Sample records for fluid dynamic drag

  1. Departure of microscopic friction from macroscopic drag in molecular fluid dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanasaki, Itsuo; Fujiwara, Daiki; Kawano, Satoyuki, E-mail: kawano@me.es.osaka-u.ac.jp

    2016-03-07

    Friction coefficient of the Langevin equation and drag of spherical macroscopic objects in steady flow at low Reynolds numbers are usually regarded as equivalent. We show that the microscopic friction can be different from the macroscopic drag when the mass is taken into account for particles with comparable scale to the surrounding fluid molecules. We illustrate it numerically by molecular dynamics simulation of chloride ion in water. Friction variation by the atomistic mass effect beyond the Langevin regime can be of use in the drag reduction technology as well as the electro or thermophoresis.

  2. Consider a non-spherical elephant: computational fluid dynamics simulations of heat transfer coefficients and drag verified using wind tunnel experiments.

    PubMed

    Dudley, Peter N; Bonazza, Riccardo; Porter, Warren P

    2013-07-01

    Animal momentum and heat transfer analysis has historically used direct animal measurements or approximations to calculate drag and heat transfer coefficients. Research can now use modern 3D rendering and computational fluid dynamics software to simulate animal-fluid interactions. Key questions are the level of agreement between simulations and experiments and how superior they are to classical approximations. In this paper we compared experimental and simulated heat transfer and drag calculations on a scale model solid aluminum African elephant casting. We found good agreement between experimental and simulated data and large differences from classical approximations. We used the simulation results to calculate coefficients for heat transfer and drag of the elephant geometry. Copyright © 2013 Wiley Periodicals, Inc.

  3. Space Age Swimsuit Reduces Drag, Breaks Records

    NASA Technical Reports Server (NTRS)

    2008-01-01

    A space shuttle and a competitive swimmer have a lot more in common than people might realize: Among other forces, both have to contend with the slowing influence of drag. NASA s Aeronautics Research Mission Directorate focuses primarily on improving flight efficiency and generally on fluid dynamics, especially the forces of pressure and viscous drag, which are the same for bodies moving through air as for bodies moving through water. Viscous drag is the force of friction that slows down a moving object through a substance, like air or water. NASA uses wind tunnels for fluid dynamics research, studying the forces of friction in gasses and liquids. Pressure forces, according to Langley Research Center s Stephen Wilkinson, dictate the optimal shape and performance of an airplane or other aero/hydro-dynamic body. In both high-speed flight and swimming, says Wilkinson, a thin boundary layer of reduced velocity fluid surrounds the moving body; this layer is about 2 centimeters thick for a swimmer.

  4. A study about the split drag flaps deflections to directional motion of UiTM's blended wing body aircraft based on computational fluid dynamics simulation

    NASA Astrophysics Data System (ADS)

    Mohamad, Firdaus; Wisnoe, Wirachman; Nasir, Rizal E. M.; Kuntjoro, Wahyu

    2012-06-01

    This paper discusses on the split drag flaps to the yawing motion of BWB aircraft. This study used split drag flaps instead of vertical tail and rudder with the intention to generate yawing moment. These features are installed near the tips of the wing. Yawing moment is generated by the combination of side and drag forces which are produced upon the split drag flaps deflection. This study is carried out using Computational Fluid Dynamics (CFD) approach and applied to low subsonic speed (0.1 Mach number) with various sideslip angles (β) and total flaps deflections (δT). For this research, the split drag flaps deflections are varied up to ±30°. Data in terms of dimensionless coefficient such as drag coefficient (CD), side coefficient (CS) and yawing moment coefficient (Cn) were used to observe the effect of the split drag flaps. From the simulation results, these split drag flaps are proven to be effective from ±15° deflections or 30° total deflections.

  5. On the diverse roles of fluid dynamic drag in animal swimming and flying

    PubMed Central

    2018-01-01

    Questions of energy dissipation or friction appear immediately when addressing the problem of a body moving in a fluid. For the most simple problems, involving a constant steady propulsive force on the body, a straightforward relation can be established balancing this driving force with a skin friction or form drag, depending on the Reynolds number and body geometry. This elementary relation closes the full dynamical problem and sets, for instance, average cruising velocity or energy cost. In the case of finite-sized and time-deformable bodies though, such as flapping flyers or undulatory swimmers, the comprehension of driving/dissipation interactions is not straightforward. The intrinsic unsteadiness of the flapping and deforming animal bodies complicates the usual application of classical fluid dynamic forces balance. One of the complications is because the shape of the body is indeed changing in time, accelerating and decelerating perpetually, but also because the role of drag (more specifically the role of the local drag) has two different facets, contributing at the same time to global dissipation and to driving forces. This causes situations where a strong drag is not necessarily equivalent to inefficient systems. A lot of living systems are precisely using strong sources of drag to optimize their performance. In addition to revisiting classical results under the light of recent research on these questions, we discuss in this review the crucial role of drag from another point of view that concerns the fluid–structure interaction problem of animal locomotion. We consider, in particular, the dynamic subtleties brought by the quadratic drag that resists transverse motions of a flexible body or appendage performing complex kinematics, such as the phase dynamics of a flexible flapping wing, the propagative nature of the bending wave in undulatory swimmers, or the surprising relevance of drag-based resistive thrust in inertial swimmers. PMID:29445037

  6. Polymer Fluid Dynamics.

    ERIC Educational Resources Information Center

    Bird, R. Byron

    1980-01-01

    Problems in polymer fluid dynamics are described, including development of constitutive equations, rheometry, kinetic theory, flow visualization, heat transfer studies, flows with phase change, two-phase flow, polymer unit operations, and drag reduction. (JN)

  7. Study of Geometric Porosity on Static Stability and Drag Using Computational Fluid Dynamics for Rigid Parachute Shapes

    NASA Technical Reports Server (NTRS)

    Greathouse, James S.; Schwing, Alan M.

    2015-01-01

    This paper explores use of computational fluid dynamics to study the e?ect of geometric porosity on static stability and drag for NASA's Multi-Purpose Crew Vehicle main parachute. Both of these aerodynamic characteristics are of interest to in parachute design, and computational methods promise designers the ability to perform detailed parametric studies and other design iterations with a level of control previously unobtainable using ground or flight testing. The approach presented here uses a canopy structural analysis code to define the inflated parachute shapes on which structured computational grids are generated. These grids are used by the computational fluid dynamics code OVERFLOW and are modeled as rigid, impermeable bodies for this analysis. Comparisons to Apollo drop test data is shown as preliminary validation of the technique. Results include several parametric sweeps through design variables in order to better understand the trade between static stability and drag. Finally, designs that maximize static stability with a minimal loss in drag are suggested for further study in subscale ground and flight testing.

  8. Computational Fluid Dynamics Study of Swimmer's Hand Velocity, Orientation, and Shape: Contributions to Hydrodynamics

    PubMed Central

    Bilinauskaite, Milda; Mantha, Vishveshwar Rajendra; Rouboa, Abel Ilah; Ziliukas, Pranas; Silva, Antonio Jose

    2013-01-01

    The aim of this paper is to determine the hydrodynamic characteristics of swimmer's scanned hand models for various combinations of both the angle of attack and the sweepback angle and shape and velocity of swimmer's hand, simulating separate underwater arm stroke phases of freestyle (front crawl) swimming. Four realistic 3D models of swimmer's hand corresponding to different combinations of separated/closed fingers positions were used to simulate different underwater front crawl phases. The fluid flow was simulated using FLUENT (ANSYS, PA, USA). Drag force and drag coefficient were calculated using (computational fluid dynamics) CFD in steady state. Results showed that the drag force and coefficient varied at the different flow velocities on all shapes of the hand and variation was observed for different hand positions corresponding to different stroke phases. The models of the hand with thumb adducted and abducted generated the highest drag forces and drag coefficients. The current study suggests that the realistic variation of both the orientation angles influenced higher values of drag, lift, and resultant coefficients and forces. To augment resultant force, which affects swimmer's propulsion, the swimmer should concentrate in effectively optimising achievable hand areas during crucial propulsive phases. PMID:23691493

  9. High Speed Civil Transport (HSCT) Isolated Nacelle Transonic Boattail Drag Study and Results Using Computational Fluid Dynamics (CFD)

    NASA Technical Reports Server (NTRS)

    Midea, Anthony C.; Austin, Thomas; Pao, S. Paul; DeBonis, James R.; Mani, Mori

    2005-01-01

    Nozzle boattail drag is significant for the High Speed Civil Transport (HSCT) and can be as high as 25 percent of the overall propulsion system thrust at transonic conditions. Thus, nozzle boattail drag has the potential to create a thrust drag pinch and can reduce HSCT aircraft aerodynamic efficiencies at transonic operating conditions. In order to accurately predict HSCT performance, it is imperative that nozzle boattail drag be accurately predicted. Previous methods to predict HSCT nozzle boattail drag were suspect in the transonic regime. In addition, previous prediction methods were unable to account for complex nozzle geometry and were not flexible enough for engine cycle trade studies. A computational fluid dynamics (CFD) effort was conducted by NASA and McDonnell Douglas to evaluate the magnitude and characteristics of HSCT nozzle boattail drag at transonic conditions. A team of engineers used various CFD codes and provided consistent, accurate boattail drag coefficient predictions for a family of HSCT nozzle configurations. The CFD results were incorporated into a nozzle drag database that encompassed the entire HSCT flight regime and provided the basis for an accurate and flexible prediction methodology.

  10. High Speed Civil Transport (HSCT) Isolated Nacelle Transonic Boattail Drag Study and Results Using Computational Fluid Dynamics (CFD)

    NASA Technical Reports Server (NTRS)

    Midea, Anthony C.; Austin, Thomas; Pao, S. Paul; DeBonis, James R.; Mani, Mori

    1999-01-01

    Nozzle boattail drag is significant for the High Speed Civil Transport (HSCT) and can be as high as 25% of the overall propulsion system thrust at transonic conditions. Thus, nozzle boattail drag has the potential to create a thrust-drag pinch and can reduce HSCT aircraft aerodynamic efficiencies at transonic operating conditions. In order to accurately predict HSCT performance, it is imperative that nozzle boattail drag be accurately predicted. Previous methods to predict HSCT nozzle boattail drag were suspect in the transonic regime. In addition, previous prediction methods were unable to account for complex nozzle geometry and were not flexible enough for engine cycle trade studies. A computational fluid dynamics (CFD) effort was conducted by NASA and McDonnell Douglas to evaluate the magnitude and characteristics of HSCT nozzle boattail drag at transonic conditions. A team of engineers used various CFD codes and provided consistent, accurate boattail drag coefficient predictions for a family of HSCT nozzle configurations. The CFD results were incorporated into a nozzle drag database that encompassed the entire HSCT flight regime and provided the basis for an accurate and flexible prediction methodology.

  11. Dynamic behavior of microscale particles controlled by standing bulk acoustic waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenhall, J.; Raeymaekers, B., E-mail: bart.raeymaekers@utah.edu; Guevara Vasquez, F.

    2014-10-06

    We analyze the dynamic behavior of a spherical microparticle submerged in a fluid medium, driven to the node of a standing bulk acoustic wave created by two opposing transducers. We derive the dynamics of the fluid-particle system taking into account the acoustic radiation force and the time-dependent and time-independent drag force acting on the particle. Using this dynamic model, we characterize the transient and steady-state behavior of the fluid-particle system as a function of the particle and fluid properties and the transducer operating parameters. The results show that the settling time and percent overshoot of the particle trajectory are dependentmore » on the ratio of the acoustic radiation force and time-independent damping force. In addition, we show that the particle oscillates around the node of the standing wave with an amplitude that depends on the ratio of the time-dependent drag forces and the particle inertia.« less

  12. Analysis of Drag Reduction Methods and Mechanisms of Turbulent.

    PubMed

    Yunqing, Gu; Tao, Liu; Jiegang, Mu; Zhengzan, Shi; Peijian, Zhou

    2017-01-01

    Turbulent flow is a difficult issue in fluid dynamics, the rules of which have not been totally revealed up to now. Fluid in turbulent state will result in a greater frictional force, which must consume great energy. Therefore, it is not only an important influence in saving energy and improving energy utilization rate but also an extensive application prospect in many fields, such as ship domain and aerospace. Firstly, bionic drag reduction technology is reviewed and is a hot research issue now, the drag reduction mechanism of body surface structure is analyzed, such as sharks, earthworms, and dolphins. Besides, we make a thorough study of drag reduction characteristics and mechanisms of microgrooved surface and compliant wall. Then, the relevant drag reduction technologies and mechanisms are discussed, focusing on the microbubbles, the vibrant flexible wall, the coating, the polymer drag reduction additives, superhydrophobic surface, jet surface, traveling wave surface drag reduction, and the composite drag reduction methods. Finally, applications and advancements of the drag reduction technology in turbulence are prospected.

  13. Analysis of Drag Reduction Methods and Mechanisms of Turbulent

    PubMed Central

    Tao, Liu; Jiegang, Mu; Zhengzan, Shi; Peijian, Zhou

    2017-01-01

    Turbulent flow is a difficult issue in fluid dynamics, the rules of which have not been totally revealed up to now. Fluid in turbulent state will result in a greater frictional force, which must consume great energy. Therefore, it is not only an important influence in saving energy and improving energy utilization rate but also an extensive application prospect in many fields, such as ship domain and aerospace. Firstly, bionic drag reduction technology is reviewed and is a hot research issue now, the drag reduction mechanism of body surface structure is analyzed, such as sharks, earthworms, and dolphins. Besides, we make a thorough study of drag reduction characteristics and mechanisms of microgrooved surface and compliant wall. Then, the relevant drag reduction technologies and mechanisms are discussed, focusing on the microbubbles, the vibrant flexible wall, the coating, the polymer drag reduction additives, superhydrophobic surface, jet surface, traveling wave surface drag reduction, and the composite drag reduction methods. Finally, applications and advancements of the drag reduction technology in turbulence are prospected. PMID:29104425

  14. Computational Fluid Dynamics (CFD) Simulation of Drag Reduction by Riblets on Automobile

    NASA Astrophysics Data System (ADS)

    Ghazali, N. N. N.; Yau, Y. H.; Badarudin, A.; Lim, Y. C.

    2010-05-01

    One of the ongoing automotive technological developments is the reduction of aerodynamic drag because this has a direct impact on fuel reduction, which is a major topic due to the influence on many other requirements. Passive drag reduction techniques stand as the most portable and feasible way to be implemented in real applications. One of the passive techniques is the longitudinal microgrooves aligned in the flow direction, known as riblets. In this study, the simulation of turbulent flows over an automobile in a virtual wind tunnel has been conducted by computational fluid dynamics (CFD). Three important aspects of this study are: the drag reduction effect of riblets on smooth surface automobile, the position and geometry of the riblets on drag reduction. The simulation involves three stages: geometry modeling, meshing, solving and analysis. The simulation results show that the attachment of riblets on the rear roof surface reduces the drag coefficient by 2.74%. By adjusting the attachment position of the riblets film, reduction rates between the range 0.5%-9.51% are obtained, in which the position of the top middle roof optimizes the effect. Four riblet geometries are investigated, among them the semi-hexagon trapezoidally shaped riblets is considered the most effective. Reduction rate of drag is found ranging from -3.34% to 6.36%.

  15. Control Theoretic Modeling and Generated Flow Patterns of a Fish-Tail Robot

    NASA Astrophysics Data System (ADS)

    Massey, Brian; Morgansen, Kristi; Dabiri, Dana

    2003-11-01

    Many real-world engineering problems involve understanding and manipulating fluid flows. One of the challenges to further progress in the area of active flow control is the lack of appropriate models that are amenable to control-theoretic studies and algorithm design and also incorporate reasonably realistic fluid dynamic effects. We focus here on modeling and model-verification of bio-inspired actuators (fish-fin type structures) used to control fluid dynamic artifacts that will affect speed, agility, and stealth of Underwater Autonomous Vehicles (UAVs). Vehicles using fish-tail type systems are more maneuverable, can turn in much shorter and more constrained spaces, have lower drag, are quieter and potentially more efficient than those using propellers. We will present control-theoretic models for a simple prototype coupled fluid and mechanical actuator where fluid effects are crudely modeled by assuming only lift, drag, and added mass, while neglecting boundary effects. These models will be tested with different control input parameters on an experimental fish-tail robot with the resulting flow captured with DPIV. Relations between the model, the control function choices, the obtained thrust and drag, and the corresponding flow patterns will be presented and discussed.

  16. Computational fluid dynamics vs. inverse dynamics methods to determine passive drag in two breaststroke glide positions.

    PubMed

    Costa, L; Mantha, V R; Silva, A J; Fernandes, R J; Marinho, D A; Vilas-Boas, J P; Machado, L; Rouboa, A

    2015-07-16

    Computational fluid dynamics (CFD) plays an important role to quantify, understand and "observe" the water movements around the human body and its effects on drag (D). We aimed to investigate the flow effects around the swimmer and to compare the drag and drag coefficient (CD) values obtained from experiments (using cable velocimetry in a swimming pool) with those of CFD simulations for the two ventral gliding positions assumed during the breaststroke underwater cycle (with shoulders flexed and upper limbs extended above the head-GP1; with shoulders in neutral position and upper limbs extended along the trunk-GP2). Six well-trained breaststroke male swimmers (with reasonable homogeneity of body characteristics) participated in the experimental tests; afterwards a 3D swimmer model was created to fit within the limits of the sample body size profile. The standard k-ε turbulent model was used to simulate the fluid flow around the swimmer model. Velocity ranged from 1.30 to 1.70 m/s for GP1 and 1.10 to 1.50 m/s for GP2. Values found for GP1 and GP2 were lower for CFD than experimental ones. Nevertheless, both CFD and experimental drag/drag coefficient values displayed a tendency to jointly increase/decrease with velocity, except for GP2 CD where CFD and experimental values display opposite tendencies. Results suggest that CFD values obtained by single model approaches should be considered with caution due to small body shape and dimension differences to real swimmers. For better accuracy of CFD studies, realistic individual 3D models of swimmers are required, and specific kinematics respected. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Translational viscous drags of an ellipsoid straddling an interface between two fluids.

    PubMed

    Boniello, Giuseppe; Stocco, Antonio; Gross, Michel; In, Martin; Blanc, Christophe; Nobili, Maurizio

    2016-07-01

    We study the dynamics of individual polystyrene ellipsoids of different aspect ratios trapped at the air-water interface. Using particle tracking and in situ vertical scanning interferometry techniques we are able to measure translational drags and the protrusion in air of the ellipsoids. We report that translational drags on the ellipsoid are unexpectedly enhanced: despite the fact that a noticeable part of the ellipsoid is in air, drags are found larger than the bulk one in water.

  18. Flow caused by the stalk contraction of Vorticella

    NASA Astrophysics Data System (ADS)

    Ryu, Sangjin; Chung, Eun-Gul; Admiraal, David

    2016-11-01

    Vorticella is a stalked protozoan, and its ultrafast stalk contraction moves the spherically-shrunken cell body (zooid) and thus causes surrounding water to flow. Because the fluid dynamics of this water flow is important for understanding the motility of Vorticella, we investigated the flow based on various fluid dynamics approaches. To find why Vorticella contracts its stalk, we propose a hypothesis that the protist utilizes the contraction-induced water flow to augment transport of food particles. This hypothesis was investigated using a computational fluid dynamics (CFD) model, which was validated with an experimental scale model of Vorticella. The CFD model enabled calculating the motion of particles around Vorticella and thus quantifying the transport effect of the stalk contraction. Also, we have developed a hydrodynamic drag model for easier estimation of Vorticella's contractility without using the CFD model. Because the contractile force of the stalk equals the drag on the moving zooid, the model enabled evaluating the contractile force and energetics of Vorticella based on its contraction speed. Analyses using the drag model show that the stalk contractility of Vorticella depends on the stalk length. This study was supported by UNL Layman Seed Grant and Nebraska EPSCoR First Award Grant.

  19. Transonic Investigation of Two-Dimensional Nozzles Designed for Supersonic Cruise

    NASA Technical Reports Server (NTRS)

    Capone, Francis J.; Deere, Karen A.

    2015-01-01

    An experimental and computational investigation has been conducted to determine the off-design uninstalled drag characteristics of a two-dimensional convergent-divergent nozzle designed for a supersonic cruise civil transport. The overall objectives were to: (1) determine the effects of nozzle external flap curvature and sidewall boattail variations on boattail drag; (2) develop an experimental data base for 2D nozzles with long divergent flaps and small boattail angles and (3) provide data for correlating computational fluid dynamic predictions of nozzle boattail drag. The experimental investigation was conducted in the Langley 16-Foot Transonic Tunnel at Mach numbers from 0.80 to 1.20 at nozzle pressure ratios up to 9. Three-dimensional simulations of nozzle performance were obtained with the computational fluid dynamics code PAB3D using turbulence closure and nonlinear Reynolds stress modeling. The results of this investigation indicate that excellent correlation between experimental and predicted results was obtained for the nozzle with a moderate amount of boattail curvature. The nozzle with an external flap having a sharp shoulder (no curvature) had the lowest nozzle pressure drag. At a Mach number of 1.2, sidewall pressure drag doubled as sidewall boattail angle was increased from 4deg to 8deg. Reducing the height of the sidewall caused large decreases in both the sidewall and flap pressure drags. Summary

  20. Numerical Simulations for Turbulent Drag Reduction Using Liquid Infused Surfaces

    NASA Astrophysics Data System (ADS)

    Arenas-Navarro, Isnardo

    Numerical simulations of the turbulent flow over Super Hydrophobic and Liquid Infused Surfaces have been performed in this work. Three different textured surfaces have been considered: longitudinal square bars, transversal square bars and staggered cubes. The numerical code combines an immersed boundary method to mimic the substrate and a level set method to track the interface. Liquid Infused Surfaces reduce the drag by locking a lubricant within structured roughness to facilitate a slip velocity at the surface interface. The conceptual idea is similar to Super Hydrophobic Surfaces, which rely on a lubricant air layer, whereas liquid-infused surfaces use a preferentially wetting liquid lubricant to create a fluid-fluid interface. This slipping interface has been shown to be an effective method of passively reducing skin friction drag in turbulent flows. Details are given on the effect of the viscosity ratio between the two fluids and the dynamics of the interface on drag reduction. An attempt has been made to reconcile Super-Hydrophobic, Liquid Infused and rough wall under the same framework by correlating the drag to the wall normal velocity fluctuations.

  1. Dynamics on the laminar-turbulent boundary and the origin of the maximum drag reduction asymptote.

    PubMed

    Xi, Li; Graham, Michael D

    2012-01-13

    Dynamical trajectories on the boundary in state space between laminar and turbulent plane channel flow-edge states-are computed for Newtonian and viscoelastic fluids. Viscoelasticity has a negligible effect on the properties of these solutions, and, at least at a low Reynolds number, their mean velocity profiles correspond closely to experimental observations for polymer solutions in the maximum drag reduction regime. These results confirm the existence of weak turbulence states that cannot be suppressed by polymer additives, explaining the fact that there is an upper limit for polymer-induced drag reduction.

  2. Lift vs. drag based mechanisms for vertical force production in the smallest flying insects.

    PubMed

    Jones, S K; Laurenza, R; Hedrick, T L; Griffith, B E; Miller, L A

    2015-11-07

    We used computational fluid dynamics to determine whether lift- or drag-based mechanisms generate the most vertical force in the flight of the smallest insects. These insects fly at Re on the order of 4-60 where viscous effects are significant. Detailed quantitative data on the wing kinematics of the smallest insects is not available, and as a result both drag- and lift-based strategies have been suggested as the mechanisms by which these insects stay aloft. We used the immersed boundary method to solve the fully-coupled fluid-structure interaction problem of a flexible wing immersed in a two-dimensional viscous fluid to compare three idealized hovering kinematics: a drag-based stroke in the vertical plane, a lift-based stroke in the horizontal plane, and a hybrid stroke on a tilted plane. Our results suggest that at higher Re, a lift-based strategy produces more vertical force than a drag-based strategy. At the Re pertinent to small insect hovering, however, there is little difference in performance between the two strategies. A drag-based mechanism of flight could produce more vertical force than a lift-based mechanism for insects at Re<5; however, we are unaware of active fliers at this scale. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Simulation of Mean Flow and Turbulence over a 2D Building Array Using High-Resolution CFD and a Distributed Drag Force Approach

    DTIC Science & Technology

    2016-06-16

    procedure. The predictive capabilities of the high-resolution computational fluid dynamics ( CFD ) simulations of urban flow are validated against a very...turbulence over a 2D building array using high-resolution CFD and a distributed drag force approach a Department of Mechanical Engineering, University

  4. Morphologic and Aerodynamic Considerations Regarding the Plumed Seeds of Tragopogon pratensis and Their Implications for Seed Dispersal.

    PubMed

    Casseau, Vincent; De Croon, Guido; Izzo, Dario; Pandolfi, Camilla

    2015-01-01

    Tragopogon pratensis is a small herbaceous plant that uses wind as the dispersal vector for its seeds. The seeds are attached to parachutes that increase the aerodynamic drag force and increase the total distance travelled. Our hypothesis is that evolution has carefully tuned the air permeability of the seeds to operate in the most convenient fluid dynamic regime. To achieve final permeability, the primary and secondary fibres of the pappus have evolved with complex weaving; this maximises the drag force (i.e., the drag coefficient), and the pappus operates in an "optimal" state. We used computational fluid dynamics (CFD) simulations to compute the seed drag coefficient and compare it with data obtained from drop experiments. The permeability of the parachute was estimated from microscope images. Our simulations reveal three flow regimes in which the parachute can operate according to its permeability. These flow regimes impact the stability of the parachute and its drag coefficient. From the permeability measurements and drop experiments, we show how the seeds operate very close to the optimal case. The porosity of the textile appears to be an appropriate solution to achieve a lightweight structure that allows a low terminal velocity, a stable flight and a very efficient parachute for the velocity at which it operates.

  5. RotCFD Analysis of the AH-56 Cheyenne Hub Drag

    NASA Technical Reports Server (NTRS)

    Solis, Eduardo; Bass, Tal A.; Keith, Matthew D.; Oppenheim, Rebecca T.; Runyon, Bryan T.; Veras-Alba, Belen

    2016-01-01

    In 2016, the U.S. Army Aviation Development Directorate (ADD) conducted tests in the U.S. Army 7- by 10- Foot Wind Tunnel at NASA Ames Research Center of a nonrotating 2/5th-scale AH-56 rotor hub. The objective of the tests was to determine how removing the mechanical control gyro affected the drag. Data for the lift, drag, and pitching moment were recorded for the 4-bladed rotor hub in various hardware configurations, azimuth angles, and angles of attack. Numerical simulations of a selection of the configurations and orientations were then performed, and the results were compared with the test data. To generate the simulation results, the hardware configurations were modeled using Creo and Rhinoceros 5, three-dimensional surface modeling computer-aided design (CAD) programs. The CAD model was imported into Rotorcraft Computational Fluid Dynamics (RotCFD), a computational fluid dynamics (CFD) tool used for analyzing rotor flow fields. RotCFD simulation results were compared with the experimental results of three hardware configurations at two azimuth angles, two angles of attack, and with and without wind tunnel walls. The results help validate RotCFD as a tool for analyzing low-drag rotor hub designs for advanced high-speed rotorcraft concepts. Future work will involve simulating additional hub geometries to reduce drag or tailor to other desired performance levels.

  6. Morphologic and Aerodynamic Considerations Regarding the Plumed Seeds of Tragopogon pratensis and Their Implications for Seed Dispersal

    PubMed Central

    2015-01-01

    Tragopogon pratensis is a small herbaceous plant that uses wind as the dispersal vector for its seeds. The seeds are attached to parachutes that increase the aerodynamic drag force and increase the total distance travelled. Our hypothesis is that evolution has carefully tuned the air permeability of the seeds to operate in the most convenient fluid dynamic regime. To achieve final permeability, the primary and secondary fibres of the pappus have evolved with complex weaving; this maximises the drag force (i.e., the drag coefficient), and the pappus operates in an “optimal” state. We used computational fluid dynamics (CFD) simulations to compute the seed drag coefficient and compare it with data obtained from drop experiments. The permeability of the parachute was estimated from microscope images. Our simulations reveal three flow regimes in which the parachute can operate according to its permeability. These flow regimes impact the stability of the parachute and its drag coefficient. From the permeability measurements and drop experiments, we show how the seeds operate very close to the optimal case. The porosity of the textile appears to be an appropriate solution to achieve a lightweight structure that allows a low terminal velocity, a stable flight and a very efficient parachute for the velocity at which it operates. PMID:25938765

  7. Rising dynamics of a bubble confined in vertical cells with rectangular cross-sections

    NASA Astrophysics Data System (ADS)

    Murano, Mayuko; Okumura, Ko

    2017-11-01

    Recently, the drag friction acting on a fluid drop in confined space has been actively studied. Here, we investigate the rising velocity of a bubble in a vertical cell with a rectangular cross-section, both theoretically and experimentally, in which understanding of the drag force acting on the rising bubble is crucial. Although the drag force in such confined space could involve several regimes, we study a special case in which the bubble is long and the aspect-ratio of the rectangular cross-section of the cell is high. As a result, we found new scaling law for the rising velocity and the drag force, and confirmed the laws experimentally. Crossover to the rising dynamics in a Hele-Shaw cell will be also discussed.

  8. Optimal control of lift/drag ratios on a rotating cylinder

    NASA Technical Reports Server (NTRS)

    Ou, Yuh-Roung; Burns, John A.

    1992-01-01

    We present the numerical solution to a problem of maximizing the lift to drag ratio by rotating a circular cylinder in a two-dimensional viscous incompressible flow. This problem is viewed as a test case for the newly developing theoretical and computational methods for control of fluid dynamic systems. We show that the time averaged lift to drag ratio for a fixed finite-time interval achieves its maximum value at an optimal rotation rate that depends on the time interval.

  9. Aerodynamic analysis of formula student car

    NASA Astrophysics Data System (ADS)

    Dharmawan, Mohammad Arief; Ubaidillah, Nugraha, Arga Ahmadi; Wijayanta, Agung Tri; Naufal, Brian Aqif

    2018-02-01

    Formula Society of Automotive Engineering (FSAE) is a contest between ungraduated students to create a high-performance formula student car that completes the regulation. Body and the other aerodynamic devices are significant because it affects the drag coefficient and the down force of the car. The drag coefficient is a measurement of the resistance of an object in a fluid environment, a lower the drag coefficient means it will have a less drag force. Down force is a force that pushes an object to the ground, in the car more down force means more grip. The objective of the research was to study the aerodynamic comparison between the race vehicle when attached to the wings and without it. These studies were done in three dimensional (3D) computational fluid dynamic (CFD) simulation method using the Autodesk Flow Design software. These simulations were done by conducted in 5 different velocities. The results of those simulations are by attaching wings on race vehicle has drag coefficient 0.728 and without wings has drag coefficient 0.56. Wings attachment will decrease the drag coefficient about 23 % and also the contour pressure and velocity were known at these simulations.

  10. Effects of stern-foil submerged elevation on the lift and drag of a hydrofoil craft

    NASA Astrophysics Data System (ADS)

    Suastika, K.; Apriansyah

    2018-03-01

    Effects of the stern-foil submerged elevation on the lift and drag of a hydrofoil craft are studied by using computational fluid dynamics (CFD) and by considering three alternative stern-foil submerged elevations. The submerged elevation of the front foil is kept constant in all the alternatives. From among the alternatives, the deepest stern-foil placement results in the highest stern-foil lift with the highest foil’s lift-to-drag ratio. However, considering the lift-to-drag ratio of the whole foil-strut-hull system, the shallowest stern-foil placement results in the highest lift-to-drag ratio. The struts and the foil’s submerged elevation significantly affects the drag of the whole foil-strut-hull system.

  11. Aerodynamic Drag and Drag Reduction: Energy and Energy Savings (Invited)

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.

    2003-01-01

    An assessment of the role of fluid dynamic resistance and/or aerodynamic drag and the relationship to energy use in the United States is presented. Existing data indicates that up to 25% of the total energy consumed in the United States is used to overcome aerodynamic drag, 27% of the total energy used in the United States is consumed by transportation systems, and 60% of the transportation energy or 16% of the total energy consumed in the United States is used to overcome aerodynamic drag in transportation systems. Drag reduction goals of 50% are proposed and discussed which if realized would produce a 7.85% total energy savings. This energy savings correlates to a yearly cost savings in the $30Billion dollar range.

  12. A New Paradigm for Turbulence Control for Drag Reduction

    DTIC Science & Technology

    2017-02-27

    regions with different physical dynamics such as the low-turbulence suction region. C. Ekman Layer Flow and Modeling The Ekman layer19 is a boundary layer...S. Biringen, and P. P. Sullivan, J. Fluid Mech. 724, 581 (2013). 22 S. Waggy, S. Biringen, and A. Kucala, Geophysical and Astrophysical Fluid

  13. Cooperative dynamics in the penetration of a group of intruders in a granular medium.

    PubMed

    Pacheco-Vázquez, F; Ruiz-Suárez, J C

    2010-11-23

    An object moving in a fluid experiences a drag force that depends on its velocity, shape and the properties of the medium. From this simplest case to the motion of a flock of birds or a school of fish, the drag forces and the hydrodynamic interactions determine the full dynamics of the system. Similar drag forces appear when a single projectile impacts and moves through a granular medium, and this case is well studied in the literature. On the other hand, the case in which a group of intruders impact a granular material has never been considered. Here, we study the simultaneous penetration of several intruders in a very low-density granular medium. We find that the intruders move through it in a collective way, following a cooperative dynamics, whose complexity resembles flocking phenomena in living systems or the movement of reptiles in sand, wherein changes in drag are exploited to efficiently move or propel.

  14. Cooperative dynamics in the penetration of a group of intruders in a granular medium

    PubMed Central

    Pacheco-Vázquez, F.; Ruiz-Suárez, J.C.

    2010-01-01

    An object moving in a fluid experiences a drag force that depends on its velocity, shape and the properties of the medium. From this simplest case to the motion of a flock of birds or a school of fish, the drag forces and the hydrodynamic interactions determine the full dynamics of the system. Similar drag forces appear when a single projectile impacts and moves through a granular medium, and this case is well studied in the literature. On the other hand, the case in which a group of intruders impact a granular material has never been considered. Here, we study the simultaneous penetration of several intruders in a very low-density granular medium. We find that the intruders move through it in a collective way, following a cooperative dynamics, whose complexity resembles flocking phenomena in living systems or the movement of reptiles in sand, wherein changes in drag are exploited to efficiently move or propel. PMID:21119636

  15. Drag force scaling for penetration into granular media.

    PubMed

    Katsuragi, Hiroaki; Durian, Douglas J

    2013-05-01

    Impact dynamics is measured for spherical and cylindrical projectiles of many different densities dropped onto a variety non-cohesive granular media. The results are analyzed in terms of the material-dependent scaling of the inertial and frictional drag contributions to the total stopping force. The inertial drag force scales similar to that in fluids, except that it depends on the internal friction coefficient. The frictional drag force scales as the square-root of the density of granular medium and projectile, and hence cannot be explained by the combination of granular hydrostatic pressure and Coulomb friction law. The combined results provide an explanation for the previously observed penetration depth scaling.

  16. Sub-grid drag models for horizontal cylinder arrays immersed in gas-particle multiphase flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkar, Avik; Sun, Xin; Sundaresan, Sankaran

    2013-09-08

    Immersed cylindrical tube arrays often are used as heat exchangers in gas-particle fluidized beds. In multiphase computational fluid dynamics (CFD) simulations of large fluidized beds, explicit resolution of small cylinders is computationally infeasible. Instead, the cylinder array may be viewed as an effective porous medium in coarse-grid simulations. The cylinders' influence on the suspension as a whole, manifested as an effective drag force, and on the relative motion between gas and particles, manifested as a correction to the gas-particle drag, must be modeled via suitable sub-grid constitutive relationships. In this work, highly resolved unit-cell simulations of flow around an arraymore » of horizontal cylinders, arranged in a staggered configuration, are filtered to construct sub-grid, or `filtered', drag models, which can be implemented in coarse-grid simulations. The force on the suspension exerted by the cylinders is comprised of, as expected, a buoyancy contribution, and a kinetic component analogous to fluid drag on a single cylinder. Furthermore, the introduction of tubes also is found to enhance segregation at the scale of the cylinder size, which, in turn, leads to a reduction in the filtered gas-particle drag.« less

  17. Experimental Research on the Dense CFB's Riser and the Simulation Based on the EMMS Model

    NASA Astrophysics Data System (ADS)

    Wang, X. Y.; Wang, S. D.; Fan, B. G.; Liao, L. L.; Jiang, F.; Xu, X.; Wu, X. Z.; Xiao, Y. H.

    2010-03-01

    The flow structure in the CFB (circulating fluidized bed) riser has been investigated. Experimental studies were performed in a cold square section unit with 270 mm×270 mm×10 m. Since the drag force model based on homogeneous two-phase flow such as the Gidaspow drag model could not depict the heterogeneous structures of the gas-solid flow, the structure-dependent energy-minimization multi-scale (EMMS) model based on the heterogenerity was applied in the paper and a revised drag force model based on the EMMS model was proposed. A 2D two-fluid model was used to simulate a bench-scale square cross-section riser of a cold CFB. The typical core-annulus structure and the back-mixing near the wall of the riser were observed and the assembly and fragmentation processes of clusters were captured. By comparing with the Gidaspow drag model, the results obtained by the revised drag model based on EMMS shows better consistency with the experimental data. The model can also depict the difference from the two exit configurations. This study once again proves the key role of drag force in CFD (Computational Fluid Dynamics) simulation and also shows the availability of the revised drag model to describe the gas-solid flow in CFB risers.

  18. Analysis of Drafting Effects in Swimming Using Computational Fluid Dynamics

    PubMed Central

    Silva, António José; Rouboa, Abel; Moreira, António; Reis, Victor Machado; Alves, Francisco; Vilas-Boas, João Paulo; Marinho, Daniel Almeida

    2008-01-01

    The purpose of this study was to determine the effect of drafting distance on the drag coefficient in swimming. A k-epsilon turbulent model was implemented in the commercial code Fluent® and applied to the fluid flow around two swimmers in a drafting situation. Numerical simulations were conducted for various distances between swimmers (0.5-8.0 m) and swimming velocities (1.6-2.0 m.s-1). Drag coefficient (Cd) was computed for each one of the distances and velocities. We found that the drag coefficient of the leading swimmer decreased as the flow velocity increased. The relative drag coefficient of the back swimmer was lower (about 56% of the leading swimmer) for the smallest inter-swimmer distance (0.5 m). This value increased progressively until the distance between swimmers reached 6.0 m, where the relative drag coefficient of the back swimmer was about 84% of the leading swimmer. The results indicated that the Cd of the back swimmer was equal to that of the leading swimmer at distances ranging from 6.45 to 8. 90 m. We conclude that these distances allow the swimmers to be in the same hydrodynamic conditions during training and competitions. Key pointsThe drag coefficient of the leading swimmer decreased as the flow velocity increased.The relative drag coefficient of the back swimmer was least (about 56% of the leading swimmer) for the smallest inter-swimmer distance (0.5 m).The drag coefficient values of both swimmers in drafting were equal to distances ranging between 6.45 m and 8.90 m, considering the different flow velocities.The numerical simulation techniques could be a good approach to enable the analysis of the fluid forces around objects in water, as it happens in swimming. PMID:24150135

  19. Computational fluid dynamic (CFD) analysis on ALUDRA SR-10 UAV with parachute recovery system

    NASA Astrophysics Data System (ADS)

    Saim, R.; Mohd, S.; Shamsudin, S. S.; Zulkifli, M. F.; Omar, Z.; Subari@Rahmat, Z.; Masrom, M. F. Mohd; Zaki, Y.

    2017-09-01

    In an operation, belly landing is mostly applied as recovery method especially on research Unmanned Aerial Vehicle (UAV) such as Aludra SR-10. This type of landing method may encounter tough landing on hard soil and gravel which create high impact load on the aircraft. The impact may cause structural or system damage which costly to be repaired. Nowadays, Parachute Recovery System (PRS) recently used in numerous different tasks such as landing purpose to replace belly landing technique. Parachute use in this system to slow down flying or falling UAV to a safe landing by opening the canopy to increase aerodynamic drag. This paper was described the Computational Fluid Dynamic (CFD) analysis on ALUDRA SR-10 model with two different conditions i.e. the UAV equipped with and without parachute in order to identify the changes of aerodynamic characteristics. This simulation studies using solid models of aircraft and hemisphere parachute and was carried out by using ANSYS 16.0 Fluent under steady and turbulent flow and was modelled using the k-epsilon (k-ε) turbulence model. This simulation was limited to determine the drag force and drag coefficient. The obtained result showed that implementation of parachute increase 0.25 drag coefficient of the aircraft that is from 0.93 to 1.18. Subsequent to the reduction of descent rate caused by the parachute, the drag force of the aircraft increase by 0.76N. These increasing of drag force of the aircraft will produce lower terminal velocity which is expected to reduce the impact force on the aircraft during landing.

  20. Experimental and Computational Fluid Dynamic Analysis of Axial-Flow Hydrodynamic Power Turbine

    DTIC Science & Technology

    2013-03-01

    Number RPM Revolutions per minute WSN Wireless Sensor Network xvi THIS PAGE INTENTIONALLY LEFT BLANK xvii ACKNOWLEDGMENTS I would like...Instruments Wireless Sensor Network (WSN) device, strain data could be sent to Labview acquisition software during a run across the tank. Four channels...be more appropriate for automobiles where minimizing drag is an important design aspect. Conversely, drag coefficients for wind turbine rotors are

  1. Laminar flow drag reduction on soft porous media.

    PubMed

    Mirbod, Parisa; Wu, Zhenxing; Ahmadi, Goodarz

    2017-12-08

    While researches have focused on drag reduction of various coated surfaces such as superhydrophobic structures and polymer brushes, the insights tso understand the fundamental physics of the laminar skin friction coefficient and the related drag reduction due to the formation of finite velocity at porous surfaces is still relatively unknown. Herein, we quantitatively investigated the flow over a porous medium by developing a framework to model flow of a Newtonian fluid in a channel where the lower surface was replaced by various porous media. We showed that the flow drag reduction induced by the presence of the porous media depends on the values of the permeability parameter α = L/(MK) 1/2 and the height ratio δ = H/L, where L is the half thickness of the free flow region, H is the thickness and K is the permeability of the fiber layer, and M is the ratio of the fluid effective dynamic viscosity μ e in porous media to its dynamic viscosity μ. We also examined the velocity and shear stress profiles for flow over the permeable layer for the limiting cases of α → 0 and α → ∞. The model predictions were compared with the experimental data for specific porous media and good agreement was found.

  2. Bloodstain Pattern Analysis: implementation of a fluid dynamic model for position determination of victims

    PubMed Central

    Laan, Nick; de Bruin, Karla G.; Slenter, Denise; Wilhelm, Julie; Jermy, Mark; Bonn, Daniel

    2015-01-01

    Bloodstain Pattern Analysis is a forensic discipline in which, among others, the position of victims can be determined at crime scenes on which blood has been shed. To determine where the blood source was investigators use a straight-line approximation for the trajectory, ignoring effects of gravity and drag and thus overestimating the height of the source. We determined how accurately the location of the origin can be estimated when including gravity and drag into the trajectory reconstruction. We created eight bloodstain patterns at one meter distance from the wall. The origin’s location was determined for each pattern with: the straight-line approximation, our method including gravity, and our method including both gravity and drag. The latter two methods require the volume and impact velocity of each bloodstain, which we are able to determine with a 3D scanner and advanced fluid dynamics, respectively. We conclude that by including gravity and drag in the trajectory calculation, the origin’s location can be determined roughly four times more accurately than with the straight-line approximation. Our study enables investigators to determine if the victim was sitting or standing, or it might be possible to connect wounds on the body to specific patterns, which is important for crime scene reconstruction. PMID:26099070

  3. Bloodstain Pattern Analysis: implementation of a fluid dynamic model for position determination of victims.

    PubMed

    Laan, Nick; de Bruin, Karla G; Slenter, Denise; Wilhelm, Julie; Jermy, Mark; Bonn, Daniel

    2015-06-22

    Bloodstain Pattern Analysis is a forensic discipline in which, among others, the position of victims can be determined at crime scenes on which blood has been shed. To determine where the blood source was investigators use a straight-line approximation for the trajectory, ignoring effects of gravity and drag and thus overestimating the height of the source. We determined how accurately the location of the origin can be estimated when including gravity and drag into the trajectory reconstruction. We created eight bloodstain patterns at one meter distance from the wall. The origin's location was determined for each pattern with: the straight-line approximation, our method including gravity, and our method including both gravity and drag. The latter two methods require the volume and impact velocity of each bloodstain, which we are able to determine with a 3D scanner and advanced fluid dynamics, respectively. We conclude that by including gravity and drag in the trajectory calculation, the origin's location can be determined roughly four times more accurately than with the straight-line approximation. Our study enables investigators to determine if the victim was sitting or standing, or it might be possible to connect wounds on the body to specific patterns, which is important for crime scene reconstruction.

  4. Bloodstain Pattern Analysis: implementation of a fluid dynamic model for position determination of victims

    NASA Astrophysics Data System (ADS)

    Laan, Nick; de Bruin, Karla G.; Slenter, Denise; Wilhelm, Julie; Jermy, Mark; Bonn, Daniel

    2015-06-01

    Bloodstain Pattern Analysis is a forensic discipline in which, among others, the position of victims can be determined at crime scenes on which blood has been shed. To determine where the blood source was investigators use a straight-line approximation for the trajectory, ignoring effects of gravity and drag and thus overestimating the height of the source. We determined how accurately the location of the origin can be estimated when including gravity and drag into the trajectory reconstruction. We created eight bloodstain patterns at one meter distance from the wall. The origin’s location was determined for each pattern with: the straight-line approximation, our method including gravity, and our method including both gravity and drag. The latter two methods require the volume and impact velocity of each bloodstain, which we are able to determine with a 3D scanner and advanced fluid dynamics, respectively. We conclude that by including gravity and drag in the trajectory calculation, the origin’s location can be determined roughly four times more accurately than with the straight-line approximation. Our study enables investigators to determine if the victim was sitting or standing, or it might be possible to connect wounds on the body to specific patterns, which is important for crime scene reconstruction.

  5. A Parametric Geometry Computational Fluid Dynamics (CFD) Study Utilizing Design of Experiments (DOE)

    NASA Technical Reports Server (NTRS)

    Rhew, Ray D.; Parker, Peter A.

    2007-01-01

    Design of Experiments (DOE) techniques were applied to the Launch Abort System (LAS) of the NASA Crew Exploration Vehicle (CEV) parametric geometry Computational Fluid Dynamics (CFD) study to efficiently identify and rank the primary contributors to the integrated drag over the vehicles ascent trajectory. Typical approaches to these types of activities involve developing all possible combinations of geometries changing one variable at a time, analyzing them with CFD, and predicting the main effects on an aerodynamic parameter, which in this application is integrated drag. The original plan for the LAS study team was to generate and analyze more than1000 geometry configurations to study 7 geometric parameters. By utilizing DOE techniques the number of geometries was strategically reduced to 84. In addition, critical information on interaction effects among the geometric factors were identified that would not have been possible with the traditional technique. Therefore, the study was performed in less time and provided more information on the geometric main effects and interactions impacting drag generated by the LAS. This paper discusses the methods utilized to develop the experimental design, execution, and data analysis.

  6. Polymer dynamics in turbulent flow

    NASA Astrophysics Data System (ADS)

    Muthukumar, Murugappan

    2014-03-01

    Presence of dilute amounts of high-molecular weight polymers in liquids undergoing turbulent wall-bounded shear flows leads to significant drag reduction. There are two major proposed mechanisms of drag reduction in the literature. One is based on enhanced viscosity due to chain extension; the other is based on the assumption that elastic energy stored in polymer conformations is comparable to the kinetic energy in some eddies. Using the Navier-Stokes equation for the fluid and the Kirkwood-Riseman-Zimm equation for polymer chains, we have addressed the coupling between the near-wall turbulence dynamics and polymer dynamics. Our theoretical results show that the torque associated with polymer conformations contributes more significantly than the chain stretching and that the characteristic dimensions of polymer coils are much smaller than eddy sizes required for possible exchange of energy. We thus emphasize an additional mechanism to the existing two schools of thought in the search of an understanding of drag reduction.

  7. A Numerical Study of Vortex Dynamics of Flexible Wing Propulsors

    DTIC Science & Technology

    2009-11-23

    of validation. Figure 2 shows the streamline plot of the cylinder for Reynolds number of 40. The coefficient of drag and blob length is calculated to...Large amplitude lunate tail theory of fish locomotion. Journal of Fluid Mechanics 74, 161–182. Clough, R. W. & Penzein, J. 1993 Dynamics of...the swimming of slender fish . Journal of Fluid Mechanics 9, 305–317. Lighthill, M. J. 1970 Aquatic animal propulsion of high hydrodynamical efficiency

  8. The Hydrodynamic Study of the Swimming Gliding: a Two-Dimensional Computational Fluid Dynamics (CFD) Analysis.

    PubMed

    Marinho, Daniel A; Barbosa, Tiago M; Rouboa, Abel I; Silva, António J

    2011-09-01

    Nowadays the underwater gliding after the starts and the turns plays a major role in the overall swimming performance. Hence, minimizing hydrodynamic drag during the underwater phases should be a main aim during swimming. Indeed, there are several postures that swimmers can assume during the underwater gliding, although experimental results were not conclusive concerning the best body position to accomplish this aim. Therefore, the purpose of this study was to analyse the effect in hydrodynamic drag forces of using different body positions during gliding through computational fluid dynamics (CFD) methodology. For this purpose, two-dimensional models of the human body in steady flow conditions were studied. Two-dimensional virtual models had been created: (i) a prone position with the arms extended at the front of the body; (ii) a prone position with the arms placed alongside the trunk; (iii) a lateral position with the arms extended at the front and; (iv) a dorsal position with the arms extended at the front. The drag forces were computed between speeds of 1.6 m/s and 2 m/s in a two-dimensional Fluent(®) analysis. The positions with the arms extended at the front presented lower drag values than the position with the arms aside the trunk. The lateral position was the one in which the drag was lower and seems to be the one that should be adopted during the gliding after starts and turns.

  9. Langley Symposium on Aerodynamics, volume 1

    NASA Technical Reports Server (NTRS)

    Stack, Sharon H. (Compiler)

    1986-01-01

    The purpose of this work was to present current work and results of the Langley Aeronautics Directorate covering the areas of computational fluid dynamics, viscous flows, airfoil aerodynamics, propulsion integration, test techniques, and low-speed, high-speed, and transonic aerodynamics. The following sessions are included in this volume: theoretical aerodynamics, test techniques, fluid physics, and viscous drag reduction.

  10. Diagnostic-Photographic Determination of Drag/Lift/Torque Coefficients of High Speed Rigid Body in Water Column

    DTIC Science & Technology

    2008-01-01

    various physical processes such as supercavitation and bubbles. A diagnostic- photographic method is developed in this study to determine the drag...nonlinear dynamics, body and multi-phase fluid interaction, supercavitation , and instability theory. The technical application of the hydrodynamics of...uV U ω= = − ×V e e e ei i , (29) where Eq.(9) is used. For a supercavitation area, a correction factor may be

  11. Flow drag and heat transfer characteristics of drag-reducing nanofluids with CuO nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Ping-Yang; Wang, Xue-Jiao; Liu, Zhen-Hua

    2017-02-01

    A new kind of aqueous CuO nanofluid with drag-reducing performance was developed. The new working fluid was an aqueous CTAC (cetyltrimethyl ammonium chloride) solution with CuO nanoparticles added and has both special effects of drag-reducing and heat transfer enhancement. An experiment was carried out to investigate the forced convective flow and heat transfer characteristics of conventional drag reducing fluid (aqueous CTAC solution) and the new drag-reducing nanofluid in a test tube with an inner diameter of 25.6 mm. Results indicated that there were no obvious differences of the drag-reducing characteristics between conventional drag reducing fluid and new drag-reducing nanofluid. However, their heat transfer characteristics were obvious different. The heat transfer characteristics of the new drag-reducing nanofluid significantly depend on the liquid temperature, the nanoparticle concentration and the CTAC concentration. The heat transfer enhancement technology of nanofluid could be applied to solve the problem of heat transfer deterioration for conventional drag-reducing fluids.

  12. Drag reduction using wrinkled surfaces in high Reynolds number laminar boundary layer flows

    NASA Astrophysics Data System (ADS)

    Raayai-Ardakani, Shabnam; McKinley, Gareth H.

    2017-09-01

    Inspired by the design of the ribbed structure of shark skin, passive drag reduction methods using stream-wise riblet surfaces have previously been developed and tested over a wide range of flow conditions. Such textures aligned in the flow direction have been shown to be able to reduce skin friction drag by 4%-8%. Here, we explore the effects of periodic sinusoidal riblet surfaces aligned in the flow direction (also known as a "wrinkled" texture) on the evolution of a laminar boundary layer flow. Using numerical analysis with the open source Computational Fluid Dynamics solver OpenFOAM, boundary layer flow over sinusoidal wrinkled plates with a range of wavelength to plate length ratios ( λ / L ), aspect ratios ( 2 A / λ ), and inlet velocities are examined. It is shown that in the laminar boundary layer regime, the riblets are able to retard the viscous flow inside the grooves creating a cushion of stagnant fluid that the high-speed fluid above can partially slide over, thus reducing the shear stress inside the grooves and the total integrated viscous drag force on the plate. Additionally, we explore how the boundary layer thickness, local average shear stress distribution, and total drag force on the wrinkled plate vary with the aspect ratio of the riblets as well as the length of the plate. We show that riblets with an aspect ratio of close to unity lead to the highest reduction in the total drag, and that because of the interplay between the local stress distribution on the plate and stream-wise evolution of the boundary layer the plate has to exceed a critical length to give a net decrease in the total drag force.

  13. Stability of a dragged viscous thread: Onset of ``stitching'' in a fluid-mechanical ``sewing machine''

    NASA Astrophysics Data System (ADS)

    Ribe, Neil M.; Lister, John R.; Chiu-Webster, Sunny

    2006-12-01

    A thin thread of viscous fluid that falls on a moving belt acts like a fluid-mechanical "sewing machine," exhibiting a rich variety of "stitch" patterns including meanders, translated coiling, slanted loops, braiding, figures-of-eight, W-patterns, side kicks, and period-doubled patterns. Using a numerical linear stability analysis, we determine the critical belt speed and oscillation frequency of the first bifurcation, at which a steady dragged viscous thread becomes unstable to transverse oscillations or "meandering." The predictions of the stability analysis agree closely with the experimental measurements of Chiu-Webster and Lister [J. Fluid Mech. 569, 89 (2006)]. Moreover, the critical belt speed and onset frequency for meandering are nearly identical to the contact-point migration speed and angular frequency, respectively, of steady coiling of a viscous thread on a stationary surface, implying a remarkable degree of dynamical similarity between the two phenomena.

  14. Stream-wise distribution of skin-friction drag reduction on a flat plate with bubble injection

    NASA Astrophysics Data System (ADS)

    Qin, Shijie; Chu, Ning; Yao, Yan; Liu, Jingting; Huang, Bin; Wu, Dazhuan

    2017-03-01

    To investigate the stream-wise distribution of skin-friction drag reduction on a flat plate with bubble injection, both experiments and simulations of bubble drag reduction (BDR) have been conducted in this paper. Drag reductions at various flow speeds and air injection rates have been tested in cavitation tunnel experiments. Visualization of bubble flow pattern is implemented synchronously. The computational fluid dynamics (CFD) method, in the framework of Eulerian-Eulerian two fluid modeling, coupled with population balance model (PBM) is used to simulate the bubbly flow along the flat plate. A wide range of bubble sizes considering bubble breakup and coalescence is modeled based on experimental bubble distribution images. Drag and lift forces are fully modeled based on applicable closure models. Both predicted drag reductions and bubble distributions are in reasonable concordance with experimental results. Stream-wise distribution of BDR is revealed based on CFD-PBM numerical results. In particular, four distinct regions with different BDR characteristics are first identified and discussed in this study. Thresholds between regions are extracted and discussed. And it is highly necessary to fully understand the stream-wise distribution of BDR in order to establish a universal scaling law. Moreover, mechanism of stream-wise distribution of BDR is analysed based on the near-wall flow parameters. The local drag reduction is a direct result of near-wall max void fraction. And the near-wall velocity gradient modified by the presence of bubbles is considered as another important factor for bubble drag reduction.

  15. NASA Computational Fluid Dynamics Conference. Volume 1: Sessions 1-6

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Presentations given at the NASA Computational Fluid Dynamics (CFD) Conference held at the NASA Ames Research Center, Moffett Field, California, March 7-9, 1989 are given. Topics covered include research facility overviews of CFD research and applications, validation programs, direct simulation of compressible turbulence, turbulence modeling, advances in Runge-Kutta schemes for solving 3-D Navier-Stokes equations, grid generation and invicid flow computation around aircraft geometries, numerical simulation of rotorcraft, and viscous drag prediction for rotor blades.

  16. Aircraft drag prediction and reduction. Addendum 1: Computational drag analyses and minimization; mission impossible?

    NASA Technical Reports Server (NTRS)

    Slooff, J. W.

    1986-01-01

    The Special Course on Aircraft Drag Prediction was sponsored by the AGARD Fluid Dynamics Panel and the von Karman Institute and presented at the von Karman Institute, Rhode-Saint-Genese, Belgium, on 20 to 23 May 1985 and at the NASA Langley Research Center, Hampton, Virginia, USA, 5 to 6 August 1985. The course began with a general review of drag reduction technology. Then the possibility of reduction of skin friction through control of laminar flow and through modification of the structure of the turbulence in the boundary layer were discussed. Methods for predicting and reducing the drag of external stores, of nacelles, of fuselage protuberances, and of fuselage afterbodies were then presented followed by discussion of transonic drag rise. The prediction of viscous and wave drag by a method matching inviscid flow calculations and boundary layer integral calculations, and the reduction of transonic drag through boundary layer control are also discussed. This volume comprises Paper No. 9 Computational Drag Analyses and Minimization: Mission Impossible, which was not included in AGARD Report 723 (main volume).

  17. Aerodynamic Efficiency Analysis on Modified Drag Generator of Tanker-Ship Using Symmetrical Airfoil

    NASA Astrophysics Data System (ADS)

    Moranova, Starida; Rahmat Hadiyatul A., S. T.; Indra Permana S., S. T.

    2018-04-01

    Time reduction of tanker ship spent in the sea should be applied for solving problems occured in oil and gas distribution, such as the unpunctuality of the distribution and oil spilling. The aerodynamic design for some parts that considered as drag generators is presumed to be one of the solution, utilizing our demand of the increasing speed. This paper suggests two examples of the more-aerodynamic design of a part in the tanker that is considered a drag generator, and reports the value of drag generated from the basic and the suggested aerodynamic designs. The new designs are made by adding the NACA airfoil to the cross section of the drag generator. The scenario is assumed with a 39 km/hour speed of tanker, neglecting the hydrodynamic effects occured in the tanker by cutting it at the waterline which separated the drag between air and water. The results of produced drag in each design are calculated by Computational Fluid Dynamic method.

  18. Generic Hypersonic Inlet Module Analysis

    NASA Technical Reports Server (NTRS)

    Cockrell, Chares E., Jr.; Huebner, Lawrence D.

    2004-01-01

    A computational study associated with an internal inlet drag analysis was performed for a generic hypersonic inlet module. The purpose of this study was to determine the feasibility of computing the internal drag force for a generic scramjet engine module using computational methods. The computational study consisted of obtaining two-dimensional (2D) and three-dimensional (3D) computational fluid dynamics (CFD) solutions using the Euler and parabolized Navier-Stokes (PNS) equations. The solution accuracy was assessed by comparisons with experimental pitot pressure data. The CFD analysis indicates that the 3D PNS solutions show the best agreement with experimental pitot pressure data. The internal inlet drag analysis consisted of obtaining drag force predictions based on experimental data and 3D CFD solutions. A comparative assessment of each of the drag prediction methods is made and the sensitivity of CFD drag values to computational procedures is documented. The analysis indicates that the CFD drag predictions are highly sensitive to the computational procedure used.

  19. Sphere Drag and Heat Transfer

    NASA Astrophysics Data System (ADS)

    Duan, Zhipeng; He, Boshu; Duan, Yuanyuan

    2015-07-01

    Modelling fluid flows past a body is a general problem in science and engineering. Historical sphere drag and heat transfer data are critically examined. The appropriate drag coefficient is proposed to replace the inertia type definition proposed by Newton. It is found that the appropriate drag coefficient is a desirable dimensionless parameter to describe fluid flow physical behavior so that fluid flow problems can be solved in the simple and intuitive manner. The appropriate drag coefficient is presented graphically, and appears more general and reasonable to reflect the fluid flow physical behavior than the traditional century old drag coefficient diagram. Here we present drag and heat transfer experimental results which indicate that there exists a relationship in nature between the sphere drag and heat transfer. The role played by the heat flux has similar nature as the drag. The appropriate drag coefficient can be related to the Nusselt number. This finding opens new possibilities in predicting heat transfer characteristics by drag data. As heat transfer for flow over a body is inherently complex, the proposed simple means may provide an insight into the mechanism of heat transfer for flow past a body.

  20. Sphere Drag and Heat Transfer.

    PubMed

    Duan, Zhipeng; He, Boshu; Duan, Yuanyuan

    2015-07-20

    Modelling fluid flows past a body is a general problem in science and engineering. Historical sphere drag and heat transfer data are critically examined. The appropriate drag coefficient is proposed to replace the inertia type definition proposed by Newton. It is found that the appropriate drag coefficient is a desirable dimensionless parameter to describe fluid flow physical behavior so that fluid flow problems can be solved in the simple and intuitive manner. The appropriate drag coefficient is presented graphically, and appears more general and reasonable to reflect the fluid flow physical behavior than the traditional century old drag coefficient diagram. Here we present drag and heat transfer experimental results which indicate that there exists a relationship in nature between the sphere drag and heat transfer. The role played by the heat flux has similar nature as the drag. The appropriate drag coefficient can be related to the Nusselt number. This finding opens new possibilities in predicting heat transfer characteristics by drag data. As heat transfer for flow over a body is inherently complex, the proposed simple means may provide an insight into the mechanism of heat transfer for flow past a body.

  1. Conflicts between sensory performance and locomotion in weakly electric fish

    NASA Astrophysics Data System (ADS)

    Maciver, Malcolm; Shirgaonkar, Anup; Patankar, Neelesh

    2008-11-01

    The knifefish Apteronotus albifrons hunts for small water insects at night using a self-generated electric field to perceive its world. Using this unique sensory adaptation, the fish senses prey that are near its body with a detection volume that approximates a cylinder that has a length ten times its radius, similar to the fish's elongated body plan. If the fish swims straight, then the back portion of the actively generated detection volume is scanning fluid already scanned by the front portion, but the energy expended to overcome drag is minimized. If it swims with the body pitched, then the rate of volume scanned for prey is increased, but the energy needed to overcome body drag is also increased. In this work we examine the compromise the fish makes between minimizing energy in overcoming drag and maximizing scan rate. We use computational fluid dynamics simulations to assess the impact of changes in body pitch angle on drag, and computational neuroscience simulations to assess the shape and size of the prey detection volume and how body angle changes the scan volume rate.

  2. A hypersonic lift mechanism with decoupled lift and drag surfaces

    NASA Astrophysics Data System (ADS)

    Xu, YiZhe; Xu, ZhiQi; Li, ShaoGuang; Li, Juan; Bai, ChenYuan; Wu, ZiNiu

    2013-05-01

    In the present study, we propose a novel lift mechanism for which the lifting surface produces only lift. This is achieved by mounting a two-dimensional shock-shock interaction generator below the lifting surface. The shock-shock interaction theory in conjunction with a three dimensional correction and checked with computational fluid dynamics (CFD) is used to analyze the lift and drag forces as function of the geometrical parameters and inflow Mach number. Through this study, though limited to only inviscid flow, we conclude that it is possible to obtain a high lift to drag ratio by suitably arranging the shock interaction generator.

  3. On the micromechanics of slip events in sheared, fluid-saturated fault gouge

    NASA Astrophysics Data System (ADS)

    Dorostkar, Omid; Guyer, Robert A.; Johnson, Paul A.; Marone, Chris; Carmeliet, Jan

    2017-06-01

    We used a three-dimensional discrete element method coupled with computational fluid dynamics to study the poromechanical properties of dry and fluid-saturated granular fault gouge. The granular layer was sheared under dry conditions to establish a steady state condition of stick-slip dynamic failure, and then fluid was introduced to study its effect on subsequent failure events. The fluid-saturated case showed increased stick-slip recurrence time and larger slip events compared to the dry case. Particle motion induces fluid flow with local pressure variation, which in turn leads to high particle kinetic energy during slip due to increased drag forces from fluid on particles. The presence of fluid during the stick phase of loading promotes a more stable configuration evidenced by higher particle coordination number. Our coupled fluid-particle simulations provide grain-scale information that improves understanding of slip instabilities and illuminates details of phenomenological, macroscale observations.

  4. Numerical modelling of Mars supersonic disk-gap-band parachute inflation

    NASA Astrophysics Data System (ADS)

    Gao, Xinglong; Zhang, Qingbin; Tang, Qiangang

    2016-06-01

    The transient dynamic behaviour of supersonic disk-gap-band parachutes in a Mars entry environment involving fluid structure interactions is studied. Based on the multi-material Arbitrary Lagrange-Euler method, the coupling dynamic model between a viscous compressible fluid and a flexible large deformation structure of the parachute is solved. The inflation performance of a parachute with a fixed forebody under different flow conditions is analysed. The decelerating parameters of the parachute, including drag area, opening loads, and coefficients, are obtained from the supersonic wind tunnel test data from NASA. Meanwhile, the evolution of the three-dimensional shape of the disk-gap-band parachute during supersonic inflation is presented, and the structural dynamic behaviour of the parachute is predicted. Then, the influence of the presence of the capsule on the flow field of the parachute is investigated, and the wake of unsteady fluid and the distribution of shock wave around the supersonic parachute are presented. Finally, the structural dynamic response of the canopy fabric under high-pressure conditions is comparatively analysed. The results show that the disk-gap-band parachute is well inflated without serious collapse. As the Mach numbers increase from 2.0 to 2.5, the drag coefficients gradually decrease, along with a small decrease in inflation time, which corresponds with test results, and proves the validity of the method proposed in this paper.

  5. On hydrodynamics of drag and lift of the human arm.

    PubMed

    Gardano, Paola; Dabnichki, Peter

    2006-01-01

    The work presents results on drag and lift measurement conducted in a low speed wind tunnel on a replica of the entire human arm. The selected model positions were identical to those during purely rotational front crawl stroke in quasi-static conditions. A computational fluid dynamics model using Fluent showed close correspondence with the experimental results and confirmed the suitability of low speed wind tunnel for the drag and lift measurement in quasi-static conditions. The obtained profiles of the hydrodynamic forces were similar to the dynamic data presented in an earlier study suggesting that shape drag is a major contributing factor in propulsive force generation. The aim of this study was to underline the importance of the entire arm analysis, the elbow angle and a newly defined angle of attack representing the angle of shoulder rotation. It was found that both the maximum value of the drag force at 160 degrees elbow flexion angle and the momentum generated by it exceed the respective magnitudes for the fully extended arm. The latter is underlined by a prolonged plateau of near maximum drag that was obtained at shoulder angle range of 50-140 degrees suggesting that optimal arm configuration in terms of propulsive force generation requires elbow flexion. Furthermore it was found that drag trend is not consistent with the widely assumed and used sinus wave profile. A gap in the existing experimental research was filled as for the first time the entire arm lift and drag was measured across the entire stroke range.

  6. NASA aerodynamics program

    NASA Technical Reports Server (NTRS)

    Holmes, Bruce J.; Schairer, Edward; Hicks, Gary; Wander, Stephen; Blankson, Isiaiah; Rose, Raymond; Olson, Lawrence; Unger, George

    1990-01-01

    Presented here is a comprehensive review of the following aerodynamics elements: computational methods and applications, computational fluid dynamics (CFD) validation, transition and turbulence physics, numerical aerodynamic simulation, drag reduction, test techniques and instrumentation, configuration aerodynamics, aeroacoustics, aerothermodynamics, hypersonics, subsonic transport/commuter aviation, fighter/attack aircraft and rotorcraft.

  7. Multiplex Particle Focusing via Hydrodynamic Force in Viscoelastic Fluids

    NASA Astrophysics Data System (ADS)

    Lee, Doo Jin; Brenner, Howard; Youn, Jae Ryoun; Song, Young Seok

    2013-11-01

    We introduce a multiplex particle focusing phenomenon that arises from the hydrodynamic interaction between the viscoelastic force and the Dean drag force in a microfluidic device. In a confined microchannel, the first normal stress difference of viscoelastic fluids results in a lateral migration of suspended particles. Such a viscoelastic force was harnessed to focus different sized particles in the middle of a microchannel, and spiral channel geometry was also considered in order to take advantage of the counteracting force, Dean drag force that induces particle migration in the outward direction. For theoretical understanding, we performed a numerical analysis of viscoelastic fluids in the spiral microfluidic channel. From these results, a concept of the `Dean-coupled Elasto-inertial Focusing band (DEF)' was proposed. This study provides in-depth physical insight into the multiplex focusing of particles that can open a new venue for microfluidic particle dynamics for a concrete high throughput platform at microscale.

  8. Swimming in a granular frictional fluid

    NASA Astrophysics Data System (ADS)

    Goldman, Daniel

    2012-02-01

    X-ray imaging reveals that the sandfish lizard swims within granular media (sand) using axial body undulations to propel itself without the use of limbs. To model the locomotion of the sandfish, we previously developed an empirical resistive force theory (RFT), a numerical sandfish model coupled to an experimentally validated Discrete Element Method (DEM) model of the granular medium, and a physical robot model. The models reveal that only grains close to the swimmer are fluidized, and that the thrust and drag forces are dominated by frictional interactions among grains and the intruder. In this talk I will use these models to discuss principles of swimming within these granular ``frictional fluids". The empirical drag force laws are measured as the steady-state forces on a small cylinder oriented at different angles relative to the displacement direction. Unlike in Newtonian fluids, resistive forces are independent of speed. Drag forces resemble those in viscous fluids while the ratio of thrust to drag forces is always larger in the granular media than in viscous fluids. Using the force laws as inputs, the RFT overestimates swimming speed by approximately 20%. The simulation reveals that this is related to the non-instantaneous increase in force during reversals of body segments. Despite the inaccuracy of the steady-state assumption, we use the force laws and a recently developed geometric mechanics theory to predict optimal gaits for a model system that has been well-studied in Newtonian fluids, the three-link swimmer. The combination of the geometric theory and the force laws allows us to generate a kinematic relationship between the swimmer's shape and position velocities and to construct connection vector field and constraint curvature function visualizations of the system dynamics. From these we predict optimal gaits for forward, lateral and rotational motion. Experiment and simulation are in accord with the theoretical prediction, and demonstrate that swimming in sand can be viewed as movement in a localized frictional fluid.

  9. Aerodynamic characteristics and heat radiation performance of sportswear fabrics

    NASA Astrophysics Data System (ADS)

    Koga, H.; Hiratsuka, M.; Ito, S.; Konno, A.

    2017-10-01

    Sports such as swimming, speed skating, and marathon are sports competing for time. In recent years, reduction of the fluid drag of sportswear is required for these competitions in order to improve the record. In addition, sweating and discomfort due to body temperature rise during competition are thought to affect competitor performance, and heat radiation performance is also an important factor for sportswear. The authors have measured fluid force drag by wrapping cloth around a cylinder and have confirmed their differences due to the roughness of the fabric surface, differences in sewing. The authors could be verified the drag can be reduced by the position of the wear stitch. This time, we measured the heat radiation performance of 14 types of cloths whose aero dynamic properties are known using cylinders which are regarded as human fuselages, and found elements of cloth with heat radiation performance. It was found to be important for raising the heat radiation performance of sportswear that the fabric is thin and flat surface processing.

  10. Physical aspects of computing the flow of a viscous fluid

    NASA Technical Reports Server (NTRS)

    Mehta, U. B.

    1984-01-01

    One of the main themes in fluid dynamics at present and in the future is going to be computational fluid dynamics with the primary focus on the determination of drag, flow separation, vortex flows, and unsteady flows. A computation of the flow of a viscous fluid requires an understanding and consideration of the physical aspects of the flow. This is done by identifying the flow regimes and the scales of fluid motion, and the sources of vorticity. Discussions of flow regimes deal with conditions of incompressibility, transitional and turbulent flows, Navier-Stokes and non-Navier-Stokes regimes, shock waves, and strain fields. Discussions of the scales of fluid motion consider transitional and turbulent flows, thin- and slender-shear layers, triple- and four-deck regions, viscous-inviscid interactions, shock waves, strain rates, and temporal scales. In addition, the significance and generation of vorticity are discussed. These physical aspects mainly guide computations of the flow of a viscous fluid.

  11. Hydrodynamic interaction of two deformable drops in confined shear flow.

    PubMed

    Chen, Yongping; Wang, Chengyao

    2014-09-01

    We investigate hydrodynamic interaction between two neutrally buoyant circular drops in a confined shear flow based on a computational fluid dynamics simulation using the volume-of-fluid method. The rheological behaviors of interactive drops and the flow regimes are explored with a focus on elucidation of underlying physical mechanisms. We find that two types of drop behaviors during interaction occur, including passing-over motion and reversing motion, which are governed by the competition between the drag of passing flow and the entrainment of reversing flow in matrix fluid. With the increasing confinement, the drop behavior transits from the passing-over motion to reversing motion, because the entrainment of the reversing-flow matrix fluid turns to play the dominant role. The drag of the ambient passing flow is increased by enlarging the initial lateral separation due to the departure of the drop from the reversing flow in matrix fluid, resulting in the emergence of passing-over motion. In particular, a corresponding phase diagram is plotted to quantitatively illustrate the dependence of drop morphologies during interaction on confinement and initial lateral separation.

  12. Computational Fluid Dynamics of the Boundary Layer Characteristics of a Pacific Bluefin Tuna

    DTIC Science & Technology

    2015-09-18

    17  LIST OF ABBREVIATIONS AND ACRONYMS 2D Two Dimensional 3D Three Dimensional AUV Autonomous...Finally, this research has the potential to advance technology of various Navy systems, e.g., torpedo and autonomous underwater vehicle ( AUV ) drag

  13. On-Track Testing as a Validation Method of Computational Fluid Dynamic Simulations of a Formula SAE Vehicle

    NASA Astrophysics Data System (ADS)

    Weingart, Robert

    This thesis is about the validation of a computational fluid dynamics simulation of a ground vehicle by means of a low-budget coast-down test. The vehicle is built to the standards of the 2014 Formula SAE rules. It is equipped with large wings in the front and rear of the car; the vertical loads on the tires are measured by specifically calibrated shock potentiometers. The coast-down test was performed on a runway of a local airport and is used to determine vehicle specific coefficients such as drag, downforce, aerodynamic balance, and rolling resistance for different aerodynamic setups. The test results are then compared to the respective simulated results. The drag deviates about 5% from the simulated to the measured results. The downforce numbers show a deviation up to 18% respectively. Moreover, a sensitivity analysis of inlet velocities, ride heights, and pitch angles was performed with the help of the computational simulation.

  14. Comparison of NTF Experimental Data with CFD Predictions from the Third AIAA CFD Drag Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Vassberg, John C.; Tinoco, Edward N.; Mani, Mori; Levy, David; Zickuhr, Tom; Mavriplis, Dimitri J.; Wahls, Richard A.; Morrison, Joseph H.; Brodersen, Olaf P.; Eisfeld, Bernhard; hide

    2008-01-01

    Recently acquired experimental data for the DLR-F6 wing-body transonic transport con figuration from the National Transonic Facility (NTF) are compared with the database of computational fluid dynamics (CFD) predictions generated for the Third AIAA CFD Drag Prediction Workshop (DPW-III). The NTF data were collected after the DPW-III, which was conducted with blind test cases. These data include both absolute drag levels and increments associated with this wing-body geometry. The baseline DLR-F6 wing-body geometry is also augmented with a side-of-body fairing which eliminates the flow separation in this juncture region. A comparison between computed and experimentally observed sizes of the side-of-body flow-separation bubble is included. The CFD results for the drag polars and separation bubble sizes are computed on grids which represent current engineering best practices for drag predictions. In addition to these data, a more rigorous attempt to predict absolute drag at the design point is provided. Here, a series of three grid densities are utilized to establish an asymptotic trend of computed drag with respect to grid convergence. This trend is then extrapolated to estimate a grid-converged absolute drag level.

  15. Emergent dynamics of Cucker-Smale particles under the effects of random communication and incompressible fluids

    NASA Astrophysics Data System (ADS)

    Ha, Seung-Yeal; Xiao, Qinghua; Zhang, Xiongtao

    2018-04-01

    We study the dynamics of infinitely many Cucker-Smale (C-S) flocking particles under the interplay of random communication and incompressible fluids. For the dynamics of an ensemble of flocking particles, we use the kinetic Cucker-Smale-Fokker-Planck (CS-FP) equation with a degenerate diffusion, whereas for the fluid component, we use the incompressible Navier-Stokes (N-S) equations. These two subsystems are coupled via the drag force. For this coupled model, we present the global existence of weak and strong solutions in Rd (d = 2 , 3). Under the extra regularity assumptions of the initial data, the unique solvability of strong solutions is also established in R2. In a large coupling regime and periodic spatial domain T2 : =R2 /Z2, we show that the velocities of C-S particles and fluids are asymptotically aligned to two constant velocities which may be different.

  16. How animals drink and swim in fluids

    NASA Astrophysics Data System (ADS)

    Jung, Sunghwan

    2011-10-01

    Fluids are essential for most living organisms to maintain a healthy body and also serve as a medium in which they locomote. The fluid bulk or interfaces actively interact with biological structures, which produces highly nonlinear, interesting, and complicated dynamical problems. We studied the lapping of cats and the swimming of Paramecia in various fluidic environments. The problem of the cat drinking can be simplified as the competition between inertia and gravity whereas the problem of Paramecium swimming in viscous fluids results from the competition between viscous drag and thrust. The underlying mechanisms are discussed and understood through laboratory experiments utilizing high-speed photography.

  17. An imbalance in the deep water cycle at subduction zones: The potential importance of the fore-arc mantle

    NASA Astrophysics Data System (ADS)

    Ribeiro, Julia M.; Lee, Cin-Ty A.

    2017-12-01

    The depth of slab dehydration is thought to be controlled by the thermal state of the downgoing slab: cold slabs are thought to mostly dehydrate beneath the arc front while warmer slabs should mostly dehydrate beneath the fore-arc. Cold subduction zone lavas are thus predicted to have interacted with greater extent of water-rich fluids released from the downgoing slab, and should thus display higher water content and be elevated in slab-fluid proxies (i.e., high Ba/Th, H2O/Ce, Rb/Th, etc.) compared to hot subduction zone lavas. Arc lavas, however, display similar slab-fluid signatures regardless of the thermal state of the slab, suggesting more complexity to volatile cycling in subduction zones. Here, we explore whether the serpentinized fore-arc mantle may be an important fluid reservoir in subduction zones and whether it can contribute to arc magma generation by being dragged down with the slab. Using simple mass balance and fluid dynamics calculations, we show that the dragged-down fore-arc mantle could provide enough water (∼7-78% of the total water injected at the trenches) to account for the water outfluxes released beneath the volcanic arc. Hence, we propose that the water captured by arc magmas may not all derive directly from the slab, but a significant component may be indirectly slab-derived via dehydration of dragged-down fore-arc serpentinites. Fore-arc serpentinite dehydration, if universal, could be a process that explains the similar geochemical fingerprint (i.e., in slab fluid proxies) of arc magmas.

  18. In-pipe aerodynamic characteristics of a projectile in comparison with free flight for transonic Mach numbers

    NASA Astrophysics Data System (ADS)

    Hruschka, R.; Klatt, D.

    2018-03-01

    The transient shock dynamics and drag characteristics of a projectile flying through a pipe 3.55 times larger than its diameter at transonic speed are analyzed by means of time-of-flight and pipe wall pressure measurements as well as computational fluid dynamics (CFD). In addition, free-flight drag of the 4.5-mm-pellet-type projectile was also measured in a Mach number range between 0.5 and 1.5, providing a means for comparison against in-pipe data and CFD. The flow is categorized into five typical regimes the in-pipe projectile experiences. When projectile speed and hence compressibility effects are low, the presence of the pipe has little influence on the drag. Between Mach 0.5 and 0.8, there is a strong drag increase due to the presence of the pipe, however, up to a value of about two times the free-flight drag. This is exactly where the nose-to-base pressure ratio of the projectile becomes critical for locally sonic speed, allowing the drag to be estimated by equations describing choked flow through a converging-diverging nozzle. For even higher projectile Mach numbers, the drag coefficient decreases again, to a value slightly below the free-flight drag at Mach 1.5. This behavior is explained by a velocity-independent base pressure coefficient in the pipe, as opposed to base pressure decreasing with velocity in free flight. The drag calculated by CFD simulations agreed largely with the measurements within their experimental uncertainty, with some discrepancies remaining for free-flying projectiles at supersonic speed. Wall pressure measurements as well as measured speeds of both leading and trailing shocks caused by the projectile in the pipe also agreed well with CFD.

  19. Thickened boundary layer theory for air film drag reduction on a van body surface

    NASA Astrophysics Data System (ADS)

    Xie, Xiaopeng; Cao, Lifeng; Huang, Heng

    2018-05-01

    To elucidate drag reduction mechanism on a van body surface under air film condition, a thickened boundary layer theory was proposed and a frictional resistance calculation model of the van body surface was established. The frictional resistance on the van body surface was calculated with different parameters of air film thickness. In addition, the frictional resistance of the van body surface under the air film condition was analyzed by computational fluid dynamics (CFD) simulation and different air film states that influenced the friction resistance on the van body surface were discussed. As supported by the CFD simulation results, the thickened boundary layer theory may provide reference for practical application of air film drag reduction on a van body surface.

  20. Statistical Analysis of CFD Solutions From the Fifth AIAA Drag Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Morrison, Joseph H.

    2013-01-01

    A graphical framework is used for statistical analysis of the results from an extensive N-version test of a collection of Reynolds-averaged Navier-Stokes computational fluid dynamics codes. The solutions were obtained by code developers and users from North America, Europe, Asia, and South America using a common grid sequence and multiple turbulence models for the June 2012 fifth Drag Prediction Workshop sponsored by the AIAA Applied Aerodynamics Technical Committee. The aerodynamic configuration for this workshop was the Common Research Model subsonic transport wing-body previously used for the 4th Drag Prediction Workshop. This work continues the statistical analysis begun in the earlier workshops and compares the results from the grid convergence study of the most recent workshop with previous workshops.

  1. Influence of polymer-surfactant aggregates on fluid flow.

    PubMed

    Malcher, Tadeusz; Gzyl-Malcher, Barbara

    2012-10-01

    This paper describes the influence of interactions of poly(ethylene oxide) (PEO) with cationic cetyltrimethylammonium bromide (CTAB) micelles on drag reduction. Since the interactions between PEO and CTAB micelles alone are weak, salicylate ions were used as CTAB counterions. They facilitate formation of polymer-micelle aggregates by screening the electrostatic repulsions between the charged surfactant headgroups. The influence of polymer-surfactant interactions on drag reduction is of biomedical engineering importance. Drag reducing additives introduced to blood produce beneficial effects on blood circulation, representing a novel way to treat cardiovascular disorders. PEO is a blood-compatible polymer. However, it quickly mechanically degrades when subjected to high shear stresses. Thus, there is a need to search for other additives able to reduce drag, which would be more mechanically stable, e.g. polymer-surfactant aggregates. Numerical simulations of the flow were performed using the CFX software. Based on the internal structure of the polymer-surfactant solution, a hypothesis explaining the reason of increase of drag reduction and decrease in dynamic viscosity with increasing shear rate was proposed. It was suggested that the probable reason for the abrupt increase in friction factor, observed when the critical Reynolds number was exceeded, was the disappearance of the difference in the dynamic viscosity. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Translational and rotational diffusion of Janus nanoparticles at liquid interfaces

    NASA Astrophysics Data System (ADS)

    Rezvantalab, Hossein; Shojaei-Zadeh, Shahab

    2014-11-01

    We use molecular dynamics simulations to understand the thermal motion of nanometer-sized Janus particles at the interface between two immiscible fluids. We consider spherical nanoparticles composed of two sides with different affinity to fluid phases, and evaluate their dynamics and changes in fluid structure as a function of particle size and surface chemistry. We show that as the amphiphilicity increases upon enhancing the wetting of each side with its favored fluid, the in-plane diffusivity at the interface becomes slower. Detail analysis of the fluid structure reveals that this is mainly due to formation of a denser adsorption layer around more amphiphilic particles, which leads to increased drag acting against nanoparticle motion. Similarly, the rotational thermal motion of Janus particles is reduced compared to their homogeneous counterparts as a result of the higher resistance of neighboring fluid species against rotation. We also incorporate the influence of fluid density and surface tension on the interfacial dynamics of such Janus nanoparticles. Our findings may have implications in understanding the adsorption mechanism of drugs and protein molecules with anisotropic surface properties to biological interfaces including cell membranes.

  3. Assessment of the Unstructured Grid Software TetrUSS for Drag Prediction of the DLR-F4 Configuration

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar Z.; Frink, Neal T.

    2002-01-01

    An application of the NASA unstructured grid software system TetrUSS is presented for the prediction of aerodynamic drag on a transport configuration. The paper briefly describes the underlying methodology and summarizes the results obtained on the DLR-F4 transport configuration recently presented in the first AIAA computational fluid dynamics (CFD) Drag Prediction Workshop. TetrUSS is a suite of loosely coupled unstructured grid CFD codes developed at the NASA Langley Research Center. The meshing approach is based on the advancing-front and the advancing-layers procedures. The flow solver employs a cell-centered, finite volume scheme for solving the Reynolds Averaged Navier-Stokes equations on tetrahedral grids. For the present computations, flow in the viscous sublayer has been modeled with an analytical wall function. The emphasis of the paper is placed on the practicality of the methodology for accurately predicting aerodynamic drag data.

  4. Kinetic theory-based numerical modeling and analysis of bi-disperse segregated mixture fluidized bed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konan, N. A.; Huckaby, E. D.

    We discuss a series of continuum Euler-Euler simulations of an initially mixed bi-disperse fluidized bed which segregates under certain operating conditions. The simulations use the multi-phase kinetic theory-based description of the momentum and energy exchanges between the phases by Simonin’s Group [see e.g. Gourdel, Simonin and Brunier (1999). Proceedings of 6th International Conference on Circulating Fluidized Beds, Germany, pp. 205-210]. The discussion and analysis of the results focus on the fluid-particle momentum exchange (i.e. drag). Simulations using mono- and poly-disperse fluid-particle drag correlations are analyzed for the Geldart D-type size bi-disperse gas-solid experiments performed by Goldschmidt et al. [Powder Tech.,more » pp. 135-159 (2003)]. The poly-disperse gas-particle drag correlations account for the local particle size distribution by using an effective mixture diameter when calculating the Reynolds number and then correcting the resulting force coefficient. Simulation results show very good predictions of the segregation index for bidisperse beds with the mono-disperse drag correlations contrary to the poly-disperse drag correlations for which the segregation rate is systematically under-predicted. The statistical analysis of the results shows a clear separation in the distribution of the gas-particle mean relaxation times of the small and large particles with simulations using the mono-disperse drag. In contrast, the poly-disperse drag simulations have a significant overlap and also a smaller difference in the mean particle relaxation times. This results in the small and large particles in the bed to respond to the gas similarly without enough relative time lag. The results suggest that the difference in the particle response time induce flow dynamics favorable to a force imbalance which results in the segregation.« less

  5. Kinetic theory-based numerical modeling and analysis of bi-disperse segregated mixture fluidized bed

    DOE PAGES

    Konan, N. A.; Huckaby, E. D.

    2017-06-21

    We discuss a series of continuum Euler-Euler simulations of an initially mixed bi-disperse fluidized bed which segregates under certain operating conditions. The simulations use the multi-phase kinetic theory-based description of the momentum and energy exchanges between the phases by Simonin’s Group [see e.g. Gourdel, Simonin and Brunier (1999). Proceedings of 6th International Conference on Circulating Fluidized Beds, Germany, pp. 205-210]. The discussion and analysis of the results focus on the fluid-particle momentum exchange (i.e. drag). Simulations using mono- and poly-disperse fluid-particle drag correlations are analyzed for the Geldart D-type size bi-disperse gas-solid experiments performed by Goldschmidt et al. [Powder Tech.,more » pp. 135-159 (2003)]. The poly-disperse gas-particle drag correlations account for the local particle size distribution by using an effective mixture diameter when calculating the Reynolds number and then correcting the resulting force coefficient. Simulation results show very good predictions of the segregation index for bidisperse beds with the mono-disperse drag correlations contrary to the poly-disperse drag correlations for which the segregation rate is systematically under-predicted. The statistical analysis of the results shows a clear separation in the distribution of the gas-particle mean relaxation times of the small and large particles with simulations using the mono-disperse drag. In contrast, the poly-disperse drag simulations have a significant overlap and also a smaller difference in the mean particle relaxation times. This results in the small and large particles in the bed to respond to the gas similarly without enough relative time lag. The results suggest that the difference in the particle response time induce flow dynamics favorable to a force imbalance which results in the segregation.« less

  6. Reducing drag of a commuter train, using engine exhaust momentum

    NASA Astrophysics Data System (ADS)

    Ha, Dong Keun

    The objective of this thesis was to perform numerical investigations of two different methods of injecting fluid momentum into the air flow above a commuter train to reduce its drag. Based on previous aerodynamic modifications of heavy duty trucks in improving fuel efficiency, two structural modifications were designed and applied to a Metrolink Services commuter train in the Los Angeles (LA) County area to reduce its drag and subsequently improve fuel efficiency. The first modification was an L-shaped channel, added to the exhaust cooling fan above the locomotive roof to divert and align the exhaust gases in the axial direction. The second modification was adding an airfoil shaped lid over the L-shape channel, to minimize the drag of the perturbed structure, and thus reduce the overall drag. The computational fluid dynamic (CFD) software CCM+ from CD-Adapco with the ?-? turbulence model was used for the simulations. A single train set which consists of three vehicles: one locomotive, one trailer car and one cab car were used. All the vehicles were modeled based on the standard Metrolink fleet train size. The wind speed was at 90 miles per hour (mph), which is the maximum speed for the Orange County Metrolink line. Air was used as the exhaust gas in the simulation. The temperature of the exhausting air emitting out of the cooling fan on the roof was 150 F and the average fan speed was 120 mph. Results showed that with the addition of the lid, momentum injection results in reduced flow separation and pressure recovery behind the locomotive, which reduces the overall drag by at least 30%.

  7. Energy and angular momentum balance in wall-bounded quantum turbulence at very low temperatures.

    PubMed

    Hosio, J J; Eltsov, V B; Heikkinen, P J; Hänninen, R; Krusius, M; L'vov, V S

    2013-01-01

    A superfluid in the absence of a viscous normal component should be the best realization of an ideal inviscid Euler fluid. As expressed by d'Alembert's famous paradox, an ideal fluid does not drag on bodies past which it flows, or in other words it does not exchange momentum with them. In addition, the flow of an ideal fluid does not dissipate kinetic energy. Here we study experimentally whether these properties apply to the flow of superfluid (3)He-B in a rotating cylinder at low temperatures. It is found that ideal behaviour is broken by quantum turbulence, which leads to substantial energy dissipation, as was also observed earlier. Remarkably, the angular momentum exchange between the superfluid and its container approaches nearly ideal behaviour, as the drag almost disappears in the zero-temperature limit. Here the mismatch between energy and angular momentum transfer results in a new physical situation, with severe implications on the flow dynamics.

  8. Finding optimum airfoil shape to get maximum aerodynamic efficiency for a wind turbine

    NASA Astrophysics Data System (ADS)

    Sogukpinar, Haci; Bozkurt, Ismail

    2017-02-01

    In this study, aerodynamic performances of S-series wind turbine airfoil of S 825 are investigated to find optimum angle of attack. Aerodynamic performances calculations are carried out by utilization of a Computational Fluid Dynamics (CFD) method withstand finite capacity approximation by using Reynolds-Averaged-Navier Stokes (RANS) theorem. The lift and pressure coefficients, lift to drag ratio of airfoil S 825 are analyzed with SST turbulence model then obtained results crosscheck with wind tunnel data to verify the precision of computational Fluid Dynamics (CFD) approximation. The comparison indicates that SST turbulence model used in this study can predict aerodynamics properties of wind blade.

  9. The comparative hydrodynamics of rapid rotation by predatory appendages.

    PubMed

    McHenry, M J; Anderson, P S L; Van Wassenbergh, S; Matthews, D G; Summers, A P; Patek, S N

    2016-11-01

    Countless aquatic animals rotate appendages through the water, yet fluid forces are typically modeled with translational motion. To elucidate the hydrodynamics of rotation, we analyzed the raptorial appendages of mantis shrimp (Stomatopoda) using a combination of flume experiments, mathematical modeling and phylogenetic comparative analyses. We found that computationally efficient blade-element models offered an accurate first-order approximation of drag, when compared with a more elaborate computational fluid-dynamic model. Taking advantage of this efficiency, we compared the hydrodynamics of the raptorial appendage in different species, including a newly measured spearing species, Coronis scolopendra The ultrafast appendages of a smasher species (Odontodactylus scyllarus) were an order of magnitude smaller, yet experienced values of drag-induced torque similar to those of a spearing species (Lysiosquillina maculata). The dactyl, a stabbing segment that can be opened at the distal end of the appendage, generated substantial additional drag in the smasher, but not in the spearer, which uses the segment to capture evasive prey. Phylogenetic comparative analyses revealed that larger mantis shrimp species strike more slowly, regardless of whether they smash or spear their prey. In summary, drag was minimally affected by shape, whereas size, speed and dactyl orientation dominated and differentiated the hydrodynamic forces across species and sizes. This study demonstrates the utility of simple mathematical modeling for comparative analyses and illustrates the multi-faceted consequences of drag during the evolutionary diversification of rotating appendages. © 2016. Published by The Company of Biologists Ltd.

  10. Magneto-vibratory separation of glass and bronze granular mixtures immersed in a paramagnetic liquid.

    PubMed

    López-Alcaraz, P; Catherall, A T; Hill, R J A; Leaper, M C; Swift, Michael R; King, P J

    2007-10-01

    A fluid-immersed granular mixture may spontaneously separate when subjected to vertical vibration, separation occurring when the ratio of particle inertia to fluid drag is sufficiently different between the component species of the mixture. Here, we describe how fluid-driven separation is influenced by magneto-Archimedes buoyancy, the additional buoyancy force experienced by a body immersed in a paramagnetic fluid when a strong inhomogeneous magnetic field is applied. In our experiments glass and bronze mixtures immersed in paramagnetic aqueous solutions of MnCl2 have been subjected to sinusoidal vertical vibration. In the absence of a magnetic field the separation is similar to that observed when the interstitial fluid is water. However, at modest applied magnetic fields, magneto-Archimedes buoyancy may balance the inertia/fluid-drag separation mechanism, or it may dominate the separation process. We identify the vibratory and magnetic conditions for four granular configurations, each having distinctive granular convection. Abrupt transitions between these states occur at well-defined values of the magnetic and vibrational parameters. In order to gain insight into the dynamics of the separation process we use computer simulations based on solutions of the Navier-Stokes' equations. The simulations reproduce the experimental results revealing the important role of convection and gap formation in the stability of the different states.

  11. Sub-grid drag model for immersed vertical cylinders in fluidized beds

    DOE PAGES

    Verma, Vikrant; Li, Tingwen; Dietiker, Jean -Francois; ...

    2017-01-03

    Immersed vertical cylinders are often used as heat exchanger in gas-solid fluidized beds. Computational Fluid Dynamics (CFD) simulations are computationally expensive for large scale systems with bundles of cylinders. Therefore sub-grid models are required to facilitate simulations on a coarse grid, where internal cylinders are treated as a porous medium. The influence of cylinders on the gas-solid flow tends to enhance segregation and affect the gas-solid drag. A correction to gas-solid drag must be modeled using a suitable sub-grid constitutive relationship. In the past, Sarkar et al. have developed a sub-grid drag model for horizontal cylinder arrays based on 2Dmore » simulations. However, the effect of a vertical cylinder arrangement was not considered due to computational complexities. In this study, highly resolved 3D simulations with vertical cylinders were performed in small periodic domains. These simulations were filtered to construct a sub-grid drag model which can then be implemented in coarse-grid simulations. Gas-solid drag was filtered for different solids fractions and a significant reduction in drag was identified when compared with simulation without cylinders and simulation with horizontal cylinders. Slip velocities significantly increase when vertical cylinders are present. Lastly, vertical suspension drag due to vertical cylinders is insignificant however substantial horizontal suspension drag is observed which is consistent to the finding for horizontal cylinders.« less

  12. The drag force on a subsonic projectile in a fluid complex plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivlev, A. V.; Zhukhovitskii, D. I.

    2012-09-15

    The incompressible Navier-Stokes equation is employed to describe a subsonic particle flow induced in complex plasmas by a moving projectile. Drag forces acting on the projectile in different flow regimes are calculated. It is shown that, along with the regular neutral gas drag, there is an additional force exerted on the projectile due to dissipation in the surrounding particle fluid. This additional force provides significant contribution to the total drag.

  13. Numerical Fluid Dynamics.

    DTIC Science & Technology

    1983-01-01

    COROLLARY. Similar bodies held in uniform streams of two incompressible viscous fluids with the same orientation must have the same drag coefficient at...Prandtl’s concept [A8, p. 59] was that the flow field around a streamlined body "splits up into two regions: 1. Surrounding the surface of the solid body ...them in ’source panels’ on the 6surface of the body . As in the two -dimensional case, it may be convenient to assume the solid to be at rest, and immersed

  14. A Quasi-Steady Lifting Line Theory for Insect-Like Hovering Flight

    PubMed Central

    Nabawy, Mostafa R. A.; Crowthe, William J.

    2015-01-01

    A novel lifting line formulation is presented for the quasi-steady aerodynamic evaluation of insect-like wings in hovering flight. The approach allows accurate estimation of aerodynamic forces from geometry and kinematic information alone and provides for the first time quantitative information on the relative contribution of induced and profile drag associated with lift production for insect-like wings in hover. The main adaptation to the existing lifting line theory is the use of an equivalent angle of attack, which enables capture of the steady non-linear aerodynamics at high angles of attack. A simple methodology to include non-ideal induced effects due to wake periodicity and effective actuator disc area within the lifting line theory is included in the model. Low Reynolds number effects as well as the edge velocity correction required to account for different wing planform shapes are incorporated through appropriate modification of the wing section lift curve slope. The model has been successfully validated against measurements from revolving wing experiments and high order computational fluid dynamics simulations. Model predicted mean lift to weight ratio results have an average error of 4% compared to values from computational fluid dynamics for eight different insect cases. Application of an unmodified linear lifting line approach leads on average to a 60% overestimation in the mean lift force required for weight support, with most of the discrepancy due to use of linear aerodynamics. It is shown that on average for the eight insects considered, the induced drag contributes 22% of the total drag based on the mean cycle values and 29% of the total drag based on the mid half-stroke values. PMID:26252657

  15. Summary of the Fourth AIAA CFD Drag Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Vassberg, John C.; Tinoco, Edward N.; Mani, Mori; Rider, Ben; Zickuhr, Tom; Levy, David W.; Brodersen, Olaf P.; Eisfeld, Bernhard; Crippa, Simone; Wahls, Richard A.; hide

    2010-01-01

    Results from the Fourth AIAA Drag Prediction Workshop (DPW-IV) are summarized. The workshop focused on the prediction of both absolute and differential drag levels for wing-body and wing-body-horizontal-tail configurations that are representative of transonic transport air- craft. Numerical calculations are performed using industry-relevant test cases that include lift- specific flight conditions, trimmed drag polars, downwash variations, dragrises and Reynolds- number effects. Drag, lift and pitching moment predictions from numerous Reynolds-Averaged Navier-Stokes computational fluid dynamics methods are presented. Solutions are performed on structured, unstructured and hybrid grid systems. The structured-grid sets include point- matched multi-block meshes and over-set grid systems. The unstructured and hybrid grid sets are comprised of tetrahedral, pyramid, prismatic, and hexahedral elements. Effort is made to provide a high-quality and parametrically consistent family of grids for each grid type about each configuration under study. The wing-body-horizontal families are comprised of a coarse, medium and fine grid; an optional extra-fine grid augments several of the grid families. These mesh sequences are utilized to determine asymptotic grid-convergence characteristics of the solution sets, and to estimate grid-converged absolute drag levels of the wing-body-horizontal configuration using Richardson extrapolation.

  16. Viscous Dynamics of Lyme Disease and Syphilis Spirochetes Reveal Flagellar Torque and Drag

    PubMed Central

    Harman, Michael; Vig, Dhruv K.; Radolf, Justin D.; Wolgemuth, Charles W.

    2013-01-01

    The spirochetes that cause Lyme disease (Borrelia burgdorferi) and syphilis (Treponema pallidum) swim through viscous fluids, such as blood and interstitial fluid, by undulating their bodies as traveling, planar waves. These undulations are driven by rotation of the flagella within the periplasmic space, the narrow (∼20–40 nm in width) compartment between the inner and outer membranes. We show here that the swimming speeds of B. burgdorferi and T. pallidum decrease with increases in viscosity of the external aqueous milieu, even though the flagella are entirely intracellular. We then use mathematical modeling to show that the measured changes in speed are consistent with the exertion of constant torque by the spirochetal flagellar motors. Comparison of simulations, experiments, and a simple model for power dissipation allows us to estimate the torque and resistive drag that act on the flagella of these major spirochetal pathogens. PMID:24268139

  17. Particle and Blood Cell Dynamics in Oscillatory Flows Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juan M. Restrepo

    2008-09-01

    Our aim has been to uncover fundamental aspects of the suspension and dislodgement of particles in wall-bounded oscillatory flows, in flows characterized by Reynolds numbers en- compassing the situation found in rivers and near shores (and perhaps in some industrial processes). Our research tools are computational and our coverage of parameter space fairly broad. Computational means circumvent many complications that make the measurement of the dynamics of particles in a laboratory setting an impractical task, especially on the broad range of parameter space we plan to report upon. The impact of this work on the geophysical problem of sedimentation ismore » boosted considerably by the fact that the proposed calculations can be considered ab-initio, in the sense that little to no modeling is done in generating dynamics of the particles and of the moving fluid: we use a three-dimensional Navier Stokes solver along with straightforward boundry conditions. Hence, to the extent that Navier Stokes is a model for an ideal incompressible isotropic Newtonian fluid, the calculations yield benchmark values for such things as the drag, buoyancy, and lift of particles, in a highly controlled environment. Our approach will be to make measurements of the lift, drag, and buoyancy of particles, by considering progressively more complex physical configurations and physics.« less

  18. On the Application of Contour Bumps for Transonic Drag Reduction(Invited)

    NASA Technical Reports Server (NTRS)

    Milholen, William E., II; Owens, Lewis R.

    2005-01-01

    The effect of discrete contour bumps on reducing the transonic drag at off-design conditions on an airfoil have been examined. The research focused on fully-turbulent flow conditions, at a realistic flight chord Reynolds number of 30 million. State-of-the-art computational fluid dynamics methods were used to design a new baseline airfoil, and a family of fixed contour bumps. The new configurations were experimentally evaluated in the 0.3-m Transonic Cryogenic Tunnel at the NASA Langley Research center, which utilizes an adaptive wall test section to minimize wall interference. The computational study showed that transonic drag reduction, on the order of 12% - 15%, was possible using a surface contour bump to spread a normal shock wave. The computational study also indicated that the divergence drag Mach number was increased for the contour bump applications. Preliminary analysis of the experimental data showed a similar contour bump effect, but this data needed to be further analyzed for residual wall interference corrections.

  19. Assessing the capability of continuum and discrete particle methods to simulate gas-solids flow using DNS predictions as a benchmark

    DOE PAGES

    Lu, Liqiang; Liu, Xiaowen; Li, Tingwen; ...

    2017-08-12

    For this study, gas–solids flow in a three-dimension periodic domain was numerically investigated by direct numerical simulation (DNS), computational fluid dynamic-discrete element method (CFD-DEM) and two-fluid model (TFM). DNS data obtained by finely resolving the flow around every particle are used as a benchmark to assess the validity of coarser DEM and TFM approaches. The CFD-DEM predicts the correct cluster size distribution and under-predicts the macro-scale slip velocity even with a grid size as small as twice the particle diameter. The TFM approach predicts larger cluster size and lower slip velocity with a homogeneous drag correlation. Although the slip velocitymore » can be matched by a simple modification to the drag model, the predicted voidage distribution is still different from DNS: Both CFD-DEM and TFM over-predict the fraction of particles in dense regions and under-predict the fraction of particles in regions of intermediate void fractions. Also, the cluster aspect ratio of DNS is smaller than CFD-DEM and TFM. Since a simple correction to the drag model can predict a correct slip velocity, it is hopeful that drag corrections based on more elaborate theories that consider voidage gradient and particle fluctuations may be able to improve the current predictions of cluster distribution.« less

  20. Assessing the capability of continuum and discrete particle methods to simulate gas-solids flow using DNS predictions as a benchmark

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Liqiang; Liu, Xiaowen; Li, Tingwen

    For this study, gas–solids flow in a three-dimension periodic domain was numerically investigated by direct numerical simulation (DNS), computational fluid dynamic-discrete element method (CFD-DEM) and two-fluid model (TFM). DNS data obtained by finely resolving the flow around every particle are used as a benchmark to assess the validity of coarser DEM and TFM approaches. The CFD-DEM predicts the correct cluster size distribution and under-predicts the macro-scale slip velocity even with a grid size as small as twice the particle diameter. The TFM approach predicts larger cluster size and lower slip velocity with a homogeneous drag correlation. Although the slip velocitymore » can be matched by a simple modification to the drag model, the predicted voidage distribution is still different from DNS: Both CFD-DEM and TFM over-predict the fraction of particles in dense regions and under-predict the fraction of particles in regions of intermediate void fractions. Also, the cluster aspect ratio of DNS is smaller than CFD-DEM and TFM. Since a simple correction to the drag model can predict a correct slip velocity, it is hopeful that drag corrections based on more elaborate theories that consider voidage gradient and particle fluctuations may be able to improve the current predictions of cluster distribution.« less

  1. Discovery of riblets in a bird beak (Rynchops) for low fluid drag

    PubMed Central

    2016-01-01

    Riblet structures found on fast-swimming shark scales, such as those found on a mako shark, have been shown to reduce fluid drag. In previous experimental and modelling studies, riblets have been shown to provide drag reduction by lifting vortices formed in turbulent flow, decreasing overall shear stresses. Skimmer birds (Rynchops) are the only birds to catch fish in flight by flying just above the water surface with a submerged beak to fish for food. Because they need to quickly catch prey, reducing drag on their beak is advantageous. For the first time, riblet structures found on the beak of the skimmer bird have been studied experimentally and computationally for low fluid drag properties. In this study, skimmer replicas were studied for drag reduction through pressure drop in closed-channel, turbulent water flow. Pressure drop measurements are compared for black and yellow skimmer beaks in two configurations, and mako shark skin. In addition, two configurations of skimmer beak were modelled to compare drag properties and vortex structures. Results are discussed, and a conceptual model is presented to explain a possible drag reduction mechanism in skimmers. This article is part of the themed issue ‘Bioinspired hierarchically structured surfaces for green science’. PMID:27354734

  2. Financial Brownian Particle in the Layered Order-Book Fluid and Fluctuation-Dissipation Relations

    NASA Astrophysics Data System (ADS)

    Yura, Yoshihiro; Takayasu, Hideki; Sornette, Didier; Takayasu, Misako

    2014-03-01

    We introduce a novel description of the dynamics of the order book of financial markets as that of an effective colloidal Brownian particle embedded in fluid particles. The analysis of comprehensive market data enables us to identify all motions of the fluid particles. Correlations between the motions of the Brownian particle and its surrounding fluid particles reflect specific layering interactions; in the inner layer the correlation is strong and with short memory, while in the outer layer it is weaker and with long memory. By interpreting and estimating the contribution from the outer layer as a drag resistance, we demonstrate the validity of the fluctuation-dissipation relation in this nonmaterial Brownian motion process.

  3. Financial Brownian particle in the layered order-book fluid and fluctuation-dissipation relations.

    PubMed

    Yura, Yoshihiro; Takayasu, Hideki; Sornette, Didier; Takayasu, Misako

    2014-03-07

    We introduce a novel description of the dynamics of the order book of financial markets as that of an effective colloidal Brownian particle embedded in fluid particles. The analysis of comprehensive market data enables us to identify all motions of the fluid particles. Correlations between the motions of the Brownian particle and its surrounding fluid particles reflect specific layering interactions; in the inner layer the correlation is strong and with short memory, while in the outer layer it is weaker and with long memory. By interpreting and estimating the contribution from the outer layer as a drag resistance, we demonstrate the validity of the fluctuation-dissipation relation in this nonmaterial Brownian motion process.

  4. Membrane-based actuation for high-speed single molecule force spectroscopy studies using AFM.

    PubMed

    Sarangapani, Krishna; Torun, Hamdi; Finkler, Ofer; Zhu, Cheng; Degertekin, Levent

    2010-07-01

    Atomic force microscopy (AFM)-based dynamic force spectroscopy of single molecular interactions involves characterizing unbinding/unfolding force distributions over a range of pulling speeds. Owing to their size and stiffness, AFM cantilevers are adversely affected by hydrodynamic forces, especially at pulling speeds >10 microm/s, when the viscous drag becomes comparable to the unbinding/unfolding forces. To circumvent these adverse effects, we have fabricated polymer-based membranes capable of actuating commercial AFM cantilevers at speeds >or=100 microm/s with minimal viscous drag effects. We have used FLUENT, a computational fluid dynamics (CFD) software, to simulate high-speed pulling and fast actuation of AFM cantilevers and membranes in different experimental configurations. The simulation results support the experimental findings on a variety of commercial AFM cantilevers and predict significant reduction in drag forces when membrane actuators are used. Unbinding force experiments involving human antibodies using these membranes demonstrate that it is possible to achieve bond loading rates >or=10(6) pN/s, an order of magnitude greater than that reported with commercial AFM cantilevers and systems.

  5. Boattail juncture shaping for spin-stabilized rounds in supersonic flight

    NASA Astrophysics Data System (ADS)

    Jiajan, W.; Chue, R. S. M.; Nguyen, T.; Yu, S. C. M.

    2015-03-01

    In this paper, the effects of boattail junction shaping on aerodynamic drag and stability of supersonic spin-stabilized rounds are investigated using computational fluid dynamics. For a generic round body comprising of a secant-ogive nose, a cylindrical body and a conical boattail, the shaping technique was achieved by adding a convex surface of varying degrees of radius of curvature to the junction between the cylindrical body and the boattail. It was shown through numerical simulations that this shaping technique can provide a reduction in aerodynamic drag of up to 5.4 % without destabilizing the round bodies when the radius of curvature is less than 8.8 times the diameter of the cylindrical body. The more gradual change of the flow characteristics, e.g., the pressure over the convex surface, was identified as the main reason for the drag reduction. A unique aspect of the current work is that stability is treated as an integral part of the performance assessment. It was also found that the dynamic instability encountered at large radii of curvature is due to the Magnus effects.

  6. The application of CFD for military aircraft design at transonic speeds

    NASA Technical Reports Server (NTRS)

    Smith, C. W.; Braymen, W. W.; Bhateley, I. C.; Londenberg, W. K.

    1989-01-01

    Numerous computational fluid dynamics (CFD) codes are available that solve any of several variations of the transonic flow equations from small disturbance to full Navier-Stokes. The design philosophy at General Dynamics Fort Worth Division involves use of all these levels of codes, depending on the stage of configuration development. Throughout this process, drag calculation is a central issue. An overview is provided for several transonic codes and representative test-to-theory comparisons for fighter-type configurations are presented. Correlations are shown for lift, drag, pitching moment, and pressure distributions. The future of applied CFD is also discussed, including the important task of code validation. With the progress being made in code development and the continued evolution in computer hardware, the routine application of these codes for increasingly more complex geometries and flow conditions seems apparent.

  7. Development of multi-element active aerodynamics for the formula sae car

    NASA Astrophysics Data System (ADS)

    Merkel, James Patrick

    This thesis focuses on the design, development, and implementation of an active aerodynamics system on 2013 Formula SAE car. The aerodynamics package itself consists of five element front and rear wings as well as an under body diffuser. Five element wings produce significant amounts of drag which is a compromise between the cornering ability of the car and the acceleration capability on straights. The active aerodynamics system allows for the wing angle of attack to dynamically change their configuration on track based on sensory data to optimize the wings for any given scenario. The wings are studied using computational fluid dynamics both in their maximum lift configuration as well as a minimum drag configuration. A control system is then developed using an electro mechanical actuation system to articulate the wings between these two states.

  8. A Novel Method to Determine the Hydrodynamic Coefficients of an Eyeball ROV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yh, Eng; Ws, Lau; Low, E.

    2009-01-12

    A good dynamics model is essential and critical for the successful design of navigation and control system of an underwater vehicle. However, it is difficult to determine from the hydrodynamic forces, the inertial added mass terms and the drag coefficients. In this paper, a new experimental method has been used to find the hydrodynamic forces for the ROV II, a remotely operated underwater vehicle. The proposed method is based on the classical free decay test, but with the spring oscillation replaced by a pendulum motion. The experiment results determined from the free decay test of a scaled model compared wellmore » with the simulation results obtained from well‐established computational fluid dynamics (CFD) program. Thus, the proposed approach can be used to find the added mass and drag coefficients for other underwater vehicles.« less

  9. Shark-skin surfaces for fluid-drag reduction in turbulent flow: a review.

    PubMed

    Dean, Brian; Bhushan, Bharat

    2010-10-28

    The skin of fast-swimming sharks exhibits riblet structures aligned in the direction of flow that are known to reduce skin friction drag in the turbulent-flow regime. Structures have been fabricated for study and application that replicate and improve upon the natural shape of the shark-skin riblets, providing a maximum drag reduction of nearly 10 per cent. Mechanisms of fluid drag in turbulent flow and riblet-drag reduction theories from experiment and simulation are discussed. A review of riblet-performance studies is given, and optimal riblet geometries are defined. A survey of studies experimenting with riblet-topped shark-scale replicas is also given. A method for selecting optimal riblet dimensions based on fluid-flow characteristics is detailed, and current manufacturing techniques are outlined. Due to the presence of small amounts of mucus on the skin of a shark, it is expected that the localized application of hydrophobic materials will alter the flow field around the riblets in some way beneficial to the goals of increased drag reduction.

  10. Dedicated vertical wind tunnel for the study of sedimentation of non-spherical particles.

    PubMed

    Bagheri, G H; Bonadonna, C; Manzella, I; Pontelandolfo, P; Haas, P

    2013-05-01

    A dedicated 4-m-high vertical wind tunnel has been designed and constructed at the University of Geneva in collaboration with the Groupe de compétence en mécanique des fluides et procédés énergétiques. With its diverging test section, the tunnel is designed to study the aero-dynamical behavior of non-spherical particles with terminal velocities between 5 and 27 ms(-1). A particle tracking velocimetry (PTV) code is developed to calculate drag coefficient of particles in standard conditions based on the real projected area of the particles. Results of our wind tunnel and PTV code are validated by comparing drag coefficient of smooth spherical particles and cylindrical particles to existing literature. Experiments are repeatable with average relative standard deviation of 1.7%. Our preliminary experiments on the effect of particle to fluid density ratio on drag coefficient of cylindrical particles show that the drag coefficient of freely suspended particles in air is lower than those measured in water or in horizontal wind tunnels. It is found that increasing aspect ratio of cylindrical particles reduces their secondary motions and they tend to be suspended with their maximum area normal to the airflow. The use of the vertical wind tunnel in combination with the PTV code provides a reliable and precise instrument for measuring drag coefficient of freely moving particles of various shapes. Our ultimate goal is the study of sedimentation and aggregation of volcanic particles (density between 500 and 2700 kgm(-3)) but the wind tunnel can be used in a wide range of applications.

  11. The variations on the aerodynamics of a world-ranked wheelchair sprinter in the key-moments of the stroke cycle: A numerical simulation analysis

    PubMed Central

    Marinho, Daniel A.; Morais, Jorge E.; Morouço, Pedro G.; Barbosa, Tiago M.

    2018-01-01

    Biomechanics plays an important role helping Paralympic sprinters to excel, having the aerodynamic drag a significant impact on the athlete’s performance. The aim of this study was to assess the aerodynamics in different key-moments of the stroke cycle by Computational Fluid Dynamics. A world-ranked wheelchair sprinter was scanned on the racing wheelchair wearing his competition gear and helmet. The sprinter was scanned in three different positions: (i) catch (hands in the 12h position on the hand-rim); (ii) the release (hands in the 18h position on the hand-rim) and; (iii) recovery phase (hands do not touch the hand-rim and are hyperextended backwards). The simulations were performed at 2.0, 3.5, 5.0 and 6.5 m/s. The mean viscous and pressure drag components, total drag force and effective area were retrieved after running the numerical simulations. The viscous drag ranged from 3.35 N to 2.94 N, pressure drag from 0.38 N to 5.51 N, total drag force from 0.72 N to 8.45 N and effective area from 0.24 to 0.41 m2. The results pointed out that the sprinter was submitted to less drag in the recovery phase, and higher drag in the catch. These findings suggest the importance of keeping an adequate body alignment to avoid an increase in the drag force. PMID:29489904

  12. The variations on the aerodynamics of a world-ranked wheelchair sprinter in the key-moments of the stroke cycle: A numerical simulation analysis.

    PubMed

    Forte, Pedro; Marinho, Daniel A; Morais, Jorge E; Morouço, Pedro G; Barbosa, Tiago M

    2018-01-01

    Biomechanics plays an important role helping Paralympic sprinters to excel, having the aerodynamic drag a significant impact on the athlete's performance. The aim of this study was to assess the aerodynamics in different key-moments of the stroke cycle by Computational Fluid Dynamics. A world-ranked wheelchair sprinter was scanned on the racing wheelchair wearing his competition gear and helmet. The sprinter was scanned in three different positions: (i) catch (hands in the 12h position on the hand-rim); (ii) the release (hands in the 18h position on the hand-rim) and; (iii) recovery phase (hands do not touch the hand-rim and are hyperextended backwards). The simulations were performed at 2.0, 3.5, 5.0 and 6.5 m/s. The mean viscous and pressure drag components, total drag force and effective area were retrieved after running the numerical simulations. The viscous drag ranged from 3.35 N to 2.94 N, pressure drag from 0.38 N to 5.51 N, total drag force from 0.72 N to 8.45 N and effective area from 0.24 to 0.41 m2. The results pointed out that the sprinter was submitted to less drag in the recovery phase, and higher drag in the catch. These findings suggest the importance of keeping an adequate body alignment to avoid an increase in the drag force.

  13. Original analytical model of the hydrodynamic loads applied on the half-bridge of a circular settling tank

    NASA Astrophysics Data System (ADS)

    Oanta, Emil M.; Dascalescu, Anca-Elena; Sabau, Adrian

    2016-12-01

    The paper presents an original analytical model of the hydrodynamic loads applied on the half-bridge of a circular settling tank. The calculus domain is defined using analytical geometry and the calculus of the local dynamic pressure is based on the radius from the center of the settling tank to the current area, i.e. the relative velocity of the fluid and the depth where the current area is located, i.e. the density of the fluid. Calculus of the local drag forces uses the discrete frontal cross sectional areas of the submerged structure in contact with the fluid. In the last stage is performed the reduction of the local drag forces in the appropriate points belonging to the main beam. This class of loads is producing the flexure of the main beam in a horizontal plane and additional twisting moments along this structure. Taking into account the hydrodynamic loads, the results of the theoretical models, i.e. the analytical model and the finite element model, may have an increased accuracy.

  14. Incorporating geometrically complex vegetation in a computational fluid dynamic framework

    NASA Astrophysics Data System (ADS)

    Boothroyd, Richard; Hardy, Richard; Warburton, Jeff; Rosser, Nick

    2015-04-01

    Vegetation is known to have a significant influence on the hydraulic, geomorphological, and ecological functioning of river systems. Vegetation acts as a blockage to flow, thereby causing additional flow resistance and influencing flow dynamics, in particular flow conveyance. These processes need to be incorporated into flood models to improve predictions used in river management. However, the current practice in representing vegetation in hydraulic models is either through roughness parameterisation or process understanding derived experimentally from flow through highly simplified configurations of fixed, rigid cylinders. It is suggested that such simplifications inadequately describe the geometric complexity that characterises vegetation, and therefore the modelled flow dynamics may be oversimplified. This paper addresses this issue by using an approach combining field and numerical modelling techniques. Terrestrial Laser Scanning (TLS) with waveform processing has been applied to collect a sub-mm, 3-dimensional representation of Prunus laurocerasus, an invasive species to the UK that has been increasingly recorded in riparian zones. Multiple scan perspectives produce a highly detailed point cloud (>5,000,000 individual data points) which is reduced in post processing using an octree-based voxelisation technique. The method retains the geometric complexity of the vegetation by subdividing the point cloud into 0.01 m3 cubic voxels. The voxelised representation is subsequently read into a computational fluid dynamic (CFD) model using a Mass Flux Scaling Algorithm, allowing the vegetation to be directly represented in the modelling framework. Results demonstrate the development of a complex flow field around the vegetation. The downstream velocity profile is characterised by two distinct inflection points. A high velocity zone in the near-bed (plant-stem) region is apparent due to the lack of significant near-bed foliage. Above this, a zone of reduced velocity is found where the bulk of the vegetation blockage is more evenly distributed. Finally, flow rapidly recovers towards the free-stream region. Analysis of the pressure field demonstrates that drag force is non-linearly distributed over the vegetation. In the downstream direction, the drag force decreases through the vegetation. The experiment is extended to emulate vegetation reconfiguration in the flow, and is achieved through rotation of the vegetation about a fixed position (roots) on the bed. The experiment demonstrates a reduction in the total drag force and a shift in the contribution of different drag mechanisms as the degree of rotation increases. In the upright state, form drag dominates, but with additional rotation, the contribution of viscous drag increases. Consequently, the total drag force is found to decrease by approximately one third between the upright and fully rotated states of reconfiguration. Explicit representation of vegetation geometry therefore enables a re-evaluation of vegetative flow resistance. This presents an opportunity to move away from the conventional methods of representing vegetation in hydraulic models, i.e. roughness parameterisation, in favour of a more physically determined approach.

  15. Effects of particle-fluid density ratio on the interactions between the turbulent channel flow and finite-size particles

    NASA Astrophysics Data System (ADS)

    Yu, Zhaosheng; Lin, Zhaowu; Shao, Xueming; Wang, Lian-Ping

    2017-09-01

    A parallel direct-forcing fictitious domain method is employed to perform fully resolved numerical simulations of turbulent channel flow laden with finite-size particles. The effects of the particle-fluid density ratio on the turbulence modulation in the channel flow are investigated at the friction Reynolds number of 180, the particle volume fraction of 0.84 % , and the particle-fluid density ratio ranging from 1 to 104.2. The results show that the variation of the flow drag with the particle-fluid density ratio is not monotonic, with a larger flow drag for the density ratio of 10.42, compared to those of unity and 104.2. A significant drag reduction by the particles is observed for large particle-fluid density ratios during the transient stage, but not at the statistically stationary stage. The intensity of particle velocity fluctuations generally decreases with increasing particle inertia, except that the particle streamwise root-mean-square velocity and streamwise-transverse velocity correlation in the near-wall region are largest at the density ratio of the order of 10. The averaged momentum equations are derived with the spatial averaging theorem and are used to analyze the mechanisms for the effects of the particles on the flow drag. The results indicate that the drag-reduction effect due to the decrease in the fluid Reynolds shear stress is counteracted by the drag-enhancement effect due to the increase in the total particle stress or the interphase drag force for the large particle-inertia case. The sum of the total Reynolds stress and particle inner stress contributions to the flow drag is largest at the density ratio of the order of 10, which is the reason for the largest flow drag at this density ratio. The interphase drag force obtained from the averaged momentum equation (the balance theory) is significantly smaller than (but agrees qualitatively with) that from the empirical drag formula based on the phase-averaged slip velocity for large density ratios. For the neutrally buoyant case, the balance theory predicts a positive interphase force on the particles arising from the negative gradient of the particle inner stress, which cannot be predicted by the drag formula based on the phase-averaged slip velocity. In addition, our results show that both particle collision and particle-turbulence interaction play roles in the formation of the inhomogeneous distribution of the particles at the density ratio of the order of 10.

  16. Effects of particle-fluid density ratio on the interactions between the turbulent channel flow and finite-size particles.

    PubMed

    Yu, Zhaosheng; Lin, Zhaowu; Shao, Xueming; Wang, Lian-Ping

    2017-09-01

    A parallel direct-forcing fictitious domain method is employed to perform fully resolved numerical simulations of turbulent channel flow laden with finite-size particles. The effects of the particle-fluid density ratio on the turbulence modulation in the channel flow are investigated at the friction Reynolds number of 180, the particle volume fraction of 0.84%, and the particle-fluid density ratio ranging from 1 to 104.2. The results show that the variation of the flow drag with the particle-fluid density ratio is not monotonic, with a larger flow drag for the density ratio of 10.42, compared to those of unity and 104.2. A significant drag reduction by the particles is observed for large particle-fluid density ratios during the transient stage, but not at the statistically stationary stage. The intensity of particle velocity fluctuations generally decreases with increasing particle inertia, except that the particle streamwise root-mean-square velocity and streamwise-transverse velocity correlation in the near-wall region are largest at the density ratio of the order of 10. The averaged momentum equations are derived with the spatial averaging theorem and are used to analyze the mechanisms for the effects of the particles on the flow drag. The results indicate that the drag-reduction effect due to the decrease in the fluid Reynolds shear stress is counteracted by the drag-enhancement effect due to the increase in the total particle stress or the interphase drag force for the large particle-inertia case. The sum of the total Reynolds stress and particle inner stress contributions to the flow drag is largest at the density ratio of the order of 10, which is the reason for the largest flow drag at this density ratio. The interphase drag force obtained from the averaged momentum equation (the balance theory) is significantly smaller than (but agrees qualitatively with) that from the empirical drag formula based on the phase-averaged slip velocity for large density ratios. For the neutrally buoyant case, the balance theory predicts a positive interphase force on the particles arising from the negative gradient of the particle inner stress, which cannot be predicted by the drag formula based on the phase-averaged slip velocity. In addition, our results show that both particle collision and particle-turbulence interaction play roles in the formation of the inhomogeneous distribution of the particles at the density ratio of the order of 10.

  17. The drag forces exerted by lahar flows on a cylindrical pier: case study of post Mount Merapi eruptions

    NASA Astrophysics Data System (ADS)

    Faizien Haza, Zainul

    2018-03-01

    Debris flows of lahar flows occurred in post mount eruption is a phenomenon in which large quantities of water, mud, and gravel flow down a stream at a high velocity. It is a second stage of danger after the first danger of lava flows, pyroclastic, and toxic gases. The debris flow of lahar flows has a high density and also high velocity; therefore it has potential detrimental consequences against homes, bridges, and infrastructures, as well as loss of life along its pathway. The collision event between lahar flows and pier of a bridge is observed. The condition is numerically simulated using commercial software of computational fluid dynamic (CFD). The work is also conducted in order to investigate drag force generated during collision. Rheological data of lahar is observed through laboratory test of lahar model as density and viscosity. These data were used as the input data of the CFD simulation. The numerical model is involving two types of fluid: mud and water, therefore multiphase model is adopted in the current CFD simulation. The problem formulation is referring to the constitutive equations of mass and momentum conservation for incompressible and viscous fluid, which in perspective of two dimension (2D). The simulation models describe the situation of the collision event between lahar flows and pier of a bridge. It provides sequential view images of lahar flow impaction and the propagation trend line of the drag force coefficient values. Lahar flow analysis used non-dimensional parameter of Reynolds number. According to the results of numerical simulations, the drag force coefficients are in range 1.23 to 1.48 those are generated by value of flow velocity in range 11.11 m/s to 16.67 m/s.

  18. Drag reduction in the turbulent Kolmogorov flow.

    PubMed

    Boffetta, Guido; Celani, Antonio; Mazzino, Andrea

    2005-03-01

    We investigate the phenomenon of drag reduction in a viscoelastic fluid model of dilute polymer solutions. By means of direct numerical simulations of the three-dimensional turbulent Kolmogorov flow we show that drag reduction takes place above a critical Reynolds number Re(c). An explicit expression for the dependence of Re(c) on polymer elasticity and diffusivity is derived. The values of the drag coefficient obtained for different fluid parameters collapse onto a universal curve when plotted as a function of the rescaled Reynolds number Re/ Re(c). The analysis of the momentum budget allows us to gain some insight on the physics of drag reduction, and suggests the existence of a Re-independent value of the drag cofficient--lower than the Newtonian one--for large Reynolds numbers.

  19. Heat Transfer and Fluid Mechanics Institute, Meeting, 25th, University of California, Davis, Calif., June 21-23, 1976, Proceedings

    NASA Technical Reports Server (NTRS)

    Mckillop, A. A.; Baughn, J. W.; Dwyer, H. A.

    1976-01-01

    Major research advances in heat transfer and fluid dynamics are outlined, with particular reference to relevant energy problems. Of significant importance are such topics as synthetic fuels in combustion, turbulence models, combustion modeling, numerical methods for interacting boundary layers, and light-scattering diagnostics for gases. The discussion covers thermal convection, two-phase flow and boiling heat transfer, turbulent flows, combustion, and aerospace heat transfer problems. Other areas discussed include compressible flows, fluid mechanics and drag, and heat exchangers. Featured topics comprise heat and salt transfer in double-diffusive systems, limits of boiling heat transfer in a liquid-filled enclosure, investigation of buoyancy-induced flow stratification in a cylindrical plenum, and digital algorithms for dynamic analysis of a heat exchanger. Individual items are announced in this issue.

  20. Coherent structure dynamics and identification during the multistage transitions of polymeric turbulent channel flow

    NASA Astrophysics Data System (ADS)

    Zhu, Lu; Xi, Li

    2018-04-01

    Drag reduction induced by polymer additives in wall-bounded turbulence has been studied for decades. A small dosage of polymer additives can drastically reduce the energy dissipation in turbulent flows and alter the flow structures at the same time. As the polymer-induced fluid elasticity increases, drag reduction goes through several stages of transition with drastically different flow statistics. While much attention in the area of polymer-turbulence interactions has been focused on the onset and the asymptotic stage of maximum drag reduction, the transition between the two intermediate stages – low-extent drag reduction (LDR) and high-extent drag reduction (HDR) – likely reflects a qualitative change in the underlying vortex dynamics according to our recent study [1]. In particular, we proposed that polymers start to suppress the lift-up and bursting of vortices at HDR, leading to the localization of turbulent structures. To test our hypothesis, a statistically robust conditional sampling algorithm, based on Jenong and Hussain [2]’s work, was adopted in this study. The comparison of conditional eddies between the Newtonian and the highly elastic turbulence shows that (i) the lifting “strength” of vortices is suppressed by polymers as reflected by the decreasing lifting angle of the conditional eddy and (ii) the curvature of vortices is also eliminated as the orientation of the head of the conditional eddy changes. In summary, the results of conditional sampling support our hypothesis of polymer-turbulence interactions during the LDR-HDR transition.

  1. Aerodynamic tailoring of the Learjet Model 60 wing

    NASA Technical Reports Server (NTRS)

    Chandrasekharan, Reuben M.; Hawke, Veronica M.; Hinson, Michael L.; Kennelly, Robert A., Jr.; Madson, Michael D.

    1993-01-01

    The wing of the Learjet Model 60 was tailored for improved aerodynamic characteristics using the TRANAIR transonic full-potential computational fluid dynamics (CFD) code. A root leading edge glove and wing tip fairing were shaped to reduce shock strength, improve cruise drag and extend the buffet limit. The aerodynamic design was validated by wind tunnel test and flight test data.

  2. Drag Optimization Of Light Trucks Using Computational Fluid Dynamics

    DTIC Science & Technology

    2003-09-01

    dimensional design case 19 study on the Lockheed C-141B aircraft wing, Cosentino and Holst [Ref. 10] reduced the number of design variables from 120 to 12... case letters) 6. AUTHOR(S) 5. FUNDING NUMBERS 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Postgraduate School Monterey, CA 93943...23 B. TWO DIMENSIONAL LIGHT TRUCK SHAPE STUDIES .................. 23 1. Canopies

  3. Dynamics of Nanoparticles in Entangled Polymer Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nath, Pooja; Mangal, Rahul; Kohle, Ferdinand

    The mean square displacement < r 2 > of nanoparticle probes dispersed in simple isotropic liquids and in polymer solutions is interrogated using fluorescence correlation spectroscopy and single-particle tracking (SPT) experiments. Probe dynamics in different regimes of particle diameter (d), relative to characteristic polymer length scales, including the correlation length (ξ), the entanglement mesh size (a), and the radius of gyration (R g), are investigated. In simple fluids and for polymer solutions in which d >> R g, long-time particle dynamics obey random-walk statistics < r 2 >:t, with the bulk zero-shear viscosity of the polymer solution determining the frictionalmore » resistance to particle motion. In contrast, in polymer solutions with d < R g, polymer molecules in solution exert noncontinuum resistances to particle motion and nanoparticle probes appear to interact hydrodynamically only with a local fluid medium with effective drag comparable to that of a solution of polymer chain segments with sizes similar to those of the nanoparticle probes. Under these conditions, the nanoparticles exhibit orders of magnitude faster dynamics than those expected from continuum predictions based on the Stokes–Einstein relation. SPT measurements further show that when d > a, nanoparticle dynamics transition from diffusive to subdiffusive on long timescales, reminiscent of particle transport in a field with obstructions. This last finding is in stark contrast to the nanoparticle dynamics observed in entangled polymer melts, where X-ray photon correlation spectroscopy measurements reveal faster but hyperdiffusive dynamics. As a result, we analyze these results with the help of the hopping model for particle dynamics in polymers proposed by Cai et al. and, on that basis, discuss the physical origins of the local drag experienced by the nanoparticles in entangled polymer solutions.« less

  4. Dynamics of Nanoparticles in Entangled Polymer Solutions

    DOE PAGES

    Nath, Pooja; Mangal, Rahul; Kohle, Ferdinand; ...

    2017-12-01

    The mean square displacement < r 2 > of nanoparticle probes dispersed in simple isotropic liquids and in polymer solutions is interrogated using fluorescence correlation spectroscopy and single-particle tracking (SPT) experiments. Probe dynamics in different regimes of particle diameter (d), relative to characteristic polymer length scales, including the correlation length (ξ), the entanglement mesh size (a), and the radius of gyration (R g), are investigated. In simple fluids and for polymer solutions in which d >> R g, long-time particle dynamics obey random-walk statistics < r 2 >:t, with the bulk zero-shear viscosity of the polymer solution determining the frictionalmore » resistance to particle motion. In contrast, in polymer solutions with d < R g, polymer molecules in solution exert noncontinuum resistances to particle motion and nanoparticle probes appear to interact hydrodynamically only with a local fluid medium with effective drag comparable to that of a solution of polymer chain segments with sizes similar to those of the nanoparticle probes. Under these conditions, the nanoparticles exhibit orders of magnitude faster dynamics than those expected from continuum predictions based on the Stokes–Einstein relation. SPT measurements further show that when d > a, nanoparticle dynamics transition from diffusive to subdiffusive on long timescales, reminiscent of particle transport in a field with obstructions. This last finding is in stark contrast to the nanoparticle dynamics observed in entangled polymer melts, where X-ray photon correlation spectroscopy measurements reveal faster but hyperdiffusive dynamics. As a result, we analyze these results with the help of the hopping model for particle dynamics in polymers proposed by Cai et al. and, on that basis, discuss the physical origins of the local drag experienced by the nanoparticles in entangled polymer solutions.« less

  5. Discovery of riblets in a bird beak (Rynchops) for low fluid drag.

    PubMed

    Martin, Samuel; Bhushan, Bharat

    2016-08-06

    Riblet structures found on fast-swimming shark scales, such as those found on a mako shark, have been shown to reduce fluid drag. In previous experimental and modelling studies, riblets have been shown to provide drag reduction by lifting vortices formed in turbulent flow, decreasing overall shear stresses. Skimmer birds (Rynchops) are the only birds to catch fish in flight by flying just above the water surface with a submerged beak to fish for food. Because they need to quickly catch prey, reducing drag on their beak is advantageous. For the first time, riblet structures found on the beak of the skimmer bird have been studied experimentally and computationally for low fluid drag properties. In this study, skimmer replicas were studied for drag reduction through pressure drop in closed-channel, turbulent water flow. Pressure drop measurements are compared for black and yellow skimmer beaks in two configurations, and mako shark skin. In addition, two configurations of skimmer beak were modelled to compare drag properties and vortex structures. Results are discussed, and a conceptual model is presented to explain a possible drag reduction mechanism in skimmers.This article is part of the themed issue 'Bioinspired hierarchically structured surfaces for green science'. © 2016 The Author(s).

  6. Importance of Variable Density and Non-Boussinesq Effects on the Drag of Spherical Particles

    NASA Astrophysics Data System (ADS)

    Ganguli, Swetava; Lele, Sanjiva

    2017-11-01

    What are the forces that act on a particle as it moves in a fluid? How do they change in the presence of significant heat transfer from the particle, a variable density fluid or gravity? Last year, using particle-resolved simulations we quantified these effects on a single spherical particle and on particles in periodic lattices when O(10-3) 50%) in the absolute drag are observed as λ approaches unity. Oppenheimer, et al. (2016) [1] have proposed a theoretical formula for the drag of a heated sphere at extremely low Re. We show that when Re >O(10), inertial effects completely dominate the drag while when Re

  7. Marginal turbulent state of viscoelastic fluids: A polymer drag reduction perspective.

    PubMed

    Xi, Li; Bai, Xue

    2016-04-01

    The laminar-turbulent (LT) transition of dilute polymer solutions is of great interest not only for the complex transition dynamics itself, but also for its potential link to the maximum drag reduction (MDR) phenomenon. We present an in-depth investigation of the edge state (ES), an asymptotic solution on the LT boundary, in viscoelastic channel flow. For given Re and simulation domain size, mean flow statistics of the ES do not vary with the introduction of polymers, proving that there is a region of turbulent states not susceptible to polymer drag reduction effects. The dynamics of the ES features low-frequency fluctuations and in the longer domains we studied it is nearly periodic with regular bursts of turbulent activities separated by extended quiescent periods. Its flow field is dominated by elongated vortices and streaks, with very weak extensional and rotational flow motions. Polymer stretching is almost exclusively contributed by the mean shear and polymer-turbulence interaction is minimal. Flow structures and the kinematics of the ES match hibernating turbulence, an MDR-like phase intermittently occurring in turbulent dynamics. Its observation now seems to result from recurrent visits to certain parts of the ES. The ES offers explanations for the existence and universality of MDR, the quantitative magnitude of which, however, still remains unsolved.

  8. Marginal turbulent state of viscoelastic fluids: A polymer drag reduction perspective

    NASA Astrophysics Data System (ADS)

    Xi, Li; Bai, Xue

    2016-04-01

    The laminar-turbulent (LT) transition of dilute polymer solutions is of great interest not only for the complex transition dynamics itself, but also for its potential link to the maximum drag reduction (MDR) phenomenon. We present an in-depth investigation of the edge state (ES), an asymptotic solution on the LT boundary, in viscoelastic channel flow. For given Re and simulation domain size, mean flow statistics of the ES do not vary with the introduction of polymers, proving that there is a region of turbulent states not susceptible to polymer drag reduction effects. The dynamics of the ES features low-frequency fluctuations and in the longer domains we studied it is nearly periodic with regular bursts of turbulent activities separated by extended quiescent periods. Its flow field is dominated by elongated vortices and streaks, with very weak extensional and rotational flow motions. Polymer stretching is almost exclusively contributed by the mean shear and polymer-turbulence interaction is minimal. Flow structures and the kinematics of the ES match hibernating turbulence, an MDR-like phase intermittently occurring in turbulent dynamics. Its observation now seems to result from recurrent visits to certain parts of the ES. The ES offers explanations for the existence and universality of MDR, the quantitative magnitude of which, however, still remains unsolved.

  9. Aerodynamic study of state transport bus using computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Kanekar, Siddhesh; Thakre, Prashant; Rajkumar, E.

    2017-11-01

    The main purpose of this study was to develop the aerodynamic study of a Maharashtra state road transport bus. The rising fuel price and strict government regulations makes the road transport uneconomical now days. With the objective of increasing fuel efficiency and reducing the emission of harmful exhaust gases. It has been proven experimentally that vehicle consumes almost 40% of the available useful engine power to overcome the drag resistance. This provides us a huge scope to study the influence of aerodynamic drag. The initial of the project was to identify the drag coefficient of the existing ordinary type model called “Parivartan” from ANSYS fluent. After preliminary analysis of the existing model corresponding changes are made in such a way that their implementation should be possible at workshop level. The simulation of the air flow over the bus was performed in two steps: design on SolidWorks CAD and ANSYS (FLUENT) is used as a virtual analysis tool to estimate the drag coefficient of the bus. We have used the turbulence models k-ε Realizable having a better approximation of the actual result. Around 28% improvement in the drag coefficient is achieved by CFD driven changes in the bus design. Coefficient of drag is improved by 28% and fuel efficiency increased by 20% by CFD driven changes.

  10. Shock Waves Mitigation at Blunt Bodies Using Needles and Shells Against a Supersonic Flow

    NASA Technical Reports Server (NTRS)

    Gilinsky, M.; Blankson, I. M.; Sakharov, V. I.; Shvets, A. I.

    2004-01-01

    The paper contains some experimental and numerical simulation test results on cylindrical blunt body drag reduction using thin spikes or shell mounted in front of a body against a supersonic flow. Experimental tests were conducted using the Aeromechanics and Gas Dynamics Laboratory facilities at the Institute of Mechanics of Moscow State University (IMMSU). Numerical simulations utilizing NASA and IM/MSU codes were conducted at the Hampton University Fluid Mechanics and Acoustics Laboratory. The main purpose of this research is to examine the efficiency of application of multiple spikes for drag reduction and flow stability at the front of a blunt body in different flight conditions, i.e. Mach number, angle of attack, etc. The principal conclusions of these test results are: multiple spike/needle application leads to decrease of drag reduction benefits by comparison with the case of one central mounted needle at the front of a blunt body, but increase lift benefits.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Liqiang; Gao, Xi; Li, Tingwen

    For a long time, salt tracers have been used to measure the residence time distribution (RTD) of fluidized catalytic cracking (FCC) particles. However, due to limitations in experimental measurements and simulation methods, the ability of salt tracers to faithfully represent RTDs has never been directly investigated. Our current simulation results using coarse-grained computational fluid dynamic coupled with discrete element method (CFD-DEM) with filtered drag models show that the residence time of salt tracers with the same terminal velocity as FCC particles is slightly larger than that of FCC particles. This research also demonstrates the ability of filtered drag models tomore » predict the correct RTD curve for FCC particles while the homogeneous drag model may only be used in the dilute riser flow of Geldart type B particles. The RTD of large-scale reactors can then be efficiently investigated with our proposed numerical method as well as by using the old-fashioned salt tracer technology.« less

  12. Modelling the effect of changing design fineness ratio of an airship on its aerodynamic lift and drag performance

    NASA Astrophysics Data System (ADS)

    Jalasabri, J.; Romli, F. I.; Harmin, M. Y.

    2017-12-01

    In developing successful airship designs, it is important to fully understand the effect of the design on the performance of the airship. The aim of this research work is to establish the trend for effects of design fineness ratio of an airship towards its aerodynamic performance. An approximate computer-aided design (CAD) model of the Atlant-100 airship is constructed using CATIA software and it is applied in the computational fluid dynamics (CFD) simulation analysis using Star-CCM+ software. In total, 36 simulation runs are executed with different combinations of values for design fineness ratio, altitude and velocity. The obtained simulation results are analyzed using MINITAB to capture the effects relationship on lift and drag coefficients. Based on the results, it is concluded that the design fineness ratio does have a significant impact on the generated aerodynamic lift and drag forces on the airship.

  13. Fluid Dynamics of Small, Rugged Vacuum Pumps of Viscous-Drag Type

    NASA Technical Reports Server (NTRS)

    Russell, John M.

    2002-01-01

    The need to identify spikes in the concentration of hazardous gases during countdowns to space shuttle launches has led Kennedy Space Center to acquire considerable expertise in the design, construction, and operation of special-purpose gas analyzers of mass-spectrometer type. If such devices could be miniaturized so as to fit in a small airborne package or backpack them their potential applications would include integrated vehicle health monitoring in later-generation space shuttles and in hazardous material detection in airports, to name two examples. The bulkiest components of such devices are vacuum pumps, particularly those that function in the low vacuum range. Now some pumps that operate in the high vacuum range (e.g. molecular-drag and turbomolecular pumps) are already small and rugged. The present work aims to determine whether, on physical grounds, one may or may not adopt the molecular-drag principle to the low-vacuum range (in which case viscous-drag principle is the appropriate term). The deliverable of the present effort is the derivation and justification of some key formulas and calculation methods for the preliminary design of a single-spool, spiral-channel viscous-drag pump.

  14. Super-Cavitating Flow Around Two-Dimensional Conical, Spherical, Disc and Stepped Disc Cavitators

    NASA Astrophysics Data System (ADS)

    Sooraj, S.; Chandrasekharan, Vaishakh; Robson, Rony S.; Bhanu Prakash, S.

    2017-08-01

    A super-cavitating object is a high speed submerged object that is designed to initiate a cavitation bubble at the nose which extends past the aft end of the object, substantially reducing the skin friction drag that would be present if the sides of the object were in contact with the liquid in which the object is submerged. By reducing the drag force the thermal energy consumption to move faster can also be minimised. The super-cavitation behavioural changes with respect to Cavitators of various geometries have been studied by varying the inlet velocity. Two-dimensional computational fluid dynamics analysis has been carried out by applying k-ε turbulence model. The variation of drag coefficient, cavity length with respect to cavitation number and inlet velocity are analyzed. Results showed conical Cavitator with wedge angle of 30° has lesser drag coefficient and cavity length when compared to conical Cavitators with wedge angles 45° and 60°, spherical, disc and stepped disc Cavitators. Conical cavitator 60° and disc cavitator have the maximum cavity length but with higher drag coefficient. Also there is significant variation of supercavitation effect observed between inlet velocities of 32 m/s to 40 m/s.

  15. Dynamics and Control of Newtonian and Viscoelastic Fluids

    NASA Astrophysics Data System (ADS)

    Lieu, Binh K.

    Transition to turbulence represents one of the most intriguing natural phenomena. Flows that are smooth and ordered may become complex and disordered as the flow strength increases. This process is known as transition to turbulence. In this dissertation, we develop theoretical and computational tools for analysis and control of transition and turbulence in shear flows of Newtonian, such as air and water, and complex viscoelastic fluids, such as polymers and molten plastics. Part I of the dissertation is devoted to the design and verification of sensor-free and feedback-based strategies for controlling the onset of turbulence in channel flows of Newtonian fluids. We use high fidelity simulations of the nonlinear flow dynamics to demonstrate the effectiveness of our model-based approach to flow control design. In Part II, we utilize systems theoretic tools to study transition and turbulence in channel flows of viscoelastic fluids. For flows with strong elastic forces, we demonstrate that flow fluctuations can experience significant amplification even in the absence of inertia. We use our theoretical developments to uncover the underlying physical mechanism that leads to this high amplification. For turbulent flows with polymer additives, we develop a model-based method for analyzing the influence of polymers on drag reduction. We demonstrate that our approach predicts drag reducing trends observed in full-scale numerical simulations. In Part III, we develop mathematical framework and computational tools for calculating frequency responses of spatially distributed systems. Using state-of-the-art automatic spectral collocation techniques and new integral formulation, we show that our approach yields more reliable and accurate solutions than currently available methods.

  16. Drag reduction and the dynamics of turbulence in simple and complex fluidsa)

    NASA Astrophysics Data System (ADS)

    Graham, Michael D.

    2014-10-01

    Addition of a small amount of very large polymer molecules or micelle-forming surfactants to a liquid can dramatically reduce the energy dissipation it exhibits in the turbulent flow regime. This rheological drag reduction phenomenon is widely used, for example, in the Alaska pipeline, but it is not well-understood, and no comparable technology exists to reduce turbulent energy consumption in flows of gases, in which polymers or surfactants cannot be dissolved. The most striking feature of this phenomenon is the existence of a so-called maximum drag reduction (MDR) asymptote: for a given geometry and driving force, there is a maximum level of drag reduction that can be achieved through addition of polymers. Changing the concentration, molecular weight or even the chemical structure of the additives has little to no effect on this asymptotic value. This universality is the major puzzle of drag reduction. We describe direct numerical simulations of turbulent minimal channel flow of Newtonian fluids and viscoelastic polymer solutions. Even in the absence of polymers, we show that there are intervals of "hibernating" turbulence that display very low drag as well as many other features of the MDR asymptote observed in polymer solutions. As Weissenberg number increases to moderate values the frequency of these intervals also increases, and a simple theory captures key features of the intermittent dynamics observed in the simulations. At higher Weissenberg number, these intervals are altered - for example, their duration becomes substantially longer and the instantaneous Reynolds shear stress during them becomes very small. Additionally, simulations of "edge states," dynamical trajectories that lie on the boundary between turbulent and laminar flow, display characteristics that are similar to those of hibernating turbulence and thus to the MDR asymptote, again even in the absence of polymer additives. Based on these observations, we propose a tentative unified description of rheological drag reduction. The existence of MDR-like intervals even in the absence of additives sheds light on the observed universality of MDR and may ultimately lead to new flow control approaches for improving energy efficiency in a wide range of processes.

  17. Application of computational fluid dynamics and laminar flow technology for improved performance and sonic boom reduction

    NASA Technical Reports Server (NTRS)

    Bobbitt, Percy J.

    1992-01-01

    A discussion is given of the many factors that affect sonic booms with particular emphasis on the application and development of improved computational fluid dynamics (CFD) codes. The benefits that accrue from interference (induced) lift, distributing lift using canard configurations, the use of wings with dihedral or anhedral and hybrid laminar flow control for drag reduction are detailed. The application of the most advanced codes to a wider variety of configurations along with improved ray-tracing codes to arrive at more accurate and, hopefully, lower sonic booms is advocated. Finally, it is speculated that when all of the latest technology is applied to the design of a supersonic transport it will be found environmentally acceptable.

  18. The first effects of fluid inertia on flows in ordered and random arrays of spheres

    NASA Astrophysics Data System (ADS)

    Hill, Reghan J.; Koch, Donald L.; Ladd, Anthony J. C.

    2001-12-01

    Theory and lattice-Boltzmann simulations are used to examine the effects of fluid inertia, at small Reynolds numbers, on flows in simple cubic, face-centred cubic and random arrays of spheres. The drag force on the spheres, and hence the permeability of the arrays, is determined at small but finite Reynolds numbers, at solid volume fractions up to the close-packed limits of the arrays. For small solid volume fraction, the simulations are compared to theory, showing that the first inertial contribution to the drag force, when scaled with the Stokes drag force on a single sphere in an unbounded fluid, is proportional to the square of the Reynolds number. The simulations show that this scaling persists at solid volume fractions up to the close-packed limits of the arrays, and that the first inertial contribution to the drag force relative to the Stokes-flow drag force decreases with increasing solid volume fraction. The temporal evolution of the spatially averaged velocity and the drag force is examined when the fluid is accelerated from rest by a constant average pressure gradient toward a steady Stokes flow. Theory for the short- and long-time behaviour is in good agreement with simulations, showing that the unsteady force is dominated by quasi-steady drag and added-mass forces. The short- and long-time added-mass coefficients are obtained from potential-flow and quasi-steady viscous-flow approximations, respectively.

  19. Sloshing dynamics on rotating helium dewar tank

    NASA Technical Reports Server (NTRS)

    Hung, R. J.

    1993-01-01

    The generalized mathematical formulation of sloshing dynamics for partially filled liquid of cryogenic superfluid helium II in dewar containers driven by both the gravity gradient and jitter accelerations applicable to scientific spacecraft which is eligible to carry out spinning motion and/or slew motion for the purpose to perform scientific observation during the normal spacecraft operation are investigated. An example is given with Gravity Probe-B (GP-B) spacecraft which is responsible for the sloshing dynamics. The jitter accelerations include slew motion, spinning motion, atmospheric drag on the spacecraft, spacecraft attitude motions arising from machinery vibrations, thruster firing, pointing control of spacecraft, crew motion, etc. Explicit mathematical expressions to cover these forces acting on the spacecraft fluid systems are derived. The numerical computation of sloshing dynamics were based on the non-inertia frame spacecraft bound coordinate, and solve time dependent, three-dimensional formulations of partial differential equations subject to initial and boundary conditions. The explicit mathematical expressions of boundary conditions to cover capillary force effect on the liquid vapor interface in microgravity environments are also derived. The formulations of fluid moment and angular moment fluctuations in fluid profiles induced by the sloshing dynamics, together with fluid stress and moment fluctuations exerted on the spacecraft dewar containers were derived. Results were widely published in the open journals.

  20. Drag penalty due to the asperities in the substrate of super-hydrophobic and liquid infused surfaces

    NASA Astrophysics Data System (ADS)

    Garcia Cartagena, Edgardo J.; Arenas, Isnardo; Leonardi, Stefano

    2017-11-01

    Direct numerical simulations of two superposed fluids in a turbulent channel with a textured surface made of pinnacles of random height have been performed. The viscosity ratio between the two fluids are N =μo /μi = 50 (μo and μi are the viscosities of outer and inner fluid respectively) mimicking a super-hydrophobic surface (water over air) and N=2.5 (water over heptane) resembling a liquid infused surface. Two set of simulations have been performed varying the Reynolds number, Reτ = 180 and Reτ = 390 . The interface between the two fluids is flat simulating infinite surface tension. The position of the interface between the two fluids has been varied in the vertical direction from the base of the substrate (what would be a rough wall) to the highest point of the roughness. Drag reduction is very sensitive to the position of the interface between the two fluids. Asperities above the interface induce a large form drag and diminish considerably the drag reduction. When the mean height of the surface measured from the interface in the outer fluid is greater than one wall unit, k+ > 1 , the drag increases with respect to a smooth wall. Present results provide a guideline to the accuracy required in manufacturing super-hydrophobic and liquid infused surfaces. This work was supported under ONR MURI Grants N00014-12-0875 and N00014-12- 1-0962, Program Manager Dr. Ki-Han Kim. Numerical simulations were performed on the Texas Advanced Computer Center.

  1. Unsteady motion, finite Reynolds numbers, and wall effect on Vorticella convallaria contribute contraction force greater than the stokes drag.

    PubMed

    Ryu, Sangjin; Matsudaira, Paul

    2010-06-02

    Contraction of Vorticella convallaria, a sessile ciliated protozoan, is completed within a few milliseconds and results in a retraction of its cell body toward the substratum by coiling its stalk. Previous studies have modeled the cell body as a sphere and assumed a drag force that satisfies Stokes' law. However, the contraction-induced flow of the medium is transient and bounded by the substrate, and the maximum Reynolds number is larger than unity. Thus, calculations of contractile force from the drag force are incomplete. In this study, we analyzed fluid flow during contraction by the particle tracking velocimetry and computational fluid dynamics simulations to estimate the contractile force. Particle paths show that the induced flow is limited by the substrate. Simulation-based force estimates suggest that the combined effect of the flow unsteadiness, the finite Reynolds number, and the substrate comprises 35% of the total force. The work done in the early stage of contraction and the maximum power output are similar regardless of the medium viscosity. These results suggest that, during the initial development of force, V. convallaria uses a common mechanism for performing mechanical work irrespective of viscous loading conditions. Copyright (c) 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  2. The Structure of High Speed Fluid Jets and Their Use in Cutting Various Soil and Material Types

    DTIC Science & Technology

    1975-04-30

    fluid , a reduction which grows with increase in Reynolds Number (Figure 101) . Franz states that this drag reduction might explain the...176 From photographs Goldin observed that Carbopol, a viscoinelastic fluid which does not give drag reduction , gave a lower jet cohesive...tension and viscoelasticity ), (5) prop- erties of the ambient fluid , (6) the steadiness of the jet flow, and (7) nozzle velocity. In the present study

  3. Prediction of Drag Reduction in Supersonic and Hypersonic Flows with Counterflow Jets

    NASA Technical Reports Server (NTRS)

    Daso, Endwell O.; Beaulieu, Warren; Hager, James O.; Turner, James E. (Technical Monitor)

    2002-01-01

    Computational fluid dynamics solutions of the flowfield of a truncated cone-cylinder with and without counterflow jets have been obtained for the short penetration mode (SPM) and long penetration mode (LPM) of the freestream-counterflow jet interaction flowfield. For the case without the counterflow jet, the comparison of the normalized surface pressures showed very good agreement with experimental data. For the case with the SPM jet, the predicted surface pressures did not compare as well with the experimental data upstream of the expansion corner, while aft of the expansion corner, the comparison of the solution and the data is seen to give much better agreement. The difference in the prediction and the data could be due to the transient character of the jet penetration modes, possible effects of the plasma physics that are not accounted for here, or even the less likely effect of flow turbulence, etc. For the LPM jet computations, one-dimensional isentropic relations were used to derived the jet exit conditions in order to obtain the LPM solutions. The solution for the jet exit Mach number of 3 shows a jet penetration several times longer than that of the SPM, and therefore much weaker bow shock, with an attendant reduction in wave drag. The LPM jet is, in essence, seen to be a "pencil" of fluid, with much higher dynamic pressure, embedded in the oncoming supersonic or hypersonic freestream. The methodology for determining the conditions for the LPM jet could enable a practical approach for the design and application of counterflow LPM jets for the reduction of wave drag and heat flux, thus significantly enhancing the aerodynamic characteristics and aerothermal performance of supersonic and hypersonic vehicles. The solutions show that the qualitative flow structure is very well captured. The obtained results, therefore, suggest that counterflowing jets are viable candidate technology concepts that can be employed to give significant reductions in wave drag, heat flux, and other attendant aerodynamic benefits.

  4. Dynamics of falling droplet and elongational properties of dilute nonionic surfactant solutions with drag-reducing ability

    NASA Astrophysics Data System (ADS)

    Tamano, Shinji; Ohashi, Yota; Morinishi, Yohei

    2017-05-01

    The dynamics of the falling droplet through a nozzle for dilute nonionic surfactant (oleyl-dimethylamine oxide, ODMAO) aqueous solutions with viscoelastic and drag-reducing properties were investigated at different concentrations of ODMAO solutions Cs = 500, 1000, and 1500 ppm by weight. The effects of the flow rate and tube outer diameter on the length of the filament, which was the distance between the tube exit and the lower end of a droplet at the instant when the droplet almost detached from the tube, were clarified by flow visualization measurements by a high-speed video camera. Two types of breaking-off processes near the base of the droplet and within the filament were classified by the Ohnesorge number Oh and the Weber number We. In the regime of the higher Oh and We, the length of the filament became drastically larger at Cs = 1000 and 1500 ppm, whose high spinnability represented the strong viscoelasticity of ODMAO solutions. In the case where the filament was broken up near the lower end of the neck and thinning in time, the thinning of the diameter of the filament was measured by a light-emitting diode micrometer. As for the elasto-capillary thinning of dilute nonionic surfactant solutions, the initial necking process was similar to that of Newtonian fluids and then followed the exponential thinning like polymer solutions. The apparent elongational viscosity of the dilute nonionic surfactant solution was evaluated in the elasto-capillary thinning regime, in which the elongation rate was almost constant. At Cs = 1000 and 1500 ppm, the Trouton ratio, which was the ratio of the apparent elongational viscosity to the shear viscosity, was found to be several orders of magnitude larger than that of Newtonian fluids, while the shear viscosity measured by the capillary viscometer was almost the same order of the Newtonian fluids. The higher elongational property would be closely related to the higher drag-reducing ability of dilute nonionic surfactant solutions.

  5. Summary of Data from the First AIAA CFD Drag Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Levy, David W.; Zickuhr, Tom; Vassberg, John; Agrawal, Shreekant; Wahls, Richard A.; Pirzadeh, Shahyar; Hemsch, Michael J.

    2002-01-01

    The results from the first AIAA CFD Drag Prediction Workshop are summarized. The workshop was designed specifically to assess the state-of-the-art of computational fluid dynamics methods for force and moment prediction. An impartial forum was provided to evaluate the effectiveness of existing computer codes and modeling techniques, and to identify areas needing additional research and development. The subject of the study was the DLR-F4 wing-body configuration, which is representative of transport aircraft designed for transonic flight. Specific test cases were required so that valid comparisons could be made. Optional test cases included constant-C(sub L) drag-rise predictions typically used in airplane design by industry. Results are compared to experimental data from three wind tunnel tests. A total of 18 international participants using 14 different codes submitted data to the workshop. No particular grid type or turbulence model was more accurate, when compared to each other, or to wind tunnel data. Most of the results overpredicted C(sub Lo) and C(sub Do), but induced drag (dC(sub D)/dC(sub L)(exp 2)) agreed fairly well. Drag rise at high Mach number was underpredicted, however, especially at high C(sub L). On average, the drag data were fairly accurate, but the scatter was greater than desired. The results show that well-validated Reynolds-Averaged Navier-Stokes CFD methods are sufficiently accurate to make design decisions based on predicted drag.

  6. "It Has No Color, It Has No Gender, It's Gender Bending": Gender and Sexuality Fluidity and Subversiveness in Drag Performance.

    PubMed

    Egner, Justine; Maloney, Patricia

    2016-07-01

    Gender identity is a key question for drag performers. Previous research has shown a lack of consensus about the subversiveness and gender fluidity of drag performers. This article examines the question: How does the relationship between performers and their audience affect the subversive nature and gender representation of drag performers in this study? Furthermore, is this relationship complicated by sexuality? This study uses ethnographic and interview methods, examining experiences of 10 drag performers. Findings indicate mutuality in the relationship between performers and audience. The recursiveness of this relationship provides a constant feedback to the performers in their effort to displace the audience's previously held notions. The performers have fluid understandings of gender and sexuality, often presenting multiple genders in and out of drag. Interactions between performers and their audience indicate their belief in gender fluidity; moreover, the drag performers themselves desire to be subversive and gender and sexually fluid.

  7. Numerical Performance Prediction of a Miniature Ramjet at Mach 4

    DTIC Science & Technology

    2012-09-01

    with the computational fluids dynamic (CFD) code from ANSYS - CFX . The nozzle-throat area was varied to increase the backpressure and this pushed the...normal shock that was sitting within the inlet, out to the lip of the inlet cowl. Using the eddy dissipation combustion model in ANSYS - CFX , a...improved accuracy in turbulence modeling. 14. SUBJECT TERMS Mach 4, Ramjet, Drag, Turbulence Modeling, Simulation, ANSYS CFX 15. NUMBER

  8. Biological characterization of the skin of shortfin mako shark Isurus oxyrinchus and preliminary study of the hydrodynamic behaviour through computational fluid dynamics.

    PubMed

    Díez, G; Soto, M; Blanco, J M

    2015-07-01

    This study characterized the morphology, density and orientation of the dermal denticles along the body of a shortfin mako shark Isurus oxyrinchus and identified the hydrodynamic parameters of its body through a computational fluid-dynamics model. The study showed a great variability in the morphology, size, shape, orientation and density of dermal denticles along the body of I. oxyrinchus. There was a significant higher density in dorsal and ventral areas of the body and their highest angular deviations were found in the lower part of the mouth and in the areas between the pre-caudal pit and the second dorsal and pelvic fins. A detailed three-dimensional geometry from a scanned body of a shark was carried out to evaluate the hydrodynamic properties such as drag coefficient, lift coefficient and superficial (skin) friction coefficient of the skin together with flow velocity field, according to different roughness coefficients simulating the effect of the dermal denticles. This preliminary approach contributed to detailed information of the denticle interactions. As the height of the denticles was increased, flow velocity and the effect of lift decreased whereas drag increased. The highest peaks of skin friction coefficient were observed around the pectoral fins. © 2015 The Fisheries Society of the British Isles.

  9. Drag Reduction of an Airfoil Using Deep Learning

    NASA Astrophysics Data System (ADS)

    Jiang, Chiyu; Sun, Anzhu; Marcus, Philip

    2017-11-01

    We reduced the drag of a 2D airfoil by starting with a NACA-0012 airfoil and used deep learning methods. We created a database which consists of simulations of 2D external flow over randomly generated shapes. We then developed a machine learning framework for external flow field inference given input shapes. Past work which utilized machine learning in Computational Fluid Dynamics focused on estimations of specific flow parameters, but this work is novel in the inference of entire flow fields. We further showed that learned flow patterns are transferable to cases that share certain similarities. This study illustrates the prospects of deeper integration of data-based modeling into current CFD simulation frameworks for faster flow inference and more accurate flow modeling.

  10. Numerical studies of the surface tension effect of cryogenic liquid helium

    NASA Technical Reports Server (NTRS)

    Hung, R. J.

    1994-01-01

    The generalized mathematical formulation of sloshing dynamics for partially filled liquid of cryogenic superfluid helium II in dewar containers driven by both the gravity gradient and jitter accelerations applicable to scientific spacecraft which is eligible to carry out spinning motion and/or slew motion for the purpose of performing scientific observation during the normal spacecraft operation is investigated. An example is given with Gravity Probe-B (GP-B) spacecraft which is responsible for the sloshing dynamics. The jitter accelerations include slew motion, spinning motion, atmospheric drag on the spacecraft, spacecraft attitude motions arising from machinery vibrations, thruster firing, pointing control of spacecraft, crew motion, etc. Explicit mathematical expressions to cover these forces acting on the spacecraft fluid systems are derived. The numerical computation of sloshing dynamics has been based on the non-inertia frame spacecraft bound coordinate, and solve time-dependent, three-dimensional formulations of partial differential equations subject to initial and boundary conditions. The explicit mathematical expressions of boundary conditions to cover capillary force effect on the liquid vapor interface in microgravity environments are also derived. The formulations of fluid moment and angular moment fluctuations in fluid profiles induced by the sloshing dynamics, together with fluid stress and moment fluctuations exerted on the spacecraft dewar containers, have been derived.

  11. Simulations of High Speed Fragment Trajectories

    NASA Astrophysics Data System (ADS)

    Yeh, Peter; Attaway, Stephen; Arunajatesan, Srinivasan; Fisher, Travis

    2017-11-01

    Flying shrapnel from an explosion are capable of traveling at supersonic speeds and distances much farther than expected due to aerodynamic interactions. Predicting the trajectories and stable tumbling modes of arbitrary shaped fragments is a fundamental problem applicable to range safety calculations, damage assessment, and military technology. Traditional approaches rely on characterizing fragment flight using a single drag coefficient, which may be inaccurate for fragments with large aspect ratios. In our work we develop a procedure to simulate trajectories of arbitrary shaped fragments with higher fidelity using high performance computing. We employ a two-step approach in which the force and moment coefficients are first computed as a function of orientation using compressible computational fluid dynamics. The force and moment data are then input into a six-degree-of-freedom rigid body dynamics solver to integrate trajectories in time. Results of these high fidelity simulations allow us to further understand the flight dynamics and tumbling modes of a single fragment. Furthermore, we use these results to determine the validity and uncertainty of inexpensive methods such as the single drag coefficient model.

  12. Optimal design of UAV's pod shape

    NASA Astrophysics Data System (ADS)

    Wei, Qun; Jia, Hong-guang

    2011-08-01

    In the modern war, UAV(unmanned aircraft system) plays a more and more important role in the army. UAVs always carry electrical-optical reconnaissance systems. These systems are used to accomplish the missions of observing and reconnaissance the battlefield. For traditional UAV, the shape of the pod on UAV is sphericity. In addition, the pod of UAV not only has the job of observing and reconnaissance the battlefield, but its shape also has impact on the UAV's drag when it flies in the air. In this paper, two different kinds of pod models are set up, one is the traditional sphericity model, the other is a new model. Unstructured grid is used on the flow field. Using CFD(computational fluid dynamic) method, the results of the drags of the different kinds of pod are got. The drag's relationship between the pod and the UAV is obtained by comparing the results of simulations. After analyzing the results we can get: when UAV flies at low speed(0.3Ma{0.7Ma), the drag's difference between the two kinds of pod is little, the pod's drag takes a small part of the UAV's whole drag which is only about 14%. At transonic speed(0.8Ma{1.2Ma), the drag's difference between these two kinds of pod is getting bigger and bigger along with the speed goes higher. The traditional pod's drag is 1/3 of the UAV's whole drag value, but for the new pod, it is only 1/5. At supersonic speed(1.3Ma{2.0Ma), the traditional pod's drag goes up rapidly, but the new kind of pod's drag goes up slowly. This makes the difference between the two kinds of UAVs' total drag comes greater. For example, at 2Ma, the total drag of new UAV is only 2/3 of the traditional UAV. These results show: when the UAV flies at low speed, these two kinds of pod have little difference in drag. But if it flies at supersonic speed, the pod has great impact on the UAV's total drag, so the designer of UAV's pod should pay more attention on the out shape.

  13. Impact of drag reducing polymers on the onset of instability in a pipe with reverse flow

    NASA Astrophysics Data System (ADS)

    Shashank, H. J.; Sreenivas, K. R.

    2014-11-01

    The objective of this study is to understand the mechanism by which drag reducing polymer (DRP) additives modify turbulent flow, so as to reduce turbulent drag. Reverse flow in a pipe occurs when the fluid close to the wall moves in an opposite direction to that of the core fluid. Reverse flow is established by using a piston-cylinder mechanism, the programmed motion of which imparts a known impulse to the fluid. When the piston is stopped at the end of the stroke, fluid inertia makes the core of the flow to continue in the same direction. In order to conserve mass, reverse flow is established close to the wall. An inflection point is thus formed, leading to flow instability above a critical Reynolds number. Dye and streak flow visualization experiments are performed to highlight the impact of DRP additives (polyethylene oxide, PEO, dissolved in water). The time of onset of the instability and the wavelength of the observed instability are studied in systems with and without DRP additives. This study will provide further insight into the phenomenon of turbulent polymer drag reduction.

  14. Computational Fluid Dynamic Analyses for the High-Lift Common Research Model Using the USM3D and FUN3D Flow Solvers

    NASA Technical Reports Server (NTRS)

    Rivers, Melissa; Hunter, Craig; Vatsa, Veer

    2017-01-01

    Two Navier-Stokes codes were used to compute flow over the High-Lift Common Research Model (HL-CRM) in preparation for a wind tunnel test to be performed at the NASA Langley Research Center 14-by-22-Foot Subsonic Tunnel in fiscal year 2018. Both flight and wind tunnel conditions were simulated by the two codes at set Mach numbers and Reynolds numbers over a full angle-of-attack range for three configurations: cruise, landing and takeoff. Force curves, drag polars and surface pressure contour comparisons are shown for the two codes. The lift and drag curves compare well for the cruise configuration up to 10deg angle of attack but not as well for the other two configurations. The drag polars compare reasonably well for all three configurations. The surface pressure contours compare well for some of the conditions modeled but not as well for others.

  15. Aerodynamic study of time-trial helmets in cycling racing using CFD analysis.

    PubMed

    Beaumont, F; Taiar, R; Polidori, G; Trenchard, H; Grappe, F

    2018-01-23

    The aerodynamic drag of three different time-trial cycling helmets was analyzed numerically for two different cyclist head positions. Computational Fluid Dynamics (CFD) methods were used to investigate the detailed airflow patterns around the cyclist for a constant velocity of 15 m/s without wind. The CFD simulations have focused on the aerodynamic drag effects in terms of wall shear stress maps and pressure coefficient distributions on the cyclist/helmet system. For a given head position, the helmet shape, by itself, obtained a weak effect on a cyclist's aerodynamic performance (<1.5%). However, by varying head position, a cyclist significantly influences aerodynamic performance; the maximum difference between both positions being about 6.4%. CFD results have also shown that both helmet shape and head position significantly influence drag forces, pressure and wall shear stress distributions on the whole cyclist's body due to the change in the near-wake behavior and in location of corresponding separation and attachment areas around the cyclist. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Computational flow predictions for hypersonic drag devices

    NASA Technical Reports Server (NTRS)

    Tokarcik, Susan A.; Venkatapathy, Ethiraj

    1993-01-01

    The effectiveness of two types of hypersonic decelerators is examined: mechanically deployable flares and inflatable ballutes. Computational fluid dynamics (CFD) is used to predict the flowfield around a solid rocket motor (SRM) with a deployed decelerator. The computations are performed with an ideal gas solver using an effective specific heat ratio of 1.15. The results from the ideal gas solver are compared to computational results from a thermochemical nonequilibrium solver. The surface pressure coefficient, the drag, and the extend of the compression corner separation zone predicted by the ideal gas solver compare well with those predicted by the nonequilibrium solver. The ideal gas solver is computationally inexpensive and is shown to be well suited for preliminary design studies. The computed solutions are used to determine the size and shape of the decelerator that are required to achieve a drag coefficient of 5. Heat transfer rates to the SRM and the decelerators are predicted to estimate the amount of thermal protection required.

  17. Statistical Analysis of CFD Solutions from the Fourth AIAA Drag Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Morrison, Joseph H.

    2010-01-01

    A graphical framework is used for statistical analysis of the results from an extensive N-version test of a collection of Reynolds-averaged Navier-Stokes computational fluid dynamics codes. The solutions were obtained by code developers and users from the U.S., Europe, Asia, and Russia using a variety of grid systems and turbulence models for the June 2009 4th Drag Prediction Workshop sponsored by the AIAA Applied Aerodynamics Technical Committee. The aerodynamic configuration for this workshop was a new subsonic transport model, the Common Research Model, designed using a modern approach for the wing and included a horizontal tail. The fourth workshop focused on the prediction of both absolute and incremental drag levels for wing-body and wing-body-horizontal tail configurations. This work continues the statistical analysis begun in the earlier workshops and compares the results from the grid convergence study of the most recent workshop with earlier workshops using the statistical framework.

  18. Boxfish swimming paradox resolved: forces by the flow of water around the body promote manoeuvrability

    PubMed Central

    Van Wassenbergh, S.; van Manen, K.; Marcroft, T. A.; Alfaro, M. E.; Stamhuis, E. J.

    2015-01-01

    The shape of the carapace protecting the body of boxfishes has been attributed an important hydrodynamic role in drag reduction and in providing automatic, flow-direction realignment and is therefore used in bioinspired design of cars. However, tight swimming-course stabilization is paradoxical given the frequent, high-performance manoeuvring that boxfishes display in their spatially complex, coral reef territories. Here, by performing flow-tank measurements of hydrodynamic drag and yaw moments together with computational fluid dynamics simulations, we reverse several assumptions about the hydrodynamic role of the boxfish carapace. Firstly, despite serving as a model system in aerodynamic design, drag-reduction performance was relatively low compared with more generalized fish morphologies. Secondly, the current theory of course stabilization owing to flow over the boxfish carapace was rejected, as destabilizing moments were found consistently. This solves the boxfish swimming paradox: destabilizing moments enhance manoeuvrability, which is in accordance with the ecological demands for efficient turning and tilting. PMID:25505133

  19. Numerical Investigation of the Ability of Salt Tracers to Represent the Residence Time Distribution of Fluidized Catalytic Cracking Particles

    DOE PAGES

    Lu, Liqiang; Gao, Xi; Li, Tingwen; ...

    2017-11-02

    For a long time, salt tracers have been used to measure the residence time distribution (RTD) of fluidized catalytic cracking (FCC) particles. However, due to limitations in experimental measurements and simulation methods, the ability of salt tracers to faithfully represent RTDs has never been directly investigated. Our current simulation results using coarse-grained computational fluid dynamic coupled with discrete element method (CFD-DEM) with filtered drag models show that the residence time of salt tracers with the same terminal velocity as FCC particles is slightly larger than that of FCC particles. This research also demonstrates the ability of filtered drag models tomore » predict the correct RTD curve for FCC particles while the homogeneous drag model may only be used in the dilute riser flow of Geldart type B particles. The RTD of large-scale reactors can then be efficiently investigated with our proposed numerical method as well as by using the old-fashioned salt tracer technology.« less

  20. Dynamics of defect-induced dark solitons in an exciton-polariton condensate

    NASA Astrophysics Data System (ADS)

    Opala, Andrzej; Pieczarka, Maciej; Bobrovska, Nataliya; Matuszewski, Michał

    2018-04-01

    We study theoretically the emission of dark solitons induced by a moving defect in a nonresonantly pumped exciton-polariton condensate. The number of created dark solitons per unit of time is found to be strongly dependent on the pump power. We relate the observed dynamics of this process to the oscillations of the drag force experienced by the condensate. We investigate the stability of the polariton quantum fluid and present various types of dynamics depending on the condensate and moving obstacle parameters. Furthermore, we provide analytical expressions for dark soliton dynamics using the variational method adapted to the nonequilibrium polariton system. The determined dynamical equations are found to be in excellent agreement with the results of numerical simulations.

  1. Sharp Transition in the Lift Force of a Fluid Flowing Past Nonsymmetrical Obstacles: Evidence for a Lift Crisis in the Drag Crisis Regime.

    PubMed

    Bot, Patrick; Rabaud, Marc; Thomas, Goulven; Lombardi, Alessandro; Lebret, Charles

    2016-12-02

    Bluff bodies moving in a fluid experience a drag force which usually increases with velocity. However in a particular velocity range a drag crisis is observed, i.e., a sharp and strong decrease of the drag force. This counterintuitive result is well characterized for a sphere or a cylinder. Here we show that, for an object breaking the up-down symmetry, a lift crisis is observed simultaneously to the drag crisis. The term lift crisis refers to the fact that at constant incidence the time-averaged transverse force, which remains small or even negative at low velocity, transitions abruptly to large positive values above a critical flow velocity. This transition is characterized from direct force measurements as well as from change in the velocity field around the obstacle.

  2. Self-Propulsion of a Flapping Airfoil Using Cyber-Physical Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Young, Jay; Asselin, Daniel; Williamson, C. H. K.

    2017-11-01

    The fluid dynamics of biologically-inspired flapping propulsion provides a fertile testing ground for the field of unsteady aerodynamics, serving as important groundwork for the design and development of underwater vehicles and micro air vehicles (MAVs). These technologies can provide low cost, compact, and maneuverable means for terrain mapping, search and rescue operations, and reconnaissance. However, most laboratory experiments and simulations have been conducted using tethered airfoils with an imposed freestream velocity, which does not necessarily reflect the conditions under which an airfoil employed as a propulsor would operate. Using a closed-loop force-feedback control system, defined as Cyber-Physical Fluid Dynamics, or CPFD (Mackowski & Williamson 2011, 2015, & 2016), we allow a flapping airfoil to fly forward freely, achieving an equilibrium velocity at which thrust and drag are balanced. We study a combination of actively and passively controlled pitching and heaving dynamics in order to find motions that minimize the energy expended per distance traveled by the propulsion system. This work was supported by the National Science Foundation and the Air Force Office of Scientific Research Grant No. FA9550-15-1-0243, monitored by Dr. Douglas Smith.

  3. Mathematical Fluid Dynamics of Store and Stage Separation

    DTIC Science & Technology

    2005-05-01

    coordinates r = stretched inner radius S, (x) = effective source strength Re, = transition Reynolds number t = time r = reflection coefficient T = temperature...wave drag due to lift integral has the same form as that due to thickness, the source strength of the equivalent body depends on streamwise derivatives...revolution in which the source strength S, (x) is proportional to the x rate of change of cross sectional area, the source strength depends on the streamwise

  4. Drag Reduction and Performance Improvement of Hydraulic Torque Converters with Multiple Biological Characteristics.

    PubMed

    Chunbao, Liu; Li, Li; Yulong, Lei; Changsuo, Liu; Yubo, Zhang

    2016-01-01

    Fish-like, dolphin-like, and bionic nonsmooth surfaces were employed in a hydraulic torque converter to achieve drag reduction and performance improvement, which were aimed at reducing profile loss, impacting loss and friction loss, respectively. YJSW335, a twin turbine torque converter, was bionically designed delicately. The biological characteristics consisted of fish-like blades in all four wheels, dolphin-like structure in the first turbine and the stator, and nonsmooth surfaces in the pump. The prediction performance of bionic YJSW335, obtained by computational fluid dynamics simulation, was improved compared with that of the original model, and then it could be proved that drag reduction had been achieved. The mechanism accounting for drag reduction of three factors was also investigated. After bionic design, the torque ratio and the highest efficiencies of YJSW335 were both advanced, which were very difficult to achieve through traditional design method. Moreover, the highest efficiency of the low speed area and high speed area is 85.65% and 86.32%, respectively. By economic matching analysis of the original and bionic powertrains, the latter can significantly reduce the fuel consumption and improve the operating economy of the loader.

  5. Spatial-Temporal dynamics of Newtonian and viscoelastic turbulence

    NASA Astrophysics Data System (ADS)

    Wang, Sung-Ning; Graham, Michael

    2015-11-01

    Introducing a trace amount of polymer into liquid turbulent flows can result in substantial reduction of friction drag. This phenomenon has been widely used in fluid transport, such as the Alaska crude oil pipeline. However, the mechanism is not well understood. We conduct direct numerical simulations of Newtonian and viscoelastic turbulence in large domains, in which the flow shows different characteristics in different regions. In some areas the drag is low and vortex motions are quiescent, while in other areas the drag is higher and the motions are more active. To identify these regions, we apply a statistical method, k-means clustering, which partitions the observations into k clusters by assigning each observation to its nearest centroid. The resulting partition maximizes the between-cluster variance. In the simulations, the observations are the instantaneous wall shear rate. Regions with different levels of drag are automatically identified by the partitioning algorithm. We find that the velocity profiles of the centroids exhibit characteristics similar to the individual coherent structures observed in minimal domain simulations. In addition, as viscoelasticity increases, polymer stretch becomes strongly correlated with wall shear stress. This work was supported by NSF grant CBET-1510291.

  6. Drag Reduction and Performance Improvement of Hydraulic Torque Converters with Multiple Biological Characteristics

    PubMed Central

    Chunbao, Liu; Changsuo, Liu; Yubo, Zhang

    2016-01-01

    Fish-like, dolphin-like, and bionic nonsmooth surfaces were employed in a hydraulic torque converter to achieve drag reduction and performance improvement, which were aimed at reducing profile loss, impacting loss and friction loss, respectively. YJSW335, a twin turbine torque converter, was bionically designed delicately. The biological characteristics consisted of fish-like blades in all four wheels, dolphin-like structure in the first turbine and the stator, and nonsmooth surfaces in the pump. The prediction performance of bionic YJSW335, obtained by computational fluid dynamics simulation, was improved compared with that of the original model, and then it could be proved that drag reduction had been achieved. The mechanism accounting for drag reduction of three factors was also investigated. After bionic design, the torque ratio and the highest efficiencies of YJSW335 were both advanced, which were very difficult to achieve through traditional design method. Moreover, the highest efficiency of the low speed area and high speed area is 85.65% and 86.32%, respectively. By economic matching analysis of the original and bionic powertrains, the latter can significantly reduce the fuel consumption and improve the operating economy of the loader. PMID:27752220

  7. Fluid drag reduction and efficient self-cleaning with rice leaf and butterfly wing bioinspired surfaces

    NASA Astrophysics Data System (ADS)

    Bixler, Gregory D.; Bhushan, Bharat

    2013-08-01

    Researchers are continually inspired by living nature to solve complex challenges. For example, unique surface characteristics of rice leaves and butterfly wings combine the shark skin (anisotropic flow leading to low drag) and lotus leaf (superhydrophobic and self-cleaning) effects, producing the so-called rice and butterfly wing effect. In this paper, we present an overview of rice leaf and butterfly wing fluid drag and self-cleaning studies. In addition, we examine two other promising aquatic surfaces in nature known for such properties, including fish scales and shark skin. Morphology, drag, self-cleaning, contact angle, and contact angle hysteresis data are presented to understand the role of wettability, viscosity, and velocity. Liquid repellent coatings are utilized to recreate or combine various effects. Discussion is provided along with conceptual models describing the role of surface structures related to low drag, self-cleaning, and antifouling properties. Modeling provides design guidance when developing novel low drag and self-cleaning surfaces for applications in the medical, marine, and industrial fields.

  8. Superfluid helium sloshing dynamics induced oscillations and fluctuations of angular momentum, force and moment actuated on spacecraft driven by gravity gradient or jitter acceleration associated with slew motion

    NASA Technical Reports Server (NTRS)

    Hung, R. J.

    1994-01-01

    The generalized mathematical formulation of sloshing dynamics for partially filled liquid of cryogenic superfluid helium II in dewar containers driven by the gravity gradient and jitter accelerations associated with slew motion for the purpose to perform scientific observation during the normal spacecraft operation are investigated. An example is given with the Advanced X-Ray Astrophysics Facility-Spectroscopy (AXAF-S) for slew motion which is responsible for the sloshing dynamics. The jitter accelerations include slew motion, spinning motion, atmospheric drag on the spacecraft, spacecraft attitude motions arising from machinery vibrations, thruster firing, pointing control of spacecraft, crew motion, etc. Explicit mathematical expressions to cover these forces acting on the spacecraft fluid systems are derived. The numerical computation of sloshing dynamics is based on the non-inertia frame spacecraft bound coordinate, and solve time-dependent, three-dimensional formulations of partial differential equations subject to initial and boundary conditions. The explicit mathematical expressions of boundary conditions to cover capillary force effect on the liquid-vapor interface in microgravity environments are also derived. The formulations of fluid moment and angular moment fluctuations in fluid profiles induced by the sloshing dynamics, together with fluid stress and moment fluctuations exerted on the spacecraft dewar containers have also been derived. Examples are also given for cases applicable to the AXAF-S spacecraft sloshing dynamics associated with slew motion.

  9. Flow visualisation of downhill skiers using the lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Asai, Takeshi; Hong, Sungchan; Ijuin, Koichi

    2017-03-01

    In downhill alpine skiing, skiers often exceed speeds of 120 km h-1, with air resistance substantially affecting the overall race times. To date, studies on air resistance in alpine skiing have used wind tunnels and actual skiers to examine the relationship between the gliding posture and magnitude of drag and for the design of skiing equipment. However, these studies have not revealed the flow velocity distribution and vortex structure around the skier. In the present study, computational fluid dynamics are employed with the lattice Boltzmann method to derive the relationship between total drag and the flow velocity around a downhill skier in the full-tuck position. Furthermore, the flow around the downhill skier is visualised, and its vortex structure is examined. The results show that the total drag force in the downhill skier model is 27.0 N at a flow velocity of 15 m s-1, increasing to 185.8 N at 40 m s-1. From analysis of the drag distribution and the flow profile, the head, upper arms, lower legs, and thighs (including buttocks) are identified as the major sources of drag on a downhill skier. Based on these results, the design of suits and equipment for reducing the drag from each location should be the focus of research and development in ski equipment. This paper describes a pilot study that introduces undergraduate students of physics or engineering into this research field. The results of this study are easy to understand for undergraduate students.

  10. An experimental study of low Re cavity vortex formation embedded in a laminar boundary layer

    NASA Astrophysics Data System (ADS)

    Gautam, Sashank; Lang, Amy; Wilroy, Jacob

    2016-11-01

    Laminar boundary layer flow across a grooved surface leads to the formation of vortices inside rectangular cavities. The nature and stability of the vortex inside any single cavity is determined by the Re and cavity geometry. According to the hypothesis, under low Re and stable vortex conditions a single cavity vortex leads to a roller-bearing effect which results in a decrease in drag as quantified by velocity profiles measured within the boundary layer. At higher Re once the vortex becomes unstable, drag should increase due to the mixing of low-momentum fluid within the cavity and the outer boundary layer flow. The primary objective of this experiment is to document the phenomenon using DPIV in a tow tank facility. This study focuses on the transition of the cavity flow from a steady to an unsteady state as the Re is increased above a critical value. The change in boundary layer momentum and cavity vortex characteristics are documented as a function of Re and boundary layer thickness. Funding from NSF CBET fluid dynamics Grant 1335848 is gratefully acknowledged.

  11. Analysis of hydrodynamic force acting on commercialized rowing blades using computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Aziz, A. M. Y.; Harun, M. N.; Syahrom, Ardiyansyah; Omar, A. H.

    2017-04-01

    This paper presents a study of the hydrodynamics of several rowing blade designs. The study was done using Computational Fluid Dynamics (CFD) which enabled the investigation to be done similar to the experimental study, but with additional hydrodynamic visualization for further analysis and understanding. The CFD method was validated using quasi-static experimental data from Caplan (2007). Besides that, the proposed CFD analyses have improved the precious CFD results with the percentage of error of 6.58 percent of lift and 0.69 percent of drag force compared to 33.65 and 18.75 percent obtained by Coppel (2010). Consequent to the successful validation, the study then proceeded with the real size of Macon, Big balde and Fat blade. It was found that the hydrodynamic performance of the Fat blade was the highest due to the area, aspect ratio and the shape of the blade. Besides that, distribution of pressure for all models were also investigated which deepened the understanding of the blade fluid mechanics of rowing.

  12. Unsteady translational motion of a slip sphere in a viscous fluid using the fractional Navier-Stokes equation

    NASA Astrophysics Data System (ADS)

    Ashmawy, E. A.

    2017-03-01

    In this paper, we investigate the translational motion of a slip sphere with time-dependent velocity in an incompressible viscous fluid. The modified Navier-Stokes equation with fractional order time derivative is used. The linear slip boundary condition is applied on the spherical boundary. The integral Laplace transform technique is employed to solve the problem. The solution in the physical domain is obtained analytically by inverting the Laplace transform using the complex inversion formula together with contour integration. An exact formula for the drag force exerted by the fluid on the spherical object is deduced. This formula is applied to some flows, namely damping oscillation, sine oscillation and sudden motion. The numerical results showed that the order of the fractional derivative contributes considerably to the drag force. The increase in this parameter resulted in an increase in the drag force. In addition, the values of the drag force increased with the increase in the slip parameter.

  13. Simulations of Bingham plastic flows with the multiple-relaxation-time lattice Boltzmann model

    NASA Astrophysics Data System (ADS)

    Chen, SongGui; Sun, QiCheng; Jin, Feng; Liu, JianGuo

    2014-03-01

    Fresh cement mortar is a type of workable paste, which can be well approximated as a Bingham plastic and whose flow behavior is of major concern in engineering. In this paper, Papanastasiou's model for Bingham fluids is solved by using the multiplerelaxation-time lattice Boltzmann model (MRT-LB). Analysis of the stress growth exponent m in Bingham fluid flow simulations shows that Papanastasiou's model provides a good approximation of realistic Bingham plastics for values of m > 108. For lower values of m, Papanastasiou's model is valid for fluids between Bingham and Newtonian fluids. The MRT-LB model is validated by two benchmark problems: 2D steady Poiseuille flows and lid-driven cavity flows. Comparing the numerical results of the velocity distributions with corresponding analytical solutions shows that the MRT-LB model is appropriate for studying Bingham fluids while also providing better numerical stability. We further apply the MRT-LB model to simulate flow through a sudden expansion channel and the flow surrounding a round particle. Besides the rich flow structures obtained in this work, the dynamics fluid force on the round particle is calculated. Results show that both the Reynolds number Re and the Bingham number Bn affect the drag coefficients C D , and a drag coefficient with Re and Bn being taken into account is proposed. The relationship of Bn and the ratio of unyielded zone thickness to particle diameter is also analyzed. Finally, the Bingham fluid flowing around a set of randomly dispersed particles is simulated to obtain the apparent viscosity and velocity fields. These results help simulation of fresh concrete flowing in porous media.

  14. Cluster formation and drag reduction-proposed mechanism of particle recirculation within the partition column of the bottom spray fluid-bed coater.

    PubMed

    Wang, Li Kun; Heng, Paul Wan Sia; Liew, Celine Valeria

    2015-04-01

    Bottom spray fluid-bed coating is a common technique for coating multiparticulates. Under the quality-by-design framework, particle recirculation within the partition column is one of the main variability sources affecting particle coating and coat uniformity. However, the occurrence and mechanism of particle recirculation within the partition column of the coater are not well understood. The purpose of this study was to visualize and define particle recirculation within the partition column. Based on different combinations of partition gap setting, air accelerator insert diameter, and particle size fraction, particle movements within the partition column were captured using a high-speed video camera. The particle recirculation probability and voidage information were mapped using a visiometric process analyzer. High-speed images showed that particles contributing to the recirculation phenomenon were behaving as clustered colonies. Fluid dynamics analysis indicated that particle recirculation within the partition column may be attributed to the combined effect of cluster formation and drag reduction. Both visiometric process analysis and particle coating experiments showed that smaller particles had greater propensity toward cluster formation than larger particles. The influence of cluster formation on coating performance and possible solutions to cluster formation were further discussed. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  15. Numerical simulation of circular cylinders in free-fall

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romero-Gomez, Pedro; Richmond, Marshall C.

    2016-02-01

    In this work, we combined the use of (i) overset meshes, (ii) a 6 degree-of-freedom (6- DOF) motion solver, and (iii) an eddy-resolving flow simulation approach to resolve the drag and secondary movement of large-sized cylinders settling in a quiescent fluid at moderate terminal Reynolds numbers (1,500 < Re < 28,000). These three strategies were implemented in a series of computational fluid dynamics (CFD) solutions to describe the fluid-structure interactions and the resulting effects on the cylinder motion. Using the drag coefficient, oscillation period, and maximum angular displacement as baselines, the findings show good agreement between the present CFD resultsmore » and corresponding data of published laboratory experiments. We discussed the computational expense incurred in using the present modeling approach. We also conducted a preceding simulation of flow past a fixed cylinder at Re = 3,900, which tested the influence of the turbulence approach (time-averaging vs eddy-resolving) and the meshing strategy (continuous vs. overset) on the numerical results. The outputs indicated a strong effect of the former and an insignificant influence of the latter. The long-term motivation for the present study is the need to understand the motion of an autonomous sensor of cylindrical shape used to measure the hydraulic conditions occurring in operating hydropower turbines.« less

  16. Manifestations of drag reduction by polymer additives in decaying, homogeneous, isotropic turbulence.

    PubMed

    Perlekar, Prasad; Mitra, Dhrubaditya; Pandit, Rahul

    2006-12-31

    The existence of drag reduction by polymer additives, well established for wall-bounded turbulent flows, is controversial in homogeneous, isotropic turbulence. To settle this controversy, we carry out a high-resolution direct numerical simulation of decaying, homogeneous, isotropic turbulence with polymer additives. Our study reveals clear manifestations of drag-reduction-type phenomena: On the addition of polymers to the turbulent fluid, we obtain a reduction in the energy-dissipation rate, a significant modification of the fluid energy spectrum especially in the deep-dissipation range, a suppression of small-scale intermittency, and a decrease in small-scale vorticity filaments.

  17. Documentation of roller-bearing effect on butterfly inspired grooves

    NASA Astrophysics Data System (ADS)

    Gautam, Sashank; Lang, Amy

    2017-11-01

    Butterfly wings are covered with scales in a roof shingle pattern which align together to form grooves. The increase or decrease of laminar friction drag depends on the flow orientation to the scales. Flow in the longitudinal direction to the grooves encounters increased surface area which increases the friction drag. However, in the transverse direction, for low Re laminar flow, a single vortex is formed inside each groove and is predicted to remain stable due to the very low Re of the flow in each cavity. These embedded vortices act as roller bearings to the flow above, such that the fluid from the outer boundary layer does not mix with fluid inside the cavities. This leads to a reduction of skin friction drag when compared to a smooth surface. When the cavity flow Re is increased beyond a critical point, the vortex becomes unstable and the low-momentum fluid in the grooves mixes with the outer boundary layer flow, increasing the drag. The objective of this experiment is to determine the critical Re where the embedded vortex transitions from a stable to an unstable state using DPIV. Subsequently, for steady vortex conditions, a comparison of skin friction drag between the grooved and flat plate can show that the butterfly scaled surface can result in sub-laminar friction drag. The National Science Foundation (Grant No. 1335848).

  18. Elasto-inertial turbulence.

    PubMed

    Samanta, Devranjan; Dubief, Yves; Holzner, Markus; Schäfer, Christof; Morozov, Alexander N; Wagner, Christian; Hof, Björn

    2013-06-25

    Turbulence is ubiquitous in nature, yet even for the case of ordinary Newtonian fluids like water, our understanding of this phenomenon is limited. Many liquids of practical importance are more complicated (e.g., blood, polymer melts, paints), however; they exhibit elastic as well as viscous characteristics, and the relation between stress and strain is nonlinear. We demonstrate here for a model system of such complex fluids that at high shear rates, turbulence is not simply modified as previously believed but is suppressed and replaced by a different type of disordered motion, elasto-inertial turbulence. Elasto-inertial turbulence is found to occur at much lower Reynolds numbers than Newtonian turbulence, and the dynamical properties differ significantly. The friction scaling observed coincides with the so-called "maximum drag reduction" asymptote, which is exhibited by a wide range of viscoelastic fluids.

  19. Multiparticle imaging technique for two-phase fluid flows using pulsed laser speckle velocimetry. Final report, September 1988--November 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassan, T.A.

    1992-12-01

    The practical use of Pulsed Laser Velocimetry (PLV) requires the use of fast, reliable computer-based methods for tracking numerous particles suspended in a fluid flow. Two methods for performing tracking are presented. One method tracks a particle through multiple sequential images (minimum of four required) by prediction and verification of particle displacement and direction. The other method, requiring only two sequential images uses a dynamic, binary, spatial, cross-correlation technique. The algorithms are tested on computer-generated synthetic data and experimental data which was obtained with traditional PLV methods. This allowed error analysis and testing of the algorithms on real engineering flows.more » A novel method is proposed which eliminates tedious, undersirable, manual, operator assistance in removing erroneous vectors. This method uses an iterative process involving an interpolated field produced from the most reliable vectors. Methods are developed to allow fast analysis and presentation of sets of PLV image data. Experimental investigation of a two-phase, horizontal, stratified, flow regime was performed to determine the interface drag force, and correspondingly, the drag coefficient. A horizontal, stratified flow test facility using water and air was constructed to allow interface shear measurements with PLV techniques. The experimentally obtained local drag measurements were compared with theoretical results given by conventional interfacial drag theory. Close agreement was shown when local conditions near the interface were similar to space-averaged conditions. However, theory based on macroscopic, space-averaged flow behavior was shown to give incorrect results if the local gas velocity near the interface as unstable, transient, and dissimilar from the average gas velocity through the test facility.« less

  20. Multiparticle imaging technique for two-phase fluid flows using pulsed laser speckle velocimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassan, T.A.

    1992-12-01

    The practical use of Pulsed Laser Velocimetry (PLV) requires the use of fast, reliable computer-based methods for tracking numerous particles suspended in a fluid flow. Two methods for performing tracking are presented. One method tracks a particle through multiple sequential images (minimum of four required) by prediction and verification of particle displacement and direction. The other method, requiring only two sequential images uses a dynamic, binary, spatial, cross-correlation technique. The algorithms are tested on computer-generated synthetic data and experimental data which was obtained with traditional PLV methods. This allowed error analysis and testing of the algorithms on real engineering flows.more » A novel method is proposed which eliminates tedious, undersirable, manual, operator assistance in removing erroneous vectors. This method uses an iterative process involving an interpolated field produced from the most reliable vectors. Methods are developed to allow fast analysis and presentation of sets of PLV image data. Experimental investigation of a two-phase, horizontal, stratified, flow regime was performed to determine the interface drag force, and correspondingly, the drag coefficient. A horizontal, stratified flow test facility using water and air was constructed to allow interface shear measurements with PLV techniques. The experimentally obtained local drag measurements were compared with theoretical results given by conventional interfacial drag theory. Close agreement was shown when local conditions near the interface were similar to space-averaged conditions. However, theory based on macroscopic, space-averaged flow behavior was shown to give incorrect results if the local gas velocity near the interface as unstable, transient, and dissimilar from the average gas velocity through the test facility.« less

  1. Transport and flow characteristics of an oscillating cylindrical fiber for total artificial lung application.

    PubMed

    Qamar, Adnan; Bull, Joseph L

    2017-08-01

    Mass transport and fluid dynamics characteristics in the vicinity of an oscillating cylindrical fiber with an imposed pulsatile inflow condition are computationally investigated in the present study. The work is motivated by a recently proposed design modification to the Total Artificial Lung (TAL) device, which is expected to provide better gas exchange. Navier-Stokes computations, coupled with convection-diffusion equation are performed to assess flow dynamics and mass transport behavior around the oscillating fiber. The oscillations and the pulsatile free stream velocity are represented by two sinusoidal functions. The resulting non-dimensional parameters are Keulegan-Carpenter number (KC), Schmidt number (Sc), Reynolds number (Re), pulsatile inflow amplitude ([Formula: see text]), and amplitude of cylinder oscillation ([Formula: see text]). Results are computed for [Formula: see text], Sc = 1000, Re = 5 and 10, [Formula: see text] and 0.7 and 0.25 [Formula: see text][Formula: see text][Formula: see text] 5.25. The pulsatile inflow parameters correspond to the flow velocities found in human pulmonary artery while matching the operating TAL Reynolds number. Mass transport from the surface of the cylinder to the bulk fluid is found to be primarily dependent on the size of surface vortices created by the movement of the cylinder. Time-averaged surface Sherwood number (Sh) is dependent on the amplitude and KC of cylinder oscillation. Compared to the fixed cylinder case, a significant gain up to 380% in Sh is achieved by oscillating the cylinder even at the small displacement amplitude (AD = 0.75D). Moreover, with decrease in KC the oscillating cylinder exhibits a lower drag amplitude compared with the fixed cylinder case. Inflow pulsation amplitude has minor effects on the mass transport characteristics. However, an increase in [Formula: see text] results in an increase in the amplitude of the periodic drag force on the cylinder. This rise in the drag amplitude is similar to that measured for the fixed cylinder case. Quantifications of shear stress distribution in the bulk fluid suggest that the physiological concerns of platelet activation and injury to red blood cells due to cylinder oscillation are negligible.

  2. Onset of `stitching' in the fluid mechanical `sewing machine'

    NASA Astrophysics Data System (ADS)

    Ribe, Neil; Lister, John; Chiu-Webster, Sunny

    2006-11-01

    A thin thread of viscous fluid that falls on a moving belt acts like a fluid mechanical `sewing machine', exhibiting a rich variety of `stitch' patterns including meanders, side kicks, slanted loops, braiding, figures-of-eight, W-patterns, and period-doubled patterns (Chiu-Webster and Lister, J. Fluid Mech., in press). Using a numerical linear stability analysis based on asymptotic `slender thread' theory, we determine the critical belt speed and frequency of the first bifurcation, at which a steady dragged viscous thread becomes unstable to sideways oscillations (`meanders'). The predictions of the stability analysis agree closely with experimental measurements. Moreover, we find that the critical belt speed and frequency for meandering are nearly identical to the contact point migration speed and the frequency, respectively, of steady coiling of a viscous thread on a stationary surface, implying a remarkable degree of dynamical similarity between the two phenomena.

  3. Numerical Modeling of Fluid Flow, Heat Transfer and Arc-Melt Interaction in Tungsten Inert Gas Welding

    NASA Astrophysics Data System (ADS)

    Li, Linmin; Li, Baokuan; Liu, Lichao; Motoyama, Yuichi

    2017-04-01

    The present work develops a multi-region dynamic coupling model for fluid flow, heat transfer and arc-melt interaction in tungsten inert gas (TIG) welding using the dynamic mesh technique. The arc-weld pool unified model is developed on basis of magnetohydrodynamic (MHD) equations and the interface is tracked using the dynamic mesh method. The numerical model for arc is firstly validated by comparing the calculated temperature profiles and essential results with the former experimental data. For weld pool convection solution, the drag, Marangoni, buoyancy and electromagnetic forces are separately validated, and then taken into account. Moreover, the model considering interface deformation is adopted in a stationary TIG welding process with SUS304 stainless steel and the effect of interface deformation is investigated. The depression of weld pool center and the lifting of pool periphery are both predicted. The results show that the weld pool shape calculated with considering the interface deformation is more accurate.

  4. Large-scale control strategy for drag reduction in turbulent channel flows

    NASA Astrophysics Data System (ADS)

    Yao, Jie; Chen, Xi; Thomas, Flint; Hussain, Fazle

    2017-06-01

    In a recent article, Canton et al. [J. Canton et al., Phys. Rev. Fluids 1, 081501(R) (2016), 10.1103/PhysRevFluids.1.081501] reported significant drag reduction in turbulent channel flow by using large-scale, near-wall streamwise swirls following the control strategy of Schoppa and Hussain [W. Schoppa and F. Hussain, Phys. Fluids 10, 1049 (1998), 10.1063/1.869789] for low Reynolds numbers only, but found no drag reduction at high friction Reynolds numbers (Reτ=550 ). Here we show that the lack of drag reduction at high Re observed by Canton et al. is remedied by the proper choice of the large-scale control flow. In this study, we apply near-wall opposed wall-jet forcing to achieve drag reduction at the same (high) Reynolds number where Canton et al. found no drag reduction. The steady excitation is characterized by three control parameters, namely, the wall-jet-forcing amplitude A+, the spanwise spacing Λ+, and the wall jet height yc+ (+ indicates viscous scaling); the primary difference between Schoppa and Hussain's work (also that of Canton et al.) and this Rapid Communication is the emphasis on the explicit choice of yc+ here. We show as an example that with a choice of A+≈0.015 ,Λ+≈1200 , and yc+≈30 the flow control definitely suppresses the wall shear stress at a series of Reynolds numbers, namely, 19 %,14 % , and 12 % drag reductions at Reτ=180 , 395, and 550, respectively. Further study should explore optimization of these parameter values.

  5. The simulation and experimental validation on gas-solid two phase flow in the riser of a dense fluidized bed

    NASA Astrophysics Data System (ADS)

    Wang, Xue-Yao; Jiang, Fan; Xu, Xiang; Wang, Sheng-Dian; Fan, Bao-Guo; Xiao, Yun-Han

    2009-06-01

    Gas-solid flow in dense CFB (circulating fluidized bed)) riser under the operating condition, superficial gas 15.5 m/s and solid flux 140 kg/m2s using Geldart B particles (sand) was investigated by experiments and CFD (computational fluid dynamics) simulation. The overall and local flow characteristics are determined using the axial pressure profiles and solid concentration profiles. The cold experimental results indicate that the axial solid concentration distribution contains a dilute region towards the up-middle zone and a dense region near the bottom and the top exit zones. The typical core-annulus structure and the back-mixing phenomenon near the wall of the riser can be observed. In addition, owing to the key role of the drag force of gas-solid phase, a revised drag force coefficient, based on the EMMS (energy-minimization multi-scale) model which can depict the heterogeneous character of gas-solid two phase flow, was proposed and coupled into the CFD control equations. In order to find an appropriate drag force model for the simulation of dense CFB riser, not only the revised drag force model but some other kinds of drag force model were used in the CFD. The flow structure, solid concentration, clusters phenomenon, fluctuation of two phases and axial pressure drop were analyzed. By comparing the experiment with the simulation, the results predicted by the EMMS drag model showed a better agreement with the experimental axial average pressure drop and apparent solid volume fraction, which proves that the revised drag force based on the EMMS model is an appropriate model for the dense CFB simulation.

  6. Computational fluid dynamics of airfoils and wings

    NASA Technical Reports Server (NTRS)

    Garabedian, P.; Mcfadden, G.

    1982-01-01

    It is pointed out that transonic flow is one of the fields where computational fluid dynamics turns out to be most effective. Codes for the design and analysis of supercritical airfoils and wings have become standard tools of the aircraft industry. The present investigation is concerned with mathematical models and theorems which account for some of the progress that has been made. The most successful aerodynamics codes are those for the analysis of flow at off-design conditions where weak shock waves appear. A major breakthrough was achieved by Murman and Cole (1971), who conceived of a retarded difference scheme which incorporates artificial viscosity to capture shocks in the supersonic zone. This concept has been used to develop codes for the analysis of transonic flow past a swept wing. Attention is given to the trailing edge and the boundary layer, entropy inequalities and wave drag, shockless airfoils, and the inverse swept wing code.

  7. A numerical analysis of the British Experimental Rotor Program blade

    NASA Technical Reports Server (NTRS)

    Duque, Earl P. N.

    1989-01-01

    Two Computational Fluid Dynamic codes which solve the compressible full-potential and the Reynolds-Averaged Thin-Layer Navier-Stokes equations were used to analyze the nonrotating aerodynamic characteristics of the British Experimental Rotor Program (BERP) helicopter blade at three flow regimes: low angle of attack, high angle of attack and transonic. Excellent agreement was found between the numerical results and experiment. In the low angle of attack regime, the BERP had less induced drag than a comparable aspect ratio rectangular planform wing. At high angle of attack, the blade attained high-lift by maintaining attached flow at the outermost spanwise locations. In the transonic regime, the BERP design reduces the shock strength at the outer spanwise locations which affects wave drag and shock-induced separation. Overall, the BERP blade exhibited many favorable aerodynamic characteristics in comparison to conventional helicopter rotor blades.

  8. Forces between functionalized silica nanoparticles in solution

    NASA Astrophysics Data System (ADS)

    Lane, J. Matthew D.; Ismail, Ahmed E.; Chandross, Michael; Lorenz, Christian D.; Grest, Gary S.

    2009-05-01

    To prevent the flocculation and phase separation of nanoparticles in solution, nanoparticles are often functionalized with short chain surfactants. Here we present fully atomistic molecular dynamics simulations which characterize how these functional coatings affect the interactions between nanoparticles and with the surrounding solvent. For 5-nm-diameter silica nanoparticles coated with poly(ethylene oxide) (PEO) oligomers in water, we determined the hydrodynamic drag on two approaching nanoparticles moving through solvent and on a single nanoparticle as it approaches a planar surface. In most circumstances, macroscale fluid theory accurately predicts the drag on these nanoscale particles. Good agreement is seen with Brenner’s analytical solutions for wall separations larger than the soft nanoparticle radius. For two approaching coated nanoparticles, the solvent-mediated (velocity independent) and lubrication (velocity-dependent) forces are purely repulsive and do not exhibit force oscillations that are typical of uncoated rigid spheres.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cherkaduvasala, V.; Murphy, D.W.; Ban, H.

    Popcorn ash particles are fragments of sintered coal fly ash masses that resemble popcorn in low apparent density. They can travel with the flow in the furnace and settle on key places such as catalyst surfaces. Computational fluid dynamics (CFD) models are often used in the design process to prevent the carryover and settling of these particles on catalysts. Particle size, density, and drag coefficient are the most important aerodynamic parameters needed in CFD modeling of particle flow. The objective of this study was to experimentally determine particle size, shape, apparent density, and drag characteristics for popcorn ash particles frommore » a coal-fired power plant. Particle size and shape were characterized by digital photography in three orthogonal directions and by computer image analysis. Particle apparent density was determined by volume and mass measurements. Particle terminal velocities in three directions were measured in water and each particle was also weighed in air and in water. The experimental data were analyzed and models were developed for equivalent sphere and equivalent ellipsoid with apparent density and drag coefficient distributions. The method developed in this study can be used to characterize the aerodynamic properties of popcorn-like particles.« less

  10. Spatial-temporal dynamics of Newtonian and viscoelastic turbulence in channel flow

    NASA Astrophysics Data System (ADS)

    Wang, Sung-Ning; Shekar, Ashwin; Graham, Michael

    2016-11-01

    Introducing a trace amount of polymer into liquid turbulent flows can result in substantial reduction of friction drag. This phenomenon has been widely used in fluid transport; however, the mechanism is not well understood. Past studies have found that in minimal domain turbulent simulations, there areoccasional time periods when flow exhibits features such as weaker vortices, lower friction drag and larger log-law slope; these have been denoted as "hibernatingturbulence". Here we address the question of whether similar behavior arises spatio-temporally in extended domains, focusing on turbulence at friction Reynolds numbers near transition and Weissenberg numbers resulting in low-medium drag reduction. By using image analysis and conditional sampling tools, we identify the hibernating states in extended domains and show that they display striking similarity as those in minimal domains. The hibernating states among different Weissenberg numbers exhibit similar flow statistics, suggesting they are unaltered by low to medium viscoelasticity. In addition, the polymer is much less stretched during hibernation. Finally, these hibernating states vanish as Reynolds number increases. However, they reoccur and gradually become dominant with increasing viscoelasticity.

  11. An Analysis of the Loads on and Dynamic Response of a Floating Flexible Tube in Waves and Currents

    DTIC Science & Technology

    2014-05-09

    the tube about 4.57 meters. The CFD code associated with the SolidWorks Flow Simulation tool was applied for this application. Flow Simulation uses...Liquid-Filled Membrane Structure in Waves," Journal of Fluids and Structures, no. 9, pp. 937-956, 1995. [16] SolidWorks , " Flow Simulation 2012...influence of Reynolds number on the drag coefficient. Simulations were performed with the 100% full (solid) model with flow velocities that yielded

  12. Symmetry breaking for drag minimization

    NASA Astrophysics Data System (ADS)

    Roper, Marcus; Squires, Todd M.; Brenner, Michael P.

    2005-11-01

    For locomotion at high Reynolds numbers drag minimization favors fore-aft asymmetric slender shapes with blunt noses and sharp trailing edges. On the other hand, in an inertialess fluid the drag experienced by a body is independent of whether it travels forward or backward through the fluid, so there is no advantage to having a single preferred swimming direction. In fact numerically determined minimum drag shapes are known to exhibit almost no fore-aft asymmetry even at moderate Re. We show that asymmetry persists, albeit extremely weakly, down to vanishingly small Re, scaling asymptotically as Re^3. The need to minimize drag to maximize speed for a given propulsive capacity gives one possible mechanism for the increasing asymmetry in the body plans seen in nature, as organisms increase in size and swimming speed from bacteria like E-Coli up to pursuit predator fish such as tuna. If it is the dominant mechanism, then this signature scaling will be observed in the shapes of motile micro-organisms.

  13. Aerodynamic Improvements of an Empty Timber Truck can Have the Potential of Significantly Reducing Fuel Consumption

    NASA Astrophysics Data System (ADS)

    Andersson, Magnus; Marashi, Seyedeh Sepideh; Karlsson, Matts

    2012-11-01

    In the present study, aerodynamic drag (AD) has been estimated for an empty and a fully loaded conceptual timber truck (TT) using Computational Fluid Dynamics (CFD). The increasing fuel prices have challenged heavy duty vehicle (HDV) manufactures to strive for better fuel economy, by e.g. utilizing drag reducing external devices. Despite this knowledge, the TT fleets seem to be left in the dark. Like HDV aerodynamics, similarities can be observed as a large low pressure wake is formed behind the tractor (unloaded) and downstream of the trailer (full load) thus generating AD. As TTs travel half the time without any cargo, focus on drag reduction is important. The full scaled TTs where simulated using the realizable k-epsilon model with grid adaption techniques for mesh independence. Our results indicate that a loaded TT reduces the AD significantly as both wake size and turbulence kinetic energy are lowered. In contrast to HDV the unloaded TTs have a much larger design space available for possible drag reducing devices, e.g. plastic wrapping and/or flaps. This conceptual CFD study has given an indication of the large AD difference between the unloaded and fully loaded TT, showing the potential for significant AD improvements.

  14. Drag reduction by polymers in wall bounded turbulence.

    PubMed

    L'vov, Victor S; Pomyalov, Anna; Procaccia, Itamar; Tiberkevich, Vasil

    2004-06-18

    We elucidate the mechanism of drag reduction by polymers in turbulent wall-bounded flows: while momentum is produced at a fixed rate by the forcing, polymer stretching results in the suppression of momentum flux to the wall. On the basis of the equations of fluid mechanics we develop the phenomenology of the "maximum drag reduction asymptote" which is the maximum drag reduction attained by polymers. Based on Newtonian information only we demonstrate the existence of drag reduction, and with one experimental parameter we reach agreement with the experimental measurements.

  15. The Sedimentation of Particles under Orthogonal Shear in Viscoelastic Fluids

    NASA Astrophysics Data System (ADS)

    Murch, William L.; Krishnan, Sreenath; Shaqfeh, Eric S. G.

    2016-11-01

    Many engineering applications, including oil and gas recovery, require the suspension of particles in viscoelastic fluids during fluid transport and processing. A topic of specific importance involves such particle suspensions experiencing an applied shear flow in a direction perpendicular to gravity (referred to as orthogonal shear). Previously, it has been shown that particle sedimentation coupled with an orthogonal shear flow can reduce the particle settling rate in elastic fluids. The underlying mechanism of this enhanced coupling drag is not fully understood, particularly at finite Weissenberg numbers. This talk examines the role of fluid elasticity on a single, non-Brownian, rigid sphere settling in orthogonal shear using experiments and numerical simulations. New experiments were performed in a Taylor-Couette flow cell using Boger fluids to study the coupling drag as a function of the shear and sedimentation Weissenberg numbers as well as particle confinement. The elastic effect was also studied with fully 3D simulations of flow past a rigid sphere, using the FENE-P constitutive model to describe the polymeric fluid rheology. These simulations show good agreement with the experiments and allow for further insight into the mechanism of elasticity-enhanced drag. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship.

  16. A correction procedure for thermally two-way coupled point-particles

    NASA Astrophysics Data System (ADS)

    Horwitz, Jeremy; Ganguli, Swetava; Mani, Ali; Lele, Sanjiva

    2017-11-01

    Development of a robust procedure for the simulation of two-way coupled particle-laden flows remains a challenge. Such systems are characterized by O(1) or greater mass of particles relative to the fluid. The coupling of fluid and particle motion via a drag model means the undisturbed fluid velocity evaluated at the particle location (which is needed in the drag model) is no longer equal to the interpolated fluid velocity at the particle location. The same issue arises in problems of dispersed flows in the presence of heat transfer. The heat transfer rate to each particle depends on the difference between the particle's temperature and the undisturbed fluid temperature. We borrow ideas from the correction scheme we have developed for particle-fluid momentum coupling by developing a procedure to estimate the undisturbed fluid temperature given the disturbed temperature field created by a point-particle. The procedure is verified for the case of a particle settling under gravity and subject to radiation. The procedure is developed in the low Peclet, low Boussinesq number limit, but we will discuss the applicability of the same correction procedure outside of this regime when augmented by appropriate drag and heat exchange correlations. Supported by DOE, J. H. Supported by NSF GRF

  17. Modeling complex flow structures and drag around a submerged plant of varied posture

    NASA Astrophysics Data System (ADS)

    Boothroyd, Richard J.; Hardy, Richard J.; Warburton, Jeff; Marjoribanks, Timothy I.

    2017-04-01

    Although vegetation is present in many rivers, the bulk of past work concerned with modeling the influence of vegetation on flow has considered vegetation to be morphologically simple and has generally neglected the complexity of natural plants. Here we report on a combined flume and numerical model experiment which incorporates time-averaged plant posture, collected through terrestrial laser scanning, into a computational fluid dynamics model to predict flow around a submerged riparian plant. For three depth-limited flow conditions (Reynolds number = 65,000-110,000), plant dynamics were recorded through high-definition video imagery, and the numerical model was validated against flow velocities collected with an acoustic Doppler velocimeter. The plant morphology shows an 18% reduction in plant height and a 14% increase in plant length, compressing and reducing the volumetric canopy morphology as the Reynolds number increases. Plant shear layer turbulence is dominated by Kelvin-Helmholtz type vortices generated through shear instability, the frequency of which is estimated to be between 0.20 and 0.30 Hz, increasing with Reynolds number. These results demonstrate the significant effect that the complex morphology of natural plants has on in-stream drag, and allow a physically determined, species-dependent drag coefficient to be calculated. Given the importance of vegetation in river corridor management, the approach developed here demonstrates the necessity to account for plant motion when calculating vegetative resistance.

  18. Using an Extended Dynamic Drag-and-Drop Assistive Program to Assist People with Multiple Disabilities and Minimal Motor Control to Improve Computer Drag-and-Drop Ability through a Mouse Wheel

    ERIC Educational Resources Information Center

    Shih, Ching-Hsiang

    2012-01-01

    Software technology is adopted by the current research to improve the Drag-and-Drop abilities of two people with multiple disabilities and minimal motor control. This goal was realized through a Dynamic Drag-and-Drop Assistive Program (DDnDAP) in which the complex dragging process is replaced by simply poking the mouse wheel and clicking. However,…

  19. right-sized dimple evaluator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, Sal

    2017-08-24

    The code (aka computer program written as a Matlab script) uses a unique set of n independent equations to solve for n turbulence variables. The code requires the input of a characteristic dimension, a characteristic fluid velocity, the fluid dynamic viscosity, and the fluid density. Most importantly, the code estimates the size of three key turbulent eddies: Kolmogorov, Taylor, and integral. Based on the eddy sizes, dimples dimensions are prescribed such that the key eddies (principally Taylor, and sometimes Kolmogorov), can be generated by the dimple rim and flow unimpeded through the dimple’s concave cavity. It is hypothesized that turbulentmore » eddies are generated by the dimple rim at the dimple-surface interface. The newly-generated eddies in turn entrain the movement of surrounding regions of fluid, creating more mixing. The eddies also generate lift near the wall surrounding the dimple, as they accelerate and reduce pressure in the regions near and at the dimple cavity, thereby minimizing the fluid drag.« less

  20. Sedimentation and fluttering of a cylinder in a confined liquid

    NASA Astrophysics Data System (ADS)

    D'Angelo, Maria Veronica; Cachile, Mario; Hulin, Jean-Pierre; Auradou, Harold

    2017-10-01

    The sedimentation and fluttering (angular oscillation of the axis) of straight cylinders are studied in a viscous fluid at rest filling a vertical Hele-Shaw cell for different density contrasts ρs-ρf and fluid viscosities μf and for two cylinder densities ρs and diameters D . The influence of confinement in the cell is studied by comparing the present results to those of the literature for nonconfined fluids. While the confinement and the cylinder length L both influence strongly the mean sedimentation velocity Vs, the characteristics of the fluttering instability are much more similar in the confined and nonconfined cases. While the drag coefficient is nearly constant in a nonconfined fluid, it is larger here and depends both on L (due to flow blockage) and on the Reynolds number ReD=VsD ρf/μf ; the inertial and viscous drag components have equal magnitudes for ReD≃40 . For fluttering, instead, the key parameter is the Froude number Fr=Vs/Vg [Vg=√{(ρs-ρf) g L /ρf }] , and the fluttering oscillations vanish below Fr˜0.07 for all cylinders and fluids investigated. Above this threshold, the angular amplitude increases with Fr up to a plateau value, while that of the horizontal oscillations is, at first, very large and then decreases; both amplitudes are reduced when the viscous drag is dominant, but, if inertial drag is dominant, all data points follow a common trend. For all fluids and cylinders, too, the fluttering frequency varies as f =0.102 Vg/L . These features of fluttering are generally qualitatively similar to those reported in nonconfined fluids, but this instability is observable down to lower ReD values (≃24 instead of ˜200 ).

  1. Elasto-inertial turbulence

    PubMed Central

    Samanta, Devranjan; Dubief, Yves; Holzner, Markus; Schäfer, Christof; Morozov, Alexander N.; Wagner, Christian; Hof, Björn

    2013-01-01

    Turbulence is ubiquitous in nature, yet even for the case of ordinary Newtonian fluids like water, our understanding of this phenomenon is limited. Many liquids of practical importance are more complicated (e.g., blood, polymer melts, paints), however; they exhibit elastic as well as viscous characteristics, and the relation between stress and strain is nonlinear. We demonstrate here for a model system of such complex fluids that at high shear rates, turbulence is not simply modified as previously believed but is suppressed and replaced by a different type of disordered motion, elasto-inertial turbulence. Elasto-inertial turbulence is found to occur at much lower Reynolds numbers than Newtonian turbulence, and the dynamical properties differ significantly. The friction scaling observed coincides with the so-called “maximum drag reduction” asymptote, which is exhibited by a wide range of viscoelastic fluids. PMID:23757498

  2. Propulsive efficiency of frog swimming with different feet and swimming patterns

    PubMed Central

    Jizhuang, Fan; Wei, Zhang; Bowen, Yuan; Gangfeng, Liu

    2017-01-01

    ABSTRACT Aquatic and terrestrial animals have different swimming performances and mechanical efficiencies based on their different swimming methods. To explore propulsion in swimming frogs, this study calculated mechanical efficiencies based on data describing aquatic and terrestrial webbed-foot shapes and swimming patterns. First, a simplified frog model and dynamic equation were established, and hydrodynamic forces on the foot were computed according to computational fluid dynamic calculations. Then, a two-link mechanism was used to stand in for the diverse and complicated hind legs found in different frog species, in order to simplify the input work calculation. Joint torques were derived based on the virtual work principle to compute the efficiency of foot propulsion. Finally, two feet and swimming patterns were combined to compute propulsive efficiency. The aquatic frog demonstrated a propulsive efficiency (43.11%) between those of drag-based and lift-based propulsions, while the terrestrial frog efficiency (29.58%) fell within the range of drag-based propulsion. The results illustrate the main factor of swimming patterns for swimming performance and efficiency. PMID:28302669

  3. Uncertainty Analysis for Oil-Film Interferometry Skin-Friction Measurement Techniques

    NASA Technical Reports Server (NTRS)

    Naughton, Jonathan W.; Brown, James L.; Merriam, Marshal (Technical Monitor)

    1996-01-01

    Over the past 20 years, the use of oil-film interferometry to measure the skin friction coefficient (C(sub f) = tau/q where tau is the surface shear stress and q is the dynamic pressure) has increased. Different forms of this oil-film technique with various levels of accuracy and ease of use have been successfully applied in a wide range of flows. The method's popularity is growing due to its relative ease of implementation and minimal intrusiveness as well as an increased demand for C(sub f) measurements. Nonetheless, the accuracy of these methods has not been rigorously addressed to date. Most researchers have simply shown that the skin-friction measurements made using these techniques compare favorably with other measurements and theory, most of which are only accurate to within 5-20%. The use of skin-friction data in the design of commercial aircraft, whose drag at cruise is 50% skin-friction drag, and in the validation of computational fluid dynamics programs warrants better uncertainty estimates. Additional information is contained in the original extended abstract.

  4. An Eulerian two-phase model for steady sheet flow using large-eddy simulation methodology

    NASA Astrophysics Data System (ADS)

    Cheng, Zhen; Hsu, Tian-Jian; Chauchat, Julien

    2018-01-01

    A three-dimensional Eulerian two-phase flow model for sediment transport in sheet flow conditions is presented. To resolve turbulence and turbulence-sediment interactions, the large-eddy simulation approach is adopted. Specifically, a dynamic Smagorinsky closure is used for the subgrid fluid and sediment stresses, while the subgrid contribution to the drag force is included using a drift velocity model with a similar dynamic procedure. The contribution of sediment stresses due to intergranular interactions is modeled by the kinetic theory of granular flow at low to intermediate sediment concentration, while at high sediment concentration of enduring contact, a phenomenological closure for particle pressure and frictional viscosity is used. The model is validated with a comprehensive high-resolution dataset of unidirectional steady sheet flow (Revil-Baudard et al., 2015, Journal of Fluid Mechanics, 767, 1-30). At a particle Stokes number of about 10, simulation results indicate a reduced von Kármán coefficient of κ ≈ 0.215 obtained from the fluid velocity profile. A fluid turbulence kinetic energy budget analysis further indicates that the drag-induced turbulence dissipation rate is significant in the sheet flow layer, while in the dilute transport layer, the pressure work plays a similar role as the buoyancy dissipation, which is typically used in the single-phase stratified flow formulation. The present model also reproduces the sheet layer thickness and mobile bed roughness similar to measured data. However, the resulting mobile bed roughness is more than two times larger than that predicted by the empirical formulae. Further analysis suggests that through intermittent turbulent motions near the bed, the resolved sediment Reynolds stress plays a major role in the enhancement of mobile bed roughness. Our analysis on near-bed intermittency also suggests that the turbulent ejection motions are highly correlated with the upward sediment suspension flux, while the turbulent sweep events are mostly associated with the downward sediment deposition flux.

  5. Summary of the Third AIAA CFD Drag Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Vassberg, John C.; Tinoco, Edward N.; Mani, Mori; Brodersen, Olaf P.; Eisfeld, Bernhard; Wahls, Richard A.; Morrison, Joseph H.; Zickuhr, Tom; Laflin, Kelly R.; Mavriplis, DImitri J.

    2007-01-01

    The workshop focused on the prediction of both absolute and differential drag levels for wing-body and wing-al;one configurations of that are representative of transonic transport aircraft. The baseline DLR-F6 wing-body geometry, previously utilized in DPW-II, is also augmented with a side-body fairing to help reduce the complexity of the flow physics in the wing-body juncture region. In addition, two new wing-alone geometries have been developed for the DPW-II. Numerical calculations are performed using industry-relevant test cases that include lift-specific and fixed-alpha flight conditions, as well as full drag polars. Drag, lift, and pitching moment predictions from previous Reynolds-Averaged Navier-Stokes computational fluid Dynamics Methods are presented, focused on fully-turbulent flows. Solutions are performed on structured, unstructured, and hybrid grid systems. The structured grid sets include point-matched multi-block meshes and over-set grid systems. The unstructured and hybrid grid sets are comprised of tetrahedral, pyramid, and prismatic elements. Effort was made to provide a high-quality and parametrically consistent family of grids for each grid type about each configuration under study. The wing-body families are comprised of a coarse, medium, and fine grid, while the wing-alone families also include an extra-fine mesh. These mesh sequences are utilized to help determine how the provided flow solutions fair with respect to asymptotic grid convergence, and are used to estimate an absolute drag of each configuration.

  6. A new mixed subgrid-scale model for large eddy simulation of turbulent drag-reducing flows of viscoelastic fluids

    NASA Astrophysics Data System (ADS)

    Li, Feng-Chen; Wang, Lu; Cai, Wei-Hua

    2015-07-01

    A mixed subgrid-scale (SGS) model based on coherent structures and temporal approximate deconvolution (MCT) is proposed for turbulent drag-reducing flows of viscoelastic fluids. The main idea of the MCT SGS model is to perform spatial filtering for the momentum equation and temporal filtering for the conformation tensor transport equation of turbulent flow of viscoelastic fluid, respectively. The MCT model is suitable for large eddy simulation (LES) of turbulent drag-reducing flows of viscoelastic fluids in engineering applications since the model parameters can be easily obtained. The LES of forced homogeneous isotropic turbulence (FHIT) with polymer additives and turbulent channel flow with surfactant additives based on MCT SGS model shows excellent agreements with direct numerical simulation (DNS) results. Compared with the LES results using the temporal approximate deconvolution model (TADM) for FHIT with polymer additives, this mixed SGS model MCT behaves better, regarding the enhancement of calculating parameters such as the Reynolds number. For scientific and engineering research, turbulent flows at high Reynolds numbers are expected, so the MCT model can be a more suitable model for the LES of turbulent drag-reducing flows of viscoelastic fluid with polymer or surfactant additives. Project supported by the China Postdoctoral Science Foundation (Grant No. 2011M500652), the National Natural Science Foundation of China (Grant Nos. 51276046 and 51206033), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20112302110020).

  7. The effect of energy accumulation and boundary slip on laminar flow between rotating plates

    NASA Astrophysics Data System (ADS)

    Wu, Zhenpeng; Zeng, Liangcai; Chen, Keying; Jin, Xiaohong; Wu, Shiqian

    2018-02-01

    The poor operating conditions of fluid lubrication equipment during the start-up process are due to the resistance of the high-viscosity lubricating liquid. Moreover, the excessive reduction in fluid viscosity due to the elevated temperature resulting from power consumption during prolonged operation is not conducive to the generation of dynamic pressure. In this study, we examine the effect of energy accumulation and boundary slip on the laminar flow of a liquid between a pair of rotating plates. The experiments are conducted using a rotary rheometer, with polymethyl methacrylate (PMMA) as the thermal insulation material and polytetrafluoroethylene (PTFE) as the slip drag reduction material, and a three-dimensional simulation model is established. This model is derived by combining the energy equation including the slip length and the heat conduction equation. Thus, the temperature changes over time are predicted by this model, and the model accuracy is verified by experiments. The results reveal the following points: 1) boundary slips function as a drag reduction mechanism for short-time continuous operation; 2) under prolonged operation, the slip reduces the extent of the oil viscosity decrease and clear control of the elevated temperature by the boundary slip is observed.

  8. Hyperthermia with rotating magnetic nanowires inducing heat into tumor by fluid friction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Egolf, Peter W.; Pawlowski, Anne-Gabrielle; Tsague, Paulin

    2016-08-14

    A magnetic hyperthermia cancer treatment strategy that does not operate by means of conventional heating mechanisms is presented. The proposed approach consists of injecting a gel with homogeneously distributed magnetic nanowires into a tumor. Upon the application of a low-frequency rotating or circularly polarized magnetic field, nanowires spin around their center of viscous drag due to torque generated by shape anisotropy. As a result of external rotational forcing and fluid friction in the nanoparticle's boundary layer, heating occurs. The nanowire dynamics is theoretically and experimentally investigated, and different feasibility proofs of the principle by physical modeling, which adhere to medicalmore » guidelines, are presented. The magnetic nanorotors exhibit rotations and oscillations with quite a steady center of gravity, which proves an immobile behavior and guarantees a time-independent homogeneity of the spatial particle distribution in the tumor. Furthermore, a fluid dynamic and thermodynamic heating model is briefly introduced. This model is a generalization of Penne's model that for this method reveals theoretic heating rates that are sufficiently high, and fits well into medical limits defined by present standards.« less

  9. Vertical Impact of a Sphere Falling into Water

    ERIC Educational Resources Information Center

    Cross, Rod

    2016-01-01

    The nature of the drag force on an object moving through a fluid is well documented and many experiments have been described to allow students to measure the force. For low speed flows the drag force is proportional to the velocity of the object, while at high flow speeds the drag force is proportional to the velocity squared. The basic physics…

  10. No-Drag Frame for Anomalous Chiral Fluid

    DOE PAGES

    Stephanov, Mikhail A.; Yee, Ho-Ung

    2016-03-24

    For an anomalous fluid carrying dissipationless chiral magnetic and/or vortical currents we show that there is a frame in which a stationary obstacle experiences no drag, but energy and charge currents do not vanish, resembling superfluidity. Unlike ordinary superfluid flow, the anomalous chiral currents can transport entropy in this frame. Moreover, we show that the second law of thermodynamics completely determines the amounts of these anomalous nondissipative currents in the “no-drag frame” as polynomials in temperature and chemical potential with known anomaly coefficients. These general results are illustrated and confirmed by a calculation in the chiral kinetic theory and inmore » the quark-gluon plasma at high temperature.« less

  11. Aerodynamic Analysis of Morphing Blades

    NASA Astrophysics Data System (ADS)

    Harris, Caleb; Macphee, David; Carlisle, Madeline

    2016-11-01

    Interest in morphing blades has grown with applications for wind turbines and other aerodynamic blades. This passive control method has advantages over active control methods such as lower manufacturing and upkeep costs. This study has investigated the lift and drag forces on individual blades with experimental and computational analysis. The goal has been to show that these blades delay stall and provide larger lift-to-drag ratios at various angles of attack. Rigid and flexible airfoils were cast from polyurethane and silicone respectively, then lift and drag forces were collected from a load cell during 2-D testing in a wind tunnel. Experimental data was used to validate computational models in OpenFOAM. A finite volume fluid-structure-interaction solver was used to model the flexible blade in fluid flow. Preliminary results indicate delay in stall and larger lift-to-drag ratios by maintaining more optimal angles of attack when flexing. Funding from NSF REU site Grant EEC 1358991 is greatly appreciated.

  12. Wind Tunnel Testing of a 120th Scale Large Civil Tilt-Rotor Model in Airplane and Helicopter Modes

    NASA Technical Reports Server (NTRS)

    Theodore, Colin R.; Willink, Gina C.; Russell, Carl R.; Amy, Alexander R.; Pete, Ashley E.

    2014-01-01

    In April 2012 and October 2013, NASA and the U.S. Army jointly conducted a wind tunnel test program examining two notional large tilt rotor designs: NASA's Large Civil Tilt Rotor and the Army's High Efficiency Tilt Rotor. The approximately 6%-scale airframe models (unpowered) were tested without rotors in the U.S. Army 7- by 10-foot wind tunnel at NASA Ames Research Center. Measurements of all six forces and moments acting on the airframe were taken using the wind tunnel scale system. In addition to force and moment measurements, flow visualization using tufts, infrared thermography and oil flow were used to identify flow trajectories, boundary layer transition and areas of flow separation. The purpose of this test was to collect data for the validation of computational fluid dynamics tools, for the development of flight dynamics simulation models, and to validate performance predictions made during conceptual design. This paper focuses on the results for the Large Civil Tilt Rotor model in an airplane mode configuration up to 200 knots of wind tunnel speed. Results are presented with the full airframe model with various wing tip and nacelle configurations, and for a wing-only case also with various wing tip and nacelle configurations. Key results show that the addition of a wing extension outboard of the nacelles produces a significant increase in the lift-to-drag ratio, and interestingly decreases the drag compared to the case where the wing extension is not present. The drag decrease is likely due to complex aerodynamic interactions between the nacelle and wing extension that results in a significant drag benefit.

  13. An integrated, multi-sensing approach to describe the dynamic relations between turbulence, fluid-forces, and reconfiguration of a submerged plant model in steady flows.

    NASA Astrophysics Data System (ADS)

    Henry, Pierre-Yves; Aberle, Jochen; Dijkstra, Jasper; Myrhaug, Dag

    2016-04-01

    Aquatic vegetation plays a vital role in ecohydrological systems regulating many physical, chemical, and biological processes across a wide range of spatial and temporal scales. As a consequence, plant-flow interactions are of particular interest to a wide range of disciplines. While early studies of the interactions between vegetation and flowing water employed simplified and non-flexible structures such as rigid cylinders, recent studies have included flexible plants to identify the main characteristics of the hydrodynamics of vegetated flows. However, the description of plant reconfiguration has often been based on a static approach, i.e. considering the plant's deformation under a static load and neglecting turbulent fluctuations. Correlations between drag fluctuations, plant movements, and upstream turbulence were recently established showing that shear layer turbulence at the surface of the different plant elements (such as blades or stems) can contribute significantly to the dynamic behaviour of the plant. However, the relations between plant movement and force fluctuations might change under varying flow velocities, and although this point is crucial for mixing processes and plant dislodgement by fatigue, these aspects of fluid-structure interactions applied to aquatic vegetation remain largely unexplored. Using an innovative combination of sensing techniques in one set of experiments, this study investigates the relations between turbulence, fluctuating fluid forces and movements of a flexible cylindrical plant surrogate. A silicone-based flexible cylinder was attached at the bottom of a 1m wide flume in fully-developed uniform flow. The lower 22 cm of the plant surrogate were made of plain flexible silicone, while the higher 13cm included a casted rigid sensor, measuring accelerations at the tip of the surrogate. Forces were sampled at high frequencies at the surrogate's base by a 6-degrees-of-freedom force/torque sensor measuring down to the gram-force. Point measurements of turbulence were realized by two ADVs which were located upstream and downstream of the surrogate. Detailed motions of the surrogate were recorded by two cameras above and next to the flume. Image processing allowed for the characterization of the mean deformation and the different modes of horizontal and vertical 'vibration' of the surrogate. The experimental results were compared to numerical simulations obtained from an updated version of the Dynveg code developed by Deltares. The results showed a clear correlation between the cylinder's movements and the (drag) force fluctuations. Due to the swaying motion of the surrogate, the turbulence spectrum is significantly affected when the flow passes the plant model. The succession of several motion modes are observed as the velocity increases, affecting the dominant frequencies in the drag force spectrum and the overall drag. These preliminary results emphasise the importance of the dynamics of the plant flow interactions, and provide an example of the use of new methodologies to provide deeper insights into the physics of complex flows.

  14. CFD Predictions for Transonic Performance of the ERA Hybrid Wing-Body Configuration

    NASA Technical Reports Server (NTRS)

    Deere, Karen A.; Luckring, James M.; McMillin, S. Naomi; Flamm, Jeffrey D.; Roman, Dino

    2016-01-01

    A computational study was performed for a Hybrid Wing Body configuration that was focused at transonic cruise performance conditions. In the absence of experimental data, two fully independent computational fluid dynamics analyses were conducted to add confidence to the estimated transonic performance predictions. The primary analysis was performed by Boeing with the structured overset-mesh code OVERFLOW. The secondary analysis was performed by NASA Langley Research Center with the unstructured-mesh code USM3D. Both analyses were performed at full-scale flight conditions and included three configurations customary to drag buildup and interference analysis: a powered complete configuration, the configuration with the nacelle/pylon removed, and the powered nacelle in isolation. The results in this paper are focused primarily on transonic performance up to cruise and through drag rise. Comparisons between the CFD results were very good despite some minor geometric differences in the two analyses.

  15. Numerical Study of Flow Augmented Thermal Management for Entry and Re-Entry Environments

    NASA Technical Reports Server (NTRS)

    Cheng, Gary C.; Neroorkar, Kshitij D.; Chen, Yen-Sen; Wang, Ten-See; Daso, Endwell O.

    2007-01-01

    The use of a flow augmented thermal management system for entry and re-entr environments is one method for reducing heat and drag loads. This concept relies on jet penetration from supersonic and hypersonic counterflowing jets that could significantly weaken and disperse the shock-wave system of the spacecraft flow field. The objective of this research effort is to conduct parametric studies of the supersonic flow over a 2.6% scale model of the Apollo capsule, with and without the counterflowing jet, using time-accurate and steady-state computational fluid dynamics simulations. The numerical studies, including different freestream Mach number angle of attack counterflowing jet mass flow rate, and nozzle configurations, were performed to examine their effect on the drag and beat loads and to explore the counternowing jet condition. The numerical results were compared with the test data obtained from transonic blow-down wind-tunnel experiments conducted independently at NASA MSFC.

  16. Multi-objective aerodynamic shape optimization of small livestock trailers

    NASA Astrophysics Data System (ADS)

    Gilkeson, C. A.; Toropov, V. V.; Thompson, H. M.; Wilson, M. C. T.; Foxley, N. A.; Gaskell, P. H.

    2013-11-01

    This article presents a formal optimization study of the design of small livestock trailers, within which the majority of animals are transported to market in the UK. The benefits of employing a headboard fairing to reduce aerodynamic drag without compromising the ventilation of the animals' microclimate are investigated using a multi-stage process involving computational fluid dynamics (CFD), optimal Latin hypercube (OLH) design of experiments (DoE) and moving least squares (MLS) metamodels. Fairings are parameterized in terms of three design variables and CFD solutions are obtained at 50 permutations of design variables. Both global and local search methods are employed to locate the global minimum from metamodels of the objective functions and a Pareto front is generated. The importance of carefully selecting an objective function is demonstrated and optimal fairing designs, offering drag reductions in excess of 5% without compromising animal ventilation, are presented.

  17. Design of supercritical swept wings

    NASA Technical Reports Server (NTRS)

    Garabedian, P.; Mcfadden, G.

    1982-01-01

    Computational fluid dynamics are used to discuss problems inherent to transonic three-dimensional flow past supercritical swept wings. The formulation for a boundary value problem for the flow past the wing is provided, including consideration of weak shock waves and the use of parabolic coordinates. A swept wing code is developed which requires a mesh of 152 x 10 x 12 points and 200 time cycles. A formula for wave drag is calculated, based on the idea that the conservation form of the momentum equation becomes an entropy inequality measuring the drag, expressible in terms of a small-disturbance equation for a potential function in two dimensions. The entropy inequality has been incorporated in a two-dimensional code for the analysis of transonic flow over airfoils. A method of artificial viscosity is explored for optimum pressure distributions with design, and involves a free boundary problem considering speed over only a portion of the wing.

  18. Validation of Hydrodynamic Load Models Using CFD for the OC4-DeepCwind Semisubmersible: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benitz, M. A.; Schmidt, D. P.; Lackner, M. A.

    Computational fluid dynamics (CFD) simulations were carried out on the OC4-DeepCwind semi-submersible to obtain a better understanding of how to set hydrodynamic coefficients for the structure when using an engineering tool such as FAST to model the system. The focus here was on the drag behavior and the effects of the free-surface, free-ends and multi-member arrangement of the semi-submersible structure. These effects are investigated through code-to-code comparisons and flow visualizations. The implications on mean load predictions from engineering tools are addressed. The work presented here suggests that selection of drag coefficients should take into consideration a variety of geometric factors.more » Furthermore, CFD simulations demonstrate large time-varying loads due to vortex shedding, which FAST's hydrodynamic module, HydroDyn, does not model. The implications of these oscillatory loads on the fatigue life needs to be addressed.« less

  19. Fluid Flow Experiment for Undergraduate Laboratory.

    ERIC Educational Resources Information Center

    Vilimpochapornkul, Viroj; Obot, Nsima T.

    1986-01-01

    The undergraduate fluid mechanics laboratory at Clarkson University consists of three experiments: mixing; drag measurements; and fluid flow and pressure drop measurements. The latter experiment is described, considering equipment needed, procedures used, and typical results obtained. (JN)

  20. Drag reduction using slippery liquid infused surfaces

    NASA Astrophysics Data System (ADS)

    Hultmark, Marcus; Stone, Howard; Smits, Alexander; Jacobi, Ian; Samaha, Mohamed; Wexler, Jason; Shang, Jessica; Rosenberg, Brian; Hellström, Leo; Fan, Yuyang

    2013-11-01

    A new method for passive drag reduction is introduced. A surface treatment inspired by the Nepenthes pitcher plant, previously developed by Wong et al. (2011), is utilized and its design parameters are studied for increased drag reduction and durability. Nano- and micro-structured surfaces infused with a lubricant allow for mobility within the lubricant itself when the surface is exposed to flow. The mobility causes slip at the fluid-fluid interface, which drastically reduces the viscous friction. These new surfaces are fundamentally different from the more conventional superhydrophobic surfaces previously used in drag reduction studies, which rely on a gas-liquid interface. The main advantage of the liquid infused surfaces over the conventional surfaces is that the lubricant adheres more strongly to the surface, decreasing the risk of failure when exposed to turbulence and other high-shear flows. We have shown that these surfaces can reduce viscous drag up to 20% in both Taylor-Couette flow and in a parallel plate rheometer. Supported under ONR Grants N00014-12-1-0875 and N00014-12-1-0962 (program manager Ki-Han Kim).

  1. Assessment of passive drag in swimming by numerical simulation and analytical procedure.

    PubMed

    Barbosa, Tiago M; Ramos, Rui; Silva, António J; Marinho, Daniel A

    2018-03-01

    The aim was to compare the passive drag-gliding underwater by a numerical simulation and an analytical procedure. An Olympic swimmer was scanned by computer tomography and modelled gliding at a 0.75-m depth in the streamlined position. Steady-state computer fluid dynamics (CFD) analyses were performed on Fluent. A set of analytical procedures was selected concurrently. Friction drag (D f ), pressure drag (D pr ), total passive drag force (D f +pr ) and drag coefficient (C D ) were computed between 1.3 and 2.5 m · s -1 by both techniques. D f +pr ranged from 45.44 to 144.06 N with CFD, from 46.03 to 167.06 N with the analytical procedure (differences: from 1.28% to 13.77%). C D ranged between 0.698 and 0.622 by CFD, 0.657 and 0.644 by analytical procedures (differences: 0.40-6.30%). Linear regression models showed a very high association for D f +pr plotted in absolute values (R 2  = 0.98) and after log-log transformation (R 2  = 0.99). The C D also obtained a very high adjustment for both absolute (R 2  = 0.97) and log-log plots (R 2  = 0.97). The bias for the D f +pr was 8.37 N and 0.076 N after logarithmic transformation. D f represented between 15.97% and 18.82% of the D f +pr by the CFD, 14.66% and 16.21% by the analytical procedures. Therefore, despite the bias, analytical procedures offer a feasible way of gathering insight on one's hydrodynamics characteristics.

  2. A discrete element model for the influence of surfactants on sedimentation characteristics of magnetorheological fluids

    NASA Astrophysics Data System (ADS)

    Son, Kwon Joong

    2018-02-01

    Hindering particle agglomeration and re-dispersion processes, gravitational sedimentation of suspended particles in magnetorheological (MR) fluids causes inferior performance and controllability of MR fluids in response to a user-specified magnetic field. Thus, suspension stability is one of the principal factors to be considered in synthesizing MR fluids. However, only a few computational studies have been reported so far on the sedimentation characteristics of suspended particles under gravity. In this paper, the settling dynamics of paramagnetic particles suspended in MR fluids was investigated via discrete element method (DEM) simulations. This work focuses particularly on developing accurate fluid-particle and particle-particle interaction models which can account for the influence of stabilizing surfactants on the MR fluid sedimentation. Effect of the stabilizing surfactants on interparticle interactions was incorporated into the derivation of a reliable contact-impact model for DEM computation. Also, the influence of the stabilizing additives on fluid-particle interactions was considered by incorporating Stokes drag with shape and wall correction factors into DEM formulation. The results of simulations performed for model validation purposes showed a good agreement with the published sedimentation measurement data in terms of an initial sedimentation velocity and a final sedimentation ratio.

  3. Dilatancy and compaction effects on the submerged granular column collapse

    NASA Astrophysics Data System (ADS)

    Wang, Chun; Wang, Yongqi; Peng, Chong; Meng, Xiannan

    2017-10-01

    The effects of dilatancy on the collapse dynamics of granular materials in air or in a liquid are studied experimentally and numerically. Experiments show that dilatancy has a critical effect on the collapse of granular columns in the presence of an ambient fluid. Two regimes of the collapse, one being quick and the other being slow, are observed from the experiments and the underlying reasons are analyzed. A two-fluid smoothed particle hydrodynamics model, based on the granular-fluid mixture theory and the critical state theory, is employed to investigate the complex interactions between the solid particles and the ambient water. It is found that dilatancy, resulting in large effective stress and large frictional coefficient between solid particles, helps form the slow regime. Small permeability, representing large inter-phase drag force, also retards the collapse significantly. The proposed numerical model is capable of reproducing these effects qualitatively.

  4. Direct numerical simulation of moderate-Reynolds-number flow past arrays of rotating spheres

    NASA Astrophysics Data System (ADS)

    Zhou, Qiang; Fan, Liang-Shih

    2015-07-01

    Direct numerical simulations with an immersed boundary-lattice Boltzmann method are used to investigate the effects of particle rotation on flows past random arrays of mono-disperse spheres at moderate particle Reynolds numbers. This study is an extension of a previous study of the authors [Q. Zhou and L.-S. Fan, "Direct numerical simulation of low-Reynolds-number flow past arrays of rotating spheres," J. Fluid Mech. 765, 396-423 (2015)] that explored the effects of particle rotation at low particle Reynolds numbers. The results of this study indicate that as the particle Reynolds number increases, the normalized Magnus lift force decreases rapidly when the particle Reynolds number is in the range lower than 50. For the particle Reynolds number greater than 50, the normalized Magnus lift force approaches a constant value that is invariant with solid volume fractions. The proportional dependence of the Magnus lift force on the rotational Reynolds number (based on the angular velocity and the diameter of the spheres) observed at low particle Reynolds numbers does not change in the present study, making the Magnus lift force another possible factor that can significantly affect the overall dynamics of fluid-particle flows other than the drag force. Moreover, it is found that both the normalized drag force and the normalized torque increase with the increase of the particle Reynolds number and the solid volume fraction. Finally, correlations for the drag force, the Magnus lift force, and the torque in random arrays of rotating spheres at arbitrary solids volume fractions, rotational Reynolds numbers, and particle Reynolds numbers are formulated.

  5. Aerodynamics of Stardust Sample Return Capsule

    NASA Technical Reports Server (NTRS)

    Mitcheltree, R. A.; Wilmoth, R. G.; Cheatwood, F. M.; Brauckmann, G. J.; Greene, F. A.

    1997-01-01

    Successful return of interstellar dust and cometary material by the Stardust Sample Return Capsule requires an accurate description of the Earth entry vehicle's aerodynamics. This description must span the hypersonic-rarefied, hypersonic-continuum, supersonic, transonic, and subsonic flow regimes. Data from numerous sources are compiled to accomplish this objective. These include Direct Simulation Monte Carlo analyses, thermochemical nonequilibrium computational fluid dynamics, transonic computational fluid dynamics, existing wind tunnel data, and new wind tunnel data. Four observations are highlighted: 1) a static instability is revealed in the free-molecular and early transitional-flow regime due to aft location of the vehicle s center-of-gravity, 2) the aerodynamics across the hypersonic regime are compared with the Newtonian flow approximation and a correlation between the accuracy of the Newtonian flow assumption and the sonic line position is noted, 3) the primary effect of shape change due to ablation is shown to be a reduction in drag, and 4) a subsonic dynamic instability is revealed which will necessitate either a change in the vehicle s center-of-gravity location or the use of a stabilizing drogue parachute.

  6. Inclusion of heat transfer computations for particle laden flows

    NASA Astrophysics Data System (ADS)

    Feng, Zhi-Gang; Michaelides, Efstathios E.

    2008-04-01

    A newly developed direct numerical simulation method has been used to study the dynamics of nonisothermal cylindrical particles in particulate flows. The momentum and energy transfer equations are solved to compute the effects of heat transfer in the sedimentation of particles. Among the effects examined is the drag force on nonisothermal particles, which we found strongly depends on the Reynolds and Grashof numbers. It was observed that heat advection between hotter particles and fluid causes the drag coefficient of particles to significantly increase at relatively low Reynolds numbers. For Grashof number of 100, the drag enhancement effect diminishes when the Reynolds number exceeds 50. On the contrary, heat advection with colder particles reduces the drag coefficient for low and medium Reynolds number (Re<50) for Grashof number of -100. We used this numerical method to study the problem of a pair of hot particles settling in a container at different Grashof numbers. In isothermal cases, such a pair of particles would undergo the well-known drafting-kissing-tumbling (DKT) motion. However, it was observed that the buoyancy currents induced by the hotter particles reverse the DKT motion of the particles or suppress it altogether. Finally, the sedimentation of a circular cluster of 172 particles in an enclosure at two different Grashof numbers was studied and the main features of the results are presented.

  7. Drag reduction: enticing turbulence, and then an industry.

    PubMed

    Spalart, Philippe R; McLean, J Douglas

    2011-04-13

    We examine drag-reduction proposals, as presented in this volume and in general, first with concrete examples of how to bridge the distance from pure science through engineering to what makes inventions go into service; namely, the value to the public. We point out that the true drag reduction can be markedly different from an estimate based simply on the difference between turbulent and laminar skin friction over the laminarized region, or between the respective skin frictions of the baseline and the riblet-treated flow. In some situations, this difference is favourable, and is due to secondary differences in pressure drag. We reiterate that the benefit of riblets, if it is expressed as a percentage in skin-friction reduction, is unfortunately lower at full-size Reynolds numbers than in a small-scale experiment or simulation. The Reynolds number-independent measure of such benefits is a shift of the logarithmic law, or 'ΔU(+)'. Anticipating the design of a flight test and then a product, we note the relative ease in representing riblets or laminarization in computational fluid dynamics, in contrast with the huge numerical and turbulence-modelling challenge of resolving active flow control systems in a calculation of the full flow field. We discuss in general terms the practical factors that have limited applications of concepts that would appear more than ready after all these years, particularly riblets and laminar-flow control.

  8. Technical Status Review on Drag Prediction and Analysis from Computational Fluid Dynamics: State of the Art

    DTIC Science & Technology

    1989-06-01

    Methodes de Panel) ct sur l’equation complete du potentiel avec ou sans incorporation des effets visqueux. sont couramment employees darn l’industrie...quo pour ce qui eat do Is privision do Is tralnie ia situation actuolle nett pas satisfaisante. Il est en effet plus facile d’obtonir do bonnos...d’un nouvel appareil civil ou militairo utilisont donc encore largaent les essais en soufflerie en Is1 C. minimum eat ensuite corrigE des effets

  9. Aerodynamics of Hypersonic Lifting Vehicles: Conference Proceedings Held at the Fluid Dynamics Panel Symposium in Bristol, United Kingdom on 6-9 April 1987

    DTIC Science & Technology

    1987-11-01

    Motion in Interactive Flows," MS Thesis , Aerospace Engineering and Engineering Mechanics Department, The University of Texas at Austin, Dec. 1986. 19...8217Cone drag in the transition from continuum to free molecular flow.’ PhD Thesis , Jesus College, Oxford (1984) 10-9 6i ______3&14 445 105.47 rn,=2.93...of Scramjets," Ph.D. Thesis , University of Sheffield (GB), October 1965. 88. Swithenbank, J., and Parsons, R.J., "Experimental Techniques for

  10. Transonic flow theory of airfoils and wings

    NASA Technical Reports Server (NTRS)

    Garabedian, P. R.

    1976-01-01

    There are plans to use the supercritical wing on the next generation of commercial aircraft so as to economize on fuel consumption by reducing drag. Computer codes have served well in meeting the consequent demand for new wing sections. The possibility of replacing wind tunnel tests by computational fluid dynamics is discussed. Another approach to the supercritical wing is through shockless airfoils. A novel boundary value problem in the hodograph plane is studied that enables one to design a shockless airfoil so that its pressure distribution very nearly takes on data that are prescribed.

  11. Graduate engineering research participation in aeronautics

    NASA Technical Reports Server (NTRS)

    Roberts, A. S., Jr.

    1986-01-01

    The Aeronautics Graduate Research Program commenced in 1971, with the primary goal of engaging students who qualified for regular admission to the Graduate School of Engineering at Old Dominion University in a graduate engineering research and study program in collaboration with NASA Langley Research Center, Hampton, Virginia. The format and purposes of this program are discussed. Student selection and program statistics are summarized. Abstracts are presented in the folowing areas: aircraft design, aerodynamics, lift/drag characteristics; avionics; fluid mechanics; solid mechanics; instrumentation and measurement techniques; thermophysical properties experiments; large space structures; earth orbital dynamics; and environmental engineering.

  12. Experimental determination of damping of plate vibrations in a viscous fluid

    NASA Astrophysics Data System (ADS)

    Egorov, A. G.; Kamalutdinov, A. M.; Nuriev, A. N.; Paimushin, V. N.

    2017-05-01

    A method of determining the aerodynamic-drag coefficient of flat vibrating plates from the vibrogram of free damping vibrations of cantilever-fixed duralumin samples has been developed. From the results of our experiments, simple approximating formulas determining the decrement of damping vibrations and the aerodynamic-drag coefficient through the dimensionless vibration amplitude and the Stokes parameter are proposed. The approach developed in this study for determining the aerodynamic-drag coefficient of a vibrating plate can be a useful alternative to purely hydrodynamic methods of finding the drag of vibrating solids.

  13. Anomalous Drag Reduction and Hydrodynamic Interactions of Nanoparticles in Polymer Nanocomposite Thin Films

    NASA Astrophysics Data System (ADS)

    Basu, Jaydeep; Begam, Nafisa; Chandran, Sivasurender; Sprung, Michael

    2015-03-01

    One of the central dogma of fluid physics is the no-slip boundary condition whose validity has come under intense scrutiny, especially in the fields of micro and nanofluidics. Although various studies show the violation of the no-slip condition its effect on flow of colloidal particles in viscous media has been rarely explored. Here we report unusually large reduction of effective drag experienced by polymer grafted nanoparticles moving through a highly viscous film of polymer, well above its glass transition temperature. The extent of drag reduction increases with decreasing temperature and polymer film thickness. We also observe apparent divergence of the wave vector dependent hydrodynamic interaction function of these nanoparticles with an anomalous power law exponent of ~ 2 at the lowest temperatures and film thickness. Such strong hydrodynamic interactions are not expected in polymer melts where these interactions are known to be screened to molecular dimensions. We provide evidence for the presence of large hydrodynamic slip at the nanoparticle-polymer interface and demonstrate its tunability with temperature and confinement. Our study suggests novel physics emerging in dynamics nanoparticles due to confinement and interface wettability in thin films of polymer nanocomposites.

  14. Integration of Research for an Exhaust Thermoelectric Generator and the Outer Flow Field of a Car

    NASA Astrophysics Data System (ADS)

    Jiang, T.; Su, C. Q.; Deng, Y. D.; Wang, Y. P.

    2017-05-01

    The exhaust thermoelectric generator (TEG) can generate electric power from a car engine's waste heat. It is important to maintain a sufficient temperature difference across the thermoelectric modules. The radiator is connected to the cooling units of the thermoelectric modules and used to take away the heat from the TEG system. This paper focuses on the research for the integration of a TEG radiator and the flow field of the car chassis, aiming to cool the radiator by the high speed flow around the chassis. What is more, the TEG radiator is designed as a spoiler to optimize the flow field around the car chassis and even reduce the aerodynamic drag. Concentrating on the flow pressure of the radiator and the aerodynamic drag force, a sedan model with eight different schemes of radiator configurations are studied by computational fluid dynamics simulation. Finally, the simulation results indicate that a reasonable radiator configuration can not only generate high flow pressure to improve the cooling performance, which provides a better support for the TEG system, but also acts as a spoiler to reduce the aerodynamic drag force.

  15. Research into the propeller strut for high speed outboard motor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimizu, Takashi; Sunayama, Yoshihiko

    1995-12-31

    For better performance of outboard motors for high speed craft, improvement in the performance of the propeller strut located ahead of the propeller is indispensable in addition to ameliorating the performance of the screw propeller itself. Thus, it is extremely important to reduce the drag of the propeller strut, which accounts for the predominant portion of the submerged parts of the motor and hull when the craft is running at high speed and to improve the propeller efficiency in the wake of the propeller strut. This paper, taking up two different shapes of the propeller strut, compares the performances ofmore » the propeller placed in the wake of the propeller strut in tank tests, and discusses the drag of the propeller strut. The two propeller strut shapes are that of a 70% scaled down model of the propeller strut Suzuki`s 200 PS outboard motor and its improved version. The propeller used in the experiment is one having super cavitating blades with the Pseudo-Kirchhoff nose, whose performance the authors have been analyzing systematically. Detailed comparison was further made of the drags of the differently shaped propeller struts by means of computational fluid dynamics.« less

  16. Improved Aerodynamic Analysis for Hybrid Wing Body Conceptual Design Optimization

    NASA Technical Reports Server (NTRS)

    Gern, Frank H.

    2012-01-01

    This paper provides an overview of ongoing efforts to develop, evaluate, and validate different tools for improved aerodynamic modeling and systems analysis of Hybrid Wing Body (HWB) aircraft configurations. Results are being presented for the evaluation of different aerodynamic tools including panel methods, enhanced panel methods with viscous drag prediction, and computational fluid dynamics. Emphasis is placed on proper prediction of aerodynamic loads for structural sizing as well as viscous drag prediction to develop drag polars for HWB conceptual design optimization. Data from transonic wind tunnel tests at the Arnold Engineering Development Center s 16-Foot Transonic Tunnel was used as a reference data set in order to evaluate the accuracy of the aerodynamic tools. Triangularized surface data and Vehicle Sketch Pad (VSP) models of an X-48B 2% scale wind tunnel model were used to generate input and model files for the different analysis tools. In support of ongoing HWB scaling studies within the NASA Environmentally Responsible Aviation (ERA) program, an improved finite element based structural analysis and weight estimation tool for HWB center bodies is currently under development. Aerodynamic results from these analyses are used to provide additional aerodynamic validation data.

  17. Aerodynamic analysis of natural flapping flight using a lift model based on spanwise flow

    NASA Astrophysics Data System (ADS)

    Alford, Lionel D., Jr.

    This study successfully described the mechanics of flapping hovering flight within the framework of conventional aerodynamics. Additionally, the theory proposed and supported by this research provides an entirely new way of looking at animal flapping flight. The mechanisms of biological flight are not well understood, and researchers have not been able to describe them using conventional aerodynamic forces. This study proposed that natural flapping flight can be broken down into a simplest model, that this model can then be used to develop a mathematical representation of flapping hovering flight, and finally, that the model can be successfully refined and compared to biological flapping data. This paper proposed a unique theory that the lift of a flapping animal is primarily the result of velocity across the cambered span of the wing. A force analysis was developed using centripetal acceleration to define an acceleration profile that would lead to a spanwise velocity profile. The force produced by the spanwise velocity profile was determined using a computational fluid dynamics analysis of flow on the simplified wing model. The overall forces on the model were found to produce more than twice the lift required for hovering flight. In addition, spanwise lift was shown to generate induced drag on the wing. Induced drag increased both the model wing's lift and drag. The model allowed the development of a mathematical representation that could be refined to account for insect hovering characteristics and that could predict expected physical attributes of the fluid flow. This computational representation resulted in a profile of lift and drag production that corresponds to known force profiles for insect flight. The model of flapping flight was shown to produce results similar to biological observation and experiment, and these results can potentially be applied to the study of other flapping animals. This work provides a foundation on which to base further exploration and hypotheses regarding flapping flight.

  18. Computational Analysis of a Wing Designed for the X-57 Distributed Electric Propulsion Aircraft

    NASA Technical Reports Server (NTRS)

    Deere, Karen A.; Viken, Jeffrey K.; Viken, Sally A.; Carter, Melissa B.; Wiese, Michael R.; Farr, Norma L.

    2017-01-01

    A computational study of the wing for the distributed electric propulsion X-57 Maxwell airplane configuration at cruise and takeoff/landing conditions was completed. Two unstructured-mesh, Navier-Stokes computational fluid dynamics methods, FUN3D and USM3D, were used to predict the wing performance. The goal of the X-57 wing and distributed electric propulsion system design was to meet or exceed the required lift coefficient 3.95 for a stall speed of 58 knots, with a cruise speed of 150 knots at an altitude of 8,000 ft. The X-57 Maxwell airplane was designed with a small, high aspect ratio cruise wing that was designed for a high cruise lift coefficient (0.75) at angle of attack of 0deg. The cruise propulsors at the wingtip rotate counter to the wingtip vortex and reduce induced drag by 7.5 percent at an angle of attack of 0.6deg. The unblown maximum lift coefficient of the high-lift wing (with the 30deg flap setting) is 2.439. The stall speed goal performance metric was confirmed with a blown wing computed effective lift coefficient of 4.202. The lift augmentation from the high-lift, distributed electric propulsion system is 1.7. The predicted cruise wing drag coefficient of 0.02191 is 0.00076 above the drag allotted for the wing in the original estimate. However, the predicted drag overage for the wing would only use 10.1 percent of the original estimated drag margin, which is 0.00749.

  19. Experiments and observations regarding the mechanisms of glass removal in magnetorheological finishing.

    PubMed

    Shorey, A B; Jacobs, S D; Kordonski, W I; Gans, R F

    2001-01-01

    Recent advances in the study of the magnetorheological finishing (MRF) have allowed for the characterization of the dynamic yield stress of the magnetorheological (MR) fluid, as well as the nanohardness (H(nano)) of the carbonyl iron (CI) used in MRF. Knowledge of these properties has allowed for a more complete study of the mechanisms of material removal in MRF. Material removal experiments show that the nanohardness of CI is important in MRF with nonaqueous MR fluids with no nonmagnetic abrasives, but is relatively unimportant in aqueous MR fluids or when nonmagnetic abrasives are present. The hydrated layer created by the chemical effects of water is shown to change the way material is removed by hard CI as the MR fluid transitions from a nonaqueous MR fluid to an aqueous MR fluid. Drag force measurements and atomic force microscope scans demonstrate that, when added to a MR fluid, nonmagnetic abrasives (cerium oxide, aluminum oxide, and diamond) are driven toward the workpiece surface because of the gradient in the magnetic field and hence become responsible for material removal. Removal rates increase with the addition of these polishing abrasives. The relative increase depends on the amount and type of abrasive used.

  20. Study of Theoretical and Numerical Fluid Characteristics of Plain Wing with Winglets

    NASA Astrophysics Data System (ADS)

    Nabhan, Mohamed B. W.

    2018-05-01

    Aerodynamic characteristics of plain wing designed for Light Sport Aircraft has been studied. The fluid characteristics include induced drag and lift to drag ratio. Then, winglets are added to reduce the induced drag and increase the lift to drag ratio which are affected by the wing tip vortices. The theoretical and numerical approaches are used to verify the results. A rectangular untwisted 9.528 m wing spans with an Airfoil NACA 4412 was used for the basic design. Winglets are added with a tip airfoil of NACA 0012, side angle of 65° and new projected area of 10.328 m2. Lift and drag coefficients are used as means to measure the improvement of the aerodynamic characteristics. The wing tip vortices increase the induced drag and spoil the lift over the wing's surface. The winglets design main objectives are to decrease the induced drag, decrease the fuel consumption, and increase the flight safety, especially in take-off condition. The wing with winglets model was simulated first using 3-D Fluent ANSYS version 14 at 50 m/s velocity and (0°, 5°, and 10°) angles of attack with laminar flow and standard atmospheric conditions at 15°C, and 101 kPa and all other flow parameters as well. The second verification method was to simulate the 3-D model using the 3-D Foil Multi-Surfaces code again with the same flow parameters. Finally, the last verification method was to solve the problem theoretically using the theoretical governing equations. The theoretical solutions were used as a base line for all other results. The total drag reduction observed from the calculation is about 2% to 14.5% during the takeoff regime, where the induced drag contributes about 60% of total drag of the wings. The lift to drag ratio improved also in our designed model wing with winglets by a maximum of 18.6% from the plain wing design.

  1. Shape optimization of an autonomous underwater vehicle with a ducted propeller using computational fluid dynamics analysis

    NASA Astrophysics Data System (ADS)

    Joung, Tae-Hwan; Sammut, Karl; He, Fangpo; Lee, Seung-Keon

    2012-03-01

    Autonomous Underwater Vehicles (AUVs) provide a useful means of collecting detailed oceano-graphic information. The hull resistance of an AUV is an important factor in determining the power requirements and range of the vehicle. This paper describes a procedure using Computational Fluid Dynamics (CFD) for determining the hull resistance of an AUV under development, for a given propeller rotation speed and within a given range of AUV velocities. The CFD analysis results reveal the distribution of the hydrodynamic values (velocity, pressure, etc.) around the AUV hull and its ducted propeller. The paper then proceeds to present a methodology for optimizing the AUV profile in order to reduce the total resistance. This paper demonstrates that shape optimization of conceptual designs is possible using the commercial CFD package contained in Ansys™. The optimum design to minimize the drag force of the AUV was identified for a given object function and a set of constrained design parameters

  2. MarsSedEx III: linking Computational Fluid Dynamics (CFD) and reduced gravity experiments

    NASA Astrophysics Data System (ADS)

    Kuhn, N. J.; Kuhn, B.; Gartmann, A.

    2015-12-01

    Nikolaus J. Kuhn (1), Brigitte Kuhn (1), and Andres Gartmann (2) (1) University of Basel, Physical Geography, Environmental Sciences, Basel, Switzerland (nikolaus.kuhn@unibas.ch), (2) Meteorology, Climatology, Remote Sensing, Environmental Sciences, University of Basel, Switzerland Experiments conducted during the MarsSedEx I and II reduced gravity experiments showed that using empirical models for sediment transport on Mars developed for Earth violates fluid dynamics. The error is caused by the interaction between runing water and sediment particles, which affect each other in a positive feedback loop. As a consequence, the actual flow conditions around a particle cannot be represented by drag coefficients derived on Earth. This study exmines the implications of such gravity effects on sediment movement on Mars, with special emphasis on the limits of sandstones and conglomerates formed on Earth as analogues for sedimentation on Mars. Furthermore, options for correctiong the errors using a combination of CFD and recent experiments conducted during the MarsSedEx III campaign are presented.

  3. Dragging Maintaining Symmetry: Can It Generate the Concept of Inclusivity as well as a Family of Shapes?

    ERIC Educational Resources Information Center

    Forsythe, Susan K.

    2015-01-01

    This article describes a project using Design Based Research methodology to ascertain whether a pedagogical task based on a dynamic figure designed in a Dynamic Geometry Software (DGS) program could be instrumental in developing students' geometrical reasoning. A dragging strategy which I have named "Dragging Maintaining Symmetry" (DMS)…

  4. Principles of operation and data reduction techniques for the loft drag disc turbine transducer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silverman, S.

    An analysis of the single- and two-phase flow data applicable to the loss-of-fluid test (LOFT) is presented for the LOFT drag turbine transducer. Analytical models which were employed to correlate the experimental data are presented.

  5. Fluidization of spherocylindrical particles

    NASA Astrophysics Data System (ADS)

    Mahajan, Vinay V.; Nijssen, Tim M. J.; Fitzgerald, Barry W.; Hofman, Jeroen; Kuipers, Hans; Padding, Johan T.

    2017-06-01

    Multiphase (gas-solid) flows are encountered in numerous industrial applications such as pharmaceutical, food, agricultural processing and energy generation. A coupled computational fluid dynamics (CFD) and discrete element method (DEM) approach is a popular way to study such flows at a particle scale. However, most of these studies deal with spherical particles while in reality, the particles are rarely spherical. The particle shape can have significant effect on hydrodynamics in a fluidized bed. Moreover, most studies in literature use inaccurate drag laws because accurate laws are not readily available. The drag force acting on a non-spherical particle can vary considerably with particle shape, orientation with the flow, Reynolds number and packing fraction. In this work, the CFD-DEM approach is extended to model a laboratory scale fluidized bed of spherocylinder (rod-like) particles. These rod-like particles can be classified as Geldart D particles and have an aspect ratio of 4. Experiments are performed to study the particle flow behavior in a quasi-2D fluidized bed. Numerically obtained results for pressure drop and bed height are compared with experiments. The capability of CFD-DEM approach to efficiently describe the global bed dynamics for fluidized bed of rod-like particles is demonstrated.

  6. Chiral drag force

    DOE PAGES

    Rajagopal, Krishna; Sadofyev, Andrey V.

    2015-10-05

    Here, we provide a holographic evaluation of novel contributions to the drag force acting on a heavy quark moving through strongly interacting plasma. The new contributions are chiral in the sense that they act in opposite directions in plasmas containing an excess of left- or right-handed quarks. The new contributions are proportional to the coefficient of the axial anomaly, and in this sense also are chiral. These new contributions to the drag force act either parallel to or antiparallel to an external magnetic field or to the vorticity of the fluid plasma. In all these respects, these contributions to themore » drag force felt by a heavy quark are analogous to the chiral magnetic effect (CME) on light quarks. However, the new contribution to the drag force is independent of the electric charge of the heavy quark and is the same for heavy quarks and antiquarks, meaning that these novel effects do not in fact contribute to the CME current. We show that although the chiral drag force can be non-vanishing for heavy quarks that are at rest in the local fluid rest frame, it does vanish for heavy quarks that are at rest in a suitably chosen frame. In this frame, the heavy quark at rest sees counterpropagating momentum and charge currents, both proportional to the axial anomaly coefficient, but feels no drag force. This provides strong concrete evidence for the absence of dissipation in chiral transport, something that has been predicted previously via consideration of symmetries. Along the way to our principal results, we provide a general calculation of the corrections to the drag force due to the presence of gradients in the flowing fluid in the presence of a nonzero chemical potential. We close with a consequence of our result that is at least in principle observable in heavy ion collisions, namely an anticorrelation between the direction of the CME current for light quarks in a given event and the direction of the kick given to the momentum of all the heavy quarks and antiquarks in that event.« less

  7. Water repellent/wetting characteristics of various bio-inspired morphologies and fluid drag reduction testing research.

    PubMed

    Luo, Yuehao; Song, Wen; Wang, Xudong

    2016-03-01

    It is well-known that the bio-inspired sharkskin covering the original pattern has the apparent drag reduction function in the turbulent flowing stations, which can be regarded as "sharkskin effect", and it has progressively been put application into the fluid engineering with obtaining great profits. In this paper, the anisotropic wetting phenomena on sharkskin are discovered, the contact angles and rolling angles on different orientations are not the same. In addition, the hydrodynamic experiments on different sharkskin surfaces are conducted, and the experimental results illustrate that the super-hydrophobic and drag-reducing properties on deformed biological surfaces are improved to some extent compared to the original morphology, which has important significance to expand its practical applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Design of a High Viscosity Couette Flow Facility for Patterned Surface Drag Measurements

    NASA Astrophysics Data System (ADS)

    Johnson, Tyler; Lang, Amy

    2009-11-01

    Direct drag measurements can be difficult to obtain with low viscosity fluids such as air or water. In this facility, mineral oil is used as the working fluid to increase the shear stress across the surface of experimental models. A mounted conveyor creates a flow within a plexiglass tank. The experimental model of a flat or patterned surface is suspended above a moving belt. Within the gap between the model and moving belt a Couette flow with a linear velocity profile is created. PIV measurements are used to determine the exact velocities and the Reynolds numbers for each experiment. The model is suspended by bars that connect to the pillow block housing of each bearing. Drag is measured by a force gauge connected to linear roller bearings that slide along steel rods. The patterned surfaces, initially consisting of 2-D cavities, are embedded in a plexiglass plate so as to keep the total surface area constant for each experiment. First, the drag across a flat plate is measured and compared to theoretical values for laminar Couette flow. The drag for patterned surfaces is then measured and compared to a flat plate.

  9. Lubricant-impregnated surfaces for drag reduction in viscous laminar flow

    NASA Astrophysics Data System (ADS)

    Solomon, Brian; Khalil, Karim; Varanasi, Kripa; MIT Team

    2013-11-01

    For the first time, we explore the potential of lubricant impregnated surfaces (LIS) in reducing drag. LIS, inspired by the surface of the Nepenthes pitcher plant, have been introduced as a novel way of functionalizing a surface. LIS are characterized by extremely low contact angle hysteresis and have been show to effectively repel various liquids including water, oils, ketchup and blood. Motivated by the slippery nature of such surfaces, we explore the potential of LIS to reduce drag in internal flows. We observe a reduction in drag for LIS surfaces in a viscous laminar drag flow and model the impact of relevant system parameters (lubricant viscosity, working fluid viscosity, solid fraction, depth of texture, etc.).

  10. Optical Kapitza pendulum

    NASA Astrophysics Data System (ADS)

    Jones, Philip H.; Smart, Thomas J.; Richards, Christopher J.; Cubero, David

    2016-09-01

    The Kapitza pendulum is the paradigm for the phenomenon of dynamical stabilization, whereby an otherwise unstable system achieves a stability that is induced by fast modulation of a control parameter. In the classic, macroscopic Kapitza pendulum, a rigid pendulum is stabilized in the upright, inverted pendulum using a particle confined in a ring-shaped optical trap, subject to a drag force via fluid flow and driven via oscillating the potential in a direction parallel to the fluid flow. In the regime of vanishing Reynold's number with high-frequency driving the inverted pendulum is no longer stable, but new equilibrium positions appear that depend on the amplitude of driving. As the driving frequency is decreased a yet different behavior emerges where stability of the pendulum depends also on the details of the pendulum hydrodynamics. We present a theory for the observed induced stability of the overdamped pendulum based on the separation of timescales in the pendulum motion as formulated by Kapitza, but with the addition of a viscous drag. Excellent agreement is found between the predicted behavior from the analytical theory and the experimental results across the range of pendulum driving frequencies. We complement these results with Brownian motion simulations, and we characterize the stabilized pendulum by both time- and frequency-domain analyses of the pendulum Brownian motion.

  11. Particle dynamics and pattern formation in a rotating suspension of positively buoyant particles

    NASA Astrophysics Data System (ADS)

    Konidena, Sudarshan; Lee, Jonghoon; Reddy, K. Anki; Singh, Anugrah

    2018-04-01

    Numerical simulations of positively buoyant suspension in a horizontally rotating cylinder were performed to study the formation of radial and axial patterns. The order parameter for the low-frequency segregated phase and dispersed phase is similar to that predicted for the settling suspension by Lee and Ladd [J. Fluid Mech. 577, 183 (2007), 10.1017/S002211200700465X], which is the average angular velocity of the particles. The particle density profiles for axial bands in the buoyancy-dominated phase shows an amplitude equivalent to the diameter of the cylinder. Axial density profiles show sinusoidal behavior for the drag-dominant phase and oscillating sinusoidal behavior for the centrifugal-force-dominant phase. Results also indicate that the traveling bands are formed as a consequence of the inhomogeneous distribution of particles arising from a certain imbalance of drag, buoyancy, and centrifugal forces. In the centrifugal limit, particles move towards the center of the cylinder, aggregating to form a dense core of particles with its axis coinciding with that of the rotating cylinder, a behavior which is in contrast to the sedimenting particles. The particle distribution patterns obtained from the simulations are found to be in good agreement with the experiments of Kalyankar et al. [Phys. Fluids 20, 083301 (2008), 10.1063/1.2970156].

  12. Design approach of an aquaculture cage system for deployment in the constructed channel flow environments of a power plant

    PubMed Central

    Lee, Jihoon; Fredriksson, David W.; DeCew, Judson; Drach, Andrew; Yim, Solomon C.

    2018-01-01

    This study provides an engineering approach for designing an aquaculture cage system for use in constructed channel flow environments. As sustainable aquaculture has grown globally, many novel techniques have been introduced such as those implemented in the global Atlantic salmon industry. The advent of several highly sophisticated analysis software systems enables the development of such novel engineering techniques. These software systems commonly include three-dimensional (3D) drafting, computational fluid dynamics, and finite element analysis. In this study, a combination of these analysis tools is applied to evaluate a conceptual aquaculture system for potential deployment in a power plant effluent channel. The channel is supposedly clean; however, it includes elevated water temperatures and strong currents. The first portion of the analysis includes the design of a fish cage system with specific net solidities using 3D drafting techniques. Computational fluid dynamics is then applied to evaluate the flow reduction through the system from the previously generated solid models. Implementing the same solid models, a finite element analysis is performed on the critical components to assess the material stresses produced by the drag force loads that are calculated from the fluid velocities. PMID:29897954

  13. Low-drag events in transitional wall-bounded turbulence

    NASA Astrophysics Data System (ADS)

    Whalley, Richard D.; Park, Jae Sung; Kushwaha, Anubhav; Dennis, David J. C.; Graham, Michael D.; Poole, Robert J.

    2017-03-01

    Intermittency of low-drag pointwise wall shear stress measurements within Newtonian turbulent channel flow at transitional Reynolds numbers (friction Reynolds numbers 70 - 130) is characterized using experiments and simulations. Conditional mean velocity profiles during low-drag events closely approach that of a recently discovered nonlinear traveling wave solution; both profiles are near the so-called maximum drag reduction profile, a general feature of turbulent flow of liquids containing polymer additives (despite the fact that all results presented are for Newtonian fluids only). Similarities between temporal intermittency in small domains and spatiotemporal intermittency in large domains is thereby found.

  14. A statistical learning strategy for closed-loop control of fluid flows

    NASA Astrophysics Data System (ADS)

    Guéniat, Florimond; Mathelin, Lionel; Hussaini, M. Yousuff

    2016-12-01

    This work discusses a closed-loop control strategy for complex systems utilizing scarce and streaming data. A discrete embedding space is first built using hash functions applied to the sensor measurements from which a Markov process model is derived, approximating the complex system's dynamics. A control strategy is then learned using reinforcement learning once rewards relevant with respect to the control objective are identified. This method is designed for experimental configurations, requiring no computations nor prior knowledge of the system, and enjoys intrinsic robustness. It is illustrated on two systems: the control of the transitions of a Lorenz'63 dynamical system, and the control of the drag of a cylinder flow. The method is shown to perform well.

  15. Two-fluid description of wave-particle interactions in strong Buneman turbulence

    NASA Astrophysics Data System (ADS)

    Che, H.

    2014-06-01

    To understand the nature of anomalous resistivity in magnetic reconnection, we investigate turbulence-induced momentum transport and energy dissipation while a plasma is unstable to the Buneman instability in force-free current sheets. Using 3D particle-in-cell simulations, we find that the macroscopic effects generated by wave-particle interactions in Buneman instability can be approximately described by a set of electron fluid equations. We show that both energy dissipation and momentum transport along electric current in the current layer are locally quasi-static, but globally dynamic and irreversible. Turbulent drag dissipates both the streaming energy of the current sheet and the associated magnetic energy. The net loss of streaming energy is converted into the electron component heat conduction parallel to the magnetic field and increases the electron Boltzmann entropy. The growth of self-sustained Buneman waves satisfies a Bernoulli-like equation that relates the turbulence-induced convective momentum transport and thermal momentum transport. Electron trapping and de-trapping drive local momentum transports, while phase mixing converts convective momentum into thermal momentum. The drag acts like a micro-macro link in the anomalous heating processes. The decrease of magnetic field maintains an inductive electric field that re-accelerates electrons, but most of the magnetic energy is dissipated and converted into the component heat of electrons perpendicular to the magnetic field. This heating process is decoupled from the heating of Buneman instability in the current sheets. Ion heating is weak but ions play an important role in assisting energy exchanges between waves and electrons. Cold ion fluid equations together with our electron fluid equations form a complete set of equations that describes the occurrence, growth, saturation and decay of the Buneman instability.

  16. Numerical prediction of the interference drag of a streamlined strut intersecting a surface in transonic flow

    NASA Astrophysics Data System (ADS)

    Tetrault, Philippe-Andre

    2000-10-01

    In transonic flow, the aerodynamic interference that occurs on a strut-braced wing airplane, pylons, and other applications is significant. The purpose of this work is to provide relationships to estimate the interference drag of wing-strut, wing-pylon, and wing-body arrangements. Those equations are obtained by fitting a curve to the results obtained from numerous Computational Fluid Dynamics (CFD) calculations using state-of-the-art codes that employ the Spalart-Allmaras turbulence model. In order to estimate the effect of the strut thickness, the Reynolds number of the flow, and the angle made by the strut with an adjacent surface, inviscid and viscous calculations are performed on a symmetrical strut at an angle between parallel walls. The computations are conducted at a Mach number of 0.85 and Reynolds numbers of 5.3 and 10.6 million based on the strut chord. The interference drag is calculated as the drag increment of the arrangement compared to an equivalent two-dimensional strut of the same cross-section. The results show a rapid increase of the interference drag as the angle of the strut deviates from a position perpendicular to the wall. Separation regions appear for low intersection angles, but the viscosity generally provides a positive effect in alleviating the strength of the shock near the junction and thus the drag penalty. When the thickness-to-chord ratio of the strut is reduced, the flowfield is disturbed only locally at the intersection of the strut with the wall. This study provides an equation to estimate the interference drag of simple intersections in transonic flow. In the course of performing the calculations associated with this work, an unstructured flow solver was utilized. Accurate drag prediction requires a very fine grid and this leads to problems associated with the grid generator. Several challenges facing the unstructured grid methodology are discussed: slivers, grid refinement near the leading edge and at the trailing edge, grid convergence studies, volume grid generation, and other practical matters concerning such calculations.

  17. Properties of the Mean Momentum Balance in Polymer Drag Reduced Channel Flow

    NASA Astrophysics Data System (ADS)

    White, Christopher; Dubief, Yves; Klewicki, Joseph

    2014-11-01

    The redistribution of mean momentum and the underlying mechanisms of the redistribution process in polymer drag reduced channel flow are investigated by employing a mean momentum equation based analysis. The work is motivated by recent studies that showed (contrary to long-held views) that polymers modify the von Karman coefficient, κ, at low drag reduction, and at some relatively high drag reduction eradicate the inertially dominated logarithmic region. Since κ is a manifestation of the underlying dynamical behaviors of wall-bounded flow, understanding how polymers modify κ is inherently important to understanding the dynamics of polymer drag reduced flow, and, consequently, the phenomenon of polymer drag reduction. The goal of the present study is to explore and quantify these effects within the framework of a mean momentum based analysis.

  18. Exceeding the Asymptotic Limit of Polymer Drag Reduction.

    PubMed

    Choueiri, George H; Lopez, Jose M; Hof, Björn

    2018-03-23

    The drag of turbulent flows can be drastically decreased by adding small amounts of high molecular weight polymers. While drag reduction initially increases with polymer concentration, it eventually saturates to what is known as the maximum drag reduction (MDR) asymptote; this asymptote is generally attributed to the dynamics being reduced to a marginal yet persistent state of subdued turbulent motion. Contrary to this accepted view, we show that, for an appropriate choice of parameters, polymers can reduce the drag beyond the suggested asymptotic limit, eliminating turbulence and giving way to laminar flow. At higher polymer concentrations, however, the laminar state becomes unstable, resulting in a fluctuating flow with the characteristic drag of the MDR asymptote. Our findings indicate that the asymptotic state is hence dynamically disconnected from ordinary turbulence.

  19. Exceeding the Asymptotic Limit of Polymer Drag Reduction

    NASA Astrophysics Data System (ADS)

    Choueiri, George H.; Lopez, Jose M.; Hof, Björn

    2018-03-01

    The drag of turbulent flows can be drastically decreased by adding small amounts of high molecular weight polymers. While drag reduction initially increases with polymer concentration, it eventually saturates to what is known as the maximum drag reduction (MDR) asymptote; this asymptote is generally attributed to the dynamics being reduced to a marginal yet persistent state of subdued turbulent motion. Contrary to this accepted view, we show that, for an appropriate choice of parameters, polymers can reduce the drag beyond the suggested asymptotic limit, eliminating turbulence and giving way to laminar flow. At higher polymer concentrations, however, the laminar state becomes unstable, resulting in a fluctuating flow with the characteristic drag of the MDR asymptote. Our findings indicate that the asymptotic state is hence dynamically disconnected from ordinary turbulence.

  20. Drag Coefficient Estimation in Orbit Determination

    NASA Astrophysics Data System (ADS)

    McLaughlin, Craig A.; Manee, Steve; Lichtenberg, Travis

    2011-07-01

    Drag modeling is the greatest uncertainty in the dynamics of low Earth satellite orbits where ballistic coefficient and density errors dominate drag errors. This paper examines fitted drag coefficients found as part of a precision orbit determination process for Stella, Starlette, and the GEOSAT Follow-On satellites from 2000 to 2005. The drag coefficients for the spherical Stella and Starlette satellites are assumed to be highly correlated with density model error. The results using MSIS-86, NRLMSISE-00, and NRLMSISE-00 with dynamic calibration of the atmosphere (DCA) density corrections are compared. The DCA corrections were formulated for altitudes of 200-600 km and are found to be inappropriate when applied at 800 km. The yearly mean fitted drag coefficients are calculated for each satellite for each year studied. The yearly mean drag coefficients are higher for Starlette than Stella, where Starlette is at a higher altitude. The yearly mean fitted drag coefficients for all three satellites decrease as solar activity decreases after solar maximum.

  1. Phenomena of drag reduction on saltating sediment in shallow, supercritical flows

    USDA-ARS?s Scientific Manuscript database

    ABSTRACT: When a group of objects move through a fluid, it often exhibits coordinated behavior in which bodies in the wake of a leader generally experience reduced drag. Locomotion provides well known examples including the maneuvering and clustering of racing automobiles and bicyclists and queuing...

  2. Active nematic gels as active relaxing solids

    NASA Astrophysics Data System (ADS)

    Turzi, Stefano S.

    2017-11-01

    I propose a continuum theory for active nematic gels, defined as fluids or suspensions of orientable rodlike objects endowed with active dynamics, that is based on symmetry arguments and compatibility with thermodynamics. The starting point is our recent theory that models (passive) nematic liquid crystals as relaxing nematic elastomers. The interplay between viscoelastic response and active dynamics of the microscopic constituents is naturally taken into account. By contrast with standard theories, activity is not introduced as an additional term of the stress tensor, but it is added as an external remodeling force that competes with the passive relaxation dynamics and drags the system out of equilibrium. In a simple one-dimensional channel geometry, we show that the interaction between nonuniform nematic order and activity results in either a spontaneous flow of particles or a self-organization into subchannels flowing in opposite directions.

  3. Catenaries in Drag

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Brato; Hanna, James

    2014-11-01

    Dynamical equilibria of towed cables and sedimenting filaments have been the targets of much numerical work; here, we provide analytical expressions for the configurations of a translating and axially moving string subjected to a uniform body force and local, linear, anisotropic drag forces. Generically, these configurations comprise a five-parameter family of planar shapes determined by the ratio of tangential (axial) and normal drag coefficients, the angle between the translational velocity and the body force, the relative magnitudes of translational and axial drag forces with respect to the body force, and a scaling parameter. This five-parameter family of shapes is, in fact, a degenerate six-parameter family of equilibria in which inertial forces rescale the tension in the string without affecting its shape. Each configuration is represented by a first order dynamical system for the tangential angle of the body. Limiting cases include the dynamic catenaries with or without drag, and purely sedimenting or towed strings.

  4. Harmonic oscillations of laminae in non-Newtonian fluids: A lattice Boltzmann-Immersed Boundary approach

    NASA Astrophysics Data System (ADS)

    De Rosis, Alessandro

    2014-11-01

    In this paper, the fluid dynamics induced by a rigid lamina undergoing harmonic oscillations in a non-Newtonian calm fluid is investigated. The fluid is modelled through the lattice Boltzmann method and the flow is assumed to be nearly incompressible. An iterative viscosity-correction based procedure is proposed to properly account for the non-Newtonian fluid feature and its accuracy is evaluated. In order to handle the mutual interaction between the lamina and the encompassing fluid, the Immersed Boundary method is adopted. A numerical campaign is performed. In particular, the effect of the non-Newtonian feature is highlighted by investigating the fluid forces acting on a harmonically oscillating lamina for different values of the Reynolds number. The findings prove that the non-Newtonian feature can drastically influence the behaviour of the fluid and, as a consequence, the forces acting upon the lamina. Several considerations are carried out on the time history of the drag coefficient and the results are used to compute the added mass through the hydrodynamic function. Moreover, the computational cost involved in the numerical simulations is discussed. Finally, two applications concerning water resources are investigated: the flow through an obstructed channel and the particle sedimentation. Present findings highlight a strong coupling between the body shape, the Reynolds number, and the flow behaviour index.

  5. Origin of the Two Scales of Wind Ripples on Mars

    NASA Technical Reports Server (NTRS)

    Lapotre, Mathieu G. A.; Ewing, Ryan C.; Lamb, Michael P.; Fischer, Woodward W.; Grotzinger, John P.; Rubin, David M.; Lewis, Kevin W.; Day, Mackenzie; Gupta, Sanjeev; Banham, Steeve G.; hide

    2016-01-01

    Earth's sandy deserts host two main types of bedforms - decimeter-scale ripples and larger dunes. Years of orbital observations on Mars also confirmed the existence of two modes of active eolian bedforms - meter-scale ripples, and dunes. By analogy to terrestrial ripples, which are thought to form from a grain mechanism, it was hypothesized that large martian ripples also formed from grain impacts, but spaced further apart due to elongated saltation trajectories from the lower martian gravity and different atmospheric properties. However, the Curiosity rover recently documented the coexistence of three scales of bedforms in Gale crater. Because a grain impact mechanism cannot readily explain two distinct and coeval ripple modes in similar sand sizes, a new mechanism seems to be required to explain one of the scales of ripples. Small ripples are most similar to Earth's impact ripples, with straight crests and subdued profiles. In contrast, large martian ripples are sinuous and asymmetric, with lee slopes dominated by grain flows and grainfall deposits. Thus, large martian ripples resemble current ripples formed underwater on Earth, suggesting that they may form from a fluid-drag mechanism. To test this hypothesis, we develop a scaling relation to predict the spacing of fluid-drag ripples from an extensive flume data compilation. The size of large martian ripples is predicted by our scaling relation when adjusted for martian atmospheric properties. Specifically, we propose that the wavelength of martian wind-drag ripples arises from the high kinematic viscosity of the low-density atmosphere. Because fluid density controls drag-ripple size, our scaling relation can help constrain paleoatmospheric density from wind-drag ripple stratification.

  6. Origin of the two scales of wind ripples on Mars

    NASA Astrophysics Data System (ADS)

    Lapotre, M. G. A.; Ewing, R. C.; Lamb, M. P.; Fischer, W. W.; Grotzinger, J. P.; Rubin, D. M.; Lewis, K. W.; Ballard, M.; Day, M. D.; Gupta, S.; Banham, S.; Bridges, N.; Des Marais, D. J.; Fraeman, A. A.; Grant, J. A., III; Ming, D. W.; Mischna, M.; Rice, M. S.; Sumner, D. Y.; Vasavada, A. R.; Yingst, R. A.

    2016-12-01

    Earth's sandy deserts host two main types of bedforms - decimeter-scale ripples and larger dunes. Years of orbital observations on Mars also confirmed the existence of two modes of active eolian bedforms - meter-scale ripples, and dunes. By analogy to terrestrial ripples, which are thought to form from a grain mechanism, it was hypothesized that large martian ripples also formed from grain impacts, but spaced further apart due to elongated saltation trajectories from the lower martian gravity and different atmospheric properties. However, the Curiosity rover recently documented the coexistence of three scales of bedforms in Gale crater. Because a grain impact mechanism cannot readily explain two distinct and coeval ripple modes in similar sand sizes, a new mechanism seems to be required to explain one of the scales of ripples. Small ripples are most similar to Earth's impact ripples, with straight crests and subdued profiles. In contrast, large martian ripples are sinuous and asymmetric, with lee slopes dominated by grain flows and grainfall deposits. Thus, large martian ripples resemble current ripples formed underwater on Earth, suggesting that they may form from a fluid-drag mechanism. To test this hypothesis, we develop a scaling relation to predict the spacing of fluid-drag ripples from an extensive flume data compilation. The size of large martian ripples is predicted by our scaling relation when adjusted for martian atmospheric properties. Specifically, we propose that the wavelength of martian wind-drag ripples arises from the high kinematic viscosity of the low-density atmosphere. Because fluid density controls drag-ripple size, our scaling relation can help constrain paleoatmospheric density from wind-drag ripple stratification.

  7. Investigations of Fluid-Structure-Coupling and Turbulence Model Effects on the DLR Results of the Fifth AIAA CFD Drag Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Keye, Stefan; Togiti, Vamish; Eisfeld, Bernhard; Brodersen, Olaf P.; Rivers, Melissa B.

    2013-01-01

    The accurate calculation of aerodynamic forces and moments is of significant importance during the design phase of an aircraft. Reynolds-averaged Navier-Stokes (RANS) based Computational Fluid Dynamics (CFD) has been strongly developed over the last two decades regarding robustness, efficiency, and capabilities for aerodynamically complex configurations. Incremental aerodynamic coefficients of different designs can be calculated with an acceptable reliability at the cruise design point of transonic aircraft for non-separated flows. But regarding absolute values as well as increments at off-design significant challenges still exist to compute aerodynamic data and the underlying flow physics with the accuracy required. In addition to drag, pitching moments are difficult to predict because small deviations of the pressure distributions, e.g. due to neglecting wing bending and twisting caused by the aerodynamic loads can result in large discrepancies compared to experimental data. Flow separations that start to develop at off-design conditions, e.g. in corner-flows, at trailing edges, or shock induced, can have a strong impact on the predictions of aerodynamic coefficients too. Based on these challenges faced by the CFD community a working group of the AIAA Applied Aerodynamics Technical Committee initiated in 2001 the CFD Drag Prediction Workshop (DPW) series resulting in five international workshops. The results of the participants and the committee are summarized in more than 120 papers. The latest, fifth workshop took place in June 2012 in conjunction with the 30th AIAA Applied Aerodynamics Conference. The results in this paper will evaluate the influence of static aeroelastic wing deformations onto pressure distributions and overall aerodynamic coefficients based on the NASA finite element structural model and the common grids.

  8. Dynamic Dilational Strengthening During Earthquakes in Saturated Gouge-Filled Fault Zones

    NASA Astrophysics Data System (ADS)

    Sparks, D. W.; Higby, K.

    2016-12-01

    The effect of fluid pressure in saturated fault zones has been cited as an important factor in the strength and slip-stability of faults. Fluid pressure controls the effective normal stress across the fault and therefore controls the faults strength. In a fault core consisting of granular fault gouge, local transient dilations and compactions occur during slip that dynamically change the fluid pressure. We use a grain-scale numerical model to investigate the effect of these fluid effects in fault gouge during an earthquake. We use a coupled finite difference-discrete element model (Goren et al, 2011), in which the pore space is filled with a fluid. Local changes in grain packing generate local deviations in fluid pressure, which can be relieved by fluid flow through the permeable gouge. Fluid pressure gradients exert drag forces on the grains that couple the grain motion and fluid flow. We simulated 39 granular gouge zones that were slowly loaded in shear stress to near the failure point, and then conducted two different simulations starting from each grain packing: one with a high enough mean permeability (> 10-11 m2) that pressure remains everywhere equilibrated ("fully drained"), and one with a lower permeability ( 10-14 m2) in which flow is not fast enough to prevent significant pressure variations from developing ("undrained"). The static strength of the fault, the size of the event and the evolution of slip velocity are not imposed, but arise naturally from the granular packing. In our particular granular model, all fully drained slip events are well-modeled by a rapid drop in the frictional resistance of the granular packing from a static value to a dynamic value that remains roughly constant during slip. Undrained events show more complex behavior. In some cases, slip occurs via a slow creep with resistance near the static value. When rapid slip events do occur, the dynamic resistance is typically larger than in drained events, and highly variable. Frictional resistance is not correlated with the mean fluid pressure in the layer, but is instead controlled by local regions undergoing dilational strengthening. We find that (in the absence of pressure-generating effects like thermal pressurization or fluid-releasing reactions), the overall effect of fluid is to strengthen the fault.

  9. The biomechanics of solids and fluids: the physics of life

    NASA Astrophysics Data System (ADS)

    Alexander, David E.

    2016-09-01

    Biomechanics borrows and extends engineering techniques to study the mechanical properties of organisms and their environments. Like physicists and engineers, biomechanics researchers tend to specialize on either fluids or solids (but some do both). For solid materials, the stress-strain curve reveals such useful information as various moduli, ultimate strength, extensibility, and work of fracture. Few biological materials are linearly elastic so modified elastic moduli are defined. Although biological materials tend to be less stiff than engineered materials, biomaterials tend to be tougher due to their anisotropy and high extensibility. Biological beams are usually hollow cylinders; particularly in plants, beams and columns tend to have high twist-to-bend ratios. Air and water are the dominant biological fluids. Fluids generate both viscous and pressure drag (normalized as drag coefficients) and the Reynolds number (Re) gives their relative importance. The no-slip conditions leads to velocity gradients (‘boundary layers’) on surfaces and parabolic flow profiles in tubes. Rather than rigidly resisting drag in external flows, many plants and sessile animals reconfigure to reduce drag as speed increases. Living in velocity gradients can be beneficial for attachment but challenging for capturing particulate food. Lift produced by airfoils and hydrofoils is used to produce thrust by all flying animals and many swimming ones, and is usually optimal at higher Re. At low Re, most swimmers use drag-based mechanisms. A few swimmers use jetting for rapid escape despite its energetic inefficiency. At low Re, suspension feeding depends on mechanisms other than direct sieving because thick boundary layers reduce effective porosity. Most biomaterials exhibit a combination of solid and fluid properties, i.e., viscoelasticity. Even rigid biomaterials exhibit creep over many days, whereas pliant biomaterials may exhibit creep over hours or minutes. Instead of rigid materials, many organisms use tensile fibers wound around pressurized cavities (hydrostats) for rigid support; the winding angle of helical fibers greatly affects hydrostat properties. Biomechanics researchers have gone beyond borrowing from engineers and adopted or developed a variety of new approaches—e.g., laser speckle interferometry, optical correlation, and computer-driven physical models—that are better-suited to biological situations.

  10. Flight trajectory of a rotating golf ball with grooves

    NASA Astrophysics Data System (ADS)

    Baek, Moonheum; Kim, Jooha; Choi, Haecheon

    2014-11-01

    Dimples are known to reduce drag on a sphere by the amount of 50% as compared to a smooth surface. Despite the advantage of reducing drag, dimples deteriorate the putting accuracy owing to their sharp edges. To minimize this putting error but maintain the same flight distance, we have devised a grooved golf ball (called G ball hereafter) for several years. In this study, we modify the shape and pattern of grooves, and investigate the flow characteristics of the G ball by performing wind-tunnel experiments at the Reynolds numbers of 0 . 5 ×105 - 2 . 5 ×105 and the spin ratios (ratio of surface velocity to the free-stream velocity) of 0 - 0.6 that include the real golf-ball velocity and rotational speed. We measure the drag and lift forces on the rotating G ball and compare them with those of a smooth ball and two well-known dimpled balls. The lift-to-drag ratio of the G ball is much higher than that of a smooth ball and is in between those of the two dimpled balls. The trajectories of flying golf balls are computed. The flight distance of G ball is almost the same as that of one dimpled ball but slightly shorter than that of the other dimpled ball. The fluid-dynamic aspects of these differences will be discussed at the talk. Supported by 2011-0028032, 2014M3C1B1033980.

  11. Anomalous Hydrodynamic Drafting of Interacting Flapping Flags

    NASA Astrophysics Data System (ADS)

    Ristroph, Leif; Zhang, Jun

    2008-11-01

    In aggregates of objects moving through a fluid, bodies downstream of a leader generally experience reduced drag force. This conventional drafting holds for objects of fixed shape, but interactions of deformable bodies in a flow are poorly understood, as in schools of fish. In our experiments on “schooling” flapping flags, we find that it is the leader of a group who enjoys a significant drag reduction (of up to 50%), while the downstream flag suffers a drag increase. This counterintuitive inverted drag relationship is rationalized by dissecting the mutual influence of shape and flow in determining drag. Inverted drafting has never been observed with rigid bodies, apparently due to the inability to deform in response to the altered flow field of neighbors.

  12. Mechanisms underlying rhythmic locomotion: body–fluid interaction in undulatory swimming

    PubMed Central

    Chen, J.; Friesen, W. O.; Iwasaki, T.

    2011-01-01

    Swimming of fish and other animals results from interactions of rhythmic body movements with the surrounding fluid. This paper develops a model for the body–fluid interaction in undulatory swimming of leeches, where the body is represented by a chain of rigid links and the hydrodynamic force model is based on resistive and reactive force theories. The drag and added-mass coefficients for the fluid force model were determined from experimental data of kinematic variables during intact swimming, measured through video recording and image processing. Parameter optimizations to minimize errors in simulated model behaviors revealed that the resistive force is dominant, and a simple static function of relative velocity captures the essence of hydrodynamic forces acting on the body. The model thus developed, together with the experimental kinematic data, allows us to investigate temporal and spatial (along the body) distributions of muscle actuation, body curvature, hydrodynamic thrust and drag, muscle power supply and energy dissipation into the fluid. We have found that: (1) thrust is generated continuously along the body with increasing magnitude toward the tail, (2) drag is nearly constant along the body, (3) muscle actuation waves travel two or three times faster than the body curvature waves and (4) energy for swimming is supplied primarily by the mid-body muscles, transmitted through the body in the form of elastic energy, and dissipated into the water near the tail. PMID:21270304

  13. Numerical Simulation of Selecting Model Scale of Cable in Wind Tunnel Test

    NASA Astrophysics Data System (ADS)

    Huang, Yifeng; Yang, Jixin

    The numerical simulation method based on computational Fluid Dynamics (CFD) provides a possible alternative means of physical wind tunnel test. Firstly, the correctness of the numerical simulation method is validated by one certain example. In order to select the minimum length of the cable as to a certain diameter in the numerical wind tunnel tests, the numerical wind tunnel tests based on CFD are carried out on the cables with several different length-diameter ratios (L/D). The results show that, when the L/D reaches to 18, the drag coefficient is stable essentially.

  14. Aerodynamic Design of Heavy Vehicles Reporting Period January 15, 2004 through April 15, 2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leonard, A; Chatelain, P; Heineck, J

    2004-04-13

    Listed are summaries of the activities and accomplishments during this second-quarter reporting period for each of the consortium participants. The following are some highlights for this reporting period: (1) Experiments and computations guide conceptual designs for reduction of drag due to tractor-trailer gap flow (splitter plate), trailer underbody (wedges), and base drag (base-flap add-ons). (2) Steady and unsteady RANS simulations for the GTS geometry are being finalized for development of clear modeling guidelines with RANS. (3) Full geometry and tunnel simulations on the GCM geometry are underway. (4) CRADA with PACCAR is supporting computational parametric study to determine predictive needmore » to include wind tunnel geometry as limits of computational domain. (5) Road and track test options are being investigated. All is ready for field testing of base-flaps at Crows Landing in California in collaboration with Partners in Advanced Transportation Highways (PATH). In addition, MAKA of Canada is providing the device and Wabash is providing a new trailer. (6) Apparatus to investigate tire splash and spray has been designed and is under construction. Michelin has offered tires with customized threads for this study. (7) Vortex methods have improved techniques for the treatment of vorticity near surfaces and spinning geometries like rotating tires. (8) Wind tunnel experiments on model rail cars demonstrate that empty coal cars exhibit substantial aerodynamic drag compared to full coal cars, indicating that significant fuel savings could be obtained by reducing the drag of empty coal cars. (9) Papers are being prepared for an exclusive conference session on the Heavy Vehicle DOE Aerodynamic Drag Project at the 34th AIAA Fluid Dynamics Conference in Portland, Oregon, June 28-July 1, 2004.« less

  15. Parametric geometric model and shape optimization of an underwater glider with blended-wing-body

    NASA Astrophysics Data System (ADS)

    Sun, Chunya; Song, Baowei; Wang, Peng

    2015-11-01

    Underwater glider, as a new kind of autonomous underwater vehicles, has many merits such as long-range, extended-duration and low costs. The shape of underwater glider is an important factor in determining the hydrodynamic efficiency. In this paper, a high lift to drag ratio configuration, the Blended-Wing-Body (BWB), is used to design a small civilian under water glider. In the parametric geometric model of the BWB underwater glider, the planform is defined with Bezier curve and linear line, and the section is defined with symmetrical airfoil NACA 0012. Computational investigations are carried out to study the hydrodynamic performance of the glider using the commercial Computational Fluid Dynamics (CFD) code Fluent. The Kriging-based genetic algorithm, called Efficient Global Optimization (EGO), is applied to hydrodynamic design optimization. The result demonstrates that the BWB underwater glider has excellent hydrodynamic performance, and the lift to drag ratio of initial design is increased by 7% in the EGO process.

  16. A simple, approximate model of parachute inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macha, J.M.

    1992-11-01

    A simple, approximate model of parachute inflation is described. The model is based on the traditional, practical treatment of the fluid resistance of rigid bodies in nonsteady flow, with appropriate extensions to accommodate the change in canopy inflated shape. Correlations for the steady drag and steady radial force as functions of the inflated radius are required as input to the dynamic model. In a novel approach, the radial force is expressed in terms of easily obtainable drag and reefing fine tension measurements. A series of wind tunnel experiments provides the needed correlations. Coefficients associated with the added mass of fluidmore » are evaluated by calibrating the model against an extensive and reliable set of flight data. A parameter is introduced which appears to universally govern the strong dependence of the axial added mass coefficient on motion history. Through comparisons with flight data, the model is shown to realistically predict inflation forces for ribbon and ringslot canopies over a wide range of sizes and deployment conditions.« less

  17. A simple, approximate model of parachute inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macha, J.M.

    1992-01-01

    A simple, approximate model of parachute inflation is described. The model is based on the traditional, practical treatment of the fluid resistance of rigid bodies in nonsteady flow, with appropriate extensions to accommodate the change in canopy inflated shape. Correlations for the steady drag and steady radial force as functions of the inflated radius are required as input to the dynamic model. In a novel approach, the radial force is expressed in terms of easily obtainable drag and reefing fine tension measurements. A series of wind tunnel experiments provides the needed correlations. Coefficients associated with the added mass of fluidmore » are evaluated by calibrating the model against an extensive and reliable set of flight data. A parameter is introduced which appears to universally govern the strong dependence of the axial added mass coefficient on motion history. Through comparisons with flight data, the model is shown to realistically predict inflation forces for ribbon and ringslot canopies over a wide range of sizes and deployment conditions.« less

  18. Design of an Electric Propulsion System for SCEPTOR

    NASA Technical Reports Server (NTRS)

    Dubois, Arthur; van der Geest, Martin; Bevirt, JoeBen; Clarke, Sean; Christie, Robert J.; Borer, Nicholas K.

    2016-01-01

    The rise of electric propulsion systems has pushed aircraft designers towards new and potentially transformative concepts. As part of this effort, NASA is leading the SCEPTOR program which aims at designing a fully electric distributed propulsion general aviation aircraft. This article highlights critical aspects of the design of SCEPTOR's propulsion system conceived at Joby Aviation in partnership with NASA, including motor electromagnetic design and optimization as well as cooling system integration. The motor is designed with a finite element based multi-objective optimization approach. This provides insight into important design tradeoffs such as mass versus efficiency, and enables a detailed quantitative comparison between different motor topologies. Secondly, a complete design and Computational Fluid Dynamics analysis of the air breathing cooling system is presented. The cooling system is fully integrated into the nacelle, contains little to no moving parts and only incurs a small drag penalty. Several concepts are considered and compared over a range of operating conditions. The study presents trade-offs between various parameters such as cooling efficiency, drag, mechanical simplicity and robustness.

  19. Dense Suspension Splash

    NASA Astrophysics Data System (ADS)

    Zhang, Wendy; Dodge, Kevin M.; Peters, Ivo R.; Ellowitz, Jake; Klein Schaarsberg, Martin H.; Jaeger, Heinrich M.

    2014-03-01

    Upon impact onto a solid surface at several meters-per-second, a dense suspension plug splashes by ejecting liquid-coated particles. We study the mechanism for splash formation using experiments and a numerical model. In the model, the dense suspension is idealized as a collection of cohesionless, rigid grains with finite surface roughness. The grains also experience lubrication drag as they approach, collide inelastically and rebound away from each other. Simulations using this model reproduce the measured momentum distribution of ejected particles. They also provide direct evidence supporting the conclusion from earlier experiments that inelastic collisions, rather than viscous drag, dominate when the suspension contains macroscopic particles immersed in a low-viscosity solvent such as water. Finally, the simulations reveal two distinct routes for splash formation: a particle can be ejected by a single high momentum-change collision. More surprisingly, a succession of small momentum-change collisions can accumulate to eject a particle outwards. Supported by NSF through its MRSEC program (DMR-0820054) and fluid dynamics program (CBET-1336489).

  20. Computational investigation of cicada aerodynamics in forward flight.

    PubMed

    Wan, Hui; Dong, Haibo; Gai, Kuo

    2015-01-06

    Free forward flight of cicadas is investigated through high-speed photogrammetry, three-dimensional surface reconstruction and computational fluid dynamics simulations. We report two new vortices generated by the cicada's wide body. One is the thorax-generated vortex, which helps the downwash flow, indicating a new phenomenon of lift enhancement. Another is the cicada posterior body vortex, which entangles with the vortex ring composed of wing tip, trailing edge and wing root vortices. Some other vortex features include: independently developed left- and right-hand side leading edge vortex (LEV), dual-core LEV structure at the mid-wing region and near-wake two-vortex-ring structure. In the cicada forward flight, approximately 79% of the total lift is generated during the downstroke. Cicada wings experience drag in the downstroke, and generate thrust during the upstroke. Energetics study shows that the cicada in free forward flight consumes much more power in the downstroke than in the upstroke, to provide enough lift to support the weight and to overcome drag to move forward.

  1. Computational investigation of cicada aerodynamics in forward flight

    PubMed Central

    Wan, Hui; Dong, Haibo; Gai, Kuo

    2015-01-01

    Free forward flight of cicadas is investigated through high-speed photogrammetry, three-dimensional surface reconstruction and computational fluid dynamics simulations. We report two new vortices generated by the cicada's wide body. One is the thorax-generated vortex, which helps the downwash flow, indicating a new phenomenon of lift enhancement. Another is the cicada posterior body vortex, which entangles with the vortex ring composed of wing tip, trailing edge and wing root vortices. Some other vortex features include: independently developed left- and right-hand side leading edge vortex (LEV), dual-core LEV structure at the mid-wing region and near-wake two-vortex-ring structure. In the cicada forward flight, approximately 79% of the total lift is generated during the downstroke. Cicada wings experience drag in the downstroke, and generate thrust during the upstroke. Energetics study shows that the cicada in free forward flight consumes much more power in the downstroke than in the upstroke, to provide enough lift to support the weight and to overcome drag to move forward. PMID:25551136

  2. Heat, mass and force flows in supersonic shockwave interaction

    NASA Astrophysics Data System (ADS)

    Dixon, John Michael

    There is no cost effective way to deliver a payload to space and, with rising fuel prices, currently the price to travel commercially is also becoming more prohibitive to the public. During supersonic flight, compressive shock waves form around the craft which could be harnessed to deliver an additional lift on the craft. Using a series of hanging plates below a lifting wing design, the total lift generated can be increased above conventional values, while still maintaining a similar lift-to-drag ratio. Here, we study some of the flows involved in supersonic shockwave interaction. This analysis uses ANSYS Fluent Computational Fluid Dynamics package as the modeler. Our findings conclude an increase of up to 30% lift on the modeled craft while maintaining the lift-to-drag profile of the unmodified lifting wing. The increase in lift when utilizing the shockwave interaction could increase transport weight and reduce fuel cost for space and commercial flight, as well as mitigating negative effects associated with supersonic travel.

  3. Active and hibernating turbulence in minimal channel flow of newtonian and polymeric fluids.

    PubMed

    Xi, Li; Graham, Michael D

    2010-05-28

    Turbulent channel flow of drag-reducing polymer solutions is simulated in minimal flow geometries. Even in the Newtonian limit, we find intervals of "hibernating" turbulence that display many features of the universal maximum drag reduction asymptote observed in polymer solutions: weak streamwise vortices, nearly nonexistent streamwise variations, and a mean velocity gradient that quantitatively matches experiments. As viscoelasticity increases, the frequency of these intervals also increases, while the intervals themselves are unchanged, leading to flows that increasingly resemble maximum drag reduction.

  4. Topics in viscous potential flow of two-phase systems

    NASA Astrophysics Data System (ADS)

    Padrino Inciarte, Juan Carlos

    Two-phase flows are ubiquitous, from natural and domestic environments to industrial settings. However, due to their complexity, modeling these fluid systems remains a challenge from both the perspective of fundamental questions on the dynamics of an individual, smooth interface, and the perspective of integral analyses, which involve averaging of the conservation laws over large domains, thereby missing local details of the flow. In this work, we consider a set of five problems concerning the linear and non-linear dynamics of an interface or free surface and the study of cavitation inception. Analyses are carried out by assuming the fluid motion to be irrotational, that is, with zero vorticity, and the fluids to be viscous, although results from rotational analyses are presented for the purpose of comparison. The problems considered here are the following: First, we analyze the non-linear deformation and break-up of a bubble or drop immersed in a uniaxial extensional flow of an incompressible viscous fluid. The method of viscous potential flow, in which the flow field is irrotational and viscosity enters through the balance of normal stresses at the interface, is used in the analysis. The governing equations are solved numerically to track the motion of the interface by coupling a boundary element method with a time-integration routine. When break-up occurs, the break-up time computed here is compared with results obtained elsewhere from numerical simulations of the Navier.Stokes equations, which thus keeps vorticity in the analysis, for several combinations of the relevant dimensionless parameters of the problem. For the bubble, for Weber numbers 3 ≤ We ≤ 6, predictions from viscous potential flow shows good agreement with the results from the Navier.Stokes equations for the bubble break-up time, whereas for larger We, the former underpredicts the results given by the latter. Including viscosity increases the break-up time with respect to the inviscid case. For the drop, as expected, increasing the viscous effects of the irrotational motion produces large, elongated drops that take longer to break up in comparison with results for inviscid fluids. In the second problem, we compute the force acting on a spherical bubble of variable radius moving within a liquid with an outer spherical boundary. Viscous potential flow and the dissipation method, which is another purely irrotational approach stemming from the mechanical energy equation, are both systematically implemented. This exposes the role of the choice of the outer boundary condition for the stress on the drag, an issue not explained in the literature known to us. By means of the well-known "cell-model" analysis, the results for the drag are then applied to the case of a swarm of rising bubbles having a certain void fraction. Computations from the dissipation method for the drag coefficient and rise velocity for a bubble swarm agree with numerical solutions; evaluation against experimental data for high Reynolds and low Weber numbers shows that all the models considered, including those given in the literature, overpredict the bubble swarm rise velocity. In the next two problems, we apply the analysis of viscous potential flow and the dissipation method to study the linear dynamics of waves of "small" amplitude acting either on a plane or on a spherical interface separating a liquid from a dynamically inactive fluid. It is shown that the viscous irrational theories exhibit the features of the wave dynamics by comparing with the exact solution. The range of parameters for which good agreement with the exact solution exists is presented. The general trend shows that for long waves the dissipation method results in the best approximation, whereas for short waves, even for very viscous liquids, viscous potential flow demonstrates better agreement. Finally, the problem of cavitation inception for the flow of a viscous liquid past a stationary sphere is studied by means of the theory of stress-induced cavitation. The flow field for a single phase needed in the analysis is found from three different methods, namely, the numerical solution of the Navier--Stokes equations, the irrotational motion of a viscous fluid, and, in the limit of no inertia, the Stokes flow formulation. The new predictions are then compared with those obtained from the classical pressure criterion. The main finding is that at a fixed cavitation number more viscous liquids are at greater risk to cavitation.

  5. Numerical simulation of turbulent convective flow over wavy terrain

    NASA Astrophysics Data System (ADS)

    Dörnbrack, A.; Schumann, U.

    1993-09-01

    By means of a large-eddy simulation, the convective boundary layer is investigated for flows over wavy terrain. The lower surface varies sinusoidally in the downstream direction while remaining constant in the other. Several cases are considered with amplitude δ up to 0.15 H and wavelength λ of H to 8 H, where H is the mean fluid-layer height. At the lower surface, the vertical heat flux is prescribed to be constant and the momentum flux is determined locally from the Monin-Obukhov relationship with a roughness length z o=10-4 H. The mean wind is varied between zero and 5 w *, where w * is the convective velocity scale. After rather long times, the flow structure shows horizontal scales up to 4 H, with a pattern similar to that over flat surfaces at corresponding shear friction. Weak mean wind destroys regular spatial structures induced by the surface undulation at zero mean wind. The surface heating suppresses mean-flow recirculation-regions even for steep surface waves. Short surface waves cause strong drag due to hydrostatic and dynamic pressure forces in addition to frictional drag. The pressure drag increases slowly with the mean velocity, and strongly with δ/ H. The turbulence variances increase mainly in the lower half of the mixed layer for U/w *>2.

  6. On the rising motion of a drop in stratified fluids

    NASA Astrophysics Data System (ADS)

    Bayareh, M.; Doostmohammadi, A.; Dabiri, S.; Ardekani, A. M.

    2013-10-01

    The rising dynamics of a deformable drop in a linearly stratified fluid is numerically obtained using a finite-volume/front-tracking method. Our results show that the drag coefficient of a spherical drop in a stratified fluid enhances as C_{d,s}/C_{d,h}-1˜ Fr_d^{-2.86} for drop Froude numbers in the range of 4 < Frd < 16. The role of the deformability of the drop on the temporal evolution of the motion is investigated along with stratification and inertial effects. We also present the important role of stratification on the transient rising motion of the drop. It is shown that a drop can levitate in the presence of a vertical density gradient. The drop undergoes a fading oscillatory motion around its neutrally buoyant position except for high viscosity ratio drops where the oscillation occurs around a density level lighter than the neutral buoyancy level. In addition, a detailed characterization of the flow signature of a rising drop in a linearly stratified fluid including the buoyancy induced vortices and the resultant buoyant jet is presented.

  7. Unsteady force estimation using a Lagrangian drift-volume approach

    NASA Astrophysics Data System (ADS)

    McPhaden, Cameron J.; Rival, David E.

    2018-04-01

    A novel Lagrangian force estimation technique for unsteady fluid flows has been developed, using the concept of a Darwinian drift volume to measure unsteady forces on accelerating bodies. The construct of added mass in viscous flows, calculated from a series of drift volumes, is used to calculate the reaction force on an accelerating circular flat plate, containing highly-separated, vortical flow. The net displacement of fluid contained within the drift volumes is, through Darwin's drift-volume added-mass proposition, equal to the added mass of the plate and provides the reaction force of the fluid on the body. The resultant unsteady force estimates from the proposed technique are shown to align with the measured drag force associated with a rapid acceleration. The critical aspects of understanding unsteady flows, relating to peak and time-resolved forces, often lie within the acceleration phase of the motions, which are well-captured by the drift-volume approach. Therefore, this Lagrangian added-mass estimation technique opens the door to fluid-dynamic analyses in areas that, until now, were inaccessible by conventional means.

  8. Fluid dynamics alter Caenorhabditis elegans body length via TGF-β/DBL-1 neuromuscular signaling

    PubMed Central

    Harada, Shunsuke; Hashizume, Toko; Nemoto, Kanako; Shao, Zhenhua; Higashitani, Nahoko; Etheridge, Timothy; Szewczyk, Nathaniel J; Fukui, Keiji; Higashibata, Akira; Higashitani, Atsushi

    2016-01-01

    Skeletal muscle wasting is a major obstacle for long-term space exploration. Similar to astronauts, the nematode Caenorhabditis elegans displays negative muscular and physical effects when in microgravity in space. It remains unclear what signaling molecules and behavior(s) cause these negative alterations. Here we studied key signaling molecules involved in alterations of C. elegans physique in response to fluid dynamics in ground-based experiments. Placing worms in space on a 1G accelerator increased a myosin heavy chain, myo-3, and a transforming growth factor-β (TGF-β), dbl-1, gene expression. These changes also occurred when the fluid dynamic parameters viscosity/drag resistance or depth of liquid culture were increased on the ground. In addition, body length increased in wild type and body wall cuticle collagen mutants, rol-6 and dpy-5, grown in liquid culture. In contrast, body length did not increase in TGF-β, dbl-1, or downstream signaling pathway, sma-4/Smad, mutants. Similarly, a D1-like dopamine receptor, DOP-4, and a mechanosensory channel, UNC-8, were required for increased dbl-1 expression and altered physique in liquid culture. As C. elegans contraction rates are much higher when swimming in liquid than when crawling on an agar surface, we also examined the relationship between body length enhancement and rate of contraction. Mutants with significantly reduced contraction rates were typically smaller. However, in dop-4, dbl-1, and sma-4 mutants, contraction rates still increased in liquid. These results suggest that neuromuscular signaling via TGF-β/DBL-1 acts to alter body physique in response to environmental conditions including fluid dynamics. PMID:28725724

  9. Flow produced by a free-moving floating magnet driven electromagnetically

    NASA Astrophysics Data System (ADS)

    Piedra, Saúl; Román, Joel; Figueroa, Aldo; Cuevas, Sergio

    2018-04-01

    The flow generated by a free-moving magnet floating in a thin electrolyte layer is studied experimentally and numerically. The magnet is dragged by a traveling vortex dipole produced by a Lorentz force created when a uniform dc current injected in the electrolyte interacts with the magnetic field of the same magnet. The problem represents a typical case of fluid-solid interaction but with a localized electromagnetic force promoting the motion. Classical wake flow structures are observed when the applied current varies in the range of 0.2 to 10 A. Velocity fields at the surface of the electrolyte are obtained for different flow conditions through particle image velocimetry. Quasi-two-dimensional numerical simulations, based on the immersed boundary technique that incorporates the fluid-solid interaction, reproduce satisfactorily the dynamics observed in the experiments.

  10. Giant pulsar glitches in full general relativity

    NASA Astrophysics Data System (ADS)

    Sourie, A.; Chamel, N.; Novak, J.; Oertel, M.

    2017-12-01

    We present recent numerical simulations of giant pulsar glitches, as observed in the emblematic Vela pulsar, based on a two-fluid model, including for the first time all general-relativistic effects and realistic equations of state. In particular, we focus on modelling the vortex-mediated transfer of angular momentum that takes place during the spin-up stage from the neutron superfluid to the charged particles through dissipative mutual friction forces. Taking general relativity into account does not only modify the structure of the star but also leads to a new coupling between the fluids arising from frame-dragging effects. As a consequence, general relativity can strongly affect the global dynamics of pulsar glitches : the errors on the value of the characteristic rise time incurred by using Newtonian gravity are thus found to be as large as ˜ 40 % for the models considered.

  11. Modeling the efficiency of a magnetic needle for collecting magnetic cells

    NASA Astrophysics Data System (ADS)

    Butler, Kimberly S.; Adolphi, Natalie L.; Bryant, H. C.; Lovato, Debbie M.; Larson, Richard S.; Flynn, Edward R.

    2014-07-01

    As new magnetic nanoparticle-based technologies are developed and new target cells are identified, there is a critical need to understand the features important for magnetic isolation of specific cells in fluids, an increasingly important tool in disease research and diagnosis. To investigate magnetic cell collection, cell-sized spherical microparticles, coated with superparamagnetic nanoparticles, were suspended in (1) glycerine-water solutions, chosen to approximate the range of viscosities of bone marrow, and (2) water in which 3, 5, 10 and 100% of the total suspended microspheres are coated with magnetic nanoparticles, to model collection of rare magnetic nanoparticle-coated cells from a mixture of cells in a fluid. The magnetic microspheres were collected on a magnetic needle, and we demonstrate that the collection efficiency versus time can be modeled using a simple, heuristically-derived function, with three physically-significant parameters. The function enables experimentally-obtained collection efficiencies to be scaled to extract the effective drag of the suspending medium. The results of this analysis demonstrate that the effective drag scales linearly with fluid viscosity, as expected. Surprisingly, increasing the number of non-magnetic microspheres in the suspending fluid results increases the collection of magnetic microspheres, corresponding to a decrease in the effective drag of the medium.

  12. Modeling the Efficiency of a Magnetic Needle for Collecting Magnetic Cells

    PubMed Central

    Butler, Kimberly S; Adolphi, Natalie L.; Bryant, H C; Lovato, Debbie M; Larson, Richard S; Flynn, Edward R

    2014-01-01

    As new magnetic nanoparticle-based technologies are developed and new target cells are identified, there is a critical need to understand the features important for magnetic isolation of specific cells in fluids, an increasingly important tool in disease research and diagnosis. To investigate magnetic cell collection, cell-sized spherical microparticles, coated with superparamagnetic nanoparticles, were suspended in 1) glycerine-water solutions, chosen to approximate the range of viscosities of bone marrow, and 2) water in which 3, 5, 10 and 100 % of the total suspended microspheres are coated with magnetic nanoparticles, to model collection of rare magnetic nanoparticle-coated cells from a mixture of cells in a fluid. The magnetic microspheres were collected on a magnetic needle, and we demonstrate that the collection efficiency vs. time can be modeled using a simple, heuristically-derived function, with three physically-significant parameters. The function enables experimentally-obtained collection efficiencies to be scaled to extract the effective drag of the suspending medium. The results of this analysis demonstrate that the effective drag scales linearly with fluid viscosity, as expected. Surprisingly, increasing the number of non-magnetic microspheres in the suspending fluid results increases the collection of magnetic microspheres, corresponding to a decrease in the effective drag of the medium. PMID:24874577

  13. Contributions of nanodiamond abrasives and deionized water in magnetorheological finishing of aluminum oxynitriden

    NASA Astrophysics Data System (ADS)

    Miao, Chunlin; Lambropoulos, John C.; Romanofsky, Henry; Shafrir, Shai N.; Jacobs, Stephen D.

    2009-08-01

    Magnetorheological finishing (MRF) is a sub-aperture deterministic process for fabricating high-precision optics by removing material and smoothing the surface. The goal of this work is to study the relative contribution of nanodiamonds and water in material removal for MRF of aluminum oxynitride ceramic (ALON) based upon a nonaqueous magnetorheological (MR) fluid. Removal was enhanced by a high carbonyl iron concentration and the addition of nanodiamond abrasives. Small amounts of deionized (DI) water were introduced into the nonaqueous MR fluid to further influence the material removal process. Material removal data were collected with a spot-taking machine. Drag force (Fd) and normal force (Fn) before and after adding nanodiamonds or DI water were measured with a dual load cell. Both drag force and normal force were insensitive to the addition of nanodiamonds but increased with DI water content in the nonaqueous MR fluid. Shear stress (i.e., drag force divided by spot area) was calculated, and examined as a function of nanodiamond concentration and DI water concentration. Volumetric removal rate increased with increasing shear stress, which was shown to be a result of increasing viscosity after adding nanodiamonds and DI water. This work demonstrates that removal rate for a hard ceramic with MRF can be enhanced by adding DI water into a nonaqueous MR fluid.

  14. Analysis and Modeling of Structure Formation in Granular and Fluid-Solid Flows

    NASA Astrophysics Data System (ADS)

    Murphy, Eric

    Granular and multiphase flows are encountered in a number of industrial processes with particular emphasis in this manuscript given to the particular applications in cement pumping, pneumatic conveying, fluid catalytic cracking, CO2 capture, and fast pyrolysis of bio-materials. These processes are often modeled using averaged equations that may be simulated using computational fluid dynamics. Closure models are then required that describe the average forces that arise from both interparticle interactions, e.g. shear stress, and interphase interactions, such as mean drag. One of the biggest hurdles to this approach is the emergence of non-trivial spatio-temporal structures in the particulate phase, which can significantly modify the qualitative behavior of these forces and the resultant flow phenomenology. For example, the formation of large clusters in cohesive granular flows is responsible for a transition from solid-like to fluid-like rheology. Another example is found in gas-solid systems, where clustering at small scales is observed to significantly lower in the observed drag. Moreover, there remains the possibility that structure formation may occur at all scales, leading to a lack of scale separation required for traditional averaging approaches. In this context, several modeling problems are treated 1) first-principles based modeling of the rheology of cement slurries, 2) modeling the mean solid-solid drag experienced by polydisperse particles undergoing segregation, and 3) modeling clustering in homogeneous gas-solid flows. The first and third components are described in greater detail. In the study on the rheology of cements, several sub-problems are introduced, which systematically increase in the number and complexity of interparticle interactions. These interparticle interactions include inelasticity, friction, cohesion, and fluid interactions. In the first study, the interactions between cohesive inelastic particles was fully characterized for the first time. Next, kinetic theory was used to predict the cooling of a gas of such particles. DEM was then used to validate this approach. A study on the rheology of dry cohesive granules with and without friction was then carried out, where the physics of different flow phenomenology was exhaustively explored. Lastly, homogeneous cement slurry simulations were carried out, and compared with vane-rheometer experiments. Qualitative agreement between simulation and experiment were observed. Lastly, the physics of clustering in homogeneous gas-solid flows is explored in the hopes of gaining a mechanistic explanation of how particle-fluid interactions lead to clustering. Exact equations are derived, detailing the evolution of the two particle density, which may be closed using high-fidelity particle-resolved direct numerical simulation. Two canonical gas-solid flows are then addressed, the homogeneously cooling gas-solid flow (HCGSF) and sedimenting gas-solid flow (SGSF). A mechanism responsible for clustering in the HCGSF is identified. Clustering of plane-wave like structures is observed in the SGSF, and the exact terms are quantified. A method for modeling the dynamics of clustering in these systems is proposed, which may aid in the prediction of clustering and other correlation length-scales useful for less expensive computations.

  15. High-order Two-Fluid Plasma Solver for Direct Numerical Simulations of Magnetic Flows with Realistic Transport Phenomena

    NASA Astrophysics Data System (ADS)

    Li, Zhaorui; Livescu, Daniel

    2017-11-01

    The two-fluid plasma equations with full transport terms, including temperature and magnetic field dependent ion and electron viscous stresses and heat fluxes, frictional drag force, and ohmic heating term have been solved by using the sixth-order non-dissipative compact scheme for plasma flows in several different regimes. In order to be able to fully resolve all the dynamically relevant time and length scales while maintaining computational feasibility, the assumptions of infinite speed of light and negligible electron inertia have been made. The accuracy and robustness of this two-fluid plasma solver in handling plasma flows have been tested against a series of canonical problems, such as Alfven-Whistler dispersion relation, electromagnetic plasma shock, magnetic reconnection, etc. For all test cases, grid convergence tests have been conducted to achieve fully resolved results. The roles of heat flux, viscosity, resistivity, Hall and Biermann battery effects, are investigated for the canonical flows studied.

  16. A theoretical method for the analysis and design of axisymmetric bodies. [flow distribution and incompressible fluids

    NASA Technical Reports Server (NTRS)

    Beatty, T. D.

    1975-01-01

    A theoretical method is presented for the computation of the flow field about an axisymmetric body operating in a viscous, incompressible fluid. A potential flow method was used to determine the inviscid flow field and to yield the boundary conditions for the boundary layer solutions. Boundary layer effects in the forces of displacement thickness and empirically modeled separation streamlines are accounted for in subsequent potential flow solutions. This procedure is repeated until the solutions converge. An empirical method was used to determine base drag allowing configuration drag to be computed.

  17. Dynamics of a spherical particle in an acoustic field: A multiscale approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Jin-Han, E-mail: J.H.Xie@ed.ac.uk; Vanneste, Jacques

    2014-10-15

    A rigid spherical particle in an acoustic wave field oscillates at the wave period but has also a mean motion on a longer time scale. The dynamics of this mean motion is crucial for numerous applications of acoustic microfluidics, including particle manipulation and flow visualisation. It is controlled by four physical effects: acoustic (radiation) pressure, streaming, inertia, and viscous drag. In this paper, we carry out a systematic multiscale analysis of the problem in order to assess the relative importance of these effects depending on the parameters of the system that include wave amplitude, wavelength, sound speed, sphere radius, andmore » viscosity. We identify two distinguished regimes characterised by a balance among three of the four effects, and we derive the equations that govern the mean particle motion in each regime. This recovers and organises classical results by King [“On the acoustic radiation pressure on spheres,” Proc. R. Soc. A 147, 212–240 (1934)], Gor'kov [“On the forces acting on a small particle in an acoustical field in an ideal fluid,” Sov. Phys. 6, 773–775 (1962)], and Doinikov [“Acoustic radiation pressure on a rigid sphere in a viscous fluid,” Proc. R. Soc. London A 447, 447–466 (1994)], clarifies the range of validity of these results, and reveals a new nonlinear dynamical regime. In this regime, the mean motion of the particle remains intimately coupled to that of the surrounding fluid, and while viscosity affects the fluid motion, it plays no part in the acoustic pressure. Simplified equations, valid when only two physical effects control the particle motion, are also derived. They are used to obtain sufficient conditions for the particle to behave as a passive tracer of the Lagrangian-mean fluid motion.« less

  18. Resonant Drag Instability of Grains Streaming in Fluids

    NASA Astrophysics Data System (ADS)

    Squire, J.; Hopkins, P. F.

    2018-03-01

    We show that grains streaming through a fluid are generically unstable if their velocity, projected along some direction, matches the phase velocity of a fluid wave (linear oscillation). This can occur whenever grains stream faster than any fluid wave. The wave itself can be quite general—sound waves, magnetosonic waves, epicyclic oscillations, and Brunt–Väisälä oscillations each generate instabilities, for example. We derive a simple expression for the growth rates of these “resonant drag instabilities” (RDI). This expression (i) illustrates why such instabilities are so virulent and generic and (ii) allows for simple analytic computation of RDI growth rates and properties for different fluids. As examples, we introduce several new instabilities, which could see application across a variety of physical systems from atmospheres to protoplanetary disks, the interstellar medium, and galactic outflows. The matrix-based resonance formalism we introduce can also be applied more generally in other (nonfluid) contexts, providing a simple means for calculating and understanding the stability properties of interacting systems.

  19. Review of Research on Low-Profile Vortex Generators to Control Boundary-Layer Separation

    NASA Technical Reports Server (NTRS)

    Lin, John C.

    2002-01-01

    An in-depth review of boundary-layer flow-separation control by a passive method using low-profile vortex generators is presented. The generators are defined as those with a device height between 10% and 50% of the boundary layer thickness. Key results are presented for several research efforts, all of which were performed within the past decade and a half where the majority of these works emphasize experimentation with some recent efforts on numerical simulations. Topics of discussion consist of both basic fluid dynamics and applied aerodynamics research. The fluid dynamics research includes comparative studies on separation control effectiveness as well as device-induced vortex characterization and correlation. The comparative studies cover the controlling of low-speed separated flows in adverse pressure gradient and supersonic shock-induced separation. The aerodynamics research includes several applications for aircraft performance enhancement and covers a wide range of speeds. Significant performance improvements are achieved through increased lift and/or reduced drag for various airfoils-low-Reynolds number, high-lift, and transonic-as well as highly swept wings. Performance enhancements for non-airfoil applications include aircraft interior noise reduction, inlet flow distortion alleviation inside compact ducts, and a more efficient overwing fairing. The low-profile vortex generators are best for being applied to applications where flow-separation locations are relatively fixed and the generators can be placed reasonably close upstream of the separation. Using the approach of minimal near-wall proturbances through substantially reduced device height, these devices can produce streamwise vortices just strong enough to overcome the separation without unnecessarily persisting within the boundary layer once the flow-control objective is achieved. Practical advantages of low-profile vortex generators, such as their inherent simplicity and low device drag, are demonstrated to be critically important for many applications as well.

  20. Frictional Torque on a Rotating Disc

    ERIC Educational Resources Information Center

    Mungan, Carl E.

    2012-01-01

    Resistance to motion often includes a dry frictional term independent of the speed of an object and a fluid drag term varying linearly with speed in the viscous limit. (At higher speeds, quadratic drag can also occur.) Here, measurements are performed for an aluminium disc mounted on bearings that is given an initial twist and allowed to spin…

  1. Computational Fluid Dynamic Analysis of Hydrodynamic forces on inundated bridge decks

    NASA Astrophysics Data System (ADS)

    Afzal, Bushra; Guo, Junke; Kerenyi, Kornel

    2010-11-01

    The hydraulic forces experienced by an inundated bridge deck have great importance in the design of bridges. Flood flows or hurricane add significant hydrodynamic loading on bridges, possibly resulting in failure of the bridge superstructures. The objective of the study is to establish validated computational practice to address research needs of the transportation community via computational fluid dynamic simulations. The reduced scale experiments conducted at Turner-Fairbank Highway Research Center establish the foundations of validated computational practices to address the research needs of the transportation community. Three bridge deck prototypes were used: a typical six-girder highway bridge deck, a three-girder deck, and a streamlined deck designed to better withstand the hydraulic forces. Results of the study showed that the streamlined deck significantly reduces drag, lift, and moment coefficient in comparison to the other bridge deck types. The CFD results matched the experimental data in terms of the relationship between inundation ratio and force measured at the bridge. The results of the present research will provide a tool for designing new bridges and retrofitting old ones.

  2. Computational fluid dynamics challenges for hybrid air vehicle applications

    NASA Astrophysics Data System (ADS)

    Carrin, M.; Biava, M.; Steijl, R.; Barakos, G. N.; Stewart, D.

    2017-06-01

    This paper begins by comparing turbulence models for the prediction of hybrid air vehicle (HAV) flows. A 6 : 1 prolate spheroid is employed for validation of the computational fluid dynamics (CFD) method. An analysis of turbulent quantities is presented and the Shear Stress Transport (SST) k-ω model is compared against a k-ω Explicit Algebraic Stress model (EASM) within the unsteady Reynolds-Averaged Navier-Stokes (RANS) framework. Further comparisons involve Scale Adaptative Simulation models and a local transition transport model. The results show that the flow around the vehicle at low pitch angles is sensitive to transition effects. At high pitch angles, the vortices generated on the suction side provide substantial lift augmentation and are better resolved by EASMs. The validated CFD method is employed for the flow around a shape similar to the Airlander aircraft of Hybrid Air Vehicles Ltd. The sensitivity of the transition location to the Reynolds number is demonstrated and the role of each vehicle£s component is analyzed. It was found that the ¦ns contributed the most to increase the lift and drag.

  3. Fluid Mechanics, Drag Reduction and Advanced Configuration Aeronautics

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M.

    2000-01-01

    This paper discusses Advanced Aircraft configurational approaches across the speed range, which are either enabled, or greatly enhanced, by clever Flow Control. Configurations considered include Channel Wings with circulation control for VTOL (but non-hovering) operation with high cruise speed, strut-braced CTOL transports with wingtip engines and extensive ('natural') laminar flow control, a midwing double fuselage CTOL approach utilizing several synergistic methods for drag-due-to-lift reduction, a supersonic strut-braced configuration with order of twice the L/D of current approaches and a very advanced, highly engine flow-path-integrated hypersonic cruise machine. This paper indicates both the promise of synergistic flow control approaches as enablers for 'Revolutions' in aircraft performance and fluid mechanic 'areas of ignorance' which impede their realization and provide 'target-rich' opportunities for Fluids Research.

  4. Kinematics of spheres moving through yield-stress fluids

    NASA Astrophysics Data System (ADS)

    Habdas, Piotr; de Bruyn, John R.

    2001-11-01

    When an object moves in a material with a yield stress τ_c, the material near the object generally experiences stresses higher than τc and so is fluid. Farther from the object the local stress is less than τc and so the material there is effectively solid. We have studied the motion of metal spheres being pulled through colloidal suspensions by a constant applied force in an Atwood's machine. By measuring the drag force on the sphere as a function of container size we can determine the extent of the fluidized region surrounding the sphere. We find that the drag force is not proportional to the velocity, as it is for Newtonian fluids, and so the form of the spheres' acceleration provides information about the rheology of the suspensions.

  5. Computational fluid dynamics (CFD) analysis of airlift bioreactor: effect of draft tube configurations on hydrodynamics, cell suspension, and shear rate.

    PubMed

    Pawar, Sanjay B

    2018-01-01

    The biomass productivity of microalgae cells mainly depends on the hydrodynamics of airlift bioreactor (ABR). Thus, the hydrodynamics of concentric tube ABR was initially studied using two-phase three-dimensional CFD simulations with the Eulerian-Lagrangian approach. The performance of ABR (17 L) was examined for different configurations of the draft tube using various drag models such as Grace, Ishii-Zuber, and Schiller-Naumann. The gas holdups in the riser and the downcomer were well predicted using E-L approach. This work was further extended to study the dispersion of microalgae cells in the ABR using three-phase CFD simulations. In this model (combined E-E and E-L), the solid phase (microalgae cells) was dispersed into the continuous liquid phase (water), while the gas phase (air bubbles) was modeled as a particle transport fluid. The effect of non-drag forces such as virtual mass and lift forces was also considered. Flow regimes were explained on the basis of the relative gas holdup distribution in the riser and the downcomer. The microalgae cells were found in suspension for the superficial gas velocities of 0.02-0.04 m s -1 experiencing an average shear of 23.52-44.56 s -1 which is far below the critical limit of cell damage.

  6. Turbulent motion of mass flows. Mathematical modeling

    NASA Astrophysics Data System (ADS)

    Eglit, Margarita; Yakubenko, Alexander; Yakubenko, Tatiana

    2016-04-01

    New mathematical models for unsteady turbulent mass flows, e.g., dense snow avalanches and landslides, are presented. Such models are important since most of large scale flows are turbulent. In addition to turbulence, the two other important points are taken into account: the entrainment of the underlying material by the flow and the nonlinear rheology of moving material. The majority of existing models are based on the depth-averaged equations and the turbulent character of the flow is accounted by inclusion of drag proportional to the velocity squared. In this paper full (not depth-averaged) equations are used. It is assumed that basal entrainment takes place if the bed friction equals the shear strength of the underlying layer (Issler D, M. Pastor Peréz. 2011). The turbulent characteristics of the flow are calculated using a three-parameter differential model (Lushchik et al., 1978). The rheological properties of moving material are modeled by one of the three types of equations: 1) Newtonian fluid with high viscosity, 2) power-law fluid and 3) Bingham fluid. Unsteady turbulent flows down long homogeneous slope are considered. The flow dynamical parameters and entrainment rate behavior in time as well as their dependence on properties of moving and underlying materials are studied numerically. REFERENCES M.E. Eglit and A.E. Yakubenko, 2014. Numerical modeling of slope flows entraining bottom material. Cold Reg. Sci. Technol., 108, 139-148 Margarita E. Eglit and Alexander E. Yakubenko, 2016. The effect of bed material entrainment and non-Newtonian rheology on dynamics of turbulent slope flows. Fluid Dynamics, 51(3) Issler D, M. Pastor Peréz. 2011. Interplay of entrainment and rheology in snow avalanches; a numerical study. Annals of Glaciology, 52(58), 143-147 Lushchik, V.G., Paveliev, A.A. , and Yakubenko, A.E., 1978. Three-parameter model of shear turbulence. Fluid Dynamics, 13, (3), 350-362

  7. Parametric study of fluid flow manipulation with piezoelectric macrofiber composite flaps

    NASA Astrophysics Data System (ADS)

    Sadeghi, O.; Tarazaga, P.; Stremler, M.; Shahab, S.

    2017-04-01

    Active Fluid Flow Control (AFFC) has received great research attention due to its significant potential in engineering applications. It is known that drag reduction, turbulence management, flow separation delay and noise suppression through active control can result in significantly increased efficiency of future commercial transport vehicles and gas turbine engines. In microfluidics systems, AFFC has mainly been used to manipulate fluid passing through the microfluidic device. We put forward a conceptual approach for fluid flow manipulation by coupling multiple vibrating structures through flow interactions in an otherwise quiescent fluid. Previous investigations of piezoelectric flaps interacting with a fluid have focused on a single flap. In this work, arrays of closely-spaced, free-standing piezoelectric flaps are attached perpendicular to the bottom surface of a tank. The coupling of vibrating flaps due to their interacting with the surrounding fluid is investigated in air (for calibration) and under water. Actuated flaps are driven with a harmonic input voltage, which results in bending vibration of the flaps that can work with or against the flow-induced bending. The size and spatial distribution of the attached flaps, and the phase and frequency of the input actuation voltage are the key parameters to be investigated in this work. Our analysis will characterize the electrohydroelastic dynamics of active, interacting flaps and the fluid motion induced by the system.

  8. Electrostatically frequency tunable micro-beam-based piezoelectric fluid flow energy harvester

    NASA Astrophysics Data System (ADS)

    Rezaee, Mousa; Sharafkhani, Naser

    2017-07-01

    This research investigates the dynamic behavior of a sandwich micro-beam based piezoelectric energy harvester with electrostatically adjustable resonance frequency. The system consists of a cantilever micro-beam immersed in a fluid domain and is subjected to the simultaneous action of cross fluid flow and nonlinear electrostatic force. Two parallel piezoelectric laminates are extended along the length of the micro-beam and connected to an external electric circuit which generates an output power as a result of the micro-beam oscillations. The fluid-coupled structure is modeled using Euler-Bernoulli beam theory and the equivalent force terms for the fluid flow. Fluid induced forces comprise the added inertia force which is evaluated using equivalent added mass and the drag and lift forces which are evaluated using relative velocity and Van der Pol equation. In addition to flow velocity and fluid density, the influence of several design parameters such as external electrical resistance, piezo layer position, and dc voltage on the generated power are investigated by using Galerkin and step by step linearization method. It is shown that for given flowing fluid parameters, i.e., density and velocity, one can adjust the applied dc voltage to tune resonance frequency so that the lock-in phenomenon with steady large amplitude oscillations happens, also by adjusting the harvester parameters including the mechanical and electrical ones, the maximal output power of the harvester becomes possible.

  9. Simulation of swimming strings immersed in a viscous fluid flow

    NASA Astrophysics Data System (ADS)

    Huang, Wei-Xi; Sung, Hyung Jin

    2006-11-01

    In nature, many phenomena involve interactions between flexible bodies and their surrounding viscous fluid, such as a swimming fish or a flapping flag. The intrinsic dynamics is complicate and not well understood. A flexible string can be regarded as a one-dimensional flag model. Many similarities can be found between the flapping string and swimming fish, although different wake speed results in a drag force for the flapping string and a propulsion force for the swimming fish. In the present study, we propose a mathematical formulation for swimming strings immersed in a viscous fluid flow. Fluid motion is governed by the Navier-Stokes equations and a momentum forcing is added in order to bring the fluid to move at the same velocity with the immersed surface. A flexible inextensible string model is described by another set of equations with an additional momentum forcing which is a result of the fluid viscosity and the pressure difference across the string. The momentum forcing is calculated by a feedback loop. Simulations of several numerical examples are carried out, including a hanging string which starts moving under gravity without ambient fluid, a swinging string immersed in a quiescent viscous fluid, a string swimming within a uniform surrounding flow, and flow over two side-by-side strings. The numerical results agree well with the theoretical analysis and previous experimental observations. Further simulation of a swimming fish is under consideration.

  10. Fluid-Dynamics of Underwater Flight in Sea Butterflies: Analysis using Tomographic PIV

    NASA Astrophysics Data System (ADS)

    Adhikari, D.; Murphy, D. W.; Webster, D. R.; Yen, J.

    2014-11-01

    Sea butterflies, Limacina helicina, swim in sea water with a pair of gelatinous ``wings'' (or parapodia). Their unique propulsion mechanism has been hypothesized to consist of a combination of drag-based propulsion (rowing) and lift-based propulsion (flapping). Drag-based propulsion utilizes maximum drag on the wings during power stroke, followed by minimum drag during recovery stroke. Lift-based propulsion, in contrast, utilizes a pressure difference between the top and bottom of the wings. We present the 3D kinematics of a free-swimming sea butterfly and its induced volumetric velocity field using tomographic PIV. Both upstroke and downstroke motions propel the animal (1 - 3 mm) upward in a sawtooth-like trajectory with average speed of 5 - 15 mm/s (Re = 5 - 45) and roll the calcareous shell forwards-and-backwards at 4 - 5 Hz. The rolling motion effectively positions the wings such that they stroke downward during both the power and recovery strokes, hence inducing upward motion during both phases. A clap-and-fling mechanism is observed at the beginning of the flapping cycle. As the wings come into contact, the velocity of the organism is 2 mm/s. During fling motion, high (unsteady) lift causes the organism velocity to reach 35 mm/s. Separation vortices are observed during the fling motion, and vortices with an opposite sense of rotation form closer to the base of the wing due to the upward translation of the organism. The separation vortices shed into the wake, as the organism translates upward, in the form of separate vortex pairs.

  11. Aerodynamic study of different cyclist positions: CFD analysis and full-scale wind-tunnel tests.

    PubMed

    Defraeye, Thijs; Blocken, Bert; Koninckx, Erwin; Hespel, Peter; Carmeliet, Jan

    2010-05-07

    Three different cyclist positions were evaluated with Computational Fluid Dynamics (CFD) and wind-tunnel experiments were used to provide reliable data to evaluate the accuracy of the CFD simulations. Specific features of this study are: (1) both steady Reynolds-averaged Navier-Stokes (RANS) and unsteady flow modelling, with more advanced turbulence modelling techniques (Large-Eddy Simulation - LES), were evaluated; (2) the boundary layer on the cyclist's surface was resolved entirely with low-Reynolds number modelling, instead of modelling it with wall functions; (3) apart from drag measurements, also surface pressure measurements on the cyclist's body were performed in the wind-tunnel experiment, which provided the basis for a more detailed evaluation of the predicted flow field by CFD. The results show that the simulated and measured drag areas differed about 11% (RANS) and 7% (LES), which is considered to be a close agreement in CFD studies. A fair agreement with wind-tunnel data was obtained for the predicted surface pressures, especially with LES. Despite the higher accuracy of LES, its much higher computational cost could make RANS more attractive for practical use in some situations. CFD is found to be a valuable tool to evaluate the drag of different cyclist positions and to investigate the influence of small adjustments in the cyclist's position. A strong advantage of CFD is that detailed flow field information is obtained, which cannot easily be obtained from wind-tunnel tests. This detailed information allows more insight in the causes of the drag force and provides better guidance for position improvements. Copyright 2010 Elsevier Ltd. All rights reserved.

  12. Predicting tensorial electrophoretic effects in asymmetric colloids

    NASA Astrophysics Data System (ADS)

    Mowitz, Aaron J.; Witten, T. A.

    2017-12-01

    We formulate a numerical method for predicting the tensorial linear response of a rigid, asymmetrically charged body to an applied electric field. This prediction requires calculating the response of the fluid to the Stokes drag forces on the moving body and on the countercharges near its surface. To determine the fluid's motion, we represent both the body and the countercharges using many point sources of drag known as Stokeslets. Finding the correct flow field amounts to finding the set of drag forces on the Stokeslets that is consistent with the relative velocities experienced by each Stokeslet. The method rigorously satisfies the condition that the object moves with no transfer of momentum to the fluid. We demonstrate that a sphere represented by 1999 well-separated Stokeslets on its surface produces flow and drag force like a solid sphere to 1% accuracy. We show that a uniformly charged sphere with 3998 body and countercharge Stokeslets obeys the Smoluchowski prediction [F. Morrison, J. Colloid Interface Sci. 34, 210 (1970), 10.1016/0021-9797(70)90171-2] for electrophoretic mobility when the countercharges lie close to the sphere. Spheres with dipolar and quadrupolar charge distributions rotate and translate as predicted analytically to 4% accuracy or better. We describe how the method can treat general asymmetric shapes and charge distributions. This method offers promise as a way to characterize and manipulate asymmetrically charged colloid-scale objects from biology (e.g., viruses) and technology (e.g., self-assembled clusters).

  13. Analysis of a hypersonic waverider research vehicle with a hydrocarbon scramjet engine

    NASA Technical Reports Server (NTRS)

    Molvik, Gregory A.; Bowles, Jeffrey V.; Huynh, Loc C.

    1993-01-01

    The results of a feasibility study of a hypersonic waverider research vehicle with a hydrocarbon scramjet engine are presented. The integrated waverider/scramjet geometry is first optimized with a vehicle synthesis code to produce a maximum product of the lift-to-drag ratio and the cycle specific impulse, hence cruise range. Computational fluid dynamics (CFD) is then employed to provide a nose-to-tail analysis of the system at the on-design conditions. Some differences are noted between the results of the two analysis techniques. A comparison of experimental, engineering analysis and CFD results on a waverider forebody are also included for validation.

  14. Fluid dynamics of moving fish in a two-dimensional multiparticle collision dynamics model

    NASA Astrophysics Data System (ADS)

    Reid, Daniel A. P.; Hildenbrandt, H.; Padding, J. T.; Hemelrijk, C. K.

    2012-02-01

    The fluid dynamics of animal locomotion, such as that of an undulating fish, are of great interest to both biologists and engineers. However, experimentally studying these fluid dynamics is difficult and time consuming. Model studies can be of great help because of their simpler and more detailed analysis. Their insights may guide empirical work. Particularly the recently introduced multiparticle collision dynamics method may be suitable for the study of moving organisms because it is computationally fast, simple to implement, and has a continuous representation of space. As regards the study of hydrodynamics of moving organisms, the method has only been applied at low Reynolds numbers (below 120) for soft, permeable bodies, and static fishlike shapes. In the present paper we use it to study the hydrodynamics of an undulating fish at Reynolds numbers 1100-1500, after confirming its performance for a moving insect wing at Reynolds number 75. We measure (1) drag, thrust, and lift forces, (2) swimming efficiency and spatial structure of the wake, and (3) distribution of forces along the fish body. We confirm the resemblance between the simulated undulating fish and empirical data. In contrast to theoretical predictions, our model shows that for steadily undulating fish, thrust is produced by the rear 2/3 of the body and that the slip ratio U/V (with U the forward swimming speed and V the rearward speed of the body wave) correlates negatively (instead of positively) with the actual Froude efficiency of swimming. Besides, we show that the common practice of modeling individuals while constraining their sideways acceleration causes them to resemble unconstrained fish with a higher tailbeat frequency.

  15. Newton on Objects Moving in a Fluid--The Penetration Length

    ERIC Educational Resources Information Center

    Saslow, Wayne M.; Lu, Hong

    2008-01-01

    We solve for the motion of an object with initial velocity v[subscript 0] and subject only to the combined drag of forces linear and quadratic in the velocity. This problem was treated briefly by Newton, after he developed a theoretical argument for the quadratic term, which we now know is characteristic of turbulent flow. Linear drag introduces a…

  16. The Dynamics of Flow and Three-dimensional Motion Around a Morphologically Complex Aquatic Plant

    NASA Astrophysics Data System (ADS)

    Boothroyd, R.; Hardy, R. J.; Warburton, J.; Marjoribanks, T.

    2016-12-01

    Aquatic vegetation has a significant impact on the hydraulic functioning of river systems. The morphology of an individual plant can influence the mean and turbulent properties of the flow, and the plant posture reconfigures to minimise drag. We report findings from a flume and numerical experiment investigating the dynamics of motion and three-dimensional flow around an isolated Hebe odora plant over a range of flow conditions. In the flume experiment, a high definition video camera recorded plant motion dynamics and three-dimensional velocity profiles were measured using an acoustic Doppler velocimeter. By producing a binary image of the plant in each frame, the plant dynamics can be quantified. Zones of greatest plant motion are on the upper and leeward sides of the plant. With increasing flow the plant is compressed and deflected downwards by up to 18% of the unstressed height. Plant tip motions are tracked and shown to lengthen with increasing flow, transitioning from horizontally dominated to vertically dominated motion. The plant acts as a porous blockage to flow, producing spatially heterogeneous downstream velocity fields with the measured wake length decreasing by 20% with increasing flow. These measurements are then used as boundary conditions and to validate a computational fluid dynamics (CFD) model. By explicitly accounting for the time-averaged plant posture, good agreement is found between flume measurements and model predictions. The flow structures demonstrate characteristics of a junction vortex system, with plant shear layer turbulence dominated by Kelvin-Helmholtz and Görtler-type vortices generated through shear instability. With increasing flow, drag coefficients decrease by up to 8%, from 1.45 to 1.34. This is equivalent to a change in the Manning's n term from 0.086 to 0.078.

  17. Long-Period Oscillations of Hydraulic Fractures: Attenuation, Scaling Relationships, and Flow Stability

    NASA Astrophysics Data System (ADS)

    Lipovsky, B.; Dunham, E. M.

    2013-12-01

    Long-period seismicity due to the excitation of hydraulic fracture normal modes is thought to occur in many geological systems, including volcanoes, glaciers and ice sheets, and hydrocarbon reservoirs. To better quantify the physical dimensions of fluid-filled cracks and properties of the fluid within them, we study wave motion along a thin hydraulic fracture waveguide. We present a linearized analysis that accounts for quasi-dynamic elasticity of the fracture wall, as well as fluid drag, inertia, and compressibility. We consider symmetric perturbations and neglect the effects of stratification and gravity. In the long-wavelength or thin-fracture limit, dispersive guided waves known as crack waves propagate with phase velocity cw=√(G*|k|w/ρ), where G* = G/(1-υ) for shear modulus G and Poisson ratio υ, w is the crack half-width, k is the wavenumber, and ρ is the fluid density. Restoring forces from elastic wall deformation drive wave motions. In the opposite, short-wavelength limit, guided waves are simply sound waves within the fluid and little seismic excitation occurs due to minimal fluid-solid coupling. We focus on long-wavelength crack waves, which, in the form of standing wave modes in finite-length cracks, are thought to be a common mechanism for long-period seismicity. The dispersive nature of crack waves implies several basic scaling relations that might be useful when interpreting statistics of long-period events. Seismic observations may constrain a characteristic frequency f0 and seismic moment M0~GδwR2, where δw is the change in crack width and R is the crack dimension. Resonant modes of a fluid-filled crack have associated frequencies f~cw/R. Linear elasticity provides a link between pressure changes δp in the crack and the induced opening δw: δp~G δw/R. Combining these, and assuming that pressure changes have no variation with crack dimension, leads to the scaling law relating seismic moment and oscillation frequency, M0~(Gwδp/ρ)f0-2. This contrasts with the well-known self-similar earthquake scaling M0∝f0-3. Attenuation of long-period crack waves is due to both drag within the fluid and radiative energy losses from excitation of seismic waves. Fluid drag may be characterized by either a turbulent or laminar viscous law. We present a thorough characterization of viscous damping that is valid at both low frequencies, where the flow is always fully developed, and at high frequencies, where fluid inertia becomes important. We have derived simple formulas for the quality factor due to viscous attenuation. Waves may become unstable for sufficiently fast background fluid velocity u0. This instability, first proposed by Julian (1994), was further investigated by Dunham and Ogden (2012), who determined the instability condition, u0>cw/2. We establish a more general result: that the stability condition is not only independent of viscosity, but also uninfluenced by fluid inertia, although both do alter growth rates. We also show that radiation damping (excitation of plane P waves normal to the crack walls) has only a stabilizing effect. This work suggests that under geologically relevant conditions, crack wave propagation is most likely stable, and the occurrence of long-period oscillations thus requires some additional excitation process.

  18. New developments in isotropic turbulent models for FENE-P fluids

    NASA Astrophysics Data System (ADS)

    Resende, P. R.; Cavadas, A. S.

    2018-04-01

    The evolution of viscoelastic turbulent models, in the last years, has been significant due to the direct numeric simulation (DNS) advances, which allowed us to capture in detail the evolution of the viscoelastic effects and the development of viscoelastic closures. New viscoelastic closures are proposed for viscoelastic fluids described by the finitely extensible nonlinear elastic-Peterlin constitutive model. One of the viscoelastic closure developed in the context of isotropic turbulent models, consists in a modification of the turbulent viscosity to include an elastic effect, capable of predicting, with good accuracy, the behaviour for different drag reductions. Another viscoelastic closure essential to predict drag reduction relates the viscoelastic term involving velocity and the tensor conformation fluctuations. The DNS data show the high impact of this term to predict correctly the drag reduction, and for this reason is proposed a simpler closure capable of predicting the viscoelastic behaviour with good performance. In addition, a new relation is developed to predict the drag reduction, quantity based on the trace of the tensor conformation at the wall, eliminating the need of the typically parameters of Weissenberg and Reynolds numbers, which depend on the friction velocity. This allows future developments for complex geometries.

  19. Boundary layer drag reduction research hypotheses derived from bio-inspired surface and recent advanced applications.

    PubMed

    Luo, Yuehao; Yuan, Lu; Li, Jianhua; Wang, Jianshe

    2015-12-01

    Nature has supplied the inexhaustible resources for mankind, and at the same time, it has also progressively developed into the school for scientists and engineers. Through more than four billions years of rigorous and stringent evolution, different creatures in nature gradually exhibit their own special and fascinating biological functional surfaces. For example, sharkskin has the potential drag-reducing effect in turbulence, lotus leaf possesses the self-cleaning and anti-foiling function, gecko feet have the controllable super-adhesion surfaces, the flexible skin of dolphin can accelerate its swimming velocity. Great profits of applying biological functional surfaces in daily life, industry, transportation and agriculture have been achieved so far, and much attention from all over the world has been attracted and focused on this field. In this overview, the bio-inspired drag-reducing mechanism derived from sharkskin is explained and explored comprehensively from different aspects, and then the main applications in different fluid engineering are demonstrated in brief. This overview will inevitably improve the comprehension of the drag reduction mechanism of sharkskin surface and better understand the recent applications in fluid engineering. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Contributions of Nanodiamond Abrasives and Deionized Water in Magnetorheological Finishing of Aluminum Oxynitride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miao, C.; Lambropoulos, J.C.; Romanofsky, H.

    2010-01-13

    Magnetorheological finishing (MRF) is a sub-aperture deterministic process for fabricating high-precision optics by removing material and smoothing the surface. The goal of this work is to study the relative contribution of nanodiamonds and water in material removal for MRF of aluminum oxynitride ceramic (ALON) based upon a nonaqueous magnetorheological (MR) fluid. Removal was enhanced by a high carbonyl iron concentration and the addition of nanodiamond abrasives. Small amounts of deionized (DI) water were introduced into the nonaqueous MR fluid to further influence the material removal process. Material removal data were collected with a spot-taking machine. Drag force (Fd) and normalmore » force (Fn) before and after adding nanodiamonds or DI water were measured with a dual load cell. Both drag force and normal force were insensitive to the addition of nanodiamonds but increased with DI water content in the nonaqueous MR fluid. Shear stress (i.e., drag force divided by spot area) was calculated, and examined as a function of nanodiamond concentration and DI water concentration. Volumetric removal rate increased with increasing shear stress, which was shown to be a result of increasing viscosity after adding nanodiamonds and DI water. This work demonstrates that removal rate for a hard ceramic with MRF can be enhanced by adding DI water into a nonaqueous MR fluid.« less

  1. Unconfined laminar nanofluid flow and heat transfer around a rotating circular cylinder in the steady regime

    NASA Astrophysics Data System (ADS)

    Bouakkaz, Rafik; Salhi, Fouzi; Khelili, Yacine; Quazzazi, Mohamed; Talbi, Kamel

    2017-06-01

    In this work, steady flow-field and heat transfer through a copper- water nanofluid around a rotating circular cylinder with a constant nondimensional rotation rate α varying from 0 to 5 was investigated for Reynolds numbers of 5-40. Furthermore, the range of nanoparticle volume fractions considered is 0-5%. The effect of volume fraction of nanoparticles on the fluid flow and heat transfer characteristics are carried out by using a finite-volume method based commercial computational fluid dynamics solver. The variation of the local and the average Nusselt numbers with Reynolds number, volume fractions, and rotation rate are presented for the range of conditions. The average Nusselt number is found to decrease with increasing value of the rotation rate for the fixed value of the Reynolds number and volume fraction of nanoparticles. In addition, rotation can be used as a drag reduction technique.

  2. Fluid forces on two circular cylinders in crossflow

    NASA Astrophysics Data System (ADS)

    Jendrzejczyk, J. A.; Chen, S. S.

    1986-07-01

    Fluid excitation forces are measured in a water loop for two circular cylinders arranged in tandem and normal to flow. The Strouhal number and fluctuating drag and lift coefficients for both cylinders are presented for various spacings and incoming flow conditions. The results show the effects of Reynolds number, pitch ratio, and upstream turbulence on the fluid excitation forces.

  3. Analytical insights into optimality and resonance in fish swimming

    PubMed Central

    Kohannim, Saba; Iwasaki, Tetsuya

    2014-01-01

    This paper provides analytical insights into the hypothesis that fish exploit resonance to reduce the mechanical cost of swimming. A simple body–fluid fish model, representing carangiform locomotion, is developed. Steady swimming at various speeds is analysed using optimal gait theory by minimizing bending moment over tail movements and stiffness, and the results are shown to match with data from observed swimming. Our analysis indicates the following: thrust–drag balance leads to the Strouhal number being predetermined based on the drag coefficient and the ratio of wetted body area to cross-sectional area of accelerated fluid. Muscle tension is reduced when undulation frequency matches resonance frequency, which maximizes the ratio of tail-tip velocity to bending moment. Finally, hydrodynamic resonance determines tail-beat frequency, whereas muscle stiffness is actively adjusted, so that overall body–fluid resonance is exploited. PMID:24430125

  4. Wake shed by an accelerating carangiform fish

    NASA Astrophysics Data System (ADS)

    Ting, Shang-Chieh; Yang, Jing-Tang

    2008-11-01

    We reveal an important fact that momentum change observed in the wake of an accelerating carangiform fish does not necessarily elucidate orientations of propulsive forces produced. An accelerating Crucian Carp (Carassius auratus) was found to shed a wake with net forward fluid momentum, which seemed drag-producing. Based on Newton's law, however, an accelerating fish is expected to shed a thrust wake with net rearward fluid momentum, rather than a drag wake. The unusual wake pattern observed is considered to be resulted primarily from the effect of pressure gradient created by accelerating movements of the fish. Ambient fluids tend to be sucked into low pressure zones behind an accelerating fish, resulting in forward orientations of jets recognizable in the wake. Accordingly, as to an accelerating fish, identifying force orientations from the wake requires considering also the effect of pressure gradient.

  5. Underwater drag-reducing effect of superhydrophobic submarine model.

    PubMed

    Zhang, Songsong; Ouyang, Xiao; Li, Jie; Gao, Shan; Han, Shihui; Liu, Lianhe; Wei, Hao

    2015-01-01

    To address the debates on whether superhydrophobic coatings can reduce fluid drag for underwater motions, we have achieved an underwater drag-reducing effect of large superhydrophobic submarine models with a feature size of 3.5 cm × 3.7 cm × 33.0 cm through sailing experiments of submarine models, modified with and without superhydrophobic surface under similar power supply and experimental conditions. The drag reduction rate reached as high as 15%. The fabrication of superhydrophobic coatings on a large area of submarine model surfaces was realized by immobilizing hydrophobic copper particles onto a precross-linked polydimethylsiloxane (PDMS) surface. The pre-cross-linking time was optimized at 20 min to obtain good superhydrophobicity for the underwater drag reduction effect by investigating the effect of pre-cross-linking on surface wettability and water adhesive property. We do believe that superhydrophobic coatings may provide a promising application in the field of drag-reducing of vehicle motions on or under the water surface.

  6. Dragging a floating horizontal cylinder

    NASA Astrophysics Data System (ADS)

    Lee, Duck-Gyu; Kim, Ho-Young

    2010-11-01

    A cylinder immersed in a fluid stream experiences a drag, and it is well known that the drag coefficient is a function of the Reynolds number only. Here we study the force exerted on a long horizontal cylinder that is dragged perpendicular to its axis while floating on an air-water interface with a high Reynolds number. In addition to the flow-induced drag, the floating body is subjected to capillary forces along the contact line where the three phases of liquid/solid/gas meet. We first theoretically predict the meniscus profile around the horizontally moving cylinder assuming the potential flow, and show that the profile is in good agreement with that obtained experimentally. Then we compare our theoretical predictions and experimental measurement results for the drag coefficient of a floating horizontal cylinder that is given by a function of the Weber number and the Bond number. This study can help us to understand the horizontal motion of partially submerged objects at air-liquid interface, such as semi-aquatic insects and marine plants.

  7. From bead to rod: Comparison of theories by measuring translational drag coefficients of micron-sized magnetic bead-chains in Stokes flow

    PubMed Central

    Lu, Chen; Zhao, Xiaodan; Kawamura, Ryo

    2017-01-01

    Frictional drag force on an object in Stokes flow follows a linear relationship with the velocity of translation and a translational drag coefficient. This drag coefficient is related to the size, shape, and orientation of the object. For rod-like objects, analytical solutions of the drag coefficients have been proposed based on three rough approximations of the rod geometry, namely the bead model, ellipsoid model, and cylinder model. These theories all agree that translational drag coefficients of rod-like objects are functions of the rod length and aspect ratio, but differ among one another on the correction factor terms in the equations. By tracking the displacement of the particles through stationary fluids of calibrated viscosity in magnetic tweezers setup, we experimentally measured the drag coefficients of micron-sized beads and their bead-chain formations with chain length of 2 to 27. We verified our methodology with analytical solutions of dimers of two touching beads, and compared our measured drag coefficient values of rod-like objects with theoretical calculations. Our comparison reveals several analytical solutions that used more appropriate approximation and derived formulae that agree with our measurement better. PMID:29145447

  8. Magnetic fluid control for viscous loss reduction of high-speed MRF brakes and clutches with well-defined fail-safe behavior

    NASA Astrophysics Data System (ADS)

    Güth, Dirk; Schamoni, Markus; Maas, Jürgen

    2013-09-01

    No-load losses within brakes and clutches based on magnetorheological fluids are unavoidable and represent a major barrier towards their wide-spread commercial adoption. Completely torque free rotation is not yet possible due to persistent fluid contact within the shear gap. In this paper, a novel concept is presented that facilitates the controlled movement of the magnetorheological fluid from an active, torque-transmitting region into an inactive region of the shear gap. This concept enables complete decoupling of the fluid engaging surfaces such that viscous drag torque can be eliminated. In order to achieve the desired effect, motion in the magnetorheological fluid is induced by magnetic forces acting on the fluid, which requires an appropriate magnetic circuit design. In this investigation, we propose a methodology to determine suitable magnetic circuit designs with well-defined fail-safe behavior. The magnetically induced motion of magnetorheological fluids is modeled by the use of the Kelvin body force, and a multi-physics domain simulation is performed to elucidate various transitions between an engaged and disengaged operating mode. The modeling approach is validated by captured high-speed video frames which show the induced motion of the magnetorheological fluid due to the magnetic field. Finally, measurements performed with a prototype actuator prove that the induced viscous drag torque can be reduced significantly by the proposed magnetic fluid control methodology.

  9. Enhanced settling of nonheavy inertial particles in homogeneous isotropic turbulence: The role of the pressure gradient and the Basset history force.

    PubMed

    van Hinsberg, M A T; Clercx, H J H; Toschi, F

    2017-02-01

    The Stokes drag force and the gravity force are usually sufficient to describe the behavior of sub-Kolmogorov-size (or pointlike) heavy particles in turbulence, in particular when the particle-to-fluid density ratio ρ_{p}/ρ_{f}≳10^{3} (with ρ_{p} and ρ_{f} the particle and fluid density, respectively). This is, in general, not the case for smaller particle-to-fluid density ratios, in particular not for ρ_{p}/ρ_{f}≲10^{2}. In that case the pressure gradient force, added mass effects, and the Basset history force also play important roles. In this study we focus on the understanding of the role of these additional forces, all of hydrodynamic origin, in the settling of particles in turbulence. In order to qualitatively elucidate the complex dynamics of such particles in homogeneous isotropic turbulence, we first focus on the case of settling of such particles in the flow field of a single vortex. After having explored this simplified case we extend our analysis to homogeneous isotropic turbulence. In general, we found that the pressure gradient force leads to a decrease in the settling velocity. This can be qualitatively understood by the fact that this force prevents the particles from sweeping out of vortices, a mechanism known as preferential sweeping which causes enhanced settling. Additionally, we found that the Basset history force can both increase and decrease the enhanced settling, depending on the particle Stokes number. Finally, the role of the nonlinear Stokes drag has been explored, confirming that it affects settling of inertial particles in turbulence, but only in a limited way for the parameter settings used in this investigation.

  10. Reynolds number scalability of bristled wings performing clap and fling

    NASA Astrophysics Data System (ADS)

    Jacob, Skyler; Kasoju, Vishwa; Santhanakrishnan, Arvind

    2017-11-01

    Tiny flying insects such as thrips show a distinctive physical adaptation in the use of bristled wings. Thrips use wing-wing interaction kinematics for flapping, in which a pair of wings clap together at the end of upstroke and fling apart at the beginning of downstroke. Previous studies have shown that the use of bristled wings can reduce the forces needed for clap and fling at Reynolds number (Re) on the order of 10. This study examines if the fluid dynamic advantages of using bristled wings also extend to higher Re on the order of 100. A robotic clap and fling platform was used for this study, in which a pair of physical wing models were programmed to execute clap and fling kinematics. Force measurements were conducted on solid (non-bristled) and bristled wing pairs. The results show lift and drag forces were both lower for bristled wings when compared to solid wings for Re ranging from 1-10, effectively increasing peak lift to peak drag ratio of bristled wings. However, peak lift to peak drag ratio was lower for bristled wings at Re =120 as compared to solid wings, suggesting that bristled wings may be uniquely advantageous for Re on the orders of 1-10. Flow structures visualized using particle image velocimetry (PIV) and their impact on force production will be presented.

  11. Aerodynamic Drag Analysis of 3-DOF Flex-Gimbal GyroWheel System in the Sense of Ground Test

    PubMed Central

    Huo, Xin; Feng, Sizhao; Liu, Kangzhi; Wang, Libin; Chen, Weishan

    2016-01-01

    GyroWheel is an innovative device that combines the actuating capabilities of a control moment gyro with the rate sensing capabilities of a tuned rotor gyro by using a spinning flex-gimbal system. However, in the process of the ground test, the existence of aerodynamic disturbance is inevitable, which hinders the improvement of the specification performance and control accuracy. A vacuum tank test is a possible candidate but is sometimes unrealistic due to the substantial increase in costs and complexity involved. In this paper, the aerodynamic drag problem with respect to the 3-DOF flex-gimbal GyroWheel system is investigated by simulation analysis and experimental verification. Concretely, the angular momentum envelope property of the spinning rotor system is studied and its integral dynamical model is deduced based on the physical configuration of the GyroWheel system with an appropriately defined coordinate system. In the sequel, the fluid numerical model is established and the model geometries are checked with FLUENT software. According to the diversity and time-varying properties of the rotor motions in three-dimensions, the airflow field around the GyroWheel rotor is analyzed by simulation with respect to its varying angular velocity and tilt angle. The IPC-based experimental platform is introduced, and the properties of aerodynamic drag in the ground test condition are obtained through comparing the simulation with experimental results. PMID:27941602

  12. On the connection between Maximum Drag Reduction and Newtonian fluid flow

    NASA Astrophysics Data System (ADS)

    Whalley, Richard; Park, Jae-Sung; Kushwaha, Anubhav; Dennis, David; Graham, Michael; Poole, Robert

    2014-11-01

    To date, the most successful turbulence control technique is the dissolution of certain rheology-modifying additives in liquid flows, which results in a universal maximum drag reduction (MDR) asymptote. The MDR asymptote is a well-known phenomenon in the turbulent flow of complex fluids; yet recent direct numerical simulations of Newtonian fluid flow have identified time intervals showing key features of MDR. These intervals have been termed ``hibernating turbulence'' and are a weak turbulence state which is characterised by low wall-shear stress and weak vortical flow structures. Here, in this experimental investigation, we monitor the instantaneous wall-shear stress in a fully-developed turbulent channel flow of a Newtonian fluid with a hot-film probe whilst simultaneously measuring the streamwise velocity at various distances above the wall with laser Doppler velocimetry. We show, by conditionally sampling the streamwise velocity during low wall-shear stress events, that the MDR velocity profile is approached in an additive-free, Newtonian fluid flow. This result corroborates recent numerical investigations, which suggest that the MDR asymptote in polymer solutions is closely connected to weak, transient Newtonian flow structures.

  13. Calculation of incompressible fluid flow through cambered blades

    NASA Technical Reports Server (NTRS)

    Hsu, C. C.

    1970-01-01

    Conformal mapping technique yields linear, approximate solutions for calculating flow of an incompressible fluid through staggered array of cambered blades for the cases of flow with partial cavitation and supercavitation. Lift and drag coefficients, cavitation number, cavity shape, and exit flow conditions can be determined.

  14. Two-fluid dusty shocks: simple benchmarking problems and applications to protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Lehmann, Andrew; Wardle, Mark

    2018-05-01

    The key role that dust plays in the interstellar medium has motivated the development of numerical codes designed to study the coupled evolution of dust and gas in systems such as turbulent molecular clouds and protoplanetary discs. Drift between dust and gas has proven to be important as well as numerically challenging. We provide simple benchmarking problems for dusty gas codes by numerically solving the two-fluid dust-gas equations for steady, plane-parallel shock waves. The two distinct shock solutions to these equations allow a numerical code to test different forms of drag between the two fluids, the strength of that drag and the dust to gas ratio. We also provide an astrophysical application of J-type dust-gas shocks to studying the structure of accretion shocks on to protoplanetary discs. We find that two-fluid effects are most important for grains larger than 1 μm, and that the peak dust temperature within an accretion shock provides a signature of the dust-to-gas ratio of the infalling material.

  15. Pattern Formation in Complex Fluids

    NASA Astrophysics Data System (ADS)

    Shelley, Michael

    2000-03-01

    Classical fluid instabilities -- such as the Saffman-Taylor instability in a Hele-Shaw cell -- are dramatically modified by using complex fluids. For example, polymeric liquids driven in a Hele-Shaw cell yield "dendritic" patterns with an apparent directional anisotropy. The dynamics of complex liquids can also lead to new instabilities and patterns, such as space-filling patterns formed by successive bucklings of growing "elastica" seen in the phase transition of a liquid crystalline material. Understanding such problems requires an interplay between physical modeling, mathematical analysis, and sophisticated nonlinear simulation. For the first problem, I will discuss a non-Newtonian version of Darcy's law for Hele-Shaw flow. This yields a free-boundary problem for the pattern formation, and requires the solution of a nonlinear elliptic equation in a time-dependent domain. This is pushing the development of adaptive grid methods that represent the geometry accurately and efficiently. Our simulations yield insight into how shear-thinning, as is evinced by polymeric liquids, can produce patterns reminiscent of experiment, with "dendritic fingers", side-branching, and reduced tip-splitting. In the second problem, a long filament in a smectic-A phase grows within an isotropic fluid. The splay deformation of the material gives this filament an elastic response. The macroscopic model describes the dynamics of a growing, elastic filament immersed in a Stokesian fluid. The model marries filament elasticity and tensile forces with a numerically tractable nonlocal slender-body theory. Analysis shows that growth of the filament, despite fluid drag, produces a buckling instability. When coupled to a nonlocal hydrodynamic self-interaction, our fully nonlinear simulations show that such instabilities iterate along the filament, and give "space-filling" patterns.

  16. The Role of Grain Dynamics in the Onset of Sediment Transport

    NASA Astrophysics Data System (ADS)

    Clark, A., IV; Shattuck, M. D.; Ouellette, N. T.; O'Hern, C.

    2016-12-01

    Despite decades of research, the grain-scale mechanisms that control the onset of sediment transport are still not well understood. A large collection of data, known as the Shields curve, shows that Θ c, which is the minimum dimensionless shear stress at the bed for grains to move, is primarily a function of the shear Reynolds number Re*. To understand this collapse, it is typically assumed that the onset of grain motion is determined by the conditions at which fluid forces violate static equilibrium for surface grains. Re* compares the grain size to the size of the viscous sublayer in the fluid flow, so the relevant fluid lift and drag forces vary with Re*. A complimentary approach, which remains relatively unexplored, is to ask instead when mobilized grains can stop. In this case, Re* is the ratio of two important time scales related to grain motion: (1) the time for a grain to equilibrate to the fluid flow and (2) the time for the shear stress to accelerate a grain over the characteristic bed roughness. Thus, Re* controls whether grains are accelerated significantly between collisions with the bed. To test how this effect relates to the Shields curve, we perform simulations of granular beds sheared by a model fluid flow, where Re* is varied only through the fluid-grain coupling, which alters the grain dynamics. We find good qualitative agreement with the Shields curve, and the quantitative discrepancies are consistent with lift forces calculations at varying Re*. Our results suggest that the onset of sediment transport may be better described as when mobile grains are able to stop, which varies significantly with Re*, and theoretical descriptions that account for this effect may be more successful than those that consider only static equilibrium.

  17. Dynamic interaction of two-phase debris flow with pyramidal defense structures: An optimal strategy to efficiently protecting the desired area

    NASA Astrophysics Data System (ADS)

    Kattel, Parameshwari; Kafle, Jeevan; Fischer, Jan-Thomas; Mergili, Martin; Tuladhar, Bhadra Man; Pudasaini, Shiva P.

    2017-04-01

    In this work we analyze the dynamic interaction of two phase debris flows with pyramidal obstacles. To simulate the dynamic interaction of two-phase debris flow (a mixture of solid particles and viscous fluid) with obstacles of different dimensions and orientations, we employ the general two-phase mass flow model (Pudasaini, 2012). The model consists of highly non-linear partial differential equations representing the mass and momentum conservations for both solid and fluid. Besides buoyancy, the model includes some dominant physical aspects of the debris flows such as generalized drag, virtual mass and non-Newtonian viscous stress as induced by the gradient of solid-volume-fraction. Simulations are performed with high-resolution numerical schemes to capture essential dynamics, including the strongly re-directed flow with multiple stream lines, mass arrest and debris-vacuum generation when the rapidly cascading debris mass suddenly encounters the obstacle. The solid and fluid phases show fundamentally different interactions with obstacles, flow spreading and dispersions, run-out dynamics, and deposition morphology. A forward-facing pyramid deflects the mass wider, and a rearward-facing pyramid arrests a portion of solid-mass at its front. Our basic study reveals that appropriately installed obstacles, their dimensions and orientations have a significant influence on the flow dynamics, material redistribution and redirection. The precise knowledge of the change in dynamics is of great importance for the optimal and effective protection of designated areas along the mountain slopes and the runout zones. Further important results are, that specific installations lead to redirect either solid, or fluid, or both, in the desired amounts and directions. The present method of the complex interactions of real two-phase mass flows with the obstacles may help us to construct defense structures and to design advanced and physics-based engineering solutions for the prevention and mitigation of natural hazards caused by geophysical mass flows. References: Pudasaini, S. P. (2012): A general two-phase debris flow model. J. Geophys. Res. 117, F03010, doi: 10.1029/ 2011JF002186.

  18. Advances in the analysis and prediction of turbulent viscoelastic flows

    NASA Astrophysics Data System (ADS)

    Gatski, T. B.; Thais, L.; Mompean, G.

    2014-08-01

    It has been well-known for over six decades that the addition of minute amounts of long polymer chains to organic solvents, or water, can lead to significant turbulent drag reduction. This discovery has had many practical applications such as in pipeline fluid transport, oil well operations, vehicle design and submersible vehicle projectiles, and more recently arteriosclerosis treatment. However, it has only been the last twenty-five years that the full utilization of direct numerical simulation of such turbulent viscoelastic flows has been achieved. The unique characteristics of viscoelastic fluid flow are dictated by the nonlinear differential relationship between the flow strain rate field and the extra-stress induced by the additive polymer. A primary motivation for the analysis of these turbulent fluid flows is the understanding of the effect on the dynamic transfer of energy in the turbulent flow due to the presence of the extra-stress field induced by the presence of the viscoelastic polymer chain. Such analyses now utilize direct numerical simulation data of fully developed channel flow for the FENE-P (Finite Extendable Nonlinear Elastic - Peterlin) fluid model. Such multi-scale dynamics suggests an analysis of the transfer of energy between the various component motions that include the turbulent kinetic energy, and the mean polymeric and elastic potential energies. It is shown that the primary effect of the interaction between the turbulent and polymeric fields is to transfer energy from the turbulence to the polymer.

  19. DRAG REDUCING POLYMER ENCHANCES MICROVASCULAR PERFUSION IN THE TRAUMATIZED BRAIN WITH INTRACRANIAL HYPERTENSION

    PubMed Central

    Bragin, Denis E.; Thomson, Susan; Bragina, Olga; Statom, Gloria; Kameneva, Marina V.; Nemoto, Edwin M.

    2016-01-01

    SUMMARY Current treatments for traumatic brain injury (TBI) have not focused on improving microvascular perfusion. Drag-reducing polymers (DRP), linear, long-chain, blood soluble non-toxic macromolecules, may offer a new approach to improving cerebral perfusion by primary alteration of the fluid dynamic properties of blood. Nanomolar concentrations of DRP have been shown to improve hemodynamics in animal models of ischemic myocardium and limb, but have not yet been studied in the brain. Recently, we demonstrated that that DRP improved microvascular perfusion and tissue oxygenation in a normal rat brain. We hypothesized that DRP could restore microvascular perfusion in hypertensive brain after TBI. Using the in-vivo 2-photon laser scanning microscopy we examined the effect of DRP on microvascular blood flow and tissue oxygenation in hypertensive rat brains with and without TBI. DRP enhanced and restored capillary flow, decreased microvascular shunt flow and, as a result, reduced tissue hypoxia in both un-traumatized and traumatized rat brains at high ICP. Our study suggests that DRP could be an effective treatment for improving microvascular flow in brain ischemia caused by high ICP after TBI. PMID:27165871

  20. Multi-Objective Aerodynamic Optimization of the Streamlined Shape of High-Speed Trains Based on the Kriging Model.

    PubMed

    Xu, Gang; Liang, Xifeng; Yao, Shuanbao; Chen, Dawei; Li, Zhiwei

    2017-01-01

    Minimizing the aerodynamic drag and the lift of the train coach remains a key issue for high-speed trains. With the development of computing technology and computational fluid dynamics (CFD) in the engineering field, CFD has been successfully applied to the design process of high-speed trains. However, developing a new streamlined shape for high-speed trains with excellent aerodynamic performance requires huge computational costs. Furthermore, relationships between multiple design variables and the aerodynamic loads are seldom obtained. In the present study, the Kriging surrogate model is used to perform a multi-objective optimization of the streamlined shape of high-speed trains, where the drag and the lift of the train coach are the optimization objectives. To improve the prediction accuracy of the Kriging model, the cross-validation method is used to construct the optimal Kriging model. The optimization results show that the two objectives are efficiently optimized, indicating that the optimization strategy used in the present study can greatly improve the optimization efficiency and meet the engineering requirements.

  1. Numerical simulation on a straight-bladed vertical axis wind turbine with auxiliary blade

    NASA Astrophysics Data System (ADS)

    Li, Y.; Zheng, Y. F.; Feng, F.; He, Q. B.; Wang, N. X.

    2016-08-01

    To improve the starting performance of the straight-bladed vertical axis wind turbine (SB-VAWT) at low wind speed, and the output characteristics at high wind speed, a flexible, scalable auxiliary vane mechanism was designed and installed into the rotor of SB-VAWT in this study. This new vertical axis wind turbine is a kind of lift-to-drag combination wind turbine. The flexible blade expanded, and the driving force of the wind turbines comes mainly from drag at low rotational speed. On the other hand, the flexible blade is retracted at higher speed, and the driving force is primarily from a lift. To research the effects of the flexible, scalable auxiliary module on the performance of SB-VAWT and to find its best parameters, the computational fluid dynamics (CFD) numerical calculation was carried out. The calculation result shows that the flexible, scalable blades can automatic expand and retract with the rotational speed. The moment coefficient at low tip speed ratio increased substantially. Meanwhile, the moment coefficient has also been improved at high tip speed ratios in certain ranges.

  2. Supersonic airplane study and design

    NASA Technical Reports Server (NTRS)

    Cheung, Samson

    1993-01-01

    A supersonic airplane creates shocks which coalesce and form a classical N-wave on the ground, forming a double bang noise termed sonic boom. A recent supersonic commercial transport (the Concorde) has a loud sonic boom (over 100 PLdB) and low aerodynamic performance (cruise lift-drag ratio 7). To enhance the U.S. market share in supersonic transport, an airframer's market risk for a low-boom airplane has to be reduced. Computational fluid dynamics (CFD) is used to design airplanes to meet the dual constraints of low sonic boom and high aerodynamic performance. During the past year, a research effort was focused on three main topics. The first was to use the existing design tools, developed in past years, to design one of the low-boom wind-tunnel configurations (Ames Model 3) for testing at Ames Research Center in April 1993. The second was to use a Navier-Stokes code (Overflow) to support the Oblique-All-Wing (OAW) study at Ames. The third was to study an optimization technique applied on a Haack-Adams body to reduce aerodynamic drag.

  3. Analysis on Experimental Investigation and Mathematical Modeling of Incompressible Flow Through Ceramic Foam Filters

    NASA Astrophysics Data System (ADS)

    Akbarnejad, Shahin; Jonsson, Lage Tord Ingemar; Kennedy, Mark William; Aune, Ragnhild Elizabeth; Jönsson, Pӓr Göran

    2016-08-01

    This paper presents experimental results of pressure drop measurements on 30, 50, and 80 pores per inch (PPI) commercial alumina ceramic foam filters (CFF) and compares the obtained pressure drop profiles to numerically modeled values. In addition, it is aimed at investigating the adequacy of the mathematical correlations used in the analytical and the computational fluid dynamics (CFD) simulations. It is shown that the widely used correlations for predicting pressure drop in porous media continuously under-predict the experimentally obtained pressure drop profiles. For analytical predictions, the negative deviations from the experimentally obtained pressure drop using the unmodified Ergun and Dietrich equations could be as high as 95 and 74 pct, respectively. For the CFD predictions, the deviation to experimental results is in the range of 84.3 to 88.5 pct depending on filter PPI. Better results can be achieved by applying the Forchheimer second-order drag term instead of the Brinkman-Forchheimer drag term. Thus, the final deviation of the CFD model estimates lie in the range of 0.3 to 5.5 pct compared to the measured values.

  4. Modification of the mean near-wall velocity profile of a high-Reynolds number turbulent boundary layer with the injection of drag-reducing polymer solutions

    NASA Astrophysics Data System (ADS)

    Elbing, Brian R.; Perlin, Marc; Dowling, David R.; Ceccio, Steven L.

    2013-08-01

    The current study explores the influence of polymer drag reduction on the near-wall velocity distribution in a turbulent boundary layer (TBL) and its dependence on Reynolds number. Recent moderate Reynolds number direct numerical simulation and experimental studies presented in White et al. [Phys. Fluids 24, 021701 (2012)], 10.1063/1.3681862 have challenged the classical representation of the logarithmic dependence of the velocity profile for drag-reduced flows, especially at drag reduction levels above 40%. In the present study, high Reynolds number data from a drag reduced TBL is presented and compared to the observations of White et al. [Phys. Fluids 24, 021701 (2012)], 10.1063/1.3681862. Data presented here were acquired in the TBL flow on a 12.9-m-long flat plate at speeds to 20.3 m s-1, achieving momentum thickness based Reynolds number to 1.5 × 105, which is an order of magnitude greater than that available in the literature. Polyethylene oxide solutions with an average molecular weight of 3.9 × 106 g mol-1 were injected into the flow at various concentrations and volumetric fluxes to achieve a particular level of drag reduction. The resulting mean near-wall velocity profiles show distinctly different behavior depending on whether they fall in the low drag reduction (LDR) or the high drag reduction (HDR) regimes, which are nominally divided at 40% drag reduction. In the LDR regime, the classical view that the logarithmic slope remains constant at the Newtonian value and the intercept constant increases with increasing drag reduction appears to be valid. However, in the HDR regime the behavior is no longer universal. The intercept constant continues to increase linearly in proportion to the drag reduction level until a Reynolds-number-dependent threshold is achieved, at which point the intercept constant rapidly decreases to that predicted by the ultimate profile. The rapid decrease in the intercept constant is due to the corresponding increase in the profile slope in the HDR regime. There was significant scatter in the observed slope in the HDR regime, but the scatter did not appear to be Reynolds number dependent. Finally, the ultimate profiles for flows at maximum drag reduction were examined and did not exhibit a logarithmic functional relationship, which is the classical empirical relationship suggested by Virk [J. Am. Inst. Chem. Eng. 21, 625-656 (1975)], 10.1002/aic.690210402.

  5. Active elastohydrodynamics of vesicles in narrow blind constrictions

    NASA Astrophysics Data System (ADS)

    Fai, T. G.; Kusters, R.; Harting, J.; Rycroft, C. H.; Mahadevan, L.

    2017-11-01

    Fluid-resistance limited transport of vesicles through narrow constrictions is a recurring theme in many biological and engineering applications. Inspired by the motor-driven movement of soft membrane-bound vesicles into closed neuronal dendritic spines, here we study this problem using a combination of passive three-dimensional simulations and a simplified semianalytical theory for the active transport of vesicles forced through constrictions by molecular motors. We show that the motion of these objects is characterized by two dimensionless quantities related to the geometry and to the strength of forcing relative to the vesicle elasticity. We use numerical simulations to characterize the transit time for a vesicle forced by fluid pressure through a constriction in a channel and find that relative to an open channel, transport into a blind end leads to the formation of a smaller forward-flowing lubrication layer that strongly impedes motion. When the fluid pressure forcing is complemented by forces due to molecular motors that are responsible for vesicle trafficking into dendritic spines, we find that the competition between motor forcing and fluid drag results in multistable dynamics reminiscent of the real system. Our study highlights the role of nonlocal hydrodynamic effects in determining the kinetics of vesicular transport in constricted geometries.

  6. Flutter Instability of a Fluid-Conveying Fluid-Immersed Pipe Affixed to a Rigid Body

    DTIC Science & Technology

    2011-01-01

    rigid body, denoted by y in Fig. 4, is small. This is in addition to the Euler– Bernoulli beam assumption that the slope of the tail is small everywhere...here. These include the efficiency with which the prime mover can generate fluid momentum , pipe losses, and external drag acting on both the hull and the

  7. Effects of maneuver dynamics on drag polars of the X-29A forward-swept-wing aircraft with automatic wing camber control

    NASA Technical Reports Server (NTRS)

    Hicks, John W.; Moulton, Bryan J.

    1988-01-01

    The camber control loop of the X-29A FSW aircraft was designed to furnish the optimum L/D for trimmed, stabilized flight. A marked difference was noted between automatic wing camber control loop behavior in dynamic maneuvers and in stabilized flight conditions, which in turn affected subsonic aerodynamic performance. The degree of drag level increase was a direct function of maneuver rate. Attention is given to the aircraft flight drag polar effects of maneuver dynamics in light of wing camber control loop schedule. The effect of changing camber scheduling to better track the optimum automatic camber control L/D schedule is discussed.

  8. Flow of colloid particle solution past macroscopic bodies and drag crisis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iordanskii, S. V., E-mail: iordansk@itp.ac.ru

    2013-11-15

    The motion of colloid particles in a viscous fluid flow is considered. Small sizes of colloid particles as compared to the characteristic scale of the flow make it possible to calculate their velocity relative to the liquid. If the density of a colloid particle is higher than the density of the liquid, the flow splits into regions in which the velocity of colloid particles coincides with the velocity of the liquid and regions of flow stagnation in which the colloid velocity is higher than the velocity of the fluid. This effect is used to explain qualitatively the decrease in themore » drag to the flows past macroscopic bodies and flows in pipes.« less

  9. Satellite-tracking and earth-dynamics research programs. [geodetic and geophysical investigations and atmospheric research using satellite drag data

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Satellite tracking and earth dynamics research programs are discussed. Geodetic and geophysical investigations are reported along with atmospheric research using satellite drag data. Satellite tracking network functions and support groups which are discussed include: network operations, communications, data-services division, moonwatch, and programming group.

  10. Orientational dynamics of a triaxial ellipsoid in simple shear flow: Influence of inertia.

    PubMed

    Rosén, Tomas; Kotsubo, Yusuke; Aidun, Cyrus K; Do-Quang, Minh; Lundell, Fredrik

    2017-07-01

    The motion of a single ellipsoidal particle in simple shear flow can provide valuable insights toward understanding suspension flows with nonspherical particles. Previously, extensive studies have been performed on the ellipsoidal particle with rotational symmetry, a so-called spheroid. The nearly prolate ellipsoid (one major and two minor axes of almost equal size) is known to perform quasiperiodic or even chaotic orbits in the absence of inertia. With small particle inertia, the particle is also known to drift toward this irregular motion. However, it is not previously understood what effects from fluid inertia could be, which is of highest importance for particles close to neutral buoyancy. Here, we find that fluid inertia is acting strongly to suppress the chaotic motion and only very weak fluid inertia is sufficient to stabilize a rotation around the middle axis. The mechanism responsible for this transition is believed to be centrifugal forces acting on fluid, which is dragged along with the rotational motion of the particle. With moderate fluid inertia, it is found that nearly prolate triaxial particles behave similarly to the perfectly spheroidal particles. Finally, we also are able to provide predictions about the stable rotational states for the general triaxial ellipsoid in simple shear with weak inertia.

  11. Computational and Experimental Fluid-Structure Interaction Analysis of a High-Lift Wing with a Slat-Cove Filler for Noise Reduction

    NASA Technical Reports Server (NTRS)

    Scholten, William D.; Patterson, Ryan D.; Hartl, Darren J.; Strganac, Thomas W.; Chapelon, Quentin H. C.; Turner, Travis

    2017-01-01

    Airframe noise is a significant component of overall noise produced by transport aircraft during landing and approach (low speed maneuvers). A significant source for this noise is the cove of the leading-edge slat. The slat-cove filler (SCF) has been shown to be effective at mitigating slat noise. The objective of this work is to understand the fluid-structure interaction (FSI) behavior of a superelastic shape memory alloy (SMA) SCF in flow using both computational and physical models of a high-lift wing. Initial understanding of flow around the SCF and wing is obtained using computational fluid dynamics (CFD) analysis at various angles of attack. A framework compatible with an SMA constitutive model (implemented as a user material subroutine) is used to perform FSI analysis for multiple flow and configuration cases. A scaled physical model of the high-lift wing is constructed and tested in the Texas A&M 3 ft-by-4-foot wind tunnel. Initial validation of both CFD and FSI analysis is conducted by comparing lift, drag and pressure distributions with experimental results.

  12. The study of surface wetting, nanobubbles and boundary slip with an applied voltage: A review

    PubMed Central

    Pan, Yunlu; Zhao, Xuezeng

    2014-01-01

    Summary The drag of fluid flow at the solid–liquid interface in the micro/nanoscale is an important issue in micro/nanofluidic systems. Drag depends on the surface wetting, nanobubbles, surface charge and boundary slip. Some researchers have focused on the relationship between these interface properties. In this review, the influence of an applied voltage on the surface wettability, nanobubbles, surface charge density and slip length are discussed. The contact angle (CA) and contact angle hysteresis (CAH) of a droplet of deionized (DI) water on a hydrophobic polystyrene (PS) surface were measured with applied direct current (DC) and alternating current (AC) voltages. The nanobubbles in DI water and three kinds of saline solution on a PS surface were imaged when a voltage was applied. The influence of the surface charge density on the nanobubbles was analyzed. Then the slip length and the electrostatic force on the probe were measured on an octadecyltrichlorosilane (OTS) surface with applied voltage. The influence of the surface charge on the boundary slip and drag of fluid flow has been discussed. Finally, the influence of the applied voltage on the surface wetting, nanobubbles, surface charge, boundary slip and the drag of liquid flow are summarized. With a smaller surface charge density which could be achieved by applying a voltage on the surface, larger and fewer nanobubbles, a larger slip length and a smaller drag of liquid flow could be found. PMID:25161839

  13. The study of surface wetting, nanobubbles and boundary slip with an applied voltage: A review.

    PubMed

    Pan, Yunlu; Bhushan, Bharat; Zhao, Xuezeng

    2014-01-01

    The drag of fluid flow at the solid-liquid interface in the micro/nanoscale is an important issue in micro/nanofluidic systems. Drag depends on the surface wetting, nanobubbles, surface charge and boundary slip. Some researchers have focused on the relationship between these interface properties. In this review, the influence of an applied voltage on the surface wettability, nanobubbles, surface charge density and slip length are discussed. The contact angle (CA) and contact angle hysteresis (CAH) of a droplet of deionized (DI) water on a hydrophobic polystyrene (PS) surface were measured with applied direct current (DC) and alternating current (AC) voltages. The nanobubbles in DI water and three kinds of saline solution on a PS surface were imaged when a voltage was applied. The influence of the surface charge density on the nanobubbles was analyzed. Then the slip length and the electrostatic force on the probe were measured on an octadecyltrichlorosilane (OTS) surface with applied voltage. The influence of the surface charge on the boundary slip and drag of fluid flow has been discussed. Finally, the influence of the applied voltage on the surface wetting, nanobubbles, surface charge, boundary slip and the drag of liquid flow are summarized. With a smaller surface charge density which could be achieved by applying a voltage on the surface, larger and fewer nanobubbles, a larger slip length and a smaller drag of liquid flow could be found.

  14. A fundamental study of drag and an assessment of conventional drag-due-to-lift reduction devices

    NASA Astrophysics Data System (ADS)

    Yates, J. E.; Donald, C. D.

    1986-09-01

    The integral conservation laws of fluid mechanics are used to assess the drag efficiency of lifting wings, both CTOL and various out-of-plane configurations. The drag-due-to-lift is separated into two major components: (1) the induced drag-due-to-lift that depends on aspect ratio but is relatively independent of Reynolds number; (2) the form drag-due-to-lift that is independent of aspect ratio but dependent on the details of the wing section design, planform and Reynolds number. For each lifting configuration there is an optimal load distribution that yields the minimum value of drag-due-to-lift. For well designed high aspect ratio CTOL wings the two drag components are independent. With modern design technology CTOL wings can be (and usually are) designed with a drag-due-to-lift efficiency close to unity. Wing tip-devices (winglets, feathers, sails, etc.) can improve drag-due-to-lift efficiency by 10 to 15% if they are designed as an integral part of the wing. As add-on devices they can be detrimental. It is estimated that 25% improvements of wing drag-due-to-lift efficiency can be obtained with joined tip configurations and vertically separated lifting elements without considering additional benefits that might be realized by improved structural efficiency. It is strongly recommended that an integrated aerodynamic/structural approach be taken in the design of (or research on) future out-of-plane configurations.

  15. A fundamental study of drag and an assessment of conventional drag-due-to-lift reduction devices

    NASA Technical Reports Server (NTRS)

    Yates, J. E.; Donald, C. D.

    1986-01-01

    The integral conservation laws of fluid mechanics are used to assess the drag efficiency of lifting wings, both CTOL and various out-of-plane configurations. The drag-due-to-lift is separated into two major components: (1) the induced drag-due-to-lift that depends on aspect ratio but is relatively independent of Reynolds number; (2) the form drag-due-to-lift that is independent of aspect ratio but dependent on the details of the wing section design, planform and Reynolds number. For each lifting configuration there is an optimal load distribution that yields the minimum value of drag-due-to-lift. For well designed high aspect ratio CTOL wings the two drag components are independent. With modern design technology CTOL wings can be (and usually are) designed with a drag-due-to-lift efficiency close to unity. Wing tip-devices (winglets, feathers, sails, etc.) can improve drag-due-to-lift efficiency by 10 to 15% if they are designed as an integral part of the wing. As add-on devices they can be detrimental. It is estimated that 25% improvements of wing drag-due-to-lift efficiency can be obtained with joined tip configurations and vertically separated lifting elements without considering additional benefits that might be realized by improved structural efficiency. It is strongly recommended that an integrated aerodynamic/structural approach be taken in the design of (or research on) future out-of-plane configurations.

  16. The drag and terminal velocity of volcanic ash and lapilli with 3D shape obtained by X-ray microtomography

    NASA Astrophysics Data System (ADS)

    Dioguardi, Fabio; Mele, Daniela; Dellino, Pierfrancesco; Dürig, Tobias

    2017-04-01

    New experiments of falling volcanic particles were performed in order to define drag and terminal velocity models applicable in a wide range of Reynolds number Re. Experiments were carried out with fluids of various viscosities and with particles that cover a wide range of size, density and shape. Particle shape, which strongly influences fluid drag, was measured in 3D by High-resolution X-ray microtomography, by which sphericity and fractal dimension were obtained, the latter used for quantifying the aerodynamic drag of irregular particles for the first time. With this method, the measure of particle shape descriptors proved to be easier and less operator dependent than previously used 2D image particle analyses. Drag laws that make use of the new 3D parameters were obtained by fitting particle data to the experiments, and single-equation terminal velocity models were derived. They work well both at high and low Re (3x10-2 < Re < 104), while earlier formulations made use of different equations at different ranges of Re. The new drag laws are well suited for the modelling of particle transportation both in the eruptive column and pyroclastic density currents, where coarse and fine particles are present, and also in the distal part of the umbrella region, where fine ash is involved in the large-scale domains of atmospheric circulation. A table of the typical values of 3D sphericity and fractal dimension of particles from known plinian, subplinian and ash plume eruptions is presented. Graphs of terminal velocity as a function of grain size are proposed as tools to help volcanologists and atmosphere scientists to model particle transportation of explosive eruptions. Some volcanological application examples are finally presented.

  17. The hydrodynamics of swimming at intermediate Reynolds numbers in the water boatman (Corixidae).

    PubMed

    Ngo, Victoria; McHenry, Matthew James

    2014-08-01

    The fluid forces that govern propulsion determine the speed and energetic cost of swimming. These hydrodynamics are scale dependent and it is unclear what forces matter to the tremendous diversity of aquatic animals that are between a millimeter and a centimeter in length. Animals at this scale generally operate within the regime of intermediate Reynolds numbers, where both viscous and inertial fluid forces have the potential to play a role in propulsion. The present study aimed to resolve which forces create thrust and drag in the paddling of the water boatman (Corixidae), an animal that spans much of the intermediate regime (10

  18. Continuum theories for fluid-particle flows: Some aspects of lift forces and turbulence

    NASA Technical Reports Server (NTRS)

    Mctigue, David F.; Givler, Richard C.; Nunziato, Jace W.

    1988-01-01

    A general framework is outlined for the modeling of fluid particle flows. The momentum exchange between the constituents embodies both lift and drag forces, constitutive equations for which can be made explicit with reference to known single particle analysis. Relevant results for lift are reviewed, and invariant representations are posed. The fluid and particle velocities and the particle volume fraction are then decomposed into mean and fluctuating parts to characterize turbulent motions, and the equations of motion are averaged. In addition to the Reynolds stresses, further correlations between concentration and velocity fluctuations appear. These can be identified with turbulent transport processes such as eddy diffusion of the particles. When the drag force is dominant, the classical convection dispersion model for turbulent transport of particles is recovered. When other interaction forces enter, particle segregation effects can arise. This is illustrated qualitatively by consideration of turbulent channel flow with lift effects included.

  19. Heat-transfer characteristics of the R113 annular two-phase closed thermosyphon - Heat transfer in the condenser

    NASA Astrophysics Data System (ADS)

    Maezawa, Saburo; Tsuchida, Akira; Takuma, Masao

    1988-08-01

    Visual observation of flow patterns in the condenser and heat transfer measurements were conducted for heat transfer rate ranges of 18-800 W using a vertical annular device with various quantities of R113 as a working fluid. As a result of visual observations, it was shown that ripples (interfacial waves) were generated on the condensate film surface when the condensate film Reynolds number exceeded approximately 20, and the condensation heat transfer was prompted. A simple theoretical analysis was presented in which the effects of interfacial waves and vapor drag were both considered. This analysis agreed very well with experimental results when the working fluid quantity was small enough so that the two-phase mixture generated by boiling the working fluid did not reach the condenser. The effects of interfacial waves and vapor drag on condensation heat transfer were also investigated theoretically.

  20. Lubricant retention in liquid-infused microgrooves exposed to turbulent flow

    NASA Astrophysics Data System (ADS)

    Fu, Matthew; Chen, Ting-Hsuan; Arnold, Craig; Hultmark, Marcus

    2017-11-01

    Liquid infused surfaces are a promising method of passive drag reduction for turbulent flows. These surfaces rely on functionalized roughness elements to trap a liquid lubricant that is immiscible with external fluids. The presence of the lubricant creates a collection of fluid-fluid interfaces which can support a finite slip velocity at the effective surface. Generating a streamwise slip at the surface has been demonstrated as an effective mechanism for drag reduction; however, sustained drag reduction is predicated on the retention of the lubricating layer. Here, a turbulent channel-flow facility is used to characterize the robustness of liquid-infused surfaces and evaluate criteria for ensuring retention of the lubricant. Microscale grooved surfaces infused with alkane lubricants are mounted flush in the channel and exposed to turbulent flows. The retention of lubricants and pressure drop are monitored to characterize the effects of surface geometry and lubricant properties. To improve the retention of lubricant within grooved structures, a novel laser patterning technique is used to scribe chemical barriers onto grooved surfaces and evaluated. Supported under ONR Grants N00014-12-1-0875 and N00014-12-1-0962 (program manager Ki-Han Kim) and by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

  1. Flow around an individual morphologically complex plant: investigating the role of plant aspect in the numerical prediction of complex river flow

    NASA Astrophysics Data System (ADS)

    Boothroyd, R.; Hardy, R. J.; Warburton, J.; Marjoribanks, T.

    2015-12-01

    Aquatic vegetation has a significant influence on the hydraulic functioning of river systems. Plant morphology has previously been shown to alter the mean and turbulent properties of flow, influenced by the spatial distribution of branches and foliage, and these effects can be further investigated through numerical models. We report on a novel method for the measurement and incorporation of complex plant morphologies into a computational fluid dynamics (CFD) model. The morphological complexity of Prunus laurocerasus is captured under foliated and defoliated states through terrestrial laser scanning (TLS). Point clouds are characterised by a voxelised representation and incorporated into a CFD scheme using a mass flux scaling algorithm, allowing the numerical prediction of flows around individual plants. Here we examine the sensitivity of plant aspect, i.e. the positioning of the plant relative to the primary flow direction, by rotating the voxelised plant representation through 15° increments (24 rotations) about the vertical axis. This enables the impact of plant aspect to be quantified upon the velocity and pressure fields, and in particular how this effects species-specific drag forces and drag coefficients. Plant aspect is shown to considerably influence the flow field response, producing spatially heterogeneous downstream velocity fields with both symmetric and asymmetric wake shapes, and point of reattachments that extend up to seven plant lengths downstream. For the same plant, changes in aspect are shown to account for a maximum variation in drag force of 168%, which equates to a 65% difference in the drag coefficient. An explicit consideration of plant aspect is therefore important in studies concerning flow-vegetation interactions, especially when reducing the uncertainty in parameterising the effect of vegetation in numerical models.

  2. High accuracy satellite drag model (HASDM)

    NASA Astrophysics Data System (ADS)

    Storz, M.; Bowman, B.; Branson, J.

    The dominant error source in the force models used to predict low perigee satellite trajectories is atmospheric drag. Errors in operational thermospheric density models cause significant errors in predicted satellite positions, since these models do not account for dynamic changes in atmospheric drag for orbit predictions. The Air Force Space Battlelab's High Accuracy Satellite Drag Model (HASDM) estimates and predicts (out three days) a dynamically varying high-resolution density field. HASDM includes the Dynamic Calibration Atmosphere (DCA) algorithm that solves for the phases and amplitudes of the diurnal, semidiurnal and terdiurnal variations of thermospheric density near real-time from the observed drag effects on a set of Low Earth Orbit (LEO) calibration satellites. The density correction is expressed as a function of latitude, local solar time and altitude. In HASDM, a time series prediction filter relates the extreme ultraviolet (EUV) energy index E10.7 and the geomagnetic storm index a p to the DCA density correction parameters. The E10.7 index is generated by the SOLAR2000 model, the first full spectrum model of solar irradiance. The estimated and predicted density fields will be used operationally to significantly improve the accuracy of predicted trajectories for all low perigee satellites.

  3. High accuracy satellite drag model (HASDM)

    NASA Astrophysics Data System (ADS)

    Storz, Mark F.; Bowman, Bruce R.; Branson, Major James I.; Casali, Stephen J.; Tobiska, W. Kent

    The dominant error source in force models used to predict low-perigee satellite trajectories is atmospheric drag. Errors in operational thermospheric density models cause significant errors in predicted satellite positions, since these models do not account for dynamic changes in atmospheric drag for orbit predictions. The Air Force Space Battlelab's High Accuracy Satellite Drag Model (HASDM) estimates and predicts (out three days) a dynamically varying global density field. HASDM includes the Dynamic Calibration Atmosphere (DCA) algorithm that solves for the phases and amplitudes of the diurnal and semidiurnal variations of thermospheric density near real-time from the observed drag effects on a set of Low Earth Orbit (LEO) calibration satellites. The density correction is expressed as a function of latitude, local solar time and altitude. In HASDM, a time series prediction filter relates the extreme ultraviolet (EUV) energy index E10.7 and the geomagnetic storm index ap, to the DCA density correction parameters. The E10.7 index is generated by the SOLAR2000 model, the first full spectrum model of solar irradiance. The estimated and predicted density fields will be used operationally to significantly improve the accuracy of predicted trajectories for all low-perigee satellites.

  4. Biomimetics inspired surfaces for drag reduction and oleophobicity/philicity.

    PubMed

    Bhushan, Bharat

    2011-01-01

    The emerging field of biomimetics allows one to mimic biology or nature to develop nanomaterials, nanodevices, and processes which provide desirable properties. Hierarchical structures with dimensions of features ranging from the macroscale to the nanoscale are extremely common in nature and possess properties of interest. There are a large number of objects including bacteria, plants, land and aquatic animals, and seashells with properties of commercial interest. Certain plant leaves, such as lotus (Nelumbo nucifera) leaves, are known to be superhydrophobic and self-cleaning due to the hierarchical surface roughness and presence of a wax layer. In addition to a self-cleaning effect, these surfaces with a high contact angle and low contact angle hysteresis also exhibit low adhesion and drag reduction for fluid flow. An aquatic animal, such as a shark, is another model from nature for the reduction of drag in fluid flow. The artificial surfaces inspired from the shark skin and lotus leaf have been created, and in this article the influence of structure on drag reduction efficiency is reviewed. Biomimetic-inspired oleophobic surfaces can be used to prevent contamination of the underwater parts of ships by biological and organic contaminants, including oil. The article also reviews the wetting behavior of oil droplets on various superoleophobic surfaces created in the lab.

  5. Biomimetics inspired surfaces for drag reduction and oleophobicity/philicity

    PubMed Central

    2011-01-01

    Summary The emerging field of biomimetics allows one to mimic biology or nature to develop nanomaterials, nanodevices, and processes which provide desirable properties. Hierarchical structures with dimensions of features ranging from the macroscale to the nanoscale are extremely common in nature and possess properties of interest. There are a large number of objects including bacteria, plants, land and aquatic animals, and seashells with properties of commercial interest. Certain plant leaves, such as lotus (Nelumbo nucifera) leaves, are known to be superhydrophobic and self-cleaning due to the hierarchical surface roughness and presence of a wax layer. In addition to a self-cleaning effect, these surfaces with a high contact angle and low contact angle hysteresis also exhibit low adhesion and drag reduction for fluid flow. An aquatic animal, such as a shark, is another model from nature for the reduction of drag in fluid flow. The artificial surfaces inspired from the shark skin and lotus leaf have been created, and in this article the influence of structure on drag reduction efficiency is reviewed. Biomimetic-inspired oleophobic surfaces can be used to prevent contamination of the underwater parts of ships by biological and organic contaminants, including oil. The article also reviews the wetting behavior of oil droplets on various superoleophobic surfaces created in the lab. PMID:21977417

  6. Drag reduction in turbulent channel laden with finite-size oblate spheroids

    NASA Astrophysics Data System (ADS)

    Niazi Ardekani, Mehdi; Pedro Costa Collaboration; Wim-Paul Breugem Collaboration; Francesco Picano Collaboration; Luca Brandt Collaboration

    2016-11-01

    Suspensions of oblate rigid particles in a turbulent plane channel flow are investigated for different values of the particle volume fraction. We perform direct numerical simulations (DNS), using a direct-forcing immersed boundary method to account for the particle-fluid interactions, combined with a soft-sphere collision model and lubrication corrections for short-range particle-particle and particle-wall interactions. We show a clear drag reduction and turbulence attenuation in flows laden with oblate spheroids, both with respect to the single phase turbulent flow and to suspensions of rigid spheres. We explain the drag reduction by the lack of the particle layer at the wall, observed before for spherical particles. In addition, the special shape of the oblate particles creates a tendency to stay parallel to the wall in its vicinity, forming a shield of particles that prevents strong fluctuations in the outer layer to reach the wall and vice versa. Detailed statistics of the fluid and particle phase will be presented at the conference to explain the observed drag reduction. Supported by the European Research Council Grant No. ERC-2013-CoG-616186, TRITOS. The authors acknowledge computer time provided by SNIC (Swedish National Infrastructure for Computing) and the support from the COST Action MP1305: Flowing matter.

  7. Fluid-Structure interaction analysis and performance evaluation of a membrane blade

    NASA Astrophysics Data System (ADS)

    Saeedi, M.; Wüchner, R.; Bletzinger, K.-U.

    2016-09-01

    Examining the potential of a membrane blade concept is the goal of the current work. In the sailwing concept the surface of the wing, or the blade in this case, is made from pre-tensioned membranes which meet at the pre-tensioned edge cable at the trailing edge. Because of the dependency between membrane deformation and applied aerodynamic load, two-way coupled fluid-structure interaction analysis is necessary for evaluation of the aerodynamic performance of such a configuration. The in-house finite element based structural solver, CARAT++, is coupled with OpenFOAM in order to tackle the multi-physics problem. The main aerodynamic characteristics of the membrane blade including lift coefficient, drag coefficient and lift to drag ratio are compared with its rigid counterpart. A single non-rotating NREL phase VI blade is studied here as a first step towards analyzing the concept for the rotating case. Compared with the rigid blade, the membrane blade has a higher slope of the lift curve. For higher angles of attack, lift and drag coefficients as well as the lift to drag ratio is higher for the membrane blade. A single non-rotating blade is studied here as a first step towards analyzing the concept for the rotating case.

  8. Evaluation of a Drag-Free Control Concept for Missions in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Fleck, Melissa E.; Starin, Scott R.

    2003-01-01

    Atmospheric drag causes the greatest uncertainty in the equations of motion for spacecraft in Low Earth Orbit (LEO). If atmospheric drag eflects can be continuously and autonomously counteracted through the use of a drag-fee control system, drag may essentially be eliminated from the equations of motion for the spacecraft. The main perturbations on the spacecraft will then be those due to the gravitational field, which are much more easily predicted Through dynamical analysis and numerical simulation, this paper presents some potential costs and benefits associated with the fuel used during continuous drag compensation. In light of this cost-benefit analysis, simulation results are used to validate the concept of drag-free control for LEO spacecraft missions having certain characteristics.

  9. Equilibrium distribution of heavy quarks in fokker-planck dynamics

    PubMed

    Walton; Rafelski

    2000-01-03

    We obtain an explicit generalization, within Fokker-Planck dynamics, of Einstein's relation between drag, diffusion, and the equilibrium distribution for a spatially homogeneous system, considering both the transverse and longitudinal diffusion for dimension n>1. We provide a complete characterization of the equilibrium distribution in terms of the drag and diffusion transport coefficients. We apply this analysis to charm quark dynamics in a thermal quark-gluon plasma for the case of collisional equilibration.

  10. Application of Pinniped Vibrissae to Aeropropulsion

    NASA Technical Reports Server (NTRS)

    Shyam, Vikram (Principal Investigator); Ameri, Ali; Poinsatte, Phil; Thurman, Doug; Wroblewski, Adam; Snyder, Chris

    2015-01-01

    Vibrissae of Phoca Vitulina (Harbor Seal) and Mirounga Angustirostris (Elephant Seal) possess undulations along their length. Harbor Seal Vibrissae were shown to reduce vortex induced vibrations and reduce drag compared to appropriately scaled cylinders and ellipses. Samples of Harbor Seal vibrissae, Elephant Seal vibrissae and California Sea Lion vibrissae were collected from the Marine Mammal Center in California. CT scanning, microscopy and 3D scanning techniques were utilized to characterize the whiskers. Computational fluid dynamics simulations of the whiskers were carried out to compare them to an ellipse and a cylinder. Leading edge parameters from the whiskers were used to create a 3D profile based on a modern power turbine blade. The NASA SW-2 facility was used to perform wind tunnel cascade testing on the 'Seal Blades'. Computational Fluid Dynamics simulations were used to study incidence angles from -37 to +10 degrees on the aerodynamic performance of the Seal Blade. The tests and simulations were conducted at a Reynolds number of 100,000. The Seal Blades showed consistent performance improvements over the baseline configuration. It was determined that a fuel burn reduction of approximately 5 could be achieved for a fixed wing aircraft. Noise reduction potential is also explored.

  11. Comprehensive Benchmark Suite for Simulation of Particle Laden Flows Using the Discrete Element Method with Performance Profiles from the Multiphase Flow with Interface eXchanges (MFiX) Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Peiyuan; Brown, Timothy; Fullmer, William D.

    Five benchmark problems are developed and simulated with the computational fluid dynamics and discrete element model code MFiX. The benchmark problems span dilute and dense regimes, consider statistically homogeneous and inhomogeneous (both clusters and bubbles) particle concentrations and a range of particle and fluid dynamic computational loads. Several variations of the benchmark problems are also discussed to extend the computational phase space to cover granular (particles only), bidisperse and heat transfer cases. A weak scaling analysis is performed for each benchmark problem and, in most cases, the scalability of the code appears reasonable up to approx. 103 cores. Profiling ofmore » the benchmark problems indicate that the most substantial computational time is being spent on particle-particle force calculations, drag force calculations and interpolating between discrete particle and continuum fields. Hardware performance analysis was also carried out showing significant Level 2 cache miss ratios and a rather low degree of vectorization. These results are intended to serve as a baseline for future developments to the code as well as a preliminary indicator of where to best focus performance optimizations.« less

  12. Analysis of Flowfields over Four-Engine DC-X Rockets

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Cornelison, Joni

    1996-01-01

    The objective of this study is to validate a computational methodology for the aerodynamic performance of an advanced conical launch vehicle configuration. The computational methodology is based on a three-dimensional, viscous flow, pressure-based computational fluid dynamics formulation. Both wind-tunnel and ascent flight-test data are used for validation. Emphasis is placed on multiple-engine power-on effects. Computational characterization of the base drag in the critical subsonic regime is the focus of the validation effort; until recently, almost no multiple-engine data existed for a conical launch vehicle configuration. Parametric studies using high-order difference schemes are performed for the cold-flow tests, whereas grid studies are conducted for the flight tests. The computed vehicle axial force coefficients, forebody, aftbody, and base surface pressures compare favorably with those of tests. The results demonstrate that with adequate grid density and proper distribution, a high-order difference scheme, finite rate afterburning kinetics to model the plume chemistry, and a suitable turbulence model to describe separated flows, plume/air mixing, and boundary layers, computational fluid dynamics is a tool that can be used to predict the low-speed aerodynamic performance for rocket design and operations.

  13. Analysis of the fluid mechanical sewing machine

    NASA Astrophysics Data System (ADS)

    Brun, Pierre-Thomas; Audoly, Basile; Ribe, Neil

    2012-02-01

    A thin thread of viscous fluid falling onto a moving belt generates a surprising variety of patterns, similar to the stitch patterns produced by a traditional sewing machine. By simulating the dynamics of the viscous thread numerically, we can reproduce these patterns and their bifurcations. The results lead us to propose a new classification of the stitch patterns within a unified framework, based on the Fourier spectra of the motion of the point of contact of the thread with the belt. The frequencies of the longitudinal and transverse components of the contact point motion are locked in most cases to simple ratios of the frequency φc of steady coiling on a surface at rest (i.e., the limit of zero belt speed). In particular, the ``alternating loops'' pattern involves the first five multiples of φc/3. The dynamics of the patterns can be described by matching the upper (linear) and the lower (non-linear) portions of the thread. Following this path we propose a toy model that successfully reproduces the observed transitions from the steady dragged configuration to sinusoidal meanders, alternating loops, and the translated coiling pattern as the belt speed is varied.

  14. Turbulent shear layers in confining channels

    NASA Astrophysics Data System (ADS)

    Benham, Graham P.; Castrejon-Pita, Alfonso A.; Hewitt, Ian J.; Please, Colin P.; Style, Rob W.; Bird, Paul A. D.

    2018-06-01

    We present a simple model for the development of shear layers between parallel flows in confining channels. Such flows are important across a wide range of topics from diffusers, nozzles and ducts to urban air flow and geophysical fluid dynamics. The model approximates the flow in the shear layer as a linear profile separating uniform-velocity streams. Both the channel geometry and wall drag affect the development of the flow. The model shows good agreement with both particle image velocimetry experiments and computational turbulence modelling. The simplicity and low computational cost of the model allows it to be used for benchmark predictions and design purposes, which we demonstrate by investigating optimal pressure recovery in diffusers with non-uniform inflow.

  15. Polymer flexibility and turbulent drag reduction.

    PubMed

    Gillissen, J J J

    2008-10-01

    Polymer-induced drag reduction is the phenomenon by which the friction factor of a turbulent flow is reduced by the addition of small amounts of high-molecular-weight linear polymers, which conformation in solution at rest can vary between randomly coiled and rodlike. It is well known that drag reduction is positively correlated to viscous stresses, which are generated by extended polymers. Rodlike polymers always assume this favorable conformation, while randomly coiling chains need to be unraveled by fluid strain rate in order to become effective. The coiling and stretching of flexible polymers in turbulent flow produce an additional elastic component in the polymer stress. The effect of the elastic stresses on drag reduction is unclear. To study this issue, we compare direct numerical simulations of turbulent drag reduction in channel flow using constitutive equations describing solutions of rigid and flexible polymers. When compared at constant phi r2, both simulations predict the same amount of drag reduction. Here phi is the polymer volume fraction and r is the polymer aspect ratio, which for flexible polymers is based on average polymer extension at the channel wall. This demonstrates that polymer elasticity plays a marginal role in the mechanism for drag reduction.

  16. Simulation of granular and gas-solid flows using discrete element method

    NASA Astrophysics Data System (ADS)

    Boyalakuntla, Dhanunjay S.

    2003-10-01

    In recent years there has been increased research activity in the experimental and numerical study of gas-solid flows. Flows of this type have numerous applications in the energy, pharmaceuticals, and chemicals process industries. Typical applications include pulverized coal combustion, flow and heat transfer in bubbling and circulating fluidized beds, hopper and chute flows, pneumatic transport of pharmaceutical powders and pellets, and many more. The present work addresses the study of gas-solid flows using computational fluid dynamics (CFD) techniques and discrete element simulation methods (DES) combined. Many previous studies of coupled gas-solid flows have been performed assuming the solid phase as a continuum with averaged properties and treating the gas-solid flow as constituting of interpenetrating continua. Instead, in the present work, the gas phase flow is simulated using continuum theory and the solid phase flow is simulated using DES. DES treats each solid particle individually, thus accounting for its dynamics due to particle-particle interactions, particle-wall interactions as well as fluid drag and buoyancy. The present work involves developing efficient DES methods for dense granular flow and coupling this simulation to continuum simulations of the gas phase flow. Simulations have been performed to observe pure granular behavior in vibrating beds. Benchmark cases have been simulated and the results obtained match the published literature. The dimensionless acceleration amplitude and the bed height are the parameters governing bed behavior. Various interesting behaviors such as heaping, round and cusp surface standing waves, as well as kinks, have been observed for different values of the acceleration amplitude for a given bed height. Furthermore, binary granular mixtures (granular mixtures with two particle sizes) in a vibrated bed have also been studied. Gas-solid flow simulations have been performed to study fluidized beds. Benchmark 2D fluidized bed simulations have been performed and the results have been shown to satisfactorily compare with those published in the literature. A comprehensive study of the effect of drag correlations on the simulation of fluidized beds has been performed. It has been found that nearly all the drag correlations studied make similar predictions of global quantities such as the time-dependent pressure drop, bubbling frequency and growth. In conclusion, discrete element simulation has been successfully coupled to continuum gas-phase. Though all the results presented in the thesis are two-dimensional, the present implementation is completely three dimensional and can be used to study 3D fluidized beds to aid in better design and understanding. Other industrially important phenomena like particle coating, coal gasification etc., and applications in emerging areas such as nano-particle/fluid mixtures can also be studied through this type of simulation. (Abstract shortened by UMI.)

  17. Magnetically actuated and controlled colloidal sphere-pair swimmer

    NASA Astrophysics Data System (ADS)

    Ran, Sijie; Guez, Allon; Friedman, Gary

    2016-12-01

    Magnetically actuated swimming of microscopic objects has been attracting attention partly due to its promising applications in the bio-medical field and partly due to interesting physics of swimming in general. While colloidal particles that are free to move in fluid can be an attractive swimming system due it its simplicity and ability to assemble in situ, stability of their dynamics and the possibility of stable swimming behavior in periodically varying magnetic fields has not been considered. Dynamic behavior of two magnetically interacting colloidal particles subjected to rotating magnetic field of switching frequency is analyzed here and is shown to result in stable swimming without any stabilizing feedback. A new mechanism of swimming that relies only on rotations of the particles themselves and of the particle pair axis is found to dominate the swimming dynamics of the colloidal particle pair. Simulation results and analytical arguments demonstrate that this swimming strategy compares favorably to dragging the particles with an external magnetic force when colloidal particle sizes are reduced.

  18. A nonperturbative approximation for the moderate Reynolds number Navier–Stokes equations

    PubMed Central

    Roper, Marcus; Brenner, Michael P.

    2009-01-01

    The nonlinearity of the Navier–Stokes equations makes predicting the flow of fluid around rapidly moving small bodies highly resistant to all approaches save careful experiments or brute force computation. Here, we show how a linearization of the Navier–Stokes equations captures the drag-determining features of the flow and allows simplified or analytical computation of the drag on bodies up to Reynolds number of order 100. We illustrate the utility of this linearization in 2 practical problems that normally can only be tackled with sophisticated numerical methods: understanding flow separation in the flow around a bluff body and finding drag-minimizing shapes. PMID:19211800

  19. A nonperturbative approximation for the moderate Reynolds number Navier-Stokes equations.

    PubMed

    Roper, Marcus; Brenner, Michael P

    2009-03-03

    The nonlinearity of the Navier-Stokes equations makes predicting the flow of fluid around rapidly moving small bodies highly resistant to all approaches save careful experiments or brute force computation. Here, we show how a linearization of the Navier-Stokes equations captures the drag-determining features of the flow and allows simplified or analytical computation of the drag on bodies up to Reynolds number of order 100. We illustrate the utility of this linearization in 2 practical problems that normally can only be tackled with sophisticated numerical methods: understanding flow separation in the flow around a bluff body and finding drag-minimizing shapes.

  20. Determination of fluid viscosity and femto Newton forces of Leishmania amazonensis using optical tweezers

    NASA Astrophysics Data System (ADS)

    Fontes, Adriana; Giorgio, Selma; de Castro, Archimedes, Jr.; Neto, Vivaldo M.; de Y. Pozzo, Liliana; de Thomaz, Andre A.; Barbosa, Luiz C.; Cesar, Carlos L.

    2005-08-01

    The displacements of a polystyrene microsphere trapped by an optical tweezers (OT) can be used as a force transducer for mechanical measurements in life sciences such as the measurement of forces of living microorganisms or the viscosity of local fluids. The technique we used allowed us to measure forces on the 200 femto Newtons to 4 pico Newtons range of the protozoa Leishmania amazonensis, responsible for a serious tropical disease. These observations can be used to understand the infection mechanism and chemotaxis of these parasites. The same technique was used to measure viscosities of few microliters sample with agreement with known samples better than 5%. To calibrate the force as a function of the microsphere displacement we first dragged the microsphere in a fluid at known velocity for a broad range of different optical and hydrodynamical parameters. The hydrodynamical model took into account the presence of two walls and the force depends on drag velocity, fluid viscosity and walls proximities, while the optical model in the geometric optics regime depends on the particle and fluid refractive indexes and laser power. To measure the high numerical (NA) aperture laser beam power after the objective we used an integration sphere to avoid the systematic errors of usual power meters for high NA beams. After this careful laser power measurement we obtained an almost 45 degrees straight line for the plot of the optical force (calculated by the particle horizontal displacement) versus hydrodynamic force (calculated by the drag velocity) under variation of all the parameters described below. This means that hydrodynamic models can be used to calibrate optical forces, as we have done for the parasite force measurement, or vice-versa, as we did for the viscosity measurements.

  1. Variable Geometry Aircraft Pylon Structure and Related Operation Techniques

    NASA Technical Reports Server (NTRS)

    Shah, Parthiv N. (Inventor)

    2014-01-01

    An aircraft control structure can be utilized for purposes of drag management, noise control, or aircraft flight maneuvering. The control structure includes a high pressure engine nozzle, such as a bypass nozzle or a core nozzle of a turbofan engine. The nozzle exhausts a high pressure fluid stream, which can be swirled using a deployable swirl vane architecture. The control structure also includes a variable geometry pylon configured to be coupled between the nozzle and the aircraft. The variable geometry pylon has a moveable pylon section that can be deployed into a deflected state to maintain or alter a swirling fluid stream (when the swirl vane architecture is deployed) for drag management purposes, or to assist in the performance of aircraft flight maneuvers.

  2. Nonlinear flow response of soft hair beds

    NASA Astrophysics Data System (ADS)

    Alvarado, José; Comtet, Jean; de Langre, Emmanuel; Hosoi, A. E.

    2017-10-01

    We are `hairy' on the inside: beds of passive fibres anchored to a surface and immersed in fluids are prevalent in many biological systems, including intestines, tongues, and blood vessels. These hairs are soft enough to deform in response to stresses from fluid flows. Yet fluid stresses are in turn affected by hair deformation, leading to a coupled elastoviscous problem that is poorly understood. Here we investigate a biomimetic model system of elastomer hair beds subject to shear-driven Stokes flows. We characterize this system with a theoretical model that accounts for the large-deformation flow response of hair beds. Hair bending results in a drag-reducing nonlinearity because the hair tip lowers towards the base, widening the gap through which fluid flows. When hairs are cantilevered at an angle subnormal to the surface, flow against the grain bends hairs away from the base, narrowing the gap. The flow response of angled hair beds is axially asymmetric and amounts to a rectification nonlinearity. We identify an elastoviscous parameter that controls nonlinear behaviour. Our study raises the hypothesis that biological hairy surfaces function to reduce fluid drag. Furthermore, angled hairs may be incorporated in the design of integrated microfluidic components, such as diodes and pumps.

  3. Structure and Dynamics of Fluid Planets

    NASA Astrophysics Data System (ADS)

    Houben, H.

    2014-12-01

    Attention to conservation laws gives a comprehensive picture of the structure and dynamics of gas giants: Atmospheric differential rotation is generated by tidal torques (dependent on tropospheric static stability) and is dragged into the interior by turbulent viscosity. The consequent heat dissipation generates baroclinicity and approximate thermal wind balance, not Taylor-Proudman conditions. Magnetic Lorentz forces have no effect on the zonal wind, but generate a meridional wind approximately parallel to field lines. Thus, magnetic field generation in the interior is dominated by the ω-effect (zonal field wound up by differential rotation), with the α-effect (meridional field generated by turbulence) severely limited by the β-effect (turbulence-enhanced resistivity). The meridional circulation quenches the ω-effect so that a steady state is reached and also limits the magnitude of the non-axisymmetric field under certain circumstances. The stability of the steady state requires further study. The magnetic field travels with the E X B drift, rather than the fluid velocity. Work by the fluid on the magnetic field balances work by the magnetic field on the fluid, so the global heat flux is little changed. In conducting regions the meridional density distribution (and gravity field) is most sensitive to the total pressure (gas + magnetic) and the ω-effect. In nonconducting regions, the gas pressure, centrifugal force, and differential rotation dominate. The differential rotation varies at least as fast as r³, so the gravitational signal is small compared to that for differential rotation on cylinders. The entropy minimum near the tropopause allows meteorology to be dominated by (relatively) long-lived, closed potential temperature surfaces, usually called spots, which conserve potential vorticity. All of the above must be taken into account to properly assimilate any available observational data to further specify the interior properties of fluid planets.

  4. Numerical Modeling of the Work Piece Region in the Plasma Arc Cutting Process

    NASA Astrophysics Data System (ADS)

    Osterhouse, David

    The plasma arc cutting process is widely used for the cutting of metals. The process, however, is not fully understood and further understanding will lead to further improvements. This work aims to elucidate the fundamental physical phenomena in the region where the plasma interacts with the work piece through the use of numerical modeling techniques. This model follows standard computational fluid dynamic methods that have been suitably modified to include plasma effects, assuming either local thermodynamic equilibrium or a slight non-equilibrium captured by the two-temperature assumption. This is implemented in the general purpose, open source CFD package, OpenFOAM. The model is applied to a plasma flow through a geometry that extends from inside the plasma torch to the bottom of the slot cut in the work piece. The shape of the kerf is taken from experimental measurements. The results of this model include the temperature, velocity, and electrical current distribution throughout the plasma. From this, the heat flux to and drag force on the work piece are calculated. The location of the arc attachment in the cut slot is also noted because it is a matter of interest in the published literature as well as significantly effecting the dynamics of the heat flux and drag force. The results of this model show that the LTE formulation is not sufficient to capture the physics present due to unphysical fluid dynamic instabilities and numerical problems with the arc attachment. The two-temperature formulation, however, captures a large part of the physics present. Of particular note, it is found that an additional inelastic collision factor is necessary to describe the increased energy transfer between electrons and diatomic molecules, which is widely neglected in published literature. It is also found that inclusion of the oxygen molecular ion is necessary to accurately describe the plasma flow, which has been neglected in all published two-temperature oxygen calculations. The heat flux is found to be greatest at the top of the cut slot where the thermal boundary layer is thinnest and the arc attachment increases heat transfer.

  5. Drag reduction of alumina nanofluid in spiral pipe with turbulent flow conditions

    NASA Astrophysics Data System (ADS)

    Yanuar, Mau, Sealtial; Waskito, Kurniawan T.; Putra, Okky A.; Hanif, Rifqi

    2017-03-01

    This study was conducted to investigate the effects of nanofluid flows through the spiral pipe on drag reduction in turbulent flow conditions. Al2O3 nanoparticles dispersed into pure water at ratio of 100 ppm, 200 ppm and 300 ppm as well as the duration of the mixing time 30 minutes, 60 minutes and 120 minutes. A circular pipe used as a comparison to spiral pipe and both are mounted horizontally. Spiral pipe ratio is P/Di 10.8 and the inner diameter of circular pipe is 3 mm. Mixing time and composition ratio of nanoparticle in basic fluid influence drag reduction results. Nanofluid flows through the test pipe with Reynolds number between 4.0 × 103 to 2.0 × 104 showed high drag reduction occurred in the spiral pipe is 38%.

  6. Utilising flags to reduce drag around a short finite circular cylinder

    NASA Astrophysics Data System (ADS)

    Javadi, Kh.; Kiani, F.; Tahaye Abadi, M.

    2018-03-01

    This paper utilises flags to decrease the drag around a short finite circular cylinder. Wall-adapted large eddy simulation and two-way fluid-structure interaction methods were applied to resolve unsteady turbulent flow structure. The far-field Reynolds number of the current configuration based on the cylinder diameter was chosen to be 20,000. In addition, the length-to-diameter ratio of the cylinder was assumed to be L/D = 2 whereas the flexible flag had a width-to-diameter ratio of W/D = 1.5. The results were compared with the regular short finite circular cylinder and the rigid flagged cylinder in our previous work. The results indicate that utilising flags inside the near-wake region of the cylinder reduces the pressure drag. The physical mechanism of this drag reduction is presented.

  7. Aeroelastic Ground Wind Loads Analysis Tool for Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Ivanco, Thomas G.

    2016-01-01

    Launch vehicles are exposed to ground winds during rollout and on the launch pad that can induce static and dynamic loads. Of particular concern are the dynamic loads caused by vortex shedding from nearly-cylindrical structures. When the frequency of vortex shedding nears that of a lowly-damped structural mode, the dynamic loads can be more than an order of magnitude greater than mean drag loads. Accurately predicting vehicle response to vortex shedding during the design and analysis cycles is difficult and typically exceeds the practical capabilities of modern computational fluid dynamics codes. Therefore, mitigating the ground wind loads risk typically requires wind-tunnel tests of dynamically-scaled models that are time consuming and expensive to conduct. In recent years, NASA has developed a ground wind loads analysis tool for launch vehicles to fill this analytical capability gap in order to provide predictions for prelaunch static and dynamic loads. This paper includes a background of the ground wind loads problem and the current state-of-the-art. It then discusses the history and significance of the analysis tool and the methodology used to develop it. Finally, results of the analysis tool are compared to wind-tunnel and full-scale data of various geometries and Reynolds numbers.

  8. Effect of guar gum and salt concentrations on drag reduction and shear degradation properties of turbulent flow of water in a pipe.

    PubMed

    Sokhal, Kamaljit Singh; Gangacharyulu, Dasaroju; Bulasara, Vijaya Kumar

    2018-02-01

    Concentrated solutions of guar gum in water (1000-3000ppm) with and without KCl salt (1000-4000ppm) were injected near the wall for a short period (2.5min) to investigate their effect on drag reduction in turbulent flow of water through a pipe (Re≈17000-45000). Relative to bulk solution, the concentrations of polymer and salt were 50-150ppm and 50-200ppm, respectively. A drag reduction of 71.45% was observed for 3000ppm of biopolymer without salt. Guar gum experienced mechanical degradation under high shear conditions and addition of KCl improved shear stability up to 47% (for Re≈45000). A polymer concentration of 3000ppm and salt concentration of 2000ppm in the injection fluid were found to be optimum for achieving the highest drag reduction with better shear stability. Results indicated that boundary layer injection shows better drag reduction ability than pre-mixed solutions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Streamlined vessels for speedboats: Macro modifications of shark skin design applications

    NASA Astrophysics Data System (ADS)

    Ibrahim, M. D.; Amran, S. N. A.; Zulkharnain, A.; Sunami, Y.

    2018-01-01

    Functional properties of shark denticles have caught the attention of engineers and scientist today due to the hydrodynamic effects of its skin surface roughness. The skin of a fast swimming shark reveals riblet structures that help to reduce skin friction drag, shear stresses, making its movement to be more efficient and faster. Inspired by the structure of the shark skin denticles, our team has conducted a study on alternative on improving the hydrodynamic design of marine vessels by applying the simplified version of shark skin skin denticles on the surface hull of the vessels. Models used for this study are constructed and computational fluid dynamic (CFD) simulations are then carried out to predict the effectiveness of the hydrodynamic effects of the biomimetic shark skins on those models. Interestingly, the numerical calculated results obtained shows that the presence of biomimetic shark skin implemented on the vessels give improvements in the maximum speed as well as reducing the drag force experience by the vessels. The pattern of the wave generated post cruising area behind the vessels can also be observed to reduce the wakes and eddies. Theoretically, reduction of drag force provides a more efficient vessel with a better cruising speed. To further improve on this study, the authors are now actively arranging an experimental procedure in order to verify the numerical results obtained by CFD. The experimental test will be carried out using an 8 metre flow channel provided by University Malaysia Sarawak, Malaysia.

  10. The Impact of Unsteady Reconfiguration on Turbulence Structure within a Flexible Canopy: Large-Eddy Simulation Study of a Cornfield

    NASA Astrophysics Data System (ADS)

    Chamecki, M.; Pan, Y.; Nepf, H. M.; Follett, E.

    2014-12-01

    Flexible plants bend in response to fluid motion and this reconfiguration mechanism allows plants to minimize the increase of drag force with increasing velocity, ensuring survival in flow-dominated habitats. The effect of reconfiguration on the flow field can be modeled by introducing a drag coefficient that decreases with increasing velocity. Typically, a power-law decrease of the drag coefficient with increasing velocity is used, and the negative exponent is known as the Vogel number. In practice, the Vogel number is a function of canopy rigidity and flow conditions. In this work we show that accounting for the effect of reconfiguration is required for large-eddy simulation (LES) models to reproduce the skewness of the streamwise and vertical velocity components and the distribution of sweeps and ejections observed in a large cornfield. Additional LES runs are conducted to investigate the structure of turbulence in different reconfiguration regimes, with mean vertical momentum flux constrained by measurements. The change of the Vogel number has negligible effects on LES predictions of the total vertical momentum flux and the components of turbulent kinetic energy, but produces profound changes in the mechanisms of momentum transport. This work demonstrates the necessity to model the effect of reconfiguration in LES studies of canopy flows. It also highlights the impacts of reconfiguration on the structure of turbulence and the dynamics of momentum fluxes, as well as any other process that depends on velocity fluctuations above and within the canopy region.

  11. The fluid dynamics of Balanus glandula barnacles: Adaptations to sheltered and exposed habitats.

    PubMed

    Vo, Maureen; Mehrabian, Sasan; Villalpando, Fernando; Etienne, Stephane; Pelletier, Dominique; Cameron, Christopher B

    2018-04-11

    Suspension feeders use a wide range of appendages to capture particles from the surrounding fluid. Their functioning, either as a paddle or a sieve, depends on the leakiness, or amount of fluid that passes through the gaps between the appendages. Balanus glandula is the most common species of barnacle distributed along the Pacific coast of North America. It shows a strong phenotypic response to water flow velocity. Individuals from exposed, high flow sites have short and robust cirral filters, whereas those from sheltered, low velocity sites have long, spindly appendages. Computational fluid dynamics (CFD) simulations of these two ecophenotypes were done using a finite volume method. Leakiness was determined by simulating flow velocity fields at increasing Reynolds numbers, results that have been unattainable at higher velocities by observation. CFD also allowed us to characterize flow in hard to see regions of the feeding legs (rami). Laser-illumination experiments were performed at low to medium flow velocities in a flume tank and corroborated results from CFD. Barnacle filters from a sheltered site become completely leaky at Re=2.24(0.16m/s), well above the maximum habitat velocity, suggesting that this ecophenotype is not mechanically optimized for feeding. Barnacles from exposed environments become fully leaky within the range of habitat velocities Re=3.50(0.18m/s). Our CFD results revealed that the drag force on exposed barnacles feeding appendages are the same as the sheltered barnacles feeding appendages despite their shape difference and spacing ratio. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Large Deformation of an Elastic Rod with Structural Anisotropy Subjected to Fluid Flow

    NASA Astrophysics Data System (ADS)

    Hassani, Masoud; Mureithi, Njuki; Gosselin, Frederick

    2015-11-01

    In the present work, we seek to understand the fundamental mechanisms of three-dimensional reconfiguration of plants by studying the large deformation of a flexible rod in fluid flow. Flexible rods made of Polyurethane foam and reinforced with Nylon fibers are tested in a wind tunnel. The rods have bending-torsion coupling which induces a torsional deformation during asymmetric bending. A mathematical model is also developed by coupling the Kirchhoff rod theory with a semi-empirical drag formulation. Different alignments of the material frame with respect to the flow direction and a range of structural properties are considered to study their effect on the deformation of the flexible rod and its drag scaling. Results show that twisting causes the flexible rods to reorient and bend with the minimum bending rigidity. It is also found that the drag scaling of the rod in the large deformation regime is not affected by torsion. Finally, using a proper set of dimensionless numbers, the state of a bending and twisting rod is characterized as a beam undergoing a pure bending deformation.

  13. Evaluation of Aircraft Platforms for SOFIA by Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Klotz, S. P.; Srinivasan, G. R.; VanDalsem, William (Technical Monitor)

    1995-01-01

    The selection of an airborne platform for the Stratospheric Observatory for Infrared Astronomy (SOFIA) is based not only on economic cost, but technical criteria, as well. Technical issues include aircraft fatigue, resonant characteristics of the cavity-port shear layer, aircraft stability, the drag penalty of the open telescope bay, and telescope performance. Recently, two versions of the Boeing 747 aircraft, viz., the -SP and -200 configurations, were evaluated by computational fluid dynamics (CFD) for their suitability as SOFIA platforms. In each configuration the telescope was mounted behind the wings in an open bay with nearly circular aperture. The geometry of the cavity, cavity aperture, and telescope was identical in both platforms. The aperture was located on the port side of the aircraft and the elevation angle of the telescope, measured with respect to the vertical axis, was 500. The unsteady, viscous, three-dimensional, aerodynamic and acoustic flow fields in the vicinity of SOFIA were simulated by an implicit, finite-difference Navier-Stokes flow solver (OVERFLOW) on a Chimera, overset grid system. The computational domain was discretized by structured grids. Computations were performed at wind-tunnel and flight Reynolds numbers corresponding to one free-stream flow condition (M = 0.85, angle of attack alpha = 2.50, and sideslip angle beta = 0 degrees). The computational domains consisted of twenty-nine(29) overset grids in the wind-tunnel simulations and forty-five(45) grids in the simulations run at cruise flight conditions. The maximum number of grid points in the simulations was approximately 4 x 10(exp 6). Issues considered in the evaluation study included analysis of the unsteady flow field in the cavity, the influence of the cavity on the flow across empennage surfaces, the drag penalty caused by the open telescope bay, and the noise radiating from cavity surfaces and the cavity-port shear layer. Wind-tunnel data were also available to compare to the CFD results; the data permitted an assessment of CFD as a design tool for the SOFIA program.

  14. Analytic Guidance for the First Entry in a Skip Atmospheric Entry

    NASA Technical Reports Server (NTRS)

    Garcia-Llama, Eduardo

    2007-01-01

    This paper presents an analytic method to generate a reference drag trajectory for the first entry portion of a skip atmospheric entry. The drag reference, expressed as a polynomial function of the velocity, will meet the conditions necessary to fit the requirements of the complete entry phase. The generic method proposed to generate the drag reference profile is further simplified by thinking of the drag and the velocity as density and cumulative distribution functions respectively. With this notion it will be shown that the reference drag profile can be obtained by solving a linear algebraic system of equations. The resulting drag profile is flown using the feedback linearization method of differential geometric control as guidance law with the error dynamics of a second order homogeneous equation in the form of a damped oscillator. This approach was first proposed as a revisited version of the Space Shuttle Orbiter entry guidance. However, this paper will show that it can be used to fly the first entry in a skip entry trajectory. In doing so, the gains in the error dynamics will be changed at a certain point along the trajectory to improve the tracking performance.

  15. Control of the electromagnetic drag using fluctuating light fields

    NASA Astrophysics Data System (ADS)

    Pastor, Víctor J. López; Marqués, Manuel I.

    2018-05-01

    An expression for the electromagnetic drag force experienced by an electric dipole in a light field consisting of a monochromatic plane wave with polarization and phase randomly fluctuating is obtained. The expression explicitly considers the transformations of the field and frequency due to the Doppler shift and the change of the polarizability response of the electric dipole. The conditions to be fulfilled by the polarizability of the dipole in order to obtain a positive, a null, and a negative drag coefficient are analytically determined and checked against numerical simulations for the dynamics of a silver nanoparticle. The theoretically predicted diffusive, superdiffusive, and exponentially accelerated dynamical regimes are numerically confirmed.

  16. Simulation of sloshing dynamics induced forces and torques actuated on dewar container driven by gravity gradient and jitter accelerations in microgravity

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Pan, H. L.

    1993-01-01

    Some experimental spacecraft use superconducting sensors for gyro read-out and so must be maintained at a very low temperature. The boil-off from the cryogenic liquid used to cool the sensors can also be used, as the Gravity Probe B (GP-B) spacecraft does, as propellant to maintain attitude control and drag-free operation of the spacecraft. The cryogenic liquid for such spacecraft is, however, susceptible to both slosh-like motion and non-axisymmetric configurations under the influence of various kinds of gravity jitter and gravity gradient accelerations. Hence, it is important to quantify the magnitude of the liquid-induced perturbations on the spacecraft. We use the example of the GP-B to investigate such perturbations by numerical simulations. For this spacecraft disturbances can be imposed on the liquid by atmospheric drag, spacecraft attitude control maneuvers, and the earth's gravity gradient. More generally, onboard machinery vibrations and crew motion can also create disturbances. Recent studies suggest that high frequency disturbances are relatively unimportant in causing liquid motions in comparison to low frequency ones. The results presented here confirm this conclusion. After an initial calibration period, the GP-B spacecraft rotates in orbit at 0.1 rpm about the tank symmetry axis. For this rotation rate, the equilibrium liquid free surface shape is a 'doughnut' configuration for all residual gravity levels of 10(exp -6) g(sub 0) or less, as shown by experiments and by numerical simulations; furthermore, the superfluid behavior of the 1.8 K liquid helium used in GP-B eliminates temperature gradients and therefore such effects as Marangoni convection do not have to be considered. Classical fluid dynamics theory is used as the basis of the numerical simulations here, since Mason's experiments show that the theory is applicable for cryogenic liquid helium in large containers. To study liquid responses to various disturbances, we investigate and simulate three levels of gravity jitter (10(exp -6), 10(exp -7), and 10(exp -8) g(sub 0)) each at three predominant frequencies (0.1, 1.0, and 10 Hz), combined with a gravity gradient appropriate for the GP-B orbit. Dynamical evolution of sloshing dynamics excited fluid forces and torque fluctuations exerted on the dewar container driven by the combined gravity gradient and jitter accelerations are also investigated and simulated.

  17. Bioinspired superhydrophobic, self-cleaning and low drag surfaces

    NASA Astrophysics Data System (ADS)

    Bhushan, Bharat

    2013-09-01

    Nature has evolved objects with desired functionality using commonly found materials. Nature capitalizes on hierarchical structures to achieve functionality. The understanding of the functions provided by objects and processes found in nature can guide us to produce nanomaterials, nanodevices, and processes with desirable functionality. This article provides an overview of four topics: (1) Lotus Effect used to develop superhydrophobic and self-cleaning/antifouling surfaces with low adhesion, (2) Shark Skin Effect to develop surfaces with low fluid drag and anti-fouling characteristics, and (3-4) Rice Leaf and Butterfly Wing Effect to develop superhydrophobic and self-cleaning surfaces with low drag. Rice Leaf and Butterfly Wings combine the Shark Skin and Lotus Effects.

  18. Acoustic Model of the Remnant Bubble Cloud from Underwater Explosion

    DTIC Science & Technology

    2012-11-01

    fluid, bu g is the acceleration due to gravity, and C is the drag coefficient. Here we use the Grace Drag model (Clift et al., 1978; ANSYS CFX ...Dynaflow, Inc., Baltimore, MD for providing the bubble maker data. REFERENCES ANSYS CFX -Solver, Release 13.0: Theory 2010. ANSYS Inc. Brennen...unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 21-23 November 2012, Fremantle, Australia Proceedings of Acoustics 2012

  19. Experiment Evaluation of Skin Friction Drag by Surface Tailoring

    NASA Astrophysics Data System (ADS)

    Manigandan, S.; Gopal krishna, K.; Gagan Kumar, K.; Gunasekar, P.; Nithya, S.

    2017-08-01

    Reduction of drag is an important role of aerodynamic specialist in real time world. The performance of forward moving object improved when the drag is reduced. Skin friction drag caused when the fluid tending to shear along the surface of the body and it is dependent on energy expenditure. Initial research concluded that nearly 20 to 40% of total drag is skin friction drag, based on flight forward velocity. This means a lot of fuel burned. In this paper we investigate a methodology to reduce the skin friction drag by implementing different kinds of exterior treatments. The ideology inspired from the world fastest moving oceanic creature. Structures are fabricated based on the replica of scales of the oceanic creature. The outer skin of the aerofoil NACA0012 is modified like shark scales. Then it is tested using open type sub sonic wind tunnel. In addition to that, the leading edge thickness effect also studied. The turbulent flow phenomenon is validated at different velocities and compared with numerical results using STAR CCM+. From the plots and graphical results, it is found that the skin friction drag is generated less due to reduction of transverse shear stress present in turbulent flow and skin friction drag depends on boundary layer thickness and on the percentage of chord of flow separation. In addition to this, the result delivers that the ordinary polished surface produces more drag than the modified scales. The outlook of this technology is excrescence for different applications. This open section wind tunnel testing produces 10-15% reduction in drag and can be turn to high values when the experiment is conducted in closed section wind tunnel with real time atmospheric conditions, which can be done as a future work.

  20. Flight in hairy and sticky situations

    NASA Astrophysics Data System (ADS)

    Santhanakrishnan, Arvind

    2017-11-01

    The smallest flying insects such as thrips and fairyflies have body lengths less than 1 mm. Despite their ecological importance, the fluid dynamic mechanisms that enable very tiny insects to generate lift at Reynolds number (Re) on the order of 10 remain unclear. Flapping motion in tiny insects is often characterized by `clap and fling' wing-wing interaction. Further, these insects possess wings consisting of a thin solid membrane with long bristles on the fringes. Why is there a noted biological preference in almost all tiny insects to employ interacting bristled wings under highly viscous conditions that would require large forces to peel the wings apart? In this talk, I will present numerical and experimental studies examining the role of bristled wings in clap and fling aerodynamics. At Re = 10, bristled wings are observed to reduce both lift and drag forces as compared to geometrically equivalent solid (non-bristled) wings. Recirculating flow through the bristles leads to disproportionally larger drag reduction by bristled wings, as compared to lift reduction between bristled and solid wings. The impact of alterations to bristled wing design variables, including spacing between bristles and ratio of solid membrane to total wing areas, on aerodynamic force coefficients and scalability with Re will be discussed.

  1. Multi-scale study on process of contravariant and covariant polymer elongation and drag reduction in viscoelastic turbulence

    NASA Astrophysics Data System (ADS)

    Horiuti, Kiyosi; Suzuki, Shu

    2014-11-01

    We study the elongation process of polymers released in the Newtonian homogeneous isotropic turbulence by connecting a mesoscopic description of ensemble of elastic dumbbells using Brownian dynamics (BDS) to the macroscopic description for the fluid using DNS. The dumbbells are allowed to be advected non-affinely with the macroscopically-imposed deformation. More drastic drag reduction is achieved when non-affinity is maximum than in the complete affine case. In the former case, the dumbbell is convected as a covariant vector, and in the latter as a contravariant vector. We derive the exact solution for the governing equation of the motion of dumbbells. The maximum stretching of dumbbell is achieved when the dumbbell aligns in the direction of vorticity in the contravariant case, and when the dumbbell directs outward perpendicularly on the vortex sheet in the covariant case. Alignment in the BDS-DNS data agrees with the theoretical results. In the mixture of contravariant and covariant dumbbells, the covariant dumbbells are transversely aligned with the contravariant dumbbells. Compared with the cases without mixture, stretching of covariant dumbbell is enhanced, while that of contravariant dumbbell is reduced. Application of this phenomenon is discussed.

  2. An L-stable method for solving stiff hydrodynamics

    NASA Astrophysics Data System (ADS)

    Li, Shengtai

    2017-07-01

    We develop a new method for simulating the coupled dynamics of gas and multi-species dust grains. The dust grains are treated as pressure-less fluids and their coupling with gas is through stiff drag terms. If an explicit method is used, the numerical time step is subject to the stopping time of the dust particles, which can become extremely small for small grains. The previous semi-implicit method [1] uses second-order trapezoidal rule (TR) on the stiff drag terms and it works only for moderately small size of the dust particles. This is because TR method is only A-stable not L-stable. In this work, we use TR-BDF2 method [2] for the stiff terms in the coupled hydrodynamic equations. The L-stability of TR-BDF2 proves essential in treating a number of dust species. The combination of TR-BDF2 method with the explicit discretization of other hydro terms can solve a wide variety of stiff hydrodynamics equations accurately and efficiently. We have implemented our method in our LA-COMPASS (Los Alamos Computational Astrophysics Suite) package. We have applied the code to simulate some dusty proto-planetary disks and obtained very good match with astronomical observations.

  3. Design by Dragging: An Interface for Creative Forward and Inverse Design with Simulation Ensembles

    PubMed Central

    Coffey, Dane; Lin, Chi-Lun; Erdman, Arthur G.; Keefe, Daniel F.

    2014-01-01

    We present an interface for exploring large design spaces as encountered in simulation-based engineering, design of visual effects, and other tasks that require tuning parameters of computationally-intensive simulations and visually evaluating results. The goal is to enable a style of design with simulations that feels as-direct-as-possible so users can concentrate on creative design tasks. The approach integrates forward design via direct manipulation of simulation inputs (e.g., geometric properties, applied forces) in the same visual space with inverse design via “tugging” and reshaping simulation outputs (e.g., scalar fields from finite element analysis (FEA) or computational fluid dynamics (CFD)). The interface includes algorithms for interpreting the intent of users’ drag operations relative to parameterized models, morphing arbitrary scalar fields output from FEA and CFD simulations, and in-place interactive ensemble visualization. The inverse design strategy can be extended to use multi-touch input in combination with an as-rigid-as-possible shape manipulation to support rich visual queries. The potential of this new design approach is confirmed via two applications: medical device engineering of a vacuum-assisted biopsy device and visual effects design using a physically based flame simulation. PMID:24051845

  4. Numerical and experimental hydrodynamic analysis of suction cup bio-logging tag designs for marine mammals

    NASA Astrophysics Data System (ADS)

    Murray, Mark; Shorter, Alex; Howle, Laurens; Johnson, Mark; Moore, Michael

    2012-11-01

    The improvement and miniaturization of sensing technologies has made bio-logging tags, utilized for the study of marine mammal behavior, more practical. These sophisticated sensing packages require a housing which protects the electronics from the environment and provides a means of attachment to the animal. The hydrodynamic forces on these housings can inadvertently remove the tag or adversely affect the behavior or energetics of the animal. A modification to the original design of a suction cup bio-logging tag housing was desired to minimize the adverse forces. In this work, hydrodynamic loading of two suction cup tag designs, original and modified designs, were analyzed using computational fluid dynamics (CFD) models and validated experimentally. Overall, the simulation and experimental results demonstrated that a tag housing that minimized geometric disruptions to the flow reduced drag forces, and that a tag housing with a small frontal cross-sectional area close to the attachment surface reduced lift forces. Preliminary results from experimental work with a common dolphin cadaver indicates that the suction cups used to attach the tags to the animal provide sufficient attachment force to resist failure at predicted drag and lift forces in 10 m/s flow.

  5. Rice- and butterfly-wing effect inspired self-cleaning and low drag micro/nanopatterned surfaces in water, oil, and air flow.

    PubMed

    Bixler, Gregory D; Bhushan, Bharat

    2014-01-07

    In search of new solutions to complex challenges, researchers are turning to living nature for inspiration. For example, special surface characteristics of rice leaves and butterfly wings combine the shark skin (anisotropic flow leading to low drag) and lotus leaf (superhydrophobic and self-cleaning) effects, producing the so-called rice and butterfly wing effect. In this paper, we study four microstructured surfaces inspired by rice leaves and fabricated with photolithography techniques. We also present a method of creating such surfaces using a hot embossing procedure for scaled-up manufacturing. Fluid drag, self-cleaning, contact angle, and contact angle hysteresis data are presented to understand the role of sample geometrical dimensions. Conceptual modeling provides design guidance when developing novel low drag, self-cleaning, and potentially antifouling surfaces for medical, marine, and industrial applications.

  6. Rice- and butterfly-wing effect inspired self-cleaning and low drag micro/nanopatterned surfaces in water, oil, and air flow

    NASA Astrophysics Data System (ADS)

    Bixler, Gregory D.; Bhushan, Bharat

    2013-12-01

    In search of new solutions to complex challenges, researchers are turning to living nature for inspiration. For example, special surface characteristics of rice leaves and butterfly wings combine the shark skin (anisotropic flow leading to low drag) and lotus leaf (superhydrophobic and self-cleaning) effects, producing the so-called rice and butterfly wing effect. In this paper, we study four microstructured surfaces inspired by rice leaves and fabricated with photolithography techniques. We also present a method of creating such surfaces using a hot embossing procedure for scaled-up manufacturing. Fluid drag, self-cleaning, contact angle, and contact angle hysteresis data are presented to understand the role of sample geometrical dimensions. Conceptual modeling provides design guidance when developing novel low drag, self-cleaning, and potentially antifouling surfaces for medical, marine, and industrial applications.

  7. Wind Tunnel Investigation of the Effects of Slot Shape and Flap Location on the Characteristics of a Low-Drag Airfoil Equipped with a 0.25-Chord Slotted Flap

    NASA Technical Reports Server (NTRS)

    Weisman, Yale; Holtzclaw, Ralph W.

    1944-01-01

    Tests were conducted at dynamic pressure of 50 lb per square foot with lift drag and pitch moment measurements throughout useful angle of attack range for constant flap deflection and position of a low-drag airfoil. Two slots were investigated and practical flap paths were selected for each Slot shape had a negligible effect on the maximum lift coefficient flap deflected, the rounded-entry slot had lower profile drag.

  8. Dynamics of hairpin vortices and polymer-induced turbulent drag reduction.

    PubMed

    Kim, Kyoungyoun; Adrian, Ronald J; Balachandar, S; Sureshkumar, R

    2008-04-04

    It has been known for over six decades that the dissolution of minute amounts of high molecular weight polymers in wall-bounded turbulent flows results in a dramatic reduction in turbulent skin friction by up to 70%. First principles simulations of turbulent flow of model polymer solutions can predict the drag reduction (DR) phenomenon. However, the essential dynamical interactions between the coherent structures present in turbulent flows and polymer conformation field that lead to DR are poorly understood. We examine this connection via dynamical simulations that track the evolution of hairpin vortices, i.e., counter-rotating pairs of quasistreamwise vortices whose nonlinear autogeneration and growth, decay and breakup are centrally important to turbulence stress production. The results show that the autogeneration of new vortices is suppressed by the polymer stresses, thereby decreasing the turbulent drag.

  9. Direct Measurements of Drag Forces in C. elegans Crawling Locomotion

    PubMed Central

    Rabets, Yegor; Backholm, Matilda; Dalnoki-Veress, Kari; Ryu, William S.

    2014-01-01

    With a simple and versatile microcantilever-based force measurement technique, we have probed the drag forces involved in Caenorhabditis elegans locomotion. As a worm crawls on an agar surface, we found that substrate viscoelasticity introduces nonlinearities in the force-velocity relationships, yielding nonconstant drag coefficients that are not captured by original resistive force theory. A major contributing factor to these nonlinearities is the formation of a shallow groove on the agar surface. We measured both the adhesion forces that cause the worm’s body to settle into the agar and the resulting dynamics of groove formation. Furthermore, we quantified the locomotive forces produced by C. elegans undulatory motions on a wet viscoelastic agar surface. We show that an extension of resistive force theory is able to use the dynamics of a nematode’s body shape along with the measured drag coefficients to predict the forces generated by a crawling nematode. PMID:25418179

  10. The Effect of Volumetric Porosity on Roughness Element Drag

    NASA Astrophysics Data System (ADS)

    Gillies, John; Nickling, William; Nikolich, George; Etyemezian, Vicken

    2016-04-01

    Much attention has been given to understanding how the porosity of two dimensional structures affects the drag force exerted by boundary-layer flow on these flow obstructions. Porous structures such as wind breaks and fences are typically used to control the sedimentation of sand and snow particles or create micro-habitats in their lee. Vegetation in drylands also exerts control on sediment transport by wind due to aerodynamic effects and interaction with particles in transport. Recent research has also demonstrated that large spatial arrays of solid three dimensional roughness elements can be used to reduce sand transport to specified targets for control of wind erosion through the effect of drag partitioning and interaction of the moving sand with the large (>0.3 m high) roughness elements, but porous elements may improve the effectiveness of this approach. A thorough understanding of the role porosity plays in affecting the drag force on three-dimensional forms is lacking. To provide basic understanding of the relationship between the porosity of roughness elements and the force of drag exerted on them by fluid flow, we undertook a wind tunnel study that systematically altered the porosity of roughness elements of defined geometry (cubes, rectangular cylinders, and round cylinders) and measured the associated change in the drag force on the elements under similar Reynolds number conditions. The elements tested were of four basic forms: 1) same sized cubes with tubes of known diameter milled through them creating three volumetric porosity values and increasing connectivity between the tubes, 2) cubes and rectangular cylinders constructed of brass screen that nested within each other, and 3) round cylinders constructed of brass screen that nested within each other. The two-dimensional porosity, defined as the ratio of total surface area of the empty space to the solid surface area of the side of the element presented to the fluid flow was conserved at 0.519 for the cubes and 0.525 for the mesh forms. Results from the study indicate that as volumetric porosity increases, the force of drag on an element increases although the 2-dimensional porosity remains unchanged for the case of the cube forms. The mesh forms show a similar result that with increasing number of internal forms present, drag increases, but the drag curves are different, suggesting the kind of porosity has an effect on drag. An important scaling parameter that controls drag on the cubes is the permeability (K) of the element, which is a function of the diameter of the tubes and the porosity. K seems to be of lesser importance for controlling drag on the mesh forms. We hypothesize that the drag force data do not universally collapse as a function of permeability due to Reynolds number dependency on flow conditions within the elements that can be laminar, transitional, or turbulent even though flow exterior to the forms is fully turbulent. For the mesh forms, the greatest effect on drag occurs with the addition of the first internal form with subsequent additions showing very little additional effect.

  11. Characterization of Space Shuttle Ascent Debris Aerodynamics Using CFD Methods

    NASA Technical Reports Server (NTRS)

    Murman, Scott M.; Aftosmis, Michael J.; Rogers, Stuart E.

    2005-01-01

    An automated Computational Fluid Dynamics process for determining the aerodynamic Characteristics of debris shedding from the Space Shuttle Launch Vehicle during ascent is presented. This process uses Cartesian fully-coupled, six-degree-of-freedom simulations of isolated debris pieces in a Monte Carlo fashion to produce models for the drag and crossrange behavior over a range of debris shapes and shedding scenarios. A validation of the Cartesian methods against ballistic range data for insulating foam debris shapes at flight conditions, as well as validation of the resulting models, are both contained. These models are integrated with the existing shuttle debris transport analysis software to provide an accurate and efficient engineering tool for analyzing debris sources and their potential for damage.

  12. Nano-particle drag prediction at low Reynolds number using a direct Boltzmann-BGK solution approach

    NASA Astrophysics Data System (ADS)

    Evans, B.

    2018-01-01

    This paper outlines a novel approach for solution of the Boltzmann-BGK equation describing molecular gas dynamics applied to the challenging problem of drag prediction of a 2D circular nano-particle at transitional Knudsen number (0.0214) and low Reynolds number (0.25-2.0). The numerical scheme utilises a discontinuous-Galerkin finite element discretisation for the physical space representing the problem particle geometry and a high order discretisation for molecular velocity space describing the molecular distribution function. The paper shows that this method produces drag predictions that are aligned well with the range of drag predictions for this problem generated from the alternative numerical approaches of molecular dynamics codes and a modified continuum scheme. It also demonstrates the sensitivity of flow-field solutions and therefore drag predictions to the wall absorption parameter used to construct the solid wall boundary condition used in the solver algorithm. The results from this work has applications in fields ranging from diagnostics and therapeutics in medicine to the fields of semiconductors and xerographics.

  13. How to dip nectar: optimal time apportionment in natural viscous fluid transport

    NASA Astrophysics Data System (ADS)

    Wu, Jianing; Shi, Guanya; Zhao, Yiwei; Yan, Shaoze

    2018-06-01

    The mouthparts of some animals are highly evolved fluid transporters. Most honeybees dip viscous nectar in a cyclic fashion by using protrusible tongues with active hairs that can erect rhythmically. The glossal hairs flatten when the tongue extends into the nectar, and then erect outwards like an umbrella to catch nectar while retracting. This paper examines the potential capability of honeybees in allocating the duration of the tongue protraction and retraction phases for the sake of energy saving. A physical model is established to analyze energy consumption induced by viscous drag, considering tongue kinematics and variation of the surface profile in different phases of tongue movements. The results indicate that the theoretically optimal time apportionment ratio at which the energy consumption is the minimum, is directly related to the square root of the tongue’s diameter ratio between the protraction and retraction phase. Through dipping observations, we validate that the duration for the protraction and retraction phases show high accordance with the theoretical prediction. These findings not only broaden the insights into honeybee’s foraging strategy but inspire the design of high-performance microfluidic pumps with dynamic surfaces to transport viscous fluid.

  14. Preliminary flight-determined subsonic lift and drag characteristics of the X-29A forward-swept-wing airplane

    NASA Technical Reports Server (NTRS)

    Hicks, John W.; Huckabine, Thomas

    1989-01-01

    The X-29A subsonic lift and drag characteristics determined, met, or exceeded predictions, particularly with respect to the drag polar shapes. Induced drag levels were as great as 20 percent less than wind tunnel estimates, particularly at coefficients of lift above 0.8. Drag polar shape comparisons with other modern fighter aircraft showed the X-29A to have a better overall aircraft aerodynamic Oswald efficiency factor for the same aspect ratio. Two significant problems arose in the data reduction and analysis process. These included uncertainties in angle of attack upwash calibration and effects of maneuver dynamics on drag levels. The latter problem resulted from significantly improper control surface automatic camber control scheduling. Supersonic drag polar results were not obtained during this phase because of a lack of engine instrumentation to measure afterburner fuel flow.

  15. CFD RANS Simulations on a Generic Conventional Scale Model Submarine: Comparison between Fluent and OpenFOAM

    DTIC Science & Technology

    2015-09-01

    lift and drag forces on two model car geometries (designated as the VRAK model and the S80 model). For the VRAK model the OpenFOAM drag coefficient was...lift coefficient was 16.5% higher than the Fluent value. Both model car geometries were meshed using Harpoon, which is a commercial software package...2. Clarke, G., Vun, S., Giacobello, M. and Reddy, R., “Estimation of ARH Tiger Fuselage Aerodynamic Characteristics Using Computational Fluid

  16. Rotational viscometer for high-pressure high-temperature fluids

    DOEpatents

    Carr, Kenneth R.

    1985-01-01

    The invention is a novel rotational viscometer which is well adapted for use with fluids at high temperatures and/or pressures. In one embodiment, the viscometer includes a substantially non-magnetic tube having a closed end and having an open end in communication with a fluid whose viscosity is to be determined. An annular drive magnet is mounted for rotation about the tube. The tube encompasses and supports a rotatable shaft assembly which carries a rotor, or bob, for insertion in the fluid. Affixed to the shaft are (a) a second magnet which is magnetically coupled to the drive magnet and (b) a third magnet. In a typical operation, the drive magnet is rotated to turn the shaft assembly while the shaft rotor is immersed in the fluid. The viscous drag on the rotor causes the shaft assembly to lag the rotation of the drive magnet by an amount which is a function of the amount of viscous drag. A first magnetic pickup generates a waveform whose phase is a function of the angular position of the drive magnet. A second magnetic pickup generates a waveform whose phase is a function of the angular position of the third magnet. An output is generated indicative of the phase difference between the two waveforms.

  17. Nonlinear flow response of soft hair beds

    NASA Astrophysics Data System (ADS)

    Alvarado, José

    2017-11-01

    We are hairy inside: beds of passive fibers anchored to a surface and immersed in fluids are prevalent in many biological systems, including intestines, tongues, and blood vessels. Such hairs are soft enough to deform in response to stresses from fluid flows. Fluid stresses are in turn affected by hair deformation, leading to a coupled elastoviscous problem which is poorly understood. Here we investigate a biomimetic model system of elastomer hair beds subject to shear- driven Stokes flows. We characterize this system with a theoretical model which accounts for the large-deformation flow response of hair beds. Hair bending results in a drag-reducing nonlinearity because the hair tip lowers toward the base, widening the gap through which fluid flows. When hairs are cantilevered at an angle subnormal to the surface, flow against the grain bends hairs away from the base, narrowing the gap. The flow response of angled hair beds is axially asymmetric and amounts to a rectification nonlinearity. We identify an elastoviscous parameter which controls nonlinear behavior. Our study raises the hypothesis that biological hairy surfaces function to reduce fluid drag. Furthermore, angled hairs may be incorporated in the design of integrated microfluidic components, such as diodes and pumps. J.A. acknowledges support the U. S. Army Research Office under Grant Number W911NF-14-1-0396.

  18. Two-dimensional homogeneous isotropic fluid turbulence with polymer additives

    NASA Astrophysics Data System (ADS)

    Gupta, Anupam; Perlekar, Prasad; Pandit, Rahul

    2015-03-01

    We carry out an extensive and high-resolution direct numerical simulation of homogeneous, isotropic turbulence in two-dimensional fluid films with air-drag-induced friction and with polymer additives. Our study reveals that the polymers (a) reduce the total fluid energy, enstrophy, and palinstrophy; (b) modify the fluid energy spectrum in both inverse- and forward-cascade régimes; (c) reduce small-scale intermittency; (d) suppress regions of high vorticity and strain rate; and (e) stretch in strain-dominated regions. We compare our results with earlier experimental studies and propose new experiments.

  19. Flocking particles in a non-Newtonian shear thickening fluid

    NASA Astrophysics Data System (ADS)

    Mucha, Piotr B.; Peszek, Jan; Pokorný, Milan

    2018-06-01

    We prove the existence of strong solutions to the Cucker–Smale flocking model coupled with an incompressible viscous non-Newtonian fluid with the stress tensor of a power–law structure for . The fluid part of the system admits strong solutions while the solutions to the CS part are weak. The coupling is performed through a drag force on a periodic spatial domain . Additionally, we construct a Lyapunov functional determining the large time behavior of solutions to the system.

  20. Dynamic Stall Measurements and Computations for a VR-12 Airfoil with a Variable Droop Leading Edge

    NASA Technical Reports Server (NTRS)

    Martin, P. B.; McAlister, K. W.; Chandrasekhara, M. S.; Geissler, W.

    2003-01-01

    High density-altitude operations of helicopters with advanced performance and maneuver capabilities have lead to fundamental research on active high-lift system concepts for rotor blades. The requirement for this type of system was to improve the sectional lift-to-drag ratio by alleviating dynamic stall on the retreating blade while simultaneously reducing the transonic drag rise of the advancing blade. Both measured and computational results showed that a Variable Droop Leading Edge (VDLE) airfoil is a viable concept for application to a rotor high-lift system. Results are presented for a series of 2D compressible dynamic stall wind tunnel tests with supporting CFD results for selected test cases. These measurements and computations show a dramatic decrease in the drag and pitching moment associated with severe dynamic stall when the VDLE concept is applied to the Boeing VR-12 airfoil. Test results also show an elimination of the negative pitch damping observed in the baseline moment hysteresis curves.

  1. Assisting People with Multiple Disabilities and Minimal Motor Behavior to Improve Computer Drag-and-Drop Efficiency through a Mouse Wheel

    ERIC Educational Resources Information Center

    Shih, Ching-Hsiang

    2011-01-01

    This study evaluated whether two people with multiple disabilities and minimal motor behavior would be able to improve their Drag-and-Drop (DnD) performance using their finger/thumb poke ability with a mouse scroll wheel through a Dynamic Drag-and-Drop Assistive Program (DDnDAP). A multiple probe design across participants was used in this study…

  2. Aerodynamic Interactions of Propulsive Deceleration and Reaction Control System Jets on Mars-Entry Aeroshells

    NASA Astrophysics Data System (ADS)

    Alkandry, Hicham

    Future missions to Mars, including sample-return and human-exploration missions, may require alternative entry, descent, and landing technologies in order to perform pinpoint landing of heavy vehicles. Two such alternatives are propulsive deceleration (PD) and reaction control systems (RCS). PD can slow the vehicle during Mars atmospheric descent by directing thrusters into the incoming freestream. RCS can provide vehicle control and steering by inducing moments using thrusters on the hack of the entry capsule. The use of these PD and RCS jets, however, involves complex flow interactions that are still not well understood. The fluid interactions induced by PD and RCS jets for Mars-entry vehicles in hypersonic freestream conditions are investigated using computational fluid dynamics (CFD). The effects of central and peripheral PD configurations using both sonic and supersonic jets at various thrust conditions are examined in this dissertation. The RCS jet is directed either parallel or transverse to the freestream flow at different thrust conditions in order to examine the effects of the thruster orientation with respect to the center of gravity of the aeroshell. The physical accuracy of the computational method is also assessed by comparing the numerical results with available experimental data. The central PD configuration decreases the drag force acting on the entry capsule due to a shielding effect that prevents mass and momentum in the hypersonic freestream from reaching the aeroshell. The peripheral PD configuration also decreases the drag force by obstructing the flow around the aeroshell and creating low surface pressure regions downstream of the PD nozzles. The Mach number of the PD jets, however, does not have a significant effect on the induced fluid interactions. The reaction control system also alters the flowfield, surface, and aerodynamic properties of the aeroshell, while the jet orientation can have a significant effect on the control effectiveness of the RCS.

  3. Experimental investigation of gravity effects on sediment sorting on Mars

    NASA Astrophysics Data System (ADS)

    Kuhn, Nikolaus J.; Kuhn, Brigitte; Gartmann, Andres

    2016-04-01

    Introduction: Sorting of sedimentary rocks is a proxy for the environmental conditions at the time of deposition, in particular the runoff that moved and deposited the material forming the rocks. Settling of sediment in water is strongly influenced by the gravity of a planetary body. As a consequence, sorting of a sedimentary rock varies with gravity for a given depth and velocity of surface runoff. Theoretical considerations for spheres indicate that sorting is more uniform on Mars than on Earth for runoff of identical depth. In reality, such considerations have to be applied with great caution because the shape of a particle strongly influences drag. Drag itself can only be calculated directly for an irregularly shaped particle with great computational effort, if at all. Therefore, even for terrestrial applications, sediment settling velocities are often determined directly, e.g. by measurements using settling tubes. Experiments: In this study the results of settling tube tests conducted under reduced gravity during three Mars Sedimentation Experiment (MarsSedEx I, II and III) flights, conducted between 2012 and 2015, are presented. Ten types of sediment, ranging in size, shape and density were tested in custom-designed settling tubes during parabolas of Martian gravity lasting 20 to 25 seconds. Results: The experiments conducted during the MarsSedEx reduced gravity experiments showed that the violation of fluid dynamics caused by using empirical models and parameter values developed for sediment transport on Earth lead to significant miscalculations for Mars, specifically an underetsimation of settling velcoity because of an overestimation of turbulant drag. The error is caused by the flawed representation of particle drag on Mars. Drag coefficients are not a property of a sediment particle, but a property of the flow around the particle, and thus strongly affected by gravity. Conlcusions: The observed errors in settling velocity when using terrestrial models and parameter values on Mars have implications for sediment movement and sorting, in particular for sandstones and conglomerates, and thus analogies drawn between Earth and Mars. Most significantly, sorting on Mars is less pronounced for given flow conditions than on Earth. References: [1] Kuhn N. J. (2014) Experiments in Reduced Gravity - Sediment Settling on Mars, Elsevier.

  4. Surface tension dominates insect flight on fluid interfaces.

    PubMed

    Mukundarajan, Haripriya; Bardon, Thibaut C; Kim, Dong Hyun; Prakash, Manu

    2016-03-01

    Flight on the 2D air-water interface, with body weight supported by surface tension, is a unique locomotion strategy well adapted for the environmental niche on the surface of water. Although previously described in aquatic insects like stoneflies, the biomechanics of interfacial flight has never been analysed. Here, we report interfacial flight as an adapted behaviour in waterlily beetles (Galerucella nymphaeae) which are also dexterous airborne fliers. We present the first quantitative biomechanical model of interfacial flight in insects, uncovering an intricate interplay of capillary, aerodynamic and neuromuscular forces. We show that waterlily beetles use their tarsal claws to attach themselves to the interface, via a fluid contact line pinned at the claw. We investigate the kinematics of interfacial flight trajectories using high-speed imaging and construct a mathematical model describing the flight dynamics. Our results show that non-linear surface tension forces make interfacial flight energetically expensive compared with airborne flight at the relatively high speeds characteristic of waterlily beetles, and cause chaotic dynamics to arise naturally in these regimes. We identify the crucial roles of capillary-gravity wave drag and oscillatory surface tension forces which dominate interfacial flight, showing that the air-water interface presents a radically modified force landscape for flapping wing flight compared with air. © 2016. Published by The Company of Biologists Ltd.

  5. Surface tension dominates insect flight on fluid interfaces

    PubMed Central

    Mukundarajan, Haripriya; Bardon, Thibaut C.; Kim, Dong Hyun; Prakash, Manu

    2016-01-01

    ABSTRACT Flight on the 2D air–water interface, with body weight supported by surface tension, is a unique locomotion strategy well adapted for the environmental niche on the surface of water. Although previously described in aquatic insects like stoneflies, the biomechanics of interfacial flight has never been analysed. Here, we report interfacial flight as an adapted behaviour in waterlily beetles (Galerucella nymphaeae) which are also dexterous airborne fliers. We present the first quantitative biomechanical model of interfacial flight in insects, uncovering an intricate interplay of capillary, aerodynamic and neuromuscular forces. We show that waterlily beetles use their tarsal claws to attach themselves to the interface, via a fluid contact line pinned at the claw. We investigate the kinematics of interfacial flight trajectories using high-speed imaging and construct a mathematical model describing the flight dynamics. Our results show that non-linear surface tension forces make interfacial flight energetically expensive compared with airborne flight at the relatively high speeds characteristic of waterlily beetles, and cause chaotic dynamics to arise naturally in these regimes. We identify the crucial roles of capillary–gravity wave drag and oscillatory surface tension forces which dominate interfacial flight, showing that the air–water interface presents a radically modified force landscape for flapping wing flight compared with air. PMID:26936640

  6. Analysis of Asymmetric Aircraft Aerodynamics Due to an Experimental Wing Glove

    NASA Technical Reports Server (NTRS)

    Hartshorn, Fletcher

    2011-01-01

    Aerodynamic computational fluid dynamics analysis of a wing glove attached to one wing of a business jet is presented and discussed. A wing glove placed on only one wing will produce asymmetric aerodynamic effects that will result in overall changes in the forces and moments acting on the aircraft. These changes, referred to as deltas, need to be determined and quantified to ensure that the wing glove does not have a significant effect on the aircraft flight characteristics. TRANAIR (Calmar Research Corporation, Cato, New York), a nonlinear full potential solver, and Star-CCM+ (CD-adapco, Melville, New York), a finite volume full Reynolds-averaged Navier-Stokes computational fluid dynamics solver, are used to analyze a full aircraft with and without the glove at a variety of flight conditions, aircraft configurations, and angles of attack and sideslip. Changes in the aircraft lift, drag, and side force along with roll, pitch, and yaw are presented. Span lift and moment distributions are also presented for a more detailed look at the effects of the glove on the aircraft. Aerodynamic flow phenomena due to the addition of the glove are discussed. Results show that the glove produces only small changes in the aerodynamic forces and moments acting on the aircraft, most of which are insignificant.

  7. Pressure balanced drag turbine mass flow meter

    DOEpatents

    Dacus, M.W.; Cole, J.H.

    1980-04-23

    The density of the fluid flowing through a tubular member may be measured by a device comprising a rotor assembly suspended within the tubular member, a fluid bearing medium for the rotor assembly shaft, independent fluid flow lines to each bearing chamber, and a scheme for detection of any difference between the upstream and downstream bearing fluid pressures. The rotor assembly reacts to fluid flow both by rotation and axial displacement; therefore concurrent measurements may be made of the velocity of blade rotation and also bearing pressure changes, where the pressure changes may be equated to the fluid momentum flux imparted to the rotor blades. From these parameters the flow velocity and density of the fluid may be deduced.

  8. Pressure balanced drag turbine mass flow meter

    DOEpatents

    Dacus, Michael W.; Cole, Jack H.

    1982-01-01

    The density of the fluid flowing through a tubular member may be measured by a device comprising a rotor assembly suspended within the tubular member, a fluid bearing medium for the rotor assembly shaft, independent fluid flow lines to each bearing chamber, and a scheme for detection of any difference between the upstream and downstream bearing fluid pressures. The rotor assembly reacts to fluid flow both by rotation and axial displacement; therefore concurrent measurements may be made of the velocity of blade rotation and also bearing pressure changes, where the pressure changes may be equated to the fluid momentum flux imparted to the rotor blades. From these parameters the flow velocity and density of the fluid may be deduced.

  9. Design and preparation of a particle dynamics space flight experiment, SHIVA.

    PubMed

    Trolinger, James D; L'Esperance, Drew; Rangel, Roger H; Coimbra, Carlos F M; Witherow, William K

    2004-11-01

    This paper describes the flight experiment, supporting ground science, and the design rationale for a project on spaceflight holography investigation in a virtual apparatus (SHIVA). SHIVA is a fundamental study of particle dynamics in fluids in microgravity. Gravitation effects and steady Stokes drag often dominate the equations of motion of a particle in a fluid and consequently microgravity provides an ideal environment in which to study the other forces, such as the pressure and viscous drag and especially the Basset history force. We have developed diagnostic recording methods using holography to save all of the particle field optical characteristics, essentially allowing the experiment to be transferred from space back to Earth in what we call the "virtual apparatus" for microgravity experiments on Earth. We can quantify precisely the three-dimensional motion of sets of particles, allowing us to test and apply new analytic solutions developed by members of the team. In addition to employing microgravity to augment the fundamental study of these forces, the resulting data will allow us to quantify and understand the ISS environment with great accuracy. This paper shows how we used both experiment and theory to identify and resolve critical issues and to produce an optimal experimental design that exploits microgravity for the study. We examined the response of particles of specific gravity from 0.1 to 20, with radii from 0.2 to 2 mm, to fluid oscillation at frequencies up to 80 Hz with amplitudes up to 200 microns. To observe some of the interesting effects predicted by the new solutions requires the precise location of the position of a particle in three dimensions. To this end we have developed digital holography algorithms that enable particle position location to a small fraction of a pixel in a CCD array. The spaceflight system will record holograms both on film and electronically. The electronic holograms can be downlinked providing real-time data, essentially acting like a remote window into the ISS experimental chamber. Ground experiments have provided input to a flight system design that can meet the requirements for a successful experiment on ISS. Moreover the ground experiments have provided a definitive, quantitative observation of the Basset history force over a wide range of conditions. Results of the ground experiments, the flight experiment design, preliminary flight hardware design, and data analysis procedures are reported.

  10. Experimental and numerical investigation of low-drag intervals in turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Park, Jae Sung; Ryu, Sangjin; Lee, Jin

    2017-11-01

    It has been widely investigated that there is a substantial intermittency between high and low drag states in wall-bounded shear flows. Recent experimental and computational studies in a turbulent channel flow have identified low-drag time intervals based on wall shear stress measurements. These intervals are a weak turbulence state characterized by low-speed streaks and weak streamwise vortices. In this study, the spatiotemporal dynamics of low-drag intervals in a turbulent boundary layer is investigated using experiments and simulations. The low-drag intervals are monitored based on the wall shear stress measurement. We show that near the wall conditionally-sampled mean velocity profiles during low-drag intervals closely approach that of a low-drag nonlinear traveling wave solution as well as that of the so-called maximum drag reduction asymptote. This observation is consistent with the channel flow studies. Interestingly, the large spatial stretching of the streak is very evident in the wall-normal direction during low-drag intervals. Lastly, a possible connection between the mean velocity profile during the low-drag intervals and the Blasius profile will be discussed. This work was supported by startup funds from the University of Nebraska-Lincoln.

  11. ``Large''- vs Small-scale friction control in turbulent channel flow

    NASA Astrophysics Data System (ADS)

    Canton, Jacopo; Örlü, Ramis; Chin, Cheng; Schlatter, Philipp

    2017-11-01

    We reconsider the ``large-scale'' control scheme proposed by Hussain and co-workers (Phys. Fluids 10, 1049-1051 1998 and Phys. Rev. Fluids, 2, 62601 2017), using new direct numerical simulations (DNS). The DNS are performed in a turbulent channel at friction Reynolds number Reτ of up to 550 in order to eliminate low-Reynolds-number effects. The purpose of the present contribution is to re-assess this control method in the light of more modern developments in the field, in particular also related to the discovery of (very) large-scale motions. The goals of the paper are as follows: First, we want to better characterise the physics of the control, and assess what external contribution (vortices, forcing, wall motion) are actually needed. Then, we investigate the optimal parameters and, finally, determine which aspects of this control technique actually scale in outer units and can therefore be of use in practical applications. In addition to discussing the mentioned drag-reduction effects, the present contribution will also address the potential effect of the naturally occurring large-scale motions on frictional drag, and give indications on the physical processes for potential drag reduction possible at all Reynolds numbers.

  12. Aerial dispersal of particles emitted inside plant canopies: Application to the spread of plant diseases

    NASA Astrophysics Data System (ADS)

    Pan, Ying

    This work combines numerical, experimental, and theoretical methods to investigate the dispersion of particles inside and above plant canopies. The large-eddy simulation (LES) approach is used to reproduce turbulence statistics and three-dimensional particle dispersion within the canopy roughness sublayer. The Eulerian description of conservation laws of fluid momentum and particle concentration implies that the continuous concentration field is advected by the continuous flow field. Within the canopy, modifications are required for the filtered momentum and concentration equations, because spatial filtering of flow variables and concentration field is inapplicable to a control volume consisting of both fluid and solid elements. In this work, the canopy region is viewed as a space occupied by air only. The sink of airflow momentum induced by forces acting on the surfaces of canopy elements is parameterized as a non-conservative virtual body force that dissipates the kinetic energy of the air. This virtual body force must reflect the characteristic of the surface forces exerted by canopy elements within the control volume, and is parameterized as a "drag force" following standard practice in LES studies. Specifically, the "drag force" is calculated as a product of a drag coefficient, the projected leaf area density, and the square of velocity. Using a constant drag coefficient, this model allows first-order accuracy in reproducing the vertically integrated sink of momentum within the canopy layer for airflows of high Reynolds number. The corresponding LES results of first- and second-order turbulence statistics are in good agreement with experimental data obtained in the field interior, within and just above mature maize canopies. However, the distribution of momentum sink among weak and strong events has not been well reproduced, inferred from the significant underestition of streamwise and vertical velocity skewness as well as the fractions of vertical momentum flux transported by strong events. Using a velocity-dependent drag coefficient that accounts for the effect of plant reconfiguration, the "drag force" model leads to LES results of streamwise and vertical velocity skewness as well as the fractions of vertical momentum flux transported by strong events in better agreement with field experimental data. The link between plant reconfiguration and turbulence dynamics within the canopy roughness sublayer is further investigated. The "reconfiguration drag model" using velocity-dependent drag coefficient is revised to incorporate a theoretical model of the force balance on individual crosswind blades. In the LES, the dimension and degree of the reconfiguration of canopy elements affect the magnitude and position of peak streamwise velocity skewness within the canopy as well as the fractions of vertical momentum flux transported by strong events. The streamwise velocity skewness is shown to be related to the penetration of strong events into the canopy, which is associated with the passage of canopy-scale coherent eddies. With the profile of mean vertical momentum flux constrained by field experimental data, changing the model of drag coefficient induces negligible changes in the vertically integrated "drag force" within the canopy layer. Consequently, first- and second-order turbulence statistics remain approximately the same. However, enhancing the rate of decrease of drag coefficient with increasing velocity increases the streamwise and vertical velocity skewness, the fractions of vertical momentum flux transported by strong events, as well as the ratio between vertical momentum flux transported by relatively strong head-down "sweeps" and relatively weak head-up "ejections." These results confirmed the inadequacy of describing the effects of canopy-scale coherent structures using just first- and second-order turbulence statistics. The filtered concentration equation is applied to the dispersion of particles within the canopy roughness sublayer, assuming that a virtual continuous concentration field is advected by a virtual continuous velocity field. A canopy deposition model is used to model the sink of particle concentration associated with the impaction, sedimentation, retention, and re-entrainment of particles on the surfaces of canopy elements. LES results of mean particle concentration field and mean ground deposition rate were evaluated against data obtained during an artificial continuous point-source release experiment. Accounting for the effect of reconfiguration by using a velocity dependent drag coefficient leads to better agreement between LES results and field experimental data of the mean particle concentration field, suggesting the importance of reproducing the distribution of momentum sink among weak and strong events for reproducing the dispersion of particles. LES results obtained using a velocity-dependent drag coefficient are analyzed to estimate essential properties for the occurrence of plant disease epidemics. The most interesting finding is that an existing analytical function can be used to model the crosswind-integrated mean concentration field above the canopy normalized by the escape fraction for particles released from the field interior. (Abstract shortened by ProQuest.).

  13. Hydrodynamic characteristics of sailfish and swordfish

    NASA Astrophysics Data System (ADS)

    Sagong, Woong; Jeon, Woo-Pyung; Choi, Haecheon

    2009-11-01

    The sailfish and swordfish are known as fastest sea animals, reaching their maximum speeds of more than 100km/h. Recently, Sagong et al. (2008, Phys. Fluids) investigated the role of V- shaped protrusions existing on the sailfish skin in the skin-friction reduction but those protrusions did not make a direct role in reducing drag. On the other hand, the long bill has been regarded as a device of reducing drag by separation delay through turbulence generation. In the present study, we investigate the hydrodynamic characteristics of sailfish and swordfish by installing the stuffed ones in a wind tunnel and measuring the drag on their bodies and boundary-layer velocities above the body surfaces. The drag coefficients of sailfish and swordfish are 0.0075 and 0.009 based on the free-stream velocity and wetted area, respectively. They are comparable to or smaller than those of other kinds of fish such as the dogfish, tuna and trout. Next, the role of bill on the drag is studied. The drag without bill or with an artificial short bill is lower than that with the original long bill, indicating that the bill does not reduce the drag at all. From the velocity measurement near the body surfaces, we found that flow separation does not occur even without bill, and thus the conjecture that the flow separation is delayed through turbulence generation by the bill is not valid.

  14. Vorticity and symplecticity in multi-symplectic, Lagrangian gas dynamics

    NASA Astrophysics Data System (ADS)

    Webb, G. M.; Anco, S. C.

    2016-02-01

    The Lagrangian, multi-dimensional, ideal, compressible gas dynamic equations are written in a multi-symplectic form, in which the Lagrangian fluid labels, m i (the Lagrangian mass coordinates) and time t are the independent variables, and in which the Eulerian position of the fluid element {x}={x}({m},t) and the entropy S=S({m},t) are the dependent variables. Constraints in the variational principle are incorporated by means of Lagrange multipliers. The constraints are: the entropy advection equation S t = 0, the Lagrangian map equation {{x}}t={u} where {u} is the fluid velocity, and the mass continuity equation which has the form J=τ where J={det}({x}{ij}) is the Jacobian of the Lagrangian map in which {x}{ij}=\\partial {x}i/\\partial {m}j and τ =1/ρ is the specific volume of the gas. The internal energy per unit volume of the gas \\varepsilon =\\varepsilon (ρ ,S) corresponds to a non-barotropic gas. The Lagrangian is used to define multi-momenta, and to develop de Donder-Weyl Hamiltonian equations. The de Donder-Weyl equations are cast in a multi-symplectic form. The pullback conservation laws and the symplecticity conservation laws are obtained. One class of symplecticity conservation laws give rise to vorticity and potential vorticity type conservation laws, and another class of symplecticity laws are related to derivatives of the Lagrangian energy conservation law with respect to the Lagrangian mass coordinates m i . We show that the vorticity-symplecticity laws can be derived by a Lie dragging method, and also by using Noether’s second theorem and a fluid relabelling symmetry which is a divergence symmetry of the action. We obtain the Cartan-Poincaré form describing the equations and we discuss a set of differential forms representing the equation system.

  15. Elasto-Inertial Turbulence: From Subcritical Turbulence to Maximum Drag Reduction

    NASA Astrophysics Data System (ADS)

    Dubief, Yves; Sid, Samir; Egan, Raphael; Terrapon, Vincent

    2015-11-01

    Elasto Inertial Turbulence (EIT) is a turbulence state found so far in polymer solutions. Upon the appropriate initial perturbation, an autonomous regeneration cycle emerges between polymer dynamics, pressure and velocity fluctuations. This cycle is best explained by the Poisson equation derived from viscoelastic flow models such as FENE-P (used in this study). This presentation provides an overview of the structure of EIT in 2D channel flows for Reynolds numbers ranging from Reτ = 10 to 100 and for 3D simulations up to Ret au = 300 . For flows below the Newtonian critical Reynolds number, EIT increases the drag. For higher Reynolds numbers, EIT is surmised to be the energetic bound of Maximum Drag Reduction (MDR), the asymptotic state of drag reduction in polymer solutions. The very existence of EIT at low Reynolds numbers (Reτ < 60) highlights a backward energy transfer from the small scale polymer dynamics to larger flow scales. Similar dynamics is identified at higher Reynolds numbers, which could explain why polymer flows never become fully laminar. The authors acknowledge computational resources from CÉCI (F.R.S.-FNRS grant No.2.5020.11), the PRACE infrastructure, and the Vermont Advanced Computing Core.

  16. Explosive lower limb extension mechanics: An on-land vs. in-water exploratory comparison.

    PubMed

    Guignard, Brice; Lauer, Jessy; Samozino, Pierre; Mourão, Luis; Vilas-Boas, João Paulo; Rouard, Annie Hélène

    2017-12-08

    During a horizontal underwater push-off, performance is strongly limited by the presence of water, inducing resistances due to its dense and viscous nature. At the same time, aquatic environments offer a support to the swimmer with the hydrostatic buoyancy counteracting the effects of gravity. Squat jump is a vertical terrestrial push-off with a maximal lower limb extension limited by the gravity force, which attracts the body to the ground. Following this observation, we characterized the effects of environment (water vs. air) on the mechanical characteristics of the leg push-off. Underwater horizontal wall push-off and vertical on-land squat jumps of two local swimmers were evaluated with force plates, synchronized with a lateral camera. To better understand the resistances of the aquatic movement, a quasi-steady Computational Fluid Dynamics (CFD) analysis was performed. The force-, velocity- and power-time curves presented similarities in both environments corresponding to a proximo-distal joints organization. In water, swimmers developed a three-step explosive rise of force, which the first one mainly related to the initiation of body movement. Drag increase, which was observed from the beginning to the end of the push-off, related to the continuous increase of body velocity with high values of drag coefficient (C D ) and frontal areas before take-off. Specifically, with velocity, frontal area was the main drag component to explain inter-individual differences, suggesting that the streamlined position of the lower limbs is decisive to perform an efficient push-off. This study motivates future CFD simulations under more ecological, unsteady conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Multiscale modeling of particle in suspension with smoothed dissipative particle dynamics

    NASA Astrophysics Data System (ADS)

    Bian, Xin; Litvinov, Sergey; Qian, Rui; Ellero, Marco; Adams, Nikolaus A.

    2012-01-01

    We apply smoothed dissipative particle dynamics (SDPD) [Español and Revenga, Phys. Rev. E 67, 026705 (2003)] to model solid particles in suspension. SDPD is a thermodynamically consistent version of smoothed particle hydrodynamics (SPH) and can be interpreted as a multiscale particle framework linking the macroscopic SPH to the mesoscopic dissipative particle dynamics (DPD) method. Rigid structures of arbitrary shape embedded in the fluid are modeled by frozen particles on which artificial velocities are assigned in order to satisfy exactly the no-slip boundary condition on the solid-liquid interface. The dynamics of the rigid structures is decoupled from the solvent by solving extra equations for the rigid body translational/angular velocities derived from the total drag/torque exerted by the surrounding liquid. The correct scaling of the SDPD thermal fluctuations with the fluid-particle size allows us to describe the behavior of the particle suspension on spatial scales ranging continuously from the diffusion-dominated regime typical of sub-micron-sized objects towards the non-Brownian regime characterizing macro-continuum flow conditions. Extensive tests of the method are performed for the case of two/three dimensional bulk particle-system both in Brownian/ non-Brownian environment showing numerical convergence and excellent agreement with analytical theories. Finally, to illustrate the ability of the model to couple with external boundary geometries, the effect of confinement on the diffusional properties of a single sphere within a micro-channel is considered, and the dependence of the diffusion coefficient on the wall-separation distance is evaluated and compared with available analytical results.

  18. Measuring the force of drag on air sheared sessile drops

    NASA Astrophysics Data System (ADS)

    Milne, Andrew J. B.; Fleck, Brian; Amirfazli, Alidad

    2012-11-01

    To blow a drop along or off of a surface (i.e. to shed the drop), the drag force on the drop (based on flow conditions, drop shape, and fluid properties) must overcome the adhesion force between the drop and the surface (based on surface tension, drop shape, and contact angle). While the shedding of sessile drops by shear flow has been studied [Milne, A. J. B. & Amirfazli, A. Langmuir 25, 14155 (2009).], no independent measurements of the drag or adhesion forces have been made. Likewise, analytic predictions are limited to hemispherical drops and low air velocities. We present, therefore, measurements of the drag force on sessile drops at air velocities up to the point of incipient motion. Measurements were made using a modified floating element shear sensor in a laminar low speed wind tunnel to record drag force over the surface with the drop absent, and over the combined system of the surface and drop partially immersed in the boundary layer. Surfaces of different wettabilities were used to study the effects of drop shape and contact angles, with drop volume ranged between approximately 10 and 100 microlitres. The drag force for incipient motion (which by definition equals the maximum of the adhesion force) is compared to simplified models for drop adhesion such as that of Furmidge

  19. F-16B Pacer Aircraft Trailing Cone Length Extension Tube Investigative Study (HAVE CLETIS)

    DTIC Science & Technology

    2007-06-01

    the axial load experienced during high incompressible dynamic pressures and prevent the coupling from locking up as was observed for the 35-foot... axial loads due to incompressible dynamic pressure. (R4) “Guitar stringing” was used to describe the high frequency vibration of the pressure tube...Modify the design of the pressure tube and drag cone coupling to allow independent pressure tube and drag cone rotation under axial loads due to

  20. A new method to calculate unsteady particle kinematics and drag coefficient in a subsonic post-shock flow

    NASA Astrophysics Data System (ADS)

    Bordoloi, Ankur D.; Ding, Liuyang; Martinez, Adam A.; Prestridge, Katherine; Adrian, Ronald J.

    2018-07-01

    We introduce a new method (piecewise integrated dynamics equation fit, PIDEF) that uses the particle dynamics equation to determine unsteady kinematics and drag coefficient (C D) for a particle in subsonic post-shock flow. The uncertainty of this method is assessed based on simulated trajectories for both quasi-steady and unsteady flow conditions. Traditional piecewise polynomial fitting (PPF) shows high sensitivity to measurement error and the function used to describe C D, creating high levels of relative error (1) when applied to unsteady shock-accelerated flows. The PIDEF method provides reduced uncertainty in calculations of unsteady acceleration and drag coefficient for both quasi-steady and unsteady flows. This makes PIDEF a preferable method over PPF for complex flows where the temporal response of C D is unknown. We apply PIDEF to experimental measurements of particle trajectories from 8-pulse particle tracking and determine the effect of incident Mach number on relaxation kinematics and drag coefficient of micron-sized particles.

  1. Metal vapor micro-jet controls material redistribution in laser powder bed fusion additive manufacturing.

    PubMed

    Ly, Sonny; Rubenchik, Alexander M; Khairallah, Saad A; Guss, Gabe; Matthews, Manyalibo J

    2017-06-22

    The results of detailed experiments and finite element modeling of metal micro-droplet motion associated with metal additive manufacturing (AM) processes are presented. Ultra high speed imaging of melt pool dynamics reveals that the dominant mechanism leading to micro-droplet ejection in a laser powder bed fusion AM is not from laser induced recoil pressure as is widely believed and found in laser welding processes, but rather from vapor driven entrainment of micro-particles by an ambient gas flow. The physics of droplet ejection under strong evaporative flow is described using simulations of the laser powder bed interactions to elucidate the experimental results. Hydrodynamic drag analysis is used to augment the single phase flow model and explain the entrainment phenomenon for 316 L stainless steel and Ti-6Al-4V powder layers. The relevance of vapor driven entrainment of metal micro-particles to similar fluid dynamic studies in other fields of science will be discussed.

  2. Metal vapor micro-jet controls material redistribution in laser powder bed fusion additive manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ly, Sonny; Rubenchik, Alexander M.; Khairallah, Saad A.

    The results of detailed experiments and finite element modeling of metal micro-droplet motion associated with metal additive manufacturing (AM) processes are presented. Ultra high speed imaging of melt pool dynamics reveals that the dominant mechanism leading to micro-droplet ejection in a laser powder bed fusion AM is not from laser induced recoil pressure as is widely believed and found in laser welding processes, but rather from vapor driven entrainment of micro-particles by an ambient gas flow. The physics of droplet ejection under strong evaporative flow is described using simulations of the laser powder bed interactions to elucidate the experimental results.more » Hydrodynamic drag analysis is used to augment the single phase flow model and explain the entrainment phenomenon for 316 L stainless steel and Ti-6Al-4V powder layers. The relevance of vapor driven entrainment of metal micro-particles to similar fluid dynamic studies in other fields of science will be discussed.« less

  3. Metal vapor micro-jet controls material redistribution in laser powder bed fusion additive manufacturing

    DOE PAGES

    Ly, Sonny; Rubenchik, Alexander M.; Khairallah, Saad A.; ...

    2017-06-22

    The results of detailed experiments and finite element modeling of metal micro-droplet motion associated with metal additive manufacturing (AM) processes are presented. Ultra high speed imaging of melt pool dynamics reveals that the dominant mechanism leading to micro-droplet ejection in a laser powder bed fusion AM is not from laser induced recoil pressure as is widely believed and found in laser welding processes, but rather from vapor driven entrainment of micro-particles by an ambient gas flow. The physics of droplet ejection under strong evaporative flow is described using simulations of the laser powder bed interactions to elucidate the experimental results.more » Hydrodynamic drag analysis is used to augment the single phase flow model and explain the entrainment phenomenon for 316 L stainless steel and Ti-6Al-4V powder layers. The relevance of vapor driven entrainment of metal micro-particles to similar fluid dynamic studies in other fields of science will be discussed.« less

  4. Boundary slip and wetting properties of interfaces: correlation of the contact angle with the slip length.

    PubMed

    Voronov, Roman S; Papavassiliou, Dimitrios V; Lee, Lloyd L

    2006-05-28

    Correlations between contact angle, a measure of the wetting of surfaces, and slip length are developed using nonequilibrium molecular dynamics for a Lennard-Jones fluid in Couette flow between graphitelike hexagonal-lattice walls. The fluid-wall interaction is varied by modulating the interfacial energy parameter epsilonr=epsilonsfepsilonff and the size parameter sigmar=sigmasfsigmaff, (s=solid, f=fluid) to achieve hydrophobicity (solvophobicity) or hydrophilicity (solvophilicity). The effects of surface chemistry, as well as the effects of temperature and shear rate on the slip length are determined. The contact angle increases from 25 degrees to 147 degrees on highly hydrophobic surfaces (as epsilonr decreases from 0.5 to 0.1), as expected. The slip length is functionally dependent on the affinity strength parameters epsilonr and sigmar: increasing logarithmically with decreasing surface energy epsilonr (i.e., more hydrophobic), while decreasing with power law with decreasing size sigmar. The mechanism for the latter is different from the energetic case. While weak wall forces (small epsilonr) produce hydrophobicity, larger sigmar smoothes out the surface roughness. Both tend to increase the slip. The slip length grows rapidly with a high shear rate, as wall velocity increases three decades from 100 to 10(5) ms. We demonstrate that fluid-solid interfaces with low epsilonr and high sigmar should be chosen to increase slip and are prime candidates for drag reduction.

  5. CTF Theory Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avramova, Maria N.; Salko, Robert K.

    Coolant-Boiling in Rod Arrays|Two Fluids (COBRA-TF) is a thermal/ hydraulic (T/H) simulation code designed for light water reactor (LWR) vessel analysis. It uses a two-fluid, three-field (i.e. fluid film, fluid drops, and vapor) modeling approach. Both sub-channel and 3D Cartesian forms of 9 conservation equations are available for LWR modeling. The code was originally developed by Pacific Northwest Laboratory in 1980 and had been used and modified by several institutions over the last few decades. COBRA-TF also found use at the Pennsylvania State University (PSU) by the Reactor Dynamics and Fuel Management Group (RDFMG) and has been improved, updated, andmore » subsequently re-branded as CTF. As part of the improvement process, it was necessary to generate sufficient documentation for the open-source code which had lacked such material upon being adopted by RDFMG. This document serves mainly as a theory manual for CTF, detailing the many two-phase heat transfer, drag, and important accident scenario models contained in the code as well as the numerical solution process utilized. Coding of the models is also discussed, all with consideration for updates that have been made when transitioning from COBRA-TF to CTF. Further documentation outside of this manual is also available at RDFMG which focus on code input deck generation and source code global variable and module listings.« less

  6. Drag reduction by polymer additives in decaying turbulence.

    PubMed

    Kalelkar, Chirag; Govindarajan, Rama; Pandit, Rahul

    2005-07-01

    We present results from a systematic numerical study of decaying turbulence in a dilute polymer solution by using a shell-model version of the finitely extensible nonlinear elastic and Peterlin equations. Our study leads to an appealing definition of the drag reduction for the case of decaying turbulence. We exhibit several new results, such as the potential-energy spectrum of the polymer, hitherto unobserved features in the temporal evolution of the kinetic-energy spectrum, and characterize intermittency in such systems. We compare our results with the Gledzer-Ohkitani-Yamada shell model for fluid turbulence.

  7. Drag Minimization for Wings and Bodies in Supersonic Flow

    NASA Technical Reports Server (NTRS)

    Heaslet, Max A; Fuller, Franklyn B

    1958-01-01

    The minimization of inviscid fluid drag is studied for aerodynamic shapes satisfying the conditions of linearized theory, and subject to imposed constraints on lift, pitching moment, base area, or volume. The problem is transformed to one of determining two-dimensional potential flows satisfying either Laplace's or Poisson's equations with boundary values fixed by the imposed conditions. A general method for determining integral relations between perturbation velocity components is developed. This analysis is not restricted in application to optimum cases; it may be used for any supersonic wing problem.

  8. JAERI instrumented spool piece performance in two-phase flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colson, J.B.; Gilbert, J.V.

    1979-01-01

    Instrumented spool pieces to be installed in horizontal piping on the Cylindrical Core Test Facility (CCTF) at the Japanese Atomic Energy Institute (JAERI) have been designed and tested. The instrumented spool pieces will provide measurements from which mass flow rates can be computed. The primary instruments included in the spool pieces are a full-flow turbine, a full-flow perforated drag plate, and a low energy three-beam photon densitometer. Secondary instruments are provided to measured absolute pressure, fluid temperature, and differential pressure across the full-flow perforated drag plate.

  9. Aerodynamics of badminton shuttlecocks

    NASA Astrophysics Data System (ADS)

    Verma, Aekaansh; Desai, Ajinkya; Mittal, Sanjay

    2013-08-01

    A computational study is carried out to understand the aerodynamics of shuttlecocks used in the sport of badminton. The speed of the shuttlecock considered is in the range of 25-50 m/s. The relative contribution of various parts of the shuttlecock to the overall drag is studied. It is found that the feathers, and the net in the case of a synthetic shuttlecock, contribute the maximum. The gaps, in the lower section of the skirt, play a major role in entraining the surrounding fluid and causing a difference between the pressure inside and outside the skirt. This pressure difference leads to drag. This is confirmed via computations for a shuttlecock with no gaps. The synthetic shuttle experiences more drag than the feather model. Unlike the synthetic model, the feather shuttlecock is associated with a swirling flow towards the end of the skirt. The effect of the twist angle of the feathers on the drag as well as the flow has also been studied.

  10. Turbulent Output-Based Anisotropic Adaptation

    NASA Technical Reports Server (NTRS)

    Park, Michael A.; Carlson, Jan-Renee

    2010-01-01

    Controlling discretization error is a remaining challenge for computational fluid dynamics simulation. Grid adaptation is applied to reduce estimated discretization error in drag or pressure integral output functions. To enable application to high O(10(exp 7)) Reynolds number turbulent flows, a hybrid approach is utilized that freezes the near-wall boundary layer grids and adapts the grid away from the no slip boundaries. The hybrid approach is not applicable to problems with under resolved initial boundary layer grids, but is a powerful technique for problems with important off-body anisotropic features. Supersonic nozzle plume, turbulent flat plate, and shock-boundary layer interaction examples are presented with comparisons to experimental measurements of pressure and velocity. Adapted grids are produced that resolve off-body features in locations that are not known a priori.

  11. Computational Fluid Dynamics (CFD) Design of a Blended Wing Body (BWB) with Boundary Layer Ingestion (BLI) Nacelles

    NASA Technical Reports Server (NTRS)

    Morehouse, Melissa B.

    2001-01-01

    A study is being conducted to improve the propulsion/airframe integration for the Blended Wing-Body (BWB) configuration with boundary layer ingestion nacelles. TWO unstructured grid flow solvers, USM3D and FUN3D, have been coupled with different design methods and are being used to redesign the aft wing region and the nacelles to reduce drag and flow separation. An initial study comparing analyses from these two flow solvers against data from a wind tunnel test as well as predictions from the OVERFLOW structured grid code for a BWB without nacelles has been completed. Results indicate that the unstructured grid codes are sufficiently accurate for use in design. Results from the BWB design study will be presented.

  12. Rotational viscometer for high-pressure, high-temperature fluids

    DOEpatents

    Carr, K.R.

    1983-06-06

    The invention is a novel rotational viscometer which is well adapted for use with fluids at high temperatures and/or pressures. In one embodiment, the viscometer include a substantially non-magnetic tube having a closed end and having an open end in communication with a fluid whose viscosity is to be determined. An annular drive magnet is mounted for rotation about the tube. The tube encompasses and supports a rotatable shaft assembly which carries a rotor, or bob, for insertion in the fluid. Affixed to the shaft are (a) a second magnet which is magnetically coupled to the drive magnet and (b) a third magnet. In a typical operation, the drive magnet is rotated to turn the shaft assembly while the shaft rotor is immersed in the fluid. The viscous drag on the rotor causes the shaft assembly to lag the rotation of the drive magnet by an amount which is a function of the amount of viscous drag. A first magnetic pickup generates a waveform whose phase is a function of the angular position of the drive magnet. A second magnetic pickup generates a waveform whose phase is a function of the angular position of the third magnet. Means are provided to generate an output indicative of the phase difference between the two waveforms. The viscometer is comparatively simple, inexpensive, rugged, and does not require shaft seals.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radiom, Milad, E-mail: milad.radiom@unige.ch; Ducker, William, E-mail: wducker@vt.edu; Robbins, Brian

    The hydrodynamic interaction of two closely spaced micron-scale spheres undergoing Brownian motion was measured as a function of their separation. Each sphere was attached to the distal end of a different atomic force microscopy cantilever, placing each sphere in a stiff one-dimensional potential (0.08 Nm{sup −1}) with a high frequency of thermal oscillations (resonance at 4 kHz). As a result, the sphere’s inertial and restoring forces were significant when compared to the force due to viscous drag. We explored interparticle gap regions where there was overlap between the two Stokes layers surrounding each sphere. Our experimental measurements are the firstmore » of their kind in this parameter regime. The high frequency of oscillation of the spheres means that an analysis of the fluid dynamics would include the effects of fluid inertia, as described by the unsteady Stokes equation. However, we find that, for interparticle separations less than twice the thickness of the wake of the unsteady viscous boundary layer (the Stokes layer), the hydrodynamic interaction between the Brownian particles is well-approximated by analytical expressions that neglect the inertia of the fluid. This is because elevated frictional forces at narrow gaps dominate fluid inertial effects. The significance is that interparticle collisions and concentrated suspensions at this condition can be modeled without the need to incorporate fluid inertia. We suggest a way to predict when fluid inertial effects can be ignored by including the gap-width dependence into the frequency number. We also show that low frequency number analysis can be used to determine the microrheology of mixtures at interfaces.« less

  14. A case for bone canaliculi as the anatomical site of strain generated potentials

    NASA Technical Reports Server (NTRS)

    Cowin, S. C.; Weinbaum, S.; Zeng, Y.

    1995-01-01

    We address the question of determining the anatomical site that is the source of the experimentally observed strain generated potentials (SGPs) in bone tissue. There are two candidates for the anatomical site that is the SGP source, the collagen-hydroxyapatite porosity and the larger size lacunar-canalicular porosity. In the past it has been argued, on the basis of experimental data and a reasonable model, that the site of the SGPs in bone is the collagen-hydroxyapatite porosity. The theoretically predicted pore radius necessary for the SGPs to reside in this porosity is 16 nm, which is somewhat larger than the pore radii estimated from gas adsorption data where the preponderance of the pores were estimated to be in the range 5-12.5 nm. However, this pore size is significantly larger than the 2 nm size of the small tracer, microperoxidase, which appears to be excluded from the mineralized matrix. In this work a similar model, but one in which the effects of fluid dynamic drag of the cell surface matrix in the bone canaliculi are included, is used to show that it is possible for the generation of SGPs to be associated with the larger size lacunar-canalicular porosity when the hydraulic drag and electrokinetic contribution of the bone fluid passage through the cell coat (glycocalyx) is considered. The consistency of the SGP data with this model is demonstrated. A general boundary condition is introduced to allow for current leakage at the bone surface. The results suggest that the current leakage is small for the in vitro studies in which the strain generated potentials have been measured.

  15. Guidance Scheme for Modulation of Drag Devices to Enable Return from Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Dutta, Soumyo; Bowes, Angela L.; Cianciolo, Alicia D.; Glass, Christopher E.; Powell, Richard W.

    2017-01-01

    Passive drag devices provide opportunities to return payloads from low Earth orbits quickly without using onboard propulsive systems to de-orbit the spacecraft. However, one potential disadvantage of such systems has been the lack of landing accuracy. Drag modulation or changing the shape of the drag device during flight offer a way to control the de-orbit trajectory and target a specific landing location. This paper discusses a candidate passive drag based system, called Exo-brake, as well as efforts to model the dynamics of the vehicle as it de-orbits and guidance schemes used to control the trajectory. Such systems can enable quick return of payloads from low Earth orbit assets like the International Space Station without the use of large re-entry cargo capsules or propulsive systems.

  16. The effect of shape on drag: a physics exercise inspired by biology

    NASA Astrophysics Data System (ADS)

    Fingerut, Jonathan; Johnson, Nicholas; Mongeau, Eric; Habdas, Piotr

    2017-07-01

    As part of a biomechanics course aimed at upper-division biology and physics majors, but applicable to a range of student learning levels, this laboratory exercise provides an insight into the effect of shape on hydrodynamic performance, as well an introduction to computer aided design (CAD) and 3D printing. Students use hydrodynamic modeling software and simple CAD programs to design a shape with the least amount of drag based on strategies gleaned from the study of natural forms. Students then print the shapes using a 3D printer and test their shapes against their classmates in a friendly competition. From this exercise, students gain a more intuitive sense of the challenges that organisms face when moving through fluid environments, the physical phenomena involved in moving through fluids at high Reynolds numbers and observe how and why certain morphologies, such as streamlining, are common answers to the challenge of swimming at high speeds.

  17. Drag Reduction On Multiscale Superhydrophobic Surfaces

    NASA Astrophysics Data System (ADS)

    Jenner, Elliot; Barbier, Charlotte; D'Urso, Brian

    2013-11-01

    Fluid drag reduction is of great interest in a variety of fields, including hull engineering, microfluidics, and drug delivery. We fabricated samples with multi-scale superhydrophobic surfaces, which consist of hexagonally self-ordered microscopic spikes grown via anodization on macroscopic grooves cut in aluminum. The hydrodynamic drag properties were studied with a cone-and-plate rheometer, showing significant drag reduction near 15% in turbulent flow and near 30% in laminar flow. In addition to these experiments, numerical simulations were performed in order to estimate the slip length at high speeds. Furthermore, we will report on the progress of experiments with a new type of surface combining superhydrophobic surfaces like those discussed above with Slippery Liquid Infused Porous Surfaces (SLIPS), which utilize an oil layer to create a hydrophobic self-repairing surface. These ``Super-SLIPS'' may combine the best properties of both superhydrophobic surfaces and SLIPS, by combining a drag reducing air-layer and an oil layer which may improve durability and biofouling resistance. This research was supported by the ORNL Seed Money Program. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. Dept. of Energy under contract DE-AC05-00OR22725.

  18. Reduction of turbulent skin-friction drag by oscillating discs

    NASA Astrophysics Data System (ADS)

    Wise, Daniel; Ricco, Pierre

    2013-11-01

    A new drag-reduction method, based on the active technique proposed by Ricco & Hahn (2013), i.e. steadily rotating flush-mounted discs, is studied by DNS. The effect of sinusoidally oscillating discs on the turbulent channel-flow drag is investigated at Reτ = 180 , based on the friction velocity of the stationary-wall case and the half channel height. A parametric investigation on the disc diameter, tip velocity and oscillation period yielded a maximum drag reduction of 18.5%. Regions of net power saved, calculated by considering the power spent to enforce the disc motion against the viscous resistance of the fluid, are found to reach up to 6.5% for low disc tip velocities. Significantly, the characteristic time-scale for the oscillating disc forcing is double that for the steadily rotating discs, representing a further step towards industrial implementation. The oscillating disc forcing, similar to the steadily rotating disc forcing, creates streamwise-elongated structures between the discs. These structures - largely unaffected by the periodic wall forcing and persisting throughout the entire period of the oscillation - are the main contributor to the additional Reynolds stresses term created by the disc forcing, and are important for the drag reduction mechanism.

  19. Loss of efficiency of polymeric drag reducers induced by high Reynolds number flows in tubes with imposed pressure

    NASA Astrophysics Data System (ADS)

    Soares, Edson J.; Sandoval, Gustavo A. B.; Silveira, Lucas; Pereira, Anselmo S.; Trevelin, Renata; Thomaz, Fabricio

    2015-12-01

    This paper studies the loss of efficiency of polymeric drag reducers induced by high Reynolds number flows in tubes. The overall pressure was fixed and the apparatus was built so as to minimize the polymer degradation. We used three kinds of polymers: two flexible and one rigid. We conducted our tests to take into account the drag reduction (DR) for a wide range of concentrations of each polymer. The main results are displayed for the DR as a function of the number of passes through the apparatus. The mechanism of the loss of efficiency for the Xanthan Gum (XG) solutions (the rigid one) seems to be completely different from that observed for Poly (ethylene oxide) (PEO) and Polyacrylamide (PAM) (the flexible materials). While the PEO and PAM mechanically degrade by the action of the turbulent flow, the XG seems to remain intact, even after many passes through the pipe flow apparatus. From the practical point of view, it is worth noting that the PAM solutions are clearly more efficient than the PEO and XG. Another practical point that deserves attention is concerned with the asymptotic drag reduction found for XG. Although its maximum DR was significantly smaller than that found for PEO, the final value for both polymers were quite the same, which is obviously related to the intensified mechanical molecule scission in the PEO solutions. Our results for the relative drag reduction (the current value of DR divided by its maximum obtained at the first pass) was quite well fitted by the decay function proposed in our previous paper [A. S. Pereira and E. J. Soares, "Polymer degradation of dilute solutions in turbulent drag reducing flows in a cylindrical double gap rheometer device," J. Non-Newtonian Fluid Mech. 179, 9-22 (2012)], in which a rotating apparatus was used. This strongly suggests that the physical mechanism that governs the degradation phenomenon is independent of the geometry. We also used a degradation model for PEO proposed by Vonlanthen and Monkewitz ["Grid turbulence in dilute polymer solution: Peo in water," J. Fluid Mech. 730, 76-98 (2013)] to fit our data of relative drag reduction for PEO and PAM.

  20. An investigation into the mechanisms of drag reduction of a boat tailed base cavity on a blunt based body

    NASA Astrophysics Data System (ADS)

    Kehs, Joshua Paul

    It is well documented in the literature that boat-tailed base cavities reduce the drag on blunt based bodies. The majority of the previous work has been focused on the final result, namely reporting the resulting drag reduction or base pressure increase without examining the methods in which such a device changes the fluid flow to enact such end results. The current work investigates the underlying physical means in which these devices change the flow around the body so as to reduce the overall drag. A canonical model with square cross section was developed for the purpose of studying the flow field around a blunt based body. The boat-tailed base cavity tested consisted of 4 panels of length equal to half the width of the body extending from the edges of the base at an angle towards the models center axis of 12°. Drag and surface pressure measurements were made at Reynolds numbers based on width from 2.3x105 to 3.6x10 5 in the Clarkson University high-speed wind tunnel over a range of pitch and yaw angles. Cross-stream hotwire wake surveys were used to identify wake width and turbulence intensities aft of the body at Reynolds numbers of 2.3x105 to 3.0x105. Particle Image Velocimetry (PIV) was used to quantify the flow field in the wake of the body, including the mean flow, vorticity, and turbulence measurements. The results indicated that the boat-tailed aft cavity decreases the drag significantly due to increased pressure on the base. Hotwire measurements indicated a reduction in wake width as well as a reduction in turbulence in the wake. PIV measurements indicated a significant reduction in wake turbulence and revealed that there exists a co-flowing stream that exits the cavity parallel to the free stream, reducing the shear in the flow at the flow separation point. The reduction in shear at the separation point indicated the method by which the turbulence was reduced. The reduction in turbulence combined with the reduction in wake size provided the mechanism of drag reduction by limiting the rate of entrainment of fluid in the recirculating wake to the free stream and by limiting the area over which this entrainment occurs.

  1. Use of a pitot probe for determining wing section drag in flight

    NASA Technical Reports Server (NTRS)

    Saltzman, E. J.

    1975-01-01

    A wake traversing probe was used to obtain section drag and wake profile data from the wing of a sailplane. The transducer sensed total pressure defect in the wake as well as freestream total pressure on both sides of the sensing element when the probe moved beyond the wake. Profiles of wake total pressure defects plotted as a function of distance above and below the trailing edge plane were averaged for calculating section drag coefficients for flights at low dynamic pressures.

  2. State dragging using the quantum Zeno effect

    NASA Astrophysics Data System (ADS)

    Hacohen-Gourgy, Shay; Martin, Leigh; GarcíA-Pintos, Luis Pedro; Dressel, Justin; Siddiqi, Irfan

    The quantum Zeno effect is the suppression of Hamiltonian evolution by continuous measurement. It arises as a consequence of the quantum back-action pushing the state towards an eigenstate of the measurement operator. Rotating the operator at a rate much slower than the measurement rate will effectively drag the state with it. We use our recently developed scheme, which enables dynamic control of the measurement operator, to demonstrate this dragging effect on a superconducting transmon qubit. Since the system is continuously measured, the deterministic trajectory can be monitored, and quantum jumps can be detected in real-time. Furthermore, we perform this with two observables that are set to be either commuting or non-commuting, demonstrating new quantum dynamics. This work was supported by the Army Research Office and the Air Force Research Laboratory.

  3. Findings from the Supersonic Qualification Program of the Mars Science Laboratory Parachute System

    NASA Technical Reports Server (NTRS)

    Sengupta, Anita; Steltzner, Adam; Witkowski, Allen; Candler, Graham; Pantano, Carlos

    2009-01-01

    In 2012, the Mars Science Laboratory Mission (MSL) will deploy NASA's largest extra-terrestrial parachute, a technology integral to the safe landing of its advanced robotic explorer on the surface. The supersonic parachute system is a mortar deployed 21.5 m disk-gap-band (DGB) parachute, identical in geometric scaling to the Viking era DGB parachutes of the 1970's. The MSL parachute deployment conditions are Mach 2.3 at a dynamic pressure of 750 Pa. The Viking Balloon Launched Decelerator Test (BLDT) successfully demonstrated a maximum of 700 Pa at Mach 2.2 for a 16.1 m DGB parachute in its AV4 flight. All previous Mars deployments have derived their supersonic qualification from the Viking BLDT test series, preventing the need for full scale high altitude supersonic testing. The qualification programs for Mars Pathfinder, Mars Exploration Rover, and Phoenix Scout Missions were all limited to subsonic structural qualification, with supersonic performance and survivability bounded by the BLDT qualification. The MSL parachute, at the edge of the supersonic heritage deployment space and 33% larger than the Viking parachute, accepts a certain degree of risk without addressing the supersonic environment in which it will deploy. In addition, MSL will spend up to 10 seconds above Mach 1.5, an aerodynamic regime that is associated with a known parachute instability characterized by significant canopy projected area fluctuation and dynamic drag variation. This aerodynamic instability, referred to as "area oscillations" by the parachute community has drag performance, inflation stability, and structural implications, introducing risk to mission success if not quantified for the MSL parachute system. To minimize this risk and as an alternative to a prohibitively expensive high altitude test program, a multi-phase qualification program using computation simulation validated by subscale test was developed and implemented for MSL. The first phase consisted of 2% of fullscale supersonic wind tunnel testing of a rigid DGB parachute with entry-vehicle to validate two high fidelity computational fluid dynamics (CFD) tools. The computer codes utilized Large Eddy Simulation and Detached Eddy Simulation numerical approaches to accurately capture the turbulent wake of the entry vehicle and its coupling to the parachute bow-shock. The second phase was the development of fluid structure interaction (FSI) computational tools to predict parachute response to the supersonic flow field. The FSI development included the integration of the CFD from the first phase with a finite element structural model of the parachute membrane and cable elements. In this phase, a 4% of full-scale supersonic flexible parachute test program was conducted to provide validation data to the FSI code and an empirical dataset of the MSL parachute in a flight-like environment. The final phase is FSI simulations of the full-scale MSL parachute in a Mars type deployment. Findings from this program will be presented in terms of code development and validation, empirical findings from the supersonic testing, and drag performance during supersonic operation.

  4. A study on the gas-solid particle flows in a needle-free drug delivery device

    NASA Astrophysics Data System (ADS)

    Rasel, Md. Alim Iftekhar; Taher, Md. Abu; Kim, H. D.

    2013-08-01

    Different systems have been used over the years to deliver drug particles to the human skin for pharmaceutical effect. Research has been done to improve the performance and flexibility of these systems. In recent years a unique system called the transdermal drug delivery has been developed. Transdermal drug delivery opened a new door in the field of drug delivery as it is more flexible and offers better performance than the conventional systems. The principle of this system is to accelerate drug particles with a high speed gas flow. Among different transdermal drug delivery systems we will concentrate on the contour shock tube system in this paper. A contoured shock tube is consists of a rupture chamber, a shock tube and a supersonic nozzle section. The drug particles are retained between a set of bursting diaphragm. When the diaphragm is ruptured at a certain pressure, a high speed unsteady flow is initiated through the shock tube which accelerates the particles. Computational fluid dynamics is used to simulate and analyze the flow field. The DPM (discrete phase method) is used to model the particle flow. As an unsteady flow is initiated though the shock tube the drag correlation proposed by Igra et al is used other than the standard drag correlation. The particle velocities at different sections including the nozzle exit are investigated under different operating conditions. Static pressure histories in different sections in the shock tube are investigated to analyze the flow field. The important aspects of the gas and particle dynamics in the shock tube are discussed and analyzed in details.

  5. An Experimental Study of the Ground Transportation System (GTS) Model in the NASA Ames 7- by 10-Ft Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Storms, Bruce L.; Ross, James C.; Heineck, James T.; Walker, Stephen M.; Driver, David M.; Zilliac, Gregory G.; Bencze, Daniel P. (Technical Monitor)

    2001-01-01

    The 1/8-scale Ground Transportation System (GTS) model was studied experimentally in the NASA Ames 7- by 10-Ft Wind Tunnel. Designed for validation of computational fluid dynamics (CFD), the GTS model has a simplified geometry with a cab-over-engine design and no tractor-trailer gap. As a further simplification, all measurements of the GTS model were made without wheels. Aerodynamic boattail plates were also tested on the rear of the trailer to provide a simple geometry modification for computation. The experimental measurements include body-axis drag, surface pressures, surface hot-film anemometry, oil-film interferometry, and 3-D particle image velocimetry (PIV). The wind-averaged drag coefficient with and without boattail plates was 0.225 and 0.277, respectively. PIV measurements behind the model reveal a significant reduction in the wake size due to the flow turning provided by the boattail plates. Hot-film measurements on the side of the cab indicate laminar separation with turbulent reattachment within 0.08 trailer width for zero and +/- 10 degrees yaw. Oil film interferometry provided quantitative measurements of skin friction and qualitative oil flow images. A complete set of the experimental data and the surface definition of the model are included on a CD-ROM for further analysis and comparison.

  6. Navier-Stokes analysis of airfoils with leading edge ice accretions

    NASA Technical Reports Server (NTRS)

    Potapczuk, Mark G.

    1993-01-01

    A numerical analysis of the flowfield characteristics and the performance degradation of an airfoil with leading edge ice accretions was performed. The important fluid dynamic processes were identified and calculated. Among these were the leading edge separation bubble at low angles of attack, complete separation on the low pressure surface resulting in premature shell, drag rise due to the ice shape, and the effects of angle of attack on the separated flow field. Comparisons to experimental results were conducted to confirm these calculations. A computer code which solves the Navier-Stokes equations in two dimensions, ARC2D, was used to perform the calculations. A Modified Mixing Length turbulence model was developed to produce grids for several ice shape and airfoil combinations. Results indicate that the ability to predict overall performance characteristics, such as lift and drag, at low angles of attack is excellent. Transition location is important for accurately determining separation bubble shape. Details of the flowfield in and downstream of the separated regions requires some modifications. Calculations for the stalled airfoil indicate periodic shedding of vorticity that was generated aft of the ice accretion. Time averaged pressure values produce results which compare favorably with experimental information. A turbulence model which accounts for the history effects in the flow may be justified.

  7. Invariance of Hypersonic Normal Force Coefficients with Reynolds Number and Determination of Inviscid Wave Drag from Laminar Experimental Results

    NASA Technical Reports Server (NTRS)

    Hawkins, Richard; Penland, Jim A.

    1997-01-01

    Observations have been made and reported that the experimental normal force coefficients at a constant angle of attack were constant with a variation of more than 2 orders of magnitude of Reynolds number at a free-stream Mach number M(sub infinity) of 8.00 and more than 1 order of magnitude variation at M(sub infinity) = 6.00 on the same body-wing hypersonic cruise configuration. These data were recorded under laminar, transitional, and turbulent boundary layer conditions with both hot-wall and cold-wall models. This report presents experimental data on 25 configurations of 17 models of both simple and complex geometry taken at M(sub infinity) = 6.00, 6.86, and 8.00 in 4 different hypersonic facilities. Aerodynamic calculations were made by computational fluid dynamics (CID) and engineering methods to analyze these data. The conclusions were that the normal force coefficients at a given altitude are constant with Reynolds numbers at hypersonic speeds and that the axial force coefficients recorded under laminar boundary-layer conditions at several Reynolds numbers may be plotted against the laminar parameter (the reciprocal of the Reynolds number to the one-half power) and extrapolated to the ordinate axis to determine the inviscid-wave-drag coefficient at the intercept.

  8. Effect of particles attachment to multi-sized dust grains present in electrostatic sheaths of discharge plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaham, B.; Faculté des Sciences et des Sciences Appliquées, Université de Bouira Rue Drissi Yahia 10000 Bouira; Tahraoui, A., E-mail: alatif-tahraoui@yahoo.fr

    The loss of electrons and ions due to their attachment to a Gauss-distributed sizes of dust grains present in electrostatic sheaths of discharge plasmas is investigated. A uni-dimensional, unmagnetized, and stationary multi-fluid model is proposed. Forces acting on the dust grain along with its charge are self-consistently calculated, within the limits of the orbit motion limited model. The dynamic analysis of dust grains shows that the contribution of the neutral drag force in the net force acting on the dust grain is negligible, whereas the contribution of the gravity force is found considerable only for micrometer particles. The dust grainsmore » trapping is only possible when the electrostatic force is balanced by the ion drag and the gravity forces. This trapping occurs for a limited radius interval of micrometer dust grains, which is around the most probable dust grain radius. The effect of electron temperature and ion density at the sheath edge is also discussed. It is shown that the attachment of particles reduces considerably the sheath thickness and induces dust grain deceleration. The increase of the lower limit as well as the upper limit of the dust radius reduces also the sheath thickness.« less

  9. Simulations of dynamics of plunge and pitch of a three-dimensional flexible wing in a low Reynolds number flow

    NASA Astrophysics Data System (ADS)

    Qi, Dewei; Liu, Yingming; Shyy, Wei; Aono, Hikaru

    2010-09-01

    The lattice Boltzmann flexible particle method (LBFPM) is used to simulate fluid-structure interaction and motion of a flexible wing in a three-dimensional space. In the method, a beam with rectangular cross section has been discretized into a chain of rigid segments. The segments are connected through ball and socket joints at their ends and may be bent and twisted. Deformation of flexible structure is treated with a linear elasticity model through bending and twisting. It is demonstrated that the flexible particle method (FPM) can approximate the nonlinear Euler-Bernoulli beam equation without resorting to a nonlinear elasticity model. Simulations of plunge and pitch of flexible wing at Reynolds number Re=136 are conducted in hovering condition by using the LBFPM. It is found that both lift and drag forces increase first, then decrease dramatically as the bending rigidity in spanwise direction decreases and that the lift and drag forces are sensitive to rigidity in a certain range. It is shown that the downwash flows induced by wing tip and trailing vortices in wake area are larger for a flexible wing than for a rigid wing, lead to a smaller effective angle of attack, and result in a larger lift force.

  10. Inference of facultative mobility in the enigmatic Ediacaran organism Parvancorina.

    PubMed

    Darroch, Simon A F; Rahman, Imran A; Gibson, Brandt; Racicot, Rachel A; Laflamme, Marc

    2017-05-01

    Establishing how Ediacaran organisms moved and fed is critical to deciphering their ecological and evolutionary significance, but has long been confounded by their non-analogue body plans. Here, we use computational fluid dynamics to quantitatively analyse water flow around the Ediacaran taxon Parvancorina , thereby testing between competing models for feeding mode and mobility. The results show that flow was not distributed evenly across the organism, but was directed towards localized areas; this allows us to reject osmotrophy, and instead supports either suspension feeding or detritivory. Moreover, the patterns of recirculating flow differ substantially with orientation to the current, suggesting that if Parvancorina was a suspension feeder, it would have been most efficient if it was able to re-orient itself with respect to current direction, and thus ensure flow was directed towards feeding structures. Our simulations also demonstrate that the amount of drag varied with orientation, indicating that Parvancorina would have greatly benefited from adjusting its position to minimize drag. Inference of facultative mobility in Parvancorina suggests that Ediacaran benthic ecosystems might have possessed a higher proportion of mobile taxa than currently appreciated from trace fossil studies. Furthermore, this inference of movement suggests the presence of musculature or appendages that are not preserved in fossils, but which would noneltheless support a bilaterian affinity for Parvancorina . © 2017 The Author(s).

  11. CFD Sensitivity Analysis of a Modern Civil Transport Near Buffet-Onset Conditions

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.; Allison, Dennis O.; Biedron, Robert T.; Buning, Pieter G.; Gainer, Thomas G.; Morrison, Joseph H.; Rivers, S. Melissa; Mysko, Stephen J.; Witkowski, David P.

    2001-01-01

    A computational fluid dynamics (CFD) sensitivity analysis is conducted for a modern civil transport at several conditions ranging from mostly attached flow to flow with substantial separation. Two different Navier-Stokes computer codes and four different turbulence models are utilized, and results are compared both to wind tunnel data at flight Reynolds number and flight data. In-depth CFD sensitivities to grid, code, spatial differencing method, aeroelastic shape, and turbulence model are described for conditions near buffet onset (a condition at which significant separation exists). In summary, given a grid of sufficient density for a given aeroelastic wing shape, the combined approximate error band in CFD at conditions near buffet onset due to code, spatial differencing method, and turbulence model is: 6% in lift, 7% in drag, and 16% in moment. The biggest two contributers to this uncertainty are turbulence model and code. Computed results agree well with wind tunnel surface pressure measurements both for an overspeed 'cruise' case as well as a case with small trailing edge separation. At and beyond buffet onset, computed results agree well over the inner half of the wing, but shock location is predicted too far aft at some of the outboard stations. Lift, drag, and moment curves are predicted in good agreement with experimental results from the wind tunnel.

  12. Spike-Nosed Bodies and Forward Injected Jets in Supersonic Flow

    NASA Technical Reports Server (NTRS)

    Gilinsky, M.; Washington, C.; Blankson, I. M.; Shvets, A. I.

    2002-01-01

    The paper contains new numerical simulation and experimental test results of blunt body drag reduction using thin spikes mounted in front of a body and one- or two-phase jets injected against a supersonic flow. Numerical simulations utilizing the NASA CFL3D code were conducted at the Hampton University Fluid Mechanics and Acoustics Laboratory (FM&AL) and experimental tests were conducted using the facilities of the IM/MSU Aeromechanics and Gas Dynamics Laboratory. Previous results were presented at the 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Those results were based on some experimental and numerical simulation tests for supersonic flow around spike-nosed or shell-nosed bodies, and numerical simulations were conducted only for a single spike-nosed or shell-nosed body at zero attack angle, alpha=0. In this paper, experimental test results of gas, liquid and solid particle jet injection against a supersonic flow are presented. In addition, numerical simulation results for supersonic flow around a multiple spike-nosed body with non-zero attack angles and with a gas and solid particle forward jet injection are included. Aerodynamic coefficients: drag, C(sub D), lift, C(sub L), and longitudinal momentum, M(sub z), obtained by numerical simulation and experimental tests are compared and show good agreement.

  13. Spike-Nosed Bodies and Forward Injected Jets in Supersonic Flow

    NASA Technical Reports Server (NTRS)

    Gilinsky, M.; Washington, C.; Blankson, I. M.; Shvets, A. I.

    2002-01-01

    The paper contains new numerical simulation and experimental test results of blunt body drag reduction using thin spikes mounted in front of a body and one- or two-phase jets injected against a supersonic flow. Numerical simulations utilizing the NASA CFL3D code were conducted at the Hampton University Fluid Mechanics and Acoustics Laboratory (FM&AL) and experimental tests were conducted using the facilities of the IM/MSU Aeromechanics and Gas Dynamics Laboratory. Previous results were presented at the 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Those results were based on some experimental and numerical simulation tests for supersonic flow around spike-nosed or shell-nosed bodies, and numerical simulations were conducted only for a single spike-nosed or shell-nosed body at zero attack angle, alpha = 0 degrees. In this paper, experimental test results of gas, liquid and solid particle jet injection against a supersonic flow are presented. In addition, numerical simulation results for supersonic flow around a multiple spike-nosed body with non-zero attack angles and with a gas and solid particle forward jet injection are included. Aerodynamic coefficients: drag, C (sub D), lift, C(sub L), and longitudinal momentum, M(sub z), obtained by numerical simulation and experimental tests are compared and show good agreement.

  14. Aeroelasticity of morphing wings using neural networks

    NASA Astrophysics Data System (ADS)

    Natarajan, Anand

    In this dissertation, neural networks are designed to effectively model static non-linear aeroelastic problems in adaptive structures and linear dynamic aeroelastic systems with time varying stiffness. The use of adaptive materials in aircraft wings allows for the change of the contour or the configuration of a wing (morphing) in flight. The use of smart materials, to accomplish these deformations, can imply that the stiffness of the wing with a morphing contour changes as the contour changes. For a rapidly oscillating body in a fluid field, continuously adapting structural parameters may render the wing to behave as a time variant system. Even the internal spars/ribs of the aircraft wing which define the wing stiffness can be made adaptive, that is, their stiffness can be made to vary with time. The immediate effect on the structural dynamics of the wing, is that, the wing motion is governed by a differential equation with time varying coefficients. The study of this concept of a time varying torsional stiffness, made possible by the use of active materials and adaptive spars, in the dynamic aeroelastic behavior of an adaptable airfoil is performed here. Another type of aeroelastic problem of an adaptive structure that is investigated here, is the shape control of an adaptive bump situated on the leading edge of an airfoil. Such a bump is useful in achieving flow separation control for lateral directional maneuverability of the aircraft. Since actuators are being used to create this bump on the wing surface, the energy required to do so needs to be minimized. The adverse pressure drag as a result of this bump needs to be controlled so that the loss in lift over the wing is made minimal. The design of such a "spoiler bump" on the surface of the airfoil is an optimization problem of maximizing pressure drag due to flow separation while minimizing the loss in lift and energy required to deform the bump. One neural network is trained using the CFD code FLUENT to represent the aerodynamic loading over the bump. A second neural network is trained for calculating the actuator loads, bump displacement and lift, drag forces over the airfoil using the finite element solver, ANSYS and the previously trained neural network. This non-linear aeroelastic model of the deforming bump on an airfoil surface using neural networks can serve as a fore-runner for other non-linear aeroelastic problems.

  15. Calculation and analysis of velocity and viscous drag in an artery with a periodic pressure gradient

    NASA Astrophysics Data System (ADS)

    Alizadeh, M.; Seyedpour, S. M.; Mozafari, V.; Babazadeh, Shayan S.

    2012-07-01

    Blood as a fluid that human and other living creatures are dependent on has been always considered by scientists and researchers. Any changes in blood pressure and its normal velocity can be a sign of a disease. Whatever significant in blood fluid's mechanics is Constitutive equations and finding some relations for analysis and description of drag, velocity and periodic blood pressure in vessels. In this paper, by considering available experimental quantities, for blood pressure and velocity in periodic time of a thigh artery of a living dog, at first it is written into Fourier series, then by solving Navier-Stokes equations, a relation for curve drawing of vessel blood pressure with rigid wall is obtained. Likewise in another part of this paper, vessel wall is taken in to consideration that vessel wall is elastic and its pressure and velocity are written into complex Fourier series. In this case, by solving Navier-Stokes equations, some relations for blood velocity, viscous drag on vessel wall and blood pressure are obtained. In this study by noting that vessel diameter is almost is large (3.7 mm), and blood is considered as a Newtonian fluid. Finally, available experimental quantities of pressure with obtained curve of solving Navier-Stokes equations are compared. In blood analysis in rigid vessel, existence of 48% variance in pressure curve systole peak caused vessel blood flow analysis with elastic wall, results in new relations for blood flow description. The Resultant curve is obtained from new relations holding 10% variance in systole peak.

  16. Ultra-fast Escape of a Octopus-inspired Rocket

    NASA Astrophysics Data System (ADS)

    Weymouth, Gabriel; Triantafyllou, Michael

    2013-11-01

    The octopus, squid, and other cephalopods inflate with water and then release a jet to accelerate in the opposite direction. This escape mechanism is particularly interesting in the octopus because they become initially quite bluff, yet this does not hinder them in achieving impressive bursts of speed. We examine this somewhat paradoxical maneuver using a simple deflating spheroid model in both potential and viscous flow. We demonstrate that the dynamic reduction of the width of the body completely changes the flow and forces acting on the escaping rocket in three ways. First, a body which reduces in size can generate an added mass thrust which counteracts the added mass inertia. Second, the motion of the shrinking wall acts similar to suction on a static wall, reducing separation and drag forces in a viscous fluid, but that this effects depends on the rate of size change. Third, using a combination of these two features it is possible to initially load the fluid with kinetic energy when heavy and bluff and then recover that energy when streamlined and light, enabling ultra-fast accelerations. As a notable example, these mechanisms allow a shrinking spheroid rocket in a heavy inviscid fluid to achieve speeds greater than an identical rocket in the vacuum of space. Southampton Marine and Maritime Institute.

  17. Numerical study on the hydrodynamic characteristics of biofouled full-scale net cage

    NASA Astrophysics Data System (ADS)

    Bi, Chun-wei; Zhao, Yun-peng; Dong, Guo-hai

    2015-06-01

    The effect of biofouling on the hydrodynamic characteristics of the net cage is of particular interest as biofouled nettings can significantly reduce flow of well-oxygenated water reaching the stocked fish. For computational efficiency, the porous-media fluid model is proposed to simulate flow through the biofouled plane net and full-scale net cage. The porous coefficients of the porous-media fluid model can be determined from the quadratic-function relationship between the hydrodynamic forces on a plane net and the flow velocity using the least squares method. In this study, drag forces on and flow fields around five plane nets with different levels of biofouling are calculated by use of the proposed model. The numerical results are compared with the experimental data of Swift et al. (2006) and the effectiveness of the numerical model is presented. On that basis, flow through full-scale net cages with the same level of biofouling as the tested plane nets are modeled. The flow fields inside and around biofouled net cages are analyzed and the drag force acting on a net cage is estimated by a control volume analysis method. According to the numerical results, empirical formulas of reduction in flow velocity and load on a net cage are derived as function of drag coefficient of the corresponding biofouled netting.

  18. Concurrent field measurements of turbulent velocities, plant reconfiguration and drag forces on Ranunculus penicillatus

    NASA Astrophysics Data System (ADS)

    Paul, Maike; Thomas, Robert E.; Keevil, Gareth M.

    2013-04-01

    In lowland rivers, seasonal patterns of in-stream macrophyte growth and decay have significant implications for flood risk. For a given discharge, flood risk is increased when dense macrophyte canopies reduce flow areas, increase blockage ratios and alter reach-scale roughness values. These factors combine and can increase the flow depth. Conversely, submerged vegetation is exposed to drag forces exerted by the flow, which may be sufficient to damage limbs or dislodge plants. The classical drag equation suggests that the force exerted by fluid flows upon submerged vegetation is a function of the fluid properties, the projected area of the vegetation, and the square of the flow velocity. However, very few studies have simultaneously monitored all of these parameters, resulting in significant uncertainty in the estimation of the coefficient that relates these parameters to the drag force and also the related roughness parameters that control the flow depth for a given discharge. To our knowledge, this study presents the first concurrent field measurements of turbulent velocities, plant reconfigurations and drag forces acting on Ranunculus penicillatus ssp. pseudofluitans (Syme) S.D.Webster. Measurements were undertaken in an artificially straightened reach of the chalk-bed River Wylye, near Longbridge Deverill, Wiltshire, UK. The reach is 5.7 m wide and during measurements there was a mean flow depth of 0.28 m and an average discharge of 0.28 m³s-1. The reach is cleared of vegetation up to three times a year for flood defence purposes, but Ranunculus p. grows back within several weeks. Measurements were carried out after re-growth, when plants were fully developed with a mean length of 0.75 m and on average 6 nodes along the stem. The distances between the nodes increased from the base towards the tip and each node produced a capillary leaf, sometimes in conjunction with a branch. Floating leaves and flowers were not present. Plants were attached to a custom-made drag sensor that was deployed flush with the streambed. Simultaneously, a profiling Acoustic Doppler Velocimeter (Nortek Vectrino-II) was deployed 0.5 m upstream of the plants. Also, a video camera was installed with its field of view perpendicular to the mean flow direction, in order to record plant motion and reconfiguration associated with turbulent velocity and drag fluctuations. Measurements were repeated while the Vectrino-II was consecutively deployed at four vertical positions to: 1. obtain a velocity profile through the entire water column and 2. study which vertical position correlated most strongly to the drag force. Velocity measurements confirmed that turbulent structures were present throughout the water column and a response to these fluctuations was observed in the drag measurements. Responses lagged in time due to the horizontal distance between Vectrino-II and drag sensor position. Additionally, spectral analysis showed that the drag fluctuates with a frequency of 0.5 Hz which corresponds well with the undulating, quasi-sinusoidal, plant motion observed on the video footage. This motion was associated with the downstream propagation of coherent eddies.

  19. A modeling approach to energy savings of flying Canada geese using computational fluid dynamics.

    PubMed

    Maeng, Joo-Sung; Park, Jae-Hyung; Jang, Seong-Min; Han, Seog-Young

    2013-03-07

    A flapping flight mechanism of the Canada goose (Branta canadensis) was estimated using a two-jointed arm model in unsteady aerodynamic performance to examine how much energy can be saved in migration. Computational fluid dynamics (CFD) was used to evaluate airflow fields around the wing and in the wake. From the distributions of velocity and pressure on the wing, it was found that about 15% of goose flight energy could be saved by drag reduction from changing the morphology of the wing. From the airflow field in the wake, it was found that a pair of three-dimensional spiral flapping advantage vortices (FAV) was alternately generated. We quantitatively deduced that the optimal depth (the distance along the flight path between birds) was around 4m from the wing tip of a goose ahead, and optimal wing tip spacing (WTS, the distance between wing tips of adjacent birds perpendicular to the flight path) ranged between 0 and -0.40m in the spanwise section. It was found that a goose behind can save about 16% of its energy by induced power from FAV in V-formation. The phase difference of flapping between the goose ahead and behind was estimated at around 90.7° to take full aerodynamic benefit caused by FAV. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Symmetry breaking and un-breaking in microhydrodynamical systems: Swimming, pumping and bio-ballistics

    NASA Astrophysics Data System (ADS)

    Roper, Marcus Leigh

    This thesis describes the numerical and asymptotic analysis of symmetry breaking phenomena in three fluid dynamical systems. The first part concerns modeling of a micrometer sized swimming device, comprising a filament composed of superparamagnetic micron-sized beads and driven by an applied magnetic field. The swimming mechanics are deciphered in order to show how actuation by a spatially-homogeneous but temporally-varying torque leads to propagation of a bending wave along the filament and thence to propulsion. Absence of swimming unless the lateral symmetry of the filament is broken by tethering one end to a high drag body is explained. The model is used to determine whether, and to what extent, the micro-swimmer behaves like a flagellated eukaryotic cell. The second part concerns modeling of locomotion using a reversible stroke. Although forbidden at low Reynolds numbers, such symmetric gaits are favored by some microscopic planktonic swimmers. We analyze the constraints upon generation of propulsive force by such swimmers using a numerical model for a flapped limb. Effective locomotion is shown to be possible at arbitrarily low rates of energy expenditure, escaping a formerly postulated time-symmetry constraint, if the limb is shaped in order to exploit slow inertial-streaming eddies. Finally we consider the evolution of explosively launched ascomycete spores toward perfect projectile shapes---bodies that are designed to experience minimum drag in flight---using the variance of spore shapes between species in order to quantify the stiffness of the drag minimization constraint. A surprising observation about the persistent fore-aft symmetry of perfect projectiles, even up to Reynolds numbers great enough that the flow around the projectile is highly asymmetric, points both toward a model for spore ontogeny and to a novel linear approximation for moderate Reynolds flows.

  1. Numerical investigation of the aerodynamic and structural characteristics of a corrugated wing

    NASA Astrophysics Data System (ADS)

    Hord, Kyle

    Previous experimental studies on static, bio-inspired corrugated wings have shown that they produce favorable aerodynamic properties such as delayed stall compared to streamlined wings and flat plates at high Reynolds numbers (Re ≥ 4x104). The majority of studies have been carried out with scaled models of dragonfly forewings from the Aeshna Cyanea in either wind tunnels or water channels. In this thesis, the aerodynamics of a corrugated airfoil was studied using computational fluid dynamics methods at a low Reynolds number of 1000. Structural analysis was also performed using the commercial software SolidWorks 2009. The flow field is described by solving the incompressible Navier-Stokes equations on an overlapping grid using the pressure-Poisson method. The equations are discretized in space with second-order accurate central differences. Time integration is achieved through the second-order Crank-Nicolson implicit method. The complex vortex structures that form in the corrugated airfoil valleys and around the corrugated airfoil are studied in detail. Comparisons are made with experimental measurements from corrugated wings and also with simulations of a flat plate. Contrary to the studies at high Reynolds numbers, our study shows that at low Reynolds numbers the wing corrugation does not provide any aerodynamic benefit compared to a smoothed flat plate. Instead, the corrugated profile generates more pressure drag which is only partially offset by the reduction of friction drag, leading to more total drag than the flat plate. Structural analysis shows that the wing corrugation can increase the resistance to bending moments on the wing structure. A smoothed structure has to be three times thicker to provide the same stiffness. It was concluded the corrugated wing has the structural benefit to provide the same resistance to bending moments with a much reduced weight.

  2. A new method to calculate unsteady particle kinematics and drag coefficient in a subsonic post-shock flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bordoloi, Ankur D.; Ding, Liuyang; Martinez, Adam A.

    In this paper, we introduce a new method (piecewise integrated dynamics equation fit, PIDEF) that uses the particle dynamics equation to determine unsteady kinematics and drag coefficient (C D) for a particle in subsonic post-shock flow. The uncertainty of this method is assessed based on simulated trajectories for both quasi-steady and unsteady flow conditions. Traditional piecewise polynomial fitting (PPF) shows high sensitivity to measurement error and the function used to describe C D, creating high levels of relative error (>>1) when applied to unsteady shock-accelerated flows. The PIDEF method provides reduced uncertainty in calculations of unsteady acceleration and drag coefficientmore » for both quasi-steady and unsteady flows. This makes PIDEF a preferable method over PPF for complex flows where the temporal response of C D is unknown. Finally, we apply PIDEF to experimental measurements of particle trajectories from 8-pulse particle tracking and determine the effect of incident Mach number on relaxation kinematics and drag coefficient of micron-sized particles.« less

  3. A new method to calculate unsteady particle kinematics and drag coefficient in a subsonic post-shock flow

    DOE PAGES

    Bordoloi, Ankur D.; Ding, Liuyang; Martinez, Adam A.; ...

    2018-04-26

    In this paper, we introduce a new method (piecewise integrated dynamics equation fit, PIDEF) that uses the particle dynamics equation to determine unsteady kinematics and drag coefficient (C D) for a particle in subsonic post-shock flow. The uncertainty of this method is assessed based on simulated trajectories for both quasi-steady and unsteady flow conditions. Traditional piecewise polynomial fitting (PPF) shows high sensitivity to measurement error and the function used to describe C D, creating high levels of relative error (>>1) when applied to unsteady shock-accelerated flows. The PIDEF method provides reduced uncertainty in calculations of unsteady acceleration and drag coefficientmore » for both quasi-steady and unsteady flows. This makes PIDEF a preferable method over PPF for complex flows where the temporal response of C D is unknown. Finally, we apply PIDEF to experimental measurements of particle trajectories from 8-pulse particle tracking and determine the effect of incident Mach number on relaxation kinematics and drag coefficient of micron-sized particles.« less

  4. Drag coefficients for loose reactor parts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, L.; Doster, J.M.; Mayo, C.W.

    1997-12-01

    Loose-part monitoring systems are capable of providing estimates of loose-part mass and energy as well as impact location. Additional information regarding potentially damaging loose parts can be obtained by estimating loose-part velocity on the basis of free motion dynamics within the flow. To estimate the loose-part velocity, the drag coefficient of the part must be known. Traditionally, drag coefficients of three-dimensional bodies are measured in wind tunnels, by towing in free air or liquids, and with drop tests. These methods have disadvantages with respect to measuring drag coefficients for loose parts in that they require a fixed orientation, or themore » flow field is inconsistent with the turbulent flow conditions found in reactor systems. Though drag coefficients for some regularly shaped objects can be found in the literature, many shapes representative of typical loose parts have not been investigated. In this work, drag coefficients are measured for typical loose-part shapes, including bolts, nuts, pins, and hand tools within the flow conditions expected in reactor coolant systems.« less

  5. Leidenfrost vapour layer moderation of the drag crisis and trajectories of superhydrophobic and hydrophilic spheres falling in water.

    PubMed

    Vakarelski, Ivan U; Chan, Derek Y C; Thoroddsen, Sigurdur T

    2014-08-21

    We investigate the dynamic effects of a Leidenfrost vapour layer sustained on the surface of heated steel spheres during free fall in water. We find that a stable vapour layer sustained on the textured superhydrophobic surface of spheres falling through 95 °C water can reduce the hydrodynamic drag by up to 75% and stabilize the sphere trajectory for the Reynolds number between 10(4) and 10(6), spanning the drag crisis in the absence of the vapour layer. For hydrophilic spheres under the same conditions, the transition to drag reduction and trajectory stability occurs abruptly at a temperature different from the static Leidenfrost point. The observed drag reduction effects are attributed to the disruption of the viscous boundary layer by the vapour layer whose thickness depends on the water temperature. Both the drag reduction and the trajectory stabilization effects are expected to have significant implications for development of sustainable vapour layer based technologies.

  6. Pre-Test Assessment of the Upper Bound of the Drag Coefficient Repeatability of a Wind Tunnel Model

    NASA Technical Reports Server (NTRS)

    Ulbrich, N.; L'Esperance, A.

    2017-01-01

    A new method is presented that computes a pre{test estimate of the upper bound of the drag coefficient repeatability of a wind tunnel model. This upper bound is a conservative estimate of the precision error of the drag coefficient. For clarity, precision error contributions associated with the measurement of the dynamic pressure are analyzed separately from those that are associated with the measurement of the aerodynamic loads. The upper bound is computed by using information about the model, the tunnel conditions, and the balance in combination with an estimate of the expected output variations as input. The model information consists of the reference area and an assumed angle of attack. The tunnel conditions are described by the Mach number and the total pressure or unit Reynolds number. The balance inputs are the partial derivatives of the axial and normal force with respect to all balance outputs. Finally, an empirical output variation of 1.0 microV/V is used to relate both random instrumentation and angle measurement errors to the precision error of the drag coefficient. Results of the analysis are reported by plotting the upper bound of the precision error versus the tunnel conditions. The analysis shows that the influence of the dynamic pressure measurement error on the precision error of the drag coefficient is often small when compared with the influence of errors that are associated with the load measurements. Consequently, the sensitivities of the axial and normal force gages of the balance have a significant influence on the overall magnitude of the drag coefficient's precision error. Therefore, results of the error analysis can be used for balance selection purposes as the drag prediction characteristics of balances of similar size and capacities can objectively be compared. Data from two wind tunnel models and three balances are used to illustrate the assessment of the precision error of the drag coefficient.

  7. Time-frequency analyses of fluid-solid interaction under sinusoidal translational shear deformation of the viscoelastic rat cerebrum

    NASA Astrophysics Data System (ADS)

    Leahy, Lauren N.; Haslach, Henry W.

    2018-02-01

    During normal extracellular fluid (ECF) flow in the brain glymphatic system or during pathological flow induced by trauma resulting from impacts and blast waves, ECF-solid matter interactions result from sinusoidal shear waves in the brain and cranial arterial tissue, both heterogeneous biological tissues with high fluid content. The flow in the glymphatic system is known to be forced by pulsations of the cranial arteries at about 1 Hz. The experimental shear stress response to sinusoidal translational shear deformation at 1 Hz and 25% strain amplitude and either 0% or 33% compression is compared for rat cerebrum and bovine aortic tissue. Time-frequency analyses aim to correlate the shear stress signal frequency components over time with the behavior of brain tissue constituents to identify the physical source of the shear nonlinear viscoelastic response. Discrete fast Fourier transformation analysis and the novel application to the shear stress signal of harmonic wavelet decomposition both show significant 1 Hz and 3 Hz components. The 3 Hz component in brain tissue, whose magnitude is much larger than in aortic tissue, may result from interstitial fluid induced drag forces. The harmonic wavelet decomposition locates 3 Hz harmonics whose magnitudes decrease on subsequent cycles perhaps because of bond breaking that results in easier fluid movement. Both tissues exhibit transient shear stress softening similar to the Mullins effect in rubber. The form of a new mathematical model for the drag force produced by ECF-solid matter interactions captures the third harmonic seen experimentally.

  8. The effect of radiation pressure on spatial distribution of dust inside H II regions

    NASA Astrophysics Data System (ADS)

    Ishiki, Shohei; Okamoto, Takashi; Inoue, Akio K.

    2018-02-01

    We investigate the impact of radiation pressure on spatial dust distribution inside H II regions using one-dimensional radiation hydrodynamic simulations, which include absorption and re-emission of photons by dust. In order to investigate grain-size effects as well, we introduce two additional fluid components describing large and small dust grains in the simulations. Relative velocity between dust and gas strongly depends on the drag force. We include collisional drag force and coulomb drag force. We find that, in a compact H II region, a dust cavity region is formed by radiation pressure. Resulting dust cavity sizes (˜0.2 pc) agree with observational estimates reasonably well. Since dust inside an H II region is strongly charged, relative velocity between dust and gas is mainly determined by the coulomb drag force. Strength of the coulomb drag force is about 2 order of magnitude larger than that of the collisional drag force. In addition, in a cloud of mass 105 M⊙, we find that the radiation pressure changes the grain-size distribution inside H II regions. Since large (0.1 μm) dust grains are accelerated more efficiently than small (0.01 μm) grains, the large-to-small grain mass ratio becomes smaller by an order of magnitude compared with the initial one. Resulting dust-size distributions depend on the luminosity of the radiation source. The large and small grain segregation becomes weaker when we assume stronger radiation source, since dust grain charges become larger under stronger radiation and hence coulomb drag force becomes stronger.

  9. Using CFD Surface Solutions to Shape Sonic Boom Signatures Propagated from Off-Body Pressure

    NASA Technical Reports Server (NTRS)

    Ordaz, Irian; Li, Wu

    2013-01-01

    The conceptual design of a low-boom and low-drag supersonic aircraft remains a challenge despite significant progress in recent years. Inverse design using reversed equivalent area and adjoint methods have been demonstrated to be effective in shaping the ground signature propagated from computational fluid dynamics (CFD) off-body pressure distributions. However, there is still a need to reduce the computational cost in the early stages of design to obtain a baseline that is feasible for low-boom shaping, and in the search for a robust low-boom design over the entire sonic boom footprint. The proposed design method addresses the need to reduce the computational cost for robust low-boom design by using surface pressure distributions from CFD solutions to shape sonic boom ground signatures propagated from CFD off-body pressure.

  10. Biomimetic optimization research on wind noise reduction of an asymmetric cross-section bar.

    PubMed

    Zhang, Yingchao; Meng, Weijiang; Fan, Bing; Tang, Wenhui

    2016-01-01

    In this paper, we used the principle of biomimetics to design two-dimensional and three-dimensional bar sections, and used computational fluid dynamics software to numerically simulate and analyse the aerodynamic noise, to reduce drag and noise. We used the principle of biomimetics to design the cross-section of a bar. An owl wing shape was used for the initial design of the section geometry; then the feathered form of an owl wing, the v-shaped micro-grooves of a shark's skin, the tubercles of a humpback whale's flipper, and the stripy surface of a scallop's shell were used to inspire surface features, added to the initial section and three-dimensional shape. Through computational aeroacoustic simulations, we obtained the aerodynamic characteristics and the noise levels of the models. These biomimetic models dramatically decreased noise levels.

  11. NASA Has Joined America True's Design Mission for 2000

    NASA Technical Reports Server (NTRS)

    Steele, Gynelle C.

    1999-01-01

    Engineers at the NASA Lewis Research Center will support the America True design team led by America s Cup innovator Phil Kaiko. The joint effort between NASA and America True is encouraged by Mission HOME, the official public awareness campaign of the U.S. space community. NASA Lewis and America True have entered into a Space Act Agreement to focus on the interaction between the airfoil and the large deformation of the pretensioned sails and rigs along with the dynamic motions related to the boat motions. This work will require a coupled fluid and structural simulation. Included in the simulation will be both a steadystate capability, to capture the quasi-state interactions between the air loads and sail geometry and the lift and drag on the boat, and a transient capability, to capture the sail/mast pumping effects resulting from hull motions.

  12. A note on a nonlinear equation arising in discussions of the steady fall of a resistive, viscous, isothermal fluid across a magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tautz, R. C., E-mail: robert.c.tautz@gmail.com; Lerche, I., E-mail: lercheian@yahoo.com

    2015-11-15

    This note considers the evolution of steady isothermal flow across a uniform magnetic field from an analytic standpoint. This problem is of concern in developments of magnetic fields in the solar corona and for prominence dynamics. Limiting behaviors are obtained to the nonlinear equation describing the flow depending on the value of a single parameter. For the situation where the viscous drag is a small correction to the inviscid flow limiting structures are also outlined. The purpose of the note is to show how one can evaluate some of the analytic properties of the highly nonlinear equation that are ofmore » use in considering the numerical evolution as done in Low and Egan [Phys. Plasmas 21, 062105 (2014)].« less

  13. A Parametric Geometry Computational Fluid Dynamics (CFD) Study Utilizing Design of Experiments (DOE)

    NASA Technical Reports Server (NTRS)

    Rhew, Ray D.; Parker, Peter A.

    2007-01-01

    Design of Experiments (DOE) was applied to the LAS geometric parameter study to efficiently identify and rank primary contributors to integrated drag over the vehicles ascent trajectory in an order of magnitude fewer CFD configurations thereby reducing computational resources and solution time. SME s were able to gain a better understanding on the underlying flowphysics of different geometric parameter configurations through the identification of interaction effects. An interaction effect, which describes how the effect of one factor changes with respect to the levels of other factors, is often the key to product optimization. A DOE approach emphasizes a sequential approach to learning through successive experimentation to continuously build on previous knowledge. These studies represent a starting point for expanded experimental activities that will eventually cover the entire design space of the vehicle and flight trajectory.

  14. Significant and stable drag reduction with air rings confined by alternated superhydrophobic and hydrophilic strips

    PubMed Central

    Hu, Haibao; Wen, Jun; Bao, Luyao; Jia, Laibing; Song, Dong; Song, Baowei; Pan, Guang; Scaraggi, Michele; Dini, Daniele; Xue, Qunji; Zhou, Feng

    2017-01-01

    Superhydrophobic surfaces have the potential to reduce the viscous drag of liquids by significantly decreasing friction at a solid-liquid interface due to the formation of air layers between solid walls and interacting liquids. However, the trapped air usually becomes unstable due to the finite nature of the domain over which it forms. We demonstrate for the first time that a large surface energy barrier can be formed to strongly pin the three-phase contact line of air/water/solid by covering the inner rotor of a Taylor-Couette flow apparatus with alternating superhydrophobic and hydrophilic circumferential strips. This prevents the disruption of the air layer, which forms stable and continuous air rings. The drag reduction measured at the inner rotor could be as much as 77.2%. Moreover, the air layers not only significantly reduce the strength of Taylor vortexes but also influence the number and position of the Taylor vortex pairs. This has strong implications in terms of energy efficiency maximization for marine applications and reduction of drag losses in, for example, fluid transport in pipelines and carriers. PMID:28879234

  15. Surface deformation and shear flow in ligand mediated cell adhesion.

    PubMed

    Sircar, Sarthok; Roberts, Anthony J

    2016-10-01

    We present a unified, multiscale model to study the attachment/detachment dynamics of two deforming, charged, near spherical cells, coated with binding ligands and subject to a slow, homogeneous shear flow in a viscous, ionic fluid medium. The binding ligands on the surface of the cells experience both attractive and repulsive forces in an ionic medium and exhibit finite resistance to rotation via bond tilting. The microscale drag forces and couples describing the fluid flow inside the small separation gap between the cells, are calculated using a combination of methods in lubrication theory and previously published numerical results. For a selected range of material and fluid parameters, a hysteretic transition of the sticking probability curves (i.e., the function [Formula: see text]) between the adhesion phase (when [Formula: see text]) and the fragmentation phase (when [Formula: see text]) is attributed to a nonlinear relation between the total nanoscale binding forces and the separation gap between the cells. We show that adhesion is favoured in highly ionic fluids, increased deformability of the cells, elastic binders and a higher fluid shear rate (until a critical threshold value of shear rate is reached). Within a selected range of critical shear rates, the continuation of the limit points (i.e., the turning points where the slope of [Formula: see text] changes sign) predict a bistable region, indicating an abrupt switching between the adhesion and the fragmentation regimes. Although, bistability in the adhesion-fragmentation phase diagram of two deformable, charged cells immersed in an ionic aqueous environment has been identified by some in vitro experiments, but until now, has not been quantified theoretically.

  16. Dynamical friction for supersonic motion in a homogeneous gaseous medium

    NASA Astrophysics Data System (ADS)

    Thun, Daniel; Kuiper, Rolf; Schmidt, Franziska; Kley, Wilhelm

    2016-05-01

    Context. The supersonic motion of gravitating objects through a gaseous ambient medium constitutes a classical problem in theoretical astrophysics. Its application covers a broad range of objects and scales from planetesimals, planets, and all kind of stars up to galaxies and black holes. In particular, the dynamical friction caused by the wake that forms behind the object plays an important role for the dynamics of the system. To calculate the dynamical friction for a particular system, standard formulae based on linear theory are often used. Aims: It is our goal to check the general validity of these formulae and provide suitable expressions for the dynamical friction acting on the moving object, based on the basic physical parameters of the problem: first, the mass, radius, and velocity of the perturber; second, the gas mass density, soundspeed, and adiabatic index of the gaseous medium; and finally, the size of the forming wake. Methods: We perform dedicated sequences of high-resolution numerical studies of rigid bodies moving supersonically through a homogeneous ambient medium and calculate the total drag acting on the object, which is the sum of gravitational and hydrodynamical drag. We study cases without gravity with purely hydrodynamical drag, as well as gravitating objects. In various numerical experiments, we determine the drag force acting on the moving body and its dependence on the basic physical parameters of the problem, as given above. From the final equilibrium state of the simulations, for gravitating objects we compute the dynamical friction by direct numerical integration of the gravitational pull acting on the embedded object. Results: The numerical experiments confirm the known scaling laws for the dependence of the dynamical friction on the basic physical parameters as derived in earlier semi-analytical studies. As a new important result we find that the shock's stand-off distance is revealed as the minimum spatial interaction scale of dynamical friction. Below this radius, the gas settles into a hydrostatic state, which - owing to its spherical symmetry - causes no net gravitational pull onto the moving body. Finally, we derive an analytic estimate for the stand-off distance that can easily be used when calculating the dynamical friction force.

  17. Competition between drag and Coulomb interactions in turbulent particle-laden flows using a coupled-fluid-Ewald-summation based approach

    NASA Astrophysics Data System (ADS)

    Yao, Yuan; Capecelatro, Jesse

    2018-03-01

    We present a numerical study on inertial electrically charged particles suspended in a turbulent carrier phase. Fluid-particle interactions are accounted for in an Eulerian-Lagrangian (EL) framework and coupled to a Fourier-based Ewald summation method, referred to as the particle-particle-particle-mesh (P3M ) method, to accurately capture short- and long-range electrostatic forces in a tractable manner. The EL P3M method is used to assess the competition between drag and Coulomb forces for a range of Stokes numbers and charge densities. Simulations of like- and oppositely charged particles suspended in a two-dimensional Taylor-Green vortex and three-dimensional homogeneous isotropic turbulence are reported. It is found that even in dilute suspensions, the short-range electric potential plays an important role in flows that admit preferential concentration. Suspensions of oppositely charged particles are observed to agglomerate in the form of chains and rings. Comparisons between the particle-mesh method typically employed in fluid-particle calculations and P3M are reported, in addition to one-point and two-point statistics to quantify the level of clustering as a function of Reynolds number, Stokes number, and nondimensional electric settling velocity.

  18. Experimental study of improved rheology and lubricity of drilling fluids enhanced with nano-particles

    NASA Astrophysics Data System (ADS)

    Bég, O. Anwar; Espinoza, D. E. Sanchez; Kadir, Ali; Shamshuddin, MD.; Sohail, Ayesha

    2018-04-01

    An experimental study of the rheology and lubricity properties of a drilling fluid is reported, motivated by applications in highly deviated and extended reach wells. Recent developments in nanofluids have identified that the judicious injection of nano-particles into working drilling fluids may resolve a number of issues including borehole instability, lost circulation, torque and drag, pipe sticking problems, bit balling and reduction in drilling speed. The aim of this article is, therefore, to evaluate the rheological characteristics and lubricity of different nano-particles in water-based mud, with the potential to reduce costs via a decrease in drag and torque during the construction of highly deviated and ERD wells. Extensive results are presented for percentage in torque variation and coefficient of friction before and after aging. Rheology is evaluated via apparent viscosity, plastic viscosity and gel strength variation before and after aging for water-based muds (WBM). Results are included for silica and titanium nano-particles at different concentrations. These properties were measured before and after aging the mud samples at 80 °C during 16 h at static conditions. The best performance was shown with titanium nano-particles at a concentration of 0.60% (w/w) before aging.

  19. Possibilities for drag reduction by boundary layer control

    NASA Technical Reports Server (NTRS)

    Naiman, I.

    1946-01-01

    The mechanics of laminar boundary layer transition are reviewed. Drag possibilities for boundary layer control are analyzed using assumed conditions of transition Reynolds number, inlet loss, number of slots, blower efficiency, and duct losses. Although the results of such analysis are highly favorable, those obtained by experimental investigations yield conflicting results, showing only small gains, and sometimes losses. Reduction of this data indicates that there is a lower limit to the quantity of air which must be removed at the slot in order to stabilize the laminar flow. The removal of insufficient air permits transition to occur while the removal of excessive amounts of air results in high power costs, with a net drag increases. With the estimated value of flow coefficient and duct losses equal to half the dynamic pressure, drag reductions of 50% may be obtained; with twice this flow coefficient, the drag saving is reduced to 25%.

  20. Environmental dynamics at orbital altitudes

    NASA Technical Reports Server (NTRS)

    Karr, G. R.

    1976-01-01

    The influence of real satellite aerodynamics on the determination of upper atmospheric density was investigated. A method of analysis of satellite drag data is presented which includes the effect of satellite lift and the variation in aerodynamic properties around the orbit. The studies indicate that satellite lift may be responsible for the observed orbit precession rather than a super rotation of the upper atmosphere. The influence of simplifying assumptions concerning the aerodynamics of objects in falling sphere analysis were evaluated and an improved method of analysis was developed. Wind tunnel data was used to develop more accurate drag coefficient relationships for studying altitudes between 80 and 120 Km. The improved drag coefficient relationships revealed a considerable error in previous falling sphere drag interpretation. These data were reanalyzed using the more accurate relationships. Theoretical investigations of the drag coefficient in the very low speed ratio region were also conducted.

Top