded with Henry lease water. A recovery of 93.9 percent of original oil in place was obtained by a micellar dispersionmore » followed by the mobility buffer. The micellar dispersion contained ammonium petroleum sulfonate, crude column overhead (a heavy naptha), isopropanol, p-nonyl phenol, water and sodium hydroxide. No. 530 Pusher, water from the Palestine water reservoir in Palestine, Illinois (450 ppM TDS), 50 ppM ammonium thiocyanate, n-butanol, and isopropyl alcohol (to facilitate the solubilization of the polymer) were in the mobility buffer.« less

  7. New insights into earthquake precursors from InSAR.

    PubMed

    Moro, Marco; Saroli, Michele; Stramondo, Salvatore; Bignami, Christian; Albano, Matteo; Falcucci, Emanuela; Gori, Stefano; Doglioni, Carlo; Polcari, Marco; Tallini, Marco; Macerola, Luca; Novali, Fabrizio; Costantini, Mario; Malvarosa, Fabio; Wegmüller, Urs

    2017-09-20

    We measured ground displacements before and after the 2009 L'Aquila earthquake using multi-temporal InSAR techniques to identify seismic precursor signals. We estimated the ground deformation and its temporal evolution by exploiting a large dataset of SAR imagery that spans seventy-two months before and sixteen months after the mainshock. These satellite data show that up to 15 mm of subsidence occurred beginning three years before the mainshock. This deformation occurred within two Quaternary basins that are located close to the epicentral area and are filled with sediments hosting multi-layer aquifers. After the earthquake, the same basins experienced up to 12 mm of uplift over approximately nine months. Before the earthquake, the rocks at depth dilated, and fractures opened. Consequently, fluids migrated into the dilated volume, thereby lowering the groundwater table in the carbonate hydrostructures and in the hydrologically connected multi-layer aquifers within the basins. This process caused the elastic consolidation of the fine-grained sediments within the basins, resulting in the detected subsidence. After the earthquake, the fractures closed, and the deep fluids were squeezed out. The pre-seismic ground displacements were then recovered because the groundwater table rose and natural recharge of the shallow multi-layer aquifers occurred, which caused the observed uplift.

  8. Mechanisms underlying anomalous diffusion in the plasma membrane.

    PubMed

    Krapf, Diego

    2015-01-01

    The plasma membrane is a complex fluid where lipids and proteins undergo diffusive motion critical to biochemical reactions. Through quantitative imaging analyses such as single-particle tracking, it is observed that diffusion in the cell membrane is usually anomalous in the sense that the mean squared displacement is not linear with time. This chapter describes the different models that are employed to describe anomalous diffusion, paying special attention to the experimental evidence that supports these models in the plasma membrane. We review models based on anticorrelated displacements, such as fractional Brownian motion and obstructed diffusion, and nonstationary models such as continuous time random walks. We also emphasize evidence for the formation of distinct compartments that transiently form on the cell surface. Finally, we overview heterogeneous diffusion processes in the plasma membrane, which have recently attracted considerable interest. Copyright © 2015. Published by Elsevier Inc.

  9. Possible effects of two-phase flow pattern on the mechanical behavior of mudstones

    NASA Astrophysics Data System (ADS)

    Goto, H.; Tokunaga, T.; Aichi, M.

    2016-12-01

    To investigate the influence of two-phase flow pattern on the mechanical behavior of mudstones, laboratory experiments were conducted. In the experiment, air was injected from the bottom of the water-saturated Quaternary Umegase mudstone sample under hydrostatic external stress condition. Both axial and circumferential strains at half the height of the sample and volumetric discharge of water at the outlet were monitored during the experiment. Numerical simulation of the experiment was tried by using a simulator which can solve coupled two-phase flow and poroelastic deformation assuming the extended-Darcian flow with relative permeability and capillary pressure as functions of the wetting-phase fluid saturation. In the numerical simulation, the volumetric discharge of water was reproduced well while both strains were not. Three dimensionless numbers, i.e., the viscosity ratio, the Capillary number, and the Bond number, which characterize the two-phase flow pattern (Lenormand et al., 1988; Ewing and Berkowitz, 1998) were calculated to be 2×10-2, 2×10-11, and 7×10-11, respectively, in the experiment. Because the Bond number was quite small, it was possible to apply Lenormand et al. (1988)'s diagram to evaluate the flow regime, and the flow regime was considered to be capillary fingering. While, in the numerical simulation, air moved uniformly upward with quite low non-wetting phase saturation conditions because the fluid flow obeyed the two-phase Darcy's law. These different displacement patterns developed in the experiment and assumed in the numerical simulation were considered to be the reason why the deformation behavior observed in the experiment could not be reproduced by numerical simulation, suggesting that the two-phase flow pattern could affect the changes of internal fluid pressure patterns during displacement processes. For further studies, quantitative analysis of the experimental results by using a numerical simulator which can solve the coupled processes of two-phase flow through preferential flow paths and deformation of porous media is needed. References: Ewing R. P., and B. Berkowitz (1998), Water Resour. Res., 34, 611-622. Lenormand, R., E. Touboul, and C. Zarcone (1988), J. Fluid Mech., 189, 165-187.

  10. Scientific Research Program for Power, Energy, and Thermal Technologies. Task Order 0001: Energy, Power, and Thermal Technologies and Processes Experimental Research. Subtask: Thermal Management of Electromechanical Actuation System for Aircraft Primary Flight Control Surfaces

    DTIC Science & Technology

    2014-05-01

    utilizing buoyancy differences in vapor and liquid phases to pump the heat transfer fluid between the evaporator and condenser. In this particular...Virtual Instrumentation Engineering Workbench LHP Loop Heat Pipe LVDT Linear Voltage Displacement Transducer MACE Micro -technologies for Air...Bland 1992). This type of duty cycle lends itself to thermal energy storage, which when coupled with an effective heat transfer mechanism can

  11. MRI investigation of water-oil two phase flow in straight capillary, bifurcate channel and monolayered glass bead pack.

    PubMed

    Liu, Yu; Jiang, Lanlan; Zhu, Ningjun; Zhao, Yuechao; Zhang, Yi; Wang, Dayong; Yang, Mingjun; Zhao, Jiafei; Song, Yongchen

    2015-09-01

    The study of immiscible fluid displacement between aqueous-phase liquids and non-aqueous-phase liquids in porous media is of great importance to oil recovery, groundwater contamination, and underground pollutant migration. Moreover, the attendant viscous, capillary, and gravitational forces are essential to describing the two-phase flows. In this study, magnetic resonance imaging was used to experimentally examine the detailed effects of the viscous, capillary, and gravitational forces on water-oil flows through a vertical straight capillary, bifurcate channel, and monolayered glass-bead pack. Water flooding experiments were performed at atmospheric pressure and 37.8°C, and the evolution of the distribution and saturation of the oil as well as the characteristics of the two-phase flow were investigated and analyzed. The results showed that the flow paths, i.e., the fingers of the displacing phase, during the immiscible displacement in the porous medium were determined by the viscous, capillary, and gravitational forces as well as the sizes of the pores and throats. The experimental results afford a fundamental understanding of immiscible fluid displacement in a porous medium. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Determination of fluid viscosity and femto Newton forces of Leishmania amazonensis using optical tweezers

    NASA Astrophysics Data System (ADS)

    Fontes, Adriana; Giorgio, Selma; de Castro, Archimedes, Jr.; Neto, Vivaldo M.; de Y. Pozzo, Liliana; de Thomaz, Andre A.; Barbosa, Luiz C.; Cesar, Carlos L.

    2005-08-01

    The displacements of a polystyrene microsphere trapped by an optical tweezers (OT) can be used as a force transducer for mechanical measurements in life sciences such as the measurement of forces of living microorganisms or the viscosity of local fluids. The technique we used allowed us to measure forces on the 200 femto Newtons to 4 pico Newtons range of the protozoa Leishmania amazonensis, responsible for a serious tropical disease. These observations can be used to understand the infection mechanism and chemotaxis of these parasites. The same technique was used to measure viscosities of few microliters sample with agreement with known samples better than 5%. To calibrate the force as a function of the microsphere displacement we first dragged the microsphere in a fluid at known velocity for a broad range of different optical and hydrodynamical parameters. The hydrodynamical model took into account the presence of two walls and the force depends on drag velocity, fluid viscosity and walls proximities, while the optical model in the geometric optics regime depends on the particle and fluid refractive indexes and laser power. To measure the high numerical (NA) aperture laser beam power after the objective we used an integration sphere to avoid the systematic errors of usual power meters for high NA beams. After this careful laser power measurement we obtained an almost 45 degrees straight line for the plot of the optical force (calculated by the particle horizontal displacement) versus hydrodynamic force (calculated by the drag velocity) under variation of all the parameters described below. This means that hydrodynamic models can be used to calibrate optical forces, as we have done for the parasite force measurement, or vice-versa, as we did for the viscosity measurements.

  13. Fault Damage Zone Permeability in Crystalline Rocks from Combined Field and Laboratory Measurements: Can we Predict Damage Zone Permeability?

    NASA Astrophysics Data System (ADS)

    Mitchell, T. M.; Faulkner, D. R.

    2009-04-01

    Models predicting crustal fluid flow are important for a variety of reasons; for example earthquake models invoking fluid triggering, predicting crustal strength modelling flow surrounding deep waste repositories or the recovery of natural resources. Crustal fluid flow is controlled by both the bulk transport properties of rocks as well as heterogeneities such as faults. In nature, permeability is enhanced in the damage zone of faults, where fracturing occurs on a wide range of scales. Here we analyze the contribution of microfracture damage on the permeability of faults that cut through low porosity, crystalline rocks by combining field and laboratory measurements. Microfracture densities surrounding strike-slip faults with well-constrained displacements ranging over 3 orders of magnitude (~0.12 m - 5000 m) have been analyzed. The faults studied are excellently exposed within the Atacama Fault Zone, where exhumation from 6-10 km has occurred. Microfractures in the form of fluid inclusion planes (FIPs) show a log-linear decrease in fracture density with perpendicular distance from the fault core. Damage zone widths defined by the density of FIPs scale with fault displacement, and an empirical relationship for microfracture density distribution throughout the damage zone with displacement is derived. Damage zone rocks will have experienced differential stresses that were less than, but some proportion of, the failure stress. As such, permeability data from progressively loaded, initially intact laboratory samples, in the pre-failure region provide useful insights into fluid flow properties of various parts of the damage zone. The permeability evolution of initially intact crystalline rocks under increasing differential load leading to macroscopic failure was determined at water pore pressures of 50 MPa and effective pressure of 10 MPa. Permeability is seen to increase by up to, and over, two orders of magnitude prior to macroscopic failure. Further experiments were stopped at various points in the loading history in order to correlate microfracture density within the samples with permeability. By combining empirical relationships determined from both quantitative fieldwork and experiments we present a new model that allows microfracture permeability distribution throughout the damage zone to be determined as function of increasing fault displacement.

  14. Size matters: The effects of displacement magnitude on the fluid flow properties of faults in poorly lithified sediments

    NASA Astrophysics Data System (ADS)

    Loveless, S. E.; Bense, V.; Turner, J.

    2011-12-01

    Many aquifers worldwide occur in poorly lithified sediments, often in regions that experience active tectonic deformation. Faulting of these sediments introduces heterogeneities that may affect aquifer porosity and permeability, and consequently subsurface fluid flow and groundwater storage. The specific hydrogeological effects of faults depend upon the fault architecture and deformation mechanisms. These are controlled by factors such as rheology, stratigraphy and burial depth. Here, we analyse fault permeability in poorly lithified sediments as a function of fault displacement. We have carried out detailed outcrop studies of minor normal faults at five study sites within the rapidly extending Corinth rift, Central Greece. Gravel conglomerates of giant Gilbert delta facies form productive but localised shallow aquifers within the region. Exposures reveal dense (average 20 faults per 100 m) networks of minor (0.1 to 50 m displacement) normal faults within the uplifted sequences, proximal to many of the crustal-scale normal faults. Analysis of 42 faults shows that fault zones are primarily composed of smeared beds that can either retain their definition or mix with surrounding sediment. Lenses or blocks of sediment are common in fault zones that cut beds with contrasting rheology, and a few faults have a clay core and/or damage zone. Fault thickness increases at a rate of about 0.4 m per 10 m increase in displacement. Comparison of sediment micro-structures from the field, hand samples and thin sections show grain-scale sediment mixing, fracturing of clasts, and in some cases cementation, within fault zones. In faults with displacements >12 m we also find a number of roughly parallel, highly indurated shear planes, up to 20 mm in thickness, composed of highly fragmented clasts and a fine grained matrix. Image analysis of thin sections from hand samples collected in the field was used to quantify the porosity of fault zones and adjacent undeformed sediment. These data show a reduction in average porosity from 21% (± 4) in undisturbed sediments to 14% (± 8) within fault zones. We find that fault zone porosity decreases by approximately 5% per 1 m displacement (up to 2 m displacement), as sediments undergo greater micro-scale deformation. Porosity within the shear planes of larger displacement faults (> 12 m) is significantly less than 5%. In summary, with an increase in fault displacement there is an increase in fault thickness and decrease in fault zone porosity, in addition to the occurrence of extremely low porosity shear planes. Consequently, the impact of faults in poorly lithified sediment on fluid flow is, to a large degree, dependent upon the magnitude of fault displacement.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiao, Zunsheng

    This report provides the results from the project entitled Field Demonstration of Reservoir Pressure Management through Fluid Injection and Displaced Fluid Extraction at the Rock Springs Uplift, a Priority Geologic CO2 Storage Site for Wyoming (DE-FE0026159 for both original performance period (September 1, 2015 to August 31, 2016) and no-cost extension (September 1, 2016 to January 6, 2017)).

  16. Archimedes' Principle in General Coordinates

    ERIC Educational Resources Information Center

    Ridgely, Charles T.

    2010-01-01

    Archimedes' principle is well known to state that a body submerged in a fluid is buoyed up by a force equal to the weight of the fluid displaced by the body. Herein, Archimedes' principle is derived from first principles by using conservation of the stress-energy-momentum tensor in general coordinates. The resulting expression for the force is…

  17. Finite Element Analysis of Osteocytes Mechanosensitivity Under Simulated Microgravity

    NASA Astrophysics Data System (ADS)

    Yang, Xiao; Sun, Lian-Wen; Du, Cheng-Fei; Wu, Xin-Tong; Fan, Yu-Bo

    2018-04-01

    It was found that the mechanosensitivity of osteocytes could be altered under simulated microgravity. However, how the mechanical stimuli as the biomechanical origins cause the bioresponse in osteocytes under microgravity is unclear yet. Computational studies may help us to explore the mechanical deformation changes of osteocytes under microgravity. Here in this paper, we intend to use the computational simulation to investigate the mechanical behavior of osteocytes under simulated microgravity. In order to obtain the shape information of osteocytes, the biological experiment was conducted under simulated microgravity prior to the numerical simulation The cells were rotated by a clinostat for 6 hours or 5 days and fixed, the cytoskeleton and the nucleus were immunofluorescence stained and scanned, and the cell shape and the fluorescent intensity were measured from fluorescent images to get the dimension information of osteocytes The 3D finite element (FE) cell models were then established based on the scanned image stacks. Several components such as the actin cortex, the cytoplasm, the nucleus, the cytoskeleton of F-actin and microtubules were considered in the model. The cell models in both 6 hours and 5 days groups were then imposed by three magnitudes (0.5, 10 and 15 Pa) of simulating fluid shear stress, with cell total displacement and the internal discrete components deformation calculated. The results showed that under the simulated microgravity: (1) the nuclear area and height statistically significantly increased, which made the ratio of membrane-cortex height to nucleus height statistically significantly decreased; (2) the fluid shear stress-induced maximum displacements and average displacements in the whole cell decreased, with the deformation decreasing amplitude was largest when exposed to 1.5Pa of fluid shear stress; (3) the fluid shear stress-induced deformation of cell membrane-cortex and cytoskeleton decreased, while the fluid shear stress-induced deformation of nucleus increased. The results suggested the mechanical behavior of whole osteocyte cell body was suppressed by simulated microgravity, and this decrement was enlarged with either the increasing amplitude of fluid shear stress or the duration of simulated microgravity. What's more, the mechanical behavior of membrane-cortex and cytoskeleton was suppressed by the simulated microgravity, which indicated the mechanotransduction process in the cell body may be further inhibited. On the contrary, the cell nucleus deformation increased under simulated microgravity, which may be related to either the decreased amount of cytoskeleton or the increased volume occupied proportion of nucleus in whole cell under the simulated microgravity. The numerical results supported our previous biological experiments, and showed particularly affected cellular components under the simulated microgravity. The computational study here may help us to better understand the mechanism of mechanosensitivity changes in osteocytes under simulated microgravity, and further to explore the mechanism of the bone loss in space flight.

  18. Cupula displacement, hair bundle deflection, and physiological responses in the transparent semicircular canal of young eel.

    PubMed

    Rüsch, A; Thurm, U

    1989-03-01

    The transparent labyrinth of young eels (Anguilla anguilla L.) was used in toto for studying the configuration of cupula displacement, deflection of the hair bundle, and correlated changes in transepithelial voltage (delta TEV) and nerve activity (delta NA) in the semicircular canal. Microcapillaries were introduced into the canal through holes produced by a microthermocauter. Mechanical stimulation was applied either by injection of fluid into the ampulla or by electromagnetically displacing ferrofluid as a piston within the canal. Motion of individual kinocilia, stained cupulae or the ferrofluid piston was analysed by double-exposed microphotographs, photodiodes, or a video-system. The three-dimensional cupula displacement configuration was found to be piston- to diaphragm-like. Hair bundles at different sites on the crista exhibit differences in amplitude and time course of deflection. The transfer factor between shifts of the canal fluid and the tips of the kinocilia is 0.4-0.6. Displacements in opposite directions induce delta TEV and delta NA of opposite sign. Various tests confirmed delta TEV to reflect receptor potential responses. Nerve activity adapts to a tonic response with a time constant of 6.4 s. No similar adaptation occurred in delta TEV. Stimulus-response curves of TEV- and NA-responses are similar and sigmoid in shape with saturation at ciliary deflections of roughly +6 degrees and -3 degrees.

  19. Pressure balanced drag turbine mass flow meter

    DOEpatents

    Dacus, M.W.; Cole, J.H.

    1980-04-23

    The density of the fluid flowing through a tubular member may be measured by a device comprising a rotor assembly suspended within the tubular member, a fluid bearing medium for the rotor assembly shaft, independent fluid flow lines to each bearing chamber, and a scheme for detection of any difference between the upstream and downstream bearing fluid pressures. The rotor assembly reacts to fluid flow both by rotation and axial displacement; therefore concurrent measurements may be made of the velocity of blade rotation and also bearing pressure changes, where the pressure changes may be equated to the fluid momentum flux imparted to the rotor blades. From these parameters the flow velocity and density of the fluid may be deduced.

  20. Pressure balanced drag turbine mass flow meter

    DOEpatents

    Dacus, Michael W.; Cole, Jack H.

    1982-01-01

    The density of the fluid flowing through a tubular member may be measured by a device comprising a rotor assembly suspended within the tubular member, a fluid bearing medium for the rotor assembly shaft, independent fluid flow lines to each bearing chamber, and a scheme for detection of any difference between the upstream and downstream bearing fluid pressures. The rotor assembly reacts to fluid flow both by rotation and axial displacement; therefore concurrent measurements may be made of the velocity of blade rotation and also bearing pressure changes, where the pressure changes may be equated to the fluid momentum flux imparted to the rotor blades. From these parameters the flow velocity and density of the fluid may be deduced.

  1. Fundamental Understanding of Methane-Carbon Dioxide-Water (CH4-CO2-H2O) Interactions in Shale Nanopores under Reservoir Conditions: Quarterly Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yifeng

    Shale is characterized by the predominant presence of nanometer-scale (1-100 nm) pores. The behavior of fluids in those pores directly controls shale gas storage and release in shale matrix and ultimately the wellbore production in unconventional reservoirs. Recently, it has been recognized that a fluid confined in nanopores can behave dramatically differently from the corresponding bulk phase due to nanopore confinement (Wang, 2014). CO 2 and H 2O, either preexisting or introduced, are two major components that coexist with shale gas (predominately CH 4) during hydrofracturing and gas extraction. Note that liquid or supercritical CO 2 has been suggested asmore » an alternative fluid for subsurface fracturing such that CO 2 enhanced gas recovery can also serve as a CO 2 sequestration process. Limited data indicate that CO 2 may preferentially adsorb in nanopores (particularly those in kerogen) and therefore displace CH 4 in shale. Similarly, the presence of water moisture seems able to displace or trap CH 4 in shale matrix. Therefore, fundamental understanding of CH 4-CO 2-H 2O behavior and their interactions in shale nanopores is of great importance for gas production and the related CO 2 sequestration. This project focuses on the systematic study of CH 4-CO 2-H 2O interactions in shale nanopores under high-pressure and high temperature reservoir conditions. The proposed work will help to develop new stimulation strategies to enable efficient resource recovery from fewer and less environmentally impactful wells.« less

  2. Fundamental Understanding of Methane-Carbon Dioxide-Water (CH 4-CO 2-H 2O) Interactions in Shale Nanopores under Reservoir Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yifeng

    2016-04-29

    Shale is characterized by the predominant presence of nanometer-scale (1-100 nm) pores. The behavior of fluids in those pores directly controls shale gas storage and release in shale matrix and ultimately the wellbore production in unconventional reservoirs. Recently, it has been recognized that a fluid confined in nanopores can behave dramatically differently from the corresponding bulk phase due to nanopore confinement (Wang, 2014). CO 2 and H 2O, either preexisting or introduced, are two major components that coexist with shale gas (predominately CH 4) during hydrofracturing and gas extraction. Note that liquid or supercritical CO 2 has been suggested asmore » an alternative fluid for subsurface fracturing such that CO 2 enhanced gas recovery can also serve as a CO 2 sequestration process. Limited data indicate that CO 2 may preferentially adsorb in nanopores (particularly those in kerogen) and therefore displace CH 4 in shale. Similarly, the presence of water moisture seems able to displace or trap CH 4 in shale matrix. Therefore, fundamental understanding of CH 4-CO 2-H 2O behavior and their interactions in shale nanopores is of great importance for gas production and the related CO 2 sequestration. This project focuses on the systematic study of CH 4-CO 2-H 2O interactions in shale nanopores under high-pressure and high temperature reservoir conditions. The proposed work will help to develop new stimulation strategies to enable efficient resource recovery from fewer and less environmentally impactful wells.« less

  3. Fundamental Understanding of Methane-Carbon Dioxide-Water (CH4-CO2-H2O) Interactions in Shale Nanopores under Reservoir Conditions.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yifeng

    Shale is characterized by the predominant presence of nanometer-scale (1-100 nm) pores. The behavior of fluids in those pores directly controls shale gas storage and release in shale matrix and ultimately the wellbore production in unconventional reservoirs. Recently, it has been recognized that a fluid confined in nanopores can behave dramatically differently from the corresponding bulk phase due to nanopore confinement (Wang, 2014). CO 2 and H 2O, either preexisting or introduced, are two major components that coexist with shale gas (predominately CH 4) during hydrofracturing and gas extraction. Note that liquid or supercritical CO 2 has been suggested asmore » an alternative fluid for subsurface fracturing such that CO 2 enhanced gas recovery can also serve as a CO 2 sequestration process. Limited data indicate that CO 2 may preferentially adsorb in nanopores (particularly those in kerogen) and therefore displace CH4 in shale. Similarly, the presence of water moisture seems able to displace or trap CH 4 in shale matrix. Therefore, fundamental understanding of CH 4-CO 2-H 2O behavior and their interactions in shale nanopores is of great importance for gas production and the related CO 2 sequestration. This project focuses on the systematic study of CH 4-CO 2-H 2O interactions in shale nanopores under high-pressure and high temperature reservoir conditions. The proposed work will help to develop new stimulation strategies to enable efficient resource recovery from fewer and less environmentally impactful wells.« less

  4. Unique self-assembly properties of a bridge-shaped protein dimer with quantum dots

    NASA Astrophysics Data System (ADS)

    Wang, Jianhao; Jiang, Pengju; Gao, Liqian; Yu, Yongsheng; Lu, Yao; Qiu, Lin; Wang, Cheli; Xia, Jiang

    2013-09-01

    How protein-protein interaction affects protein-nanoparticle self-assembly is the key to the understanding of biomolecular coating of nanoparticle in biological fluids. However, the relationship between protein shape and its interaction with nanoparticles is still under-exploited because of lack of a well-conceived binding system and a method to detect the subtle change in the protein-nanoparticle assemblies. Noticing this unresolved need, we cloned and expressed a His-tagged SpeA protein that adopts a bridge-shaped dimer structure, and utilized a high-resolution capillary electrophoresis method to monitor assembly formation between the protein and quantum dots (QDs, 5 nm in diameter). We observed that the bridge-shaped structure rendered a low SpeA:QD stoichiometry at saturation. Also, close monitoring of imidazole (Im) displacement of surface-bound protein revealed a unique two-step process. High-concentration Im could displace surface-bound SpeA protein and form a transient QD-protein intermediate, through a kinetically controlled displacement process. An affinity-driven equilibrium step then followed, resulting in re-assembling of the QD-protein complex in about 1 h. Through a temporarily formed intermediate, Im causes a rearrangement of His-tagged proteins on the surface. Thus, our work showcases that the synergistic interplay between QD-His-tag interaction and protein-protein interaction can result in unique properties of protein-nanoparticle assembly for the first time.

  5. A mixed finite-element method for solving the poroelastic Biot equations with electrokinetic coupling

    NASA Astrophysics Data System (ADS)

    Pain, C. C.; Saunders, J. H.; Worthington, M. H.; Singer, J. M.; Stuart-Bruges, W.; Mason, G.; Goddard, A.

    2005-02-01

    In this paper, a numerical method for solving the Biot poroelastic equations is developed. These equations comprise acoustic (typically water) and elastic (porous medium frame) equations, which are coupled mainly through fluid/solid drag terms. This wave solution is coupled to a simplified form of Maxwell's equations, which is solved for the streaming potential resulting from electrokinesis. The ultimate aim is to use the generated electrical signals to provide porosity, permeability and other information about the formation surrounding a borehole. The electrical signals are generated through electrokinesis by seismic waves causing movement of the fluid through pores or fractures of a porous medium. The focus of this paper is the numerical solution of the Biot equations in displacement form, which is achieved using a mixed finite-element formulation with a different finite-element representation for displacements and stresses. The mixed formulation is used in order to reduce spurious displacement modes and fluid shear waves in the numerical solutions. These equations are solved in the time domain using an implicit unconditionally stable time-stepping method using iterative solution methods amenable to solving large systems of equations. The resulting model is embodied in the MODELLING OF ACOUSTICS, POROELASTICS AND ELECTROKINETICS (MAPEK) computer model for electroseismic analysis.

  6. Method, system and computer program product for monitoring and optimizing fluid extraction from geologic strata

    DOEpatents

    Medizade, Masoud [San Luis Obispo, CA; Ridgely, John Robert [Los Osos, CA

    2009-12-15

    An arrangement which utilizes an inexpensive flap valve/flow transducer combination and a simple local supervisory control system to monitor and/or control the operation of a positive displacement pump used to extract petroleum from geologic strata. The local supervisory control system controls the operation of an electric motor which drives a reciprocating positive displacement pump so as to maximize the volume of petroleum extracted from the well per pump stroke while minimizing electricity usage and pump-off situations. By reducing the electrical demand and pump-off (i.e., "pounding" or "fluid pound") occurrences, operating and maintenance costs should be reduced sufficiently to allow petroleum recovery from marginally productive petroleum fields. The local supervisory control system includes one or more applications to at least collect flow signal data generated during operation of the positive displacement pump. No flow, low flow and flow duration are easily evaluated using the flap valve/flow transducer arrangement.

  7. Nonmonotonic fluctuation spectra of membranes pinned or tethered discretely to a substrate.

    PubMed

    Merath, Rolf-Jürgen; Seifert, Udo

    2006-01-01

    The thermal fluctuation spectrum of a fluid membrane coupled harmonically to a solid support by an array of tethers is calculated. For strong tethers, this spectrum exhibits nonmonotonic, anisotropic behavior with a relative maximum at a wavelength about twice the tether distance. The root-mean-square displacement is evaluated to estimate typical membrane displacements. Possible applications cover pillar-supported or polymer-tethered membranes.

  8. Large-amplitude jumps and non-Gaussian dynamics in highly concentrated hard sphere fluids.

    PubMed

    Saltzman, Erica J; Schweizer, Kenneth S

    2008-05-01

    Our microscopic stochastic nonlinear Langevin equation theory of activated dynamics has been employed to study the real-space van Hove function of dense hard sphere fluids and suspensions. At very short times, the van Hove function is a narrow Gaussian. At sufficiently high volume fractions, such that the entropic barrier to relaxation is greater than the thermal energy, its functional form evolves with time to include a rapidly decaying component at small displacements and a long-range exponential tail. The "jump" or decay length scale associated with the tail increases with time (or particle root-mean-square displacement) at fixed volume fraction, and with volume fraction at the mean alpha relaxation time. The jump length at the alpha relaxation time is predicted to be proportional to a measure of the decoupling of self-diffusion and structural relaxation. At long times corresponding to mean displacements of order a particle diameter, the volume fraction dependence of the decay length disappears. A good superposition of the exponential tail feature based on the jump length as a scaling variable is predicted at high volume fractions. Overall, the theoretical results are in good accord with recent simulations and experiments. The basic aspects of the theory are also compared with a classic jump model and a dynamically facilitated continuous time random-walk model. Decoupling of the time scales of different parts of the relaxation process predicted by the theory is qualitatively similar to facilitated dynamics models based on the concept of persistence and exchange times if the elementary event is assumed to be associated with transport on a length scale significantly smaller than the particle size.

  9. Real-Time Wing-Vortex and Pressure Distribution Estimation on Wings Via Displacements and Strains in Unsteady and Transitional Flight Conditions

    DTIC Science & Technology

    2016-09-07

    approach in co simulation with fluid-dynamics solvers is used. An original variational formulation is developed for the inverse problem of...by the inverse solution meshing. The same approach is used to map the structural and fluid interface kinematics and loads during the fluid structure...co-simulation. The inverse analysis is verified by reconstructing the deformed solution obtained with a corresponding direct formulation, based on

  10. Flow of viscoplastic suspensions in a hydraulic fracture: implications to overflush

    NASA Astrophysics Data System (ADS)

    Boronin, S. A.; Osiptsov, A. A.; Desroches, J.

    2017-10-01

    The study is devoted to modeling of multiphase flows of immiscible viscoplastic fluids in a hydraulic fracture. In the framework of the lubrication approximation, three-dimensional Navier-Stokes equations are reduced to hyperbolic transport equations for the fluid tracers and a quasi-linear elliptic equation in terms of the fluid pressure. The governing equations are solved numerically using the finite-difference approach. A parametric study of the displacement of Bingham fluids in a Hele-Shaw cell is carried out. It is found that fingers developed through the pillar of a yield-stress suspension trigger the development of unyielded zones. An increase in the Bingham number leads to an increase in the so-called finger shielding effect, which manifests itself via an increase in the overall finger penetration zone and a decrease in the total number of fingers. The effect of flow parameters on the displacement of hydraulic fracturing proppant-laden suspension by a clean fluid in the vicinity of the perforation zone is carried out. This particular case is considered in application to overflush at the end of a stimulation treatment, when a small portion of a thin clean fluid is injected to wash out the particles from the wellbore into the fracture. It is found that an increase in the yield stress and the viscosity contrast between the fracturing and the overflush fluids typically reduces the area of the cavity thus mitigating the risk of loosing the conductive path between the wellbore and the fracture after the fracture closure.

  11. A pendulum experiment on added mass and the principle of equivalence

    NASA Astrophysics Data System (ADS)

    Neill, Douglas; Livelybrooks, Dean; Donnelly, Russell J.

    2007-03-01

    The concept of added mass in fluid mechanics has been known for many years. A familiar example is the accelerated motion of a sphere through an ideal (inviscid and irrotational) fluid, which has an added mass equal to one-half the mass of the fluid displaced. The period of oscillation of a simple pendulum in a vacuum is independent of its mass because of the equivalence of gravitational and inertial masses. In contrast, in a fluid both buoyancy and added mass affect the period. We present experimental results on simple pendula of different materials oscillating in various fluids. The results agree fairly well with the results obtained for the added mass in an ideal fluid.

  12. Displacement of Enterococcus faecalis from hydrophobic and hydrophilic substrata by Lactobacillus and Streptococcus spp. as studied in a parallel plate flow chamber.

    PubMed Central

    Millsap, K; Reid, G; van der Mei, H C; Busscher, H J

    1994-01-01

    The displacement of Enterococcus faecalis 1131 from hydrophobic and hydrophilic substrata by isolates of Lactobacillus casei 36 and Streptococcus hyointestinalis KM1 was studied in a parallel plate flow chamber. The experiments were conducted with either 10 mM potassium phosphate buffer or human urine as the suspending fluid, and adhesion and displacement were measured by real-time in situ image analysis. The results showed that E. faecalis 1131 was displaced by lactobacilli (31%) and streptococci (74%) from fluorinated ethylene propylene in buffer and that displacement by lactobacilli was even more effective on a glass substratum in urine (54%). The passage of an air-liquid interface significantly impacted on adhesion, especially when the surface had been challenged with lactobacilli (up to 100% displacement) or streptococci (up to 94% displacement). These results showed that the parallel plate flow system with real-time in situ image analysis was effective for studying bacterial adhesion and that uropathogenic enterococci can be displaced by indigenous bacteria. Images PMID:8031082

  13. Heat transfer head for a Stirling cycle machine

    NASA Technical Reports Server (NTRS)

    Emigh, Stuart G. (Inventor); Noble, Jack E. (Inventor); Lehmann, Gregory A. (Inventor)

    1991-01-01

    A common heat acceptor is provided between opposed displacers in a Stirling cycle machine. It includes two sets of open channels in separate fluid communications with the expansion spaces of the receptive cyclinders. The channels confine movement of working fluid in separate paths that extend between the expansion space of one cylinder and the compression space of the other. The method for operating the machine involves alternatively directing working fluid from the expansion space of each cylinder in a fluid path leading to the compression space of the other cylinder and from the compression space of each cylinder in a fluid path leading to the expansion space of the other cylinder.

  14. Hazardous Chemical Pump Tests.

    DTIC Science & Technology

    1980-07-01

    hydraulic flow rate is the product of the pump speed and the pump displacement. The pump displacement for each respective pump was constant throughout...speed - rpm T - torque - ft lbs 7= 3.1416 By substituting the product of pump speed and pump displacement for the hydraulic flow rate (Q=NO) in the above...FF:iipr’: iL 40 H FLUID F-’UMPED; FPl H FVIi T’E1l ’HJO I...S Lu FL: H KFITE C F~~:ri FIGURE 2 CC E MT 2, Fi C F . c ;E’C F11 *:;_cl PF fog O ~ \\ 4 1

  15. Solar energy in California industry - Applications, characteristics and potential

    NASA Technical Reports Server (NTRS)

    Barbieri, R. H.; Pivirotto, D. S.

    1978-01-01

    Results of a survey to determine the potential applicability of solar thermal energy to industrial processes in California are presented. It is found that if the heat for all industrial processes at temperatures below 212 F were supplied by solar energy, total state energy consumption could be reduced by 100 trillion Btus (2%), while the use of solar energy in processes between 212 and 350 F could displace 500 trillion Btus. The issues and problems with which solar energy must contend are illustrated by a description of fluid milk processing operations. Solar energy application is found to be technically feasible for processes with thermal energy requirements below 212 F, with design, and degree of technical, economic and management feasibility being site specific. It is recommended that the state provide support for federal and industrial research, development and demonstration programs in order to stimulate acceptance of solar process heat application by industry.

  16. The Architecture and Frictional Properties of Faults in Shale

    NASA Astrophysics Data System (ADS)

    De Paola, N.; Imber, J.; Murray, R.; Holdsworth, R.

    2015-12-01

    The geometry of brittle fault zones in shale rocks, as well as their frictional properties at reservoir conditions, are still poorly understood. Nevertheless, these factors may control the very low recovery factors (25% for gas and 5% for oil) obtained during fracking operations. Extensional brittle fault zones (maximum displacement < 3 m) cut exhumed oil mature black shales in the Cleveland Basin (UK). Fault cores up to 50 cm wide accommodated most of the displacement, and are defined by a stair-step geometry. Their internal architecture is characterised by four distinct fault rock domains: foliated gouges; breccias; hydraulic breccias; and a slip zone up to 20 mm thick, composed of a fine-grained black gouge. Hydraulic breccias are located within dilational jogs with aperture of up to 20 cm. Brittle fracturing and cataclastic flow are the dominant deformation mechanisms in the fault core of shale faults. Velocity-step and slide-hold-slide experiments at sub-seismic slip rates (microns/s) were performed in a rotary shear apparatus under dry, water and brine-saturated conditions, for displacements of up to 46 cm. Both the protolith shale and the slip zone black gouge display shear localization, velocity strengthening behaviour and negative healing rates, suggesting that slow, stable sliding faulting should occur within the protolith rocks and slip zone gouges. Experiments at seismic speed (1.3 m/s), performed on the same materials under dry conditions, show that after initial friction values of 0.5-0.55, friction decreases to steady-state values of 0.1-0.15 within the first 10 mm of slip. Contrastingly, water/brine saturated gouge mixtures, exhibit almost instantaneous attainment of very low steady-state sliding friction (0.1), suggesting that seismic ruptures may efficiently propagate in the slip zone of fluid-saturated shale faults. Stable sliding in faults in shale can cause slow fault/fracture propagation, affecting the rate at which new fracture areas are created and, hence, limiting oil and gas production during reservoir stimulation. However, fluid saturated conditions can favour seismic slip propagation, with fast and efficient creation of new fracture areas. These processes are very effective at dilational jogs, where fluid circulation may be enhanced, facilitating oil and gas production.

  17. Fluid-structure finite-element vibrational analysis

    NASA Technical Reports Server (NTRS)

    Feng, G. C.; Kiefling, L.

    1974-01-01

    A fluid finite element has been developed for a quasi-compressible fluid. Both kinetic and potential energy are expressed as functions of nodal displacements. Thus, the formulation is similar to that used for structural elements, with the only differences being that the fluid can possess gravitational potential, and the constitutive equations for fluid contain no shear coefficients. Using this approach, structural and fluid elements can be used interchangeably in existing efficient sparse-matrix structural computer programs such as SPAR. The theoretical development of the element formulations and the relationships of the local and global coordinates are shown. Solutions of fluid slosh, liquid compressibility, and coupled fluid-shell oscillation problems which were completed using a temporary digital computer program are shown. The frequency correlation of the solutions with classical theory is excellent.

  18. Subharmonic generation, chaos, and subharmonic resurrection in an acoustically driven fluid-filled cavity.

    PubMed

    Cantrell, John H; Adler, Laszlo; Yost, William T

    2015-02-01

    Traveling wave solutions of the nonlinear acoustic wave equation are obtained for the fundamental and second harmonic resonances of a fluid-filled cavity. The solutions lead to the development of a non-autonomous toy model for cavity oscillations. Application of the Melnikov method to the model equation predicts homoclinic bifurcation of the Smale horseshoe type leading to a cascade of period doublings with increasing drive displacement amplitude culminating in chaos. The threshold value of the drive displacement amplitude at tangency is obtained in terms of the acoustic drive frequency and fluid attenuation coefficient. The model prediction of subharmonic generation leading to chaos is validated from acousto-optic diffraction measurements in a water-filled cavity using a 5 MHz acoustic drive frequency and from the measured frequency spectrum in the bifurcation cascade regime. The calculated resonant threshold amplitude of 0.2 nm for tangency is consistent with values estimated for the experimental set-up. Experimental evidence for the appearance of a stable subharmonic beyond chaos is reported.

  19. u-w formulation for dynamic problems in large deformation regime solved through an implicit meshfree scheme

    NASA Astrophysics Data System (ADS)

    Navas, Pedro; Sanavia, Lorenzo; López-Querol, Susana; Yu, Rena C.

    2017-12-01

    Solving dynamic problems for fluid saturated porous media at large deformation regime is an interesting but complex issue. An implicit time integration scheme is herein developed within the framework of the u-w (solid displacement-relative fluid displacement) formulation for the Biot's equations. In particular, liquid water saturated porous media is considered and the linearization of the linear momentum equations taking into account all the inertia terms for both solid and fluid phases is for the first time presented. The spatial discretization is carried out through a meshfree method, in which the shape functions are based on the principle of local maximum entropy LME. The current methodology is firstly validated with the dynamic consolidation of a soil column and the plastic shear band formulation of a square domain loaded by a rigid footing. The feasibility of this new numerical approach for solving large deformation dynamic problems is finally demonstrated through the application to an embankment problem subjected to an earthquake.

  20. Nature of self-diffusion in two-dimensional fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Bongsik; Han, Kyeong Hwan; Kim, Changho

    Self-diffusion in a two-dimensional simple fluid is investigated by both analytical and numerical means. We investigate the anomalous aspects of self-diffusion in two-dimensional fluids with regards to the mean square displacement, the time-dependent diffusion coefficient, and the velocity autocorrelation function (VACF) using a consistency equation relating these quantities. Here, we numerically confirm the consistency equation by extensive molecular dynamics simulations for finite systems, corroborate earlier results indicating that the kinematic viscosity approaches a finite, non-vanishing value in the thermodynamic limit, and establish the finite size behavior of the diffusion coefficient. We obtain the exact solution of the consistency equation in the thermodynamic limit and use this solution to determine the large time asymptotics of the mean square displacement, the diffusion coefficient, and the VACF. An asymptotic decay law of the VACF resembles the previously known self-consistent form, 1/(more » $$t\\sqrt{In t)}$$ however with a rescaled time.« less

  1. Swimming at small Reynolds number of a planar assembly of spheres in an incompressible viscous fluid with inertia

    NASA Astrophysics Data System (ADS)

    Felderhof, B. U.

    2017-09-01

    Translational and rotational swimming at small Reynolds numbers of a planar assembly of identical spheres immersed in an incompressible viscous fluid is studied on the basis of a set of equations of motion for the individual spheres. The motion of the spheres is caused by actuating forces and forces derived from a direct interaction potential, as well as hydrodynamic forces exerted by the fluid as frictional and added mass hydrodynamic interactions. The translational and rotational swimming velocities of the assembly are deduced from momentum and angular momentum balance equations. The mean power required during a period is calculated from an instantaneous power equation. Expressions are derived for the mean swimming velocities and the mean power, valid to second order in the amplitude of displacements from the relative equilibrium positions. Hence these quantities can be evaluated for prescribed periodic displacements. Explicit calculations are performed for three spheres interacting such that they form an equilateral triangle in the rest frame of the configuration.

  2. Nature of self-diffusion in two-dimensional fluids

    DOE PAGES

    Choi, Bongsik; Han, Kyeong Hwan; Kim, Changho; ...

    2017-12-18

    Self-diffusion in a two-dimensional simple fluid is investigated by both analytical and numerical means. We investigate the anomalous aspects of self-diffusion in two-dimensional fluids with regards to the mean square displacement, the time-dependent diffusion coefficient, and the velocity autocorrelation function (VACF) using a consistency equation relating these quantities. Here, we numerically confirm the consistency equation by extensive molecular dynamics simulations for finite systems, corroborate earlier results indicating that the kinematic viscosity approaches a finite, non-vanishing value in the thermodynamic limit, and establish the finite size behavior of the diffusion coefficient. We obtain the exact solution of the consistency equation in the thermodynamic limit and use this solution to determine the large time asymptotics of the mean square displacement, the diffusion coefficient, and the VACF. An asymptotic decay law of the VACF resembles the previously known self-consistent form, 1/(more » $$t\\sqrt{In t)}$$ however with a rescaled time.« less

  3. On the Rigid-Lid Approximation for Two Shallow Layers of Immiscible Fluids with Small Density Contrast

    NASA Astrophysics Data System (ADS)

    Duchêne, Vincent

    2014-08-01

    The rigid-lid approximation is a commonly used simplification in the study of density-stratified fluids in oceanography. Roughly speaking, one assumes that the displacements of the surface are negligible compared with interface displacements. In this paper, we offer a rigorous justification of this approximation in the case of two shallow layers of immiscible fluids with constant and quasi-equal mass density. More precisely, we control the difference between the solutions of the Cauchy problem predicted by the shallow-water (Saint-Venant) system in the rigid-lid and free-surface configuration. We show that in the limit of a small density contrast, the flow may be accurately described as the superposition of a baroclinic (or slow) mode, which is well predicted by the rigid-lid approximation, and a barotropic (or fast) mode, whose initial smallness persists for large time. We also describe explicitly the first-order behavior of the deformation of the surface and discuss the case of a nonsmall initial barotropic mode.

  4. Evaluation of System Architectures for the Army Aviation Ground Power Unit

    DTIC Science & Technology

    2014-12-01

    this state of operation induces wear that reduces pump life. Variable capacity control methods using a constant displacement pump are drive speed...options for use with constant displacement pumps, the fluid or magnetic coupling devices are the most attractive. Variable frequency control cannot...compressor prior to the combustor. The cmTent system turbine exhaust temperature controls to 1250°F, much higher than the compressor exit

  5. Monitoring carbonate dissolution using spatially resolved under-sampled NMR propagators and MRI

    NASA Astrophysics Data System (ADS)

    Sederman, A. J.; Colbourne, A.; Mantle, M. D.; Gladden, L. F.; Oliveira, R.; Bijeljic, B.; Blunt, M. J.

    2017-12-01

    The dissolution of a porous rock matrix by an acidic flow causes a change in the pore structure and consequently the pattern of fluid flow and rock permeability. This process is relevant to many areas of practical relevance such as enhanced oil recovery, water contaminant migration and sequestration of supercritical CO2. The most important governing factors for the type of change in the pore space are related by the Péclet (Pe) and Damköhler (Da) dimensionless numbers; these compare the transport properties of the fluid in the porous medium with the reactive properties of the solid matrix and the incident fluid respectively. Variation in Pe and Da can cause very different evolution regimes of the pore space and flow can occur, ranging from a uniform dissolution through different "wormholing" regimes (shown on the left hand side of figure 1) to face dissolution. NMR has a unique capability of measuring both the flow and structural changes during such dissolution whilst the characteristics of flow in the highly heterogeneous matrix that is formed can be predicted by the CTRW modelling approach. Here, NMR measurements of displacement probability distributions, or propagators, have been used to monitor the evolution of fluid flow during a reactive dissolution rock core floods. Developments in the NMR method by undersampling the acquisition data enable spatially resolved measurements of the propagators to be done at sufficient displacement resolution and in a timescale that is short enough to capture the changes in structure and flow. The highly under-sampled (4%) data, which typically reduces the acquisition time from 2 hours to 6 minutes, has been shown to produce equivalent propagator results to the fully sampled experiment. Combining these propagator measurements with quantitative and fast imaging techniques a full time-resolved picture of the dissolution reaction is built up. Experiments have been done for both Ketton and Estaillades carbonate rock cores, which exhibit very different dissolution behaviours, and for which experiments and model comparisons will be shown.

  6. Nanometer-scale imaging and pore-scale fluid flow modeling inchalk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomutsa, Liviu; Silin, Dmitriy; Radmilovich, Velimir

    2005-08-23

    For many rocks of high economic interest such as chalk,diatomite, tight gas sands or coal, nanometer scale resolution is neededto resolve the 3D-pore structure, which controls the flow and trapping offluids in the rocks. Such resolutions cannot be achieved with existingtomographic technologies. A new 3D imaging method, based on serialsectioning and using the Focused Ion Beam (FIB) technology has beendeveloped. FIB allows for the milling of layers as thin as 10 nanometersby using accelerated Ga+ ions to sputter atoms from the sample surface.After each milling step, as a new surface is exposed, a 2D image of thissurface is generated. Next,more » the 2D images are stacked to reconstruct the3D pore or grain structure. Resolutions as high as 10 nm are achievableusing this technique. A new image processing method uses directmorphological analysis of the pore space to characterize thepetrophysical properties of diverse formations. In addition to estimationof the petrophysical properties (porosity, permeability, relativepermeability and capillary pressures), the method is used for simulationof fluid displacement processes, such as those encountered in variousimproved oil recovery (IOR) approaches. Computed with the new methodcapillary pressure curves are in good agreement with laboratory data. Themethod has also been applied for visualization of the fluid distributionat various saturations from the new FIB data.« less

  7. Numerical solution of fluid-structure interaction represented by human vocal folds in airflow

    NASA Astrophysics Data System (ADS)

    Valášek, J.; Sváček, P.; Horáček, J.

    2016-03-01

    The paper deals with the human vocal folds vibration excited by the fluid flow. The vocal fold is modelled as an elastic body assuming small displacements and therefore linear elasticity theory is used. The viscous incompressible fluid flow is considered. For purpose of numerical solution the arbitrary Lagrangian-Euler method (ALE) is used. The whole problem is solved by the finite element method (FEM) based solver. Results of numerical experiments with different boundary conditions are presented.

  8. Three-dimensional real-time imaging of bi-phasic flow through porous media

    NASA Astrophysics Data System (ADS)

    Sharma, Prerna; Aswathi, P.; Sane, Anit; Ghosh, Shankar; Bhattacharya, S.

    2011-11-01

    We present a scanning laser-sheet video imaging technique to image bi-phasic flow in three-dimensional porous media in real time with pore-scale spatial resolution, i.e., 35 μm and 500 μm for directions parallel and perpendicular to the flow, respectively. The technique is illustrated for the case of viscous fingering. Using suitable image processing protocols, both the morphology and the movement of the two-fluid interface, were quantitatively estimated. Furthermore, a macroscopic parameter such as the displacement efficiency obtained from a microscopic (pore-scale) analysis demonstrates the versatility and usefulness of the method.

  9. Shock-operated valve would automatically protect fluid systems

    NASA Technical Reports Server (NTRS)

    Branum, L. W.; Wells, G. H.

    1966-01-01

    Glandless valve shuts down high-pressure fluid systems when severe shock from an explosion or earthquake occurs. The valve uses a pendulum to support the valve closure plug in the open position. When jarred, the valve body is moved relative to the pendulum and the plug support is displaced, allowing the plug to seat and be held by spring pressure.

  10. Low temperature barrier wellbores formed using water flushing

    DOEpatents

    McKinzie, II; John, Billy [Houston, TX; Keltner, Thomas Joseph [Spring, TX

    2009-03-10

    A method of forming an opening for a low temperature well is described. The method includes drilling an opening in a formation. Water is introduced into the opening to displace drilling fluid or indigenous gas in the formation adjacent to a portion of the opening. Water is produced from the opening. A low temperature fluid is applied to the opening.

  11. Thin-film-transistor array: an exploratory attempt for high throughput cell manipulation using electrowetting principle

    NASA Astrophysics Data System (ADS)

    Shaik, F. Azam; Cathcart, G.; Ihida, S.; Lereau-Bernier, M.; Leclerc, E.; Sakai, Y.; Toshiyoshi, H.; Tixier-Mita, A.

    2017-05-01

    In lab-on-a-chip (LoC) devices, microfluidic displacement of liquids is a key component. electrowetting on dielectric (EWOD) is a technique to move fluids, with the advantage of not requiring channels, pumps or valves. Fluids are discretized into droplets on microelectrodes and moved by applying an electric field via the electrodes to manipulate the contact angle. Micro-objects, such as biological cells, can be transported inside of these droplets. However, the design of conventional microelectrodes, made by standard micro-fabrication techniques, fixes the path of the droplets, and limits the reconfigurability of paths and thus limits the parallel processing of droplets. In that respect, thin film transistor (TFT) technology presents a great opportunity as it allows infinitely reconfigurable paths, with high parallelizability. We propose here to investigate the possibility of using TFT array devices for high throughput cell manipulation using EWOD. A COMSOL based 2D simulation coupled with a MATLAB algorithm was used to simulate the contact angle modulation, displacement and mixing of droplets. These simulations were confirmed by experimental results. The EWOD technique was applied to a droplet of culture medium containing HepG2 carcinoma cells and demonstrated no negative effects on the viability of the cells. This confirms the possibility of applying EWOD techniques to cellular applications, such as parallel cell analysis.

  12. Universality Results for Multi-Layer Hele-Shaw and Porous Media Flows

    NASA Astrophysics Data System (ADS)

    Daripa, Prabir

    2012-11-01

    Saffman-Taylor instability is a well known viscosity driven instability of an interface. Motivated by a need to understand the effect of various injection policies currently in practice for chemical enhanced oil recovery, we study linear stability of displacement processes in a Hele-Shaw cell involving injection of an arbitrary number of immiscible fluid phases in succession. This is a problem involving many interfaces. Universal stability results have been obtained for this multi-layer (multi-region) flow in the sense that the results hold with arbitrary number of interfaces. These stability results have been applied to design injection policies that are considerably less unstable than the pure Saffman-Taylor case. In particular, we determine specific values of the viscosity of the fluid layers corresponding to smallest unstable band. Moreover, we discuss universal selection principle of optimal viscous profiles. The talk is based on following papers. Qatar National Fund (a member of the Qatar Foundation).

  13. A Mechanics-Based Framework Leading to Improved Diagnosis and Treatment of Hydrocephalus

    NASA Astrophysics Data System (ADS)

    Cohen, Benjamin; Soren, Vedels; Wagshul, Mark; Egnor, Michael; Voorhees, Abram; Wei, Timothy

    2007-11-01

    Hydrocephalus is defined as an accumulation of cerebrospinal fluid (CSF) in the cranium, at the expense of brain tissue. The result is a disruption of the normal pressure and/or flow dynamics of the intracranial blood and CSF. We seek to introduce integral control volume analysis to the study of hydrocephalus. The goal is to provide a first principles framework to integrate a broad spectrum of sometimes disparate investigations into a highly complex, multidisciplinary problem. The general technique for the implementation of control volumes to hydrocephalus will be presented. This includes factors faced in choosing control volumes and making the required measurements to evaluate mass and momentum conservation. In addition, the use of our Digital Particle Image Velocimetry (DPIV) processing program has been extended to measure the displacement of the ventricles' walls from Magnetic Resonance (MR) images. This is done to determine the volume change of the intracranial fluid spaces.

  14. Fluid displacement fronts in porous media: pore scale interfacial jumps, pressure bursts and acoustic emissions

    NASA Astrophysics Data System (ADS)

    Moebius, Franziska; Or, Dani

    2014-05-01

    The macroscopically smooth and regular motion of fluid fronts in porous media is composed of numerous rapid pore-scale interfacial jumps and pressure bursts that involve intense interfacial energy release in the form of acoustic emissions. The characteristics of these pore scale events affect residual phase entrapment and transport properties behind the front. We present experimental studies using acoustic emission technique (AE), rapid imaging, and liquid pressure measurements to characterize these processes during drainage and imbibition in simple porous media. Imbibition and drainage produce different AE signatures (AE amplitudes obey a power law). For rapid drainage, AE signals persist long after cessation of front motion reflecting fluid redistribution and interfacial relaxation. Imaging revealed that the velocity of interfacial jumps often exceeds front velocity by more than 50 fold and is highly inertial component (Re>1000). Pore invasion volumes reduced deduced from pressure fluctuations waiting times (for constant withdrawal rates) show remarkable agreement with geometrically-deduced pore volumes. Discrepancies between invaded volumes and geometrical pores increase with increasing capillary numbers due to constraints on evacuation opportunity times and simultaneous invasion events. A mechanistic model for interfacial motions in a pore-throat network was developed to investigate interfacial dynamics focusing on the role of inertia. Results suggest that while pore scale dynamics were sensitive to variations in pore geometry and boundary conditions, inertia exerted only a minor effect on phase entrapment. The study on pore scale invasion events paints a complex picture of rapid and inertial motions and provides new insights on mechanisms at displacement fronts that are essential for improved macroscopic description of multiphase flows in porous media.

  15. Adaptive sliding mode back-stepping pitch angle control of a variable-displacement pump controlled pitch system for wind turbines.

    PubMed

    Yin, Xiu-xing; Lin, Yong-gang; Li, Wei; Liu, Hong-wei; Gu, Ya-jing

    2015-09-01

    A variable-displacement pump controlled pitch system is proposed to mitigate generator power and flap-wise load fluctuations for wind turbines. The pitch system mainly consists of a variable-displacement hydraulic pump, a fixed-displacement hydraulic motor and a gear set. The hydraulic motor can be accurately regulated by controlling the pump displacement and fluid flows to change the pitch angle through the gear set. The detailed mathematical representation and dynamic characteristics of the proposed pitch system are thoroughly analyzed. An adaptive sliding mode pump displacement controller and a back-stepping stroke piston controller are designed for the proposed pitch system such that the resulting pitch angle tracks its desired value regardless of external disturbances and uncertainties. The effectiveness and control efficiency of the proposed pitch system and controllers have been verified by using realistic dataset of a 750 kW research wind turbine. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Modeling mechanical properties of a shear thickening fluid damper based on phase transition theory

    NASA Astrophysics Data System (ADS)

    Wei, Minghai; Lin, Kun; Guo, Qian

    2018-03-01

    Shear thickening fluids (STFs) are highly concentrated colloidal suspensions consisting of monodisperse nano-particles suspended in a carrying fluid, and have the capacity to display both flowable and rigid behaviors, when subjected to sudden stimuli. In that process, the external energy that acts on an STF can be dissipated quickly. The aim of this study is to present a dynamic model of a damper filled with STF that can be directly used in control engineering fields. To this end, shear stress during phase transition of the STF material is chosen as an internal variable. A non-convex function with bifurcation behavior is used to describe the phase transitioning of STF by determining the relationship between the behavioral characteristics of the microscopic phase and macroscopic damping force. This model is able to predict force-velocity and force-displacement relationships as functions of the loading frequency. Efficacy of the model is demonstrated via comparison with experimental results from previous studies. In addition, the results confirm the hypothesis regarding the occurrence of STF phase transitioning when subject to shear stress.

  17. Fluid-structure analysis of a flexible flapping airfoil at low Reynolds number flow

    NASA Astrophysics Data System (ADS)

    Unger, Ralf; Haupt, Matthias C.; Horst, Peter; Radespiel, Rolf

    2012-01-01

    In this paper, a coupling simulation methodology is applied to investigate the fluid flow around a light and flexible airfoil based on a handfoil of a seagull. A finite element model of the flexible airfoil is fully coupled to the flow solver by using a load and displacement transfer as well as a fluid grid deformation algorithm. The flow field is characterized by a laminar-turbulent transition at a Reynolds number of Re=100 000, which takes place along a laminar separation bubble. An unsteady Reynolds-averaged Navier-Stokes flow solver is used to take this transition process into account by comparison of a critical N-factor with the N-factor computed by the eN-method. Results of computations have shown that the flexibility of the airfoil has a major influence on the thrust efficiency, the mean drag and lift, and the location of laminar-turbulent transition. The thrust efficiency can be considerably improved by increasing the plunging amplitude and by using a time dependent airfoil stiffness, inspired by the muscle contraction of birds.

  18. Toward numerical simulations of fluid-structure interactions for investigation of obstructive sleep apnea

    NASA Astrophysics Data System (ADS)

    Huang, Chien-Jung; Huang, Shao-Ching; White, Susan M.; Mallya, Sanjay M.; Eldredge, Jeff D.

    2016-04-01

    Obstructive sleep apnea (OSA) is a medical condition characterized by repetitive partial or complete occlusion of the airway during sleep. The soft tissues in the airway of OSA patients are prone to collapse under the low-pressure loads incurred during breathing. This paper describes efforts toward the development of a numerical tool for simulation of air-tissue interactions in the upper airway of patients with sleep apnea. A procedure by which patient-specific airway geometries are segmented and processed from dental cone-beam CT scans into signed distance fields is presented. A sharp-interface embedded boundary method based on the signed distance field is used on Cartesian grids for resolving the airflow in the airway geometries. For simulation of structure mechanics with large expected displacements, a cut-cell finite element method with nonlinear Green strains is used. The fluid and structure solvers are strongly coupled with a partitioned iterative algorithm. Preliminary results are shown for flow simulation inside the three-dimensional rigid upper airway of patients with obstructive sleep apnea. Two validation cases for the fluid-structure coupling problem are also presented.

  19. Calorimetric thermal-vacuum performance characterization of the BAe 80 K space cryocooler

    NASA Technical Reports Server (NTRS)

    Kotsubo, V. Y.; Johnson, D. L.; Ross, R. G., Jr.

    1992-01-01

    A comprehensive characterization program is underway at JPL to generate test data on long-life, miniature Stirling-cycle cryocoolers for space application. The key focus of this paper is on the thermal performance of the British Aerospace (BAe) 80 K split-Stirling-cycle cryocooler as measured in a unique calorimetric thermal-vacuum test chamber that accurately simulates the heat-transfer interfaces of space. Two separate cooling fluid loops provide precise individual control of the compressor and displacer heatsink temperatures. In addition, heatflow transducers enable calorimetric measurements of the heat rejected separately by the compressor and displacer. Cooler thermal performance has been mapped for coldtip temperatures ranging from below 45 K to above 150 K, for heatsink temperatures ranging from 280 K to 320 K, and for a wide variety of operational variables including compressor-displacer phase, compressor-displacer stroke, drive frequency, and piston-displacer dc offset.

  20. Computational comparison of aortic root stresses in presence of stentless and stented aortic valve bio-prostheses.

    PubMed

    Nestola, M G C; Faggiano, E; Vergara, C; Lancellotti, R M; Ippolito, S; Antona, C; Filippi, S; Quarteroni, A; Scrofani, R

    2017-02-01

    We provide a computational comparison of the performance of stentless and stented aortic prostheses, in terms of aortic root displacements and internal stresses. To this aim, we consider three real patients; for each of them, we draw the two prostheses configurations, which are characterized by different mechanical properties and we also consider the native configuration. For each of these scenarios, we solve the fluid-structure interaction problem arising between blood and aortic root, through Finite Elements. In particular, the Arbitrary Lagrangian-Eulerian formulation is used for the numerical solution of the fluid-dynamic equations and a hyperelastic material model is adopted to predict the mechanical response of the aortic wall and the two prostheses. The computational results are analyzed in terms of aortic flow, internal wall stresses and aortic wall/prosthesis displacements; a quantitative comparison of the mechanical behavior of the three scenarios is reported. The numerical results highlight a good agreement between stentless and native displacements and internal wall stresses, whereas higher/non-physiological stresses are found for the stented case.

  1. Lagrangian averages, averaged Lagrangians, and the mean effects of fluctuations in fluid dynamics.

    PubMed

    Holm, Darryl D.

    2002-06-01

    We begin by placing the generalized Lagrangian mean (GLM) equations for a compressible adiabatic fluid into the Euler-Poincare (EP) variational framework of fluid dynamics, for an averaged Lagrangian. This is the Lagrangian averaged Euler-Poincare (LAEP) theorem. Next, we derive a set of approximate small amplitude GLM equations (glm equations) at second order in the fluctuating displacement of a Lagrangian trajectory from its mean position. These equations express the linear and nonlinear back-reaction effects on the Eulerian mean fluid quantities by the fluctuating displacements of the Lagrangian trajectories in terms of their Eulerian second moments. The derivation of the glm equations uses the linearized relations between Eulerian and Lagrangian fluctuations, in the tradition of Lagrangian stability analysis for fluids. The glm derivation also uses the method of averaged Lagrangians, in the tradition of wave, mean flow interaction. Next, the new glm EP motion equations for incompressible ideal fluids are compared with the Euler-alpha turbulence closure equations. An alpha model is a GLM (or glm) fluid theory with a Taylor hypothesis closure. Such closures are based on the linearized fluctuation relations that determine the dynamics of the Lagrangian statistical quantities in the Euler-alpha equations. Thus, by using the LAEP theorem, we bridge between the GLM equations and the Euler-alpha closure equations, through the small-amplitude glm approximation in the EP variational framework. We conclude by highlighting a new application of the GLM, glm, and alpha-model results for Lagrangian averaged ideal magnetohydrodynamics. (c) 2002 American Institute of Physics.

  2. Simulation results for a multirate mass transfer modell for immiscible displacement of two fluids in highly heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    Tecklenburg, Jan; Neuweiler, Insa; Dentz, Marco; Carrera, Jesus; Geiger, Sebastian

    2013-04-01

    Flow processes in geotechnical applications do often take place in highly heterogeneous porous media, such as fractured rock. Since, in this type of media, classical modelling approaches are problematic, flow and transport is often modelled using multi-continua approaches. From such approaches, multirate mass transfer models (mrmt) can be derived to describe the flow and transport in the "fast" or mobile zone of the medium. The porous media is then modeled with one mobile zone and multiple immobile zones, where the immobile zones are connected to the mobile zone by single rate mass transfer. We proceed from a mrmt model for immiscible displacement of two fluids, where the Buckley-Leverett equation is expanded by a sink-source-term which is nonlocal in time. This sink-source-term models exchange with an immobile zone with mass transfer driven by capillary diffusion. This nonlinear diffusive mass transfer can be approximated for particular imbibition or drainage cases by a linear process. We present a numerical scheme for this model together with simulation results for a single fracture test case. We solve the mrmt model with the finite volume method and explicit time integration. The sink-source-term is transformed to multiple single rate mass transfer processes, as shown by Carrera et. al. (1998), to make it local in time. With numerical simulations we studied immiscible displacement in a single fracture test case. To do this we calculated the flow parameters using information about the geometry and the integral solution for two phase flow by McWorther and Sunnada (1990). Comparision to the results of the full two dimensional two phase flow model by Flemisch et. al. (2011) show good similarities of the saturation breakthrough curves. Carrera, J., Sanchez-Vila, X., Benet, I., Medina, A., Galarza, G., and Guimera, J.: On matrix diffusion: formulations, solution methods and qualitative effects, Hydrogeology Journal, 6, 178-190, 1998. Flemisch, B., Darcis, M., Erbertseder, K., Faigle, B., Lauser, A. et al.: Dumux: Dune for multi-{Phase, Component, Scale, Physics, ...} flow and transport in porous media, Advances in Water Resources, 34, 1102-1112, 2011. McWhorter, D. B., and Sunada, D. K.: Exact integral solutions for two-phase flow, Water Resources Research, 26(3), 399-413, 1990.

  3. Acoustic streaming: an arbitrary Lagrangian–Eulerian perspective

    PubMed Central

    Nama, Nitesh; Huang, Tony Jun; Costanzo, Francesco

    2017-01-01

    We analyse acoustic streaming flows using an arbitrary Lagrangian Eulerian (ALE) perspective. The formulation stems from an explicit separation of time scales resulting in two subproblems: a first-order problem, formulated in terms of the fluid displacement at the fast scale, and a second-order problem, formulated in terms of the Lagrangian flow velocity at the slow time scale. Following a rigorous time-averaging procedure, the second-order problem is shown to be intrinsically steady, and with exact boundary conditions at the oscillating walls. Also, as the second-order problem is solved directly for the Lagrangian velocity, the formulation does not need to employ the notion of Stokes drift, or any associated post-processing, thus facilitating a direct comparison with experiments. Because the first-order problem is formulated in terms of the displacement field, our formulation is directly applicable to more complex fluid–structure interaction problems in microacoustofluidic devices. After the formulation’s exposition, we present numerical results that illustrate the advantages of the formulation with respect to current approaches. PMID:29051631

  4. Particle image velocimetry for the Surface Tension Driven Convection Experiment using a particle displacement tracking technique

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.; Pline, Alexander D.

    1991-01-01

    The Surface Tension Driven Convection Experiment (STDCE) is a Space Transportation System flight experiment to study both transient and steady thermocapillary fluid flows aboard the USML-1 Spacelab mission planned for 1992. One of the components of data collected during the experiment is a video record of the flow field. This qualitative data is then quantified using an all electronic, two-dimensional particle image velocimetry technique called particle displacement tracking (PDT) which uses a simple space domain particle tracking algorithm. The PDT system is successful in producing velocity vector fields from the raw video data. Application of the PDT technique to a sample data set yielded 1606 vectors in 30 seconds of processing time. A bottom viewing optical arrangement is used to image the illuminated plane, which causes keystone distortion in the final recorded image. A coordinate transformation was incorporated into the system software to correct this viewing angle distortion. PDT processing produced 1.8 percent false identifications, due to random particle locations. A highly successful routine for removing the false identifications was also incorporated, reducing the number of false identifications to 0.2 percent.

  5. Particle image velocimetry for the surface tension driven convection experiment using a particle displacement tracking technique

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.; Pline, Alexander D.

    1991-01-01

    The Surface Tension Driven Convection Experiment (STDCE) is a Space Transportation System flight experiment to study both transient and steady thermocapillary fluid flows aboard the USML-1 Spacelab mission planned for 1992. One of the components of data collected during the experiment is a video record of the flow field. This qualitative data is then quantified using an all electronic, two-dimensional particle image velocimetry technique called particle displacement tracking (PDT) which uses a simple space domain particle tracking algorithm. The PDT system is successful in producing velocity vector fields from the raw video data. Application of the PDT technique to a sample data set yielded 1606 vectors in 30 seconds of processing time. A bottom viewing optical arrangement is used to image the illuminated plane, which causes keystone distortion in the final recorded image. A coordinate transformation was incorporated into the system software to correct this viewing angle distortion. PDT processing produced 1.8 percent false identifications, due to random particle locations. A highly successful routine for removing the false identifications was also incorporated, reducing the number of false identifications to 0.2 percent.

  6. Hydrodynamic instabilities of flows involving melting in under-saturated porous media

    NASA Astrophysics Data System (ADS)

    Sajjadi, M.; Azaiez, J.

    2016-03-01

    The process of melting in partially saturated porous media is modeled for flow displacements prone to hydrodynamic instabilities due to adverse mobility ratios. The effects of the development of instabilities on the melting process are investigated through numerical simulations as well as analytical solution to unravel the physics of the flow. The effects of melting parameters, namely, the melting potential of the fluid, the rate of heat transfer to the frozen phase, and the saturation of the frozen material along with the parameters defining the viscous forces, i.e., the thermal and solutal log mobility ratios are examined. Results are presented for different scenarios and the enhancement or attenuation of instabilities are discussed based on the dominant physical mechanisms. Beside an extensive qualitative analysis, the performance of different displacement scenarios is compared with respect to the melt production and the extent of contribution of instability to the enhancement of melting. It is shown that the hydrodynamic instabilities tend in general to enhance melting but the rate of enhancement depends on the interplay between the instabilities and melting at the thermal front. A larger melting potential and a smaller saturation of the frozen material tend to increase the contribution of instability to melting.

  7. Holographic interferometry applied to the measurement of displacements of the interior points of transparent bodies.

    PubMed

    Sciammarella, C A; Gilbert, J A

    1976-09-01

    Utilizing the light scattering property of transparent media, holographic interferometry is applied to the measurement of displacement at the interior planes of three dimensional bodies. The use of a double beam illumination and the introduction of a fictitious displacement make it feasible to obtain information corresponding to components of displacement projected on the scattering plane. When the proposed techniques are invoked, it is possible to eliminate the use of a matching index of refraction fluid in many problems involving symmetrically loaded prismatic bodies. Scattered light holographic interferometry is limited in its use to small changes in the index of refraction and to low values of relative retardation. In spite of these restrictions, a large number of technical problems in both statics and dynamics can be solved.

  8. Numerical simulation and comparison of two ventilation methods for a restaurant - displacement vs mixed flow ventilation

    NASA Astrophysics Data System (ADS)

    Chitaru, George; Berville, Charles; Dogeanu, Angel

    2018-02-01

    This paper presents a comparison between a displacement ventilation method and a mixed flow ventilation method using computational fluid dynamics (CFD) approach. The paper analyses different aspects of the two systems, like the draft effect in certain areas, the air temperatureand velocity distribution in the occupied zone. The results highlighted that the displacement ventilation system presents an advantage for the current scenario, due to the increased buoyancy driven flows caused by the interior heat sources. For the displacement ventilation case the draft effect was less prone to appear in the occupied zone but the high heat emissions from the interior sources have increased the temperature gradient in the occupied zone. Both systems have been studied in similar conditions, concentrating only on the flow patterns for each case.

  9. Thermal inertia and reversing buoyancy in flow in porous media

    NASA Astrophysics Data System (ADS)

    Menand, Thierry; Raw, Alan; Woods, Andrew W.

    2003-03-01

    The displacement of fluids through porous rocks is fundamental for the recharge of geothermal and hydrocarbon reservoirs [Grant et al., 1982; Lake, 1989], for contaminant dispersal through the groundwater [Bear, 1972] and in controlling mineral reactions in permeable rocks [Phillips, 1991]. In many cases, the buoyancy force associated with density differences between the formation fluid and the displacing fluid controls the rate and pattern of flow through the permeable rock [Phillips, 1991; Barenblatt, 1996; Turcotte and Schubert, 2002]. Here, using new laboratory experiments, we establish that a striking range of different flow patterns may develop depending on whether this density contrast is associated with differences in temperature and/or composition between the two fluids. Owing to the effects of thermal inertia in a porous rock, thermal fronts lag behind compositional fronts [Woods and Fitzgerald, 1993; Turcotte and Schubert, 2002], so that two zones of different density develop in the region flooded with injected fluid. This can lead to increasing, decreasing or even reversing buoyancy in the injected liquid; in the latter case it may then form a double-flood front, spreading along both the upper and lower boundary of the rock. Recognition of these different flow regimes is key for predicting sweep efficiency and dispersal patterns in natural and engineered flows, and offers new opportunities for the enhanced recovery of natural resources in porous rocks.

  10. Pore-Scale Investigation on Stress-Dependent Characteristics of Granular Packs and Their Impact on Multiphase Fluid Distribution

    NASA Astrophysics Data System (ADS)

    Torrealba, V.; Karpyn, Z.; Yoon, H.; Hart, D. B.; Klise, K. A.

    2013-12-01

    The pore-scale dynamics that govern multiphase flow under variable stress conditions are not well understood. This lack of fundamental understanding limits our ability to quantitatively predict multiphase flow and fluid distributions in natural geologic systems. In this research, we focus on pore-scale, single and multiphase flow properties that impact displacement mechanisms and residual trapping of non-wetting phase under varying stress conditions. X-ray micro-tomography is used to image pore structures and distribution of wetting and non-wetting fluids in water-wet synthetic granular packs, under dynamic load. Micro-tomography images are also used to determine structural features such as medial axis, surface area, and pore body and throat distribution; while the corresponding transport properties are determined from Lattice-Boltzmann simulations performed on lattice replicas of the imaged specimens. Results are used to investigate how inter-granular deformation mechanisms affect fluid displacement and residual trapping at the pore-scale. This will improve our understanding of the dynamic interaction of mechanical deformation and fluid flow during enhanced oil recovery and geologic CO2 sequestration. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  11. Fast imaging of laboratory core floods using 3D compressed sensing RARE MRI.

    PubMed

    Ramskill, N P; Bush, I; Sederman, A J; Mantle, M D; Benning, M; Anger, B C; Appel, M; Gladden, L F

    2016-09-01

    Three-dimensional (3D) imaging of the fluid distributions within the rock is essential to enable the unambiguous interpretation of core flooding data. Magnetic resonance imaging (MRI) has been widely used to image fluid saturation in rock cores; however, conventional acquisition strategies are typically too slow to capture the dynamic nature of the displacement processes that are of interest. Using Compressed Sensing (CS), it is possible to reconstruct a near-perfect image from significantly fewer measurements than was previously thought necessary, and this can result in a significant reduction in the image acquisition times. In the present study, a method using the Rapid Acquisition with Relaxation Enhancement (RARE) pulse sequence with CS to provide 3D images of the fluid saturation in rock core samples during laboratory core floods is demonstrated. An objective method using image quality metrics for the determination of the most suitable regularisation functional to be used in the CS reconstructions is reported. It is shown that for the present application, Total Variation outperforms the Haar and Daubechies3 wavelet families in terms of the agreement of their respective CS reconstructions with a fully-sampled reference image. Using the CS-RARE approach, 3D images of the fluid saturation in the rock core have been acquired in 16min. The CS-RARE technique has been applied to image the residual water saturation in the rock during a water-water displacement core flood. With a flow rate corresponding to an interstitial velocity of vi=1.89±0.03ftday(-1), 0.1 pore volumes were injected over the course of each image acquisition, a four-fold reduction when compared to a fully-sampled RARE acquisition. Finally, the 3D CS-RARE technique has been used to image the drainage of dodecane into the water-saturated rock in which the dynamics of the coalescence of discrete clusters of the non-wetting phase are clearly observed. The enhancement in the temporal resolution that has been achieved using the CS-RARE approach enables dynamic transport processes pertinent to laboratory core floods to be investigated in 3D on a time-scale and with a spatial resolution that, until now, has not been possible. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Limited fluid in carbonate-shale hosted thrust faults of the Rocky Mountain Fold-and-Thrust Belt (Sun River Canyon, Montana)

    NASA Astrophysics Data System (ADS)

    OBrien, V. J.; Kirschner, D. L.

    2001-12-01

    It is widely accepted that fluids play a fundamental role in the movement of thrust faults in foreland fold-and-thrust belts. We have begun a combined structure-geochemistry study of faults in the Rocky Mountain fold-and-thrust belt in order to provide more insight into the occurrence and role(s) of fluid in the deformation of thrust faults. We focus on faults exposed in the Sun River Canyon of Montana, an area that contains some of the best exposures of the Rocky Mountain fold-and-thrust belt in the U.S. Samples were collected from two well exposed thrusts in the Canyon -- the Diversion and French thrusts. Both faults have thrust Mississippian dolostones over Cretaceous shales. Displacement exceeds several kilometers. Numerous small-displacement, subsidiary faults characterize the deformation in the hanging wall carbonates. The footwall shales accommodated more penetrative deformation, resulting in well developed foliation and small-scale folds. Stable isotope data have been obtained from host rock samples and veins from these faults. The data delimit an arcuate trend in oxygen-carbon isotope space. Approximately 50 host rock carbonate samples from the hanging walls have carbon and oxygen isotope values ranging from +3 to 0 and 28 to 19 per mil, respectively. There is no apparent correlation between isotopic values and distance from thrust fault at either locality. Fifteen samples of fibrous slickensides on small-displacement faults in the hanging walls have similar carbon and lower oxygen isotope values (down to 16 per mil). And 15 veins that either post-date thrusting or are of indeterminate origin have carbon and oxygen isotope values down to -3 and12 per mil, respectively. The isotopic data collected during the initial stages of this project are similar to some results obtained several hundred kilometers north in the Front Ranges of the Canadian Rockies (Kirschner and Kennedy, JGR 2000) and in carbonate fold-thrust belts of the Swiss Helvetic Alps and Italian Apennines. These data are consistent with limited infiltration of fluid through fractures and minor faults into hanging walls of large-displacement thrust faults.

  13. Simulating the effect of hydrate dissociation on wellhead stability during oil and gas development in deepwater

    NASA Astrophysics Data System (ADS)

    Li, Qingchao; Cheng, Yuanfang; Zhang, Huaiwen; Yan, Chuanliang; Liu, Yuwen

    2018-02-01

    It is well known that methane hydrate has been identified as an alternative resource due to its massive reserves and clean property. However, hydrate dissociation during oil and gas development (OGD) process in deep water can affect the stability of subsea equipment and formation. Currently, there is a serious lack of studies over quantitative assessment on the effects of hydrate dissociation on wellhead stability. In order to solve this problem, ABAQUS finite element software was used to develop a model and to evaluate the behavior of wellhead caused by hydrate dissociation. The factors that affect the wellhead stability include dissociation range, depth of hydrate formation and mechanical properties of dissociated hydrate region. Based on these, series of simulations were carried out to determine the wellhead displacement. The results revealed that, continuous dissociation of hydrate in homogeneous and isotropic formations can causes the non-linear increment in vertical displacement of wellhead. The displacement of wellhead showed good agreement with the settlement of overlying formations under the same conditions. In addition, the shallower and thicker hydrate formation can aggravate the influence of hydrate dissociation on the wellhead stability. Further, it was observed that with the declining elastic modulus and Poisson's ratio, the wellhead displacement increases. Hence, these findings not only confirm the effect of hydrate dissociation on the wellhead stability, but also lend support to the actions, such as cooling the drilling fluid, which can reduce the hydrate dissociation range and further make deepwater operations safer and more efficient.

  14. Vibration control of a ship engine system using high-load magnetorheological mounts associated with a new indirect fuzzy sliding mode controller

    NASA Astrophysics Data System (ADS)

    Phu, Do Xuan; Choi, Seung-Bok

    2015-02-01

    In this work, a new high-load magnetorheological (MR) fluid mount system is devised and applied to control vibration in a ship engine. In the investigation of vibration-control performance, a new modified indirect fuzzy sliding mode controller is formulated and realized. The design of the proposed MR mount is based on the flow mode of MR fluid, and it includes two separated coils for generating a magnetic field. An optimization process is carried out to achieve maximal damping force under certain design constraints, such as the allowable height of the mount. As an actuating smart fluid, a new plate-like iron-particle-based MR fluid is used, instead of the conventional spherical iron-particle-based MR fluid. After evaluating the field-dependent yield stress of the MR fluid, the field-dependent damping force required to control unwanted vibration in the ship engine is determined. Subsequently, an appropriate-sized MR mount is manufactured and its damping characteristics are evaluated. After confirming the sufficient damping force level of the manufactured MR mount, a medium-sized ship engine mount system consisting of eight MR mounts is established, and its dynamic governing equations are derived. A new modified indirect fuzzy sliding mode controller is then formulated and applied to the engine mount system. The displacement and velocity responses show that the unwanted vibrations of the ship engine system can be effectively controlled in both the axial and radial directions by applying the proposed control methodology.

  15. Fault Lubrication and Earthquake Propagation in Thermally Unstable Rocks

    NASA Astrophysics Data System (ADS)

    de Paola, Nicola; Hirose, Takehiro; Mitchell, Tom; di Toro, Giulio; Viti, Cecilia; Shimamoto, Toshiko

    2010-05-01

    During earthquake propagation in thermally unstable rocks, the frictional heat generated can induce thermal reactions which lead to chemical and physical changes in the slip zone. We performed laboratory friction experiments on thermally unstable minerals (gypsum, dolomite and calcite) at about 1 m/s slip velocities, more than 1 m displacements and calculated temperature rise above 500 C degrees. These conditions are typical during the propagation of large earthquakes. The main findings of our experimental work are: 1) Dramatic fault weakening is characterized by a dynamic frictional strength drop up to 90% of the initial static value in the Byerlee's range. 2) Seismic source parameters, calculated from our experimental results, match those obtained by modelling of seismological data from the 1997 Cofliorito earthquake nucleated in carbonate rocks in Italy (i.e. same rocks used in the friction experiments). Fault lubrication observed during the experiments is controlled by the superposition of multiple, thermally-activated, slip weakening mechanisms (e.g., flash heating, thermal pressurization and nanoparticle lubrication). The integration of mechanical and CO2 emission data, temperature rise calculations and XRPD analyses suggests that flash heating is not the main dynamic slip weakening process. This process was likely inhibited very soon (t < 1s) for displacements d < 0.20 m, when intense grain size reduction by both cataclastic and chemical/thermal processes took place. Conversely, most of the dynamic weakening observed was controlled by thermal pressurization and nanoparticle lubrication processes. The dynamic shear strength of experimental faults was reduced when fluids (CO2, H2O) were trapped and pressurized within the slip zone, in accord with the effective normal stress principle. The fluids were not initially present in the slip zone, but were released by decarbonation (dolomite and Mg-rich calcite) and dehydration (gypsum) reactions, both activated by frictional heating during seismic slip. The dynamic weakening effects of nanoparticles (e.g. powder lubrication) are still unclear due to the poorly understood mechanical properties of nanoparticles at high velocities and temperatures, typical of seismic slip. The experimental results improve our understanding of the controls exerted on the dynamic frictional strength of faults by the coseismic operation of chemical (mineral decomposition) and physical (grain size reduction, fluids release and pressurization) processes. The estimation of this parameter is out of the range of seismological studies, although it controls the magnitude of the stress drop, the seismic fault heat flow and the relative partitioning of the earthquake energy budget, which are all controversial and still debated issues in the scientific community.

  16. Fault Lubrication and Earthquake Propagation in Thermally Unstable Rocks

    NASA Astrophysics Data System (ADS)

    de Paola, N.; Hirose, T.; Mitchell, T. M.; di Toro, G.; Viti, C.; Shimamoto, T.

    2009-12-01

    During earthquake propagation in thermally unstable rocks, the frictional heat generated can induce thermal reactions which lead to chemical and physical changes in the slip zone. We performed laboratory friction experiments on thermally unstable minerals (gypsum, dolomite and calcite) at about 1 m/s slip velocities, more than 1 m displacements and calculated temperature rise above 500 C degrees. These conditions are typical during the propagation of large earthquakes. The main findings of our experimental work are: 1) Dramatic fault weakening is characterized by a dynamic frictional strength drop up to 90% of the initial static value in the Byerlee’s range. 2) Seismic source parameters, calculated from our experimental results, match those obtained by modelling of seismological data from the 1997 Cofliorito earthquake nucleated in carbonate rocks in Italy (i.e. same rocks used in the friction experiments). Fault lubrication observed during the experiments is controlled by the superposition of multiple, thermally-activated, slip weakening mechanisms (e.g., flash heating, thermal pressurization and nanoparticle lubrication). The integration of mechanical and CO2 emission data, temperature rise calculations and XRPD analyses suggests that flash heating is not the main dynamic slip weakening process. This process was likely inhibited very soon (t < 1s) for displacements d < 0.20 m, when intense grain size reduction by both cataclastic and chemical/thermal processes took place. Conversely, most of the dynamic weakening observed was controlled by thermal pressurization and nanoparticle lubrication processes. The dynamic shear strength of experimental faults was reduced when fluids (CO2, H2O) were trapped and pressurized within the slip zone, in accord with the effective normal stress principle. The fluids were not initially present in the slip zone, but were released by decarbonation (dolomite and Mg-rich calcite) and dehydration (gypsum) reactions, both activated by frictional heating during seismic slip. The dynamic weakening effects of nanoparticles (e.g. powder lubrication) are still unclear due to the poorly understood mechanical properties of nanoparticles at high velocities and temperatures, typical of seismic slip. The experimental results improve our understanding of the controls exerted on the dynamic frictional strength of faults by the coseismic operation of chemical (mineral decomposition) and physical (grain size reduction, fluids release and pressurization) processes. The estimation of this parameter is out of the range of seismological studies, although it controls the magnitude of the stress drop, the seismic fault heat flow and the relative partitioning of the earthquake energy budget, which are all controversial and still debated issues in the scientific community.

  17. A New Screening Methodology for Improved Oil Recovery Processes Using Soft-Computing Techniques

    NASA Astrophysics Data System (ADS)

    Parada, Claudia; Ertekin, Turgay

    2010-05-01

    The first stage of production of any oil reservoir involves oil displacement by natural drive mechanisms such as solution gas drive, gas cap drive and gravity drainage. Typically, improved oil recovery (IOR) methods are applied to oil reservoirs that have been depleted naturally. In more recent years, IOR techniques are applied to reservoirs even before their natural energy drive is exhausted by primary depletion. Descriptive screening criteria for IOR methods are used to select the appropriate recovery technique according to the fluid and rock properties. This methodology helps in assessing the most suitable recovery process for field deployment of a candidate reservoir. However, the already published screening guidelines neither provide information about the expected reservoir performance nor suggest a set of project design parameters, which can be used towards the optimization of the process. In this study, artificial neural networks (ANN) are used to build a high-performance neuro-simulation tool for screening different improved oil recovery techniques: miscible injection (CO2 and N2), waterflooding and steam injection processes. The simulation tool consists of proxy models that implement a multilayer cascade feedforward back propagation network algorithm. The tool is intended to narrow the ranges of possible scenarios to be modeled using conventional simulation, reducing the extensive time and energy spent in dynamic reservoir modeling. A commercial reservoir simulator is used to generate the data to train and validate the artificial neural networks. The proxy models are built considering four different well patterns with different well operating conditions as the field design parameters. Different expert systems are developed for each well pattern. The screening networks predict oil production rate and cumulative oil production profiles for a given set of rock and fluid properties, and design parameters. The results of this study show that the networks are able to recognize the strong correlation between the displacement mechanism and the reservoir characteristics as they effectively forecast hydrocarbon production for different types of reservoir undergoing diverse recovery processes. The artificial neuron networks are able to capture the similarities between different displacement mechanisms as same network architecture is successfully applied in both CO2 and N2 injection. The neuro-simulation application tool is built within a graphical user interface to facilitate the display of the results. The developed soft-computing tool offers an innovative approach to design a variety of efficient and feasible IOR processes by using artificial intelligence. The tool provides appropriate guidelines to the reservoir engineer, it facilitates the appraisal of diverse field development strategies for oil reservoirs, and it helps to reduce the number of scenarios evaluated with conventional reservoir simulation.

  18. Hydraulic properties of 3D rough-walled fractures during shearing: An experimental study

    NASA Astrophysics Data System (ADS)

    Yin, Qian; Ma, Guowei; Jing, Hongwen; Wang, Huidong; Su, Haijian; Wang, Yingchao; Liu, Richeng

    2017-12-01

    This study experimentally analyzed the influence of shear processes on nonlinear flow behavior through 3D rough-walled rock fractures. A high-precision apparatus was developed to perform stress-dependent fluid flow tests of fractured rocks. Then, water flow tests on rough-walled fractures with different mechanical displacements were conducted. At each shear level, the hydraulic pressure ranged from 0 to 0.6 MPa, and the normal load varied from 7 to 35 kN. The results show that (i) the relationship between the volumetric flow rate and hydraulic gradient of rough-walled fractures can be well fit using Forchheimer's law. Notably, both the linear and nonlinear coefficients in Forchheimer's law decrease during shearing; (ii) a sixth-order polynomial function is used to evaluate the transmissivity based on the Reynolds number of fractures during shearing. The transmissivity exhibits a decreasing trend as the Reynolds number increases and an increasing trend as the shear displacement increases; (iii) the critical hydraulic gradient, critical Reynolds number and equivalent hydraulic aperture of the rock fractures all increase as the shear displacement increases. When the shear displacement varies from 0 to 15 mm, the critical hydraulic gradient ranges from 0.3 to 2.2 for a normal load of 7 kN and increases to 1.8-8.6 for a normal load of 35 kN; and (iv) the Forchheimer law results are evaluated by plotting the normalized transmissivity of the fractures during shearing against the Reynolds number. An increase in the normal load shifts the fitted curves downward. Additionally, the Forchheimer coefficient β decreases with the shear displacement but increases with the applied normal load.

  19. Role of medium heterogeneity and viscosity contrast in miscible flow regimes and mixing zone growth: A computational pore-scale approach

    NASA Astrophysics Data System (ADS)

    Afshari, Saied; Hejazi, S. Hossein; Kantzas, Apostolos

    2018-05-01

    Miscible displacement of fluids in porous media is often characterized by the scaling of the mixing zone length with displacement time. Depending on the viscosity contrast of fluids, the scaling law varies between the square root relationship, a sign for dispersive transport regime during stable displacement, and the linear relationship, which represents the viscous fingering regime during an unstable displacement. The presence of heterogeneities in a porous medium significantly affects the scaling behavior of the mixing length as it interacts with the viscosity contrast to control the mixing of fluids in the pore space. In this study, the dynamics of the flow and transport during both unit and adverse viscosity ratio miscible displacements are investigated in heterogeneous packings of circular grains using pore-scale numerical simulations. The pore-scale heterogeneity level is characterized by the variations of the grain diameter and velocity field. The growth of mixing length is employed to identify the nature of the miscible transport regime at different viscosity ratios and heterogeneity levels. It is shown that as the viscosity ratio increases to higher adverse values, the scaling law of mixing length gradually shifts from dispersive to fingering nature up to a certain viscosity ratio and remains almost the same afterwards. In heterogeneous media, the mixing length scaling law is observed to be generally governed by the variations of the velocity field rather than the grain size. Furthermore, the normalization of mixing length temporal plots with respect to the governing parameters of viscosity ratio, heterogeneity, medium length, and medium aspect ratio is performed. The results indicate that mixing length scales exponentially with log-viscosity ratio and grain size standard deviation while the impact of aspect ratio is insignificant. For stable flows, mixing length scales with the square root of medium length, whereas it changes linearly with length during unstable flows. This scaling procedure allows us to describe the temporal variation of mixing length using a generalized curve for various combinations of the flow conditions and porous medium properties.

  20. Effect of gravity on the caloric stimulation of the inner ear

    NASA Technical Reports Server (NTRS)

    Kassemi, Mohammad; Deserranno, Dimitri; Oas, John G.

    2004-01-01

    Robert Barany won the 1914 Nobel Prize in medicine for his convection hypothesis for caloric stimulation. Microgravity caloric tests aboard the 1983 SpaceLab 1 mission produced nystagmus results that contradicted the basic premise of Barany's convection theory. In this paper, we present a fluid structural analysis of the caloric stimulation of the lateral semicircular canal. Direct numerical simulations indicate that on earth, natural convection is the dominant mechanism for endolymphatic flow. However, in the microgravity environment of orbiting spacecraft, where buoyancy effects are mitigated, an expansive convection becomes the sole mechanism for producing endolymph motion and cupular displacement. Transient 1 g and microgravity case studies are presented to delineate the different dynamic behaviors of the 1 g and microgravity endolymphatic flows. The associated fluid-structural interactions are also analyzed based on the time evolution of cupular displacements.

  1. A viscoelastic fluid-structure interaction model for carotid arteries under pulsatile flow.

    PubMed

    Wang, Zhongjie; Wood, Nigel B; Xu, Xiao Yun

    2015-05-01

    In this study, a fluid-structure interaction model (FSI) incorporating viscoelastic wall behaviour is developed and applied to an idealized model of the carotid artery under pulsatile flow. The shear and bulk moduli of the arterial wall are described by Prony series, where the parameters can be derived from in vivo measurements. The aim is to develop a fully coupled FSI model that can be applied to realistic arterial geometries with normal or pathological viscoelastic wall behaviour. Comparisons between the numerical and analytical solutions for wall displacements demonstrate that the coupled model is capable of predicting the viscoelastic behaviour of carotid arteries. Comparisons are also made between the solid only and FSI viscoelastic models, and the results suggest that the difference in radial displacement between the two models is negligible. Copyright © 2015 John Wiley & Sons, Ltd.

  2. I used to cry every day: a model of the family process of managing displacement.

    PubMed

    Greene, Danielle; Tehranifar, Parisa; Hernandez-Cordero, Lourdes J; Fullilove, Mindy Thompson

    2011-06-01

    Community displacing events, natural or human made, are increasing in frequency. By the end of 2009, over 36 million people were known to be displaced worldwide. Displacement is a traumatic experience with significant short- and long-term health consequences. The losses and costs associated with displacement-social connections, employment, property, and economic capital-are felt not only by the displaced individuals but also the communities they have left behind, and the communities that receive displaced individuals. Many researchers have explored the link between health and reduced social, cultural, and economic capital. Most of the displacement literature focuses on the effect of displacement on the displaced individual; however, many families move as a group. In this study, we examined the family process of managing displacement and its associated capital losses by conducting interviews with 20 families. We found that families undergo a four-phase process of displacement: antecedent, uprooting, transition, and resettlement. The losses families experience impact the health and well-being of individuals, families, and communities. The degree to which the displacement process ends successfully, or ends at all, can be affected by efforts to both create connections within the new communities and rebuild economic and social capital.

  3. Toward direct pore-scale modeling of three-phase displacements

    NASA Astrophysics Data System (ADS)

    Mohammadmoradi, Peyman; Kantzas, Apostolos

    2017-12-01

    A stable spreading film between water and gas can extract a significant amount of bypassed non-aqueous phase liquid (NAPL) through immiscible three-phase gas/water injection cycles. In this study, the pore-scale displacement mechanisms by which NAPL is mobilized are incorporated into a three-dimensional pore morphology-based model under water-wet and capillary equilibrium conditions. The approach is pixel-based and the sequence of invasions is determined by the fluids' connectivity and the threshold capillary pressure of the advancing interfaces. In addition to the determination of three-phase spatial saturation profiles, residuals, and capillary pressure curves, dynamic finite element simulations are utilized to predict the effective permeabilities of the rock microtomographic images as reasonable representations of the geological formations under study. All the influential features during immiscible fluid flow in pore-level domains including wetting and spreading films, saturation hysteresis, capillary trapping, connectivity, and interface development strategies are taken into account. The capabilities of the model are demonstrated by the successful prediction of saturation functions for Berea sandstone and the accurate reconstruction of three-phase fluid occupancies through a micromodel.

  4. Characterization of a Piezoelectric AlN Beam Array in Air and Fluid for an Artificial Basilar Membrane

    NASA Astrophysics Data System (ADS)

    Jeon, Hyejin; Jang, Jongmoon; Kim, Sangwon; Choi, Hongsoo

    2018-03-01

    In this study, we present a piezoelectric artificial basilar membrane (ABM) composed of a 10-channel aluminum nitride beam array. Each beam varies in length from 1306 to 3194 μm for mimicking the frequency selectivity of the cochlea. To characterize the frequency selectivity of the ABM, we measured the mechanical displacement and piezoelectric output while applying acoustic stimulus at 100 dB sound pressure level in the range of 500 Hz-40 kHz. The resonance frequencies measured by mechanical displacement and piezoelectric output were in the range of 10.56-36.5 and 10.9-37.0 kHz, respectively. In addition, the electrical stimulus was applied to the ABMs to compare the mechanical responses in air and fluid. The measured resonance frequencies were in the range of 11.1-47.7 kHz in the air and 3.10-11.9 kHz in the fluid. Understanding the characteristics of the ABM is important for its potential use as a key technology for auditory prostheses.

  5. Comparison of cardiac magnetic resonance imaging and bio-impedance spectroscopy for the assessment of fluid displacement induced by external leg compression.

    PubMed

    Saporito, Salvatore; Dovancescu, Silviu; Herold, Ingeborg H F; van den Bosch, Harrie C M; van Assen, Hans C; Aarts, Ronald M; Korsten, Hendrikus H M; Mischi, Massimo

    2017-01-01

    Heart failure is marked by frequent hospital admissions, often as a consequence of pulmonary congestion. Current gold standard techniques for thoracic fluid measurement require invasive heamodynamic access and therefore they are not suitable for continuous monitoring. Changes in thoracic impedance (TI) may enable non-invasive early detection of congestion and prevention of unplanned hospitalizations. However, the usefulness of TI to assess thoracic fluid status is limited by inter-subject variability and by the lack of reliable normalization methods. Indicator dilution methods allow absolute fluid volume estimation; cardiac magnetic resonance (CMR) has been recently proposed to apply indicator dilution methods in a minimally-invasive manner. In this study, we aim to compare bio-impedance spectroscopy (BIS) and CMR for the assessment of thoracic fluid status, and to determine their ability to detect fluid displacement induced by a leg compression procedure in healthy volunteers. A pressure gradient was applied across each subject's legs for 5 min (100-60 mmHg, distal to proximal). Each subject underwent a continuous TI-BIS measurement during the procedure, and repeated CMR-based indicator dilution measurements on a 1.5 T scanner at baseline, during compression, and after pressure release. The Cole-Cole and the local density random walk models were used for parameter extraction from TI-BIS and indicator dilution measurements, respectively. Intra-thoracic blood volume index (ITBI) derived from CMR, and extracellular fluid resistance (R E ) from TI-BIS, were considered as thoracic fluid status measures. Eight healthy volunteers were included in this study. An increase in ITBI of 45.2  ±  47.2 ml m -2 was observed after the leg inflation (13.1  ±  15.1% w.r.t. baseline, p  <  0.05), while a decrease of  -0.84  ±  0.39 Ω in R E (-1.7  ±  0.9% w.r.t. baseline, p  <  0.05) was observed. ITBV and R E normalized by body mass index were strongly inversely correlated (r  =  -0.93, p  <  0.05). In conclusion, an acute fluid displacement to the thoracic circulation was induced in healthy volunteers. Significant changes were observed in the considered thoracic fluid measures derived from BIS and CMR. Good correlation was observed between the two measurement techniques. Further clinical studies will be necessary to prospectively evaluate the value of a combination of the two techniques for prediction of re-hospitalizations after admission for heart failure.

  6. Lunar Rotation and the Lunar Interior

    NASA Technical Reports Server (NTRS)

    Williams, J. G.; Boggs, D. H.; Ratcliff, J. T.; Dickey, J. O.

    2003-01-01

    Variations in rotation and orientation of the Moon are sensitive to solid-body tidal dissipation, dissipation due to relative motion at the fluid-core/ solid-mantle boundary, and tidal Love number k2. There is weaker sensitivity to flattening of the core-mantle boundary (CMB) and fluid core moment of inertia. Accurate Lunar Laser Ranging (LLR) measurements of the distance from observatories on the Earth to four retroreflector arrays on the Moon are sensitive to lunar rotation and orientation variations and tidal displacements. Past solutions using the LLR data have given results for dissipation due to solid-body tides and fluid core plus Love number. Past detection of CMB flattening has been marginal but is improving, while direct detection of the core moment has not yet been achieved. Three decades of Lunar Laser Ranging (LLR) data are analyzed using a weighted least-squares approach. The lunar solution parameters include dissipation at the fluid-core/solid-mantle boundary, tidal dissipation, dissipation-related coefficients for rotation and orientation terms, potential Love number k2, a correction to the constant term in the tilt of the equator to the ecliptic which is meant to approximate the influence of core-mantle boundary flattening, and displacement Love numbers h2 and l2. Several solutions, with different combinations of solution parameters and constraints, are considered.

  7. A homogenization approach for characterization of the fluid-solid coupling parameters in Biot's equations for acoustic poroelastic materials

    NASA Astrophysics Data System (ADS)

    Gao, K.; van Dommelen, J. A. W.; Göransson, P.; Geers, M. G. D.

    2015-09-01

    In this paper, a homogenization method is proposed to obtain the parameters of Biot's poroelastic theory from a multiscale perspective. It is assumed that the behavior of a macroscopic material point can be captured through the response of a microscopic Representative Volume Element (RVE) consisting of both a solid skeleton and a gaseous fluid. The macroscopic governing equations are assumed to be Biot's poroelastic equations and the RVE is governed by the conservation of linear momentum and the adopted linear constitutive laws under the isothermal condition. With boundary conditions relying on the macroscopic solid displacement and fluid pressure, the homogenized solid stress and fluid displacement are obtained based on energy consistency. This homogenization framework offers an approach to obtain Biot's parameters directly through the response of the RVE in the regime of Darcy's flow where the pressure gradient is dominating. A numerical experiment is performed in the form of a sound absorption test on a porous material with an idealized partially open microstructure that is described by Biot's equations where the parameters are obtained through the proposed homogenization approach. The result is evaluated by comparison with Direct Numerical Simulations (DNS), showing a superior performance of this approach compared to an alternative semi-phenomenological model for estimating Biot's parameters of the studied porous material.

  8. An optimal control method for fluid structure interaction systems via adjoint boundary pressure

    NASA Astrophysics Data System (ADS)

    Chirco, L.; Da Vià, R.; Manservisi, S.

    2017-11-01

    In recent year, in spite of the computational complexity, Fluid-structure interaction (FSI) problems have been widely studied due to their applicability in science and engineering. Fluid-structure interaction systems consist of one or more solid structures that deform by interacting with a surrounding fluid flow. FSI simulations evaluate the tensional state of the mechanical component and take into account the effects of the solid deformations on the motion of the interior fluids. The inverse FSI problem can be described as the achievement of a certain objective by changing some design parameters such as forces, boundary conditions and geometrical domain shapes. In this paper we would like to study the inverse FSI problem by using an optimal control approach. In particular we propose a pressure boundary optimal control method based on Lagrangian multipliers and adjoint variables. The objective is the minimization of a solid domain displacement matching functional obtained by finding the optimal pressure on the inlet boundary. The optimality system is derived from the first order necessary conditions by taking the Fréchet derivatives of the Lagrangian with respect to all the variables involved. The optimal solution is then obtained through a standard steepest descent algorithm applied to the optimality system. The approach presented in this work is general and could be used to assess other objective functionals and controls. In order to support the proposed approach we perform a few numerical tests where the fluid pressure on the domain inlet controls the displacement that occurs in a well defined region of the solid domain.

  9. The development of a microprocessor-controlled linearly-actuated valve assembly

    NASA Technical Reports Server (NTRS)

    Wall, R. H.

    1984-01-01

    The development of a proportional fluid control valve assembly is presented. This electromechanical system is needed for space applications to replace the current proportional flow controllers. The flow is controlled by a microprocessor system that monitors the control parameters of upstream pressure and requested volumetric flow rate. The microprocessor achieves the proper valve stem displacement by means of a digital linear actuator. A linear displacement sensor is used to measure the valve stem position. This displacement is monitored by the microprocessor system as a feedback signal to close the control loop. With an upstream pressure between 15 and 47 psig, the developed system operates between 779 standard CU cm/sec (SCCS) and 1543 SCCS.

  10. Correlated displacement-T2 MRI by means of a Pulsed Field Gradient-Multi Spin Echo Method.

    PubMed

    Windt, Carel W; Vergeldt, Frank J; Van As, Henk

    2007-04-01

    A method for correlated displacement-T2 imaging is presented. A Pulsed Field Gradient-Multi Spin Echo (PFG-MSE) sequence is used to record T2 resolved propagators on a voxel-by-voxel basis, making it possible to perform single voxel correlated displacement-T2 analyses. In spatially heterogeneous media the method thus gives access to sub-voxel information about displacement and T2 relaxation. The sequence is demonstrated using a number of flow conducting model systems: a tube with flowing water of variable intrinsic T2's, mixing fluids of different T2's in an "X"-shaped connector, and an intact living plant. PFG-MSE can be applied to yield information about the relation between flow, pore size and exchange behavior, and can aid volume flow quantification by making it possible to correct for T2 relaxation during the displacement labeling period Delta in PFG displacement imaging methods. Correlated displacement-T2 imaging can be of special interest for a number of research subjects, such as the flow of liquids and mixtures of liquids or liquids and solids moving through microscopic conduits of different sizes (e.g., plants, porous media, bioreactors, biomats).

  11. Enhanced Remedial Amendment Delivery through Fluid Viscosity Modifications: Experiments and numerical simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Lirong; Oostrom, Martinus; Wietsma, Thomas W.

    2008-07-29

    Abstract Heterogeneity is often encountered in subsurface contamination characterization and remediation. Low-permeability zones are typically bypassed when remedial fluids are injected into subsurface heterogeneous aquifer systems. Therefore, contaminants in the bypassed areas may not be contacted by the amendments in the remedial fluid, which may significantly prolong the remediation operations. Laboratory experiments and numerical studies have been conducted to develop the Mobility-Controlled Flood (MCF) technology for subsurface remediation and to demonstrate the capability of this technology in enhancing the remedial amendments delivery to the lower permeability zones in heterogeneous systems. Xanthan gum, a bio-polymer, was used to modify the viscositymore » of the amendment-containing remedial solutions. Sodium mono-phosphate and surfactant were the remedial amendment used in this work. The enhanced delivery of the amendments was demonstrated in two-dimensional (2-D) flow cell experiments, packed with heterogeneous systems. The impact of polymer concentration, fluid injection rate, and permeability contract in the heterogeneous systems has been studied. The Subsurface Transport over Multiple Phases (STOMP) simulator was modified to include polymer-induced shear thinning effects. Shear rates of polymer solutions were computed from pore-water velocities using a relationship proposed in the literature. Viscosity data were subsequently obtained from empirical viscosity-shear rate relationships derived from laboratory data. The experimental and simulation results clearly show that the MCF technology is capable of enhancing the delivery of remedial amendments to subsurface lower permeability zones. The enhanced delivery significantly improved the NAPL removal from these zones and the sweeping efficiency on a heterogeneous system was remarkably increased when a polymer fluid was applied. MCF technology is also able to stabilize the fluid displacing front when there is a density difference between the fluids. The modified STOMP simulator was able to predict the experimental observed fluid displacing behavior. The simulator may be used to predict the subsurface remediation performance when a shear thinning fluid is used to remediate a heterogeneous system.« less

  12. A level set method for determining critical curvatures for drainage and imbibition.

    PubMed

    Prodanović, Masa; Bryant, Steven L

    2006-12-15

    An accurate description of the mechanics of pore level displacement of immiscible fluids could significantly improve the predictions from pore network models of capillary pressure-saturation curves, interfacial areas and relative permeability in real porous media. If we assume quasi-static displacement, at constant pressure and surface tension, pore scale interfaces are modeled as constant mean curvature surfaces, which are not easy to calculate. Moreover, the extremely irregular geometry of natural porous media makes it difficult to evaluate surface curvature values and corresponding geometric configurations of two fluids. Finally, accounting for the topological changes of the interface, such as splitting or merging, is nontrivial. We apply the level set method for tracking and propagating interfaces in order to robustly handle topological changes and to obtain geometrically correct interfaces. We describe a simple but robust model for determining critical curvatures for throat drainage and pore imbibition. The model is set up for quasi-static displacements but it nevertheless captures both reversible and irreversible behavior (Haines jump, pore body imbibition). The pore scale grain boundary conditions are extracted from model porous media and from imaged geometries in real rocks. The method gives quantitative agreement with measurements and with other theories and computational approaches.

  13. Analytic Intermodel Consistent Modeling of Volumetric Human Lung Dynamics.

    PubMed

    Ilegbusi, Olusegun; Seyfi, Behnaz; Neylon, John; Santhanam, Anand P

    2015-10-01

    Human lung undergoes breathing-induced deformation in the form of inhalation and exhalation. Modeling the dynamics is numerically complicated by the lack of information on lung elastic behavior and fluid-structure interactions between air and the tissue. A mathematical method is developed to integrate deformation results from a deformable image registration (DIR) and physics-based modeling approaches in order to represent consistent volumetric lung dynamics. The computational fluid dynamics (CFD) simulation assumes the lung is a poro-elastic medium with spatially distributed elastic property. Simulation is performed on a 3D lung geometry reconstructed from four-dimensional computed tomography (4DCT) dataset of a human subject. The heterogeneous Young's modulus (YM) is estimated from a linear elastic deformation model with the same lung geometry and 4D lung DIR. The deformation obtained from the CFD is then coupled with the displacement obtained from the 4D lung DIR by means of the Tikhonov regularization (TR) algorithm. The numerical results include 4DCT registration, CFD, and optimal displacement data which collectively provide consistent estimate of the volumetric lung dynamics. The fusion method is validated by comparing the optimal displacement with the results obtained from the 4DCT registration.

  14. Hydraulophones: Acoustic musical instruments and expressive user interfaces

    NASA Astrophysics Data System (ADS)

    Janzen, Ryan E.

    Fluid flow creates an expansive range of acoustic possibilities, particularly in the case of water, which has unique turbulence and vortex shedding properties as compared with the air of ordinary wind instruments. Sound from water flow is explained with reference to a new class of musical instruments, hydraulophones, in which oscillation originates directly from matter in its liquid state. Several hydraulophones which were realized in practical form are described. A unique user-interface consisting of a row of water jets is presented, in terms of its expressiveness, tactility, responsiveness to derivatives and integrals of displacement, and in terms of the direct physical interaction between a user and the physical process of sound production. Signal processing algorithms are introduced, which extract further information from turbulent water flow, for industrial applications as well as musical applications.

  15. Rapid sampling of stochastic displacements in Brownian dynamics simulations with stresslet constraints.

    PubMed

    Fiore, Andrew M; Swan, James W

    2018-01-28

    Brownian Dynamics simulations are an important tool for modeling the dynamics of soft matter. However, accurate and rapid computations of the hydrodynamic interactions between suspended, microscopic components in a soft material are a significant computational challenge. Here, we present a new method for Brownian dynamics simulations of suspended colloidal scale particles such as colloids, polymers, surfactants, and proteins subject to a particular and important class of hydrodynamic constraints. The total computational cost of the algorithm is practically linear with the number of particles modeled and can be further optimized when the characteristic mass fractal dimension of the suspended particles is known. Specifically, we consider the so-called "stresslet" constraint for which suspended particles resist local deformation. This acts to produce a symmetric force dipole in the fluid and imparts rigidity to the particles. The presented method is an extension of the recently reported positively split formulation for Ewald summation of the Rotne-Prager-Yamakawa mobility tensor to higher order terms in the hydrodynamic scattering series accounting for force dipoles [A. M. Fiore et al., J. Chem. Phys. 146(12), 124116 (2017)]. The hydrodynamic mobility tensor, which is proportional to the covariance of particle Brownian displacements, is constructed as an Ewald sum in a novel way which guarantees that the real-space and wave-space contributions to the sum are independently symmetric and positive-definite for all possible particle configurations. This property of the Ewald sum is leveraged to rapidly sample the Brownian displacements from a superposition of statistically independent processes with the wave-space and real-space contributions as respective covariances. The cost of computing the Brownian displacements in this way is comparable to the cost of computing the deterministic displacements. The addition of a stresslet constraint to the over-damped particle equations of motion leads to a stochastic differential algebraic equation (SDAE) of index 1, which is integrated forward in time using a mid-point integration scheme that implicitly produces stochastic displacements consistent with the fluctuation-dissipation theorem for the constrained system. Calculations for hard sphere dispersions are illustrated and used to explore the performance of the algorithm. An open source, high-performance implementation on graphics processing units capable of dynamic simulations of millions of particles and integrated with the software package HOOMD-blue is used for benchmarking and made freely available in the supplementary material.

  16. A connectivity-based modeling approach for representing hysteresis in macroscopic two-phase flow properties

    DOE PAGES

    Cihan, Abdullah; Birkholzer, Jens; Trevisan, Luca; ...

    2014-12-31

    During CO 2 injection and storage in deep reservoirs, the injected CO 2 enters into an initially brine saturated porous medium, and after the injection stops, natural groundwater flow eventually displaces the injected mobile-phase CO 2, leaving behind residual non-wetting fluid. Accurate modeling of two-phase flow processes are needed for predicting fate and transport of injected CO 2, evaluating environmental risks and designing more effective storage schemes. The entrapped non-wetting fluid saturation is typically a function of the spatially varying maximum saturation at the end of injection. At the pore-scale, distribution of void sizes and connectivity of void space playmore » a major role for the macroscopic hysteresis behavior and capillary entrapment of wetting and non-wetting fluids. This paper presents development of an approach based on the connectivity of void space for modeling hysteretic capillary pressure-saturation-relative permeability relationships. The new approach uses void-size distribution and a measure of void space connectivity to compute the hysteretic constitutive functions and to predict entrapped fluid phase saturations. Two functions, the drainage connectivity function and the wetting connectivity function, are introduced to characterize connectivity of fluids in void space during drainage and wetting processes. These functions can be estimated through pore-scale simulations in computer-generated porous media or from traditional experimental measurements of primary drainage and main wetting curves. The hysteresis model for saturation-capillary pressure is tested successfully by comparing the model-predicted residual saturation and scanning curves with actual data sets obtained from column experiments found in the literature. A numerical two-phase model simulator with the new hysteresis functions is tested against laboratory experiments conducted in a quasi-two-dimensional flow cell (91.4cm×5.6cm×61cm), packed with homogeneous and heterogeneous sands. Initial results show that the model can predict spatial and temporal distribution of injected fluid during the experiments reasonably well. However, further analyses are needed for comprehensively testing the ability of the model to predict transient two-phase flow processes and capillary entrapment in geological reservoirs during geological carbon sequestration.« less

  17. Granular materials flow like complex fluids

    NASA Astrophysics Data System (ADS)

    Kou, Binquan; Cao, Yixin; Li, Jindong; Xia, Chengjie; Li, Zhifeng; Dong, Haipeng; Zhang, Ang; Zhang, Jie; Kob, Walter; Wang, Yujie

    2017-11-01

    Granular materials such as sand, powders and foams are ubiquitous in daily life and in industrial and geotechnical applications. These disordered systems form stable structures when unperturbed, but in the presence of external influences such as tapping or shear they `relax', becoming fluid in nature. It is often assumed that the relaxation dynamics of granular systems is similar to that of thermal glass-forming systems. However, so far it has not been possible to determine experimentally the dynamic properties of three-dimensional granular systems at the particle level. This lack of experimental data, combined with the fact that the motion of granular particles involves friction (whereas the motion of particles in thermal glass-forming systems does not), means that an accurate description of the relaxation dynamics of granular materials is lacking. Here we use X-ray tomography to determine the microscale relaxation dynamics of hard granular ellipsoids subject to an oscillatory shear. We find that the distribution of the displacements of the ellipsoids is well described by a Gumbel law (which is similar to a Gaussian distribution for small displacements but has a heavier tail for larger displacements), with a shape parameter that is independent of the amplitude of the shear strain and of the time. Despite this universality, the mean squared displacement of an individual ellipsoid follows a power law as a function of time, with an exponent that does depend on the strain amplitude and time. We argue that these results are related to microscale relaxation mechanisms that involve friction and memory effects (whereby the motion of an ellipsoid at a given point in time depends on its previous motion). Our observations demonstrate that, at the particle level, the dynamic behaviour of granular systems is qualitatively different from that of thermal glass-forming systems, and is instead more similar to that of complex fluids. We conclude that granular materials can relax even when the driving strain is weak.

  18. Modelling droplet collision outcomes for different substances and viscosities

    NASA Astrophysics Data System (ADS)

    Sommerfeld, Martin; Kuschel, Matthias

    2016-12-01

    The main objective of the present study is the derivation of models describing the outcome of binary droplet collisions for a wide range of dynamic viscosities in the well-known collision maps (i.e. normalised lateral droplet displacement at collision, called impact parameter, versus collision Weber number). Previous studies by Kuschel and Sommerfeld (Exp Fluids 54:1440, 2013) for different solution droplets having a range of solids contents and hence dynamic viscosities (here between 1 and 60 mPa s) revealed that the locations of the triple point (i.e. coincidence of bouncing, stretching separation and coalescence) and the critical Weber number (i.e. condition for the transition from coalescence to separation for head-on collisions) show a clear dependence on dynamic viscosity. In order to extend these findings also to pure liquids and to provide a broader data basis for modelling the viscosity effect, additional binary collision experiments were conducted for different alcohols (viscosity range 1.2-15.9 mPa s) and the FVA1 reference oil at different temperatures (viscosity range 3.0-28.2 mPa s). The droplet size for the series of alcohols was around 365 and 385 µm for the FVA1 reference oil, in each case with fixed diameter ratio at Δ= 1. The relative velocity between the droplets was varied in the range 0.5-3.5 m/s, yielding maximum Weber numbers of around 180. Individual binary droplet collisions with defined conditions were generated by two droplet chains each produced by vibrating orifice droplet generators. For recording droplet motion and the binary collision process with good spatial and temporal resolution high-speed shadow imaging was employed. The results for varied relative velocity and impact angle were assembled in impact parameter-Weber number maps. With increasing dynamic viscosity a characteristic displacement of the regimes for the different collision scenarios was also observed for pure liquids similar to that observed for solutions. This displacement could be described on a physical basis using the similarity number and structure parameter K which was obtained through flow process evaluation and optimal proportioning of momentum and energy by Naue and Bärwolff (Transportprozesse in Fluiden. Deutscher Verlag für Grundstoffindustrie GmbH, Leipzig 1992). Two correlations including the structure parameter K could be derived which describe the location of the triple point and the critical We number. All fluids considered, pure liquids and solutions, are very well fitted by these physically based correlations. The boundary model of Jiang et al. (J Fluid Mech 234:171-190, 1992) for distinguishing between coalescence and stretching separation could be adapted to go through the triple point by the two involved model parameters C a and C b, which were correlated with the relaxation velocity u_{{relax}} = {σ/μ}. Based on the predicted critical Weber number, denoting the onset of reflexive separation, the model of Ashgriz and Poo (J Fluid Mech 221:183-204, 1990) was adapted accordingly. The proper performance of the new generalised models was validated based on the present and previous measurements for a wide range of dynamic viscosities (i.e. 1-60 mPa s) and liquid properties. Although the model for the lower boundary of bouncing (Estrade et al. in J Heat Fluid Flow 20:486-491, 1999) could be adapted through the shape factor, it was found not suitable for the entire range of Weber numbers and viscosities.

  19. Phase of neural excitation relative to basilar membrane motion in the organ of Corti: Theoretical considerations

    NASA Astrophysics Data System (ADS)

    Andoh, Masayoshi; Nakajima, Chihiro; Wada, Hiroshi

    2005-09-01

    Although the auditory transduction process is dependent on neural excitation of the auditory nerve in relation to motion of the basilar membrane (BM) in the organ of Corti (OC), specifics of this process are unclear. In this study, therefore, an attempt was made to estimate the phase of the neural excitation relative to the BM motion using a finite-element model of the OC at the basal turn of the gerbil, including the fluid-structure interaction with the lymph fluid. It was found that neural excitation occurs when the BM exhibits a maximum velocity toward the scala vestibuli at 10 Hz and shows a phase delay relative to the BM motion with increasing frequency up to 800 Hz. It then shows a phase advance until the frequency reaches 2 kHz. From 2 kHz, neural excitation again shows a phase delay with increasing frequency. From 800 Hz up to 2 kHz, the phase advances because the dominant force exerted on the hair bundle shifts from a velocity-dependent Couette flow-induced force to a displacement-dependent force induced by the pressure difference. The phase delay that occurs from 2 kHz is caused by the resonance process of the hair bundle of the IHC.

  20. Finite volume solution for two-phase flow in a straight capillary

    NASA Astrophysics Data System (ADS)

    Yelkhovsky, Alexander; Pinczewski, W. Val

    2018-04-01

    The problem of two-phase flow in straight capillaries of polygonal cross section displays many of the dynamic characteristics of rapid interfacial motions associated with pore-scale displacements in porous media. Fluid inertia is known to be important in these displacements but is usually ignored in network models commonly used to predict macroscopic flow properties. This study presents a numerical model for two-phase flow which describes the spatial and temporal evolution of the interface between the fluids. The model is based on an averaged Navier-Stokes equation and is shown to be successful in predicting the complex dynamics of both capillary rise in round capillaries and imbibition along the corners of polygonal capillaries. The model can form the basis for more realistic network models which capture the effect of capillary, viscous, and inertial forces on pore-scale interfacial dynamics and consequent macroscopic flow properties.

  1. Saffman-Taylor Instability for a non-Newtonian fluid

    NASA Astrophysics Data System (ADS)

    Daripa, Prabir

    2013-11-01

    Motivated by applications, we study classical Saffman-Taylor instability involving displacement of an Oldroyd-B fluid displaced by air in a Hele-Shaw cell. The lubrication approximation is used by neglecting the vertical component of the velocity. We obtain an explicit expression of one of the components of the extra-stress perturbations tensor in terms of the horizontal velocity perturbations. The main result is an explicit formula for the growth constant (in time) of perturbations, given by a ratio in which a term depending on the relaxation and retardation (time) constants appears in the denominator of the ratio. This exact result compares extremely well with known numerical results. It is found that flow is more unstable than the corresponding Newtonian case. This is a joint work with Gelu Pasa. The research has been made possible by an NPRP Grant # 08-777-1-141 from the Qatar National Research Fund (a member of the Qatar Foundation).

  2. Lunar Fluid Core and Solid-Body Tides

    NASA Technical Reports Server (NTRS)

    Williams, J. G.; Boggs, D. H.; Ratcliff, J. T.

    2005-01-01

    Variations in rotation and orientation of the Moon are sensitive to solid-body tidal dissipation, dissipation due to relative motion at the fluid-core/solid-mantle boundary, and tidal Love number k2 [1,2]. There is weaker sensitivity to flattening of the core-mantle boundary (CMB) [2-5] and fluid core moment of inertia [1]. Accurate Lunar Laser Ranging (LLR) measurements of the distance from observatories on the Earth to four retroreflector arrays on the Moon are sensitive to lunar rotation and orientation variations and tidal displacements. Past solutions using the LLR data have given results for dissipation due to solid-body tides and fluid core [1] plus Love number [1-5]. Detection of CMB flattening has been improving [3,5] and now seems significant. This strengthens the case for a fluid lunar core.

  3. Stabilization of a finite slice in miscible displacement in homogeneous porous media

    NASA Astrophysics Data System (ADS)

    Pramanik, Satyajit; Mishra, Manoranjan

    2016-11-01

    We numerically studied the miscible displacement of a finite slice of variable viscosity and density. The stability of the finite slice depends on different flow parameters, such as displacement velocity U, mobility ratio R , and the density contrast. Series of numerical simulations corresponding to different ordered pair (R, U) in the parameter space, and a given density contrast reveal six different instability regions. We have shown that independent of the width of the slice, there always exists a region of stable displacement, and below a critical value of the slice width, this stable region increases with decreasing slice width. Further we observe that the viscous fingering (buoyancy-induced instability) at the upper interface induces buoyancy-induced instability (viscous fingering) at the lower interface. Besides the fundamental fluid dynamics understanding, our results can be helpful to model CO2 sequestration and chromatographic separation.

  4. On the analysis of competitive displacement in dengue disease transmission

    NASA Astrophysics Data System (ADS)

    Wijaya, Karunia P.; Nuraini, Nuning; Soewono, Edy; Handayani, Dewi

    2014-03-01

    We study a host-vector model involving the interplay of competitive displacement mechanism in a specific DENV serotype, both in human blood and mosquito blood. Using phylogenetic analysis, world virologists investigate the severe manifestations of dengue fever caused by the displacements within weakly virulent pathogens (native strains) by more virulent pathogens (invasive strains) in one serotype. We construct SIR model for human and SI model for mosquito to explore the key determinants of those displacements. Analysis of nonnegativity and boundedness of the solution as well as the basic reproduction number (R0) are taken into account for verifying the model into biological meaningfulness. To generate predictions of the outcomes of control strategies, we derive an optimal control model which involves two control apparatus: fluid infusion (for human) and fumigation (for vector). Numerical results show the dynamics of host-vector in an observation period, both under control and without control.

  5. Apparatus for the conversion of power strokes of a random sequence and of random lengths of strokes into potential energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elkuch, E.

    1984-01-17

    The apparatus comprises at least one positive displacement pump, which is driven by the sea waves. The quantity of delivery of this pump is adjustable in accordance with the lengths of strokes made by the ocean waves. This is made possible in that the positive displacement pump comprises pistons having different volume displacements. The height of the incoming waves is measured by a membrane box connected to a transducer which generates signals such that only that piston of the plurality of pistons is made to operate, which has by design a volume displacement which gives the optimal recovery of themore » energy of the ocean waves. The or these pistons pump a working fluid into a storage vessel, which allows the generation of peak load as well as base load electrical energy.« less

  6. Permeability - Fluid Pressure - Stress Relationship in Fault Zones in Shales

    NASA Astrophysics Data System (ADS)

    Henry, P.; Guglielmi, Y.; Morereau, A.; Seguy, S.; Castilla, R.; Nussbaum, C.; Dick, P.; Durand, J.; Jaeggi, D.; Donze, F. V.; Tsopela, A.

    2016-12-01

    Fault permeability is known to depend strongly on stress and fluid pressures. Exponential relationships between permeability and effective pressure have been proposed to approximate fault response to fluid pressure variations. However, the applicability of these largely empirical laws remains questionable, as they do not take into account shear stress and shear strain. A series of experiments using mHPP probes have been performed within fault zones in very low permeability (less than 10-19 m2) Lower Jurassic shale formations at Tournemire (France) and Mont Terri (Switzerland) underground laboratories. These probes allow to monitor 3D displacement between two points anchored to the borehole walls at the same time as fluid pressure and flow rate. In addition, in the Mont-Terri experiment, passive pressure sensors were installed in observation boreholes. Fracture transmissivity was estimated from single borehole pulse test, constant pressure injection tests, and cross-hole tests. It is found that the transmissivity-pressure dependency can be approximated with an exponential law, but only above a pressure threshold that we call the Fracture Opening Threshold (F.O.P). The displacement data show a change of the mechanical response across the F.O.P. The displacement below the F.O.P. is dominated by borehole response, which is mostly elastic. Above F.O.P., the poro-elasto-plastic response of the fractures dominates. Stress determinations based on previous work and on the analysis of slip data from mHPPP probe indicate that the F.O.P. is lower than the least principal stress. Below the F.O.P., uncemented fractures retain some permeability, as pulse tests performed at low pressures yield diffusivities in the range 10-2 to 10-5 m2/s. Overall, this dual behavior appears consistent with the results of CORK experiments performed in accretionary wedge decollements. Results suggest (1) that fault zones become highly permeable when approaching the critical Coulomb threshold (2) that fluid pressure diffusion along faults could occur in subcritical conditions and that this may influence their longer-term mechanical stability.

  7. An efficient hydro-mechanical model for coupled multi-porosity and discrete fracture porous media

    NASA Astrophysics Data System (ADS)

    Yan, Xia; Huang, Zhaoqin; Yao, Jun; Li, Yang; Fan, Dongyan; Zhang, Kai

    2018-02-01

    In this paper, a numerical model is developed for coupled analysis of deforming fractured porous media with multiscale fractures. In this model, the macro-fractures are modeled explicitly by the embedded discrete fracture model, and the supporting effects of fluid and fillings in these fractures are represented explicitly in the geomechanics model. On the other hand, matrix and micro-fractures are modeled by a multi-porosity model, which aims to accurately describe the transient matrix-fracture fluid exchange process. A stabilized extended finite element method scheme is developed based on the polynomial pressure projection technique to address the displacement oscillation along macro-fracture boundaries. After that, the mixed space discretization and modified fixed stress sequential implicit methods based on non-matching grids are applied to solve the coupling model. Finally, we demonstrate the accuracy and application of the proposed method to capture the coupled hydro-mechanical impacts of multiscale fractures on fractured porous media.

  8. Long waves in parallel flow in Hele-Shaw cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeybek, M.; Yortsos, Y.C.

    During the past several years the flow of immiscible flow in Hele-Shaw cells and porous media has been investigated extensively. Of particular interest to most studies has been frontal displacement, specifically viscous fingering instabilities and finger growth. The practical ramifications regarding oil recovery, as well as many other industrial processes in porous media, have served as the primary driving force for most of these investigations. By contrast, little attention has been paid to the motion of lateral fluid interface, which are parallel to the main flow direction. Parallel flow is an often encountered, although much overlooked regime. The evolution ofmore » fluid interfaces in parallel flow in Hele-Shaw cells is studied both theoretically and experimentally in the large capillary number limit. It is shown that such interfaces support wave motion, the amplitude of which for long waves is governed by the KdV equation. Experiments are conducted in a long Hele-Shaw cell that validate the theory in the symmetric case. 35 refs., 16 figs.« less

  9. A magnetorheological fluid locking device

    NASA Astrophysics Data System (ADS)

    Kavlicoglu, Barkan; Liu, Yanming

    2011-04-01

    A magnetorheological fluid (MRF) device is designed to provide a static locking force caused by the operation of a controllable MRF valve. The intent is to introduce an MRF device which provides the locking force of a fifth wheel coupler while maintaining the "powerless" locking capability when required. A passive magnetic field supplied by a permanent magnet provides a powerless locking resistance force. The passively closed MRF valve provides sufficient reaction force to eliminate axial displacement to a pre-defined force value. Unlocking of the device is provided by means of an electromagnet which re-routes the magnetic field distribution along the MR valve, and minimizes the resistance. Three dimensional electromagnetic finite element analyses are performed to optimize the MRF lock valve performance. The MRF locking valve is fabricated and tested for installation on a truck fifth wheel application. An experimental setup, resembling actual working conditions, is designed and tests are conducted on vehicle interface schemes. The powerless-locking capacity and the unlocking process with minimal resistance are experimentally demonstrated.

  10. Effect of wave action on near-well zone cleaning

    NASA Astrophysics Data System (ADS)

    Pen'kovskii, V. I.; Korsakova, N. K.

    2017-10-01

    Drilling filtrate invasion into the producing formation and native water accumulating of the near-well zone in well operation reduce the well productivity. As a result of that, depending on characteristic capillary pressure scale and differential pressure drawdown, oil production rate may become lower than expected one. In this paper, it is considered the hysteresis effects of capillary pressure after reversion of displacement. As applied to laboratory experiment conditions, the solution of problem of oil flow in formation model with a pressure drop on the model sides harmonically varied with time is presented. It was estimated a range of fluid vibration effective action on the near-well zone cleaning from capillary locking water. The plant simulating extraction of oil from formation using widely practised sucker-rod pump has been created. Formation model is presented as a slot filled with broken glass between two plates. In the process, natural oil and sodium chloride solution were used as working fluids. The experiments qualitatively confirm a positive effect of jack pumps on the near-well zone cleaning.

  11. Pore-scale modeling of phase change in porous media

    NASA Astrophysics Data System (ADS)

    Juanes, Ruben; Cueto-Felgueroso, Luis; Fu, Xiaojing

    2017-11-01

    One of the main open challenges in pore-scale modeling is the direct simulation of flows involving multicomponent mixtures with complex phase behavior. Reservoir fluid mixtures are often described through cubic equations of state, which makes diffuse interface, or phase field theories, particularly appealing as a modeling framework. What is still unclear is whether equation-of-state-driven diffuse-interface models can adequately describe processes where surface tension and wetting phenomena play an important role. Here we present a diffuse interface model of single-component, two-phase flow (a van der Waals fluid) in a porous medium under different wetting conditions. We propose a simplified Darcy-Korteweg model that is appropriate to describe flow in a Hele-Shaw cell or a micromodel, with a gap-averaged velocity. We study the ability of the diffuse-interface model to capture capillary pressure and the dynamics of vaporization/condensation fronts, and show that the model reproduces pressure fluctuations that emerge from abrupt interface displacements (Haines jumps) and from the break-up of wetting films.

  12. Frictional slip of granite at hydrothermal conditions

    USGS Publications Warehouse

    Blanpied, M.L.; Lockner, D.A.; Byerlee, J.D.

    1995-01-01

    To measure the strength, sliding behavior, and friction constitutive properties of faults at hydrothermal conditions, laboratory granite faults containing a layer of granite powder (simulated gouge) were slid. The mechanical results define two regimes. The first regime includes dry granite up to at least 845?? and wet granite below 250??C. In this regime the coefficient of friction is high (?? = 0.7 to 0.8) and depends only modestly on temperature, slip rate, and PH2O. The second regime includes wet granite above ~350??C. In this regime friction decreases considerably with increasing temperature (temperature weakening) and with decreasing slip rate (velocity strengthening). These regimes correspond well to those identified in sliding tests on ultrafine quartz. The results highlight the importance of fluid-assisted deformation processes active in faults at depth and the need for laboratory studies on the roles of additional factors such as fluid chemistry, large displacements, higher concentrations of phyllosilicates, and time-dependent fault healing. -from Authors

  13. Fingering, Fracturing and Dissolution in Granular Media

    NASA Astrophysics Data System (ADS)

    Juanes, R.; Cueto-Felgueroso, L.; Trojer, M.; Zhao, B.; Fu, X.

    2014-12-01

    The displacement of one fluid by another in a porous medium give rise to a rich variety of hydrodynamic instabilities. Beyond their scientific value as fascinating models of pattern formation, unstable porous-media flows are essential to understanding many natural and man-made processes, including water infiltration in the vadose zone, carbon dioxide injection and storage in deep saline aquifers, and hydrocarbon recovery. Here, we review the pattern-selection mechanisms of a wide spectrum of porous-media flows that develop hydrodynamic instabilities, discuss their origin and the mathematical models that have been used to describe them. We point out many challenges that remain to be resolved in the context of multiphase flows, and suggest modeling approaches that may offer new quantitative understanding. In particular, I will present experimental, theoretical and computational results for: (1) fluid spreading under partial wetting; (2) the impact of wettability on viscously unstable multiphase flow in porous media; (3) capillary fracturing in granular media; and (4) rock dissolution during convective mixing in porous media.

  14. Influence of Rostral Fluid Shift on Upper Airway Size and Mucosal Water Content

    PubMed Central

    Kasai, Takatoshi; Motwani, Shveta S.; Elias, Rosilene M.; Gabriel, Joseph M.; Taranto Montemurro, Luigi; Yanagisawa, Naotake; Spiller, Neil; Paul, Narinder; Bradley, T. Douglas

    2014-01-01

    Study Objective: Fluid displacement from the legs during recumbency while in bed might narrow the upper airway (UA) in association with nuchal fluid accumulation that may contribute to the pathogenesis of obstructive sleep apnea (OSA). The aim of this study was to test the hypothesis that rostral fluid displacement from the legs causes a greater decrease in UA cross-sectional area (UA-XSA) and a greater increase in UA mucosal water content (UA-MWC) and internal jugular venous volume (IJVVol) in subjects with OSA than in those without OSA. Methods: Subjects underwent baseline assessment of leg fluid volume (LFV) measured by bio-electrical impedance, as well as UA-XSA and UA-MWC by magnetic resonance imaging. They were then randomly assigned to a 20-min period either with or without application of lower body positive pressure (LBPP) of 40 mm Hg, followed by a 15-min washout period, after which they crossed over to the other arm of the study. Measurements of LFV, UA-MWC, and UA-XSA were repeated after each arm of the study. Results: In 12 subjects without sleep apnea, UA-XSA increased and UA-MWC decreased significantly, whereas in 12 subjects with OSA, UA-XSA decreased and UA-MWC increased significantly in response to LBPP. The changes in UA-XSA and UA-MWC in response to LBPP differed significantly between the 2 groups (p = 0.006 and p < 0.001, respectively), despite similar changes in LFV and IJVVol. Conclusions: Our results suggest that rostral fluid shift may contribute to the pathogenesis of OSA at least partly through narrowing of the UA due to transudation of fluid into the UA mucosa. Citation: Kasai T, Motwani SS, Elias RM, Gabriel JM, Taranto Montemurro L, Yanagisawa N, Spiller N, Paul N, Bradley TD. Influence of rostral fluid shift on upper airway size and mucosal water content. J Clin Sleep Med 2014;10(10):1069-1074. PMID:25317087

  15. Experimental study and finite element analysis of wind-induced vibration of modal car based on fluid-structure interaction

    NASA Astrophysics Data System (ADS)

    Tao, Li-li; Du, Guang-sheng; Liu, Li-ping; Liu, Yong-hui; Shao, Zhu-feng

    2013-02-01

    The wind-induced vibration of the front windshield concerns the traffic safety and the aerodynamic characteristics of cars. In this paper, the numerical simulation and the experiment are combined to study the wind-induced vibrations of the front windshield at different speeds of a van-body model bus. The Fluid-Structure Interaction (FSI) model is used for the finite element analysis of the vibration characteristics of the front windshield glass in the travelling process, and the wind-induced vibration response characteristics of the glass is obtained. A wind-tunnel experiment with an eddy current displacement sensor is carried out to study the deformation of the windshield at different wind speeds, and to verify the numerical simulation results. It is shown that the windshield of the model bus windshield undergoes a noticeable deformation as the speed changes, and from the deformation curve obtained, it is seen that in the accelerating process, the deformation of the glass increases as the speed increases, and with the speed being stablized, it also tends to a certain value. The results of this study can provide a scientific basis for the safety design of the windshield and the body.

  16. Impact of plasma response on plasma displacements in DIII-D during application of external 3D perturbations

    DOE PAGES

    Wingen, Andreas; Ferraro, Nathaniel M.; Shafer, Morgan W.; ...

    2014-05-23

    The effects of applied non-axisymmetric resonant magnetic perturbations (RMPs) are predicted without and with self-consistent plasma response by modeling of the magnetic field structure and two-fluid MHD simulations, respectively. A synthetic diagnostic is used to simulate soft X-ray (SXR) emission within the steep gradient region of the pedestal, 0.98 > ψ > 0.94. The entire pedestal and edge region is characterized by large changes in plasma rotation and current density. Those parameters are expected to strongly affect the plasma response to RMPs. The M3D-C1 code takes into account this response self-consistently. The plasma response is investigated in detail and usedmore » in the forward modeling of the simulated local SXR emission, within the framework of the synthetic diagnostic. The resulting synthetic emission is compared to measured SXR data. The latter clearly shows helical m = 11 ± 1 displacements around the 11/3 rational surface of sizes up to 5 cm, which change with the poloidal angle. The synthetic emission with plasma response is used to explain the nature of the measured displacements. Different approaches are tested. One approach is based on the magnetic field structure to simulate local emission, which shows additional structures at the separatrix, that are caused by the lobes. Especially without plasma response, almost only separatrix structures are generated while no significant displacements are found further inside. Another approach to model local emission uses the fluid quantities electron density and temperature, as calculated by M3D-C1. Compared to the previous approach, based on the magnetic field structure, the emission simulated by the fluid approach with plasma response shows better agreement with the measured SXR data. To be specific, it has comparable displacements in the steep gradient region and no lobe structures at all. The helical displacements around the 11/3 surface are identified to be directly related to the kink response, caused by non-resonant amplification of various poloidal RMP modes due to plasma response. Regarding the latter, the role of different plasma parameters is investigated, but it appears that the electron rotation plays a key role in the formation of screening and resonant amplification, while the kinking appears to be sensitive to the edge current density. As a result, it is also hypothesised that the strength of the kink response is also correlated to edge-localized-mode (ELM) stability.« less

  17. Pulsatile flow of non-Newtonian blood fluid inside stenosed arteries: Investigating the effects of viscoelastic and elastic walls, arteriosclerosis, and polycythemia diseases.

    PubMed

    Nejad, A Abbas; Talebi, Z; Cheraghali, D; Shahbani-Zahiri, A; Norouzi, M

    2018-02-01

    In this study, the interaction of pulsatile blood flow with the viscoelastic walls of the axisymmetric artery is numerically investigated for different severities of stenosis. The geometry of artery is modeled by an axisymmetric cylindrical tube with a symmetric stenosis in a two-dimensional case. The effects of stenosis severity on the axial velocity profile, pressure distribution, streamlines, wall shear stress, and wall radial displacement for the viscoelastic artery are also compared to the elastics artery. Furthermore, the effects of atherosclerosis and polycythemia diseases on the hemodynamics and the mechanical behavior of arterial walls are investigated. The pulsatile flow of non-Newtonian blood is simulated inside the viscoelastic artery using the COMSOL Multiphysics software (version 5) and by employing the fluid-structure interaction (FSI) method and the arbitrary Lagrangian-Eulerian (ALE) method. Moreover, finite element method (FEM) is used to solve the governing equations on the unstructured grids. For modeling the non-Newtonian blood fluid and the viscoelastic arterial wall, the modified Casson model, and generalized Maxwell model are used, respectively. According to the results, with stenosis severity increasing from 25% to 75% at the time of maximum volumetric flow rate, the maximum value of axial velocity and its gradient increase 7.9 and 19.6 times, and the maximum wall shear stress of viscoelastic wall increases 24.2 times in the constriction zone. With the progression of the atherosclerosis disease (fivefold growth of arterial elastic modulus), the wall radial displacement of viscoelastic arterial walls decreases nearly 40%. In this study, axial velocity profile, pressure distribution, streamlines, wall radial displacement, and wall shear stress were examined for different percentages of stenosis (25%, 50%, and 75%). The atherosclerosis disease was investigated by the fivefold growth of viscoelastic arterial elastic modulus and polycythemia disease was examined by the 21-fold increase in the yield stress of the blood fluid. Furthermore, the comparison of results between the elastic and viscoelastic arterial walls shows that the wall radial displacement for viscoelastic artery is lower than that for the elastic artery as much as 21.7% for the severe stenosis of 75%. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. A pendulum experiment on added mass and equivalence.

    NASA Astrophysics Data System (ADS)

    Donnelly, Russell; Neill, Douglas; Livelybrooks, Dean

    2005-11-01

    The concept of added mass in fluid mechanics has been known for many years. A familiar example is the accelerated motion of a sphere through an inviscid fluid which has an added mass of one-half the mass of the fluid displaced. This result is widely used in quantum fluids; for example giving a finite mass to a trapped electron in superfluid helium-4, which is a free electron in a bubble about 36 Angstroms in diameter. A derivation of this result is contained in Landau-Lifshitz ``Fluid Mechanics'', Section 12. The period of oscillation of a simple pendulum in a vacuum is independent of the mass because of the principle of equivalence of gravitational and inertial masses. In a fluid however, both buoyancy and added mass enter the problem. We present results of experiments of simple pendulums of different materials oscillating in various fluids. The results agree closely with the results obtained for the added mass in inviscid fluids, as expected.

  19. Microcapillary-Based Flow-Through Immunosensor and Displacement Immunoassay Using the Same.

    DTIC Science & Technology

    1997-04-28

    an antibody. If desired, an electroosmotic 24 pump may be used to flow fluid through the microcapillary or 25 microcapillaries in the chip...8 for field use. 9 Fig. 1C shows a flow immunosensor chip 100. Buffer flow 10 through microcapillary passage 102 by virtue of an electroosmotic ...Power for an 23 electroosmotic pump or other fluid pump, as well as any other on- 24 chip components, may be provided by a battery incorporated into

  20. Energy efficient fluid powered linear actuator with variable area

    DOEpatents

    Lind, Randall F.; Love, Lonnie J.

    2016-09-13

    Hydraulic actuation systems having variable displacements and energy recovery capabilities include cylinders with pistons disposed inside of barrels. When operating in energy consuming modes, high speed valves pressurize extension chambers or retraction chambers to provide enough force to meet or counteract an opposite load force. When operating in energy recovery modes, high speed valves return a working fluid from extension chambers or retraction chambers, which are pressurized by a load, to an accumulator for later use.

  1. A hydrodynamically suspended, magnetically sealed mechanically noncontact axial flow blood pump: design of a hydrodynamic bearing.

    PubMed

    Mitamura, Yoshinori; Kido, Kazuyuki; Yano, Tetsuya; Sakota, Daisuke; Yambe, Tomoyuki; Sekine, Kazumitsu; OKamoto, Eiji

    2007-03-01

    To overcome the drive shaft seal and bearing problem in rotary blood pumps, a hydrodynamic bearing, a magnetic fluid seal, and a brushless direct current (DC) motor were employed in an axial flow pump. This enabled contact-free rotation of the impeller without material wear. The axial flow pump consisted of a brushless DC motor, an impeller, and a guide vane. The motor rotor was directly connected to the impeller by a motor shaft. A hydrodynamic bearing was installed on the motor shaft. The motor and the hydrodynamic bearing were housed in a cylindrical casing and were waterproofed by a magnetic fluid seal, a mechanically noncontact seal. Impeller shaft displacement was measured using a laser sensor. Axial and radial displacements of the shaft were only a few micrometers for motor speed up to 8500 rpm. The shaft did not make contact with the bearing housing. A flow of 5 L/min was obtained at 8000 rpm at a pressure difference of 100 mm Hg. In conclusion, the axial flow blood pump consisting of a hydrodynamic bearing, a magnetic fluid seal, and a brushless DC motor provided contact-free rotation of the impeller without material wear.

  2. Dynamic characteristics and mechatronics model for maglev blood pump

    NASA Astrophysics Data System (ADS)

    Sun, Kun; Chen, Chen

    2017-01-01

    Magnetic bearing system(MBs) has been developed in the new-generation blood pump due to its low power consumption, low blood trauma and high durability. However, MBs for a blood pump were almost influenced by a series of factors such as hemodynamics, rotation speeds and actuator response in working fluids, compared with those applied in other industrial fields. In this study, the dynamic characteristics of MBs in fluid environments, including the influence of the pumping fluid and rotation of the impeller on the radial dynamic model were investigated by measuring the frequency response to sinusoidal excitation upon coils, and the response of radial displacement during a raise in the speed. The excitation tests were conducted under conditions in which the blood pump was levitated in air and water and with or without rotation. The experimental and simulated results indicate that rotations of the impeller affected the characteristics of MBs in water apparently, and the vibration in water was decreased, compared with that in air due to the hydraulic force. During the start-up and rotation, the actuator failed to operate fully and timely, and the voltage supplied can be chosen under the consideration of the rotor displacement and consumption.

  3. Development of an integrated BEM approach for hot fluid structure interaction

    NASA Technical Reports Server (NTRS)

    Dargush, Gary F.; Banerjee, Prasanta K.; Honkala, Keith A.

    1988-01-01

    In the present work, the boundary element method (BEM) is chosen as the basic analysis tool, principally because the definition of temperature, flux, displacement and traction are very precise on a boundary-based discretization scheme. One fundamental difficulty is, of course, that a BEM formulation requires a considerable amount of analytical work, which is not needed in the other numerical methods. Progress made toward the development of a boundary element formulation for the study of hot fluid-structure interaction in Earth-to-Orbit engine hot section components is reported. The primary thrust of the program to date has been directed quite naturally toward the examination of fluid flow, since boundary element methods for fluids are at a much less developed state.

  4. Fluid-fluid interfacial mobility from random walks

    NASA Astrophysics Data System (ADS)

    Barclay, Paul L.; Lukes, Jennifer R.

    2017-12-01

    Dual control volume grand canonical molecular dynamics is used to perform the first calculation of fluid-fluid interfacial mobilities. The mobility is calculated from one-dimensional random walks of the interface by relating the diffusion coefficient to the interfacial mobility. Three different calculation methods are employed: one using the interfacial position variance as a function of time, one using the mean-squared interfacial displacement, and one using the time-autocorrelation of the interfacial velocity. The mobility is calculated for two liquid-liquid interfaces and one liquid-vapor interface to examine the robustness of the methods. Excellent agreement between the three calculation methods is shown for all the three interfaces, indicating that any of them could be used to calculate the interfacial mobility.

  5. Role of blockages in particle transport through homogeneous granular assemblies

    NASA Astrophysics Data System (ADS)

    Tejada, I. G.; Sibille, L.; Chareyre, B.

    2016-09-01

    This letter deals with the transport of particles through granular assemblies and, specifically, with the intermittent formation of blockages originated from collective and purely mechanical clogging of constrictions. We perform numerical experiments with a micro-hydromechanical model that is able to reproduce the complex interplay between the carrier fluid, the transported particles and the granular assembly. The probability distribution functions (PDFs) of the duration of blockages and displacements give the time scale on which the effect of blockages is erased and the advection-dispersion paradigm is valid. Our experiments show that these PDFs fit exponential laws, reinforcing the idea that the formation and destruction of blockages are homogeneous Poisson processes.

  6. CFD Based Computations of Flexible Helicopter Blades for Stability Analysis

    NASA Technical Reports Server (NTRS)

    Guruswamy, Guru P.

    2011-01-01

    As a collaborative effort among government aerospace research laboratories an advanced version of a widely used computational fluid dynamics code, OVERFLOW, was recently released. This latest version includes additions to model flexible rotating multiple blades. In this paper, the OVERFLOW code is applied to improve the accuracy of airload computations from the linear lifting line theory that uses displacements from beam model. Data transfers required at every revolution are managed through a Unix based script that runs jobs on large super-cluster computers. Results are demonstrated for the 4-bladed UH-60A helicopter. Deviations of computed data from flight data are evaluated. Fourier analysis post-processing that is suitable for aeroelastic stability computations are performed.

  7. Transducer applications, a compilation

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The characteristics and applications of transducers are discussed. Subjects presented are: (1) thermal measurements, (2) liquid level and fluid flow measurements, (3) pressure transducers, (4) stress-strain measurements, (5) acceleration and velocity measurements, (6) displacement and angular rotation, and (7) transducer test and calibration methods.

  8. Computer program for analysis of split-Stirling-cycle cryogenic coolers

    NASA Technical Reports Server (NTRS)

    Brown, M. T.; Russo, S. C.

    1983-01-01

    A computer program for predicting the detailed thermodynamic performance of split-Stirling-cycle refrigerators has been developed. The mathematical model includes the refrigerator cold head, free-displacer/regenerator, gas transfer line, and provision for modeling a mechanical or thermal compressor. To allow for dynamic processes (such as aerodynamic friction and heat transfer) temperature, pressure, and mass flow rate are varied by sub-dividing the refrigerator into an appropriate number of fluid and structural control volumes. Of special importance to modeling of cryogenic coolers is the inclusion of real gas properties, and allowance for variation of thermo-physical properties such as thermal conductivities, specific heats and viscosities, with temperature and/or pressure. The resulting model, therefore, comprehensively simulates the split-cycle cooler both spatially and temporally by reflecting the effects of dynamic processes and real material properties.

  9. Resistive dissipation and magnetic field topology in the stellar corona

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1993-01-01

    Tangential discontinuities, or current sheets, in a magnetic field embedded in a fluid with vanishing resistivity are created by discontinuous fluid motion. Tangential discontinuities are also created when a magnetic field is allowed to relax to magnetostatic equilibrium after mixing by fluid motions (either continuous or discontinuous) into any but the simplest topologies. This paper shows by formal examples that the current sheets arising solely from discontinuous fluid motions do not contribute significantly to the dissipation of magnetic free energy when a small resistivity is introduced. Dissipation that is significant under coronal conditions occurs only by rapid reconnection, which arises when, and only when, the current sheets are required by the field topology. Hence it is topological dissipation that is primarily responsible for heating tenuous coronal gases in astronomical settings, whether the fluid displacements of the field are continuous or discontinuous.

  10. Thermodynamic Insights into Effects of Water Displacement and Rearrangement upon Ligand Modification using Molecular Dynamics Simulations.

    PubMed

    Wahl, Joel; Smiesko, Martin

    2018-05-04

    Computational methods, namely Molecular Dynamics Simulations (MD simulations) in combination with Inhomogeneous Fluid Solvation Theory (IFST) were used to retrospectively investigate various cases of ligand structure modifications that led to the displacement of binding site water molecules. Our findings are that the water displacement per se is energetically unfavorable in the discussed examples, and that it is merely the fine balance between change in protein-ligand interaction energy, ligand solvation free energies and binding site solvation free energies that determine if water displacement is favorable or not. We furthermore evaluated if we can reproduce experimental binding affinities by a computational approach combining changes in solvation free energies with changes in protein-ligand interaction energies and entropies. In two of the seven cases, this estimation led to large errors, implying that accurate predictions of relative binding free energies based on solvent thermodynamics is challenging. Still, MD simulations can provide insights into which water molecules can be targeted for displacement. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Symmetric wetting heterogeneity suppresses fluid displacement hysteresis in granular piles

    NASA Astrophysics Data System (ADS)

    Moosavi, R.; Schröter, M.; Herminghaus, S.

    2018-02-01

    We investigate experimentally the impact of heterogeneity on the capillary pressure hysteresis in fluid invasion of model porous media. We focus on symmetric heterogeneity, where the contact angles the fluid interface makes with the oil-wet (θ1) and the water-wet (θ2) beads add up to π . While enhanced heterogeneity is usually known to increase hysteresis phenomena, we find that hysteresis is greatly reduced when heterogeneities in wettability are introduced. On the contrary, geometric heterogeneity (like bidisperse particle size) does not lead to such an effect. We provide a qualitative explanation of this surprising result, resting on rather general geometric arguments.

  12. Dynamic control of droplets and pockets formation in homogeneous porous media immiscible displacements

    NASA Astrophysics Data System (ADS)

    Lins, T. F.; Azaiez, J.

    2018-03-01

    Interfacial instabilities of immiscible two-phase radial flow displacements in homogeneous porous media are analyzed for constant and time-dependent sinusoidal cyclic injection schemes. The analysis is carried out through numerical simulations based on the immersed interface and level set methods. The effects of the fluid properties and the injection flow parameters, namely, the period and the amplitude, on the formation of droplets and pockets are analyzed. It was found that larger capillary numbers or smaller viscosity ratios lead to more droplets/pockets that tend to appear earlier in time. Furthermore, the period and amplitude of the cyclic schemes were found to have a strong effect on droplets/pockets formations, and depending on their values, these can be enhanced or attenuated. In particular, the results revealed that there is a critical amplitude above which droplets and pockets formation is suppressed up to a specified time. This critical amplitude depends on the fluid properties, namely, the viscosity ratio and surface tension as well as on the period of the time-dependent scheme. The results of this study indicate that it is possible to use time-dependent cyclic schemes to control the formation and development of droplets/pockets in the flow and in particular to delay their appearance through an appropriate combination of the displacement scheme's amplitude and period.

  13. Numerical simulation of soft palate movement and airflow in human upper airway by fluid-structure interaction method

    NASA Astrophysics Data System (ADS)

    Sun, Xiuzhen; Yu, Chi; Wang, Yuefang; Liu, Yingxi

    2007-08-01

    In this paper, the authors present airflow field characteristics of human upper airway and soft palate movement attitude during breathing. On the basis of the data taken from the spiral computerized tomography images of a healthy person and a patient with Obstructive Sleep Apnea-Hypopnea Syndrome (OSAHS), three-dimensional models of upper airway cavity and soft palate are reconstructed by the method of surface rendering. Numerical simulation is performed for airflow in the upper airway and displacement of soft palate by fluid-structure interaction analysis. The reconstructed three-dimensional models precisely preserve the original configuration of upper airways and soft palate. The results of the pressure and velocity distributions in the airflow field are quantitatively determined, and the displacement of soft palate is presented. Pressure gradients of airway are lower for the healthy person and the airflow distribution is quite uniform in the case of free breathing. However, the OSAHS patient remarkably escalates both the pressure and velocity in the upper airway, and causes higher displacement of the soft palate. The present study is useful in revealing pathogenesis and quantitative mutual relationship between configuration and function of the upper airway as well as in diagnosing diseases related to anatomical structure and function of the upper airway.

  14. Energy efficient fluid powered linear actuator with variable area and concentric chambers

    DOEpatents

    Lind, Randall F.; Love, Lonnie J.

    2016-11-15

    Hydraulic actuation systems having concentric chambers, variable displacements and energy recovery capabilities include cylinders with pistons disposed inside of barrels. When operating in energy consuming modes, high speed valves pressurize extension chambers or retraction chambers to provide enough force to meet or counteract an opposite load force. When operating in energy recovery modes, high speed valves return a working fluid from extension chambers or retraction chambers, which are pressurized by a load, to an accumulator for later use.

  15. Self-heating in piezoresistive cantilevers

    PubMed Central

    Doll, Joseph C.; Corbin, Elise A.; King, William P.; Pruitt, Beth L.

    2011-01-01

    We report experiments and models of self-heating in piezoresistive microcantilevers that show how cantilever measurement resolution depends on the thermal properties of the surrounding fluid. The predicted cantilever temperature rise from a finite difference model is compared with detailed temperature measurements on fabricated devices. Increasing the fluid thermal conductivity allows for lower temperature operation for a given power dissipation, leading to lower force and displacement noise. The force noise in air is 76% greater than in water for the same increase in piezoresistor temperature. PMID:21731884

  16. Self-heating in piezoresistive cantilevers.

    PubMed

    Doll, Joseph C; Corbin, Elise A; King, William P; Pruitt, Beth L

    2011-05-30

    We report experiments and models of self-heating in piezoresistive microcantilevers that show how cantilever measurement resolution depends on the thermal properties of the surrounding fluid. The predicted cantilever temperature rise from a finite difference model is compared with detailed temperature measurements on fabricated devices. Increasing the fluid thermal conductivity allows for lower temperature operation for a given power dissipation, leading to lower force and displacement noise. The force noise in air is 76% greater than in water for the same increase in piezoresistor temperature.

  17. Performance characteristics of plane-wall venturi-like reverse flow diverters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, G.V.; Counce, R.M.

    1984-02-01

    The results of an analytical and experimental study of plane-wall venturi-like reverse flow diverters (RFD) are presented. In general, the flow characteristics of the RFD are reasonably well predicted by the mathematical model of the RFD, although a divergence between theory and data is observed for the output characteristics in the reverse flow mode as the output impedance is reduced. Overall, the performance of these devices indicates their usefulness in fluid control and fluid power systems, such as displacement pumping systems.

  18. Performance characteristics of plane-wall venturi-like reverse flow diverters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, G.V.; Counce, R.M.

    1982-01-01

    The results of an analytical and experimental study of plane-wall venturi-like reverse flow diverters (RFD) are presented. In general, the flow characteristics of the RFD are reasonably well predicted by the mathematical model of the RFD, although a divergence between theory and data is observed for the output characteristics in the reverse flow mode as the output impedance is reduced. Overall, the performance of these devices indicates their usefulness in fluid control and fluid power systems, such as displacement pumping systems.

  19. Simulation Of The Synovial Fluid In A Deformable Cavity

    NASA Astrophysics Data System (ADS)

    Martinez-Gutierrez, Nancy; Ibarra-Bracamontes, Laura A.

    2016-11-01

    The main components of a synovial joint are a cartilage and a biofluid known as the synovial fluid. The results were obtained using the FLUENT software to simulate the behavior of the synovial fluid within a deformable cavity with a simple geometry. The cartilage is represented as a porous region. By reducing the available region for the fluid, a fluid displacement into the cartilage is induced. The total pressure reached in the interface of the deformable cavity and the porous region is presented. The geometry and properties of the system are scaled to values found in a knee joint. The effect of deformation rate, fluid viscosity and properties of the porous medium on the total pressure reached are analyzed. The higher pressures are reached either for high deformation rate or when the fluid viscosity increases. This study was supported by the Mexican Council of Science and Technology (CONACyT) and by the Scientific Research Coordination of the University of Michoacan in Mexico.

  20. Characterization of the potential energy landscape of an antiplasticized polymer.

    PubMed

    Riggleman, Robert A; Douglas, Jack F; de Pablo, Juan J

    2007-07-01

    The nature of the individual transitions on the potential energy landscape (PEL) associated with particle motion are directly examined for model fragile glass-forming polymer melts, and the results are compared to those of an antiplasticized polymer system. In previous work, we established that the addition of antiplasticizer reduces the fragility of glass formation so that the antiplasticized material is a stronger glass former. In the present work, we find that the antiplasticizing molecules reduce the energy barriers for relaxation compared to the pure polymer, implying that the antiplasticized system has smaller barriers to overcome in order to explore its configuration space. We examine the cooperativity of segmental motion in these bulk fluids and find that more extensive stringlike collective motion enables the system to overcome larger potential energy barriers, in qualitative agreement with both the Stillinger-Weber and Adam-Gibbs views of glass formation. Notably, the stringlike collective motion identified by our PEL analysis corresponds to incremental displacements that occur within larger-scale stringlike particle displacement processes associated with PEL metabasin transitions that mediate structural relaxation. These "substrings" nonetheless seem to exhibit changes in relative size with antiplasticization similar to those observed in "superstrings" that arise at elevated temperatures. We also study the effects of confinement on the energy barriers in each system. Film confinement makes the energy barriers substantially smaller in the pure polymer, while it has little effect on the energy barriers in the antiplasticized system. This observation is qualitatively consistent with our previous studies of stringlike motion in these fluids at higher temperatures and with recent experimental measurements by Torkelson and co-workers.

  1. Poroelastic rebound along the Landers 1992 earthquake surface rupture

    USGS Publications Warehouse

    Peltzer, G.; Rosen, P.; Rogez, F.; Hudnut, K.

    1998-01-01

    Maps of surface displacement following the 1992 Landers, California, earthquake, generated by interferometric processing of ERS-1 synthetic aperture radar (SAR) images, reveal effects of various postseismic deformation processes along the 1992 surface rupture. The large-scale pattern of the postseismic displacement field includes large lobes, mostly visible on the west side of the fault, comparable in shape with the lobes observed in the coseismic displacement field. This pattern and the steep displacement gradient observed near the Emerson-Camp Rock fault cannot be simply explained by afterslip on deep sections of the 1992 rupture. Models show that horizontal slip occurring on a buried dislocation in a Poisson's material produces a characteristic quadripole pattern in the surface displacement field with several centimeters of vertical motion at distances of 10-20 km from the fault, yet this pattern is not observed in the postseismic interferograms. As previously proposed to explain local strain in the fault step overs [Peltzer et al., 1996b], we argue that poroelastic rebound caused by pore fluid flow may also occur over greater distances from the fault, compensating the vertical ground shift produced by fault afterslip. Such a rebound is explained by the gradual change of the crustal rocks' Poisson's ratio value from undrained (coseismic) to drained (postseismic) conditions as pore pressure gradients produced by the earthquake dissipate. Using the Poisson's ratio values of 0.27 and 0.31 for the drained and undrained crustal rocks, respectively, elastic dislocation models show that the combined contributions of afterslip on deep sections of the fault and poroelastic rebound can account for the range change observed in the SAR data and the horizontal displacement measured at Global Positioning System (GPS) sites along a 60-km-long transect across the Emerson fault [Savage and Svarc, 1997]. Using a detailed surface slip distribution on the Homestead Valley, Kickapoo, and Johnson Valley faults, we modeled the poroelastic rebound in the Homestead Valley pull apart. A Poisson's ratio value of 0.35 for the undrained gouge rocks in the fault zone is required to account for the observed surface uplift in the 3.5 years following the earthquake. This large value implies a seismic velocity ratio Vp/Vs of 2.1, consistent with the observed low Vs values of fault zone guided waves at shallow depth [Li et al., 1997]. The SAR data also reveal postseismic creep along shallow patches of the Eureka Peak and Burnt Mountain faults with a characteristic decay time of 0.8 years. Coseismic, dilatant hardening (locking process) followed by post-seismic, pore pressure controlled fault creep provide a plausible mechanism to account for the decay time of the observed slip rate along this section of the fault. Copyright 1998 by the American Geophysical Union.

  2. Saffman-Taylor Instability and the Inner Splitting Mechanism

    NASA Astrophysics Data System (ADS)

    Oliveira, Rafael; Meiburg, Eckart

    2017-11-01

    The classical miscible displacement experiments of Wooding (1969) exhibit an inner splitting phenomenon that remained unexplained for over 40 years. 3D Navier-Stokes simulations presented in, were the first ones to reproduce these experimental observations numerically, and to demonstrate that they are linked to concentrated streamwise vortices. The origin of these concentrated streamwise vortices remained a mystery, however. The current investigation, published at, finally resolves this long-standing issue. Towards this end, we compare 3D Navier-Stokes simulation results for neutrally buoyant, viscously unstable displacements and gravitationally unstable, constant viscosity ones. Only the former exhibit the generation of streamwise vorticity. The simulation results present conclusive evidence that it is caused by the lateral displacement of the more viscous fluid by the less viscous one, with the variable viscosity terms playing a dominant role.

  3. THERMO-HYDRO-MECHANICAL MODELING OF WORKING FLUID INJECTION AND THERMAL ENERGY EXTRACTION IN EGS FRACTURES AND ROCK MATRIX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert Podgorney; Chuan Lu; Hai Huang

    2012-01-01

    Development of enhanced geothermal systems (EGS) will require creation of a reservoir of sufficient volume to enable commercial-scale heat transfer from the reservoir rocks to the working fluid. A key assumption associated with reservoir creation/stimulation is that sufficient rock volumes can be hydraulically fractured via both tensile and shear failure, and more importantly by reactivation of naturally existing fractures (by shearing), to create the reservoir. The advancement of EGS greatly depends on our understanding of the dynamics of the intimately coupled rock-fracture-fluid-heat system and our ability to reliably predict how reservoirs behave under stimulation and production. Reliable performance predictions ofmore » EGS reservoirs require accurate and robust modeling for strongly coupled thermal-hydrological-mechanical (THM) processes. Conventionally, these types of problems have been solved using operator-splitting methods, usually by coupling a subsurface flow and heat transport simulators with a solid mechanics simulator via input files. An alternative approach is to solve the system of nonlinear partial differential equations that govern multiphase fluid flow, heat transport, and rock mechanics simultaneously, using a fully coupled, fully implicit solution procedure, in which all solution variables (pressure, enthalpy, and rock displacement fields) are solved simultaneously. This paper describes numerical simulations used to investigate the poro- and thermal- elastic effects of working fluid injection and thermal energy extraction on the properties of the fractures and rock matrix of a hypothetical EGS reservoir, using a novel simulation software FALCON (Podgorney et al., 2011), a finite element based simulator solving fully coupled multiphase fluid flow, heat transport, rock deformation, and fracturing using a global implicit approach. Investigations are also conducted on how these poro- and thermal-elastic effects are related to fracture permeability evolution.« less

  4. Towards coupled earthquake dynamic rupture and tsunami simulations: The 2011 Tohoku earthquake.

    NASA Astrophysics Data System (ADS)

    Galvez, Percy; van Dinther, Ylona

    2016-04-01

    The 2011 Mw9 Tohoku earthquake has been recorded with a vast GPS and seismic network given an unprecedented chance to seismologists to unveil complex rupture processes in a mega-thrust event. The seismic stations surrounding the Miyagi regions (MYGH013) show two clear distinct waveforms separated by 40 seconds suggesting two rupture fronts, possibly due to slip reactivation caused by frictional melting and thermal fluid pressurization effects. We created a 3D dynamic rupture model to reproduce this rupture reactivation pattern using SPECFEM3D (Galvez et al, 2014) based on a slip-weakening friction with sudden two sequential stress drops (Galvez et al, 2015) . Our model starts like a M7-8 earthquake breaking dimly the trench, then after 40 seconds a second rupture emerges close to the trench producing additional slip capable to fully break the trench and transforming the earthquake into a megathrust event. The seismograms agree roughly with seismic records along the coast of Japan. The resulting sea floor displacements are in agreement with 1Hz GPS displacements (GEONET). The simulated sea floor displacement reaches 8-10 meters of uplift close to the trench, which may be the cause of such a devastating tsunami followed by the Tohoku earthquake. To investigate the impact of such a huge uplift, we ran tsunami simulations with the slip reactivation model and plug the sea floor displacements into GeoClaw (Finite element code for tsunami simulations, George and LeVeque, 2006). Our recent results compare well with the water height at the tsunami DART buoys 21401, 21413, 21418 and 21419 and show the potential using fully dynamic rupture results for tsunami studies for earthquake-tsunami scenarios.

  5. Fluid friction and wall viscosity of the 1D blood flow model.

    PubMed

    Wang, Xiao-Fei; Nishi, Shohei; Matsukawa, Mami; Ghigo, Arthur; Lagrée, Pierre-Yves; Fullana, Jose-Maria

    2016-02-29

    We study the behavior of the pulse waves of water into a flexible tube for application to blood flow simulations. In pulse waves both fluid friction and wall viscosity are damping factors, and difficult to evaluate separately. In this paper, the coefficients of fluid friction and wall viscosity are estimated by fitting a nonlinear 1D flow model to experimental data. In the experimental setup, a distensible tube is connected to a piston pump at one end and closed at another end. The pressure and wall displacements are measured simultaneously. A good agreement between model predictions and experiments was achieved. For amplitude decrease, the effect of wall viscosity on the pulse wave has been shown as important as that of fluid viscosity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Comparison of the numerical modelling and experimental measurements of DIII-D separatrix displacements during H-modes with resonant magnetic perturbations

    DOE PAGES

    Orlov, Dmitry M.; Moyer, Richard A.; Evans, Todd E.; ...

    2014-08-15

    Numerical modeling of the plasma boundary position and its displacement due to external magnetic perturbations in DIII-D low-collisionality H-mode discharges is presented. The results of the vacuum model are compared to the experimental measurements for boundary displacements including Thomson scattering electron temperature T e, charge exchange recombination spectroscopy, beam emission spectroscopy, soft x-ray, and divertor Langmuir probe measurements. Magnetically perturbed discharges with toroidal mode number n=2 and n=3 are studied. It is shown that the vacuum model predictions agree well with the measurements above and below the midplane, and disagree at the outer midplane in discharges where significant kink amplificationmore » is present. Lastly, the role of the plasma response is studied using the two-fluid MHD code M3D-C 1, and the results are compared to the vacuum model showing that the plasma response model underestimates the boundary displacements.« less

  7. Fracture hydromechanical response measured by fiber optic distributed acoustic sensing at milliHertz frequencies

    NASA Astrophysics Data System (ADS)

    Becker, M. W.; Ciervo, C.; Cole, M.; Coleman, T.; Mondanos, M.

    2017-07-01

    A new method of measuring dynamic strain in boreholes was used to record fracture displacement in response to head oscillation. Fiber optic distributed acoustic sensing (DAS) was used to measure strain at mHz frequencies, rather than the Hz to kHz frequencies typical for seismic and acoustic monitoring. Fiber optic cable was mechanically coupled to the wall of a borehole drilled into fractured crystalline bedrock. Oscillating hydraulic signals were applied at a companion borehole 30 m away. The DAS instrument measured fracture displacement at frequencies of less than 1 mHz and amplitudes of less than 1 nm, in response to fluid pressure changes of less 20 Pa (2 mm H2O). Displacement was linearly related to the log of effective stress, a relationship typically explained by the effect of self-affine fracture roughness on fracture closure. These results imply that fracture roughness affects closure even when displacement is a million times smaller than the fracture aperture.

  8. Modeling unstable alcohol flooding of DNAPL-contaminated columns

    NASA Astrophysics Data System (ADS)

    Roeder, Eberhard; Falta, Ronald W.

    Alcohol flooding, consisting of injection of a mixture of alcohol and water, is one source removal technology for dense non-aqueous phase liquids (DNAPLs) currently under investigation. An existing compositional multiphase flow simulator (UTCHEM) was adapted to accurately represent the equilibrium phase behavior of ternary and quaternary alcohol/DNAPL systems. Simulator predictions were compared to laboratory column experiments and the results are presented here. It was found that several experiments involved unstable displacements of the NAPL bank by the alcohol flood or of the alcohol flood by the following water flood. Unstable displacement led to additional mixing compared to ideal displacement. This mixing was approximated by a large dispersion in one-dimensional simulations and or by including permeability heterogeneities on a very small scale in three-dimensional simulations. Three-dimensional simulations provided the best match. Simulations of unstable displacements require either high-resolution grids, or need to consider the mixing of fluids in a different manner to capture the resulting effects on NAPL recovery.

  9. Optimization and Analysis of Centrifugal Pump considering Fluid-Structure Interaction

    PubMed Central

    Hu, Sanbao

    2014-01-01

    This paper presents the optimization of vibrations of centrifugal pump considering fluid-structure interaction (FSI). A set of centrifugal pumps with various blade shapes were studied using FSI method, in order to investigate the transient vibration performance. The Kriging model, based on the results of the FSI simulations, was established to approximate the relationship between the geometrical parameters of pump impeller and the root mean square (RMS) values of the displacement response at the pump bearing block. Hence, multi-island genetic algorithm (MIGA) has been implemented to minimize the RMS value of the impeller displacement. A prototype of centrifugal pump has been manufactured and an experimental validation of the optimization results has been carried out. The comparison among results of Kriging surrogate model, FSI simulation, and experimental test showed a good consistency of the three approaches. Finally, the transient mechanical behavior of pump impeller has been investigated using FSI method based on the optimized geometry parameters of pump impeller. PMID:25197690

  10. Lunar Science from Lunar Laser Ranging

    NASA Technical Reports Server (NTRS)

    Williams, J. G.; Boggs, D. H.; Ratcliff, J. T.

    2013-01-01

    Variations in rotation and orientation of the Moon are sensitive to solid-body tidal dissipation, dissipation due to relative motion at the fluid-core/solid-mantle boundary, tidal Love number k2, and moment of inertia differences. There is weaker sensitivity to flattening of the core/mantle boundary (CMB) and fluid core moment of inertia. Accurate Lunar Laser Ranging (LLR) measurements of the distance from observatories on the Earth to four retroreflector arrays on the Moon are sensitive to variations in lunar rotation, orientation and tidal displacements. Past solutions using the LLR data have given results for Love numbers plus dissipation due to solid-body tides and fluid core. Detection of the fluid core polar minus equatorial moment of inertia difference due to CMB flattening is weakly significant. This strengthens the case for a fluid lunar core. Future approaches are considered to detect a solid inner core.

  11. Application of parallel distributed Lagrange multiplier technique to simulate coupled Fluid-Granular flows in pipes with varying Cross-Sectional area

    DOE PAGES

    Kanarska, Yuliya; Walton, Otis

    2015-11-30

    Fluid-granular flows are common phenomena in nature and industry. Here, an efficient computational technique based on the distributed Lagrange multiplier method is utilized to simulate complex fluid-granular flows. Each particle is explicitly resolved on an Eulerian grid as a separate domain, using solid volume fractions. The fluid equations are solved through the entire computational domain, however, Lagrange multiplier constrains are applied inside the particle domain such that the fluid within any volume associated with a solid particle moves as an incompressible rigid body. The particle–particle interactions are implemented using explicit force-displacement interactions for frictional inelastic particles similar to the DEMmore » method with some modifications using the volume of an overlapping region as an input to the contact forces. Here, a parallel implementation of the method is based on the SAMRAI (Structured Adaptive Mesh Refinement Application Infrastructure) library.« less

  12. Multiphase, multicomponent simulations and experiments of reactive flow, relevant for combining geologic CO2 sequestration with geothermal energy capture

    NASA Astrophysics Data System (ADS)

    Saar, Martin O.

    2011-11-01

    Understanding the fluid dynamics of supercritical carbon dioxide (CO2) in brine- filled porous media is important for predictions of CO2 flow and brine displacement during geologic CO2 sequestration and during geothermal energy capture using sequestered CO2 as the subsurface heat extraction fluid. We investigate multiphase fluid flow in porous media employing particle image velocimetry experiments and lattice-Boltzmann fluid flow simulations at the pore scale. In particular, we are interested in the motion of a drop (representing a CO2 bubble) through an orifice in a plate, representing a simplified porous medium. In addition, we study single-phase/multicomponent reactive transport experimentally by injecting water with dissolved CO2 into rocks/sediments typically considered for CO2 sequestration to investigate how resultant fluid-mineral reactions modify permeability fields. Finally, we investigate numerically subsurface CO2 and heat transport at the geologic formation scale.

  13. Rapid sampling of stochastic displacements in Brownian dynamics simulations with stresslet constraints

    NASA Astrophysics Data System (ADS)

    Fiore, Andrew M.; Swan, James W.

    2018-01-01

    Brownian Dynamics simulations are an important tool for modeling the dynamics of soft matter. However, accurate and rapid computations of the hydrodynamic interactions between suspended, microscopic components in a soft material are a significant computational challenge. Here, we present a new method for Brownian dynamics simulations of suspended colloidal scale particles such as colloids, polymers, surfactants, and proteins subject to a particular and important class of hydrodynamic constraints. The total computational cost of the algorithm is practically linear with the number of particles modeled and can be further optimized when the characteristic mass fractal dimension of the suspended particles is known. Specifically, we consider the so-called "stresslet" constraint for which suspended particles resist local deformation. This acts to produce a symmetric force dipole in the fluid and imparts rigidity to the particles. The presented method is an extension of the recently reported positively split formulation for Ewald summation of the Rotne-Prager-Yamakawa mobility tensor to higher order terms in the hydrodynamic scattering series accounting for force dipoles [A. M. Fiore et al., J. Chem. Phys. 146(12), 124116 (2017)]. The hydrodynamic mobility tensor, which is proportional to the covariance of particle Brownian displacements, is constructed as an Ewald sum in a novel way which guarantees that the real-space and wave-space contributions to the sum are independently symmetric and positive-definite for all possible particle configurations. This property of the Ewald sum is leveraged to rapidly sample the Brownian displacements from a superposition of statistically independent processes with the wave-space and real-space contributions as respective covariances. The cost of computing the Brownian displacements in this way is comparable to the cost of computing the deterministic displacements. The addition of a stresslet constraint to the over-damped particle equations of motion leads to a stochastic differential algebraic equation (SDAE) of index 1, which is integrated forward in time using a mid-point integration scheme that implicitly produces stochastic displacements consistent with the fluctuation-dissipation theorem for the constrained system. Calculations for hard sphere dispersions are illustrated and used to explore the performance of the algorithm. An open source, high-performance implementation on graphics processing units capable of dynamic simulations of millions of particles and integrated with the software package HOOMD-blue is used for benchmarking and made freely available in the supplementary material (ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-012805)

  14. Apparatus for moving a pipe inspection probe through piping

    DOEpatents

    Zollinger, W.T.; Appel, D.K.; Lewis, G.W.

    1995-07-18

    A method and apparatus are disclosed for controllably moving devices for cleaning or inspection through piping systems, including piping systems with numerous piping bends therein, by using hydrostatic pressure of a working fluid introduced into the piping system. The apparatus comprises a reservoir or other source for supplying the working fluid to the piping system, a launch tube for admitting the device into the launcher and a reversible, positive displacement pump for controlling the direction and flow rate of the working fluid. The device introduced into the piping system moves with the flow of the working fluid through the piping system. The launcher attaches to the valved ends of a piping system so that fluids in the piping system can recirculate in a closed loop. The method comprises attaching the launcher to the piping system, supplying the launcher with working fluid, admitting the device into the launcher, pumping the working fluid in the direction and at the rate desired so that the device moves through the piping system for pipe cleaning or inspection, removing the device from the launcher, and collecting the working fluid contained in the launcher. 8 figs.

  15. Apparatus for moving a pipe inspection probe through piping

    DOEpatents

    Zollinger, W. Thor; Appel, D. Keith; Lewis, Gregory W.

    1995-01-01

    A method and apparatus for controllably moving devices for cleaning or inspection through piping systems, including piping systems with numerous piping bends therein, by using hydrostatic pressure of a working fluid introduced into the piping system. The apparatus comprises a reservoir or other source for supplying the working fluid to the piping system, a launch tube for admitting the device into the launcher and a reversible, positive displacement pump for controlling the direction and flow rate of the working fluid. The device introduced into the piping system moves with the flow of the working fluid through the piping system. The launcher attaches to the valved ends of a piping system so that fluids in the piping system can recirculate in a closed loop. The method comprises attaching the launcher to the piping system, supplying the launcher with working fluid, admitting the device into the launcher, pumping the working fluid in the direction and at the rate desired so that the device moves through the piping system for pipe cleaning or inspection, removing the device from the launcher, and collecting the working fluid contained in the launcher.

  16. In vitro flow assessment: from PC-MRI to computational fluid dynamics including fluid-structure interaction

    NASA Astrophysics Data System (ADS)

    Kratzke, Jonas; Rengier, Fabian; Weis, Christian; Beller, Carsten J.; Heuveline, Vincent

    2016-04-01

    Initiation and development of cardiovascular diseases can be highly correlated to specific biomechanical parameters. To examine and assess biomechanical parameters, numerical simulation of cardiovascular dynamics has the potential to complement and enhance medical measurement and imaging techniques. As such, computational fluid dynamics (CFD) have shown to be suitable to evaluate blood velocity and pressure in scenarios, where vessel wall deformation plays a minor role. However, there is a need for further validation studies and the inclusion of vessel wall elasticity for morphologies being subject to large displacement. In this work, we consider a fluid-structure interaction (FSI) model including the full elasticity equation to take the deformability of aortic wall soft tissue into account. We present a numerical framework, in which either a CFD study can be performed for less deformable aortic segments or an FSI simulation for regions of large displacement such as the aortic root and arch. Both of the methods are validated by means of an aortic phantom experiment. The computational results are in good agreement with 2D phase-contrast magnetic resonance imaging (PC-MRI) velocity measurements as well as catheter-based pressure measurements. The FSI simulation shows a characteristic vessel compliance effect on the flow field induced by the elasticity of the vessel wall, which the CFD model is not capable of. The in vitro validated FSI simulation framework can enable the computation of complementary biomechanical parameters such as the stress distribution within the vessel wall.

  17. Fluid-Structure Interactions as Flow Propagates Tangentially Over a Flexible Plate with Application to Voiced Speech Production

    NASA Astrophysics Data System (ADS)

    Westervelt, Andrea; Erath, Byron

    2013-11-01

    Voiced speech is produced by fluid-structure interactions that drive vocal fold motion. Viscous flow features influence the pressure in the gap between the vocal folds (i.e. glottis), thereby altering vocal fold dynamics and the sound that is produced. During the closing phases of the phonatory cycle, vortices form as a result of flow separation as air passes through the divergent glottis. It is hypothesized that the reduced pressure within a vortex core will alter the pressure distribution along the vocal fold surface, thereby aiding in vocal fold closure. The objective of this study is to determine the impact of intraglottal vortices on the fluid-structure interactions of voiced speech by investigating how the dynamics of a flexible plate are influenced by a vortex ring passing tangentially over it. A flexible plate, which models the medial vocal fold surface, is placed in a water-filled tank and positioned parallel to the exit of a vortex generator. The physical parameters of plate stiffness and vortex circulation are scaled with physiological values. As vortices propagate over the plate, particle image velocimetry measurements are captured to analyze the energy exchange between the fluid and flexible plate. The investigations are performed over a range of vortex formation numbers, and lateral displacements of the plate from the centerline of the vortex trajectory. Observations show plate oscillations with displacements directly correlated with the vortex core location.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramey, H.J. Jr.

    Most of the significant contributions to reservoir engineering were made by a handful of prodigious giants in the 1930's and 1940's. The most significant contribution that can be made in the next 20 yr will be to fully understand--perhaps with the help of that latest prodigy, the computer--what those giants were driving at. Even if only the presently known oil-recovery processes are considered, exciting happenings in the area of oil recovery can be forecast for the next 20 yr. During the 1950's and 1960's, thermal recovery, miscible fluid injection, and non-Newtonian (mobility control) fluid injection were developed and widely pilotmore » tested. All of these methods offer the potential for very high oil recoveries--on the order of 80 to 100% of oil in the displaced region. It is hoped that the development of methods will occur, which are capable of recovering 75% of oil in place at the start of fluid injection. Technologically, this is really not a bold forecast--both wet combustion and micellar solution slug injection already appear to have this capability in well-designed operations. The late 1960's was a period of unusually successful exploration. Large finds were made, worldwide, almost daily: Prudhoe Bay, the North Sea, Australia, and Indonesia. (11 refs.)« less

  19. Direct testing of the biasing effect of manipulations of endolymphatic pressure on cochlear mechanical function

    NASA Astrophysics Data System (ADS)

    LePage, Eric; Avan, Paul

    2015-12-01

    The history of cochlear mechanical investigations has been carried out in two largely separate sets of endeavours; those interested in auditory processing in animal models and those interested in the origin of adverse vestibular symptoms in humans. In respect of the first, mechanical vibratory data is considered pathological and not representative of pristine behaviour if it departs from the reigning model of sharp tuning and high hearing sensitivity. Conversely, when the description of the pathological behaviour is the focus, fluid movements responsible for hearing loss and vestibular symptoms dominate. Yet both extensive sets of data possess a common factor now being reconsidered for its potential to shed light on the mechanisms in general. The common factor is a mechanical bias — the departure of cochlear epithelial membranes from their usual resting position. In both cases the bias modulates hearing sensitivity and distorts tuning characteristics. Indeed several early sets of guinea pig mechanical data were dismissed as "pathological" when in hindsight, the primary effect influencing the data was not loss of outer hair cell function per se, but a mechanical bias unknowingly introduced in process of making the measurement. Such biases in the displacement of the basilar membrane from its position are common, and may be caused by low-frequency sounds (topically including infrasound) or by variations in fluid volume in the chambers particularly applying the case of endolymphatic hydrops. Most biases are quantified in terms of visualisation of fluid volume change, electric potential changes and otoacoustic emissions. Notably many previous studies have also searched for raised pressures with negative results. Yet these repeated findings are contrary to the widespread notion that, at least when homeostasis is lost, it is a rise in endolymphatic pressure which is responsible for membrane rupture and Meniere's attacks. This current investigation in Mongolian gerbils is aimed at quantifying hydrostatic pressures in cochlear chambers by direct measurement using a null-flow micropipette pressure measurement system, while simultaneously quantifying electric potentials and distortion products to provide indirect measures of displacement bias and hair cell integrity. We now suspect that during any experiment obtaining of good pressure seals is critical. Secondary penetrations, such as occur in neural recordings, are contra-indicated. When we address the issue of seals we see raised pressures in response to manipulations known to disturb homeostasis, viz. diuretics and hypoxia.

  20. Internal waves interacting with particles in suspension

    NASA Astrophysics Data System (ADS)

    Micard, Diane

    2016-04-01

    Internal waves are produced as a consequence of the dynamic balance between buoy- ancy and gravity forces when a particle of fluid is vertically displaced in a stable stratified environment. Geophysical systems such as ocean and atmosphere are naturally stratified and therefore suitable for internal waves to propagate. Furthermore, these two environ- ments stock a vast amount of particles in suspension, which present a large spectrum of physical properties (size, density, shape), and can be organic, mineral or pollutant agents. Therefore, it is reasonable to expect that internal waves will have an active effect over the dynamics of these particles. In order to study the interaction of internal waves and suspended particles, an ide- alized experimental setup has been implemented. A linear stratification is produced in a 80×40×17 cm3 tank, in which two dimensional plane waves are created thanks to the inno- vative wave generator GOAL. In addition, a particle injector has been developed to produce a vertical column of particles within the fluid, displaying the same two-dimensional sym- metry as the waves. The particle injector allows to control the volumic fraction of particles and the size of the column. The presence of internal waves passing through the column of particles allowed to observe two main effects: The column oscillates around an equilibrium position (which is observed in both, the contours an the interior of the column), and the column is displaced as a whole. The column is displaced depending on the characteristics of the column, the gradient of the density, and the intensity and frequency of the wave. When displaced, the particles within the column are sucked towards the source of waves. The direction of the displacement of the column is explained by computing the effect of the Lagrangian drift generated by the wave over the time the particles stay in the wave beam before settling.

  1. Fluid transport by dipolar vortices

    NASA Astrophysics Data System (ADS)

    I, Eames; J.-B, Flór

    1998-08-01

    The transport properties of dipolar vortices propagating on an f-plane are studied experimentally by examining the distortion of a series of material surfaces. The observations are compared with a model based on characterising the flow around the dipole as irrotational flow past a rigid cylinder of volume V. Measurements made of the volume of fluid permanently displaced forward by the vortices, agree to within 20% of that predicted by the proposition of Darwin [Darwin, C., 1953. A note on hydrodynamics. Proc. Cambridge Philos. Soc., 49, 342-354], namely that the vortex will displace a volume CMV forward, where CM=1 for a Lamb's dipole. The results are applied to examine fluid transport by dipolar vortices propagating on the β-plane, where the ambient potential vorticity field causes easterly propagating dipolar vortices to meander sinusoidally between the North and South. We demonstrate that as the vortex moves between the North and South, it exchanges a volume CMV sin α by the drift effect (where α is the angle between the velocity of the dipole and the material surface), which is generally larger than that attributed to other mechanisms such as lobe shedding. The results are applied to give new insight to the effect of vortices in enhancing diffusion, and the secondary flow generated by the transport of ambient potential vorticity.

  2. BOAST 2 for the IBM 3090 and RISC 6000

    NASA Astrophysics Data System (ADS)

    Hebert, P.; Bourgoyne, A. T., Jr.; Tyler, J.

    1993-05-01

    BOAST 2 simulates isothermal, darcy flow in three dimensions. It assumes that reservoir liquids can be described in three fluid phases (oil, gas, and water) of constant composition, with physical properties that depend on pressure, only. These reservoir fluid approximations are acceptable for a large percentage of the world's oil and gas reservoirs. Consequently, BOAST 2 has a wide range of applicability. BOAST 2 can simulate oil and/or gas recovery by fluid expansion, displacement, gravity drainage, and capillary imhibition mechanisms. Typical field production problems that BOAST 2 can handle include primary depletion studies, pressure maintenance by water and/or gas injection, and evaluation of secondary recovery waterflooding and displacement operations. Technically, BOAST 2 is a finite, implicit pressure, explicit saturation (IMPES) numerical simulator. It applies both direct and iterative solution techniques for solving systems of algebraic equations. The well model allows specification of rate or pressure constraints on well performance, and the user is free to add or to recomplete wells during the simulation. In addition, the user can define multiple rock and PVT regions and can choose from three aquifer models. BOAST 2 also provides flexible initialization, a bubble-point tracking scheme, automatic time-step control, and a material balance check on solution stability. The user controls output, which includes a run summary and line-printer plots of fieldwide performance.

  3. Modeling of Waves Propagating in Water with a Crushed Ice Layer on the Free Surface

    NASA Astrophysics Data System (ADS)

    Szmidt, Kazimierz

    2017-12-01

    A transformation of gravitational waves in fluid of constant depth with a crushed ice layer floating on the free fluid surface is considered. The propagating waves undergo a slight damping along their path of propagation. The main goal of the study is to construct an approximate descriptive model of this phenomenon.With regard to small displacements of the free surface, a viscous type model of damping is considered, which corresponds to a continuous distribution of dash-pots at the free surface of the fluid. A constant parameter of the dampers is assumed in advance as known parameter of damping. This parameter may be obtained by means of experiments in a laboratory flume.

  4. Bidirectional piston valve

    DOEpatents

    Fischer, Harry C.

    1977-01-01

    This invention is a reversing valve having an inlet, an outlet, and an inlet-outlet port. The valve is designed to respond to the introduction of relatively high-pressure fluid at its inlet or, alternatively, of lower-pressure fluid at its inlet-outlet port. The valve includes an axially slidable assembly which is spring-biased to a position where it isolates the inlet and connects the inlet-outlet port to the outlet. The admission of high-pressure fluid to the inlet displaces the slidable assembly to a position where the outlet is isolated and the inlet is connected to the inlet-outlet port. The valve is designed to minimize pressure drops and leakage. It is of a reliable and comparatively simple design.

  5. Surface capillary currents: Rediscovery of fluid-structure interaction by forced evolving boundary theory

    NASA Astrophysics Data System (ADS)

    Wang, Chunbai; Mitra, Ambar K.

    2016-01-01

    Any boundary surface evolving in viscous fluid is driven with surface capillary currents. By step function defined for the fluid-structure interface, surface currents are found near a flat wall in a logarithmic form. The general flat-plate boundary layer is demonstrated through the interface kinematics. The dynamics analysis elucidates the relationship of the surface currents with the adhering region as well as the no-slip boundary condition. The wall skin friction coefficient, displacement thickness, and the logarithmic velocity-defect law of the smooth flat-plate boundary-layer flow are derived with the advent of the forced evolving boundary method. This fundamental theory has wide applications in applied science and engineering.

  6. Study of correlation between overlay and displacement measured by Coherent Gradient Sensing (CGS) interferometry

    NASA Astrophysics Data System (ADS)

    Mileham, Jeffrey; Tanaka, Yasushi; Anberg, Doug; Owen, David M.; Lee, Byoung-Ho; Bouche, Eric

    2016-03-01

    Within the semiconductor lithographic process, alignment control is one of the most critical considerations. In order to realize high device performance, semiconductor technology is approaching the 10 nm design rule, which requires progressively smaller overlay budgets. Simultaneously, structures are expanding in the 3rd dimension, thereby increasing the potential for inter-layer distortion. For these reasons, device patterning is becoming increasingly difficult as the portion of the overlay budget attributed to process-induced variation increases. After lithography, overlay gives valuable feedback to the lithography tool; however overlay measurements typically have limited density, especially at the wafer edge, due to throughput considerations. Moreover, since overlay is measured after lithography, it can only react to, but not predict the process-induced overlay. This study is a joint investigation in a high-volume manufacturing environment of the portion of overlay associated with displacement induced by a single process across many chambers. Displacement measurements are measured by Coherent Gradient Sensing (CGS) interferometry, which generates high-density displacement maps (>3 million points on a 300 mm wafer) such that the stresses induced die-by-die and process-by-process can be tracked in detail. The results indicate the relationship between displacement and overlay shows the ability to forecast overlay values before the lithographic process. Details of the correlation including overlay/displacement range, and lot-to-lot displacement variability are considered.

  7. Analysis of fluid-structure interaction in a frame pipe undergoing plastic deformations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khamlichi, A.; Jezequel, L.; Jacques, Y.

    1995-11-01

    Water hammer pressure waves of sufficiently large magnitude can cause plastic flexural deformations in a frame pipe. In this study, the authors propose a modelization of this problem based on plane wave approximation for the fluid equations and approximation of the structure motion by a single-degree-of-freedom elastic-plastic oscillator. Direct analytical integration of elastic-plastic equations through pipe sections, then over the pipe length is performed in order to identify the oscillator parameters. Comparison of the global load-displacement relationship obtained with the finite element solution was considered and has shown good agreement. Fluid-structure coupling is achieved by assuming elbows to act likemore » plane monopole sources, where localized jumps of fluid velocity occur and where net pressure forces are exerted on the structure. The authors have applied this method to analyze the fluid-structure interaction in this range of deformations. Energy exchange between the fluid and the structure and energy dissipation are quantified.« less

  8. Conserved linear dynamics of single-molecule Brownian motion.

    PubMed

    Serag, Maged F; Habuchi, Satoshi

    2017-06-06

    Macromolecular diffusion in homogeneous fluid at length scales greater than the size of the molecule is regarded as a random process. The mean-squared displacement (MSD) of molecules in this regime increases linearly with time. Here we show that non-random motion of DNA molecules in this regime that is undetectable by the MSD analysis can be quantified by characterizing the molecular motion relative to a latticed frame of reference. Our lattice occupancy analysis reveals unexpected sub-modes of motion of DNA that deviate from expected random motion in the linear, diffusive regime. We demonstrate that a subtle interplay between these sub-modes causes the overall diffusive motion of DNA to appear to conform to the linear regime. Our results show that apparently random motion of macromolecules could be governed by non-random dynamics that are detectable only by their relative motion. Our analytical approach should advance broad understanding of diffusion processes of fundamental relevance.

  9. Conserved linear dynamics of single-molecule Brownian motion

    PubMed Central

    Serag, Maged F.; Habuchi, Satoshi

    2017-01-01

    Macromolecular diffusion in homogeneous fluid at length scales greater than the size of the molecule is regarded as a random process. The mean-squared displacement (MSD) of molecules in this regime increases linearly with time. Here we show that non-random motion of DNA molecules in this regime that is undetectable by the MSD analysis can be quantified by characterizing the molecular motion relative to a latticed frame of reference. Our lattice occupancy analysis reveals unexpected sub-modes of motion of DNA that deviate from expected random motion in the linear, diffusive regime. We demonstrate that a subtle interplay between these sub-modes causes the overall diffusive motion of DNA to appear to conform to the linear regime. Our results show that apparently random motion of macromolecules could be governed by non-random dynamics that are detectable only by their relative motion. Our analytical approach should advance broad understanding of diffusion processes of fundamental relevance. PMID:28585925

  10. Conserved linear dynamics of single-molecule Brownian motion

    NASA Astrophysics Data System (ADS)

    Serag, Maged F.; Habuchi, Satoshi

    2017-06-01

    Macromolecular diffusion in homogeneous fluid at length scales greater than the size of the molecule is regarded as a random process. The mean-squared displacement (MSD) of molecules in this regime increases linearly with time. Here we show that non-random motion of DNA molecules in this regime that is undetectable by the MSD analysis can be quantified by characterizing the molecular motion relative to a latticed frame of reference. Our lattice occupancy analysis reveals unexpected sub-modes of motion of DNA that deviate from expected random motion in the linear, diffusive regime. We demonstrate that a subtle interplay between these sub-modes causes the overall diffusive motion of DNA to appear to conform to the linear regime. Our results show that apparently random motion of macromolecules could be governed by non-random dynamics that are detectable only by their relative motion. Our analytical approach should advance broad understanding of diffusion processes of fundamental relevance.

  11. Fractional watt Vuillemier cryogenic refrigerator program engineering notebook. Volume 1: Thermal analysis

    NASA Technical Reports Server (NTRS)

    Miller, W. S.

    1974-01-01

    The cryogenic refrigerator thermal design calculations establish design approach and basic sizing of the machine's elements. After the basic design is defined, effort concentrates on matching the thermodynamic design with that of the heat transfer devices (heat exchangers and regenerators). Typically, the heat transfer device configurations and volumes are adjusted to improve their heat transfer and pressure drop characteristics. These adjustments imply that changes be made to the active displaced volumes, compensating for the influence of the heat transfer devices on the thermodynamic processes of the working fluid. Then, once the active volumes are changed, the heat transfer devices require adjustment to account for the variations in flows, pressure levels, and heat loads. This iterative process is continued until the thermodynamic cycle parameters match the design of the heat transfer devices. By examing several matched designs, a near-optimum refrigerator is selected.

  12. Alkali-enhanced steam foam oil recovery process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lau, H.C.

    1986-09-02

    This patent describes a process in which steam and steam-foaming surfactant are injected into a subterranean reservoir for displacing a relatively acidic oil toward a production location. An improvement is described which consisits of: injecting into the reservoir, at least as soon as at least some portion of the steam is injected, (a) a kind and amount of water soluble, alkaline material effective for ion-exchanging multivalent ions from the reservoir rocks and precipitating compounds containing those ions and for causing the aqueous liquid phase of the injected fluid to form soaps of substantially all of the petroleum acids in themore » reservoir oil, and (b) at least one surfactant arranged for foaming the steam and providing a preformed cosurfactant material capable of increasing the salinity requirement of an aqueous surfactant system in which soaps derived from the reservoir oil comprise a primary surfactant.« less

  13. Comparative advantages of mechanical biosensors.

    PubMed

    Arlett, J L; Myers, E B; Roukes, M L

    2011-04-01

    Mechanical interactions are fundamental to biology. Mechanical forces of chemical origin determine motility and adhesion on the cellular scale, and govern transport and affinity on the molecular scale. Biological sensing in the mechanical domain provides unique opportunities to measure forces, displacements and mass changes from cellular and subcellular processes. Nanomechanical systems are particularly well matched in size with molecular interactions, and provide a basis for biological probes with single-molecule sensitivity. Here we review micro- and nanoscale biosensors, with a particular focus on fast mechanical biosensing in fluid by mass- and force-based methods, and the challenges presented by non-specific interactions. We explain the general issues that will be critical to the success of any type of next-generation mechanical biosensor, such as the need to improve intrinsic device performance, fabrication reproducibility and system integration. We also discuss the need for a greater understanding of analyte-sensor interactions on the nanoscale and of stochastic processes in the sensing environment.

  14. Evolution of Deformation Studies on Active Hawaiian Volcanoes

    USGS Publications Warehouse

    Decker, Robert W.; Okamura, Arnold; Miklius, Asta; Poland, Michael

    2008-01-01

    Everything responds to pressure, even rocks. Deformation studies involve measuring and interpreting the changes in elevations and horizontal positions of the land surface or sea floor. These studies are variously referred to as geodetic changes or ground-surface deformations and are sometimes indexed under the general heading of geodesy. Deformation studies have been particularly useful on active volcanoes and in active tectonic areas. A great amount of time and energy has been spent on measuring geodetic changes on Kilauea and Mauna Loa Volcanoes in Hawai`i. These changes include the build-up of the surface by the piling up and ponding of lava flows, the changes in the surface caused by erosion, and the uplift, subsidence, and horizontal displacements of the surface caused by internal processes acting beneath the surface. It is these latter changes that are the principal concern of this review. A complete and objective review of deformation studies on active Hawaiian volcanoes would take many volumes. Instead, we attempt to follow the evolution of the most significant observations and interpretations in a roughly chronological way. It is correct to say that this is a subjective review. We have spent years measuring and recording deformation changes on these great volcanoes and more years trying to understand what makes these changes occur. We attempt to make this a balanced as well as a subjective review; the references are also selective rather than exhaustive. Geodetic changes caused by internal geologic processes vary in magnitude from the nearly infinitesimal - one micron or less, to the very large - hundreds of meters. Their apparent causes also are varied and include changes in material properties and composition, atmospheric pressure, tidal stress, thermal stress, subsurface-fluid pressure (including magma pressure, magma intrusion, or magma removal), gravity, and tectonic stress. Deformation is measured in units of strain or displacement. For example, tilt of the ground surface on the rim of Kilauea Caldera is measured in microradians, a strain unit that gives the change in angle from some reference. The direction in which the tilt is measured must be defined - north or south, or some direction normal to the maximum changes. For displacements related to surface faulting, the changes are normally given in linear measures of offset. Changes in the diameter of a caldera can be given in either displacements or strain units. In the later case, the displacement divided by the 'original' diameter gives the strain ratio. Strains are dimensionless numbers; displacements have the dimensions of length. Vectors commonly are used to show the direction and amount of displacements in plan view. Strain results from stress. It can be elastic strain, when the strain is linearly related to stress and is recoverable; it can be viscous strain, where the rate of strain is proportional to the stress and is not recoverable; or it can be plastic strain that is often some complex stress-strain relationship, for example, elastic up to some yield strength and viscous beyond. Volcanic rocks are brittle when cold and under near-surface pressures but plastic to viscous under higher temperature and pressure regimes. It is important in deformation studies to try to define the nature of the strain and the rheology of the rocks being deformed. A good text on rheology is 'The Structure and Rheology of Complex Fluids' by R.G. Larson, 1999. Under changing tensional or compressional stresses, tiny cracks in brittle rocks may open or close, causing a quasielastic strain response. If the stresses exceed the breaking strength of the rock, brittle failure occurs, and the stress-strain relationship breaks down. This is generally the situation with near-field deformation related to earthquakes. Stresses change in complex patterns in both the near- and far-fields of the fracture, and the near-fiel

  15. Fingering and fracturing during multiphase flow in porous media (Invited)

    NASA Astrophysics Data System (ADS)

    Juanes, R.

    2013-12-01

    The displacement of one fluid by another in a porous medium give rise to a rich variety of hydrodynamic instabilities. Beyond their scientific value as fascinating models of pattern formation, unstable porous-media flows are essential to understanding many natural and man-made processes, including water infiltration in the vadose zone, carbon dioxide injection and storage in deep saline aquifers, and hydrocarbon recovery. Here, we review the pattern-selection mechanisms of a wide spectrum of porous-media flows that develop hydrodynamic instabilities, discuss their origin and the mathematical models that have been used to describe them. We point out many challenges that remain to be resolved in the context of multiphase flows, and suggest modeling approaches that may offer new quantitative understanding.

  16. Diffuse versus discrete venting at the Tour Eiffel vent site, Lucky Strike hydrothermal field

    NASA Astrophysics Data System (ADS)

    Mittelstaedt, E. L.; Escartin, J.; Gracias, N.; Olive, J. L.; Barreyre, T.; Davaille, A. B.; Cannat, M.

    2010-12-01

    Two styles of fluid flow at the seafloor are widely recognized: (1) localized outflows of high temperature (>300°C) fluids, often black or grey color in color (“black smokers”) and (2) diffuse, lower temperature (<100°C), fluids typically transparent and which escape through fractures, porous rock, and sediment. The partitioning of heat flux between these two types of hydrothermal venting is debated and estimates of the proportion of heat carried by diffuse flow at ridge axes range from 20% to 90% of the total axial heat flux. Here, we attempt to improve estimates of this partitioning by carefully characterizing the heat fluxes carried by diffuse and discrete flows at a single vent site, Tour Eiffel in the Lucky Strike hydrothermal field along the Mid-Atlantic Ridge. Fluid temperature and video data were acquired during the recent Bathyluck’09 cruise to the Lucky Strike hydrothermal field (September, 2009) by Victor aboard “Pourquoi Pas?” (IFREMER, France). Temperature measurements were made of fluid exiting discrete vents, of diffuse effluents immediately above the seafloor, and of vertical temperature gradients within discrete hydrothermal plumes. Video data allow us to calculate the fluid velocity field associated with these outflows: for diffuse fluids, Diffuse Flow Velocimetry tracks the displacement of refractive index anomalies through time; for individual hydrothermal plumes, Particle Image Velocimetry tracks eddies by cross-correlation of pixels intensities between subsequent images. Diffuse fluids exhibit temperatures of 8-60°C and fluid velocities of ~1-10 cm s-1. Discrete outflows at 204-300°C have velocities of ~1-2 m s-1. Combined fluid flow velocities, temperature measurements, and full image mosaics of the actively venting areas are used to estimate heat flux of both individual discrete vents and diffuse outflow. The total integrated heat flux and the partitioning between diffuse and discrete venting at Tour Eiffel, and its implications for the nature of hydrothermal activity across the Lucky Strike site are discussed along with the implications for crustal permeability, associated ecosystems, and mid-ocean ridge processes.

  17. Non-stationary filtration mode during chemical reactions with the gas phase

    NASA Astrophysics Data System (ADS)

    Zavialov, Ivan; Konyukhov, Andrey; Negodyaev, Sergey

    2015-04-01

    An experimental and numerical study of filtration accompanied by chemical reactions between displacing fluid and solid skeleton is considered. Glass balls (400-500 μm in diameter) were placed in 1 cm gap between two glass sheets and were used as model porous medium. The baking soda was added to the glass balls. The 70% solution of acetic acid was used as the displacer. The modeling porous medium was saturated with a mineral oil, and then 70% solution of colored acetic acid was pumped through the medium. The glass balls and a mineral oil have a similar refractive index, so the model porous medium was optically transparent. During the filtration, the gas phase was generated by the chemical reactions between the baking soda and acetic acid, and time-dependent displacement of the chemical reaction front was observed. The front of the chemical reaction was associated with the most intensive gas separation. The front moved, stopped, and then moved again to the area where it had been already. We called this process a secondary oxidation wave. To describe this effect, we added to the balance equations a term associated with the formation and disappearance of phases due to chemical reactions. The equations were supplemented by Darcy's law for multiphase filtration. Nonstationarity front propagation of the chemical reaction in the numerical experiment was observed at Damköhler numbers greater than 100. The mathematical modelling was agreed well with the experimental results.

  18. The role of finite displacements in vocal fold modeling.

    PubMed

    Chang, Siyuan; Tian, Fang-Bao; Luo, Haoxiang; Doyle, James F; Rousseau, Bernard

    2013-11-01

    Human vocal folds experience flow-induced vibrations during phonation. In previous computational models, the vocal fold dynamics has been treated with linear elasticity theory in which both the strain and the displacement of the tissue are assumed to be infinitesimal (referred to as model I). The effect of the nonlinear strain, or geometric nonlinearity, caused by finite displacements is yet not clear. In this work, a two-dimensional model is used to study the effect of geometric nonlinearity (referred to as model II) on the vocal fold and the airflow. The result shows that even though the deformation is under 1 mm, i.e., less than 10% of the size of the vocal fold, the geometric nonlinear effect is still significant. Specifically, model I underpredicts the gap width, the flow rate, and the impact stress on the medial surfaces as compared to model II. The study further shows that the differences are caused by the contact mechanics and, more importantly, the fluid-structure interaction that magnifies the error from the small-displacement assumption. The results suggest that using the large-displacement formulation in a computational model would be more appropriate for accurate simulations of the vocal fold dynamics.

  19. Lateral Fluid Percussion: Model of Traumatic Brain Injury in Mice

    PubMed Central

    Alder, Janet; Fujioka, Wendy; Lifshitz, Jonathan; Crockett, David P.; Thakker-Varia, Smita

    2011-01-01

    Traumatic brain injury (TBI) research has attained renewed momentum due to the increasing awareness of head injuries, which result in morbidity and mortality. Based on the nature of primary injury following TBI, complex and heterogeneous secondary consequences result, which are followed by regenerative processes 1,2. Primary injury can be induced by a direct contusion to the brain from skull fracture or from shearing and stretching of tissue causing displacement of brain due to movement 3,4. The resulting hematomas and lacerations cause a vascular response 3,5, and the morphological and functional damage of the white matter leads to diffuse axonal injury 6-8. Additional secondary changes commonly seen in the brain are edema and increased intracranial pressure 9. Following TBI there are microscopic alterations in biochemical and physiological pathways involving the release of excitotoxic neurotransmitters, immune mediators and oxygen radicals 10-12, which ultimately result in long-term neurological disabilities 13,14. Thus choosing appropriate animal models of TBI that present similar cellular and molecular events in human and rodent TBI is critical for studying the mechanisms underlying injury and repair. Various experimental models of TBI have been developed to reproduce aspects of TBI observed in humans, among them three specific models are widely adapted for rodents: fluid percussion, cortical impact and weight drop/impact acceleration 1. The fluid percussion device produces an injury through a craniectomy by applying a brief fluid pressure pulse on to the intact dura. The pulse is created by a pendulum striking the piston of a reservoir of fluid. The percussion produces brief displacement and deformation of neural tissue 1,15. Conversely, cortical impact injury delivers mechanical energy to the intact dura via a rigid impactor under pneumatic pressure 16,17. The weight drop/impact model is characterized by the fall of a rod with a specific mass on the closed skull 18. Among the TBI models, LFP is the most established and commonly used model to evaluate mixed focal and diffuse brain injury 19. It is reproducible and is standardized to allow for the manipulation of injury parameters. LFP recapitulates injuries observed in humans, thus rendering it clinically relevant, and allows for exploration of novel therapeutics for clinical translation 20. We describe the detailed protocol to perform LFP procedure in mice. The injury inflicted is mild to moderate, with brain regions such as cortex, hippocampus and corpus callosum being most vulnerable. Hippocampal and motor learning tasks are explored following LFP. PMID:21876530

  20. Lateral fluid percussion: model of traumatic brain injury in mice.

    PubMed

    Alder, Janet; Fujioka, Wendy; Lifshitz, Jonathan; Crockett, David P; Thakker-Varia, Smita

    2011-08-22

    Traumatic brain injury (TBI) research has attained renewed momentum due to the increasing awareness of head injuries, which result in morbidity and mortality. Based on the nature of primary injury following TBI, complex and heterogeneous secondary consequences result, which are followed by regenerative processes (1,2). Primary injury can be induced by a direct contusion to the brain from skull fracture or from shearing and stretching of tissue causing displacement of brain due to movement (3,4). The resulting hematomas and lacerations cause a vascular response (3,5), and the morphological and functional damage of the white matter leads to diffuse axonal injury (6-8). Additional secondary changes commonly seen in the brain are edema and increased intracranial pressure (9). Following TBI there are microscopic alterations in biochemical and physiological pathways involving the release of excitotoxic neurotransmitters, immune mediators and oxygen radicals (10-12), which ultimately result in long-term neurological disabilities (13,14). Thus choosing appropriate animal models of TBI that present similar cellular and molecular events in human and rodent TBI is critical for studying the mechanisms underlying injury and repair. Various experimental models of TBI have been developed to reproduce aspects of TBI observed in humans, among them three specific models are widely adapted for rodents: fluid percussion, cortical impact and weight drop/impact acceleration (1). The fluid percussion device produces an injury through a craniectomy by applying a brief fluid pressure pulse on to the intact dura. The pulse is created by a pendulum striking the piston of a reservoir of fluid. The percussion produces brief displacement and deformation of neural tissue (1,15). Conversely, cortical impact injury delivers mechanical energy to the intact dura via a rigid impactor under pneumatic pressure (16,17). The weight drop/impact model is characterized by the fall of a rod with a specific mass on the closed skull (18). Among the TBI models, LFP is the most established and commonly used model to evaluate mixed focal and diffuse brain injury (19). It is reproducible and is standardized to allow for the manipulation of injury parameters. LFP recapitulates injuries observed in humans, thus rendering it clinically relevant, and allows for exploration of novel therapeutics for clinical translation (20). We describe the detailed protocol to perform LFP procedure in mice. The injury inflicted is mild to moderate, with brain regions such as cortex, hippocampus and corpus callosum being most vulnerable. Hippocampal and motor learning tasks are explored following LFP.

  1. Does the siphon effect of cerebrospinal fluid shunting develop in vivo? Report of a case casting doubt on the presence of this phenomenon.

    PubMed

    Aoki, N

    1991-06-01

    A 52-year-old male underwent lumboperitoneal shunting after external decompressive craniectomy. His postoperative course was accompanied by remarkable displacement of the intracranial structures to the opposite side of craniectomy. This phenomenon, probably caused by the siphon effect of cerebrospinal fluid shunting, resolved after cranioplasty. This observation provides the evidence casting doubt on the presence of the siphon effect due to atmospheric pressure in patients without the association of skull defect or open cranial sutures.

  2. Fluid-controlled faulting process in the Asal Rift, Djibouti, from 8 yr of radar interferometry observations

    NASA Astrophysics Data System (ADS)

    Doubre, Cécile; Peltzer, Gilles

    2007-01-01

    The deformation in the Asal Rift (Djibouti) is characterized by magmatic inflation, diking, distributed extension, fissure opening, and normal faulting. An 8 yr time line of surface displacement maps covering the rift, constructed using radar interferometry data acquired by the Canadian satellite Radarsat between 1997 and 2005, reveals the aseismic behavior of faults and its relation with bursts of microseismicity. The observed ground movements show the asymmetric subsidence of the inner floor of the rift with respect to the bordering shoulders accommodated by slip on three of the main active faults. Fault slip occurs both as steady creep and during sudden slip events accompanied by an increase in the seismicity rate around the slipping fault and the Fieale volcanic center. Slip distribution along fault strike shows triangular sections, a pattern not explained by simple elastic dislocation theory. These observations suggest that the Asal Rift faults are in a critical failure state and respond instantly to small pressure changes in fluid-filled fractures connected to the faults, reducing the effective normal stress on their locked section at depth.

  3. Mushrooms as Rainmakers: How Spores Act as Nuclei for Raindrops

    PubMed Central

    2015-01-01

    Millions of tons of fungal spores are dispersed in the atmosphere every year. These living cells, along with plant spores and pollen grains, may act as nuclei for condensation of water in clouds. Basidiospores released by mushrooms form a significant proportion of these aerosols, particularly above tropical forests. Mushroom spores are discharged from gills by the rapid displacement of a droplet of fluid on the cell surface. This droplet is formed by the condensation of water on the spore surface stimulated by the secretion of mannitol and other hygroscopic sugars. This fluid is carried with the spore during discharge, but evaporates once the spore is airborne. Using environmental electron microscopy, we have demonstrated that droplets reform on spores in humid air. The kinetics of this process suggest that basidiospores are especially effective as nuclei for the formation of large water drops in clouds. Through this mechanism, mushroom spores may promote rainfall in ecosystems that support large populations of ectomycorrhizal and saprotrophic basidiomycetes. Our research heightens interest in the global significance of the fungi and raises additional concerns about the sustainability of forests that depend on heavy precipitation. PMID:26509436

  4. Fault Damage Zone Permeability in Crystalline Rocks from Combined Field and Laboratory Measurements

    NASA Astrophysics Data System (ADS)

    Mitchell, T.; Faulkner, D.

    2008-12-01

    In nature, permeability is enhanced in the damage zone of faults, where fracturing occurs on a wide range of scales. Here we analyze the contribution of microfracture damage on the permeability of faults that cut through low porosity, crystalline rocks by combining field and laboratory measurements. Microfracture densities surrounding strike-slip faults with well-constrained displacements ranging over 3 orders of magnitude (~0.12 m - 5000 m) have been analyzed. The faults studied are excellently exposed within the Atacama Fault Zone, where exhumation from 6-10 km has occurred. Microfractures in the form of fluid inclusion planes (FIPs) show a log-linear decrease in fracture density with perpendicular distance from the fault core. Damage zone widths defined by the density of FIPs scale with fault displacement, and an empirical relationship for microfracture density distribution throughout the damage zone with displacement is derived. Damage zone rocks will have experienced differential stresses that were less than, but some proportion of, the failure stress. As such, permeability data from progressively loaded, initially intact laboratory samples, in the pre-failure region provide useful insights into fluid flow properties of various parts of the damage zone. The permeability evolution of initially intact crystalline rocks under increasing differential load leading to macroscopic failure was determined at water pore pressures of 50 MPa and effective pressure of 10 MPa. Permeability is seen to increase by up to, and over, two orders of magnitude prior to macroscopic failure. Further experiments were stopped at various points in the loading history in order to correlate microfracture density within the samples with permeability. By combining empirical relationships determined from both quantitative fieldwork and experiments we present a model that allows microfracture permeability distribution throughout the damage zone to be determined as function of increasing fault displacement.

  5. Pore-scale modeling of wettability effects on CO2-brine displacement during geological storage

    NASA Astrophysics Data System (ADS)

    Basirat, Farzad; Yang, Zhibing; Niemi, Auli

    2017-11-01

    Wetting properties of reservoir rocks and caprocks can vary significantly, and they strongly influence geological storage of carbon dioxide in deep saline aquifers, during which CO2 is supposed to displace the resident brine and to become permanently trapped. Fundamental understanding of the effect of wettability on CO2-brine displacement is thus important for improving storage efficiency and security. In this study, we investigate the influence of wetting properties on two-phase flow of CO2 and brine at the pore scale. A numerical model based on the phase field method is implemented to simulate the two-phase flow of CO2-brine in a realistic pore geometry. Our focus is to study the pore-scale fluid-fluid displacement mechanisms under different wetting conditions and to quantify the effect of wettability on macroscopic parameters such as residual brine saturation, capillary pressure, relative permeability, and specific interfacial area. Our simulation results confirm that both the trapped wetting phase saturation and the normalized interfacial area increase with decreasing contact angle. However, the wetting condition does not appear to influence the CO2 breakthrough time and saturation. We also show that the macroscopic capillary pressures based on the pressure difference between inlet and outlet can differ significantly from the phase averaging capillary pressures for all contact angles when the capillary number is high (log Ca > -5). This indicates that the inlet-outlet pressure difference may not be a good measure of the continuum-scale capillary pressure. In addition, the results show that the relative permeability of CO2 can be significantly lower in strongly water-wet conditions than in the intermediate-wet conditions.

  6. Pressure evolution and deformation of confined granular media during pneumatic fracturing

    NASA Astrophysics Data System (ADS)

    Eriksen, Fredrik K.; Toussaint, Renaud; Turquet, Antoine Léo; Mâløy, Knut J.; Flekkøy, Eirik G.

    2018-01-01

    By means of digital image correlation, we experimentally characterize the deformation of a dry granular medium confined inside a Hele-Shaw cell due to air injection at a constant overpressure high enough to deform it (from 50 to 250 kPa). Air injection at these overpressures leads to the formation of so-called pneumatic fractures, i.e., channels empty of beads, and we discuss the typical deformations of the medium surrounding these structures. In addition we simulate the diffusion of the fluid overpressure into the medium, comparing it with the Laplacian solution over time and relating pressure gradients with corresponding granular displacements. In the compacting medium we show that the diffusing pressure field becomes similar to the Laplace solution on the order of a characteristic time given by the properties of the pore fluid, the granular medium, and the system size. However, before the diffusing pressure approaches the Laplace solution on the system scale, we find that it resembles the Laplacian field near the channels, with the highest pressure gradients on the most advanced channel tips and a screened pressure gradient behind them. We show that the granular displacements more or less always move in the direction against the local pressure gradients, and when comparing granular velocities with pressure gradients in the zone ahead of channels, we observe a Bingham type of rheology for the granular paste (the mix of air and beads), with an effective viscosity μB and displacement thresholds ∇ ⃗Pc evolving during mobilization and compaction of the medium. Such a rheology, with disorder in the displacement thresholds, could be responsible for placing the pattern growth at moderate injection pressures in a universality class like the dielectric breakdown model with η =2 , where fractal dimensions are found between 1.5 and 1.6 for the patterns.

  7. Real-time image processing for non-contact monitoring of dynamic displacements using smartphone technologies

    NASA Astrophysics Data System (ADS)

    Min, Jae-Hong; Gelo, Nikolas J.; Jo, Hongki

    2016-04-01

    The newly developed smartphone application, named RINO, in this study allows measuring absolute dynamic displacements and processing them in real time using state-of-the-art smartphone technologies, such as high-performance graphics processing unit (GPU), in addition to already powerful CPU and memories, embedded high-speed/ resolution camera, and open-source computer vision libraries. A carefully designed color-patterned target and user-adjustable crop filter enable accurate and fast image processing, allowing up to 240fps for complete displacement calculation and real-time display. The performances of the developed smartphone application are experimentally validated, showing comparable accuracy with those of conventional laser displacement sensor.

  8. Stokesian swimming of a helical swimmer across an interface

    NASA Astrophysics Data System (ADS)

    Godinez, Francisco; Ramos, Armando; Zenit, Roberto

    2016-11-01

    Microorganisms swim in flows dominated by viscous effects but in many instances the motion occurs across heterogeneous environments where the fluid properties may vary. To our knowledge, the effect of such in-homogeneity has not been addressed in depth. We conduct experiments in which a magnetic self-propelled helical swimmer displaces across the interface between two immiscible density stratified fluids. As the swimmer crosses the interface, at a fixed rotation rate, its speed is reduced and a certain volume of the lower fluid is dragged across. We quantify the drift volume and the change of swimming speed for different swimming speeds and different fluid combinations. We relate the reduction of the swimming speed with the interfacial tension of the interface. We also compare the measurements of the drift volume with some recent calculations found in the literature.

  9. Universal fluid droplet ejector

    DOEpatents

    Lee, Eric R.; Perl, Martin L.

    1999-08-24

    A droplet generator comprises a fluid reservoir having a side wall made of glass or quartz, and an end cap made from a silicon plate. The end cap contains a micromachined aperture through which the fluid is ejected. The side wall is thermally fused to the end cap, and no adhesive is necessary. This means that the fluid only comes into contact with the side wall and the end cap, both of which are chemically inert. Amplitudes of drive pulses received by reservoir determine the horizontal displacements of droplets relative to the ejection aperture. The drive pulses are varied such that the dropper generates a two-dimensional array of vertically-falling droplets. Vertical and horizontal interdroplet spacings may be varied in real time. Applications include droplet analysis experiments such as Millikan fractional charge searches and aerosol characterization, as well as material deposition applications.

  10. Universal fluid droplet ejector

    DOEpatents

    Lee, E.R.; Perl, M.L.

    1999-08-24

    A droplet generator comprises a fluid reservoir having a side wall made of glass or quartz, and an end cap made from a silicon plate. The end cap contains a micromachined aperture through which the fluid is ejected. The side wall is thermally fused to the end cap, and no adhesive is necessary. This means that the fluid only comes into contact with the side wall and the end cap, both of which are chemically inert. Amplitudes of drive pulses received by reservoir determine the horizontal displacements of droplets relative to the ejection aperture. The drive pulses are varied such that the dropper generates a two-dimensional array of vertically-falling droplets. Vertical and horizontal inter-droplet spacings may be varied in real time. Applications include droplet analysis experiments such as Millikan fractional charge searches and aerosol characterization, as well as material deposition applications. 8 figs.

  11. Pin stack array for thermoacoustic energy conversion

    DOEpatents

    Keolian, Robert M.; Swift, Gregory W.

    1995-01-01

    A thermoacoustic stack for connecting two heat exchangers in a thermoacoustic energy converter provides a convex fluid-solid interface in a plane perpendicular to an axis for acoustic oscillation of fluid between the two heat exchangers. The convex surfaces increase the ratio of the fluid volume in the effective thermoacoustic volume that is displaced from the convex surface to the fluid volume that is adjacent the surface within which viscous energy losses occur. Increasing the volume ratio results in an increase in the ratio of transferred thermal energy to viscous energy losses, with a concomitant increase in operating efficiency of the thermoacoustic converter. The convex surfaces may be easily provided by a pin array having elements arranged parallel to the direction of acoustic oscillations and with effective radial dimensions much smaller than the thicknesses of the viscous energy loss and thermoacoustic energy transfer volumes.

  12. Thermally Actuated Hydraulic Pumps

    NASA Technical Reports Server (NTRS)

    Jones, Jack; Ross, Ronald; Chao, Yi

    2008-01-01

    Thermally actuated hydraulic pumps have been proposed for diverse applications in which direct electrical or mechanical actuation is undesirable and the relative slowness of thermal actuation can be tolerated. The proposed pumps would not contain any sliding (wearing) parts in their compressors and, hence, could have long operational lifetimes. The basic principle of a pump according to the proposal is to utilize the thermal expansion and contraction of a wax or other phase-change material in contact with a hydraulic fluid in a rigid chamber. Heating the chamber and its contents from below to above the melting temperature of the phase-change material would cause the material to expand significantly, thus causing a substantial increase in hydraulic pressure and/or a substantial displacement of hydraulic fluid out of the chamber. Similarly, cooling the chamber and its contents from above to below the melting temperature of the phase-change material would cause the material to contract significantly, thus causing a substantial decrease in hydraulic pressure and/or a substantial displacement of hydraulic fluid into the chamber. The displacement of the hydraulic fluid could be used to drive a piston. The figure illustrates a simple example of a hydraulic jack driven by a thermally actuated hydraulic pump. The pump chamber would be a cylinder containing encapsulated wax pellets and containing radial fins to facilitate transfer of heat to and from the wax. The plastic encapsulation would serve as an oil/wax barrier and the remaining interior space could be filled with hydraulic oil. A filter would retain the encapsulated wax particles in the pump chamber while allowing the hydraulic oil to flow into and out of the chamber. In one important class of potential applications, thermally actuated hydraulic pumps, exploiting vertical ocean temperature gradients for heating and cooling as needed, would be used to vary hydraulic pressures to control buoyancy in undersea research vessels. Heretofore, electrically actuated hydraulic pumps have been used for this purpose. By eliminating the demand for electrical energy for pumping, the use of the thermally actuated hydraulic pumps could prolong the intervals between battery charges, thus making it possible to greatly increase the durations of undersea exploratory missions.

  13. Individual-Environment Interactions in Swimming: The Smallest Unit for Analysing the Emergence of Coordination Dynamics in Performance?

    PubMed

    Guignard, Brice; Rouard, Annie; Chollet, Didier; Hart, John; Davids, Keith; Seifert, Ludovic

    2017-08-01

    Displacement in competitive swimming is highly dependent on fluid characteristics, since athletes use these properties to propel themselves. It is essential for sport scientists and practitioners to clearly identify the interactions that emerge between each individual swimmer and properties of an aquatic environment. Traditionally, the two protagonists in these interactions have been studied separately. Determining the impact of each swimmer's movements on fluid flow, and vice versa, is a major challenge. Classic biomechanical research approaches have focused on swimmers' actions, decomposing stroke characteristics for analysis, without exploring perturbations to fluid flows. Conversely, fluid mechanics research has sought to record fluid behaviours, isolated from the constraints of competitive swimming environments (e.g. analyses in two-dimensions, fluid flows passively studied on mannequins or robot effectors). With improvements in technology, however, recent investigations have focused on the emergent circular couplings between swimmers' movements and fluid dynamics. Here, we provide insights into concepts and tools that can explain these on-going dynamic interactions in competitive swimming within the theoretical framework of ecological dynamics.

  14. Analysis of intra-uterine fluid motion induced by uterine contractions.

    PubMed

    Eytan, O; Elad, D

    1999-03-01

    Evaluation of the fluid flow pattern in a non-pregnant uterus is important for understanding embryo transport in the uterus. Fertilization occurs in the fallopian tube and the embryo (fertilized ovum) enters the uterine cavity within 3 days of ovulation. In the uterus, the embryo is conveyed by the uterine fluid for another 3 to 4 days to a successful implantation site at the upper part of the uterus. Fluid movements within the uterus may be induced by several mechanisms, but they seem to be dominated by myometrial contractions. Intra-uterine fluid transport in a sagittal cross-section of the uterus was simulated by a model of wall-induced fluid motion within a two-dimensional channel. The time-dependent fluid pattern was studied by employing the lubrication theory. A comprehensive analysis of peristaltic transport resulting from symmetric and asymmetric contractions is presented for various displacement waves on the channel walls. The results provide information on the flow field and possible trajectories by which an embryo may be transported before implantation at the uterine wall.

  15. Design and fabrication of a continuously tuned capacitor by microfluidic actuation

    NASA Astrophysics Data System (ADS)

    Habbachi, Nizar; Boussetta, Hatem; Boukabache, Ali; Adel Kallala, Mohamed; Pons, Patrick; Besbes, Kamel

    2018-03-01

    This paper presents the design and fabrication of a continuously tunable RF MEMS capacitor using micro fluidics as a tuning parameter. The impedance variation principle is based on the modification of the capacitor gap permittivity produced by the presence of deionized (DI) water and its displacement in a channel inserted between electrodes. In addition, the electric field distribution changes in an equiponderant way according to the DI water positions in the channel. This change modifies the capacitive coupling, the stored energy and, consequently, the self-resonant frequency. The fabrication process is based on two parts: metallic paths having a spiral form, and obtained by electroplating a 7 µm thick gold layer to constitute electrodes; and fluidic channels, realized by super imposing two SU-8 films. The measurements show a nonlinear variation of the capacitor value according to the water positions. The tuning range is very large, reaching to 4650% for capacitance, and 335% for resonant frequency. However, the quality factor reaches Q max  =  79 at 550 MHz if the capacitor is empty and decreases with the fluid displacement to Q min  =  3.13.

  16. Geometric flow control of shear bands by suppression of viscous sliding

    PubMed Central

    Viswanathan, Koushik; Mahato, Anirban; Sundaram, Narayan K.; M'Saoubi, Rachid; Trumble, Kevin P.; Chandrasekar, Srinivasan

    2016-01-01

    Shear banding is a plastic flow instability with highly undesirable consequences for metals processing. While band characteristics have been well studied, general methods to control shear bands are presently lacking. Here, we use high-speed imaging and micro-marker analysis of flow in cutting to reveal the common fundamental mechanism underlying shear banding in metals. The flow unfolds in two distinct phases: an initiation phase followed by a viscous sliding phase in which most of the straining occurs. We show that the second sliding phase is well described by a simple model of two identical fluids being sheared across their interface. The equivalent shear band viscosity computed by fitting the model to experimental displacement profiles is very close in value to typical liquid metal viscosities. The observation of similar displacement profiles across different metals shows that specific microstructure details do not affect the second phase. This also suggests that the principal role of the initiation phase is to generate a weak interface that is susceptible to localized deformation. Importantly, by constraining the sliding phase, we demonstrate a material-agnostic method—passive geometric flow control—that effects complete band suppression in systems which otherwise fail via shear banding. PMID:27616920

  17. Geometric flow control of shear bands by suppression of viscous sliding

    NASA Astrophysics Data System (ADS)

    Sagapuram, Dinakar; Viswanathan, Koushik; Mahato, Anirban; Sundaram, Narayan K.; M'Saoubi, Rachid; Trumble, Kevin P.; Chandrasekar, Srinivasan

    2016-08-01

    Shear banding is a plastic flow instability with highly undesirable consequences for metals processing. While band characteristics have been well studied, general methods to control shear bands are presently lacking. Here, we use high-speed imaging and micro-marker analysis of flow in cutting to reveal the common fundamental mechanism underlying shear banding in metals. The flow unfolds in two distinct phases: an initiation phase followed by a viscous sliding phase in which most of the straining occurs. We show that the second sliding phase is well described by a simple model of two identical fluids being sheared across their interface. The equivalent shear band viscosity computed by fitting the model to experimental displacement profiles is very close in value to typical liquid metal viscosities. The observation of similar displacement profiles across different metals shows that specific microstructure details do not affect the second phase. This also suggests that the principal role of the initiation phase is to generate a weak interface that is susceptible to localized deformation. Importantly, by constraining the sliding phase, we demonstrate a material-agnostic method-passive geometric flow control-that effects complete band suppression in systems which otherwise fail via shear banding.

  18. Ground displacements caused by aquifer-system water-level variations observed using interferometric synthetic aperture radar near Albuquerque, New Mexico

    USGS Publications Warehouse

    Heywood, Charles E.; Galloway, Devin L.; Stork, Sylvia V.

    2002-01-01

    Six synthetic aperture radar (SAR) images were processed to form five unwrapped interferometric (InSAR) images of the greater metropolitan area in the Albuquerque Basin. Most interference patterns in the images were caused by range displacements resulting from changes in land-surface elevation. Loci of land- surface elevation changes correlate with changes in aquifer-system water levels and largely result from the elastic response of the aquifer-system skeletal material to changes in pore-fluid pressure. The magnitude of the observed land-surface subsidence and rebound suggests that aquifer-system deformation resulting from ground-water withdrawals in the Albuquerque area has probably remained in the elastic (recoverable) range from July 1993 through September 1999. Evidence of inelastic (permanent) land subsidence in the Rio Rancho area exists, but its relation to compaction of the aquifer system is inconclusive because of insufficient water-level data. Patterns of elastic deformation in both Albuquerque and Rio Rancho suggest that intrabasin faults impede ground- water-pressure diffusion at seasonal time scales and that these faults are probably important in controlling patterns of regional ground-water flow.

  19. Numerical modeling of fluid-structure interaction in arteries with anisotropic polyconvex hyperelastic and anisotropic viscoelastic material models at finite strains.

    PubMed

    Balzani, Daniel; Deparis, Simone; Fausten, Simon; Forti, Davide; Heinlein, Alexander; Klawonn, Axel; Quarteroni, Alfio; Rheinbach, Oliver; Schröder, Joerg

    2016-10-01

    The accurate prediction of transmural stresses in arterial walls requires on the one hand robust and efficient numerical schemes for the solution of boundary value problems including fluid-structure interactions and on the other hand the use of a material model for the vessel wall that is able to capture the relevant features of the material behavior. One of the main contributions of this paper is the application of a highly nonlinear, polyconvex anisotropic structural model for the solid in the context of fluid-structure interaction, together with a suitable discretization. Additionally, the influence of viscoelasticity is investigated. The fluid-structure interaction problem is solved using a monolithic approach; that is, the nonlinear system is solved (after time and space discretizations) as a whole without splitting among its components. The linearized block systems are solved iteratively using parallel domain decomposition preconditioners. A simple - but nonsymmetric - curved geometry is proposed that is demonstrated to be suitable as a benchmark testbed for fluid-structure interaction simulations in biomechanics where nonlinear structural models are used. Based on the curved benchmark geometry, the influence of different material models, spatial discretizations, and meshes of varying refinement is investigated. It turns out that often-used standard displacement elements with linear shape functions are not sufficient to provide good approximations of the arterial wall stresses, whereas for standard displacement elements or F-bar formulations with quadratic shape functions, suitable results are obtained. For the time discretization, a second-order backward differentiation formula scheme is used. It is shown that the curved geometry enables the analysis of non-rotationally symmetric distributions of the mechanical fields. For instance, the maximal shear stresses in the fluid-structure interface are found to be higher in the inner curve that corresponds to clinical observations indicating a high plaque nucleation probability at such locations. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  20. Clarifying the Misconception about the Principle of Floatation

    ERIC Educational Resources Information Center

    Yadav, Manoj K.

    2014-01-01

    This paper aims to clarify the misconception about the violation of the principle of floatation. Improper understanding of the definition of "displaced fluid" by a floating body leads to the misconception. With the help of simple experiments, this article shows that there is no violation of the principle of floatation.

  1. From Iron Cages to Webs on Wind: Three Theses on Themes and Learning at Work.

    ERIC Educational Resources Information Center

    Engestrom, Yrjo

    1999-01-01

    Examines three theses: (1) work teams should be analyzed as object-oriented activity systems; (2) the nature of teams depends on the type of production in which they are implemented; and (3) fluid forms of collaborative work organization are displacing stable teams. (SK)

  2. Experimental techniques and computational methods toward the estimation of the effective two-phase flow coefficients and multi-scale heterogeneities of soils

    NASA Astrophysics Data System (ADS)

    Tsakiroglou, C. D.; Aggelopoulos, C. A.; Sygouni, V.

    2009-04-01

    A hierarchical, network-type, dynamic simulator of the immiscible displacement of water by oil in heterogeneous porous media is developed to simulate the rate-controlled displacement of two fluids at the soil column scale. A cubic network is constructed, where each node is assigned a permeability which is chosen randomly from a distribution function. The intensity of heterogeneities is quantified by the width of the permeability distribution function. The capillary pressure at each node is calculated by combining a generalized Leverett J-function with a Corey type model. Information about the heterogeneity of soils at the pore network scale is obtained by combining mercury intrusion porosimetry (MIP) data with back-scattered scanning electron microscope (BSEM) images [1]. In order to estimate the two-phase flow properties of nodes (relative permeability and capillary pressure functions, permeability distribution function) immiscible and miscible displacement experiments are performed on undisturbed soil columns. The transient responses of measured variables (pressure drop, fluid saturation averaged over five successive segments, solute concentration averaged over three cross-sections) are fitted with models accounting for the preferential flow paths at the micro- (multi-region model) and macro-scale (multi flowpath model) because of multi-scale heterogeneities [2,3]. Simulating the immiscible displacement of water by oil (drainage) in a large netork, at each time step, the fluid saturation and pressure of each node are calculated formulating mass balances at each node, accounting for capillary, viscous and gravity forces, and solving the system of coupled equations. At each iteration of the algorithm, the pressure drop is so selected that the total flow rate of the injected fluid is kept constant. The dynamic large-scale network simulator is used (1) to examine the sensitivity of the transient responses of the axial distribution of fluid saturation and total pressure drop across the network to the permeability distribution function, spatial correlations of permeability, and capillary number, and (2) to estimate the effective (up-scaled) relative permeability functions at the soil column scale. In an attempt to clarify potential effects of the permeability distribution and spatial permeability correlations on the transient responses of the pressure drop across a soil column, signal analysis with wavelets is performed [4] on experimental and simulated results. The transient variation of signal energy and frequency of pressure drop fluctuations at the wavelet domain are correlated with macroscopic properties such as the effective water and oil relative permeabilities of the porous medium, and microscopic properties such as the variation of the permeability distribution of oil-occupied nodes. Toward the solution of the inverse problem, a general procedure is suggested to identify macro-heterogeneities from the fast analysis of pressure drop signals. References 1. Tsakiroglou, C.D. and M.A. Ioannidis, "Dual porosity modeling of the pore structure and transport properties of a contaminated soil", Eur. J. Soil Sci., 59, 744-761 (2008). 2. Aggelopoulos, C.A., and C.D. Tsakiroglou, "Quantifying the Soil Heterogeneity from Solute Dispersion Experiments", Geoderma, 146, 412-424 (2008). 3. Aggelopoulos, C.A., and C.D. Tsakiroglou, "A multi-flow path approach to model immiscible displacement in undisturbed heterogeneous soil columns", J. Contam. Hydrol., in press (2009). 4. Sygouni, V., C.D. Tsakiroglou, and A.C. Payatakes, "Using wavelets to characterize the wettability of porous materials", Phys. Rev. E, 76, 056304 (2007).

  3. Study of Surface Wave Propagation in Fluid-Saturated Porous Solids.

    NASA Astrophysics Data System (ADS)

    Azcuaga, Valery Francisco Godinez

    1995-01-01

    This study addresses the surface wave propagation phenomena on fluid-saturated porous solids. The analytical method for calculation of surface wave velocities (Feng and Johnson, JASA, 74, 906, 1983) is extended to the case of a porous solid saturated with a wetting fluid in contact with a non-wetting fluid, in order to study a material combination suitable for experimental investigation. The analytical method is further extended to the case of a non-wetting fluid/wetting fluid-saturated porous solid interface with an arbitrary finite surface stiffness. These extensions of the analytical method allows to theoretically study surface wave propagation phenomena during the saturation process. A modification to the 2-D space-time reflection Green's function (Feng and Johnson, JASA, 74, 915, 1983) is introduced in order to simulate the behavior of surface wave signals detected during the experimental investigation of surface wave propagation on fluid-saturated porous solids (Nagy, Appl. Phys. Lett., 60, 2735, 1992). This modification, together with the introduction of an excess attenuation for the Rayleigh surface mode, makes it possible to explain the apparent velocity changes observed on the surface wave signals during saturation. Experimental results concerning the propagation of surface waves on an alcohol-saturated porous glass are presented. These experiments were performed at frequencies of 500 and 800 kHz and show the simultaneous propagation of the two surface modes predicted by the extended analytical method. Finally an analysis of the displacements associated with the different surface modes is presented. This analysis reveals that it is possible to favor the generation of the Rayleigh surface mode or of the slow surface mode, simply by changing the type of transducer used in the generation of surface waves. Calculations show that a shear transducer couples more energy into the Rayleigh mode, whereas a longitudinal transducer couples more energy into the slow surface mode. Experimental results obtained with the modified experimental system show a qualitative agreement with the theoretical predictions.

  4. Variation in sperm displacement and its association with accessory gland protein loci in Drosophila melanogaster.

    PubMed

    Clark, A G; Aguadé, M; Prout, T; Harshman, L G; Langley, C H

    1995-01-01

    Genes that influence mating and/or fertilization success may be targets for strong natural selection. If females remate frequently relative to the duration of sperm storage and rate of sperm use, sperm displacement may be an important component of male reproductive success. Although it has long been known that mutant laboratory stocks of Drosophila differ in sperm displacement, the magnitude of the naturally occurring genetic variation in this character has not been systematically quantified. Here we report the results of a screen for variation in sperm displacement among 152 lines of Drosophilia melanogaster that were made homozygous for second and/or third chromosomes recovered from natural populations. Sperm displacement was assayed by scoring the progeny of cn;bw females that had been mated sequentially to cn;bw and tested males in either order. Highly significant differences were seen in both the ability to displace sperm that is resident in the female's reproductive tract and in the ability to resist displacement by subsequent sperm. Most lines exhibited nearly complete displacement, having nearly all progeny sired by the second male, but several lines had as few as half the progeny fathered by the second male. Lines that were identified in the screen for naturally occurring variation in sperm displacement were also characterized for single-strand conformation polymorphisms (SSCP) at seven accessory gland protein (Acp) genes, Glucose dehydrogenase (Gld), and Esterase-6 (Est-6). Acp genes encode proteins that are in some cases known to be transmitted to the female in the seminal fluid and are likely candidates for genes that might mediate the phenomenon of sperm displacement. Significant associations were found between particular Acp alleles at four different loci (Acp26Aa/Ab, Acp29B, Acp36DE and Acp53E) and the ability of males to resist displacement by subsequent sperm. There was no correlation between the ability to displace resident sperm and the ability to resist being displaced by subsequent sperm. This lack of correlation, and the association of Acp alleles with resisting subsequent sperm only, suggests that different mechanisms mediate the two components of sperm displacement.

  5. Origin of the megabreccias in the Katanga Copperbelt (D.R.Congo)

    NASA Astrophysics Data System (ADS)

    Cailteux, Jacques L. H.; Muchez, Philippe; De Cuyper, Jana; Dewaele, Stijn; De Putter, Thierry

    2018-04-01

    The megabreccias in the Katanga part of the Neoproterozoic Central African Copperbelt contain up to several km-long blocks and fragments of the Mines Subgroup which host most of the stratiform Cu-Co deposits. New observations, particularly on cores from boreholes drilled at Luiswishi indicate three types of fracturing: 1) brittle post-folding in the Mines Subgroup; 2) hydraulic; and 3) ductile in soft incompetent siltstones of the R.A.T. and Dipeta subgroups. These fracturing phases dislocated the Roan succession into blocks and fragments and, in particular, clearly showed that there is an evolution from an in situ hydraulic fracturing, to a heterometric brecciation implying some movement and abrasion of the fragments. The process points to significant compression, and was accompanied by fluid expulsion and precipitation of dolomite after decompression. Fluid inclusion microthermometry in dolomite grains shows that the fluids were of high salinity and high temperature, suggesting dissolution of evaporites most likely contained in the Roan sedimentary pile. These saline fluids allowed the fluidization of the breccias, facilitating the displacement of the nappes, pinching out (extrusion-like) megabreccias along thrust-faults, and resulting in intrusion of breccias between the blocks or into large fractures. Breccias between the blocks are clearly identified as friction breccias. They contain a fine material, as part of the matrix, resulting from abrasion of the fragments during transportation. Abrasion and attrition explain the rounding of the fragments. A late cementation phase from less saline and lower temperature fluids suggests the addition of meteoric water in the system, and the mixing with the ambient fluids. The minimum burial depth of the meteoric water incursion is estimated at 2.8 km. Such under-saturated fluids may have contributed to the dissolution of residual evaporites and of the evaporitic material from the Kiubo rocks at the base of the nappes, and led to further brecciation, possibly explaining the multi-phase features of the breccia. The megabreccias occur at the base of the thrusts sheets and are marked by thrust-fault zones. Results of the study support a process of formation of the megabreccias related to a fold-and-trust event, and invalidate a syn-orogenic sedimentary origin as an olistostrome formed by subaqueous conglomeratic debris flows and clastic syn-orogenic sediments. They also contradict a pure salt tectonic hypothesis that propose the extrusions and enlargements of allochthonous evaporites-gigabreccia before the Lufilian deformation. However, the model is compatible with a "fluid behaviour" of pressured saline fluids trapped in folds and/or thrust sheets, and resulting from evaporites dissolution at variable depth.

  6. Role of fluids in experimental calcite-bearing faults at seismic deformation conditions.

    NASA Astrophysics Data System (ADS)

    Violay, M.; Nielsen, S.; Cinti, D.; Spagnuolo, E.; Di Toro, G.; Smith, S.

    2012-04-01

    Fluids play a fundamental physical (fluid pressure, temperature buffering, etc.) and chemical (dissolution, hydrolytic weakening, etc.) role in controlling fault strength and earthquake nucleation, propagation and arrest. However, due to technical challenges, the influence of water at deformation conditions typical of earthquakes (i.e., slip rates of 1 m/s, displacements of 0.1-5 m, normal stress of tens of MPa) remains poorly constrained experimentally. Here we present results from high velocity friction experiments performed with a rotary shear apparatus (SHIVA: Slow to HIgh Velocity (friction) Apparatus) on Carrara marble. SHIVA is equipped with (1) an environmental/vacuum chamber to perform experiments in the absence of room-humidity, (2) a pressure vessel to perform experiments with fluids (up to 15 MPa confining pressure), including devices to determine fluid composition (Ca2+, Mg2+, HCO3-, etc). Experiments were conducted on hollow cylinders (50/30 mm ext/int diameter) of Carrara (98% calcite) marble at velocities of 1-6.5 m/s, displacements up to a few meters, normal stresses up to 40 MPa and fluid pressures between 0 (under vacuum) and 15 MPa (fluid-saturated conditions, with H2O in chemical equilibrium with the marble). Rock and fluid samples were recovered for post-run analysis to determine deformation mechanisms and changes in fluid composition. Under these deformation conditions: 1) the friction coefficient decays rapidly from a peak (= static) μp ~ 0.8 at the initiation of sliding towards a steady-state μss ~ 0.1. The absolute values of both peak and steady-state friction are not significantly influenced by the presence of fluids; 2) the decay from peak to steady-state friction is more abrupt in presence of fluids; 3) during deceleration of the friction apparatus, the friction coefficient recovers almost instantaneously to a value, μr, of 0.2-0.6 ( strength recovery) resulting in a small static stress drop. Strength recovery is smaller in the presence of fluids. 4) the fluid (H2O) after the experiment is enriched in Ca2+, Mg2+ and HCO3-. This chemical evolution suggests breakdown reactions (decarbonation of calcite) promoted by frictional heating and controlled by the presence of H2O. We conclude that the large decrease in friction and abrupt weakening, especially in the presence of fluids, indicates that calcite-bearing rocks are prone to earthquake nucleation and seismic rupture propagation (see the L'Aquila 2009 earthquake sequence). The chemical changes observed in water springs after large earthquakes in carbonatic rocks is similar to those found in these experiments, suggesting that the weakening mechanisms triggered in the experiments might occur in nature.

  7. On the mechanical interaction between a fluid-filled fracture and the earth's surface

    USGS Publications Warehouse

    Pollard, D.D.; Holzhausen, G.

    1979-01-01

    The mechanical interaction between a fluid-filled fracture (e.g., hydraulic fracture joint, or igneous dike) and the earth's surface is analyzed using a two-dimensional elastic solution for a slit of arbitrary inclination buried beneath a horizontal free surface and subjected to an arbitrary pressure distribution. The solution is obtained by iteratively superimposing two fundamental sets of analytical solutions. For uniform internal pressure the slit behaves essentially as if it were in an infinite region if the depth-to-center is three times greater than the half-length. For shallower slits interaction with the free surface is pronounced: stresses and displacements near the slit differ by more than 10% from values for the deeply buried slit. The following changes are noted as the depth-to-center decreases: 1. (1) the mode I stress intensity factor increases for both ends of the slit, but more rapidly at the upper end; 2. (2) the mode II stress-intensity factor is significantly different from zero (except for vertical slits) suggesting propagation out of the original plane of the slit; 3. (3) displacements of the slit wall are asymmetric such that the slit gaps open more widely near the upper end. Similar changes are noted if fluid density creates a linear pressure gradient that is smaller than the lithostatic gradient. Under such conditions natural fractures should propagate preferentially upward toward the earth's surface requiring less pressure as they grow in length. If deformation near the surface is of interest, the model should account explicitly for the free surface. Stresses and displacements at the free surface are not approximated very well by values calculated along a line in an infinite region, even when the slit is far from the line. As depth-to-center of a shallow pressurized slit decreases, the following changes are noted: 1. (1) displacements of the free surface increase to the same order of magnitude as the displacements of the slit walls, 2. (2) tensile stresses of magnitude greater than the pressure in the slit are concentrated along the free surface. The relative surface displacements over a shallow vertical slit are downward over the slit and upward to both sides of this area. The tensile stress acting parallel to the free surface over a shallow vertical slit is concentrated in two maxima adjacent to a point of very low stress immediately over the slit. The solution is used to estimate the length-to-depth ratio at which igneous sills have gained sufficient leverage on overlying strata to bend these strata upward and form a laccolith. The pronounced mode II stress intensity associated with shallow horizontal slits explains the tendency for some sills to climb to higher stratigraphie horizons as they grow in length. The bimodal tensile stress concentration over shallow vertical slits correlates qualitatively with the distribution of cracks and normal faults which flank fissure eruptions on volcanoes. The solution may be used to analyze surface displacements and tilts over massive hydraulic fractures in oil fields and to understand the behavior of hydraulic fractures in granite quarries. ?? 1979.

  8. Tunable Stable Levitation Based on Casimir Interaction between Nanostructures

    NASA Astrophysics Data System (ADS)

    Liu, Xianglei; Zhang, Zhuomin M.

    2016-03-01

    Quantum levitation enabled by repulsive Casimir force has been desirable due to the potential exciting applications in passive-suspension devices and frictionless bearings. In this paper, dynamically tunable stable levitation is theoretically demonstrated based on the configuration of dissimilar gratings separated by an intervening fluid using exact scattering theory. The levitation position is insensitive to temperature variations and can be actively tuned by adjusting the lateral displacement between the two gratings. This work investigates the possibility of applying quantum Casimir interactions into macroscopic mechanical devices working in a noncontact and low-friction environment for controlling the position or transducing lateral movement into vertical displacement at the nanoscale.

  9. Radioassay kit for method of determining methotrexate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charm, S.E.; Blair, H.E.

    1978-07-25

    A radioassay system for the determination of methotrexate in biological fluids based on the competitive binding of labeled and unlabeled methotrexate to the enzyme dihydrofolate reductase. Samples of unknown methotrexate level are mixed with I/sup 125/ labeled methotrexate. A portion of the total methotrexate present is bound by the addition of enzyme, and the unbound methotrexate is removed with charcoal. The level of bound I/sup 125/ labeled methotrexate is measured in a gamma counter. To calculate the methotrexate level of the unknown samples, the displacement of bound labeled methotrexate caused by the unknowns is compared to the displacement caused bymore » known methotrexate standards.« less

  10. Coupling fluid dynamics and host-rock deformation associated with magma intrusion in the crust: Insights from analogue experiments

    NASA Astrophysics Data System (ADS)

    Kavanagh, J. L.; Dennis, D. J.

    2014-12-01

    Models of magma ascent in the crust tend to either consider the dynamics of fluid flow within intrusions or the associated host-rock deformation. However, these processes are coupled in nature, and so to develop a more complete understanding of magma ascent dynamics in the crust both need to be taken into account. We present a series of gelatine analogue experiments that use both Particle Image Velocimentry (PIV) and Digital Image Correlation (DIC) techniques to characterise the dynamics of fluid flow within intrusions and to quantify the associated deformation of the intruded media. Experiments are prepared by filling a 40x40x30 cm3 clear-Perspex tank with a low-concentration gelatine mixture (2-5 wt%) scaled to be of comparable stiffness to crustal strata. Fluorescent seeding particles are added to the gelatine mixture during its preparation and to the magma analogue prior to injection. Two Dantec CCD cameras are positioned outside the tank and a vertical high-power laser sheet positioned along the centre line is triggered to illuminate the seeding particles with short intense pulses. Dyed water (the magma analogue) injected into the solid gelatine from below causes a vertically propagating penny-shaped crack (dike) to form. Incremental and cumulative displacement vectors are calculated by cross-correlation between successive images at a defined time interval. Spatial derivatives map the fluid flow within the intrusion and associated strain and stress evolution of the host, both during dike propagation and on to eruption. As the gelatine deforms elastically at the experimental conditions, strain calculations correlate with stress. Models which couple fluid dynamics and host deformation make an important step towards improving our understanding of the dynamics of magma transport through the crust and to help constrain the tendency for eruption.

  11. Anisotropic changes in P-wave velocity and attenuation during deformation and fluid infiltration of granite

    USGS Publications Warehouse

    Stanchits, S.A.; Lockner, D.A.; Ponomarev, A.V.

    2003-01-01

    Fluid infiltration and pore fluid pressure changes are known to have a significant effect on the occurrence of earthquakes. Yet, for most damaging earthquakes, with nucleation zones below a few kilometers depth, direct measurements of fluid pressure variations are not available. Instead, pore fluid pressures are inferred primarily from seismic-wave propagation characteristics such as Vp/Vs ratio, attenuation, and reflectivity contacts. We present laboratory measurements of changes in P-wave velocity and attenuation during the injection of water into a granite sample as it was loaded to failure. A cylindrical sample of Westerly granite was deformed at constant confining and pore pressures of 50 and 1 MPa, respectively. Axial load was increased in discrete steps by controlling axial displacement. Anisotropic P-wave velocity and attenuation fields were determined during the experiment using an array of 13 piezoelectric transducers. At the final loading steps (86% and 95% of peak stress), both spatial and temporal changes in P-wave velocity and peak-to-peak amplitudes of P and S waves were observed. P-wave velocity anisotropy reached a maximum of 26%. Transient increases in attenuation of up to 483 dB/m were also observed and were associated with diffusion of water into the sample. We show that velocity and attenuation of P waves are sensitive to the process of opening of microcracks and the subsequent resaturation of these cracks as water diffuses in from the surrounding region. Symmetry of the orientation of newly formed microcracks results in anisotropic velocity and attenuation fields that systematically evolve in response to changes in stress and influx of water. With proper scaling, these measurements provide constraints on the magnitude and duration of velocity and attenuation transients that can be expected to accompany the nucleation of earthquakes in the Earth's crust.

  12. Normal versus anomalous self-diffusion in two-dimensional fluids: memory function approach and generalized asymptotic Einstein relation.

    PubMed

    Shin, Hyun Kyung; Choi, Bongsik; Talkner, Peter; Lee, Eok Kyun

    2014-12-07

    Based on the generalized Langevin equation for the momentum of a Brownian particle a generalized asymptotic Einstein relation is derived. It agrees with the well-known Einstein relation in the case of normal diffusion but continues to hold for sub- and super-diffusive spreading of the Brownian particle's mean square displacement. The generalized asymptotic Einstein relation is used to analyze data obtained from molecular dynamics simulations of a two-dimensional soft disk fluid. We mainly concentrated on medium densities for which we found super-diffusive behavior of a tagged fluid particle. At higher densities a range of normal diffusion can be identified. The motion presumably changes to sub-diffusion for even higher densities.

  13. Normal versus anomalous self-diffusion in two-dimensional fluids: Memory function approach and generalized asymptotic Einstein relation

    NASA Astrophysics Data System (ADS)

    Shin, Hyun Kyung; Choi, Bongsik; Talkner, Peter; Lee, Eok Kyun

    2014-12-01

    Based on the generalized Langevin equation for the momentum of a Brownian particle a generalized asymptotic Einstein relation is derived. It agrees with the well-known Einstein relation in the case of normal diffusion but continues to hold for sub- and super-diffusive spreading of the Brownian particle's mean square displacement. The generalized asymptotic Einstein relation is used to analyze data obtained from molecular dynamics simulations of a two-dimensional soft disk fluid. We mainly concentrated on medium densities for which we found super-diffusive behavior of a tagged fluid particle. At higher densities a range of normal diffusion can be identified. The motion presumably changes to sub-diffusion for even higher densities.

  14. Combined Effect of Fluid and Pressure on Middle Ear Function

    PubMed Central

    Dai, Chenkai; Wood, Mark W.; Gan, Rong Z.

    2008-01-01

    In our previous studies, the effects of effusion and pressure on sound transmission were investigated separately. The aim of this study is to investigate the combined effect of fluid and pressure on middle ear function. An otitis media with effusion model was created by injecting saline solution and air pressure simultaneously into the middle ear of human temporal bones. Tympanic membrane displacement in response to 90 dB SPL sound input was measured by a laser vibrometer and the compliance of the middle ear was measured by a tympanometer. The movement of the tympanic membrane at the umbo was reduced up to 17 dB by the combination of fluid and pressure in the middle ear over the auditory frequency range. The fluid and pressure effects on the umbo movement in the fluid-pressure combination are not additive. The combined effect of fluid and pressure on the umbo movement is different compared with that of only fluid or pressure change in the middle ear. Negative pressure in fluid-pressure combination had more effect on middle ear function than positive pressure. Tympanometry can detect the middle ear pressure of the fluid-pressure combination. This study provides quantitative information for analysis of the combined effect of fluid and pressure on tympanic membrane movement. PMID:18162348

  15. Effect of hydrofracking fluid on colloid transport in the unsaturated zone.

    PubMed

    Sang, Wenjing; Stoof, Cathelijne R; Zhang, Wei; Morales, Verónica L; Gao, Bin; Kay, Robert W; Liu, Lin; Zhang, Yalei; Steenhuis, Tammo S

    2014-07-15

    Hydraulic fracturing is expanding rapidly in the US to meet increasing energy demand and requires high volumes of hydrofracking fluid to displace natural gas from shale. Accidental spills and deliberate land application of hydrofracking fluids, which return to the surface during hydrofracking, are common causes of environmental contamination. Since the chemistry of hydrofracking fluids favors transport of colloids and mineral particles through rock cracks, it may also facilitate transport of in situ colloids and associated pollutants in unsaturated soils. We investigated this by subsequently injecting deionized water and flowback fluid at increasing flow rates into unsaturated sand columns containing colloids. Colloid retention and mobilization was measured in the column effluent and visualized in situ with bright field microscopy. While <5% of initial colloids were released by flushing with deionized water, 32-36% were released by flushing with flowback fluid in two distinct breakthrough peaks. These peaks resulted from 1) surface tension reduction and steric repulsion and 2) slow kinetic disaggregation of colloid flocs. Increasing the flow rate of the flowback fluid mobilized an additional 36% of colloids, due to the expansion of water filled pore space. This study suggests that hydrofracking fluid may also indirectly contaminate groundwater by remobilizing existing colloidal pollutants.

  16. Electroosmotic flow hysteresis for dissimilar ionic solutions

    PubMed Central

    Lim, An Eng; Lam, Yee Cheong

    2015-01-01

    Electroosmotic flow (EOF) with two or more fluids is commonly encountered in various microfluidics applications. However, no investigation has hitherto been conducted to investigate the hysteretic or flow direction-dependent behavior during the displacement flow of solutions with dissimilar ionic species. In this investigation, electroosmotic displacement flow involving dissimilar ionic solutions was studied experimentally through a current monitoring method and numerically through finite element simulations. The flow hysteresis can be characterized by the turning and displacement times; turning time refers to the abrupt gradient change of current-time curve while displacement time is the time for one solution to completely displace the other solution. Both experimental and simulation results illustrate that the turning and displacement times for a particular solution pair can be directional-dependent, indicating that the flow conditions in the microchannel are not the same in the two different flow directions. The mechanics of EOF hysteresis was elucidated through the theoretical model which includes the ionic mobility of each species, a major governing parameter. Two distinct mechanics have been identified as the causes for the EOF hysteresis involving dissimilar ionic solutions: the widening/sharpening effect of interfacial region between the two solutions and the difference in ion concentration distributions (and thus average zeta potentials) in different flow directions. The outcome of this investigation contributes to the fundamental understanding of flow behavior in microfluidic systems involving solution pair with dissimilar ionic species. PMID:25945139

  17. Screw-actuated displacement micropumps for thermoplastic microfluidics.

    PubMed

    Han, J Y; Rahmanian, O D; Kendall, E L; Fleming, N; DeVoe, D L

    2016-10-05

    The fabrication of on-chip displacement pumps integrated into thermoplastic chips is explored as a simple and low cost method for achieving precise and programmable flow control for disposable microfluidic systems. The displacement pumps consist of stainless steel screws inserted into threaded ports machined into a thermoplastic substrate which also serve as on-chip reagent storage reservoirs. Three different methods for pump sealing are investigated to enable high pressure flows without leakage, and software-defined control of multiple pumps is demonstrated in a self-contained platform using a compact and self-contained microcontroller for operation. Using this system, flow rates ranging from 0.5-40 μl min -1 are demonstrated. The pumps are combined with on-chip burst valves to fully seal multiple reagents into fabricated chips while providing on-demand fluid distribution in a downstream microfluidic network, and demonstrated for the generation of size-tunable water-in-oil emulsions.

  18. Thermophoretically induced large-scale deformations around microscopic heat centers

    NASA Astrophysics Data System (ADS)

    Puljiz, Mate; Orlishausen, Michael; Köhler, Werner; Menzel, Andreas M.

    2016-05-01

    Selectively heating a microscopic colloidal particle embedded in a soft elastic matrix is a situation of high practical relevance. For instance, during hyperthermic cancer treatment, cell tissue surrounding heated magnetic colloidal particles is destroyed. Experiments on soft elastic polymeric matrices suggest a very long-ranged, non-decaying radial component of the thermophoretically induced displacement fields around the microscopic heat centers. We theoretically confirm this conjecture using a macroscopic hydrodynamic two-fluid description. Both thermophoretic and elastic effects are included in this theory. Indeed, we find that the elasticity of the environment can cause the experimentally observed large-scale radial displacements in the embedding matrix. Additional experiments confirm the central role of elasticity. Finally, a linearly decaying radial component of the displacement field in the experiments is attributed to the finite size of the experimental sample. Similar results are obtained from our theoretical analysis under modified boundary conditions.

  19. Drainage and impregnation capillary pressure curves calculated by the X-ray CT model of Berea sandstone using Lattice Boltzmann's method

    NASA Astrophysics Data System (ADS)

    Zakirov, T.; Galeev, A.; Khramchenkov, M.

    2018-05-01

    The study deals with the features of the technique for simulating the capillary pressure curves of porous media on their X-ray microtomographic images. The results of a computational experiment on the immiscible displacement of an incompressible fluid by another in the pore space represented by a digital image of the Berea sandstone are presented. For the mathematical description of two-phase fluid flow we use Lattice Boltzmann Equation (LBM), and phenomena at the fluids interface are described by the color-gradient model. Compared with laboratory studies, the evaluation of capillary pressure based on the results of a computational filtration experiment is a non-destructive method and has a number of advantages: the absence of labor for preparation of fluids and core; the possibility of modeling on the scale of very small core fragments (several mm), which is difficult to realize under experimental conditions; three-dimensional visualization of the dynamics of filling the pore space with a displacing fluid during drainage and impregnation; the possibility of carrying out multivariate calculations for specified parameters of multiphase flow (density and viscosity of fluids, surface tension, wetting contact angle). A satisfactory agreement of the capillary pressure curves during drainage with experimental results was obtained. It is revealed that with the increase in the volume of the digital image, the relative deviation of the calculated and laboratory data decreases and for cubic digital cores larger than 1 mm it does not exceed 5%. The behavior of the non-wetting fluid flow during drainage is illustrated. It is shown that flow regimes under which computational and laboratory experiments are performed the distribution of the injected phase in directions different from the gradient of the hydrodynamic drop, including the opposite ones, is characteristic. Experimentally confirmed regularities are obtained when carrying out calculations for drainage and imbibition at different values of interfacial tension. There is a close coincidence in the average diameters of permeable channels, estimated by capillary curves for different interfacial tension and pore network model. The differences do not exceed 15%.

  20. Measurement of fluid rotation, dilation, and displacement in particle image velocimetry using a Fourier–Mellin cross-correlation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giarra, Matthew N.; Charonko, John J.; Vlachos, Pavlos P.

    Traditional particle image velocimetry (PIV) uses discrete Cartesian cross correlations (CCs) to estimate the displacements of groups of tracer particles within small subregions of sequentially captured images. However, these CCs fail in regions with large velocity gradients or high rates of rotation. In this paper, we propose a new PIV correlation method based on the Fourier–Mellin transformation (FMT) that enables direct measurement of the rotation and dilation of particle image patterns. In previously unresolvable regions of large rotation, our algorithm significantly improves the velocity estimates compared to traditional correlations by aligning the rotated and stretched particle patterns prior to performingmore » Cartesian correlations to estimate their displacements. Furthermore, our algorithm, which we term Fourier–Mellin correlation (FMC), reliably measures particle pattern displacement between pairs of interrogation regions with up to ±180° of angular misalignment, compared to 6–8° for traditional correlations, and dilation/compression factors of 0.5–2.0, compared to 0.9–1.1 for a single iteration of traditional correlations.« less

  1. Measurement of fluid rotation, dilation, and displacement in particle image velocimetry using a Fourier–Mellin cross-correlation

    DOE PAGES

    Giarra, Matthew N.; Charonko, John J.; Vlachos, Pavlos P.

    2015-02-05

    Traditional particle image velocimetry (PIV) uses discrete Cartesian cross correlations (CCs) to estimate the displacements of groups of tracer particles within small subregions of sequentially captured images. However, these CCs fail in regions with large velocity gradients or high rates of rotation. In this paper, we propose a new PIV correlation method based on the Fourier–Mellin transformation (FMT) that enables direct measurement of the rotation and dilation of particle image patterns. In previously unresolvable regions of large rotation, our algorithm significantly improves the velocity estimates compared to traditional correlations by aligning the rotated and stretched particle patterns prior to performingmore » Cartesian correlations to estimate their displacements. Furthermore, our algorithm, which we term Fourier–Mellin correlation (FMC), reliably measures particle pattern displacement between pairs of interrogation regions with up to ±180° of angular misalignment, compared to 6–8° for traditional correlations, and dilation/compression factors of 0.5–2.0, compared to 0.9–1.1 for a single iteration of traditional correlations.« less

  2. The case for character displacement in plants

    PubMed Central

    Beans, Carolyn M

    2014-01-01

    The evidence for character displacement as a widespread response to competition is now building. This progress is largely the result of the establishment of rigorous criteria for demonstrating character displacement in the animal literature. There are, however, relatively few well-supported examples of character displacement in plants. This review explores the potential for character displacement in plants by addressing the following questions: (1) Why aren't examples of character displacement in plants more common? (2) What are the requirements for character displacement to occur and how do plant populations meet those requirements? (3) What are the criteria for testing the pattern and process of character displacement and what methods can and have been used to address these criteria in the plant literature? (4) What are some additional approaches for studying character displacement in plants? While more research is needed, the few plant systems in which character displacement hypotheses have been rigorously tested suggest that character displacement may play a role in shaping plant communities. Plants are especially amenable to character displacement studies because of the experimental ease with which they can be used in common gardens, selection analyses, and breeding designs. A deeper investigation of character displacement in plants is critical for a more complete understanding of the ecological and evolutionary processes that permit the coexistence of plant species. PMID:24683467

  3. A many-body dissipative particle dynamics study of forced water-oil displacement in capillary.

    PubMed

    Chen, Chen; Zhuang, Lin; Li, Xuefeng; Dong, Jinfeng; Lu, Juntao

    2012-01-17

    The forced water-oil displacement in capillary is a model that has important applications such as the groundwater remediation and the oil recovery. Whereas it is difficult for experimental studies to observe the displacement process in a capillary at nanoscale, the computational simulation is a unique approach in this regard. In the present work, the many-body dissipative particle dynamics (MDPD) method is employed to simulate the process of water-oil displacement in capillary with external force applied by a piston. As the property of all interfaces involved in this system can be manipulated independently, the dynamic displacement process is studied systematically under various conditions of distinct wettability of water in capillary and miscibility between water and oil as well as of different external forces. By analyzing the dependence of the starting force on the properties of water/capillary and water/oil interfaces, we find that there exist two different modes of the water-oil displacement. In the case of stronger water-oil interaction, the water particles cannot displace those oil particles sticking to the capillary wall, leaving a low oil recovery efficiency. To minimize the residual oil content in capillary, enhancing the wettability of water and reducing the external force will be beneficial. This simulation study provides microscopic insights into the water-oil displacement process in capillary and guiding information for relevant applications. © 2011 American Chemical Society

  4. A portable self-sensing rheometer for investigation and therapy of swallowing disorders.

    PubMed

    O'Leary, Mark T; Hanson, Ben

    2010-01-01

    Dysphagia is a medical condition in which the safety or efficiency of eating and drinking is compromised. Thin, watery fluids flow too quickly through the oral anatomy during an abnormal swallow, pre-empting airway protective mechanisms, and potentially resulting in fluid entry into the lung. Dysphagia therapy consists of reducing flow speed during swallowing by increasing fluid viscosity using thickeners. Bolus viscosity must be specified and presented to the patient within a well-defined range for effective therapy. Thickeners produce non-Newtonian fluids, rendering current subjective methods for fluid assessment unreliable. Widespread quantification of fluid viscosity is presently impractical as rheometers are costly and complicated to use. Alternative techniques also have disadvantages such as operation at shear rates inappropriate to fluid use. A simple and inexpensive rheometer has been constructed to remedy this situation using a self-sensing electromagnetic actuator. This avoids the need for separate force and displacement sensors, with benefits for simplicity and robustness. The actuator and fluid interface were designed for viscosities consistent with those used for dysphagia therapy. The self-sensing rheometer was found to be able to resolve the different dynamic viscosities obtained from three commonly used therapeutic fluid consistency levels in close agreement with results from a reference laboratory rheometer. Widespread use of the rheometer could remove the subjectivity of fluid assessment, increasing accuracy of fluid specification and therapy across all consistencies and fluid types.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Broome, S. T.; Bauer, S. J.; Hansen, F. D.

    Design, analysis and performance assessment of potential salt repositories for heat-generating nuclear waste require knowledge of thermal, mechanical, and fluid transport properties of reconsolidating granular salt. So, to inform salt repository evaluations, we have undertaken an experimental program to determine Bulk and Young’s moduli and Poisson’s ratio of reconsolidated granular salt as a function of porosity and temperature and to establish the deformational processes by which the salt reconsolidates. Our tests were conducted at 100, 175, and 250 °C. In hydrostatic tests, confining pressure is increased to 20 MPa with periodic unload/reload loops to determine K. Volume strain increases withmore » increasing temperature. In shear tests at 2.5 and 5 MPa confining pressure, after confining pressure is applied, the crushed salt is subjected to a differential stress, with periodic unload/reload loops to determine E and ν. At predetermined differential stress levels the stress is held constant and the salt consolidates. Displacement gages mounted on the samples show little lateral deformation until the samples reach a porosity of ~10 %. Interestingly, vapor is vented only for 250 °C tests and condenses at the vent port. It is hypothesized that the brine originates from fluid inclusions, which were made accessible by heating and intragranular deformational processes including decrepitation. Furthermore, identification and documentation of consolidation processes are inferred from optical and scanning electron microstructural observations. As a result, densification at low porosity is enhanced by water film on grain boundaries that enables solution-precipitation phenomena.« less

  6. An inexpensive and portable microvolumeter for rapid evaluation of biological samples.

    PubMed

    Douglass, John K; Wcislo, William T

    2010-08-01

    We describe an improved microvolumeter (MVM) for rapidly measuring volumes of small biological samples, including live zooplankton, embryos, and small animals and organs. Portability and low cost make this instrument suitable for widespread use, including at remote field sites. Beginning with Archimedes' principle, which states that immersing an arbitrarily shaped sample in a fluid-filled container displaces an equivalent volume, we identified procedures that maximize measurement accuracy and repeatability across a broad range of absolute volumes. Crucial steps include matching the overall configuration to the size of the sample, using reflected light to monitor fluid levels precisely, and accounting for evaporation during measurements. The resulting precision is at least 100 times higher than in previous displacement-based methods. Volumes are obtained much faster than by traditional histological or confocal methods and without shrinkage artifacts due to fixation or dehydration. Calibrations using volume standards confirmed accurate measurements of volumes as small as 0.06 microL. We validated the feasibility of evaluating soft-tissue samples by comparing volumes of freshly dissected ant brains measured with the MVM and by confocal reconstruction.

  7. An experimental study of miscible viscous fingering of annular ring

    NASA Astrophysics Data System (ADS)

    Nagatsu, Yuichiro; Othman, Hamirul Bin; Mishra, Manoranjan

    2017-11-01

    Understanding the viscous fingering (VF) dynamics of finite width sample is important in the fields especially such as liquid chromatography and groundwater contamination and mixing in microfluidics. In this paper, we experimentally investigate such hydrodynamical morphology of VF using a Hele-Shaw flow system in which a miscible annular ring of fluid is displaced radially. Experiments are performed to investigate the effects of the sample volume, the effects of dispersion and log mobility ratio R on the dynamics of VF pattern and onset of such instability. Depending whether the finite width ring is more or less viscous than the carrier fluid, the log mobility ratio R becomes positive or negative respectively. The experiments are successfully conducted to obtain the VF patterns for R>0 and R<0, of the finite annular ring at the inner and outer radial interfaces, respectively. It is found that in the radial displacement, the inward finger moves slower than the outward finger. The experimental results are found to be qualitatively in good agreement with the corresponding linear stability analysis and non-linear simulations results available in the literature.

  8. The Characterization of a Piston Displacement-Type Flowmeter Calibration Facility and the Calibration and Use of Pulsed Output Type Flowmeters

    PubMed Central

    Mattingly, G. E.

    1992-01-01

    Critical measurement performance of fluid flowmeters requires proper and quantified verification data. These data should be generated using calibration and traceability techniques established for these verification purposes. In these calibration techniques, the calibration facility should be well-characterized and its components and performance properly traced to pertinent higher standards. The use of this calibrator to calibrate flowmeters should be appropriately established and the manner in which the calibrated flowmeter is used should be specified in accord with the conditions of the calibration. These three steps: 1) characterizing the calibration facility itself, 2) using the characterized facility to calibrate a flowmeter, and 3) using the calibrated flowmeter to make a measurement are described and the pertinent equations are given for an encoded-stroke, piston displacement-type calibrator and a pulsed output flowmeter. It is concluded that, given these equations and proper instrumentation of this type of calibrator, very high levels of performance can be attained and, in turn, these can be used to achieve high fluid flow rate measurement accuracy with pulsed output flowmeters. PMID:28053444

  9. Wind, Wave, and Tidal Energy Without Power Conditioning

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.

    2013-01-01

    Most present wind, wave, and tidal energy systems require expensive power conditioning systems that reduce overall efficiency. This new design eliminates power conditioning all, or nearly all, of the time. Wind, wave, and tidal energy systems can transmit their energy to pumps that send high-pressure fluid to a central power production area. The central power production area can consist of a series of hydraulic generators. The hydraulic generators can be variable displacement generators such that the RPM, and thus the voltage, remains constant, eliminating the need for further power conditioning. A series of wind blades is attached to a series of radial piston pumps, which pump fluid to a series of axial piston motors attached to generators. As the wind is reduced, the amount of energy is reduced, and the number of active hydraulic generators can be reduced to maintain a nearly constant RPM. If the axial piston motors have variable displacement, an exact RPM can be maintained for all, or nearly all, wind speeds. Analyses have been performed that show over 20% performance improvements with this technique over conventional wind turbines

  10. A new approach to instability theory in porous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bentsen, R.G.

    Early work in the area of instability theory is limited in that it is based on first-order perturbation theory and the concept of a velocity potential. Thus, while it can deal with an incipient finger, it cannot deal with the subsequent growth of a finger. This paper develops a new approach to the instability theory that overcomes this limitation. The new approach, like earlier work, is based on the assumption that the immiscible displacement of one fluid by another can be treated as a moving-boundary problem. Therefore, two solutions arise, one for each side of the plane interface that initiallymore » separates the two fluids. Because the new approach makes use of a force potential rather than a velocity potential, it is possible to impose several new conditions on these two solutions. As a consequence, further extensions to the stability theory have been obtained. In particular, it is now possible to predict the steady-state velocity at which a finger propagates and, consequently, the breakthrough recovery obtained not only when the displacement is stable, but also when it is pseudostable.« less

  11. New techniques for diffusing-wave spectroscopy

    NASA Technical Reports Server (NTRS)

    Mason, T. G.; Gang, HU; Krall, A. H.; Weitz, David A.

    1994-01-01

    We present two new types of measurements that can be made with diffusing-wave spectroscopy (DWS), a form of dynamic light scattering that applies in limit of strong multiple scattering. The first application is to measure the frequency-dependent linear viscoelastic moduli of complex fluids using light scattering. This is accomplished by measuring the mean square displacement of probe particles using DWS. Their response to thermal fluctuations is determined by the fluctuation-dissipation relation, and is controlled by the response of the surrounding complex fluid. This response can be described in terms of a memory function, which is directly related to the complex elastic modulus of the system. Thus by measuring the mean square displacement, we are able to determine the frequency dependent modulus. The second application is the measurement of shape fluctuations of scattering particles. This is achieved by generalizing the theory for DWS to incorporate the effects if amplitude fluctuations in the scattering intensity of the particles. We apply this new method to study the thermally induced fluctuations in the shape of spherical emulsion droplets whose geometry is controlled by surface tension.

  12. Two-axis direct fluid shear stress sensor

    NASA Technical Reports Server (NTRS)

    Bajikar, Sateesh (Inventor); Scott, Michael A. (Inventor); Adcock, Edward E. (Inventor)

    2011-01-01

    A micro sized multi-axis semiconductor skin friction/wall shear stress induced by fluid flow. The sensor design includes a shear/strain transduction gimble connected to a force collecting plate located at the flow boundary surface. The shear force collecting plate is interconnected by an arm to offset the tortional hinges from the fluid flow. The arm is connected to the shear force collecting plate through dual axis torsional hinges with piezoresistive torsional strain gauges. These gauges are disposed on the tortional hinges and provide a voltage output indicative of applied shear stress acting on the force collection plate proximate the flow boundary surface. Offsetting the torsional hinges creates a force concentration and resolution structure that enables the generation of a large stress on the strain gauge from small shear stress, or small displacement of the collecting plate. The design also isolates the torsional sensors from exposure to the fluid flow.

  13. Moving hydrocarbons through portions of tar sands formations with a fluid

    DOEpatents

    Stegemeier, George Leo; Mudunuri, Ramesh Raju; Vinegar, Harold J.; Karanikas, John Michael; Jaiswal, Namit; Mo, Weijian

    2010-05-18

    A method for treating a tar sands formation is disclosed. The method includes heating a first portion of a hydrocarbon layer in the formation from one or more heaters located in the first portion. The heat is controlled to increase a fluid injectivity of the first portion. A drive fluid and/or an oxidizing fluid is injected and/or created in the first portion to cause at least some hydrocarbons to move from a second portion of the hydrocarbon layer to a third portion of the hydrocarbon layer. The second portion is between the first portion and the third portion. The first, second, and third portions are horizontally displaced from each other. The third portion is heated from one or more heaters located in the third portion. Hydrocarbons are produced from the third portion of the formation. The hydrocarbons include at least some hydrocarbons from the second portion of the formation.

  14. Coupled incompressible Smoothed Particle Hydrodynamics model for continuum-based modelling sediment transport

    NASA Astrophysics Data System (ADS)

    Pahar, Gourabananda; Dhar, Anirban

    2017-04-01

    A coupled solenoidal Incompressible Smoothed Particle Hydrodynamics (ISPH) model is presented for simulation of sediment displacement in erodible bed. The coupled framework consists of two separate incompressible modules: (a) granular module, (b) fluid module. The granular module considers a friction based rheology model to calculate deviatoric stress components from pressure. The module is validated for Bagnold flow profile and two standardized test cases of sediment avalanching. The fluid module resolves fluid flow inside and outside porous domain. An interaction force pair containing fluid pressure, viscous term and drag force acts as a bridge between two different flow modules. The coupled model is validated against three dambreak flow cases with different initial conditions of movable bed. The simulated results are in good agreement with experimental data. A demonstrative case considering effect of granular column failure under full/partial submergence highlights the capability of the coupled model for application in generalized scenario.

  15. Modelling and validation of magnetorheological brake responses using parametric approach

    NASA Astrophysics Data System (ADS)

    Z, Zainordin A.; A, Abdullah M.; K, Hudha

    2013-12-01

    Magnetorheological brake (MR Brake) is one x-by-wire systems which performs better than conventional brake systems. MR brake consists of a rotating disc that is immersed with Magnetorheological Fluid (MR Fluid) in an enclosure of an electromagnetic coil. The applied magnetic field will increase the yield strength of the MR fluid where this fluid was used to decrease the speed of the rotating shaft. The purpose of this paper is to develop a mathematical model to represent MR brake with a test rig. The MR brake model is developed based on actual torque characteristic which is coupled with motion of a test rig. Next, the experimental are performed using MR brake test rig and obtained three output responses known as angular velocity response, torque response and load displacement response. Furthermore, the MR brake was subjected to various current. Finally, the simulation results of MR brake model are then verified with experimental results.

  16. Fluid-Driven Deformation of a Soft Porous Medium

    NASA Astrophysics Data System (ADS)

    Lutz, Tyler; Wilen, Larry; Wettlaufer, John

    2017-11-01

    Viscous drag forces resisting the flow of fluid through a soft porous medium are maintained by restoring forces associated with deformations in the solid matrix. We describe experimental measurements of the deformation of foam under a pressure-driven flow of water along a single axis. Image analysis techniques allow tracking of the foam displacement while pressure sensors allow measurement of the fluid pressure. Experiments are performed for a series of different pressure heads ranging from 10 to 90 psi, and the results are compared to theory. This work builds on previous measurements of the fluid-induced deformation of a bed of soft hydrogel spheres. Compared to the hydrogel system, foams have the advantage that the constituents of the porous medium do not rearrange during an experiment, but they have the disadvantage of having a high friction coefficient with any boundaries. We detail strategies to characterize and mitigate the effects of friction on the observed foam deformations.

  17. Hydraulic fracture height limits and fault interactions in tight oil and gas formations

    NASA Astrophysics Data System (ADS)

    Flewelling, Samuel A.; Tymchak, Matthew P.; Warpinski, Norm

    2013-07-01

    widespread use of hydraulic fracturing (HF) has raised concerns about potential upward migration of HF fluid and brine via induced fractures and faults. We developed a relationship that predicts maximum fracture height as a function of HF fluid volume. These predictions generally bound the vertical extent of microseismicity from over 12,000 HF stimulations across North America. All microseismic events were less than 600 m above well perforations, although most were much closer. Areas of shear displacement (including faults) estimated from microseismic data were comparatively small (radii on the order of 10 m or less). These findings suggest that fracture heights are limited by HF fluid volume regardless of whether the fluid interacts with faults. Direct hydraulic communication between tight formations and shallow groundwater via induced fractures and faults is not a realistic expectation based on the limitations on fracture height growth and potential fault slip.

  18. Stiffening of fluid membranes due to thermal undulations: density-matrix renormalization-group study.

    PubMed

    Nishiyama, Yoshihiro

    2002-12-01

    It has been considered that the effective bending rigidity of fluid membranes should be reduced by thermal undulations. However, recent thorough investigation by Pinnow and Helfrich revealed the significance of measure factors for the partition sum. Accepting the local curvature as a statistical measure, they found that fluid membranes are stiffened macroscopically. In order to examine this remarkable idea, we performed extensive ab initio simulations for a fluid membrane. We set up a transfer matrix that is diagonalized by means of the density-matrix renormalization group. Our method has an advantage, in that it allows us to survey various statistical measures. As a consequence, we found that the effective bending rigidity flows toward strong coupling under the choice of local curvature as a statistical measure. On the contrary, for other measures such as normal displacement and tilt angle, we found a clear tendency toward softening.

  19. Thread amplitudes and frequencies in a fluid mechanical `sewing machine'

    NASA Astrophysics Data System (ADS)

    Morris, Stephen W.; Dawes, J. H. P.; Lister, John; Dalziel, Stuart

    2006-11-01

    A viscous thread falling on a surface exhibits the famous rope- coiling effect, in which the thread buckles to form loops. If the surface is replaced by a belt moving at speed U, the rotational symmetry of the buckling instability is broken and a wealth of interesting states are observed (1). We experimentally studied this fluid mechanical `sewing machine' in a new, more precise apparatus. As U is reduced, the stretched thread bifurcates into a meandering state in which the thread displacements are only transverse to the motion of the belt. We measured the amplitudes A and frequency φ of the meandering close to the bifurcation. For small U, single- frequency meandering bifurcates to a two-frequency `figure 8' state, which contains a significant 2φ component and parallel as well as transverse displacements. This eventually reverts to single-frequency coiling at smaller U. More complex, highly hysteretic states with additional harmonics are observed for larger nozzle heights. We propose to understand this zoology in terms of the generic amplitude equations appropriate for resonant interactions between three oscillatory modes with frequencies φ, 2φ and 3φ. The form of the amplitude equations captures both the axisymmetry of the U=0 coiling state and the symmetry-breaking effects induced by the moving belt.(1) Chiu-Webster and Lister, J. Fluid Mech., in press.

  20. Fractal Viscous Fingering in Fracture Networks

    NASA Astrophysics Data System (ADS)

    Boyle, E.; Sams, W.; Ferer, M.; Smith, D. H.

    2007-12-01

    We have used two very different physical models and computer codes to study miscible injection of a low- viscosity fluid into a simple fracture network, where it displaces a much-more viscous "defending" fluid through "rock" that is otherwise impermeable. The one code (NETfLow) is a standard pore level model, originally intended to treat laboratory-scale experiments; it assumes negligible mixing of the two fluids. The other code (NFFLOW) was written to treat reservoir-scale engineering problems; It explicitly treats the flow through the fractures and allows for significant mixing of the fluids at the interface. Both codes treat the fractures as parallel plates, of different effective apertures. Results are presented for the composition profiles from both codes. Independent of the degree of fluid-mixing, the profiles from both models have a functional form identical to that for fractal viscous fingering (i.e., diffusion limited aggregation, DLA). The two codes that solve the equations for different models gave similar results; together they suggest that the injection of a low-viscosity fluid into large- scale fracture networks may be much more significantly affected by fractal fingering than previously illustrated.

  1. Simple construction and performance of a conical plastic cryocooler

    NASA Technical Reports Server (NTRS)

    Lambert, N.

    1985-01-01

    Low power cryocoolers with conical displacers offer several advantages over stepped displacers. The described fabrication process allows quick and reproducible manufacturing of plastic conical displacer units. This could be of commercial interest, but it also makes systematic optimization feasible by constructing a number of different models. The process allows for a wide range of displacer profiles. Low temperature performance as dominated by regenerator losses, and several effects are discussed. A simple device is described which controls gas flow during expansion.

  2. Richtmyer-Meshkov instability experiments of miscible and immiscible incompressible fluids

    NASA Astrophysics Data System (ADS)

    Krivets, Vitaliy; Holt, Brason; Mokler, Matthew; Jacobs, Jeffrey

    2017-11-01

    Experiments were conducted in a 3 m tall vertical drop tower setup. A flat interface separating two liquids of differing density is formed in the Plexiglas tank with the heavier fluid in the bottom and the lighter one on top. Two liquids pairs were utilized, one - miscible (isopropyl alcohol and a calcium nitrate water mixture) and the other immiscible (silicone oil with the same heavy liquid), both with Atwood near 0.2. The tank is mounted on a rail mounted sled at 2 m initial height where an initial perturbation is generated using vertical periodic motion with 10 Hz frequency and 1 mm displacement, thus producing 3D interfacial waves. An impulsive acceleration, with approximately 100g magnitude, is imparted to the sled by a rail mounted weight released and allowed to fall, impacting the sled from above. Both weight and sled then travel freely down the rails where they are smoothly decelerated at the bottom of drop tower by magnetic brakes. PLIF is used to visualize mixing process by seeding fluorescein in the bottom fluid and illuminating using laser diode from above forming thin vertical sheet. The resulting fluorescent image sequences are captured using a digital camera mounted to the sled operating at a 100 Hz framing rate. Comparisons of the measured growth of the mixing zone for both immiscible and miscible liquid combinations with theoretical models are presented.

  3. Very-long-period volcanic earthquakes beneath Mammoth Mountain, California

    USGS Publications Warehouse

    Hill, D.P.; Dawson, P.; Johnston, M.J.S.; Pitt, A.M.; Biasi, G.; Smith, K.

    2002-01-01

    Detection of three very-long-period (VLP) volcanic earthquakes beneath Mammoth Mountain emphasizes that magmatic processes continue to be active beneath this young, eastern California volcano. These VLP earthquakes, which occured in October 1996 and July and August 2000, appear as bell-shaped pulses with durations of one to two minutes on a nearby borehole dilatometer and on the displacement seismogram from a nearby broadband seismometer. They are accompanied by rapid-fire sequences of high-frequency (HF) earthquakes and several long- period (LP) volcanic earthquakes. The limited VLP data are consistent with a CLVD source at a depth of ???3 km beneath the summit, which we interpret as resulting from a slug of fluid (CO2- saturated magmatic brine or perhaps basaltic magma) moving into a crack.

  4. A theoretical method for the analysis and design of axisymmetric bodies. [flow distribution and incompressible fluids

    NASA Technical Reports Server (NTRS)

    Beatty, T. D.

    1975-01-01

    A theoretical method is presented for the computation of the flow field about an axisymmetric body operating in a viscous, incompressible fluid. A potential flow method was used to determine the inviscid flow field and to yield the boundary conditions for the boundary layer solutions. Boundary layer effects in the forces of displacement thickness and empirically modeled separation streamlines are accounted for in subsequent potential flow solutions. This procedure is repeated until the solutions converge. An empirical method was used to determine base drag allowing configuration drag to be computed.

  5. Accurate bulk density determination of irregularly shaped translucent and opaque aerogels

    NASA Astrophysics Data System (ADS)

    Petkov, M. P.; Jones, S. M.

    2016-05-01

    We present a volumetric method for accurate determination of bulk density of aerogels, calculated from extrapolated weight of the dry pure solid and volume estimates based on the Archimedes' principle of volume displacement, using packed 100 μm-sized monodispersed glass spheres as a "quasi-fluid" media. Hard particle packing theory is invoked to demonstrate the reproducibility of the apparent density of the quasi-fluid. Accuracy rivaling that of the refractive index method is demonstrated for both translucent and opaque aerogels with different absorptive properties, as well as for aerogels with regular and irregular shapes.

  6. A numerical study of defect detection in a plaster dome ceiling using structural acoustics.

    PubMed

    Bucaro, J A; Romano, A J; Valdivia, N; Houston, B H; Dey, S

    2009-07-01

    A numerical study is carried out to evaluate the effectiveness of using measured surface displacements resulting from acoustic speaker excitation to detect and localize flaws in a domed, plaster ceiling. The response of the structure to an incident acoustic pressure is obtained at four frequencies between 100 and 400 Hz using a parallel h-p structural acoustic finite element-based code. Three ceiling conditions are modeled: the pristine ceiling considered rigidly attached to the domed-shape support, partial detachment of a segment of the plaster layer from the support, and an interior pocket of plaster deconsolidation modeled as a heavy fluid. Spatial maps of the normal displacement resulting from speaker excitation are interpreted with the help of predictions based on static analysis. It is found that acoustic speaker excitation can provide displacement levels readily detected by commercially available laser Doppler vibrometer systems. Further, it is concluded that for 1 in. thick plaster layers, detachment sizes as small as 4 cm are detectable by direct observation of the measured displacement maps. Finally, spatial structure differences are observed in the displacement maps beneath the two defect types, which may provide a wavenumber-based feature useful for distinguishing plaster detachment from other defects such as deconsolidation.

  7. A review of selected pumping systems in nature and engineering--potential biomimetic concepts for improving displacement pumps and pulsation damping.

    PubMed

    Bach, D; Schmich, F; Masselter, T; Speck, T

    2015-09-03

    The active transport of fluids by pumps plays an essential role in engineering and biology. Due to increasing energy costs and environmental issues, topics like noise reduction, increase of efficiency and enhanced robustness are of high importance in the development of pumps in engineering. The study compares pumps in biology and engineering and assesses biomimetic potentials for improving man-made pumping systems. To this aim, examples of common challenges, applications and current biomimetic research for state-of-the art pumps are presented. The biomimetic research is helped by the similar configuration of many positive displacement pumping systems in biology and engineering. In contrast, the configuration and underlying pumping principles for fluid dynamic pumps (FDPs) differ to a greater extent in biology and engineering. However, progress has been made for positive displacement as well as for FDPs by developing biomimetic devices with artificial muscles and cilia that improve energetic efficiency and fail-safe operation or reduce noise. The circulatory system of vertebrates holds a high biomimetic potential for the damping of pressure pulsations, a common challenge in engineering. Damping of blood pressure pulsation results from a nonlinear viscoelastic behavior of the artery walls which represent a complex composite material. The transfer of the underlying functional principle could lead to an improvement of existing technical solutions and be used to develop novel biomimetic damping solutions. To enhance efficiency or thrust of man-made fluid transportation systems, research on jet propulsion in biology has shown that a pulsed jet can be tuned to either maximize thrust or efficiency. The underlying principle has already been transferred into biomimetic applications in open channel water systems. Overall there is a high potential to learn from nature in order to improve pumping systems for challenges like the reduction of pressure pulsations, increase of jet propulsion efficiency or the reduction of wear.

  8. Lattice-Boltzmann Modeling of Community Challenge MicrofluidicExperiments to Evaluate the Effects of Wettability on Two-Fluid Flowin Porous Media

    NASA Astrophysics Data System (ADS)

    Miller, C. T.; McClure, J. E.; Bruning, K.

    2017-12-01

    Variations in the wettability of a solid material are well known to affect the flow of two fluids in a porous media. However, thesemechanisms have not been modeled with high fidelity at the microscale and such mechanisms are typically not included in macroscalemodels. Recent experimental work by Zhao, MacMinn, and Juanes published in the Proceedings of the National Academy of Sciences(2016) has investigated two-fluid displacement in microfluidic cells. Displacement patterns were investigated as a function of thecontact angle and the capillary number for both drainage and imbibition. These results yielded new mechanistic understanding ofprocesses such as pore filling and post bridging, which were imaged at high resolution. In a challenge to the pore-scale modeling community,the authors of this work released their experimental data and encouraged an international set of modeling research groups tosimulate the conditions that were experimentally observed. The intent is to compare the results that materialize to shed new light on thestate-of-science in pore-scale simulation of these challenging and interesting flow systems. In this work, we summarize the experimentalfindings and report on initial efforts to simulate these community challenge experiments using a high-resolution lattice-Boltzmann method(LBM). A three-dimensional, multiple-relaxation-time color model based on a 19-site lattice is advanced in this work to matchexperimental conditions in a novel manner. A computational approach is implemented for the LBM method on hybrid CPU-GPU nodes and shown toscale near optimally. A new algorithm is described to match experimental boundary conditions. A grid-resolution study is performedto determine the resolution needed to determine grid-independent numerical approximations. Finally, the LBM simulation results arecompared to the highly resolved microfluidic experiments, displacement mechanisms are investigated, and observations and analysis of thetopological state evolution of the system are reported.

  9. Ion pairing and phase behaviour of an asymmetric restricted primitive model of ionic liquids

    NASA Astrophysics Data System (ADS)

    Lu, Hongduo; Li, Bin; Nordholm, Sture; Woodward, Clifford E.; Forsman, Jan

    2016-12-01

    An asymmetric restricted primitive model (ARPM) of electrolytes is proposed as a simple three parameter (charge q, diameter d, and charge displacement b) model of ionic liquids and solutions. Charge displacement allows electrostatic and steric interactions to operate between different centres, so that orientational correlations arise in ion-ion interactions. In this way the ionic system may have partly the character of a simple ionic fluid/solid and of a polar fluid formed from ion pairs. The present exploration of the system focuses on the ion pair formation mechanism, the relative concentration of paired and free ions and the consequences for the cohesive energy, and the tendency to form fluid or solid phase. In contrast to studies of similar (though not identical) models in the past, we focus on behaviours at room temperature. By MC and MD simulations of such systems composed of monovalent ions of hard-sphere (or essentially hard-sphere) diameter equal to 5 Å and a charge displacement ranging from 0 to 2 Å from the hard-sphere origin, we find that ion pairing dominates for b larger than 1 Å. When b exceeds about 1.5 Å, the system is essentially a liquid of dipolar ion pairs with a small presence of free ions. We also investigate dielectric behaviours of corresponding liquids, composed of purely dipolar species. Many basic features of ionic liquids appear to be remarkably consistent with those of our ARPM at ambient conditions, when b is around 1 Å. However, the rate of self-diffusion and, to a lesser extent, conductivity is overestimated, presumably due to the simple spherical shape of our ions in the ARPM. The relative simplicity of our ARPM in relation to the rich variety of new mechanisms and properties it introduces, and to the numerical simplicity of its exploration by theory or simulation, makes it an essential step on the way towards representation of the full complexity of ionic liquids.

  10. Ion pairing and phase behaviour of an asymmetric restricted primitive model of ionic liquids.

    PubMed

    Lu, Hongduo; Li, Bin; Nordholm, Sture; Woodward, Clifford E; Forsman, Jan

    2016-12-21

    An asymmetric restricted primitive model (ARPM) of electrolytes is proposed as a simple three parameter (charge q, diameter d, and charge displacement b) model of ionic liquids and solutions. Charge displacement allows electrostatic and steric interactions to operate between different centres, so that orientational correlations arise in ion-ion interactions. In this way the ionic system may have partly the character of a simple ionic fluid/solid and of a polar fluid formed from ion pairs. The present exploration of the system focuses on the ion pair formation mechanism, the relative concentration of paired and free ions and the consequences for the cohesive energy, and the tendency to form fluid or solid phase. In contrast to studies of similar (though not identical) models in the past, we focus on behaviours at room temperature. By MC and MD simulations of such systems composed of monovalent ions of hard-sphere (or essentially hard-sphere) diameter equal to 5 Å and a charge displacement ranging from 0 to 2 Å from the hard-sphere origin, we find that ion pairing dominates for b larger than 1 Å. When b exceeds about 1.5 Å, the system is essentially a liquid of dipolar ion pairs with a small presence of free ions. We also investigate dielectric behaviours of corresponding liquids, composed of purely dipolar species. Many basic features of ionic liquids appear to be remarkably consistent with those of our ARPM at ambient conditions, when b is around 1 Å. However, the rate of self-diffusion and, to a lesser extent, conductivity is overestimated, presumably due to the simple spherical shape of our ions in the ARPM. The relative simplicity of our ARPM in relation to the rich variety of new mechanisms and properties it introduces, and to the numerical simplicity of its exploration by theory or simulation, makes it an essential step on the way towards representation of the full complexity of ionic liquids.

  11. Signal processing for order 10 pm accuracy displacement metrology in real-world scientific applications

    NASA Technical Reports Server (NTRS)

    Halverson, Peter G.; Loya, Frank M.

    2004-01-01

    This paper describes heterodyne displacement metrology gauge signal processing methods that achieve satisfactory robustness against low signal strength and spurious signals, and good long-term stability. We have a proven displacement-measuring approach that is useful not only to space-optical projects at JPL, but also to the wider field of distance measurements.

  12. An alternative arrangement of metered dosing fluid using centrifugal pump

    NASA Astrophysics Data System (ADS)

    Islam, Md. Arafat; Ehsan, Md.

    2017-06-01

    Positive displacement dosing pumps are extensively used in various types of process industries. They are widely used for metering small flow rates of a dosing fluid into a main flow. High head and low controllable flow rates make these pumps suitable for industrial flow metering applications. However their pulsating flow is not very suitable for proper mixing of fluids and they are relatively more expensive to buy and maintain. Considering such problems, alternative techniques to control the fluid flow from a low cost centrifugal pump is practiced. These include - throttling, variable speed drive, impeller geometry control and bypass control. Variable speed drive and impeller geometry control are comparatively costly and the flow control by throttling is not an energy efficient process. In this study an arrangement of metered dosing flow was developed using a typical low cost centrifugal pump using bypass flow technique. Using bypass flow control technique a wide range of metered dosing flows under a range of heads were attained using fixed pump geometry and drive speed. The bulk flow returning from the system into the main tank ensures better mixing which may eliminate the need of separate agitators. Comparative performance study was made between the bypass flow control arrangement of centrifugal pump and a diaphragm type dosing pump. Similar heads and flow rates were attainable using the bypass control system compared to the diaphragm dosing pump, but using relatively more energy. Geometrical optimization of the centrifugal pump impeller was further carried out to make the bypass flow arrangement more energy efficient. Although both the systems run at low overall efficiencies but the capital cost could be reduced by about 87% compared to the dosing pump. The savings in capital investment and lower maintenance cost very significantly exceeds the relatively higher energy cost of the bypass system. This technique can be used as a cost effective solution for industries in Bangladesh and have been implemented in two salt iodization plants at Narayangang.

  13. Inducing rostrum interfacial waves by fluid-solid coupling in a Chinese river dolphin (Lipotes vexillifer )

    NASA Astrophysics Data System (ADS)

    Song, Zhongchang; Zhang, Yu; Wei, Chong; Wang, Xianyan

    2016-01-01

    Through numerically solving the appropriate wave equations, propagation of biosonar signals in a Chinese river dolphin (baiji) was studied. The interfacial waves along the rostrum-tissue interfaces, including both compressional (longitudinal) and shear (transverse) waves in the solid rostrum through fluid-solid coupling were examined. The baiji's rostrum was found to effect acoustic beam formation not only as an interfacial wave generator but also as a sound reflector. The wave propagation patterns in the solid rostrum were found to significantly change the wave movement through the bone. Vibrations in the rostrum, expressed in solid displacement, initially increased but eventually decreased from posterior to anterior sides, indicating a complex physical process. Furthermore, the comparisons among seven cases, including the combination of (1) the rostrum, melon, and air sacs; (2) rostrum-air sacs; (3) rostrum-melon; (4) only rostrum; (5) air sacs-melon; (6) only air sacs; and (7) only melon revealed that the cases including the rostrum were better able to approach the complete system by inducing rostrum-tissue interfacial waves and reducing the differences in main beam angle and -3 dB beam width. The interfacial waves in the rostrum were considered complementary with reflection to determine the obbligato role of the rostrum in the baiji's biosonar emission. The far-field beams formed from complete fluid-solid models and non-fluid-solid models were compared to reveal the effects brought by the consideration of shear waves of the solid structures of the baiji. The results may provide useful information for further understanding the role of the rostrum in this odontocete species.

  14. Inducing rostrum interfacial waves by fluid-solid coupling in a Chinese river dolphin (Lipotesvexillifer).

    PubMed

    Song, Zhongchang; Zhang, Yu; Wei, Chong; Wang, Xianyan

    2016-01-01

    Through numerically solving the appropriate wave equations, propagation of biosonar signals in a Chinese river dolphin (baiji) was studied. The interfacial waves along the rostrum-tissue interfaces, including both compressional (longitudinal) and shear (transverse) waves in the solid rostrum through fluid-solid coupling were examined. The baiji's rostrum was found to effect acoustic beam formation not only as an interfacial wave generator but also as a sound reflector. The wave propagation patterns in the solid rostrum were found to significantly change the wave movement through the bone. Vibrations in the rostrum, expressed in solid displacement, initially increased but eventually decreased from posterior to anterior sides, indicating a complex physical process. Furthermore, the comparisons among seven cases, including the combination of (1) the rostrum, melon, and air sacs; (2) rostrum-air sacs; (3) rostrum-melon; (4) only rostrum; (5) air sacs-melon; (6) only air sacs; and (7) only melon revealed that the cases including the rostrum were better able to approach the complete system by inducing rostrum-tissue interfacial waves and reducing the differences in main beam angle and -3 dB beam width. The interfacial waves in the rostrum were considered complementary with reflection to determine the obbligato role of the rostrum in the baiji's biosonar emission. The far-field beams formed from complete fluid-solid models and non-fluid-solid models were compared to reveal the effects brought by the consideration of shear waves of the solid structures of the baiji. The results may provide useful information for further understanding the role of the rostrum in this odontocete species.

  15. Assessing Groundwater Depletion and Dynamics Using GRACE and InSAR: Potential and Limitations.

    PubMed

    Castellazzi, Pascal; Martel, Richard; Galloway, Devin L; Longuevergne, Laurent; Rivera, Alfonso

    2016-11-01

    In the last decade, remote sensing of the temporal variation of ground level and gravity has improved our understanding of groundwater dynamics and storage. Mass changes are measured by GRACE (Gravity Recovery and Climate Experiment) satellites, whereas ground deformation is measured by processing synthetic aperture radar satellites data using the InSAR (Interferometry of Synthetic Aperture Radar) techniques. Both methods are complementary and offer different sensitivities to aquifer system processes. GRACE is sensitive to mass changes over large spatial scales (more than 100,000 km 2 ). As such, it fails in providing groundwater storage change estimates at local or regional scales relevant to most aquifer systems, and at which most groundwater management schemes are applied. However, InSAR measures ground displacement due to aquifer response to fluid-pressure changes. InSAR applications to groundwater depletion assessments are limited to aquifer systems susceptible to measurable deformation. Furthermore, the inversion of InSAR-derived displacement maps into volume of depleted groundwater storage (both reversible and largely irreversible) is confounded by vertical and horizontal variability of sediment compressibility. During the last decade, both techniques have shown increasing interest in the scientific community to complement available in situ observations where they are insufficient. In this review, we present the theoretical and conceptual bases of each method, and present idealized scenarios to highlight the potential benefits and challenges of combining these techniques to remotely assess groundwater storage changes and other aspects of the dynamics of aquifer systems. © 2016, National Ground Water Association.

  16. Assessing groundwater depletion and dynamics using GRACE and InSAR: Potential and limitations

    USGS Publications Warehouse

    Castellazzi, Pascal; Martel, Richard; Galloway, Devin L.; Longuevergne, Laurent; Rivera, Alfonso

    2016-01-01

    In the last decade, remote sensing of the temporal variation of ground level and gravity has improved our understanding of groundwater dynamics and storage. Mass changes are measured by GRACE (Gravity Recovery and Climate Experiment) satellites, whereas ground deformation is measured by processing synthetic aperture radar satellites data using the InSAR (Interferometry of Synthetic Aperture Radar) techniques. Both methods are complementary and offer different sensitivities to aquifer system processes. GRACE is sensitive to mass changes over large spatial scales (more than 100,000 km2). As such, it fails in providing groundwater storage change estimates at local or regional scales relevant to most aquifer systems, and at which most groundwater management schemes are applied. However, InSAR measures ground displacement due to aquifer response to fluid-pressure changes. InSAR applications to groundwater depletion assessments are limited to aquifer systems susceptible to measurable deformation. Furthermore, the inversion of InSAR-derived displacement maps into volume of depleted groundwater storage (both reversible and largely irreversible) is confounded by vertical and horizontal variability of sediment compressibility. During the last decade, both techniques have shown increasing interest in the scientific community to complement available in situ observations where they are insufficient. In this review, we present the theoretical and conceptual bases of each method, and present idealized scenarios to highlight the potential benefits and challenges of combining these techniques to remotely assess groundwater storage changes and other aspects of the dynamics of aquifer systems.

  17. Relations between overturning length scales at the Spanish planetary boundary layer

    NASA Astrophysics Data System (ADS)

    López, Pilar; Cano, José L.

    2016-04-01

    We analyze the behavior of the maximum Thorpe displacement (dT)max and the Thorpe scale LTat the atmospheric boundary layer (ABL), extending previous research with new data and improving our studies related to the novel use of the Thorpe method applied to ABL. The maximum Thorpe displacements vary between -900 m and 950 m for the different field campaigns. The maximum Thorpe displacement is always greater under convective conditions than under stable ones, independently of its sign. The Thorpe scale LT ranges between 0.2 m and 680 m for the different data sets which cover different stratified mixing conditions (turbulence shear-driven and convective regions). The Thorpe scale does not exceed several tens of meters under stable and neutral stratification conditions related to instantaneous density gradients. In contrast, under convective conditions, Thorpe scales are relatively large, they exceed hundreds of meters which may be related to convective bursts. We analyze the relation between (dT)max and the Thorpe scale LT and we deduce that they verify a power law. We also deduce that there is a difference in exponents of the power laws for convective conditions and shear-driven conditions. These different power laws could identify overturns created under different mechanisms. References Cuxart, J., Yagüe, C., Morales, G., Terradellas, E., Orbe, J., Calvo, J., Fernández, A., Soler, M., Infante, C., Buenestado, P., Espinalt, Joergensen, H., Rees, J., Vilà, J., Redondo, J., Cantalapiedra, I. and Conangla, L.: Stable atmospheric boundary-layer experiment in Spain (Sables 98). A report, Boundary-Layer Meteorology, 96, 337-370, 2000. Dillon, T. M.: Vertical Overturns: A Comparison of Thorpe and Ozmidov Length Scales, J. Geophys. Res., 87(C12), 9601-9613, 1982. Itsweire, E. C.: Measurements of vertical overturns in stably stratified turbulent flow, Phys. Fluids, 27(4), 764-766, 1984. Kitade, Y., Matsuyama, M. and Yoshida, J.: Distribution of overturn induced by internal tides and Thorpe scale in Uchiura Bay, Journal of Oceanography, 59, 845-850, 2003. López P., Cano J. L., Cano D. and Tijera M.: Thorpe method applied to planetary boundary layer data, Il Nuovo Cimento, 31C(5-6), 881-892, 2008. DOI: 10.1393/ncc/i2009-10338-3. Lorke A. and Wüest A.: Probability density of displacement and overturning length scales under diverse stratification, J. Geophys. Res., 107 (C12), 3214-3225, 2002. Piera, J., Roget, E. and Catalan, J.: Turbulent patch identification in microstructure profiles: a method based on wavelet denoising and Thorpe displacement analysis, J. Atmospheric and Oceanic Technology, 19, 1390-1402, 2002. Piera, J.: Signal processing of microstructure profiles: integrating turbulent spatial scales in aquatic ecological modelling, Ph. D. Thesis, Gerona University, Spain, 2004. Smyth, W. D. and Moum, J. N.: Length scales of turbulence in stably stratified mixing layers, Phys. Fluids., 12, 1327-1342, 2000. Thorpe, S.A.: Turbulence and Mixing in a Scottish Loch, Philos. Trans. R. Soc. London (Ser. A), 286(1334), 125-18, 1977.

  18. Destabilizing effect of time-dependent oblique magnetic field on magnetic fluids streaming in porous media.

    PubMed

    El-Dib, Yusry O; Ghaly, Ahmed Y

    2004-01-01

    The present work studies Kelvin-Helmholtz waves propagating between two magnetic fluids. The system is composed of two semi-infinite magnetic fluids streaming throughout porous media. The system is influenced by an oblique magnetic field. The solution of the linearized equations of motion under the boundary conditions leads to deriving the Mathieu equation governing the interfacial displacement and having complex coefficients. The stability criteria are discussed theoretically and numerically, from which stability diagrams are obtained. Regions of stability and instability are identified for the magnetic fields versus the wavenumber. It is found that the increase of the fluid density ratio, the fluid velocity ratio, the upper viscosity, and the lower porous permeability play a stabilizing role in the stability behavior in the presence of an oscillating vertical magnetic field or in the presence of an oscillating tangential magnetic field. The increase of the fluid viscosity plays a stabilizing role and can be used to retard the destabilizing influence for the vertical magnetic field. Dual roles are observed for the fluid velocity in the stability criteria. It is found that the field frequency plays against the constant part for the magnetic field.

  19. A CFD Approach to Modeling Spacecraft Fuel Slosh

    NASA Technical Reports Server (NTRS)

    Marsell, Brandon; Gangadharan, Sathya; Chatman, Yadira; Sudermann, James; Schlee, Keith; Ristow, James E.

    2009-01-01

    Energy dissipation and resonant coupling from sloshing fuel in spacecraft fuel tanks is a problem that occurs in the design of many spacecraft. In the case of a spin stabilized spacecraft, this energy dissipation can cause a growth in the spacecrafts' nutation (wobble) that may lead to disastrous consequences for the mission. Even in non-spinning spacecraft, coupling between the spacecraft or upper stage flight control system and an unanticipated slosh resonance can result in catastrophe. By using a Computational Fluid Dynamics (CFD) solver such as Fluent, a model for this fuel slosh can be created. The accuracy of the model must be tested by comparing its results to an experimental test case. Such a model will allow for the variation of many different parameters such as fluid viscosity and gravitational field, yielding a deeper understanding of spacecraft slosh dynamics. In order to gain a better understanding of the dynamics behind sloshing fluids, the Launch Services Program (LSP) at the NASA Kennedy Space Center (KSC) is interested in finding ways to better model this behavior. Thanks to past research, a state-of-the-art fuel slosh research facility was designed and fabricated at Embry Riddle Aeronautical University (ERAU). This test facility has produced interesting results and a fairly reliable parameter estimation process to predict the necessary values that accurately characterize a mechanical pendulum analog model. The current study at ERAU uses a different approach to model the free surface sloshing of liquid in a spherical tank using Computational Fluid Dynamics (CFD) methods. Using a software package called Fluent, a model was created to simulate the sloshing motion of the propellant. This finite volume program uses a technique called the Volume of Fluid (VOF) method to model the interaction between two fluids [4]. For the case of free surface slosh, the two fluids are the propellant and air. As the fuel sloshes around in the tank, it naturally displaces the air. Using the conservation of mass, momentum, and energy equations, as well as the VOF equations, one can predict the behavior of the sloshing fluid and calculate the forces, pressure gradients, and velocity field for the entire liquid as a function of time.

  20. Dikes, joints, and faults in the upper mantle

    NASA Astrophysics Data System (ADS)

    Wilshire, H. G.; Kirby, S. H.

    1989-04-01

    Three different types of macroscopic fractures are recognized in upper-mantle and lower-crustal xenoliths in volcanic rocks from around the world: (1) joints that are tensile fractures not occupied by crystallized magma products (2) dikes that are tensile fractures occupied by mafic magmas crystallized to pyroxenites, gabbros or hydrous-mineral-rich rocks, (3) faults that are unfilled shear fractures with surface markings indicative of shear displacement. In addition to intra-xenolith fractures, xenoliths commonly have polygonal or faceted shapes that represent fractures exploited during incorporation of the xenoliths into the host magma that brought them to the surface. The various types of fractures are considered to have formed in response to the pressures associated with magmatic fluids and to the ambient tectonic stress field. The presence of fracture sets and crosscutting relations indicate that both magma-filled and unfilled fractures can be contemporaneous and that the local stress field can change with time, leading to repeated episodes of fracture. These observations give insight into the nature of deep fracture processes and the importance of fluid-peridotite interactions in the mantle. We suggest that unfilled fractures were opened by volatile fluids exsolved from ascending magmas to the tops of growing dikes. These volatile fluids are important because they are of low viscosity and can rapidly transmit fluid pressure to dike and fault tips and because they lower the energy and tectonic stresses required to extend macroscopic cracks and to allow sliding on pre-existing fractures. Mantle seismicity at depths of 20-65 km beneath active volcanic centers in Hawaii corresponds to the depth interval where CO 2-rich fluids are expected to be liberated from ascending basaltic magmas, suggesting that such fluids play an important role in facilitating earthquake instabilities in the presence of tectonic stresses. Other phenomena related to the fractures include permeation of peridotite by fluid inclusions derived by degassing of magmas, partial melting of peridotite and dike rocks, and metasomatic alteration of peridotite host rock by magmas emplaced in fractures. These effects of magmatism generally reduce the bulk density of peridotite and might also reduce seismic velocities. The velocity contrasts between fractured and unfractured peridotite might be detected by seismic-velocity profiling techniques.

  1. Porous media deformation due to fluid flow: From hydrofracture formation to seismic liquefaction, a numerical and experimental study

    NASA Astrophysics Data System (ADS)

    Toussaint, R.; Turkaya, S.; Eriksen, F.; Clément, C.; Sanchez-Colina, G.; Maloy, K. J.; Flekkoy, E.; Aharonov, E.; Lengliné, O.; Daniel, G.; Altshuler, E.; Batista-Leyva, A.; Niebling, M.

    2016-12-01

    We present here the deformation of porous media in two different situations: 1. The formation of channels and fracture during pressurization of pore fluids, as happens during eruptions or injection of fluids and gas into soils and rocks. 2. The liquefaction of soils at different degrees of saturations during Earthquakes. The formation of channels during hydrofracture and pneumatic fractures is studied in laboratory experiments and in numerical models. The experiments are done on different types of porous media in Hele-Shaw cells, where fluid is injected at controlled overpressures, and various boundary conditions are used. Using fast cameras, we determine the strain and velocity fields from the images. We also record the characteristics of micro-seismic emissions during the process, and link this seismic record features and the direct image of the displacement responsible for the seismic sources in the medium. We also carry out numerical simulations, using coupled fluid/solid hydrid models that capture solid stress, pore pressure, solid and fluid elasticity - a full poro-elasto-plastic model using granular representation of the solid and a continuous one for the fluid.Next, Soil liquefaction is a significant natural hazard associated with earthquakes. Some of its devastating effects include tilting and sinking of buildings and bridges, and destruction of pipelines. Conventional geotechnical engineering assumes liquefaction occurs via elevated pore pressure. This assumption guides construction for seismically hazardous locations, yet evidence suggests that liquefaction strikes also under currently unpredicted conditions. We show, using theory, simulations and experiments, another mechanism for liquefaction in saturated soils, without high pore fluid pressure and without special soils, whereby liquefaction is controlled by buoyancy forces. This new mechanism enlarges the window of conditions under which liquefaction is predicted to occur, and may explain previously not understood cases such as liquefaction in well-compacted soils, under drained conditions, repeated liquefaction cases, far-field liquefaction and the basics of sinking in quicksand. These results may greatly impact hazard assessment and mitigation in seismically active areas.

  2. Methodology trends on gamma and electron radiation damage simulation studies in solids under high fluency irradiation environments

    NASA Astrophysics Data System (ADS)

    Cruz Inclán, Carlos M.; González Lazo, Eduardo; Rodríguez Rodríguez, Arturo; Guzmán Martínez, Fernando; Abreu Alfonso, Yamiel; Piñera Hernández, Ibrahin; Leyva Fabelo, Antonio

    2017-09-01

    The present work deals with the numerical simulation of gamma and electron radiation damage processes under high brightness and radiation particle fluency on regard to two new radiation induced atom displacement processes, which concern with both, the Monte Carlo Method based numerical simulation of the occurrence of atom displacement process as a result of gamma and electron interactions and transport in a solid matrix and the atom displacement threshold energies calculated by Molecular Dynamic methodologies. The two new radiation damage processes here considered in the framework of high brightness and particle fluency irradiation conditions are: 1) The radiation induced atom displacement processes due to a single primary knockout atom excitation in a defective target crystal matrix increasing its defect concentrations (vacancies, interstitials and Frenkel pairs) as a result of a severe and progressive material radiation damage and 2) The occurrence of atom displacements related to multiple primary knockout atom excitations for the same or different atomic species in an perfect target crystal matrix due to subsequent electron elastic atomic scattering in the same atomic neighborhood during a crystal lattice relaxation time. In the present work a review numeral simulation attempts of these two new radiation damage processes are presented, starting from the former developed algorithms and codes for Monte Carlo simulation of atom displacements induced by electron and gamma in

  3. The effect of fluids on the frictional behavior of calcite gouge

    NASA Astrophysics Data System (ADS)

    Rempe, M.; Di Toro, G.; Mitchell, T. M.; Hirose, T.; Smith, S. A. F.; Renner, J.

    2016-12-01

    The presence of fluids in fault zones affects the faults' strength and the nucleation and propagation of earthquakes due to mechanical or physico-chemical weakening effects. To better understand the effect of pore fluids on the frictional behavior of gouge-bearing faults, a series of intermediate- to high-velocity experiments was conducted using the Phv rotary-shear apparatus (Kochi Core Center, Japan) equipped with a servo-controlled pore-fluid pressure system. Calcite gouge was sheared up to several meters displacement at room-humidity (dry) and water-saturated conditions. The pore-fluid factor, λ=pf/σn, ranged from 0.15 to 0.7 and the effective normal stress, σn,eff=σn-pf, from 1 to 12 MPa. Sheared samples were analyzed using scanning electron microscopy and Raman spectroscopy. The steady-state shear stress is lower for saturated than for dry gouges sliding at V=1 mm/s, possibly due to higher intergranular lubrication and/or accelerated subcritical crack growth, as evidenced also by the observed higher degree of compaction. At V=1 m/s, dry gouges show a pronounced strengthening phase preceding the onset of dynamic weakening; saturated gouges weaken abruptly. The higher λ, the lower the peak and steady-state shear stress, but -counterintuitively- the less localized deformation. Degree of weakening and localization might be influenced by insufficient drainage at high λ. In undrained experiments, the shear stress is slightly decreased likely due to thermal pressurization of the pore fluid, but the onset of dynamic weakening is not accelerated, indicating that dynamic weakening is due to more efficient mechanisms. For example, amorphous carbon may lubricate the slip surfaces of dry and saturated calcite gouges and cause dynamic weakening, yet Raman spectra only show the presence of disordered carbon on the principal slip surface. Furthermore, the presence of small recrystallized grains suggests that strain accommodation during steady-state slip might occur by non-frictional processes, such as grain-boundary sliding aided by diffusion creep.

  4. Validation of a low field Rheo-NMR instrument and application to shear-induced migration of suspended non-colloidal particles in Couette flow

    NASA Astrophysics Data System (ADS)

    Colbourne, A. A.; Blythe, T. W.; Barua, R.; Lovett, S.; Mitchell, J.; Sederman, A. J.; Gladden, L. F.

    2018-01-01

    Nuclear magnetic resonance rheology (Rheo-NMR) is a valuable tool for studying the transport of suspended non-colloidal particles, important in many commercial processes. The Rheo-NMR imaging technique directly and quantitatively measures fluid displacement as a function of radial position. However, the high field magnets typically used in these experiments are unsuitable for the industrial environment and significantly hinder the measurement of shear stress. We introduce a low field Rheo-NMR instrument (1 H resonance frequency of 10.7MHz), which is portable and suitable as a process monitoring tool. This system is applied to the measurement of steady-state velocity profiles of a Newtonian carrier fluid suspending neutrally-buoyant non-colloidal particles at a range of concentrations. The large particle size (diameter > 200 μm) in the system studied requires a wide-gap Couette geometry and the local rheology was expected to be controlled by shear-induced particle migration. The low-field results are validated against high field Rheo-NMR measurements of consistent samples at matched shear rates. Additionally, it is demonstrated that existing models for particle migration fail to adequately describe the solid volume fractions measured in these systems, highlighting the need for improvement. The low field implementation of Rheo-NMR is complementary to shear stress rheology, such that the two techniques could be combined in a single instrument.

  5. Device for measuring the fluid density of a two-phase mixture

    DOEpatents

    Cole, Jack H.

    1980-01-01

    A device for measuring the fluid density of a two-phase mixture flowing through a tubular member. A rotor assembly is rotatively supported within the tubular member so that it can also move axially within the tubular member. The rotor assembly is balanced against a pair of springs which exert an axial force in the opposite direction upon the rotor assembly. As a two-phase mixture flows through the tubular member it contacts the rotor assembly causing it to rotate about its axis. The rotor assembly is forced against and partially compresses the springs. Means are provided to measure the rotational speed of the rotor assembly and the linear displacement of the rotor assembly. From these measurements the fluid density of the two-phase mixture is calculated.

  6. Swimming of a sphere in a viscous incompressible fluid with inertia

    NASA Astrophysics Data System (ADS)

    Felderhof, B. U.; Jones, R. B.

    2017-08-01

    The swimming of a sphere immersed in a viscous incompressible fluid with inertia is studied for surface modulations of small amplitude on the basis of the Navier-Stokes equations. The mean swimming velocity and the mean rate of dissipation are expressed as quadratic forms in term of the surface displacements. With a choice of a basis set of modes the quadratic forms correspond to two Hermitian matrices. Optimization of the mean swimming velocity for given rate of dissipation requires the solution of a generalized eigenvalue problem involving the two matrices. It is found for surface modulations of low multipole order that the optimal swimming efficiency depends in intricate fashion on a dimensionless scale number involving the radius of the sphere, the period of the cycle, and the kinematic viscosity of the fluid.

  7. Critical Viscosity of Xenon

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2002 will measure the viscous behavior of liquid xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. Resembling a tiny bit of window screen, the oscillator at the heart of CVX-2 will vibrate between two pairs of paddle-like electrodes. The slight bend in the shape of the mesh has no effect on the data. What counts are the mesh's displacement in the xenon fluid and the rate at which the displacement dampens. The unit shown here is encased in a small test cell and capped with a sapphire windown to contain the xenon at high pressure.

  8. Microgravity

    NASA Image and Video Library

    2001-01-24

    The Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2002 will measure the viscous behavior of liquid xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. Resembling a tiny bit of window screen, the oscillator at the heart of CVX-2 will vibrate between two pairs of paddle-like electrodes. The slight bend in the shape of the mesh has no effect on the data. What counts are the mesh's displacement in the xenon fluid and the rate at which the displacement dampens. The unit shown here is encased in a small test cell and capped with a sapphire windown to contain the xenon at high pressure.

  9. Friction of marble under seismic deformation conditions in the presence of fluids

    NASA Astrophysics Data System (ADS)

    Violay, M. E.; Nielsen, S. B.; Cinti, D.; Spagnuolo, E.; Di Toro, G.; Smith, S.

    2011-12-01

    Physical and chemical fluid/rock interactions control seismic rupture nucleation, propagation, arrest and recurrence. Several experimental studies explored the effects of pore fluid pressure (Pp) on the sliding behavior of faults. Most of them were performed with bi and tri-axial apparatus at high temperature and high confining pressure. However, due to the experimental configuration, laboratory measurements were limited in terms of slip rate (< 1 mm/s) and displacement (< 1 cm) compared to natural earthquakes (e.g., average slip rate about 1 m/s). Insight on the physical and chemical role of fluids during earthquakes can be gained using a rotary shear configuration which allows large displacements (nominally infinite) and seismic slip rates. Here we present results from the tests performed with SHIVA (Slow to HIgh Velocity Apparatus) equipped with a pore fluid vessel designed to reach 15 MPa of pore pressure on Carrara (98% calcite) marble. This rock was selected because most seismic ruptures in Italy propagate in fluid-rich (usually H2O and CO2), calcite-bearing fault zones (e.g. L'Aquila Mw 6.3, 2009 earthquake). Tests were conducted on hollow cylinders (50/30 mm ext/int diameter) at velocities of 1- 6.5 m/s, normal stresses up to 40 MPa and fluid (H2O in chemical equilibrium with the marble) pressure comprised between 0 (room-humidity conditions) and 15 MPa (fluid-saturated conditions). Fluid chemistry (Mg2+, Ca2+, HCO3-, pH, etc.) was determined before and after the experiments. Under these deformation conditions, the friction coefficient decays exponentially from a peak (= static) μp~ 0.8 at the initiation of sliding towards a steady-state μss~ 0.1. Once sliding stops, the friction coefficient recovers almost instantaneously a coefficient of friction μf = 0.2-0.6 (fault healing). The experimental data suggest that: 1) μp and μss are independent of the presence of fluids for a given imposed effective stress (σneff = σn- Pp = 10 MPa); 2) though μp and μss are similar for experiments performed under the same effective normal stress under room-humidity (σneff = σn= 10 MPa) and fluid-saturated conditions (σneff = σn- Pp =10 MPa), a comparison of the friction coefficient vs. slip curves shows that the decay is more abrupt in the case of room-humidity experiments: the presence of H2O slightly buffers dynamic weakening during seismic slip; 3) sample shortens in the presence of fluids and under room-humidity conditions; 4) fault healing is smaller in the case of experiments performed in the presence of fluids; 5) the fluid (H2O) after the experiment is enriched in Mg2+ and HCO3-: this chemical evolution suggest breakdown reactions (decarbonation of calcite) in the presence of H2O as observed in springs after some large earthquakes in carbonate rocks.

  10. Investigation of the effects of miniscrew-assisted rapid palatal expansion on airflow in the upper airway of an adult patient with obstructive sleep apnea syndrome using computational fluid-structure interaction analysis

    PubMed Central

    Hur, Jae-Sik; Kim, Hyoung-Ho; Choi, Jin-Young; Suh, Sang-Ho

    2017-01-01

    Objective The objective of this study was to investigate the effects of miniscrew-assisted rapid palatal expansion (MARPE) on changes in airflow in the upper airway (UA) of an adult patient with obstructive sleep apnea syndrome (OSAS) using computational fluid-structure interaction analysis. Methods Three-dimensional UA models fabricated from cone beam computed tomography images obtained before (T0) and after (T1) MARPE in an adult patient with OSAS were used for computational fluid dynamics with fluid-structure interaction analysis. Seven and nine cross-sectional planes (interplane distance of 10 mm) in the nasal cavity (NC) and pharynx, respectively, were set along UA. Changes in the cross-sectional area and changes in airflow velocity and pressure, node displacement, and total resistance at maximum inspiration (MI), rest, and maximum expiration (ME) were investigated at each plane after MARPE. Results The cross-sectional areas at most planes in NC and the upper half of the pharynx were significantly increased at T1. Moreover, airflow velocity decreased in the anterior NC at MI and ME and in the nasopharynx and oropharynx at MI. The decrease in velocity was greater in NC than in the pharynx. The airflow pressure in the anterior NC and entire pharynx exhibited a decrease at T1. The amount of node displacement in NC and the pharynx was insignificant at both T0 and T1. Absolute values for the total resistance at MI, rest, and ME were lower at T1 than at T0. Conclusions MARPE improves airflow and decreases resistance in UA; therefore, it may be an effective treatment modality for adult patients with moderate OSAS. PMID:29090123

  11. Numerical simulation of immiscible viscous fingering using adaptive unstructured meshes

    NASA Astrophysics Data System (ADS)

    Adam, A.; Salinas, P.; Percival, J. R.; Pavlidis, D.; Pain, C.; Muggeridge, A. H.; Jackson, M.

    2015-12-01

    Displacement of one fluid by another in porous media occurs in various settings including hydrocarbon recovery, CO2 storage and water purification. When the invading fluid is of lower viscosity than the resident fluid, the displacement front is subject to a Saffman-Taylor instability and is unstable to transverse perturbations. These instabilities can grow, leading to fingering of the invading fluid. Numerical simulation of viscous fingering is challenging. The physics is controlled by a complex interplay of viscous and diffusive forces and it is necessary to ensure physical diffusion dominates numerical diffusion to obtain converged solutions. This typically requires the use of high mesh resolution and high order numerical methods. This is computationally expensive. We demonstrate here the use of a novel control volume - finite element (CVFE) method along with dynamic unstructured mesh adaptivity to simulate viscous fingering with higher accuracy and lower computational cost than conventional methods. Our CVFE method employs a discontinuous representation for both pressure and velocity, allowing the use of smaller control volumes (CVs). This yields higher resolution of the saturation field which is represented CV-wise. Moreover, dynamic mesh adaptivity allows high mesh resolution to be employed where it is required to resolve the fingers and lower resolution elsewhere. We use our results to re-examine the existing criteria that have been proposed to govern the onset of instability.Mesh adaptivity requires the mapping of data from one mesh to another. Conventional methods such as consistent interpolation do not readily generalise to discontinuous fields and are non-conservative. We further contribute a general framework for interpolation of CV fields by Galerkin projection. The method is conservative, higher order and yields improved results, particularly with higher order or discontinuous elements where existing approaches are often excessively diffusive.

  12. Intervertebral disc response to cyclic loading--an animal model.

    PubMed

    Ekström, L; Kaigle, A; Hult, E; Holm, S; Rostedt, M; Hansson, T

    1996-01-01

    The viscoelastic response of a lumbar motion segment loaded in cyclic compression was studied in an in vivo porcine model (N = 7). Using surgical techniques, a miniaturized servohydraulic exciter was attached to the L2-L3 motion segment via pedicle fixation. A dynamic loading scheme was implemented, which consisted of one hour of sinusoidal vibration at 5 Hz, 50 N peak load, followed by one hour of restitution at zero load and one hour of sinusoidal vibration at 5 Hz, 100 N peak load. The force and displacement responses of the motion segment were sampled at 25 Hz. The experimental data were used for evaluating the parameters of two viscoelastic models: a standard linear solid model (three-parameter) and a linear Burger's fluid model (four-parameter). In this study, the creep behaviour under sinusoidal vibration at 5 Hz closely resembled the creep behaviour under static loading observed in previous studies. Expanding the three-parameter solid model into a four-parameter fluid model made it possible to separate out a progressive linear displacement term. This deformation was not fully recovered during restitution and is therefore an indication of a specific effect caused by the cyclic loading. High variability was observed in the parameters determined from the 50 N experimental data, particularly for the elastic modulus E1. However, at the 100 N load level, significant differences between the models were found. Both models accurately predicted the creep response under the first 800 s of 100 N loading, as displayed by mean absolute errors for the calculated deformation data from the experimental data of 1.26 and 0.97 percent for the solid and fluid models respectively. The linear Burger's fluid model, however, yielded superior predictions particularly for the initial elastic response.

  13. Sterile Seroma Resulting from Multilevel XLIF Procedure as Possible Adverse Effect of Prophylactic Vancomycin Powder: A Case Report

    PubMed Central

    Youssef, Jim A.; Orndorff, Douglas G.; Scott, Morgan A.; Ebner, Rachel E.; Knewitz, Allison P.

    2014-01-01

    Study Design Case report. Objective The objective of this study was to present the unusual case of a 59-year-old woman with a reoccurring sterile postoperative seroma. Methods A patient was observed postoperatively for any complications or adverse side effects resulting from an initial multilevel anterior/posterior lumbar fusion surgery where 2 g (1 g combined with the bone graft used for posterolateral fusion and 1 g placed in the soft tissues) of prophylactic vancomycin powder was placed within the soft tissues posteriorly before wound closure. The patient's progress was monitored through 6 months following the initial procedure. Six weeks postoperatively, the patient sustained a fall and had increased pain. Magnetic resonance imaging, computed tomography, and X-rays demonstrated a displaced sacral fracture, a large epidural fluid collection, and severe compression of the thecal sac at the lumbar operative sites (L3–5). Results On the basis of the aforementioned imaging studies and the patient's progressive neurologic deficit, it was apparent at the 6-week follow-up that emergent surgical intervention was necessary. Drainage and examination of an epidural fluid collection along with treatment of a displaced sacral fracture (S1–S2) were performed. The patient had an uneventful postoperative course with resolution of her back pain and neurologic deficit; however, recurrence of the epidural fluid collection requiring serial aspirations confounded the patients' clinical presentation. Conclusions With the recurrent nature of the seroma being unusual, the cause of the fluid collection and formation is undetermined. With lack of bone morphogenetic protein usage, and few confounding variables accountable, an acute allergic response to topical vancomycin powder is a possible etiology. Analysis with larger patient populations comparing postoperative adverse effects of prophylactic vancomycin powder is recommended. PMID:25364326

  14. Sterile Seroma Resulting from Multilevel XLIF Procedure as Possible Adverse Effect of Prophylactic Vancomycin Powder: A Case Report.

    PubMed

    Youssef, Jim A; Orndorff, Douglas G; Scott, Morgan A; Ebner, Rachel E; Knewitz, Allison P

    2014-10-01

    Study Design Case report. Objective The objective of this study was to present the unusual case of a 59-year-old woman with a reoccurring sterile postoperative seroma. Methods A patient was observed postoperatively for any complications or adverse side effects resulting from an initial multilevel anterior/posterior lumbar fusion surgery where 2 g (1 g combined with the bone graft used for posterolateral fusion and 1 g placed in the soft tissues) of prophylactic vancomycin powder was placed within the soft tissues posteriorly before wound closure. The patient's progress was monitored through 6 months following the initial procedure. Six weeks postoperatively, the patient sustained a fall and had increased pain. Magnetic resonance imaging, computed tomography, and X-rays demonstrated a displaced sacral fracture, a large epidural fluid collection, and severe compression of the thecal sac at the lumbar operative sites (L3-5). Results On the basis of the aforementioned imaging studies and the patient's progressive neurologic deficit, it was apparent at the 6-week follow-up that emergent surgical intervention was necessary. Drainage and examination of an epidural fluid collection along with treatment of a displaced sacral fracture (S1-S2) were performed. The patient had an uneventful postoperative course with resolution of her back pain and neurologic deficit; however, recurrence of the epidural fluid collection requiring serial aspirations confounded the patients' clinical presentation. Conclusions With the recurrent nature of the seroma being unusual, the cause of the fluid collection and formation is undetermined. With lack of bone morphogenetic protein usage, and few confounding variables accountable, an acute allergic response to topical vancomycin powder is a possible etiology. Analysis with larger patient populations comparing postoperative adverse effects of prophylactic vancomycin powder is recommended.

  15. Seismoelectric numerical modeling on a grid

    USGS Publications Warehouse

    Haines, S.S.; Pride, S.R.

    2006-01-01

    Our finite-difference algorithm provides a new method for simulating how seismic waves in arbitrarily heterogeneous porous media generate electric fields through an electrokinetic mechanism called seismoelectric coupling. As the first step in our simulations, we calculate relative pore-fluid/grain-matrix displacement by using existing poroelastic theory. We then calculate the electric current resulting from the grain/fluid displacement by using seismoelectric coupling theory. This electrofiltration current acts as a source term in Poisson's equation, which then allows us to calculate the electric potential distribution. We can safely neglect induction effects in our simulations because the model area is within the electrostatic near field for the depth of investigation (tens to hundreds of meters) and the frequency ranges (10 Hz to 1 kHz) of interest for shallow seismoelectric surveys.We can independently calculate the electric-potential distribution for each time step in the poroelastic simulation without loss of accuracy because electro-osmotic feedback (fluid flow that is perturbed by generated electric fields) is at least 105 times smaller than flow that is driven by fluid-pressure gradients and matrix acceleration, and is therefore negligible. Our simulations demonstrate that, distinct from seismic reflections, the seismoelectric interface response from a thin layer (at least as thin as one-twentieth of the seismic wavelength) is considerably stronger than the response from a single interface. We find that the interface response amplitude decreases as the lateral extent of a layer decreases below the width of the first Fresnel zone. We conclude, on the basis of our modeling results and of field results published elsewhere, that downhole and/or crosswell survey geometries and time-lapse applications are particularly well suited to the seismoelectric method. ?? 2006 Society of Exploration Geophysicists.

  16. A Simple Apparatus for Demonstrating Fluid Forces and Newton's Third Law

    ERIC Educational Resources Information Center

    Mohazzabi, Pirooz; James, Mark C.

    2012-01-01

    Over 2200 years ago, in order to determine the purity of a golden crown of the king of Syracuse, Archimedes submerged the crown in water and determined its volume by measuring the volume of the displaced water. This simple experiment became the foundation of what eventually became known as Archimedes' principle: An object fully or partially…

  17. The effect of creep on human lumbar intervertebral disk impact mechanics.

    PubMed

    Jamison, David; Marcolongo, Michele S

    2014-03-01

    The intervertebral disk (IVD) is a highly hydrated tissue, with interstitial fluid making up 80% of the wet weight of the nucleus pulposus (NP), and 70% of the annulus fibrosus (AF). It has often been modeled as a biphasic material, consisting of both a solid and fluid phase. The inherent porosity and osmotic potential of the disk causes an efflux of fluid while under constant load, which leads to a continuous displacement phenomenon known as creep. IVD compressive stiffness increases and NP pressure decreases as a result of creep displacement. Though the effects of creep on disk mechanics have been studied extensively, it has been limited to nonimpact loading conditions. The goal of this study is to better understand the influence of creep and fluid loss on IVD impact mechanics. Twenty-four human lumbar disk samples were divided into six groups according to the length of time they underwent creep (tcreep = 0, 3, 6, 9, 12, 15 h) under a constant compressive load of 400 N. At the end of tcreep, each disk was subjected to a sequence of impact loads of varying durations (timp = 80, 160, 320, 400, 600, 800, 1000 ms). Energy dissipation (ΔE), stiffness in the toe (ktoe) and linear (klin) regions, and neutral zone (NZ) were measured. Analyzing correlations with tcreep, there was a positive correlation with ΔE and NZ, along with a negative correlation with ktoe. There was no strong correlation between tcreep and klin. The data suggest that the IVD mechanical response to impact loading conditions is altered by fluid content and may result in a disk that exhibits less clinical stability and transfers more load to the AF. This could have implications for risk of diskogenic pain as a function of time of day or tissue hydration.

  18. Use of InSAR-derived Ground Displacements to Characterize Coastal Instability: the Ciro' Marina case (Italy)

    NASA Astrophysics Data System (ADS)

    Casagli, N.; Catani, F.; Farina, P.; Ferretti, A.

    2006-12-01

    Here we present the results of a geological investigation carried out following a sudden ground settlement occurred along a 2 km long linear discontinuity on July 28th 2004 in the Ciro' Marina village (Southern Italy). The destructive movement which caused severe damage to the built-up area, was initially ascribed by the civil protection authorities to different possible phenomena, including land subsidence induced by fluid extraction (water and/or gas), a large landslide, partially submarine and an aseismic creep along a tectonic structure. An InSAR analysis aimed at identifying the spatial distribution of the movements connected to the 2004 event and their temporal evolution, i.e. the presence of precursory movements before the event and residual displacement after the failure, was carried out through the Permanent Scatterers technique. All the available SAR images acquired by ERS1/ERS2 and Radarsat satellites were processed. Such an analysis detected the presence since 1992 of slow movements (2-3 mm/y) located along a narrow sector of the village, between the 2004 discontinuity and the shoreline. Temporal series of displacements recorded a sudden acceleration of those movements between the two SAR acquisitions covering the event, reporting average displacements of 7- 10 mm in 24 days, not preceded by any precursory sign. Furthermore, after the failure PS measured residual displacements with velocity values higher than the pre-event ones. The availability of both ascending and descending SAR datasets allowed, through the combination of the two l.o.s. geometries, the retrieval of the vertical and horizontal components of the displacement vectors over the whole unstable area. Vertical movements were identified along the linear discontinuity, whilst moving towards the coastline vectors with a strong horizontal component were retrieved. Then, an inversion of the superficial displacement vectors obtained from the combination of ascending and descending PS was used to estimate the movement geometry (depth and shape of the sliding surface). A graphical method developed for reconstructing the slip surface of landslides was applied along several cross sections by using the displacement vectors and the location of the main scarp provided by the InSAR analysis. Such a method, based on the assumption of a rigid deformation between each available measurement, allowed the estimation of a three-dimensional slip surface. Currently, the combination of the results obtained from the InSAR analysis with conventional methods, such as geotechnical and geophysical data, and more recent technologies, such as bathymetric surveys carried out with multi-beam techniques, is helping the civil protection authorities to understand the origin of the movement and consequently to properly define the connected risk scenarios.

  19. Effect of Hydrofracking Fluid on Colloid Transport in the Unsaturated Zone

    PubMed Central

    2014-01-01

    Hydraulic fracturing is expanding rapidly in the US to meet increasing energy demand and requires high volumes of hydrofracking fluid to displace natural gas from shale. Accidental spills and deliberate land application of hydrofracking fluids, which return to the surface during hydrofracking, are common causes of environmental contamination. Since the chemistry of hydrofracking fluids favors transport of colloids and mineral particles through rock cracks, it may also facilitate transport of in situ colloids and associated pollutants in unsaturated soils. We investigated this by subsequently injecting deionized water and flowback fluid at increasing flow rates into unsaturated sand columns containing colloids. Colloid retention and mobilization was measured in the column effluent and visualized in situ with bright field microscopy. While <5% of initial colloids were released by flushing with deionized water, 32–36% were released by flushing with flowback fluid in two distinct breakthrough peaks. These peaks resulted from 1) surface tension reduction and steric repulsion and 2) slow kinetic disaggregation of colloid flocs. Increasing the flow rate of the flowback fluid mobilized an additional 36% of colloids, due to the expansion of water filled pore space. This study suggests that hydrofracking fluid may also indirectly contaminate groundwater by remobilizing existing colloidal pollutants. PMID:24905470

  20. Complex fragmentation and silicification structures in fault zones: quartz crystallization and repeated fragmentation in the Rusey fault zone (Cornwall/UK)

    NASA Astrophysics Data System (ADS)

    Yilmaz, Tim I.; Blenkinsop, Tom; Duschl, Florian; Kruhl, Jörn H.

    2015-04-01

    Silicified fault rocks typically show structures resulting from various stages of fragmentation and quartz crystallization. Both processes interact episodically and result in complex structures on various scales, which require a wide spectrum of analysis tools. Based on field and microstructural data, the spatial-temporal connection between deformation, quartz crystallization and fluid and material flow along the Rusey fault zone was investigated. The fault can be examined in detail in three dimensions on the north Cornwall coast, UK. It occurs within Carboniferous sandstones, siltstones, mudstones and slates of the Culm basin, and is likely to have had a long history. The fault rocks described here formed during the younger events, possibly due to Tertiary strike-slip reactivation. Frequent fragmentation, flow and crystallization events and their interaction led to various generations of complex-structured quartz units, among them quartz-mantled and partly silicified wall-rock fragments, microcrystalline quartz masses of different compositions and structures, and quartz vein patterns of various ages. Lobate boundaries of quartz masses indicate viscous flow. Fragments are separated by quartz infill, which contains cm-sized open pores, in which quartz crystals have pyramidal terminations. Based on frequent occurrence of feathery textures and the infill geometry, quartz crystallization from chalcedony appears likely, and an origin from silica gel is discussed. Fragmentation structures are generally fractal. This allows differentiation between various processes, such as corrosive wear, wear abrasion and hydraulic brecciation. Material transport along the brittle shear zone, and displacement of the wall-rocks, were at least partly governed by flow of mobile fluid-quartz-particle suspensions. The complex meso- to microstructures were generated by repeated processes of fragmentation, quartz precipitation and grain growth. In general, the brittle Rusey fault zone represents a zone of multiple fragmentation, fluid flow, crystallization and quartz dissolution and precipitation, and is regarded as key example of large-scale cyclic interaction of these processes. The geological evidence of interactions between processes implies that feedbacks and highly non-linear mechanical behaviour generated the complex meso- and microstructures. The fault zone rheology may also therefore have been complex.

Top